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ABSTRACT 

In this thesis, we present two new methods to overcome the effects of both camera calibration 

errors and partial emptiness of surface voxels in voxel-coloring. Voxel-coloring is a relatively new 

volumetrie method for 3D scene reconstruction from multiple calibrated views. The quality of 

reconstruction is affected by the presence of errors in the estimated calibration parameters. Fur­

thermore, a voxel forming a scene surface may be partially empty as there is no prior knowledge 

about the scene surface. Both of these sources of error result in outlier pixels in voxel projections 

in the input images. These outlier pixels affect the photo-consistency test of the voxel and tend to 

result in over-carving of the reconstructed 3D scene. The existing methods to handle these errors 

are either insufficient or too complex. We propose a method to handle the effect of calibration errors 

and call it Adaptive Gaussian A veraging. It makes use of the information of the error probability 

distribution of projected pixel coordinates due to camera parameter errors. We propose another 

method to reduce the effects of partial emptiness of surface voxels and we call it Area Weighting. 

In this method we use the pixel count in voxel projections to weight the projections in voxel's color 

statistics ca1culations. Our proposed methods are simple and can be incorporated into the existing 

voxel-coloring algorithms easily. We also conduct experiments on our own calibrated data sets to 

verify the effectiveness of the proposed methods. The experimental results show that both of our 

proposed methods have the ability to improve the results of existing algorithms. We also compare 

the results of our proposed methods with the results of an existing method that handle these errors 

too, the r-Consistency. We find that our proposed methods have the ability to adapt to the level of 

errors present in the system, and perform better than r-Consistency when the effect of these errors 

is higher on voxel-coloring. 



RÉSUMÉ 

Cette thèse présente deux nouvelles méthodes de reconstruction tridimensionnelle par coloration de 

voxels. Elles ont été dévelopées dans le but de contourner les effets des erreurs de calibration de la 

caméra, ainsi que des erreurs causées par les voxels de surface qui peuvent être partiellement vides. 

L'approche par coloration de voxels est relativement nouvelle pour la reconstruction de scènes à 

partir de vues multiples et calibrées. La qualité de la reconstruction est affectée par la présence 

d'erreurs dans l'estimation des paramètres de calibration. De plus, un voxel délimitant la surface de 

la scène peut être partiellement vide puisqu'il n'existe aucune connaissance a priori sur la surface. 

Ces deux sources d'erreurs entraînent la présence de pixels aberrants lors de la projection des 

voxels vers les images d'entrée. Ces pixels ont un impact sur le test de photocohérence du voxel, et 

peuvent provoquer un surtaillage de la scène tridimensionnelle. Les procédés existants d'inclusion 

de ces erreurs sont en général insuffisants ou trop complexes. La méthode que nous proposons, le 

moyennage gaussian adaptatif, tient compte des erreurs de calibration. Elle utilise l'information 

disponible sur la distribution des erreurs dans les coordonnées projetées, qui sont elles-mêmes provoq 

uées par des erreurs de paramètres de la caméra. Nous proposons également une autre méthode 

pour la réduction des effets de vide partiel de voxels de surface, la pondération de la superficie. 

Cette approche utilise le nombre de pixels obtenus lors des projections d'un voxel afin de pondérer 

ces projections lors du calcul des statistiques de couleur du voxel. Les deux techniques proposées 

sont simples et peuvent être incorporées à des algorithmes de coloration de voxels déjà existants. 

Des expérimentations ont été effectuées sur des données calibrées afin de vérifier l'efficacité des deux 

procédés. Les résulats expérimentaux démontrent que les deux méthodes permettent d'améliorer 

les résultats d'algorithmes existants. Nous comparons de plus nos résultats avec ceux d'une autre 

technique d'intégration des erreurs, la r-cohérence. Il est démontré que les méthodes proposées 

peuvent s'adapter à la quantité d'erreurs dans le système, et surpassent la r-cohérence dans les cas 

où la coloration de voxel se trouve grandement affectée par ces erreurs. 
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CHAPTER 1 

Introd uction 

3D shape recovery of an object from its images is a fundamental problem in computer vision. The 

reconstructed shape has abundant uses ranging from the basic applications in robotic navigation 

and object detection to more advanced applications such as building virtual reality environments. 

A lot of work has already been done in this area, and different methods have been proposed to get 

shape from images. These methods are in general called "Shape from X", where X signifies the 

underlying principle being used for shape recovery. One of these methods is stereo vision that uses 

more than one view of the same object taken from different positions. The computational stereo 

vision, inspired by human vision, was presented by Marr and Pogio in 1979 in [21] for two cameras. 

Stereo vision has been and is still a hot topic of research in the computer vision community. It is the 

most commonly used method for shape recovery in practical applications because of its simplicity 

and reliability. The quality of reconstruction of a stereo vision algorithm can be improved by 

increasing the number of input views. Due to the reeent advancement in the sensor technology 

in terms of imaging quality and low priee, the use of more than just two cameras in stereo vision 

is becoming popular. The shape reconstruction using only two cameras is sometimes referred as 

2~D as we can only recover the part of the scene visible from both cameras. Therefore, another 

advantage of using multiple cameras is to get true 3D shape recovery for aIl regions of the seene. 

The complete 3D reconstructed models of the scene using multiple cameras are especially useful in 

object modelling for virtual reality environments [13] and 3D photography. 

Traditional stereo reconstruction methods work in image-space. The first step in these meth­

ods is to build a disparity map using image correspondence. The next step is to use the camera 

information to get the shape information from this disparity map. Occlusions and image corre­

spondence are the two main issues faced by traditional stereo. One recent advancement in stereo 

vision has been to use object-space methods to avoid these problems. These methods are some­

times referred as volumetric stereo vision. These methods work especially weIl if an approximate 
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guess of the volume containing the object is already available. Detailed discussions of volumetrie 

methods for 3D scene reconstruction from multiple views can be found in [28, 29, 9]. The most 

recent of these are voxel-based volumetrie reconstruction methods. These methods start from an 

initial approximate volumetrie guess of the 3D scene. The volume is represented as a collection of 

discrete volume elements called voxels. Voxel Coloring [26] and Space Carving [18] are the two 

most well-known algorithms for voxel-based volumetrie reconstruction. Although Voxel Coloring 

was the algorithm proposed by Seitz [27], voxel-based methods for photo-consistent reconstruction 

of 3D scenes are a1so known as voxel-coloring in general. The reason for this name is that these 

methods make use of only the color information present in the images. In this thesis, the term 

voxel-coloring will be used as synonym for these methods. 

The reconstruction quality of voxel-coloring suffers from a number of error sources, two of 

which are the camera calibration errors and the partial emptiness of surface voxels. In this thesis, 

we propose methods to overcome the effect of each these two error sources in voxel-coloring. We 

propose a method called Adaptive Gaussian A veraging that makes use of the available calibration 

error distribution information to overcome calibration errors effects. We also propose a simple 

method called Area Weighting to reduce the effects of partial emptiness of surface voxels on the 

reconstruction. Our proposed methods are simple and can be used with the existing voxel-coloring 

algorithms to improve the their reconstruction quality in the presence of these errors. 

This chapter is a brief introduction to voxel-coloring which will clarify the concepts used in the 

rest of the thesis. The last part of this chapter is an overview of the contributions made through 

this thesis work. 

1. An Introduction to Voxel-Coloring 

A 3D reconstruction of a scene from its images is called Photorealistic, Photo-Consistent or 

Color-Consistent if the reprojection of the reconstructed model in the input views can exactly repro­

duce the input images. Voxel-coloring is based on the concept of photo-consistency and visibility. In 

voxel-coloring, each surface voxel is checked for the photo-consistency of it's projections in the input 

images where it is visible. If a voxel is a part of the 3D scene surface, it will project to the pixels of 

same color in all the visible images. On the other hand, a voxel that is either in the empty space 

or inside the scene surface, but not on the scene surface, will project to pixels of different colors in 

the visible images. Therefore, the projections of an empty voxel will not be photo-consistent and it 

will be removed from the voxelized volume. The concept of photo-consistency becomes clear from 

Figure 1.1. Once all the non-photo-consistent voxels have been removed, the resulting volume will 

be a photo-consistent reconstruction of the original 3D scene. Complete calibration information 

2 
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of the input views is a precondition to voxel-coloring because it is required to accurately calculate 

visibility and photo-consistency . The main concepts in voxel-coloring are described below and are 

based on the theory of voxel-coloring presented in [26] and [18]. 

Gray Black Gray , 
/ 

'" "', rn Non·Consistent Voxel 
/ . '",-

./ "'. 
Scene Surface 

Black 

\ 
\ 

Black Black , 
Pb<Îto-Consistent Voxel 

\. : ./" 

Î:t{ 
Scene Surface 

FIGURE 1.1. Photo-Consistency Principle: Left Image shows that an empty voxel projects 
to different colors in different images. Right image shows that the voxel projections on 
the scene surface have same color in al! the visible images. 

1.1. Photo-Consistency. 

A point p on a 3D shape surface S is called photo-consistent with a set of input images 

h, .... , h, if it is visible in at least one of the images, and its projections in all visible images have 

same color. A 3D shape is called photo-consistent with a set of input images if all the points on 

its surface are photo-consistent with the input images. A photo-consistency test is required for this 

purpose. If a 3D point or voxel p is found to be photo-consistent in k images by a photo-consistency 

test Ck, it is called monotonie if p is consistent in an subsets of these k input images, with the size 

of each subset being k - 1. 

1.2. The Visibility Principle. 

Let p be a point on a volume V's surface, Sur f(V), and V1Sv(P) be the collection of images 

where p is visible. If V' c V is a volume that also has p on its surface, then VI Sv' (P) :2 VI Sv (P) 

[18]. The phenomenon of an increase in the number of visible cameras with a reduction in size of 

the 3D volume during voxel-coloring is shown in Figure 1.2. 

1.3. A Generic Voxel Coloring AlgorithIll. 

Step 1: Initialize with an initial volume V that is guaranteed to contain the scene surface 

Step 2: Repeat the following two steps for each surface voxel v E Sur f(V) until a non­

photo-consistent voxel is found: 

3 



1.1 AN INTRODUCTION TO VOXEL-COLORING 

FIGURE 1.2. Visibility Principle: When the initial Volume V is carved to the new volume 
Vi, the number of cameras that can see the point p increases to four. This figure is taken 
from [18]. 

Project v on all the input images where it is not occluded by V-v. Let v be visible 

in j images and Coh, .... , Colj be the color of the pixels in v's projections in these 

images 

ii Determine the consistency of v using a suitable photo-consistency function 

Cj (Coh, .... , Colj) 

Step 3: If all the voxels are found photo-consistent, set V* = V and terminate with V* as 

the photo-consistent surface. Otherwise remove v from V, Le. V = V - v, and repeat 

Step 2. 

To get a photo-consistent surface at the end of this algorithm, it is important that the photo­

consistency test is monotonic. As the non-consistent voxels are removed or carved from the initial 

volume V, the number of cameras that can see a voxel increases in general as shown in Figure 1.2. 

The monotonicity requirement of the test will make sure that if a voxel is found to be non-consistent 

and is removed at one stage of the algorithm, it cannot be deemed photo-consistent at a later stage 

with a change in its visibility. 

1.4. Photo Hull. 

The reconstructed 3D surface that is a result of voxel-coloring is the superset of all the 

photo-consistent surfaces that can reproduce the input images by reprojection. This is the tightest 

bound on the recovered 3D surface from multiple images in the absence of any prior information 

about the scene with arbitrary location of the cameras, under arbitrary lighting conditions, and 

using only the color statistics. This minimally constrained 3D reconstruction of the scene is called 

the Photo Hull [18J. Figure 1.3 explains the concept. It is clear that the reconstructed surface 

has a different shape and is fat ter than the original surface, which is in the form of a square. This 
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1.1 AN INTRODUCTION TO VOXEL-COLORING 

deformation is mainly due to the textureless regions and the absence of any prior constraint on the 

scene geometry. 

D~> 
"\ ,~, ~- -', ", 

FIGURE 1.3. Photo Hull: Minimally constrained 3D reconstruction 

1.5. Advantages of Voxel-Coloring. 

Voxel-coloring has the following advantages over other stereo algorithms for the reconstruc­

tion from multiple images: 

• The Photo Hull, that is the result of voxel-coloring, provides an upper-bound on the 

quality of 3D reconstruction from N input images of the scene in the absence of any 

prior assumptions on both the scene shape, lighting and camera distribution. 

• Per pixel correspondence, which is still a difficult problem to solve in traditional stereo 

vision, is not required in voxel-coloring. 

• The occluding voxels are handled before the occluded voxels in voxel-coloring. This helps 

to avoid the problem of occlusions faced by other wide-baseline stereo algorithms. 

• The 3D resolution of the reconstructed model can be easily adjusted by changing the 

number of voxels being used to represent the initial volume containing the scene. 

1.6. Limitations of Voxel-Coloring. 

Main limitations of voxel-coloring methods are as follows: 

• Voxel-coloring algorithms require larger memory for data storage and are slow in terms 

of processing speed. This problem gets worse at high voxel resolutions. 

• Most of the voxel-coloring algorithms are sequential, i.e. the voxels that are closer to 

the cameras are checked first for their photo-consistency. Therefore, an error made in 

deciding the photo-consistency of a voxel may affect the visibility of subsequent voxels 

[19]. 
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2. Sources of Error in Voxel-Coloring 

(i) Camera calibration errors: An underlying assumption in voxel-coloring is that accu­

rate camera calibration information is available for aIl the views. However, the estimated 

camera parameters inherently have sorne errors in them. Camera calibration errors shift 

a voxel projection from its original position in the input images. As a result, even consis­

tent voxels can get carved resulting in holes in the reconstructed 3D model [16, 5, 19]. 

(ii) Non-Lambertian and transparent surfaces: Another assumption often made in 

voxel-coloring is that the 3D scenes are completely opaque and have Lambertian surface 

characteristics. However, these assumptions are not fulfilled completely for aIl parts of 

the 3D scene. The effect of this error is to have local artifacts in the reconstructed model 

[19]. 

(iii) Multiple pixel projections: In an ideal voxel-coloring algorithm, it is assumed that 

each 3D voxel represents a point in 3D space and will project to only a single pixel 

in each image. However, depending on the resolution of the voxel grid being used to 

model the scene volume, a voxel projection may contain multiple pixels. This effect adds 

uncertainty to the photo-consistency tests making it more difficult, and hence introduces 

errors in the reconstructed 3D model [26, 16, 19, 5]. 

(iv) Partially empty surface voxels: Due to the non-zero size of the voxels, a voxel that 

represents the scene surface may be only partially filled. This problem is more common 

for boundary voxels at surface discontinuities. The effect of this error is the inclusion of 

out lier pixels in voxel projections. As with the camera calibration errors, the outliers may 

lead to an error in the photo-consistency test and a consistent voxel might be declared 

non-consistent [33, 8]. 

(v) Sensor noise: Sensor noise may also effect the color of pixels in voxel projections. 

In most of the voxel-coloring literature, sensor noise is modelled as zero mean additive 

Gaussian noise [26, 18]. 

3. Advancements in Voxel Coloring Algorithms 

The basic theory of voxel-coloring was first proposed by Seitz and Dyer in [27] in 1997 and 

one year later was expanded by Kutulakos and Seitz in [17]. Since then, a good amount of work 

has been done in this area to improve the quality of reconstruction and to increase its use in other 

situations that were not proposed in the original work, e.g. non-Lambertian surface and moving 

scenes. A review of these advances is presented here as an exposition of the state of the art. 
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3.1. Voxel Visibility Calculation. 

Most voxel-coloring methods follow the generic algorithm presented above, i.e. first calcu­

lating the visibility of a voxel in the input images and then using the visibility information to check 

its photo-consistency. The visibility of a voxel at a particular stage in the voxel-coloring algorithm 

depends on the 3D shape formed by the rest of the voxels. Whenever a voxel is removed for be­

ing non-photo-consistent, it affects the visibility of the remaining voxels. Visibility calculation is 

the most computationally expensive part of a voxel-coloring algorithm. Therefore, to reduce the 

computational cost, Seitz in [27] proposes an Ordinal Visibility Constraint on the position of the 

cameras. According to this constraint, no scene point can be a part of the convex hull of the camera 

centers, i.e. either the scene surface lies completely outside of the convex hull of camera centers 

or completely inside of it. This condition results in a single sweep voxel-carving algorithm that is 

nearly real-time. In this method a plane is passed through the voxel volume. Due to the Ordinal 

Visibility Constraint, only the cameras on one side of the plane can see the voxels on the plane. 

