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I aspire not to be impervious to life's challenges but, instead, to inhabit a world where 

compassion and understanding render such fortitude irrelevant.  

Akin to an orchid child's heightened reactivity and susceptibility to their surroundings, I seek 

resilience that is attuned and responsive, rather than impenetrable.  

I perceive resilience not as a shield against difficulties, but as a guiding compass directing me 

toward decisions aligned with my values. It stands as a force, ensuring my integrity remains 

unwavering in challenging times—an anchor steadfast amid the storms of uncertainties, 

empowering me to navigate with purpose in a world full of traps, where some are woven from 

the threads of vanity, and others from the fabric of inequality.  

Some may say I'm too tender for this world; I say this world is too empty for my purposes.  



 
 

5 
 

Acknowledgments 

To my Ph.D. supervisor Dr. Patricia Pelufo Silveira, thank you for your support over the years, 

for your patience in teaching and guiding me through a new field, in which I had no previous 

experience on, and for seeing potential in me. I admire your enthusiasm for science. It was a joy 

to participate in many important moments from the Silveira Lab. I will cherish these experiences 

and carry the lessons learned through out my career.  My committee members, Dr. Cecília 

Flores and Dr. Marco Leyton, thank you for enthusiastically pushing my work to its best version 

over our committee meetings. Dr. Micheal Meaney and Josie Diorio, thank you for your 

fundamental support and many opportunities offered over these years. The interactions we had 

made me feel seen and appreciated. Irina Pokhvisneva, thank you for being patient with the 

many requests and doubts over the many projects we worked on together. I admire your work 

ethic and your diligent way of conducting research. Thank you Dr. André Krumel Portella for the 

advice and availability to discuss and improve my work. Sachin Patel, Zihan Wang, Guillaume 

Elgbeili, and Nick O’Toole, thank you for your amazing technical support, it was a pleasure to 

count with your support, but most importantly with your kindness! Xianglan Wen, Tie Yuan 

Zhang and Anne-Marie Arel-Dubeau, thank you for your kindness in teaching so many things I 

didn’t know. It was a pleasure learning from you. Thank you for the experienced advice, 

support, and discussions Dr. Bonnie Alberry, Dr. Patricia Maidana Miguel, Dr. Eamon Fitzgerald, 

Dr. Marcio Bonesso Alves and Dr. João Paulo Maires Hoppe. Thank you, Dr. Roberta Dalle 

Molle, for your support. It was a joy to work with you after following your work for many years 

before. Thank you, Kelly Craig, for sharing with the lab your excellent humor and for eagerly 

supporting our work. To my fellow student lab mates who made the student experience easier 



 
 

6 
 

by sharing perspectives, good and bad times, Lawrence Chan, Ranjani Nadarajan, Ameyalli 

Gómez-Ilescas. To my lab mate and friend Aashita Batra, thank you for your friendship, for 

being so generous with me, sharing your points of view and giving me support. Thank you to my 

former supervisor, Dr. Lisiane Bizarro, for providing endless recommendation letters, every time 

with the same enthusiasm. It was a joy being able to work with you again during your visiting 

professor time at McGill. Your enthusiasm for science is always inspiring. To Dr. Carla Dalmaz, 

thank you for generously sharing your knowledge, providing support, and offering guidance. 

Your astute approach to exploring problems or ideas is truly inspirational. I am proud to have 

learned from and worked with you. 

I consider myself fortunate to have shared the Ph.D. journey with two individuals who were not 

only my lab mates but, most importantly, my friends and my family away from home. Dr. 

Danusa Mar Arcego and Dr. Randriely Merscher Sobreira de Lima, thank you for teaching me 

so much, for eagerly engaging in countless discussions about my work, and celebrating with me 

every accomplishment along this challenging journey. Your support was fundamental, and I will 

be forever grateful. Most importantly, thank you for the undoubtable source of support through 

hard times and for reminding me of my value. 

Special thanks to my husband, Dr. Euclides José de Mendonça Filho, who played a dual role as 

both a lab mate and my number one supporter. To my lab mate, I am grateful for sharing your 

knowledge, for being readily available with a kind smile for every question I had, and for the 

many hours devoted to discussing my work. To my husband, I wouldn't have been able to 

accomplish this without you. I’m so proud of the team we are, no challenge is big enough when 

we tackle it as a team. Thank you for believing in me during times when I couldn't, for 



 
 

7 
 

recognizing strength and value in me when I felt most vulnerable. I admire and love you 

enormously. Special mention and thanks to my feline companions, Lisbela and Neno, your 

existence brings pure joy to my life. Your unshakable confidence and self-esteem are truly 

inspirational for a mere human like me. Your instincts for showing me love when I needed it 

most are something to be studied. I’m grateful for being your human tutor (servant).  

To my family, who understood all my absence during these five years. To my aunts and cousin, 

Ivete, Nivene, Eliane and Bruna and my grandmother, Maria Cordélia, thank you for your 

unshakable believe and love for me. To my family from Salvador, having you in my life brings 

me joy and a sense of belongingness, thank you for sharing Keno with me. To my brother, 

Paulinho, for being my most discrete yet fierce admirer. To my father, Paulo, for being my first 

science teacher. You instigated in me the need to search for answers to my questions, and I 

always had I ton; thank you for your patience. Thank you for believing in my academic career 

aspirations since the very beginning. To my mother, Eloisa, for being my most important critical 

thinker teacher. You taught me to doubt everything and think for myself, this is my most 

valuable quality as a scientist. Thank you for all your support over this Ph.D. journey, your visits 

lifted my spirit when I needed it the most. Amo vocês com todo meu coração! 

 

   



 
 

8 
 

Preface to the thesis 

Contribution to original knowledge 

The interest in understanding the neurobiological mechanisms underlying the effects of early 

life adversity has grown in recent years, yet these mechanisms remain to be fully defined. This 

thesis contributes to original knowledge by exploring the role of individual variation in gene 

expression related to brain dopaminergic neurotransmission in linking ELA exposure to the 

development of psychiatric and cardiometabolic disorders. The results on chapter VI are the 

first to show that a novel expression-based polygenic score, based on the striatal dopamine 

transporter gene co-expression network moderates the association between birth weight and 

psychiatric and cardiometabolic disorders in both adults and adolescents. These results can 

inform future molecular studies aiming to causally relate dopaminergic gene expression 

variations and the development of chronic disorders in the context of ELA exposure.   

In chapter III, we utilized a predicted prefrontal DRD4 gene expression measure calculated using 

the PrediXcan technique1. This enabled us to investigate the relationship between individual 

variations in whole genome tissue-specific predicted expression of DRD4 and eating behavior, 

representing a significant innovation and advancement compared to previous studies that 

instead focused on specific polymorphisms within this gene and their relationship to eating 

behavior2. The use of this novel and more comprehensive functional genomics measure has 

already inspired two other studies addressing the connection between predicted DRD4 

expression and eating behaviour3,4. To the best of our knowledge, this thesis work is the first to 

show that a positive environment measure interacts with prefrontal DRD4-predicted gene 

expression variation to influence emotional eating in children. We demonstrated that a high 
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prefrontal DRD4-predicted gene expression impacts emotional eating phenotype differently 

depending on the early life environment exposure, highlighting the protective factor of a 

positive early life environment in individuals susceptible to the impacts of environment 

exposure.  

In Chapter IV we demonstrated for the first time that variants detected in GWAS and GWEIS 

results do not overlap when calculated in the same population and using the same outcomes. 

We contributed to the field of GxE studies by concluding that PRS derived from GWAS have a 

limited application to study GxE effects.  

In Chapter V, we demonstrated that a genetic score integrating tissue-specific information, 

emphasizing the concept of the functional genetic unit as a network rather than isolated genes, 

and incorporating functional genomics through gene expression while maintaining a genome-

wide perspective, offers advantages in representing biological information over traditional 

polygenic risk scores. We also demonstrated that the ePGS have greater trans-ancestry 

portability, which can facilitate the use of this type of genetic scores across diverse populations.  
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Abstract 

Cardiometabolic and psychiatric disorders frequently occur in the same patient, and an 

important shared risk factor among them is exposure to early life adversity (ELA). Nevertheless, 

the specific biological mechanisms connecting ELA to the co-occurrence of cardiometabolic and 

psychiatric conditions are not yet understood. In fact, not all individuals exposed to ELA will 

develop deleterious consequences of this exposure, suggesting an individual variability in the 

susceptibility to ELA effects. Dopamine (DA) neurotransmission is responsive to ELA and plays a 

role in shaping the development of these two categories of disorders. Here we demonstrated 

that individual genetic variations associated with dopaminergic genes modulate the risk for 

psychiatric and cardiometabolic comorbidities and altered eating behaviour in adults, 

adolescents, and children. We began by showing that individual variation in the genetically 

predicted expression of the dopamine receptor D4 (DRD4) gene in the prefrontal cortex 

moderates the effect of early environment on child emotional eating. We then discussed ways 

of capturing gene by environmental (GxE) effects in humans while also integrating functional 

genomics and a notion of complex systems in biology to elucidate potential shared biological 

mechanisms underlying psychiatric and cardiometabolic comorbidities. We showed that 

polygenic risk scores (PRS) derived from Genome-wide association studies (GWAS) were not 

suited to capture GxE effects, by demonstrating that identified variants from GWAS do not 

significantly overlap with variants from Genome-wide by environment interaction studies 

(GWEIS) in the same outcomes and population. With the aim to capture biological information 

through a complex system approach in biology while also maintaining a genome-wide 

perspective, we adopted the use of expression-based polygenic risk scores (ePGS). We then 
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compared the ePGS performance against the traditional PRS through several experiments and 

ancestry-specific analysis. We were able to demonstrate ePGS’ advantage in representing 

biological information and portability across ancestries. Lastly, we applied the ePGS technique 

and demonstrated the role of the striatal dopamine transporter (SLC6A3) base gene network in 

moderating the impact of ELA on psychiatric and cardiometabolic disorders in adults and 

adolescents. Enrichment analysis from this study points to possible molecular mechanisms 

associated with insulin signaling disturbances. This work may contribute to increased awareness 

of the differential impact of ELA in individuals, the role of GxE in the development of chronic 

disorders, the role of dopamine-related brain gene expression in modulating the effects of ELA 

exposure, and the need to include functional genomics into genetic prediction scores. 
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Résumé 

Les troubles cardiométaboliques et psychiatriques surviennent fréquemment chez le même 

patient et un facteur de risque commun important est l'exposition à l’adversité au début de la 

vie (ELA). Néanmoins, les mécanismes biologiques spécifiques reliant l'ELA à la cooccurrence 

des troubles cardiométaboliques et psychiatriques ne sont pas encore compris. En fait, tous les 

individus exposés à l'ELA ne développeront pas nécessairement des conséquences néfastes de 

cette exposition, suggérant une variabilité individuelle dans la susceptibilité aux effets de l'ELA. 

La neurotransmission de la dopamine (DA) répond à l'ELA et joue un rôle dans le 

développement de ces deux catégories de troubles. Ici, nous avons démontré que les variations 

génétiques individuelles associées aux gènes dopaminergiques modulent le risque de 

comorbidités psychiatriques et cardiométaboliques et de comportements alimentaires altérés 

chez les adultes, les adolescents et les enfants. Nous avons commencé par montrer que la 

variation individuelle dans l'expression génétiquement prédite du gène du récepteur de la 

dopamine de type 4 (DRD4) dans le cortex préfrontal modère l'effet de l'environnement précoce 

sur l'alimentation émotionnelle de l'enfant. Nous avons ensuite discuté des moyens de capturer 

les effets gène-environnement (GxE) chez les humains tout en intégrant la génomique 

fonctionnelle et une notion de système complexe en biologie pour élucider les éventuels 

mécanismes biologiques partagés sous-jacents aux comorbidités psychiatriques et 

cardiométaboliques. Nous avons montré que les scores de risque polygénique (PRS) dérivés 

d'études d'association pangénomique (GWAS) ne convenaient pas pour capturer les effets GxE 

en démontrant que les variants identifiés dans les GWAS ne chevauchent pas significativement 

les variants des études d'interaction Génome-Environnement (GWEIS) dans les mêmes 
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phénotypes et la même population. Dans le but de capturer des informations biologiques grâce 

à une approche de système complexe en biologie tout en maintenant une perspective 

pangénomique, nous avons adopté l'utilisation de scores de risque polygénique basés sur 

l'expression (ePGS). Nous avons ensuite comparé les performances de l'ePGS par rapport au PRS 

traditionnel à travers plusieurs expériences et des analyses spécifiques à l'ascendance. Nous 

avons pu démontrer l'avantage de l'ePGS dans la représentation d'informations biologiques et la 

portabilité entre les ascendants. Enfin, nous avons appliqué la technique de l'ePGS et démontré 

le rôle du réseau génique de base du transporteur de la dopamine (SLC6A3) dans la modulation 

de l'impact de l'ELA sur les troubles psychiatriques et cardiométaboliques chez les adultes et les 

adolescents. L'analyse d'enrichissement génique de cette étude pointe vers des mécanismes 

moléculaires possibles associés à des perturbations de la signalisation de l'insuline. Ce travail 

peut contribuer à une meilleure prise de conscience de l'impact différencié de l'ELA chez les 

individus, du rôle du GxE dans le développement de troubles chroniques, du rôle de l'expression 

génique cérébrale liée à la dopamine dans la modulation des effets de l'exposition à l'ELA et de 

la nécessité d'inclure la génomique fonctionnelle dans les scores de prédiction génétique.  
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Chapter I. Introduction 

In recent years, the significance of the early life environment in shaping human development 

has gained growing recognition. However, the historical trail of evidence underscoring this 

crucial connection dates back much further, laying a foundation for our understanding of its 

paramount importance. In early 1930 researchers concluded that life expectancy from a British 

and Swedish sample was apparently determined by early life conditions5. Later, in 1976 results 

from the tragic Dutch Famine that happened during the second world war, revealed an 

association between early in-utero deprivation of food and later obesity during adulthood6. This 

association was further explored in 1989, when researchers demonstrated the positive 

relationship between low birth weight and death by ischaemic heart disease7. In 1998, The 

Adverse Childhood Experiences (ACE) study showed the positive relationship between exposure 

to adverse experiences during childhood and presence of health risk factors in adulthood8. Such 

evidence and many others culminated in the concept of developmental origins of health and 

disease9, adopted by many researchers that are dedicated to elucidate the associations and 

mechanisms linking the early life environment to later health outcomes. Today, it is known that 

the exposure to early life adversity (ELA) can have profound implications in the human 

development8,10-18.  Variations in children's health outcomes are influenced by the 

developmental context and the exposure to ELA is involved in health disparities in 

childhood19,20. Some studies suggest a dose-dependent effect between the number of 

exposures to adverse childhood experiences and adverse health outcomes21,22 while others 

emphasize the increased burden of exposure to multiple forms of ELA10,23. Considering the 

growing evidence supporting this relationship, increased attention is being given to the 
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importance of the biology of adversity and resilience and its possible utility in improving 

pediatric clinical practice24-26. In fact, the timing of adversity exposure plays a pivotal part in 

determining adverse related outcomes11,27. The first years of life are marked by critical periods 

of brain development28,29, thus granting vulnerability to the effects of ELA exposure11,27. Known 

forms of ELA are related to threat and deprivation in both physical and psychosocial domains30-

32 (e.g. malnutrition, chronic infections, physical and emotional abuse and neglect), and confer 

an increase risk for negative outcomes, although the degree of risk associated with particular 

forms of ELA may vary to some extent33-37.  

ELA affects the development of different systems by causing biological disruptions in the stress 

response 38-41, the developing brain42, cardiovascular43,44, immune45,46 47 and metabolic48,49 

systems. The Hypothalamic-Pituitary-Adrenal (HPA)-axis controls the hormonal and 

subsequential behavioral and physiological responses to stress50. In response to stress exposure, 

corticotropin-releasing hormone is released by specific hypothalamic neurons, stimulating the 

secretion of adrenocorticotropic hormone from the pituitary, which stimulates the adrenal 

cortex production of glucocorticoids (GCs)50,51.  ELA exposure is associated with hyper-

responsive HPA-axis which leads to greater GCs production, both at baseline and in response to 

subsequent stress38,39. Evidence points to a causal relationship between ELA exposure, DNA 

methylation and GC receptor expression40. Studies using animal models, evidenced the positive 

relationship between poor maternal care and increased release of adrenocorticotropic hormone 

in response to stress by failure in the negative feedback of GCs by the HPA-axis52-54. This 

impaired negative feedback was shown to be related to a diminished quantity of GC receptors in 

the hippocampus, which in turn was causally related to methylation changes that modified the 
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access of GC receptor transcription factor NGFIA to the promoter region of the GC gene, thus 

modulating the gene expression of the GC receptor40,55.  

The over production of GC, by a hyper-responsive HPA-axis, affects the development and 

function of cells in the body, including those of the immune system38,39. GCs are important 

suppressors of chronic inflammation56 and their over production can lead to resistance, 

damaging the anti-inflammatory action and compromising the immune system45. In fact, 

inflammatory markers are found to be elevated in individuals exposed to ELA and who 

developed psychiatric disorders57-62, suggesting greater immune activation associated with ELA 

exposure. The interplay between stress and immune signaling pathways may be a possible 

candidate linking ELA exposure to endothelial damage and alterations in the cardiovascular 

system43, although further studies are needed 44. Activation of GC receptors can inhibit the 

signaling of an immune messenger (e.g. cytokine interleukin-4) that is important for 

cardiomyocytes development, which are specialized muscle cells found in the heart43.  

Overproduction of GCs also affects the central nervous system (CNS)38,39, since they cross the 

blood-brain barrier and influence brain function via binding to GC and mineralocorticoid 

receptors 50,63. ELA exposure alters brain neuronal plasticity, as exposure to stress is a negative 

regulator of neurogenesis. This happens especially in the hippocampus, a region that has a large 

expression of GC receptors and is involved in adult neurogenesis and in the pathophysiology of 

mood disorders64-70. GCs activity in the hippocampus is considered a way by which stress 

exposure disrupts neurogenesis and subsequently brain neuronal plasticity66,68,71. The brain-

derived neurotrophic factor (BDNF) is an essential player in neuronal survival and growth and 
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evidence points to the interplay between GCs and BDNF as a candidate mechanism affecting 

neuronal plasticity72.  

There is also a relationship between GCs and alterations in neuroendocrine appetite signaling 

with differential effects of acute and chronic stress on eating behavior73-77. In fact, ELA exposure 

appears to impact ghrelin and leptin signaling78-80 as well as the hypothalamic neuropeptide Y 

and agouti-related peptide expression81, important appetite and energy balance regulators, 

with consequent impact on metabolic function. Another important hormone linked to glucose 

metabolism and regulation of appetite is insulin82,83.  Insulin resistance, a condition that impairs 

the proper cellular response to insulin and the regulation of glucose levels in the body, is 

associated with elevated GC levels via their interference with various points of the insulin 

signaling cascade74,84, explaining the relationship between high GCs and glucose intolerance 

85,86. A pro-inflammatory state, which is associated with ELA exposure and higher GCs57-62, is also 

associated with insulin resistance87,88. This evidence demonstrates the connection between ELA 

exposure, HPA-axis alterations and impaired insulin signaling.  

In fact, ELA exposure is associated with elevated risk for type 2 diabetes in adulthood, a disorder 

defined by insulin resistance89-91. Being born low birth weight (LBW) is a prevalent type of early 

life adversity associated with adverse health outcomes92-96, including insulin resistance and later 

in life type 2 diabetes97,98. The metabolic challenges imposed by intrauterine growth restriction 

(IUGR) are the basis for an augmented insulin sensitivity seen in LBW and a possible mechanism 

is due to the diminished number of pancreatic β-cells in individuals born with LBW99,100-102, 

which reduces insulin production, leading to higher cellular sensitivity of insulin receptors103,104. 

A hallmark of LBW is the subsequent catch-up growth, a compensatory mechanism for LBW105-
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107, an insulin-dependent process that boosts the uptake of glucose by muscles and fat cells, 

promoting rapid growth103,104,108,109. As these events happen in a critical period, “metabolic 

programming” happens and propitiates the continuation of this process through adulthood, 

contributing to the development of later in life type 2 diabetes97,110.  

Altered insulin signaling followed by ELA exposure also impacts the CNS, as insulin receptor 

distribution in the brain overlaps with neurotransmitter systems implicated in neuronal 

communication111-113. In fact, insulin signaling modulates brain functions related to both 

metabolic and cognitive outcomes111,114 and some studies suggest that insulin sensitivity of the 

CNS may underly the pathology of metabolic and cognitive dysfunctions114,115.    

These alterations, which affect both physical and mental health, are the basis for the long-term 

effects of early life adversity exposure116-118. For example, early life adversity is associated with 

increased risk for both psychiatric12-16,22,31,33,34,36,37,119 and cardiometabolic disorders93 94,120-126, 

which are often comorbid127,128. These categories of disorders are both prominent contributors 

to the worldwide burden of disability-adjusted life years globally129,130 and important 

contributors for inflated health care utilization131,132. Although ELA is associated with increased 

risk for both mental and metabolic disease at the population level, not all individuals exposed to 

ELA will develop these diseases. Measures of early life adversity alone have poor accuracy in 

predicting adult disease at the individual level133-135, indicating the existence of individual 

variability in the susceptibility to ELA exposure effects. Evidence suggests that this variability is 

in part attributed to the genetic background136,137.  
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Genetics can directly contribute to the likelihood of developing a phenotype as in the case of 

monogenic diseases caused by a single rare mutation138,139 and shown by studies comparing the 

differential genetic disease risk in monozygotic and dizygotic twins138-141, which are relatively 

rare. The genetic etiology of most diseases is polygenic, or the additive result of many genetic 

variants (single nucleotide polymorphisms, SNPs)142.  

Genome-Wide Association Studies (GWAS) are designed to identify the isolated individual 

influence of many SNPs on a specific phenotype143 by using a case-control study design and 

stringent corrections for multiple comparisons at the genome-wide level137,142,144,145. While 

these findings have enhanced our comprehension of the genetic basis of numerous diseases, it 

is worth noting that, even when considered in an additive manner, they account for only a small 

portion of the variability in complex traits146-148. This is because complex traits such as chronic 

disorders are influenced by heritability, environmental exposures, and also the interaction 

between them149-153 (GxE). 

GxE interaction refers to the joint effects of genetics and environment in influencing an 

individual’s phenotype. These factors are operationally considered to interact if the effect of one 

depends on the level of the other factor151. The genetic risk for a certain phenotype, in this 

perspective, might be modified (attenuated or increased) as a result from different 

environmental exposures. Inversely, genetic factors can also modulate or modify the impact of 

environmental factors on a particular trait, meaning that the impact of environmental exposures 

can be different according to a person's genotype148,154.  
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This view resonates with an evolutionary-inspired biological reasoning, in which researchers 

propose that some individuals are genetically more responsive to environmental variations than 

others. The genetic plasticity to environmental variations is set as a bet-hedging against an 

uncertain future to avoid a costly mismatch between the individual’s ability to face the 

environmental conditions and the actual challenges that the environment could impose155-157. 

Genetic plasticity maps onto phenotypic flexibility, enabling the individual to adjust and mature 

in accordance with cues from the present environmental conditions54,158. ELA exposure interacts 

with the genetic background and defines the risk for later disease, although mechanisms are 

still unknown. Studies addressing the genetic moderation of environmental exposure effects on 

phenotypes such as depression159,160, executive function161-163, eating behaviour1,164 and 

obesity2,165,166 corroborate this view.  

The objective of this thesis is to explore the GxE interaction effect involved in the susceptibility 

to develop psychiatric and cardiometabolic comorbidities. We aim at elucidating possible 

biological mechanisms underlying these comorbidities and the effect of early life environment-

genetics interplay. 

Neurotransmitter systems involved in environmental responsivity may therefore serve as the 

neurobiological basis to understand the differential effect of ELA exposure on the development 

of psychiatric and cardiometabolic disorders. Evidence suggests that specific brain regions are 

particularly affected by ELA exposure. Parts of the limbic system (hypothalamus, amygdala and 

hippocampus) and their connections to the prefrontal cortex (PFC), striatal circuits including the 

nucleus accumbens (NAc), as well as the ventral tegmental area (VTA), have all been implicated 

in ELA effects18,167-174.  
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The serotonin action on the brain has been linked to the differential effects of ELA exposure. 

Special attention was given to the serotonin transporter gene (SLC6A4) and its 

polymorphisms175-182, although not supported by replication studies or metanalyis183,184. The 

serotonergic system, originating in the raphe nuclei, projects to the brain regions mentioned 

earlier and is implicated in several behavioral, neuropsychological, and physiological processes, 

including mood, perception, reward, cardiovascular function, digestion, and energy 

balance185,186. Serotonin function in early life regulates developmental processes linked to 

neural circuit formation187-190. During brain formation, thalamocortical axons are essential to 

convey sensory information to cortical areas191,192 and modifying serotonin availability to the 

embryonic brain disrupts the proper formation of sensory maps by thalamocortical axons193, 

possibly by interfering with the netrin-1 axonal guidance cue194. Serotonin dysregulation during 

early life, induced by pharmacological blocking of the serotonin transporter, is related to the 

development of depression and anxiety-like behaviours195-197.  

Gamma-Aminobutyric acid (GABA) dysregulation has been associated with exposure to ELA, 

suggesting a possible mechanism by which ELA negatively impacts behaviour and brain 

development198-200. GABA is the main inhibitory neurotransmitter of the human CNS, being 

important for the typical development of the CNS and implicated in various psychiatric 

disorders201,202. GABAergic projections are present in regions involved in mood regulation and 

reward and that are implicated in ELA exposure effects, such as NAc, PFC and VTA203. ELA 

exposure also impacts the main excitatory neurotransmitter of the CNS, glutamate, by altering 

its cerebral content and neurotransmission204-212 in areas such as the hippocampus and the 

prefrontal cortex208-210,212. A study found that genes related to glutamate receptor activity 
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moderate the impact of ELA exposure on fetal brain development213. Alterations in the 

glutamatergic system can impact synaptic plasticity, learning, and memory and are implicated in 

the neuropathology of schizophrenia, autism, and depression214-217.  

ELA can disrupt the development of endocannabinoid system leading to deficits in its function, 

especially in the hippocampus218-220. The endocannabinoid system has receptors localized in the 

hippocampus, a region heavily impacted by ELA exposure221, and has a role in regulating stress 

responsivity and mood222-224.  ELA can also affect behavioral processes associated to opioid 

system functioning, such as augmented vulnerability to develop opioid use disorder225-227 

through alterations in the opioid system function228-231. Opioids act through three receptors, mu 

delta and kappa, being related to modulation of pain perception and reward among other 

functions232-234.  

The dopaminergic system is equally impacted by ELA exposure235-241 and is considered especially 

sensitive to its effects158. ELA exposure can affect the amount of midbrain dopaminergic 

neurons237,240, the amount of dopamine (DA) receptors in the nucleus accumbens236,241, 

orbitofrontal and medial prefrontal cortex239, the expression of dopaminergic genes in the 

midbrain235 and alter DA transmission in response to reward239,242 among other 

alterations243,244. 

Involved in the synthesis and secretion of DA, the dopaminergic system originates in the 

midbrain VTA and projects to subcortical and cortical regions245. In the mesolimbic pathway 

dopaminergic neurons project from the VTA to the ventral striatum, including the NAc and in 

the mesocortical pathway they project to the PFC. VTA, NAc and PFC are implicated in the ELA 
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exposure effects as mentioned earlier. Together these pathways are called the 

mesocorticolimbic dopaminergic pathway which is involved in reward and motivation246,247.  

ELA exposure is known to affect value attribution and predicted reward errors248-251. For 

example, individuals exposed to ELA showed altered processing of reward and loss in adulthood 

in a reward-processing task248 and deficits in functions attributed to the ventral striatum such as 

reward responsiveness and approach motivation249. ELA exposure also affects brain regions 

implicated in dopaminergic pathways, such as altered connectivity between the ventral striatum 

and PFC252, between VTA and hippocampus251 and between orbitofrontal cortex (OFC) and 

PFC173. 

