
Public Verification of Private Effort

Giulia ALBERINI

School of Computer Science

McGill University, Montreal

December 2015

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfilment of the requirements of the degree of Ph.D in Computer Science

c©Giulia Alberini, 2015

“The isolated man does not develop any intellectual power. It is necessary for him to be

immersed in an environment of other men, whose techniques he absorbs during the first twenty

years of his life. He may then perhaps do a little research of his own and make a very few

discoveries which are passed on to other men. From this point of view the search for new

techniques must be regarded as carried out by the human community as a whole, rather than

by individuals.”

A. TURING

To my parents,
who shaped my mind.

Abstract

We introduce a new framework for polling responses from a large population. Our framework

allows gathering information without violating the responders’ anonymity and at the same time

enables public verification of the poll’s result. In contrast to previous approaches to the prob-

lem, we do not require trusting the pollster for faithfully announcing the poll’s results, nor do

we rely on strong identity verification.

We propose an “effort based” polling protocol whose results can be publicly verified by con-

structing a “responder certification graph” whose nodes are associated to the responders’ partic-

ipating to the poll, and whose edges cross-certify that adjacent nodes correspond to honest par-

ticipants. Cross-verification is achieved using a newly introduced (privately verifiable) “Private

Proof of Effort” (PPE). In effect, our protocol gives a general method for converting privately-

verifiable proofs into publicly-verifiable protocol. The soundness of the transformation relies

on expansion properties of the certification graph.

Our results are applicable to a variety of settings in which crowd-sourced information gather-

ing is required. This includes crypto-currencies, political polling, elections, recommendation

systems, viewer voting in TV shows, and prediction markets.

Résumé

Nous introduisons un nouveau cadre formel afin de scruter les réponses d’une grande popula-

tion de votants. Notre cadre permet la collecte des votes tout en garantissant l’anonymat des

participants ainsi que la possibilité de vérifier publiquement le résultat du scrutin. Contraire-

ment aux approches précédentes à ce sujet, nous n’exigeons pas que le scrutateur soit digne de

confiance lors de l’annonce des résultats, ni ne nous reposons sur une vérification “forte” de

l’identité des participants.

Nous proposons un protocole de scrutin “basé sur l’effort” dont les résultats du vote peuvent

être vérifié publiquement via la construction d’un “graphe de certification des votants” dont

les sommets sont étiquetés par diverses informations liées à chaque votant et dont les arêtes

servent à la certification de l’honnêteté mutuelle de certaines paires de votants. La certification

de l’honnêteté mutuelle est obtenu par l’elaboration du concept de “preuves d’effort privées”

(PEP) vérifiables en privé. Dans les faits, de notre protocole se dégage un méthode générale

permettants de convertir des preuves vérifiables en privé en preuves vérifiables en public. La

justesse de la transformation repose sur les propriétés d’expansion du graphe de certification.

Nos résultats sont applicables dans divers scenarios dans lesquels la collecte collaborative

d’information de masse est nécessaire. Ceux-ci incluent les crypto-monnaies, les sondages pré-

électoraux, les élections, les systèmes de recommendation, les votes télévisuels et les sondages

d’opinions.

Acknowledgements

When we achieve a goal in life we never do it alone. I would like to start by thanking my

supervisor, Claude Crépeau, for accepting me as one of his students when I had no background

on cryptography. Thank you for your constant support and all the needed advice you gave me

during the writing of this thesis. A warm thank you goes to Gilles and Louis for keeping me

afloat throughout the years. It was very much appreciated. A very special thank you goes to

Alon. I’m not sure how many students get a research assistantship offer without asking and

from someone who doesn’t even really know you. I feel incredibly lucky for the opportunity

you gave me. Through my experience at IDC I had the chance to be part of a challenging,

vibrant, and exciting research group. Thank you for your endless support and encouragement.

You believe in me more than I do, and I owe you my success. To Tal, thank you for involving

me in the project that eventually became this thesis. Thank you for all the insightful discussions

and for being available to answer my questions at any time during the night. A sincere thank

you to Diti for dealing with all my questions and my aversion to deadlines and bureaucracy.

I would like to thank my sister Alice and my cousin Lorenza for being here in Montreal, and

for making me feel at home every day. Thank you to Sanni for putting up with all my ranting,

for always providing invaluable advice, and for making any night better with some good beers

and great company. A huge thank you goes to Linda. Without her I would not know what the

state of my mental health would have been. Thank you for the immense support you have been

able to provide me even from across the ocean.

Finally, grazie a mamma e papà for being open minded and unconventional parents. Thank

you for allowing me to get through thirteen years of university without any debts. And a final

special thank you goes to my significant other Billy, for his endless patience in dealing with me

(especially when I’m hungry). Thank you for always finding a way to make me smile and for

helping me find the serenity I really needed.

vi

Contributions of Authors

Most of the work contained in this thesis appears in a paper [2] accepted to TCC (Theory

of Cryptography Conference) 2015. This is a joint work with Tal Moran and Alon Rosen to

which we all equally contributed. The project began in 2012 when I was working as a research

assistant at IDC Herzliya under the supervision of Alon Rosen.

vii

Contents

Abstract iv

Résumé v

Acknowledgements vi

Contributions of Authors vii

Contents viii

1 Introduction 1

1.1 Privately Verifiable Proofs of Effort . 3
1.2 Our Results . 4
1.3 Main Theorems . 5
1.4 Comparison to Verifiable Voting . 7
1.5 Related Work . 8

Sybil Defense . 8
Verifiable and Private Polling. 10

1.6 Structure of this thesis . 10

2 Preliminaries 11

2.1 Mathematical Background . 11
2.1.1 Basic Probability . 11

Union Bound. 11
Chernoff Bound. 12

2.1.2 Random Graphs and Expansion . 12
2.2 Cryptographic background . 14

2.2.1 Negligible Success Probability . 14
2.2.2 Message Authentication Codes . 14

Security of message authentication codes. 15
2.2.3 Digital Signature Schemes . 16

Security of signature schemes. 17
2.2.4 Bit Commitment Schemes . 18

viii

Contents ix

2.3 CAPTCHAS . 21
2.4 Proofs of Retrievability . 22

Security of PoRs. 23

3 Model and Definition 25

3.1 Verifiable Effort-Based Polling . 25
3.2 Formally Defining Proofs of Effort . 27
3.3 Implementing PPEs . 28

4 A Publicly Verifiable Polling Scheme 33

4.1 High-level description . 33
4.2 Formal Protocol Description . 37

4.2.1 Communication Model and Party Identities 37
Anonymous Channels and Network Addresses. 37
Broadcast Channel. 38
Complaint Channel. 38
Implementation with Peer-to-Peer Communication. 38

4.2.2 Adversary and Corruption Model . 39
Soundness. 39
Completeness. 39

4.2.3 Full Protocol . 40
Dealing with Registration-Refusal Attacks. 41

4.3 Soundness . 42
Local Verification. 45
Global Verification. 45

4.3.1 Large-Set Expanding Property . 46
4.3.2 Main Theorem and Proofs . 50

4.4 Completeness . 53

5 Conclusion 57

5.1 Summary . 57
5.2 Future Work . 57

General Verifiable Computation Among Anonymous Participants 57
Parallel and Distributed Verification 58
Practicality of the Protocol . 58
Improving Efficiency by Using Hypergraphs. 59
Improving Efficiency by Using Explicit Graphs. 59

A Choosing parameters 60

A.1 Constraints on Parameters . 62
A.2 Examples of Parameter Settings . 64

Contents x

Bibliography 66

Chapter 1

Introduction

The Internet enables reciprocal communication on a massive scale. Thus, it has the potential

to allow new forms of information gathering and “crowd-sourced” decision making. Some ex-

amples (already in widespread use) are political polling, elections (which are a mechanism for

achieving consensus among voters about which candidate to put in office), recommendation

systems (e.g., based on users’ opinions about products and services), prediction markets (lever-

aging the “wisdom of the crowds” to predict future events) and “crypto-currencies” (such as

Bitcoin [45]).

We can think of all these cases as a generalized “opinion poll”: the outcome is the result of

aggregating the opinions of a large population of Internet users. The “protocols” that implement

the poll (and the methods of computing the results) are different in each case, but in all of

them we can categorize the participants into three types (some parties may belong to multiple

categories):

1. pollsters are responsible for collecting the information and publishing the result.

2. responders are the parties who provide inputs to the poll.

3. verifiers are interested in (should agree on) the result, but may not be active participants.

Although at first glance the examples mentioned above may not necessarily appear to be a

distributed protocol problem (e.g., in elections there is a central election authority that can

1

Chapter 1. Introduction 2

broadcast results to everyone), it is natural to consider the case when the central authorities

are untrusted, and can potentially act maliciously. Viewed this way, verifiable polling is a

generalization of the fundamental problem of achieving consensus between mutually-distrustful

parties. While in the general polling setting, inputs of various parties could differ and are

aggregated into the poll’s “tally”, the basic consensus problem focuses on the special case in

which parties only have to agree on a specific output if all of their inputs match. Correctness of

the consensus is guaranteed by the verifiability property of the polling protocol.

In their general form, verifiable opinion polls are also useful as building blocks in more com-

plex protocols. For example, the main technical innovation of Bitcoin, a popularized “crypto-

currency”, is in achieving a distributed, decentralized consensus about the currency’s public

transaction ledger (the record of all Bitcoin transactions) [45].

In the “traditional” setting for the verifiable polling problem (and its variants), the number

and identities of the parties are known in advance. Using standard cryptographic techniques,

solutions are known to many of them. Techniques for verifiable voting, for example, provide

solutions that hide the individual responses of the participants, even after revealing the tally

(see section 1.5 for references).

Unfortunately, adapting the traditional solutions to work in a decentralized Internet environ-

ment is non-trivial. One of the major problems encountered in this setting is the lack of identity

verification. Strong identity verification on a large scale is expensive, and in many cases com-

pletely impractical (e.g., when participants spread across national boundaries, there might not

be a single entity trusted by all of them to certify identities). The mechanisms for identity ver-

ification become even more complex when anonymity (or pseudonymity) of the participants is

required. In the absence of identity verification, it is impossible to distinguish a fake identity

from a real one; this opens the door to “Sybil attacks” based on creating multiple fake identities.

There are various methods used to mitigate Sybil attacks without requiring identity verification.

A recurring idea is to force participants to prove they expended some valuable resource: for

example, spending money or performing a computational task. This serves to limit the number

of fake identities an adversary can create. In this paradigm, we have no choice but to relax our

requirements from the poll: rather than requiring “one vote per participant”, we now allow “one

Chapter 1. Introduction 3

vote per effort” (where an “effort unit” corresponds to expending some resource). We call this

effort-based polling.

The Bitcoin protocol is an excellent example of this type: consensus is achieved by having

parties constantly “vote” on which version of the transaction ledger they accept, where for each

“vote” the party must also generate a “proof-of-work” to prove that the required amount of

computational effort was expended.1

Proofs of work are one of the very few examples of proofs of effort that are publicly verifiable.

However, they suffer from significant drawbacks. First of all, they are inherently wasteful in

that the computation “does nothing” except prove work (indeed, this is one of the strongest

arguments against the Bitcoin currency [35]). Secondly, and perhaps more importantly, a party

with access to more computing power than most honest responders may gain a hugely dispro-

portionate influence on the results (not to mention the wide disparities between the responders

themselves).

1.1 Privately Verifiable Proofs of Effort

An alternative to publicly-verifiable proofs of work, and one that may be potentially easier to

achieve, is that of privately-verifiable proofs of resource expenditure. One well known example

is that of enforcing human involvement in each response. In voting for the “American Idol”

TV show, for example, online viewers must solve a CAPTCHA [57] for each vote, but the

total number of votes is effectively unlimited. (What makes the CAPTCHA solution privately

verifiable is the fact that all currently known CAPTCHAs are private coin: every CAPTCHA

is generated together with its solution.)

Beyond being easier to achieve, the “human effort” requirement may be useful when there is

a “resource gap” between honest and malicious parties. For example, show producers have

significantly more money and access to more computing power than most honest viewers (and

1The outcome of a Bitcoin “poll” is not a majority-vote, but a randomized selection in which the probability
for selecting a “candidate” is proportional to the total effort expended by that candidate. However, this still fits in
our generalized polling framework.

Chapter 1. Introduction 4

there are wide disparities between the viewers themselves)—using proof-of-work in this context

could give them a hugely disproportionate influence on the results.

What CAPTCHAs enable us to achieve is what we call a privately-verifiable proof of effort

(PPE). Informally, this is an interactive protocol between two parties: if both parties are honest

the test returns “true” to both, otherwise the test returns “false” to the honest participant.

Definition 1.1 (PPE, informal). A two-party protocol is a PPE if it satisfies:

1. Effort If both parties honestly follow the protocol, they expend one “effort unit”.

2. σ-Completeness. If both parties honestly followed the protocol, they will both output

“true” at the end of the protocol with probability at least 1− σ.

3. ε-Soundness. If one party is malicious (invests less than the required effort) and the other

honestly follows the protocol, the honest party will output “false” with probability at least

1− ε.

We note that this definition is necessarily informal, since the term “effort unit” is itself not

well defined. In our analysis, we sidestep the problem by reversing the definition: instead of

defining a PPE as a proof of effort, we define a “proof of effort” as successful completion of

PPE with at least one honest participant (formally, we follow Canetti et al.’s framework for

defining CAPTCHAs [12] and define effort in terms of oracle calls; see chapter 3 for details).

The peer-to-peer nature of PPEs makes them potentially easier to achieve than their publicly-

verifiable counterparts (which require costly distributed coordination). In section 3.3, we list

several potential mechanisms for PPEs, most of which do not require human involvement (mak-

ing them fully automatizable, and hence scalable). These include proofs of storage, human

interaction (including symmetric CAPTCHAs) and leveraging social networks.

1.2 Our Results

While PPEs seem easier to realize, it is not at all clear how to utilize them in order to deal with

the problem of a cheating pollster. For instance, in the American Idol example, a malicious

Chapter 1. Introduction 5

CAPTCHA generator can use the solutions to the CAPTCHAs without expending any human

effort. Thus, existing CAPTCHAs cannot be publicly verified (hence cannot be used to achieve

a consensus about the result of the poll when the generator is untrusted).

Our main result is a new protocol for publicly-verifiable effort-based polling, based on any pri-

vately-verifiable proof-of-effort. The protocol uses PPEs to generate a “responder certification

graph”: each responder is a node in the graph while an edge between two responders corre-

sponds to a PPE execution. Loosely speaking, we guarantee that, as long as enough honest

users participate in the protocol, a large number of cheating nodes will be publicly detected

(note that, every party controlled by the adversary is considered “cheating”, even if it follows

the honest protocol exactly).

If each node of the graph is published together with its response to the poll, the poll results

cannot be skewed significantly by the pollster without being detected.