This reduction in the number of cameras that can see a particular voxel makes the visibility calcu­

lation simpler and hence less time consuming. This constraint was removed by Kutulakos in [18] 

to extend the use of voxel-coloring for arbitrary camera placements. Kutulakos in [18] proposes a 

multi-sweep algorithm named Space Carving. In this algorithm, instead of a single plane, six planes 

are passed through the voxel volume along orthogonal axes(-X, X, -Y, Y, -Z, Z). Culbertson in [7] 

proposes a new algorithm, Generalized Voxel Coloring (GVC) , to calculate the visibility without 

using the sweeping planes. He makes use of the volumetrie rendering feature of OpenGL [1] for 

this purpose. In the first variant of this algorithm, GVC-IB, the ID of a voxel is stored for each 

pixel of aIl the input images that can see this voxel. The generated images with pixel colors equal 

to the ID of the visible voxel are called Item Buffers (lBs). Once a non-photo-consistent voxel is 

removed, this method requires the recalculation of the visibility of aIl the remaining voxels. In the 

second algorithm, GVC-LDI, an the surface voxels in the line of sight of a pixel are stored, in the 

order of their distance from the pixel, for each pixel of aIl the input images. This method of storing 

visibility information is very similar to Layered Depth Image (LDI). Therefore, this algorithm is 

called GVC-LDI. The advantage of GVC-LDI over GVC-IB is that when a non-photo-consistent 

voxel is removed, it is easier to identify the voxels whose visibility has been changed and we need 

to update the visibility of only those voxels. Therefore, GVC-LDI poses less computational cost 

for visibility updates. However, this is achieved at the expense of larger memory required to store 

LDIs. A different approach has been proposed by de Bonet in [8] for visibility calculations. In this 

method, aIl the voxels are initially assumed to be partially opaque. The visibility and the opacity 

estimates are optimized in successive iterations. 
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3.2. Photo-Consistency Tests. 

It is considered difficult voxel-coloring to have a good photo-consistency test that can be 

used for aIl types of scenes. Additional problems are posed by the error sources in the space 

carving process and the finite (non-zero) voxel size. Therefore, the focus of most of the work in 

voxel-coloring has been to design reliable, robust and generic photo-consistency tests. The VoM 

photo-consistency test is the simplest and is the most common in used. This test assumes that 

the effect of aIl the error sources can be modelled as additive Gaussian noise in pixel color. In this 

test, the mean color of pixels in a voxel projection in each visible image is calculated first. Then 

the variance (1~ol of these mean pixel colors is compared with a global variance threshold T. If the 

variance is smaller than this threshold, the voxel is dec1ared as photo-Cconsistent, i.e. 

(3.1) 
{ 

(1~ol :S T, 

(1~ol > T, 

Consistent; 

Non-Consistent. 

The Variance of Means test is not monotonic. A similar but monotonic test can be devised using 

chi-square statistics. If we assume that the color distribution of a voxel projection in each visible 

image is Gaussian, the distribution of the variance of means will be a chi-square distribution with 

K - 1 degrees of freedom, where K is the total number of visible images. This test was proposed 

by Kutulakos and Seitz in [26, 18]. 

(3.2) 

where (1; is the allowed noise variance and .Àv is the chi-square variable with K - 1 degrees of 

freedom. If the probability of .Àv , Pr(.Àv ), is less than a threshold value, the voxel is dec1ared non­

consistent. If the noise variance represents sensor noise only, it can be estimated by taking images 

of a single uniformly colored surface. However, when other error sources are present as weIl, the 

threshold noise variance value is adjusted empiricaIly. 

The above mentioned tests use a global variance threshold for aIl parts of the scene surface and 

thus do not produce optimum reconstruction model. Error sources have a greater effect on scene 

regions with a higher degree of texture and depth variation. Therefore, an optimum noise variance 

threshold should be adaptive, Le. it will have low threshold value for low texture regions and high 

threshold value for highly textured regions. One approach is to use f-statistics. The ratio of the 

variance of the means of pixel colors of voxel projections and the average of the intra-projection 

pixel color variance can be modelled as an f-distribution [5], 

(3.3) 
2 

f - (1col 
K - -2-' 

(1n 
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where 

(3.4) 

and 

K 
, 1 '"' 2 
= KL..JO'k' 

k=l 

_ ~2 
- Vk' 

K = Total number of images that can see the voxel, 

Jk= Number of pixels in the projection of the voxel in image k, 

Xj= Mean color of pixels in the projection of the voxel in kth image, 

O'~ol= Variance of mean projection colors, 

O'~= Average of intra-projection color variance, 

jK= j-distribution variable with K and K(Jk - 1) degrees of freedom. 

Broadhurst in [5] has compared the results of the j-statistics photo-consistency test and the 

Variance of Means test. For lower voxel resolutions, the j-statistics measure behaved better as 

a photo-consistency test due to its adaptive nature. However, for higher voxel resolutions, the 

Variance of Means test outperformed the j-statistics. The reason for this better performance is that 

at higher voxel resolutions, a voxel projection contains fewer pixels and the intra-projection color 

variance becomes unstable due to under sampling. 

Slabaugh et al. in [29] have also developed an adaptive photo-consistency test called the 

Adaptive Standard Deviation Test (ASDT). It is similar to the Variance of Means test except that 

there are two variance thresholds, 71 and 72, 

(3.5) 

where O'~ is the average of the variance of pixel colors in each projection as calculated in Equa­

tion (3.4). 71 is a global variance threshold, and 72 depends on local variance statistics. The 

authors have shown that their photo-consistency test gives better results as compared to the single 

threshold Variance of Means test. However, the priee for this improvement is having to deal with 

two adjustable thresholds. Another method proposed by the same authors in [29] uses histogram 

matching as a photo-consistency check. The advantage of this method is that the threshold param­

eter does not change for different scenes. The results of this test are comparableto that of ASDT. 
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1.4 HANDLING CAMERA CALIBRATION ERRORS 

The limitations of the histogram matching test are extra computational cost and larger memory 

requirements. 

Probabilistic photo-consistency tests form another class of voxel photo-consistency [4, 2]. The 

advantages of these methods are better handling of the errors in the voxel-coloring process and that 

they do not require adjustable variance threshold parameter [4]. Therefore, these tests are global 

in nature and perform better in the presence of error sources. The limitation of these methods is a 

high computational cost. Another photo-consistency test has been proposed by Yang and Pollefeys 

in [35] that makes use of a smoothness constraint to handle textureless regions. John Isidoro in 

[12] has proposed per-pixel matching as a photo-consistency test that is more robust in handling 

the outlier pixels in a voxel projection due to different error sources. 

3.3. Exploring New Dimensions in Voxel-Coloring. 

Carceroni and Kutulakos in [6] and Vedula and Baker in [34] have tried to recover 3D motion 

and shape from multi-view sequence of images using voxel-coloring. Carceroni has also extended 

voxel-coloring to non-Lambertian surfaces. Vedula uses a 6D space for motion estimation using 

voxel-coloring. However, a big problem with voxel-coloring for motion estimation is that it is still 

far from real-time. Slabaugh et al. propose a warped voxelized space to handle very large scenes 

in [30]. Fewer and larger voxels are used to represent the scene regions that are farther from the 

camera and have lower resolution, while a large number of smaller voxels are used to represent 

the higher resolution closer scene regions. This strategy helps to reduce the amount of voxels 

required to represent very large 3D scenes and hence improves reconstruction resolution for lower 

computational cost. Prock and Dyer in [24] and Montenegro in [22] have used a coarse-to-fine 

approach to reduce the computational cost of voxel-coloring. Saito and Kanade in [25] and Kimura 

in [15] have extended voxel coloring to projective space. 

Martin Granger-Piché in [10], and Cha Zhang and Tsuhan Chen in [37] control the imaging 

process to improve the quality of reconstruction from voxel-coloring, thus opening a direction for 

active voxel-coloring. Yezzi and Slabaugh have used active contours to add the smoothness con­

straints in voxel-coloring in [36]. Sylvain Paris and Francois Sillion in [23] have used additional 

shape constraints to make the reconstruction more robust for a small-baseline stereo system. 

4. Handling Camera Calibration Errors 

As described earlier, camera calibration errors add outlier pixels in a voxel projections and may 

cause erroneous carving of a consistent voxel. Broadhurst in [5], Kutulakos in [16] and Kwon in [19] 

have discussed the effects of camera calibration errors in voxel-coloring. However, not enough work 

has been done to handle the effects of these errors. The probabilistic voxel-coloring methods in [4, 2] 
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try to handle error sources in voxel-coloring. But they do not deal with the calibration errors in a 

systematicaIly. The only work to explicitly handle the camera calibration errors in voxel-coloring is 

presented by Kutulakos in [16J. Kutulakos has introduced a new photo-consistency measure called 

r-Consistency. r-Consistency is more robust against outliers as compared to the originally proposed 

photo-consistency tests. In r-Consistency, instead of using the color distribution of aIl the pixels 

in a voxel projection, only one pixel from each voxel projection is used in photo-consistency test. 

Therefore, the result of r-Consistency is a blurred 3D model of the scene that, when reprojected, 

produces images similar to the input images up to an r-Shuffie transform. The concept of r­

Consistency and r-Shuffie transform will be explained in more detail in Chapter 2. The limitations 

of r-Consistency include excessive blurring and fattening of the reconstructed 3D model, and not 

making any use of the available calibration error information. 

Camera calibration errors show sorne structure that depends on the particular method of cali­

bration and the feature points used for calibration. If we could model the effect of calibration errors 

as a probability distribution, this information can be used to handle their effects in a more system­

atic way. In this thesis, we use zero mean additive Gaussian noise as an approximate model for 

the errors in estimated calibration parameters and their effects on the coordinates of the projected 

pixels. We use error information in the camera parameters to estimate the error in the coordinates 

of pixels in the voxel projections. The error estimate in the projected pixel coordinates is used to 

increase the size of a voxel projection to reduce the effect of outlier pixels on the photo-consistency 

test. We name our proposed method Adaptive Gaussian A veraging. The derivation of our proposed 

method will be presented in detail in Chapter 2. The price for using Adaptive Gaussian Averaging 

is the Gaussian blurring of the reconstructed 3D model. However, the level of blurring will he dif­

ferent for different regions of the reconstructed scene depending on the effects of calibration errors 

for that particular region. Our method has the ability to adapt to the level of calibration errors 

present in the system. The effectiveness of our method will he shown experimentally in Chapter 4. 

5. Handling Partial Emptiness of Surface Voxels 

Sorne work can be found in the literature on voxel-coloring that describes how to handle the 

effects of partial emptiness of surface voxels. De Bonet in [8J has developed an iterative optimization 

scheme to handle the effects of transparent scenes and partially empty voxels. However, no proof for 

the convergence of this algorithm has heen provided, and the imaging model is not correct for opaque 

scenes [2J. Szeliski in [33J has proposed an optimization of the 3D model using the reprojection 

error to overcome the effect of partially empty voxels. However, it is a complex framework and does 

not take into account the effect of non-boundary, partially empty surface voxels. The r-Consistency 
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test proposed by Kutulakos in [16] is also effective in reducing the effects of outlier pixels due to 

finite voxel size. Sorne other techniques to handle this problem can be found in [12, 14, 22]. A 

more detailed review of these techniques is presented in Chapter 3. 

A much simpler method is proposed in this thesis to reduce the effects of partial emptiness of 

surface voxels. The percent age of out lier pixels in a voxel projection due to its partial emptiness 

is inversely proportional to the area of the projection, Le. the number of pixels in it. In other 

words, a voxel projection that contains more pixels has less chances of having outlier pixels and is 

a more reliable representation of the scene surface contained in the voxel. Therefore, if a weight is 

assigned to the color statistics of each voxel projection in proportion to the number of pixels in that 

projection for photo-consistency test, the effect of this error on the quality of reconstruction can 

be reduced. The justification of this area weighting scheme and its application to the Variance of 

Means photo-consistency test is explained in detail in Chapter 3. Our proposed method is simpler 

and straightforward, and can be used with most of the existing photo-consistency tests to overcome 

the problem at hand. 

An area weighting scheme, similar to our proposed method, has been used by Matthew Loper 

in his software for voxel-coloring called Archimedes [20]. However, we could not find in literature 

any explanation of the use of this method in voxel-coloring. 

6. Contributions 

The main contribution of this thesis is to propose methods that can be used with the existing 

voxel-coloring algorithms to make them more robust against calibration errors and partial emptiness 

of surface voxels. 

(i) Handling Camera Calibration Errors: We propose a method, Adaptive Gaussian 

Averaging, to reduce the effects of the uncertainty introduced by camera calibration 

errors in voxel-coloring. This method makes use of the calibration error distribution 

information in a simple way to handle the calibration error effects systematically. 

(ii) Analysis of the Effects of Partial Emptiness of Surface Voxels: An analysis of 

the problems arising from partial emptiness of surface voxels is presented. 

(iii) Reducing the Effect of Partial Emptiness of Surface Voxels: Based on the 

analysis of the problem, a simple and effective method is proposed to reduce the effects 

of partial emptiness of surface voxels on the reconstructed scene. 

(iv) Experimental Verification: The effects of the above-mentioned error sources and the 

effectiveness of our proposed methods have been verified experimentally using our own 

calibration data sets. 
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1. 7 THESIS OUTLINE 

7. Thesis Outline 

In Chapter 2 a discussion of the effects of camera calibration errors on voxel-coloring is pre­

sented. A review of the pertinent literature is also presented in this chapter. Our proposed solution 

to handle the calibration errors is presented in the last part of this chapter. Chapter 3 comprises an 

analysis of the effects of partial emptiness of surface voxels on voxel-coloring, a review of the work 

that has already been done to handle this problem, and a presentation of our proposed method to 

make voxel-coloring more robust against this source of error. Chapter 4 has two parts. The first 

part gives an overview of our experimental setup. The second part of this chapter is a discussion 

of the experimental results to verify our proposed methods. Finally, chapter 5 concludes the thesis 

with a summary of our work and the directions for future research. 
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CHAPTER 2 

Handling Camera Calibration Errors in Voxel-Coloring 

In this chapter the effects of camera calibration errors on voxel-coloring and its solutions are dis­

cussed. First, there is a discussion of the effects of this error on voxel-coloring. After this, a review 

of the already proposed solutions is presented. It is shown that the existing solutions do not over­

come the effects of calibration errors in a systematic way. This is followed by the discussion and 

derivation of our proposed solution to handle calibration errors in voxel-coloring. 

1. The Effect of Camera Calibration Errors on Voxel-Coloring 

A complete camera calibration for an the input views is a precondition for voxel-coloring. Due 

to the errors in the calibration process, the estimated calibration parameters might not be accurate. 

In voxel-coloring, the errors in the estimated camera parameters cause a voxel projection to shift 

from its true position in the input image. The result of this shift is to add outlier pixels in the 

projection that may affect the color statistics of the projection. This fact is shown in Figure 2.l. 

The shape of a voxel projection in an image is shown to be a square only for simplicity. The camera 

calibration errors depend on the locations of the feature points being used in the calibration process 

and the accuracy of their image correspondences. In a multiple view system, different views may 

be affected by different degrees of calibration error. And for a particular view, the calibration 

errors may have different effect on the voxel projections in different parts of the input image. As a 

result, the amount of error in the pixel coordinates of the projections of a voxel in different input 

images may be different. Therefore, different projections of a voxel may contain different amounts 

of outlier pixels. The effect of the outliers is to reduce the color-consistency of a voxel projections. 

As a result of these outlier pixels, a consistent voxel might be dec1ared as non-consistent by a photo­

consistency test if the test does not take into account the effect of these outliers. Erroneous removal 

of consistent voxels will result into holes in the reconstructed 3D model. It is well-known that, due 
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to the sequential nature of voxel-coloring algorithms, a wrongly carved voxel is more dangerous for 

the quality of reconstruction than a wrongly left-over voxel [7]. 

• True Projection 

• ProJection shlfted due to Calibration Error 

FIGURE 2.1. Effect of calibration errors on the projections of a voxel is to shift the 
projected pixels from their true locations. The shift in the projected pixel coordinates 
may be different in the different images. 