DA is operationally related to reward and motivation, influencing various aspects of behavior, 

including reward prediction errors and reinforcement learning247,253, the level at which rewards 

trigger responses, the speed of learning through associations, and the ability to adapt when 

actions are unsuccessful158. This indicates that DA plays a role in how individuals perceive their 

environment, especially in computing the value attribution of environmental cues. Evidence 

shows that both hyper and hypo-responsive DA system could result from different ELA 

exposures158. This may imply that the DA system indeed adapts in a flexible manner under 

conditions of exposure to ELA, thereby conferring phenotypic versatility. This perspective aligns 

with the idea that DA-related genes are plasticity genes, involved in the differential 

susceptibility to environmental influence155 and with evidence showing that the dopaminergic 

system has a prolonged maturation, making it especially vulnerable to environmental 

effects18,254-256 (this topic is further explored in chapter II). 
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ELA exposure impacts on the dopaminergic system can lead to alterations in encoding of reward 

value and thus to fundamental changes in reinforcement learning and consequentially 

behaviour. This vision is corroborated by studies showing that poor fetal growth or LBW 92,96 is 

related to increased intake of palatable foods, rich in fat and sugar2,238,241,257,258 and altered 

hedonic responses to sweet taste231,259. In animal models, this altered feeding behavior is 

related to altered dopaminergic signaling in the NAc and medial PFC measured by 

chronoamperometry recordings238,239 and differential tyrosine hydroxylase (TH) content in 

response to sweet food intake in the OFC and NAc242. Even though LBW appears to increase 

appetitive behaviour towards palatable foods, evidence shows that it can also diminish 

reinforcement learning, demonstrated by decreased conditioned place preference to a 

palatable diet241 and lower monetary-related expenditure to buy a snack in an ecological food 

choice test173.  These changes are subtle but persist over the life span, likely contributing to 

increased adiposity, metabolic disarrangements and the development of chronic diseases later 

in life, such as psychiatric and cardiometabolic110,260. 

Dopaminergic alterations have been implicated in co-occurring psychiatric and cardiometabolic 

disorders261,262. Dopamine is influenced by core metabolic signals such as insulin, which 

modulates dopaminergic signaling in the PFC263 and insulin receptor distribution overlaps with 

dopaminergic projections111. Leptin also is considered to play a role in DA reward system 

affecting the regulation of feeding behaviour264. The dopaminergic system also regulates 

inflammation through dopamine receptors influence on T cells265,266 which are lymphocytes and 

part of the immune system267. Dopamine is known to be involved in the etiology and 
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pathophysiology of psychiatric disorders268 and related to the action of antidepressant and 

attention-deficit/hyperactivity disorder medication269,270.  

Considering the dopaminergic system's late maturation, its role in environmental responsivity, 

reward processing and decision-making, and its connection to metabolic and psychiatric 

disorders, DA emerges as an important neurobiological target for the investigation of GxE 

interaction effects involved in the development and maintenance of cardiometabolic and 

psychiatric comorbidities, and the biological individual differences in response to ELA exposure.  

As a starting point for investigating the contribution of DA to the biological mechanism involved 

in the programming by early life environmental conditions, we first conducted a comprehensive 

literature review (Chapter II), published as a book chapter in 2019, on the role of the interplay 

between environment and DA as the basis for the early origins of menta health260. In this 

chapter, we delved into the characteristics of the dopaminergic system, its development, the 

concept that the dopaminergic system could play a role in individual variation in susceptibility to 

environmental influences, and methods for capturing this role using genetic studies. 

Next, we empirically explored the role of a genetic score based on the predicted gene 

expression of a dopaminergic gene in modulating ELA impact on chapter III. Published in the 

journal “Appetite” in 2020, this study explored the interplay between positive early-life 

environmental factors and genomics in children's emotional eating behavior, with a specific 

focus on the role of the prefrontal DRD4 predicted gene expression. Our findings indicate that 

children exposed to less positive early environments had higher emotional overeating, a non-

adaptive behavior linked to obesity. More positive environments were associated with a 
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decrease in emotional overeating, but this was especially true for children characterized by high 

levels of predicted prefrontal DRD4 gene expression, confirming that variations in the genetic 

background linked to the expression of DRD4 influence the individual responsivity to ELA effects 

on emotional eating.  

Chapters IV and V delved deeper into the discussion about methods to capture GxE interaction 

effects in large populations of humans using genome-wide approaches. In chapter IV, we 

empirically demonstrated that signals derived from GWAS (main genetic effects) do not 

significantly overlap with variants from GWEIS (GxE interaction effects) in the same outcomes 

and population. This explains why traditional PRS derived from GWAS are not suited to explore 

GxE effects. In line with our goal to elucidate possible underlying biological mechanisms 

involved in the relationship between ELA, the genetic background and 

psychiatric/cardiometabolic comorbidity, we adopted a genetic tool (ePGS) based on a complex 

system in biology approach. The ePGS leverages information from basic science research while 

also maintaining a genome-wide perspective. The performance of ePGS was compared to PRS in 

Chapter V across several experiments, demonstrating that the ePGS is better suited to represent 

individual variations in biological functions than the standard PRS. These chapters were 

fundamental to advance and better equip my final empirical study in Chapter VI to explore the 

main objective of the thesis.  

Chapter VI details the investigation of the interplay between ELA exposure and variations in a 

dopamine-related striatal gene network on psychiatric and cardiometabolic disorders. We 

applied the ePGS technique and generated a score based on the expression of the dopamine 
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transporter gene (SLC6A3) network in the striatum. We observed that the SLC6A3 gene 

network-based score moderated the effect of ELA on psychiatric and cardiometabolic disorders 

in adults and adolescents. We also described brain regions involved in this relationship and the 

possible involvement of insulin signaling disturbances as a mechanism involved in these 

associations. 
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Introduction 

The knowledge that conditions existent during the perinatal period have persistent effects on 

individuals’ functioning, health and disease patterns across the lifetime is well established in the 

literature1,2. This is evident as the decline in neonatal mortality, especially since mid-1960’s, 

took place3, resulting from the improvement of perinatal medical care and subsequent 

reduction in mortality rates4. One large study from Finland, that covered 96% of all children 

born in the region in 1966 and followed them up until 14 years of age, is one of the first 

consistent retrospective studies to demonstrate that perinatal conditions have persistent effects 

on children’s neurodevelopment. Among the 12,058 participants, 411 children were considered 

as having low birth weight (< 2500 g) and this group had a higher incidence of cerebral palsy, 

epilepsy, severe hearing defects and educational problems5. A Danish retrospective cohort study 

involving 4300 participants born between 1973 and 1975 demonstrates a relationship between 

low birth weight and poor cognitive performance2. Still along those lines, a study using data 

from 357,768 Swedish military conscripts born between 1973 and 1981 describes that being 

born small for gestational age (SGA) increases the risk for subnormal intellectual and 

psychological performance in males6, even after adjusting for maternal and socioeconomic 

factors7. Amore recent example comes from a 240,351-sample size Western Australian 

population-based cohort study reporting a U-shaped association between fetal growth and the 

risk for intellectual disability8.  
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Besides the early evidence related to cognitive performance, other studies have identified that 

adversity such as exposure to stress, infections or malnutrition in early life compromises the 

quality of growth and development, and increases the risk for chronic, non-transmittable 

diseases in the offspring in the long term. For instance, increased rates of coronary heart 

disease and cerebrovascular disease later in life have been observed in subjects born with poor 

fetal growth9. Poor fetal growth has also been associated with glucose intolerance, less capacity 

to secrete insulin and increased risk for type II diabetes10,11. Early adverse conditions exposure 

also increases the individuals’ risk for developing attention deficit hyperactivity disorder 

(ADHD), schizophrenia and major depression12,13.  

It is thought that these effects could be connected to the concept of developmental plasticity, 

defined by a critical window during development when a system is plastic and sensitive to the 

nutritional, hormonal and metabolic environment. For most organs and systems, the critical 

period occurs in utero and early postnatal life, and may give rise to a range of different 

physiological or morphological states in response to a variety of conditions existent during 

development9. In the presence of adversity, the fetus/newborn responds through specific 

adaptations, increasing allocation of energy to favor the brain, heart and adrenal glands 

development, but reducing the blood flow to other organs and producing lifelong changes in 

blood pressure and metabolism14. Variability and plasticity of physiological and behavioral 

responses help the growing organism to adapt effectively to the uncertainty of later 

environmental conditions. This plasticity allows the emergence of phenotypes that are better 

suited to their surrounding conditions, being more efficiently adapted than it would be possible 

if the exact same phenotypes were to be produced for all environments. But this process is 
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done at the expense of the individuals’ health15. Indeed, healthy subjects born at term with 

poor fetal growth show impaired vascular endothelial function already in infancy16,17, disturbed 

vascular regulation, premature stiffening of the carotid artery18, and left ventricular 

hypertrophy19. Early life adversities impose a change in the individual’s developmental 

trajectory, altering its metabolism and susceptibility to several outcomes.  

Although studies on the influences of environmental variation during the perinatal period on 

development have mainly focused on being born small for a given gestational age (SGA) or 

being exposed to intrauterine growth restriction (IUGR) as indicators of prenatal adversity, this 

concept of early life adversity can be broader, and not necessarily involving differences in fetal 

growth, also impacting an infant’s development and wellbeing20. The developmental origins of 

health and disease (DOHaD) hypothesis suggests that intrauterine signals affect the individual 

predisposition to specific health outcomes, thus shaping individual differences in the risk for 

chronic illnesses across the lifespan21.  

Exposure to early life adversity increases the risk for non-transmittable diseases like type II 

diabetes, but also psychiatric conditions like ADHD or depression, and these common 

developmental risk factors suggest overlapping underlying mechanisms. Although the co-

morbidity between metabolic disease, poor cognitive performance and psychiatric disorders is 

well-established, the mechanisms are poorly understood. In this chapter we will explore the 

idea that the co-morbidity between conditions such as psychiatric outcomes and metabolic 

dysregulation occurs, in part at least, because of an influence of metabolic neuroendocrine 

signals on the development of the mescorticolimbic dopamine (DA) pathway. The neurons in 

this pathway regulate cognitive-emotional states, notably impulsivity, and responsivity to 
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environmental challenges through reward-based decision-making, thus defining behavioral 

phenotypes that in turn can contribute to promote metabolic disorders. 

 

The Dopaminergic System 

Dopamine (3-hydroxytyramine; DA) is a catecholamine neurotransmitter that is synthesized in 

the brain, as DA does not pass through the blood brain barrier. Instead, its precursor amino acid 

L-3,4-dihydroxyphenylalanine (L-DOPA) crosses the blood brain barrier and is converted into DA. 

Tyrosine hydroxylase converts tyrosine to L-DOPA, that in turn is converted into DA by aromatic 

amino acid decarboxylase (AADC). DA is then transported by VMAT (vesicular monoamine 

transporter) to inside the neurotransmitter vesicles. Vesicles containing DA move towards the 

presynaptic membrane as an electrical impulse arrives at the terminal and the vesicle fuses with 

the presynaptic membrane, releasing the neurotransmitter into the synaptic cleft. There, DA can 

bind to specific proteins called dopamine receptors on the membrane of the postsynaptic 

neuron. Dopamine transporter (DAT), which is a membrane-spanning protein, pumps DA out of 

the synaptic cleft back into the presynaptic cytosol and vesicle. Dopamine reuptake by DAT 

provides the primary mechanism through which DA concentration in the synaptic cleft is 

balanced. Moreover, DA receptor D2 acts as a presynaptic auto receptor and also plays a role in 

regulating the dopaminergic system by providing feedback inhibition. This controls cell firing, 

and the synthesis, release, and uptake of DA22-24.  

There are four distinct pathways of DA signaling. The tuberoinfundibular pathway refers to a 

group of DA neurons in the arcuate nucleus of the hypothalamus that projects to the median 

eminence. There, DA is released into the portal vessels, acting to inhibit the secretion of 
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prolactin from the anterior pituitary. The nigrostriatal pathway originates in the substantia nigra, 

and projects to the dorsal striatum. Degeneration of these projections has been shown to cause 

Parkinson’s Disease, impairing planning, initiation, and control of movements, and for that 

reason this area is thought to be implicated in motor activity25. The mesocortical pathway, and 

the mesolimbic pathway also referred to the mesocorticolimbic system projects from the 

midbrain to the striatum, limbic and frontal cortical regions. Particularly the mesocortical 

pathway projects from the ventral tegmental area (VTA) to the frontal and temporal cortices, 

especially the anterior cingulate, entorhinal, and prefrontal cortices. The mesolimbic pathway 

also originates in the VTA but instead innervates the ventral striatum, including the nucleus 

accumbens. This mesocorticolimbic system is involved in cognitive-emotional states, namely 

reward-based decision-making, and the experience of pleasure, impulsivity, concentration and 

executive functions26,27 and for that reason it is the focus of this chapter.  

Alterations on the dopaminergic pathways can lead to increased sensitivity to reward and 

impulsivity26 and consequently to poor decision-making processes, prompting non-adaptive 

behaviors such as addiction and altered eating behavior28-30. Evidence deriving from the fact 

that drugs including amphetamine and methylphenidate, known for being dopamine enhancers, 

improve behavioral symptoms of most children with ADHD, suggests that the DA systems plays a 

role on the onset and maintenance of this condition. In fact, DA system genes were described as 

candidate genes for the well-established heritability of ADHD31. In the field of schizophrenia 

research, it is understood that an abnormal neurochemistry related to presynaptic striatal hyper 

dopaminergia is the common pathway that explains the disease symptoms32. Finally, DA is 

thought to play a role, at least to some extent, in major depression symptoms, since 
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impairments in motivation, psychomotor speed, concentration and anhedonia are all related to 

the disorder, and also regulated in part by the dopaminergic systems27. Thus, DA dysregulation 

seems to be the basis of several neurological and behavioral disorders.  

Besides that, there is evidence that both prenatal and post-natal adversity are linked to 

alterations in the dopaminergic pathways, in humans as well as in animal models32. DA 

pathways seem to play a role on the interplay between the influence of the environment and 

the development of non-communicable diseases during the life-course (see Figure 1). 

 

Figure 1. Theoretical framework on the interplay between environmental adversity, altered 

metabolism and DA altered function across development. 

 

The Development of Dopaminergic Pathways  

There is evidence that the development of DA pathways is prolonged, reaching maturation at 

around early adulthood33 alongside the maturation of the pre-frontal cortex (PFC). DA is one of 
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the most important PFC neuromodulators, given its role on reward-based decision making. 

Studies performed in animal models have quantified the density of dopaminergic afferents to 

the pre-frontal cortex (PFC) during development, describing that it begins as early as the 

embryonic development, starting with axon extensions from the VTA and increasing during 

neonatal, juvenile and adult periods34.  

In humans, mesocorticolimbic DA axons continue to grow during adolescence towards the PFC35 

and there is evidence that netrin-1 receptor DCC is responsible for coordinating this maturation. 

Work by Reynolds et al. (2018)33 in animal models has demonstrated that DCC acts as a 

guidance cue receptor, controlling the extent of growth by determining the axons’ final target in 

the PFC. Changes in this growth trajectory can significantly modify PFC structural and functional 

development33. Interestingly, these axons are especially vulnerable to environmental effects35, 

increasing the individuals’ susceptibility to develop several disturbances when exposed to stress 

or adversity during development.  

In conclusion, DA pathways, especially the mesocorticolimbic pathway, finish their development 

later in life when compared to other neurotransmitter systems, suggesting that this pathway is 

susceptible to the influence of the environment for a longer period of time, being an obvious 

candidate for a biological mechanism involved in the programming by prenatal and postnatal 

adverse conditions. This idea strongly corroborates with the concept of DA genes being 

considered as “plasticity genes” (see below) and points the importance of studying this system 

when investigating the impact of environmental adversities on neurodevelopment.  
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Early Life Adversity: Beyond Low Birth Weight  

As mentioned above, environmental conditions existent during early developmental stages have 

a dramatic influence on the health/disease patterns of the individual over the life course. The 

measure of low birth weight has been used in the literature as a marker of exposure to fetal 

adversity, although it is known that fetal adversity not necessarily impacts birth weight. For 

instance, the presence of multiple psychosocial stressors during pregnancy is associated with 

higher systolic and diastolic blood pressure in children aged 5–7 years36. Higher prenatal stress 

during the first 20 weeks of pregnancy is a predictor, among adults, of mood dysregulation, 

lower overall gray-matter volume, and lower gray-matter volume in mid-dorsolateral frontal 

cortex, anterior cingulate cortex, and precuneus37. Social adversity during the prenatal period is 

a risk factor for elevated inflammation in adulthood, independently of the exposure to 

adversities during childhood38. Fetal exposure tomaternal depression during pregnancy also has 

persistent effects on immune function of the young adult offspring39. Despite the large amount 

of evidence, studies exploring the relationship between prenatal adversity and risk for disease 

in the offspring focus either exclusively on the prenatal social environment38, maternal mental 

health40,41 or biological risk12,42,43, but these conditions are highly inter-correlated in the lives of 

children, and have yet to be considered in a cumulative manner.  

To tackle the issues described above, Silveira et al. (2017)20 conducted a study in two 

community birth cohorts and created a cumulative prenatal adversity score, accounting for 

information on health during pregnancy, birthweight, gestational age, income, domestic 

violence/sexual abuse, marital strains, as well as maternal smoking, anxiety, and depression. As 
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a result of the effort to improve the representation of the early adversity environment, they 

were able to demonstrate that the cumulative adversity score was a better predictor of 

neurodevelopmental outcomes than any single factor in isolation. The knowledge about the 

interplay between components that represent an adverse environment is crucial to design 

better and more precise preventive measures and interventions to improve neurodevelopment 

and physical health in the general population.  

 

Genetic Studies Inform About Biological Functions 

Genetic studies contribute vastly to our knowledge of the etiology and mechanisms underlying 

different diseases. Although association studies between variation in the environment, human 

behavior and specific outcomes can inform about risk factors, they do not apprise which 

biological processes are implicated. Genetic studies enlighten about how gene expression can 

modulate these associations and contribute to the understanding of the link between the 

functionality of a system and a specific outcome. 

Earlier studies using genes to better understand the etiology and mechanism of a particular 

disease involved candidate genes, that focused on testing the association between a specific 

variant (e.g. a single nucleotide polymorphisms, SNP) and a given disease44. Those studies made 

a significant impact in the scientific community, but also raised questions on the extend of the 

contribution of this method to complex questions, including the onset of noncommunicable 

diseases such as obesity. Considering the millions of existing SNPs on the human genome, it is 

very unlikely that a single SNP could explain much of the variation on the risk to develop a 

specific condition, or on a behavioral trait. It is now clear that complex phenotypes such as 
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obesity and mental conditions arise from the cumulative influence of multiple genetic 

variants45,46.  

This shift in the understanding of disease risk, together with advances in genomic technologies, 

has led to larger and better powered genome-wide association studies (GWAS) that have 

permitted large scale analyses of common markers, by associating SNPs inside a gene with a 

specific outcome. For example, in a large sample size study conducted to find susceptibility loci 

for coronary artery disease (CAD), SNPs significantly associated with this outcome were able to 

explain approximately 10.6% of CAD heritability47. The use of methods of genomic risk profiling 

is consistent with the idea that the genetic contribution to a certain condition is derived from a 

combination of small effects from many genetic variants. To consider the effects of many SNPs, 

a new concept of polygenic risk score (PRS) was introduced. The PRS summarizes individual’s 

genetic risk for a specific condition48, characterizes subject’s response to therapy49, or describes 

variation in specific measures associated with a disease. A polygenic risk score is calculated for 

each subject in the target sample as a sum of the risk alleles count, weighted by the effect size 

described in a discovery GWAS50,51. The specific alleles that compose the PRS also come from 

GWAS studies, like the CAD study mentioned above, that have remained significant after 

multiple comparison corrections. As an example, Scott et al. (2012)52 performed a GWAS for 

fasting insulin, adjusting for age, sex and body mass index (BMI), compiling data from 108,557 

individuals from 56 studies. They demonstrated that loci associated with fasting insulin 

concentrations also show an association with lipid levels and fat distribution, suggesting a 

relationship between genetic variation in these loci and cardio-metabolic risk. GWAS studies 

have identified several variants associated with complex traits, although still leaving questions 
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open, especially regarding the mechanisms involved in these associations. This approach 

neglects the fact that genes operate in networks and code for precise biological functions in 

specific tissues. Besides that, since the significant SNPs come from GWAS studies, only the ones 

that “survive” calculations to adjust for multiple comparisons will end up being recognized as 

significant, resulting in strong genetic main effects and leaving no space for the potential 

environmental variability contained in the sample.  

More recently, new methods are accounting for mechanisms that can further explain variations 

in biological processes associated with unfavorable outcomes. For example, gene expression is 

composed by three main constituents: a genetically determined component, a trait-related 

component, and a component determined by the remaining factors, including the 

environment53. To represent the genetically determined component of gene expression, these 

authors created an algorithm called Predixcan, proposing a gene-based association method that 

directly tests the molecular mechanisms through which genetic variation affects phenotype. 

This is done by estimating the amount of gene expression that is determined by an individual’s 

genetic profile and correlating this biologically imputed gene expression with the trait of 

interest. More specifically, genotype information from a sample of interest is compared to a 

reference dataset that has both genotype and gene expression information, then a tissue-

specific prediction model involving a machine learning algorithm is used to estimate the 

genetically determined component of gene expression from the subjects of the target sample53. 

One example of the use of this method can be found on the work by Huckins et al. (2017)54 in 

which data from 40,299 schizophrenia cases and 65,264 47 matched controls were used to 

predict gene expression levels in 12 brain regions. They found 413 genes associated with 
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schizophrenia across 12 brain regions, being the Dorsolateral Prefrontal Cortex (DLPFC) the one 

with higher number of associated genes.  

Although the focus on the function of a single gene is interesting, it is known that genes operate 

in networks, and code for precise biological functions in specific tissues. We recently developed 

a novel approach to genomic profiling, informed by biological function, and characterizing gene 

networks based on the levels of coexpression with a determined gene in a specific tissue. This 

genetic score is called ePRS20,55,56. The principle of gene networks considers that gene 

expression is co-regulated by other genes, and consequently genes involved in the same 

network are expected to have similar expression profiles57. Analyzing genomic data through 

gene sets defined by functional pathways represents a potentially powerful and biologically 

oriented link between genotypes and phenotypes58. Recent advances in this field comprise the 

assessment of spatial and temporal transcriptomes in the human brain by the BrainSpan59 and 

HBT (Human Brain Transcriptome) datasets60 and the integration of genetic variation with gene 

expression in the brain by the Genotype-Tissue Expression (GTEx) project61. Using these online 

databases, matrices of co-expression can be generated, and the genetic variation and 

association with gene expression in the genes that compose the network can be used to reflect 

the function of the machinery involved in that biological process. An example of the application 

of such method is the work by Silveira et al. (2017)20. A tissue-specific (hippocampal) ePRS score 

was created for the SLC6A4 or serotonin transporter gene, which has been related to the 

responsivity to environmental adversity and effects on psychopathology across the life span. 

Using a cumulative environmental score of prenatal adversity, they searched for interactions 

between the SLC6A4 ePRS and environmental quality on neurodevelopmental and socio-
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emotional outcomes. The ePRS reveled significant interaction effects that were not identified 

with the use of candidate polymorphism 5-HTTPLR variant. 

These new genomic approaches integrate information from molecular neurobiology with GWAS 

technology to develop biologically-informed polygenic scores based on gene co-expression or 

genetically predicted gene expression in specific brain regions, creating novel measures to 

identify vulnerability for childhood behavioral phenotypes that predict later neuropsychiatric 

conditions in community-based samples, and gene network by environment interactions. 

 

Diathesis Stress Versus Differential Susceptibility 

As shown on the previous section, genes modulate the cellular response to environmental 

variation. Although discrete and potentially differential gene by environment interactions are 

difficult to be detected using simple association studies, some theoretical paradigms guide the 

understanding of these relationships. The dominant paradigm on gene by environment 

interaction studies is based on the diathesis-stress hypothesis, which states that some 

individuals are more vulnerable than others to the negative effects of the environment (e.g., 

insensitive parenting, childhood maltreatment, poverty). However, this theoretical framework 

does not consider variations in resilience, for instance, raising an intriguing question on why 

would natural selection craft an individual to be more susceptible only to the negative effects of 

the context?  

The alternative differential susceptibility hypothesis62,63, firstly observed in psychiatric-genetic 

research64, suggests that individuals vary both in relation to how much they are negatively 

affected by environmental adverse events65,66 and how much they are positively influenced by 
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the provision of resources and support67 or the simple absence of contextual adversity68. In fact, 

it has been proposed that individuals should vary in their susceptibility to environmental 

influences62 based on an evolutionary perspective, where the future is uncertain. In order to 

maximize the probability of survival/reproduction, natural selection would favor systems/genes 

that are able to respond to both poor as well as rich environmental conditions, so that the 

offspring would be “hedging their bets” against an unclear future.  

This theoretical framework has advantages since it considers a broader spectrum of 

environmental influences. One applicability of this concept can be seen on the proposed idea of 

“plasticity genes”, in which DA is one of the main “plasticity systems” that may have been set up 

as a form of preparation of the individual to vary its responses according to diverse 

environmental conditions68. This enhanced sensitivity to the environmental context, therefore, 

increases the range of phenotypic possibilities, and from the research stand point, moves the 

interest not only to specific vulnerabilities, but to identify both the several patterns of 

environmental sensitivity, and the significant factors involved in the manifestation of these 

patterns69.  

A study from our group showed, for instance, that girls carrying the 7-repeat allele of the DRD4 

gene and living under adverse socioeconomic conditions have higher fat intake, while those 

carrying the same gene variant but living in a healthy environment have lower fat intake when 

compared to non-carriers70. This suggests that the previously considered obesity “risk allele” 

(DRD4 7-repeat)71 in fact determines openness to environmental modification and/or 

intervention. A metanalysis conducted with data from 15 studies also revealed results that 

corroborate the idea of dopamine genes functioning as “plasticity genes”. Bakermans-
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Kranenburg and Van Ijzendoorn (2011)72 described that children with a larger number of less 

efficient dopamine-related variants performed worse in negative environments but also profited 

the most from positive conditions, in comparison with children with a lower number of these 

variants. 

Shifting from a “vulnerability” to a “differential susceptibility” paradigm not only enables the 

study of the full range of negative and positive G versus E interactions, but also has the potential 

to bring more impactful and targeted interventions to improve health outcomes of the 

individuals who are also the most vulnerable. 

 

Evidence of Dopamine as the Biological Bases of Early Life Programming 

As mentioned above, early life adversity could include many different types of adversities 

happening pre or postnatally. In the past, we have studied the effects of intrauterine growth 

restriction on behaviors involving sensitivity to reward and impulsivity in different human 

cohorts. We have shown, for instance, that poor fetal growth is linked to alterations in the 

hedonic responses to sucrose as early as the first day of life in human newborns73, a finding 

corroborated by Rotstein et al. (2015)74 and Laureano et al. (2016)75. We also demonstrated that 

3-year old girls born SGA are more impulsive towards a sweet reward using the Snack Delay 

Task76, a behavioral feature that is associated with fat preferences and higher body mass index 

later in childhood76. Similarly, another study demonstrated that SGA children at 10 years of age 

have significantly higher percent energy intake derived from fat when compared to controls, 

which is associated with higher waist circumference, insulin and HOMA-IR levels77. Our group 

showed that adult women born with severe growth restriction have a higher intake of 
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carbohydrates, and increased carbohydrate to protein ratio in their diets78. The association 

between being born low birthweight and having specific food preferences later in life, initially 

described by our group 78, was later replicated in several different human cohorts around the 

world79-83. 

Although consistent, the studies in humans are correlational. “Bedside-to-Bench” translational 

approaches with relevant animal models hold the promise of (1) establishing causal relations 

and (2) identifying underlying mechanisms. The latter is critical for developing objective 

measures of risk at the level of the individual child. We have explored the long-term effects of 

poor fetal growth using a rat model based on caloric restriction of 50% initiated at gestational 

day 1084. Pups from food restricted and controls dams are fostered by control dams within 24 

hours of life, which ensures growth restriction only during the fetal period85-87. The experiments 

reveal a higher preference for palatable foods in food restricted (FR) animals with a choice 

between standard and palatable chow (diet with higher contents of sugar and fat)85,87. The 

behavioral phenotype of increased palatable food consumption in FR rats is comparable to that 

described in humans73,75,76,78,88-92. Following our findings of altered taste reactivity to sucrose in 

human newborns73, we also saw that FR rat newborns demonstrate more persistent hedonic 

responses to sucrose when compared to control pups93 already in the first day of life. FR animals 

also have reduced conditioned place preference to sweet food when compared to controls87, 

which combined with the behavioral profile described above strongly suggests that FR affects 

the functioning of the dopaminergic mesocorticolimbic pathway, closely associated with 

appetite regulation and eating behaviours. 
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Indeed, we described robust alterations in tyrosine hydroxylase (TH), an enzyme involved in DA 

synthesis, as well as phospho-tyrosine hydroxylase (pTH) levels in the NAcc of FR rats87, and in 

the orbitofrontal cortex (OFC) in response to sweet food intake85. FR rats have reduced levels of 

dopamine type 2 (D2) receptors in the NAcc when compared to controls87, which explains FR 

rats’ inability to condition their preference to a place paired with palatable food94.  

