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Abstract

This thesis concerns the solution of variational inequalities (VIs) with ana­

lytic center cutting plane methods (ACCPMs). A convex feasibility problem

reformulation of the variational inequality is used; this refonnuIation applies

to VIs defined with pseud().monotone~single-valued mappings or with max­

imal monotone, muIti-valued mappings.

Two cutting plane methods are presented: the first is based on linear cuts

while the second uses quadratic cuts. The first method, ACCPM-VI (linear

cuts), requires mapping evaiuations but no Jacobian evaluations; in fact,

no differentiability assumption is needed. The cuts are placed at approx­

imate anaIytic centers that are tracked with infeasible primai-dual Newton

steps. Linear equality constraints may he present in the definition of the VI's

set of reference, and are treated explicitly. The set of reference is assumed

ta be polybedral, or is convex and iteratively approximated by polyhedra.

Alongside of the sequence of anaIytic centers, another sequence of points is

generated, based on convex combinations of the analytic centers. This latter

sequence is observed to converge ta a solution much faster than the former

sequence.

The second method, ACCPM-VI (quadratic cuts), bas cuts based on both

mapping eva1uations and Jacobian evaluations. The use of sncb a richer in­

formation set allows cuts that guide more accurately the sequence of analytic

centers towards a solution. Mappings are assumed to he strongly monotone.
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However, Jacobian approximations, relying only on mapping evaluations,

are observed to work very weIl in practice, so that differentiability of the

mappings may not he required. There are two versions of the ACCPM-VI

(quadratic cuts), that differ in the way a new analytic center is reached after

the introduction of a eut. One version uses a curvilinear search followed by

dual Newton centering steps. The search entails a full eigenvector-eigenvalue

decomposition of a dense matrix of the order of the number of variables.

The other version uses two line searches, primai-dual Newton steps, but no

eigenvector-eigenvalue decomposition.

The algorithms described in this thesis were împlemented in the MATLAB

environment. NumericaI tests were performed on a variety of problems, some

new and sorne traditional applications of variational inequallties.
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Résumé

Le sujet de cette thèse est la résolution d'inégalités variationnelles (IVs)

à l'aide de méthodes de centres analytiques et plans coupants (ACCPM).

L'inégalité variationnelle est transformée en un problème de réalisabilité

convexe; cette transformation est valide pour les IVs définies avec des ap­

plications soit univoques et pseudo-monotones, ou multivoques et maximales

monotones.

Deux méthodes de plans coupants sont présentées, la première fondée

sur des coupes linéaires, et la seconde, sur des coupes quadratiques. La

méthode à coupes linéaires, appelée ACCPM-VI (coupes linéaires), exige des

évaluations de l'application, mais aucunes du jacobien; de fait, aucune hy­

pothèse de différentiabilité n'est requise. Les coupes sont placées sur des cen­

tres analytiques approximatifs, que l'on trouve grâce à une méthode de New­

ton primale-duale non-réalisable. Des égalités linéaires peuvent être présentes

dans la définition de l'ensemble de référence de l'IV, et sont traitées de façon

explicite. On fait l'hypothèse que cet ensemble de référence est polyhédral, ou

alors il est simplement convexe et une approximation polyhédrale est bâtie

par l'algorithme à l'aide d'un oracle. Au fur et à mesure que la suite de

centres analytiques est fabriquée, une autre suite de points est produite en

parallèle, consistant de combinaisons convexes de centres analytiques. Cette

deuxième suite démontre des propriétés de convergence beaucoup plus rapide

que la première.
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La deuxième méthode de plans coupants est appelée ACCPM-VI (coupes

quadratiques), et ses coupes sont fondées à la fois sur des évaluations de l'ap­

plication et de son jacobien. L'utilisation de cette information plus détaillée

permet la production de coupes qui orientent plus précisément la suite de cen­

tres analytiques vers une solution. L'hypothèse est faite que les applications

sont fortement monotones. Cependant, il n:a pas encore été déterminé si l'hy­

pothèse de différentiabilité est nécessaire, car en pratique, des approximations

du jacobien qui n'utilisent que les évaluations de l'application fonctionnent

très adéquatement. Nous présentons deux versions de ACCPM-VI (coupes

quadratiques), qui diffèrent par leur façon de retrouver un centre analytique

après l'introduction d'une coupe. Une version utilise une recherche sur une

courbe, suivie de pas de centrage duaux de Newton. Cette recherche exige

une décomposition complète en valeurs propres et vecteurs propres d'une

matrice dense de l'ordre du nombre de variables. L'autre version remplace la

recherche sur une courbe par deux recherches linéaires, éliminant le besoin

de la décomposition; aussi, les pas de centrage sont primaux-duaux plutôt

que duaux.
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Introduction

This thesis is about solving variational inequalities. This is an old problem,

which was for a long time considered mainly in infinite-dimensional spaces.

However, in the last years, a large amount of interest has been devoted to

finite dimensional varlational inequality problems (VI), nonlinear comple­

mentarity problems (NCP) and mixed complementarity problems (MCP)

(i.e. box-constrained variational inequalities). The application domain of

these problems is wide, ranging from the traditional equilibrium models for

road traffic and economic markets, to game theory, to environmental, stochas­

tic models, and to the solution of differential equations with applications in

finance and optimal controL

The algorithms for variational inequalities that constitute the core of this

thesis are based on two complementary concepts: the cutting plane and the

analytic center. The cutting plane is used to separate a set in two: one

part that is of interest, and one that is not. For our purposes, the part of

interest is known to contain the solution(s) of the variational inequality, and

the cut is used to remove a part which does not contain the solution(s). After

severa! cuts, the part of interest becomes smaller and smaller, ta the point of

containing just about only the solution(s). The cutting plane is defined with

respect to a specifie point in the set, and this is where the second concept,

analytic center, comes into play. Intuitively, without knowing in advance on

which side of the cutting plane the part of interest will be, we should strive

1
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to cut the set roughly in two equal parts, so that roughly hall of it is deemed

without interest; this to avoid useless cuts that only see a tiny portion of

the set as without interest. It is precisely the role of the analytic center to

guide the placing of the cut. Among other available definitions of centers,

analytic centers are particularly attractive hecause their computation, with

techniques derived frOID interior point methods, is relatively cheap.

The thesis comprises four main chapters. The first one discusses the Ana­

lytic Center Cutting Plane Method (ACCPM), as the combination of cutting

planes and analytic centers has come to he known. The second chapter is a

review of the field of variational inequa1ities. The last two chapters present

the algorithms to which we reCer, as a whole, as ACCPM-VI. The third

chapter covers a linear cut method, which includes the possibility of treating

variational inequalities with linear equality coastraints. The fourth chapter

refines the linear cut approach to improve its speed of convergence; this is

achieved by using quadratic cuts. In both Chapters 3 and 4, we present the

results of severa! numerica1 experiments with the algorithms. An appendix

treats in more detail one application from the previons chapters, the pricing

of options in finance.

NOTATION: We use the convention, common in interior point methods,

that for a variable x, the capitalized X is a matrix with the values of x on its

diagonal and zeros elsewhere..A.1so, e is the vector [1,1, ... , 1Jl of appropriate

dimension, 50 that for example Xe = x.

The notation 2JRm denotes the set of alI subsets of R m, while m.~ is the

positive orthant in m.m. The Loewner ordering of matrices A >- B means

that A - Bisa positive semidefinite matrix.

2
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Chapter 1

The Analytic Center Cutting
Plane Method

1.1 Introduction

The analytic center cutting plane method, or ACCPM, was developped as a

nondifferentiable optimization algorithm by J .-L. Goffin and J .-Ph. Vial [31].

It is an amalgamation of concepts from different branches of mathematical

programming: intrinsically a convex programming tool, it is chiefly geared at

nondifferentiable optimization, but draws heavily from the recent advances in

interior-point linear programming; and one of its best known applications is

the solution of very large linear or nonlinear programs through decomposition

techniques.

This chapter reviews the theory necessary to understand the ACCPM.

The first section, on nondifferentiable optimization, builds the backbone of

ACCPM: the cutting plane approach to convex and nondifferentiable opti­

mization. Severa! other nondifferentiable optimization methods are intro­

duced, as reference points.

The second section discusses some concepts of interior point methods,

and uncovers the heart of ACCPM: the analytic centers. The technicalities

3



• of interior point methods are hardly touched upon; we rather concentrate on

the aspects that are more important for the remainder of the thesis.

The third section explains the analytic center cutting plane method peT

se. Cutting-planes and analytic centers meld into an efficient, reliable non­

differentiable optimization algorithm. We aIso introduce in the third section

a variation of the CUITent implementation, which further involves the interior

point methods.

1.2 N ondifferentiable Optimization

1.2.1 Introduction

The purpose of discussing nondifferentiable optimization is two-fold: first,

many concepts frOID this field are crucial to the analytic center cutting plane

method, a focal point of this thesis. Second, the ACCPM is in itself a method

for nondifferentiable optimization, so that fundamentals of nondifferentiable

optimization are needed to situate the ACCPM amongst other methods of

nonsmooth optimization.

Nondifferentiable optimization is concerned with the rninimization of a

real function f:

minimize f(x), xE lRn (1.1)

•

where J may Dot have derivatives. Although the unconstrained problem

above is the nOrIn, differentiable and nondifferentiable constraints can be

applied. For our purposes, we require all functions ta be convex.

In this setting, the directional derivative of f at x in direction d

J'(x. d) := lim f(x + td) - f(x)
, ttO t

exists for aIl x and aIl d.

4
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It is usually the case that / is piecewise-C l , Le. that m,n can be divided

in parts over each of which the gradient V/ = [:ft, ... ,:L Jt exists and is

continuous. At points where the gradient does not exist, the subdiff'erential

a/(x) of / at x can he used in its stead:

a/ex) := {'Y E m,n 1tex) + '"'(y - x) < j(y), Vy E IRn}

Elements of the convex set af(x) are called subgradients; at differentiable

points, it is clear that af reduces to a unique element, the gradient V j.

One can derive necessary and sufficient first arder conditions for prob­

lem (1.1):

j(x*) < f(x) Vx E Rn # 0 E aj(x*)

Finally, we make the assumption, common in nondifferentiable optimiza­

tion, that a black box or oracle can compute j(x) and one arbitrary sub­

gradient 'Y E a/ex), for any x E Rn. The oracle could be an explicit formula,

or a mathematical program itself.

1.2.2 Examples of nondifferentiable problems

Nondifferentiable optimization problems can arise through the mathematical

modeling of a situation which has inherent nondifferentiability. For example,

a tax-and-surtax system could be modelIed by a function T of income level

x:
T x _ { TOX when 0 < x < a

( ) - Toa + rl(x - a) when x > a

where ro is the nominal tax rate, rl(> ro) the tax-and-surtax rate, and a the

level of income over which surtax is levied. Clearly T(x) is continuons and

is nondifferentiable at x = a.

This example is one case of a general scheme: the rnjnirnization of a

function of the form

5



• f(x) = max{fïex) 1i = 1,2, ..., m}

where the functions fI (x), ..., f m (x) are smooth. A typical occurrence of that

scheme is the mioimization of the ll- or loo-norm of a vector-valued function:

min 11/1 (x), ..., fm(x)lh
:z:

and min II/t(x) , ..., fmex) 1100
:z:

are respectively equivalent to the minmax problems:

minmax(±ft(x) ± /2(X) ... ± /m(x»
:z: +-

and min max{- /1 (x), /1 (x), - /2 (x) , ..., /m(X)}
:z:

Lagrangian relaxation is one of the most abundant source of nondif­

ferentiable problems. This technique is based on Lagrangian duality and is

used on constrained problems:

rnioimize tex)
subject to g(x) < 0

xEX
(1.2)

In a nutshell, "complicating" constraints are eliminated throngh a relaxation

of the problem; ultimately, the price to pay is the loss of differentiability. In

(1.2) assume that g(x) < 0 are the complicating constraints, and that x E X

is mnch easier to handle. Then

minimize tex) + Atg(x)
subject to x E X

(1.3)

•

is a relaxation of (1.2). Denoting by 4-('\) the optimal value of (1.3) (<p(,\) is

a function of ,x), the dual problem

maximize 4Je'\) , A E R~

6
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is a convex problem, nondifferentiable, which often leads to an optimal solu­

tion of (1.2) more easily than by direct attack.

This technique is very closely related to decomposition schemes. Al­

most every large-scale mathematical program possesses a structure which

allows ta "split" it into many smaller programs, if it were not for some com­

plicating constraints. One can get rid of the latter by Lagrangian relaxation,

and the evaluation of the nondifferentiable function t/J(À) means salving

m

minirnize E (!ï(Xi) + ..\tgi(Xi»
i=l

suhject ta Xi E Xi (i = 1,2, ... , m)

which is just m smaller problems of the farro.

rninjmize !i(Xi) + ..\tgi(Xi)
suhject ta Xi E Xi

1.2.3 First methods in nondifferentiable optimization

ApplYing "smoath" methods (steepest descent, Newton method etc.) to non­

differentiable prablems often has disastrous consequences. For example, it is

easy ta build problems where a smooth method converges ta a nonoptimal

point; see section 3.1 of [58]. There are then two ways of tackling a non­

differentiable optimization prohlem: by using a method which can handle

nondifferentiability (direct methods), or by smoothing the problem so that

ordinary smooth methods can he applied to it (indirect methods). With

the current state of knowledge, the latter approach is the least attractive, if

nothing else because only certain types of prohlems can he smoothed. Min­

max, ll-norm and loo- norm problems can he smoothed; however, numerical

instabilities are frequent in practice. We will not discuss indirect methods

any further in this work.

The subgradient method is one of the first and simplest direct methods

of nondifferentiable optimization. The direction of the subgradient is used

7
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•

to find the point XA:+l, with the help of a steplength tle:

Remember that byour "oracle assumption", a subgradient "rie is available at

any point XIe E Rn. A major drawback of "rA: is that it May weIl not be a

descent direction from Xie. However, it can be shown that with tle chosen

off-line and sucb that limle~oo tle = 0 and E~o tle = 00, XIe converges to the

optimal set X·. But the great sim.plicity of this convergent method bears a

high price: the speed ofconvergence is usually poor, and there exists no good

stopping criterion. Much research has gone into the steplength adjustments

and acceleration of the subgradient method; unfortunately it remains quite

Mediocre in practice. See [58] and the recent book [46] and the references

therein for more information.

The ellipsoid method, developed by Nemirovskii and Yudin [78] on

the basis of work by Levin [61] and Shor [97}, is another nondifferentiable

optimization method. An improving approximation of the optimal set X·

is obtained with a sequence of ellipsoids containing X*. Once again, the

performance, in practice, is Mediocre.

FinaIly, the cutting plane method, discovered independently by Kelley

[51] and Cheney and Goldstein [12], is also an early method for convex (not

necessarily differentiable) minimization. It bears particular importance to

us, 50 that the next section is devoted to it.

1.2.4 Cutting Plane Method

Cutting plane methods were originally devised for general, convex programs:

minimize f (x)
subject to Yi(X) < 0, i = 1,2, ..., m

/, Yi convex functions

8



• However, these methods have seen their main application in a more specific

area, the optimization of convex, nondifferentiable programs whose functions

are linear by parts; sucb programs occur naturally when dual or decomposi­

tion methods are used.

Fundamentally, cutting plane methods rely on the following result for

convex functions (see theorem XI 1.3.8 in [46]). For f : Rn -+ R closed and

convex,

tex) = m~ {/(y) + "'/(x - y), 'Ix E Rn}
yeR

where 'Y E a/Cyl·

The elements required in the right-hand side term are the values of the

function / and a subgradient 'Y, for each y E Rn. Remember the assumption

of (1.2.1) that an oracle exists, which provides these two elements for any

y E ]Rn supplied to it. While the right-hand side term in itself is most

unwieldy, it opens the door for an approximation Î of /:

(1.4)

where {Xb X2, ..., Xk} is a finite set of points in Rn and 'Yi E a/eXil. This

function is sometimes called a linear tangential (outer) approximation of the

convex function f. It is clear that Î (x) < / (x)

f(x)

•
Consider the unconstrained, convex program:

min I(x)
:reRn

9
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• where f is convex. Replacing f(x) by j(X) , we obtain a relaxation minxeRQ j(x)

of problem (1.5). An equivalent formulation is

IIlÏnv,z v
subject to v > f(xl) + 'YHx - Xl)

(1.6)

(1.7)

The original cutting plane method, usually refered to as Kelley's cutting

plane method, solves (1.6) to obtain (Vk+b Xk+l); the oracle yields f(xk+d

and 'Yk+l E ôf(xk+l). IfVk+l = f{Xk+r), the solution of (1.5) has been found.

Otherwise,

v ~ f(xk+l) + "Yk+I(X - xk+d

is a valid cut to add to the constraints of (1.6). This is called an optimality

eut.

The algorithm thus described is convergent (see theorem XII 4.2.3 in [46]);

when f consists of a finite number of linear pieces, the algorithm converges

in finite time. Note that it is necessary to bound x artificiallyat the outset

of the algorithm, until enough constraints bave been generated.

Consider now the constrained program with convex constraint g(x)

IRn -+ IR :
min:r:eRn f(x)
subject to g(x) $ 0

By using approximations j, 9 of the type (1.4), we have the relaxed program

•

min Î(x)
subject to g(x) < 0

10
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• and its equivalent forro

IIlÏnv,z v
subject to f(xd + 'Yl (x - Xl) < v

f(Xk) + 7!(x - Xk) < v
g(Xl) + i{(x - xd < 0

(1.9)

•

In the classical cutting-plane method, the relaxation (1.9) is solved, pro­

ducing solution (Vk+17 Xk+l). There are two functions involved here, hence

two oracles. The oracle for f yields f(Xk+d and 7!+1 E Ôf(Xk+d. As before,

if f(Xk+d = Vk+l and Xk+l is feasihle for (1.7) then Xk+l is a solution of (1.7);

otherwise, an optimality cut f(Xk+d + ,{+1 (x - Xk+l) < v is added to (1.9).

The oracle for 9 yields g(xk+d and 1'Z+1 E Ôg(Xk+l). H g(Xk+1) > 0, then

the i th constraint of (1.7) is violated at Xk+1J and

is a valid constraint to introduce in (1.9). Such cuts are called feasibility

cuts. Again, convergence ta the optimum of (1.7) can he proved. Note that

the method above applies when severa! constraints 91, ... , 9m are present,

at the cost of a more cumbersome notation: it is then possible to either

treat each function 9i separately, with its own approximation, or to lump an
constraints into the single g(x) = m3Xï=l•...•m gi(X).

The classical cutting plane method described in this section iterates to a

new point Xk+1 E Rn by solving the current relaxation; but there are other

ways of selecting Xk+l. The center methods, which will be a centerpiece of

chapter 1.4, are the best examples of these alternative ways. Their study is

deferred until then.

Finally, let us recalI that in large scale linear programming, the Dantzig­

Wolfe decomposition technique is the dual equivalent of the classical cutting

Il



•

•

plane method above.

1.3 Interior Point Methods (IPM)

Since the projective algorithm of Karmarkar [50] for linear optimization prob­

lems, interior point methods (!PM) have been the source of renewed and

sustained interest for the mathematical programming community. We say

renewed because the use of logarithmic barriers to work in the interior of a

feasihle area is Dot a new concept; coosider [27] and [25]. The literature 00

the subject is immense, but [40] provides a good review.

In linear programming, interior point methods have come in the last

decade to compete with the simplex approach, especiallyon very large, sparse

problems. Interior points are aIso being used in increasingly diverse contexts,

sucb as nonlinear programming, semi-definite programming and complemen­

tarity problems. What draws our interest to IPMs is the Analytic center,

readily computed by interior points techniques and fundamental to the ana­

lytic center cutting plane method.

1.3.1 Interior points and path-following

We shall discuss here only a small part of the huge body of theory and nu­

Merous algorithms within interior points methods. More specifically, we are

interested in path-following IPMs for linear programmiog. The underlying

philosophy of path following is that iterations follow, more or less closely,

the central path associated with every linear program. There are different

ways of doing this, sorne of which appear hereafter; ail describe the same

central paths, but the parameterizations are different. In ail cases we use the

12



• primal-dual pair of linear programs:

rninjmize dx
subject to Ax = b

x>O

and
maximize bty
subject to AtY ~ c

(1.10)

(1.11)

Methods using the Log barrier The Primai Log Barrier method is

quite intuitive. The problem (1.10) is transformed to

minimizez>o tfx - J.L Ej ln xi
subject to Ax = b

where the logarithmic term acts as a barrier to keep x away from the bound­

ary x = 0; J.L is a positive parameter. The Lagrangian for that problem

is

L(x, y; J.L) = ctx - IL L lnXj - yt(Ax - b)
j

and the first order optimality conditions are

V:r.L - C - j.LX-1e - AtY - a
VyL = -Ax+b - 0

x > 0
(1.12)

One can similarly work on the dual linear program (1.11), fonning the

duallog-barrier problem

maximizez>o,y
subject to

The first order conditions are

bty + Il- Lj ln Zj
Aty+z = c

(1.13)

•

Ax - b
AtY + Z - c
XZe - J.Le

with x > 0, z > 0, which are the usuallinear programming optimality condi­

tions, except the complementary slackness where J.le bas replaced the usual O.

It is important to note that the duality gap is known explicitly in this case:

13
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If we make the assumptions that the feasihle areas of both (1.10) and

(1.11) have non-empty relative interiors, and that A has full rank m, it follows

easily that the systems (1.12) and (1.13) fully characterize the unique solution

of their respective problems. Furthermore the systems are equivalent in the

sense that the solution of one system is aIso the solution of its corresponding

part in the other systems.