In its simplest variant, our protocol assumes that the responder certification graph is sam-

pled at random. This sampling can be performed in a publicly-verifiable way, say by ap-

plying a “random-looking” function (e.g., SHA-1) to the indices of two nodes to determine

whether there is an edge between them in the graph. Since our protocol’s analysis relies only

on expansion properties of such randomly chosen graphs, the construction can potentially be

derandomized—using an explicit graph with the appropriate expansion properties, we could re-

move our assumption about SHA-1 and improve the protocol parameters, at the cost of making

the protocol more complex.

We note that while the structure of certification graph is fixed (it depends only on the number

of nodes), we allow the adversary to specify the number of nodes (within bounds) and to arbi-

trarily control the assignment of honest nodes to vertices in the graph. We prove that security

holds for every assignment.

1.3 Main Theorems

The total number of nodes in the certification graph is denoted m and corresponds to the total

number of responders (some of whom may be controlled by the adversary). The number of

Chapter 1. Introduction 6

honest responders is denoted by n. We denote by d the average degree of the responder in the

certification graph: this is the number of PPE executions in which each responder is expected

to participate.

We model our assumption that the pollsters have bounded resources by specifying that a cheat-

ing pollster cannot participate in too many successful PPEs with honest responders. In terms of

the certification graph, this assumption implies a bound a on the number of “attack edges”—

PPE executions in which the cheating pollster participates as one party and convinces an honest

responder to accept without expending any effort.

The ratio a/d gives a lower bound on the number of “cheating” nodes; an attacker can always

create this many cheating nodes without detection by following the protocol honestly. Thus,

our security guarantees make sense only when a/d � n (we can think of a/dn as a small

constant).

We denote by κ the security parameter. Our main theorems guarantee the soundness (a ma-

licious pollster can’t cheat undetectably) and completeness (an honest execution will be ac-

cepted) of our protocol. For simplicity, we will consider PPEs for which ε (the soundness error

of a PPE) is negligible in the security parameter and omit it. For our completeness proof, we

require an additional independence property: that for a given node, the probability of failure in

each PPE execution is independent (the probability can depend on the node, however).

Theorem 1.2 (Soundness—Informal). Let A be an adversarial pollster that cannot succeed in

more than a PPEs with honest responders. If there are at least n ≥ αm, α ∈ (0, 1), honest

responders to the poll and A controls more than Ω
(
a
d

)
of the responses in the poll outcome,

then verification will fail with overwhelming probability (in κ).

See Section 4.3 for the full theorem and proof. Note that our proof holds in the random oracle

model, but under a very reasonable assumption about the cryptographic hash function (that the

generated graph has good expansion parameters) it holds in the standard model as well.

Theorem 1.3 (Completeness—Informal). If the pollster is honest, and malicious responders

are bounded by O(m) successful PPEs, the probability that verification fails is negligible in κ.

Chapter 1. Introduction 7

See Section 4.4 for the full theorem and proof. The bound on successful PPEs by malicious

responders is required to guarantee robustness of the protocol—when the pollster is honest, the

verification should succeed even if some of the responders are malicious.

1.4 Comparison to Verifiable Voting

Verifiable voting systems use cryptographic techniques to assure election integrity from voter

intent to final tally. These systems are characterized by the following two properties: voter

auditing and universal verifiability. The former enables any participant to verify whether his or

her vote was correctly included in the electronic ballot box. The latter allows anyone to verify

if all the votes have been actually counted. In 2004, David Chaum proposed a first verifiable

voting system in [14]. Since then, many solutions have been presented [15], [1], [51].

At a high level, our polling protocol has the same form as most universally verifiable voting

protocols (involving an “election authority”, “voters”, “receipts” and “verification procedure”):

1. The pollster sets up the poll and publishes public parameters on a bulletin-board (mod-

elled as a broadcast channel). This corresponds to the role of the “election authority”.

2. Honest responders (corresponding to the “voters”) send their responses to the pollster

and engage in an interactive proof protocol to ensure that they are expending the correct

amount of “effort” for each response. Unlike most voting protocols, not only interac-

tion with the pollster is needed, but also interaction with a subset of other responders is

included.

The pollster signs the transcript of each communication with a responder and sends this

signature to the responder (think of this as the “receipt” in the voting protocol).

3. The pollster publishes the empirical distribution of responses, together with a proof of

correctness.

4. The verification procedure consists of both a local verification step performed by the

responders (which in a voting protocol corresponds to verifying that the voter’s receipt

appears on the bulletin board) and a global verification step performed by the verifiers

Chapter 1. Introduction 8

(which corresponds to the “universal verification” step in voting protocols). Note that

responders can also act as verifiers if they wish.

A significant difference between effort-based polling and verifiable voting is the issue of voter

identity. In our polling protocol, parties are identified only by self-chosen pseudonyms (for our

purposes, a pseudonym is a verification key of a public-key signature scheme). We do not limit

the number of pseudonyms a party may generate, or require parties to link their pseudonyms to

their real identities.

In contrast, most voting protocols assume each party in the protocol has been identified by a

trusted authority, in order to ensure that each voter gets only a single vote. By relaxing this

requirement to “one vote per effort expended”, we can dispense with the complexity, expense

and privacy implications of securely identifying responders.

In particular, our protocol is compatible with completely anonymous polling (if responders

communicate with the pollster over anonymous channels [13])—in addition to hiding the link

between their real identities and their responses, use of anonymous channels can hide the fact

of participation in the poll, with the degree of anonymization depending only on the anonymous

channel (in contrast, cryptographic voting protocols that support hiding the voters’ participation

require a separate non-anonymous registration step, and anonymity depends on the election

trustees in addition to the anonymous channel).

1.5 Related Work

Sybil Defense In a “Sybil attack”, an adversary creates multiple “fake” identities in order to

manipulate a protocol. The problem of establishing trustworthy virtual identities has plagued

the Internet from its inception [23]. It is particularly acute in distributed systems with no

central authority—without additional assumptions, vulnerability to some forms of Sybil attacks

is unavoidable in this case [20]. The paper by Ellison et al. [23] deals with the problem of

establishing identities. One of the first discussions of trust metrics based on social graphs

appears in [37]. The term “Sybil Attack” (attributed to Brian Zill from MSR) was introduced

Chapter 1. Introduction 9

in [20], where it is shown that in the absence of a central certifying authority, some attacks are

always possible.

A reputation system for P2P with similar ideas to pagerank (doesn’t handle sybils) is developed

in [34], and the possibility of using “Turing tests” to limit Sybil nodes is mentioned in [6].

In [16] it is shown that there exists no symmetric sybil-proof reputation mechanism. Since

the existing sybil-defense protocols all care about reputations (e.g., determining which nodes

are “real” and which are sybils), they all strongly rely on breaking symmetry: having at least

one trusted node. Our protocol is symmetric, however we can sidestep the impossibility proof

because we don’t care about individual nodes’ reputations—only about the aggregate opinion

of all the nodes.

Moderately hard problems (cryptographic problems which are not computationally infeasible to

solve, but also not easy) have been used to limit an adversary’s abuse of resources such an spam

[21] and denial of services [7], [32]. Aspenes et al. [4] adapt techniques which use moderately

hard problems to implement algorithms to solve the distributed consensus problem. In their

paper they present two algorithms, Democracy and Monarchy, that are meant to be run before

the actual protocol in order to price each identity based on their computational power. Every

participant is required to interact with all the others, and they assume the list of participant

is agreed-upon by all the nodes before the beginning of the validation protocol. After such

protocol, the consensus algorithm can be safely run based on the assumption that the adversary

controls a limited fraction of the total computational power.

The technique of random walks on a social networks to bound the effect of Sybil attack is

introduced in [62] (see [63] for an expanded version with full proofs). A 2006 survey of Sybil

attack literature can be found in [38]. An improved version of [62] (slightly different protocol,

same goal but better parameters) appears in [61], and a newer protocol to identify Sybil nodes

in a social graph is presented in [18]. The protocol makes very similar assumptions about

the social graph, and Bayesian methods to compute the probabilities that nodes are Sybils.

Finally, [56] uses the social network graph to aggregate votes for online content.

Most of these techniques implicitly or explicitly use assumptions about expansion properties

of social-network graphs. Hence if “adding edges is hard” (i.e. if successfully performing an

“action” that will result in adding an edge in the corresponding graph is hard) in an expander

Chapter 1. Introduction 10

graph, the adversary is limited in the effect bad nodes can have. However, in our case the graph

is artificially generated, so we can prove (in the random-oracle model, at least) that our graph

has the required properties. On the other hand, the labelling of the graph is adversarial; despite

this, we get results that are—in some sense—stronger than the results on social networks: we

can bound the total number of “bad” nodes (rather than just their influence).

Verifiable and Private Polling. A widely used technique for privacy-preserving polling

is called “randomized response” and was introduced in [58]. The first suggestion for cryp-

tographic verifiability in voting, which also gives a mechanism for establishing anonymous

channels (mix-nets) was made in [13]. More recently, the works of [14, 50] propose taking into

account human voters in End-to-End verifiability, and introduce the notion of separate verifi-

cation steps for the voter and external observers. Another incarnation of this idea is verifiable

(for the pollster) privacy-preserving polling using scratch-off cards [44].

1.6 Structure of this thesis

In Chapter 2 we introduce the mathematical and cryptographical notions that will be used

throughout the thesis. In Chapter 3 we describe the model we will be using, and we intro-

duce the notion of Privately verifiable Proof of Effort (PPE). In Chapter 4 we define our polling

protocol and present the main proofs. Finally, the conclusion, together with a brief summary

and a discussion on future work directions are given in Chapter 5.

Chapter 2

Preliminaries

This section presents the definitions that we need in the thesis.

2.1 Mathematical Background

2.1.1 Basic Probability

Given a random variable X , we denote by E[X] the expected value of X . Given an event a, X

is said to be the indicator random variable for a if

X =

⎧⎪⎨
⎪⎩
1, if a occurs

0, otherwise.

Note that if Pr[a] = p, then we have that E[X] = p.

Union Bound. If we have a finite or countable set of events {ai}, then we might be interested

in the probability that one of those events occurs, that is the probability of the event
⋃

i ai. The

union bound tells us that the probability for at least one of the events to happen is no greater

than the sum of the probabilities of each individual event. That is, for any countable set of

events {ai} the following holds

11

Chapter 2. Preliminaries 12

Pr

[⋃
i

ai

]
≤
∑
i

Pr [ai]

Chernoff Bound. Let X be a sum of n independent random variables {Xi}, with E[Xi] = pi.

Let μ denote the expected value of X , that is

μ = E

[∑
i

Xi

]
=
∑
i

E[Xi] =
∑
i

pi

The Chernoff bound intuitively states that the probability that the random variable X lies far

from its mean is bounded by an exponential function of its variance.

Theorem 2.1. (Chernoff Bound) Let X1, . . . , Xn be independent random variables with 0 ≤

Xi ≤ 1, X =
∑

i Xi, and μ = E[X]. Then for any δ > 0 the following inequalities hold:

Pr[X ≥ (1 + δ)μ] ≤ exp

(
− δ2

2 + δ
μ

)

Pr[X ≤ (1− δ)μ] ≤ exp

(
−δ2

2
μ

)

Pr[|X − μ| ≥ δμ] ≤ 2 exp

(
− δ2

2 + δ
μ

)

2.1.2 Random Graphs and Expansion

Random graphs are one of the most important concepts in Combinatorics and Theoretical Com-

puter Science. Throughout this thesis they serve as essential tools in proving the main combina-

torial statements. In this section, we review all the necessary definitions and results on random

graphs. For more details, we refer the reader to two books [10], [31] devoted entirely to this

subject.

The theory of random graphs began in the late 1950’s with a series of seminal papers by Paul

Erdős and Alfréd Rényi [24], [25], [26]. However, only much later, research in this field took

off, starting with the works of Bender and Canfield [8], Bollobás [9], and Wormals [60]. Finally,

the works by Watts and Strogatz [59] (introducing the small-world model) and by Barabási and

Chapter 2. Preliminaries 13

Albert [3] (on the preferential attachment model) underlined how random graphs differ from

real-world networks and led to a rapid increase of research in the field.

In this thesis we focus on the random graph model introduced by Erdős and Rényi. We denote

by G(n, p) the probability space of all labelled undirected graphs of n vertices {1, . . . , n} where

for each pair of vertices i, j ∈ {1, . . . , n}, i �= j, the corresponding edge (i, j) exists with

probability p, independently of any other edge. If G = (V,E) is generated using G(n, p), we

can compute the expected degree of one of its nodes i by using basic probability properties.

Let Xi be the random variable denoting the degree of i ∈ V , and let Xi,j be the indicator

random variable for the event “(i, j) ∈ E”. Since G ∈ G(n, p), the Xi,j’s are independent and

Pr[Xi,j = 1] = p. Then,

Xi =
∑
j

Xi,j

E[Xi] =
∑
j

E[Xi,j]

=
∑
j

p = (n− 1)p.

We can think of p as d
n−1 for some d, then the expected degree of i ∈ V is d.

For our purposes, the most important parameter of a random graph is its edge expansion. Let

S ⊆ V be a set of nodes, |S| denote its size, S its complement, and cut(S) denote the number of

edges with endpoints in each of S and S. The edge expansion of a graph is defined as follows,

Definition 2.2. (Edge Expansion) Let G = (V,E) be a graph of n vertices. We define the

edge expansion coefficient eG as

eG = min
|S|≤n/2

cut(S)

|S| .

For any α ∈ (0, 1/2], we define eG(α) as

eG(α) = min
αn≤|S|≤(1−α)n

cut(S)

|S| .

Chapter 2. Preliminaries 14

The notion of Edge Expansion give rise to a specific notion of expander graphs. Informally, a

good expander graph is a graph with low degree, but high expansion factor. Expander graphs

and their constructions have been thoroughly studied ([40], [41], [42], [43], [52]). It is not

straightforward if and which construction could be applicable to our protocol. In fact, in stan-

dard expander graphs, their expansion property is defined between any subset of vertices and

their complement. In Chapter 4, we define an expansion property that looks at the boundary

between a “big enough” set and any large subset of its complement. This property, which we

call Large-Set Expanding (LSE) property, is enough to ensure the security of our protocol.

2.2 Cryptographic background

2.2.1 Negligible Success Probability

In cryptography, we consider a protocol to be secure if the probability that it can be broken is

asymptotically smaller than 1/p(n) for all polynomials p. Throughout this thesis when referring

to negligible functions, denoted by negl, we will be referring to a function f such than for every

polynomial p(·) there exists an N such that for all n > N it holds that f(n) < 1/p(n).

2.2.2 Message Authentication Codes

Message Authentication Codes (MAC) are used in order to guarantee message integrity: each

party should be able to verify whether the message it has received was indeed sent by a specific

party. Thus, the aim of a MAC is to prevent an adversary from modifying a message without the

parties detecting that a modification has been made. Two parties wishing to communicate using

a MAC begin by generating and sharing a secret key k. When a party wants to send a message

M , he first computes a tag τ using k and M and he sends the pair (M, τ). The second party,

after receiving (M, τ) then verifies, using the key k, whether τ is a valid tag for the message

M . Formally, we can define a MAC as follows:

Definition 2.3. A Message Authentication Code (or MAC) consists of three polynomial-time

algorithms (Gen,Mac,Vrfy) defined as follows:

Chapter 2. Preliminaries 15

• The randomized key-generation algorithm Gen on input a security parameter

1κ returns a secret key k.