2. Related Work 

It is important to note that it is more difficult to handle the calibration errors in voxel-coloring 

than in traditional image-space stereo methods. A voxel is usually modelled as a cube, therefore, 

the problem is that the size and shape of a voxel projection in different images can be different 

from each other due to the difference in the visible shape of the voxel in different input images. 

Therefore, two projections of a voxel cannot be compared on per-pixel basis, a commonly used 

technique in traditional area-correlation based stereo correspondence. As a result, regardless of the 

variations in the spatial ordering of the pixels in voxel projections, as long as the color distributions 

of projections of a voxel are same, it will be declared consistent. It also makes it difficult to extend 

the use of existing methods of handling calibration errors in traditional stereo to voxel-coloring. 

The amount of work that has already been done to handle camera calibration errors in voxel­

coloring is limited. The effects of camera calibration errors on voxel-coloring have been discussed 

by Broadhurst in [5] and by Musik Kwon in [19]. Broadhurst has shown that by increasing the level 
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of calibration errors, the mean RGB reprojection error increases monotonically. However, he does 

not propose a solution to overcome this problem. Musik K won has shown that in the absence of the 

calibration errors, the distribution of the variance of mean projection colors of consistent voxels has 

a high peak for a low variance value. An increase in the calibration error results in further spreading 

of this variance distribution, adding uncertainty in the photo-consistency test. Only Kutulakos in 

[16J has directly addressed the problem of camera calibration errors in voxel-coloring. A review of 

his proposed method is presented below. 

2.1. Approximate N-View Stereo. 

In [16J, Kutulakos has introduced the idea of r-Consistency to overcome the effect of camera 

calibration errors on the reconstruction results of voxel-coloring. The following definitions will be 

helpful to understand the concept of r-Consistency. 

(a) (b) (C) (d) 

ShuHle transformations. (II) A l-shuHle cOro!'!iponding te Il piecewise-continllous image 
tl'ltllslation. (b) A l-slruHle cOl"l-espoudÎllg to a nOIl-panunetric inlage il:ans,fonnatioo; this ex.runple 
"howç that r-shuffies can model the proce •• of#ignoring" il ~nbçet of the pixels in an input inlage. 
(c),(d) A randcmnzed l().shufRe: the inlage in (cl) WIIS crellted by displacing every piltel in (c) 
to Il l'andomly-selected poçition insîde a 21x21 pixel window centcred lit the pixel. Note that (d) 
appea~ "blurred" even though 110 modification of colo~ or intensities has taken place. 

FIGURE 2.2. The effect of r-Shuffle on the reprojected image is in the form of blurring, 
taken from [16] 

r- Shuffie: "A 2D transformation 'T : Il -+ 12 is called an r-Shuffie if for every point in image 

h we can find a point of identical color within a disk of radius r in image h. The constant r ~ 0 is 

called the dispersion radius of 'T" [16J. The effect of r-Shuffie on an image is the blurring of that 

image as shown in Figure 2.2. 

r-Consistency: r-Consistency is a refined and more flexible version of the initial photo­

consistency test proposed by Kutulakos in [18J. In a normal photo-consistency test, the mean color 

of all the pixels in each voxel projection is calculated, and then the mean projection colors are 

matched to see if the voxel is consistent. In r-Consistency, only one pixel taken from each voxel 

projection is used in its photo-consistency test. If the variance of the best single pixel match is 
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Radiance 
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Projection Photo- r- consfstency 
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(a) Photo-consistent shape!.. The color and intellSily lit the projection of every point on 
thcir surfl\Çe mU$t he identical to the input photographs. (b) r-consÎstent shapes. The colot and 
illtell~ity at the projection ofevery point on their snrfaee must be identiul to t11.at of Il pixel wit11.în 
a dîsk ofmdîu'i r in the input photopphs (shown in gray). 

FIGURE 2.3. The comparison of r-Consistency and photo-consistency, taken from [16] 

less than the threshold, the voxel is declared to be photo-consistent. In r-Consistency, each voxel 

projection has a circular shape with a radius of r pixels. This is shown in Figure 2.3. The result 

of r-Consistency is an r-Consistent 3D shape. When an r-Consistent 3D shape is projected back to 

the input images, the reprojected images differ from the original images by an r-Shuffie transform. 

r-Consistent 3D Shape: "A volume V is r-Consistent if for every input image, Ii, there 

exists an r-Shuffie Ti : Ii -> I~ that makes V photo-consistent with all N input images If, ... , Iiv" 

[18]. 

The r-Consistent 3D shape is a superset of the original 3D scene. If a shape Q is rI-Consistent 

and a shape j3 is r2-consistent, and rI ç r2, then ex is contained in j3. Kutulakos refers to this as 

the Nesting Theorem. Based on the Nesting Theorem, a 3D shape can be successively refined using 

a coarse-to-fine reconstruction strategy starting from a larger value of r. 

2.1.1. Handling Camera Calibration Error with r-Consistency. 

As r-Consistency uses only a single pixel from each voxel projection for its photo-consistency 

check, it helps to overcome the effects of outlier pixels resulting from calibration errors and other 

sources of errors. An assumption in r-Consistency is that the camera calibration error should be 

limited so that it does not affect the visibility of a 3D point in the input images. The Calibration 

Reconstructibility Theorem describes this assumption as a precondition to get an r-Consistent 3D 

reconstruction in the presence of calibration errors. 

Calibration Reconstructibility Theorem: "An r-Consistent subset of a volume V exists 

for sorne r ~ 0 if the following condition holds for all i = 1, .... , N images: 
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ViSV(Ci) = Visv(êi) 

VisV(Ci) is the set of points on volume V that are visible from the viewpoint Ci. In this 

definition Cl, .... , CN are the viewpoints from which the input photographs were taken, and êl , .... , êN 

are the incorrect estimates for these viewpoints due to camera calibration errors" [16]. 

2.2. Limitations of r-Consistency. 

r-Consistency is not an optimum solution for the problems caused by the camera calibration 

errors in voxel-coloring because of the following limitations: 

• r-Consistency is a much weaker consistency test compared to the original photo-consistency 

test since only one pixel from each projection of the voxel is used. Therefore the lower 

the voxel resolution or the larger the value of dispersion radius r, the fatter and blurred 

is the reconstructed 3D mode!. In cases where no background segmentation information 

is available, e.g. silhouettes, the r-Consistency check will result in a higher number of 

false matches. 

• No method for selecting an appropriate value dispersion radius r for r-Consistency is 

provided. 

• r-Consistency is not a systematic treatment of the calibration errors problem as it does 

not make any use of the calibration error distribution information. Kutulakos admits 

that this method is only a first step towards handling calibration errors in voxel-coloring. 

3. Adaptive Gaussian A veraging 

This section gives the details of our proposed method for systematic handling of the calibration 

errors in voxel-coloring, which we call Adaptive Gaussian Averaging (AGA). 

3.1. Probabilistic Modelling of the Effect of Calibration Errors in Voxel-coloring. 

If we know the probability distribution of errors in estimated camera parameters, the un­

certainty caused by these errors in voxel-coloring can be modelled probabilistically. For now, it 

is assumed that a voxel is a 3D point that projects only to one pixel in each visible image. This 

assumption will be relaxed later for cube shaped voxels that may contain more than a single pixel in 

their individual projections. Let us assume that X 2D represents the projected pixel coordinates in 

an image of a 3D point X 3D . X 3D and X 2D are related to each other through the camera projection 

matrix P, 

(3.1) 
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As our primary aim is to see the effect of camera calibration errors on voxel-coloring, we will 

neglect other error sources to keep the derivation simple. For now, it will be assumed that only two 

types of error affect voxel-coloring: 

(i) The effect of sensor noise and non-Lambertian surfaces on pixel color. Due to these errors, 

the color 1 of a particular pixel at coordinates x, y in the ith image will be a random 

variable. Let this random variable be represented by I~y and its probability distribution 

be represented as f (I~y 1 (x, y) ). As the effect of these errors could be different for each 

pixel of an image, it is a conditional probability distribution. 

(ii) Error in the coordinates x, y of the pixel in a voxel's projection due to the errors in 

estimated camera parameters. Therefore, the coordinates x and y of a projected pixel 

are random variables and can be combined in a random vector X 2D = [x y]' having 

a bivariate probability distribution f(X2D ) = f(x, y). 

Let PROJi(X3D ) be the event that the projection of a voxel v located at X 3D = [X Y Z]' 

has the 2D coordinates X 2D = (x, y) in image i and the color of the pixel at this location is I~y. 

Let the probability of occurrence of this event be Pr(PROJi(X3D». Because of the above two 

error sources, Pr(PROJ i (X3D» depends on the following two probabilities: 

(i) Probability that X 2D = (x, y) are the true coordinates of the pixel in the projection 

of the voxel v. Let this probability be represented as Pr(x, y) and it depends on the 

probability distribution of the errors in the pixel coordinates due to calibration errors. 

(ii) Probability that the color of the pixel at coordinates (x,y) is I~y. Let this probability 

be represented as Pr(I~yl(x, y» and it depends on the probability distribution of the 

sensor noise and non-Lambertian surface effects. 

The effect of the above two probabilities can be combined using Bayes rule to calculate 

Pr(PROJi(X3D» as follows: 

(3.2) 

Equation 3.2 gives the joint probability distribution of error in the position of a voxel projection, 

and the color of the pixel in the projection. In voxel-coloring, only the color of the pixels in a 

voxel projection is used to check it's photo-consistency. Therefore, it is important to transfer the 

uncertainty in the projection coordinates to the uncertainty in the color of the projection. This can 

be achieved by calculating the marginal probability distribution of projection color in the presence 

of both sensor noise and calibration errors as follows: 
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(3.3) Pr(I~) = 11 Pr(I~y, x, y)dydx = 11 Pr(I~ylx, y) . Pr(x, y)dydx, 

where Pr(I~) is the probability that the color of the pixel in a voxel v's projection in image i is l 

in the presence of both sensor noise and camera calibration errors. The accuracy of this probabilistic 

modelling depends on the accuracy of the probabilistic model used for the error sources. 

3.2. Local Probability Distribution of Pixel Color Intensity in the Presence of 

Sensor Noise. 

In most of the voxel-coloring literature, sensor noise and non-Lambertian surface effects are 

modelled as zero mean additive Gaussian noise [18, 2]. Each color channel of a pixel at a particular 

location x, y in an image i can be assumed to be corrupted by this zero mean additive Gaussian 

noise with variance a~2Xyj, where j is the color channel i.e. R, G or B. Furthermore, it is assumed 

that this noise is IID (independent and identically distributed) for a particular color channel j and 

for aIl the pixels in an image, thus a~2xyj = a~}. Let I~yj be the true intensity value of the color 

channel j for a pixel at x, y in image i and I~yj is its noisy version that is a random variable. 

Boldfaced letters are being used to represent random variables. Let nj be the zero mean Gaussian 

noise in the jth color channel of image i with a variance a;j. Then for each color channel, 

(3.4) 

I~yR = I~yR + nR, 

I~yG = I~yG + nG, 

I~yB = I~YB + nB· 

The pdf (probability density function) of each component of a pixel color is, therefore, the normal 

distribution i.e. 

(3.5) 

3.3. The Distribution of the Projected Pixel Coordinates Error Due to Calibration 

Errors. 

The calibration errors in the camera parameters can be compactly represented as a covariance 

matrix up to second order of approximation [11]. A further assumption is made that the error in 

the camera parameters has zero mean Gaussian distribution. The error in the pixel coordinates of a 

voxel projection due to camera parameters error can be modelled as a zero mean bivariate Gaussian 
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distribution. With the assumption that the projected pixel coordinates error linearly depends on 

the camera parameters error, the covariance matrix of the camera parameters error can be used 

to calculate the covariance matrix of the error in the projected pixel coordinates. This covariance 

matrix depends on both the 3D coordinates of the voxel and 2D coordinates of its projection in an 

image. 

Let Ci be the covariance matrix of the camera parameters error for camera i, and C~,y be the 

covariance matrix of the error in pixel coordinates x, y of a voxel v's projection in image i. Let X 3D 

be a vector of voxel v's 3D coordinates and X~D be a vector representing the pixel coordinates of 

a voxel projection in image i. C~,y can be calculated from Ci using sorne function F that depends 

on X 3D , X~D and Ci i.e. 

(3.6) 

With the assumption that the the projected pixel coordinates error is linearly dependent on the 

error in the estimated camera parameters, the function in equation (3.6) can be expressed as follows: 

(3.7) 

where Jp is a Jacobian matrix and pi is the estimated camera parameter matrix. The estimation 

of the covariance matrix of the camera parameters error and the covariance matrix of the projected 

pixel coordinates error have been further explained in appendix A. Once the error in the 2D pixel 

coordinates is estimated, the bivariate Gaussian distribution of a voxel projection coordinates in 

image i can be expressed as follows: 

(3.8) 

where X, fi represent the mean values ofthe projection coordinates calculated using Equation (3.1). 

3.4. Uncertainty in a Voxel Projection Color due to Gaussian Calibration Error. 

With the assumption that a voxel projection coordinates have bivariate Gaussian distribution 

as given by Equation (3.8), Equation 3.3 is reduced to a summation over a window centered on 

X, fi: 

(3.9) Pr(I~) = 'L'LPr(I!ylx,y). Pri(x,y), 
x y 
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• • o 
True Projection 

Projection shifted due to Colibration Error 

targal wlndow with neighboring pixels odded te 
overcome the error 

FIGURE 2.4. The concept of Adaptive Gaussian Averaging. The projection window size is 
increased to calcu!ate the Gaussian averaging according to the effect of calibration errors 
in that paIt of the image. 

where Pr(I!ylx, y) is given by Equation (3.5) and Pri(x, y) is given by Equation (3.8). Note 

that an the derivations in this section are for a single color channel. 

The size of the window in Equation (3.9) is limited by ±30'x and ±30'y along both axes, where 

O'x and O'y are the standard deviation of the errors in pixel coordinates along the two axes. For a 

Gaussian distribution, ±30' covers 95% of the samples. 

The mean of the above pixel color probability distribution will be: 

Mean(I~) = L L(I!y + n) . Pr(x, y), 
x y 

(3.10) 
x y x y 

J-tcol = J-tI + J-tn, 

where J-tcol represents the mean color intensity of the pixel in the voxel projection, J-tI is the 

Gaussian average of the true color of the pixels in the window and J-tn is the Gaussian average of the 

additive zero mean Gaussian noise. Although n is zero mean IID Gaussian noise, J-tn may not be 

zero due to Gaussian averaging of its samples. The value of J-tn depends mainly on the value of the 
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noise sample in the pixel at the center of projection window, i.e. the pixel with coordinates X, fj. 

Because the size of the window used for Gaussian averaging depends on the pixel coordinates error 

variance i.e. C~,y, which is a function of projected pixel coordinates (x, y), we name this technique 

Adaptive Gaussian Averaging (AGA). 

Similarly, the variance of the color distribution of a voxel projection will be: 

Variance(I~) = (N ~ 1) L L(I!y + n - J-tcol)2 . Pr(x, y), 
x y 

N """" . 2 = (N _ 1) L... L_P!y + n - J1.1 - J1.n) . Pr(x, y), 
x y 

(3.11) 

+ (N~ 1) LL(I!y - J1.r)(n - J1.n)· Pr(x,y), 
x y 

where N is the total number of pixels in the Gaussian averaging window. As the calibration error 

is independent of sensor noise, the 3rd term in (3.11) will be zero. Thus, Equation (3.11) is reduced 

as follows: 

Variance(I~) = (N ~ 1) L L(I!y - J1.I)2 . Pr(x, y) 

(3.12) 
x y 

Equation (3.12) describes how the calibration errors increase the variance of the color distribution 

of a voxel projection. As both the error sources are independent of each other, ideally the calculated 

variance should be the sum of the variance of the pixel color due to the calibration error and the 

variance of the Gaussian noise: 

(3.13) Variance(I~) = (N ~ 1) L L(I!y - J-tI? . Pr(x, y) + a~2 
x y 

However, due to the Gaussian averaging of the noise samples, the second term in Equation 

(3.12) is not the true sensor noise variance. Therefore, equation (3.12) may underestimate the effect 

of sensor noise variance in the calculated variance value. This effect becomes obvious when a small 

Gaussian averaging window is used in case of small calibration error values. In this case, if we 

have an estimate of the sensor noise variance, we can use it to improve the estimate of the variance 
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calculated from (3.12) as follows: 

(3.14) Variance(I~) = max(Calculated Variance from (3.12), Sensor Noise Variance) 

Using a Gaussian distribution for the calibration error results into Gaussian blurring of the 3D 

model. This is the price that has to be paid to avoid the over-carving of 3D reconstructed model. 

