
1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Braneh des services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa. Onta;lQ Ottawa (Ontario)
K1AON4 K1AON4

NOTICE

YOUt Me VOIre '~'èn'nCC'

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were r:-T,ad with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, ve"Jillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



DEGRADATION PROCESSES AND RELATED RELIABILITY MODELS

JIN LU

Faculty of Management
McGill University

Montreal

July 1995

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree of Ph.D..

© 1995, Jin Lu



M+I National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1A DN4 K1A DN4

Your "le Vorre '~'&Pnce

Ou, flle Notre reference

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
th~s thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12422-3

Canada



ACKNOWLEDGEMENTS

1 wish ta thank Professor Alex Whitmore for many enlightening discussions and

many valuable comments on earlier drafts of the thesis, thesis proposai, and earlier

theory papers that are now a part of this thesis; for financiaI support during my

Ph.D. studies; and for his effort in obtaining the transistor data set. 1 aIso wish

to thank Professors Richard Loulou, Brenda MacGibbon, and V. Seshadri for their

valuable caœments on my thesi[; proposai and earlier theory papers. 1 would like to

express my gratitude to Dr. T.C. Dent(.~l and Dr. M. Chown of BNR Europe for

providing the transistor data set.

1 am grateful to fellow Ph.D. students: Claude Mathieu for his help in translating

the thesis abstract to a French version; and Paul Berry and Li Jiang for their help

in obtaining the stock priee data set.



TABLE OF CONTENT

ABSTRACT

CHAPTER 1. INTRODUCTION 1

CHAPTE1:l. 2. THE BASIC DEGRADATION MODEL
AND ASSOCIATED DATA STRUCTURES . . 5
2.1 A Review of Degradation Model::,;
2.2 The Wiener Process as a Degradat:on Model
2.3 Data Structures for D~gradation and Lifetime Data
2.4 Summary

CHAPTER 3. A MODEL BASED ON DEGRADATION
DATA AND LIFETIME DATA 17
3.1 Density Function of a Truncated Wiener Process
3.2 Inference for Terminal Point Data 24
3.3 Inference for Mixed Data . . . . . . 32
3.4 Sample Path Homogeneity . . . . . 36
3.5 Inference When Barrier ais Unknown 38
3.6 Empirical Bayes Inference for Terminal Point Data 39
3.7 Summary

CHAPTER 4. INFERENCE FOR A CONDITIONAL
RANDOM PROCESS ... . . . . . . . . . 46
4.1 Statistical Inference
4.2 The Effects of a Barrier on MLEs
4.3 Summary

CHAPTER 5. COVARIATE STRUCTURE . 54
5.1 A Model for Time Fixed Covariates
5.2 Inference for Terminal Point Data with Covariates
5.3 Summary

CHAPTER 6. CASE APPLICATIONS 60
6.1 A Case for Terminal Point Data
6.2 A Case for Terminal Point Data with Covariates
6.3 A Case for Conditional Data
6.4 A Case for Mixed Data with Covariates
6.5 Summary

CHAPTER 7. CONCLUSION AND DISCUSSION 80

TABLES AND FIGURES

REFERENCES



ABSTRACT

Reliability charaeteristics of new devices are usual1y demonstrated by life testing.

When 1ifetime data are sparse, as is often thf case with highly reliab1e devices,

expensive devices, and devices for which acce1erated life testing is not feasible,

reliabi1ity mode1s that are b..:.sed on a combinatioIl of degradation and lifetime data

represent an important practical approach. This thesis presents re1iability models

based on the combination of degr'adation ar~d 1ifetime data or degradation data

a10ne, with and without the presence of covariates. Statistica.1 inference methods

associated with the mode1s are also deve10ped.

The degradation process is assumed to follow a Wiener process. Failure is defined

as the first passage of this process to a fixed barrier. The degradation data of a

surviving item are described by a truncated Wiener process and lifetimes follow

an inverse Gaussian distribution. Mode1s are deve10ped for three types of data

structures that are often encountered in reliability studies, terminal point data (a

combination of degradation and lifetime data) and mixed data (an extended case

of terminal point data); conditional degradation data; ann covariate data.

Maximum likelihood estimators (MLEs) are derived for the parameters of each

mode!. Infe:-ences about the parameters are based on asymptotic properties of the

MLEs d.lld on the like1ihood ratio method. An ana1ysis of deviance is presented and

approximate pivotal quantities are derived for the drift and variance parameters.

Predictive density functions for the lifetime and the future degradation 1evel of

either a surviving item or a new item are obtained using empirical Bayes methods.

Case examples are given to illustrate the applications of the models.



RÉSuMÉ

Les caractéristiques de fiability des nouveaux équipements sont souvent estimées par des

tests sur la durée de vie. Quand les données sur la durée de vie sont rares, comIr.e c'est

souvent le C4S pour les équipements de haute fiability, les équipements dispendieux et ceux

dont les tests accélérés sont impossibles, les modèles de fiability basés sur une combinaison

de données sur la dégradation et de données sur la durée de vie représentent une

application pratique importante. Cette thèse présente ces modèles de fiabÏl1ty où il y a une

combinaison de données sur la dégradation et de données sur la durée de vie, et cela avec

ou sans la présence des variables inter-reliées. Des techniques d'inférence statistique sont

aussi développées.

TI est supposé que la dégradation suit un processus de Wiener. Le processus prend fin dès

qu'une barrière fixe est franchie. Les données sur la dégradation de l'item survivant sont

caractérisées par un processus tronqué de Wiener, et les durées de vie suivent une

distribution inverse de Gauss. Des modèles sont développés pour trois types de structure de

données, c'est-à-dire (i) les données sur les points terminaux (une combinaiso.'l entre les

données sur la dégradation et ceux sur la durée de vie) et les données mixtes (une extension

des données sur les points terminaux); (ii) les données conditionnelles de dégradation; et

(iii) les données inter-reliées.

Les estimateurs du maximum de vraisemblance sont dérivés pour les paramètres de chacun

des modèles. Les inférences statistiques sur les paramètres sont basées sur les propriétés

asymptotiques des estimateurs du maximum de vraisemblance et sur la méthode des

rapports de vraisemblance (likelihood ratio method). Une analyse de déviance est présentée

et les valeurs pivotantes approximées sont dtfivées pour les paramètres de tendance et de

la variance. Les fonctions de densité utilisées pour prévoir la durée de vie et le niveau futur

de dégradation de l'item survivant ou du nouvel item sont obtenues par les méthodes

e:mpiriques de Bayes. Des exemples sont présentés afin d'illustrer les applications du

modèle.



CHAPTER 1 INTRODUCTION

WGrk on reliability models based on lifetime data extends back s;:;veral decades.

There is a large literature on this subject (reference books include Lawless, 1982;

Nelson, 1982; Crowder, Kimber, Smith, and Sweeting, 1991; to name just a few).

Several statistical di3tributions for lifetime data, such as the exponential, Weibull,

extreme value, gamma, log-normal, and inverse Gaussian, ar'~d the statistical infer

ence methods associated with these distributions, have been extensively studied.

The application of the exponential distribution to lifetime analysis dates from the

1940's. An early influential paper on this topic is Davis (1952). The Weibull dis

tribution is perhaps the most widely used. Many statistical methods developed

for the Weibull distribution are now routinely used in life test and reliability work

(Lawless, 1983). The inverse Gaussian distribution, as compared with the others, is

a relative newcomer. It is particularly interesting since it arises as the first passage

time distribution of a Wiener process which is a natural description of many phys

ical processes. Since the early landmark papers on the statistical properties of the

inverse Gaussian distribution by Tweedie (1957a,b), a substantial amount of work

has been devoted t.o statistical methods and applications of the distribution. De

tails about the distribution can be found in Chhikara and Folks (1989) and Seshadri

(1993).

The approach of reliability analysis based on lifetime data has its limitations in

practical applications. Collecting a sample of lifetime data can be time consum

ing and costly. In engineering applications, observed lifetimes are often very long

because of the high reliability of modern devices. Failure acceleration methods,

induding variable stress methods, have been developed to obtain a sample of life

time data for devices in a relatively short time period. However, the acceleration

mechanisms applied in such tests may not faithfully imitate the actual failure pro

cess that will prevail or no feasihle acceleration mechanism may he available. Even

with acceleration, few failures may he ohserved. Moreover, the devices under study



may be very expensive and thus conducting a destructive life test of such devices

becomes uneconomical or the consequences of destruction are disastrous and thus

a life test becomes infeasible. For devices that are already in operation, such as

the components of a telecommunication system or a nuclear power generator, the

degradation levels of these components may be readily available from maintena.nce

procedures while a sample of lifetime data under the sanle operatillg conditions is

virtually nonexistent. The only practical approach in this type of situation would he

to derive predictive inference and optimal maintenance policy hased on degradation

data.

The difficulty of collecting a sample of lifetime data. becomes more evidcnt in the

health care area. Suppose one wishes te st1HJy the survival timc of a pa.tient who

has received a certain medical treatment. Obtaining a sample of lifetime data ca.n

he extremely costly in human terms and time consuming also. On the other ha.nd,

a patient's vital signs, such as CD4+ cell counts of AIDS patients (Lange, Carlin,

and Ge1fand, 1992), are well defined and readily measured. It would be ideal if one

could draw inferences about survivai time from measures of vital signs btken over

time, instead of waiting years for a sample of lifetime data.

As been noted by Chown, Pullum, and Whitmore (1993), reliance on Iifetime data

aione is becoming less and less practica! in engineering, and there exists a pressing

need for reliability models that capture the degradation response of an item over

time and statistical methods associated with those models. Nair (1988) states: "...

Degradation data are a much richer source of information than time-to-failure data.

The lack of statisticai methods for analyzing them prevents users from expIai ting

this valuable source of information. ...." This thesis aims, in part, to provide a

statistical tool for reliability analysis based on both degradation data and lifetime

data.

Lifetime, degradation, and covariate data are the three building blocks of reli

ability data. Degradation data can be the measurements ,;[ a key indicator of a
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component's operational characteristic ,)r the performance measurements of a sys

tem consisting of a group of components. The latter are sometimes called system

data. Both degradation data and lifetime data can be obtained from the same re

liability test. Consider, for example, observing a set of items on test and stopping

observation at time t. One would often find that sorne items have already failed

by time t while others remain operating. One could record both degradation mea

sures over time for aH items and lifetimes of the failed items. AIso, the degradation

process and t.he lifetime of an item are often affected by covariates, such as environ

mental or design factors. For example, as illustrated later, the degradation process

of an electronic transistor accelerates when ambient temperature increases, which

is a covariate affecting the degradation process of a transistor.

Reliability models based on lifetime data have been extensively studied. However,

little work has been done to model the combination of degradation and lifetime

data. ModE:1s oased on degradation data alone have been studied mainly in the

area of material fatigue analysis, although broader applications are beginning to

appear (for example, Carey and Koenig, 1991; Lu and Meeker, 1993; Boulanger

a.."'1d Escobar, 1994). Modeling a combination of degradation and lifetime data is

more effective than using lifetime data or degradation data alone when both types of

data are available and covariates should be incorporated into the model whenever

they exist. Neglecting one of these may result in incomplete information about

the behavior ûf the items under study. Many items experience degradation before

they fail. Models based on degradation data alone are important alternatives to

lifetime models in many areas of application where failure data are not easily or

economically available. This research develops reliability models based on either

degradation data alone or a combination of degradation and lifetime data with and

without covariates and explores statistical inference methods for each model.

The remainder of the thesis is organized as foHows. Chapter 2 starts with a

brief review of various approaches to modeling a degradation process with special

attention beieg given to material fatigue and performance parameter drift, which

3



are the main areas of degradation process modeling. Next, the main properties 0f a

Wiener process are presented as it will be used in the thesis as the basic model for

a deg,Tadation process. Finally, the basic types of data structures aI·" presc:lt.cd (Uld

discussed. The most general data structure is defined as a mixture of degradatioll

data and lifetime data, sometimes with covariate information. Several variations are

given. The next three chapters are devoted to the development of reliability l1lodels

for thE data structures given in Chapter 2. Chapter 3 presents the density function

of the level of a Wiener process conditioned on no first passage and then derives

a reliability model for a terminal point data structure. The modc1 is extendcd

later to a mixed data structure. Next, pivotaI quantities are found from which the

approximate distributions of the maximum likelihood estimators (MLEs) are deri vcd

and a likelihood ratio test for sample path homogeneity is developed. Finally, the

results of empirical Bayes analysis are presented. Predictive density functions for

residual lifetime and future degradation level are developed. Chapter 4 present.s a

model for a conditional ciata structure. Chapter 5 extends the mode! for terminal

point data to a covariate data structure that comprises lifetime, dcgradation, and

covariate data. Inferences based on asymptotic normality and the likelihood ratio

method are studied for each model. Applications of the models arc illustratcd in

Chapter 6 by case examples that use real and simulated data. Finally, concluding

remarks anà sorne comments on further research are presented in Chapter 7.

4



CHAPTER 2 THE BASIC DEGRADATION MODEL AND
ASSOCIATED DATA STRUCTURES

2.1 A Review of Dt:.graciatiOli Models

The literature on statistical models for degradation is quite diverse. Rer,resenta

tive work is found in two areas - moàds of material fatigue and models of perfor

mance paramcter drift. Each of these areas is briefly reviewed in this section.

2.1.1 Materié'J Fatigue

A considerable amount of work on degradation processes has concentrated on

material fatigue analysis. There is a large body of literature on this subjeet (for

example, Desmond, 1985 and 1987; Sobczyk,1987; Ditlevsen,1986). Sobczyk (1987)

gives an overview'of stochastic models for material fatigue damage. The following

is a brief summary of sorne approaches to modeling the degradation of material

strength based on Sobczyk (1987).

Degradation data can be modeled by a ,. ;,oc.~astic proce~s in one or more dimen

sions, depending on the nature of the degradation mechanism. Material fatigue

a\:cumulation has been described by various kinds of Markov processes. To mode!

fatigue accumulation by a continuous-time discrete-state Markov process, for in

~tance, the random evolution of fatigue, X(t), is assumed to be a one-dimensional

process with n + 1 states Eo, El, ... , En = E*, where Eo denotes an ideal state

and E* denotes a failure state. The degree of fatigue damage is usually charac

terized by the length of a "dominant crack" which, as it grows, eventually leads

to failure. That is, the degradation process is the growth process of a dominant

crack. Hence, states Ei, i = 1,2, ... , n -1, represent the length of a dominant crack.

This is a pure birth process with birth rates Ài , i = 0,1,2, ... , n, and Àn = O. Let

Pi(t) = Pr'{X(t) = Eil, then the transition equation of the pure birth process is

5



the following.

PiCt + bot) = (1 - Àibot)Pi(t) + Ài - 1 Pi-1(t)bot + o(bot) for i = 1,2, ... ,11

Po Ct + bot) = (1 - Àobot)Po(t) + o(bot)

The probability offailure at time t, Pn(t), can be obtained by a recursion relation,

which is the solution of the transition equations.

Pitt) = Ài - 1 exp( -Àit) li exp(ÀiT)Pi - 1 (T )dT for i = 1,2, ... , n

poet) = exp( -Àot)

Fatigue damage can also be described by a Markov chain. Compared with the

approach that has just been described, the new conce)t here is duty cycle, defined

as a repetitive period of operation in the life of an item during which damage cau

accurs. It is assumed that fatigue damage occurs only at the end of each dutY

cycle. This process is then a Markov chain where time is measured by the number

of elapsed dutY cycles. As before, assume that there are n + 1 states, 0,1,2, ... , TL,

denoting the degree of material damage, and that state n reprcsents failure, then

the probability of failure can be computed from the transition matrix of this Markov

chain in the standard manner.

It is often assumed that the growth of a crack is caused by the sequence of peaks

of a random stress process. This leads to (1. shock model for fatigue damage in which

the occurrence of peaks follows a Poisson process. There are many variations of this

basic model, such as incorporating the phenomenon of crack growth retardation or

acceleration (a decreasing or increasing rate of crack growth).

Crack growth cau also be modeled by a continuous state stochastic process. In

this type of model, the length of a dominant crack L(t) at time t is governed by the

following dîfferential equation, often referred to as the Fokker-Planck- Kolmogorov

equation.
8p 8 1 82

Bi = - az[a(l,t)p(l,t;lo,to)] + 2â[2[b(l,t)p(l,t;lo,to)]

6
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Here a(l, t) and b(l, t) > 0 are drift and diffusion coefficients, respectively. Function

p(l, t; 10 , to) is the probability density function (p.d.f.) of a dominant crack length l

at time t and satisfies the fol1owing conditions,

p(l, t; 10 , to) = 0 for 1<10 ,

p(l, t; 10 , to) ~ 0 for l ~ 10 ,

where 10 = L(to). Equation (2.1) is the diffusion equation cf a Wiener process

starting at 10 at time t o if we set the coefficients a( l, t) and b( l, t) to be constants.

To relate the rate of crack growth to a covariate, such as the stress level applied

to an item under study, the Paris law is often applied in fatigue damage analysis.

The Paris law takes the fol1owing form.

dL(t) _ CK
dt - max,

where C is a constant and K max is the maximum stress level an item has endured.