• The probabilistic tag-generation algorithmMac takes as inputs a message M ,

a key k, and returns a tag τ . We denote this by τ ← Mack(M)

• The deterministic verification algorithm Vrfy takes as inputs the pair (M, τ),

a key k, and returns a bit b. If b = 1 the tag τ is considered to be valid, otherwise is said

to be invalid. We write b := Vrfyk(M, τ).

It is required that for any key k output by Gen, and every message M , it holds that

Vrfyk(M,Mack(M)) = 1

Security of message authentication codes. An adversary A whose goal is to break a MAC

should be able to generate a valid tag for any message that was not previously authenticated

by a sender S. We want for a security definition to take into account the possibility that the

adversary A has access to many messages (even of its choice) and their corresponding MAC

tags. We model this by giving the adversary access to a MAC oracle Mack(·). After requesting

as many tags as it desires, A has to output a pair (M, τ). We say that A broke the code if τ is a

valid tag for M , and A did not query the oracle with M . Formally,

Definition 2.4. Let Π = (Gen,Mac,Vrfy) be a message authentication code, and A an adver-

sary. Then the authentication experiment Mac-ExpΠ,A(κ) is as follows:

1. Gen is run on input 1κ to obtain a key k.

2. The adversary A is given oracle access to Mack(·). Let Q denote the set of queries of A

to such oracle. The adversary then outputs (M, τ).

3. The experiment outputs 1 if and only if Vrfyk(M, τ) = 1 AND M /∈ Q.

The advantage of A is defined by,

AdvΠ,A(κ) = Pr[Mac-ExpΠ,A(κ) = 1]

Chapter 2. Preliminaries 16

We can now formally define a secure MAC if no efficient adversary can succeed the above

experiment, that is

Definition 2.5. A Message Authentication Code Π = (Gen,Mac,Vrfy) is said to be existen-

tially unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-

time adversaries A, the advantage of A is negligible. That is, there exists a negligible function

negl such that

Pr[Mac-ExpΠ,A(κ) = 1] ≤ negl(κ)

Note that this definition, and message authentication codes in general, do not protect against

replay attacks: it is always possible for A to just replay a message that was previously sent with

its corresponding tag. Such protection is left to higher-level application and it usually involves

using either sequence-numbers or time-stamps. That is, when sending a message M the sender

will have to assign to M either a sequence-number or the time in which the message is sent and

compute the tag over the concatenation of the message M and its unique identifier.

2.2.3 Digital Signature Schemes

Consider a sender S who has generated a pair (sk, vk) of secret and a public key, respectively.

A digital signature scheme allows S to “sign” its messages in such a way that anyone who

also knows vk can verify that the message sent by S has not been modified in any way. Digital

signatures are the public-key counterpart of message authentication. An essential difference lies

in the fact that signatures are publicly verifiable. This implies that a party receiving a signed

message can be sure that if the verification succeed on his side, then such a signature will be

considered valid by any other party.

Definition 2.6. A signature scheme consists of three polynomial-time algorithms (Gen, Sign,Vrfy)

defined as follows:

• The randomized key-generation algorithm Gen on input the security parame-

ter 1κ returns a pair (sk, vk) of keys. These are called the secret key and the matching

verification key, respectively.

Chapter 2. Preliminaries 17

• The probabilistic signing algorithm Sign takes the secret key sk and a message

M as inputs and returns a signature σ. We denote this by σ ← Signsk(M).

• The deterministic verification algorithm Vrfy takes the verification key sk, a

message M , and a candidate signature σ as inputs and returns a bit b. If b = 1, the signa-

ture σ is considered valid, otherwise it is said to be invalid. We write b := Vrfyvk(M,σ).

It is required that for any key-pair (sk, vk) output by Gen, and every message M , it holds that

Vrfyvk(M, Signsk(M)) = 1

A sender S can then use the signature scheme by running Gen in order to obtain a pair (sk, vk)

of keys. S publicizes vk and whenever it wants to transmit a message M , it can compute

the signature σ ← Signsk(M) and send the pair (M,σ). Any receiver who has access to

vk can verify the authenticity of M by running the verification algorithm and check whether

Vrfyvk(M,σ) = 1.

Security of signature schemes. The goal of an adversary A is forgery: given a public

key vk generated by S, we say that A successfully forged S’s signature if it can produce a

pair (M,σ) such that Vrfyvk(M,σ) = 1 and M was not previously signed by S. We want a

notion of security that ensures us that an adversary A is not be able to output a forgery even

if it can obtain signatures on many other messages of its choice. To formalize the measure of

security we define an experiment in which the adversary’s actions are viewed as divided into

two phases. The first is a “learning” phase in which the adversary is given oracle access to the

signing algorithm. Once this phase is over, the adversary enters the “forgery” phase in which

it outputs a pair (M,σ). The adversary is successful if Vrfyvk(M,σ) = 1 and A did not query

the oracle with M . We call A’s probability of success its advantage.

Definition 2.7. Let Π = (Gen, Sign,Vrfy) be a signature scheme and A be an adversary. Then

the signature experiment Sign-ExpΠ,A(κ) is as follows:

1. Gen is ran on input 1κ in order to obtain (sk, vk).

Chapter 2. Preliminaries 18

2. The adversary A is given oracle access to Signsk(·). Let Q denote the set of queries of A

to such oracle. The adversary then outputs (M,σ).

3. The experiment outputs 1 if and only if Vrfyvk(M,σ) = 1 AND M /∈ Q.

The advantage of A is defined by,

AdvΠ,A(κ) = Pr
[
Sign-ExpΠ,A(κ) = 1

]

We can now give a formal definition of security for a signature scheme.

Definition 2.8. A signature scheme Π = (Gen, Sign,Vrfy) is said to be existentially unforge-

able under an adaptive chosen-message attack if for all probabilistic polynomial-time adver-

saries A, the advantage of A is negligible. That is, there exists a negligible function negl such

that

Pr
[
Sign-ExpΠ,A(κ) = 1

]
≤ negl(κ)

2.2.4 Bit Commitment Schemes

A bit commitment scheme is a two-stage (interactive) protocol between a sender S and a re-

ceiver R. Informally, after the commit stage, the sender is committed to (at most) one value,

usually a single bit b, in such a way that the receiver has no idea what b is. After the unveil

stage, the receiver learns the value that was concealed in the previous stage. One could think

about it as if the sender puts b in a safe of which he is the only owner of the key, and gives the

safe to the receiver (commit stage). Later on, it would be enough to give the key of the safe

to the receiver so that he can learn what was the value inside the safe (unveil stage). The two

security properties that we can draw out are referred to as binding (after the commit stage, the

sender is bound to at most one value) and concealing (the receiver cannot learn the value in the

safe before the unveil stage).

As with most cryptographic primitives, these properties come in two main flavours: compu-

tational (the property holds only against a computationally bounded, for instance polynomial-

time, party) and statistical (the property holds even against an all-powerful party).

Chapter 2. Preliminaries 19

Commitments are basic components of many cryptographic protocols: they are used as im-

portant building blocks in zero-knowledge proofs, coin-flipping, identification schemes, and

multi-party computation. Statistically binding bit commitments have been well understood

since a long time and they can be obtained from the minimal assumption that one-way func-

tions exist using the results in [46] combined with the fact that we can construct pseudorandom

generators from any one-way function [30]. On the other hand, perfectly1 concealing commit-

ment schemes were first shown to exist based on specific algebraic assumptions by Brassard,

Chaum, and Crépeau [11] and later Naor, Ostrovsky, Venkatesan, and Yung [48] showed how

to construct perfectly concealing commitment schemes based on the assumption that one-way

permutations exist. In [27], Haitner, Horvitz, Katz, Koo, Morselli, and Shaltiel reduced the

assumptions further, and finally Haitner, Nguyen, Ong, Reingold, and Vadhan in [28] and, later

Haitner, Reingold, Vadhan, and Wee with a simpler proof, in [29] gave a construction of statisti-

cally concealing commitment schemes under the minimal complexity assumption that one-way

functions exist.

Definition 2.9. A (bit) commitment scheme (S,R) is an efficient two-party protocol consisting

of two stages. Throughout, both parties receive the security parameter 1κ as input.

COMMIT. The sender S has a private input b ∈ {0, 1}, which he wishes to commit to the

receiver R, and a sequence of coin tosses s. In this stage, S and R are allowed to interact

and at the end of it, both parties receive as common output a commitment z.

UNVEIL. Both parties receive as input a commitment z. S also receives the private input b and

coin tosses s used in the commit stage. This stage is non-interactive: S sends a single

message to R, and R either outputs a bit (and accepts) or rejects.

Definition 2.10. A commitment scheme (S,R) is computationally binding and

statistically concealing if

COMPLETENESS. When both parties are honest, then for any bit b ∈ {0, 1} that S gets as

private input, R accepts and outputs b, at the end of the unveil stage, with probability 1.

1Not even a negligible probability of breaking the scheme is allowed.

Chapter 2. Preliminaries 20

STATISTICALLY CONCEALING. For any R∗, the distributions viewR∗(S(0),R∗) and

viewR∗(S(1),R∗) are statistically indistinguishable, i.e. the probability that any machine

can distinguish between the two views is negligible in κ.

COMPUTATIONALLY BINDING. For every PPT (Probabilistic Polynomial-Time) S∗, S∗ suc-

ceeds in the following “game” with negligible probability in κ:

• S∗ interacts with an honest R in the commit stage, which yields a commitment z.

• S∗ can output one of the two messages x0, x1 at will, such that for both b = 0 and

b = 1, R on input (z, xb) accepts and outputs b.

Definition 2.11. A commitment scheme (S,R) is statistically binding and

computationally concealing if

COMPLETENESS. When both parties are honest, then for any bit b ∈ {0, 1} that S gets as

private input, R accepts and outputs b, at the end of the unveil stage, with probability 1.

COMPUTATIONALLY CONCEALING. For every PPT R∗, R∗ succeeds in distinguishing be-

tween viewR∗(S(0),R∗) and viewR∗(S(1),R∗) with negligible probability in κ.

STATISTICALLY BINDING. For any S∗, S∗ succeeds in the following “game” with negligible

probability in κ:

• S∗ interacts with an honest R in the commit stage, which yields a commitment z.

• S∗ can output one of the two messages x0, x1 at will, such that for both b = 0 and

b = 1, R on input (z, xb) accepts and outputs b.

Note that viewR∗(S(i),R∗) we denotes “everything R∗ sees” in the interaction with S during

the commit phase, when S has as private input i. In general, let ρ be the string contained in

the random tape of R∗, and say that the interaction between S and R∗ consist of 	 turns where

si and ri are the ith messages of S and R∗ respectively. Then, we say that (ρ, r1, s1, . . . r�, s�)

is the view of R∗. Note that in the definition of the concealing property, we do not include the

unveiling phase when referring to the view of R∗.

Chapter 2. Preliminaries 21

2.3 CAPTCHAS

CAPTCHA is an acronym for Completely Automated Public Turing test to tell Computers and

Humans Apart. These are tests that are easy for humans and hard to solve for computer pro-

grams. This kind of “proofs of being a human” were first introduced in [39], independently

discovered by [47], and formalized by [57]. Many type of CAPTCHAs have been proposed,

but the most common ones in use are distorted images which are hard to read for a computer,

but still recognizable by humans (see Figure 2.1). Applications include preventing automated

programs from participating to online polls, using free email services, or carrying dictionary

attacks.

FIGURE 2.1: A CAPTCHA from Google

The definition of CAPTCHA is based on some limitation of the power of computers. The

security of such tests relies on the fact that no automated machine can solve the test efficiently.

From a cryptographic point of view, CAPTCHAs bring up two interesting questions: which

“hard problems” can we use to build CAPTCHAs?, and can we use CAPTCHAs as building

blocks for achieving general cryptographic tasks? The first question is analyzed in [57] were

the authors provide constructions of CAPTCHAs based on the assumption that certain Artificial

Intelligence problems are hard to solve. The second problem has been investigated in many

different papers in the last few years: Canetti, Halevi, and Steiner construct a scheme to mitigate

dictionary attacks in [12], Diaz-Santiago and Chakraborty built an encryption protocol using

CAPTCHA in [19], Dziembowski introduces a protocol for Human Key Agreement based only

on CAPTCHAs in [22], and Kumarasubramanian, Ostrovsky, Pandey, and Wadia construct a

CAPTCHA-based commitment scheme in [36].

CAPTCHAs have been defined in different ways in the literature. Here we want to present a

definition that follows the Canetti et al.’s framework [12] that models the presence of a human

Chapter 2. Preliminaries 22

entity as a human oracle H capable of solving CAPTCHAs. Informally, a party generates a

CAPTCHA by running a “generation algorithm” which outputs a pair (t, s) consisting of a test

t and its solution s. Then, to solve a CAPTCHA, each party can query the oracle H with the

test t and obtain the solution s as an answer. There will then be standard PPT machines for

which solving the test is a hard problem, and machines with oracle access to H which will

be able to solve CAPTCHAs efficiently. We denote by MH a machine M with oracle access

to H . Let Gen(1κ) denote the randomized generation algorithm which on input a security

parameter κ outputs a pair (t, s), with t ∈ Tκ, and s ∈ Sκ. We call Tκ the test space, and Sκ

the solution space. We denote by Hκ : Tκ → Sκ the solution function which maps tests to their

corresponding solutions. Then, to model the idea of “human effort”, machines will be given

oracle access to the following family of functions H = {Hκ}κ∈N. Formally,

Definition 2.12. (CAPTCHA) Let T = {Tκ}κ∈N, and S = {Sκ}κ∈N be a collection of test and

solution spaces respectively. A CAPTCHA C = (Gen, H) over (T ,S) consists of the following

pair:

• A randomized generation algorithm Gen that on input 1κ outputs a pair

(t, s) ∈ Tκ × Sκ.

• A collection of solution functions H = {Hκ}κ∈N with Hκ : Tκ → Sκ.

It is required that for any pair (t, s) output by Gen on input 1κ, it holds that Hκ(t) = s.

Furthermore, the following condition is required:

• For every probabilistic polynomial-time A, and every sufficiently large κ there exists a

negligible function negl such that

Pr[(t, s) ← Gen(1κ),A(1κ, t) = s] ≤ negl(κ)

2.4 Proofs of Retrievability

Consider the case in which a client decides to use outsourced storage services to store its data.

One of the challenges raised by this scenario is to verify whether the server storing the data

Chapter 2. Preliminaries 23

keeps it available and ready for retrieval. A PoR (Proof of Retrievability) is an interactive

protocol that enables a verifier V (the client or whoever else if the PoR is publicly verifiable),

using a small amount of communication, to determine if it is possible to retrieve a specific file

M from the prover P (the server). PoR’s can be constructed to be either privately-verifiable

where only the client who originally stored the data can verify whether is it still available, or

publicly-verifiable where anyone can undertake the role of a verifier in the PoR. The first to

define a formal model for proofs of storage (retrievability) were Naor and Rothblum [49], and

Juels and Kaliski [33]. The first to propose a publicly-verifiable proofs of storage were Ateniese

et al. [5]. We will use the formal model for PoR introduced by Shacham and Waters [53].