In humans, much of the evidence suggesting DA as a biological basis for early life programming 

was generated in gene by environment interaction studies. For instance, we recently saw an 

interaction between a multilocus score reflecting DA signaling capacity and poor fetal growth on 

spontaneous sugar intake in 48-month children. Using five polymorphisms to create a 

composite score, the hypofunctional variants (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-

repeat, DAT1-10-repeat, Met/Met-COMT) received the lowest scores. While in IUGR children 

there was a correlation between the genetic score and the consumption of sugar, no association 

was found in non-IUGR children95. 

Levitan et al. (2017)96 showed in two birth cohorts (one from Canada and another from 

Netherlands) a significant interaction between maternal sensitivity and the presence of the 7-

repeat allele (7R) of DRD4, predicting higher body mass indices (BMI) and/or obesity risk. When 

exposed to poor maternal sensitivity, 7R carriers have a higher chance of being obese or 

overweight, especially in Canadian girls or in Dutch boys. The presence of 7R is also associated 

with higher body mass index (BMI) in women who had seasonal affective disorder and were 

born in the spring97, suggesting a fetal programming effect.  

As mentioned above, we have shown that variations in this specific mutation of the DRD4 gene 

interacts with socioeconomic status (SES) according to the differential susceptibility framework, 
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to predict fat intake in girls at 4 years of age. In other words, the same individuals who are 

genetically more prone to develop obesogenic behaviorswhen raised in low SES conditions, are 

also more predisposed to eat less fat when raised in a supportive, high SES environment70. As a 

follow up study, we used the entire genotype information in the same cohort to calculate the 

genetically predicted gene expression of DRD4 in the prefrontal cortex, evaluating the 

differential responsivity to positive scenarios on eating outcomes. There was a significant 

interaction between the exposure to positive environments and the predicted prefrontal DRD4 

gene expression on emotional over-eating measured by the Children Eating Behavior 

Questionnaire applied at 48 months. This interaction also followed the differential susceptibility 

framework, in which the children that have high predicted DRD4 gene expression and show 

elevated emotional eating in a less positive environment, have less emotional eating symptoms 

in more positive environments98. This highlights the idea of dopamine genes acting as “plasticity 

genes”, as noted by Bakermans-Kranenburg and Van Ijzendoorn (2011)72 meta-analysis, 

proposing the dopamine-related genes as markers of differential susceptibility, and other 

studies showing that variations in genes that code proteins implicated in the dopamine 

pathways are sensible to environmental variation99,100. 

In the previously mentioned study from our group, reporting significant interactions between a 

score for cumulative prenatal exposure to adversity and the ePRS based on the serotonin 

transporter (SLC6A4) on neurodevelopmental outcomes20, an enrichment analysis of the genes 

represented in the polygenic score also suggests the involvement of DA in these fetal 

programming effects. The most significant biological process enriched in the score was the 
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dopaminergic neuron differentiation, which can be explained by the common source for 

monoaminergic progenitors during neurodevelopment101,102. 

It is known that early adverse conditions increase the risk for many different psychopathologies, 

including ADHD12,13. Based on that, Neuman et al. (2007)103 described that children carrying 

specific variations of the DAT1 and DRD4 genes, when exposed to prenatal smoking, are more 

likely to be either diagnosed or have symptoms of ADHD in comparison with non-exposed, non-

carrier children. This once more suggests a role of the dopaminergic pathways on modulating 

the relationship between early environmental exposure to adversity 

and the development of psychopathology. 

Following the idea that genes operate in networks, Miguel et al. (2019)56 created an expression-

based polygenic score that reflects variations in the function of the dopamine transporter DAT1 

gene network (ePRS-DAT1) in the prefrontal cortex (PFC). Using data from two prospective birth 

cohorts (Canadian based Maternal Adversity, Vulnerability and Neurodevelopment—MAVAN; 

and GUSTO Growing Up in Singapore Towards Healthy Outcomes), they evaluated differences 

in cognitive flexibility according to the exposure to hypoxic-ischemic conditions at birth. More 

intense exposure to hypoxic-ischemic conditions was associated with longer latency to respond 

and lower accuracy in the attentional set shifting paradigms—measures related to attentional 

flexibility—but only in the high DAT1 ePRS group. In addition, the relationship between these 

genes involved in the machinery associated with prefrontal DAT1 function and the PFC and 

thalamic gray matter volumes was different between children exposed or not to hypoxic-

ischemic conditions. These findings indicate that variations in the function of the DAT1 gene 
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network seem to be important for attention flexibility and its deviances, especially in the 

context of early life adversity like poor oxygenation levels at birth.  

Being born small for gestational age (SGA), a proxy of a poor intrauterine environment, is 

associated with higher risk of hospitalization for all mental disorders, higher risk of anxiety and 

adjustment, personality and psychotic disorders104. At least until young adulthood, individuals 

born SGA are at increased risk of severe mental disorders such as schizophrenia105 and suicide 

attempts and completeness106, independently of their gestational age at birth. Schizophrenia is 

linked to altered dopamine signaling32, suggesting once more a possible link between early life 

adversity, altered DA signaling and risk for later mental health disturbances. 

All the above findings indicate that exposure to early life adversities could modulate the 

behavioral phenotype over the life course, inducing neurochemical responses and adaptations 

that are, again, reflected in altered behaviors. This could, in the long term, lead to unfavorable 

outcomes. Figure 1 outlies the proposed theoretical framework on how early adversity affects 

an individual’s development. Exposure to prenatal adversity leads to fetal altered metabolism 

and gene expression21. This prompts the organism to compensate, and neuroadaptations 

occurring in response to the altered metabolism take place as a trade-off (represented by the 

orange dots and lines). Because of these neuroadaptations, very specific behavioral features 

appear already early in life, for instance altered hedonic responses to sucrose73,75. These small, 

persistent alterations in the behavioral response help shaping the development of the DA 

mesocorticolimbic pathways, affecting neurotransmission and the connectivity between the 

striatal and prefrontal region107. These in turn trigger altered behaviors such as increased 

impulsivity76,92,108 altered reward sensitivity26 and preferences for palatable foods77-79,82,109. All 
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these progressively contribute to generate consequences of non-adaptive DA related behaviors, 

and these in turn lead to structure-specific alterations in DA and hormone-related metabolism. 

The continuation of this process, perpetuated by the behavioral features (e.g. chronic increased 

intake of high fat, high sugar foods), leads to systemic overload and exhaustion, loss of 

homeostasis, chronic diseases such as type II diabetes107,110, cardiovascular disease14, 

atherosclerosis111, mood disorders104,106, Alzheimer’s disease 112,113 and neurodegeneration114. 

 

Conclusions and Final Overview 

We gathered evidence of the role of dopamine pathways on modulating the relationship 

between environmental adversities and later health outcomes. There is an intricate cascade of 

successive metabolic and behavioral events that feed each other forward and seem to 

contribute to both metabolic disarrangements and psychiatric disease/neurodegeneration in 

the long term. This life course approach represents a major change in how we think and study 

human lives, adding new dimensions of recurring interactions between context, and 

sensitivity/resilience (plasticity) in biological processes. Beyond understanding the biological 

factors involved in dopaminergic plasticity effects, this approach also highlights the importance 

of understanding the key environmental factors that trigger such plastic adaptations. Our focus 

on dopamine genes as “plasticity genes”, and the view of differential susceptibility hypothesis as 

an important player in this phenomenon, opens up the possibility of both identifying 

vulnerability but also opportunities for prevention.  

Prenatal adversity is associated with higher risk of hospitalization for mental disorders, higher 

risk of anxiety and adjustment disorders, personality and psychotic disorders104, 
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schizophrenia105, suicide attempts and completeness106, type II diabetes11,115, hypertension36, 

cardiovascular disease116 and atherosclerosis18. The cost to society should focus not only on 

health outcomes, but also poor academic achievement and reduced human capital117-119. Our 

studies of the biological basis for developmentally-determined co-morbid metabolic and 

psychiatric conditions represent a novel approach to understanding the pathophysiology of 

common, chronic illnesses. These studies have direct implications for targeted preventive 

measures against metabolic and mental health diseases associated with the exposure to early 

life adversity. 
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Connecting statement to chapter III 

In Chapter II we discussed in more depth the idea that the dopaminergic system might play a 

role in individual variation in susceptibility to environmental influences. As a starting point to 

empirically address this idea, in Chapter III, we explored the role of prefrontal DRD4-predicted 

gene expression in moderating the impact of early life environment to predict emotional eating 

in children.  

The DRD4 gene encodes the D4 subtype of the dopamine receptor (D4R) and is most expressed 

in the prefrontal cortex271,272 corroborating the idea that the DRD4 plays a role in complex 

behaviours influenced by cortical DA transmission, such as executive control273. DA receptors 

have DA as their primary endogenous ligand and are a class of G-protein-coupled receptors 

expressed in many types of cells in the CNS but also peripheral organs272. The D4R is part of the 

D2-like receptor family that induces inhibition of adenylyl cyclase267 and is thought to be 

expressed postsynaptically on dopamine target cells272.  

The function of the DRD4 gene has been linked to eating disorders274. The DRD4 48-base-pair 

variable number of tandem repeats (VNTR) in exon III 7-repeat allele polymorphism is thought 

to modify the functionality of the D4R activity and has been shown to moderate the association 

between exposure to early life environment conditions and altered eating behaviors275,276. In 

2016 Silveira et al reported that girls living under adverse socioeconomic conditions and 

carrying this 7-repeat allele polymorphism of DRD4 consume more calories derived from fat 

compared to non-carriers; however, the same individuals consumed fewer calories derived from 

fat when living in a privileged economic and social stratum, when compared to non-carriers 277. 

We decided to expand this previous work conducted by the Silveira lab, but instead of 
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investigating a single polymorphism on this gene, we used a more sophisticated genomics 

methodology, that predicts gene expression of the entire DRD4 gene in tissue specific manner. 

We also expanded previous literature by accessing the contribution of a positive environment 

measure in the GxE model, contrasting with the usual focus on negative aspects of the 

environment observed in the literature.  

Altered eating behavior early in life, especially the ones related to pro-intake features, may 

serve as an endophenotype for later metabolic disorders, including obesity. Emotional eating 

has a psychological component related to emotional regulation278 and might also act as an 

endophenotype for later psychopathology.  
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Chapter III. Genetically predicted gene expression of prefrontal DRD4 gene and 

the differential susceptibility to childhood emotional eating in response to 

positive environment 
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Abstract 

Genetic differential susceptibility states that individuals may vary both by exhibiting poor 

responses when exposed to adverse environments, and disproportionally benefiting from 

positive settings. The dopamine D4 receptor gene (DRD4) may be particularly implicated in 

these effects, including disturbed eating behaviors that might lead to obesity. Here, we explore 

differential susceptibility to positive environments according to the predicted genetically 

regulated gene expression of prefrontal cortex DRD4 gene. Using MAVAN as the discovery 

cohort (Maternal Adversity, Vulnerability and Neurodevelopment) and GUSTO as the replication 

cohort (Growing Up in Singapore Towards Healthy Outcomes), we analyzed the interaction 

between a) a Positive postnatal environmental score, that accounts for positive outcomes in the 

postnatal period and b) the genetically regulated gene expression of prefrontal DRD4, computed 

using a machine learning prediction method (PrediXcan). The outcome measures were the pro-

intake domains (Emotional over-eating, Food Responsiveness, Food Enjoyment and Desire to 

Drink) from the Child Eating Behavior Questionnaire at 48 months of age (MAVAN) and 60 

months of age (GUSTO). The interaction between the positive environment and the predicted 

prefrontal DRD4 gene expression was significant for emotional over-eating in MAVAN 

(β=−0.403, p < 0.02), in which the high gene expression group had more or less emotional 

eating according to the exposure to lower or higher positive environment respectively, showing 

evidence of differential susceptibility criteria. In the replication cohort, a similar result was 

found with the pro-intake domain Desire to drink (β = −0.583, p < 0.05). These results provide 

further evidence for the genetic differential susceptibility, accounting for the benefit of positive 

environments. 
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Introduction 

Genes can modulate the cellular and behavioral responses to environmental variation and some 

theoretical paradigms guide the understanding of these relationships. The Diathesis-Stress 

paradigm states that some individuals are more vulnerable than others to the negative effects 

of the environment1. However, it does not consider variations in positive aspects. The genetic 

differential susceptibility states that individuals may vary both by exhibiting poor responses 

when exposed to adverse environments, and disproportionally benefiting from positive settings 

(including the simple absence of adversity). These would occur to guarantee survival in different 

contexts. This idea is aligned with evolutionary analysis of human development, in which 

plasticity to environmental variations is set as a bet hedging against an uncertain future, and to 

avoid a costly mismatch between the individual's ability to face the environmental conditions 

and the actual challenges that the environment could impose2-4. This framework has advantages 

since it considers a broader spectrum of environmental influences, also shedding light on 

positive aspects of the environment and its consequences on development. This theoretical 

concept can also be seen on the proposed idea of “plasticity genes”, in which dopamine seems 

to have a central role2,5. In this sense, individuals that are highly responsive to the environment, 

in a differential susceptibility perspective, while being more vulnerable to the damaging effects 

of an exposure to environmental adversity, can also benefit more from positive environmental 

conditions than the nonresponsive individuals. This is equivalent to the ‘orchid’ children 

described by Boyce and Ellis6, in a theory called biological sensitivity to context. 
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This is corroborated by evidence showing that the mesocorticolimbic pathway finishes its 

development later in life, compared to other neurotransmitter systems. This pathway therefore 

is susceptible to the influence of the environment for a much longer period of time, being an 

obvious candidate for a biological mechanism involved in the programming by environmental 

conditions. This enhanced sensitivity to the environmental context, associated with specific 

dopamine signaling, increases the range of phenotypic possibilities, not limited to 

vulnerabilities, but also involving better outcomes in particular environmental settings7. 

Phenotypes known to be affected by these gene by environment (GxE) interactions include 

disturbed eating behaviors that can lead to obesity8. In fact, alterations on the dopaminergic 

pathways can lead to increased sensitivity to reward and impulsivity9. For example, drugs such 

as amphetamine and methylphenidate, known for being dopamine enhancers, improve 

behavioral symptoms of most children with attention deficit hyperactivity disorder (ADHD), 

suggesting that dopamine signaling plays a role on the onset and maintenance of this condition 

related to impulsivity and other executive functions impairments10. Similarly dopamine function 

is thought to play a role in major depression symptoms, since impairments in motivation and 

anhedonia are all related to the disorder, and also regulated in part by the DA 

neurotransmission systems11. These dopamine signaling alterations can lead to poor decision-

making processes, prompting non-adaptive behaviors such as addiction and altered eating 

behavior12-14. 

The dopamine D4 receptor gene (DRD4) exon III VNTR polymorphism has been particularly 

implicated in these effects. In 2016, Silveira et al. described that variations in this specific 

mutation interacted with socioeconomic status (SES) according to the differential susceptibility 
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framework, influencing fat preferences of girls at 4 years of age15. The same girls who are 

genetically more prone to develop obesogenic behaviors (increased fat intake) when raised in 

low SES conditions, are also less likely to develop obesogenic behaviors when raised in a 

positive, high SES environment. Similarly van Strien (2015)16 found that hypofunctional variants 

of the DRD4 were associated with higher emotional eating in females. However, single 

polymorphism approaches may not capture the whole complexity of the function of a gene. 

Novel genomics approaches using machine learning algorithms to predict gene expression in 

tissue specific regions are available17, and these are likely able to provide a more comprehensive 

view of the role of a specific gene in modulating an individual response to environmental 

variations. 

Even though the differential susceptibility hypothesis accounts for both extremes of the 

environmental influence (positive and negative, including the simple absence of adversity)4, few 

studies have used measures that account for positive aspects of the environment18. Work is 

needed to improve empirical evidence on the responsivity to positive or supporting conditions, 

showing that this theoretical framework is in fact relevant to understand effectiveness of 

interventions. 

Here, we propose to expand previous work done by our laboratory8,15,19,20 by using an 

innovative and more comprehensive genomics approach to evaluate differential susceptibility to 

obesogenic behaviors in children. If the framework is indeed applicable, variations in the 

predicted DRD4 gene expression in the prefrontal cortex (where D4 receptors are 

predominantly localized) would be associated with differential responsiveness to positive 
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circumstances, here represented by measures associated with supporting conditions in the 

postnatal period. 

 

Methods 

Subjects  

The sample was derived from the prospective birth cohort MAVAN21 (Maternal Adversity, 

Vulnerability and Neurodevelopment) which followed up children at different time points in the 

first years of life in Montreal (Quebec) and Hamilton (Ontario), Canada. Exclusion criteria were 

severe maternal chronic illness, placenta previa, and history of incompetent cervix, impending 

delivery, or a fetus/infant affected by a major anomaly or born at a gestational age less than 37 

weeks. Ethical approvals were obtained from obstetricians performing deliveries at the study 

hospitals and by the ethics committees and university affiliates (McGill University and Université 

de Montréal, the Royal Victoria Hospital, Jewish General Hospital, Centre hospitalier de 

l’Université de Montréal, Hôpital Maisonneuve-Rosemont, St Joseph's Hospital and McMaster 

University, Hamilton, Ontario, Canada). The study was conducted in accordance with the rules 

and regulations of the university ethics committees and informed consent was obtained from all 

participants. 

Procedure  

Information collected at birth as well as at 48 months of age was used. A total of 132 out of 630 

participants had data available for all the measures relevant for this study (birth records, 

genotype, the Child Eating Behavior Questionnaire at 4 years of age and positive postnatal 

https://www.sciencedirect.com/topics/neuroscience/eating-behavior
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environmental score). Children and mothers came to the laboratory for testing and to complete 

the scales (CEBQ, see details below). Birth records were obtained directly from the birthing 

units. 

Predictors  

Positive postnatal environmental score: This score accounts for positive environmental 

conditions on the postnatal period of life. Figure 2 shows which variables and cut-offs were used 

to compute this score. Presence of each component established by its cut-off point yield one 

point. The total score is represented by the summation of points. The score was built in a 

cumulative index manner18, accounting for stablished predictors of child health and 

development8. Birth weight percentiles and household gross income were calculated using the 

local reference22,23. Maternal mental health information was extracted from different 

questionnaires: Beck Depression Inventory, a 21-question multiple-choice self-report 

inventory24; Edinburgh Postnatal Depression Scale (EPDS), a 10-item self-report scale designed 

to screen for postpartum depression25 and State-Trait Anxiety Inventory (STAI), a two versions 

20 item each self-report scaling to measure state and trait anxiety26. To measure types of 

attachment styles in preschool-aged children the Preschool Separation – Reunion Procedure 

(PSRP) was used27,28, having a baseline interaction followed by two separation and reunion 

episodes lasting 5 min video recorded and scored (reliability k = 0.83). The Family Assessment 

Device (FAD), a 60-item self-report instrument, was used to assess different domains of family 

functioning29. The Marital Strain Scale of Pearlin and Schooler was used to assess chronic stress 

with the romantic partner30. Lastly, a self-report breastfeeding questionnaire31 was used to 

inquire the age at which the baby (in weeks) was fed for the first time with something other 

https://www.sciencedirect.com/science/article/pii/S0195666319304830#fig1
https://www.sciencedirect.com/topics/psychology/mental-health
https://www.sciencedirect.com/topics/neuroscience/beck-depression-inventory
https://www.sciencedirect.com/topics/neuroscience/postpartum-depression
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than breast milk, and the age of the baby (in weeks) when mothers stopped nursing (or giving 

breast milk). 

 

Figure 2. Variables and cut-offs used to create the Positive postnatal environmental score in 

MAVAN. Presence of each component (described in each bullet) yielded 1 point, and the scores 

represent the summation of points. 

 

The rationale behind including these variables that represent both phenotype measures (e.g. 

birth size, attachment) and family environment measures (e.g. maternal mental health, marital 

strain) together into the same score was based on the literature of early life dversity/protection 

and their long-term effects on child neurodevelopment and behavior. Phenotypes such as birth 

size have been extensively shown in the literature to have programming” effects on the 

individual's metabolism, altering the response to the environment and subsequently increasing 

the likelihood of developing non-communicable diseases such as obesity. For example, a well-

known effect of poor fetal growth is the programming of food preferences, widely explored by 

our lab20,32-34, and confirmed by others35-38. These long-lasting “programming” effects work as if 

they were a first or immediate “layer” of the environment, dictated by the individual's current 

metabolic features that result from a past exposure. The inclusion of attachment style is aligned 

https://www.sciencedirect.com/topics/neuroscience/behavior-neuroscience
https://www.sciencedirect.com/topics/food-science/food-product
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with the same idea. Evidence has shown its effects on development of several socioemotional 

characteristics39,40, having a programming effect on socioemotional development41,42. We 

discussed extensively about these environmental “layers” in a review8. 

Genetically regulated expression of prefrontal DRD4 gene:  The genetically regulated expression 

of prefrontal DRD4 gene is computed using a machine learning prediction method (PrediXcan)17. 

This algorithm was built using a reference dataset from human brain donors (postmortem), 

being therefore tissue-specific. This reference dataset is composed by data from GTEx project43, 

GEUVADIS44 and DGN45 containing both genotype and gene expression levels. The PrediXcan 

prediction model, proposed by Gamazon & et al (2015)17, uses a machine learning approach to 

generate algorithms to estimate the genetically determined component of gene expression in 

specific brain regions from the subject's genotype in the target sample, in this case MAVAN 

cohort. For the genetic score used in this study, we applied this algorithm to our two samples, 

and were able to calculate a predicted DRD4 PFC gene expression using the genotype 

information available in the children from our birth cohorts (Figure 3). 

 

https://www.sciencedirect.com/topics/psychology/socioemotional-development
https://www.sciencedirect.com/science/article/pii/S0195666319304830#bib26
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Figure 3. Scheme for the generation of predicted DRD4 gene expression on discovery and 

replication cohorts. PrediXcan prediction model is applied to PFC gene expression data from 

human brain donors, that also had genotype data. The gene expression information was 

translated into a model that uses only the genotype information from our sample (in this case, 

MAVAN or GUSTO) to estimate the gene expression of a given gene (in this case, DRD4). 

 

In MAVAN, we genotyped 242,211 autosomal SNPs using genome-wide platforms 

(PsychArray/PsychChip, Illumina) from 200 ng of genomic DNA derived from the buccal 

epithelial cells. After quality control procedures and imputation, 20,790,893 SNPs with an info 

score >0.80 and posterior genotype probabilities >0.90 were available to be used in PrediXcan. 

Outcome 

The Child Eating Behavior Questionnaire (CEBQ)46 is designed to assess children's eating styles 

that have been hypothesized to contribute both to underweight and overweight. Having 

domains that reflect behaviors of food pro-intake (positive inclinations for eating or food 

approach) and anti-intake (or food avoidance). It is a parent-report measure comprised of 35 

items, each rated on a five-point Likert scale that ranges from never to always. The instrument is 

ideal for use in research investigating the early precursors of eating disorders or obesity. 

The psychometric properties of the instrument have been evaluated and show robust factor 

structure, good internal and test-retest reliability46. A more recent study also shows validity of 

the questionnaire against behavioral measures of eating47. The outcome measures used were 

the four domains from the questionnaire that reflect pro-intake behaviors48: Enjoyment of Food, 

Food Responsiveness, Desire to Drink and Emotional over-eating. Overall these items describe 

https://www.sciencedirect.com/topics/neuroscience/genomic-dna
https://www.sciencedirect.com/topics/neuroscience/likert-scale
https://www.sciencedirect.com/topics/psychology/eating-disorder
https://www.sciencedirect.com/topics/psychology/psychometrics


 
 

87 
 

pro-intake behaviors either by enjoyment of food, being responsive to food, having a high desire 

to drink or over-eating in response to negative emotions. 

Replication cohort 

Subjects 

The sample included children from the prospective birth cohort GUSTO (Growing Up in 

Singapore Towards Healthy Outcomes)49. Pregnant women aged 18 years and above were 

recruited at the National University Hospital (NUH) and KK Women's and Children's Hospital 

(KKH) in Singapore, being of Chinese, Malay or Indian ethnicity with homogeneous parental 

ethnic background. Mothers receiving chemotherapy, psychotropic drugs or who had type I 

diabetes mellitus were excluded. Besides that, for the sake of comparison with the MAVAN 

cohort, only non-preterm children (born above 37 weeks of gestation) were considered. The 

study was approved by the National Healthcare Group Domain Specific Review Board (NHG 

DSRB) and the Sing Health Centralized Institutional Review Board (CIRB). Informed written 

consent was obtained from each participant. A descriptive paper details other aspects of the 

cohort49. 

Procedures 

We used information collected at birth as well as at 5 years of age. A total of 443 participants 

out of 1173 had data available for all the measures relevant for this study (birth records, 

genotype, CEBQ at 60 months of age and positive postnatal environmental score). Children and 

mothers came to the laboratory for testing and to complete scales. Birth records were obtained 

directly from the birthing units. 

https://www.sciencedirect.com/topics/neuroscience/diabetes-mellitus-type-1
https://www.sciencedirect.com/topics/neuroscience/diabetes-mellitus-type-1
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Predictors 

Positive postnatal environmental score: Was defined and calculated as described in the MAVAN 

cohort above, except for attachment style and marital relationship quality that were not 

available in this cohort. Differences can be seen on Figure 4 that shows variables and cut-offs 

used in the GUSTO cohort, chosen to best match the score created in the discovery cohort. 

 

Figure 4. Variables and cut-offs used to create the positive postnatal environmental score in 

GUSTO. Presence of each component (described in each bullet) yielded 1 point, and the scores 

represent the summation of points. 

 

Genetically regulated expression of prefrontal DRD4 gene: It was computed using the same 

machine learning prediction method (PrediXcan)17 and brain region as described in the MAVAN 

cohort. Genomic DNA in GUSTO was extracted from frozen umbilical cord specimens. Samples 

were genotyped on Illumina Omni express arrays and on Illumina Exome arrays, following the 

manufacturer's instructions (Expression Analysis Inc). Further quality control on the genotyping 

calls were previously described50. SNPs were verified for a genotyping rate ≥95% and no 

deviation from Hardy–Weinberg equilibrium (P < 0.001), and minor allele frequency ≥0.05, using 

PLINK51,52. 

https://www.sciencedirect.com/topics/neuroscience/allele-frequency
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Outcome 

 The outcome measures were the same used in the MAVAN cohort from the Child Eating 

Behavior Questionnaire46, with the four domains that reflect pro-intake behaviors: Enjoyment of 

Food, Food Responsiveness, Desire to Drink and Emotional over-eating. 

Statistical analysis 

Statistical analysis of the participants' baseline characteristics was performed using Student's T 

test for continuous data and chi-square tests for categorical variables (Table 1 and Table 2). For 

the baseline comparisons, a median split was used to define the high and low DRD4 predicted 

gene expression groups. For the main analysis, linear regression models using continuous DRD4 

predicted gene expression values on the PFC, positive postnatal environmental and the 

interaction term between these two variables were performed for the four domains of the 

CEBQ considered in this study (Enjoyment of Food, Food Responsiveness, Desire to Drink and 

Emotional Over-Eating). Regression analysis were corrected for multiple comparisons. The 

replication analysis considered statistically significant results using one-tailed P-value 

thresholds. We considered the analysis done in the discovery cohort (MAVAN) to be exploratory 

and in this case, we used two-tailed P-value thresholds, since the direction of the forthcoming 

results were not anticipated. For the analysis done in the replication cohort (GUSTO) we 

anticipated results direction based on what we found in the discovery cohort. A one-tailed test 

is appropriate if the estimated value may depart from a reference value in only one direction. 

For that reason, the one-tailed P value thresholds were considered appropriated to confirm the 

results direction we saw in the discovery cohort. Preliminary analysis adjusted by sex showed no 

https://www.sciencedirect.com/science/article/pii/S0195666319304830#tbl1
https://www.sciencedirect.com/science/article/pii/S0195666319304830#tbl2
https://www.sciencedirect.com/topics/psychology/regression-analysis
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main effect or interaction with sex, therefore in the main analysis boys and girls were analyzed 

together. To verify if the gene by environment interaction finding was aligned with the 

differential susceptibility model, we followed criteria developed by Roisman et al. (2012)53. 