A modified form of the Paris law is also often applied. The modifications are

formulated based on the argument that the growth rate of a crack is related to the

length of the crack, therefore, a varied rate of crack growth is assumed. Specifically,

ô~;t) = F(D.K, R)ç(t),

where D.K = (Kmaz - Kmin).j7rL(t), R = Kmin/K max , Kmin is the minimum

stress level, and F is a given function. In addition, a multiplicative term ç(t)

is introduced to represent the random fluctuation of external factors. For more

details about the approaches summarized above, one may refer to Sobczyk(1987)

and the cited references there.

2.1.2 Performance Parameter Drift

Degradation studies are also frequently carried out on the deterioration of one

or more key performance parameters of an item. It is usually called the parameter

7



drift problem in engineering. When the performance level drifts to a critical level

or barrier that may be random or fixed, the item is no longer in good operational

order, and therefore a "failure" is said to have occurred. For exanlple, consider a

telecommunication system in which a logical circuit is a key component. An im

portant performance measure of a logical circuit is its propagation delay, the time

required to respond to an input signal. Propagation delay increases over the life of

a logical circuit as it degrades. When the delay reaches a certain level the logical

circuit fails to function as required. The delay is also correlated with environlllcntal

conditions, such as temperature. Carey and Koenig (1991) present a case stu<iy

about the reliability assessment of a logical circuit based on accelerated degrada

tion data of propagation delay. They propose a nonlinear model with a rcgressioll

structure to relate propagation delay to time. A parameter of this nonlinear model

is assumed to be correlated with temperature (a covariate). The proposed mode!

provides a good fit to their accelerated propagation delay data.

Yn - Yo = 8(1 - exp(-fit:)) + En,

where Yn - Yo is the increment of propagation delay over time interval (to, tn ), 8 and

>. are model parameters, and En is a residual term with a normal distribution. The

parameter e is assumed to be related to temperature T accordillg to the Arrhenius

relationship
B

log(8) = A - kT + Tl,

where A and B are parameters to be estimated, k is a kllown constant, and agaill

Tl is a residual term having a normal distribution.

Engineering research on degradation phenomena is very extensive (sec, for exaIll

pIe, Leblebici and Kang 1993; Stucki 1994; Xiao and Bathias 1994, to mention a

few). Most studies of degradation, however, concentrate on its physical characteris

tics without any reference to its statistical nature. Few have modeled degradation

as a stochastic process. Carey and Koenig (1991) is one of the exceptions.

8



As may be seen from the preceding discussion and the examples given in Chapter

1, a variety of degradation processes are encountered in engineering applications.

A degradation process can be the growth of a crack, the wear-out of material, the

deterioration of a performance parameter such as propagation delay, or the electron

migration of metal in a transistor. Although degradation processes in different areas

have different data structures and properties, they share the common feature that a

random mechanism governs the degradation variables. This random mechanism is

best represented by a stochastic process. Choosing a basic model for this fundamen

tal stochastic process, we will be able to derive a series of models to accommodate

a variety of data structures. The next two sections present the main properties of a

Wiener process (or Brownian motion with drift), which is assumed to be the basic

model for a degradation process in the thesis, and examine data structures that are

often encountered in reliability studies.

2.2 The Wiener Process as a Degradation Model

A Wiener process {X(t), t ~ a} has the following three defining properties (Karlin

and Taylor, 1975).

1. Every increment X(ti) - X(ti-d for a time interval (ti-l, ti) is normally

distributed with mean b(ti - ti-l) and variance lI(ti - ti-d where li > a is a fixed

variance parameter and b is a fixed drift parameter.

2. The increments for any set of disjoint time intervals are independent random

variables having the distributions described in property 1.

3. X(a) = a.

A Wiener process is a homogeneous process and has a continuous sample path

with probability one. The increments X(ti) - X(ti-d are independent of the past

evolution of the process, that is,

9



i=1,2, ... ,H,

P[X(ti) :S xiIX(to) = XO,X(tI) = XI,X(tZ) = XZ, ... ,X(ti-d = xi-d

= P[X(ti) :S xiIX(ti-d = xi-d,

for any 0 = to < t l < tz < ... < tn.

(2.2)

Given condition X(O) = 0, the probability density function of X(t) at t > 0 is

the normal density function

1 ( (x - St)2)
</>(x; t) =~ exp - .

27fvt 2vt
(2.3)

Vnder the same condition, the joint p.d.f. of X(td, X(t z), ... , X(t n ), 0 < t l <

Mathematical properties and inference methods for a Wiener process have beell

extensively studied. Selected references will be given throughout the thesis as ap

propriate.

A Wiener process, {X(t)}, is taken as the basic model of a degradation process. It

is assumed that each item has its own degradation process which is independent of

the others (for a given set of covariates). Items having the same design are assumed

to have the same drift and variance parameters unless indicated otherwise. An item

fails when its degradation process reaches a specified criticallevel for the first tirnc.

This criticallevel is referred to as a barrier and is denoted by a. The lifetime of an

item corresponds to the iirst passage time, 5, of the Wiener process to the barrier.

Wiener processes have been widely applied in both engineering and business sit

uations. Many physical phenomena are described by Wiener processes. The matter

of whether a Wiener process is a suitable model for degradation processes, however,

deserves a few comments.

10



Often, degradation processes are monotonie, that is, degradation proceeds in only

one di!'ection, as in a wear-out process for example. The application of a Wiener

process to thiF- kind of degradation proeess is only approximate. However, when

observed closely, the levels of many degradation proeesses vary bidireetionally over

time as, for example, with the gain of a transistor or the extent of propagation

delay. Other stoehastie processes, such as gamma processes, may be eonsidered if

it is essential to represent degradation by a strictly monotonie process.

In this thesis, it is assumed that the degradation process of interest is a continuous

process and, in many applications, this is a valid assumption. Where a degradation

process is discrete and an approximation is not permitted, another type of stochastic

process, such as a discrete-state Markov process, may be considered.

A Wiener process is a time homogeneous process but not all degradatlon pro

cesses have this property. For example, in reliability engineering, acceleration tests

are often used to obtain lifetime and degradation data in a relatively short period of

time. The stresses applied in these tests may he increased during the course of test

ing in order t'J bring about rapid failure. Because degradation parameters change as

the stress level increases, the degradation process becomes time heterogeneous. As

a second example, the physical mechanism that governs deterioration may tend to

accelerate or decelerate degradation, as in crack propagation for instance, producing

time heterogeneity. As will be discussed. later, a transformation of the time scale

in these situations can often convert a time heterogeneous degradation process to

a t.ime homogeneous process. In general, a time heterogeneous stochastic process,

like the one described by the Fokker-Planck-Kolmogorov equation in (2.1), can be

applied.

Modeling a degradation process by a Wiener process implies that the degradation

process, given its current state, evolves to a future state independently of its past

behavior. This is referred to as its Markov property. While the Markov property

is a valid assumption in many applications, it does not always hold. For the latter

11



case, several analytical methods, such as, the inclusion of supplementary variables

and imbedding (Cox and Miller, 1965) may be considered.

If any practical degradation mechanism requires a stochastic model other than

a Wiener process, one may find that the theoretical development in this thesis

still provides useful guidelines although the technical details will differ in differcnt

applications.

2.3 Data Structures for Degradation and Lifetime Data

Reliability data are collected in various forms under many different conditions.

In general, the data structure for a non-repairable itcm usual1y consists of lifctime,

degradation, and covariate data. To illustrate a data structure, consider a random

sample of m identical items on test. The data collection starts at time 0 and stops

at time tn > O. Suppose that p of the m items fail beforc time in and q = ln - ]J

items survive. The degradationlevels (sample path levels) of the items a.re recorded

at a set of fixed time points 0 < t l < t2 < ... < tn' The values of the cOV"driates ma.y

vary across groups of items and/or change over time. The resulting data consist of

(1) sample path levels at times t l , t 2 , ••. , in, (2) the first passage times of the p items

that failed before the stopping time tn, and (3) the values of the covariates.

2.3.1 Data Structure without Covariates

In the absence of covariates, the basic data structure, which will be referred to

as the mixed data structure, has the following form:

for a surviving sample path j, Xj = (Xjl,Xj2, ... ,Xjn)

i=1,2, ... ,p

j = p + 1,p + 2 .. ,p + q

where Xik is the level of sample path i at time tk, Xini is the last obserV"dtion of the

sample path before failure for a failed item, and Si is its failure time. Thus, thc

mixed data structure consists of two types of data: Xik, the degradation data; and
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Si, the lifetime data. When all items survive to time tn, the mixed data structure

simplifies ta

i = 1,2, ... ,m.

These are degradation data alone. This case corresponds to a situation where

lifetime data are not available. When all items have failed by time t n and degrada

tion data are not recorded, the mixed data structure simplifies to

These are lifetime data alone and represent a common form of data Sf:t considered

in reliability literature.

Two variations of the mixed data structure are often of interest. In the first

situation, the data structure consists of (1) the measurement Xin at the stopping

time t n only for the survivors and (2) the lifetime Si of the failed items. In sorne

applications, for example, the measurement of a degradation variable can be taken

only when a test stops, thus, one would not be able ta get degradatian data before

the test stops. Sometimes, even when the intermediate degradation levels can be

measured, it may not be ecanomical ta do so because the cost of collecting the

measurements may be excessive. In these cases, the mixed data structure reduces

to the following.

This type of data structure will be referred as terminal point data and is treated

in Section 4.2.

The second variation arises when the structure consists of censored lifetime

data only. In this case, one only knows that an item has either failed at time S or

survived until the stopping time tn' Thus, the data structure is
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where in is the censor time for items p+ 1,p+2, ... ,p+q = m. Of course, if all items

happen to have failed by time in, then, none of the lifetimes is censored and the

data structure becornes lifetime data alone. As mentioned earlier, censored lifetime

data, with and without covariates, have been studied extensively in the reliabilit.y

literature. Figures 2.1a to 2.1d illustrate these various types of data st.ructures.

In sorne applications, the data arise under restrictions or conditions. For example,

one may have only the lifetime data for failed items (SI, ... , sp) and have no knowl

edge of the number of survivors q. As another example, one may have degradation

data only for the q survivors (Xi; i = p + 1, ... ,p + q), with no knowlcdge of the

number or lifetimes of the p failed items. Both examples are important special cases

representing situations of incomplete information, which often occurs with reliabil

ity data from field studies. The latter situation, which will be called conditional

degradation data, is to be described by a truncated Wiener process and will he

investiga";ed in Chapter 4.

2.3.2 Data Structure with Covariates

In the presence of covariates, the measurements on these covariates arc added to

the data structure. A covariate can be one of the following three types. First, a

covariate can vary across different items but remain fixed over time for cach item.

The variation may be controlled or may be random. For example, temperature can

be controlled experimentally at one level for one group of items and at another level

for another group of items; a design characteristic may differ among different groups

of items; quality of workmanship and defects of material may vary randomly from

one production batch to another. This type of covariate will be referrcd to w, a

time fixed covariate.

Second, a covariate can vary over time but the same variation is experienced

by every item. This situation arises when all items are simultaneously subjeet

to a stress level that changes only over time either randomly or by experimental
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control. For example, all items may be exposed to the same randomly varying level

of temperature over time; a group of mechanical components may be subjected to

the same experimentally controlled stress levels in an accelerated step-stress life

test. This type of covariate will be referred to as a time varying covariate.

Third, a covariate can vary among groups of items and over time. Perhaps this

is the type of covariate that is most often encountered in field studies. For exam

pIe, automobiles are subjected to climate conditions that differ geographically and

change over time. This type of covariate will be called a mixed covariate.

Time Fixed Covariates Assume now that we have k controlled covariates and/or

random covariates that vary only across items. The measures on these variables are

represented by a CP + q) x k matrix, denoted by Z.

Zlk

Z=
Zpl Zp2 Zpk

(2.5)

Ùsually, in engineering testing, items are grouped to form experimental blocks

and each block is tested at a particular combination of covariate levels, which is

experimentally controlled. In this case, each block corresponds to a subset of iden

tical row vectors in the matrix Z. The transistor example discussed in Chapter 6

is one application of this test setting.

Time Varying Covariates Covariates can vary over time either randomly or by

experimental control, but the same variation is experienced by every item. In the

case of random variation over time, the degradation process {X(t)} is accompanied

by a group of covariate processes {Zl(t), Z2(t), ... , Zk(t)}. lione takes measurements
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on the k covariates at n fixed time points, the result is an n X k covariate matrix Z,

Z= (2.6)

where Zitl' Zit 2 , ••• , Zit n correspond to the measurements on the ith cOV'dIiate taken

at time points t l ,t2 , ... ,tn , that is, Zitj = Zi(tj),i = 1,2, ... ,k,j = 1,2, ... ,n.

For the case of controlled variation over time, each covariate is preset at specified

levels at a sequence of time points. The measurements of the covariates take the

same form as matrix (2.6), except that each element is controlled ratlter than a

random outcome.

Mixed Covariates When a covariate changes ac.ross items and over time, the co

variate data structure is a combination of the previous two types. Suppose rnea.

surement.s are taken on k covariates at n fixed time points for each of m items,

one will have m covariate mat;:-ices, Zl, Z2, ... , Zm, corresponding to each of the m

items, where each Zi has the form of (2.6) with dimension n x k.

2.4 Summary

This chapter first presents a brief review of degradation models, with special

attention being given to material fatigue and performance parameter drift probJems,

which are the main concerns in the degradation modeling literature. Then, a Wiener

process is presented as the basic model for a degradation process. Finally, several

data structures of degradation and lifetime measures are discussed. The basic modcl

needs to be expanded and modified in order to accommodate the conditions and

restrictions implied in each type of data structure. Chapters 3 through 5 serve this

purpose.
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CHAPTER 3 AMODEL BA8ED ON
DEGRADATION DATA AND LIFETIME DATA

Both lifetime and degradation data contain important information about the

reliability properties of an item. In fact, a model based on both types of data

may represent the only practical approach when failure experience is sparse as it

will be with highly reliable items, new items, items in which failure is not easily

accelerated, expensive items, etc. . In this chapter, a reliability model based on

both degradation and lifetime data will be presented. The terminal point data

structure will be studied first and the mixed data structure will then be studied as

an extension of th~ terminal point case.

Recall that the degradation process of an item is assumed to follow a Wiener

process and its lifetime, therefore, has an inverse Gaussian distribution. Notice,

however, that the degradation data are restricted by the barrier at level a since an

item fails when its sample path reaches the barrier, as shown in Figure 3.1. In other

words, the sample paths are defined on (-00, a) rather than on the whole real line

as for a Wiener process. The distribution properties of a Wiener process presented

earlier take no account of a restriction or barrier. It will be found later that for a

sall1ple path with a tight barrier, the effects of the barrier on statistical inference are

significant. and inferences based on a Wiener process without taking the effects of a

barrier into consideration can be misleading. The degradation process of a surviving

item, therefore, should be described by a Wiener process with the condition that

X (t) is restricted by a barrier at which the item fails. Such a process will be called a

truncated Wiener process in this thesis. The following section presents several

derivatiolls of the density function of the level of a Wiener process given that it is

restrictcd by a fixed barrier.

3.1 Density Function of a Truncated Wiener Process

The truncated Wiener process is denoted here by {Xt ( r), a~ 7- ~ t} and has the
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following definition,

X t ( r) = X(r)IA,

where [0, tl is a fixed observation period, X(r) denotes a parent Wiener process

with drift pararneter 0 and variance pararneter v, A denotes the restriction that

X( r) < a for all 0 :s; r :s; t, and a > 0 denotes the level of the barrier.

The definition of the truncated process just presented will be referred ta later a.s

the standard problem. A number of other formulations can be converted to the

standard problem by simple transform,üions. For example, a Wiener process with

a negative barrier a < 0 is dearly the mirror image of the st,Uldard problem.

3.1.1 Derivation for the Standard Problem

The p.d.f. of the truncated random variable Xt(t) for the standard problem is of

interest here. In ot.her words, we are interested in 'he derivation of the p.d.f. of the

degradation level at time t of a surviving sample path. The density function can be

derived in several ways. Four derivations are presented next. The derivations a.re

of interest in their own right and each c:ontributes insights into developments which

follow later. The first two derivations are based on the fol1owing decomposition.

The probability density for the parent Wiener process {X(r), r 2: ü} terminating

at level x at time t is given by the normal density </>(x; t) in (2.3). Any sample path

starting at X(O) = 0 and terminating at X(t) = x either does not exit the barrier

at a > 0 in the interval (0, t) or exits the barrier in the interva1. The former event

is denoted here by A and the latter event by A, the complement of A. Therefore,

the density </>(x; t) consists of two components representing the deIisity contribllted

by sample paths that do not exit, f(x, A), and sample paths that do exit, q(x, A),

as follows.

</>(x; t) = f(x, A) + q(x, A) (3.1)

Note that f(x, A) and q(x,.4.) are both joint p.d.f.s. With respect to x, f(x, A)
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has support on (-00, a) and q(x,..4) has support on the whole realline. The density

function ICx, A) can be derived by using (1) the inverse Gaussian distribution; (2)

the method of images; (3) a partial differential equation method; and (4) Shepp's

joint density function. The fol1owing four subsections describe the derivation by

each method.