Definition 2.13. A proof of retrievability protocol consists of four algorithms (Gen, Store,P ,V)

defined as follows:

• The randomized key-generation algorithm Gen on input a security parameter

1κ returns a public-key/private-key pair (pk, sk).

• The randomized storing algorithm Store takes the secret key sk and a file M ∈

{0, 1}∗ as input and returns a pair (M ′, τ) consisting of the file M ′ that will be stored by

the server and a corresponding tag τ .

• The randomized proving and verifying algorithms P and V which both take

as input the public key pk and the tag τ . The prover also takes M ′ as input, while the

verifier takes the secret key sk. The two algorithms interact and at the end of the protocol,

V outputs 1 if the file M is stored on the server and 0 otherwise.

Security of PoRs. We say that a proof of retrievability is correct if for all (pk, sk) gener-

ated by Gen, for all M ∈ {0, 1}∗, and for all (M ′, τ) output by Store on input (sk,M), the

verification algorithm accepts when interacting with a valid prover. On the other hand, we say

that a PoR is sound if any cheating prover P ′ that convinces the verification algorithm that it

is storing the a file M is actually storing that file. To formally define such a property we use

the notion of extractor ([53]) and we say that if a cheating prover P ′ can convince V that it is

storing a file M , then when an extractor has access to P ′ it will be able to output M .

Chapter 2. Preliminaries 24

Formally, an extractor Extr is a probabilistic polynomial time algorithm which takes as inputs

the pair (pk, sk), a tag τ , the description of the machine P ′, and outputs a file M . Note that Extr

has a non-black-box access to P ′ and can thus rewind it. To formalize the notion of soundness,

we consider an experiment, which we call the retrievability experiment, in which an adversary

A has access to a PoR scheme and plays the role of a cheating prover:

Definition 2.14. Let Π = (Gen, Store,V) be a proof of retrievability scheme (without the

prover), and A an adversary. Then the retrievability experiment PoR-ExpΠ,A(κ) is as follows:

1. Gen is ran on input the security parameter 1κ to obtain (pk, sk) and pk is provided to A.

2. The adversary A is given oracle access to Store(sk, ·). Let Q denote the set of queries of

A to such an oracle.

3. For any M ∈ Q, the adversary A can execute the proof of retrievability protocol playing

the part of the prover and providing the tag τ corresponding to M to the verifier. At the

end of each execution the adversary is provided with the output of V .

4. The adversary outputs a challenge tag τ ′ (corresponding to some M ∈ Q) and a descrip-

tion of a prover P ′.

We say that the cheating prover P ′ is ε-admissible if it convincingly answers the verification

algorithm on input (pk, sk, τ ′) with probability greater or equal to ε.

We now have all the necessary tools to formally define a sound proof of retrievability:

Definition 2.15. Let τ ′ be a valid tag for M . We say that a proof of retrievability scheme Π

is ε-sound if there exists an probabilistic polynomial time Extr such that for all adversary A

and (P ′, τ ′) ← PoR-ExpΠ,A(κ), if P ′ is ε-admissible, then Extr(pk, sk, τ ′,P ′) = M with

overwhelming probability in κ.

Chapter 3

Model and Definition

We now introduce a formal model for capturing the notion of verifiable effort-based polling.

The definition addresses both the syntax of a polling protocol and the issue of the “effort” in-

volved in the protocol execution. To model the effort expended by each one of the protocol

participants, we give parties access to an effort oracle. The effort spent by each party is mea-

sured as the number of calls that party makes to the oracle. To justify this measure, we propose

to use “peer-to-peer” protocols that presumably require the expenditure of one call to an effort

oracle per successful execution. One well known example for such a protocol is a CAPTCHA,

automatically generated challenges that should be solvable only if given a call to an effort ora-

cle (and moreover accommodate automatic verification of the solution). Other options, (some

of which may be more practical) are described in section 3.3.

3.1 Verifiable Effort-Based Polling

An m-responder polling scheme is a multi-party protocol between a pollster, denoted P and m

responders, denoted R1, . . . , Rm. The ith responder holds an input xi ∈ D ∪ {⊥}, where D is

the domain from which the responses are taken and ⊥ denotes lack of participation in the poll.

In practice m will be an upper bound on the number of responders; We denote by n < m the

actual number of (honest) participants. The number of honest responders is known only to the

adversary. Thus, the adversary can carry forward an attack against the poll either by creating

25

Chapter 3. Model and Definition 26

“fake” responders (e.g. by replacing some of the ⊥ inputs with adversarially chosen values), or

by actually modifying the inputs submitted by honest responders. As the adversary knows all

the inputs and controls all the outputs in our protocols, we do not need to consider corrupted

responders—the adversary can just replace an honest responder’s input with a different one to

simulate a corrupted responder.

We give parties access to an oracle denoted E, and let RE
i (resp. PE) denote the execution of

Ri (resp. P) with access to the oracle E. Let ei denote the total number of oracle calls made

by Ri to E. Let 〈PE, RE
1 (x1), . . . , R

E
m(xm)〉 be a random variable describing the output of a

protocol execution, where the probabilities are taken over the parties’ coin tosses. The output

of the protocol takes the form (Y , z), where Y = (y, w) denotes the output of the pollster

(y = (y1, . . . , ym) indicates the outputs of the responders as announced by the pollster, and w

contains a proof of correctness of the result) and z = (z1, . . . , zm) denotes the local outputs of

the responders, where zi corresponds to the local output of Ri following the protocol execution.

The role of the local outputs zi is to enable local verification by the parties.

To make the polling scheme publicly-verifiable we additionally require the existence of a ver-

ifier V that takes Y and z as inputs (the verification procedure can use the output of the local

verification; e.g., global verification could fail if too many responders complain). In the proto-

col we present, verification will take place both locally and globally. For the latter, anyone can

take the role of a verifier.

Definition 3.1 (Verifiable Effort-Based Polling). Let κ,m, a ∈ N and let α, θ ∈ [0, 1] and

B : N × N �→ N. An m-responder effort-based polling scheme is said to be (α,B)-sound

and θ-robust if there exists a probabilistic polynomial-time algorithm V such that for any

x1, . . . , xm ∈ D ∪ {⊥} with n = #{i ∈ [m]|xi �= ⊥}, the following properties are satis-

fied:

Soundness: For every PPT P ∗, if n ≥ αm and Δ(x, y) ≥ B(a,m) then

Pr
[
V (Y , z) = accept

]
< 2−κ ,

where the probability is taken over (Y , z) ← (P ∗E, RE
1 (x1), . . . , R

E
m(xm)), a is the total

number of oracle calls made by P ∗ to E, and Δ(x, y) is the minimum Hamming distance

Chapter 3. Model and Definition 27

between x and some permutation of y (i.e., this corresponds to the number of responses

changed/added by the adversary).

Completeness: For every subset {i1, . . . , it} ⊆ [m] of responders (corresponding to malicious

responders), if ei1 + . . .+ eit < θm then

Pr
[
V (Y , z) = accept

]
> 1− 2−κ,

where the probability is taken over (Y , z) ← (PE, RE
1 (x1), . . . , R

E
m(xm)).

Informally, we can interpret (α,B)-soundness as a guarantee that if at least an α-fraction of

responders are honest, then the adversary cannot change too many responses without getting

caught. The influence of the adversary is captured by the function B. Generally, we would

expect B(a,m) to be proportional to the number of responses an honest user could add using a

calls to the effort oracle. Thus, an intuitive measure of the protocol’s soundness is a bound on

the multiplicative advantage of the adversary:

C(a) = B(a,m)
d

a

If the multiplicative advantage is bounded by C, then any adversary who can change C · 	

responses using an optimal cheating strategy could have altered 	 responses (in expectation) by

honestly following the protocol and expending the same amount of effort.

The θ-robustness of the protocol guarantees that if the total effort available to malicious re-

sponders is less than θm, then they cannot cause the verification procedure to fail except with

negligible probability.

3.2 Formally Defining Proofs of Effort

In the “effort-oracle” model we can fully formalize Definition 1.1. Note that while we define

PPE to be a two-party protocol, we require soundness to hold even in a concurrent setting, in

which a malicious party A∗ participates concurrently in multiple executions of the protocol

with other parties. To achieve this, we assume each protocol execution has a unique identifier

Chapter 3. Model and Definition 28

id (e.g., in practice this could be a concatenation of the identities of the participating parties

and the current time).

Definition 3.2 (one-sided PPE). A protocol ΠE(P, V) between a prover P and a verifier V is a

one-sided PPE if it satisfies the following properties:

1. Efficiency An honest execution of ΠE(P, V) requires P and V to make at most one

oracle call to E (each).

2. σ-Completeness If P and V execute an instance of ΠE(P, V) and both honestly follow

the protocol, then with probability at least 1 − σ, V will output “true” at the end of the

protocol.

3. ε-Soundness For every PPT P ∗ that executes an instance of ΠE(P ∗, V) using identifier

id, if V honestly follows the protocol but P ∗ does not make at least one oracle call to E

with input id, then the probability that V outputs “true” is at most ε.

Definition 3.3 (two-sided PPE). A protocol ΠE(A,B) between two parties A and B is a two-

sided (symmetric) PPE if it is both a one-sided PPE ΠE(A,B) and a one-sided PPE ΠE(B,A).

3.3 Implementing PPEs

Below we give several examples of how to implement some simple PPEs.

Bitcoin and Proofs of Retrievability. The original motivation for proofs of retrievability (PoR)

is to allow clients to outsource data storage “to the cloud”. In this setting a storage provider

stores a large file on behalf of a client. Roughly, a PoR protocol allows the provider to prove to

the client that it is still storing the file (can reconstruct the entire file), using a small amount of

communication.

Since storage is a valuable resource, it is tempting to use proofs-of-retrievability as the “effort

unit” in an effort-based polling scheme (e.g., one unit of effort could be storing 1GB of data for

1 day).

Chapter 3. Model and Definition 29

Existing privately verifiable PoR’s, such as the one introduced by Shacham and Water [53],

can be trivially used to construct a PPE: an honest user sends good (incompressible) files to its

peers (e.g., by encrypting the file), and it can verify using the PoR that the files were stored

as required. The prover P and the verifier V in the PPE also act as the prover and the verifier,

respectively, in the PoR. Completeness for the PPE directly follows from the correctness of the

PoR: if both parties are honest, the verifier will output 1. We can thus hope for almost perfect

completeness. On the other hand, from the security definition of a PoR we know that if a verifier

V outputs 1 when interacting with a cheating prover P ′ with probability greater than ε, then it

is possible to extract m from P ′ with overwhelming probability. That is, the cheating prover

P ′ would have actually had to spend the “effort” of storing such a file. Thus, using PoR’s we

can get a PPE with negligible soundness error.

This implementation of PPEs may be most interesting in the context of Bitcoin. One of the

strong arguments against the currency is the inherent waste of the Bitcoin protocol [35]; this

is a direct consequence of using proof-of-work as the basis of its effort-based polling scheme.

If we could replace proof-of-work with, for example, “proof-of-backup”, instead of generating

heat as a side-effect, the Bitcoin network would function as a distributed backup system in

addition to a currency.

Human Interaction. The simplest type of PPE consists of human interaction: participants

certify each other’s effort by simply talking with each other (e.g., using VOIP, video, or even

textual chat). This is at least as hard to pass as a “real” Turing test (which consists solely of

textual interaction), so its soundness properties seem to be very robust.

To prevent a proxying attack (in which Eve convinces Alice that she has expended effort by

relaying Alice’s challenges to Bob and vice versa), the protocol can include Bob reading aloud

his partner’s identity. Thus, to act as a person-in-the-middle, Eve would have to translate Bob

saying Eve’s public key to Bob saying Alice’s public key, which seems like it would require

some actual effort.

Symmetric CAPTCHAs.

In this version of the PPE, each party generates a standard CAPTCHA to be solved by the other

party while simultaneously solving the CAPTCHA she received.

Chapter 3. Model and Definition 30

To prevent a proxying attack, we bind the CAPTCHA to the parties’ identities using a combi-

nation of cryptographic commitments and a Message Authentication Code (MAC).

As seen in Chapter 2, a CAPTCHA C consists of the pair (Gen, H), where H is a collection of

solution functions {Hi}i, and Gen is a randomized algorithm that on input a security parameter

κ outputs a pair (t, s) such that t is a test, s a solution, and Hκ(t) = s. Anyone with access to

the random coins r used by Gen would also be able to generate the exact pair (t, s). To make

the fact that Gen uses random coins explicit, just for this example we will provide such coins

r as input to Gen. We can then build a PPE based on C in the following way: let pkP , pkV , be

the Prover’s and Verifier’s public keys, respectively, then:

Protocol 0

Step P V

1. t←−−−−

Generates a secret

key k and computes

r ← Mack(pkP ||pkV).

Let Gen(r) = (t, s).

2.

Solves the test t and creates

a commitment s to the solu-

tion s.

s
−−−−−−→

3. k←−−−−−

4.

Verifies that the test t re-

ceived was correctly gener-

ated, i.e. computes r′ =

Mack(pkP ||pkV) and verifies

(t, s)
?
= Gen(r′). If test fails,

abort protocol otherwise:

Open s .
−−−−−−−−−→

Chapter 3. Model and Definition 31

5.

If commitment and solution

are correct, then outputs b =

1, otherwise outputs b = 0.

This protocol ensures that malicious parties cannot use an honest party to solve a CAPTCHA

that was not meant for it, since a prover would refuse to open its commitment if it sees that the

CAPTCHA was not correctly generated using the correct public keys. Note that in terms of the

effort required, this is not harder than just solving a CAPTCHA, in fact the rest of the protocol

can be completely automated.

Leveraging Existing Social Networks. Instead of an online effort, a possible PPE implemen-

tation can use an existing social network (basing the “effort” on the assumption that becoming

“well connected” in a social network is difficult). For example, two parties can verify that they

have several short, vertex-disjoint paths between them in the social network (or use some other

measure of distance for which the effort assumption seems reasonable).

In this version of the protocol, parties are not guaranteed anonymity (since they must reveal their

identities in order to verify their distance in the social network), but the public transcript of the

protocol does not reveal anything about their identities or their social-network neighborhood.

The main problem here is preventing an adversary from using the same social-network iden-

tity in multiple PPE invocations. The fact that the PPE is a private-coin primitive makes this

problem easy to solve, assuming the social network allows users to publish information linked

to their real identity (e.g., a “home page”). Party i chooses a random nonce ri and publishes

a commitment to ri on his homepage. When executing the PPE with party j, i will publish

ri and privately open the commitment to ri towards party j; Party j can verify by looking at

i’s homepage that the nonce is the correct one. Assuming the homepage provides a consistent

view to all honest users, i cannot use a different nonce in different PPE invocations. However,

the public transcript cannot be linked to i’s social-network identity due to the hiding property

of the commitment.