3.5. Multiple Pixel Voxel Projections. 

The above calculations were made under the assumption that a voxel projects to exactly 

one pixel in each visible input image. However, for lower voxel resolutions, a voxel projection may 

consist of multiple pixels. The number of pixels in voxel projections as well as their shape could be 

different in different input images. Therefore, it is hard to know the exact color distribution of the 

pixels in a voxel projection. For simplicity, the color distribution is approximated as a univariate 

Gaussian distribution characterized by a mean and a variance. The calculations of the pixel color 

mean and variance of a voxel projection from Equations (3.10) and (3.12) can be extended to 

multiple pixel projections by averaging over all the pixels in a voxel projection: 

Mean(I~) = (~ ) LLL(I~y + n)· Pr(x, y), 
R R x y 

(3.15) =(~ )LLLI!y.pr(x,y)+(~ )LLLn.Pr(x,y), 
RRXY RRxy 

Mcolv = Ml + Mn ~ Ml, 

where R represents the region of a voxel projection and N R is the number of pixels in R. Due 

to the averaging of the color of all the pixels in a projection, the effect of the zero mean Gaussian 

sensor noise on the mean projection color can be ignored. 
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Similarly the variance of pixel colors in the voxel projection becomes: 

Variance(I~) = (N N~ 1) LLL(I~y + n - f1col)2. Pr(x, y), 
R R x y 

N R "" "" "" . 2 = (N _ 1) ~ ~ L.JI~y + n - f11 - f1n) . Pr(x, y), 
R R x y 

= (NN~ 1) LLL(I~y - f1I)2. Pr(x,y) 
R R x y 

(3.16) + (N N~ 1) LLL(n- f1n?' Pr(x,y) 
R R x y 

+ (N N~ 1) LLL(I~y - f1I)(n - f1n)' Pr(x,y), 
R R x y 

= (NN~ 1) LLL(I~y - f1I)2. Pr(x,y) 
R R x y 

+ (NN~ 1) LLL(n - f1n)2. Pr(x, y). 
R R x y 
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CHAPTER 3 

Handling Partial Emptiness of Surface Voxels 

One of the sources of error in voxel-coloring is the partial emptiness of surface voxels. In most 

of the voxel-coloring literature, this problem has been largely neglected, and voxels are considered 

as either completely occupying the 3D scene surface or completely a part of empty space. In this 

thesis, we analyze the effect of partial emptiness of surface voxels on voxel-coloring. Based on our 

analysis of the problem, we propose a method that makes the voxel-coloring algorithms more robust 

against the effects of this error source. This chapter begins with an analysis of the effects of this 

error source on the reconstructed 3D model. It is followed by an overview of the work done by 

others to handle this problem in voxel-coloring. In the last section of this chapter, our proposed 

method to reduce the effects of this error source on voxel-coloring is presented. 

1. Partial Emptiness of Surface Voxels: The Problem and its Effect 

An ideal voxel is a 3D point that projects only to one pixel in each visible image. In most 

voxel-coloring algorithms, a voxel is modelled as a cube and it may contain multiple pixels in its 

projection. It has been shown in the literature that the reconstruction results of a voxel-coloring 

algorithm are improved when a voxel is modelled as a cube, and is precisely projected in the input 

image as a cube [31, 7]. A voxel-coloring algorithm starts with an approximate guess of the 3D 

scene volume that is supposed to contain the true scene surface. As there is no prior information 

available about the shape of the scene surface, and each voxel is in the form of a cube, the faces 

of the cubic surface voxels might not be exactly on the scene surface. Rather, the scene surface 

may pass through a voxel leaving it partially empty. When such a voxel is projected in the visible 

input images, its projections will contain outlier pixels, i.e. the pixels corresponding to the scene 

surface represented by the voxels other than the voxel being projected. This phenomenon is clear 

in Figure 3.1 and Figure 3.2 for voxels at a fiat scene surface and at a depth discontinuity. To 

explain the problem more clearly, a two-dimensional view of the 3D voxels is shown in these figures. 



3.1 PARTIAL EMPTINESS OF SURFACE VOXELS: THE PROBLEM AND ITS EFFECT 

Instead of a perspective projection, an orthographie projection of the 2D voxels has been used for 

this purpose. From these figures, it is clear that the problem of out lier pixels due to the partial 

emptiness of surface voxels has more of an effect for the voxels at surface discontinuities. Therefore, 

in most of the related work to solve this problem, only the emptiness of the edge voxels has been 

considered. However, as is clear from Figure 3.1, the effect of partial emptiness of voxels at fiat 

scene surfaces cannot be neglected either. 

Surface Normal 

Surface Voxels 

Image Plane 

FIGURE 3.1. The effect of partial emptiness of a surface voxel. Almost half of the center 
voxel V2 is empty as the scene surface is passing through it. It is clear that the projection 
of the center voxel V2 in images II and h contains the out lier pixels representing the 
scene surface of the neighboring voxels VI and V3. 

A voxel, which is not on the true scene surface but becomes visible due to the erroneous 

carving of a partially empty surface voxel, may lead to hole-carving in the reconstructed 3D model 

[7]. Therefore, a surface voxel that is at most 50% empty, should be declared consistent by the 

photo-consistency test to avoid hole-carving. However, due to the outlier pixels in the projections 

of such a partially empty voxel, the color distributions of its projections may not agree with each 

other. This may lead to the erroneous carving of such a voxel. Therefore, to avoid artifacts in the 

reconstruction, a photo-consistency test should take into account the effect of outlier pixels due to 

the partial emptiness of surface voxels. Consideration of out lier pixels due to this problem becomes 

especially important in the following situations: 

(i) When no foreground/background segmentation information is available, which is the 

case for most practical situations. In this case, it becomes important to use a strict color 

variance threshold for the photo-consistency test to avoid accidentaI matches with the 

background pixels. However, in the presence of out lier pixels, a strict variance threshold 

may result in the carving of partially empty surface voxels. 
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Image Plane 

FIGURE 3.2. The effect of partial emptiness of an edge voxel. Note that most of the pixels 
in the voxel projection in h represent the surface contained by the voxel V3 instead of V2 

(ii) Increasing the number of input images that can See the same SCene surface increases 

the constraint on the photo-consistency test of a voxel, thereby reducing the chances 

of accidentaI matches. However, for a partially empty surface voxel, an increase in the 

number of input views will also increase the variance of the projection colors due to the 

outlier pixels. For instance, the pixels in the projections of a partially empty surface 

voxel in two images taken from distant viewpoints may represent two completely different 

3D scene surfaces, which would be the surfaces contained by adjacent voxels. Therefore, 

the effect of the partial emptiness of surface voxels increases with an increase in number 

of input viewpoints. 

(iii) For lower voxel resolutions, when a voxel projection contains larger number of pixels, 

representing the unknown projection color distribution with just a mean and a variance 

is not enough. Therefore, lower voxel-resolutions pose extra uncerlainty for a photo­

consistency test. As a result, the effect of outlier pixels due to partial emptiness of 

surface voxels is higher at lower voxel resolutions. 

(iv) The effect of out lier pixels due to this problem is higher for highly textured images, and 

for sceneS with lots of depth discontinuities. 
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2. Related Work 

The problem of having partiaIly empty surface voxels has been acknowledged in the voxel­

coloring literature. A discussion of the related work to overcome the effects of this problem is 

presented below. 

2.1. Roxels: Responsibility Weighted 3D Volume Reconstruction. 

The Roxels algorithm was proposed by de Bonet and Viola in 2000 [8]. Their main con­

tribution is to extend voxel-coloring to transparent scenes. In order to handle transparent scenes, 

the authors assume that no voxel is either completely empty or completely opaque. Therefore, 

their method is also able to reduce the effects of partially empty surface voxels. Their algorithm is 

iterative and parallel as compared to traditional voxel-coloring algorithms which are sequential. 

In the Roxels algorithm, each 3D voxel v(x, y, z) has an associated color c(x, y, z), an opacity 

value a(x, y, z) and a responsibility value r(x, y, z). Both a(x, y, z) and r(x, y, z) vary in a range 

between 0 and 1. At the start of the algorithm, aIl the voxels are assigned equal responsibility 

and opacity values and same color. The algorithm works iteratively by comparing the reprojected 

images with the input views. After each iteration, the reprojection error is used to improve the 

color and opacity estimates of each voxel. The algorithm iterates until converging at stable values 

of color, opacity and responsibility for each voxel. The authors have shown the results of their 

algorithm for both synthetic and real data sets in [8]. 

2.1.1. Limitations of Roxels Algorithm. 

The Roxel's algorithm has the following limitations when dealing with the problem of par­

tiaIly empty surface voxels: 

• The authors daim that the algorithm converged on aIl of their data sets, however, no 

proof was provided of the convergence of their algorithm. Due to the large number of 

parameters being optimized, there is no guarantee that the algorithm will converge for 

arbitrary data sets. 

• The Roxels algorithm equates the uncertainty of a voxel's photo-consistency and its 

opacity. This is not true for the image formation model of opaque scenes [2]. 

• The authors only used the data sets black background that allowed for easy background 

subtraction. As mentioned earlier, the problem of partially empty surface voxels is more 

prominent where foregroundjbackground segmentation is not possible. 

2.2. Stereo Matching with Transparency and Matting. 

Another related piece of work that overcomes the problem of partial emptiness of surface 

voxels is presented by Richard Szeliski and Polina Golland in [33]. In this paper, the authors propose 
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a technique to handle the errors caused by partially transparent boundary pixels. The voxels that 

projects to these pixels would be partly transparent as weIl. The proposed technique is quite similar 

to the voxel coloring method proposed by Seitz and Dyer in 1997 [27]. However, instead of building 

a generic 3D model of the scene, the reconstructed model is built only for one virtual view only. In 

this method, after an initial estimate of the color and transparency of the voxels, the estimates are 

refined to take the mixed pixels into account, Le. the pixels representing the depth discontinuities 

and occlusions in an image. The refinement is performed first by reprojecting the 3D voxels in the 

input images using their estimated color, visibility and opacity, and then optimizing these estimates 

by reducing the reprojection error between the input and reprojected images. Three different type 

of cost functions on reprojection error are used in their model refinement process: 

a The weighted error norm of the original image and the reprojected image. The weights 

can take into account the angle between the optical axes of the assumed virtual camera 

and input viewpoints. 

b A weak smoothness constraint on colors and opacities. 

c A prior distribution of opacities of the voxels. 

The total cost function of the reprojection error is a weighted sum of the above three cost functions. 

2.2.1. Limitations. 

• This algorithm only takes into account the partially transparent boundary pixels. As the 

voxel resolution is equal to the pixel resolution, the problem of partially empty surface 

voxels on the planar scene surface does not arise in this case. 

• As all the disparity calculations and refinements are performed in the image domain for 

a single virtual camera view, the reconstructed 3D model is highly view-dependent. 

• The authors make use of smoothness constraint and prior distribution of the opacities. 

Whereas the purpose of our work is to propose a method that could handle this prob­

lem for arbitrary scenes with arbitrary camera configurations without making any prior 

assumptions. 

2.3. r-Consistency. 

An overview of r-Consistency, a photo-consistency measure proposed by Kutulakos in [16], 

is presented in Chapter 2 while discussing its usefulness to handle camera calibration errors. The 

r-Consistency test has the ability to handle the effects of out lier pixels in voxel projections caused 

by different error sources. Therefore, r-Consistency is also useful to handle the effects partial 

emptiness of surface voxels. However, the limitation of this method is that it does not take into 
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account the particular nature of the problem. Therefore, it is just a first step towards making the 

photo-consistency tests robust against the error sources that cause outlier pixels in voxel projections. 

2.4. Other Related Techniques. 

Another related piece of work is presented by Isidoro and Sclaroff in [12J. The authors 

introduce a new photo-consistency measure to avoid the problem of outliers in voxel projections to 

make the voxel-coloring more robust. The authors refer to this photo-consistency test as Oriented 

Per-Pixel Matching (OPPM). In this method, instead of representing the color statistics of a voxel 

projection by a mean and a variance, individual pixels from each voxel projection are used in its 

photo-consistency test. Their photo-consistency measure assures that smaller number of outlier 

pixels do not affect the consistency of a partially empty voxel. The robustness of OP PM is further 

increased by weighting the difference of pixel colors of two projections by the cosine of the angle 

between the optical axes of the corresponding viewpoints. Thus the viewpoints that are close 

to each other would have higher weights given to the difference of their pixel colors. The authors 

compare the results of using OPPM as photo-consistency with those of the Variance of Means photo­

consistency test. Their method results in fewer holes in the reconstructed 3D model. One limitation 

of their method is the use of per-pixel matching which is highly computationally expensive. Further, 

the difference metric used to check the photo-consistency is a nonsystematic approach for handling 

sensor noise and camera calibration errors that are usually modelled as Gaussian noise. 

Kang and Szeliski in [14J have proposed several interesting techniques for outliers handling 

resulting from occlusions in multi-view stereo. Sorne of their proposed methods, such as the use of 

spatially shiftable windows and temporal selection of the input views, can also be used to handle 

the outliers caused by the partially empty surface voxels in voxel-coloring. The limitation of their 

proposed techniques is the increased computational cost for multiple view voxel-coloring. 

One approach to handle the uncertainty due to the outlier pixels, especially at low voxel 

resolutions, is to use a coarse-to-fine strategy as proposed by Montenegro et al. in [22J. In this 

method, if the uncertainty is high in deciding the photo-consistency of a larger voxel, the decision 

for its photo-consistency is delayed for later stage when the voxel size would be reduced. The delay 

in the decision to remove a voxel helps to avoid the erroneous carving of a partially empty surface 

voxel. 

Another class of methods that can handle outliers in voxel-coloring are the probabilistic ap­

proaches [4, 2J. These probabilistic methods make use of the background statistics and calculate 

the carving probability as a likelihood ratio. The use of background variance statistics helps to 

31 



3.3 AREA WEIGHTING TO HANDLE PARTIAL EMPTINESS OF SURFACE VOXELS 

reduce the uncertainty in photo-consistency of a voxel in the presence of outliers. The probabilis­

tic methods are especially use fuI when no foreground/background segmentation information, e.g. 

silhouettes, is available. 

3. Area Weighting to Handle Partial Emptiness of Surface Voxels 

In this section, we present our proposed method to overcome the effect of outliers in voxel­

coloring resulting from partial emptiness of surface voxels. Like most robust computer vision 

algorithms [32J, we have made use of the problem analysis to make voxel-coloring robust against 

this error source. 

The amount of outlier pixels in the projections of a partly empty surface voxel depends on the 

following factors: 

(i) The percentage of the emptiness of the surface voxel. The higher the emptiness, the 

higher the amount of outliers. 

(ii) The angle between the unit normal of the 3D surface contained in the voxel and the 

camera optical axis of the input viewpoint. This effect is clear in Figures 3.1 and 3.2. In 

Figure 3.1, the optical axis of the central camera is almost aligned with the normal of the 

surface represented by voxel V2 . Therefore, the projection of voxel V2 in image h does 

not contain outlier pixels. Whereas the projections of voxel V2 in image Ir and /2 contain 

outliers as the camera optical axes for these images form an angle of approximately 45° 

with respect to the surface normal. The same concept is true in Figure 3.2 where the 

edge voxel is partly empty. 

(iii) The angle between the optical axes of the cameras that can see the voxel. For a given 

emptiness of a surface voxel, the higher the angular spread of the input views, the more 

outliers in the voxel projections. 