Inverse Gaussian Derivation Let S be the first passage time cf the parent Wiener

process X(r) to the barrier a > 0, i.e.,

S = inf[rIX(r) = a].

Then S has an inverse Gaussian distribution with the fol1owing p.d.f. (Chhikara

and Folks, 1989; Sesl:èl.dri, 1993 ).

a ( (a - 8S)2)h(s) = ~exp - 2
V2~VS3 vs

(3.2)

Note that when the drift 8 is negative, the inverse Gaussian density functicn

becomes defective (Whitmore, 1978). In this case, the sample path will cross the

barrier with probability exp(28a/v) < 1. The extended density function when the

drift is negative, h(s; 8 < 0), has the fol1owing form.

{

h(s)
h(s; 8 < 0) =

1 - exp(28a/v)

for

for

O<s<oo

s = 00

The fol1owing derivation is valid for both positive and negative drift, however.

Fol. the outcome (x,..4) in q(x,..4) to occur, the sample path must exit the barrier

at sorne time s < t and then move to level x in the remaining time (s, t). Thus, the

joint density function q(x,..4) in (3.1) is the product of the inverse Gaussian density

h(s) and normal density </>( x - a; t - s) integrated over [0, t] with respect to s. That

1S,
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- ( (2a(X - a))q(x,A) = Jo h(s)</>(x - a;t - s)ds = </>(x;t)e:>.."p vt .

Accordingly, using equation (3.1), we have the desired p.d.f.

f(x, A) = </>(x; t) (1- exp [2a(x
v
; a)]) . (3.3)

Method of Images The density funetion f(x, A) can aIso be derived by using a

refiection principle. Consider the following case as shown in Figure 3.2. The Wiener

sample path X (r) crosses the barrier a > 0 at time s and reaches x ut tilllc t. Its

image path X(r) is defincd as

_ { X(r),
X(r) =

2a - X(r), s < r ::; t.

The likelihood ratio of the image path relative to the original puth is (Whitlllore

and Seshadri, 1987)

A( ) (
2b( x - a) )

x =exp ,
v

where A(x) is independent of s.

Sample paths terminating at level x < a either do not exit the barrier during

the interval (0, t) or exit the barrier and have image paths terminating at levcl

(2a - x). The former sample paths have total density f(x, A) while the latter have

total density </>(2a - x; t)/A(x). Again from equation (3.1), we have

f( A) "'( ) </>(2a - x; t) 1 ( (x - bt)2) (1 [2a(x - a)])x = <fi x· t - - = exp - - exp --- .
, , A(x) V21fvt 2vt Iii

Partial Differential Equation Method Cox and Miller (1965) derive the p.d.f. of a

Wiener process truncated by an absorbing barrier at a > o. The density funetion,

denoted by p(x, t), is the solution of the partial differential equation

(x < a)
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with boundary conditions
p(x; 0) = 6(x)

p(a; t) = 0 t > 0

where 6(x) is the Dirac delta function. According to Cox and Miller, the solution is

( )
_ 1 ( [(x - 6t)21 [26a (x - 2a - M)2]) .

P x, t - Ir exp - J- exp - - 2 .
v 27fvt 2vt v vt

By rearranging the right-hand side, p(x, t) becomes

( ) _ 1 ( (X-M)2) ( [2a(x-a)])p x,t -- ~exp - 1-exp .
v 27fzli 2vt vt

The function p(x, t) corresponds to f(x, A).

Shepp 's Joint Probability Density Function Shepp (1979) gives the fol1owing as the

joint p.d.f. of the maximum value Y = max X (r) and the terminallevel X = X (t)
O~T~t

of a Wiener process.

( ) 2(2y - x) (X6 62t) ((2Y- X)2)9 y,x = exp - - - exp -
V27fV 3 t 3 v 2v 2vt

By integrating g(y, x) with respect to y over [x, a], the joint p.d.f. of a Wiener

process terminating at x and not exiting the barrier in the interval (0, t) 1S obtained.

f(x, A) = la 9(y, X )dy

1 ( (x - M)2) ( [2a(x - a)])= exp - 1- exp
V21rvt 2vt vt

AlI four derivations necessarily result in the same joint p.d.f. for a Wiener process

that does not exit the harrier in the interval (0, t) and terminates at level X(t) = x.

The conditional density function of x given no first passage is obtained by dividing

the joint density f(x, A) by the probability P(A), where

P(A) = P( max X(r) < a) = P(S > t).
O~T~t
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The probability P(A) may be obtained from the following formula for the cumulative

probability of an inverse Gaussian random variable,

P(S > t) = 4> (a-hi) _exp(2ba)4> (_ a+bt),
vIVi v .JVi

where 4> is the cumulative distribution function (c.d.f) of a standard normal variable.

Thus, for x < a,

f( lA) f(x, A) 1 ( (X-bt)2) ( [2a(X-a)])x = = exp - 1 - exp .
P(A) J27l"vtP(A) 2vt vt

(3.4)

Note that since J~(X) f(xIA)dx = l, it follows that P(A) = J~(X) f(x, A)dx.

For a Wiener process with zero drift, the density function f(xIA) in (3.4) hecomes

1 ( x2
) ( [')a(x - a)])f(xIA) = ..j2;0, exp -- 1- exp ~

27l"vtP(A) 2vt vt
(3.5)

where x < a and the probability P(A) has a special form, P(A) = 1- 2<1>( -a/..;;i).

3.1.2 Cases Encompassed by the Standard Problem

A variety of problem settings can be transformed to the standard problcnl hy

appropriate transformations. Several of these settings arc considered ncxt.

Variable Stress Model The standard problem is one in which the rate of degrada

tion of an item is represented by the parameter 8. This rate is constant and may

be viewed as resulting from the application of a constant level of stress on the item.

Thus, if the constant stress is applied for an interval of length t, thc expected dcgra

dation will amount to bt. The stress may be produced by heat, voltage, humidity,

vibration, or the like (Dasgupta and Pecht, 1991).

In variable stress tests, as noted earlier, the level of stress is changed during the

test according to some fixed plan. Doksum and Hoyland (1992) propose a lincar
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transformation of the time sca1e to convert the testing time r that has elapsed in a

variable stress test to the effective operationa1 time t of an item. A variable stress

test can be represented as a standard problem by applying this or a similar trans

formation. For example, in a single step stress test, the leve1 of stress is increased

as a step function of time. Let us say, the stress increases from level y to level ay

at time fi, where a > 1 is the acceleration coefficient, then the transformation has

the following form.

{

r
t = h(r) =

fi+a(r-f3)

r~f3

r>f3

The degradation process under variable stress, denoted by {D( r)}, is conveniently

assumed to have the form

D(r) = X(h(r)),

where {X (t)} is the Wiener process of the standard problem and t = h(r) is a

strictly increasing function of r which is either the linear form proposed by Doksum

and Hoyland or sorne similar function that adjusts for the variable stress. If the

function h(r) is known, then the variable stress test results can be converted to the

standard form by applying the transformation t = h(r) to the time measurements

in the data structure.

One implication of this transformation method is that the transformation h(r )

affects the mean and variance of a degradation increment in the same way. Specif

ical1y, in a time interval (rI, r2), the degradation increment D(r2) - D(rI) =
X {h(1'2)} - X {h(rd} and has the fol1owing distribution.

Stress-strength Model The stress-strength model is another case that can be trans

formed to the standard problem. Consider a stress process {X2 (t), t 2:: O} and a
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strength process {Xl (t), t ~ D} that are 'Viener processes (see Desmond, 1987). The

strength level Xl (t) acts as a random barrier for the stress process X 2 (t). When the

stress first exceeds the strength then the item fails. Whitmore (1990) Ilotes that the

net strength process {W(t), t ~ O}, where W(t) = Xl (t) - X 2 (t), is also a Wiener

process with drift parameter 8 = 81 - 82 and variance parameter 1/ = 1/1 + 1/2, where

(81 , 1/1) and (82 , 1/2) are the respective drift and variance parameters of independcnt

strength and stress processes. The net strength process {W(t), t ~ D} can be trans

formed to the standard problem by letting lV(O) -lV(t) be the degradation process

with 8 and 1/ given above and a barrier a = W(O) = Xl (0) - X 2 (D).

A special case of this stress-strength model is one where the strength process is a

deterministic linear function of time, i.e., Xl (t) = Xl (0) + 81t (with 1/1 = 0). This

case corresponds to the standard problem with a barrier that is a linear fUllctioll of

time rather than a constant.

3.2 Inference for Terminal Point Data

This section presents statistical inference methods for terminal point data. It is

assumed in this section that the barrier a is known but the drift parameter 8 and

the variance parameter 1/ must be estimated from the data. A comment about the

case when a is also unknown is given later. The form of the terminal point data.

structure is repeated here for convenience. For simplicity, the second subscript n of

x is suppressed and the termination time is represented by t without the subscript

n.

The notation has the same meaning as in Chapter 2: x denotes the degrada.tion

level of a surviving item at time t and s denotes the lifetime of an item that fails

before time t. Note that p, the number of failed items, is a binomial outcome with

the following probability ma:Js function.

(p + q)! P(A)p (1 - P(A»q
p!q!
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(3.6)

Likelihood Function Since the sample paths are assumed to he mutual1y inde

pendent, the likelihood function of a sample of p + q such items is the product of

the individual likelihood functions of the failed and surviving sample paths. The

density function of a sample path that failed at time s is given hy h(s) in (3.2).

The density function of the level of a surviving sample path is given hy f(x, A) in

equation (3.3). Therefore, the likelihood function of a sample of q surviving items

and p failed items is

p q P a ( (a - bS')2)
L(b,v)=rrh(Sj)rrf(Xi,A)=rr~exp- ] x

2~vs~ 2vs'
j=l i=l j=l] ]

il__1 exp (_ (Xi - 8t)2 \) (1 _exp 2a(xi - a)) .
i=l J?~vt 2vi vi

Likelihood function (3.6) can he expressed in a simpler form with the fol1owing

notation.
for a failed item

for a surviving item

L(8,v) = fi 1 exp (_! ï= (dj - 8t j )2) fI ~ fI (1- exp 2a(di - a))
. y'2~vt]· 2 . vt]· . t]·. Vii

]=1 ]=1 ]=1 1=1

(3.7)

Maximum Likelihood Estimators (MLEs) Let ds = 2:i+q di and ts = 2:i+q ti

reprcsent the total accumulated degradation and total accumulated test time, re

spectively, then the corresponding MLEs for 8 and v are as fol1ows,

~ ds8=
ts
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where

(3.10)

The MLE of <5 is the ratio of total accumulated degradation over total accumulated

test time, which is an intuitive result. In the expression for the MLE of li, the second

term in parentheses would disappear if the Wiener process were not truncat.ed, i.e.,

if the barrier were set at a= 00. It is only this second term that yields estimates

that differ from the standard estimates for the parameters of a Wiener process.

Note that the function Klfi) depends on fi but not on 8.

Looking now at the second order derivatives of [ = In(L(8, li», it is îound that

a:2~o is zero. Also, the second order derivative, g;;, is negative everywherc. Tlms,

8 corresponds to the maximum of the likelihood function. In addition, the second

order derivative g:; exists for every pair of 8 E (-00,00), li E (0,00) and is ncgative

for every root of equation (3.9). Since there must be a minimum bctween every

two maxima, equation (3.9) must have a unique solution fi. Therefore, the MLEs

(8, il) correspond to the unique maximum<: i;he likelihood function. Note that the

maximum likelihood estimate of v cannot lie at zero except in a Jegenerate case.

The MLEs are asymptotical1y independent because a~~cS = 0 . The estimated

asymptotic covariance matrix of 8 and il is the fol1owing,

~ (t 0 )Cov(<5, il) = S _ [n _]-1 , (3.11)
o i}/l2I o,ii

where

8
2 [1 __ = _p + q _ ~ (Ki(iI))2 exp (2a(a - Xd)

8v2 6,/1 2i12 LJ 2i12 ilt'
i=l

(3.12)

If the degradation data x are not included in the terminal point data structure

then no more than p, q, and sare known. The structure then corresponds to the

censored lifetime data structure defined in Chapter 2, that is,

s = (Sl,S2, ... ,Sp,t, ... ,t).
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This case has been studied by Whitmore (1983) and Desmond (1982). The lifetimes

Si, i = 1,2, ... ,p, have an inverse Gaussian distribution with the p.d.f. h(s) given

in (3.2) and the q censored observations each has probability P(A). The likelihood

function, tilerefore, is

L(o,v) = ÎI"j a • exp (_ (a; 8S j )2) (P(A)]q.
° 21rvs}o Vs}o

}=1

(3.13)

The expression in (3.13) is obtained from (3.6) by integrating over Xi for each

i = 1,2, ... , q, which gives P(A) in each case.

Inferences About Parameters Inferences about the parameters 8 and v can be

derived based on the asymptotic normality of the MLEs or on the asymptotic prop

erties of the likelihood ratio.

When the sample size p + q is large, the MLEs of 8 and v are nearly indepen

dent and each has an approximate normal distribution with the estimated variance

given in matrix (3.11). Inferences about the parameters can be derived from this

asymptotic normal theory. For example, a 1 - a confidence interval for 8 is then

8± z(a/2)âfJ, where â6 = .jv/ts is the asymptotic standard deviation of 8 and

z(a/2) is the a/2 standard normal percentile. An asymptotic joint confidence re

gion for 8 and v can also be derived in a corresponding manner.

The likelihood ratio method provides another approach to inference here. The

likelihood ratio is defined as the ratio of the maximum likelihood under a reduced

mode! to the maximum likelihood under a full model, where the reduced model is

llested within the full mode!. The reduced model corresponds to a specified null

hypothesis. A modified likelihood ratio will be used here whereby the nuisance

parameters are estimated by the MLEs computed from the full model rather than

from the reduced mode!. This modification is appropriate because in the case

where the null hypothesis is true, the MLEs for this parameter calculated from the
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reduced and full model are asymptotically equivalent and in the case where the null

hypothesis is false, the MLE calculated from the reduced model may he inconsistent.

Now, to illustrate the use of this method for hypothesis testing, assume that the

following null hypothesis is of interest,

Ho : 8 = 80 .

Then the modified like1ihood ratio, denoted hy A, is

A = L(8~, ÎI) = exp (-ts (80 ~ ÊJ?)
L(8,ÎI) 2v

where ÊJ and ÎI are the MLEs in (3.8) and (3.9), respectively. For a large sample size

p+q,
A 2

(80 - 8)
-2In(A) = ts A rv approx. X2 (1).

v
(3.14)

Note that ts here plays the role of the effective sample size. The preceding result

can he rearranged to yield a confidence interval for 8 of the form ÊJ ± z(a/2)JÎI/ts,

which was previously encountered in applying the asymptotic normality theary far

MLEs. For this test, the modified likelihood ratio method producp.s a test statistic

that is the same as the one ohtained hased on asymptotic normal theory. Hawever,

with the conventionallikelihood method, the test statistics would not he identical.

A nalysis of Deviance In addition to the two general inference methods just pre

sented, an approximate analysis of deviance can also he derived for terminal point

data. Let Q, QR, and QE define the fol1owing quadrai;ic farms.

Q
(8 - ÊJ?

R = ts~_-'

V
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Consider the following two lirniting cases: (1) The barrier level approaches infinity

(a --+ oo)j (2) The termination time t approaches infinity (t --+ 00). In case (1), when

the barrier level goes to infinity, the truncated Wiener process converges to a Wiener

process and no failure occurs. Therefore, the terminal point data become a normal

sample from N(hi, vt). In case (2), when the termination time goes to infinity,

all items fail and, therefore, the terminal point data become an inverse Gaussian

sample from IG(al0, a 21v). In both limiting cases (1) and (2), the quadratic forms

are X2 distributed as follows,

and QR is independent of QE. Furthermore, QE and (p+q -l)QRIQE rv F(l,p+

q - 1) are pivotal quantities for v and 0, respectively.

Now consider the terminal point data case with p failures and q survivors. Re

calI that the quadratic form Q appears in likelihood function (3.7) and that QR rv

approx. X2 (1), as shown in (3.14), based on asymptotic th~ory for MLEs. An inter

esting issue arises here concerning whether the chi-square distributional properties

of Q E and Q are preserved and whether QE and Q R are independent or nearly so

with terminal point data. This issue is taken up next.

Let Qi denote a single term of Q, i.e.,

(d· - hi .)2Q' - 1 1
1 - vt.

1

The Laplace transform of Qi is

-Q' la ((x - ot?r) lt ((a - os?r)E(e Ir) = exp - f(x,A)dx + exp - h(s)ds,
-00 \ vt 0 vs
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where f(x, A) is given in (3.3) and h(s) is given in (3.2). With sorne algebraic

manipulation, the Laplace transformation of Qi can be shown to have the following

form,

(3.17)

where

.I.() la 1 (2a(x - a) (2r + 1)(x - hi?) ( 4ar(x - a)) d
'f/ r = exp - 1 - exp x.

-00 V27rvt vi vi vi

Therefore, Qi can have a X2 (1) distribution when the term denoted by ti'(r) is zero.

Except in the two limiting cases, 1/;(r) is not identically zero and, hcnce, the exact

distribution of Qi requires further study.