Other PPE Extensions. Our basic definition of PPE only guarantees that “effort” is expended

by the parties. This can be easily extended to capture more complex conditions that are hard

to verify publicly but may be easy to verify in a peer-to-peer manner. For example, limiting a

Chapter 3. Model and Definition 32

poll to a small geographic area. While certifying location in a publicly-verifiable way is diffi-

cult, verifying that someone else is physically nearby can be much easier (e.g., using speed of

response or shared environmental cues, such as noise or micro-local weather conditions). By

extending the PPE to verify physical proximity, we can guarantee the vast majority of partici-

pants must be local (assuming a large enough fraction is).

Another example is polling groups whose membership is secret (e.g., a poll of the “Anony-

mous” organization). If members of the group can recognize each other (e.g., they have a

“secret handshake”), we can use the same technique to guarantee that our poll is targeting the

group.

Limiting a poll to specific communities in an existing social network can be done similarly.

Thus we can conduct verifiable polls on a social-network graph while keeping the graph itself

secret—this can be important, since the structure of the social network often reveals a large

amount of information about the identity of its nodes.

Chapter 4

A Publicly Verifiable Polling Scheme

4.1 High-level description

The main technical innovation in this thesis is the construction of the Pollster’s proof for the

correctness of the published results. To do this, we borrow ideas from the literature on defense

against Sybil attacks using pre-existing trust relations.

To account for the possibility that an honest responder can fail a PPE execution independently

of his honesty, we denote by ηE the fraction of failing PPEs that the protocol tolerates before

discarding someone’s vote. On the other hand, we indicate by ηV the upper bound on the

fraction of responders whose vote can be discarded by the pollster (if the fraction of discarded

votes is greater than ηV , the overall verification will fail). Moreover, in order to avoid denial-of-

service attacks caused by malicious responders that intentionally fail all their PPEs, our protocol

will require to register for the poll by solving a single-sided PPE (i.e., a PPE that requires effort

only from the voters side in order to be successful). With high probability this kind of attack

will then be unsuccessful whenever the cheating responders are limited in the amount of effort

they can expend.

Unless otherwise specified, from now on when referring to a double-sided PPE we will simply

write PPE. Following is a high-level description of our protocol:

33

Chapter 4. A Publicly Verifiable Polling Scheme 34

1. Parameter Announcement. This phase consists of a single broadcast by the pollster,

consisting of the public parameters for the poll. The pollster generates a unique, random

identifier id for the poll and public key parameters for a digital signature scheme. We

denote by sk, vk the signing key and the verification key respectively (note that these are

required only for completeness—responders will have their own signature and verifica-

tion keys).

The public parameters are the tuple (id, questions, p, vk), where questions is the set

of poll questions, p is a probability that determines the expected degree p · m of the

certification graph.

2. Registration. Each responder Ri samples a private key ski and a public key vki for their

signature scheme, and sends (addri, vki) to the pollster (where addri is the responder’s

network address). Each responder then solves a single-sided PPE (verified by the poll-

ster). If verification was successful, the pollster adds (addri, vki) to its list of registered

responders.

When the registration phase is over, the pollster broadcasts the list of registered public

keys. Note that the network addresses are not required to appear in the broadcast list. The

order of public keys in the list maps each registered responder to a unique index (i.e., the

ith key in the list is mapped to index i).

For each index i, we define Ni to be “the neighbourhood of i” in the certification graph.

The set Ni is computed from i and m (the total number of parties) using a cryptographic

random function H: j ∈ Ni iff i < j and H(i||j) ≤ p (or, alternatively, j < i and

H(j||i) ≤ p), where the output of H is treated as a binary fraction in [0, 1] (e.g., H could

be SHA-1). Since all of the parameters are public, every party can compute the list of its

neighbours in the graph.

However, while Ri may know the verification key of every neighbour, it does not nec-

essarily know their network addresses. The parties can communicate via the pollster, or

alternatively, the pollster can send each party i the network addresses of all its neighbours

in the graph.

3. Responder Certification (PPE execution). As just described, every pair of responders is

paired in a PPE instance with probability p. Now, for each j ∈ Ni, responder Ri engages

Chapter 4. A Publicly Verifiable Polling Scheme 35

in a PPE with Rj . The actual execution is peer-to-peer, however the communication may

be facilitated by the pollster (e.g., the pollster’s website can be used as a conduit for a

VOIP chat). If the PPE execution succeeded (both parties received “true”), the parties

sign each other’s public keys (concatenated with a unique “poll identifier”, to prevent the

signatures being reused in other polls) and send the signed values to each other.

4. Poll Response. Every responder Ri sends to the pollster the results of the certification

phase (a signature on vki from each neighbour with which it successfully completed a

PPE) and xi, his actual response to the poll questions.

5. Results and Proof. We can think of the responders as nodes of a graph Gc in which

they are connected by edges if and only if they were supposed to interact through a PPE.

Let V = {1, . . . ,m} denote the set of indices of the responders and E := {(i, j)|i, j ∈

V,H(i, j) < p} the set of edges. We call Gc = (V,E) the “certification graph”. Note

that anyone can compute Gc given the serial numbers associated to the responders and

p. Then, as a “proof of correctness” the pollster publishes the graph consisting of the

following1:

Node labels: For each i the pollster publishes

(xi, sigski(xi), vki).

Edge signature: For each successful PPE the pollster publishes

(sigskj(vki), sigski(vkj)), where vki, vkj are the public keys of the responders in-

volved in it.

List of deleted nodes: The list of all nodes whose response will not count in the result

because they failed more than a ηE fraction of the PPEs.

The empirical distribution of the responses can be computed by counting the votes as-

sociated to the non-deleted nodes. Note that the graph published by the pollster, call it

Gp, is composed of the same nodes as Gc, but it’s missing all the edges associated to

unsuccessful PPEs. So, Gp = (V,E ′) is a subgraph of Gc = (V,E) where (i, j) is in E ′

if and only if Ri and Rj successfully interacted through a PPE.

1The information as described is redundant (e.g., the list of deleted nodes can be computed from the list of
edge signatures and node labels), but we describe it in this way to make the description of the verification process
simpler.

Chapter 4. A Publicly Verifiable Polling Scheme 36

6. Verification. The procedure is divided in two steps:

Local verification (performed by each responder) consists of verifying that the corre-

sponding node was published correctly, as were the edge signatures in which he was

involved (no adjacent edge is missing, and all the adjacent edges in the graph were

verified with a successful PPE). If any of these verifications fail, the responders send

a “complaint”.

Global verification (can be performed by anyone) consists of checking that all the

responders, and no others, that failed more then ηEd edges are indeed marked as

deleted. To verify if a node i is marked correctly, the verifier needs to find its

neighbours in the graph (by computing the hash function H(i, j) for every j �= i)

and checking how many of the signed edges appear in the published graph. Then,

the verifiers need to check that no more than a ηV fraction of the nodes were deleted

and that not “too many” valid complaints were sent.

An adversarial pollster can attempt to manipulate results either by changing the responses asso-

ciated with honest nodes or by “controlling” many nodes (nodes that do not correspond to any

honest participant, but appear in Gp and whose “behavior” is dictated by the pollster), such that

the overall empirical distribution differs from the empirical distribution over the honest nodes.

In the former case, the local verification detects the adversary and many valid complaints are

sent. In the latter case, we use an expansion property of the graph to prove that any large

enough set of “bad” nodes (nodes that are controlled by the adversary) must have many edges

to its complement in the graph. Thus, an adversary who wants to control a big enough set of

nodes must succeed in many PPE executions with honest nodes; since the adversary is bounded

in the number of successful PPE executions, it will be caught with high probability.

The protocol also provides a measure of robustness against malicious responders. Cheating

responders cannot undetectably modify the results for the same reason that a cheating pollster

cannot. However, they can attempt to launch a denial-of-service attack by causing verification

to fail. As explained above, the single-sided PPE in Step 4 prevents this form of attack, as long

as the cheating responders are limited enough in the amount of effort they can expend.

Chapter 4. A Publicly Verifiable Polling Scheme 37

4.2 Formal Protocol Description

4.2.1 Communication Model and Party Identities

Our protocol involves several different classes of participants. There is a single pollster, and

multiple responders and verifiers (the same physical party may participate in the protocol in

more than one role).

Since the main problem we are trying to solve with this protocol is lack of identity verification,

we cannot assume that the identities of all the parties are known in advance. To simplify the

analysis, we will only assume that the pollster’s identity is publicly known.

Anonymous Channels and Network Addresses. To model the fact that neither the pollster

nor the honest parties know the identities of all the parties we assume that all communication

are over anonymous channels. For more information on the properties and constructions of

anonymous channels we refer the reader to the survey by Danezis and Diaz [17] devoted entirely

to this subject. To simplify the analysis, we only assume such channels between the pollster

and every honest party (i.e., the communication graph is a star, with the pollster as the central

node).

The pollster and all responders (modeled as Interactive Turing Machines) have one standard

outgoing communication tape and one standard incoming communication tape. Every honest

party has a unique network address in {0, 1}∗ (the network address is given to the party as

input). A message written to the outgoing communication tape by any party except for the

pollster is copied to the pollster’s incoming communication tape. An honest party will always

write messages of the form (addr,msg) to its outgoing communication tape, where addr is its

network address. Every message written by the pollster to its outgoing communication tape is

also parsed as an (addr,msg) tuple, and the message is copied to the incoming communication

tape of the honest party with network address addr (if one exists). Regardless of whether addr

is valid or not, the message is also copied to the adversary’s incoming communication tape.

This model allows two-way anonymous communication; corrupt parties may write arbitrary

source addresses (including using addresses allocated to the honest parties). Thus, the pollster

Chapter 4. A Publicly Verifiable Polling Scheme 38

cannot identify which party wrote the message (except by what is revealed from the contents

of the message). Since a copy of every message is also sent to the adversary, sending a “fake”

source address doesn’t prevent a malicious responder from two-way communication with the

pollster. Recall that in our scenario, the adversary coincides with the pollster.

When we describe communication between two responders (e.g., when the protocol instructs

responder A to communicate with responder B), this is shorthand for their communicating

messages by passing them via the pollster. Although we omit this from the formal protocol

description (to reduce clutter), this can be easily accomplished by adding a special header

in the message that the honest pollster interprets as “forward to the specified address”; these

messages are otherwise ignored by the honest pollster.

Broadcast Channel. In addition to point-to-point channels, we assume a broadcast channel

from the pollster to all the other parties. This is a special outgoing communication tape with

corresponding incoming broadcast tapes for each other party; any message written by the poll-

ster to the broadcast tape is copied to the incoming broadcast tapes of all parties. Verifiers have

an incoming broadcast tape, but no standard incoming or outgoing tapes.

Complaint Channel. All parties have a special broadcast channel for “complaints”. This

channel is used only in cases where the pollster misbehaves in a way that cannot be publicly

detected by other honest parties (for example, if the pollster refuses to interact with an honest

party, or omits its inputs from the final proof).

Implementation with Peer-to-Peer Communication. Although our analysis assumes a

star-shaped communication graph, this is not a very efficient strategy for networks that do allow

peer-to-peer communication (such as the Internet). Our protocol does not require any specific

topology, as long as parties who need it can communicate — for example, the pollster can

“introduce” every two parties who need to communicate (by giving them each other’s network

addresses), and let them communicate directly. This can only improve soundness, since a mali-

cious pollster will lose access to the communication between honest parties, so our soundness

Chapter 4. A Publicly Verifiable Polling Scheme 39

guarantees will continue to hold (and it has no effect on completeness, since the pollster does

not use its privileged position in the communication graph in any way except to pass messages).

4.2.2 Adversary and Corruption Model

We consider two types of scenario: a scenario in which the pollster is malicious (e.g. he

attempts to violate the soundness guarantee of our protocol), and one in which the pollster is

actually honest. In the latter case, we still need to account for possible malicious responders

who can attempt to violate the completeness guarantee of our protocol.

Soundness. In the malicious pollster case, our adversarial model does not include corruption

of responders: this is without loss of generality, since the pollster can create an arbitrary number

of “fake” responders and control them completely (honest responders do not have any secret

inputs, so there is no information to be gained by corrupting them). Thus, modelling “sybils”

is natural in this model (the pollster just broadcasts additional identities). When we refer to

“corrupt” parties, this is shorthand for identities that were created by the pollster in this way.

We note that, since all communication is under the control of the pollster, the pollster can

perform message replay attacks and can also copy the content of some messages send it forging

the originator (as long as the fake source of the message is a corrupt party — it cannot forge a

signature for an honest party).

Completeness. In the malicious responder case, we can assume the pollster is honest (since

a malicious pollster can always perform a denial-of-service attack by simply aborting). In this

case, we can assume a single malicious responder, who creates an arbitrary number of fake

identities (this is w.l.o.g. in the static corruption setting, since there are no secret inputs).

Chapter 4. A Publicly Verifiable Polling Scheme 40

4.2.3 Full Protocol

We divide the protocol into six phases (as described at the beginning of section 4.1). The

formal protocol description for each phase appears below. The phases are executed in order. In

addition to the specified inputs, each party receives as input its view from the previous phases.

We make use of several elements common to all of the subprotocols:

Signature Scheme In all of the subprotocols, we make use of a signature scheme,

(Gen, Sign,Ver), denoting the key generation, signing algorithm and verification algo-

rithm respectively. As seen in Section 2, Gen(1κ) outputs a key pair (sk, vk), Sign(msg, sk)

outputs a signature σ ∈ {0, 1}∗, and Ver(msg, σ, vk) outputs either 1 (if σ is a valid sig-

nature on msg with verification key vk) or 0 if not (if Ver outputs 1 we say the signature

is accepted).

Pseudonyms and Network Address. The first step for every party in the protocol is generat-

ing a signature scheme key pair. The verification key is used as the party’s pseudonym.

Since parties communicate directly only through the pollster, we can identify the parties’

network addresses with their pseudonyms (the pollster can keep a table mapping one to

the other, or provide the address when needed). Note we do not assume a pre-existing

PKI — a malicious pollster can play man-in-the-middle between any pair of honest par-

ties (however, the protocol will ensure that such an attack is not advantageous to the

pollster).

Session identifiers, serial numbers, and message validity. To prevent replay attacks, the poll-

ster generates a unique identifier sid as the first step of the protocol. A message between

parties vksrc and vkdst is considered valid only if it begins with the tuple

(sid, vksrc, vkdst, serial, σ) where serial is the number of messages sent so far in session

sid between vksrc and vkdst, and σ is a valid signature under vksrc of the entire message

contents, including the initial header tuple (sid, vksrc, vkdst, serial). In addition, sid will

be used as the poll identifier in the PPE executions.

Dealing with errors. At any point in the protocol, malicious parties may deviate from the

honest execution. Any detected deviation is treated as if the deviating party aborted. For

Chapter 4. A Publicly Verifiable Polling Scheme 41

example, if party A received an invalid message from party B, it treats this as if B aborted

(and ignores any further messages from B).