The central paths are precisely those points that are solutions of the

first order systems, for ail values of p, > o. To make explicit the relation to

p" call those solutions {x(p,) , y(p,), z(JL)}. The set {x(p) , Il > O} forms the

primal central path, while {y(p,) , Z(JL) , J.t > O} is the dual central path. It is

weIl established that

lim (x(p,) , y(p,) , z(JL» = (x, y, z)
Il-'O

is indeed a solution to the original problems (1.10) and (1.11). This confirms

the intuition -at the heart of path-following methods- that solving

Ax - b

XZe - JLe

X,Z > 0

for small values of jl, is a valid approach to solve

.4x - b

XZe - 0

X,Z > 0

Let us outline how log barrier methods proceed from the KKT conditions

onward. For any of the systems (1.12) and (1.13) with a parameter p,o, a

14



• Newton step is taken, with an appropriate steplength. In the case of (1.12),

the step takes place in the primai space only; with (1.13), the step is in

the dual space. Simultaneous steps in the primai and dual spaces can also

he taken in (1.13), justifying the name primai-dual method. A new value

IJ+, 0 < J.L+ < P.o is then chosen and another Newton step taken for the new

systems using J.L+.

The advantage of choosing J.L+ sufficiently close to JJo, is that the current

point (x(J.Lo), Y(IJo) , z(Po» then remains within the quadratic convergence

area of the Newton method for the system with J.L+. This is the philosophy

of the "short-step path-foUowing method"; it is also in this manner that the

polynomiality of path-foUowing algorithms is proved. On the other hand,

"long-step" methods which do not pay the same attention to the quadratic

convergence area are known to work faster in practice.

U sing the potential function Another interior points method in the

path-following philosophy directly attempts to decrease the potential func­

tion associated with (1.10) and a lower hound (3:

cpp(x; fJ) = (n + 1) ln(ctx - {3) - Elnxj
j

the factor n + 1 will find justification below. References are for example [16]

and [103].

The problem

•

rnjnjmjze cpp(x; 13)
subject to Ax = b

x>O

then has lst order conditions

Ax - b

Zx
dx-f3

- e
n+1

Aty+z - c
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• with x > 0, z > O. Clearly, as {3 is updated to better and better lower bounds,

this system of equations approaches the optimality conditions of the original

LP. Also, this system defines for all possible lower bounds f3 the central paths,

although the parameterization is obviously diHerent from (1.13).

As would be expected, a potential function can also be devised for the

dual problem (1.11) (see [89])
n

(j)D(Y, z; {J) = -ln(bty - (3) - L ln Zï
i=l

where the z variables are the slacks in the dual constraints. The potentiaI

reduction problem is then

with Ist order conditions

rninirnize CPD(Y, z; (3)
subject to AtY + z = c

z>O

Ax - b

Zx - (bty - {3)e

Aty+z - c

(1.18)

(1.19)

(1.20)

(1.21)

•

again with x > 0, Z > o. "''ben the coefficient (n + 1) is used in the primaI

potential, these conditions are if fact equivalent ta (1.15) (see [31]): from

(1.20), we have

etZx = ztx = n(by - {J)

and from (1.19) and (1.21) we find

so that

This equation can be rearranged into

ctx - {3 = bt - {3
n+l y

16
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•

showing that (1.15)-(1.17) follows from (1.19)-(1.21); the reverse relation

clearly hoids as weIl.

Therefore either set of equations trace the central paths for the possible

values of the lower bound {3. As in the previous section, primai, duaI and

primai-dual approaches are possible: it is again mostly a matter of whether

steps are taken in the primai space, the dual space, or both.

One very important property is common to aIl central points, indepen­

dently of their parameterization: feasihle points in both the primal and dual

spaces are always available. In opposition, the simplex method yield a dual

feasihle point only once optimality of (1.10) and (1.11) has been reached.

1.3.2 Analytic centers

Analytic centers are in essence defined as centers of polyhedrons. They were

formally introduced by Sonnevend [99]. If the polyhedron P = {y E m.m :
akY < Pk, k = 1, ... , l} has a nonempty interior, then its analytic center is

l

Y = arg rpax log II ({3k - (XkY)·
yemtcp) k=l

With a short proof (see [891), one can verify that if P is bounded,

log rr~=l({3k - (XkY) is strictly concave on y E int(P) and y is consequently a

unique analytic center for P.

Note that in the next chapters, on variational inequalities, the definition

of analytic center will be extended to sets defined by linear inequalities and

tinear equalities, as weIl as to sets defined by linear and quadratic inequalities.

Although its definition involves the maximization of a function, the ana­

lytic center's original context, the polyhedron, is unrelated to optimization.

The relation cornes via the concept of set of localization of the optimum; see

[37]. Broadly speaking, the set oflocalization is, for a mathematical program

17



• (MP) in IRm
, a bounded polyhedral set Y c lRm which contains y., the op­

timum of (MP). Altematively, the set of localization can also be placed in

rn.m x lR in which case it contains (y*, z*) where z· is the optimal value of

(MP).

Consider once again the primal and dual problems (1.10) and (1.11)

and

minimize dx
subject to Ax = b

x>O
(1.22)

(1.23)

•

ma'Cimize bty
subject to AtY $ c

and Vi, a lower bound for the optimal value of the primai, and hence for that

of the dual. Assume for simplicity that the feasihle sets are bounded. Then

we define the set of localization for the dual problem (1.23) with lower bound

The analytic center of the set of localization is then

n

X = arg max log(bty - v) II (Ci - a~y)
YECvz i=l

- arg max {IOg(bty - v) + t log(c; - a~y)}
YECv, i=l

where Cli is the i th column of A and Cà is the i th element of c.

As mentioned, the set of localization could also he defined in the space

lRm x ffi.:

with a corresponding analytic center in lRm x nt as weil.

In view of the previous section, the rationale for discussing analytic cen­

ters in a chapter on interior point methods is now cIear: finding the analytic

18
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•

center fi amounts to solving the problem

maximize log(bty - VI) + Ef=llog(Cï - a~y)

subject to AtY < c
bty > V,

which is the problem (1.18) of the last section; therefore, the optimality

conditions (1.19)

Ax - b

Zx - (bty - vI)e

Aty+z = c

x > 0

z > 0

define uniquely the analytic center of ~" and the analytic center lies on the

(dual) central path.

Furthermore, let us recall that the conditions (1.15) of the primai poten­

tial function method are equivalent to (1.19) so that either of the primal and

dual potential methods leads directly to the analytic center. As a matter of

fact, any interior point method following the central path, e.g. the log barrier

methods, could be used, once the relation between the parameterizations is

made explicit.

1.4 Analytic Center Cutting Plane Method

In this section, the pieces of theory of the previous sections are put together:

in a cutting plane framework, analytic centers are advantageously applied to

large-scale linear programs through a nondifferentiable optimization formu­

lation. Note that the actual techniques for finding analytic centers are not

covered here but in chapters 3 and 4 on variational inequalities.
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(1.24)

• The analytic center cutting plane method, or ACCPM, is a cutting plane

approach to convex mathematical programming. The main improvement

concerns choosing a point at which the next cutting plane is generated; Ïn­

deed, the classical approach is to use the point optimizing the current re­

laxation of the objective function. It is then implicitlyassumed that the

relaxation is a good approximation of the function, so that the optimum

point of one is close to the optimum point of the other. This needs not be

true, and it is why the ACCPM uses a more balanced approach: the point

used to generate the next cutting plane is the center of the set of localization,

set in which the true optimum of the original function is known to lie.

1.4.1 Nondifferentiable optimization with the ACCPM

The ACCPM is a cutting plane method, and in this respect its main function

is to solve nondifferentiable, convex mathematical programs. This naturally

includes any problem that can be rewritten as an nondifferentiable convex

program, like the decomposable tinear programs of section 1.2.2. The ooly

reason why smooth convex cases are Dot often good candidates, is that meth­

ods better than cutting planes frequently exist for them.

It is most natural to use the framework of section 1.2 on nondifferentiable

optimization to describe the ACCPM. Consider the problem

minimizexeRn 1(x)
subject to g(x) < 0

with l, 9 convex, not necessarily differentiable functions. The usual cutting

planes approach substitutes a linear tangential approximation j, 9 for each

function l, 9

•
j(x) .- .max {f(yd + ~(x - Yi)}

&=1,••.,k

g(x) .- .max g(Yi) + Tf(x - Yi)
&=1,•••,k
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• As was already pointed out in section (1.2.4), the relaxation of problem

(1.24)
rninirnize 10ft

zE.Il\.
subject to

has the linear programming equivalent

j(x)
g(x) < 0

rninimizez,v
subject to

V

f(Yi) + 'YI (x - Yi) < v
g(y.) + 'Yf(x - Yi) < 0
Vi = 1, ... , k

(1.27)

•

The classical method generates further cuts at the point (x, û) which min­

imizes (1.27). The ACCPM uses instead the analytic center (x, 'Ü) of the

localization set L.vu c mn x IR associated with the upper bound Vu of (1.24)

The upper bound Vu is typically the lowest value of f(x) over the points at

which is was evaluated so far. The analytic center is then

(x, 'Ü) = arg max {IOg(Vu - v) + ÊIog(v - f(Yi) - rt(x - Yi)(1.28)
(z,v)E.c"u i=1

+~ log(-g(Yi) + 'Yf(x - Yi»} (1.29)

See a depiction of the above concepts in Figure 1.1.

-;-~~-------------+-~:-v,.

Figure 1.1: Localization set and analytic center

21



• Interior point methods contribute to the ACCPM by providing an efficient

way of computing the analytic center. This is far from a trivial contribution,

since other centers of polyhedra, for example the center of mass, are compu­

tationally difficult or expensive to obtain.

The problem defining the analytic center can be solved by a variety of

interior point methods. The one used in the CUITent implementation of AC­

CPM is a primai projective method; in our notation, this method works on

the dual of problem (1.27). See [16].

The x-part of the analytic center is then passed on to the oracles to

generate new cutting planes, as is done in the classical cutting plane method.

The oracle for the function / computes f(x) and a subgradient 1'1 E afCx)

x~ 1oracle for /1~ f(x), 1'1 E a/cx)

The output of the oracle is used to improve the approximation Î(x) in (1.25).

Similarly, the constraint function 9 aIso has its oracle, which computes

g(x) and a subgradient 79 E 8g(x)

fi~ 1oracle for gl~ g(x),;:Y9 E 8g(x)

Again, the oracle's output is used to improve the approximation (1.26) of

g. Denoting Xk+L := X, rf+L := ;yI and "':+1 := t 9, we then bave a better

relaxation
minimizez,v
subject to

of the original problem.

V

f(Yi) + ,{(x - Yi) < v
g(Yi) + rt(x - Yi) ~ 0
\fi = 1, ... , k + 1

•
This is the simplest approach: insert the newly generated cuts, without

any further consideration. It bas an important disadvantage: the number of
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• linear constraints involved in (1.27) may become unmanageably high. There­

fore, an add-and-drop scheme which periodically removes constraints that

have become useless, may be necessary. [32] discusses the use of ellipsoids

containing the set of localization; clearly, any cutting plane which does not

eut the ellipsoid is superfluous and should be deleted.

1.4.2 Weighted Analytic Centers

As already mentioned in section 1.3 on interior point methods, another set

of localization can he defined, this time in Rn and not in Rn X R as ahove:

Clearly, the analytic center of the polyhedron Lvv. is then also in Rn:

x' =arg~t: {Ê (iog(vu - f(Yi) - -y{(x - Yi) + iog(-g(Yi) +'Yf(x - Yi») }

This x' is not equal to the x-part of (1.28); however, there is a "path of

centers" which links the two.

f-eut
-+...-,;:~ • ....~~- Vu

L

•
Figure 1.2: .~ path of centers
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This path can be found by considering the maximum in ~'a ofthe function

The parameter v > 1 is used ta vary the "repulsion effect" of the constraints

derived from the objective value. For v = 1, the center defined is x' ; for

v = +00, the solution is the point that rninirnizes the CUITent relaxation

of f(x) over Cv,., Le. the traditional cutting plane point X, v. There is an

intermediate value of v which Yields the fi discussed in the previous section.

See [72] and the weighted projective algorithm for weighted analytic centers

of [38].

1.4.3 Termination and convergence of the algorithm

In the traditional Cutting Plane method one computes the point x which

rninimizes the current relaxation of the problem with a value v, as weil as

f(x), the actual objective's value at x. Pro~ided x is feasible, v is a lower

bound and f(x) an upper bound for the optimal value orthe original problem.

Assuming that a finite number of cutting planes suffice ta describe / in a

small area around x· (the optimal point of the original problem), it is at least

theoretically possible ta iterate until f(x) - il = 0: then, all cutting planes

necessary ta describe f at x have been generated; since

Î(x) is a relaxation of f(x),

f(x) = Î(x),
and

fi minimizes Î (x),

fi is clearly the sought minimum. In practice one is satisfied as soon as

fCx) - ÎJ < E for some small E, allowing ta cut clown on computation time

and difliculty.
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On the other hand, the ACCPM must use a termination criterion of the

type upper bound - lower bound < €. Indeed, even if Î(x) has been refined

to perfectly represent tex) on a small area around x·, the very fact that the

ACCPM does not rninimize Î(x) to determine the next Xk+b implies that

the algorithm may Dot find x· itself: although it is able to get arbitrarily

close to it. The bounds on the original problem are as follows.

The upperbound is maintained through the calls to the oracle for f, the

objective function. At each call, the actual value of f is computed for an fi,

and the upperbound is updated if f(x) is lower than the current upperbound.

The lower bound is provided by the interior point method that computes

the analytic center. The dual of the relaxation of the original problem is a

restriction of the dual of the original problem. Therefore the feasible dual

solution, available when the analytic center is computed, directly yields a

lower bound for the optimum of the dual of the original problem, hence for

the optimum of the original problem too. Every time an analytic center is

computed, the current lower bound is replaced by the newly computed one

if the latter is higher.

Results on the convergence and complexity of the ACCPM have appeared

in the recent years. For example, the ''practical'' version of the algorithm,

which computes approximate analytic centers and eliminates constraints that

have become useless, is extensively treated by Atkinson and Vaidya in [3].

While that article treats the conve.x feasibility problem (finding a point

in the interior of a convex set), that of Nesterov [79] deals directly with the

optimization problem. His convergence results served as a basis for some

of the work by Goflin, Luo and Ye [33). This paper studied a version of

ACCPM applied to the convex feasibility problem; in opposition to Atkinson

and Vaidya, they do not rely on cutting planes being dropped along the way

to achieve convergence.
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Kiwiel and Altman ([52] and [11) consider the ACCPM for rnjnjmizing

an unconstrained convex function with exact analytic center computations.

They prove convergence and give a complexity bound. See the articles them­

selves or the thesis [22] for details.

1.4.4 Variation on a theme: IPM in subproblems

In this section, we digress somewhat from the theory that underlies ACCPM­

VI, to introduce an idea that was not a~lored in detail within this doctoral

work, but that nevertheless is promising. It must he added that since the

time of our work on this topic, Gondzio and Vial have written the report [39]

on the subject.

The analytic center cutting plane method, as a cutting plane method,

requires the solution of two distinct problems altemately: a master problem

(e.g. (1.27)) and subproblem, aIso called oracle. An interior point method is

used at the master problem level in the ACCPM, to find analytic centers. In

many important applications, the subproblem, which remained a "black box"

(or oracle) 50 far in this chapter, is in fact a linear program. TraditionalIy,

sncb a subproblem is solved with the Simplex method; however, an interior

point method may be a better choice, although the motivation here is dif­

ferent frOID the reasons which lead to interior point methods at the Master

level.

One foremost technique which yields subproblems that are linear pro­

grams, is the Dantzig-Wolfe decomposition (see [73] for an excellent descrip­

tion). We use that framework to expose the concepts of interior point meth­

ods in the subproblems. The typical setup of Dantzig-Wolfe decomposition

is written as:
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• Relaxed master problem

min",1r v
subject to v > Zl + 'Y17r

Subproblem
m8Xx (c + 7rA)tx
subject to Dx = d

x>o

(1.30)

(1.31)

The subproblem stems from the desire to generate a eut as "useful" as

possible in the Master: that is, to find scalar z and (sub)gradient t sucb that

z + 1 t* is largest, for a given ff. Sinee Z := dYi and 'Y := b - AYi' where

Yi, i E {l, ... , q} is one of q vertiees of 1) = {xlDx = d, x > D}, we have

and the subproblem above with 'Ir = 'if will yield the desired answer. By

definition, the eut thus generated z+1'if is tangent to the epigraph of f(1r) =

m3.XiEl•...,q Zï + 'Yi1r at if.

Our proposai is to generate "sub-optimal cuts" from sub-optimal solutions

to the subproblem. Consider any point x E int(Z». Clearly, since x is a

convex combination of vertiees of 1), x = E1=1 ÀiYi, with El=l Ài = 1 and

Ài > 0, the inequality

(1.32)

•

is redundant to the system
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• In other words, adjoining that inequality to the relaxed Master problem can

only help.

Assume furthermore that x is on the central path of the subproblem with

jf, Le. 3 wand ç> 0 such that

Dx - d

Dti;} + ç - c+;rA

Xç - J1.e

At such a point, the duality gap is known exactly: it is etXç= nJ.L. Therefore

where x· is the subproblem's optimal answer and

(1.33)

Furthermore,

by the very definition of f(1r); equivalently,

(1.34)

•

Adding (1.33) and (1.34)

shows that (b - AX) is actually an nJ.L-subgradient of fC'rr) at if.

Ta sum up, sucb a point x yields a valid eut in the master problem, eut

whose "distance" from the tangent eut z+ t'Ir, at 7r, is a direct function of

the quality of x as an answer to SP(1t). This quality is parameterized by

J.L: a low J.L means a x which is close ta optimality in the subproblem; the

eut generated with such a x will he near the epigraph. A higher value of p.
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•

renders the subproblem easier to solve, but the derived eut will be "Iooser",

i.e. not as close to the epigraph. In any case it is clear that the value of the

parameter IJ should be inferior ta the difference between the current upper

bound and lower bound of the master problem (1.30).

Bounding One unpleasant effect of using suboptimal x is that the value

f (if) is not available as it would be ifoptimal x· was computed. Sïnce J(ff) is

normally used for upperbounding in the Master problem, a substitute must

be found. We suggest using

which, from (1.33), is at least as large as J(ff).

As far as lower bounding of the rvlaster problem is concemed, suboptimal

solutions of the subproblem open up a possibility. The eut (1.32) that is

being proposed

beeomes a plain lower bound on the objective v ifAX = b. The following

feasibility problem can then be attempted:

Find x
subject ta Ax = b

Dx=d
x>O
(c -1fA)tx > (c -ftA)tx

The last constraint ensures that, should the problem have a solution, the

difference between upper and lower bounds is at most np.; Le. ff is nlL-optimal

for the original problem. Needless to say, this Iower-bounding attempt is

likely to be a jump from the frying pan into the fire: the feasibility problem

contains aIl the constraints of the original problem, a problem that was itself

worth being decomposed.

To sum up, the main advantage of the interior point methods and sub­

optimal solutions in the subproblem, is to aIlow to shift the computational
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•

burden from the Master Problem to the subproblem, and vice-versa, by 00­

justing the parameter p.: a high J.L simplifies solving the subproblem, but

yields loose cuts in the Master; a lower p. gives better cuts, at the expense of

more work in the subproblem.

However, until some practical experience is gained with this approach, it

remains difficult to establish if it can compete favorably with the standard

approach.
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Chapter 2

Variational Inequalities

This chapter reviews the field of variational inequalities. We present funda­

mental definitions and results in Sections 2.1 and 2.2. Section 2.3 discusses

complementarity problems, an important subset of variational inequalities,

while Section 2.4 is devoted to classical reformulations of the variational in­

equality problem. We review in Section 2.5 the main classes of algorithms for

variational inequalities. The last section of the chapter discusses extensions

to variational inequalities with multi-valued (point-to-set) functions; until

this section, all mappings are assumed to be single-valued.

For general references on variational inequalities, the reader can consult

the books by Harker [43] and Nagurney [77], the review article of Harker and

Pang [44], the short course of Marcotte [69], and the recent proceedings book

of Ferris and Pang [24]. See aIso the various articles cited in this chapter.

2.1 Variational Inequalities: Fundamentals

This section serves to define the variational inequaIity (VI, or VIP for varî­

ational inequality problem). A short example is given to illustrate it.
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• 2.1.1 Basic Concepts

Definition 1 Let F be a continuous mapping /rom IR!" into IRm and let

y be a nonempty subset 01 1IF. Then the variational inequality problem,

denoted VI(F, y), is to find a point y. E Y such that

VI(F,Y)

•

Geometrically, a solution y. is a point of Y such that F(y·) makes an aeute

angle with all feasihle directions, i.e. - F(y·) helongs to the normal cone to

y at y.:

Figure 2.1: Geometrie view of VI, with normal eone

Whenever the mapping F is a gradient mapping, Le. F(y) = V f(y) for

sorne funetioIi 1 : m,m -+ nt, any solution of VI(F,Y) satisfies the fust-order

conditions of the mathernatical program:

rninirnizey 1(y)
subject to y E Y
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•

In other words, the steepest descent direction -V f(y) makes an obtuse angle

with any feasihle direction. If 1 is a convex function and Y is a conve..x

set, this also implies global optimality. A sufficient condition for F to he

a gradient mapping is that F he continuously differentiable with symmetric

Jacobian VF. For this reasoD: gradient mappings are also called symmetric

mappings. This is made more precise in the following theorem.

Theorem 1 ([82]) Let F : Y -4 IRm be continuously differentiable over the

open convex set Y C IIrn. II the Jacobian matrix V F(y) is symmetric for

ail y E Y, then F = VI where

f(y) = laI F(yo + t(y - yo»t(y - yo)dt

and Yo is an arbitrary point in Y.

Often used concepts are the eUiptic norm and the projection, which

we now define.

Definition 2 For a symmetric, positive definite m x m matrix Q and for a

vector y E mm, let the elliptic Dorm induced by the matrix Q (the Q-norm)

be defined as lIyllQ = (ytQy)L

Also, for a closed, non-empty, convex set Y in mm, define the projection

of y on Y under the Q-norm as the (unique) solution of

minimize:r kI/y - xlI~
subject to x E Y

The projection is denoted by II~Q(y), or simply Ily(y) when Q is the identity

matrix, i. e. under the Euclidian nonn.

2.1.2 A Short Example: Nash Equilibrium

Consider two players who must each select a real number between 1 and 3.