Since the Qi, i = 1,2, ... ,p + q = m, are mutually independent, the Laplace

transform of Q is the product of the individual Laplace transforms of Qi. Thus, the

mean of Q has the form

E(Q) = m +m1/;'(O)

where

1/;'(0) = E[K(v)] = 4a exp( 2ao )L( a + Dt).
v ~ v v;;t

Here, K(v) is the function defined in (3.10) and L(·) is the unit normalloss funetion,

defined as

J
OO Z2

L(l) = (z - 1) exp( - - )dz.
1 2

Having taken the investigation this far analytically and taking account of the

intended scope of the thesis, it was decided that further progress could only he

made by numerical methods.

It is conjectured that the quantities Q and Q E are approximately X2 distributed

and QR and QE are nearly independent. If this is indeed the case, then the degrees

of freedom of Q will approximately equal E(Q), i.e.,

df ~ E(Q) = m + mt/J'(O).
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Furthermore, the conjecture implies that Q and QE will have approximately X2(dJ)

and X2
( df - 1) distributions, respectively.

From the two limiting cases discussed earlier, one knows that Q, QE, and QR

have the conjectured properties when the drift parameter is very large and positive

because then nearly all sample paths will ex;t the barrier before stopping time t.

Likewise, the conjecture holds when the drift is very large and negative since, in this

case, nearly all sample paths will survive to the stopping time t. The conjecture is

most severdy challenged when both exiting and surviving paths are common, which

will occur when bis in the neighbourhood of ait.

A simulation study was conducted to provide empirical evidence for the sampling

distributions of Q and QE. The distributional characteristics were studied for dif

ferent parameter values and sample sizes p + q. The following simulation result is

representative. The quantities Q, QE, and QR were simulated for b = 0.2, 1/ = 2,

a = 10, t = 60, and m = p + q = 50. The results were based on 1000 simulation

trials. For the:::e parameter values, df = E(Q) = 61.5 or 62 to the nearest whole

number. Figures 3.3 (a), (b), and (c) show a X2 (62) plot, a X2(61) plot, and a x2 (1)

for Q, QE, and QR, respectively. The plots indicate a good fit. Table 3.1lists the

summary statintics of the f;imulation results. The correlatio~ coefficient of QR and

Q E is 0.009 which supports the conjecture of independence of the two quantities.

In summary, the combined analyticaI and numerical results suggest that, for

df = m + m'ljJ'(O),

QE rv approx. x2(df - 1), Q rv approx. X2 (dJ),

and QR is approximate1y independent of QE.

Statistical inferences about the parameters b and 1/ can be drawn using these

distributional properties for QR and QE. The quantity QE is an approximate

pivotal quantity for 1/. The ratio (df -l)QRIQ E is an approximate pivotai quantity

for b. The ratio has the following approximate F distribution.
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F* = (dj _l)QR = (di -1)(<5 -.8}2ts '" approx. F(l,dj -1) (3.19)
QE ,",p+q(di-ét;)2

L.....I ti

Approximate interval estimates and tests for 8 or v can be developed in the usu,ù

manner using these distributional findings.

This investigation of analysis of deviance for terminal point data has left a. number

of interesting issues for future research. One issue concerns an analytical demon

stration to support the numerical nndings given above.

3.3 Inference for Mixed Data

The previous two sections have studied statistical inference for termimù point

data. This section and the following section will extend the study to the mixed

data structure. The data structure is defined in Chapter 2 and repeated here for

convemence.

for a surviving sample path i, Xi = (Xil,Xi2, ... ,Xin)

i=1,2, ... ,p

i=p+1,p+2.. ,p+q

Likelihood Function Each sample path has ni observations: XiI, Xi2, ... , Xi7l, at a

set of fixed time points, 0 < tl < t2 < ... < t ni , where ni = n for every surviving

sample path. Notice that the degradation levels for a given sample path are not

mutually independent. The following derivation gives the joint density functioll for

Xi of sample path i. For simplicity of not~tion, the subscript i will he suppress(:d

in the following derivation.

Let A j denote the event that a sample path survives in time interval [t j _ l , tj), A)

denote the complement of A j, and A on = Al n A 2 n ..... n An dcnote no passage from

time 0 to t n . Baseci on the Markov property (2.2), we have p(AjnXJ1:Ej_1 nAj _J ) ::-.:

P(A j n xjlxj-d. Therefore, the joint probability of Xl, X2, .... , X n and Aon , is
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Expressed alternatively in terms of density functions,

(3.20)

where f(XI' Al) is defined by equation (3.3) and f(xj, Ajlxj-d, j = 2,3, .... , n, can

be obtained by replacing x with 6xj = (Xj - Xj-d, t with 6tj = (tj - tj-d, and

G. with (a - Xj-d in equation (3.3). That is

( [2(a - Xj-I)(Xj - a)])
1- exp /\ .

Vu. tj
(3.21 )

Each surviving sample path will fail after t n with a probability of Jt= h(s )ds,
n

where h(s) is the inverse Gaussian density function given by equation (3.2). Thus,

the likelihood function of a surviving sample path i, denoted by Lqi(8, Il) is

Note that P(Aon ) = ft= h(s)ds is the probability of no passage before time tn' 50,
J n

i =p+l,p+2, ... ,p+q.

The joint density function of a failed sal1lple path can be derived as follows.

Consider a sample path that starts at X(O) = 0 and ends at X(s) = a with no

passage in the time interval (0, s). Now, denote the level of the sample path at time

fj, where 0 < tj < s, by Xj' Then, the joint density function of Xj and s is

(3.22)

33



where f(xi,Aoi ) is the joint density function of X(ti) = Xj and no passage in the

time interva1 (0, ti)' given by (303); and h(slxi) is the podof. of the first passage timc

of a sample path starting at X(ti) = xi' The likelihood function of a failed sanlple

path, Lpi(5, v), can be readily derived from equation (3.20) and (3.22).

i = 1,2, ..0,p

Since each sample path evolves independently, the likelihood function for the full

sample is

p p+q p+q p

L(5, v) = II Lpi(5, v) rr Lqi(5, v) = II f(Xil, XiZ, o •• , Xin;, Aon;} II h($dXin;}
i=l i=p+l i=l i= 1

II
p

a - Xin; ( [a - Xin. - 5(Si - t n ;)] 2)= exp - x
i=l J27rv( Si - t n.)3 2v(Si - t n • )

Prr+qrrn
• 1 ( (f:. Xii- 5f:.t i )2) ( f2(a-Xij)(Xi,j-l-a)])

---;:::===::::::== exp - 1 - exp .
o • • /27rv f:.t)o 2v f:.t)o v f:.t J

o
l=l )=1 V ~

(3.23)

Again, to simplify the expression, let F and S be sets defined as:

F = {(a - Xin"Si - tn,};i = 1,2, ... ,pl,

S = {(xii - xi,i-ll tii - ti,i-d; i = p + 1, ... ,p + q,j = 1,2, ... ,nd·

Set F contains all paired increments that end in faill1re and 5 contains a..ll other

paired increments. Notation (6.d, 6.t) will represent a gencral clement of these sets.

Then the likelihood function can be rewritten as,

1 ( (6.d - b 6. t)2 )
L(5, v) = II J 6. exp 1- 2 6. x

. S F 27rV t \ v t,
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(3.24)

Maximum Likelihood Estimators Letting l = log L(8, v) and setting the partial

derivatives of l with respect to Eand to v to zero, we obtain the maximum likelihood

estimators of 8 and 1/ as

(3.25)

(3.26)

(3.27)

where
T.' (~) 4(a-xjj)(a- X i,j-l)
.L\.j·V =

J 6tj (exp [2(a-Xijl2:t~Xi,j-l)]- 1)

and nT = I:f~i ni. For the same reasons stated in Section 3.2, hand f) correspond

to the unique maximum of the likelihood function. The estimated asymptotic co

variance matrix of 8and f) is

where

Cov(b, f)) = (3.28)

The off diagonal e1ement is zero, indicating that h and f) are asymptotically inde

pendent.

Notice that the MLE for 8, namely 8 = ds/ts, and the estimated asymptotic

variance of this MLE, f) /ts, have the same form for both terminal point data and

mixed data. Thus, the MLEs for 8 for the two types of data sets have the same

asymptotic efficiency. As for the MLE of v, the asymptotic variance of f) for the

two types of data sets can be compared analytically and, as would be expected,
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the mixed data structure yields a smaller true asymptotic variance, provided that

the mixed data set actually contains intermediate degradation readings so nT > q.

Thus, for any given set of sample paths, rnixed data, in comparison to terminal

point data, lead to a better estimate for v but the same estimate for b.

Inferences A. bout Parameters Asymptotic theory for MLEs and the likelihood ratio

method can be applied to the mixed data structure as they were to the terminal data

structure with little modification. The analysis of deviance developed for terminal

point data can be extended to the mixed data structure but the detailed technic<ù

development is left to future research.

3.4 Sample Path Homogeneity

Degradation processes for different items can follow a random process with dif

ferent parameter values or even different random processes. Even for items with

the same design, their degradation processes can be driven by different parameters

because of the presence of manufacturing variability. This section develops two

tests of sample path homogeneity: (1) variance parameter homogeneity and (2)

drift parameter homogeneity, assuming that the degradation processes are Wiener

processes.

First, a likelihood ratio test for variance parameter homogeneity is presented. As

in Section 3.1, a modified likelihood ratio test is derived here. That is, the MLE

of a nuisance parameter under the full model is used in calculating the maximum

likelihood of both the reduced model under Ho and the full mode!.

The null hypothesis is

Ho: VI = V2 = .., = V p+q (3.29)

while the drift parameters are not restricted to be the same. The c:orresponding
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likelihood ratio test statistic is

where

(3.31)

(3.32)

and Kij( -Vi) in (3.30) h<1S the form of (3.27) with V being replaced by -v. Notation

Si and Fi denote the subsets of S and F that contain the corresponding elernents

of sample path i. The MLE Vi is given as follows.

For failed sample path i

v. = 1 {'" (/:.d - Si /:. t)2 _ ~ K ..(v.)} .
1 1 + ni L 6.t ~ IJ 1

~,~ J=l

(3.33)

For surviving sample path i, the subset Fi is ernpty and in the above equation the

terrn 1/(1 + ni) should be replaced by l/ni.

It is weIl know that, for a large sample,

-2ln(A) '" approx. X2(p + q - 1).

If the null hypothesis (3.29) is accepted, naturally one would test next if the drift

parameters are hornogeneous. With the variance parameter assurned to be cornrnon,

the null hypothesis of interest is the following.
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The modified likelihood ratio test statistic, -2ln(A), has the following form and,

for a large sample, is appr ....ximately X2 distributed.

p+q (8 - 8-)2
-2!n(A) = L L ~t A 1 rv approx. x2 (p + q - 1)

. Il
1=1 Si Fi

(3.34)

where 8and 8i are given by (3.25) and (3.32), respectively, and v is given in (3.31).

The test statistic for

without assuming a common variance parameter is

p+q A A 2

-2ln(A) = L L ~t(8 ~~i) rv approx. X2 (p + q -1)
i=1 SiFi 1

(3.35)

where 8and 8i are given by (3.25) and (3.32) respeetively and Vi are given in (3.33).

A simultaneous test for homogeneity of both drift and variance parameters can

be derived in a similar manner. The details are omitted.

A final observation about terminal point data and mixed data with respect to

sample paths homogeneity is worth noting. Parameter estimation based on termina.l

point data relies on the assumption of partial or complete sample path homogeneity

because with m data points one can estimate at most m parameters. In contrast,

with mixed data (containing sorne intermediate degradation readings), more pa

:r.arneters can be estimatedj specifically, p + nT > m pararneters can be estimated,

h ,,",p+q
w ere nT = L.."i=1 ni·

3.5 Inferences When Barrier a is U nknown

In sorne applications, both the barrier level a and the process parameters are

unknown and must be estimated. For example, in engineering applications, the level

of a performance pararneter at which an electronic device fails may be unknown and

have to be estimated from a time series of the parameter readings.
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When a, fJ and 1/ are unknown and both degradation and lifetime data are ob

served, the maximum likelihood estimation would proceed first by maximizing (3.7)

or (3.24) with parameter a fixed and then by examining the profile likelihood func

tion defined by L[a, 8(a), v(a)]. Here 8(a) and v(a) indicate the dependence of the

parameter estimates on the chosen value for a. The profile likelihood may be max

imized by a one-dimensional search over a. The feasible region for the estimate

of a is (max(Xij), 00). See Cheng and Amin (1981) for a discussion of a related

estimation approach.

3.6 Empirical Bayes Inference for Terminal Point Data

One objective of reliability analysis is to estimate the residuallife of a surviving

item or the lifetime of a new item. In this section, parameter estimation and pre

dictive density functions for the future degradation level and for the lifetime of a

surviving item or a new item are developed using Bayes methods. The results are

derived for the terminal point data structure but the analysis can also be extended

to mixed, conditional, and covariate data structures with no major conceptual al

terations. The empirical Bayes implementation of the results is discussed after their

presentation.

A normal prior distribution for the drift parameter is appropriate in many appli

cations. In addition, this form of the prior is mathematically tractable because of

its conjugacy with a Wiener process. A gamma prior distribution for the variance

parameter would also seem to be a natural choice based on its conjugacy with a

Wiener process. Thus, a normal àistribution for b and a gamma distribution for 1/

will be assumed in this section. First, the case where the variance parameter 1/ is

known is considered. Then, a general case with unknown b and 1/ is discussed.
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3.6.1 Unknown 8 and known v

The data structure of terminal point data is repeated here for convenience.

The joint density function of x and s, f(x, sI8), is given in (3.6). The drift parameter

8, as assumed, has a normal prior density function, ~(810), with mean 0 and variance

wv, where w > 0 is sorne specified multiple.

Bayes Posterior Distribution Given the prior density for 8 just asswned, the

posterior density of 8 is

ç(81x, s, 0) ex f(x, sI8)ç(810)

Sorne algebraic rearrangement gives

where

1 ( (8-C2)2)
~(8Ix,s,0) = ~exp - 2

21rVCI VCI
(3.36)

w
Cl =---

1 +wts

B+wds
C2 =

1 +wts

and, as defined earlier, ds = pa + I:~ Xi, ts = tq + I:i Sj' The posterior density is

normal, specifically, ~(8Ix, s, 0) '" N(C2, Cl V). The most probable value of 8, bascd

on this posterior density function is C2.

Estimation and Prediction The Bayes predictive density function of the first pas

sage time of a surviving sample path with the current observation X(tn) = X n is

a mixture of the normal posterior density of 8 in (3.36) and the inverse Gaussian

density h(slxn ) re1ating to a first passage at time s in the future given the process

starts at level X n (below a) at time tn.
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(3.37)

Setting X n = t n = 0 in (3.37), one obtains the predictive density for the lifetime of

a new item.

Note that (3.37) has a similar form to that of an inverse Gaussian density function.

In fact, when the accumulated observation time ts is large or w is small, then the

constant Cl is small and h(s lx, s, B) is approximately an inverse Gaussian density

function with parameters (C2' v). Aiso note that in the limiting case where w --+ 00

(refiecting a diffuse prior for 15), the constants Cl and C2 talœ the limiting values

lits and dslts, respectively.

A Bayes predictive interval for the faiIure time of a sllrviving item can be obtained

accordingly. Let (LI, L 2 ) denote the interval and 1 the specified coverage of the

interval. Then,

l
L2

1 = h(slx,s,B)ds.
Li

Correspondingly, the empirical Bayes reliability function for a surviving item is

given by the fol1owing integral.

1
+00

R(t) = t h(s/x,s,B)ds

When the sample size is large, R(t) is approximated by the complement of an

inverse Gaussian distribution function. An explicit form for R(t) may be obtained

from results in Whitmore (1986).

Now, consider the Bayes predictive density for a future degradation level. Note

that one would not know at the moment of making the prediction whether the

item will have failed by a future ti:ne point t (t > t n ). The quantity of interest,
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therefore, is the joint probability of surviving to time t and taking a particular

degradation level x < a at time t. Let Ant denote the event of no passage in time

interval [tn, t). Then, the predictive density of the future degradation level is the

product of the normal posterior (3.36) and the p.d.f. of the level X(t) of a truncated

Wiener process given in (3.3) integrated with respected to ~ (-00 < ~ < +00). The

predictive density function for the future sample path level, X(t) = x, (t > tn), of

a surviving item with the current sample path level X(tn) = X n is then as follows.

(3.38)

where x < a, .6.xn = x - xn, and L::dn = t - tn. For a new item, the desired density

is obtained by letting X n = t n = a in (3.38). As discussed earlier, when ts is large

or w is small, then Cl is small. As Cl approaches zero, the density (3.38) approaches

the form in (3.3) with the drift parameter replaced by C2. On the other hand, as

w -4 00 (reflect.ing a diffuse prior), Cl -4 lits and C2 -4 ds/ts. The!! the density

(3.38) has a similar form to (3.3) with the drift parameter replaced by ds/ts and

the variance parameter inftated by a factor of 1 + .6.tn /ts.

Empirical Bayes Estimation and Prediction For an empirical Bayes implementa

tion of the preceding results, it is assumed that prior parameter B is unknown while

w is known. The MLE of B can be obtained from the following likelihood fUllctioll.