Three measures were considered; if regions of significance were inside the range of the 

environmental variation; if the markers PA (proportion affected) and PoI (proportion of 

interaction) were consistent with differential susceptibility; and if there was absence of 

nonlinear terms X2 and ZX2. 

 

Table 1. Sample description and differences between High and Low DRD4 predicted gene 

expression groups in MAVAN. 

Sample Description 

 Total sample 
(n=132) 

Low DRD4 
(n=67) 

High DRD4 (n=65)  

Variable Mean 
or n 

SD or 
% 

Mean 
or n 

SD or 
% 

Mean 
or n 

SD or % p 

Birth weight (g) 3320.95 455.38 3322.79 450.15 3318.93 464.66 0.96 

Gestational age 
(weeks) 

39.18 1.21 39.15 1.06 39.2 1.36 0.82 

Maternal age at 
birth (years) 

30.81 4.75 31.13 4.04 30.46 5.09 0.4 

Montreal site 76 57% 42 31.8% 27 20.4% 0.42 

Female sex 68 51% 37 28% 31 23.4% 0.61 

Income below 56 44% 45 34% 22 16.6% 0.36 
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Can$80,000 

Maternal education 
high school or less 

2 1.5% 2 1.5% 0 0.0% 0.47 

Positive postnatal 
environmental score 

3.4 1.52 3.57 1.51 3.34 1.52 0.38 

Food 
Responsiveness 

2.27 0.8 2.14 0.81 2.39 0.77 0.09 

Food enjoyment 3.58 0.75 3.46 0.8 3.72 0.68 0.06 

Desire to drink 3 1.07 3.02 1.11 2.98 1.04 0.82 

Emotional over-
eating 

1.61 0.6 1.62 0.6 1.61 0.6 0.9 

PrediXCan DRD4 PFC -0.13 0.22 -0.32 0.15 0.05 0.06 - 

MAVAN participants' characteristics by prefrontal DRD4 predicted gene expression group. Data 
are expressed as means (standard deviations) or number of participants (percentages). 

 

Table 2. Sample description and differences between High and Low DRD4 predicted gene 

expression groups in GUSTO. 

 

 

Sample Description  

 
Total sample (n=428) 

Low DRD4 
(n=223) 

High DRD4 
(n=205) 

 

Variable Mean or n SD or 
% 

Mean 
or n 

SD or 
% 

Mean 
or n 

SD or 
% 

p 

Birth weight (g) 3122.42 427.06 3151.0

9 

422.8

3 

3091.

24 

 

430.4

8 

0.15 

Gestational age (weeks) 38.46 1.28 38.56 1.2 38.35 1.36 0.1 

Maternal age at birth 
(years) 

31.31 5.08 31.18 4.91 31.45 5.26 0.58 
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Sample Description  

Female sex 203 47.4% 114 51.1% 89 43.4%
%% 

0.11 

Income below $6,000 302 70,6% 156 70% 146 71.2% 0.77 

Maternal education high 
school or less 

277 64.7% 144 64.9% 133 65.5% 0.89 

Positive postnatal 
environmental score 

2.11 1.24 2.09 1.27 2.14 1.2 0.67 

Food responsiveness 2.4 0.69 2.41 0.69 2.39 0.69 0.83 

Food enjoyment 3.5 0.79 3.51 0.82 3.5 0.76 0.89 

Desire to drink 2.74 0.9 2.84 0.94 2.62 0.84 0.01* 

Emotional over-eating 2.79 0.79 2.76 0.77 2.82 0.82 0.44 

PrediXCan DRD4 PFC -0.01 0.11 -0.10 0.11 0.06 0.04 - 

GUSTO participants' characteristics by prefrontal DRD4 predicted gene expression group. Data 
are expressed as means (standard deviations) or number of participants (percentages). 

 

We examined population structure (i.e. presence of a systematic difference in allele frequencies 

between subpopulations in a population, possibly due to different ancestry) and the models 

were adjusted by principal components that reflect population stratification54,55. By adding the 

principal components, we aim to adjust for false results due to ancestry differences. For that, 

first we pruned our datasets to common variants (MAF>0.05) that were not in linkage 

disequilibrium (r2<0.20) with a sliding window (50 kilobases) approach that examined linkage 

disequilibrium in increments of 5 SNPs using PLINK 1.956. We performed a principal component 

analysis using SMARTPCA on this pruned dataset and generated a scree plot (see Hari Dass et 

al., 201957) for scree plot for the MAVAN cohort). Based on the inspection of the scree plot, the 

first three principal components were the most informative of population structure in both 

cohorts and were included in all analyses. No other co-variates were used in the regression 

https://www.sciencedirect.com/topics/neuroscience/linkage-disequilibrium
https://www.sciencedirect.com/topics/neuroscience/linkage-disequilibrium
https://www.sciencedirect.com/topics/psychology/principal-component-analysis
https://www.sciencedirect.com/topics/psychology/principal-component-analysis
https://www.sciencedirect.com/science/article/pii/S0195666319304830#bib74
https://www.sciencedirect.com/science/article/pii/S0195666319304830#bib74
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analysis. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 

20.0 software (SPSS Inc., Chicago, IL, USA) and R software58,59. Significance levels for all 

measures were set at p < 0.05. 

 

Results 

Baseline comparisons between predicted gene expression groups can be seen in Table 1, Table 

2. No differences were found between the two groups (high and low predicted prefrontal DRD4 

gene expression) in relation to the main confounding variables in both cohorts. 

In MAVAN, we observed a statistically significant interaction effect between the positive 

environment score and the predicted prefrontal DRD4 gene expression on emotional over-

eating (β = -0.403, p = 0.0159). A simple slope analysis revealed that a more positive 

environment is associated with lower emotional over-eating as the DRD4 predicted gene 

expression increases. On Figure 5, groups are divided by plus and minus one standard deviation 

for the sake of visualization. We confirmed that the interaction is aligned with the differential 

susceptibility model according to Roisman et al. (2012) method53, since the regions of 

significance were inside the range of the environmental variation; moreover, the markers 

PA = 0.54 and PoI = 0.52 were consistent with differential susceptibility, as well as the absence 

of nonlinear terms X2 and ZX2. This means that the same genetic profile associated with 

increased benefit from a more positive environment, is also more affected by a less positive 

environment, showing more emotional over-eating. After adjusting by multiple comparison this 

result remains significant. 

https://www.sciencedirect.com/science/article/pii/S0195666319304830#tbl1
https://www.sciencedirect.com/science/article/pii/S0195666319304830#tbl2
https://www.sciencedirect.com/science/article/pii/S0195666319304830#tbl2
https://www.sciencedirect.com/science/article/pii/S0195666319304830#fig4
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Figure 5. Evidence of differential susceptibility - Interaction between positive postnatal 

environmental score and predicted DRD4 gene expression on Emotional over-eating at 48 

months of age. MAVAN Cohort. The vertical lines depict the regions of significance. 

 

On the same analysis, the predicted prefrontal DRD4 expression had an independent effect on 

emotional over-eating (β = 1.388. p = 0.0240) as did the positive postnatal environmental score 

(β = −0.098, p = 0.0129). The same association was not found for the other domains in the 

CEBQ: Desire to drink (β = −0.142, p = 0.62051); Food Enjoyment (β = -0.088, p = 0.660) and 

Food Responsiveness (β = -0.047, p = 0.968). 

In the replication cohort, similar results were found with another pro-intake domain from the 

CEBQ. The interaction between the positive environment and the predicted prefrontal DRD4 

gene expression was statistically significant on the domain desire to drink (β = −0.579, 

https://www.sciencedirect.com/topics/food-science/food-product
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p = 0.01455). Simple slope analysis revealed that as the score for the positive environment 

increases and the gene expression score also increases, there is a decrease in the desire to drink 

score. For the sake of visualization of the results, on Figure 6 the participants are divided in plus 

and minus one standard deviation from the mean. After adjusting for multiple comparisons this 

result was found marginally significant (p = 0.0582). No other association was found for the 

other CEBQ pro intake domains: Emotional over-eating (β = −0.046, p = 0.3903), Food 

Enjoyment (β = −0.357, p = 0.08866), Food Responsiveness (β = -0.375, p = 0.0660); no evidence 

for differential susceptibility was detected in this cohort. 

 

 

Figure 6. Interaction between positive postnatal environmental score and predicted DRD4 gene 

expression on Desire to Drink at 60 months of age. Gusto Cohort. The vertical lines depict the 

regions of significance. 
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Discussion 

In this study, we demonstrated on both cohorts that environment and genetics were associated 

with some obesogenic behaviors in children. In MAVAN, a high predicted prefrontal DRD4 gene 

expression decreases the risk for the development of behaviors associated with emotional over-

eating in children as young as 4 years old that are raised in a more positive environment. Since 

we found evidence of differential susceptibility, the opposite relationship is also true, in which 

these same children, if raised in a less positive environment are in a higher risk to develop 

obesogenic behaviors as measured by the CEBQ instrument. In fact, emotional over-eating has 

been linked to difficulties in weight loss among adults that underwent treatment for obesity60 

being a stronger predictor of weight gain than life style factors such as little physical activity and 

consumption of fruits and vegetables61. Emotional over-eating seems to be a risk factor not only 

for the development of obesity but for its maintenance as well. 

In the GUSTO cohort, a high predicted prefrontal DRD4 gene expression decreases the risk for 

the development of behaviors associated with the domain desire to drink in children as young 

as 5 years old that are raised in a more positive environment. Although the domains desire to 

drink and emotional over-eating are known to be weakly correlated46, it is also known that both 

have a relationship with the onset of obesogenic behaviors60-62. Besides that the domain desire 

to drink is also considered pro-intake, and is associated with the consumption of high sugar-

sweetened beverages63. In fact, the overconsumption of sugary drinks64 and the desire to drink 

domain have been related to obesity and overweight in children62. Although this result did not 

survive correction for multiple comparisons, it could be seen as valid since it emerged from an a 

https://www.sciencedirect.com/topics/psychology/physical-activity
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priori hypothesis and previous published results15,19,65 characterizing this analysis as non-

exploratory. 

Despite the difference in the significant domains between the two cohorts, we were able to 

demonstrate the effect of the interaction between positive environmental conditions and the 

predicted prefrontal DRD4 gene expression on eating behaviors associated with obesity and 

overweight. Explanations for the dissimilar results between the cohorts may involve cultural or 

behavioral aspects associated with eating styles. The lack of evidence for differential 

susceptibility in GUSTO could be explained by the fact that the positive environment score in 

this cohort does not include an evaluation of attachment styles as does MAVAN, due to the lack 

of this data in GUSTO. 

Evidence from the literature showing the relationship between pro intake behaviors and the 

function of the DRD4 gene variants15,16,66,67 and also between dopamine related genes and 

susceptibility for environment influences2, corroborates the relationship seen on this work. It is 

important to emphasize that we used a novel genomic approach to predict gene expression in a 

tissue specific manner17, being able to provide a more comprehensive view of the role of a 

specific gene in modulating an individual response to environmental variations. It seems that 

individual variation on the function of dopaminergic pathways, here represented by the 

variations of the predicted prefrontal DRD4 gene expression, could be one of the underlying 

biological process that explain the relationship between variations in a positive environment 

and reduced probability to develop obesogenic behaviors. This could be happening by altering 

the subjects’ reward sensitivity and decision-making behaviors at critical time points during 

development. 

https://www.sciencedirect.com/topics/neuroscience/dopaminergic
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Insights from neuroscience and GxE studies are crucial to understand the biological processes 

underlying children's behavior and susceptibility to negative/positive outcomes. This has 

implications for understanding the development of several important health outcomes, 

including growth and its deviations, as well as metabolic alterations. 

These results provide further evidence for the genetic differential susceptibility2, that accounts 

not only for how vulnerable an individual is to adversity, but also how much they will benefit 

from positive environments. It is known that children vary according to their susceptibility to 

the environmental variations, but this framework brings a biological explanation for this 

observed phenomenon, and accounts for a better characterization of the adverse as well as the 

positive environment. Indeed, this is demonstrated here, being the characterization of the 

environment in terms of positive circumstances one of the innovative aspects of this study. It 

gives strong support for the theoretical framework used, since most of the studies in the area 

focus on measures characterizing the environment in terms of adversity only18. Here we show 

that even when the starting point is a positive characterization of the environment, a 

moderation effect in agreement with the genetic differential susceptibility framework can be 

detected, in this case in relation to eating behavior. Applying this novel approach to the 

developmental neuropsychology and developmental origins of health and disease agenda 

guides the elaboration of more efficacious and cost-effective interventions, targeting individuals 

that would benefit the most from interventions. Furthermore, this broadens the scope of 

scientific evidence for interventions that focus on promotion of health rather than preventing 

diseases. 

  

https://www.sciencedirect.com/topics/neuroscience/neurosciences
https://www.sciencedirect.com/topics/neuroscience/neuropsychology
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Connecting statement to chapter IV 

In Chapter III we showed the contribution of predicted dopaminergic gene expression variation 

on moderating the impact of early environment on eating behavior. A limitation of this study is 

the use of a single gene. Complex disorders, such as psychiatric and cardiometabolic, are the 

product of many factors, including multiple genetic signals. Most chronic diseases are polygenic, 

resulting from the effect of many SNPs142, that can be mapped to many different genes. GWAS 

are designed to find multiple SNPs associated with a phenotype in a genome-wide level. A 

question that remained at this point was if PRSs derived from GWAS were suited to study GxE 

interaction effects, especially considering the limited success of studies using PRS to investigate 

GxE interaction effects in mental and physical disorders279-281. We then asked, in the next study 

described in chapter IV, “how do the genetic variants that reveal statistical associations with 

common disorders or traits compare with those that moderate the impact of environmental 

conditions?”.  
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Chapter IV. Genome-wide main effect and environment interaction-associated 

SNPs are distinct 

 

Publication information: This manuscript, in form of a brief communication, is in submission 

phase, currently being submitted to the Communications Medicine Journal. 

 
Genome-wide main effect and environment interaction-associated SNPs are distinct. 
 
Barbara Barth1,2,3, Irina Pokhvisneva2, Patricia Maidana Miguel4, André Krumel Portella2, Michael 

J Meaney2,4,5,6, Patricia Pelufo Silveira2,3,4,5 

 
1 Integrated Program in Neurosciences, McGill University, Montreal, QC, Canada. 
2 Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.  
3 Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill 
University, Montreal, QC, Canada 
4 Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.  
5 Department of Paediatrics, Yong Lin Loon School of Medicine, National University of 
Singapore, Republic of Singapore. 
6 Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, 
Republic of Singapore. 

 
 
*Corresponding author: 
Patricia Pelufo Silveira, MD, PhD 
Department of Psychiatry, Faculty of Medicine, McGill University 
Douglas Research Centre, 6875 Boulevard LaSalle, Montreal, QC, H4H 1R3, Canada. 
Phone: 514-761-6131 (ext.2776) 
Fax: 514-761-6131 
patricia.silveira@mcgill.ca 

 
  



 
 

109 
 

Abstract 

Predisposition to common adult chronic physical and mental diseases is influenced by genetics, 

environments, and the interaction between these factors. We compared single nucleotide 

polymorphisms (SNPs) associated with common chronic disorders to those that moderate the 

association with environmental risk factors. Our findings reveal that genome-wide variants with 

main effects on common chronic diseases (GWAS) show limited overlap with those underlying 

gene-environment interaction effects (GWEIS) on the same diseases and in the same 

population. 

Introduction 

Genome-Wide Association Studies (GWAS) revolutionized our understanding of the genetic 

basis of various human conditions by identifying markers associated with diseases and traits1. 

The GWAS Catalog (https://www.ebi.ac.uk/gwas/) is a public database summarizing information 

from genetic associations for numerous traits including chronic, common adult diseases such as 

type II diabetes, cardiovascular disease and psychopathology2. It provides evidence for the 

influence of genetic background on the development of these diseases. Recent analyses of 

GWAS data sets revealed both the pluripotency of genetic influences and the polygenicity of 

common disorders. 

Exposure to adverse conditions (e.g., trauma, emotional abuse, neglect, poverty) over the life 

course also influences the risk of chronic adult diseases, increasing the risk for a wide-range of 

outcomes such as major depression and other psychopathologies, ischemic heart conditions, 

and type II diabetes3-6. While these associations apply to the general population, there are 
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individual differences in susceptibility: not all individuals exposed to adversity develop any form 

of chronic adult disease7. Indeed, measures of exposure to adversity alone cannot distinguish 

between individuals with or without later problems of physical or mental health7. There is now 

considerable evidence for the importance of heritable genetic variation as a major source of 

susceptibility to environmental exposure8.  

These findings reflect the complex interplay between genetic and environmental influences in 

defining individual differences in health, well-being, and productivity over the life span. These 

findings also raise an important yet unresolved question: how do the genetic variants that 

reveal statistical associations with common disorders or traits compare with those that 

moderate the impact of environmental conditions? 

Results 

To address this issue, we conducted genome-wide association studies (GWAS) on common adult 

chronic physical and mental diseases using individuals from the UK Biobank. We aimed to 

identify the genetic background associated with the risk for these conditions. Then, in the exact 

same population, we performed genome-wide environment interaction association studies 

(GWEIS) for the same conditions. This analysis aimed to characterize the genetic variants 

associated with disease risk in response to exposure to early adversity. Finally, we investigated 

the overlap between single nucleotide polymorphisms (SNPs) identified in the GWAS and 

GWEIS. 

We considered a sample of 97,583 participants from the UK Biobank that had information 

available on genotype, early life adversity, and targeted health outcomes. Of these, 11,682 
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(11.9%) reported exposures to early adversity (reported feeling hated or not loved during 

childhood) and 85,901 (88.1%) reported no such exposures. The outcomes used in the GWAS 

and GWEIS were cardiovascular disorders (5,713 cases and 91,870 controls), non-insulin 

dependent diabetes (3,071 cases and 94,512 controls), mood disorders (2,508 cases and 95,075 

controls) and neurotic disorders (1,679 cases and 95,904 controls). See Methods section for a 

detailed description of inclusion criteria and different variables used in the study. 

Figure 7 demonstrates the overlap between statistically significant SNPs in the GWAS and 

GWEIS for the different health conditions at the p<10-3 threshold.  Only a few significant SNPs 

are commonly identified in both GWAS and GWEIS for each condition. Fisher exact tests are not 

statistically significant in each instance, meaning that the limited overlap between the two 

approaches is likely due to chance, considering the entire number of SNPs available for GWAS 

and GWEIS analyses. In sum, the genetic background associated with risk for these chronic 

conditions as a main effect (genetic risk identified in the GWAS) is distinct from the genetic 

background that modifies the association between early adversity and chronic disease (SNPs 

that respond to environmental variation identified in the GWEIS). 
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Figure 7. Investigation of the overlap between significant SNPs identified in the GWAS for 

different chronic diseases and those identified in the GWEIS (SNP-by-early adversity model) for 

the same conditions. There is no significant overlap in the SNPs identified by the two types of 

genome-wide study in the same population (Fisher exact test is non-significant in the four 

examples). 

 

A Manhattan plot of significance in the Y axis against chromosomal location in the X axis is a 

common approach for visualization of GWAS results. Each dot represents a genetic locus, and 

genome-wide significant loci lay at the top of the plot9. GWAS is based on heavily penalized p-

values from multiple testing10 and can identify statistically significant SNPs even in the presence 

of environmental heterogeneity within the sample. The main effect assumption implies that 

highly significant GWAS hits will emerge mostly despite the large variation in environmental 

exposures of the participants. These exposures are distributed in the entire sample of the 

GWAS, both in cases (individuals with the disease) and controls (individuals without the 
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disease). Moreover, the environmental exposure is randomly distributed among individuals 

carrying different genotypes (AA, AB or BB) at every SNP. The existence of a significant GxE 

interaction effect at a given SNP can modify the strength of the association between the 

number of effect alleles and the outcome, influencing the likelihood of that SNP being highly 

significant in the GWAS. This is because environmental heterogeneity, present in both cases and 

controls of the GWAS, interferes with the association between each SNP and the outcome in the 

entire sample.  A statistically significant association for a SNP with the target outcome is less 

likely to emerge if the association is dependent upon an environmental condition. In Figure 2a, 

we frame the hypothesis that variants driving GxE interactions (statistically significant SNPs in a 

GWEIS) will therefore likely be located on non-statistically significant portions of the Manhattan 

plot from a GWAS. In Figure 8b, we confirmed this hypothesis for the four chronic diseases 

analyzed in this study. 
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Figure 8. GWAS may not capture SNPs for which the effect is modified by the environment. a, 

GWAS design is based on a sample of cases and controls (individuals with or without the target 

outcome). Both groups may or may not have been exposed to environmental adversity in early 

life, and this exposure varies in type and intensity. The Manhattan plot orders the genetic 

variants in a GWAS from the most statistically significant (lower p-value) at the top, to the least 

statistically significant ones at the bottom. SNPs that remain statistically significant after the 

stringent adjustments for multiple comparisons do so despite the environmental heterogeneity 

of the sample. Therefore, SNPs for which the effect is modified by the environment, and thus 

more likely to be statistically significant in interaction models or GWEIS, are unlikely to reach the 

upper regions of the GWAS Manhattan plot, reserved for variants with lower p-values. b, 

Manhattan plots for SNPs associated with cardiovascular disease, type II diabetes, mood 

disorders and neurotic disorders in the GWAS in the same group of 97,583 UK Biobank 

participants are depicted in gray. SNPs that were statistically significant at the p<10-3 threshold 

in the GWEIS were in the GWAS Manhattan plot and identified in blue. As hypothesized in a, 

SNPs that are statistically significant in the GWEIS analysis do not reach the top portions of the 

GWAS Manhattan plot. 

 

Discussion 

To summarize, we observed that genetic variants linked to main genetic associations with 

chronic adult diseases, as identified in the GWAS, differ greatly from those for which the 

association is modified by environmental exposures, or that amplify/diminish the effects of 

early adversity on adult disease (identified in the GWEIS). These two types of analyses identify 

different risk components and should be considered accordingly. The results from this study 

help elucidate the limited success of studies using GWAS-derived polygenic scores to investigate 

gene-environment interactions in mental and physical disorders11-13. The use of GWEIS, though 

technically challenging and requiring large samples, is an alternative to identify genetic 
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moderation effects. Moreover, innovative approaches and polygenic metrics that combine 

functional features of the genome14-16 or are based on specific pathways or systems responsive 

to environmental variation17 are needed.  

Methods  

Study population 

The UK Biobank cohort is a population-based cohort consisting of 502,543 individuals aged 37-

73 recruited at 23 centers across the United Kingdom between 2006 and 2010. Participants 

provided both phenodata and genodata. Genotyping data was available for 487,409 subjects. 

We excluded participants who withdrew their consent, with inconsistencies in genetic and 

reported sex, as well as outliers for heterozygosity. Next, we excluded 147,605 participants with 

shared relatedness of up to the third degree (kinship coefficients >0.044 calculated using the 

KING software). Also, we retained only those subjects who identified themselves as “white 

British” (ID21000) and had data available on Adversity (ID20487, ID20489). We also removed 

variants with minor allele frequency <0.01, an imputation accuracy Info score < 0.1 as well as 

duplicated and ambiguous SNPs. After applying the above-mentioned criteria, there were 

97,583 individuals and 7,351,435 variants in the data set. This research was conducted using the 

UK Biobank Resource under Application Number 41975.  Approval for the UK Biobank was 

obtained by the North West Multicentre Research 580 Ethics Committee (REC reference 

11/NW/0382; www.ukbiobank.ac.uk/ethics/), the National Information Governance Board for 

Health and Social Care and the Community Health Index Advisory Group. Local Ethics approval 

was obtained from the Research Ethics Board – Mental Health and Neuroscience subcommittee 

based at the Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-
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Montréal Research Ethics Board under the number 2022-371, IUSMD 21-73. Information about 

the genotyping protocol, QC and imputation is found elsewhere 18. To determine population 

structure, principal components were computed on UK Biobank individuals. The population 

structure of the UK Biobank cohort was evaluated using fastPCA 19 algorithm for principal 

component analysis. To account for population stratification, the first forty principal 

components were included in the UK Biobank analysis. 

Reported Early adversity 

The Mental Health online follow-up included questions from the Childhood Trauma Screener 

CTS-520-22. We considered that participants were exposed to adversity if they reported feeling 

hated during childhood by a family member sometimes, often or very often ("When I was 

growing up... I felt that someone in my family hated me", ID20487) or if they reported never or 

rarely feeling loved during childhood ("When I was growing up... I felt loved", ID20489). 

Phenotypes 

The phenotypes used in the GWAS and GWEIS were obtained from the diagnoses made during 

hospital inpatient admissions according to the International Classification of Disease version 10 

(ICD-10) (ID 41270): cardiovascular disorders (I20-25 + I70 + I67.2), non-insulin dependent 

diabetes (E11), mood disorders (F30-F39) and neurotic disorders (F40-F48). 

Genetic Association analysis (GWAS and GWEIS) 

We applied linear regression analysis using SNPTEST v2.5.4-beta1 to explore the main effect of 

each SNP (in the GWAS) and the interaction effect between each SNP and the adversity (in the 
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GWEIS) on the phenotypes, adjusting for genetic sex (ID22001) and age (ID21022) at 

recruitment, genotype array (ID22000), and first ten genetic principal components (ID22009). 

GWAS model: Phenotype ~ (genotype) + genetic_sex + age + genotype_array + PC1 + PC2 + PC3 

+ PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 

GWEIS model: Phenotype ~ (genotype) * Adversity + genetic_sex_f22001_0_0 + age_f21022 + 

genotype_array + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 

Statistical analysis 

To investigate the overlap between the significant SNPs in GWAS and GWEIS for each of the four 

outcomes, we selected top SNPs (p-value < 10-3) in GWAS and GWEIS and explored their 

overlap using Fisher’s exact test.23 

Data availability 

 The raw genetic and phenotypic data that support the findings of this study are available from 

UK Biobank but restrictions apply to the availability of these data, which were used under 

license for the current study, and so are not publicly available. Summary statistics of the GWAS 

and GWEIS are available at https://github.com/SilveiraLab and the UK Biobank website.  

  

https://github.com/SilveiraLab
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Connecting statement to chapter V 

In Chapter IV we concluded that SNPs derived from GWAS do not represent genetic signals that 

moderate the effect of environment on an outcome, explaining the limitation of PRS derived 

from GWAS to detect GxE interaction effects. GWEIS would be a much more appropriate 

approach to investigate GxE effects. However, both signals (GWEIS or GWAS) are potentially 

limited in terms of representation of biological information, as in both cases the identification of 

variants is based solely on isolated statistical associations (the relationship between each SNP 

and the outcome is tested in isolation). In a complex system in biology approach, the structure, 

function, and complex interactions between the elements of a system through time, including 

macro-scale objects such as environment and genome are considered282. This view is aligned 

with the notion that genes do not operate in isolation, but rather in networks, with regulatory 

functions among them, representing associated molecular functions and coding for precise 

biological functions in specific tissues283.  

For the purposes of identifying underlying biological mechanisms involved in ELA exposure and 

development of psychiatric and cardiometabolic disorders, we adopted a genomic measure 

capable of representing biological information while also maintaining a genome-wide 

perspective. The ePGS technique is a mid ground between genome-wide associated signals and 

a hypothesis-driven genetic score tailored to represent biological information. Using genome-

wide RNA sequencing we identify genes functionally related to with our gene of interest in a 

specific tissue. This functional relationship is defined by coexpression, since genes that are co-

expressed are considered to be part of the same biological process283. This information is then 
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combined with a tissue specific GWAS for gene expression called GTEx. The ePGS scores reflect 

individual variation in the expression of a network of genes in a specific tissue. 