Let Xi denote the number selected by player i, i = 1, 2, and 1'1 and U2 the
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(2.1)

(2.2)

• utility derived from it. The utility could he an amount of money, of leisure

time, etc. A Nash equilibrium is achieved when the decisions xi and xi are

sucb that neither player can improve his or her utility unilaterally, Le.

xi E arg max UI(X17 xi)
XtE[I,3]

xi E arg ma.."C u2(xi, X2).
xzE[I,31

Let us make the assumptions that the set of feasible decisions is closed,

convex, and nonempty, and that, for each i, the utility Ui is both continuously

differentiable and pseudo-concave with respect to Xi with Xi, j =F i fixed.

Then the Nash equilibrium conditions (2.1) are equivalent to

-(ÔlLl(X!, x;)/8xd(XI - xi) > 0 VXl E [1,3]
-(ÔlL2(xi, Xi)/8x2)(X2 - x;) > 0 VX2 E [1,3]

This follows directly from the variational principle for optimality, applied to

(2.1).

We will consider in tum three possible utility functions, and their impact

on the difliculty of finding an equilibrium point.

First, let

•

Clearly, since Ul is a function of Xl only, and U2 is a function of X2 only, the

maximization problems above can be solved independently, yielding a unique

Nash equilibrium at (2,1).

Second, consider the functions

Ul (Xlt X2) - -3(Xl - 2)2 + 1 - XIX2

U2(Xl, X2) - -2x~ - XIX2·

Clearly, finding an equilibrium point, Le. a pair (xi, x;) sucb that (2.1) holds,

is not as easy as the utility of each player depends also on the decision
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• of the other. An example of sncb a case is a duopoly market, where two

producers must decide on a production level of a product; their profits, ­

their utility levels-, depend on bath their production and the production of

the competitor. (Negative profits are simply losses.)

Here the maximization problems cannot be solved independently. How­

ever, with Theorem 1 of the previous section, an optimization formulation is

still possible, thanks to the fact that the J acobian of the mapping

. [-6 -1]
IS -1 -4 and thus symmetric. Indeed, here, the problem

•

yields a unique solution (11/6, 1) that is an equilibrium point.

Let us consider a final set of utility functions, very similar ta the last:

Ul(Xt, X2) - -3(Xl - 2)2 + 1 + 3XIX2

U2(Xt, X2) - -2xi + XI X 2·

Here, the Jacobian VU(XI, X2) is not symmetric, 50 that there is no "easy"

optimization problem equivalent to the Nash equilibrium problem. How­

ever, a Nash point can be found as the solution of the variational inequality

problem

Find (xi, x;) E [1,3]2 sucb that

U(xi, x;)t [ Xl - Xl ] >0 V (Xl, X2) E [1,3]2
X2 -x2

whose unique solution is (3/2,1) .
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2.2 Properties of F. Existence and unique­
ness of a solution

First, sorne commonly used definitions:

Definition 3 Over a set Y, a mapping F : m.m --+ mm is

• monotone if

• strictly monotone if

• strongly monotone with modulus cr (or cr-strongly monotone) if

• pseudo-monotone if

• co-coercive with rnodulus 0: (or cr-co-coercive) if

• pseudo-co-coercive with modulus cr (or cr-pseudo-co-coercive) if

F(Y2)t(Yl - Y2) > 0 =>

F(ydt(YI - Y2) > allF(yd - F(Y2)/I2 'VYI, Y2 E 1'"; YI #= Y2

• Lipschitz continuons with modulus L if
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•

for some vector nonn Il . II·

Clearly, of the monotonicity properties, pseudo-monotonicity is the weak­

est and strong monotonicity the strongest. AIso, co-coercivity implies mono­

tonicity, and pseudo-co--coercivity implies pseudo-monotonicity. See Figure

2.2. Various other properties of mappings, and relationships between them,

can be round in Zhu and Marcotte [113]. Note that co-coercivity has also

been called strong-F-monotonicity by some authors, e.g. [66].

/ Co-coercive~

Strongly monotone and Monotone~ Pseudo-monotone

Lipschitz continuous ~ ./

Stricdy monotone

Figure 2.2: Relationships between sorne monotonicity properties

When F is continuously difFerentiable, then the monotonicity of F cau

be related to the Jacobian V F as follows.

Lemma 1 ([82]) If a mapping F : mm ~ mm is once continuously differ­

entiable ouer an open set Y, then

• F is monotone if and only if VF (y) is positive semidefinite for aU

y E Y.

• F is strictly monotone if VF (y) is positive definite for ail y E Y.

• F is a-strongly monotone if and only if VF(y) is a-strongly positive

definite for ail y E Y, i. e. there exists a constant a > 0 such that

Remark that the strict monotonicity does not imply the positive definiteness,

as the example F(y) = y2 over y = nt shows when y = o.
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One complete reference on the topic of monotonicity is the book of Ortega

and Rheinboldt [82J. Note that by a slight abuse of language, we sometimes

refer to a variational inequality V /(F, Y) with (strongly-, strictly-, pseudo­

)monotone mapping F as, simply, a (strongly-, strictly-, pseudo-)monotone

variational inequality.

Equipped with these definitions, we can discuss the conditions ofexistence

and uniqueness of a solution of the variational inequality problem. The

existence of a solution of V/CF, Y) when Y is compact and convex and F

is continuous is a weIl known result, whose proof relies on the continuity

of the projection mapping and on Brouwer~s fixed-point theorem (see [54]).

When Y is not compact, e.g. for lack of boundedness, stronger conditions

are required of F. For ~"{ample, when Y is closed, convex, and nonempty,

the strong monotonicity of F guarantees the existence of a unique solution

to V/CF, y).

Under the pseudo-monotonicity of F the solution set is convex while under

the strict monotonicity of F, the solution is unique if there is one. See the

general references [43] and [i7] for more details.

2.3 Box-Constrained Variational Inequalities
and Complementarity Problems

The problems presented in this section are restrictions of variational inequali­

ties. They nevertheless form a very important class, whose development was,

and is still, intimately linked to that of general VIP's. Like variational Ïn­

equalities, finite-dimensional complementarity problems have become a topic

of intense interest in the last decade; this is weIl illustrated by the award of

the Mathematical Prograrnming Society's 1997 Beale-Orchard-Hayes prize to

S. Dirkse and M. Ferris for a mixed-complementarity problem algorithm and
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• solver.

We first define the nonlinear and linear complementarity problems.

Definition 4 Let F be a mapping from urn into m;n. The nonlinear com­

plementarity problem, NCP(F), is to find a point y. in nrn such that

NCP(F)

•

In the special case where the mapping F is linear, F(Y) = }Jy + v, the

problem is called a linear complementarity problem, and denoted LCP(F).

These problems were defined 30 years ago, as a way to model and solve

matrix games and economic equilibria. An efficient algorithm for the Lep,

Lemke's pivotai algorithm, was discovered early, and has kept a certain level

of popu1arity as a subproblem solver for linearlzed VI methods. This pivotai

algorithm was aIso extended to the Nep. General references on the LCP are

Cottle, Pang and Stone [14] and J\tlurty [76], and Chan and Pang [85] for the

NCP.

We now introduce the more generai class of box-constrained variational

inequalities, also known as mixed complementarity problems. This class has

been described in at least three different ways, outlined below.
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• Let F = mm ~ m.m, G = IRp+q ~ HlP and L = JRP+q ~ JHl be mappings.

Let land u be vectors in the extended reaIs, {Dl U -00 U 00}m, with l < u,

thus defining a box [l,u] in {mu -oouoo}m. Then,

Definition 5 The box-constrained variational inequality problem is

Find y. E [i, u] sucb that F(y·)t(y - y*) > 0 VY E [l, u] (2.3)

Definition 6 The mixed comp!ementarity problem (MCP) is

Find (x, z) E IRP x JI{l such that

L(x, z) - 0
G(x, z) > 0

x > 0
xtG(x, z) - 0

(2.4)

Definition 7 The box-constrained VI in KKT form is

Find (y, v, w) E mm x m,:: x Hl':: sucb that

F(y)+v-w - 0
l < y < u

(y -l)tw - 0
(u-y)tv - 0

(2.5)

•

A box-constrained variationaI inequality, aIso called rectangular varia­

tionaI inequality, is a VJ(F, Y) whose set Y is a box. The MCP derives its

name from the fact that some variables have a nonnegativity constraint and

complementarity condition, while the others are free; it is thus a "mbe" of

complementarity conditions and usual equations. The rationale for the third

form's name will be clear from Theorem 2 below.

We WarD immediately that the above notation reflects our persona! pref­

erence. Although many authors would agree with them, others prefer to calI

(2.5) the mixed complementarity problem. Disagreements are largely due to
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• the fact that any of the three forms above can be rewritten in the other two

formats, although the number of variables may vary.

For example, an MCP can be written as a box-constrained VI by setting

y:= [ ; ] F(y) := [ G(x, z)] l:= [ OpXl ]
L(x, z) -OOqXl

u := [ OOpxl ]
OOqxl

(2.6)

•

Similarly, an rvICP can be written as a box-constrained VI in KKT form

by using (2.6) and introducing new variables v E IR~ and W E lR~ in (2.4).

Conversely, (2.5) can be written in MCP fonn with

x:= [ :] z:= y L(x, z) := F(y) + v - w G(x,z):= [ ~ =:r].
The equivalence between the box-constrained VI and its KKT formulation

follows as a special case of Theorem 2 below. In terms of number of variables,

it is clear that the same problem, expressed as a box-constrained VI in KKT

form, will have 3 times as many variables as if it were cast in the forros (2.3)

or (2.4).

We conclude this section with an important theorem that can he found in

[92]. For a variational inequality problem li[(F, Y) satisfying some assump..

tians, this theorem gives a set of equations and inequalities that is equivalent

to the variational problem. In view of the very close link ta the Karush­

Kuhn-Tucker conditions of optimization prohlems, this set of conditions has

been referred to as "KKT conditions" of the variational inequality problem.

Theorem 2 Let F be a mapping from mm into mm. Let Y be defined as

y = {y E m:n 1 G(y) > 0, HCY) = O}

where G : mm -4- IR! is diJJerentiable and H : mm -4- 1«" is affine. Then:
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• 1. Under sorne constraint qualification, if y. solves VI(F, Y) then there

exists 7r E IRfI and p. E IR: such that

F(y·) - VG(y·)7r - V H(y·)p. - 0

7r
t G(y·) - 0

'if > 0

(2.7)

(2.8)

(2.9)

•

12. If the components of G(y), Gi(y), i = 1, ... ,p, are concave functions,

y* E Y, and (y*, tr·, JL.) satisfies (2.7)-(2.9), then y. solves VI(F, y).

The constraint qualification evoked in 1. corresponds to one of the usual

qualifications of nonlinear programming: linearity of the constraint functions

or linear independence of the gradients of the active constraints at y., for

example.

Note that if both G and H are affine mappings, then (2.7)-(2.8) and

y. E Y fonn a necessary and sufficient set of conditions for y. to solve

VI(F, y). If in particular, there are no equality constraints, and

[
u- y ]G(y) = y-l > 0,

then (2.7)-(2.8) reduces to (2.5). This justifies the name box-constrained VI

in KKT form given to 2.5.

2.4 Reformulations of variational inequalities

The variational inequality problem can he rewritten in different ways: as a

fixed-point problem, as a system of equations, as an optimization or convex

feasibility problem, as a nonlinear or mixed. complementarity problem, etc.

Sorne reformu1ations are general, some require assumptions on the mapping

F or the set Y .
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• Each formulation opens the door to several algorithmic methods. In that

sense, the fixed-point problem and the system of equations approaches have

been the most popular. On the other hand, the algorithms developed in this

thesis are derived from the convex feasihility problem fonnulation.

2.4.1 Fixed-point formulation

The variational inequality problem can be reformulated as a fixed-point

problem for the mapping M: lRm -t lRm
:

Find a point y. sucb that y. = M(y·). (2.10)

•

The fixed-point fonnulation is the comerstone of several existence results as

weIl as algorithms. It can be descrihed very succinctly, using the general

iterative scheme of Dafermos [15].

Consider the strictly monotone variational inequality prohlem V [CF, Y)

with Y compact and conve.."{. Let F(z, y) : lRm x lRm -t R m he a strictly

monotone mapping with the property

F(y, y) = F(y)

Let us also fix y in F(z, y) and caU M(y) the solution set of V l(F, y):

By the strict monotonicity of F, M(y) is a unique point. Clearly then y. is

a solution of V l(F, Y) if and only if y. is a fixed-point for the mapping M,

y. E M(y·).

There is considerable latitude in choosing F and some of the hest known

choices will he reviewed in Section 2.5. Let us however discuss here one of

these choices, based on the concept of projection. The projection formulation
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• is the archetype of fixed-point fonnulations and is obtained by using the

mapping

F(z, y) = F(y) + M(z - y),

where Misa constant, symmetrie, positive-definite matrix. The rationale

for the name "projection" will become clear shortly.

We first consider a lemma that gives a basic property of projections.

Lemma 2 Let Y and Q be defined as above. Then fi = II~Q(x) if and only

if

(y - xYQ(y - fi) > 0 "cf Y E Y (2.11)

Proof: The point y minimizes the function dey) = !lIy -xll~ over all y E Y;

since Vd(y) = Q(y - x), the inequality above expresses the (necessary and

sufficient) optimality condition of the projection problem. 0

Then the following theorem spells out the fixed-point result above for the

specifie case of a projection mapping (see for example [77]):

Theorem 3 Let Y be a closed, non-empty and convex subset 0/ lK"', and Q

be a symmetric, positive definite m x m matrix. Then y* solves V [(F, Y) if

and only if

(2.12)

•

that is, if and only if y* is a fixed-point of the mapping M : nrn -+ mm

M(y) := ITY,Q(Y - Q-IF(y».

Proo/: The point y. solves VI(F, Y) if and only if

F(y*)t(y - y*) > 0 "cf y E Y
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• which, multiplying by -1 and adding (Qy*)L(y - y"), is equivalent to

(Qy.)L(y _ y") > (Qy")L(y _ y*) _ F(y*)L(y _ y*)

_ (Qy. _ F(y*»L(y _ y*)

_ (y. _ Q-1F(y*) )LQ(y _ y.) 'v' Y E Y

and

(y* - (y. - Q-lF(y·» ) tQ(y _ y.) > 0 'v'Y E ~

By Lemma 2, (2.13) holds if and only if

which concludes the proof.

(2.13)

o

•

Using Lemma 2, we see that yis the projection point IIY;Q(Yk-Q-lF(Yk»

if and only if fi solves the VIP

equivalent to

which explains the name "projection method" associated to the fi'Ced-point

iterations with F(z, y) = F(y) + M(z - y).

2.4.2 Formulations as systems of equations

The variational inequality problem has several useful refonnulations as a

system of equations. Indeed, a large proportion of the recent research on

algorithms for VI was devoted to such reformulations. Typically, the varia­

tional inequality is cast as a nonsmooth system of equations, where the word

"nonsmooth" refers to Fréchet differentiability (F-differentiability). However,
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•

a weaker type of differentiability, called Bouligand or B-differentiability, is

often used in an adapted version of Newton's method. References on this

formulation are given in Section 2.5.2.

Equations based on the fixed-point formulation

One obvions system of equations relies on the fixed-point formulation (2.10)

above, Le. it consists in solving

H(y) :=y-M(y) =0

In particular, the system of equations derived from the projection mapping

M(y) = TIy(y-F(y» is B-differentiable. See the section on algorithms below

and the book of Harker [43, p. 132].

Equations based on Robinson's normal map

Another formulation in tenns of systems of equations is based on the normal

map introduced by Robinson [91].

Theorem. 4 ([90],[91]) Let Y be a closed, non-empty and convex subset of

mm, and Q be a symmetric, positive definite m x m matrix. If y. solves the

problem VI(F, Y) then

- • Q-1F(·)Y=y - y

salves

H(y) := F (I1Y,Q (y) ) + Q(y - IIY;Q(Y» = Q.

Conversely, if fj is a zero of the mapping H(y), then y. = IlY,Q(Y) salves

VI(F, Y).

Proof: By Theorem 3, llY;Q(Y· - Q-lF(y·» = y., 50 that

H(ii) = F(y·) + Q(fj - llY;Q(Y)
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• _ F(y·) + Q{y. - Q-lF(y*) - y*)

- 0

On the other hand,

fl(y) - F(IIY;Q(Y)) + QCy - II~Q(ii)) - 0

implies

and

so that by Theorem 3, y. = IIy ,QC1ï) solves V/CF, y). o

•

Unlike the projection map, the Robinson map has the advantage of being

defined everywhere, even when F is defined only over Y.

2.4.3 Convex feasibility formulation

Under the assumptions that F is a pseudo-monotone and continuons map­

ping, and that Y is a closed, convex and nonempty set, VI(F, Y) can he

formulated as a convex feasibility problem:

Find a point y. E Y·

where Y· is a closed, conv~'"< and bounded set. This cao be found from the

following theorem, which was proved under monotonicity of F by Minty [74].

The extension to pseudo-monotone mappings is straightforward, but it is not

clear to us who first proved it.
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• Theorem 5 Let F he a pseudo-monotone and continuous mapping, and Y

a closed, convex and nonempty set. Then y. E Y solves the V/(F, Y) if and

only if y. E Y and

(2.14)

•

This effectively means that the solution set Y· of V /(F, Y), which can even­

tually consist of a unique point, is defined as the intersection of aIl half-spaces

defined by (2.14). In other words, there is a convex feasibility formulation of

V/CF, Y), with the feasibility set Y· implicitly defined by the infinite family

of cutting planes (2.14). Note that (2.14) ensures both the convexity and

c10sedness of Y·, while Y· C Y ensures its boundedness.

2.4.4 Optimization formulations

Whenever F is a gradient mapping, the variational inequality prohlem V [(F, Y)

corresponds to an optimaIity condition and can thus also be solved as an opti­

mization problem. This was illustrated in Section 2.1. However, it is possible

ta reformulate any VI as an optimization problem; two of the best known

sucb formulations are presented here. We now define the primaI gap function.

Definition 8 The gap function 9 associated with VI(F, Y) and y E Y is

defined as

g(y) = inf F(y)t(z - y)
zEY

Provided Y is compact, the ''inf'' can he replaced by a "min"; note also

that for Y polyhedral, g(y) can he evaluated by solving a linear optimization

problem, and thus can he used as stopping critenon for iterative algorithms.

Clearly, the primai gap g(y) is always non-positive (simply take z =

y). However, the reader should be warned that severa! authors define the
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• primai gap as -g(y), ensuring that it is always non-negative. We prefer our

definition, as we find it closer to the variational inequality problem definition.

When Y is compact, y. is a solution of V [(F, Y) if and only if g(y.) = 0,

so that V [(F, Y) is equivalent to the ma.xmin problem

maxg(y) = ma-xminF(y)t(z - y)
yEY yEY zEY

(2.15)

This is almost always a difficult problem, with g(y) usually non-concave and

nondifferentiable.

Under the assumptions of Theorem 5, we define a dual gap function as:

Once again, 9d(Y) < 0 VY E Y and 9d(y*) = 0 if and only if y. solves

VI(F, Y), by Theorem 5. One can therefore consider the optimization proh­

lem reformulation of V [(F, Y)

(2.16)

•

Although this is a concave maximization problem, gd(y) being a minimum of

affine functions, (2.16) is not necessarily easier than (2.15), as the evaluation

of gd(Y) involves the solution of a nonconve.x optimization problem.

2.5 Algorithms for variational inequalities

We give in this section a broad overview of algorithms for variational inequal­

ities. It is clearly impossible to cover here the dozens of existing algorithms

and their variants; our goal is ta describe the main classes of methods and

their characteristics. VIP algoritbms can be divided into four main groups,

according to the formulation of the problem, as in Section 2.4:
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1. Fixed-point problems: this class contains such classical approaches

as the projection method and the Newton method for variational in­

equalities.

2. SysteDlS of equations: has received much attention in the past years,

especially the nonsmooth systems that use the B-differentiability.

3. Optimization formulations: constrained and unconstrained opti­

mization equivalents of VIPs, to be solved by established nonlinear

programming tools.

4. Convex feasibility formulations: also the subject of renewed inter­

est. The algorithms presented in this thesis falI in this category.

One class of methods not included here is that of interior point methods; the

area is very new, the papers are few, and although these methods are full of

promises, little has been done in terms of numerical testing. These methods

typically require the differentiability of the mapping. See the algorithms of

Nesterov and Nemirovskii [80] and Tseng [104], as weIl as those of Sharifi­

~1okhtarian and Goffin [96], Ralph and Wright [88], and Wu [107].

We also do not caver in this review the large literature on algorithms

for specialized variational inequalities such as the Lep, the Nep and the

box-constrained VI. Note however that severa! VIPs can be solved as such

complementarity problems by use of the results of Section 2.3.

2.5.1 Fixed-point algorithms

We have described in Section 2.4.1 the fixed-point fonnulation:

Find a point y. sucb that y. E M(y·)

where

M(y) = {z· E Y 1 F(z·,y)t(z - z·) > 0 Vz E Y}
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• Fixed-point algorithms are basically fixed-point iterations Yk+l E M(y,,) .

Finding a point in M(Yk) for sorne Yk is called a subproblem. It remains to

decide on F; clearly, interesting choices are ones for which M(y,,) is single­

valued and relatively easy to compute. Many options involve an affine map­

ping F(z, y):

• F(z, y) = F(y) + V F(y)(z - y)
• F(z, y) = F(y) + ï(VF(y) + V F(y)t)(z - y)
• F(z: y) = F(y) + Q(y)(z - y)
• F(z, y) = F(y) + kl(z - y)
• F(z, y) = F(y) + diag(VF(y))(z - y)

where

Newton
Symmetrized Newton
Quasi-Newton
Projection
Linearized Jacobi

•

· VF(y) is the Jacobian matrix

· Q(y) is a symmetric, positive definite approximation of the Jacobian

· M is some constant symmetric, positive-definite matrix

· diag is an operator that keeps only the diagonal of a matrix

In some cases, the subproblems obtained with sucb linear mappings are

easier to solve than the original problem: when Y = nt+, the subproblem is

an Lep; when Y = ]R, the solution of the subproblem is simply the solution

of F(z, y) = 0, which is a linear system of equations.