Unless we explicitly say otherwise, the same holds for PPE verification (if party A and

B engage in a PPE execution, and party A does not successfully verify party B, it treats

this as if B has aborted).

Dealing with Registration-Refusal Attacks. One attach that our protocol does not handle

robustly is a registration-refusal attack: this is when a malicious pollster refuses to register a

subset of honest voters. The honest voter will detect this immediately, but it may be hard to

generate a proof that will convince other verifiers that this is malicious behavior by the pollster.

We suggest several directions for dealing with these type of attacks:

1. Require registration complaints to include publicly-verifiable proofs of effort. In this

case, we modify the global verification protocol to count registration complaints with

valid proofs of effort, and fail if too many are received (where “too many” is determined

by the effort bound for malicious responders). We note that it could make sense to use

publicly-verifiable proofs here even though the point of the protocol is to use privately-

verifiable proofs, since a failure of this assumption impacts completeness, not soundness.

2. Use “semi-verifiable” one-sided PPEs. For example, if the one-sided PPE is a CAPTCHA,

the correctness of the solution can be publicly verified (although possibly requiring hu-

man effort), even if it may not be possible to verify that effort was expended. In this

case, the registration complaint can contain the transcript of the session which includes

the CAPTCHA signed by the pollster, as well as the solution signed by the responder. If

the pollster receives such a broadcast in the registration phase, but does not include the

responder in the responder list, this is a publicly-verifiable proof of malicious behaviour

by the pollster. (If the pollster aborts before giving the one-sided PPE in the registration

phase, the responder can try again without spending effort - so this only has an effect if

the pollster refuses to register users with overwhelming probability).

3. Use anonymous channels. If responders communicate with the pollster via anonymous

channels, the pollster cannot base the refusal on the responder’s identity, and so should

Chapter 4. A Publicly Verifiable Polling Scheme 42

not be able to bias the poll unless a significant fraction of honest responders are refused.

This is the case because our protocol guarantees that the pollster cannot control “too

many” responders under the assumption that at least α fraction of the responders are

indeed honest. Thus, in order to bias the results he would need to refuse either specific

votes or a lot of them. In the latter case, honest parties who try to register to the poll will

be refused with high probability. Therefore, in this case, honest parties who receive a

registration complaint can try to register themselves to check if they are refused (whether

or not they are already registered); unfortunately, this does not allow post-factum global

verification.

Protocol 1 Parameter Announcement
This protocol is executed by the pollster with inputs κ, questions, p:

1: (sk, vk) ← Gen(1κ)
 Generate pollster’s key pair

2: Broadcast (sid, κ, p, vk, questions) to all parties.

4.3 Soundness

To prove the soundness of our protocol we need to show that the number of votes that the ad-

versary can control is at most proportional to the amount of effort that he is willing to invest.

That is, whenever the adversary is able to control a “meaningful” amount of votes that is sig-

nificantly greater that the number of votes that she could have controlled by honestly following

the protocol (with the same effort investment), our verification procedure will fail with over-

whelming probability. The proof of such a result will rely both on the security of the signature

schemes and on an expansion property of the graph Gp published by the pollster as proof of

correctness.

The use of the signatures is entirely straightforward: they prevent the adversary from changing

honest users’ votes and from claiming a failed PPE with an honest user was successful (to do

this, the adversary would have to forge the honest node’s signature). Similarly, the pollster’s

signature on the honest user’s registration information and the signatures of its neighbouring

nodes allows the honest user to verifiably complain about being omitted from the count despite

Chapter 4. A Publicly Verifiable Polling Scheme 43

Protocol 2 Registration
This protocol is between the pollster and every responder Ri. Every Ri receives as input addri

(its network address).

For every i ∈ [m], Ri and the pollster execute:

1: (Responder Ri): (ski, vki) ← Gen(1κ)
 Generate responder’s key pair

2: (Responder Ri): send (addri, vki) to pollster.

3: (Pollster and Ri): Engage in a one-sided PPE with identifier (sid, vki) (in which Ri is the

prover).

4: (Pollster): If the verification was successful, add (addri, vki) to the responder list and send

Signsk(addri|| vki) to the responder (note that this serves as a registration confirmation).

5: (Responder Ri): If the verification was successful but the responder did not receive the

confirmation from the pollster, broadcast a “registration complaint”.

When the registration phase is completed:

1: (Pollster): Choose a random permutation π : [m] → [m] and broadcast the shuffled list

(vkπ(1), . . . , vkπ(m)).
 The shuffle is

used only as defense against malicious responders; to reduce clutter we ignore it except in

the completeness proof; from now on, when we write i we actually mean π(i).

2: (Responder Ri): Verify that vki appears in the list. If not, broadcast an “identity missing”

complaint, that includes the registration confirmation message with the pollster’s signature

(as received from the pollster).

successfully completing the requisite number of PPEs. The “meat” of the security proof is in

the analysis of the certification graph, and that will be the focus of section 4.3.

As described in the previous sections, in a m-responders polling scheme, each responder holds

an input xi ∈ D ∪ {⊥}, where D is the domain from which the responses are taken and

⊥ denotes lack of participation in the poll. We call a node honest if its corresponding party

participated in the poll (its input was not ⊥). We call a node bad if it is not honest but its

response in the output is not ⊥. Finally, we say a node is deleted if it failed more than ηEd of

the PPEs it was assigned (note that both honest and bad nodes may be deleted), where d is the

number of PPE executions each responder is expected to participate in. Note that for soundness

to hold, we need that at least a certain portion, say α, of the responders are actually honest. That

is, we need at least αm responders to participate to the poll by sending an input. The adversary

Chapter 4. A Publicly Verifiable Polling Scheme 44

Protocol 3 Responder Certification
This protocol is executed between every responder Ri and its neighbours in the certification

graph: Ni = {Rj|j ∈ [m], j �= i, H(i, j) < p}. Note that Ni can be computed independently

by Ri given the public parameters H , p, and the list (vk1, . . . , vkm). For responder Ri:

1: for all Rj ∈ Ni (concurrently) do

2: Engage in a PPE ΠE(Ri, Rj) with identifier (sid, vkmin{i,j}, vkmax{i,j}).

3: If ΠE(Ri, Rj) = 1, Ri computes σ ← Signski
(sid|| vkj) and sends σ to Rj .

4: Let σj be the corresponding signature received from Rj

5: end for

6: Let Goodi = {σj|Ver(sid|| vki, σj, vkj) = 1} be the set of valid signatures from Ri’s

neighbours.

Protocol 4 Poll Response
This protocol is between the pollster and every responder Ri.In this phase, Ri’s input is xi, the

answer to the poll questions.

For every i ∈ [m]:

1: Ri sends respi = (xi, Goodi, Signski
(sid||xi||Goodi)) to the pollster.

Protocol 5 Results and Proof
This protocol is executed by the pollster.

1: for all i ∈ [m] do

2: Broadcast respi

3: end for

could in theory be the one controlling the remaining (1−α)m votes by replacing ⊥ as an actual

vote in the output and by spending the effort he has available. We prove that if the number of

controlled nodes is significantly greater than the number of votes he would have controlled by

acting honestly, then he will be detected with high probability.

In order to prove soundness, we bound separately the number of bad nodes (corresponding to

“fake” parties generated by the adversary) and the number of changes the adversary can make

to the input of honest nodes (that is, responder Ri voted xi and the pollster output yi ∈ D\{xi}

or yi = ⊥ instead). To prove the first bound, we rely on an expansion property of the graph

Gp output by the pollster. In the following subsection we give a general definition of such a

property and we prove some lemmas that will be useful for our proof.

Chapter 4. A Publicly Verifiable Polling Scheme 45

Protocol 6 Verification
This protocol is executed by the responders and verifiers.

Local Verification. Executed by every responder. For every i ∈ [m]:

1: Verify that respi was published correctly.

2: If respi was not published, broadcast a “response-missing” complaint.

Global Verification. Executed by every verifier. The verifier receives θ as a parameter.

1: if a valid “identity-missing” complaint was broadcast by vk∗
 i.e. vk∗ /∈ {vk1, . . . , vkm},

but the complaint contains a registration-confirmation message signed with key sk then

2: Output ⊥ // Malicious Pollster

3: end if

4: Set badNodes ← 0.

5: Set Complaints ← 0.

6: Initialize an array count[] indexed by the poll answers.

7: for all i ∈ [m] do

8: Verify that respi contains a valid signature from Ri.

9: Verify that Goodi is valid (all signatures are valid).

10: if |Ni| − |Goodi| < ηEd then

11: Increment count[xi].
 We don’t count nodes if they failed more than ηEd PPEs

12: else

13: Increment badNodes

14: end if

15: if Ri broadcast a response-missing complaint then

16: Increment complaints.

17: end if

18: end for

19: if complaints > θm then

20: Output ⊥.
 Too many complaints.

21: end if

22: if badNodes > ηVm then

23: Output ⊥.
 Too many deleted nodes.

24: end if

25: Output the array count.

Chapter 4. A Publicly Verifiable Polling Scheme 46

4.3.1 Large-Set Expanding Property

The LSE property is similar to the “jumbled” graphs of Thomason [54, 55], but is weaker since

we do not care if small sets do not expand. This lets us get better LSE parameters for random

graphs than are possible for the standard jumbled graphs (formally, we use the G(n, p) model

for random graphs; a graph is distributed according to G(n, p) if it has n vertices and for each

pair of vertices the corresponding edge exists with probability p).

Definition 4.1 (Large-Set Expanding (LSE)). A graph G = (V,E), with m = |V |, is said

to be (K, ρ, q)-LSE if for every pair of disjoint sets A,B ⊂ V such that K ≤ |A| ≤ m/2,

|B| ≥ m − |A| − ρ it holds that the set of edges between A and B, denoted by e(A,B), has

cardinality greater than |A||B|q.

In our analysis, K will denote a bound on both the maximum number of bad nodes that we

will allow and on the minimum number of good nodes that we require, ρ will be the maximum

number of deleted nodes and q a function of the probability that two voters have to run a PPE.

Lemma 4.2. Let G(m, p) = (V,E) be a random graph with p = d/m. For every ρ ≥ 1, ρ ∈ N

and every b > 1, if

d >
4b2m

m− 2ρ
(lnm+ 1)

then G is (K, ρ, b−1
b
p)-LSE with probability at least 1 − 2−κ for K = κ + (ρ + 2) lnm + ρ

(where the probability is over the choice of graph).

Proof. Consider an arbitrary pair of sets A,B ⊂ V such that K ≤ |A| ≤ m/2, |B| = m −

|A| − r with 1 ≤ r ≤ ρ. Define the random variable Xi,j to be the indicator variable for the

event (i, j) ∈ E.

Since G ∈ G(m, p), the Xi,j’s are independent and Pr[Xi,j = 1] = p. Then

|e(A,B)| =
∑
i∈A

∑
j∈B

Xi,j

E[|e(A,B)|] = |A||B|p = μ

Chapter 4. A Publicly Verifiable Polling Scheme 47

For A,B ⊂ V such that K ≤ |A| ≤ m
2

and m− |A| − ρ ≤ |B| ≤ m− |A| − 1, let Bad(A,B)

be the event that

|e(A,B)| < b− 1

b
μ

(For A,B not satisfying the size restrictions, we define Bad(A,B) to be the null event.)

To prove the lemma, we must bound the probability that

Pr [∃A,B ⊂ V : Bad(A,B)]. First, since the Xi,j’s are independent, by the Chernoff bound

we have for any disjoint sets A and B:

Pr[|e(A,B)| < b− 1

b
μ]

≤ exp
{
− μ

2b2

}
= exp

{
−|A||B|p

2b2

}

= exp

{
−|A|(m− |A| − r)p

2b2

}
≤ exp

{
−|A|(m/2− r)p

2b2

}

Next, we bound the probability that there exist two sets A and B of fixed sizes |A| = x,

|B| = m− x− r such that Bad(A,B) occurs. Denote

ε = Pr

⎡
⎢⎢⎣ ⋃

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Bad(A,B)

⎤
⎥⎥⎦

Chapter 4. A Publicly Verifiable Polling Scheme 48

By the union bound, this probability is bounded by

ε ≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Pr

[
|e(A,B)| < b− 1

b
μ

]

≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp

{
−|A||B|p

2b2

}

=
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp

{
−x(m− x− r)p

2b2

}

=

(
m

x

)(
m− x

r

)
exp

{
−x(m− x− r)p

2b2

}

≤
(
m

x

)(
m

r

)
exp

{
−x(m− x− r)p

2b2

}

≤
(me

x

)x (me

r

)r
exp

{
−x(m− x− r)p

2b2

}

Since |A| = x ≤ m
2

,

exp

{
−x(m− x− r)p

2b2

}
≤ exp

{
−x(m/2− r)p

2b2

}

Hence

ε ≤ exp
{
x(lnm+ 1− ln x) + r(lnm+ 1− ln r)− x

(m
2
− r
) p

2b2

}
≤ exp

{
−x

(
d

4b2
− dr

2b2m
− lnm− 1 + ln x

)
+ r(lnm+ 1− ln r)

}

≤ exp

{
−x

(
d

4b2
− dr

2b2m
− lnm

)
+ r(lnm+ 1)

}

≤ exp {−x+ r(lnm+ 1)}

Where the last two inequalities hold as long as ln x > 1 (which is always true assuming K > 3),

ln r ≥ 0 (which is always true for r ≥ 1) and d > 4b2m
m−2r (lnm+ 1).

Chapter 4. A Publicly Verifiable Polling Scheme 49

Applying the union bound again, we get

Pr [∃A,B ⊂ V : Bad(A,B)]

≤
m/2∑
x=K

ρ∑
r=1

Pr

⎡
⎢⎢⎣ ⋃

A⊂V
|A|=x

⋃
B⊂V

|B|=m−x−r

{
|e(A,B)| < b− 1

b
μ

}⎤⎥⎥⎦
≤ m

2
ρe−K+ρ(lnm+1)

≤ 2−κ

since K > κ ln 2 + (ρ+ 1) lnm+ ln ρ+ ρ.

In our analysis, we will use this lemma to prove that the certification graph Gc is indeed ex-

panding with specific parameters K, ρ, and q. We will then need to use the following lemma,

in order to prove that our protocol is sound:

Lemma 4.3. Consider a graph G = (V,E) with m = |V | nodes. Let G′ = (V,E ′) be the

graph obtained from G by deleting at most s edges per node. If G is (K, ρ, q)-LSE, then G′ is

(K, ρ, q − 2s
m−2ρ)-LSE.

Proof. For simplicity let q′ = q − 2s
m−2ρ . Consider A,B ⊂ V such that K ≤ |A| ≤ m/2 and

m − |A| − ρ ≤ |B| ≤ m − |A|. We want to prove that |eG′(A,B)| > |A||B|q′, where eG(·, ·)

indicates the set of edges between A and B in the graph G.