For a perspective camera model, the pixel coordinates of a 3D point can be calculated as 

follows: 

(3.1) 

where (x, y) are the sensor coordinates and (X, Y, Z) are coordinates of the 3D point in the 

camera reference frame. The number of pixels in the voxel projection in different visible input 

images are usually different. Using Equation (3.1), and from Figure 3.1 and Figure 3.2, it is clear 

that the number of pixels in the voxel projection depends on the following factors 

(i) The focal length f of the camera; the projection area is proportional to r. 
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(ii) The distance of the image plane from the voxel along the optical axis of the camera, i.e. 

the depth Z of the 3D point; the projection area is proportional to p. 
(iii) The angle between the principle axis of the camera and the unit normal of the surface 

represented by the voxel; the larger the angle, the smaller the area of projection 

If the number of pixels in voxel projections is normalized for their difference in focal length 

and depth for different images, by multiplying the number of pixels with (i? , a voxel projection 

area will only depend on the 3rd factor in the above list, Le. the angle between the surface normal 

and the camera optical axis. Further, it is important to note that the amount of outliers in a 

voxel projection also depends on the same factor. In other words, the larger the voxel projection 

area, the smaller the amount of out lier pixels in the projection. Therefore, the pixels in larger area 

projections of a voxel are better representations of the surface contained by that voxel. Hence, 

if the normalized number of pixels in a voxel projection are used as weights when calculating the 

color statistics of the voxel Le. its mean color and variance, the effect of the outliers due to the 

emptiness of surface voxels will be reduced. This is our proposed solution to reduce the effects of 

partial emptiness of surface voxels in voxel-coloring. We calI this technique Area Weighting. 

3.1. Area Weighted Variance of Means Photo-Consistency Test. 

Our proposed solution is simple to use with existing photo-consistency tests to make them 

robust against the outliers problem. In order to show the applicability of our method with the 

existing techniques, we are using Area Weighting with the Variance of Means photo-consistency 

test. We calI the new robust photo-consistency test Area Weighted Variance of Means (AWVoM). 

Let /-Li be the mean color (Red, Green or Blue) of the pixels in a voxel v's projection in the ith 

image , N be the total number of images that can see a voxel and Wi be the weight given to a 

projection color statistics in proportion to its normalized area, i.e. the normalized pixel count. The 

Variance of Means (VoM) photo-consistency test can be modified as AWVoM as follows: 

N 

(3.2) The average of the mean projection colors of a voxel = /-Lv = ~ L Wi' /-Li, 

i=l 

and 

N 

(3.3) The variance of mean projection colors of a voxel = Varv = N ~ 1 L Wi . (/-Li - /-Lv)2 

i=l 

A similar area weighting scheme has been used by Matthew Loper in his software called 

Archimedes [20], which is an implementation of Generalized Voxel Coloring (GVC) Aigorithm 

[7]. However, the author does not explain the use of this technique. We were unable to find any 
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description of this technique in voxel-coloring literature as weIl. Therefore, one contribution of our 

work in this thesis is to provide the rationale to use Area Weighting and to verify it experimentaIly. 

3.2. Advantages of Area Weighting. 

Our proposed technique has following advantages over the existing techniques to handle the 

out lier pixels: 

• Because of its simplicity, Area Weighting can be easily added to most existing photo­

consistency tests. 

• There is very little computational cost involved in incorporating the Area Weighting, 

especially in comparison with the methods proposed in [4;7;15]. 

• Area Weighting can handle the partial emptiness of both the edge voxels and voxels on 

continuous surface. This is evident from Figures 3.1 and 3.2. 

• At low voxel resolutions, a voxel might be partially occluded in sorne views. As a result 

the mean color of the pixels in the occluded projection could be significantly different 

from the mean color of the projections where the voxel is fully visible. This problem 

will occur even if the voxel is completely opaque, Le. not empty at aIl. As shown in 

Figure 3.3, the area of the partially occluded projection will be smaller compared to the 

projections where the voxel is completely visible. Therefore, the use of Area Weighting 

will increase the robustness of voxel-coloring against these errors as weIl. 

3.3. Limitations of Area Weighting. 

Area Weighting is an approximate method and is based on the assumption that the amount 

of inliers in a voxel projection are proportional to the projection area. This method will fail when aIl 

projections of a partially empty surface voxel have similar areas. An example of this circumstance 

is shown in Figure 3.4, where the angles between the normal of the surface contained in a voxel and 

the optical axes of aIl three cameras are same. However, as it will be shown in the next chapter, for 

most of the cases Area Weighting improves the reconstruction results of a voxel-coloring algorithm. 
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Surface Vo ,15 

Occluding urtace Voxel 

v 

1 Image Plane 
2 

FIGURE 3.3. The use of Area Weighting to handle the effects of partially occluded voxels. 
The occluded projection of the voxel V in image ft captures only half of the surface 
contained in the voxel. Therefore, the color distribution of the pixels in this projection 
may be quite different from the color distribution of the pixels in the other two projections. 
The use of Area Weighting will reduce the role of the voxel projection in ft in the photo­
consistency test. 

Camera Optical Axis 

Image Plane 

FIGURE 3.4. An example when Area Weighting is unable to overcome the effect of outliers 
as ail the projections of a voxel have similar areas. 
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CHAPTER 4 

Experiments and Results 

This chapter presents the experimental verification of our proposed methods to handle the effects 

of both camera calibration errors and partial emptiness of surface voxels. The first part of the 

chapter will explain the experimental setup. The results and a discussion of these results will be 

presented in the second part of this chapter. It will be shown that our proposed methods improve 

the reconstruction results in the presence of errors. 

1. Experimental Setup 

This section gives the necessary details of our experimental setup and verification methods. 

1.1. Data Sets. 

We have used our own calibrated data sets for the experiments. Three different objects, 

namely a pipe player statue (Piper), a stuffed chipmunk (Chipmunk) and a stuffed dog (Puppy), 

that are being used as 3D scene models are shown in Figure (4.1). These objects were selected 

for their shape and texture qualities. Most manmade objects have symmetric surface properties. 

However, the test objects do not, and thus the results can be extended to arbitrary 3D scenes. 

Piper has rich surface variation details but its texture variation is relatively smooth. The other 

two objects have smoother surfaces. However, these two objects have textureless surface patches of 

uniform color. As was explained in Chapter 1 and was shown in Figure 1.3, a lack of texture in voxel 

coloring fattens the reconstructed 3D model in the absence of any prior smoothness constraint. The 

dimensions of the initial bounding box for the test objects are given in Table 4.1. Two different 

voxel resolutions were used for our experiments; a Maximum Voxels Per Side (MVPS) of 100 and 

180 in the initial bounding box. We used the same voxel size for aU the voxels. Therefore, the 

number of voxels along each side of the bounding box may be different and will be proportional to 
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the length of that side. Table 4.1 gives the size of a voxel for two different voxel resolutions for aIl 

three objects. 

Twelve different calibrated views of each object, taken at a uniform angular separation of 30°, 

were used as input to the voxel-coloring algorithms. These input views coyer the 3D object from aIl 

directions in one plane, as shown in Figure 4.2 for Piper. Therefore, the output of a voxel-coloring 

algorithm is a complete 3D model of the object. The input images were acquired using a single fixed 

camera, while the object was rotated on a turntable. The resolution for each image was 640 x 480 

pixels. 

(a) Piper (b) Puppy (c) Chipmunk 

FIGURE 4.1. A single image of each 3D test objects 

TABLE 4.1. Dimensions of the initial bounding box for each test object 

Test Object Initial Bounding Box Dimensions in mm (X X Y X Z) Voxel Size in mm 
MVPS -100 MVPS = 180 

Piper 120 X 110 x 210 2.1 1.167 
Puppy 260 x 190 x 180 2.6 1.44 

Chipmunk 130 x 150 x 170 1.7 0.94 

The use of background segmentation information is quite common in voxel-coloring algorithms. 

The advantage of using this information is that the voxels that project to the background pixels 

can be easily detected and removed. However, in most practical situations, it is not possible to 

separate the object from its background perfectly. Furthermore, if a sufficient number of input 

views are used, the difference between the quality of a Photo Hull obtained from voxel-coloring 

using silhouettes and a Visual Hull is sometimes not noticeable. This fact is clear from Figure 

4.3. A Visual Hull is a 3D reconstructed model of an object using only its silhouettes without 

making any use of color information. Therefore, al! the reconstruction results presented in this 

chapter were obtained without using any background segmentation information. However, as will 

be explained later, we will need background segmentation to perform a precise quantitative analysis 

of the reconstruction results. Therefore, we have used uniform colored background surfaces in our 

data sets to obtain background segmentation easily. 
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FIGURE 4.2. Twelve different views of Piper in a plane at a uniform interval of 30° 

1.2. Camera Calibration. 

The intrinsic and extrinsic parameters of the camera were estimated using a Matlab Camera 

Calibration Toolbox [3]. The toolbox was designed for the calibration of a single camera. However, 

we were able to easily extend its use for multiple cameras. Technical details of this calibration 

toolbox can be found in [3]. In this calibration method, a checkerboard is used as a calibration 

object. At least two images of the checkerboard are required for estimating both intrinsic and 

extrinsic parameters of a camera. We used twenty extra views of the calibration object at different 

angles to make sure that the calibration feature points are properly distributed in both the image 

and the object space. The toolbox provides sufficient information about the distribution of the 

calibration errors. The reprojection error for aU the feature points in aU the input views, and the 

standard deviation of the error in each estimated calibration parameter, were also available from 

the toolbox. 

The reprojection error of the estimated calibration parameters was very smaU and its standard 

deviation was around 0.2 pixels. In order to test our proposed method of improvement for different 

levels of camera calibration error, we controUed the calibration error by adding zero mean Gaussian 

noise to the coordinates of the image feature points before calibration. Two new camera calibrations 

with the average reprojection error standard deviations of 1 and 2 pixels were obtained using this 

method. 
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(a) (b) 

(c) (d) 

(e) (f) 

FIGURE 4.3. Comparison of Photo Hull and Visual Hull. Background segmentation in­
formation, i.e. silhouettes, was used to generate Photo Hull. (a) is one of the ten input 
images of a stuffed bear. This data set is courtesy of Matthew Loper [20]. (b) is the 
reconstructed Visual Hull and (d) is the reconstructed Photo Hull for this data set. (c) 
is one of the seventeen input images of a synthetic toy car. This data set is courtesy of 
Bruce Culbertson [7J. (e) is the Visual Hull and (f) is the Photo Hull for this data set. 
Because of a good number of input views, the difference between the two reconstructions 
is very small for the toy car. The Visual Hull looks even smoother and better than Photo 
Hull for this data set. 
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1.3. Voxel-Coloring Aigorithm. 

The methods of improvement proposed in this thesis can be used with most of existing voxel­

coloring algorithms. For the experiments in this thesis, we used the Generalized Voxel Coloring 

using Item Buffers (GVC-IB) algorithm [7] for visibility calculations. Photo-consistency tests are 

based on the Variance of Means (VoM) method which was discussed in Chapter 1. It is one of the 

simplest photo-consistency tests. For the photo-consistency check of a voxel in this method, the 

sum of the variance of aU three color channels is compared against a threshold value. We used the 

RGB color space for our experiments. 

A voxel is assumed to be a perfect 3D cube and is projected accurately on the input images for 

visibility calculations. No assumption was made about the shape of a voxel projection in an image 

and it could vary significantly in different images. Therefore, the calculation of a voxel projection 

color statistics was a little more laborious but accurate. The size of a voxel is adjusted by changing 

the resolution of the voxel grid that represents the initial scene volume. 

1.3.1. Pseudo-Code for Voxel-Coloring Algorithm. 

The pseudo-code for the voxel-coloring algorithm that was implemented and used in our 

experiments for this chapter is presented below: 

Step 1: Initialize a List of Surface Voxels (LSV) of the initial volume that contains the 3D 

object. 

Step 2: Visibility Calculation 

For each input view 

(i) Render a new image for the volume represented by the LSV. To render an image, 

the color of a voxel is assumed to be equal to its ID. Thus, the color of a pixel 

in the rendered image will determine the ID of the surface voxel visible from that 

pixel. Therefore, each rendered image contains the voxel visibility information and 

is caUed an Item Buffer (lB). 

Step 3: Accumulating Voxel Color Statistics 

(i) Initialize a list to store the color statistics of aU the surface voxels in the LSV 

(ii) For each pixel of each input image 

• If the color of the same pixel in the corresponding Item Buffer is a valid 

surface voxel, ID then add this pixel's coordinates and color in the voxels 

statistics list 

Step 4: Photo-Consistency Check 

For each voxel v in the LSV, if the voxel v is visible in more than one input image 

(i) For each visible input image 
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• If Adaptive Gaussian Averaging flag is ON, then calculate the error variance 

of 2D coordinates of the pixels in voxel v's projection and add neighboring 

pixels in the voxel's projection with calculated Gaussian error probability . 

• Ca1culate the mean color of aIl the pixels in the projection. 

(ii) Calculate average of the mean colors of aIl projections of the voxel. Use projection 

areas as weights if the Area Weighting flag is ON. 

(m) Calculate the variance of the mean projection colors. Use projection areas as weights 

if the Area Weighting flag is ON. 

(iv) Add the variance of the three color channels to ca1culate a sum variance 

(v) If the sum variance is less than the global variance threshold, then the voxel v is 

declared consistent and is left in the LSV 

(vi) Eise remove v from the LSV, set v as non-consistent, and increment the carved 

voxels count. 

(vii) Add the neighboring voxels of the carved voxel v in the LSV if these new voxels are 

not already present in the LSV or have not previously been declared non-consistent. 

Step 5: Algorithm Termination Check 

(i) If no voxel was removed during photo-consistency check step, terminate the al­

gorithm. The voxels that are still present in the LSV form the surface of the 

photo-consistent reconstructed 3D mode!. 

(ii) Eise Go back to Step2. 

At the end of the algorithm, the average color of each voxel is used for texture lIllapping of the 

rendered 3D model. 

1.4. Quantitative Verification of the Test Results. 

It is important to have a quantitative measure of error to test and compare the quality 

of reconstruction of different voxel-coloring algorithms. A voxel-coloring algorithm is supposed to 

generate a Photo Hull that is a superset of aIl the possible photo-consistent surfaces. A Photo Hull 

should be able to reproduce the input image by reprojection. Therefore, an obvious measure to test 

the quality of reconstruction of a voxel-coloring algorithm is the color difference of the input images 

and the reprojected images, i.e. the reprojection error in pixel color. A voxel-coloring algorithm is 

usually supposed to reconstruct only the 3D object present in the image and not the background 

surfaces. As a result, aIl the pixels that belong to the background would be black in the reprojected 

image. Therefore, one method to see the difference between an input and a reprojected image is to 

take into account only the pixels that are not black in the reprojected image. However, this method 

is flawed for the following reasons: 
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(i) If a part of the 3D object surface is black, it will not be used in the calculation of 

reprojection error. 

(ii) An over-carving of the 3D model will result in black spots on the reconstructed surface. 

Therefore, ignoring the black pixels in the reprojected image willlead to overlooking the 

effect of over-carving. 

(iii) The voxels that do not represent the object surface but have been falsely declared as part 

of the 3D object will project on the background pixels. These background pixels will 

have sorne color and are given the name of false positive pixels in this thesis. The false 

positive pixels are unwanted regardless of their color and reprojection error. Therefore, 

using all the colored pixels in the reprojected image to calculate the reprojection error 

will not take into account the effect of faise positives properly. 

The reprojection error calculation can be made more accurate and the above-mentioned prob­

lems can be avoided by using the object/background segmentation information, i..e. silhouettes. 

With the availability of the object/background segmentation information, the quantitative error 

measure is composed of the following two parts: 

Reprojection Error: The reprojection error of pixel color is calculated only for the pixels 

belonging to the object surface, Le. the pixels inside the silhouette of the object. An 

average of the reprojection error in each color channel over all the input views was used 

as an error measure in algorithm comparisons. 

False Positive Pixel Count: AH the pixels in the reprojected images that are outside 

the silhouettes of the object, and have sorne color, are considered as false positive pixels. 

The sum of the false positive pixels in all reprojected images for all input views was used 

as the second error measure. 

Figure 4.4 illustrates the regions used for the calculation of reprojection error and false positive 

pixel count. While comparing two different voxel-coloring algorithms, an algorithm will be declared 

better if it results in a lower reprojection error for the same or smaller number of false positive 

pixels, or fewer false positive pixels for the same or lower reprojection error. It is important to note 

that object/background segmentation information is not being used in the reconstruction process 

itself because it reduces the effectiveness of voxel-coloring. This has been discussed earlier in Section 

1.1. 