Newton's method is probably the mast powerful of the abave, given its

quadratic local convergence rate, under appropriate assumptions. Unfor­

tunately, the subproblems it generates are usually difficult to solve, unless

y = lR or Y = IR+. The last four suggestions above are symmetric maps,

Le. their Jacobian is symmetric; this entails that the subproblems can be

formulated as nonlinear optimization problems, and solved with existing soft­

ware. This is the justification hehind the symmetrized Newton method. The
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• Quasi-Newton method replaces the Jacobian evaluation, which may be ex­

pensive or diflicult, by rank-one or rank-two updates inspired from nonlinear

programming. The linearized Jacobi method is a fust-order approximation of

the straightforward extension of the Jacobi method for systems of equations.

The projection method was discussed in more detail above. Note that the

Quasi-Newton and Projection methods will yield convex optimization sub­

problems, due to the positive definiteness of their matrices; if furthermore

y is polyhedral, then the subproblems are linearly-constrained, quadratic

optimization problems.

Also recall that when Y = m.m or Y = m.~, then the subproblems are re­

spectively linear systems of equations and linear complementarity problems,

thus much easier to solve than in the general case.

Nonlinear mappings F(z, y) have also been suggested, for example:

• Fi(z, y) = F(Y17 ,Yi-b Zï, Yi+17 .•. ,Ym)
• ËiCz, y) = F(zl, , Zï-l, Zï, Yi+l, ... , Ym)

Jacobi method
Gauss-Seidel method.

•

Being separable, the corresponding subproblems can be solved as nonlinear

optimization problems. Note that the Jacobi method is also sometimes called

diagonalization or relaxation method.

We finally outline two variations of the projection method, that are prob­

ably the most appropriate competitors of ACCPM-VI, and that will appear

again in the Numerical Results section of Chapter 4. Although they do not

fit the general iterative scheme of Dafermos (see section 2.4.1), they are in

essence fixed-point methods.

The extra-gradient.. a1gorithm of Korpelevitch ([55]; see [8], [53] and

[68]) is based on projections, but converges under weaker assumptions than

the projection method, see the discussion of convergence below. It uses two
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projections at each iteration; under the Euclidian norm, it is defined by:

y - IIY(Yk - aF(Yk»

Yk+l - II y (Yk - aF(y) )

where cr is some positive stepsize. Unfortunately, it has a slow rate of con­

vergence, linear at best. Recently, Solodov and Tseng [98] suggested a mod­

ified projection algorithm with the same convergence property as the extra­

gradient method, but which uses only one projection per iteration. The

iteration, with a symmetric positive definite matrix Q and a positive stepsize

T, is:

fi - IIY(Yk - aF(Yk»)

Yk+l - Yk -rQ-l (Yk - aF(Yk) - y+ aF(Y»)

where a E (0,00) is chosen so that the mapping / -o:F is strongly monotone.

The authors indicate that the matrix Q can be used as a scaling parameter

to improve the rate of convergence.

We note that the above iterative methods for V/CF, Y) could be used

in conjunction with techniques of approximation of the set Y. /nner

approximations of a polyhedral, compact Y have been suggested by Law­

phongpanich and Hearn [57]. At each iteration, one deals with the convex

hull of a (small) subset of the extreme points of Y; for large-scale problems,

this can considerably simplify the solution of the subproblems. Outer ap­

proximations have been suggested by Fukushima [29]; while the convexity of

y is still required, this approach is applicable to sets that are not polyhedral.

Again, the advantage is that of handling a set that approximates Y while

being simpler.

Convergence The projection method is globally convergent, but re­

quires the strong monotonicity of F (technically, one even needs to know or

have a bound on the constant of strong monotonicity). The plain Newton's
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method has a very desirable quadratic convergence rate, but is only locally

convergent; furthermore, the condition of this convergence is basically the

strict monotonicity of F. Quasi-Newton and other symmetric methods are

attractive because of the relative ease of their subproblems, but the assump­

tions on F required for local convergence are even stronger than for the

Newton method, and their convergence rates are slower. Details on the con­

vergence oflinear approximation methods are given in [41], [43], [65] and [66].

The Jacobi and Gauss-Seidel methods have similar local convergence results

as the linear methods: some type of diagonal dominance of the Jacobian of

F is required. Note also that with the exception of the projection method,

convergence proofs rely on the differentiability of F.

A globally convergent method to improve the local character of the iter­

ative methods described above was first devised by Marcotte and Dussault

[70]. Aldn to the techniques of nonlinear optimization, a linesearch guar­

antees convergence even when the initial iterate is far frOID the solution.

The authors proved that the (primai) gap function can be used to guide

the linesearch process in the Newton method for VIP. Their algorithm is

globally convergent under the assumption of continuous differentiability and

monotonicity of F, and compactness and convexity of Y. Under stronger

hypotheses, their algorithm also achieves the quadratic rate of convergence

of the standard Newton's method, at least locally. Clearly, their method still

requires the solution of a (simpler) variational inequality problem, at each

iteration.

The extra-gradient method and its variant by Solodov and Tseng converge

under the monotonicity of the mapping F. Furthermore, its differentiability

is not required.
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2.5.2 Systems of equations

We consider in this section two classes of algorithms that are based on the

solution of systems of equations. We first discuss the popular nonsmooth

equations that use the projection operators discussed in Section 2.4.2. We

then briefly introduce the so-called continuation methods, that use the KKT

conditions of Section 2.3.

As shown in Section 2.4.2, variational inequality problems can be formu­

Iated as systems of nonsmooth equations. The goal of such formulations is to

use the powerful damped Newton method for systems of equations; however,

the lack of F(réchet)-differentiability demands that the usual techniques be

adapted. References on the subject are numerous, but the seminal articles by

Pang ([83], [84]), Pang and Qi [87] and Xiao and Harker ([109], [110]) pravide

a good starting point. See also the recent Facchinei, Fischer, Kanzow [23]

and the references to PATH, NE/SQP and the likes, below.

It would be difficult to present nonsmooth, equation-based algorithms,

without introducing first a fair amount of nonsmooth analysis theory. How­

ever, it is not our purpose here to discuss these algorithms in details, and we

shaH be content with a surnmary.

The Bouligand derivative is defined as follows:

Definition 9 ([83]) A function H: mn
~ m:n is said to be B-differentiable

at a point y if there exists a function BH(y): mn
~ IRm

, called the B­

derivative of H at y, which is positively homogeneous of degree 1, such that

lim Hey + z) - H(y) - BH(y)(z) = o.
z-+O IIzl1

(In the notation BH(y}(z) ([4]), z is the variable orthe function and y is a pa­

rameter; we prefer it to B H (y) z, sometimes seen, which we find somewhat un­

clear). The main difference between Bouligand- and Fréchet-differentiability
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is the fact that BH(y)(z) needs not be a linear fonction of z in the former

case, while it must be linear in the latter case.

AIso, for a mapping H : IRm -+ ]Rm, let us write H'(y; d) to represent the

vector of directional derivatives in the direction d:

The directional derivative is very closely related to the B-derivative. In

fact, Shapiro [94J proved that a Lipschitz continuous mapping H : R m --+ IRm

is B(ouligand)-differentiable if and only if its directional derivatives exist.

Furthermore, in this case, the B-derivative of the mapping H at y is identical

to the vector of directional derivatives corresponding to the m components

Hi of H:

H'(y, d) = BH(y)(d)

As most authors do, we assume the Lipschitz continuity of H throughout

this section.

The principle behind nonsmooth Newton methods is to solve, for the

nonsmooth but B-differentiable mapping H, the equation

H(y) = 0

with an adapted Newton method that uses the B-derivative instead of the

usuaI Jacobian. One solves, for dk E IRm
, the system

which is equivalent here to

and sets Yk+l = Yk + dk • Like the usual Newton method, this approach will

only converge locally; global convergence is achieved by a linesearch along the
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direction d". Appropriate differentiable merit fonctions have been developed

for that purpose.

Newton-type, nonsmooth-equations methods form a powerful approach

ta the solution of variational inequalities V/CF, Y). They have good rates of

convergence, and are independent ofany monotonicity property ofF. Indeed,

most of the recent algorithm implementations for complementarity problems

have used this approach: PATH [20], NE/SQP [86], SEMISMOOTH [17],

and their variants [9, 10]. However, these methods rely explicitly on the

CF-)differentiability of bath the mapping F and the (explicitly known) func­

tians defining the set Y. In that sense, they do not belong in the same class

of algorithms as the ones we introduce in this thesis.

Having discussed equation-based methods that use projection operators,

let us now turn to continuation methods, which use the KKT system

F(y·) - VG(Y·)1r - V H(y·)p, - 0

H(y·) - 0

1rt G(y·) - 0

'Ir > 0

G(y·) > 0

that was given in Theorem 2. Upon the introduction of positive parameters

f and v, we obtain the perturbed system

F(y) + EY - VG(Y)1r - VH(y)p, - 0

H(y) - 0

'lrtG(y} - v

1r > 0

G(y) > 0,

which is solved for a sequence of decreasing values of E and 1/. (These equa-
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tions are of course reminiscent of interior point methods in linear optimiza­

tion, and continuation methods are often given this epithet). Depending

on the exact algorithm, there may be more parameters than the two above;

the systems, usually solved with Newton steps, may or may not preserve

the nonnegativity constraints; and the constraint 1rtG(y) may he treated

with a function like the Fischer function [26}, for the sake of gaining sorne

smoothness property. The Jacobians that occur through the Newton steps

are nonsingular under a monotonicity condition on F. Again, this c1ass of

algorithms requires the differentiability of F and the functions that define Y

in VI(F, y); as sucb, they are not direct competitors of our method.

Note that continuation methods are not onlyequation-based: for exam­

pIe, some continuation methods consist in replacing F by F +al, where 1 is

the identity map, and a > 0 the parameter. These methods have a1so been

called proximal methods. See [43] for references and details.

2.5.3 Optimization problems

We gave in Section 2.4.4 two formulations of the VIP as optimization proh­

lems. From an algorithmic point of view, these formulations are not very

attractive: in one case, a noneonvex, nondifferentiable optimization problem

must he solved, and in the other case, the simple evaluation of the function

is a noneonvex optimization problem.

For both theoretieal and algorithmic purposes, the reformu1ation of VIPs

as optimization problems has been a topie of research. Clearly, the equiva­

lence hetween the general, asymmetric VIP and an "easy" (convex, differen­

tiable, etc.) optimization problem is appealing.

Fukushima [30} first showed that the VIP is equivalent to a diJJerentiable,

constrained optimization problem. He used a regularized gap function (com-
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pare with Definition 8)

where œ > o. More precisely, the optimization prohlem is differentiable

whenever F is. Unfortunately, this does not take care, in general, of the non­

convexity of the optimization problem. However, under the differentiability

of F and the positive definiteness of VF everywhere in Y, all stationary

points of the optimization problem are solutions of the VIP. The author also

suggests a descent direction for the optimization problem that does Dot use

the Jacobian V F but rather a projection on Y. This is especially interesting

when the Jacobian is difficult to evaluate. This algorithm is actually very

closely related to the projection algorithm described in Section 2.5.1.

Recently, Yamashita and Fukushima [111] presented an unconstrained op­

timization formulation of the variational inequality problem. The conditions

under which it can he considered for practical use are the same as those given

in [30], which essentially boil down to differentiability and strong monotonic­

ity of F.

Other articles dealing with the optimization formulation and the use of

gap functions include [56], (108), [48J and [100J.

2.5.4 Convex feasibility problems

The idea of using the conve.x feasibility problem refonnulation (Section 2.4.3)

Find a point y* E Y sucb that F(y)t(y - y*) > 0 Vy E y

to solve variational inequalities is at least as oid as the papers of Zukhovitskii,

Polyak and Primak [114] and Auslender [4, pp.155-157]. More recently, Lüthi

([63], 1985) also used this formulation. The author's approach, similar to the

one described in this thesis, consists of improving an approximation of the
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solution set of VIP by cutting planes generation: at current point YI:, the

half-space

is added to the current (outer) approximation of the solution set, and a

next iteration point Y/c+l picked within this new approximation. Lüthi picks

this new point as the center of a circumscribing ellipsoid, whereas we use

an analytic center approach. His method is closely related to the ellipsoid

method of linear programming.

Recently, Lemaréchal, Nemirovskii, Nesterov [60] and Nesterov, Vial [81}

have introduced algorithms that are also based on the convex feasibility for­

mulation but that further use the dual gap function

9d(Y) = inf F(z)t(z - y).
zEY

The concavity of 9d(Y) allows a treatment by nondifferentiable optimization

techniques. In [60], the authors adapt to the VIP a variant of the typical

bundle method for nondifferentiable problems.

The authors of [81] describe a clever and sophisticated algorithm whose

roots are in the Analytic Center Cutting Plane Method (ACCPM) of Goffin

and Vial. The VIP is embedded in a homogeneous projective space, to take

advantage of the theory of self-concordant functions [80] while a proximal

term ensures that the analytic centers will Dot diverge to infinity. Also,

a sequence of weighted sums of previous analytic centers is generated, in

parallel to the sequence of analytic centersj while the analytic centers may

not converge to a solution of VIP(F, Y) for F pseudo..monotone, it is proved

that the sequence of weighted suros does. This concept ofdouble sequence has

been used advantageously in our algorithmSj see Section 3.3.4. However, none

of the above papers report any numerical results for variational problems.

We aIso mention the article of Magnanti and Perakis [66], where the

authors develop a general framework for the analysis of algorithms based
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on the convex feasibility formulation. Under the assumption of strong-f­

monotonicity (i.e. co-coercivity), the complexity of four algorithms is ana­

lyzed, using a volume-reduction argument.

Finally, let us note the article of Goffin, Marcotte and Zhu [35] which is

the starting point of this thesis; we simply mention that it belongs to this

class of convex feasibility algorithms1 as the theory behind it will be covered

in detail in the next chapters.

Before closing this section, the attention of the reader should be directed

on two important points. First, the above algorithms, based on the convex

feasihility reformulation, apply only to problems that are at least pseudo..

monotone; under any weaker assumption on F, the equivalence hetween the

VIP and its convex feasibility formulation does not hold. This, of course,

restricts their domain of application, although a fair proportion of VI prob­

lems do exhibit a minimal amount of monotonicity (Le. at least pseudo..

monotonicity). Second1 algorithms based on the convex feasibility reformu­

lation typically do Dot rely on derivative information (the Jacobian VF)1 in

opposition ta the majority of the recent algorithms for variational inequal­

ities. This can he a tremendous advantage when the Jacobian is difficult

or impossible to evaluate. It also allows the definition (and solution) of

variational inequality problems with point-to..set mappings, in which cases a

Jacobian is at best difficult to define. This last topic is the suhject of the

next section.

2.6 Extensions to point-to-set mappings

The extension of "traditional" finite-dimensional variational inequalities to

cases with a point-to-set mapping F has been discussed by Auslender [4]

and Rockafellar [92]. Snch problems must clearly he brought into play when
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one considers the VIP corresponding to the optimization of a nonsmooth

function (in which case F(y), for sorne y, is a subdifferential), or cases where

F(y) is only known implicitly, for example as the (non unique) solution of a

nonlinear programming problem. Let us then make the following definitions.

Definition 10 ([92]) Let F he a point-to-set map from 1lF into 2Rm
. Let

y he a nonempty convex subset of mm. Then a solution to the variational

inequality problem, denoted as VI(:F: y), is a point y. E Y such that

F(y*)t(y - y.) > 0 for sorne F(y·) E F(y·) and Vy E Y:

Definition Il ([92]) A point-to-set mapping F : mm ~ 2Rm is monotone

over a set Y if

(F(yr) - F(Y2))t(Yl - Y2) > 0
VF(yr) E F(YI), \f F(Y2) E F(Y2), \f YI, Y2 E 1':

It is ma'timal monotone if the graph of F, defined as

G(F) = {(Y: t) : y E dom ~ tE :F(y)}

is maximal, i.e. for any monotone map F', G(F) c G(:F') implies G(F) =
G(F')

A common example of a maximal monotone mapping is the subdifferen­

tial of a convex function. Lemaréchal, Nemirovskü and Nesterov [59] have

extended the concept of convex feasibility problem fonnulation to sucb VIPs.

Definition 12 ([59]) Let F he a point-to-set map from nrn into 2Rm
• Let Y

be a nonempty convex subset of IRm
• Then a weak solution to the variational

inequality problem is a point y. E Y such that

F(y)t(y - y*) > 0, \fY E Y and VF(y) E :F(y) .
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The following theorem, also from [59), relates weak solutions to solutions, in

the monotone case.

Theorem 6 Let Y be a nonempty, closed, convex subset ofm:n, with nonempty

interior, and let:F be a monotone mapping with domain dom(:F), int(Y) C

dom(F) C Y, then

1. Every solution of the variational inequality is also a weak solution;

2. Conversely, provided either:

• y C dorn(:F) and:F is single-valued continuous, or

• :F is maximal monotone.

then every weak solution solves the variational inequality.

The theorem above justifies the formulation of the solution set Y· as the

intersection of an infinite number of half-spaces:

This formulation is the basis of our C1J,tting-plane approach.

Finally, let us define a primai gap function for the variational inequality

with multi-valued mapping.

Definition 13 The gap function 9 associated with V /(:F, Y) is defined as
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Chapter 3

A Linear Cut Aigorithm

3.1 Introduction

We describe in this chapter an algorithm for the variational inequality prob­

lem Vf(F, Y) over a convex set Y. The algorithm is defined for mappings F

that are either pseudo-monotone single-valued or maximal monotone multi­

valued (point-to-set mappings). No assumption is made on the differentia­

bility of single-valued mappings, a useful feature in cases where the jacobian

is expensive or impossible to evaluate; see e.g. the MMMR example below

(for multi-valued mappings, differentiability is hardly even defined). The set

y may include linear equalities, which are treated explicitly by our method;

it may altematively he implicitly defined by a separating oracle.

Our method is based on the convex feasibility problem reformu1ation of

the VI (see Section 2.4.3), extending the work of Goffin, Marcotte and Zhu

[35]. It is fundamentally an Analytic Center Cutting Plane Method (AC­

CPM); in this respect a sequence of analytic centers is built as the iterations

progress. However, there are VIs with simply monotone mappings for which

the sequence does not converge to a solution: we introduce a second sequence

of points, based on the analytic centers, for which we observe stronger con­

vergence properties.
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Cutting planes were used to solve variational inequalities by Lemaréchal,

Nemirovskii, Nesterov [60] and Lüthi [63]; see aIso the integrative framework

of Magnanti, Perakis [66]. Within this cutting plane approach, the Analytic

Center Cutting Plane method, which includes the algorithm presented in this

thesis, has been used by Goffin, Marcotte, Zhu [35] and Nesterov, Vial [81].

The chapter is divided as follows. We review in Section 3.2 the convex

feasibility fonnulation and extend the definition of analytic center to cases

with linear equality constraints. We describe in Section 3.3 the algorithm

in detail. In Section 3.4 we present sorne technical points concerning our

MATLAB implementation of the method, and conclude in Section 3.5 with

severa! numerical examples that range from typical economical equilibria to

a pollution permits market model and to financial options pricing.

3.2 Basic concepts

In this section we recall sorne fundamental results about the convex feasibility

fonnulation of variational inequalities, we present a generic algorithm for

solving such problems, and we aIso extend the concept of analytic center to

sets that include equality constraints.

3.2.1 The Convex feasibility formulation

The basic definitions and results on variational inequalities were covered

in the last chapter. Let us however recall here two theorems that are the

comerstones of the convex feasibility refonnulation. First, from Section 2.4.3:

Theorem 7 Let Y be a nonempty, closed, convex subset of grn and let F be

a continuous, pseudo-monotone mapping from Y into am. Then y. solves
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• the VI(F, Y) if and only if y. E Y and

(3.1)

•

Second, Theorern 6 of Section 2.6 implies:

Theorem 8 Let Y be a nonempty, closed, convex subset ofmm, with nonempty

interior, and let F be a point-to-set, maximal monotone mapping with do­

main dom(FL int(Y) C dam(:F) C Y. Then, for the variational inequality

problem VI(F, Y)r any weak solution is a solution, and any solution is a

weak solution.

Therefore, under the respective assumptions of the theorems above, the

solution set V· of the variational inequality problem can be formulated as the

intersection of an infinite number of half-spaces. It is then possible to solve

V l(F, Y) or V [CF, Y) as a convex feasibility problem, if we let "y feasiblè'

correspond in our case to "y E Y·". A generic algorithm to find a point

y. E Y· would be as follows:

Step 0: Set k = 0, }Q = V
Step 1: Pick a point Yk E int(Vk )

Step 2: Check if Yk E Y·; if yes then stop.
Step 3: Pick sorne F(Yk) E F(Yk)

Set Yk +1 := Yk n {y : F(Yk)tYk > F(Yk)ty }
Set k:= k+ 1
Return to step 1

where the first operation of Step 3 is skipped for a variational inequality with

a single-valued mapping. An iteration is depicted in Figure 3.1.

Note that the set Y could he defined implicitly by a separation oracle,

sucb that a feasibility cut is retumed instead of a ''VI cut" whenever Yk (/. Y.

Note also that in practice, algorithms are limited by the finite precision of
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Figure 3.1: .-\. linear cut through a point Yk of Yk

the computers, so that the following definition of an approximate solution

will he useful; the definition relies on the concept of concept of primai gap

g(y) (Section 2.4.4).

Definition 14 For the variational inequality VI(F, Y), the point y. is an

€-approximate solution if y. E Y and

g(y*) > -€

3.2.2 Analytic centers

The analytic center, as originally introduced by G. Sonnevend [99] and dis­

cussed in the previous chapter, pertains to a polyhedron defined by a set of

linear inequalities. However, the extension to sets with both linear inequali­

ties and equallties is possible:

Definition 15 Consider the set

and the associated dual potential function

'PD(Y) = L ln(Cï - ~y)
i
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where the index i is used to denote the components of c and the raws of At.