We explored, in Chapter VI, the comparison between ePGS and PRS scores in representing 

variations in a biological process, as well as their portability across different ancestries in several 

enrichment analysis experiments. Conclusion from this work will address the question regarding 

the most suited way to capture GxE interaction effects for the exploration of the biological 

mechanisms involved in the association between ELA exposure and psychiatric and 

cardiometabolic comorbidities.   
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Chapter V. Expression-based polygenic scores - A gene network perspective to 

capture individual differences in biological processes  
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Abstract 

Incorporating functional aspects to polygenic scores may accelerate early diagnosis and the 

discovery of therapeutic targets. Yet, existing polygenic scores simply summarize information 

from genome-wide statistical associations between SNPs and phenotypes. We developed the 

novel biologically informed, expression-based polygenic scores (ePRS or ePGS). The method 

characterizes tissue specific gene co-expression networks from genome-wide RNA sequencing 

data and incorporates this information into polygenic scores. Performance and characteristics of 

the ePGS were compared to traditional polygenic risk score (PRS). We observed that ePGS 

differs from PRS for aggregating information on; i. the relation between different genes (co-

expression); ii. the levels of tissue-specific gene expression; iii. the genetic variation of the target 

sample; iv. the tissue-specific effect size of the association between genotyping and gene 

expression; v. the portability across different ancestries. Variations in the ePGS represent 

individual variations in the expression of a tissue-specific gene co-expression network, and this 

methodology may profoundly influence the way we study human disease biology. 
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Introduction 

Genome-wide association studies (GWAS) are used to identify genetic variants statistically 

associated with a disease or trait1, by generally comparing cases and controls in thousands of 

single nucleotide polymorphisms (SNPs) across the genome. GWAS results can be applied in 

target samples for the calculation of polygenic risk scores (PRS). PRS aggregates the GWAS 

information by summing the risk alleles count weighted by the effect size for each SNP 

presented in the GWAS2,3. PRS combines the isolated small effects of multiple genetic variants in 

a single score which represents the genetic risk for a disease or a trait. However, complex 

diseases are polygenic, involving the function of diverse genes and molecules that interact with 

each other in cellular networks4. Genes do not operate in isolation but conjointly in tissue-

specific networks representing associated molecular functions, and code for precise biological 

functions in specific tissues5. These biological intricacies and functional relationships are not 

captured by traditional polygenic risk scores.  

We have created an innovative approach to genomic profiling, informed by biological 

function, that characterizes gene networks based on the levels of co-expression within a specific 

tissue6-17. A gene network involves a number of genes co-expressed within a specific tissue or 

brain region that exert a concerted effect on a target biological process. The co-expression-based 

polygenic score is devised using gene co-expression data in a specific brain region (or other  

tissue), defining the gene network that then serves as the basis for gene selection for the 

polygenic score. SNPs from these genes are functionally annotated and subjected to linkage 

disequilibrium clumping for removal of highly correlated SNPs. We then use a count function of 

the number of effect alleles at a given SNP, weighted by the effect size of the association between 
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the individual SNP and gene expression in a specified tissue (GTEx18). The sum of these values 

from the total number of SNPs provides the expression-based polygenic score (ePGS) (Figure 9, 

Supplementary Figure 1) (Supplementary information - Methods).   

The ePGS combines information on: i. the relation between different genes (co-

expression); ii. the levels of tissue-specific gene expression (bulk or single-cell genome-wide RNA-

sequencing); iii. the genetic variation of the target sample (genotyping data); iv. the tissue-specific 

effect size of the association between variants and gene expression (GTEx). Therefore, variations 

in the ePGS represent individual variations in the expression of the tissue-specific gene co-

expression network. Here we present the method of calculating and advantages of ePGSs, 

demonstrating that the ePGS represents cohesive and tissue-specific gene co-expression 

networks, and have higher trans-ancestry portability in comparison to traditional polygenic scores 

(PRS). 
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Figure 9. Schematic figure representing the key steps to calculate the ePGS. 1) Construction of a 

network of genes that is defined by a set of genes that interact in a biologically meaningful way. 

Some examples are co-expression of transcripts from animal models, as used in the current 

study, and different expression analysis. Additionally, it can be defined by protein-protein 

interaction (PPI), co-expression of transcripts from human samples (Braineac) and by weighted 

gene co-expression network analysis (WGCNA). At this step, tissue specificity can be defined by 

selecting transcript data from specific tissues of interest. The list of genes can also be filtered by 

a specific developmental time point, for example, by using publicly available databases such as 

the BrainSpan19. Furthermore, the list of genes can be filtered by other conditions and interests. 

2) Selection of all existing SNPs from the gene network was done using biomaRt package. From 

this list we retained common SNPs with a) SNPs from the study sample genotyping data and b) 

SNPs present in GTEx (which is the GWAS chosen to weight the selected SNPs in the examples 

provided here). The common SNPs represent the final SNP list that is subjected to linkage 

disequilibrium clumping (r2>0.2). 5) Weight the SNPs: the number of effect alleles (genotype 

information from the study sample) at a given SNP is multiplied by the effect size of the 

association between SNPs and the gene expression (GTEx). The sum of all weighted SNPs for 

each individual corresponds to the individual ePGS.  

 

Results 

Expression-based polygenic scores (ePGS) calculation 

The expression-based polygenic scores are constructed in several steps (Figure 9): i) 

identification of a gene co-expression network using genome-wide RNA sequencing data. The 

following are some examples of publicly available RNA sequencing databases in both rodents 

(e.g. GeneNetwork 20) and humans (e.g. BrainEAC 21) which can be used to identify gene 

networks. Researchers can use both co-expression6-16 and differential expression17 data, from 

publicly available or their own datasets, see Supplementary Figure 1. The most common 
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approach for identification of the gene networks is to anchor the gene network around a 

specific target. In this case the gene network is composed of the genes co-expressed with the 

target gene in a specific brain region or tissue. In principal, gene networks can be identified in 

many ways, and the pipeline described in this work can incorporate any form of gene co-

expression network, e.g. obtained from Weighted gene co-expression network analysis 

(WGCNA22). Since the expression of gene networks varies from region to region, the resulting 

approach informs on the relevance of both the gene network and the brain region or tissue, 

obtaining gene networks that are tissue-specific. ii) Using biomaRT R package23,24 genes are 

aligned to humans homologous genes, and all the existing SNPs from these genes are gathered; 

iii) this SNP list is combined with a list of SNPs available in the target human study sample, thus 

generating a final list of common SNPs; iv) the final SNP list is subjected to linkage 

disequilibrium clumping to inform the removal of highly correlated SNPs (r2>0.2) across 500kb 

regions; v) A count function of the number of effect allele at a given SNP is weighted by the 

effect size of the association between the SNP and a gene expression in a specific tissue (data 

from GTEx). The sum of these values from the total number of SNPs provides the ePGS score. 

In the examples provided here, the expression-based polygenic scores were created 

considering genes co-expressed with two important regulators of dopamine neurotransmission 

in the brain, the dopamine transporter gene (SLC6A3) and the dopamine receptor D2 gene 

(DRD2).  We considered co-expression levels with these genes in the prefrontal cortex (PFC), 

one of the final targets of the dopaminergic mesocorticolimbic pathway (See Table 3, please 

access https://github.com/SilveiraLab/Expression-based-polygenic-scores.-Supplemental-Table-

1 to download the table). The scores were calculated according to the protocol previously 

https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FSilveiraLab%2FExpression-based-polygenic-scores.-Supplemental-Table-1&data=05%7C01%7Cbarbara.barth%40mail.mcgill.ca%7Cef228177e2a04e9b479808dbf29bc27f%7Ccd31967152e74a68afa9fcf8f89f09ea%7C0%7C0%7C638370523017165273%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=q8xPcNp7XEJmnp4EepfcS%2BrHw9rKgrwBLKi8LSd1KXI%3D&reserved=0
https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FSilveiraLab%2FExpression-based-polygenic-scores.-Supplemental-Table-1&data=05%7C01%7Cbarbara.barth%40mail.mcgill.ca%7Cef228177e2a04e9b479808dbf29bc27f%7Ccd31967152e74a68afa9fcf8f89f09ea%7C0%7C0%7C638370523017165273%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=q8xPcNp7XEJmnp4EepfcS%2BrHw9rKgrwBLKi8LSd1KXI%3D&reserved=0
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proposed by our lab9,25,26 (see Figure 9 for schematic representation and Supplementary Figure 

1 for gene co-expression rationale). The calculations were done separately for each gene 

network of interest. The GeneNetwork (http://genenetwork.org) database was used to generate 

a co-expression matrix of genes with SLC6A3 or DRD2 genes in the PFC from RNA sequencing 

data from mice. The genes with an absolute value of co-expression correlation ≥ 0.5 with the 

gene of interest (SLC6A3 or DRD2) were retained. Using the biomaRt package each mouse gene 

was converted to a human ortholog and all the existing SNPs were gathered from these genes. 

Common SNPs were selected between the three sources (the SNPs gathered from the gene 

networks of interest, the SNPs from the GTEx project18 data in human PFC, and with the SNPs 

from the study sample (1000 Genomes Project27)) and were subjected to linkage disequilibrium 

clumping (r2<0.2) within 500kb radius. Next, the number of effect alleles at a given SNP is 

weighted using the estimated effect of the tissue specific genotype-gene expression association 

from the GTEx project18. We also accounted for the direction of the co-expression of each gene 

with SLC6A3 or DRD2 by multiplying the weight by -1 in case the expression of a gene was 

negatively correlated with the expression of the SLC6A3 or DRD2 genes. The sum of the 

weighted values from all SNPs, divided by the number of SNPs, provided the region-specific 

ePGS scores. The scores were calculated separately for each ancestry in the 1000 Genomes 

Project, which includes African (N=661), American (N=347), East Asian (N=504), European 

(N=503) and South Asian (N=489). Since the majority of donors in the GTEx project were of 

European ancestry28 (see donor information at: 

https://gtexportal.org/home/tissueSummaryPage), analyses that do not intent to show 

performance of scores across ancestries was done using 1000 Genomes Project European 

http://genenetwork.org/
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sample, for both ePGS and PRS scores (see Supplement).  The SLC6A3 network for European 

ancestry included 262 genes and 15387 SNPs, and the DRD2 network for European ancestry had 

281 genes and 12595 SNPs. 

 

Table 3. SNPs and genes included in ePRS and PRS scores. Detail description of genes and SNPs 

included in all scores described in the study. Please access 

https://github.com/SilveiraLab/Expression-based-polygenic-scores.-Supplemental-Table-1 to 

download the table.) 

 

ePGSs reflect cohesive, biologically meaningful gene networks 

We then compared the gene network structure represented by same size ePGS and PRS. To 

achieve that, we mined gene co-expression information from GeneMANIA29,30 

(http://genemania.org) to identify and quantify connections between the genes from each 

score. We also used the Centiscape tool31 in Cytoscape®32, to estimate two centrality measures 

of the networks: degree, which is the number of connections between each node (each gene) 

and betweenesss, that estimates the number of times a node lies on the shortest path between 

other nodes. Figure 10a depicts the gene network for SLC6A3 PFC ePGS (number of genes = 

262), with a dense connection pattern between genes. Similar-sized PRSs for broad depression 

resulted in less dense networks, depicted in Figure 10b (number of genes = 281). When 

comparing the total degree between genes in the different scores using a one-way ANOVA, 

results show that the SLC6A3 PFC ePGS derived gene network has significantly more total 

connections than the broad depression PRS (Figure 10c). The same results were found for the 

https://github.com/SilveiraLab/Expression-based-polygenic-scores.-Supplemental-Table-1
http://genemania.org/


 
 

133 
 

DRD2 PFC ePGS (265 genes, Supplementary Figure 2a) and its comparable size broad 

depression PRS (Supplementary Figure 2b and 2c). 
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Figure 10. Network visualization comparison of SLC6A3 derived ePGS and comparable size 

PRSes. a. SLC6A3 PFC ePGS gene network; b. Broad depression PRS gene network comparable 

size with SLC6A3 PFC ePGS; c. One-way ANOVA of total connectivity (total degree values) for 

ePGS and PRS comparable size. Gene co-expression interactions were obtained from 

GeneMANIA (http://genemania.org) and used to generate the networks with Cytoscape® 

application, which specifies amount of interactions between pairs of genes based on their co-

expression, represented by the number of edges (gray lines) in the networks. The Centiscape 

plug-in in Cytoscape® was used to calculate the centrality of the genes in each network, defining 

the degree (number of connections with other nodes, represented by node size, in which bigger 

nodes indicates more connections with other nodes) and betweenness (number of times a node 

lies on the shortest path between other nodes, represented by node’s color in which darker 

colors indicate higher betweenness in the networks) for the components of the networks.   

http://genemania.org/
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It is important to highlight main conceptual differences between ePGS and PRS that can 

explain dissimilarities in total connectivity. PRS are built selecting SNPs from a GWAS based on 

their genome-wide significance level, and for that reason both intron and exon DNA sequences 

are considered. Introns are non-coding DNA sequences within the genome, and therefore are 

not mapped to genes. Introns embody 25% of the human genome and are 4 to 5 times the size 

of exons33. In fact, a large number of significant SNPs from GWAS are in intronic and intergenic 

regions34,35. On the other hand, the ePGS is built from gene co-expression information, and 

therefore considers only protein-coding DNA sequences, the exons, resulting in every SNPs 

being mapped to a gene. Moreover, the significantly lower number of connections between 

genes in PRS compared to ePGS suggests that the traditional PRS method has a less consistent 

relationship to a biological process. ePGS, on the other hand, maps into a cohesive and dense 

group of genes that interact with each other in a cellular network, representing associated 

molecular functions as described below. 

 

ePGS and PRS represent different biological mechanisms 

Because of the differences in SNP selection between ePGS (from a gene co-expression network 

identified in RNA sequencing data) and PRS (most statistically significant SNPs from a GWAS), it is 

expected that the two types of scores will differ in the biological mechanisms that they represent. 

We compared PRS and ePGS enrichment analyses using MetaCore™ (Clarivate Analytics, version 

21.4) (https://portal.genego.com) and the function “compare experiments”. We identified a 

significant common gene ontology (GO) term and exported unique elements from each network 

https://portal.genego.com/
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that are significantly associated to that GO term (FDR < 0.05) for comparison purposes. Networks 

were constructed for direct interactions between selected objects and filtered for brain tissue 

and human species. 

 It is noteworthy that “neuron differentiation (FDR<0.001)” was a common GO process 

associated with genes from both PRSs and ePGS genes.  However, this finding was due to specific 

element networks in each score (Figure 11). In ePGS, “neuron differentiation” was mapped to 

elements such as “Nestin”, which is present in neural stem and progenitor cells and directly 

involved in differentiation process36. In PRS, “neuron differentiation” was mapped to elements 

such as “olfactory receptor” and less connections are seen between elements. Taken together, 

the findings depicted in Figure 11 suggest that while both ePGS and PRSs are linked to processes 

related to neuron projection development, these relationships occur via unique and specific 

mechanisms. The unique elements related to the ePGS score are richer and more connected, 

suggesting that variations in the ePGS score represent variation on these specific biological 

processes. On the other hand, the PRS score is less meaningfully linked to biological mechanisms.   
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Figure 11. Unique elements for ‘neuron differentiation’, a common gene ontology enrichment 

analysis term for both ePGS and PRS. Gene ontology (GO) enrichment analysis was performed 

using Metacore®. The function “compare experiments” was used to obtain common significant 

(FDR <0.05) GO terms between the gene networks while also identifying the unique elements 

from each network that are significantly associated to the GO term. Networks were plotted in 

MetaCore® using the unique elements of each network for the GO enrichment term selected. 

Figures a, b, c, and d show visual comparisons of the different contributions of ePGS and PRS to 

the GO term. The details of the legends of the network’s figures can be found in 

https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf 

 

ePGS genes represent co-expression networks that are preserved across species 

Since our example ePGSs were originally informed by co-expression networks identified in mice 

(Supplementary information - Methods), we aimed at exploring if ePGS genes would also 

represent co-expression networks in humans, and compare brain co-expression patterns 

between ePGS genes and traditional PRS genes. To achieve that, we used PFC gene expression 

data in human post-mortem brain tissue from the BrainSpan database (from embryonic to 

adulthood, N= 42)19 and analyzed the correlation between the expression levels on the PFC for 

the ePGS and PRS gene lists. Our results show that ePGS gene networks have a greater PFC gene 

co-expression percentage in humans in comparison to PRS gene lists (Figure 12). For the SLC6A3 

PFC ePGS, 40% of the gene pairs had an absolute expression correlation r>=0.5, and 80% of the 

correlations were significant at P<0.05. However, when using the genes of a traditional PRS for 

broad depression, a much lower percentage of co-expression was observed (17% of the gene 

pairs had an absolute expression correlation r>= 0.5, and only 62% of the correlations were 

significant at P<0.05). The same comparisons were done for the DRD2 PFC ePGS and its 

https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf
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respective comparable size broad depression PRS, and more robust co-expression patterns were 

consistently observed in ePGS in comparison to PRSs for broad depression. The results from 

these examples indicate that ePGSs informed by mice RNA-sequencing data represent brain 

gene co-expression networks also in humans, and these gene networks are much more tightly 

connected than those represented by genes that constitute the traditional PRS. This 

demonstrates a successful cross species translation of genome functional annotation into the 

ePGS scores. 
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Figure 12. Correlation matrix of gene expression for ePGS gene networks and PRS gene networks 

based on BrainSpan human post-mortem brain tissue (from embryonic to adulthood, N=42). a. 

SLC6A3 PFC ePGS gene network: 40% of the gene correlations was above 0.5 and 80% of the 

correlations are significant at P<0.05; b. Broad depression PRS gene network comparable size 

with the SLC6A3 PFC ePGS: 17% of the gene correlations above 0.5; 62% correlations significant 

at P<0.05; c. DRD2 PFC ePGS gene network: 43% of gene correlations above 0.5 and 81% of 

correlations significant at P<0.05; d. Broad depression PRS gene network comparable size with 

the DRD2 PFC ePGS: 17% of the gene correlations above 0.5; 62% correlations significant at 

P<0.05. 

 

ePGS reflects tissue specific co-expression networks 

The ePGS calculation is informed by RNA sequencing data, which quantifies genome-wide 

tissue-specific gene expression levels (Supplementary Figure 1). Therefore, the ePGS considers: 

a) the gene co-expression data in a specific tissue and uses it to identify the gene network that 

will serve as the base for the ePGS calculation; b) the tissue specific genotype-gene expression 

association from GTEx to weight the ePGS SNPs. These features assign layers of information to 

the ePGS that the PRS does not have, namely a) the relationships between the genes included in 

the score and b) the degree of association between SNPs and gene expression. PRSs are purely 

based on the genotype information, which is the same across different cells and tissue types. 

While both PRS and ePGS summarize the small effects of multiple SNPs using the genotype 

information, the use of tissue-specific gene expression data in the ePGS technique transforms 

the polygenic score into a functional genomic tissue-specific measure. 

To exemplify this characteristic of the ePGS, we compared two gene networks built on 

the same gene as the initial anchor, SLC6A3, in two different brain regions: PFC and striatum. 
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Please note the differences in visualization of the SLC6A3 PFC (total number of genes = 262) and 

SLC6A3 Striatum (total number of genes = 346) networks (Figure 10a and Supplementary Figure 

3a respectively). Both networks are highly connected representing a cohesive gene network. By 

computing gene overlap we identified 53 genes in common between the networks 

(Supplementary Figure 3b), which represents a small percentage of the total number of genes 

from both regions (21% for SLC6A3 PFC ePGS and 15% for SLC6A3 Striatum ePGS). This 

highlights that the networks are indeed tissue/region specific, even when based on the same 

initial gene as the anchor, which demonstrates the ability of the ePGS to represent tissue-

specific information. 

 

ePGS interacts with environmental variation 

In a GWAS, the most significant SNPs represent genetic variants that are strongly 

associated with a condition or trait, independent or despite the environmental variation 

existent in the GWAS sample. It is therefore no surprise that investigations of gene-environment 

interactions using polygenic scores derived from GWASs show modest success 37 38 39. SNPs that 

moderate the effect of the environment will hardly be significant as main effects in a GWAS, 

considering the rigorous GWAS-level of statistical significance for main effects.  

Intriguingly, studies published by our laboratory have demonstrated an enhanced capacity 

of the ePGS to identify gene-environment interactions, using multiple measures of environmental 

quality and exposure in different cohorts. For example, De Lima et al (2022) described that an 

prefrontal-based leptin receptor ePGS moderated the effect of postnatal adversity on child eating 
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behaviour40. Arcego et al (2023) demonstrated that an ePGS based on macaques’ hippocampal 

RNA sequencing (gene networks responsive to glucocorticoid injection) moderates the impact of 

early life adversity on mental health outcomes in adults41. Dalmaz et al (2021) showed that a 

network of genes co-expressed with the synaptic protein VAMP1 gene in the PFC moderates the 

influence of the early environment on cognitive function in children42. Miguel et al (2019) found 

a significant association between history of exposure to perinatal hypoxic ischemic conditions and 

children’s cognitive flexibility, but this was moderated by the PFC SLC6A3 ePGS26. More recently, 

we identified an environmentally responsive (EnvResp) gene network by selecting genes 

commonly regulated in the ventral dentate gyrus of mice exposed to stressful or supportive 

environments, and this informed the calculation of a polygenic score in different human cohorts. 

Interaction between the EnvResp polygenic score and history of early adversity exposure on 

anxiety/depression outcomes were statistically significant in more than 60,000 human 

participants at different ages. As adversity increased, there was a higher risk for psychopathology 

only among individuals with a high EnvResp score. However, no main effect of the score was 

detected, confirming the ability of the ePGS to identify gene-environment interactions and 

individual variation in mental health outcomes in response to environmental change17. 

This enhanced capacity of the ePGS to detect situations of gene-environment interplay is 

likely due to the fact that the gene networks queried for identification of co-expression are 

highly sensitive or responsive to the environment, as in the examples above. Following our 

rationale that SNPs that moderate the effect of the environment will hardly be significant as 

main effects in a GWAS, we hypothesized that SNPs composing the ePGS would be positioned at 

the bottom of a Manhattan plot of a GWAS, and therefore not statistically significant when 
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mapped into this existing GWAS. Indeed, Figure 13 shows a Manhattan plot for the broad 

depression GWAS43. SNPs in green are the ones included in the SLC6A3 PFC ePGS, confirming 

that the variants included in the ePGS are below the GWAS significance level. This may explain 

why the ePGS may be more suited to identify GxE interaction effects44.  

 

Figure 13. Manhattan plot for Howard (2019) broad depression GWAS results and SLC6A3 PFC 

ePGS SNPs. Gray and black dots represent -log10(p) from the broad depression GWAS. Green 

dots represent -log10(p) from GTEx for the SNPs included in SLC6A3 PFC ePGS. It demonstrates 

that all SNPs from the ePGS are not statistically significant at the genome-wide level.  

 

ePGS has high trans-ancestry portability of genetic data 

Allele frequency varies across ancestries45 and the lack of proper diverse populations 

representation in current genetic association studies hampers the translation of findings into 
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clinical applications46. Efforts are being made to identify genetic variations common and unique 

to different populations, such as the 1000 Genomes Project that identified novel SNPs47 and the 

HapMap consortium48, but the same level of precision currently available for European ancestry 

is still not uniformly available for other ancestries49. In PRS, the SNP list is derived from the 

GWAS and the same variants are included in the calculation of the polygenic score in diverse 

populations, which makes PRS trans-ancestry portability extremely unreliable46,50,51. On the 

other hand, as the ePGS calculation always starts from the gene list, the SNPs included in the 

same ePGS may differ across ancestries but will still represent the same gene list and the same 

coexpression network.   

The use of genetic scores that perform functional annotation or that consider genes as 

the first level of information, instead of SNPs, may have advantages for trans-ancestry 

portability of genetic data52,53, as is the case of the ePGS method. Indeed, we have seen high 

trans-ancestry portability and replicability of findings using ePGS in previous studies from our 

laboratory9,15-17,26,42. To illustrate the differences between the traditional PRS and the ePGS in 

terms of score composition and trans-ancestry portability, we calculated PRSs of comparable 

size to ePGS (SLC6A3 or DRD2) in the 1000 Genomes Project dataset. The scores were calculated 

separately for each ancestry in order to account for ancestry-specific allele frequencies and 

linkage disequilibrium. Ancestries include African, American, East Asian, European and South 

Asian (Supplementary information - Methods). The same number of SNPs present in each ePGS 

for each ancestry was selected from the most significant variants described in the reference 

GWAS (broad depression43), and subjected to linkage disequilibrium clumping (r2<0.2)  for 

calculation of PRS separately in each ancestry. Next, the SNPs derived from the calculated PRSs 
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for each ancestry were assigned to genes, and were compared with ePGSs gene list. Figure 14 

shows the gene overlap between the five different ancestries for each ePGS and their respective 

comparable size PRS. The ePGS has many more common genes between different ancestries in 

comparison to PRS scores. These results could explain the good performance in terms of 

replication seen in studies using the ePGS method9,15-17,26,42 since ePGS preserves more 

information (number of genes) across ancestries in comparison to PRS. We also compared the 

score distribution density across ancestries (Supplementary Figure 4). Overall, the ePGS has a 

greater density overlap between ancestries than the PRS.  
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Figure 14. Venn diagrams of gene overlap for ePGSes and PRSes were calculated based on the 

ePGS and PRS in the 1000 Genomes Project dataset. Gene overlaps between the five different 

ancestries for SLC6A3 and DRD2 ePGS and their respective comparable size PRS. It demonstrates 

that the ePGS have more common genes between different ancestries in comparison to PRS 

scores.  

 

Future steps and perspectives in ePGS research 
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The ePGS calculation is initiated by the definition of a biologically relevant gene network, 

and this can be done in multiple ways. The examples provided here utilized co-expression data 

from mice anchored in specific genes for the identification of co-expression networks (SLC6A3 

or DRD2). However, other types of data and levels of information can also be used to inform the 

calculation of ePGS, such as protein-protein interactions, DNA methylation data, or differently 

expressed gene lists17. A promising venue currently being used in our lab consist of utilizing 

weighted gene correlation network analyses (WGCNA)54 in RNA sequencing data to identify co-

expression gene networks significantly associated with an exposure or condition in controlled 

animal model experiments or in postmortem human tissue, in a data driven manner, thus 

completely abandoning the hypothesis-driven approach. This perspective is well aligned with 

the complex system in biology paradigm, and it is an anticipated improvement of the method. 

Arcego et al (2023) is a demonstration of this improvement as the authors used WGCNA to 

identify a hippocampal network of genes responsive to glucocorticoid treatment in macaques 

and then calculated an ePGS in humans based on this identified gene network41. 

After the selection of the gene network, the list of genes can be filtered by diverse 

parameters. Adding filters allows the integration of additional information such as the 

developmental period, by filtering the gene selection for genes upregulated during a certain 

stage using Brainspan9,19,55. Chromosome conformation information can also be added56, by 

using data from high-throughput sequencing (Hi-C) and assigning noncoding SNPs to their 

cognate genes based on long-range interactions using H-MAGMA57 input files that describe 

gene–SNP pairs based on brain Hi-C data58. FIMO59 can also be used to include variants affecting 

transcription factor binding motifs from the genes of the network. Finally, candidate regulatory 
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variants can be added by mapping available SNPs on promoter regions (up to 4kb upstream of 

the transcription start site) of the genes that compose the network. Lastly, the weight attributed 

to each SNP in the ePGS calculation can be derived from different GWASs. In the current 

examples, a GWAS for gene expression (GTEx18) was used, thus reflecting individual variations in 

gene expression of the network in the specific brain region. All these parameters can be 

accommodated to contemplate different research questions. Finally, adaptation of the ePGS 

technique for the use of single-cell and spatial transcriptomics will add still increased resolution 

and specificity to the polygenic scores. 

Discussion 

Aligned with the idea of incorporating functional genomics information to PRS 

technology, we have developed the expression-based polygenic score (ePGS). The ePGS reflects 

the combined biological function of gene networks. Here we demonstrated the consequences 

of rethinking SNP selection and incorporating other levels of information to polygenic scores, 

such as gene expression and tissue-specific data. Our ePGS reflects cohesive gene networks in 

comparison to PRS-based gene lists, demonstrating a higher level of co-expression between the 

genes in ePGS versus PRS. This difference is mainly explained by ePGS considering only exon 

DNA sequences and being built from gene co-expression information. It is important to highlight 

that since genes do not work in isolation, but rather in networks5, the use of a gene network 

perspective has the potential to better reflect biological functions associated with these genes. 