1
+00

L(B) = -00 f(x, sl<5)ç(6IB)d<5

It can be shown that the MLE of Bis ê = ds/ts = 8. The empirical Bayes posterior

density of <5 therefore is

(3.39)
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where
A Ô+wds ds
C2 = =-.

1 + wts ts

Inference about the drift parameter 0 can be made using the empirical Bayes nor

mal posterior in (3.39). For example, the empirical Bayes point estimator of 0 is

E(olx,s,Ô) = ds/ts, which is the same as the maximum likelihood estimator of o.

Although the empirical Bayes estimator of 0 corresponds to the MLE, the empirical

Bayes interval estimator of 0 will have a width that refiects the amount of prior

information about 0 as measured by the multiple w in the prior variance.

Empirical Bayes confidence intervals, such as the one for 0 based on (3.39), will

often be too short or inappropriately centred because the interval takes no account

of the sampling variability of Ô. Methods have been proposed for adjusting these so

called "naive" confidence intervals. Carlin and Gelfand (1990), for example, propose

a methodology for constructing bias-corrected intervals. The bias-corrected interval

requires the sampling distribution of Ô. This sampling distribution, however, cannot

be found in a closed form here and the correction is not carried out.

3.6.2 U nknown 0 and v

When both parameters, 0 and v, are unknown, it is convenient to reparameterize

by replacing v with the precision parameter À, defined as À = l/v. The precision

parameter is assumed to have a gamma prior density function,

where b > 0 and d > o. The drift parameter 8 is assumed to have a conditional

normal distribution, Çl (8IÀ), with mean () and variance w/À.

Let f(x, s18, À) denote the joint density function of the terminal point data. Then,

the posterior joint density function of 8 and À is

(3.40)
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where

and

g(x,s) = 1=1:çl(81-\)Ç2(-\)f(x,sI8,-\)d8d-\

= 1.= Fo>!P+d-l exp(-F1À)i! [1 - exp ea(x~-a) À)] dÀ,

.$

F b
~ dj ts(j2 - 28ds - d1w

1=+L.....,-+ .
j=12tj 2(1 +wts)

(3.41)

The integrand in (3.41) can he expanded as a fini te linear comhination of gmmna

density functions and, hence, g(x, s) can be expressed in a closed fonn. It is, how

eve~, a complicated expression in the prior parameters 8 and w and obtaining their

empirical Bayes estimates will require the use of a numerical computer routin!'.

Evaluating the predictive density functions h(slx,s) and f(x, Antlx,s) is also ana

lytically complex and requires numerical methods. Numerical simulation methoàs,

such as Gihh's sampling, might he used as an alternative to numerical computation.

3.7 Summary

This chapter first presents derivations of the density function of a truncated

Wiener process for the standard prohlem and then several variations of the standard

prohlem are examined. Next, statistical inference methods based on terminal point

data and mixed data are developed in reliability contexts where both degradation

and lifetime data are availahle. The MLEs of the drift and variance para.rneters

are obtained and found to he asymptotical1y independent. Inferences ba.<;ed on

the asymptotic normality of the MLEs, a modified likeIihood ratio method, and an

approximate analysis of deviance are presented. Approximate pivotaI quantities arc

found for both the drift and variance parameters. Tests of sample path homogencity

are also derived using the likelihood ratio method. Fol1owing these, the problem

of estimating an unknown barrier is discussed hriefiy. Finally, an empirical Bayes
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analysis is developed for terminal point data. The predictive density functions for

the lifetime and the future degradation leve1 of a surviving item or a new item are

presented. Two case examples that il1ustrate the applications of these methods are

given in Chapter 6.
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CHAPTER 4. INFERENCE FOR ACONDITIONAL RANDOM PROCESS

This chapter presents iliference methods for conditional degradation data using

the truncated Wiener process as the model for a conditional degradation process.

In some applications, one can observe only the degradation process of a surviving

item and no inf0rmation about the failed item(s) is available. For example, consider

a device that is already in service, such as an under-sea telecommunication link or a

reactor in a chemical plant. The performance levels or degradation data of the device

are readily available from routine maintenance proc~dures. It is, however, virtu;ùly

infeasible or uneconomical to collect a sample consisting of the degradatioll data of

both failed and surviving devices. In many cases, a failed device is replace<.l with

one that is technologically (1. , vanced and hence has different design specifications.

Moreover, the current device may be the first one operating in a certain environment

or the only one of its kind. In these types of situations, it is desircd to derivc

predictive inferences and optimal maintenance policies based on the degradation

data of a device that is in service (i.e., a surviving item).

To discuss the related inference methods, the conditional degradation data struc

ture, defined in Chapter 2 is taken as the representative form of the data. The

plot in Figure 3.1 illustrates a sample path of a conditional random process that is

restricted by a barrier. The conditional degradation data structure assumes that

only a sample path that did not exit a barrier can be observed. Statistical infer

ence for conditional data is then based on the observed levels of the proccss at a

set of time points within an observation period, given that the path of the process

within the period did not exit the barrier. Inference for the parameters of the COIl

ditional degradation process is discussed first. This is then followcd by a dctailed

examination of the impact of conditioning on the parametcr estimates.

4.1 Statistical Inference

Likelihood Function Consider a sample path that has not crossed a barrier at
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a and measurements on sample path levels that have been taken at a set of time

points. Let x = (XI,X2, ... ,Xn) be n observations (n > 2) on the sample path, at

the fixed time points 0 < il < i 2 < ... < in. As in Section 3.3, let Ai denote the

event that there is no first passage to barrier a in time interval [ ii-l, ti] and let Ai

denote the complement of Ai. The joint density function of XI,X2, ... ,Xn and A on

is given by equation (3.20). That is,

f(XI, X2, ... , Xn, Aon ) = f(XI, Al )f(X2, A2Ix I)······f(xn , Anlxn-l).

Since all of the observations are conditioned on the sample path not exiting the

barrier in the interval [0, in], we have the following likelihood function for the n

observations.

where

P(Aon ) = ci> (a - Mn) _ exp( 28a)cI> (_ a + 8tn )

.j1/in 1/ .j1/in

and 60ii = ii - ii-I, 60Xi = Xi - Xj-l, 60i l = iI, 60XI = Xl.

Maximum Likelihood Esiimaiors Taking partial derivatives of the log-likelihood

function l = ln L(8, II) with respect to 8 and 1/ and setting these to zero gives

the following equations. These may be solved simultaneously for the maximum

likelihood estimators of 8 and 1/, denoted by b and v.

t (6oXi - b6 ii) _ 1 âP(Aon ) =
i=l V P(Aon ) âb G,
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where
K'(v) _ 4(a - Xi)(a - Xi-l)

z - 6ti (exp [2(a-x2i~~Xi-l)] - 1) .
Furthermore, it can be shown that:

The MLEs of 8 and v are therefore the roots of the fol1owing equations

where

(4.2)

(4.3)

(4.4)

(4.5)

It has not been confirmed that the roots of (4.2) and (4.3) define a unique global

maximum but numerical analysis to date has produced no contrary evidence. Note

that neither MLE can be expressed in a closed form.

The nature of the MLEs in (4.2) and (4.3) and the impact on them of the condi

tioning effect of the barrier are discussed in Section 4.2. First, howevcr, infcrencc

results based on the MLEs are presented.

Inference About Paramei.'~rs Inferences about the drift and variance parameters

can be derived, as in Chapter 3, based on the asymptotic normality of the MLEs

or using the modified likelihood ratio method.
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The asymptotic bivariate normal distribution of 8and v has a coval:ance matrix

that is estimated by thE" ::!verse of the observed information matrix 1(8, v).

where

~ (Ill1(0, v) =
112

(4.6)

and
l _ t nD1 1 3P(Aon ) ap(Aon ) 1 a2P(Aon )

12 - D"2 - P(AOn )2 a8 av + P(Aon ) ava8

The first order derivatives of P(Aon ) with respect to 0 and v are stated earlier and

the second order derivatives can be derived readily. The MLEs, 8 and ÎI, cannot

be expressed in closed forms and thus the covariance matrix must be evaluated

numerically. In general, the MLEs are not asymptotically independent since the

expeete.d value of the second order partial derivative, E(I12 ), is not identically zero

at (0, v) = (8, v). Inferences based on che modified likelihood ratio method can

also be developed as in Sections 3.2 and 3.3. No details will be given here, as the

structure parallels that presented earlier.

Sampling Distribution of 8 Based on the form of the MLE for 0 in (4.2), several

interesting observations about the sampling distribution of 0 can be made.

Taking the value of v to be given, we can derive the fol1owing equation, from the

expression for the MLE 8in equation (4.2).

~ 2a 2a<S (a + <stn )
X n = Mn - P(A

on
) exp( ---;-)<I> -,;vr;;

49

(4.7)



Here P(Aon ) is evaluated using Sso that the right hand side of equation (4.7) is a

function of Sonly. For the convenience of discussion, this function will be deuoted

by "l(S). Intuition suggests that X n = "l( S) is a continuous increasing fuudion of

Sfor which X n ranges over (--':'00, a) as Sranges over (-00,00). A mathematical

proof of this result has proved to be elusive but the following exhaustive llumerica.l

examination supports this intuition.

To study equation (4.7), a reparameterization is found convenient. Let bl = 6t,./ (1

and b2 = a2 /vt n , then, equation (4.7) becomes

(4.8).

The right hand side of (4.8) is a function of b1 and b2 only. The numerical analysis is

based on this equation. When parameters b1 and b2 are both large, numerical com

puter routines for the normal distribution function <I> in (4.8) becomes unreliablc, an

approximation to the standard normal distribution function given in Abramowitz

and Stegun (1967, p.933) is then used to calculate the tail area of the standard

normal distribution. The numerical results are summarized in Figures 4.1 and 4.2.

Figure 4.1 shows a surface plot of xn/a with respect to b1 and b2 • It cau be scen

that xn/a is an increasing function of b1 for a wide range of b2 values. The upper

right corner of the surface is truncated because of numerical difficulty encountered

when the exponential function causes overflow. Figure 4.2 plots xn/a agaiust hl
for b2 = 0.2 and b2 = 8, respectively, as illustrative cases. It is obvious that x n / (1

approaches 1 from below as b1 increases.

By the technique of changing variables, the p.d.f. of S, denoted by g(8), is given

by:

(4.9)

where

J = 8"l(~8)
88
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and f(·IAon ) is the p.d.f. in (3.4). Thus,

where

A 2a 2a8 (a + 8tn )
X n = Mn - P(Aon ) exp(-;;-)q> - Jvt

n
. (4.11)

Relation (4.10) provides a basis for studying distributional properties of 8, condi

tional on v known. Note P(Aon ) in (4.11) is evaluated based on 8 while the one

in (4.10) is evaluated based on b. In general, the p.d.f. 9(8) is unimodal, slightly

right skewed and roughly centered on the value of b. It can be shown that when

the barrier a - 00, 8 rv N(b, v/tn), so 9(8) is a normal density.

A group of density curves are plotted in Figure 4.3 for different values of barrier

level a, set at 5, 10, 20, and 40 respectively. The other parameters are fixed at

o = 0.2, v = 5, and t = 10. The probability mass is roughly centered around

the value of the drift parameter b = 0.2 and slightly right skewed. It can be

seen that when the barrier gets tighter, the skewness increases. In other words,

the distribution becomes more symmetrical as the barrier level increases and, as

noted earlier, the distribution converges to a normal distribution when the barrier

vanishcs.

4.2 The Effects of a Barrier on MLEs

It is instructive to contrast the MLEs defined by (4.2) and (4.3) with those from

sampling an unrestricted Wiener process. The joint density function of Xl, X2, ••• , X n ,

from a Wiener process {X(r),r ~ o} with b and v, is
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Letting 8n and Îln denote the maximum likelihood estimators of b and v for this

model, it is weil known that

1 Ln (6.x· - 8 6. t·)2A 1 n 1
V n =-

n 6.t·
i=l 1

(4.12)

The estimators of 8 and v for a truncated Wiener process in (1.~) and (4.3)

are both different from those of an unrestricted Wiener process in (4.12). The

differences are seen by inspection to be the two terms, Dl and D 2 , givcn in (4.4)

and (4.5), i.e.,

Note th<..~ beca~se a > 0 and t n > 0, Dl is positive for any value of 8 and v. Th:;

finding implies that for condihonal data one would tend to underestimate li by \Ising

the estimator 8n when a barrier exists.

As the barrier gets tighter, the effects of the barrier on 8 become more significant.

In fact, from the expression for Dl in (4.4), it can be shown t.hat Dl increases

steadily as the barrier level a decreases towards max( Xl, X2 , •.• , X n)' The difference

between v and vn , denoted by D2 , can be either positive or negative, depending

on the particular sample path. It is not a monotonie function of a and simulatiŒl

results, which are not reported here, show that D2 tends to be relatively small under

a wide range of conditions. Thus, the tightness of the barrier does not seem to have

a significant impact on the estimator of li.

On the other hand, one expects intuitively that, as the barrier moves away from

the sample path, i.e., a moves away from max(xI, X2"", x n ), the effect!:l of the

barrier will vanish. In fact, it is easy ta show that the differences Dl and D 2 do

approach zero in the limit as a approaches 00.
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4.3 Summary

The truncated Wiener process describes a sample path with no first passage. This

process is the appropriate model for the conditional degradation data structure. The

maximum likelihood estimators of the drift and variance parameters b and ÎI are

derived for the this data structure. Inference based on asymptotic normality and

the likelihood ratio method are discussed. When the barrier is tight, the results

of statistical inference are found to be misleading without taking the effects of the

barrier into consideration. A study of the MLEs shows that the estimator of b is

significantly C'Jfected by the barrier whereas that of 1/ is not.

The sampling distribution of 8is developed when the variance parameter is given.

The distribution converges to a normal distribution as the barrier level approaches

infinity. The study of sampling ciistributions has been limited to the drift parameter

while the variance parameter is assumed given. More study is needed to provide

a complete analysis of the distributional properties of the MLEs of the drift and

variance parameters of a truncated Wiener process.

The development of this chapter is based on a single sample path restricted by

a fixed barrier. The results extend to multiple sample paths with no conceptual

difficulty. A case example to illustrate the application of this model is given in

Chapter 6.
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CHAPTER 5. COVARIATE STRUCTURE

In many practic81 situations, such as the wear-out of a mechanical component or

the deterioration of an electronic device, the random process changes in a manner

that is correlated with one or more factors, that are called covariates. For eXéUl1

pIe, a wear-out process is affected by temperature, materi81 properties, and so on.

While covari<.~esdiffer from one situation to another, it is important t.o incorporate

these covariates in reliability models. Much literature has been devoted to models

for lifetime data with covariates. Lawless and Singhal (1980) give an exponential

lifetime model where the response data depend on a vector of regression variables.

Whitmore (1983) develops a regression method for censored lifetime data that follow

an inverse Gaussian distribution. Some studies have formulated models that rc1ate

reliability to covariates. Guttman et 81.(1988) derive a lower confidence bound for

the reliability function of a classic81 stress-strength model where the strength and

stress are correlated with explanatory variables. The Guttman model approaches

the problem from the perspective of a static model assuming that strength and

stress are independent and normally distributed. This chapter extends the lifetime

data model in Whitmore (1983) to a data structure that comprises both lifetime

and degradation data. The model presented here is developed for the terminal

point data structure. The extension of this model to the mixed data structure is

straightforward.

5.1 A Model for Time Fixed Covariates

Consider an item whose degradation process is assumed to be a Wiener process

{X(t), t 2: O} having characteristics determined by k covariates Zi, i = 1,2, ... , k,

which may vary across items but are fixed over time. By time t, this process

either has crossed a barrier for the first time at s < t (i.e., has failed) or has not

crossed the barrier and terminates at degradation level X(t) = x (i.e., has survived).

Assume we have p +q such items, then the resulting data structure, as described in
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Chapter 2, consists of the levels of covariates represented by the matrix Z defined

in (2.5), degradation data x = (XI,X2""'Xq), and lifetime data s = (SI,S2""'Sp).

Again, p is the number of failed items and 1 is the number of the surviving items;

Si, i = 1,2, ... ,p, are the first passage times of the p failed items; t is the censoring

time; Xi, i = 1,2, ... , q, are the observed levels ofthe surviving items at the censoring

time. The following matrix notation is convenient for mathematical derivations.

In practice, covariates may influence the degradation process of an item by driving

the process parameters in certain directions. They may affect the drift parameter

li, the variance parameter v, or even the barrier level a. It will be assumed here

that the relation between li and the covariates is the dominate force driving the

degradation process and that compared with it, the relations between the other

parametcrs and the covariates are less significant. Of course, this assumption will

need to be justified either theoretically or experimentally in particular applications.

Here, for the simplicity of theoretical derivation, we consider the relation between li

and the covariates only and assume, in particular, that the drift parameters Iii (i =
1, 2, ... , p + q) of the p + q items are related to the covariates as follows

~=ZB (5.1)

where ~ = (1i1 ,1i2 , •.• ,lip+q )' and Z is the (p+q) x k matrix ofcovariate values.

5.2 Inference for Terminal Point Data with Cov::lriates

Likelihood Funetion and Maximum Likelihood Estimators Following the pattern of

Section 3.2, the likelihood function of the covariate data structure described above

1S

L(B ) - rrP a rrq ( 1 ( (2a(x i - a»)),v - l-exp x
}=l J2rrvsJ i=l ..j2rrvtn vtn
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exp ( - 2
I
v (TZB - X)'T-1(TZB - X)) .