2. Results for the use of Area Weighting 

In this section, the results of two voxel-coloring algorithms will be compared to evaluate the 

effect of using our proposed Area Weighting. The basic algorithm uses simple Variance of Means 
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Region for Faise Positive Pixels 
Calculatlon 

Region for reprojeclion Error 
Calculatlon 

FIGURE 4.4. Pixels inside the object silhouette were used for the calculation of repro­
jection error: Colored pixels outside the silhouette of the object were considered as false 
positive pixels. 

(VoM) as its photo-consistency test. The enhanced algorithm makes use of Area Weighted Variance 

of Means (AWVoM) test. The projection area weights reduce the calculated variance of the mean 

projection colors. Therefore, YoM and AWVoM will result in significantly different amounts of 

voxel carving for the same variance threshold; the algorithm using AWVoM will carve less. For 

performance comparison, we need to see which algorithm performs better under similar conditions. 

In this case an adequate condition for comparison could be the same number of voxels carved from 

the initial volume. The better algorithm will be the one that carves fewer holes in the reconstructed 

model, Le. has low reprojection error for the same false positive pixel count or vice versa. 

Another important fact is that for YoM based photo-consistency tests, an increase in the 

variance threshold reduces the over-carving of the reconstructed 3D model, resulting in lower re­

projection error. However, this is achieved at the expense of higher false positive pixel count in the 

reprojected images. This fact is clear from Figure 4.7, which compares the results of simple YoM 

tests for two different variance thresholds for the Piper data set. 

In Chapter 3, we have discussed the normalization of a voxel projection areas for difference in 

focallength f and depth Z. However, if aH the cameras have the same focallength and the distance 

of an object from the cameras is also almost similar, which is the case for our test data sets, we 

have noticed that the normalization does not make much difference in the reconstruction results. 

Therefore, we did not normalize the projection areas for f and Z differences in our experiments. 

This helped to reduce the computational cost of the algorithm. 

Figures 4.5 to 4.11 compare the reconstruction results ofVoM and AWVoM photo-consistency 

tests. These results were obtained for two different voxel resolutions with Maximum Voxels Per 
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Side (MVPS) of 100 and 180, for ail the three data sets. Note that in quantitative comparison of 

the results, the norm of the average reprojection error in the three color channels was used, i.e. 

(2.1) Total Reprojection Error = Vt1t + t~ + t~, 

where tR, ta and tB are the average reprojection errors in each color channel. 

(a) Two of twelve input images (b) YoM with MVPS = 100 (c) AWVoM with MVPS = 100 

(d) YoM with MVPS = 180 (e) AWVoM with MVPS = 180 

FIGURE 4.5. Reconstruction results that show the effectiveness of Area Weighting for the 
Piper data set for two different voxel resolutions, Le. Maximum Voxels Per Side (MVPS). 
The corresponding analytical comparison is shown in Figure 4.6. 
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FIGURE 4.6. Quantitative comparison of the results shown in Figure 4.5 for the Piper 
data set. The corresponding numbers are given in Table B.1 in Appendix B. 
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FIGURE 4.7. The effect of changing the variance threshold on reprojection error and false 
positive pixel count. These are the results of a YoM test for the Piper data set with 
MVPS of 180. The exact numbers are given in Table B.1 in Appendix B. 
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(a) with MVPS = 100 (b) with MVPS = 180 

FIGURE 4.8. Reconstruction results showing the effectiveness of Area Weighting for the 
Chipmunk data set. Each column shows the results for' one particular voxel resolution. 
The first picture in each column is the original input image. The second picture is the 
reconstruction result of simple Variance of Means (VoM) test. The last picture in each 
column is the reconstruction result of Area Weighted Variance of Means (AWVoM) test. 
The corresponding quantitative analysis is shown in Figure 4.9. 

2.1. Low Voxel Resolution: MVPS 100. 

A maximum of 100 voxels along the longest side of the initial bounding box of the scene 

volume yields a relatively coarse voxel resolution. It is c1ear from Tables B.I, B.2 and B.3 in 

Appendix B that YoM and AWVoM tests remove similar numbers of voxels from the initial volume. 
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FIGURE 4.9. Quantitative comparison of results shown in Figure 4.8 for the Chipmunk 
data set. The exact numbers are given in Table B.2 in Appendix B. 
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FIGURE 4.10. Quantitative comparison of results shown in Figure 4.11 for the Puppy 
data set. The exact numbers are given in Table B.3 in Appendix B. 

Although the simple YoM test removes a slightly higher number of voxels, it results in more false 

positive pixels in the reprojected images. At the same time, the simple YoM test nlSults in higher 

reprojection error due to over-carving of the 3D scene surface. In contrast, AWVoM test results 

in fewer false positive voxels around the object and also less over-carving of the object surface. 

The difference is visually clear from Figures 4.5, 4.8 and 4.11 showing the reconstructions. It is 
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(a) with MVPS = 100 (b) with MVPS = 180 

FIGURE 4.11. Reconstruction results showing the effectiveness of Area Weighting for 
the Puppy data set. Each column shows the results for one particular voxel resolution. 
The first picture in each column is the original input image. The second picture is the 
reconstruction result of simple Variance of Means (VoM) test. The last picture in each 
column is the reconstruction result of Area Weighted Variance of Means (AWVoM) test. 
The corresponding quantitative analysis is shown in Figure 4.10. 

also verified from the quantitative comparison of these results shown in the form of bar graphs in 

Figures 4.6,4.9 and 4.10 . These results clearly show that AWVoM is performing much better than 

YoM test for this voxel resolution. 

The difference in the quality of reconstruction is the highest for the Piper data set where 

AWVoM test results in a three times smaller false positive pixel count while simultaneously reducing 
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the reprojection error by half. The improvement achieved for the Chipmunk data set is the lowest. 

From the figures showing the reprojected images of the reconstructed models, it is clear that over­

carving has stronger effects on regions with color and surface discontinuities. This is illustrated by 

the checkerboard floor being affected the most by over-carving. The Piper data set has the highest 

degree of surface discontinuities. Therefore, Area Weighting is more effective for this data set. 

Furthermore, for Chipmunk, the voxel size is 1. 7mm for this voxel resolution, which is the smallest 

in all the three data sets. Therefore, the effect of partial emptiness of surface voxels is also less for 

Chipmunk, and so is the improvement achieved. 

2.2. High Voxel Resolution: MVPS 180. 

For the higher voxel resolution, the difference in the quality of reconstruction of the two tests 

is less significant. Nonetheless, AWVoM still performs better than YoM, i.e. AWVoM results in less 

reprojection error and, at the same time, fewer false positive pixels in the reprojected images. It is 

also clear from the figures showing the quantitative comparison of the results that the reconstruction 

quality has improved for both tests with an increase in the voxel resolution. An increase in the 

voxel resolution has reduced both the reprojection error and the false positive pixels count. This 

trend is quite predictable. One reason for this improvement is that at higher voxel resolution, the 

effect of the outlier pixels is reduced due to smaller voxel size. Another reason for the improvement 

is to have fewer pixels in voxel projections that reduce the ambiguity in the YoM based photo­

consistency tests [5]. As at higher voxel resolution, the effect of partial emptiness of surface voxel is 

reduced, the improvement achieved using our proposed method is also reduced. This confirms that 

Area Weighting is effective in reducing the effect of this error source, and adapts to the amount of 

error present. 

3. Results for Handling Camera Calibration Errors 

ln this section, it will be shown experimentally that camera calibration errors do have an impact 

on the 3D reconstruction quality of a voxel-coloring algorithm. Further, it will be shown that the 

reconstruction quality of an existing voxel-coloring algorithm can be significantly improved in the 

presence of calibration errors by combining our proposed method, Adaptive Gaussian Averaging 

(AGA) with AWVoM. For comparison purposes, a voxel-coloring algorithm using the AWVoM 

consistency test will be used as a basic algorithm that does not take calibration errors into account. 

The results of the basic algorithm will then be compared with that of an enhanced algorithm that 

makes use of our proposed Adaptive Gaussian A veraging. In the last part of this section, the results 

of this enhanced algorithm will also be compared with those of the r-Consistency test proposed by 

Kutulakos in [16]. 
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(a) Without leaving single visibility voxels uncol- (b) Single visibility voxels are left uncolored to 
ored. make the holes more visually clear. 

FIGURE 4.12. This figure shows the effect of leaving the single visibility voxels uncolored. 
It is clear that this method helps to make the holes in the reconstruction results visually 
more recognizable. The associated quantitative results are given in Table 4.2. 

TABLE 4.2. The effect of leaving the single visibility voxels uncolored on the reprojection 
error and the false positive pixel count. 

Reprojection Error (R, G, 8) False Positive pixel Count 

No Explicit Holes 48.3962, 46.6454, 43.7232, 83359 

Explicit Holes 50.9198, 48.9524, 45.2727 82953 

When the two algorithms are compared for their camera calibration error handling capability, 

the better algorithm should result in less over-carving of the object surface for the same number 

of false positive pixels. When a consistent surface voxel is carved by error, the voxel behind this 

carved surface voxel is exposed and is usually visible in only one image. The erroneous carving of a 

consistent surface voxel creates a hole on the surface of the reconstructed object. The hciles carved 

in the surface of a 3D object can be shown more explicitly by not coloring the voxels behind them, 

i.e. the voxels that are visible in a single image only. In this case, any black spot on the continuous 

surface of a reconstructed 3D model will show that a hole has been carved. A better algorithm will 

result in fewer black spots, i.e. holes, on the surface of the reconstructed 3D model. However, this 

method to see the hole carving is only an approximation because of the following factors: 

(i) If the cameras are placed close to each other, a voxel behind a wrongly carved surface 

voxel might be visible in more than one image . In this case, this method will fail to 

show the holes in the 3D reconstruction. 

(ii) The surface voxels that lie on the surface discontinuities and on concave surfaces might 

be visible in a single image only. Leaving these single visibility voxels uncolored will 

show holes without any over-carving. 
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Due to the above limitations, we have used this method only for the Piper data set. We also 

compare the results of different algorithms without making the holes explicit in the reconstructions. 

Figure 4.12 shows the effect of leaving the single visibility voxels uncolored. It can be seen that 

the holes in the reconstructed model becomes visually more clear. Table 4.2 shows its effect on the 

reprojection error and false positive pixel count. The numbers in the table suggest that making 

the holes explicit bias the quantitative results by increasing the reprojection error and reducing the 

false positive pixel count. However, the difference is quite nominal. 

The results shown in this section have been generated for two different voxel sizes with three 

different levels of calibration error. Therefore, the algorithms will be compared in two different 

ways: 

(i) Comparison for different levels of calibration error for a fixed voxel resolution. 

(ii) Comparison for different voxel sizes for a fixed calibration error. 

3.1. The Effect of Calibration Errors on Voxel-Coloring. 

Figure 4.13 shows the effects of increasing camera calibration error on the reconstruction 

quality of an AWVoM based voxel-coloring algorithm. The corresponding quantitative results are 

shown in Figure 4.14. It is clear that an increase in calibration error results in higher reprojection 

error. However, the effect is more pronounced at lower voxel resolutions in terms of holes and over­

carving. Figure 4.14 shows that he effect of an increase in the calibration error on the false positive 

pixel count is not monotonie. At low values of calibration error, the ambiguity resulting from the 

error increases the faise matches and hence the faIse positive pixels. At higher calibration error, 

the effect of the error is same on both the consistent and non-consistent voxels, Le. over-carving of 

the voxels. Therefore, the faIse positive pixels are also reduced at high calibration error values. 

It is interesting to note that an increase in the calibration error has more effect on the color 

and surface discontinuities. Therefore, the checkerboard floor is the first to st art disappearing with 

an increase in the calibration error. Another important fact to note is that the effect of calibration 

error on the reconstruction quality is reduced at higher voxel resolutions. At a low voxel resolution 

with MVPS of 100, an increase in the calibration error results in over-carving of the floor and 

the object surface. In contrast, at a higher voxel resolution with MVPS of 180, only the floor 

disappears. Over-carving of the object surface is hardly noticeable at this voxel resolution. This 

phenomenon can be explained by the fact that a voxel projection contains fewer pixels at higher 

voxel resolutions. And the YoM based photo-consistency test faces less ambiguity and is more 

robust against the error sources at higher voxel resolutions. Another reason is that for a smaller 

voxel size, the outlier pixels caused by the calibration errors will be closer to the center of a voxel 
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(a) Two of the twelve input views 

(b) Reconstruction for three different levels of calibration error with MVPS = 100 

(c) Reconstruction for three different levels of calibration error with MVPS = 180 

FIGURE 4.13. Reconstruction results of the AWVoM based voxel-coloring algorithm for 
different levels of calibration error for two different voxel resolutions for the Piper data set. 
Ali left side reconstructions are for an average pixel coordinates error standard deviation 
(STD) = 0.2 pixels, reconstructions shown in the center are for STD = 1 pixel, and those 
shown on the right are for STD = 2 pixels. The corresponding quantitative analysis is 
presented in Figure 4.14. 
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FIGURE 4.14. Quantitative analysis of the effect of increasing calibration error on the 
reconstruction results shown in Figure 4.13 for the Piper data set. The exact numbers 
are given in Table BA in Appendix B. 

projection and hence will be similar in color to the other pixels in the projection. As a result, they 

have less effect on the projection color statistics. 

Figure 4.13 shows the effect of increasing calibration error on the reconstruction results of 

voxel-coloring for one data set only. More extensive experiments were not conducted as the effect 

of calibration errors on voxel-coloring has already been discussed in the literature [5, 19J. 

3.2. Improvement in the Voxel-Coloring Results with Adaptive Gaussian Averag-

ing. 

Figures 4.15 and 4.16 show the effect of using Adaptive Gaussian Averaging (AGA) with 

AWVoM to overcome the calibration error effects for the Piper data set. These reconstruction results 

were obtained for three different levels of calibration error and for two different voxel resolutions. 

The holes in the reconstructed 3D models have been made explicit by leaving the single visibility 

voxels uncolored. The corresponding quantitative comparison of the reconstruction results for the 

reprojection error and the false positive pixel count is presented in Figures 4.17 and 4.18. 

The improvement in the reconstruction quality is visually clear from the figures and is quanti­

tatively verified as weil. The use of AGA reduces the number of holes in the reconstructed model. 

It can be seen that the advantage of using AGA increases with an increase in calibration error. 

This shows the ability of AGA to adapt to the level of error present in the system. Moreover, the 

improvement offered by AGA is higher for lower voxel resolutions. This is because at lower voxel 
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resolutions, the effect of calibration errors on the reconstruction quality is higher in general for YoM 

based photo-consistency tests. This was discussed in Section 3.1. It is clear from the results that 

AGA not only reduces the over-carving of the 3D model, and hence the reprojection error, but also 

reduces the number of falsely selected voxels, i.e. faise positive pixel count in reprojected images. 

The reconstruction results shown in Figure 4.19 were obtained without making the holes ex­

plicit in the reconstructed models for Piper data set. These results have been obtained for only one 

calibration error value. As these results are consistent with the results with explicit holes for the 

same calibration error level, it was not required to repeat the experiment without explicit holes for 

the other two calibration error levels for the Piper data set. 

Figures 4.19 to 4.28 compare the results of simple AWVoM based algorithm with enhanced 

AWVoM based algorithm making use of AGA for the Chipmunk and the Puppy data sets. The 

holes in the reconstructions were not made explicit for these results. The effect of AGA for these 

two data sets is consistent with the Piper data set; that is more improvement in the reconstruction 

quality is obtained for lower voxel resolutions and higher calibration errors. It is interesting to note 

that for the Chipmunk data set, the simple AWVoM based algorithm actually performs better than 

AGA for low calibration error when the average standard deviation of the error in pixel coordinates 

is approximately 0.2 pixels. The voxel size for the Chipmunk data set is the lowest among all three 

data sets. Therefore, calibration errors have a weaker effect on the reconstruction results for this 

data set. As the calibration error is very small, the Gaussian averaging is not of much help. Rather, 

the Gaussian averaging makes the YoM based photo-consistency test more ambiguous by adding 

extra pixels in the projections of a voxel. Therefore, in this case, the negative effects of Gaussian 

averaging are higher than the improvement offered by it. This suggests that for very low calibration 

errors and high voxel resolutions, the use of Adaptive Gaussian A veraging could result in further 

degradation of the reconstruction quality rather than offering any improvement. 
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(a) Average Pixel Coordinates Error STD = 0.2 pixels 

(b) Average Pixel Coordinates Error STD = 1 pixels 

(c) Average Pixel Coordinates Error STD = 2 pixels 

FIGURE 4.15. Piper data set, MVPS = 100. The effect of using AGA with AWVoM to 
overcome calibration erroI. The holes in the reconstruction results were made explicit 
by leaving the single visibility voxels uncolored. Ali left hand side reconstruction results 
are for a simple AWVoM based algorithm. The reconstruction results after adding AGA 
in the algorithm are shown in the right hand side pictures. The associated quantitative 
error comparison is shown in Figure 4.17. 
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(a) Average Pixel Coordinates Error STD = 0.2 pixels 

(b) Average Pixel Coordinates Error STD = 1 pixels 

(c) Average Pixel Coordinates Error STD = 2 pixels 

FIGURE 4.16. Piper data set, MVPS = 180. The effect of using Adaptive Gaussian 
Averaging with AWVoM to overcome calibration error. The holes in the reconstruction 
results were made explicit by leaving the single visibility voxels uncolored. Ali left hand 
side reconstruction results are for a simple AWVoM based algorithm. The reconstruction 
results after adding Adaptive Gaussian A veraging in the algorithm are shown in the right 
hand side pictures.The associated quantitative error comparison is shown in Figure 4.18. 