We demonstrated that the ePGS and PRS reflect different biological processes, when comparing 

unique elements that are related to a common gene ontology term. The ePGS unique elements 

are richer and more connected in comparison to PRS unique elements, suggesting that 
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variations in the ePGS score will represent variation on a specific biological process. We also 

demonstrated that ePGS-based gene networks represent tissue-specific co-expression networks 

in humans, confirming the biological relevance of our ePGS. The possibility of reflecting 

functional genomics information in a tissue-specific manner is one of the strengths of the ePGS, 

demonstrated here by the uniqueness of the SLC6A3 PFC gene network in comparison to the 

SLC6A3 Striatum gene network. As a consequence of these above-mentioned features, the ePGS 

is suited to test gene by environment effects, evidenced by previous papers published by our lab 

9,16,26,41,42. The content of ePGS on different ancestries seems consistent when comparing the 

ePGS and PRS score gene overlap. This is expected since the use of genome functional 

annotation has the power to improve the prediction of complex traits within and between 

ancestries60 and the incorporation of functional markers, such as gene expression, improves 

trans-ancestry portability of genomic data61. The ePGS uses genome functional annotation in 

two steps of its calculation; in the co-expression basis and by weighing the SNPs using GTEx 

genotype-gene expression association.   

An advantage of using a gene network approach like the ePGS is the possibility of 

integrating other data modalities also represented by networks or with high dimensionality. For 

example, the integration of genetic and neuroimage information by parallel independent 

component analysis (pICA), which estimates the maximum independent components within 

each data modality separately while also maximizing the association between modalities using 

an entropy term based on information theory 62. Studies using pICA and the ePGS have found 

interesting results linking both data modalities and informing on the neuroanatomical basis of 

the effects of variations in the gene network expression. 9,26,42,63  
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In conclusion, the ePGS method is purely based on biological, co-expression data and no 

information on association with outcomes of interest (e.g. GWAS for diseases) is used. When 

compared to conventional PRSs, ePGSs represent more cohesive and tissue-specific biological 

processes. The ePGS performs much better than PRS in gene by environment interaction models 

and across ancestries, suggesting that our method is indeed superior in capturing individual 

biological variation in response to environmental changes 7,17, and may profoundly influence the 

way we study human disease biology. 



 
 

151 
 

Supplementary Information 

Supplementary Figures 
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Supplementary Figure 1. Schematic overview of RNA sequencing process: from tissue collection 

to data analysis. Upper panel - a tissue of interest in chosen and collected, RNA extraction, 

library preparation and then whole genome RNA sequencing are performed. The process of 

whole genome RNA sequencing consists of identifying the amount of mRNA in each mapped 

gene, in each chromosome, in the whole genome. As the result, the gene read counts are 

obtained for each sample and for all genes mapped in the whole genome sequencing. These 

units of transcript expression are then normalized, by transforming in reads per kilo base per 

million mapped reads (RPKM) to account for variations in genes’ length. RPKM can be analyzed 

in several ways. Here are represented two possible analyses. On the right is the gene differential 

expression analysis which compares expression of a single gene between the groups to identify 

the genes that are significantly different between the groups in terms of expression 

(differentially expressed genes, DEG). On the left is a correlation matrix between all genes that 

were sequenced, which will inform which genes are co-expressed together, meaning that the 

expression of these genes is varying together, both in a positive or negative way. Co-expression, 

in the present study, is used as an indicative of how much these genes are working together, 

thus possibly in the same biological process. 
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Supplementary Figure 2. Network visualization comparison of DRD2 derived ePGS and 

comparable size PRSes. a. DRD2 PFC ePGS gene network; b. broad depression PRS gene network 

comparable size with DRD2 PFC ePGS; c. one-way ANOVA results of total connectivity 

comparison (total degree values) for DRD2 ePGS and PRS comparable size. Gene co-expression 

interactions were obtained from GeneMANIA (http://genemania.org) and used to generate the 

networks with Cytoscape® application, which specifies amount of interactions between pairs of 

genes based on their co-expression, represented by the number of edges (gray lines) in the 

networks. The Centiscape plug-in in Cytoscape® was used to calculate the centrality of the 

genes in each network, defining the degree (number of connections with other nodes, 

represented by node size, in which bigger nodes indicates more connections with other nodes) 

and betweenness (number of times a node lies on the shortest path between other nodes, 

represented by node’s color in which darker colors indicate higher betweenness in the 

networks) for the components of the networks.  

  

http://genemania.org/
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Supplementary Figure 3. Visualization for the SLC6A3 Striatum ePGS gene network. a. SLC6A3 

Striatum ePGS coexpresion gene network. Gene co-expression interactions were obtained from 

GeneMANIA (http://genemania.org) and used to generate the networks with Cytoscape® 

application, which specifies the amount of interactions between pairs of genes based on their 

co-expression, represented by the number of edges (gray lines) in the networks. The CentiScaPe 

plug-in31 in Cytoscape® was used to calculate the centrality of the genes in each network, 

defining the degree (number of connections with other nodes, represented by node size, in 

which bigger nodes indicates more connections with other nodes) and betweenness (number of 

times a node lies on the shortest path between other nodes, represented by node’s color, in 

which darker colors indicate higher betweenness in the networks) for the components of the 

networks; b. Gene overlap between SLC6A3 PFC ePGS gene list and SLC6A3 Striatum ePGS gene 

list. 
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Supplementary Figure 4. ePGS and PRS score distribution across 5 different ancestries. Scores 

for each ancestry were z-transformed and distributions were plotted and then compared. a. 

ePGS SLC6A3 PFC score; b. Broad depression PRS of comparable size with ePGS SLC6A3 PFC 

score; c. ePGS DRD2 PFC score; and d. broad depression PRS of comparable size with ePGS 

DRD2 PFC score.   
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Supplementary Methods 

1000 Genomes Project genotyping 

1000 Genomes Project27 includes the data for 2504 unrelated participants with ancestry from 

26 populations in Africa, Asia, Europe, South Asia and the Americas. All individuals were 

sequenced using both whole-genome sequencing (mean depth = 7.4×) and targeted exome 

sequencing (mean depth = 65.7×), and also genotyped using high-density SNP microarrays. A 

detailed description of genotyping and processing pipeline can be found in [The 1000 Genomes 

Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015). 

https://doi.org/10.1038/nature15393]. 

 

PRS calculation – 1000 Genomes Project 

We generated polygenic scores using our accelerated pipeline PRSoS 

(https://github.com/MeaneyLab/PRSoS) 64, for each individual in each ancestry of the 1000 

Genomes Project. The PRS were generated using broad depression GWAS43 considering the 

same number of top SNPs as in the corresponding ePGS PFC SLC6A3 (12147 SNPs) or ePGS PFC 

DRD2 (10481 SNPs). We used the PRS for broad depression since dysfunction of the dopamine 

system is associated with depression symptoms65. First, we selected top SNPs from broad GWAS 

(12147 or 10481). After selection, SNPs were subjected to linkage disequilibrium clumping 

(r2>0.2 within 500 kb radius from an index variant) separately for each ancestry. Lastly, the PRS 

was calculated in each ancestry as a weighted sum of the SNPs remained after the clumping 

procedure. The comparisons then were made between the ePGS and the PRS for broad 

https://github.com/MeaneyLab/PRSoS
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depression of comparable size to corresponding ePGS: 1) ePGS PFC SLC6A3 was compared to 

broad depression PRS that was calculated based on top 12147 SNPs; 2) ePGS PFC DRD2 was 

compared to broad depression PRS calculated based on top 10481 SNPs. The number of SNPs to 

select in GWAS was chosen based on the number of SNPs included in ePGS scores (SLC6A3 and 

DRD2) calculated for all ancestries (Table 3, Please access 

https://github.com/SilveiraLab/Expression-based-polygenic-scores.-Supplemental-Table-1 to 

download the table.).  

 

ePGS and PRS networks properties 

The topological network structures for the genes that composed the SLC6A3 PFC ePGS, DRD2 

PFC ePGS, PRS MDD comparable size with SLC6A3 PFC ePGS and PRS MDD comparable size with 

DRD2 PFC ePGS were visualized using Cytoscape® software66. To obtain gene by gene co-

expression quantification we utilized GeneMANIA app (http://genemania.org)29, selecting only 

connections based on co-expression. The GeneMANIA database (Application version: 

3.6.0) includes curated information on genes coexpression from published papers. Cytoscape 

uses this information to plot the networks, giving a visual representation of the quantification of 

connections between the genes based in coexpression from GeneMANIA. It is important to 

notice that studies sourced by GeneMANIA are not tissue-specific. Also, the sources used 

by GeneNetwork and GeneMANIA might not be identical, leading to dissimilarities in gene 

coexpression. Then, using the Centiscape app, inside Cytoscape, we calculated the total degree 

centrality measure for each gene, which reflects the number of connections a gene has with 

https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FSilveiraLab%2FExpression-based-polygenic-scores.-Supplemental-Table-1&data=05%7C01%7Cbarbara.barth%40mail.mcgill.ca%7Cef228177e2a04e9b479808dbf29bc27f%7Ccd31967152e74a68afa9fcf8f89f09ea%7C0%7C0%7C638370523017165273%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=q8xPcNp7XEJmnp4EepfcS%2BrHw9rKgrwBLKi8LSd1KXI%3D&reserved=0
http://genemania.org/
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other genes. One-way ANOVA was used to verify if the difference in mean total connectivity 

between the networks (based on ePGS and PRS) is significant (Figure 11c and Figure 12c). 

Centiscape app was also used to calculate another centrality measure, betweenness (number of 

times a node lies on the shortest path between other nodes). Both centrality measures were 

incorporated in the network visualization, the degree is represented by node size, in which 

bigger nodes indicate a higher degree in the network visualization and betweenness is 

represented by node color, in which darker colors indicate higher betweenness in the networks. 

A control gene network was constructed using the same steps described above to visually 

compare the network properties with the ones described in this study in Figure 11a and Figure 

12a. The control gene network was based on a list of genes co-expressed with SLC6A3 gene in 

the striatum (number of genes = 346). 

 

Biological functions associated with ePGS and PRS networks 

To evaluate if the ePGS and PRS share common biological processes, we performed functional 

enrichment analysis for the genes that compose each network, considering a false discovery 

rate (FDR) adjusted p-value <0.05 to select significant gene ontology (GO) terms. The genes that 

compose each network were uploaded into MetaCore® software from Clarivate Analytics 

(https://portal.genego.com). The function “compare experiments” in MetaCore® was utilized to 

obtain common and unique enrichment terms between the two gene networks. We selected a 

significant common GO term present in both SLC6A3 and DRD2 comparisons, the term neuron 

differentiation. Then we built direct interaction networks inside MetaCore® using the unique 

https://portal.genego.com)/
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elements of each network for the GO enrichment term selected to visually compare the 

different contributions of ePGS and PRS to the term.  

 

Assessment of gene expression patterns across human development for the ePGS and PRS 

associated genes 

We tested if the genes from ePGS and PRS have a notable pattern of gene expression in 

humans, especially for the ePGS since the co-expression data was generated from animal 

models. For that, we used human post-mortem gene expression samples from BrainSpan 

(http://brainspan.org) 67 and selected gene expression data from the genes comprising our 

ePGS or PRS networks. We then analyzed the correlation between expression levels for these 

genes in the prefrontal cortex (including the ventrolateral prefrontal cortex, orbital frontal 

cortex, medial prefrontal cortex, dorsolateral prefrontal cortex) from BrainSpan (from 

embryonic to adulthood, N= 42). Visualization of co-expression correlation matrix for each gene 

list was computed in R software (https://www.r-project.org) using the “cor” function and 

plotting it as a correlation matrix. Next, we computed the percentage of pairs of genes with an 

absolute value of expression correlation higher than 0.5 (considered a high correlation for gene 

expression) and the correlations significant at p-value <0.05, to numeric see the differences of 

co-expression across the different gene lists.  

 

Comparison between ancestries 

http://brainspan.org/
https://www.r-project.org/
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To compare the traditional PRS and the ePGS in terms of scores’ composition and trans-ancestry 

portability we calculated the scores split by ancestry in the 1000 Genomes Project dataset (see 

Methods sections “Expression-based polygenic scores (ePGS or ePGS) calculation” and “PRS 

calculation – 1000 Genomes Project” and Results section) and compared the PRS and ePGS for 

each ancestry group in two ways. 1) SNP included in PRS and ePGS were converted to genes 

using the biomaRt R package23,24, and we compared the sets of genes between PRS and ePGS 

using the VennDiagram R package68. The percentage of overlap between the PRS and ePGS 

distributions was calculated as the number of genes in the overlap divided by the total number 

of unique genes included in PRS and ePGS. 2) We also compared the score distributions across 

ancestries. For that, we approximated distributions of the PRS and ePGS with kernel density and 

calculated the overlap as the proportion of the area that is overlapped to the total area. 
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Connection statement to chapter VI 

In Chapter V we suggest that ePGS is better suited to represent meaningful biological 

information and possibly GxE interaction effects in comparison to traditional PRS. In Chapter VI, 

we applied the ePGS technique to investigate the main objective of the thesis; to explore the 

GxE interaction effect involved in the susceptibility to develop psychiatric and cardiometabolic 

comorbidities and to elucidate possible biological mechanisms underlying these comorbidities. 

The hypothesis proposing a common underlying biological mechanism between psychiatric and 

cardiometabolic disorders is based on the compilation of various pieces of evidence. First, 

psychiatric and cardiometabolic disorders share a common risk factor: ELA exposure. There is a 

well-known connection between early rearing conditions and the development of psychiatric 

and cardiometabolic disorders later in life. This phenomena is aligned with the developmental 

origins of health and disease (DOHaD) hypothesis, which suggests that perinatal signals affect 

the individuals’ predisposition to specific health outcomes, thus shaping individual differences 

in the risk for chronic illnesses across the lifespan284,285. Second, there is a high incidence of 

comorbidity between psychiatric and cardiometabolic disorders, and they are suggested to be 

bidirectionally linked, in that the cardiometabolic disorders increase the risk of psychiatric 

disorders and vice versa286,287. Third, pleiotropy – defined by one gene affecting multiple 

phenotypes and suggestive of shared genetic architecture288 – is abundant among many 

complex disorders289, including complex psychiatric diseases and metabolic traits 290. The 

biological mechanisms linking these two types of disorders are still unknown, but dopaminergic 

alterations have been suggested as a potential link261,262.  
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Aiming at exploring gene expression variation in dopaminergic-related processes and its 

contribution to the GxE interplay involved in the development and maintenance of psychiatric 

and cardiometabolic disorders, we identified a network of genes coexpressed with the SLC6A3 

gene, an important player in the regulation of DA levels in the synapse. The SLC6A3 gene 

encodes the dopamine transporter (DAT) protein that mediates sodium- and chloride-

dependent dopamine reuptake. DAT is responsible for transporting DA out of the synaptic cleft 

back into the presynaptic neuron (cytosol). DA reuptake mediated by DAT is the main 

mechanism of DA clearance from the synapse, thus playing a fundamental role in controlling 

spatial and temporal dynamics of DA neurotransmission291. DAT is found in areas in which there 

are dopaminergic innervations, including the mesocorticolimbic pathway292. The striatum is 

involved in functions related to decision-making and reward-processing and is part of the 

corticobasal ganglia circuitry293. DA transmission in the striatum has been linked to addiction293 

a disorder marked by altered reward processing. Striatal dopaminergic DAT acts on DA axons to 

spatially and temporally regulate DA signaling in the striatum294.  

The environmental exposure used in Chapter VI is birth weight since previous evidence from the 

Silveira lab has shown that IUGR and subsequent LBW are related to altered dopaminergic 

signaling in the ventral striatum241,242. IUGR is known to be associated with metabolic 

alterations such as higher adult total cholesterol295 and increased adiposity296 and the catch-up 

growth commonly associated with LBW is a risk for cardiovascular disease297,298. IUGR and LBW 

are also implicated in behavioural alterations known to predict psychopathologies, such as 

increased impulsivity239 and anxiety299,300.  
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Birth weight and a striatal network of genes coexpressed with the DAT1 are therefore 

interesting factors to investigate GxE processes involved in the risk for psychiatric and 

cardiometabolic disorders. 
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Chapter. VI. Striatum DAT1 ePGS moderates the effect of early adversity on the 

risk for adult psychiatric and cardiometabolic comorbidity 
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Abstract 

Cardiometabolic and psychiatric disorders often co-exist and share common early life risk 

factors, such as low birth weight. However, the biological pathways linking early adversity to 

adult cardiometabolic/psychiatric comorbidity remain unknown. Dopamine (DA) 

neurotransmission in the striatum is sensitive to early adversity and influences the development 

of both cardiometabolic and psychiatric diseases. Here we show that a co-expression-based 

polygenic score (ePGS) reflecting individual variations in the expression of the striatal dopamine 

transporter gene (SLC6A3) network significantly interacts with birth weight to predict psychiatric 

and cardiometabolic comorbidities in both adults (UK Biobank, N= 225,972) and adolescents 

(ALSPAC, N= 1188). Decreased birth weight is associated with an increased risk for psychiatric 

and cardiometabolic comorbidities, but the effect is dependent on a striatal SLC6A3 ePGS, that 

reflects individual variation in gene expression of genes coexpressed with the SLC6A3 gene in 

the striatum. Neuroanatomical analyses revealed that SNPs from the striatum SLC6A3 ePGS 

were significantly associated with prefrontal cortex gray matter density, suggesting a 

neuroanatomical basis for the link between early adversity and psychiatric and cardiometabolic 

comorbidity. Our study reveals that psychiatric and cardiometabolic diseases share common 

developmental pathways and underlying neurobiological mechanisms that includes dopamine 

signaling in the prefrontal cortex. 

 

Introduction 

The co-occurrence of more than one chronic disease1 has high prevalence in primary care 

settings2, inflating health care utilization and functional disability3. Psychiatric and 
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cardiometabolic disorders, which are highly comorbid4,5, rank amongst the leading global causes 

of disability-adjusted life years worldwide6,7. Prospective studies show a bi-directional 

relationship between psychiatric and cardiometabolic conditions8. Meta-analytic evidence from 

longitudinal studies indicates that diabetes increases the risk for depression by approximately 

25% and that depression increases the risk for type 2 diabetes by 40-60%7,9. The odds for 

depression also increase with one or more non-psychiatric coexisting chronic conditions, 

especially coronary artery disease, chronic arthritis, and stroke10. Anxiety is also associated with 

41% increased risk of developing cardiovascular disease11. Among adult patients with 

schizophrenia, the prevalence of diabetes averages of 15%, which is higher than the 10% 

prevalence of diabetes in the general population. This association persists even after controlling 

for obesity and use of antipsychotic drugs12.  

The underlying mechanism for these comorbidities remains unknown, but an emerging 

explanation is that psychiatric and cardiometabolic disorders share common developmental 

pathways. For example, low birth weight broadly reflects an unhealthy fetal environment and is 

considered a prevalent form of early life adversity13 associated with increased morbimortality 

throughout the life course14 and is specifically linked to cardiometabolic14-18 and psychiatric 

disorders19-24. An obvious question concerns the biological mechanisms that underlie such a 

developmental trajectory involved in the development of cardiometabolic and psychiatric 

comorbidities. 

The brain dopamine system is highly sensitive to early adversity25 and proposed as a mechanism 

underlying developmental pathways to multiple psychiatric and metabolic comorbidities26,27.  

Early life adversity such as fetal growth restriction that leads to low birth weight alters 
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dopaminergic signaling 28-30. Dysfunction of dopamine neurotransmission in both the ventral 

and dorsal striatum associates with depression31, as well as dysregulated food intake and 

altered energy homeostasis29,30,32.  Striatal dopamine signaling also appears to regulate systemic 

glucose metabolism in humans.33  The striatum harbors dopaminergic neurons34 and the striatal 

dopamine transporter (DAT) is a critical regulator of striatal dopamine release and reuptake.35 

Dopamine signaling is influenced by core metabolic hormones such as leptin and insulin, 

through their actions on the expression and function of DAT 32,36, which is encoded by the 

SLC6A3 (solute carrier family 6 member 3) gene. 

Based on the large evidence supporting the relation between metabolism, mental health and 

striatal dopaminergic neurotransmission, as well as the effects of early adversity on striatal 

dopamine function, we hypothesized that the striatal SLC6A3 gene network underlies the 

association between early life adversity and the comorbidity between psychiatric and 

cardiometabolic disorders in humans.  We therefore aimed to test if individual differences in the 

function of a striatal SLC6A3 gene network might moderate the effects of early life adversity on 

psychiatric and cardiometabolic comorbidities in adults and adolescents. To achieve this, we 

created a SLC6A3 striatal co-expression-based polygenic score (striatum SLC6A3 ePGS) reflecting 

the genetic capacity for expression of the striatal DAT1 gene network (possibly influencing 

dopamine signaling) and analyzed the effect of its interaction with birth weight on the 

comorbidity of psychiatric and cardiometabolic conditions in adults (UK Biobank) and 

adolescents (Avon Longitudinal Study of Parents and Children, ALSPAC).  
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Methods 

Participants 

We used genomic and phenotypic data from two cohorts, one from adults (Uk Biobank), and 

one from adolescents (Avon Longitudinal Study on Parents and Children, ALSPAC).  

  

Adult cohort: The UK Biobank is a large population-based study from the United Kingdom37. 

Participants, aged 37-73, were recruited between 2006 and 2010 resulting in 502,543 subjects. 

Detailed description of the inclusion/exclusion criteria for the current analysis and the 

corresponding sample size at each step can be found in Supplementary information 

(Supplementary Figure 5). After all exclusions and inclusion criteria, the number of subjects that 

remained for the analysis was 225,972 (mean age = 55.22, SD = 8.08) (Table 4). We used all the 

data available for the brain imaging analysis considering the inclusion/exclusion criteria 

(Supplementary Figure 5, N=11,167, mean age = 53.86, SD = 7.39). 

 

Adolescent cohort: To explore our findings in an earlier developmental time point we used data 

from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort38-40. This is a 

transgenerational prospective observational cohort that recruited 14, 541 pregnant women 

residents in Avon County, UK. Additional recruitment (N=913) was performed later during 

Phases II, III and IV respectively, bringing the total sample size of prospective mother-child dyads 

to 15,658.  For more information on ALSPAC variables, please see 

http://www.bristol.ac.uk/alspac/researchers/our-data/. Data from the adolescent offspring 

aged between 15.5 and 17.5 were used in this study. Only subjects with available phenotypic 
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data of interest, early life adversity measure, in this case birth weight and genotyping data were 

considered for the analyses (N=1,188) (Table 5). Detailed description of the inclusion/exclusion 

criteria and the corresponding sample size at each step can be found in Supplementary 

information (Supplementary Figure 6).  

See Supplementary Information - Methods for a detailed description of the genotyping 

procedure for each cohort.  
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Table 4. Description of the baseline characteristics in UK Biobank sample and associations with 

striatum SLC6A3 ePGS. 

UK Biobank (n = 225972) 

Characteristics 

Mean / N SD / % 

ePGS 

correlation/mean 

difference p_value 

Sex - Male 88939 39.358% 0.007 0.109 

Birth weight (grams) 3317.492 658.366 0.008 <0.001 

Completed full-time education at 

14-years of age or younger 
1667 1.159% -0.025 0.308 

Age at recruitment (years) 55.218 8.079 0.013 <0.001 

Townsend deprivation index at 

recruitment 
-1.482 2.983 -0.027 <0.001 

BMI at recruitment 27.265 4.866 -0.001 0.570 

ICD10 F10-F19 Mental and 

behavioural disorders due to 

psychoactive substance use 

9278 4.106% -0.009 0.363 

ICD10 F20-F29 Schizophrenia, 

schizotypal and delusional disorders 
556 0.246% -0.022 0.613 

ICD10 F30-F39 Mood [affective] 

disorders 
556 0.246% -0.022 0.613 

ICD10 F40-F48 Neurotic, stress-

related and somatoform disorders 
5541 2.452% -0.015 0.272 

ICD10 E11 Non-insulin-dependent 

diabetes 
10269 4.544% -0.037 <0.001 

ICD10 I70 Atherosclerosis 632 0.28% 0.001 0.978 

ICD10 I63 Cerebral infarction 1758 0.778% -0.006 0.809 

ICD10 I20-I25 Ischaemic heart 

diseases 
15389 6.81% -0.002 0.815 

Townsend deprivation index in UK Biobank: A measure of the level of social deprivation that a 
person lives in. The index was calculated based on previous national census. Participant is given 
a score reflecting the output area in which their postal code is located. Four key aspects are 
considered in the index: the percentage of unemployment, overcrowded households, 
households without a car and non-home ownership. 
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Table 5. Description of the baseline characteristics in ALSPAC sample and associations with 

striatum SLC6A3 ePGS. 

ALSPAC (n = 1188) 

Characteristics Mean / N SD / % 

ePGS 

correlation/mean 

difference 

p_value 

Sex - male 565 47.559% 0.086 0.144 

Gestational Age (Weeks) 39.731 1.289 0.007 0.822 

Birth weight (grams) 3508.933 450.425 0.034 0.239 

SES (Crowding index above 1) 27 2.314% 0.080 0.665 

Waist circumference (cm) at 15.5 

years of age 76.237 8.262 0.028 0.329 

SDQ Total difficulties score at 16.5 

years of age 5.477 4.372 -0.047 0.109 

CIS-R Depression score at 17.5 years 

of age 0.283 0.747 0.014 0.640 

CIS-R Anxiety score at 17.5 years of 

age 0.231 0.667 0.021 0.467 

HOMA2-IR at 17.5 years of age 0.879 0.6 0.006 0.843 

zBMI at 15.5 years of age 0.271 0.989 0.037 0.209 

Low socioeconomic status (SES) in ALSPAC: crowding index higher than 0.75 at 2-year-and-9-
month time point was considered as low SES. Crowding index was calculated by dividing the 
number of individuals living in the family dwelling by the number of rooms in the family 
dwelling and was used as a proxy measure of socioeconomic status. 

 

Ethics approval and consent  

UK Biobank: Informed consent was obtained from each participant, and the project has been 

approved by the North-West Multicentre Research 580 Ethics Committee (REC reference 

11/NW/0382), the National Information Governance Board for Health and Social Care, and the 

Community Health Index Advisory Group for UK Biobank. Consenting participants provided 

baseline information, answered questions, had measurements and biological samples collected. 
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This research has been conducted using the UK Biobank Resource under application number 

41975. 

 

ALSPAC: Participants provided informed written consent to participate in the study. Ethics 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the local 

research ethics committees (a full list of the ethics committees that approved different aspects 

of the ALSPAC studies is available at http://www.bristol.ac.uk/alspac/researchers/research-

ethics/). Consent for biological samples has been collected in accordance with the Human 

Tissue Act (2004). 

Consent for publication was obtained from UK Biobank and ALSPAC management teams. The 

use of these datasets was locally approved by the Centre intégré universitaire de santé et de 

services sociaux de l'Ouest-de-l'Île-de-Montréal Research Ethics Board under application 

number IUSMD-21-73. 

 

Identification of the striatal SLC6A3 co-expression gene network and ePGS calculation      

 

Figure 19a shows the steps involved in the identification of the gene co-expression networks 

and the calculation of the ePGS score. The ePGS was calculated considering genes co-expressed 

with the SLC6A3 gene in the striatum. As described previously41-48, we began by using brain 

region-specific RNA sequencing data from mice available at GeneNetwork 

(http://genenetwork.org/, HBP Rosen Striatum M430V2 (Apr05) RMA Clean)49 to identify 

SLC6A3 co-expressed genes (absolute value of co-expression correlation with SLC6A3 gene 

http://genenetwork.org/
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greater or equal to r= 0.5). GeneNetwork was used to obtain gene expression from rodents 

since our previous findings demonstrated multiple effects of early life adversities, especially 

poor fetal growth, on dopaminergic mesocorticolimbic system in rodents28-30,50-54.  We then 

converted SLC6A3 co-expressed genes to human orthologs by using the biomaRt package55.  

Since we were interested in gene networks that were active during the early developmental 

period in which adversity occurred and when the brain is still undergoing core maturational 

processes in humans, we used BrainSpan to select autosomal transcripts expressed at least 1.5-

fold more during fetal and childhood periods (0–60 months after birth) in comparison to 

adulthood (20–40 years of age). This process resulted in a list of striatal SLC6A3 co-expressed 

genes. We then mapped all the existent SNPs in the human ortholog genes comprising the 

striatum SLC6A3 gene network using biomaRt package55 in R and gathered all gene-SNP pairs 

from the GTEx dataset in human striatum. These lists were merged with the genotyping data 

from UK Biobank and ALSPAC cohorts, respectively, retaining only common SNPs and subjecting 

the final SNP lists to linkage disequilibrium clumping (r2 < 0.2) within 500kb radious to eliminate 

redundant SNPs. The process resulted in 1532 independent functional SNPs retained in UK 

Biobank and 1663 SNPs in ALSPAC. The final score included 67 genes in our discovery sample 

(UKB) (Supplementary Table 1). 