The MLEs of parameters B and v are the following.

B = (Z'TZ)-l(Z'X)

where

(5.2)

(5.3)

K'(v) = 4a(a - Xi)
1 [2a(a-x;) _ I]t'exp vt

It can be shown that the MLEs are th~ unique maximum of the likelihood functioll.

Inferences About Parameters Inferences about the drift and variance parameters

can be conducted based on the asymptotic normality property of the MLEs, B and

V, or the modified likelihood ratio method. Under the usual regularity conditions,

B and v have an asymptotic multivariate normal distribution with the following

estimated covariance matrix.

~ ~ (V(Z'TZ)-l
Cov(B, v) =

o
(5.4)

Here,

a2
1

1
_ _ = _p + q _ ~ (Ki(v))2 exp( _ 2a(xi - a))

av2 6,v 2v2 L...J 2v2 vt
i=l

and v(Z'TZ)-l is the covariance matrix for B (i.e., Cov(B) = v(Z'TZ)-l). It can

be seen that B and v are asymptotically independent.

The quadratic form (B - B)'Cov(B)-l(B - B) follows an approximate chi-square

distribution with k degrees of freedom (dJ), based on the asymptotic theory for

MLEs. C').l.1fidence intervals and tests can be construeted in the usual way. For

example, a 1 - a confidence interval for (Ji is ~i ± z(a/2)âii , where âli is the itb

diagonal element of the covariance matrix for B in (5.4) and z(a/2) is the a/2
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fractile of the standard normal distribution. When MLEs of the regression coef

ficients are normally distributed, the estimated drift parameters bi = ZiB, which

are linear functions of the regression coefficients, are also normally distributed with

mean ZiE(B) and variance ZiCov(B)Zi, where Zi is the ith row of the Z matrix.

To illustrate inference based on the modified likelihood ratio method, consider

hypotheses about the effects of some of the covariates on the parameters of the

degradation process. Specifically, suppose we wish to test the null hypothesis

Ho : B(2) = 0

corresponding to the partitions B' = [B(I) IB(2)) and Z = [Z(l) IZ(2)), where B(2) is

of dimension r < k. The likelihood ratio test statistic is then

For a large sample, this test statistic is weIl approximated by a chi-square distribu

tion, specifically

(5.6)

where r is the dimension of B(2)' The test statistic in (5.5) is a quadratic form

in X. A diagonal element of Twill be eitl:.er a failure time s with a probability of

1- P(A) or the censoring time t with a probability of P(A). Each Si in the diagonal

matrix T follows an inverse Gaussian distribution that is truncated at time t and

each Xi in matrix X is the level of a truncated Wiener process at time t and has

the p.d.f. given by equation (3.4).

A nalysis of Deviance The results of analysis of deviance presented in Section 3.2

can be extended to the covariate data structure. For the covariate structure, the

respective counterparts of the quantity Q, QE, and QR defined in Secâon 3.2 are
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the following.

Q = ~(TZB - X)'T-1(TZB - X),
v

1 A , , A

QR = -(B - B) Z TZ(B - B),
v

QE = ~(TZB - X)'T-1(TZB - X) = .!.X'(T-1 - Z(Z'Tz)-lz')x.
V V

Let QEO denote the counterpart of QE in the reduced mode1, i.e., under Ho :

B(2) = O. Then, the test statistic given hy equation (5.5) can he expressed as

-21nA = ClEO - QE where QEO - QE is

Recall that this test statistic has an approximate X2 (r) distribution. FUrthermore,

QR is approximately X2(k) based on asymptotic theory of MLEs. Following the

rationale presented in Chapter 3, the following conjecture is certainly worth furthcr

study.

1) QR and QE are approximately independent,

2) Q is approximate1y X2
( dI) (df > k), and

3) QE is approximately X2(df - k).

The degrees of freedom df in this conjecture is obtained by a direct analogy with

(3.18) as
m

df = m + L 1/J~(O),
i=l

where

and
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The pivotal quantities presented in Section 3.2 may also be developed here. QE is

an approximate X2 ( df - k) distributed pivotal quantity for v and (df - k) QRI(kQE)

is an approximate F( k, df - k) distributed pivotal quantity for B. The technical

details are omitted as the structure parallels to that of section 3.2.

5.3 Summary

This chapter presents statistical inference methods for the terminal point covari

ate data structure with covariates that vary among items but are fixed over time.

The covariates are assumed to influence degradation processes through the drift

parameter only and the variance parameter is unaffected. The drift parameter is

assumed to be linearly related to the covariates. The MLEs of the regression coef

ficients and the variance parameter are derived and are found to be asymptotically

independent. Statistical inference about the model parameters based on asymptotic

normality and the likelihood ratio method are then presented. Analysis of deviance

is also discussed.

This chapter has left a few issues to future research. One is that analytical

work is required to prove the conjecture about analysis of deviance for the covariate

data structure. Another is related to the assumption given in this chapter about the

nature of the influence of covariates on a degradation process. It is certainly possible

that covariates influence the variance parameter and barrier level in addition to the

drift parameter. Finally, covariate data structures involving time varying covariates

remain to be studied.
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CHAPTER 6. CASE APPLICATIONS

This chapter presents four case examples to illustrate applications of the statis

tical methods developed in the preceding chapters for terminal point data, mixed

data, conditional data, and covariate data. The first two sections employ simulated

data to il1ustrate the methods for terminal point data with and without covari

ates. The remaining two sections employ real data to illustrate the methods for

conditional and mixed data.

6.1 A Case for Terminal Point Data

To illustrate the analysis for terminal point data, as presented in Chapter 3, a

numerical example is developed using s;mulated data. A set of 100 sample paths is

simulated for a Wiener process with 8 set at 0.2 and 1/ at 2. Of the 100 sample paths,

25 crossed a barrier at a = 20 before stopping time in =-= 60. The terminal point

data set includes the failure times of the 25 failed sampie paths and the d<::gradation

levels of the 75 surviving sample paths at time in = 60. The data are presented in

Table 6.1. The MLEs of 8 and 1/ are obtained from equations (3.8) and (3.9) using

a numerical iteration procedure. For these data ds = 1045.102 and is = 5508.616.

The parameter estimates are

8= 0.1897 and ij = 1.9853,

which, as expected, are close to the true parameter values specified in the simulation.

Using the inference methods developed in Chapter 3, the fol1owing results are

obtained for this example.

The sample size of this example, p+q = 100, can be considered large. Hence, ÊJ and

f) are asymptotical1y independent and each has an approximate normal distribution

with the variance being estimated according to matrix (3.11). Specifical1y, for this
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example, the estimated asymptotic variance of 8 is

V are8) = ÎIlis = 3.6040 x 10-4
.

Interval estimates for 8 can then be calculated for different confidence levels. For

example, a 95% confidence interval for the drift parameter is

0.1525 :5 5 :5 0.2269.

A similar asymptotic interval estimate can be developed for the variance parameter.

The estimated asymptotic variance of ÎI is calculated using equation (3.12).

V are ÎI) = 0.04995.

Then a 95% confidence interval for li is

1.5473 :5 li :5 2.4233.

The interval estimates for both 8 and li contain the respective true values of 8 and

li. As they are asymptotically independent, the two confidence interva!s will have

a joint confidence level of approximately 90%.

Again, given that the sample size is large, the test statistic (3.14)

~ 2

-2ln(A) = is (80
-::- 8)
li

has an approximately X2 (1) distribution. A likelihood ratio test for an hypothesis

such as

Ho: 8 = 0.2

can then be conducted based on this distributional property. The test statistic is

-21n(A) = 0.2944, which corresponds to a p-value of 0.587. The large p-value
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supports the null hypothesis as would be e:>..-pected because Ho, in fact, is a true

hypothesis here. The test conclusion is also consistent with the fact that the 95%

confidence interval spans ~ = 0.2.

A test for the same hypothesis can also be conducted based on the pivotal quantity

(3.19), which was developed earlier from an analysis of deviance. The pivotal is

repeated here for convenience.

F* = (df -1) QR = (df -1)(6 -.~)2ts '" approx. F(l,df -1)
QE ~p+q (di-6 t i)2

L...I ti

The formula for the degrees of freedom df is given in (3.18). For this example,

QR = 0.2910, QE = 102.5807, df = 149.6, F* = 0.4215, and the corresponding

p-value is 0.5172. Again, the large p-value supports Ho as expected.

The pivotaI quantity can also be used to construct an alternative interval estimate

for ~. Using F(l, 149.6,0.95) = 3.904 and values given earlier for 6, ÎJ, ts and QE,

the 95% confidence interval is

0.1585 ~ ~ ~ 0.2209

Note that this interval is slightly tighter than the one calculated using MLE asymp

totic normal theory and it includes the true value of 8 as it should.

An empirical Bayes confidence interval for 8 is also cornputed from the normal

posterior distribution (3.36). It is assumed that w = 3 hf.::re. Then, from the sample

iTlformation, we have

W
Cl = = 1.8152 >( 10-4

1 +wts
~ ê+ wds ~
C2 ==- = 8 = 0.1897.

1 +wts

Since 8 '" N(C2' CIV) and Cl is very smal1, it Can be seen that the posterior density

in this example is highly concentrated on the mean value C2. A 95% empirical Bayes
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confidence interval for this example is as follows.

0.1523 ~ 6 ~ 0.2271.

This interval is slightly wider than the intervals based on MLE asymptotic normal

theory and the pivotal quantity from analysis of deviance.

The predictive density function h(six, s, 8) in (3.37) is plotted for this example.

In addition to Cl and C2, the parameters of the density function have the following

values,

a = 20, in = 60, V -?- ~, q = 75, p = 25, w = 3.

The p.d.f. h(six, s, 8) is approximately inverse Gaussian as Cl is very smal!. Figure

6.1 gives a plot of this density function with the above parameter values and X n = o.
It is estimated, by computing the proportion of the area under the density curve,

that this item will fail before time i = 240 with a probability of approximately 0.85,

given that it has survived to time in = 60 with a degradation level of X n = o.

6.2 A Case for Terminal Point Data with Covariates

To illustrate applications of the covariate model described in Chapter 5, a sample

of simulated terminal point data is analyz~d. The simulation is designed to imitate

the degradation of an electronic device. Two covariates, temperature (Zl) and

device design (Z2), are experimentally manipulated. The temperaturc variable has

five levels (0, 25, 50, 75, 100) and, for each temperature level, two designs are

considered (denoted by levels 0 and l, respeetively). Thus, the experiment consists

of 5 x 2 = 10 treatment combinations or experimcntal blocks. (The simulation

is patterned after a real experimental setting that was used in a degradation test

described in Section 6.4.)

Eight hundred sample paths are simulated; 80 sample paths in each experimental

block. The relation between the drift parameter 6 and the covariates is assumed to
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have the form

b = 0.1 + 0.008Z1 + 0.lZ2 • (6.1)

Thus, the drift parameter bis set at 0.1 for the first block and an increment of 0.1 is

added for every subsequent block. The drift parameter value b for each treatment

combination is therefore as follows.

Tempecature

v 25 50 75 100

Design 0 0.1 0.3 0.5 0.7 0.9

1 0.2 004 0.6 0.8 1.0

The variance parameter Il is held constant to be consistent with the model as

sumption. The value Il = 2 is chosen. The barrier level is set at 40 and stopping time

at 60. AH devices having sample paths that cross level a = 40 before time t n = 60

are considered to have failed and their failure times S j are recordeJ. The remaining

devices are considered to have survivect and their terminating sample path levels Xi

at time in = 60 are recorded. The sample path levels Xi together with the barrier

level a = 40 form an 800 x 1 vector X and the failure times together with the stop

ping time in = 60 form an 800 X 800 diagonal matrix T. Both matrices are defined

in Chapter 5. The 800 x 3 covariate matrix Z has the structure of (2.5) and contains

the temperature and design levels with every 80 identical rows corresponding to one

experimental block. The MLEs of the regression coefficients B = (/30, /31, /32)' and

the variance parameter Il and the estimated asymptotic variance covariance matr~x

are computed from equations (5.2),(5.3), and (504).

B = (0.1061682 0.0077912 0.0977416)'

ii = 1.82662
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0.0001605 -1.664 x 10-ô 0.000085 0

Cov(B,v) =
-1.664 x 10-6 3.5656 X 10-8 5.1639 X 10-8 0

0.000085 5.1639 x 10-8 0.0001689 0

0 0 0 0.0073935

As expected, the MLEs of both the regression coefficients and the variance pa

rameter are close to the true values specifi.ed in the simulation. The estimated linear

relation between the drift 8 and the covariates is

b= 0.1061682 + 0.0077912Z1 + 0.0977416Z2•

Then the estimated drift parameters associated with the different combinations of

covariate levels are

.6. = (b1 b2 .•. blO )'

= (0.1062 0.2039 0.3009 0.3987 0.4957 0.5935 0.6905 0.7882 0.8853 0.9830)'.

Based on asymptotic normal theory, each of the 8j , i = 1,2, ... , 10, has an approx

imate normal distribution N(ZjB, ZjCov(B)Zi), where Zj is a raVi vector contain

ing covariate levels for the ith block. From this distributional property, a set of 10

simultaneous confidence intervals for the drift parameters of the 10 experimental

levels is computed.

81 82 83 84 85

Lower Bound 0.0735 0.1714 0.2752 0.3729 0.4722

Upper Bound 0.1388 0.2364 0.3267 0.4245 0.5192

86 87 88 89 810

Lower Bound 0.5695 0.6633 0.7603 0.8503 0.9472

Upper Bound 0.6174 0.7177 0.8162 0.9202 1.0188
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The joint confidence coefficient is approximately 0.95 while each individual confi

dence interval is set at 0.995 level.

A test of the hypothesis Ho ; Ji = (0.1 0.008 0.1)' is conducted. The asymptotic

normal theory method and the likelihood ratio method developed in Chapter 5

give equivalent results. Based on the asymptotic normal theory, the following test

statistic x* has an approximately X2(3) distribution under Ho.

x* = (13 - B)'[Cov(13)]-l(13 - B) = 1.7339.

The corresponding p-value is 0.182, as expected, Ho r:annot be rejected.

6.3 A Case for Conditional Data

(6.2)

In many economics and finance applications of stochastic processes, it is rea

sonable to assume that the time sequences under study, whether they <.IJ.e interest

rates, stock priees, or th~ like, are restricted by a barrier or barriers. Applying a

conventional stochastic process whose state space is defined on the whole realline

to a restricted time sequence would n0C be appropriate and would give misleading

results. For example, a stock's priee, whether it increases or decreases in a time

period, must remain above zero if a firm remains solvent. Much literature in fi

nance have been devoted to searching for adjustments so that a Brownian motion

process can capture the dynamics of stock priee, siDee the Brownian motion proeess

was first studied and applied as a stock priee model by Bachelier in 1900 and the

later adaptation of the process to changes of stock priee (see, Cootner 1964 and

Samuelson 1973). Because of the limited liability of stocks, literature in finance has

adapted Brownian motion to describe the return of a stock by assuming that the log

arithm of a stock priee is normally distributed and follows a Brownian motion. The

truncated Wiener process presented in Chapter 3 provides an alternative process

that has properties that correctly model the limited liability of stocks. Instead of

adapti~g the Wiener process to the logalithm of a stock priee, the truncated Wiener
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proeess can be applied directly to a stock priee that is restricted by a barrier placed

at zero.

This section presents a finance application of the conditional data model, which

was developed based on a truncated Wiener process. The application concerns a

sequence of 100 daily returns of a randomly selected stock, which was listed on

the New York Stock Exchange. Prices are calculated using the fol1owing equation:

Yi = (Ti+ l)Yi-l' where Ti and Yi represent return and price in period i, respectively.

The initial price has been arbitrarily scaled to Yo = 5. The price barrier level is set

at zero. The stock priee data are listed in Table 6.2 in time order.

The price sequence is transformed to correspond to the standard problem pre

sented in Chapter 4. As the initial sample path level is Yo = 5 and the barrier is

below the initiallevel of the process, the transformation X(t) = 5 - Y(t) is used,

where Y(t) denotes the original process. Thus, the transformed process XCi) with

X(O) = 0 and a = 5 corresponds to the standard problem descr.ibed earlier.

The drift and variance parameters are estimated from equations (4.2) and (4.3) for

the transformed sample path and then are converted to correspond to the original

series Y (t ). The drift parameter 6 and the variance parameter v of the original

series Y (t) are as follows.

6= -0.00196 v= 0.02895.

The corresponding parameter estimates when the barrier is ignored can be calcu

lated from (4.12) and are found to be

bn = -0.00090 vn = 0.02892.

Note that the difference between the values of the drift parameter 6n and 6 IS

significant whereas the variance parameter estimates are very close as anticipated
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by the theoretical analysis in Chapter 4. The rate of price change is underestimated

when the barrier is ignored.

Inference for the drift and variance parameters can be derived from the asymptotic

normal theory for MLEs and the likelihood ratio method. First, the results based

on asymptotic normality of the MLEs are presented.

Th/" covariance matrix of band ÎJ, which is the inverse of the information matrix

(4.6), is estimated for this example.