First, by assumption the maximum number of edges that can be missing in G′ from v are exactly

s. Therefore, the maximum number of edges that can be missing in G′ from the set of all edges

with at least one node in A is |A|s. In the worst case, for us, all the missing edges were part of

e(A,B) in G. Thus,

|eG′(A,B)| ≥ |eG(A,B)| − |A|s

Now we can use the fact that G is (K, ρ, q)-LSE to obtain the following:

|eG′(A,B)| ≥ |eG(A,B)| − s|A| > |A||B|q − s|A| .

Chapter 4. A Publicly Verifiable Polling Scheme 50

It remains to show that |A||B|q′ ≤ |A||B|q− s|A|. From q′ = q− 2s
m−2ρ and |A| ≤ m/2 we get

|A||B|q′ = |A||B|
(
q − 2s

m− 2ρ

)

≤ |A||B|
(
q − s

m− |A| − ρ

)

= |A||B|q − |A|s
(

|B|
m− |A| − ρ

)

≤ |A||B|q − |A|s ,

from which we can conclude |eG′(A,B)| > |A||B|q′ as required.

4.3.2 Main Theorem and Proofs

We can now apply the results obtained in the previous subsection specifically to our protocol.

Let a denote the maximum number of effort oracle calls that the adversary is willing to make

and let K = κ+ (ηVm+ 2) lnm+ ηVm.2 Formally, we prove

Theorem 4.4 (Soundness). Let

b =

√
d(1

2
− ηV)

2(lnm− 1)
.

If b > (1
2
−ηV)/(

1
2
−ηV −ηE) > 1, then the protocol of Section 4.1 is an (α,B)-sound verifiable

polling protocol for

α = K/m+ ηV

and

B(a,m) = max

{
K,

(
b

(b− 1)(1
2
− ηV)− bηE

)
a

d

}
+ θm .

When a is sufficiently large (so we can ignore the K “free” responses), this implies the multi-

plicative advantage of the adversary is bounded by

C(a) =

(
b

(b− 1)(1
2
− ηV)− bηE

)
+

θmd

a
.

2Recall that ηV is a parameter denoting the max fraction of nodes that can be deleted before verification fails.

Chapter 4. A Publicly Verifiable Polling Scheme 51

One way to interpret this is that an adversary gets resources equivalent to θm honest users “for

free”, but any more powerful adversary has multiplicative advantage bounded by

C∗ =
(

b

(b− 1)(1
2
− ηV)− bηE

)
+ 1

(recall that an honest user must solve, in expectation, d PPEs during the protocol execution, so

an adversary more powerful than that must have a > θmd).

Proof. As we discussed at the beginning of the section, there are two ways for the pollster to

affect the vote count:

1. By possibly controlling some of the nodes.

2. By replacing or deleting the votes of honest participants.

For the latter, the bound relies on the security of the signature scheme and on the local verifi-

cation of honest parties. In fact, the signature scheme ensures that the adversary cannot modify

responses (with a yi �= ⊥) (since that would require forging a signature compatible with the

node’s verification key). Thus, the local verification of honest nodes will catch the adversary

deleting or completely replacing nodes. Global verification fails whenever more then θm nodes

complain—thus, the number of deleted/replaced nodes in a successful protocol execution can

be at most θm.

It is left to show that if the number of controlled nodes is higher than B, then global verification

fails. The proof proceeds as follow:

• Using Lemma 4.2 and Lemma 4.3 we prove that Gp is LSE with high probability.

• We will then have a lower bound on the number of crossing edges between a possible set

of bad nodes and the set of honest nodes.

• We conclude by noticing that the pollster, in order to control a set of nodes larger than B,

would have had to succeed in more than a PPEs involving honest participants.

Chapter 4. A Publicly Verifiable Polling Scheme 52

Let F denote the nodes in Gp corresponding to voters that have failed more than ηEd PPEs. It

must be that |F | ≤ ηVm, otherwise the verification procedure would fail. Let B and H denote

the set of bad and honest nodes, respectively, that have not been labelled as “deleted”. Thus

B, H and F are disjoint sets whose union is V . That is, since we have a total of m nodes, if

|B| = x then |H| = m − x − |F |. Recall that a successful PPE corresponds to an edge in Gp.

Thus, a lower bound on the number of edges in Gp between the sets B and H translates to a

lower bound on the number of PPEs in which the adversary must have succeeded, and hence

on the number of oracle calls made by the adversary.

Note that from Lemma 4.2, we know that Gc is (K, ηVm, b−1
b
p)-LSE with probability at least

1 − 2κ. Thus, from Lemma 4.3, we can conclude that, with probability at least 1 − 2κ, Gp is

(K, ηVm, b−1
b
p− 2ηEd

m−2ηV m
)-LSE. Wlog assume

|B| < m/2 and |B| ≥ max

{
K,

(
b

(b− 1)(1
2
− ηV)− bηE

)
a

d

}

(the case |H| < m/2 is analogous, using |H| ≥ (α− ηV)m ≥ K). Then, we get:

|e(B,H)| > |B||H|
(
b− 1

b
p− 2ηEd

m− 2ηVm

)

≥ |B| (m− |B| − ηVm)

(
(b− 1)d(1− 2ηV)− 2bdηE

mb(1− 2ηV)

)

≥
(

2b

(b− 1)(1− 2ηV)− 2bηE

)
a

d

(m
2
− ηVm

)((b− 1)d(1− 2ηV)− 2bdηE
mb(1− 2ηV)

)

=

(
2b

(b− 1)(1− 2ηV)− 2bηE

)
a

d

(
m(1− 2ηV)

2

)(
d[(b− 1)(1− 2ηV)− 2bηE]

mb(1− 2ηV)

)

= a

Thus, with probability at least 1 − 2κ, |e(B,H)| > a which contradicts the assumption of the

adversary being limited to a successful PPEs.

Therefore, the number of votes controlled by a pollster that invests a effort-oracle calls must be

lower than max
{
K,
(

b
(b−1)(1

2
−ηV)−bηE

)
a
d

}
+ θm, as wanted.

Chapter 4. A Publicly Verifiable Polling Scheme 53

4.4 Completeness

It is now left to show that in the case of an honest pollster, the verification procedure will

succeed with overwhelming probability. Even when dealing with an honest pollster, we still

need to take into account the possibility that malicious voters might try to force the verification

to fail. This can be done by registering for the poll but aborting in all the PPE executions. Such

a strategy will force the verification procedure to label the node as deleted and all its edges as

failing. It will thus increase the number of deleted nodes which, for the verification to output

accept, needs to be smaller than ηVm.

To make sure that such an attack would require the adversary to expend actual effort, we require

each responder to solve a single-sided PPE (where the effort is required only from the respon-

ders) in order to be allowed to participate in the poll. We think of the number of maliciously

controlled nodes as bounded by θm, where θ depends on the “effort” invested by the malicious

voters. Theorem 4.7 gives a bound on ηV as a function of θ and κ that enables the verification

procedure, in case of an honest pollster, to output accept with probability at least 1− 2κ.

To prove the main theorem of this section, we require a corollary to the following lemma:

Lemma 4.5. Let S ⊂ V be an arbitrary set of vertices and denote

δ = max {2, 2κ/(|S|d)}. Then

Pr [|{(i, j) ∈ E|i ∈ S}| > (1 + δ)d|S|] < e−κ

(i.e., the probability S has more than (1 + δ)d|S| edges is bounded by e−κ).

Proof. For every pair of vertices i, j ∈ V , let Xi,j be the indicator variable for the event (i, j) ∈

E. By definition, E[Xi,j] = p. Denote X =
∑

i∈S
j∈V

Xi,j the number of edges adjacent to S.

Then E[X] = mp|S| = d|S|. By Chernoff,

Pr [Xi > (1 + δ)d|S|] ≤ exp

{
− δ

2/δ + 1
d|S|
}

≤ exp

{
−δ

2
d|S|
}

= exp {−κ}

Chapter 4. A Publicly Verifiable Polling Scheme 54

Corollary 4.6. Assuming static corruption, the probability that malicious responders with a θm

upper bound on effort (in total) can control max {3θmd, 3κ} edges in the certification graph is

bounded by e−κ.

Proof. Since the pollster randomly shuffles the nodes in the certification path during the regis-

tration phase, any set of responders is assigned a random set of nodes in the certification graph.

By symmetry, we can consider the probability for any specific set of size θm. The result follows

by setting |S| = θm in Lemma 4.5.

We are now ready to prove the Completeness Theorem:

Theorem 4.7 (Completeness). Let θm denote the maximum number of effort-oracle calls that

can be made by malicious responders and

ηmin
V = θ +

3 ·max
{

κ
md

, θ
}

ηE
+

σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
.

If the pollster follows the protocol honestly, ηE > 0 and ηV ≥ ηmin
V then the probability that the

verification procedure outputs accept is at least 1− 2−κ.

We note that for non-trivial soundness, the values of ηE and ηV are further constrained.

Proof. Let G = (V,E), with p = d/m, be the random graph generated by the pollster. Recall

that an edge (i, j) is labelled as failing whenever the double-sided PPE between i and j fails.

We denote by σ the probability that such an event occurs between honest voters. Moreover, ηE

is the highest fraction of PPEs that can fail before a node/voter gets labeled as deleted, and ηV

is the maximal fraction of deleted nodes accepted by the verification procedure.

Let Xi,j denote the indicator random variable for the event “(i, j) ∈ E is a failing edge”.

Note that, if i and j are both honest, the Xi,j’s are independent and Pr[Xi,j = 1] = σp.

Let X =
∑

i∈V
∑

j∈V Xi,j . Then, E[X] = m2σp = mdσ and X denotes the number of

failing edges in the graph. Recall that the certification graph is an undirected graph and that an

edge between two nodes denotes the requirement of running a double-sided PPE between the

responders represented by those two nodes. Thus, the event “(i, j) ∈ E is a failing edge” is

Chapter 4. A Publicly Verifiable Polling Scheme 55

actually equivalent to the event “(j, i) ∈ E is a failing edge”. Therefore, X is double counting

the number of failing edges. Since each edge affect 2 nodes, X is actually the cardinality of

the set containing (with repetitions) all the nodes affected by X/2 failing edges. Note that for a

node to be labelled as deleted, such a node needs to be connected to at least dηE failing edges,

which means that such a node has been counted at least dηE times in X . Thus, the expected

number of deleted nodes in case of honest responders is bounded by X/dηE . Now, in our

analysis, we need to take into account that, in the worst case scenario, there will be θm nodes

maliciously controlled who will intentionally fail all their PPE’s. Therefore, we will have to

account for the following:

1. The malicious nodes (which are θm) will be deleted nodes;

2. Enough bad edges will cause an honest node to be marked deleted. However, by Corol-

lary 4.6, with high probability the malicious responders cannot affect more than

3 ·max {κ, θmd} honest edges. Which means that at most another 3·max {κ/d, θm} /ηE
nodes can be “forced” to be labelled as deleted.

To conclude, we want to prove that the probability that X
dηE

+ θm+ 3θm
ηE

is greater than ηVm is

negligible. Let ηV = θ + 3θ
ηE

+ σ
ηE
(1 + δ) (we will set δ below). Then,

Pr

[
X

dηE
+ θm+

3θm

ηE
> ηVm

]
= Pr

[
X

dηE
>

σ

ηE
(1 + δ)m

]

= Pr [X > (1 + δ)mdσ] .

By the Chernoff Bound,

Pr [X > (1 + δ)mdσ] ≤ exp

{
− δ2

2 + δ
mdσ

}

Setting δ = max
{
2, 2κ

mdσ

}
, we ensure that Pr [X > (1 + δ)mdσ] ≤ e−κ.

As previously stated, our proofs hold in the random oracle model (e.g. the analysis has been

done assuming that the certification graph G has been generated using G(n, p)). Under the

Chapter 4. A Publicly Verifiable Polling Scheme 56

reasonable assumption that the cryptographic random function H used to generate the certifi-

cation graph would indeed produce a graph with good expansion parameters, our proofs would

hold in the standard model as well. In fact, note that to carry forward both the soundness and

the completeness proofs, we relied only on the expansion properties of the certification graph.

Thus, the construction of the graph can potentially be derandomized; we could use an explicit

graph construction with the appropriate expansion properties. We would have a more elaborate

protocol, but we could remove the assumption on H and improve the protocol parameters. In

practice, the pollster will still broadcast a parameter which will give a lower bound on the ex-

pected degree of the graph and, after the registration phase he will simply broadcast a specific

graph G. As part of the verification procedure, the verifiers will make sure that G is indeed

LSE.

Chapter 5

Conclusion

5.1 Summary

We introduced a formal model defining verifiable effort-based polling. The idea was to con-

struct a protocol whose results can be publicly verified and whose security did not depend on a

trustful central authority. We achieved our goal by introducing the new concept of Privately ver-

ifiable Proof of Efforts (PPE). Our protocol generates a “responders certification graph” where

nodes are associated to responders, and edges denote the requirement of cross-certification be-

tween adjacent nodes. Responders who appear to be connected in the graph will have to certify

each others “honesty” through the use of PPEs. We guarantee that if enough honest users par-

ticipate to the poll, a cheating pollster will be detected with high probability. Note that in our

analysis the certification graph is randomly generated, but to prove our results we simply con-

sidered a specific expansion property of the graph. Therefore, a deterministic construction of a

certification graph would still allow us to obtain the same results provided that the expansion

property needed is achieved.

5.2 Future Work

General Verifiable Computation Among Anonymous Participants While we state our

main results in terms of polling, the security guarantee we give is that the final published graph

57

Chapter 5. Conclusion 58

does not contain too many “bad” nodes. It may be possible to leverage this technique for doing

more general computations, where the edges in the graph correspond to a private computation

between two parties, and the final goal is a joint, publicly-verifiable computation (in this case,

the “responses” might be some intermediate public values of the computation).

Parallel and Distributed Verification The verification procedure in our protocol is highly

parallelizable: each responder must verify three properties, each of which can be done by

reading only a small part of the graph:

• that her own node was correctly published on the bulletin-board (requires O(m) evalua-

tions of the hash function, but only O(d) communication),

• that the total number of deleted nodes was small (requires reading a small list of nodes),

• and that no edges were missed (this is a local property of each potential edge that can be

computed from the node labels and the size of the graph).

The only non-local part in the verification is the aggregation of the results from all the nodes.

However, by publishing a small amount of additional information, this computation can be

distributed as well. Given an aggregation tree, where each node aggregates the results from its

children, a verifier can check a single local neighbourhood and a path from that neighbourhood

to the root in the tree. Thus, if we can assume that enough honest responders participate in the

verification, the total amount of communication for each responder can be made logarithmic in

the size of the graph.

Practicality of the Protocol The parameters achieved by our protocol are not quite good

enough to be practical for interaction-based PPEs (the degree of the graph would be about 180

for reasonable parameters). However, this may already be good enough for PPEs that can be

automated (for example, the social-network based PPE). Moreover, we believe further research

can significantly improve the efficiency.