To calculate the striatal SLC6A3 ePGS, the number of effect alleles (genotype information from 

the study samples) at a given SNP was weighted using the estimated brain-region-specific effect 

of the SNP on gene expression from the GTEx data56. We also accounted for the direction of the 

co-expression of each gene with SLC6A3 in the network, by multiplying the weight by -1 in case 

the expression of a gene was negatively correlated with the expression of the SLC6A3 gene in 
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the network – therefore, the higher the score, the higher the expression of the genes that 

compose the network. The sum of the weighted values from all SNPs for each individual in the 

cohorts resulted in the region-specific striatal scores. The striatal SLC6A3 expression-based 

polygenic score (ePGS) is a continuous measure that reflects variation of gene expression of the 

genes co-expressed with the SLC6A3 gene in the striatum.  

 

Comparison between Polygenic risk scores and ePGS 

 

To compare the results obtained with the striatum SLC6A3 ePGS, we generated traditional 

polygenic risk scores (PRS) using our accelerated pipeline 

(https://github.com/MeaneyLab/PRSoS)57. A traditional PRS is a cumulative score calculated 

based on a relevant GWAS that represents a risk for a certain health outcome or trait58. The sum 

of the allele count weighted by the effect size across all SNPs in GWAS at a specified threshold 

was used to calculate type 2 diabetes59 and major depression disorder60 PRSs. The number of 

SNPs included was defined based on the number of SNPs present in our striatum SLC6A3 ePGS 

calculated in the discovery cohort. For MDD PRS we used the GWAS results that were obtained 

without UK Biobank or 23andMe subjects.  

 

Functional enrichment analysis 

 

Enrichment analysis was performed using MetaCore® software from Clarivate Analytics 

(https://portal.genego.com) to characterize the putative biological functions associated with the 

about:blank
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striatal SLC6A3 co-expression gene network. Genes that comprise the striatal SLC6A3 ePGS were 

used in the analysis and the whole genome was used as a background. The significance was 

considered for the false discovery rate (FDR) adjusted p-value <0.05. To investigate network 

centrality measures, co-expression patterns were mined from geneMANIA61.The gene 

interactions were then visualized using the Cytoscape® software62. The nodes are the elements 

of a network (genes) and edges are the connection between these elements.  Bottleneck genes 

are defined as those having a high betweenness (the extent to which genes act as ‘bridges’ 

between other genes in a network), hub genes are defined as those with a high degree (genes 

with more connections to other genes). To analyze the topological properties associated with 

this gene network, the CentiScaPe app in Cytoscape® was used to calculate the degree and 

betweenness of each gene. We used this information to define the “hub genes” within the 

network, characterized as nodes with degrees higher than +1SD above the mean; and the 

“bottlenecks” characterized as nodes with betweenness higher than +1SD above the mean.  A 

gene that is both bottleneck and hub was considered as a central node of the network63. We 

also mined protein-protein (PPI) network interactions using the STRING database (https://string-

db.org)64 and the striatum SLC6A3 ePGS genes, with the objective of querying the physical 

interactions of the genes that compose our genetic score. Although we mapped the mice co-

expressed gene list to human orthologs, not necessarily the co-expression features would be 

recapitulated in humans. In order to confirm if the genes that comprised the striatal SLC6A3 

ePGS are co-expressed in humans and to analyze their patterns of co-expression during different 

life periods in humans, we used the gene expression data from human postmortem samples 

from the BrainSpan database65 (see Supplementary information - Methods). 

https://string-db.org/
https://string-db.org/
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Outcome measures 

 

Adult cohort: Psychiatric disorder diagnosis was defined based on the primary or secondary 

diagnosis of a mental, mood, schizophrenia and neurotic disorders according to participants 

hospital inpatient records, coded according to the International Classification of Diseases 

version 10 (ICD-10)66 (UK Biobank field 41270; ICD10 codes: F10-F19 Mental and behavioural 

disorders due to psychoactive substance use, F20-F29 Schizophrenia, schizotypal and delusional 

disorders, F30-F39 Mood [affective] disorders, F40-F48 Neurotic, stress-related and somatoform 

disorders). Cardiometabolic disorders diagnosis was defined by the ICD-10 codes from chapter 

IV Endocrine, nutritional and metabolic diseases and chapter IX Diseases of the circulatory 

system (UK Biobank fields: 41270; ICD10 codes: E11-Non-insulin-dependent diabetes, I70-

Atherosclerosis, I63-Cerebral infarction, I20-I25 Ischaemic heart diseases). The presence of at 

least one mental disorder diagnosis and at least one cardiometabolic diagnosis was considered 

a comorbidity case. Comorbidity variable was coded as a binary variable (1 = “yes” or 0 = “no”).  

T1 structural brain MRI pre-processed imaging data were generated by an image-processing 

pipeline developed and run on behalf of the UK Biobank67 (Supplementary information - 

Methods). 

Adolescent cohort: No diagnoses for the psychiatric and cardiometabolic disorders noted above 

were available in ALSPAC. As recommended by the American Academy of Pediatrics (AAP)68, we 

defined disease risk in adolescents using continuous measures of Total difficulties score 

measured by the Strengths and Difficulties Questionnaire, depression and anxiety scores 
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measured by Computerized Interview Schedule – Revised (CIS-R), Homeostatic Model 

Assessment of Insulin Resistance (HOMA-IR), and waist circumference (cm) (Supplementary 

information - Methods, Supplementary Table 2, Supplementary Figure 7). We then 

characterized two groups of children: low and high cardiometabolic and psychiatric comorbidity 

risk (see Statistical Analysis).   

 

Statistical Analysis 

 

Statistical analysis were performed using R69. For the descriptive statistics, the ePGS groups 

were defined by median split, and a comparison between low and high ePGS groups was done 

using Student t test for continuous variables and a chi-square test for categorical variables 

(Table 4 and Table 5). Significance levels for all tests were set at p < 0.05.  

We performed cluster analysis using the mclust package to construct the comorbidity risk 

variable in ALSPAC adolescent sample 70.  This algorithm applies a model-based classification 

and density estimation of the z-standardized variables based on finite Gaussian mixture 

modelling.  The method assumes that predictors can be explained by an underlying latent 

categorical variable (cluster) that represents distinct profiles within the sample, both in a 

qualitative and quantitative manner.  We defined a priori a cluster size solution of two (lower 

and higher risk for comorbidity).  All predictors were z-transformed and adjusted for sex prior to 

entering the clustering procedure. Regression analysis was carried out to demonstrate the 

difference between the two clusters in the means for each variable used in the cluster analysis 



 
 

189 
 

(Supplementary Table 2).  The resulting cluster membership, which represented comorbidity 

risk, was coded as a binary variable (1= “yes comorbidity” or 0= “no comorbidity”). 

The gene by environment (GxE) interaction effect on binary outcomes was explored by logistic 

regression analysis. Birth weight as a continuous variable was used as a proxy for early life 

environment exposure in UK Biobank (variable ID20022) and ALSPAC. Early life adversity (E), 

striatal SLC6A3 ePGS (G) and the interaction term between them were included in the model as 

main predictors for both cohorts. UK Biobank analyses were also adjusted by sex, age, the first 

forty genetic principal components, genotyping array, and assessment center, and ALSPAC 

analyses were adjusted by sex and the first ten genetic principal components. In case of a 

significant GxE interaction effect, post hoc simple slope analysis was performed to investigate 

how the environment effect varies as a function of the genetic background71. The directionality 

of the GxE effect was explored in the UK Biobank, our discovery cohort, using a two-tailed P-

value threshold. The directionality of the GxE effect on ALSPAC was anticipated based on the 

finding from UK Biobank, thus a one-tailed P-value threshold was considered.   

The relation between early life adversity, ePGS and gray matter density in UK Biobank was 

analyzed in a multivariate parallel independent component analysis (pICA). This analysis was 

applied to identify the effect of early life adversity on the relation between two different data 

modalities (genetic and gray matter density) in a data-driven manner72. This analysis separately 

estimates the maximum independent components within each data modality while also 

maximizing the association between modalities using an entropy term based on information 

theory72. Each SNP that composes the striatal SLC6A3 ePGS weighted by striatal GTEx data 

(genotype * GTEx striatum gene expression slope for each SNP) and whole brain voxel based 
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gray matter density were used in the analysis. Weighted SNPs were adjusted for the genetic 

principal components (ancestry). The subjects were split in two groups according to the birth 

weight (low birth weight group: subjects with birth weight <= 2.5kg, n = 953) and a randomly 

selected group of non-low birth weight individuals (subjects with birth weight > 2.5kg, n = 953, 

please see https://www.who.int/data/nutrition/nlis/info/low-birth-weight), since there was a 

large discrepancy between cases and controls sample size within the subsample of individuals 

with T1 structural brain MRI available. Comparison between low birth weight and randomly 

selected non-low birth weight individuals on main descriptive variables can be seen on 

Supplementary information (Supplementary Table 5). Comparison between the randomly 

selected group and the full sample of non-low birth weight individuals with MRI available can be 

seen on Supplementary information (Supplementary Table 6). T1 structural brain MRI pre-

processed images were adjusted by age and sex (See Supplementary information - Methods). 

The Fusion ICA Toolbox (http://mialab.mrn.org/software/fit/) within MATLAB® R2019 was used 

to run the analysis. The number of independent components was estimated using minimum 

description length criteria72 for the MRI modality and SNP dimensionality inside the toolbox for 

the genetic modality. Components for both modalities were converted to z-scores and a 

threshold at |Z| > 2.5 was used to identify significant brain regions and SNPs that contributed 

the most for the component overall pattern72. Loading coefficients, which describe the presence 

of the identified component across subjects72, were extracted for each component, modality, 

and subject. The mean subject-specific loading coefficients of these components from low birth 

weight and non-low birth weight groups were compared using Student’s t-test. Talairach 

coordinates were used to identify the anatomical classification of brain areas included in the 

http://mialab.mrn.org/software/fit/
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identified MRI component73. The significant SNPs (|Z| > 2.5) from the identified genetic 

component were analyzed using MetaCore®, to identify associated gene ontology processes 

terms (See Figure 21a for graphical representation of pICA analysis).  

Results 

 

Characteristics of the striatal SLC6A3 gene network  

 

We developed a polygenic score to explore the genetic moderation of early life adversity on 

psychiatric and cardiometabolic comorbidities focusing on a specific gene network (Figure 19a 

and 19b). We first used brain region-specific RNA sequencing data from mice available at 

GeneNetwork (http://genenetwork.org/)49 to identify genes co-expressed with the SLC6A3 gene 

in the striatum. These genes were then converted to human orthologs (Supplementary Table 1 

and Figure 19b). This list was used to inform the calculation of the expression-based polygenic 

score (Striatum SLC6A3 ePGS) in UK Biobank and ALSPAC participants as described in the 

Methods.   

To investigate if mouse-generated SLC6A3 gene network was co-expressed in humans, we queried 

the gene co-expression patterns of the striatum SLC6A3 gene network throughout human 

development using gene expression data from human postmortem samples65. A high co-

expression was expected in childhood/adolescence, as the striatum SLC6A3 gene network was 

enriched for genes overexpressed in this period of life (see Figure 19c and Supplementary 

information - Methods). Prominent gene co-expression clusters were also seen in adults (Figure 

19c). These findings confirm that the striatal SLC6A3 gene network, originally from murine data, 
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is also co-expressed in humans, and that co-expression is observed at different ages. When 

visualizing and exploring the network properties (Figure 19d), we observed that the central gene 

(hub) and the hub-bottleneck genes are related to ribosomal structure. Among the bottleneck 

genes, which are important connectors between groups of genes, we observed HNRNPA1, which 

is involved in the packaging of pre-mRNA into particles and transportation from the nucleus to 

the cytoplasm, as well as splicing. We also observed SDC3 gene, which plays a role in cell shape 

organization and has been associated with obesity74. Protein-protein interactions of the striatum 

SLC6A3 co-expression network mined from STRING revealed that the network has significantly 

more interactions than expected by chance (P<1.0e-16), suggesting that a significant number of 

the genes in this co-expression network also have physical interactions at the protein level. The 

main gene ontology processes terms associated with the network (Supplementary Figure 8) 

include: insulin signaling and response terms (Insulin receptor signaling pathway via 

phosphatidylinositol 3-kinase; Insulin receptor signaling pathway; Cellular response to insulin 

stimulus; Response to insulin), ribosome production related terms (Ribosome biogenesis; 

Ribosomal large subunit biogenesis), dopamine receptor signaling pathway (Adenylate cyclase-

activating dopamine receptor signaling pathway) and inflammatory response related terms 

(Regulation of cytokine production involved in inflammatory response; Negative regulation of 

cytokine production involved in inflammatory response). 
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Figure 19. Construction and characterization of the striatum SLC6A3 gene network.  a. 

calculation of the expression-based polygenic score (ePGS) from the genes co-expressed with 

the SLC6A3 gene in striatum. GeneNetwork was used to generate a list of genes co-expressed 

with SLC6A3 in striatum in mice, which were then converted to human orthologs. BrainSpan was 

used to identify genes overexpressed within striatum in fetal samples and up to 5 years of age in 

comparison to adult samples. All SNPs from these genes, common between the study sample 

and GTEx databases, were retained and included in the final list of SNPs. This final list was 

subjected to linkage disequilibrium clumping, with removal of highly correlated SNPs. Next, for 

each SNP, a number of alleles at a given SNP (rs1, rs2…) was multiplied by the estimated effect 

of the genotype-gene expression association from GTEx. The sum of these values over all SNPs 

provides the striatum SLC6A3 ePGS. b. striatum SLC6A3 ePGS co-expression gene network. Co-

expression pattern was mined from GeneMANIA61. The color of the node border represents the 

correlation sign with the SLC6A3 gene according to GeneNetwork co-expression matrix (dark 

purple represents negative and light purple positive correlation). Node color intensity 

represents betweenness (number of times a node acts as a bridge between nodes). Node 

border width represents the number of connections a node has with other nodes (total degree). 

c. co-expression of genes included in the striatum SLC6A3 gene network in humans at different 

ages according to BrainSpan. d. topological properties of the striatum SLC6A3 gene network, 

showing hubs (with degrees higher than +1SD above mean), bottlenecks (betweenness higher 

than +1SD above the mean), and hub-bottlenecks. Lines in black indicate mean + 1 SD for 

degrees and betweenness. Hub and hub-bottleneck genes are related to ribosomal structure. 

Among the bottleneck genes, HNRNPA1 is involved in the packaging of pre-mRNA into particles 

and transport from the nucleus to the cytoplasm, as well as splicing. The SDC3 gene may play a 

role in cell shape organization and has been associated with obesity74.  

 

Striatum SLC6A3 ePGS moderates the association between birth weight and the risk for 

psychiatric and cardiometabolic comorbidities in adults 
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Lower birth weight was associated with the presence of comorbidities in UK Biobank (b= -0.206, 

Odds ratio (OR)= 0.814, 95% confidence interval (95% CI): 0.781 – 0.847, P <0.001). However, in 

ALSPAC this association was not significant (b= -0.091, OR= 0.913, 95% CI:0.680 – 1.228, P = 

0.548).  

For the UK Biobank, there was no significant main association of the ePGS with comorbidity (b= 

0.006, OR= 1.006, 95% CI: 0.977 – 1.036, P=0.678). In contrast, and consistent with our 

anticipated hypothesis, there was a significant interaction effect between the striatum SLC6A3 

ePGS and birth weight on the presence of psychiatric and cardiometabolic comorbidities in UK 

Biobank adults (b= 0.042, OR = 1.043, 95% CI: 1.001 – 1.086, P = 0.044). The risk for comorbidity 

increased as birth weight decreased, especially at lower ePGS values (Low ePGS: b = -0.247, OR = 

0.781, P< 0.001, 95% CI 0.738 – 0.826; High ePGS: b = -0.166, OR = 0.847, P< 0.001, 95% CI 0.800 

– 0.897) (Figure 20a). As we considered birth weight as a continuous variable ranging from low 

to high values and comorbidity as a dichotomous variable, being the presence of comorbidity 

computed as 1 and absence as 0, the odds ratio represents the negative association between 

birth weight and the probability of having comorbidity. Results are presented in the low birth 

weight perspective. 

In ALSPAC adolescents the GxE model revealed a significant interaction effect between the 

striatum SLC6A3 ePGS and birth weight on the probability of belonging to the high comorbidity 

risk cluster (b = 0.271, OR= 1.311, 95% CI: 1.015 – Inf, P = 0.041, n=1,188). The risk of belonging 

to the high comorbidity risk cluster increased as birth weight decreased, especially at lower ePGS 

values (Low ePGS: b = -0.373, OR = 0.688, 95% CI 0.447 – 1.066, P=0.090; High ePGS: b = 0.176, 

OR = 1.192, P = 0.419, 95% CI 0.779 – 1.825) (Figure 20b). Similar to the findings in adults, there 
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was no significant main effect association of the striatum SLC6A3 ePGS on the comorbidity risk 

(b= 0.086, OR= 1.090, 95% CI: 0.957 – 1.240, P= 0.195). These results indicate a developmental 

trajectory, in which early indicators of risk to develop psychiatric and metabolic comorbidities in 

adulthood can be seen in adolescents as a function of the interaction of the striatum SLC6A3 co-

expression gene network and birth weight. 

To benchmark our method against the classical polygenic risk score derived from a GWAS, we 

performed the same GxE interaction analysis using birth weight and PRSs based on GWAS for 

major depressive disorder60 and type 2 diabetes59. These are phenotypes related to our main 

outcome, psychiatric and cardiometabolic comorbidity. We found significant main effects of Type 

2 diabetes and MDD PRSs on the comorbidity outcome in UK Biobank, but not in ALSPAC 

(Supplementary Table 3) and no significant GxE interaction on comorbidity using these PRSs in 

the UK Biobank or ALSPAC (Supplementary Table 4).  
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Figure 20. Striatum SLC6A3 ePGS moderates the effect of early life adversity on the risk for 

mental health disorder and cardiometabolic comorbidity. Probability of having comorbidity in 

individuals with high and low striatum SLC6A3 ePGS as a function of birth weight. a. UK Biobank 

cohort, N=225,972. The risk for comorbidity increases as birth weight decreases, especially at 

lower ePGS values (Low ePGS: b = -0.247, OR = 0.781, P< 0.001, 95% CI 0.738 – 0.826; High 

ePGS: b = -0.166, OR = 0.847, P< 0.001, 95% CI 0.800 – 0.897). b. ALSPAC cohort, N= 1,188. The 

risk for comorbidity increases as birth weight decreases, especially at lower ePGS values (Low 

ePGS: b = -0.373, OR = 0.688, 95% CI 0.447 – 1.066, P=0.090; High ePGS: b = 0.176, OR = 1.192, 

P = 0.419, 95% CI 0.779 – 1.825). 

 

SNPs from the striatum SLC6A3 ePGS are related to gray matter variations in the frontal cortex 

 

We then explored the neuroanatomo-functional relevance of the relation between the striatal 

SLC6A3 gene network and early adversity. Functional refers to the variation in gene expression 

represented by the weight attributed to the SNPs that compose the striatum SLC6A3 ePGS. We 

used a multivariate parallel independent component analysis (pICA)72 (Figure 21a and 

Supplementary information - Methods) and investigated correlations between the SNPs from 

the striatum SLC6A3 ePGS and voxel-based gray matter density in UK Biobank participants from 

low birth weight and non-low birth weight groups. This analysis identifies independent 

components within each data modality separately (SNPs and MRI) while also maximizing the 

association between these two modalities. The estimated number of components for the MRI 

modality was 28 and for the genetic modality was 34. Only the most significantly linked pair of 

components that resulted from the multivariate analysis with a higher correlation index value 

was selected to be further explored: the pair combining the genetic component 13 and MRI 

component 18 (r=-0.201, p=6.779e-19). A statistically significant difference between birth weight 
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groups was observed for both the genetic component 13 (t=2,214, p=0.026) as well as the MRI 

component 18 (t=-3,318, p<0.001). These differences between the adversity groups suggest that 

the relations between data pattern variations (i.e., the relationships between SNPs and gray 

matter) within this pair of components are significantly different between the two birth weight 

groups. We then explored the content of genetic component 13 and MRI component 18. The 

subset of significant SNPs within component 13 is related to variations in gray matter density in 

the frontal cortex, including the prefrontal cortex, and also more specifically the orbitofrontal 

cortex, part of the prefrontal cortex, cingulate cortex and temporal cortex (Figure 21b). 

Enrichment analysis of this subset of significant SNPs (Supplementary Table 7) using MetaCore® 

(FDR<0.05) showed that the most significant gene ontology enrichment terms are related to 

regulation of dendrite development, regulation of neuron remodeling, positive regulation of 

nervous system development, pyruvate biosynthetic process, ATP metabolic process and 

response to epinephrine (Figure 21c).   
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Figure 21. Parallel ICA analysis. a. schematic representation of parallel ICA method. Two 

different data modalities (SNPs and voxel-based gray matter) were used to establish anatomical-

functional correlations between the striatum SLC6A3 ePGS and brain features from UK Biobank 

participants (N=11,167). Participants were separated into low birth weight and normal birth 

weight groups. The analysis estimates the maximum independent components within each data 

modality separately while also maximizing the association between modalities using an entropy 

term based on information theory. b. significant brain regions associated with SNPs from the 

striatum SLC6A3 were frontal cortex, including the orbitofrontal and prefrontal cortex, cingulate 

cortex and temporal cortex. Color scheme represents the amount of volume variation (cubic 

centimeter) significantly associated with the subset of SNPs. c. summary of significant gene 

ontology processes related to SNPs from the striatum SLC6A3 ePGS associated with gray matter. 

 

Discussion  

Our study suggests that being born with lower birth weight increases the risk for later 

comorbidities between cardiometabolic and psychiatric conditions in adulthood. In fact, being 

born at low birth weight, which reflects prenatal adversity13, independently associates with 

increased risk for developing both cardiometabolic15-18 and psychiatric disorders19-24 

corroborating our findings. Our functional genomics approach provides evidence for the striatal 

SLC6A3 co-expression gene network as a salient mechanism moderating this association. This 

finding is aligned with the critical role of the dopaminergic system in environmental 

responsivity42,75.  

Although lower birth weight is associated with an increased risk for co-morbidity in both ePGS 

groups in the UK Biobank, low ePGS participants have significantly more risk than high ePGS 

individuals. In the low ePGS group in adolescence, there is a suggestion of increased risk of 
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being part of a high comorbidity risk as birth weight decreases (p=0.09). Although the simple 

slope for the high ePGS group in adolescence shows a positive inclination between birth weight 

and risk for comorbidity, this slope is not significant therefore the risk for comorbidity does not 

vary according to birth weight in the high ePGS group. No information on gestational age was 

available in the UK Biobank cohort, to maintain consistency, birth weight as a continuous 

variable and not corrected for gestational age was used in both cohorts. The lack of information 

about gestational age in our study may be especially affecting the adolescent analysis and this 

may potentially explain why the simple slope for the low ePRS group does not reach statistical 

significance, although the interaction between ePRS and birth weight is statistically significant in 

ALSPAC. 

Our enrichment analysis showed that the striatal SLC6A3 gene network is co-expressed in 

humans across childhood/adolescence and adulthood (Figure 19c), which is aligned with our 

interaction between striatum SLC6A3 ePGS and birth weight observed in both adolescents and 

adults. Our results therefore demonstrate that striatum SLC6A3 ePGS is able to detect individual 

differences in response to early adversity at both ages.  

Based on the comparisons observed in this study, only the striatum SLC6A3 ePGS was capable of 

capturing gene by environment interaction effects, while different PRSs did not significantly 

interact with early life adversity to predict the main outcome. GWAS-derived PRS reflect main 

genetic effects and thus are unlikely to capture individual differences in response to 

environmental variation. Indeed we found significant main effects of the PRSs of Major 

depressive disorder60 and Type 2 diabetes 59 on comorbidity in UK Biobank. Overall, these 

results align with the well-known capacity of PRS to detect main genetic effects, as well as 
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demonstrate the ability of our ePGS technique in identifying responsivity to environmental 

change as compared to traditional GWAS-based PRS76. PRS main effects were not observed in 

adolescents from ALSPAC probably due to the specificity of the GWAS to the features of the 

original discovery sample; the majority of GWASs are generated based on adult samples77, thus 

limiting the extrapolation of the effects in different ages. 

We also identified putative biological mechanisms underlying the moderating effect of the 

striatum SLC6A3 ePGS on the association between early adversity and cardiometabolic–

psychiatric comorbidities (Figure 19d and Supplementary Figure 8). Central genes of the 

striatum SLC6A3 network are related to ribosomal structure and the entire gene network is 

significantly enriched for ribosome production related terms (Ribosome biogenesis; Ribosomal 

large subunit biogenesis) as seen in our gene-ontology analysis. Ribosome functioning is highly 

related to cell growth, proliferation, and protein synthesis in all cells. The ribosome biogenesis is 

a critical process to form mature ribosomes78. Dysfunction of ribosomal gene expression has 

been seen in animals’ models of depression79 and the use of anti-ribosomal P antibodies, that 

targets phosphorylated protein (P) components of ribosomes, was able to induce depression-

like behavior in mice80. Interestingly, the same antibody is used to detect systemic lupus 

erythematosus in humans80. This autoimmune disease is related to high levels of systemic 

inflammation. Our SLC6A3 gene network is significantly enriched for inflammatory response 

related terms, especially cytokine production. One of the central genes of our network, GNB1, 

has been implicated in the regulation of inflammasomes, multiple protein complexes 

responsible for activation of inflammatory responses81. As a matter of fact, many patients with 
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major depressive disorder have elevated levels of inflammatory cytokines 82 and there is 

evidence linking cardiometabolic syndrome to higher levels of circulating cytokines83.  

Not surprisingly, our SLC6A3 gene network is also significantly enriched for the dopamine 

receptor signaling pathway. HNRNPA1, a central node of our network, is involved in mRNA 

transport and synthesis84. mRNA axonal transport and protein synthesis at the terminal is an 

important mechanism for regulation of neurotransmitter synthesis and reuptake85. Although 

SLC6A3 gene expression occurs at the level of the ventral tegmental area, having HNRNPA1 as a 

central node of our network could explain the presence of SLC6A3 mRNA at the striatal 

terminal, consistent with numerous human post-mortem studies86-89. SLC6A3 mRNA transport 

to terminals may be a key mechanistic feature of our SLC6A3 striatum gene network. It has been 

shown that SLC6A3 protein vesicular traffic has a limited contribution to SLC6A3 concentration 

in synapses90, hence other forms of regulation of SLC6A3 availability in terminals – for instance 

via mRNA axonal transport and terminal protein synthesis – are likely in place, in agreement to 

our findings.  

Another important gene in the network is the SDC3, which may play a role in cell shape 

organization and has been associated with obesity74. Obesity is related to increased risk for 

cardiovascular disease91, high levels of inflammation, and insulin resistance92. Our striatum 

SLC6A3 gene network is significantly enriched for insulin signaling and response related terms. 

Being born with low birth weight is associated with insulin resistance in children and 

adolescents93 and insulin resistance is a risk factor for cardiometabolic and brain-based 

disorders, including type II diabetes, cardiovascular disease, Alzheimer's disease, and major 

depressive disorder94,95. Metformin, a medication to treat insulin resistance, has shown 
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beneficial psychotropic effects in psychiatric conditions96,97. Evidence shows that insulin has a 

role in modulating mesocorticolimbic DA neurotransmission through different mechanisms, one 

of which is increasing DA reuptake by activating the phosphatidylinositol (PI) 3-kinase36,98. 

Insulin also reduces DA release in rodent nucleus accumbens and medial prefrontal cortex 

slices99. Our significant gene by environment results, using birth weight as our environmental 

proxy, corroborate with the literature showing elevated risk for developing psychiatric and 

cardiometabolic disorders among individuals born with low birth weight. Our genetic 

enrichment analysis results indicate that insulin signaling disturbances may be a potential 

mechanism involved in the interaction effect between birth weight and the striatum SLC6A3 co-

expression gene network on the risk for cardiometabolic and psychiatric comorbidities. This is 

aligned with many other studies suggesting that altered insulin function is an important 

mechanism linking early adversity to later disease100,101. 

The subset of SNPs from the striatum SLC6A3 ePGS that are related to gray matter density 

variations in our neuroanatomical-functional correlation analysis is associated with regulation of 

dendrite morphogenesis, neuron remodeling, and positive regulation of nervous system 

development. These are important processes linked to the prolonged maturation of the 

mesocorticolimbic dopamine system during the life-course102, which makes striatal 

dopaminergic axons especially vulnerable to environmental effects during development103. 