A A (0.2446 X 10-3

Cov(6, v) =
0.5285 X 10-4

0.5285 X 10-4
)

0.2083 X 10-4

Then setting the confidence level at 1 - a = 0.95, the individual confidence

intervals for the drift and v3.riance parameters are

-0.0326 ~ 6 ~ 0.0287,

0.0200 ~ v ~ 0.03790.

As noted in Chapter 4, the t'Wo MLEs are not asymptotically independent. Based

on the asymptotic normality of the MLEs, the quantity (b-6 ii-v)'Cov(b, ii)-l(b

6 ii - v) has an approximate X2 (2) distribution. A 95% confidence region for 6 and

v is plotted in Figure 6.2.

From above results, one can see that the stock was not performing well. In fact,

it decreased at an average rate of $0.00196 per trading day over the time period

observed.

6.4 A Case for Mixed Data with Covariates

The model for a mixed data structure is applied in this section to a problem

related to the degradation of electronic transistors. An electronic transistor degrades
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and finally fails when its gain, a key performance measure of a transistor, falls to a

level that makes it nonfunetional in the device where it is placed. The gain le~lels

can be recorded at a set of time points and times to failure can also be observed

in the course of laboratory experiments. Inferences about the reliability properties

of the transistor are desired based on the set of degradation and life data collected

in the experiment. The transistor degradation data used in this case application

were madl'; available through Dr. T. C. Denton, senior principal research engineer of

BNR Emope Ltd., England. The data and application have been slightly disguised

to protect their proprietary nature.

The transistor degradation data are listed in Table 6.3. Each transistor is referred

to by an item number. The times shown are in hours. Ambient temperature and

current were the experimental conditions. It can be seen that the degradation

processes for gain are bidirectional. The transistor gain increases and decreases

over time but tends to decline (degrade). This observation supports the remark

made earlier about the plausibility of modeling degradation processes by a Wiener

process. The fol1owing is sorne background information about the data set.

The experiment was conducted by varying both the ambient temperature and

electric current levels applied to the transistors. A set of 20 transistors was divided

randomly into five equal groups and each group was tested at a different ~~mperature

level. Each group is further divided randomly into two blocks consisting of two

transistors each. At every temperature level, one block was tested at current level1

and the other at current level 2. In this way, the 20 transistors were divided into 10

experimental blocks and the experiment was controlled at five different temperature

levels and two electric current levels. The degradation processes were believed to

be affected by both temperat~re and current levels applied. The temperature and

current will be referred to as covariates.

The failure threshold for the gain of a transistor tends to vary slightly from one

application to another. The barrier is arbitrarily set at 70 here, just to illustrate
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the application. That is, when gain falls to 70, a transistor is assumed to fail.

Three of the 20 transistors failed at different times. The censoring times of the

17 surviving items are not equal while the standard model developed in Chapter

3 assumes a common censoring time tn. Also, the initial gains vary from one

transistor to another which is another departure from the standard model. The

following transformations are used to convert the original data to the standard

problem described by the mode!.

Xi = xi(O) - xi

ai = xiCO) - aO

bi = -8':

ti = ti /1000

The notation on the right-hand side is for original data and xi(O) is the initial gain

level of item i. The last transformation gives time measurements ti in thousands of

hours. Subsequent analyses are based on the tlansformed data unless pointed out

otherwise.

Because of random variations in the manufacturing process , material quality,

and other factors, transistors that have the same design specifications may have

rather different performance levels and lifetimes even when they operate under

the same conditions. In other words, these differences are contributed by factors

other than the operating conditions or experimental conditions. These uncontrolled

internaI factors can il; 'eract with the experimental conditions and disguise the true

effects of the covariates on the transistors' degradation processes. To rule out the

possibility that the observed variations between transistors are caused hy these

uncontrolled factors, a statistical test of sample path homogeneity is necessary to

check if transistors that operated under the same experimental conditions have

statistically significant differences in their degradation processes. When sample

path homogeneity has been established, one can analyze the effects of the covariates

on the degradation processes. Regression analysis may he applied to reveai the
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statistical relations between the degr"'-1ation process parameters and the covariates.

Sample Path Homogeneity Test Tests of sample path homogeneity for both the

variance parameter and the drift parameter are conducted. For each experimental

block, a test for a common variance parameter is performed first. Then, this is

followed by a test for a common drift parameter.

The hypothesis for a common variance parameter is,

Ho : Vi = Vj

where (i,j) = (1,3),(2,4), ... ,(18,20) denote the item numbers of the transistors

in each experimental block. For this example, the test statistic (3.30) developed

in Chapter 3 is approximately X2 distributed with df = 1. The test statistic is

reproduced here for convenience.

The MLEs of the drift and variance parameters, Êi and Vi, are based on each

individual transistor's observed gains and calculated using equations (3.32) and

(3.33). The common variance parameter estimates of each black are computed

using equation (3.31). Columns 4, 6, and 7 of Table 6.4 list the above estimates.

The test statistics are then calculated and listed in column 8 of Table 6.4. For each

individual test, the a risk is controlled at 0.01 so that the ten separate tests have

a joint a risk of about 0.1. Thus, Ho is expected to be rejected in about 10% of

the tests. In faet, Ho is rejected in 1 of the 10 blocks based on x2(1; 0.99) = 6.63.

Block 3 (c.:>ntaining items 5 and 7) does not appear to have a common variance

parameter. This can also be seen from the original data listed in Table 6.3. While
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transistor 5 has a large variation in gain level, the level of transistor 7 is relatively

stable. More discussions about this block will foilow later in this section.

Tests for a common drift parameter are condueted next. The hypothesis for a

common drift parameter is

where (i,j) = (1,3),(2,4), ... ,(18,20). Given that the two transistors in a block

have a ('ornrnon variance parameter, the test statistic is (3.34), which is repeated

here for convenience.

In this application, p + q = 2 50 this statistic is approxirnate1y X2
( 1) distributed.

The cornrnon drift parameter, S, is cornputed based on equation (3.25), while

Si, i = 1,2, ... , 20, and ii were estirnated earlier using equations (3.32) and (3.31),

respective1y. Colurnns 5 and 9 of Table 6.4 list the S and the corresponding test

statistics respectively. For ail blocks except block 3, Ho cannot be rejected.

For block 3, Ho : liS = lI7 is rejected and the test for Ho : 85 = 87 based

on a cornrnon variance parameter is listed as inconclusive. To check if the drift

pararneters are affected by the uncontrolled factors, a test for Ho : 85 = 87 without

assuming a cornmon variance parameter is then condueted. The test statistic is

-2In(A) = 0.01300, calculated using (3.35). With reference to X2 (1) distribution,

this value is srnall and hence Ho : 85 = 87 cannot be rejected. The remaining issue

of the unequal variance parameters in block 3 will be addressed in the regression

analysis that follows shortly.

To surnrnarize, the effects of potential variations in the rnanufacturing process

and other uncontrolled internaI factors are statistically insignificant and, therefore,

the changes in the estimated values of the drift and variance pararneters are caused
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by the variations in temperature and current leve1s, except possibly for the vari

ance parameters in block 3. Next, a regression analysis is carried out to establish

the nature of the statistical relation between the experimental covariates and the

parameters of the transistor degradation processes.

Regression A nalysis In the covariate model developed in Chapter 5, the variance

parameter is assumed to be comn :l across blocks and it is also assumed that the

covariates are linearly related to the drift parameter. Neither assumption is valid

in this transistor case example. A modification to the covariate model, therefore, is

necessary for the transistor data.

The individual estimates of g and 1/ are plotted against the covariates levels in

Figures 6.3 and 6.4. In the plots, circles denote the estimates for current level 1 and

triangles for current level 2. The fitted curves are the regression functions developed

iater for this example. From the plots, it is clear that both sets of MLEs exhibit

curvilinear relations with respect to the temperature level and that the current

level has little effect on the estimates, especially, the drift parameter estimates. In

addition, one can see that variation among the MLEs of v at each temperature level

appears to be considerable. As a consequence of this large variation, it becomes

necessary to verify the assumption of a constar..t variance required by the regression

analysis method. These two problems are addressed in the following discussions.

To accommodate the curvilinear relationships, transformations of the MLEs will

be necessary. Knowledge of the engineering subject matter for this case example

suggests that there should be an exponential relation between the parameters and

the covariates. Exponential relations of the following general forms are plausible:

(6.3)

(6.4)

where K denotes the Kelvin temperature level measured in units of 100°K, L is

a 0-1 indicator variable for the current level (L = 0, for current level 2), and 130
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and 0'0 are shift parameters. Subject knowledge further suggests that the drift

parameter should be zero when the temperature, measured on the Kelvin scale,

reaches zero, which implies that the shift parameter 130 = -1 and, also, that 131 =
O. Unfortunately, the subject knowledge does not provide much guidance for the

variance parameter. Considering the illustrative nature of this case example, a

parallel structure is assumed here for the variance parameter. Thus, c.o = -1 and

al = O.

Further, letting 51 = In(5 + 1), VI = In(v + 1), we have

(6.5)

(6.6)

Equations (6.5) and (6.6) a.!"e then the regression funetions to be estimated based

on the MLEs calculated for each combination of temperature and current levels.

Recall that the variations among the MLEs across temperature levels are rela

tively large, especially for the MLEs of the variance parameter. To check the possi

bility of violating the regression assumption of a constant error variance, a Hartley

test for the equality of variance iB condueted. Since the objective is to verify the

assumption of the regression &TIalysis, the test is conducted for the transformed

parameters, namely 61 and î/.

Letting (ir denote the variance of the 6' for i = 1,2,3,4,5, corresponding to the

five temperature levels, the hypothesis takes the following form.

H .,...2 _ ,...2 _ _ ,..2
O·vl-v2-···- v s

The test statistic under Ho is

H=max{ô},i=1,2, ... ,5}",H( _ . dlf)
'{~2'-12 5} 1 a",mIn (i i , Z- , , ...•
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For this example, ~( = 5, cor!"esponding to the five temperature levels, and dI = 3.

The level of significance is to be controlled ai 0.01, so H(0.99; 5,3) = 151. The max

imum variance of 8' is 0.178 and the minimum variance is 0.042. These occurred

at the fO'.lrth temperature leve1 and at the second temperature level, respectively.

The test statistic is H = 17.96, which is less than the critical value of 151. That is,

hypothesis Ho cannot be rejected. A similar test is conducted for v'. With the max

imum variance of 0.712 occurring at the second temperature level and the minimum

variance of 0.071 at the first temperature level, the test statistic is 100.56. Again,

Ho cannot be rejected. Having verified the assumption of a constant variance, we

proceed to estimate the regression functions (6.5) and (6.6).

As the MLEs of 8 and 1/ are asymptotically independent, the regression models

(6.5) and (6.6) are estimated individually. The estimates of the exponent parame

ters, rI and r2, are chosen so that the linearity of the respective regression functions

is maximized. Using a numerical iteration method, they are found to be rI = 11.695

and r2 = 7.590. To simplify the notation, let KI and K 2 denote KTl and K T
2, re

spective1y. The estimated regression functions are as follows.

8' = 0.878 X 10-6 KI + 0.039LK1

t/ = 0.141 x 10-3 K 2 + 0.393LK2

Figures 6.5 and 6.6 show the fitted regression functions.

(6.7)

(6.8)

Recall that the sample path homogeneity test for the variance parameter reveals

that Ît..?ms in block 3 do net share a common variance parameter. To determine

whether this block has any significant effects on the regression function (6.8), a

Cook's distance measure, D, is computed. No~ice that, within block 3, item 5 is the

one that has a larger departure while the other item (item 7) falls relatively in line

with other blocks. Thus, the test is (nl1y performed {or item 5. Specifical1y, for item

5, D = 0.0317 which corresponds to the 3rd percentile of an F(2, 18) distribution.
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This result indicates that block 3 does not have significant effects on the regression

function. Therefore, the block will not be removed from th~~ regression analysis.

Next, t-tests of the hypothesis Ho : /33 = 0 and Ho : Q3 = 0 give p-values of

0.165 and 0.246, respectively. These results indicate that variables LK1 and LKz

have no statistically significant effects on 8' and ÎJ' and, hence, that the two current

levels (represented by variable L) have no differential effect on degradation. After

removing the variables, the regression functions become,

ÎJ' = 0.152KL •

Expressing the above regression functions in the form of (6.3) and (6.4), we have

the following functions describing the relation between the gain degradation process

and the ambient temperature level K measured in units of 100°K.

8° = 1 - exp(0.916 x 10-6 x K 1
1.

695
)

l/ = exp(0.152 x 10-3 x K 7
.
S90

) - 1

Here the drift parameter 8° is the gain differential per 1000 hours (note, 8° = -8).

Similady , the variance parameter l/ is a measurement of gain level variation pcr

1000 hours.

The disguised nature of the data makes it difficult to give a precise interpretation

of the results. Yet, one can see that a higher level of temperature increases the

degradation rate and variation of transistor gain, as expected. What is interesting

here is that only the temperature level has significanL prrects on the degradation

rate and variation, hence, on the lifetime of a transistor. The effects of the current

level are insignificant.

Before clOfii~g this section, three observations should be noted. First, the overall

pattern of the estimates of the variance pararneter appcars to be disturbed by the
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estimates of block 3. It appears that block 3 is an outlier, although it does not

have significant effects on the relation between the gain levels and the experimental

conditions. This outlier may represent an unlikely event as there were 10 hypotheses

tested simultaneously. This outlier, on the other hand, may represent an important

factor that has not been captured by the regression function, as the results of the

sample path homogeneity test have indicated. However, a firm conclusion regarding

this issue can be drawn only when a thorough investigation based on the engineering

subject knowledge has been conducted.

Second, a close study of the MLEs for 8 and the covariates reveals that, at higher

temperature levels, the drift parameter is sharply higher than at lower temperature

levels. From Figures 6.3 and 6.5, one can see that the estimates of 8 at the three

lower temperature levels appear to be in one c1uster while those at the two higher

temperature levels appear in another cluster. A step regression function might

provide a better fit to the data. It is possible that a different degradation mechanism

becomes a dominating force when the temperature level increases above 75°C. To

confirm or to reject this hypothesis, a larger sample that provides more measures

at the intermediate temperature levels will be necessary.

Third, it has been found that the degradation rates of several transistors decrease

in a short initial period of time and then remain relatively stable over time. It is

conceiva.ble that there exists one or more time varying covaril'\tes that cause the

degradation rate to change over the initial period of time. While the temperature

and current levels are fixed over time for a group of transistors, one or more unob

served covariates, which may be related to the underlining physical processes insid.e

a transistor, may vary over time. A time scale transformation or inclusion of time

in the regression model should be considered if subject knowledge supports this

conclusion.
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6.5 Summary

This cb.apter presents four case examples for the models and related inference

methods developed earlier. The main objective of the case examples is to illustrate

the applications of the models and methods. The fit of the models to the data has

not been tested for the cases reported in Sections 6.3 and 6.4. Sections 6.1 and

6.2 present simulation studies for the terminal model and the covariate model so

goodness of fit is not an issue.

In Section 6.1, the terminal data model developed in Chapter 3 is illustrated

using a simulated example. First, point estimates for the drift and variance param

eters are calculated. Next, confidence intervals for the parameters are constructed

based on the asymptotic normality of the MLEs and the modified likelihood ratio

method. Then, tests based on asymptotic normal theory, the modified likelihoocl

ratio method, and the pivotaI quantity derived from the analysis of cleviance are

also conducted and the test results are consistent with the interval estimates. Fi

nally, limited predictive inferences based on the empirical Bayes results derivecl in

Chapter 3 are presented.

A simulated example for the covariate model is given in Section 6.2. The regres

sion coefficients are estimated and confidence intervals for the drift and variance

parameters at each covariate level are computed. AIso, a test for the regressioll

function coefficients is conducted.

The conditional model is applied to a sequence of stock priee data and the anal

ysis is presented in Section 6.3. MLEs for the drift and variance parameters are

estimated and a joint confidence region for the parameters is plotted.

Finally, a real case example of transistor dègradation processes is analyzed in

Section 6.4. First, sample path homogeneity tests are conducted for the drift and

variance parameters to determine if there are any factors other than the two known

covariates (temperature and currel1t) affecting the gain levels observed. Then, a
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regression analysis is carried out to establish a statistical relation between the co

variates and the parameters of the transistor degradation process. It is found that

the experimental ambient temperature is the major factor affecting the degradation

processes of the transistors.
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CHAPTER 7. CONCLUSION AND DISCUSSION

Traditional reliability models are based on lifetime data alone. \iVhen lifetime

data are not available, which is often the case with highly reliable items, e:>...pensive

items, and items for which accelerated life testing is not feasible, reliability models

based on degradation data become an important and, perhaps, the only approach

to reliability analysis. When both lifetime and degradation data are available, the

degradation data contain important information about the future behavior of surviv

ing items and new items. In both casps, evaluating reliability based on degradation

or the combination of degradation and lifetime data has practical importance.

Main Contributions This research has two main contributions. One is the ap

plication of a truncated Wiener process to modeling the degradation process of a

surviving item. The other is the development of reliability models and inference

methods based on a combination of degradation and lifetime data with and without

covariates.