The analytic center yC of Y is defined as the point maximizing the dual

potential function ouer the set Y = { y 1 AtY < C1 By = d }:

yC = argma]'cpD(y)
yEY

It is well known that if Y is bounded, the center yC is unique. Writing out the

first-order optimality conditions for the equivalent mathematical program

maximizey,.s Li ln Si

subject to AtY +s = c
By=d
8>0

we obtain

Ax + Btp. - 0 (3.2)

At
Y+8 - C (3.3)

By - d (3.4)

Xs - e (3.5)

X,8 > 0 (3.6)

where x and J.L are the variables associated with, respectively, the inequal­

ity and the equality constraints. We follow the convention to call equation

(3.2) the primai feasibility conditions, (3.3) and (3.4) the dual feasibility con­

ditions, and (3.5) the centrality conditions; according to this notation, the

analytic center lies in the dual space.

3.3 An Analytic center cutting plane algo­
rithm

We now describe our algorithme For the sake of c1arity, we assume that

the mapping is single-valued, and we point out, whenever appropriate, the
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modifications that a multi-valued mapping would require. (The basic theory

of variational inequality with multi-valued mappings was discussed in Section

2.6). We aIso make the assumption of a polyhedral Y; as mentioned earlier,

a general convex Y can be treated by outer approximation (feasibility cuts).

Consider the problem VI(F,Y·):

Find y. sncb that F(y·)t(y - y.) ~ 0 Vy E Y
where Y = {y 1 AtY < c, By = d}

where F : m.m -+ IRmis pseuda-monotone (maximal monotone for point-ta­

set mappings), A is a real m x n matrix and Bisa real p x m matrix with

p < m. We assume the e.xistence of a bounded solution y. and that box

constraints l < y < u can be added if Y is unbounded.

Then the following aIgorithm can be used to find an e-approximate solu­

tion of VICF, y):

ALGORITHM ACCPM-VI (LINEAR CUTS)

Step 0: lnitialization
Set k = 0, YO = Y

Step 1: Analytic Center
Find an approximate analytic center Yk of Yk •

Step 2: Termination Criterion
Compute the convex combination of centers fi as per Section 3.3.4
Compute the primai gap g(fi, Y)
If g(y, Y) > -t; then stop

Step 3: New eut
Compute cut F(Yk:)tYk > F(Yk)ty
Set Yk+l := Yk n {y : F(Yk)tYk > F(Yk)ty }
k:= k + 1
Return ta step 1

Step 1, computing an analytic center, is done with a primai-dual Newton

method which uses the last center as a warm start. Although the gap com­

putation in Step 2 involves solving a linear program, this can usually he done
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very quickly, as the size of most VI's is small relative to the size of LPs that

can be solved efficiently. Furthermore, it is not crucial to evaluate the gap at

every Iteration. Gap evaluation can be difficult in the point-to-set mapping

case, since :F(y) is often not explicitly available. For lack of a better concept,

the gap is then evaluated at sorne point F(ylc) E :F(Y).

Step 3 consists basicaIly of a function evaluation; the relative time spent

on this step varies with the application, as will become clear in the section on

numerical experiments. For the rnulti-valued case, any point F(Yk) E :F(Yk)

is picked.

The rest of this section is devoted to a method for finding the approximate

analytic center Yk+l of Yk+b starting from Yk.

3.3.1 An infeasihle primai-dual Newton step

At Iteration k, the approximate analytic center Ylc E IRm of Yk is a solution,

together with XIe E IR~, J1.k E lR.P and Sic E lR~, of the system of equations:

Ax + Rtl-' - 0

.4t y + s - c

By - d

while

8:= e - Xs =F 0

Here A and c would typically contain both initial inequality constraints (in­

cluding box constraints) and generated inequality constraints. Initial con­

straints are the ones that define Y, while generated ones are the cuts from

the algorithme The problem of interest V [(F, Y) lies in the dual space. In

what fol1ows, we explicitly recognize the non-centrality of the point Yk in

deriving the steps.
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The center Yk+l of Yk+1 is the solution (with Xk+b PIc+l and sA:+d of

Ax + aÇ + Btj.L - 0 (3.7)

Aty+s - c (3.8)

aty+u - atYA: (3.9)

By - d (3.10)

Xs - e (3.11)

çu - 1 (3.12)

x, s,{, u > 0 (3.13)

where a := F(Yk), Xk+l := [x; el E m.k+1 and SA:+1 := [8; ul E m.A:+l. Here

ç and u are "new" unidimensional variables corresponding to the new COQ­

straint (3.9). The system (3.7)-(3.13) is solved iteratively with Newton's

method; the initial point we use is y = Yk, X = Xk, S = SA: and e and u

are two positive numbers that we define later. This initial point will not he

feasihle in the sense of (3.7)- (3.10), although it will he feasihle with respect

to positivity.

The Newton steps dy, dx, ds, dç and du from the initial point are defined

by the system

Adx + a~ + Btdj.L - -AxA: - aÇ - Btp - -aÇ (3.14)

Atdy + ds - -AYk - Sk + atYk - 0 (3.15)

atdy+da - -atYk - u + atYA: - -a (3.16)

Bdy - -BYk+ d - 0 (3.17)

Skdx +Xkds e -XkSk -. tS (3.18)

udf, + çda - 1-çu - l-çu (3.19)

The rightmost terms come from the feasibility of (YA:, XA:, Sk) with respect

to Yk • From (3.15) and (3.18),

(3.20)
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• dx - 8;\6 - Xkds)

- 8;1(6 + XkAtdy)

Using (3.14) and the above we have

Combining (3.17) and the definition H := BÂ-1Bt, we obtain

and

(3.21)

(3.22)

(3.23)

(3.24)

•

If we define ÇN := ç + d1;., (jN := u + du, m 2 := ata-1B-tH-1BÂ-1a and

r 2 := a t Â -la, (3.16) and the expressions for dy and dp. above yield

atdy _ _atÂ -L(AS;16 + Btdj.t + (ç + dÇ)a)

_ at Â -LB tH-1BÂ-LaÇN - atÂ -la.{N - ata -1As;15

+at Â -LB tH-LBÂ-L AS;L5

_ (m2 - r2 )çN - at Â -1(1 - BtH-LBÂ-1 )AS;-16 = -UN

Finally we cau write from the above and (3.19)

and
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• Because linear equations are solved in one step by Newton's method, both

primal and dual feasihilities are regained in just one step. Indeed,

B(Yk + dy) - BYk - BtA-1 (AS;15 + Btdp. + (ç + ~)a)

- BYk =d

A(Xk + dx) + a<N + Bt(~k + d/.L)

- AXk + AS;15 + AS;1XkAtdy + a{N + BtePk + dJ.L)

- Axk + AS;15 - Atl-I(BtdfJ. + a~N + AS;18) + a,{N + Bt(Pk + dp,)

- Axk + B t Pk

- 0

and

at(Yk + dy) + UN

_ atYk + at~-1B t H-1 Btl-1a(çN + AS;15) - a ta -1As;15

_atA-l~N + (r2 - m2 )çN + a t A -1(1 - B tH- 1Bt:.-1 )As;lc5

t- a Yk

Each time a new eut is added to the model, it is necessary to give values

to the new variables ç and (j. We use the result of the folIowing lemma for

that purpose.

Lemma 3 Let q := atA-I(I - B tH-IBA-1)AS;18. Then the values of ç

and (j

•
Jq2 +4(r2 - m 2 ) - q

ç = -=----~-----
2(r2 - m 2 )

are the ones that maximize bath ÇN and (jN •
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Proof: The maximum of (3.25)

is attained when

[

(tr-q)(CT+é(r2-m2»-(r2-m2)(1+éO'-éq)
V (tr+~(r2-m2))1

{N = {(a+é(r2 -m2 »-(1+étr-{q)
(0'+{(r2-m2»2

which implies the result above. Since aN is a non-negative multiple of ÇN, it

is also maximized by the given values of { and (j. 0

Level of centering For the convergence of the algorithm, it is impor­

tant that this first Newton step does not yield a point that is too much off

center. This concept was precisely quantified in [36] and is adapted here for

completeness. For the sake of brevity, we give the result under the assump­

tion that the steps are taken with 6 = 0 (this is not an at-large assumption of

exact centering of the last center: only when defining the steps do we assume

8 = 0); as the above authors showed in Section 6 of their article, handling

the case 8 # 0 is a straightforward matter. Let us rewrite, using (3.20-3.25),

the steps dx and ds as

d e Sl/2X -l/2
S - ~N k k P

d e S-1/2X l/2,
X - ~N k k P

where

Using the fact that 1 - ~-1/2B tH-lB~-1/2 is a projection matrix, one can

easily compute that ptp = r 2 - m2 • Let us define fi := Ile - Xkskll. Then,

with a proof almost identical to that of Theorem 3.1 of [36], we can see that

if the values of ç and (j are chosen as

fi{ = vr2 - m 2 (1 + vil - /J2)
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1
(j =

~'

where f3 < ~: we have

The minjmum bound is attained for {3 = 1/~ and yields

In practice, we prefer to use the values of ç and 0" given in Lemma 3

which, compared to the values just above, favor posith,ity over centrality;

this because the non-positivity of ç and 0", for example through computer

roundoff, often has disastrous consequences, while the centering is a quite

robust procedure.

3.3.2 A centering Newton step

Once a feasihle point of Yk + 1 has heen attained, it is necessary to improve

its centrality, i.e. to work on equations (3.11) and (3.12). The presentation

will be clearer if we write A := [A a], c := [c; atYk] and redefine the feasihle

point (YN,XN,ÇN,SN,O"N) := (Yk + dy,xk + dx,ç + ~,Sk + ds,u + d(j) as

(YN, XN, SN) by setting XN := [XN; ÇN] E JRk+l and SN := [SN; UN] E R.k+1.

From the results of the previous section, the point (yN, X N, SN) satisfies the

system

Ax + Btp. - 0

Aty+s - c

By - d

x, s > 0

75



•

•

but not the centrality equations X s = e. With this fact we can write the

Newton equations

Adx + Btdp, - -AxN - Btp,N - 0

Atdy+ds - -AYN-SN+C - 0

Bdy - -BYN+d - 0

SNdx + XNds - e -XNSN -. 6

and the Newton steps

dJ.L - _H-1BLl- l ASN1§

dy - _Ll- 1Btdp, - Ll-1ASN16

ds - -Atdy

dx - -SNIXNds + S";/5

Convergence to the center Following the results of [36], we can prove

that the centering steps as described above converge quadratically to the

center. We first rewrite ds and dx as

1 1

ds - SkX;'2ps
1 1

dx - S;'2 XkP:r

where

and
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is a projection matrix.

Defining x+ := XN + dx and S+ := SN + ds we obtain

where 0 denotes the component-wise product. Define aIso 1] := IIXNsN - el!.

From the above and dx 0 ds = Px 0 Ps, I!X+s+ - el! = IIPx 0 P8J1. Finally, since
1 1

Px + Ps = 8;'2X;'2d and P~s = 0, NIizuno's [75] Lemma 1 applies and:

< v'2~X"NlS"N18
4

v'2 length(6) tf
- - L _1

4 i=l XiSi

M2 length(6) ~

< _v~ L .Qi
4 i=l mIni XiSi

.;2 length(6) tf
--E-I

4 i=l 1 - 17

v'2 172

< ---
4 1-7]

This shows that the recentering steps will improve IIX+s+ - eU quadratically

as long as 17 < 4+~ < 0.739, since this implies 1- t:'" < Tl. If 0.739 < Tl < 1,

a dual recentering could be used, as suggested in [36].

3.3.3 Convergence of the sequence of analytic centers

Under some hypotheses, Goffin, Marcotte and Zhu [35] proved the conver­

gence of the sequence of analytic centers generated by ACCPM-VI (linear

cuts) to a solution of V [(F, y); they aIso gave a complexity result. The

hypotheses are that the mapping F is pseudo-co-coercive, and that Y is the

unit box 0 < y < e.

The authors' result e>..-tends naturally to the case where equality con­

straints of the type Yi = ~ are present since such constraints simply fix the
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• values of the corresponding variables. The problem reduces frOID m dimen­

sions to m - p, where p is the number of equality constraints. In fact, the

authors of [35] write that analogons convergence and complexity resuIts for

the general Y = {y 1 AtY ::; c, 0 < y < e} would hold after a "... complete

and easy but tedious rewriting... 11 of [33] and again, the extension to an

equality-constrained V [CF, Y) is rather straightforward. Indeed, if we con­

sider Y = {y E IRm
1 AtY ::; C, 0 < y < e, By = d} with B a real, full-rank

p x m matrix with p < m, we can write without loss of generality

where B B is square p x p and invertible. Then yB is uniquely defined in terms

ofyR,

(3.27)

•

and a reduction of Y to a set y R C lRm
-

p (defined with linear inequalities

only), together with an appropriate elliptic norm, leads to convergence and

complexity results similar to those of [35].

It is very important to make clear that despite the convergence results

above, we do not consider the sequence of analytic centers when 100kiDg for

a solution to the variational inequality. Details are gjven in the next section.

3.3.4 Construction of the solution point

Nesterov and Vial [81] show a simple, two-dimensioDal and monotone vari­

ational inequality, for which the sequence of analytic centers converges to a

point that is not a solution (Note: the mapping is Dot pseudo-co-coercive).

They also show, for a slightly different algorithm, that a sequence of certain

convex combinations of previons centers will converge to a solution for any

monotone VI problem.
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Drawing an analogy between the Nesterov-Vial algorithm and ours, we

construct at each iteration k a point Y/t; that is a convex combination of the

previous analytic centers. The weights of the combination are the last k - 1

elements of the primal variable x, or approximately the inverses of the slacks

for the cuts generated at each of the previous centers. The equivalence is only

approximate because of the inexact centering. These weights are normalized

by their sum; Y/t; is then:

/t;-1
_ ~ X(n+i)

Y/t; = ~ k-l Yi
i=1 Lj=1 X(n+j)

Here X(n+i) refers to the (n + i)th component of x; aiso, recall that n is the

number of initial linear inequality constraints.

The sequence formed by the Yk points converges to the solution for the

Nesterov-Vial problem. Also, the speed of convergence improves significantly

for aU problems tested. A full explanation of the behaviour of this sequence

is not yet available.

Note that if the gap is computed at each iteration, two function evalu­

ations are necessary per iteration: F(Yk) to generate the cut and F(Y/t;) to

obtain the gap value.

3.4 Implementation of the algorithm

The algorithm was implemented using the MATLAB language and environ­

ment, version 5.1. MATLAB is a convivial setting for matrix computations

and algorithm development. With the computing intensive tasks devoted to

compiled subroutines, it cao also be competitive with C or Fortran codes,

see for example the LIPSOL solver of Zhang [112}.

Factorization The update Newton step described in Section 3.3.1 implies

the solution of a linear system, as well as the solution of a second smaller
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system when equality constraints are present. The same thing is true for the

recentering Newton step of Section 3.3.2.

The solution of linear systems is performed by dense Cholesky factor­

izations. Because of the density of the introduced cuts, the matrices to he

factored are dense; however, they have the dimension m x m of the problem's

size, independent of the potentially large number of cuts generated.

When equality constraints are present, one further p x p matrix is factored

for each step. This matrix can become positive semidefinite, but not positive

definite with respect to machine-precision, causing the fallure of the Cholesky

factorization. We apply, when necessary, the inelegant but efficient technique

of over-weighting the diagonal elements.

Sparsity and Products The sparsity of the initial constraints, box and

others, is exploited whenever possible in the matrix products. This is made

easy by MATLAB'S sparsity handling capability.

Initial center An initial analytic center is needed to start the algorithme

When only box constraints are involved, this is a trivial task. When more

complex constraints are present, the recentering subroutine is applied to a

point that is feasihle by construction.

Stopping criterion The primai gap function g(y) is used as a stopping

criterion. Its evaluation at Yk corresponds to solving the linear optimization

problem

We use the CPLEX software to solve this linear problem; given the dimension

of the Y's under consideration -up to a few hundred variahles-, this step

is very rapide

Cuts removal After the addition of severa! dozens or hundreds of cuts,

it is theoretically possible to remove many of them without hindering the
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convergence of the algorithm while improving its speed. However, in practice,

these cuts are very difficult ta identify. The harsh appraach of remaving

cuts with the greatest slacks can slightly improve the speed of the algorithm

although convergence cannot be guaranteed. As a ruIe, we keep ail cuts.

3.5 Numerical Results

We report here on our computational experience with the MATLAB impie­

mentation of the algorithme vVe include examples both with and without

equality constraints. Most problems, except the larger ones, are solved ta

the precision level g(Yk) > -10-4 ; this is astringent criterion which yields

very good accuracies 1/Yk -y. [1. In most examples, initial box eonstraints must

be set before the first iterations. The variables of all the problerns bappen ta

be bounded below by 0; the upper bounds in the problems without equalities

were set at 1 x 103 , and at 1 x 102 for those with equality constraints. This

choiee has to do with the magnitudes of the solutions' components, not with

the presence of equality constraints. Sorne problems are inherently bounded

upwards.

Results are reported as follows: Center precision rcfers to the value of

IIXs - ell at whieh a point is considered centered; a value of 0.1 ensures a

relatively good centering, while 0.9 is much more "approximate". The # it­

erations is the number of iterations required to meet the primai gap stopping

eriterion; it is therefore also the number of analytic centers, and of cutting

planes, generated for the problem. The # of centering steps is the total

number of centering steps that were required; this excludes the first step at

each iteration, Le. those steps that we called update steps. As a mIe, ei­

ther one or no centering step at all is required at each iteration. The cpu

column indicates the seconds or minutes of cpu time that were required for

the completion of the algorithme AlI runs except one were performed on an
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UltraSparc 1 workstation, model 200E, 128 Mb of memory. The C02 envi­

ronmental model was run on the multiprocessor HP machine of the E.T .H.

in ZOOch.

3.5.1 An environmental model for pricing C02
emission permits

This recent extension of the well-lmown N'IARKAL model was developed by a

group of researchers at the ETH and the Paul Scherrer Institute in Zürich (see

[5) and [11]). Their model, called MMMR for l'vlarkal Macro Multi-Regional,

integrates the energy models of three countries to allow the possibility of the

trade of pollution emission permits; a country can thus buy a right to pollute,

while the selling country must reduce its pollution by the same amount.

At the intemationallevel, the model has a V I(F, Y) in ten variables and

one equality constraint; the experience of [5] show that the mapping F is

"rather' monotone on Y ~ and "almost" pseudo-monotone (in the sense that

pseudo-monotonicity holds between most pairs of points and monotonicity

between many of them). At the nationallevel, a large nonlinear programming

MARKAL-MACRO model is solved for each country, yielding a value called

excess demand. The SUffi of the e..xcess demands of the countries is nothing

but the evaluation of F at a certain point Yk. When the intemational-Ievel

problem is solved solely on the basis of the (national-Ievel) excess demands,

the authors of [5], [11] cali the approach "aggregated". Should more informa­

tion (such as derivatives) be available from the national-Ievel problems, the

approach would be "disaggregated". This latter approach can, at least theo­

retically, allow faster solution of the intemational-Ievel equilibrium problem.

On the other hand, the aggregated view requires only a mjDjmal amount of

coordination and homogeneity of the national models, and this is a decisive

advantage in a practical context (50 that the thesis [11] considers in detail
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aggregated methods ooly). Furthermore, in the general case, one cannot ex­

pect the NLP's to have unique solutions, and therefore F may actually be

a point-to-set mapping:F. Clearly, the existence of the jacobian of such a

mapping cannot be guaranteed.

Within the aggregated approacb, the author of [11] compared a Negishi

approacb and an ACCPM-based method rough1y equivalent to the algo­

rithm presented above. (Note that when using the Negishi method, the

international-Ievel problem is not a V1). He concludes that the ACCPM ap­

proach is both much easier to implement and manage, and that even without

using the accelerating technique of Section 3.3.4, the ACCPM approacb is

two or three times faster than the Negishi approach, on the instances con­

sidered. The ACCP~I method was aIso much faster than a center-of-gravity,

cutting-plane method that was tested.

Very few other variational inequality algorithms could he used in this

setting: no derivative information, low monotonicity. Two of them are the

extra-gradient method, and the projection-based approach of Solodov and

Tseng, that were introduced in Section 2.5.1. Some comparison points he­

tween the latter method and ACCPM-VI are given in Section 4.6.3.

Aiso note that a further challenge in solving the intemational-Ievel equi­

librium cornes from the fact that simply evaluating F at a certain point cao

take severa! minutes on a fast computer.

We do not report cpu times for this example: 100 iterations can take 10

hours and more, but spent almost exclusively on the national levei NLP's.

The ID-dimensional VI itself, excluding the function evaluation, is solved in

0.01 second or less per iteration.

Results are shown in Table 3.1.
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1 Center precision U #= iterations 1 #= of centering steps 1 gap 1

1 ~:~ Il ~: 1 1~1 1=~::~ 1

Table 3.1: Example mmmr 10 variables

A Walrasian equilibrium problem: scarf

y ~ 0 ytAtp = 0
P ~ 0 pt(b - d(P) + Ay) = 0

•

A Walrasian or General Equilibrium is attained when there are no goods

whose demand exceeds the supply. Scarf ([93}) has described an economy

with a number of goods1 consumers and producers, that are related through

prices variables and production activities variables.

With the definitions

p prices of the goods (m by 1)

Y activities levels (n by 1)

d(P) consumers demand functions (ID by 1)

A constant technology or activity matrix; translates

activity levels into outputs (m by n)

b initial endowment of goods (m by 1)

the equilibrium is determined by the Nonlinear Complementarity Problem

(see (93] and [71] for example)

Atp <0
b - d(P) + Ay > 0

This formulation, which includes both primai and dual conditions on top of

the complementarity, is necessary to apply NCP algorithms. It also hides

the equivaIent V [(F, Y) with

F(P) = b - d(P), Y = {p 1 Ap < 0, P > O}.