Chapter 5. Conclusion 59

Improving Efficiency by Using Hypergraphs. Our bound on the degree of the graph may

be slightly high for some uses of the protocol. However, we can extend the PPE definition to

a multi-party setting, in which several parties certify each other simultaneously (e.g., using a

multi-person chat, such as “Google Hangout” or “Skype”). This has the potential of signifi-

cantly lowering the degree. Extending our protocol in this way may be an interesting direction

for future work.

Improving Efficiency by Using Explicit Graphs. Our bound on the degree of the graph

is for a randomly chosen graph. In particular, our soundness analysis includes the event that

the chosen graph is not a good expander as a failure mode. Thus, we require the properties to

hold for random graphs with overwhelming probability. However, it is fairly easy to prove that

graphs with better parameters (e.g., lower degree for the same expansion rate) exist: if we have

an explicit representation of such a graph, soundness will hold unconditionally.

Appendix A

Choosing parameters

Below is a table containing a list of the most common parameters used throughout the paper. We

partition the parameters into fixed parameters (in Table A.1) - those that depend on assumptions

about adversarial behavior and the effectiveness of the PPEs, tunable parameters (in Table A.2

) - those that can be set by the poll designer (subject to certain constraints), and computed

parameters (in Table A.3) - those that are functions of the previous parameters.

TABLE A.1: Fixed Parameters

Symbol Description

m
Total number of responders to the poll / Number of nodes

in the graph.

n Number of honest responders.

a

Upper bound on the number of oracle calls that the adver-

sary can successfully perform / Upper bound on the number

of attack edges.

θ

Upper bound on the fraction of malicious responders: the

total number of oracle calls made by malicious responders

is at most θm.

σ
Probability of a PPE failing when both parties honestly fol-

low the protocol.

Continued on next page

60

Appendix A. Choosing Parameters 61

Table A.1 – continued from previous page

Symbol Description

ε
Probability of a PPE succeeding when one party does not

make at least one oracle call.

TABLE A.2: Tunable Parameters

Symbol Description

κ Security parameter.

d

Expected degree of the graph (expected number of PPE ex-

ecutions per responder). This can be tuned by changing p

(p = d/m).

α
Minimum fraction of honest responders required to guaran-

tee soundness.

TABLE A.3: Computed Parameters

Symbol Description

p
Edge probability. Every pair of responders will be required

to engage in a PPE with probability p.

ηE
Upper bound on the fraction of PPEs that a responder can

fail without getting deleted.

ηV
Upper bound on the fraction of nodes that can be deleted

without causing the verification procedure to fail.

K
Number of nodes in the graph that the adversary can control

“for free”.

Continued on next page

Appendix A. Choosing Parameters 62

Table A.3 – continued from previous page

Symbol Description

C∗
Upper bound on the multiplicative advantage of the adver-

sary (an adversary has no more influence than an honest

user that can invest C∗ times the effort).

A.1 Constraints on Parameters

First, from Theorem 4.4 we have:

√
d
(
1
2
− ηV

)
2(lnm− 1)

>

(
1
2
− ηV

)(
1
2
− ηV − ηE

)
which implies that

d >
1
2
− ηV(

1
2
− ηv − ηE

)2 (2 lnm− 2).

By the definitions of α and K in Theorem 4.4, we get

α ≥ K

m
+ ηV =

κ+ 2 lnm

m
+ ηV (lnm+ 2) ≥ κ+ 2 lnm

m

Isolating ηV instead of α, we have:

ηV ≤ ηmax
V =

α− κ+2 lnm
m

2 + lnm

Combining this with the bound on ηV from Theorem 4.7, we get

Appendix A. Choosing Parameters 63

ηmin
V = θ +

3 ·max
{

κ
md

, θ
}

ηE
+

2σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
≤ ηV ≤ ηmax

V

Which implies the following bound on ηE:

ηE ≥ ηmin
E = ηE · η

min
V − θ

ηmax
V − θ

=
3 ·max

{
κ
md

, θ
}
+ 2σ

(
1 + max

{
2, 2κ

mdσ

})
ηmax
V − θ

Finally, note that we must have θ < ηV ≤ ηmax
V , but this is not sufficient. Since we need

1
2
− ηV − ηE > 0:

1

2
> ηV + ηE ≥ ηmin

V + ηmin
E

≥ θ +
3θ + 2σ

(
1 + max

{
2, 2κ

mdσ

})
ηmax
V − θ

Assuming θ < 1
2
ηmax
V , this implies

1

2
> θ +

6θ + 4σ
(
1 + max

{
2, 2κ

mdσ

})
ηmax
V

= θ

(
1 +

6

ηmax
V

)
+

4σ

ηmax
V

(
1 + max

{
2,

2κ

mdσ

})

This gives us the following bound on θ:

θ <

1
2
− 4σ

ηmax
V

(
1 + max

{
2, 2κ

mdσ

})
1 + 6

ηmax
V

Since the θ must be non-negative, we also have a bound on σ:

12σ

ηmax
V

≤ 4σ

ηmax
V

(
1 + max

{
2,

2κ

mdσ

})
≤ 1

2

Appendix A. Choosing Parameters 64

hence

σ ≤ ηmax
V

24

A.2 Examples of Parameter Settings

For simplicity we consider PPEs for which the soundness error ε is negligible and we omit

it. Moreover, depending on the context in which we would like to use our protocol and the

level of security we would like to achieve, different type of PPEs might be more suitable. As

presented in Section 3.3, there are multiple ways we could think of implementing PPEs and,

naturally, each implementation comes with its own advantages/disadvantages. For instance,

opting for a proof-of-retrievability based implementation can provide us with PPEs with almost

perfect completeness (σ = 0), but requires a lot of communication. On the other hand, other

implementations which would give us a worse completeness error (e.g., based on CAPTCHAs),

require fewer (or different) resources.

In Table A.4 the reader can find example parameter settings for two parameter regimes: in

Scenario 1 and 2, there are 5000 responders and PPEs are error-free, while Scenario 3 and 4

have 100000 responders with PPEs that have non-negligible (albeit small) error rate. The first

scenario in each pair has degree close to the minimum possible for those parameters, while

the second demonstrates the soundness advantage of increasing the degree (we note that the

values are based on our worst-case bounds - in practice it may be possible to achieve better

parameters).

TABLE A.4: Possible Parameters

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

κ 40 40 40 40

m 5, 000 5, 000 100, 000 100, 000

θ 1/1000 1/1000 1/10000 1/10000

Continued on next page

Appendix A. Choosing Parameters 65

Table A.4 – continued from previous page

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

σ 0 0 1/1000 1/1000

ηE 1/8 1/8 0.23 0.23

ηV 0.025 0.025 0.028 0.028

α 0.28 0.28 0.38 0.38

K 1246 1246 35, 192 35, 192

d 60 120 165 240

C∗ 200 10 670 23

As to be expected, higher the degree of the graph (that is the number of PPEs each responder is

required to carry out) lower is the advantage the adversary gets.

Bibliography

[1] B. Adida and R. L. Rivest. Scratch & vote: self-contained paper-based cryptographic

voting. In Proceedings of the 5th ACM workshop on Privacy in electronic society, pages

29–40. ACM, 2006.

[2] G. Alberini, T. Moran, and A. Rosen. Public verification of private effort. In Theory of

Cryptography, pages 169–198. Springer, 2015.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of

modern physics, 74(1):47, 2002.

[4] J. Aspnes, C. Jackson, and A. Krishnamurthy. Exposing computationally-challenged

byzantine impostors. Department of Computer Science, Yale University, New Haven,

CT, Tech. Rep, 2005.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and

D. Song. Remote data checking using provable data possession. ACM Transactions on

Information and System Security (TISSEC), 14(1):12, 2011.

[6] B. Awerbuch and C. Scheideler. Group spreading: a protocol for provably secure dis-

tributed name service. In Automata, Languages and Programming, pages 183–195.

Springer, 2004.

[7] A. Back. Hashcash-a denial of service counter-measure. http://www.

cypherspace.org/hashcash, 2002.

[8] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with given

degree sequences. Journal of Combinatorial Theory A, 24:296–307, 1978.

66

Bibliography 67

[9] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled

regular graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

[10] B. Bollobás. Random Graphs. Springer, 1998.

[11] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.

Journal of Computer and System Sciences, 37(2):156–189, 1988.

[12] R. Canetti, S. Halevi, and M. Steiner. Mitigating dictionary attacks on password-protected

local storage. In Advances in Cryptology-CRYPTO 2006, pages 160–179. Springer, 2006.

[13] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM, 24(2):84–90, 1981.

[14] D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE security & pri-

vacy, (1):38–47, 2004.

[15] D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical voter-verifiable election scheme.

Springer, 2005.

[16] A. Cheng and E. Friedman. Sybilproof reputation mechanisms. In Proceedings of the

2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems, pages 128–132.

ACM, 2005.

[17] G. Danezis and C. Diaz. A survey of anonymous communication channels. Technical

report, Technical Report MSR-TR-2008-35, Microsoft Research, 2008.

[18] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social networks. In

NDSS, 2009.

[19] S. Diaz-Santiago and D. Chakraborty. On securing communication from profilers. In

SECRYPT 2012 - Proceedings of the International Conference on Security and Cryptog-

raphy, SECRYPT is part of ICETE - The International Joint Conference on e-Business

and Telecommunications, pages 154–162, 2012.

[20] J. R. Douceur. The sybil attack. In Peer-to-peer Systems, pages 251–260. Springer, 2002.

[21] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Advances in

Cryptology—CRYPTO’92, pages 139–147. Springer, 1993.

Bibliography 68

[22] S. Dziembowski. How to pair with a human. In Security and Cryptography for Networks,

pages 200–218. Springer, 2010.

[23] C. M. Ellison. Establishing identity without certification authorities. In USENIX Security

Symposium, pages 67–76, 1996.

[24] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae Debrecen, 6:290–

297, 1959.

[25] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar.

Acad. Sci, 5:17–61, 1960.

[26] P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta Math-

ematica Hungarica, 12(1):261–267, 1961.

[27] I. Haitner, O. Horvitz, J. Katz, C.-Y. Koo, R. Morselli, and R. Shaltiel. Reducing complex-

ity assumptions for statistically-hiding commitment. Journal of Cryptology, 22(3):283–

310, 2009.

[28] I. Haitner, M.-J. Nguyen, S. J. Ong, O. Reingold, and S. P. Vadhan. Statistically hid-

ing commitments and statistical zero-knowledge arguments from any one-way function.

SIAM Journal on Computing, 39(3):1153–1218, 2009.

[29] I. Haitner, O. Reingold, S. P. Vadhan, and H. Wee. Inaccessible entropy. In Proceedings

of the 41st annual ACM symposium on Theory of computing, pages 611–620. ACM, 2009.

[30] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from

any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[31] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. New York: Wiley & Sons, 2000.

[32] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against

connection depletion attacks. In NDSS, volume 99, pages 151–165, 1999.

[33] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. In Proceedings

of the 14th ACM conference on Computer and communications security, pages 584–597.

ACM, 2007.

Bibliography 69

[34] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for repu-

tation management in p2p networks. In Proceedings of the 12th international conference

on World Wide Web, pages 640–651. ACM, 2003.

[35] P. Krugman. Bits and barbarism. New York Times, December 2013. http://www.

nytimes.com/2013/12/23/opinion/krugman-bits-and-barbarism.

html.

[36] A. Kumarasubramanian, R. Ostrovsky, O. Pandey, and A. Wadia. Cryptography using

captcha puzzles. In Public-Key Cryptography–PKC 2013, pages 89–106. Springer, 2013.

[37] R. Levien and A. Aiken. Attack-resistant trust metrics for public key certification. In

Usenix Security, 1998.

[38] B. N. Levine, C. Shields, and N. B. Margolin. A survey of solutions to the sybil attack.

University of Massachusetts Amherst, Amherst, MA, 2006.

[39] M. D. Lillibridge, M. Abadi, K. Bharat, and A. Z. Broder. Method for selectively restrict-

ing access to computer systems, February 27, 2001. US Patent 6,195,698.

[40] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–

277, 1988.

[41] G. A. Margulis. Explicit constructions of graphs without short cycles and low density

codes. Combinatorica, 2(1):71–78, 1982.

[42] G. A. Margulis. Explicit group-theoretical constructions of combinatorial schemes and

their application to the design of expanders and concentrators. Problemy peredachi infor-

matsii, 24(1):51–60, 1988.

[43] R. Meshulam and A. Wigderson. Expanders from symmetric codes. In Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, pages 669–677. ACM,

2002.

[44] T. Moran and M. Naor. Polling with physical envelopes: A rigorous analysis of a human-

centric protocol. In Advances in Cryptology-EUROCRYPT 2006, pages 88–108. Springer,

2006.

Bibliography 70

[45] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Unpublished, 2008.

[46] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–

158, 1991.

[47] M. Naor. Verification of a human in the loop or identification via the Turing

Test. Unpublished draft from http://www.wisdom.weizmann.ac.il/˜naor/

PAPERS/human_abs.html, 1996.

[48] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments

for NP using any one-way permutation. Journal of Cryptology, 11(2):87–108, 1998.

[49] M. Naor and G. Rothblum. The complexity of online memory checking. In Proceedings

of FOCS, pages 573–84. IEEE Computer Society, 2005.

[50] C. A. Neff. Practical high certainty intent verification for encrypted votes. http://

www.votehere.com/documents.php, 2004.

[51] R. L. Rivest. The ThreeBallot voting system. http://people.csail.mit.edu/

rivest/Rivest-TheThreeBallotVotingSystem.pdf, 2006.

[52] E. Rozenman, A. Shalev, and A. Wigderson. A new family of Cayley expanders (?). In

Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages

445–454. ACM, 2004.

[53] H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in Cryptology-

ASIACRYPT 2008, pages 90–107. Springer, 2008.

[54] A. Thomason. Pseudo-random graphs. North-Holland Mathematics Studies, 144:307–

331, 1987.

[55] A. Thomason. Random graphs, strongly regular graphs and pseudorandom graphs. Sur-

veys in combinatorics, 123:173–195, 1987.

[56] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online content voting. In

Proceedings NSDI, 2009.

Bibliography 71

[57] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using hard AI

problems for security. In Advances in Cryptology—EUROCRYPT 2003, pages 294–311.

Springer, 2003.

[58] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer

bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[59] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):440–442, 1998.

[60] N. C. Wormald. The asymptotic connectivity of labelled regular graphs. Journal of Com-

binatorial Theory, Series B, 31(2):156–167, 1981.

[61] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal social

network defense against sybil attacks. In Security and Privacy, 2008. SP 2008. IEEE

Symposium on, pages 3–17. IEEE, 2008.

[62] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: defending against

sybil attacks via social networks. In ACM SIGCOMM Computer Communication Review,

volume 36, no. 4, pages 267–278. ACM, 2006.

[63] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: defending

against sybil attacks via social networks. Technical report, Intel Research, Pittsburgh,

PA, June 2006. http://www.pittsburgh.intel-research.net/people/

gibbons/papers/sybilguard-tr.pdf.