Particularly, the following subjects are studied in the thesis. Chapter 2 first

presents a brief review of degradation modeling in engineering, which is found to be

mainly concentrated on material fatigue analysis and the parameter drift problem

of eleetronic devices. This is then followed by a discussion of several reliability

data structures. The structures include terminal point data (a combination of

degradation and lifetime data), rnixed data Ca general case of terminal point data),

conditional degradation data, and covariate data.

In Chapter 3, the derivations of the probability density funetion for a truncated

Wiener process are presented first. The density function is derived for a stan

dard problem that is defined as a Wiener process with a positive, fixed and known

barrier. Several variations of the standard probler:\ are examined and simple trans

formations are given to convert some of them to the standad problem. Next, taking

the inverse Gaussian distribution as the lifetime distribution for failed items, the
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likelihood function for a sample of terminal point data is formulated. Maximum

likelihood estimators (MLEs) are obtained for the drift and variance parameters.

Inference r.esults for the parameters are derived using asymptotic normal theory

and a modified likelihood ratio method. In addition, an approximate analysis of

deviance is developed, which yields pivotal quantities for the parameters. Then

the inference is extended to a mixed data structure. The problem of sample path

homogeneity is discussed and likelihood ratio tests for sample path homogeneity

are developed. Using an empirical Bayes procedure, predictive density functions for

the lifetime and the future degradation level of either a surviving item or a new

item are obtained and estimations hased on the posterior density function are also

presented.

In Chapters 4 and 5, inference results for conditional and covariate data structures

are developed. MLEs are obtained for both data structures. Estimates for param

eters of each data structure are derived based on asymptotic normality and the

modified likelihood ratio method. For the conditional data structure, the sampling

distribution for the MLE (lf the drift parameter with known variance parameter is

studied. The density function of the sampling distribution of the drift parameter is

found to he slightly skewed to the right with skewness decreasing as the barrier level

approaches infinity. An illustrative set of density curves are numerically calculated

and plotted for different values of the barrier level. For the covariate data struc

ture, an analysis of deviance is presented and pivotaI quantities, similar to those for

terminal point data, are also given.

Finally, in Chapter 6, applications of the models are illustrated by cas\" examples

using real data and simulated data. Two real data examples and two sImulation

studies are presented. The major case application involves experimental data on

transistor degradation. In this application, transistors of a given design are ob

served to degrade under experimental controls on the ambient temperature and

applied current level (the covariates). The results of the sample path homogeneity

tests show that. excluding the effects of the experimental covariates, the transistors'
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degradation patterns can be considered identical. In other words, the transistors'

degradation processes and lifetimes would not be statistically different from one

transistor to another, if they were tested under the same experimental conditions.

It is also found that degradation is controlled only by the level of ambient temper

ature. Time to failure largely depends on the temperature level and the initial gain

level. The current level has no statistically significant effects on either the drift pa

rameter or the variance parameter of the degradation process. Specifically, the drift

and variance parameters are exponential functions of temperature while the rela

tions between the parameters and the current level aè.'e not statistically significant.

Another real data example is developed for the conditional degradation process or

truncated Wiener process. In this example, a sequence of daily stock prices was

analyzed. The results show that the stock had a negative drift parameter (the rate

of price change) during the time period observed. The drift parameter is underes

timated if the barrier at zero is ignored. Two simulation studies are conducted for

terminal point data and covariate data. Inference results based on the methods de

rived earlier in the thesis are found to be consistent with the true parameter values

prescribed in the simulations. Point and interval estimations, hypothesis tests, and

predictive inferences are demonstrated in the two simulated examples.

Sorne Open Research Questions This research has only touched the surface of many

deeper questions. A number of issues have been left to be dealt with in subsequent

research. The followings are sorne of them.

It is assumed in this thesis that a global degradation variable exists and is mea

surable. It is weIl known that the degradation of a physical item is caused by the

progress of the underlying physical and/or chemical processes within the item and

is affected by external environmental factors which accelerate or delay the progrcss

of these processes. In many applications, these processes can be represented only

approximately by a single variable. Thus, extending the models and inference meth

ods into a multivariate framework would be a good next step. Moreover, since the

underlining processes are determined by the properties of an item and, 1Il many
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applications, subject matter knowledge about these properties is incomplete, an

understanding of the processes can only be obtained from empirical data, either ex

perimental data or field data. Thus, a model or a computer system containing the

model that can interact with experimental scientists or field experts and is capable

of learning from large sets of data would be a practical tool in many industrial and

business applications.

In this thesis, several variations of the standard problem described in Chapter 3

have been discussed and sorne still need to be studied. One variation is to study

a degradation process drifting toward a random barrier. In many applications,

the exact location of a barrier level at which a device fails to function properly is

unknown or actually is a random variable itself. Another variation requiring further

investigation is a degradation process accompanied by one or more time-varying

random covariate processes.

A number of mathematical problems require further research. It has been ob

served that the modified likelihood ratio method produces the same test statistics

as the asymptotic normal theory, for the tests studied in Chapters 3 and 5, while

the conventionallikelihood method produces test statistics that would be different

from that based on asymptotic normal theory. This suggests that the modified

likelihood ratio method is more appropriate than the conventional likelihood ratio

method, at least for the tests studied in the two chapters. More studies are needed

to investigate this issue. Another issue is the analytical structure of the analysis of

deviance and the theoretical verification of the conjecture about this structure that

was given in Chapter 3.

The application context asstUl1ed in this thesis is mainly industrial engineering.

The methodology, however, may be applied to a ntUl1ber of economic and business

settings with few modifications, as illustrated by the stock price application in

Chapter 6. The methodology may also be applied to clinical trial data and data

from other medical applications.
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Figure 2.1 Illustrations of Types of Data Structures

..Y(t) e e ..Y(t)
5 5

t
2010

-1 L..--_--J.__--'--_~___'

o

4

a

s

.-.- _._----.------------ --_._-..---.....

,,2

4

o

-1 OL..-----'-10---'--2...1...
0
--'---'30 t

t n

a

(a) Mixed Data Structure (c) Degradation Data Alone

X(t) 6
X(t)

5 5

(b) Terminal Point Data (d) Lifetime Data Alone(p = n)

or Censored Lifetime Data (p < n)



Figure 3.1 Sample Path of a Truncated Wiener Process
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Figure 3.3 X2 Plots for Quantities Q, QR, and QE

Based on Simulated Data
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Figure 3.3 Contd. (b) X2(61) Plot for QE

100 •

•·•
W
:J
_J

80~::>
0w
1-
0 60w
0..
Xw

40

20
20 40 60

QE

80 100 120



16

Figure 3.3 Contd. (c) X2 (1) Plot for QR
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Figure 4.1
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A Plot of Equation (4.8), x n / a with Respect to hl and b2
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Figure 4.2 A Plot of Equation (4.8), x n / a ~ 1 as hl ~ 00
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Figure 4.3 Density Curves of 8-Sampling Distribution

for Different Values of a, the Barrier Level
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Figure 6.1 A Curve of Predictive Density Function h(slx, s, Ô)

of an Item Surviving ü-t X(6D) = D
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Figure 6.2 A 95% Confidence Region for El and v

Based 0n a Sequence of 100 Daily Stock Returns
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Figure 6.3 A Plot of 8 and K, the Temperature Level,

of the Transistor Degradation Data Example
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Figure 6.4 A Plot of f) and K, the Temperature Level,

of the Transistor Degradation Data Example
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Figure 6.5 A Plot of the Transformed S' and KI

of the Transistor Degradation Data Exanlple
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Figure 6.6 A Plot of the Transformed v', and K 2

of the Transistor Degradation Data Example
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Table 3.1 Descriptive Statistics of Quantities Q, QE, and

QR Based on Simulated Data

1
IQ 1 QE 1QR ]

Number of cases 1000 1000 1000
Mean 61.504 60.470 1.034
Variance 127.035 124.613 2.135

1Correlation coefficient of QE and QR= 0.009



Table 6.1 Simulated Terminal Point Data for Case Example 6.1

(a) Degradation LeveLc:; of Surviving Items

at Termination Time tn = 60 (75 Cases)

12.14213 15.62855 17.69043 -2.44341 5.11325 15.62297 14.91234
15.56237 8.68442 1.25276 6.98332 11.81844 16.70418 2.12379

.67851 10.74363 8.08719 8.76551 7.22935 17.64452 7.40813
12.77163 15.62129 16.23109 6.85663 16.94567 4.79681 14.92917

1.58111 16.13156 -.76809 5.29686 9.65507 2.89318 12.26031
6.50739 17.98543 -6.09736 6.37003 1.06473 -1.13387 -5.44475

14.34272 14.84135 5.95957 8.71392 8.14419 7.34078 3.75003
8.23961 10.96491 -1.77257 -6.29091 -8.38495 3.78228 8.80557

13.05949 2.09561 11.86486 -8.48722 -4.50586 -10.3007 9.81885
5.75186 8.42572 15.65565 16.48809 6.11814 17.39534 2.44143

17.33543 -5.77587 7.17196 5.12634 .17986

(b) Lifetimes of Failed Items (25 cases)

17.10966 54.91068 23.37911 45.80112 57.46943 32.81833
49.93590 25.50655 50.55935 52.92153 45.47594 30.20828
30.97300 38.45463 30.13472 43.61834 39.79428 47.12710
48.82117 34.85248 33.14257 46.19419 34.66541 52.74341
41.99863



Table 6.2 Stoek Priees Used in Case Example 6.3

5.00000o 2.820256 4.615042 2.597682 3.275383
4.671046 2.820285 4.504636 2.575482 3.297677
4.539468 2.621990 4.469190 2.508880 3.074840
4.605254 2.445732 4.181613 2.730910 3.063719
4.745434 2.644047 3.517817 2.642112 2.985740
4.635568 2.842336 . 3.053189 2.642118 2.807521
3.646902 2.908449 3.008994 2.575473 2.651559
3.405240 3.106783 2.964752 2.442258 2.673832
3.273407 3.062730 2.832021 2.428674 2.629231
3.163527 3.371204 2.898403 2.428674 2.651518
3.097631 3.864221 3.208150 2.852033 2.651517
3.493081 3.842154 3.097525 3.743286 2.540113
3.668893 3.709680 2.986898 3.542736 2.495553
3.405283 3.555136 2.854144 3.654145 2.495553
3.273441 3.886397 2.743544 3.609613 2.428682
3.141632 3.908472 2.478051 3.654168 2.406411
2.878007 4.040920 2.686513 3.297673 2.384117
2.952469 4.107150 2.619908 3.253115 2.384126
2.886349 4.327985 2.619908 3.186263 2.228160
2.776191 4.504653 2.686494 3.230829 1.849366



Table 6.3 Degradation Data of Electronic Transistors

Under Different Temperature and Current Levels

-
Current Level

1 2 1 2

Temperature OOC
1

Time Item 1 Item 2 Item 3 Item4

0 100 933 91.9 85.9
165 99.6 93.6 92.1 86.7
450 98.4 92.8 913 86.2
801 98.4 92.8 91.0 85.9

1300 982 92.3 90.9 85.4
1800 97.9 92.2 90.2 85.4
2300 97.7 923 903 85.7
3000 975 91.9 90.1 85.4
3690 97.1 91.7 89.7 85.1
4504 96.7 91.6 89.7 853
5345 97.1 91.7 895 853
6255 96.7 915 89.3 85.0
730r 97.1 91.7 89.6 85.2
8500 97.2 91.8 89.6 815
9825 965 91.2 89.2 84.8

11500 97.1 91.6 89.7 85.2
14160 97.2 91.8 89.9 85.3
16315 96.0 913 88.8 85.0



Table 6.3 Contd.

Temperature 500e

Time Item 9 Item 10 Item 11 Item 12

0 90.9 853 87.6 82.1
50 903 852 865 82.2

115 90.1 84.9 863 82.0
180 89.9 84.7 86.1 81.6
250 89.6 845 86.1 81.1
320 89.6 84.5 85.7 815
420 893 84.2 85.6 81.2
540 89.1 84.1 85.4 81.0
630 89.0 84.0 85.4 81.0
720 89.1 84.1 85.0 80.9
810 88.5 83.7 84.8 80.7
875 88.4 83.6 84.6 80.6
941 88.5 83.7 84.8 80.6

1010 883 833 84.3 80.2
1100 87.7 82.9 83.9 79.8
1200 87.5 82.7 83.6 79.7
1350 87.0 825 83.5 79.6
1500 87.1 82.6 83.2 79.7
1735 86.9 82.6 82.9 79.0
18% 86.5 82.3 82.6 79.1
2130 86.4 82.6 83.0 79.6
2460 85.9 81.9 82.4 79.1
2800 85.4 81.6 81.4 78.6
3200 85.2 81.4 80.0 783
3400 84.6 81.3 80.4 78.1
4600 83.8 80.1 79.3 76.7
5650 83.7 802 79.7 77.1
6600 83.7 80.3 79.8 77.2
7800 82.3 79.8 77.0 76.5
8688 82.5 78.1 76.7 75.2

10000 82.3 77.9 78.4 75.6

Temperature 75°e

Time Item 13 Item 14 Item 15 Item 16

0 78.6 74.9 81.1 76.7
25 76.9 73.9 79.8 75.6
65 76.6 73.1 79.2 75.2

130 76.1 72.6 79.1 75.0
250 75.5 72.0 78.4 74.4
420 74.6 713 775 73.6
609 73.5 70.4 76.7 72.9
818 72.6 69.6 76.1 72.4

1004 71.7 68.8 75.5 71.9
1240 69.7 67.2 74.9 71.4



Table 6.3 Contd.

Temperature 25°C

Time Item 5 Item 6 Item 7 Item 8

0 107 98.8 87.1 823
50 109 100 87.0 82.7

120 108 993 87.0 82.2
210 107 98.6 862 81.6
300 107 99.0 86.4 81.8
400 107 98.8 86.4 81.7
540 107 98.8 863 81.6
730 107 98.7 86.1 815
950 107 98.6 85.6 81.1

1260 107 985 85.7 81.2
1740 106 98.1 85.4 81.0
2350 106 97.8 85.1 BO.7
3000 106 97.9 85.3 80.8
4000 105 97.6 84.7 BO.4
5200 104 96.6 84.1 79.8
6450 104 96.4 83.7 795
8030 104 96.1 83.2 79.2

10000 104 96.6 83.6 79.5

Temperature 1000C

Time Item 17 Item 18 Item 19 Item 20

0 101 93.8 100 93.1
15.5 99.1 91.9 98.0 91.2

40 98.0 91.0 97.3 90.4
BO 95.9 89.1 95.0 88.7

150 90.1 84.2 89.7 84.2
300 735 69.9 73.8 70.7



Table 6.4 Maximum Likelihood Estimates of 8 and v
Based on Transistor Degradation Data

and the Results of Sample Path Homogeneity Test

(1) (2) (3) (4) (5) (6) (7) (8) (9)
,. Il "

,. Test statistics T("~l stalistics
Block # Item # a 8; 8 Vi V Ho: v;=vj 110: li;=8j

1 1 (i=l) 30.0 0.2452 0.2176 0.4251 0.3372 1.1950 0.0737
Temp.=O 110 accepteù 110 acecpteù
Current=1 3 (i=3) 21.9 0.1900 0.2494

2 2 (i=2) 233 0.1226 0.0889 0.2215 0.2859 0.8865 C.1296
Temp.=O 110 accepteù 110 acceplcù
Current=2 4 (i=4) 15.9 0.0552 0.3503

3 5 (i=5) 37.0 0.3000 0.3250 6.0188 3.2727 20.8211
Temp.=25 Ho rejecleù Inconclusivc
Current=1 7 (i=7) 17.1 0.3500 0.5225

4 6 (i=6) 28.8 0.2200 0.2500 2.4836 1.5833 6.6245 0.0114
Temp.=25 Ho accepleù 110 accepleù
Currenl=2 8 (i=8) 12.3 0.2800 0.6831

5 9 (i=9) 20.9 0.8600 0.8900 0.6982 1.1753 5.2624 0.0153
Temp.=50 110 acccpleù 110 acecpled
Current=1 11 (i=l1) 17.6 0.9200 1.6601

6 10 (i=10) J5.3 0.7400 0.6950 0.4175 0.5321 1.5727 0.0761
Temp.=50 Ho accepled 110 accepleù
Current=2 12 (i=12) 12.1 0.6500 0.6627

7 13 (i=13) 8.6 6.9355 5.9677 9.5996 7.9763 0.3923 0.2911
Tem!".=75 Ho acccpteù Ho accepled
Current=1 15 (i= 15) 11.1 5.0000 6.3172

8 14 (i=14) 4.9 5.9902 4.9563 4.5776 4.4530 0.0089 0.2755
Temp.=75 Ho accepleù 110 accepteù
Current=2 16 (i=16) 6.7 4.2742 4.3317

9 17 (i=l7) 31.0 91.6667 89.5000 31.5576 33.1844 0.0120 0.0849
Temp.=loo Ho accepted 110 accepleù
Current=1 19 (i=19) 30.0 87.3333 34.8111

10 18 (i=18) 23.8 79.3333 77.0000 25.8913 26.5313 0.0029 0.1231
Temp.=loo 110 accepleù 110 accepted
Current=2 20 (i=20) 23.1 74.6667 27.1713
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