56 



4.3 RESULTS FOR HANDLING CAMERA CALIBRATION ERRORS 

Reprojection Error 
90 

80 

70 

30 1_ AWVoM o AWVoM with AGA 

20 

10 

o 
0.2 1 2 

Average STD of Errar in Pixel Coordinates 

8 

7 

ë 6 

8 
.!Il 
11 5 
a: 
~ 
III 4 
Il. 

~ 
IL 3 

2 

False Positive Pixels 

1_ AWVoM 
o AWVoM with AGA 

0.2 1 2 
Average STD of Error in Pixel Coordinates 

FIGURE 4.17. Quantitative comparison ofresults shown in Figure 4.15 for the Piper data 
set for MVPS of 100. The exact numbers are given in Table B.5 in Appendix B. 
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FIGURE 4.18. Quantitative comparison of results shown in Figure 4.16 for the Piper data 
set for MVPS of 180. The exact numbers are given in Table B.6 in Appendix B. 
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(a) Reconstruction for MVPS = 100 

(b) Reconstruction for MVPS = 180 

FIGURE 4.19. The effect of using AGA with AWVoM to overcome the calibration errors 
for the Piper data set. The holes in the reconstruction were NOT been made explicit 
for these results. The value of average STD of error in the pixel coordinates is 2 pixels. 
Allieft hand side reconstruction results are for a simple AWVoM based algorithm. The 
reconstruction results after adding AGA to the algorithm are shown in the right hand 
side pictures. The associated quantitative error comparison is shown in Figure 4.20. 
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FIGURE 4.20. Quantitative comparison of the results shown in Figure 4.19 for the Piper 
data set. The exact numbers are given in Table B.7 in Appendix B. 
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(a) MVPS = 100 (b) MVPS = 180 

FIGURE 4.21. Reconstruction results to show the effect of using Adaptive Gaussian Av­
eraging for the Chipmunk data set with average standard deviation of error in pixel 
coordinates = 0.2 pixels. The first picture in each column is the original input image. 
The second picture is the result of a simple AWVoM test. The third picture is the recon­
struction obtained using AGA with AWVoM. The last picture is the reconstruction result 
of the r-Consistency test. The associated quantitative error comparison is shown in Figure 
4.23. 
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(a) MVPS = 100 (b) MVPS = 180 

FIGURE 4.22. Reconstruction results to show the effect of using Adaptive Gaussian Av­
eraging for the Chipmunk data set with average standard deviation of error in pixel 
coordinates = 2 pixels. The first picture in each column is the original input image. The 
second picture is the result of a simple AWVoM test. The third picture is the reconstruc­
tion obtained using AGA with AWVoM. The last picture is the reconstruction result of 
the r-Consistency test. The associated quantitative error comparison is shown in Figure 
4.24. 
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FIGURE 4.23. Quantitative comparison of the results shown in Figure 4.21 for the Chip­
munk data set with average standard deviation of error in pixel coordinates = 0.2 pixels. 
The exact numbers are given in Table B.8 in Appendix B. 
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FIGURE 4.24. Quantitative comparison of the results shown in Figure 4.22 for the Chip­
munk data set with average standard deviation of error in pixel coordinates = 2 pixels. 
The exact numbers are given in Table B.9 in Appendix B. 
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(a) MVPS == 100 (h) MVPS == 180 

FIGURE 4.25. Reconstruction results to show the effect ofusing Adaptive Gaussiall Aver­
aging for the Puppy data set with average standard deviation of error in pixel coordinates 
= 0.2 pixels. The first picture in each column is the original input image. The second 
picture is the result of a simple AWVoM test. The third picture is the reconstruction 
obtained using AGA with AWVoM. The last picture is the reconstruction result of the 
r-Consistency test. The associated quantitative error comparison is shown in Figure 4.27. 
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(a) MVPS = 100 (h) MVPS = 180 

FIGURE 4.26. Reconstruction results to show the effect of using Adaptive Gaussian Aver­
aging for the Puppy data set with average standard deviation of error in pixel coordinates 
= 2 pixels. The first picture in each column is the original input image. The second picture 
is the result of a simple AWVoM test. The third picture is the reconstruction obtained us­
ing AGA with AWVoM. The last picture is the reconstruction result of the r-Consistency 
test. The associated quantitative error comparison is shown in Figure 4.28. 
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FIGURE 4.27. Quantitative comparison of the results shown in Figure 4.25 for the Puppy 
data set with average standard deviation of error in pixel coordinates = 0.2 pixels. The 
exact numbers are given in Table B.lO in Appendix B. 
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FIGURE 4.28. Quantitative comparison of the results shown in Figure 4.26 for the Puppy 
data set with average standard deviation of error in pixel coordinates = 2 pixels. The 
exact numbers are given in Table B.ll in Appendix B. 
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3.3. Experimental Comparison of Adaptive Gaussian Averaging with r-Consistency. 

r-Consistency is a photo-consistency measure proposed by Kutulakos in [16] to handle cam­

era calibration errors as well as the effects of having finite size voxels in voxel-coloring. A detailed 

review of this paper was presented in Chapter 2. In this section, the results of the r-Consistency 

test will be compared with the results of our proposed methods, Le. the Area Weighted Variance 

of Means (AWVoM) based Photo-Consistency test that uses Adaptive Gaussian Averaging . As no 

rule has been described in [16] to select the value of the dispersion radius r, its value is controlled 

by the voxel resolution, Le. the voxel size. Moreover, instead of using circular voxel projection 

windows, we are using the actual voxel projections. This simplification reduces the computational 

complexity of the algorithm. 

Figures 4.29 and 4.30 show the reconstruction results of r-Consistency and our proposed meth­

ods for three different values of calibration error and for two different voxel resolutions for the Piper 

data set. The holes in the reconstructed 3D model have been made explicit by not coloring the 

single visibility voxels. Quantitative comparison of these resuIts is presented in Figures 4.31 and 

4.32. Figures 4.21 to 4.28 compare the results of r-Consistency with AGA for the Chipmunk and 

Puppy data sets for two different calibration error values and for two different voxel resolutions. 

Note that single visibility voxels in the reconstructions for these two data sets have not been left 

uncolored. Therefore, the holes are not explicit in these reconstructions. 

For lower voxel resolution with MVPS of 100, the resuIts of our our proposed methods are 

better than those of r-Consistency for all levels of calibration error for both the Piper and Puppy 

data sets. The difference in the reconstruction quality increases with the calibration error, thereby 

confirming the capability of our proposed methods to adapt to higher calibration errors. As a 

result, for lower voxel resolution and for higher calibration errors, our proposed methods perform 

consistently better than r-Consistency for all the data sets. At lower voxel resolution, the only case 

when the r-Consistency performs better than our proposed methods is for the Chipmunk data set 

with very small calibration error. 

At a higher voxel resolution with MVPS of 180, r-Consistency performs better than our pro­

posed methods for lower calibration errors. But for a higher calibration error, the performance of 

both methods is comparable. This again confirms that the effectiveness of our proposed methods 

increase with the level of errors present in the system. 

The fact that the r-Consistency test performs better than our proposed methods in certain 

cases can be explained. As was described earlier in this chapter in Section 3.1, both the camera 

calibration errors and the partial emptiness of surface voxels have less effect on the quality of 

reconstruction for higher voxel resolutions, Le. smaller voxel sizes. Furthermore, it was discussed 
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in Section 3.2 that the negative effect of Gaussian averaging on the Variance of Means based photo­

consistency test is also higher for smaller voxel sizes. Therefore, the improvement offered by our 

proposed methods is reduced at higher voxel resolutions with low calibration error. 

One interesting fact is that for the Chipmunk data set, both AGA and r-Consistency result in 

a further degradation of the reconstruction quality rather than any improvement when the average 

standard deviation of error in pixel coordinates is around 0.2 pixels. In this case, the negative effects 

of these methods overpower the improvement offered by them. Another interesting observation is 

that for the Puppy data set, simple AWVoM performs better than the r-Consistency. In this case, 

the r-Consistency test is unable to handle the effects of larger voxel size. 

These results clearly show that our proposed methods work better than r-Consistency when 

the effects of error sources are higher, i.e. low voxel resolutions and high calibration errors. 

3.4. Significance of the Error in the Reconstruction Results. 

We used the reprojection error in the pixel colors and the false positive pixel counts in 

the reprojected images as an error measure in this thesis. However, reprojection error gives an 

estimate of the quality of reconstructed Photo Hull of the 3D object. As a Photo Hull is a superset 

of aIl possible photo-consistent reconstructions of a 3D object, reprojection error is limited in 

determining how closely the 3D reconstruction resembles the original 3D object. Moreover, the 

reprojection error may be effected by the shape and texture of the 3D object. It was seen that 

for the Piper data set, the reprojection error was the highest as its surface was rich in depth 

discontinuities. Similarly, the reprojection error for a 3D object with little surface texture will be 

lower in general. The reprojection error for the Puppy data set was the lowest due to numerous 

same color surface regions. Therefore, two reconstruction results with similar reprojection error 

may actually be different in their quality of reconstruction. Hence, it is important to take these 

factors into account while evaluating the reconstruction quality of a voxel-coloring algorithm based 

on the reprojection error only. 

Another observation is that small surface artifacts in the reconstructed model are not visible in 

aIl the input views. An example is the small holes carved in the 3D model when the voxel behind the 

carved v~xel remains visible in at least one image. Due to the texture mapping of the voxel behind 

the carved voxel, these holes are sometimes not visible on the reconstructed surface. Therefore, 

these small surface artifacts will have little effect on the reprojection error. The reprojection error 

is highly affected by over-carving that introduces black spots on the reconstruction model. As a 

result, the difference in the reprojection error of two reconstructions usually shows the difference of 

their over-carving. It is clear from the reconstruction results presented in this chapter that a total 

average reprojection error difference of 1-2 units can be safely neglected. 
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(a) Average pixel coordinates error STO = 0.2 pixels 

(b) Average pixel coordinates errar STO = 1 pixels 

(c) Average pixel coordinates errar STO = 2 pixels 

FIGURE 4.29. Piper data set, MVPS = 100. Reconstruction results comparison of r­
Consistency and AWVoM with AGA. Holes are being explicitly shown in these recon­
structions. The !eft hand side reconstruction pictures are for r-Consistency and the right 
hand side reconstruction pictures are for AWVoM with AGA. The associated quantitative 
comparison of the results is presented in Figure 4.31. 
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(a) Average pixel coordinates error STD = 0.2 pixels 

(h) Average pixel coordinates error STD = 1 pixels 

(c) Average pixel coordinates error STD = 2 pixels 

FIGURE 4.30. Piper data set, MVPS = 180. Reconstruction results comparison of r­
Consistency and AWVoM with AGA. Holes are being explicitly shown in these recon­
structions. The left hand side reconstruction pictures are for r-Consistency and the right 
hand side reconstruction pictures are for AWVoM with AGA. The associated quantitative 
comparison of the results is presented in Figure 4.32. 
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FIGURE 4.31. Piper data set, MVPS = 100. Quantitative comparison of the results of 
r-Consistency with AWVoM using AGA shown in Figure 4.29. The exact numbers are 
given in Table B.12 in Appendix B. 
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r-Consistency with AWVoM using AGA shown shown in Figure 4.30. The exact numbers 
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CHAPTER 5 

Conclusion 

The work in this thesis investigated the usefulness of voxel-coloring algorithms for 3D scene recon­

struction from multiple views. We found that the state-of-the-art in this area can be improved by 

addressing the problems caused by sorne error sources in the pro cess that effect the quality of 3D 

reconstruction. Our focus has been to investigate the effects of two of these sources of error; partial 

emptiness of surface voxels due to finite size of a voxel and the calibration errors in estimated cam­

era parameters. Based on our analysis of these error sources, we proposed two methods to reduce 

the effect of these error sources on voxel-coloring. We also experimentally verified the effectiveness 

of our proposed techniques. 

As has been shown with the experiments presented in Chapter 4, calibration errors do have 

an impact on the quality of reconstruction, and an increase in the calibration error results in 

noticeable degradation of the reconstruction quality. In order to overcome the effect of this error, 

it is important to understand its properties. Similar to many approaches in the computer vision 

literature, we modelled the errors in estimated camera parameters as zero mean Gaussian noise, and 

the resulting errors in the projected pixel coordinates as a zero mean bivariate Gaussian distribution. 

Using the assumption that the error in the projected pixel coordinates is linearly dependent on the 

error in the camera parameters, we were able to calculate the distribution parameters of the errors 

in projected pixel coordinates, i.e. the covariance matrix. Once we have the distribution of the effect 

of calibration error in the pixel coordinates, the mean of the projected pixel's color distribution 

is described by a Gaussian average of a window centered at that pixel. The size of this averaging 

window depends on the amount of error in pixel coordinates. Therefore, we called our proposed 

method Adaptive Gaussian Averaging (AGA). 

Adaptive Gaussian A veraging can be used with most of existing voxel-coloring algorithms and 

photo-consistency tests. In order to gauge the effectiveness of our proposed method, we tested it 

with a Variance of Means photo-consistency test using GVC-IB [7J as the voxel-coloring algorithm. 
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We found that incorporating our proposed method resulted in a significant improvement in the 

reconstruction results. The difference in the results was more prominent for lower voxel resolutions 

and for higher calibration errors. The results of our proposed method were also compared with 

those of r-Consistency, a method proposed by Kutulakos in [16] to handle both the effect of finite 

voxel size and calibration errors. Our proposed solution had better results for low voxel resolutions 

and for higher calibration errors. One advantage of our proposed method is that it makes precise 

use of the calibration error distribution information and can be explained well analytically. 

During our experiments, it was interesting to note that calibration errors have less effect for 

higher voxel resolutions, at least for the Variance of Means photo-consistency test. We noticed that 

if the calibration error is sufficiently small, Le. a standard deviation of less than half a pixel, and 

the voxel resolution is fairly high, the degradation in the quality of reconstruction is not noticeable 

and can be safely ignored especially if the speed of the algorithm is an issue. 

One of the effects of a finite sized voxel is that a surface voxel can be partially empty. In this 

thesis, we have analyzed the effects of this error on the quality of reconstruction of a voxel-coloring 

algorithm. We could not find this analysis in the literature. An interesting result is that the amount 

of out lier pixels present in a voxel projection in an image has a direct relation to the number of 

pixels in the projection. Therefore, using the areas of projection of a voxel as weights in calculating 

its color statistics for a photo-consistency check can be helpful in reducing the effects of this error. 

This was indeed the case and was verified by our experimental results. As the effect of this error 

is less for higher voxel resolutions, the improvement achieved in the reconstruction quality was less 

as weIl. The results confirm that our proposed solution is able to reduce the effects of this error on 

voxel-coloring. 

Voxel-coloring has emerged as a method for the reconstruction of 3D objects from multiple 

views. The strength of this method is the simplicity of the concept, which is quite helpful in case 

of multiple input views. The technique has an inherent advantage in occlusion handling and in 

easy control of the reconstructed 3D model resolution. However, due to the assumption that the 

shape of a 3D voxel is a cube, the shape and size of a voxel projection in different images can 

be different. As a result, we cannot compare two voxel projections on a per pixel basis. This 

problem is more pronounced at low voxel resolutions. Therefore, as long as two voxel projections 

have similar color distributions, even if their pixels have different spatial distributions, the voxel 

will be considered photo-consistent. This adds further uncertainty in the photo-consistency check 

and hence results in a "fatter" reconstruction. Another limitation is the 3D space quantization. 