This primal-only formulation involves m variables instead of the NCP's m+n,

and can be found as a direct consequence of Theorem 2.
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1 Center precision ij # iterations [ # of centering steps 1 cpu secs 1 gap 1

1 ~:~ ~ ~~ 1 1~2 1 ::~ 1~::: 1

Table 3.2: Example scan 14 variables

1 Center precision Il # iterations 1 # of centering steps 1cpu secs 1 gap 1

1 ~:~ ~ ~: 1 l~l 1 i:~ 1~::~:: 1

Table 3.3: Example scarf, normalised 14 variables

iteration # gap YI Yz YIZ Y13 YI4

1 - 0.0217 0.0239 0.5665 0.0363 0.0304
50 -0.1429 0.0617 0.0583 0.0629 0.0361 0.0930
102 -1.2847e-04 0.062144 0.058334 0.062012 0.036515 0.092786
103 -1.0792e-04 0.062144 0.058334 0.062012 0.036515 0.092785
104 -9.0878e-05 0.062145 0.058334 0.062012 0.036515 0.092785

Table 3.4: Progression in normalised scarf

In [93], two \Valrasian equilibrium examples are given, the largest one

with 14 goods and 26 production activities. The resulting NCP has 40 vari­

ables, but the equivalent VI only 14.

Notice a further advantage of our algorithm. over most NCP methods. By

assumption of the Walrasian model, the demand function d is homogeneous

of degree o. As shown in [71], the jacobian matrix Vd(P) is then singular;

typical ''fixes'' are to fix one price, called numéraire, or to normalise the prices

with an equality constraint. Our approach requires no sncb fixing; prices can

sîmply be normalised after completion of the algorithme Of course, it is also

possible to use a normalising equation if desired; results of runs with and

without normalisation are given in Tables 3.2, 3.3 and 3.4. Figure 3.2 shows,

for two levels of recentering precision, the evolution of the gap with respect

ta the i terations. We display both the gap associated to the analytic centers,

and the gap at the weighted average of past centers.
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Figure 3.2: Example scarf: Gap vs iterations for different centering preci­
sions

3.5.3 An option pricing model in finance

In the area of finance, the pricing of stock options and other derivative prod­

ucts has become of paramount importance in the last two decades.

In [47], the authors reforIDulated the Black-Scholes model for American

type options as an infinite-dimensional VI which, through discretization by

fini te-differences, is approximated by a finite-dimensional VI. For a simple

American option \\ith one underlying asset, the discretization takes place

along two axes, the current price of the asset and the time to expire. A time­

stepping approach allows the problem to be solved as a sequence of VIs, one

for each time step. We solved a problem with the data:

• Strike price: K = $10

• Time span: T = 6 intervals of 2 weeks

• Price span: [$0, $20] in intervals of $0.05.

• Risk-free interest rate: T = 3%

• Diffusion term: u = 0.2
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1 Center precision ij # iterations 1 # of centering steps 1 cpu minutes 1 gap 1

1 ~:~ ~ ~~~~ 1 1~98 1 = I-~~~ 1

Table 3.5: Example option 400 variables

We were here only interested in solving a "real-world" large VI, so that we

report only on the first of the six 400-variable problems. The reader ean see

Chapter 4 where similar problems were solved entirely. See also Appendix A

for a description of the modeL

The resulting V ICF, Y) has 400 variables, and has no other initial con­

straints than boxes. The mapping F is tinear with a non-symmetric jacobian.

This problem is highly structured and sparse while its size grows very rapidly

with finer discretizations; in a sense, it is very simple and very large. Our

purpose here was not to compete with more speeifieally-adapted algorithms,

but to show that our algorithm can solve problems with a few hundred vari­

ables. Numerical results are shown in Tables 3.5.

3.5.4 Other problems without linear equality constraints

The problems in this section do not use the capability of the algorithm to

handle equality constraints.

The first example is a Nash equilibrium, the second one a spatial priee

equilibrium problem, the third is a traffie assignment problem and the fourth

is an energy mode!. They are available from MCPLm [19].

Example choi: Choi, DeSarbo and Harker [13] have applied a Stackelberg­

Nash equilibrium approach to the prieing of analgesics. The model has 13

variables, and the utility function used is quadratie and is Dot a gradient

mapping, Le. its jaeobian is not symmetric. The results are shown in Table

3.6.
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1 Center precision 1) # iteratioDS 1 # of centering steps 1 cpu secs 1 gap 1

1 ~:~ ~ : 1 ~ I~: I~:=I
Table 3.6: Example chai 13 variables

EXaDlple tobin: The second problem is a well-known spatial priee equi­

librium model from Tobin [102]. It is a so-ealled priee fonnulation: supply

and demand at the different markets are funetions of the priees. In opposi­

tion to the quantity formulation, this one involves no equality eonstraints.

This model has two interacting commodities on five markets or regions. The

transportation cast, demand and supply funetions are nonlinear, and the

problem is asymmetric, as weil as non-monotone at the solution. See Tables

3.7 and 3.8 below. Figure 3.3 shows, for two levels of recentering precision,

the evolution of the gap with respect ta the iterations. We display both the

gap associated ta the analytic centers, and the gap at the weighted average

of past eenters.

1 Center precision ~ # iterations 1 # of centering steps 1 cpu secs 1 gap 1

1 ~:~ ~ :~~ 1 S~4 I:~ 1=~:;:: 1
Table 3.7: Example tobin 42 variables

iteration # gap YI Y9 YI7 Y40 Yu Y42

1 - SOO SOO 500 SOO 500 Soo
2S0 -113.1288 0.0689 3.9642 12.7263 22.7554 18.7534 29.1753
500 -0.0994 3.7882e-05 3.8827 12.7678 22.7644 18.7604 29.1615
606 -0.0011 1.4303e-06 3.8827 12.7679 22.7644 18.7604 29.1615
607 -0.0010 1.3816e-06 3.8827 12.7679 22.7644 18.7604 29.1615
608 -2.1252e-05 1.3241e-06 3.8827 12.7679 22.7644 18.7604 29.1615

Table 3.8: Progression in tobin
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Figure 3.3: Example tobin: Gap vs iterations

Examples gafni and bertsekas: This interesting application to traffic

assignment was described in [7]. There are two strictly equivalent formula­

tions of the same problem (see the results in Tables 3.9 and 3.10). The first

formulation is a nonlinear complementarity problem (NCP) in 15 variables

while the second is a more general mixed complementarity problem (MCP)

in 5 variables. The delay functions are quadratic, and the nonsymmetry of

the problem is controlled through a parameter 'Y. While both fonnulations

are just specialized variational inequality problems and can thus be solved

as V ['s, the lower dimension of the MCP is very favorable to the speed of

the algorithme

1 Center precision [1 # iterations 1 # of centering steps 1 cpu secs 1 gap 1

1 ~:~ ~ ~: 1 l~ 1 ::~ 1~:::: 1
Table 3.9: Example bertsekas 15 variables

1 Center precision ~

1 ~~~ ~

•

# iterations 1 # of centering steps 1 cpu secs 1 gap 1

43 1 0 1 0.95 1 -0.8ge-4 1
41 41 1.0 -0.90e-04

Table 3.10: Example gafni 5 variables
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Example etamge: This is an MPSGE formulation of the ETA-MACRO

model of A. Manne, [67]. The model represents the interactions between

the energy sector and the economy of the United States and comprises 114

variables. See the numerical results in Table 3.11 below.

1 Center precision ~ # iterations 1 # of centering steps 1 cpu minutes 1 gap 1

1 ~:~ II~: 1 l~ 1 :: I~:=I
Table 3.11: Example etamge 114 variables

3.5.5 Other problems with linear equality constraints

We present computational experience with two spatial price equilibrium proh­

lems that are readily available in the literature. The so-called quantity for­

mulation of sncb problems uses inverse demand and supply functions, Le.

price functions respectively in terms of the demand and supply quantities.

With this formulation the equilibrium is defined as a variational inequality

problem with (linear) conservation of flow constraints (see e.g. [77]). Our

algorithm allows us to work directIy with this original formulation.

Example nagumey: Our first example is a small problem from A.

Nagurney's book [77]. It has 2 supply markets and 2 demand markets; with

the shipment quantities on the 4 arcs, it has dimension 8. The transportation

costs, supply prices and demand priees are alilinear functions. The jacobian

of F in the VI(F, Y) formulation is asymmetric, so that no equivalent convex

optimization formulation exîsts. The results are given in Table 3.12.

1 Center precision ~ # iterations 1 # of centering steps 1 cpu secs 1 gap 1

1 ~:~ Il :~ 1 5°7 1 ~:~ 1~:;:: 1

Table 3.12: Example nagumey 8 variables
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Example harker: The second equality-constrained example (see [42])

has 5 markets all acting as demand and supply markets for the traded com­

modity. There are 16 connecting arcs for a total of 26 variables. AIl functions

are polynomial and nonlinear. This problem includes a parameter 'Y which

contrais the level of asymmetry of the jacobian of F, with 'Y = 0 implying a

symmetric matrix. Results are shawn for two values of 'Y, 1 and 15; see Tables

3.13 and 3.14. It is especially interesting to note the influence of asymmetry.

Symmetrized methods such as the ones discussed in (42) are, quite naturally,

sensitive to deviations from symmetry: there the ï = 15 case takes twice

the time and the iterations of the 'Y = 1 case (4 minutes vs 2 minutes, on a

pre-1988 computer). Our algorithm seems on the other hand to he unaffected

by asymmetry.

1 Center precision ~ # iterations 1 # of centering steps 1 cpu secs 1 gap 1

1 0.9 ~ 262 1 0 1 9.2 1-O·82e-03!
0.1 252 251 13 ·O.70e-03

Table 3.13: Example harker 26 variables ï = 1

1 Center precision ~ # iterations 1 # of centering steps 1 cpu secs 1 gap 1

1
0.9 Il 236 1 0 1 8.2 1-O·97e-03 1

. 0.1 ~ 233.. 232, Il .. ·O.93e-03

Table 3.14: Example harker 26 variables 'Y = 15

3.6 Conclusion

We have presented an algorithm for pseudo-monotone or monotone varia­

tionaI inequalities V1(:F, Y) over convex sets. At each iteration, it requires

one function evaluation to generate a cut, and a second one if the gap at

the weighted average point is to be computed. Beyond that, each iteration

usually consists of solving from one to four linear systems, depending on the
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desired recentering precision (which controls the number of centering steps)

and the presence or not of equality constraints. The mapping F needs not be

differentiable if it is single-valued, or it may he poînt-to-set and (maximal)

monotone. The set Y can be defined by linear equalities and înequalities, or

implicitly by a separation oracle.

Our approach may not he competitive with specialized methods for prob­

lems with special features= LCP's, differentiable NCP's and MCP's, strongly

monotone and differentiable VI's, etc. However, when the jacobian is difficult

to obtain, or simply not defined (e.g. in multi-valued cases), it is our opinion

that there are few other efficient alternatives. Furthermore, the low level of

monotonicity required in practice (pseudo-monotonicity or plain monotonie­

ity) makes the ACCPM-VI method with linear cuts attractive both in terms

of robustness and speed. This is weil illustrated in the MMMR application

above.

Finally, let us point out that faced with a VI with a strongly monotone

mapping, it is possible to accelerate considerably the ACCPM-VI (linear

cuts) by using quadratic cuts, and that this is true whether or not jacobians

are available. This "ACCPM-VI (quadratie cuts)" is the next chapter's topie.
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Chapter 4

A Quadratic Cut AlgorithIll

In the previous chapter: we introduced an algorithm for pseudo-monotone

variational inequalities, that uses linear cuts. For a variational inequality

problem whose mapping is both differentiable and strongly monotone, we

suggest an algorithm that uses quadratic cuts based on the Jacobian matrix.

Furthermore, our numerical experience indicates that approximations of the

Jacobian matrix are also efficient, when the Jacobian's evaluation is difficult

or impossible.

The chapter is divided as follows. We introduce in Section 4.1 the Dikin

ellipsoid and quadratic cut concepts. We present in Section 4.2 the quadratic

cut algorithm. In Section 4.3, we discuss a leaner variation of the previous

section's algorithm, which, is faster in practice, and no less robust. Jacobian

approximations are treated in Section 4.4, while Sections 4.5 and 4.6 respec­

tively cover our MATLAB implementation of the algorithm and our numerical

results.

93



• 4.1 Ellipsoids and quadratic cuts

4.1.1 Cuts

Let us first reeall Theorem 5, which allows the generation of linear cuts for

any VIP that is at least pseudo-monotone.

Theorem 9 Let Y be a nonempty, closed, convex subset of JRm and let F

be a continuous, pseudomonotone mapping from Y into mm. Then y. solves

the V [(F, Y) if and only if y. E Y and

F(y)t(y - y*) ~ 0 Vy E y (4.1)

•

Therefore, at any point y" E Y, the eut F(Yk)t(Yk-Y) > 0 defines a half-spaee

which contains the solution set of V [(F, Y) and on whose border Yk lies.

When F is differentiable, it is also possible to define quadratic cuts by

using the first arder approximation of F(y) at some point YA: E Y

Using this approximation with the definition of V/CF, Y), we have

where we define V" := (VF(Yk)~VF(Ykt). We also use the notation a" := F(YA:)

w henever necessary to avoid any confusion when multiplying V" by the vector

F(y,,). In fact, using a parameter a, we can define a family of cuts whose

members are
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for some Ct >0. Clearly, we have the quadratic eut (4.2) above for cr = 1

and the tinear cut (4.1) for Ct = O. If we assume V k to he a positive definite

matrix, which will he the case when, as we shall suppose, F is strongly

monotone, the cuts QQ (YA:) (Ct > 0) have the following properties.

• Qa(Yk) is an ellipsoid.

• YA: lies on the border of the ellipsoid; in fact, Yk is the tangency point

of the ellipsoid to the line {y 1 F(Yk)t{y - Yk) = O}.

• the center of the ellipsoid is at Yk - O.5a- 1V;lak_

For a general mapping F, there is no guarantee that a solution point y.

will not he Ieft out by the quadratic eut (we call such cuts unsale). However,

under the assumption of a-strong monotonicity, one can build quadratic cuts

that are independent of V A: and that never leave the solution out (sale cuts),

as explained in the following lemma, suggested. by Lüthi [64].

Lemma 4 The point y* is a solution of the problem V/CF, Y) with F Q­

strongly monotone if and only if y. E Y and

Proof: Suppose that y. is a solution of the prablem V/CF, y); by definition,

By adding, for any y 1 the above inequality ta the strong monotonicity in­

equality

we obtain

F(y)t(y _ y*) > ii(y - y*)t(y _ y*) = a(y. _ y)f(y. _ y)
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Reversely,

implies

which, by theorem 5 and the monotonicity of F, implies that y. solves

V/CF, y). 0

AIso, under the same assumption of a-strong monotonicity, sorne mem­

bers of the family of cuts Qa(Yk) are safe cuts: any ellipsoid Qa(Y,,) with

a such that aVk -( ii1, will not eut off the solution point y •. The proof is

similar to that of the lemma above. (For a reminder of the relation between

strong monotonicity and the jacobian of the mapping, the reader is refered

back to Lemma 1)

Despite the theoretical availability of safe cuts, our suggestion, described

in detail in the following sections, is to use unsafe cuts on a temporary

basis, rather than keeping sale ones until completion of the algorithme The

motivation for this is simple: if a eut must be "opened up" (i.e. defined with

a very small positive parameter a) because only a rough lower bound on the

strong monotonicity parameter is known, then this safe eut brings little more

to the model than the corresponding !inear eut.

4.1.2 Analytic centers and Doon ellipsoids

The analytie center was introduced by G. Sonnevend [99] for a bounded

polyhedron (with an interior) defined by a set oflinear inequalities. (Analytic

centers were already diseussed in Section 1.3.2, but are reviewed here for the

sake of clarity.)
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• Definition 16 Consider the set

and the associated dual potential function

where the index i is used to denote the components of c and the rows ai of

At.

The analytic center yC of Y is defined as the point maximizing the dual

potential function over the interior of Y:

yC = arg ~ax (E meCi - a~y»)
yElfitY .

&

Altematively, one can define the analytic center with the primai potential

function or the primai-dual one, obtaining in all cases the same point. It is

weIl knO'wn that if Y is bounded, the center yC is unique. Writing out the

fust-order optimality conditions for the equivalent mathematical program

ma."<imizey.s
subject ta

we obtain the now-classical equatians

Ei ln Si

Aty+s =c
s>O

Ax - 0

X,S > 0

(4.4)

(4.5)

(4.6)

(4.7)

•
In the next section, the definition of analytic center will he extended ta

sets defined by linear and quadratic inequalities.
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•

Figure 4.1: Dikin ellipse and Dikin direction of some polyhedral set

Let us also define the ellipsoid of Dikin

where s = c-Aty as in the above equations. See [2] or [891 for reference. This

ellipsoid cao he defined at any point y E int(Y), and it is always inscribed

in Y, Le. D(y) c Y; a proof is given in [89].

For the mapping F : lRm ~ IRm and the hyperplane L(yC) = {y 1 F(yC)ty =

F(yC)tyC}, the point in D(yC) that is the farthest frOID L(yC) is

The second term is called Dikin direction (see a graphical representation in

Figure 4.1.2). Note that in the linear cut framework, Le. that of Chapter

3, where a linear eut is introdueed at Yk, the Dikin direction is the Newton

direction towards the next analytic center Yk+l-

Finally, Anstreicher [2] recently showed that the size of D(y) can be

augmented while remaining inscribed.
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• 4.2 A quadratie eut algorithm

•

A variational inequality algorithm using linear cutting planes and analytic

centers was introduced in [35J; in [18] the method was extended to the

VI(F, Y) with a point-to-set mapping F and linear equality contraints in

Y. Fundamentally~a cut is introduced at the center of a set of localisation,

known to contain the solution(s). This cut separates the set of localisation

in two parts; under some qualification of F, one of the two parts is known

ta contain the solution set. The size of the set of localization can then be

decreased; the analytic center of the reduced set is found, and the process

repeated.

We introduce in this section a method which shares the same cutting

planes and analytic center foundation, but that uses quadratic cuts to im­

prove the rate of convergence. It is crucial to realize that each quadratic cut

is used only temporarily, as described below.

This section describes our quadratic cut algorithm. After establishing the

basis of the algorithm, we define the concept of analytic center for a linear­

quadratic set. We then present the updating step, Le. the first step out of

the CUITent analytic center, and the centering steps, used after the update ta

obtain the next analytic center.

4.2.1 A quadratic eut algorithm

As exposed in the previous section~ the Jacobian-based quadratie eut

can suffer the major drawback of possibly cutting off solution points, unless a

sufliciently small 0' is used. This "sufficiently" is difficult to quantify, and we

prefer ta use a constant value of G'. Our choice of Ct was guided by the simple

99



• variational inequality problem equivalent to the rnjnjmjzation of a convex,

quadratic function without constraints:

(4.8)

•

and the equivalent problem V/CF, Y), F(y) = My + fi, Y = IRm
•

The classical Newton's method for unconstrained. rnjnjmjzation would

solve problem (4.8) in one step by setting, from any current point Yk, the

next point Yk+l as:

The step -V;lak is optimal, and to a large extent, the success of Newton's

method eomes from this property.

For the eorresponding V/CF, Y), our algorithm (which is defined below)

would step, from a eUITent point Yk, to a next point Yk+l that is the center

of the ellipsoid Qo(Yk):

O5 -l~-lYk+l = Yk - . a v k ak

Clearly, the optimal step - V;lak is taken by our algorithm when a = 4is

used. From now on, we will then reCer to QO=l/2(Yk) as the quadratic eut

Q(Yk).

To avoid leaving a solution point irremediablyout of reach, quaclratic cuts

are introdueed on a temporary basis only: a eut Q(Yk) is kept only until the

next analytic center is found. At that point, the quadratic eut is abandonned

and replaced by its corresponding, safer, linear eut. A basic description of

the algorithm is then as follows:
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ALGORITHM ACCPM-VI (QUADRATIC CUTS)

Step 0: Initialization

Set k = 0, yo = Y, Ya anaIytic center of YO
Step 1: Termination Criterion

If the primai gap g(Y/i;} > -E then stop

Step 2: New eut

Compute cut (1/2)(y - Yk)tVk(Y - Yk) + F(YAJt(y - YA:) < 0

Step 3: Analytic Center

Find an approximate analytic center Yk+l of

Yk n {y : (1/2)(y - YA:)tvk(Y - YA:) + F(YA:)t(y - YA:) < O}

Step 4: Localisation Set Update

Set Yk +1 := l'k n {y : F(YA:)tYA: > F(YA:)ty }

k:= k + 1

Return to Step 1

Step 1 consists of evaluating the primai gap defined earlier; this is the same

criterion that was used in ACCPM-VI (linear cuts). Step 2 introduces the

quadratic cut, which basically corresponds to a function evaluation and a

Jacobian evaluation. Step 3 will be discussed in the next sections; it is nec­

essary to both define the linear-quadratic anaIytic center and gÏve a method

to find it. It is very important to realise that in Step 4, the cut used in the

update is not the quadratic cut but its corresponding linear cut. Note that

although it is perfectly possible to use here the convex combination of centers

approach of Section 3.3.4, our numerical experience indicates that it brings

no advantage, and we usuaily dispense with this step.

4.2.2 Analytic center of a linear-quadratic set

The analytic center was defined in section 4.1.2 for a polyhedron; when a

quadratic cut is added, the definition must be adapted as foUows.
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To keep the notation simple, let us first define Yk = {y 1AtY < c}, but

without loosing sight of the fact that A and c grow at each iteration, since a

linear cut is added, and are therefore dependent on k.

If we consider the set

lA: n Q(Yk) - {y E lRm
1 AtY < c} n

{ y E lRm
1 (1/2) (y - Yk)tVk(Y - Yk) + F{YI:)t(y - Yk) < 0 }

and we define corresponding slack variables

then the analytic center of l'A: n Q(Yk) can be defined as the point maximizing

the appropriate potential function over the interior of l'A: n Q(YI:):

where as before i denotes the components of c and the rows a~ of the n x m

matrix At. The optimality conditions for this maximization problem can be

found to he

Ax + x q ( Vk(Y - Yk) + F(Yk)) - 0

Aty+s = c
(1/2) (y - Yk)tVk(Y - Yk) + F(Yk)t(y - Yk) + Sq - 0 (4.9)
Xs - e
XqSq - 1
x,S,Xq,Sq > 0

The variables x E lR~ and x q E IE4 are respectively associated with the

linear cuts and the quadratic cut. It is usual to refer to the first equation as

the the primai feasihility constraint, to the second and third equations as the

dual feasihility constraints, to the fourth and fifth equations as the centrality

constraints.
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4.2.3 An updating step

We desctibe in this section and the next one a method for computing the next

analytic center Yk+l when a (quadratic) cut is introdueed at the current point

Yk. FuIlQ8JD.entally, a Newton method is applied to the system of equations

defining the analytie center. More than one Newton step may he necessary

to reacb 1/k+17 and we distinguish the first step out of Yk, called the updating

step, frOllJ the following ones, called centering steps.

The qjfficulty with the updating step lies within the latest cutting plane;

this is ttVe whether the eut he linear, as in [35] and [18], or quadratie as

here. Indeed, because Ylc lies on the eut, the corresponding slack value is

necessarilY 0, thus infeasible with respect to the positivity eonstraints. The

linear eut approach of [35] and [18] deal with this difficulty by introdueing a

positive slack value for the new eut, even if this destroys the primai and dual

feasibility; this positive value can be chosen analytically to ensure that the

(full) Ne\\fton step will preserve all the positivity eonstaints. In a quadratie

eut, it is Inore diffieult to do so for lack of provably good values for the

variables Sq and x q associated to the new eut.

We propose an alternative route: frOID a current point YA: we step to a

point Oll a. certain path between Ylc and the center of the quadratie cut. This

path possesses the very interesting property of passing through the analytic

center of the intersection of Dikin's ellipsoid E(ylc, 1) and the quadratic cut

ellipsoùJ; in Figure 4.2.3, this center is denoted YDQ. Provided Dikin's ellip­

soid repre5ents reasonably weil the localisation polyhedron YA:l this analytie

center cau be expected to he close ta the analytic center of the intersection

of Yk and the quadratie eut ellipsoïde

Let
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Figure 4.2: Path from Yk to the center of Q(Yk)

be the Cholesky factorisation of ~ and let L-IVkL-t have the eigenvalue­

eigenvector factorisation

The matrLx Q is orthogonal (QQt = 1) and A is diagonal. Then using the

changes of variables

we rewrite the quadratic cut

as

and the Dikin cut

as
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• The problem that defines the analytic center of the Dikin and quadratic cut

ellipsoids is then

over the interior of the intersection of the two ellipsoids. Ifwe define Sdkn (w) :=

1 - w'w and Scut(w) := -~w'Aw - F(YI:)'L-'Q, the first order optimality

condition is

or

w = _! (scut(W) l + !A)-l QtL-1F(YI:)
2 Sdkn(w) 2

This equation traces, for values of a parameter (} := $
dknt"J from 0 to 00, a

Scut; U1

curve from YI: to the center of the quadratic cut ellipsoid; see Figure 4.2.3.

Furthermore, the curve passes through the analytic center of the intersection

of the two ellipsoids (YDQ), and the center is easily computed once fJ is known,

because of the diagonality of ;=~:~I +(1/2)A. Therefore, a curvilinear search

can he performed to find an appropriate, approximate value of fJ, and the

step easily recovered through

dy := y - YI: = L-tQw

In the original space, the curve is

y(fJ) = YI: - ~L-tQ(fJ-II + ~A)-lQtL-IF(YI:)

Clearly, y(D) = YI: and l.îIDB-+oo y(O) = YI: - Vi'"lak ; these points are respec­

tively the current point and the center of quadratic cut ellipsoid. Also, the

derivative of the multi-valued function y with respect to fJ is
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50 that for small fJ, the tangent to y(fJ) is the Dikin direction.

•

dy(e)
dfJ

6=0

-0 SL-'Q(I + ~A)-2QtL-IF(Yk). 2

-O.SÔ-1F(Yk)
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The linesearch along the curve w(O) -+ w(oo) would naturally try ta

maximise the Dikin-Quadratic cut potential

This would lead to the analytic center of the intersection of Dikin's ellipsoid

with the quadratic cut ellipsoid. However, since our ultimate goal is the

analytic center of the intersection of the polyhedral localisation set and the

quadratic cut ellipsoid, it would be more appropriate to guide the linesearch

with the PolyhedraI set-Quadratic cut potentiai

1
cppQ(w(8)) = ~log(Ci - a~y" - a~L-tQw) + 10g(-2"wtAw - wtQtL-1F(Yt»

%

4.2.4 A dual centering step

Following the updating step, which led us from YA; to y+, it may he necessary

to move doser to the analytic center of the Polyhedron-Quadratic cut inter­

section. This can be done with pure dual steps; recall that the updating step

does not yield a full set of primaI-dual values, in opposition to the updating

step of Chapter 3, 50 that dual centering is best. The reference problem is

maximizCyeintYk log(-(1/2)(y - Yk)tVk(Y - Yk) - F(YIr;)t{y - Yk»)
+ Li log(Ci - a~y)

and its first-order condition is

where

Sq(Y) .- -(l/2)(y - YIr;)tv,,(y - YA;) - F{YIr;)t(y - Yt)

sCy) .- c - AtY
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Applying Newton's method to these equations from the point y+ gives

l'vI Y~tep - -(1/Sq{Y+»v - AS(y+)-le

where M .- (1/Sq{Y+» V 11: + AS(y+)-2At - (1/Sq(y+))2vv t

and v .- V 11: (y+ - Yk) + F(Yk)

The criterion used to evaluate the centrality of a point y+ is an elliptic norm

of Y&tep scaled by the Hessian M of the potential function (see [951):

c5(y+) := IIY~tepIlM = JY~tepJ.VfY&tep

More than one centering step may have to be taken, depending on the

precision of centering that is desired.

4.3 A praetical quadratie eut algorithm

In practice, the aIgorithm described in the last section is more complex and

heavier than needed. In fact, it is possible to avoid the eigenvalue-eigenvector

decomposition and the nonlinear linesearch without significant effects on the

number of iterations, while accelerating the time per iteration. The improve­

ment of the performance is especially visible with larger problems, where the

eigenvalue-eigenvector decomposition becomes time-expensive.

In this section we describe this alternative algorithme

4.3.1 Two linesearches for an initial slack

We briefly mentioned in section 4.2.3 the main difficulty with the approach

of [18] when a quadratic eut is involved: namely, to find provably good initial

values for the new variables Sq and xq associated ta the quadratie eut.

Reeal1 that Sq is the slack for the quadratic eut: Sq = -«1/2)(y­

Yk)tVk(Y - Yk) + F(Yk)t(y - Yk»' As rouch as possible, our initial value
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for Sq should be close to its final value, i.e. the slack at the next analytic

center. Also, we know that at the analytic center, x q = 1/Sq.

We suggest the following approach to set the initial value of Bq. Two

linesearches are performed from Yk, with the potential

lnsq + Eln(Cï - Aty)
i

as criterion. The two directions in question are the straight line from Yk

to the center of the quadratic cut ellipsoid Q(Yk), and the Dikin direction.

Whichever linesearch is the most successful in finding an approximate center

will have its corresponding slack as the initial slack value.

The reasoning behind this idea is the following. On one hand, if the

quadratic cut ellipsoid is small relative to the Dikin ellipsoid -for example

if Q(Yk) c D(Yk)- then the next aoalytic center Yk+l is likely ta be close to

the center of Q(Yk), and the first linesearch will detect this. If on the other

hand the quadratic cut ellipsoid is large compared to the Dikin ellipsoid, the

effect of the quadratic cut is little more than the effect of the corresponding

tinear cut F(Yk)t(y - Yk) < o. It is known in this case that there is a point

on the Dikin direction that is in the radius of quadratic convergence for the

Newton method underlying the centering steps of the next section (see [34]).

See Figures 4.3 and 4.4 for a graphical representation.

Therefore, it can he expected that the hest of the linesearches will yield

a reasonable approximation of the next analytic center, and so a reasonable

initial value for Bq. The initial value of xq is simply taken to he 1/Bq.

4.3.2 A primai-dual infeasihle update step

We caU updating step the first (Newton) step that is taken out of the CUITent

point Yk, towards the next analytic center Yk+l of the intersection l'A: n Q(Yk),

which is defined by the equations (4.9) .
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Figure 4.3: The two search directions; case 1

Figure 4.4: The two search directions; case 2
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• Applying Newton's method to this set of equations we obtain a first step

out of Yk' Our approach is primai-dual 50 that in fact we derive steps for

all variables: y, 5, X, 5 q and xq • Sorne remarks are in order, concerning

the starting point (Ys, 5 s, x s, Sq., x q.) for the Newton step. First, notice that,

after the computation of the point (Yk, Sk, Xk, 5q", xq..J, (i.e. the previous an­

alytic center as weIl as the values of its corresponding variables), one linear

inequality (a cut) has been added to rk-l to define l'k. This was the linear

cut replacing the abandoned quadratic cut. As a consequence, S5 and X s

have one more component each than SI.; and XI.;. The starting values Ss and

x~ are then set, with their "extra" components, 50 that on one hand, the

linear dual feasibility condition holds, and on the other hand, the centrality

is not disturbed:

•

The starting values Sq. and x q• are determined by the procedure described

in section 4.3.1. Finally, the initial value Ys is simply the current point, Yk.

Using this starting point, we obtain the following equations defining the

step (dy, ds, dx, dsq , dxq ):

Adx + F(Yk)dxq + 2xq• V k dy - -Axs - Xq.F(Yk) (4.10)

Atdy + ds - -Ay., - Ss +c - 0 (4.11)

F(Yk)tdy + d5q - -Sq. (4.12)

Ssdx +Xsds - 8 (4.13)

sq.dxq + xq.dsq - 0 (4.14)

where 8 := e - Xsss ' The right handside tenn in (4.11) is a consequence of

dual feasibility of (Ys, 5 s). In (4.13), 6 is not zero, which explicitely accounts

for the inaccuracy in the centering of the previous center, Yk .
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• Rearranging these equations, we obtain the following step:

2
dy - -~ -1 (AS;le + -F(ylc))

Sq.

ds - -Atdy

dSq - -Sq. - F(Yk)tdy

dx - 5;1(6 - X"ds)

dXq
2 2-xq.dsq

- - xq• +
Sq.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where ~ is defined as

Notice that this step preserves dual feasibility since

If after the step, the centering level

(4.20)

of the new point is considered sufficient, then y + dy is taken as the new

approximate center Yk+ 1- Otherwise, one or more centering steps are required;

these are described in the following section.

4.3.3 Primal-dual centering steps

Let us denote by y+, s+ l x+ l st, xt the result of the updating step, i.e.

y+ - ys+dy

s+ - ss+ds

x+ - xs+dx

s+ - Sq. + dSqq

x+ - xq• + dxqq• 111



• We again apply Newton's method to the system ofequations (4.9), using this

. (+ + + + +) . . 'tIT b .tlme y ,s ,x ,Sq' x q as startmg pomt. vve a taIn

Adx + (Vk(Y+ - Yk) + ak)dxq + xtvk dy - -Ax+ - x;(Vk(Y+ - Yk) + aAJ

Atdy + ds - -Ay+ - s+ + c = 0

(Vk(Y+ - Yk) + ak)tdy + dSq - _q2 - ai(y+ - Yk) - st
S+dx + X+ds - 8

dy -
ds -

dSq -

dx -
dXq -

•

where we define ak = F(Yk), 0:= e-X+s+ and q2:= (1/2)(y+-Yk)tvk(y+­

Yk). These equatians yield the centering step

-1l-1
( AS;le + (s~ + xt + q2 + a:Jy+ - Yk») (2Vk(Y+ - Yk) + ak) )

-A.tdy

-st - q2 - F(Yk)t«y+ - Yk) - (2Vk(y+ - Yk) + F(Yk»dy

(S+)-1(8 - X+ds)

l-x:dsq

s+q

where Ll is defined as

Again, this step preserves the dual feasibility. The centering measure is again

(4.20) and centering steps can be taken until the desired level of centering is

reached.

4.4 Jacobian matrix approximations

Faced with an algarithm that uses derivative information (the Jacobian VF),

one asks if it is not possible ta keep the spirit of the method while avoiding

the derivatives evaluations. The answec, aften, is yes; in optimization, the
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idea Led to, among others, the quasi-Newton methods. In our case, the use of

Jacobian approximations based on mapping evaluatioDS can also he fruitful.

This is the topic of this section.

Drawing from well-established optimization theory, we use a Broyden­

Fletcher-Goldfarb-Shanno (BFGS) matrix for the Jacobian approximation.

The BFGS-type approximation is a symmetric matrix which is updated by

a rank-two correction, at each iteration, Le. at each evaluation of F. Im­

portantly, the BFGS scheme is built to preserve positive definiteness of the

approximation matrix, under a condition discussed below.

Defining the notation YI!.. := Yk+l - Yk and FI!.. := F(YIc+d - F(ylc), the

BFGS Jacohian approximation for VF(Yk+l) is

J. - J PI!..F~ JkYI!..Y~Ji;
k+l - k + -pt - t T •

I!..YI!.. Yt:..JkYt:..

The updating process is usually initiated with the identity matrix. Under the

strict monotonicity of F, positive definiteness is preserved: if J" is positive

definite, then 50 is Jk+1o Indeed, for any z # 0,

tJ. ztFa F1z ztJ"Yày~Jkz
z k Z + Ft - t T

t:..Yt:.. Y~JkY~

(ztJkZ)(y~JkY~) - (y~J"Z)2 (F~z)2
t T + FtYaJkYt:.. aYt:..

The first term of the right-hand sicle is non-negative by the Cauchy-Schwarz

inequality and the positive-definiteness of J,,; the second term is non-negative

because of the monotonicity assumption. Also, the two terms cannot vanish

at the same time: the first vanishes onLy if z = Ày~ for sorne À E lR (À # 0),

and in that case F~z = ÀF~Ya, which is nonzero by strict monotonicity.

Quasi-Newton updates sucb as the BFGS are built upon the concept of

jinite-step convergence: if F is a symmetric linear mapping, then the updates

converge to the exact Jacobian in a finite number ofsteps. Unfortunately, this

finite convergence is Lost for nonlinear mappingg. Furthermore, this property
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relies on F(Yk+l)(Y"+l - y,,) = 0, which will not hold in our algorithm. Note

also that as a SUIn of symmetric matrices, Jk +1 is symmetric, and thus only

approximates the symmetric part of the Jacobian. Nothing is lost here for

our algorithm, since the quadratic cut only uses the symmetric part of the

Jacobian in any case.

The scaling of the updates (>tJ" for some À E m.+) is a common improve­

ment for quasi-Newton methods, and this is the last point we discuss in this

section. In optimization, scaling is motivated by an argument emphasizing

an improvement of the solution at each iteration, as opposed to some global

convergence over severa! iterations (see, for example, Luenberger [62, sections

9.1,9.5-9.6]) . The argument applies to the idealized case of strictly convex,

unconstrained quadratic minimization, with e.'"<act optimal steplengths avail­

able; scaling is however aIso applied to the more general cases (nonlinear but

non quadratic functions, inexact linesearches), usually with great benefit.

The same is true with our a1gorithm, namely, the argument from optimiza­

tian applies to an idealized VI problem, but scaling can bring benefits in the

general VI case. Indeed, consider a problem VI(F, Y) where F is a linear

mapping: F(y) = My + b with M positive definite, and Y = Hlm (uncon­

strained). AIso, let our algorithm he slightly modified as follows. First, we

keep no eut whatsoever from one iteration to the next, thus being guided

only by the single quadratic eut geoerated each time from the current J a­

cobian approximation. This implies that the analytic center is the center of

the quadratic eut. Second, we make no centering steps ever, only an updat­

ing step at each iteration; if we did Dot prohibit them, centering steps could

happen, because of the linesearch that is our third and last modification: an

exact linesearch is performed on each (updating) step, with respect to the

goal F(y·) = O. Then,

1. our VIP algorithm generates the same iteration points as the corre­

sponding quasi-Newton (optimization) method, Le. the method whose
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• Hessian approximations are our Jacobian approximations, and

2. the classical argument [62, pp.261-262] in favor of spreading the eigen­

values of JI:M-1 above and below 1, applies here as weIl.

We are therefore interested in a scaling of the updates

J. - J. À(F~F~ _ J"Y~Y~JI:)
1:+1 - 1: + Ft t T '

AYA YAJI:YA

that will ensure that the eigenvalues of J"+lM-1 include 1 in the interval

they span. Let us introduce the notation

•

Then, since FA = MYI:+1 + b - }v/y" - b = MYA' we have FA = M 1/2tl: and

y~J"YA ttTktk
yi,FA = ttt" .

Note also that Tk and Jk lV/-1 are similar, because M l/2T"M-l/2 = J"M-l,

and thus have the same eigenvalues el ~ e2 < .'. < em. Finally, Rayleigh's

principle ensures that

50 that setting
À = tttl: _ y~FA

ttTÂ:tk Yi J"YA

gjves the desired scaling of the eigenvalues.

Note that for the highly specialized problem and algorithm described

ahove, it can he proved that the condition numher em/el of JI:M-1 is no

better than that of JI:+1J.\;/-1, 50 that in theory only a scaling of the initial

approximation would he needed. In practice, it is better to use the scaling

factor at each iteration.
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• 4.5 Some notes on a MATLAB implementation

•

We implemented the "curve-searching", dual algorithm of Section 4.2 and

the "line-searching", primai-dual algorithm of Section 4.3 with the MAT­

LAB environment and language. The integrated functions of MATLAB, e.g.

Cholesky decomposition, and the straightforward handling of sparsity, allow

the rapid development of efficient codes. Sorne remarks on our particular

implementations follow.

Linesearches A.t the outset of each iteration, two linesearches are per­

formed (Section 4.3.1) for the algorithm of Section 4.3. We use a Newton

rnethod linesearch, with backtracking to remain within the CUITent set l'A: as

weIl as within the quadratic eut. For the algorithm of Section 4.2, the curve

is searched by bisection, with appropriate safeguards.

Sparsity We called .4 the matrLx in which the vectors of the (linear)

cuts are stored; within A, it is important to differentiate between the initial

constraints (columns), i.e. those that define the Y of VI(F, Y), from the

generated constraints (columns) , i.e. those produced by the algorithme The

latter are of the fonn F(y) for some y, almost always dense, and stored as

sucb. The former, however1 are usually sparse, e.g. when Y is simply a box.

This sparse part of A is therefore treated differently: its sparsity is used both

in its storage and in the computations. Note that this can he an important

part of A: for a box constrained problem in m variables (2m initial columns)

requiring 2m iterations to solve1 at the worst (in the last iteration) only one

half of A is dense.

Linear systems Each step, whether update or recentering, requires

the solution of a square, m-dimensional linear system. This is done with a

Cholesky factorization. Note that sparse techniques cannot be used, as the

matrix A8;lX"At , and thus the matrix~, are dense.
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Positive Definite matrices Positive definiteness of the Jacobian matrix

is important for the quadratic eut; if, beeause of round-off error, the matrix

fails to he positive definite, an over-weighting of the diagonal is used to

recover the property.

Gap evaluation The evaluation of the primal gap is done by the soft­

ware CPLEX, which is linked to MATLAB by a MEX-file.

Initial point An initial point (y, x, s) is easy to find in many cases with

simple sets Y. Otherwise, a feasible point is built and the centering step used

to find the initial analytie center.

4.6 Nmnerical results

The implementations of the quadratie cut algorithms were run on a variety of

examples. There are few genuine variational inequality problems available in

the literature, but we nevertheless found, or built, enough problems to high­

light the main features of the algorithme For details on any given example,

see the given references.

The following remarks apply to aIl the sections below. Under the Method

heading, Curue-searching refers to the algorithm of Section 4.2; Line-searching

refers to the algorithm of Section 4.3; BFGS refers to the algorithm of Sec­

tion 4.3 but using a BFGS approximation of the Jacobian, with scaling; and

Linear is the linear eut method that was described in Chapter 3. The four

methods use, respeetively and per iteration:

1. one evaluation of F and one of V F;

2. one evaluation of F and one of VF;

3. one evaluation of F;

4. two evaluations of F .
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The iteration COllnt is given under # iterations. The # centering steps col­

umn indicates the total number of centering steps that were necessary, for

all the iterations; typical1y, an iteration involves the (unavoidable) updat­

ing step and one centering step. The level of asymmetry of the Jacobian,

evaluated at the solution point, is given under the heading Asymmetry; the

measure, for a Jacobian J, is

IIJ - .Pli

where we use the Frobenius norm of matrices. With this measure, a sym­

metric matrix rates 0 and a skew-symmetric one, 1 (the numerator is the

skew-symmetric part of J, while IIJ + Pli is the symmetric part of J). The

above measure is invariant with respect to scalings J := kJ, as it should he.

Furthermore, for matrices with uniformly or normally distributed elements,

the asymmetry measure depends very little on the size of the matrix, beyond

m = 25 or 50. Note that for the examples considered below, the asymmetry

level varies little over the feasible area, 50 that the solution-point evaluation

is a good indicator of the asymmetry at the other points in Y.

The Cpu time column gives the time spent to solve the problem, excluding

data input; this is evaluated by MATLAB'S built-ïn function cputime. We

indicate under Gap the level of our stopping criterion, the primai gap.

We do not report on our tests with Jacobian approximations of other

types, sucb as BFGS without scaling and memoryless BFGS. These approx­

imations invariahly led to slower run times than the scaled BFGS.

AlI tests were done with a centering level of 0.1, Le. a point is considered

to he a good enough analytic center when this centrality measure is below

0.1. The level of centering that yields the fastest run time depends on the

algorithm and the problem at hand. Our experiments with the quadratic

algorithm seem to show that for the prohlems we considered, 0.1 was a good
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• all-round value. In comparison, one often does best with a centering level of

0.9 with A.CCPlvI-VI (linear cuts).

AlI problems but one were run on an UltraSparc 1 SUN station, model

200E, with 128 ?\lIb of memory. The Markal-Macro Multi Regional (MMMR)

example was run on the parallel HP machine of the E.T.H. in Zürich.