Due to these limitations, the Photo Hull, which is the result of a voxel-coloring algorithm, is only 

a good approximation of the actual 3D shape. Therefore, one possible use of voxel-coloring could 
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be in a hybrid algorithm that uses the low-voxel resolution results of a voxel-coloring algorithm to 

reduce the disparity space for pixel correspondence in traditional stereo. Voxel-coloring is especially 

helpful when the 3D scene to be reconstructed is contained by a closed bounding box, Le. the initial 

volume guess is very close to the original 3D surface. In the absence of such a good guess, there 

will be extra iterations of the algorithm that will take more time, and will also result in higher 

error propagation due to the sequential nature of the algorithm. Nonetheless, a Photo Hull is the 

minimally constrained reconstruction and thus it is helpful in understanding the upper bound on 

the quality of reconstruction that can be achieved by any algorithm for given imaging conditions. 

We have presented two simple methods to handle two error sources in voxel-coloring. The 

effect of using Adaptive Gaussian A veraging on the reconstruction is to cause the blurring of the 

3D surface. The r-Consistency has a similar effect on the reconstruction quality as it causes r­

Shuffie of the reprojected images. One interesting extension of our work could be to use extra 

shape constraints to reduce the uncertainty in the reconstructed 3D surface. One such shape 

constraint can be obtained by controlling the imaging process, Le. active voxel-coloring. If we 

know the uncertainty map of the 3D shape obtained from a voxel-coloring algorithm, the imaging 

process can be controlled to improve the shape in the high uncertainty regions of the reconstructed 

model. 

We have seen that r-Consistency proposed by Kutulakos in [16] has the ability to overcome 

the effect of outlier pixels in voxel projections due to different error sources. We found that r­

Consistency performed better than our proposed methods for higher voxel resolutions and for low 

calibration errors. However, it does not make any use of the available information about the 

calibration error distribution. Therefore, one extension of our work could be to use the calibration 

error distribution information to adaptively select the value of r in r-Consistency. 

Another interesting direction for future research is to use the spatial characteristics of the 

distribution of pixels in a voxel projection during the photo-consistency test. This would add an 

extra constraint and hence would reduce the fattening of the Photo Hull. 

The quality of a voxel-coloring algorithm relies highly on the photo-consistency test. Most of 

the photo-consistency tests found in the literature make use of one or more threshold parameters 

that are selected empirically and depend on surface characteristics of a particular data set. Although 

a few photo-consistency tests have been proposed that do not require a user defined threshold 

parameter [29, 4], a better and reliable photo-consistency test that does not require any threshold 

parameter and can be used for different types of scenes is still an open question for research. 

To conclude, voxel-coloring is a simple method for 3D reconstruction from multiple views. It 

offers the solution of sorne of the problems faced by the traditional stereo. There are still many areas 
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in voxel-coloring that require further research to improve its practicality. The most recommended 

use of this method will be as a first stage of a traditional stereo algorithm, especially when dealing 

with a large number of input views. 
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APPENDIX A 

Estimation of Pixel Coordinates Error Variance 

The method of calculating the covariance matrix of the error in camera parameters and 2D projected 

pixel coordinates points is presented in this appendix. This method is described in detail in [11]. 

The calibration error in the camera parameters depends on the calibration method used and also 

on the feature points used in the process. Therefore, when a 3D point is projected in an image 

using the estimated camera parameters, we will have different values of the error for different parts 

of the image and also for different values of the 3D point depth. If we assume that the error in 

the 2D feature points used in the calibration is distributed as zero mean Gaussian, the error in the 

estimated camera parameters can be approximated to have a Gaussian distribution as weIl. The 

effect of the the feature points error has an almost linear effect on the estimated camera parameter if 

the error in the feature points is sufficiently small, Le. a few pixels. Using this linearity assumption, 

the covariance matrix of the camera parameters error for a particular camera k can be estimated 

up to a first order of approximation as follows: 

(0.1) C = (JT C- 1 J)+ = (" PC-1 J..)+ P X2D L..J. X2Di' , 

where the Jacobian, Ji, is the derivative of the 2D projected point coordinates with respect to the 

estimated camera parameters, Le. 

(0.2) J.. _ 8X2Di 

• - 8P , 

where P is the camera parameter matrix, 0+ denotes the pseudo-inverse operation and Cp 

is the covariance matrix of the estimated camera parameters error. CX2D is the covariance matrix 

of the error in aIl the calibration feature points and CX2Di is the covariance matrix of the ith 2D 

feature point, X 2Di . This method is valid when the error in the feature points is Gaussian. Another 
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assumption is that the error is only in the 2D feature point coordinates and not in the locations of 

the corresponding 3D points. 

For maximum likelihood estimation, when the camera projection matrix parameters are esti­

mated directly during camera calibration, Ji can be calculated as follows: 

and 

X 3Di = [ Xi Yi Zi 1 ]T = 3D point, 

X 2Di = [ â\ '[li ]T = [ ~ Jli.. r = 2D point, 
Wi Wi 

[ Xi Yi Wi ]T = p. [ Xi Yi Zi 1 ]T. 

Once the covariance matrix of the camera parameter error is available, the uncertainty in the 

projected pixel coordinates can be calculated as follows: 

(0.3) 

where Cx,y is the covariance matrix of the bivariate Gaussian distribution of the error in the 

coordinates of the projected pixel at X, y. Jp is given byequation (0.2) and Cp is calculated as in 

equation (0.1). Again the linearity assumption was used in the error transfer; that is the error in 

the pixel coordinates changes linearly with a change in the error of the camera parameters. Due to 

the linearity assumption, it is important that the feature points used in the calibration should be 

weIl distributed in both the image and the 3D object space to have a reliable transfer of error to 

the projected pixel coordinates. 

The Camera Calibration Toolbox [3] that we have used for the calibration of our data sets 

estimates the following camera parameters along with the associated uncertainties, 

Two focallengths = fx and f y , 

Princip le point coordinates = Cx and Cy , 

Four radial distortion coefficients = kl to k4 , 

Three rotation angles = RI, R2 and R3, 

The translation vector = [Tl T2 T3 l', 
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fx = flsx, 

fy = fls y , 

sx, sy = sizes of pixel along two axes. 

The individual variances of these estimated parameters is combined in a 14 x 14 diagonal 

matrix which forms the approximate camera parameters covariance matrix Cp. The Jacobian 

of the projected 2D point location w.r.t. these camera parameters is calculated using a function 

provide in the toolbox that is called ProjectPoints. Once, Cp and Jp are available, the uncertainty 

in the position of the 2D projected point can be easily calculated using equation (0.3). 
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APPENDIX B 

Tables for Quantitative Error Analysis 

This appendix contains the tables for quantitative results of the experiments presented in Chapter 

4. 

1. Quantitative Results for the Use of Area Weighting 

TABLE B.l. Quantitative error analysis of Area Weighting for the Piper data set 

Photo-Consistency Carving Voxels Surface Reprojection Error False Positive pixel 
Test Thresh- Carved Voxels (R, G, B) Connt 

old Connt in 
3D Model 

MVPS = 100 
Simple YoM 69~ 253931 19433 47.6804, 44.8704, 296001 

41.0220 

AWVoM 552 253487 18298 31.5699, 29.6677, 87639 
27.9181 

MVPS -180 
Simple YoM 63~ 1410929 73839 24.7091, 22.6851, 151138 

22.0366 

AWVoM 552 1338811 71088 24.4508, 22.4552, 110636 
21.5885 

Simple Simple YoM 602 1439730 72402 26.5015, 24.7048, 87655 
23.6044 
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TABLE B.2. Quantitative error analysis of Area Weighting for the Chipmunk data set 

Photo-Consistency Carving Voxels Surface Reprojection Error False Positive pixel 
Test Thresh- Carved Voxels (R, G, B) Count 

old Count in 
3D Model 

MVPS - 100 
Simple YoM 6P 444689 36270 31.2679, 29.7743, 96198 

27.6371 

AWVoM 502 442377 34075 29.9740, 28.5107, 70019 
26.4670 

MVPS = 180 
Simple YoM 58~ 2382937 136557 23.4935, 22.2775, 76345 

20.9308 

AWVoM 502 2340567 140570 21.8728, 20.6201, 75249 
19.4277 

TABLE B.3. Quantitative error analysis of Area Weighting for the Puppy data set 

Photo-Consistency Carving Voxels Surface Reprojection Error False Positive pixel 
Test Thresh- Carved Voxels (R, G, B) Count 

old Count in 
3D Model 

MVPS = 100 
Simple YoM 60~ 315449 28635 25.0255, 22.9839, 196302 

22.5928 

AWVoM 502 313373 28146 23.3444, 21.6445, 132024 
21.2477 

MVPS = 180 
Simple YoM 58~ 1766602 110033 19.8243, 18.0449, 158121 

17.6197 

AWVoM 502 1749374 110774 19.6206, 17.9779, 138293 
17.5206 
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2. Quantitative Error Analysis for Handling Calibration Errors 

TABLE B.4. The effect of increasing calibration error on reconstruction quality of AWVoM 
based voxel-coloring algorithm 

Average Pixel Coordinates Error Standard Deviation Reprojection Error (R, G, B) False Positive Pixel Count 

MVPS = 100 
0.2 pixels 31.5699, 29.6677, 27.9181 87639 

1.0 pixels 41.9523, 40.1431, 38.3167 116831 

2.0 pixels 48.3962, 46.6454, 43.7232 83359 
MVPS -180 

0.2 pixels 24.4508, 22.4552, 21.5885 110636 

1.0 pixels 36.1520, 34.3548, 33.4362 146883 

2.0 pixels 40.2155, 38.6685, 37.2561 107899 

TABLE B.5. Quantitative assessment of using Adaptive Gaussian Averaging to overcome 
calibration errors for MVPS = 100 for the Piper data set 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Couot 

Average pixel coordinates error STD - 0.2 pixels 
simple AWVoM 34.0964, 32.0134, 29.5854 87112 

AWVoM with AGA 33.8916, 31.8386, 29.4215 81187 
Average pixel coordinates error STD = 1 pixels 

simple AWVoM 49.7029, 47.6892, 44.0049 64121 

AWVoM with AGA 48.6404, 46.6783, 43.1968 57127 
Average pixel coordinates error STD - 2 pixels 

simple AWVoM 50.9198, 48.9524, 45.2727 82953 

AWVoM with AGA 46.4655,44.7614,41.9205 65360 
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TABLE B.6. Quantitative assessment of using Adaptive Gaussian Averaging to overcome 
calibration errors for MVPS = 180 for the Piper data set 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Couot 

Average pixel coordioates error STD = 0.2 pixels 
simple AWVoM 30.3909, 28.0352, 25.4957, 75648 

AWVoM with AGA 30.2686,27.9217,25.4384 76211 
Average pixel coordioates error STD = 1 pixels 

simple AWVoM 43.2595, 41.2114, 38.4316 84832 

AWVoM with AGA 42.6402, 40.6570, 37.8912 71952 
Average pixel coordioates error STD = 2 pixels 

simple AWVoM 46.6483, 44.6296, 41.3907 86692 

AWVoM with AGA 43.3839, 41.5361, 38.8225 79654 

TABLE B. 7. Result of using Adaptive Gaussian A veraging without explicitly showing 
holes for the Piper data set. Average pixel coordinat es error STD = 2pixels 

Algorithm 1 Reprojection Error (R, G, B) 1 False Positive Pixel Couot 
MVPS = 100 

simple AWVoM 1 48.3962, 46.6454, 43.7232 

1 

83359 

AWVoM with AGA 44.1649, 42.6457, 40.4393 65757 
MVPS = 180 

AWVoM 1 
40.2155 , 38.6685, 37.2561 

1 

107899 

AWVoM with AGA 39.4808, 37.9474, 36.3390 81701 

TABLE B.8. Quantitative assessment of using Adaptive Gaussian Averaging to overcome 
calibration errors for the Chipmunk data set. Average pixel coordinat es error STD = 0.2 
pixels 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Count 

MVPS -100 
simple AWVoM 31.4, 29.9246, 27.5499 59730 

AWVoM with Gaussian Averaging 31.4254, 29.9639, 27.6404 62103 

r-Consistency 31.3337, 30.03, 28.0514 61711 
MVPS -180 

simple AWVoM 23.4746, 22.2522, 20.8756 61538 

AWVoM with Gaussian Averaging 23.9667,22.7232,21.306 62267 

r-Consistency 23.9383,22.7474,21.3829 60439 
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TABLE B.9. Quantitative assessment of using Adaptive Gaussian Averaging to overcome 
calibration errors for the Chipmunk data set. Average pixel coordinates error STD = 2 
pixels 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Count 

MVPS = 100 
simple AWVoM 45.5936, 44.6193, 42.2434 72790 

AWVoM with AGA 44.6233, 43.6048, 41.2967 72885 

r-Consistency 44.7688, 43.8193, 41.3909 69458 
MVPS = 180 

simple AWVoM 41.0779, 40.1616, 38.4742 108385 

AWVoM with AGA 39.2233, 38.2496, 36.6523 101807 

r-Consistency 39.6562, 38.7511, 37.0101 111474 

TABLE B.lO. Quantitative assessment ofusing Adaptive Gaussian Averaging to overcome 
calibration errors for the Puppy data set. Average pixel coordinates error STD = 0.2 
pixels 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Count 

MVPS -100 
simple AWVoM 22.0102, 20.205, 19.9133 173621 

AWVoM with AGA 21.9387, 20.1935, 19.8708 153457 

r-Consistency 25.3233, 23.4474, 22.9512 177418 
MVPS = 180 

simple AWVoM 19.3913, 17.6841, 17.2716 151976 

AWVoM with AGA 18.8619, 17.1637, 16.782 145427 

r-Consistency 19.2374, 17.344, 16.8967 189408 

TABLE B .11. Quantitative assessment of using Adaptive Gaussian Averaging to overcome 
calibration errors for the Puppy data set. Average pixel coordinates error STD = 2 pixels 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Count 

MVPS -100 
simple AWVoM 43.1469, 41.1159, 40.0445 222943 

AWVoM with AGA 40.6557,38.6668,37.7376 211995 

r-Consistency 45.0324, 42.4262, 41.1396 273767 
MVPS -180 

simple AWVoM 37.843, 35.8912, 34.9728 243053 

AWVoM with AGA 36.3683, 34.4183, 33.5131 216616 

r-Consistency 38.0047, 35.483, 34.3747 290328 
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TABLE B.12. Quantitative comparison of reconstruction results of r-Consistency with 
Adaptive Gaussian Averaging for the Piper data set. MVPS = 100 

Algorithm Reprojection Error (R, G, B) False Positive Pixel Count 

Average pixel coordinates error STD - 0.2 pixels 
r-Consistency 34.0291,31.9617,29.8297 85327 

AWVoM with AGA 33.8916, 31.8386, 29.4215 81187 
Average pixel coordinates error STD - 1 pixels 

r-Consistency 50.0025, 47.9996, 44.4004 54603 

AWVoM with AGA 48.6404,46.6783,43.1968 57127 
Average pixel coordinates error STD - 2 pixels 

r-Consistency 47.2521, 45.5110, 42.6523 66930 

AWVoM with AGA 46.4655, 44.7614, 41.9205 65360 

TABLE B.13. Quantitative comparison of reconstruction results of r-Consistency with 
Adaptive Gaussian Averaging for the Piper data set. MVPS = 180 

Algorithm 1 Reprojection Error (R, G, B) 1 False Positive pixel Count 

Average pixel coordinates error STD = 0.2 pixels 

r-Consistency 1 28.4672, 26.2019, 24.0470 

1 

77831 

AWVoM with AGA 30.2686, 27.9217, 25.4384 76211 
Average pixel coordinates error STD = 1 pixels 

r-Consistency 1 40.6135, 38.5947, 36.1864 

1 

71911 

AWVoM with AGA 42.6402, 40.6570, 37.8912 71952 
Average pixel coordinates error STD = 2 pixels 

r-Consistency 1 43.7924,41.8676,39.1210 

1 

72932 

AWVoM with AGA 43.3839, 41.5361, 38.8225 79654 
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