4.6.1 A small problem: chai

We present, to begin, results for a small problem that is weil known in the

literature. chai is a 13-variable Nash equilibrium model that was written by

Chai, DeSarbo and Harker [13]. It is available as a box-constrained varia­

tional inequality, -or rnixed complementarity problem-, from the web site

MCPLIB [21]. The mapping F is nonlinear, nonquadratie, and nonsym­

metric. This problem is a good candidate for an aceeleration of the basic

tinear eut method by quadratic cuts. Indeed, mapping evaluations are long,

by comparison with linear mappings of the same dimension; therefore, the

slightly longer iteration time of the quadratie eut approach is vastly com­

pensated by the drop in the number of iterations, when compared with the

linear eut approach. Results are given in Table 4.1. Figure 4.5 shows the

improvement of the primai gap with the number of iterations; here the line

"Jacobian" refers to the line-searching, primaI-dual algorithm of Section 4.3.

Method ~ # iterations 1 # centering steps 1 Cpu time 1 Gap

•

Curve-searching 7 12 1.51 sec 1 . 10 -4

Line-searching 8 6 1.06 sec 1. 10 -4

BFGS 12 13 1.49 sec 1. 10 -4

Linear 64 66 12.11 sec 1. 10 -4

Table 4.1: Example chai, 13 variables, Asymmetry=O.07
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Figure 4.5: Example choi: Gap vs iterations for three methods

4.6.2 A C02 market: The MMMR model

\Vhile the improvement between quadratic cuts and linear cuts in chai is

sizeable, the problem is one that can also solved by other efficient methods

that require an explicit knowledge of the Jacobian. The MMMR model is

different in that the Jacobian is not computable; very few methods exist for

this kind of problem. The quadratic eut approach was used with success,

despite the low monotonicity level of the problem.

•

The Markal-Macro Multi-Regional (MMMR) model is a large-scale rep­

resentation of the energy activities of many countries, as weIl as a. macro­

economic model of the economies of these countries. It was developped by a

group a researchers at the E.T.H. and the Paul-Scherrer Institute (Zürich);

see [5] and the recent thesis [11]. The model was used for the pricing of C02

emission permits: within the context of a "pollution trade" market, countries

are allowed to buy or sell their rights to emit certain amounts of polluting

gases.
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1 Method ij # iterations 1 # centering steps 1 Gap 1

BFGS ~ 35 56 1-1.3 .10 : 1

Linear 75 75 -1.3 . 10-

Table 4.2: Example HMMR, 10 variables

At the base of the model are national-Ievel su~models, that, in mathe­

matical programming terms, are large nonlinear optimization problems. At

the international level, these NLPs are linked by an equilibrium problem in

the form of a complementarity problem F(y) > 0 y >0 F(y)ty = 0, or

equivalentlya variational problem V/CF, m.~). The evaluation of the func­

tion F at point y corresponds here to solving each of the national level

NLPs, where y is used as a parameter by the nonlinear programs. No­

tice then that: 1) function evaluations are costly, and need to be kept to

a minimum (the NLPs eonsidered in [5] require severa! minutes of cpu on

a mini-supercomputer); 2) the Jacobian V F is not defined, let alone easily

computable.

We report on our results with a three-eountry, five-time-period, two­

produet problem described in [5]. The derived VIP has ten variables, and

the mapping F in question was proved not to he monotone, although it is

almost pseudo-monotone (such statements are difficult to quantify).

Figure 4.6 shows the improvement that cao he made by using a quadratie

cut approach, over the linear eut method.

4.6.3 Problems from the projection-method literature

vVe present results on two problems found in the recent article of Solodov

and Tseng [98] on a variaot of the projection method. As the authors argue,

their method and the extra-gradient method of Korpelevitch [55] are among

the most widely applicable methods for the monotone VI(F, Y) since they
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Figure 4.6: Example mmmr: Gap vs iterations for two methods

neither require the strong monotonicity of F nor its differentiability. Fur­

thermore, the two methods apply, in theory at least, to problems with Y

polyhedral or not (in practice, the projection operation may be diffieult).

Strictly speaking, ACCPM-VI (quadratic cuts) cannat be used when F is

simply monotone; however, it has been used advantageouslyeven on problems

that are not everywhere monotone (e.g. the MMMR example), so that we

feel that there is sorne justification in a comparison with projection-based

methods.

We tested the two largest "true" (Le. general) variational inequality prob­

lems, -the authors also reported on LPs and LCPs-, one in dimension 10

and another in dimension 20. In [98], the problems are respectively ealled

Nashl0 and qHPHard, and are taken from [42] and [45]. The authors mod­

ified the two problems slightly by adding a eonstraint E~ YA: = m where m

is the dimension of the problem. Since in its aetual form our quadratic eut

algorithm does not handle equality constraints, we solved the fully equiva-
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~ # iterations 1 # centering steps 1 Elapsed time 1 GapMethod

Curve-searching 56 78 6.50 sec 5.10 -3

Line-searching 56 84 4.46 sec 5.10 -3

BFGS 57 57 4.03 sec 5.10 ·3

Linear 204 204 11.4 sec 1.10 -3

•
Table 4.3: Example qHPHard, 19 variables, Asymmetry= 0.034

~ # iterations 1 # centering steps 1 Elapsed time 1 GapMethod
Curve-searching 5 5 0.54 sec 1.10 ·2

Line-searching Il 5 0.75 sec 1 .10 -3

BFGS 14 16 0.97 sec 1 . 10 ·3

Linear 68 73 3.56 sec 1 ·10-4

Table 4.4: Example Nashl0, 9 variables, Asymmetry = 0

lent versions of the problems in 9 and 19 variables, using the constraint to

eliminate one variable in each case. We report our results in Tables 4.3 and

4.3. It must be stressed that the two algorithms that use the Jacobian itself

rely on a richer set of information than the projection-type algorithms; this

gives them an unfair advantage. On the other hand, the BFGS and Linear

approaches use the same information as the projection-type algorithms, Le.

only the mapping evaluations.

•

Note that, for the sake of comparison, we report not the cpu time but the

elapsed time (MATLAB function etime), and we set our stopping criterion ta

match the different criterion used in [98]. The results obtained by Solodov

and Tseng with projection-type algorithms were 251.6 seconds and 555 func­

tian evaluations for qHPHard, and 10.6 seconds and 192 function evalutations

for Nashl0. Improvements of one arder of magnitude seem possible with the

quadratic cut ACCPM-VI, while the linear cut ACCPM-VI performs quite

adequately.
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4.6.4 Tests of the behaviour of the algorithm

To better evaluate the behaviour of the quadratic cut ACCPM-VI, we used

a problem model allowing enough fiexibility in terms of size, asymmetry,

nonlinearity, etc. The model is inspired from [70] but has aIso been used

with modifications by severa! authors. The mapping F for the variational

problem VI(F, Y) is defined as

F(y) = a(A - At)y + [3BtBy + 'Ydiag(arctan(y» + b

where A and B are randomly generated m x m matrices whose elements are

taken from a uniform distribution on [0,1], and the third term is a diagonal

matrix with 'l-th element arctan(Yi). The parameters a, /3 and 'Y cao be set to

any nonnegative number1 and the vector b is used to control the position of

the solution (interior points, vertices, points in a face). The first term, with

A - At, brings asymetry to the problem without changing its monotonicity.

The second matrix BtB is symmetric and positive definite, thus bringing

strict monotonicity; when the second term dominates the others, the problem

is typically easier to solve. The third term is used ta bring nonlinearity iota

the scene. We defined the set Y as the simplex

m

Y={yelRmly>o, LYi<m}
i=l

We were first interested in observing the behaviour of the algorithm with

respect to the dimension of the problem. We generated severa! problems of

dimension 10 to 200 variables. _All problems were run with the same set of

parameters, a = 1: /3 = 3: 'Y = 2; in all cases, the vector b was set to yield

the desired interior solution: [0.3: 0.3, ... , 0.6, 0.6, ... , 0.9, 0.9, ... ,0.9] with

each of the three blocks being about a third of the full vector. The primai

gap stopping criterion was sIightly relaxed for the higher dimensions, sa as

to keep the number of correct digits relatively constant. It seemed more
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• relevant ta us to require a constant precision on each component, rather

than keeping the same gap value. The stopping criterion was set to -10-2

for the dimensions 150 and 200, to -10-3 for dimension 100, and to -10-4

for alliower dimensions. In Figure 4.7, we plot the numbers of iterations and

cpu seconds required to solve each problem. Although the iteration count

is relatively linear with respect to dimension, the time needed to solve the

problems increases much more rapidly than the dimension. This is of course

te be expected, given the order O(nm2 ) of the matrix products involved

at each iteration (m and n being as usual the size of the problem and the

cumulative number of cuts)
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Figure 4.7: Effect of the dimension of the problem

vVe were also interested by the role played by asymmetry in the efficiency

of the quadratic eut algorithm. Because of the implied Jacobian symmetry

of the quadratic cut, one could expect that departure from symmetry would

be less favorable to the use of the quadratic eut.

We ran a 25-variable problem, successively increasing the parameter cr

from 0 to 100. The other parameters were held at {J = 10 and 'Y = 10. Note
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• that changing lX does not influence the monotonicity of the problem. The

results are plotted in Figure 4.8, where we give results for both the linear

cut ACCPM-VI and the quadratic cut ACCPM-VI. Clearly, asymmetry is

detrimental to the performance of the quadratic cut: from Ct = 8 (asymmetry

level ~ 0.05), the linear cut method is superior to the quadratic cut approach.
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Figure 4.8: Effect of the asymmetry of the problem

4.6.5 Valuation of options in finance

•

In finance, derivative products sucb as put and call options have seen their

importance grow considerably over the past decades. The valuation of these

products is a topie of intense research; several approaches compete for speed

and accuracy. One snch approach is to fonnulate the problem as a set of

LCPs (or VIPs), and is described in Appendix A. Our goal here is to test

a medium size, real-life application of variational inequalities, with our algo­

rithm. Given that the problem is highly structured and sparse, we cannot

dispute that specialized Lep algorithms would he more appropriate in this

case.
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~ # iterations 1 # centering steps 1 Cpu time 1 GapMethod

Curve-searching 251 252 302.4 sec 1.10-4

Line-searching 251 253 89.5 sec 1.10-4

BFGS 257 265 111 sec 1·10-4
Linear 748 748 368 sec 1.10-4

•
Table 4.5: Example options, 100 variables, Asymmetry=O.002

We solved a typical 3-month American put option, with the following

parameters:

• Strike price: K = $25

• Time span: T = 3 months, divided in 24 equal periods.

• Priee span: [$0, $50] in intervals of $0.5

• Risk-free interest rate: r = 10%

• Diffusion term: (j = 0.4

The time-stepping algorithm means that 24 VIPs in 100 variables each

are solved successively. Table 4.5 shows the average number of iterations and

cpu time for the lOO-variable VIPs.
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Conclusion and contributions
to original kno'Wledge

The finite-dimensional variational inequality is a mathematical tool whose

power and versatility have only begun to he recognized. It is our opinion that

with the development of reliable, flexible, and efficient algorithms to solve

it, the variational inequality will take the place it deserves in the engineer's,

the economist's, and the operations researcher's toolbox. Unfortunately, the

generality of the VI makes unlikely the possibility of an algorithm that would

be best for a11 instances. Rather, one can expect that severa! algorithms will

each best solve a certain type of VIs. In this thesis, it was precisely our goal

ta deveIop, implement, and test two sucb aIgorithms.

The first one, ACCPM-VI (linear cuts) is indicated for problems V[(F, Y)

that lack such features as differentiability and strong monotonicity of F. It

can he applied ta problems with multi-valued mappings. For example, if the

evaluation of F at a point is implicitly defined by a nonlinear program, it

may weIl be that both Jacobian information is unavailable, and F is multi­

valued (when the solution of the program is not unique). The algorithm

can treat explicitly linear equality constraints Y, and through outer linear

approximations, any convex set Y.

The second algorithm, ACCPM-VI (quadratic cuts), applies to the same

classes of prohlems as the Iinear version, except that F needs be strongly

monotone for the quadratic cuts ta he well-defined; the relative importance
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of the differentiability of F is not clear at the moment, given that in our

tests, Jacobian evaluatioDs can be avoided and replaced byapproximations,

without much damage to the performance of the algorithm.. When both the

linear and the quadratic cut versions of ACCPM-VI apply to a problem,

the level of asymmetry of the Jacobian (whether used explicitly or not) will

usually determine which version performs best.

There are few variational inequality algorigthms that can treat problems

lacking strict monotonicity and differentiability. Of those few, projection­

based methods (e.g. [55] ~ [98l) and convex feasibility reformulation meth­

ods ([60], [66], [81]) are the main two groups. A full-scale comparison of

such methods is difficult for two reasons. First, a good set of test proh­

lems remains to be built; this is true for general VIs but even more so for

not differentiable VIs. Second, most methods from the above two groups

were either never implemented, or only very superficially. However, we be­

lieve that we have shown in this thesis that ACCPM-VI (linear cuts), and

ACCPM-\'1 (quadratic cuts) when it applies, are both robust and efficient

methods for solving a large variety of variational inequality problems; fur­

thermore, our numerical tests seem to indicate that ACCPM-VI, in either

version, would have the upper hand over CUITent projection-based methods,

in many instances.

Of course, there remains plenty of room for future research; we give sorne

possibilities here. First and foremost, the convergences and complexities of

bath the linear and quadratic eut approaches remain to be analyzed, which

may not be an easy task gjven the difficulties that the analysis of other

ACCPM-type methods has posed 50 far. Second, the handling of equality

constraints remains to be e.xtended to the quadratic method. More generally

on the topic of equality constraints, a comparison of reduction techniques, as

was alluded to in Sections 3.3.3 and 4.6.3, and direct handling of equalities,

would be interesting. Third, it may he possible to find heuristic or theoretical
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mIes ta adjust two parameters: the level of centering, and the Ct parameter of

the quadratic cut (Section 4.1); the former directly influences the number of

centering steps, while the latter changes the quadratic eut. Fourth, it seems

attractive ta keep quadratic cuts, if they can be proved to be safe; this is

closely related to bounds on the strong monotonicity parameter. Finally, the

idea of abandonning less useful cuts to speed up the linear aIgebra keeps a

certain appeal for analytic center cutting plane methods, although in practice

it has been rather disappointing (see the thesis [221).

Contributions to original knowledge By and large, the first two

chapters of this thesis report on existing work, while the last two contain new

results. The only notable exception to this is Section 1.4.4 which presents

new ideas that \Vere not pursued further in this thesis. In Chapter 3, we

extend the work of [35] in many directions. First, linear equality constraints

are allowed and treated explicitly. Second, a sequence of convex combina­

tians of analytic centers is described, and this sequence is observed to have

a performance vastly superior to that of the sequence of anaIytic centers.

Third, the possihility of ma..ximal monotone, multi-valued mappings is con­

sidered. FinaI1y~ the implementation of the method demonstrated the ability

of the algorithm ta solve efficiently a large variety of problems. In Chapter

4, ail the materiai is original, including the definition of analytic centers for

non-polyhedral sets, the infeasihle dual and primaI-duaI Newton steps in the

presence of a quadratic cut, the Jacohian approximations, and of course the

MATLAB implementations of the two versions of the quadratic cut algorithme
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Appendix A

The pricing of options as
cOlllplernentarity probleOls

Given that finance is not a typical or well-known area of application of vari­

ational inequalities and complementarity problems, we present here the con­

cepts that underlie the option valuation examples of Chapters 3 and 4. Our

account does not provide all the details, and the interested reader is referred

to the taxts by Wilmott, Howison and Dewynne [105] and [106] for a more

complete description and references ta articles on the subject.

Options are derivative products: they are, by nature, dependent on, or

derived from, an underlying asset or group of assets (bonds, equity stocks,

commodities, etc.) The most common options are ealled puts and caUs. A

put gives its owner the right to sell to a party the underlying asset at a

specified priee. This priee is the strike or exercise priee. Reversely, a eall is

a right to buy the underlying asset at the strike priee, from the party that

issued, Le. sold, the calI contract. Clearly, a right is not an obligation: the

owner of the ealI or put has the option to exercise her right or note When

the date at which the option can he used is fixed, e.g. 3 months after the

date of purchase, the option is of European type. When the owner has the

choice to exercise her right at anytime within some period, the option is
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• called American. The choice of name is due to historical reasons; European

and American options are traded everywhere, not only on one continent or

another. \Vhen there is only one underlying asset, the options described

above are called vanilla calls and puts, to underline their commonplace and

simple nature.

vVe will discuss here the American vanilla put option which depends on

the following parameters:

• Exercise price E

• Time span T

• Risk-free interest rate r

• Volatility (j.

The time span specifies the period during which the option may be exercised;

this typically ranges from three months to a year. The annual risk-free rate is

the best rate of retum that can be obtained with near-absolute certainty, in

treasury bills for example. Finally, the volatility is a measure of the amplitude

of the underlying asset value variations. We denote by S the value of the

underlying asset and use t as time variable, 0 < t :5 T. The value of the put,

which is a function of both S and t, is written V(S, t).

At this point, we introduce the Black-Scholes differential equation, the

comerstone of a large part of modem derivative pricing theory. A justification

of the Black-Scholes model can be found in any finance text on derivative

products. \Vith the above notation, it is

av(s, t) ~ 2S2 a2ltT(S, t) Saves, t) _ V - 0
at + 2(j 8S2 + r as r- CA.!)

•
With the addition of sorne boundary conditions, this equation is use<! to

derive explicit formulre for the European options. The case of American

options is more complicated, and there are no known explicit formulre, sa
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• the function -yr(s, t) must he approximated numerically. The American put

model is also based on the Black-Scholes fonnula; whenever an early exercise

is not advisable, the conditions

V>E-S
av 1 2~V av
-+-c?s -+rS--rV=O
8t 2 aS2 as

hold. When, on the other hand, the value S of the underlying asset warrants

an early exercise, the conditions

av 1 2~V av-+-crS -+rS--rV<O
8t 2 ôS2 as

•

then hold. The value of S which marks the separation between the "early

exercise" area and the "do not exercise" area, is called the free boundary.

The difficulty with the American option is that the Cree boundary is unknown

and hard ta find. Fbrtunately, the so-called complementarity formulation

av 1 2(J2V av
V-(E-S»O ----c?S--rS-+rV>O (A.2)

8t 2 ôS2 ôS -

(v - (E -S)). (-a; -~,rS2~~ - rS~~ +rV) = 0 (A.3)

avoids this difficulty as it makes no explicit reference to the free boundary.

The linear complementarity problem above requires a transformation before

being amenable to finite dimensional, numerical methods: di5cretization.

Short of a formula, i.e. an explicit knowledge, of the function V(S, t) over

the continuous variables S and t, the asset value space and the time space

are discretized, for example with

o < n ~S < lV ~S for n = 0, 1, ... , N

o < m Da.t ~ Al ~t for n = 0, 1, ... , M

where ~S and ~t are "small" enough intervals in the value space and time

space, respectively. The constant M is taken 50 that M tlt = T, and N is

large enough that S, the value of the stock, could reach N tlS only with a
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• very small probability. This discretization forms a grid in the S x t space,

and V(S, t) is approximated at the grid points; we will use the notation

~:= V(n~S,m~t) and

The derivatives in (A.2)-(A.3) are then approximated with finite differences.

For example, one can use forward differences

8Vi:' t) = V(S, t + ~~ - V(S, t) + O(dt)

for the time derivatives and central differences

av(s, t) = V(S + ~S, t) - V(S + as,: t) O«(l::.8)2)
as 2~S +

a2 V(s, t) = v"(8 + 11S, t) - 2V(S, t) + V(S - ~S, t) O«~S)2)

8S2 (~S)2 +
for the asset value derivatives. If the terms O(At) and O«AS)2) are aban-

doned, the Black-Scholes formula takes the form

vnm+l - vnm 1 2S2 Vn~l - 2vnm + ~l sVn~l - ~l ~
~t + 2"0" (~S)2 + r 2.6.8 - r n .

After sorne rearrangement, the complementarity problem (A.2)-(A.3) is then

approximated by the following set oflinear complementarity problems (Leps):

.!VfVm ~ Vm+ l , vm > A,
(i\fVm - vm+l) . (Vm - A) ~ 0

where 1.v[ is a tridiagonal matrix

m = M - 1, ... , 1, 0

BD Co 0 0

Al BI Cl
l'vI - 0 A2 0

C N - 1

0 0 AN BN

with

An 1 ~ 2- --( n - rn)At
2

Bn - 1 + (~n2 + r)At
1Cn - -2(a2n2 + rn)Ât.
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The vector A is constant and equal to

A = [E, max(E - ~S, 0), ma:'{(E - 2aS, 0), ... , max(E - N dS, O)]t

v M - A
vm - E0
v;m - 0,N

The reason for which the model is set as a set of Leps, instead of one

larger one with (J.V +1) x Cl\i! +1) variables, is to allow time-stepping. Indeed,

notice that if Vm+ l is knowIl, then vm can be computed as the solution of

an Lep in Just J.V + 1 variables. (The boundary condition takes care of the

initial V M vector) This approach is much more efficient than the solution of

a large LCP treating all variables simultaneously.

The method presented above is called the implicit finite differences method;

it is implicit because the components of the vector vm cannot he found ïn­

dependently one of the other. A minimally different approach, the Crank­

Nicolson method, \Vas used in the numerical tests of Chapters 3 and 4. The

only difference with the implicit method is in the finite difference scheme used

to approximate the differential terms. Although the Crank-Nicolson method

involves a small number of supplementary operations, it gives an O((~t)2)

approximation of the time derivative, which improves the overall efficiency of

the algorithm. A description of the Crank-Nicolson method is given in [105].

It should he noted that our description of the problem and the algorithm

\Vas done in the actual space of the variables, Le. asset value and time. This

is in opposition with the transformation of variables that several authors
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• use; this allows them to treat dimensionless variables~ and to rednce the

vanina option model to a diffusion equation, frequent in many areas of

applied mathematics. For our approach, we saw no specifie advantage to

this transformation, which of course requires a reversed transformation for

interpretation of the solution, and used the original variables themselves.

Finally, the Leps ahove can he easily proved equivalent to the following

set of variational inequalities, which are used in our numerical examples:

Find vam > A such that

(Mv:m - Vm+ l )t(Vm- v:m) ~ 0 \;/ vm > A
} m = M - 1, ... , 1, 0

•

The set of VIs is solved sequentially~ and Vm +1 is thus a constant vector in

each of them.
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