According to these findings, we recently showed that both rodent poor fetal growth and insulin 

treatment affect the expression of the Netrin-1/DCC axonal guidance cue system, which is 

involved in the maturation of the mesocorticolimbic DA circuitry104. Pyruvate biosynthetic 

process and ATP metabolic process also emerged as significant enrichment terms for the subset 
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of significant SNPs related to gray matter density. Both processes have connections with insulin 

secretion: regulation of insulin secretion in pancreatic β cells is modulated by ATP synthesis and 

release in mitochondria105 and by pyruvate transport through mitochondrial pyruvate 

carriers106.  

The frontal, prefrontal and orbitofrontal cortices were related to the significant subset of SNPs 

identified by the pICA analysis. This is aligned with evidence demonstrating that resting state 

functional connectivity between the orbitofrontal cortex and dorsolateral prefrontal cortex is 

altered in human individuals born small for gestational age, at different ages during 

development107.  

The cingulate and temporal cortices also emerged as significant brain regions in the pICA 

analysis. The anterior cingulate has been implicated in affective abnormalities in mood disorders 

and volume reduction in patients with major depressive disorder108. Abnormal posterior 

cingulate functional connectivity has also been reported in major depression109. Temporal lobe 

alterations are related to insulin resistance pathophysiology in different imaging modalities110. 

Interestingly, the relationship between genetic and MRI components was significantly different 

between the two early life adversity groups, suggesting that the biological mechanisms 

represented by the genetic component and the brain regions highlighted by the MRI component 

are relevant for the effects of early adversity on adult disease. 

Taken together, the evidence suggests that ribosomal function, inflammation, and insulin 

modulation of dopamine function may be underlying mechanisms by which the striatum SLC6A3 

gene network moderates the risk for developing psychiatric and cardiometabolic comorbidities 
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in response to early life adversity. These mechanisms might be especially important in brain 

areas involving the prefrontal and orbitofrontal cortices, cingulate and temporal cortices.  

Our study is limited by the fact that the ePGS do not consider intronic regions, potentially 

ignoring other important regulatory elements. Moreover, our developmental results are based 

on cross-sectional studies, and further longitudinal data are needed to better describe this 

trajectory. 

In sum, we observed that the association between environmental and genetic factors can place 

individuals at risk for adult comorbid chronic conditions from an early age, and that a striatal 

dopamine transporter gene network expression has a central role in moderating the association 

of the early environment with the risk for these diseases. These findings open opportunities for 

the exploration of the understudied field of precision prevention in pediatrics, and the potential 

design of more effective interventions and primary care strategies. 
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Supplementary Figures 
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Supplementary Figure 5. UK Biobank Sample size block scheme for each inclusion and exclusion 

criteria applied. Block scheme depicting each step of inclusion and exclusion criteria applied to 

the original sample (N=502,543) until reaching final sample size for main hypothesis testing 

(N=225,972) and final sample size for parallel ICA analysis group of low birth weight (N=953) 

and non-low birth weight (N=953). 
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Supplementary Figure 6. ALSPAC Sample size block scheme for each inclusion and exclusion 

criteria applied. Block scheme depicting each step of inclusion and exclusion criteria applied to 

the original sample (N=15,645) until reaching final sample size for main hypothesis testing 

(N=1,188). 
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Supplementary Figure 7. Comorbidity risk clusters – ALSPAC. Cluster 1 – Low Comorbidity Risk 

(N=876) and Cluster 2 – High Comorbidity Risk (N=312) mean z score values for the variables 

considered in the cluster analysis. Cluster high comorbidity risk represents the psychiatric and 

metabolic comorbidity risk profile in adolescents. SDQ Total Difficulties is a score from the 

Strengths & Difficulties Questionnaire (SDQ). Depression and anxiety scores were computed 

from the Computerized Interview Schedule – Revised (CIS-R). Homeostatic Model Assessment of 

Insulin Resistance (HOMA-IR) was computed using the HOMA2 calculation tool. Waist 

circumference was measured in centimeters. Clustering of these variables was performed using 

mclust package in R. 
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Supplementary Figure 8. Striatal SLC6A3 gene network enrichment analysis. Gene ontology 

processes related to genes included in striatal SLC6A3 gene network. Enrichment was 

performed using MetaCore®. The significance was considered for the false discovery rate (FDR) 

adjusted p-value <0.05.   
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Supplementary Tables 

Supplementary Table 1. Genes co-expressed with the SLC6A3 in mice striatum data, used to 

calculate striatum SLC6A3 ePGS genetic score. 

Mouse 
gene 

Mouse Ensembl gene ID 
Human 
gene 

Human Ensembl 
gene ID 

Description 

Rnf165 ENSMUSG00000025427 RNF165 ENSG00000141622 
ring finger protein 165 [Source:HGNC 
Symbol;Acc:HGNC:31696] 

Rps21 ENSMUSG00000039001 RPS21 ENSG00000171858 
ribosomal protein S21 [Source:HGNC 
Symbol;Acc:HGNC:10409] 

Ipmk ENSMUSG00000060733 IPMK ENSG00000151151 
inositol polyphosphate multikinase 
[Source:HGNC Symbol;Acc:HGNC:20739] 

Mllt3 ENSMUSG00000028496 MLLT3 ENSG00000171843 
MLLT3 super elongation complex subunit 
[Source:HGNC Symbol;Acc:HGNC:7136] 

Hnrnpk ENSMUSG00000021546 HNRNPK ENSG00000165119 
heterogeneous nuclear ribonucleoprotein K 
[Source:HGNC Symbol;Acc:HGNC:5044] 

Rsl1d1 ENSMUSG00000005846 RSL1D1 ENSG00000171490 
ribosomal L1 domain containing 1 
[Source:HGNC Symbol;Acc:HGNC:24534] 

Gfra2 ENSMUSG00000022103 GFRA2 ENSG00000168546 
GDNF family receptor alpha 2 [Source:HGNC 
Symbol;Acc:HGNC:4244] 

Nptxr ENSMUSG00000022421 NPTXR ENSG00000221890 
neuronal pentraxin receptor [Source:HGNC 
Symbol;Acc:HGNC:7954] 

Tgif2 ENSMUSG00000062175 TGIF2 ENSG00000118707 
TGFB induced factor homeobox 2 
[Source:HGNC Symbol;Acc:HGNC:15764] 

Jarid2 ENSMUSG00000038518 JARID2 ENSG00000008083 

jumonji and AT-rich interaction domain 
containing 2 [Source:HGNC 
Symbol;Acc:HGNC:6196] 

Bmf ENSMUSG00000040093 BMF ENSG00000104081 
Bcl2 modifying factor [Source:HGNC 
Symbol;Acc:HGNC:24132] 

682040
8C15Rik ENSMUSG00000032680 C20orf96 ENSG00000196476 

chromosome 20 open reading frame 96 
[Source:HGNC Symbol;Acc:HGNC:16227] 

Rpl14 ENSMUSG00000025794 RPL14 ENSG00000188846 
ribosomal protein L14 [Source:HGNC 
Symbol;Acc:HGNC:10305] 

Stk32a ENSMUSG00000039954 STK32A ENSG00000169302 
serine/threonine kinase 32A [Source:HGNC 
Symbol;Acc:HGNC:28317] 

Cdh10 ENSMUSG00000022321 CDH10 ENSG00000040731 
cadherin 10 [Source:HGNC 
Symbol;Acc:HGNC:1749] 

Sdc3 ENSMUSG00000025743 SDC3 ENSG00000162512 
syndecan 3 [Source:HGNC 
Symbol;Acc:HGNC:10660] 

Mkrn1 ENSMUSG00000029922 MKRN1 ENSG00000133606 
makorin ring finger protein 1 [Source:HGNC 
Symbol;Acc:HGNC:7112] 
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Bbc3 ENSMUSG00000002083 BBC3 ENSG00000105327 
BCL2 binding component 3 [Source:HGNC 
Symbol;Acc:HGNC:17868] 

Tubb2a ENSMUSG00000058672 TUBB2A ENSG00000137267 
tubulin beta 2A class IIa [Source:HGNC 
Symbol;Acc:HGNC:12412] 

Bcl11a ENSMUSG00000000861 BCL11A ENSG00000119866 

BAF chromatin remodeling complex subunit 
BCL11A [Source:HGNC 
Symbol;Acc:HGNC:13221] 

Rpl37a ENSMUSG00000046330 RPL37A ENSG00000197756 
ribosomal protein L37a [Source:HGNC 
Symbol;Acc:HGNC:10348] 

Cotl1 ENSMUSG00000031827 COTL1 ENSG00000103187 
coactosin like F-actin binding protein 1 
[Source:HGNC Symbol;Acc:HGNC:18304] 

Arl4c ENSMUSG00000049866 ARL4C ENSG00000188042 
ADP ribosylation factor like GTPase 4C 
[Source:HGNC Symbol;Acc:HGNC:698] 

Rpl27 ENSMUSG00000063316 RPL27 ENSG00000131469 
ribosomal protein L27 [Source:HGNC 
Symbol;Acc:HGNC:10328] 

Rrm1 ENSMUSG00000030978 RRM1 ENSG00000167325 
ribonucleotide reductase catalytic subunit 
M1 [Source:HGNC Symbol;Acc:HGNC:10451] 

Rpl30 ENSMUSG00000058600 RPL30 ENSG00000156482 
ribosomal protein L30 [Source:HGNC 
Symbol;Acc:HGNC:10333] 

Gbx2 ENSMUSG00000034486 GBX2 ENSG00000168505 
gastrulation brain homeobox 2 
[Source:HGNC Symbol;Acc:HGNC:4186] 

Cux1 ENSMUSG00000029705 CUX1 ENSG00000257923 
cut like homeobox 1 [Source:HGNC 
Symbol;Acc:HGNC:2557] 

Dcaf12 ENSMUSG00000028436 DCAF12 ENSG00000198876 
DDB1 and CUL4 associated factor 12 
[Source:HGNC Symbol;Acc:HGNC:19911] 

Klhl8 ENSMUSG00000029312 KLHL8 ENSG00000145332 
kelch like family member 8 [Source:HGNC 
Symbol;Acc:HGNC:18644] 

Zfy1 ENSMUSG00000053211 ZNF586 ENSG00000083828 
zinc finger protein 586 [Source:HGNC 
Symbol;Acc:HGNC:25949] 

Zfy1 ENSMUSG00000053211 ZNF480 ENSG00000198464 
zinc finger protein 480 [Source:HGNC 
Symbol;Acc:HGNC:23305] 

Zfy1 ENSMUSG00000053211 ZNF548 ENSG00000188785 
zinc finger protein 548 [Source:HGNC 
Symbol;Acc:HGNC:26561] 

Stag1 ENSMUSG00000037286 STAG1 ENSG00000118007 
stromal antigen 1 [Source:HGNC 
Symbol;Acc:HGNC:11354] 

Apc ENSMUSG00000005871 APC ENSG00000134982 
APC regulator of WNT signaling pathway 
[Source:HGNC Symbol;Acc:HGNC:583] 

Zfy1 ENSMUSG00000053211 ZNF549 ENSG00000121406 
zinc finger protein 549 [Source:HGNC 
Symbol;Acc:HGNC:26632] 

Zfy1 ENSMUSG00000053211 ZNF134 ENSG00000213762 
zinc finger protein 134 [Source:HGNC 
Symbol;Acc:HGNC:12918] 

Zfy1 ENSMUSG00000053211 ZNF304 ENSG00000131845 
zinc finger protein 304 [Source:HGNC 
Symbol;Acc:HGNC:13505] 
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Zfy1 ENSMUSG00000053211 ZNF154 ENSG00000179909 
zinc finger protein 154 [Source:HGNC 
Symbol;Acc:HGNC:12939] 

Zfy1 ENSMUSG00000053211 ZNF793 ENSG00000188227 
zinc finger protein 793 [Source:HGNC 
Symbol;Acc:HGNC:33115] 

Zfy1 ENSMUSG00000053211 ZNF772 ENSG00000197128 
zinc finger protein 772 [Source:HGNC 
Symbol;Acc:HGNC:33106] 

Ptpn9 ENSMUSG00000032290 PTPN9 ENSG00000169410 

protein tyrosine phosphatase non-receptor 
type 9 [Source:HGNC 
Symbol;Acc:HGNC:9661] 

Hnrnpa
1 ENSMUSG00000046434 HNRNPA1 ENSG00000135486 

heterogeneous nuclear ribonucleoprotein A1 
[Source:HGNC Symbol;Acc:HGNC:5031] 

Myd88 ENSMUSG00000032508 MYD88 ENSG00000172936 

MYD88 innate immune signal transduction 
adaptor [Source:HGNC 
Symbol;Acc:HGNC:7562] 

Brd4 ENSMUSG00000024002 BRD4 ENSG00000141867 
bromodomain containing 4 [Source:HGNC 
Symbol;Acc:HGNC:13575] 

Ube2i ENSMUSG00000015120 UBE2I ENSG00000103275 
ubiquitin conjugating enzyme E2 I 
[Source:HGNC Symbol;Acc:HGNC:12485] 

Apc2 ENSMUSG00000020135 APC2 ENSG00000115266 
APC regulator of WNT signaling pathway 2 
[Source:HGNC Symbol;Acc:HGNC:24036] 

Trh ENSMUSG00000005892 TRH ENSG00000170893 
thyrotropin releasing hormone 
[Source:HGNC Symbol;Acc:HGNC:12298] 

Pklr ENSMUSG00000041237 PKLR ENSG00000143627 
pyruvate kinase L/R [Source:HGNC 
Symbol;Acc:HGNC:9020] 

Krt18 ENSMUSG00000023043 KRT18 ENSG00000111057 
keratin 18 [Source:HGNC 
Symbol;Acc:HGNC:6430] 

Hnrnpr ENSMUSG00000066037 HNRNPR ENSG00000125944 
heterogeneous nuclear ribonucleoprotein R 
[Source:HGNC Symbol;Acc:HGNC:5047] 

Agrn ENSMUSG00000041936 AGRN ENSG00000188157 agrin [Source:HGNC Symbol;Acc:HGNC:329] 

Cct3 ENSMUSG00000001416 CCT3 ENSG00000163468 
chaperonin containing TCP1 subunit 3 
[Source:HGNC Symbol;Acc:HGNC:1616] 

Rpl26 ENSMUSG00000060938 RPL26 ENSG00000161970 
ribosomal protein L26 [Source:HGNC 
Symbol;Acc:HGNC:10327] 

Eef1b2 ENSMUSG00000025967 EEF1B2 ENSG00000114942 

eukaryotic translation elongation factor 1 
beta 2 [Source:HGNC 
Symbol;Acc:HGNC:3208] 

Gfer ENSMUSG00000040888 GFER ENSG00000127554 

growth factor, augmenter of liver 
regeneration [Source:HGNC 
Symbol;Acc:HGNC:4236] 

Ephb2 ENSMUSG00000028664 EPHB2 ENSG00000133216 
EPH receptor B2 [Source:HGNC 
Symbol;Acc:HGNC:3393] 

Zfp454 ENSMUSG00000048728 ZNF454 ENSG00000178187 
zinc finger protein 454 [Source:HGNC 
Symbol;Acc:HGNC:21200] 
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Rps20 ENSMUSG00000028234 RPS20 ENSG00000008988 
ribosomal protein S20 [Source:HGNC 
Symbol;Acc:HGNC:10405] 

Mllt11 ENSMUSG00000053192 MLLT11 ENSG00000213190 
MLLT11 transcription factor 7 cofactor 
[Source:HGNC Symbol;Acc:HGNC:16997] 

Pias4 ENSMUSG00000004934 PIAS4 ENSG00000105229 
protein inhibitor of activated STAT 4 
[Source:HGNC Symbol;Acc:HGNC:17002] 

Rps13 ENSMUSG00000090862 RPS13 ENSG00000110700 
ribosomal protein S13 [Source:HGNC 
Symbol;Acc:HGNC:10386] 

Grwd1 ENSMUSG00000053801 GRWD1 ENSG00000105447 
glutamate rich WD repeat containing 1 
[Source:HGNC Symbol;Acc:HGNC:21270] 

Ambra1 ENSMUSG00000040506 AMBRA1 ENSG00000110497 
autophagy and beclin 1 regulator 1 
[Source:HGNC Symbol;Acc:HGNC:25990] 

Pik3ca ENSMUSG00000027665 PIK3CA ENSG00000121879 

phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha [Source:HGNC 
Symbol;Acc:HGNC:8975] 

Rpl13 ENSMUSG00000000740 RPL13 ENSG00000167526 
ribosomal protein L13 [Source:HGNC 
Symbol;Acc:HGNC:10303] 

Gnb1 ENSMUSG00000029064 GNB1 ENSG00000078369 
G protein subunit beta 1 [Source:HGNC 
Symbol;Acc:HGNC:4396] 

558 unique mouse genes with absolute correlation index >= 0.5 were retained from 
GeneNetwork. These genes were converted to 381 unique human genes. The 381 unique 
human genes were filtered using BrainSpan data (overly expressed striatum genes in all 
prenatal vs adult samples) resulting in 72 genes. Of these 72 genes, 67 were found in GTEx and 
our study sample and were used to calculate striatum SLC6A3 ePGS.   

 



 
 

219 
 

Supplementary Table 2. Means of variables used in the cluster analysis for the ALSPAC cohort.  

Variables 

Cluster - Low 

comorbidity risk 
 

Cluster – High 

comorbidity risk 
 

P-value 

Mean / % SE / N Mean / % SE / N 

SDQ Total 
Difficulties 

5.02 0.14 6.77 0.26 <0.001 

Depression Score 0 0 1.08 0.06 <0.001 
Anxiety Score 0 0 0.88 0.06 <0.001 

HOMA2-IR 0.81 0.01 1.08 0.05 <0.001 

Waist 
Circumference  

75.9 0.25 77.17 0.57 0.04 

Sex -Male 49.5% 434 42% 131 0.03 

zBMI .26 0.03 0.31 0.06 0.45 

Birth weight (kg) 3.515 0.015 3.49 0.025 0.44 

               N=876                   N=312   
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Supplementary Table 3.  Main effect of PRS on psychiatric and cardio-metabolic comorbidity. 

 

 

 

 

 

 

 

 

Supplementary Table 4.  Interaction effect between PRS and birth weight on psychiatric and 

cardio-metabolic comorbidity. 

 

 

 

 

 

 

 

 

 

  

  Main effect 

 PRS scores p β OR 

UK 
Biobank 

Type 2 diabetes PRS_EPIC < 0.001 0.073 1.076 

Major depression disorders PRS < 0.001 0.065 1.068 

 PRS scores p β OR 

ALSPAC 
Type 2 diabetes PRS_EPIC 0.253 -0.076 0.927 

Major depression disorders PRS 0.882 0.020 1.020 

  Interaction effect 

 PRS scores p β OR 

UK 
Biobank 

Type 2 diabetes PRS_EPIC 0.490 0.014 1.014 

Major depression disorders PRS 0.608 -0.011 0.989 

 PRS scores p β OR 

ALSPAC 
Type 2 diabetes PRS_EPIC 0.461 0.112 1.119 

Major depression disorders PRS 0.798 -0.078 0.925 
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Supplementary Table 5.  Characteristics comparison between UK Biobank low vs randomly-

selected non-low birth weight groups (n=1906) used in the parallel ICA analysis 

  

Characteristics Low Birth Weight 

(n =953) 

Non-low Birth Weight 

(n = 953) 

P-value 

 Mean or 

% 

SD or N Mean or 

% 

SD or N  

Sex - Male 34.7% 331 44.7% 426 P<0.001 

Birth weight (grams) 2129 376 3464 493 P<0.001 

Completed full-time education at 
14-years of age or younger 0.7% 4 0.9% 5 0.97 

Age at recruitment (years) 54.95 7.37 53.8 7.45 P<0.001 

Townsend deprivation index at 
recruitment -1.79 2.75 -2.02 2.69 0.06 

BMI at recruitment 26.83 4.45 26.52 4.24 0.11 

DAT1 STR ePGS 0.02 0.95 0.07 0.96 0.29 
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Supplementary Table 6.  Characteristics comparison between randomly-selected non-low birth 

weight group used in the parallel ICA analysis vs full sample of non-low birth weight individuals 

with MRI data available in the UK Biobank (n=10214) 

 

Characteristics Randomly-selected 

Non-low Birth Weight 

(n =953) 

Full sample of  

Non-low Birth Weight 

(n = 9261) 

P-value 

Mean or 

% 

SD or N Mean or 

% 

SD or N 

Sex - Male 44.7% 426 42.3% 3920 0.17 

Birth weight (grams) 3464 493 3460 495 0.79 

Completed full-time education at 
14-years of age or younger 0.9% 5 0.5% 27 0.4 

Age at recruitment (years) 53.8 7.45 53.75 7.38 0.85 

Townsend deprivation index at 
recruitment -2.02 2.69 -2.07 2.59 0.617 

BMI at recruitment 26.52 4.24 26.51 4.34 0.956 

DAT1 STR ePGS 0.07 0.96 0.05 0.96 0.607 
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Supplementary Table 7. Subset of significant SNPs related to gray matter density variations 

according to pICA analysis. 

 

Significant SNPs  

SNP         Z Score    

rs34605159  12.99878 

rs7259029   -11.3745 

rs139012629 11.11315 

rs115385848 -9.25124 

rs116962884 8.970151 

rs11704200  8.799921 

rs184236146 -7.28849 

rs6737722   7.180836 

rs112664980 5.614825 

rs56988084  5.071326 

rs2556378   -5.00336 

rs76380377  -4.92952 

rs67621412  4.895654 

rs72795692  4.635065 

rs6947066   -4.32333 

rs1169557   4.131825 

rs3762272   -3.79013 

rs372339543 -3.7461 

rs58399787  -3.63446 

rs2966318   -3.50433 

rs2967848   3.478973 

rs140310740 3.390835 

rs70953651  3.35623 

rs149133487 -3.20932 

rs71526493  -3.17741 

rs3128100   3.123754 

rs2967871   -3.06511 

rs117055030 2.941269 

rs1536096   2.915037 

rs11689362  2.813534 

rs3121575   -2.7558 

rs57843539  -2.61199 

rs11707190  2.509964 

rs2048008   2.500896 
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Supplementary Methods  

Participants 

UK Biobank – Adult cohort: UK Biobank contains information on participants' lifestyle and health 

data at baseline or follow-up, which were collected through questionnaires, physical 

measurements, and biological samples. For the purpose of this project, only unrelated subjects 

were considered in the analysis. Exclusion criteria were 1) participants who withdrew their 

consent from the study, 2) no genotyping data, 3) related participants (genetic kinship to other 

participants > 0.04), 4) inconsistencies in genetic and reported sex and 5) outliers for 

heterozygosity. All subjects selected for the analysis satisfied the following criteria: (1) have 

genotyping data available and (2) have both the diagnosis outcome and birth weight available. 

Detailed description of sample selection process can be found in Supplementary Figure 1. 

ALSPAC – Adolescent cohort: Data were collected during clinic visits or with postal 

questionnaires. Please note that the study website contains details of all the data that is 

available through a fully searchable data dictionary and variable search tool at 

http://www.bristol.ac.uk/alspac/researchers/our-data/. The following inclusion criteria were 

applied: unrelated individuals, gestational age between 37 and 42 weeks inclusively, maternal 

age at delivery >= 18 years old, birth weight of at least 2000 grams, singleton pregnancies. 

Detailed description of sample selection process can be found in Supplementary Figure 2. The 

participant attrition block scheme differs slightly in originally projected ALSPAC participant 

numbers as we are using an earlier data file from 2019 to complete these analyses. 

 

Genotyping 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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UK Biobank – Adult cohort: Blood samples from the UK Biobank were genotyped at the 

Affymetrix Research Services Laboratory in Santa Clara, California, USA. Genotyping was 

conducted using a bespoke BiLEVE Axiom array for 50,000 participants and the remaining 

450,000 participants were genotyped using the Affymetrix UK Biobank Axiom array. The two 

SNP arrays are very similar with over 95% common marker content. Axiom Array plates were 

processed on the Affymetrix GeneTitan® Multi-Channel (MC) Instrument. Genotypes were then 

called from the resulting intensities in batches of ~4,700 samples (~4,800 including the controls) 

using the Affymetrix Power Tools software and the Affymetrix Best Practices Workflow. 

Individuals with the same genotype at any given SNP will cluster together in a two-dimensional 

intensity space (one dimension for each targeted allele). For the interim data release, Affymetrix 

performed further rounds of genotype calling using algorithms customized for the UK Biobank 

project. These algorithms targeted very rare SNPs with 6 or fewer minor alleles in a batch, and a 

subset of SNPs for which the generic calling algorithm did not perform optimally. After genotype 

calling, Affymetrix performed quality control in each batch separately, to exclude SNPs with 

poor cluster properties. If a SNP did not meet the Affymetrix prescribed QC thresholds in a given 

batch, it was set to missing in all individuals from that batch. Hardy-Weinberg equilibrium was 

performed for each batch. Affymetrix also checked sample quality (such as DNA concentration) 

and genotype calls were provided only for samples with sufficient DNA metrics. For SNP-based 

QC metrics, only individuals with similar ancestry and the population structure were 

characterized by computing principal components using only UK Biobank individuals. The array 

also includes coding variants across a range of minor allele frequencies (MAFs), including rare 

markers (<1% MAF); and markers that provide good genome-wide coverage for imputation in 
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European populations in the common (>5%) and low frequency (1–5%) MAF ranges. More 

information about the genotyping protocol, QC and imputation could be found in 111. The 

population structure of the UK Biobank cohort was evaluated using fastPCA algorithm for 

principal component analysis112. To account for population stratification, the first forty principal 

components were included in the UK Biobank analysis. 

ALSPAC – Adolescent cohort: Subjects in ALSPAC cohort were genotyped using the Illumina 

HumanHap550 quad genome-wide SNP genotyping platform by the Welcome Trust Sanger 

Institute (Cambridge, UK) and the Laboratory Corporation of America (Burlington, NC, US)113. 

The following quality control procedure was applied: participants with inconsistencies in self-

reported and genotyped sex, minimal or extreme heterozygosity, high levels of individual 

missingness (>3%), and insufficient sample replication (IBD < 0.8) were excluded. SNPs with MAF 

<1%, call rate <95%, or those not in HWE (p < 5 x 10−7) were removed. Imputation was 

conducted using Impute v3 and Haplotype Reference Consortium (HRC) imputation reference 

panel (release 1.1). The resulting data set consisted of 8,365 individuals and 38,898,739 SNPs 

available for analysis. The population structure of the ALSPAC cohort was described using 

principal component analysis114,115, which was conducted on the genotyped autosomal SNPs 

with MAF > 5% with the following pruning parameters for linkage disequilibrium: 100-SNP 

sliding window, an increment of 5 SNPs, and variance inflation factor threshold of 1.01. To 

account for population stratification, the first ten PCs were included in the analysis. Processing 

of the genotyping data was done using PLINK 1.9 116(authors: Shaun Purcell, Christopher Chang; 

www.cog-genomics.org/plink/1.9/). 
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Gene expression levels at different developmental stages 

In order to confirm if the genes that composed the striatum SLC6A3 ePGS are co-expressed in 

humans and investigate their patterns of gene co-expression during different life periods, we 

used the human postmortem striatal gene expression data from the BrainSpan database65. The 

co-expression patterns were analyzed during two different stages of development: 

childhood/adolescence (0 to 19 years old, N=7) and adulthood (20 to 40 years old, N=6). The 

analyses were carried out in R (https://www.r-project.org)69 using the heatmaply package117.  

 

Outcome measures 

UK Biobank – Adult cohort: To access the presence of psychiatric and cardio-metabolic disorders 

within the UK Biobank cohort, we utilized diagnostic terms from across all participants hospital 

inpatient records, coded according to the International Classification of Diseases version 10 

(ICD-10)66. The presence of at least one cardio-metabolic diagnosis and at least one psychiatric 

diagnosis was considered a comorbidity case. 

 

Psychiatric disorder diagnosis definition: 

Cases: From Hospital Episodes Data from UK bodies (English HES Data, Scottish Morbidity 

Register, Patient Episode Data) (Fields 41270): 

Any primary or secondary diagnosis of ICD-10 Codes for: 

o ICD10 F10-F19 Mental and behavioural disorders due to psychoactive substance use' 
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o ICD10 F20-F29 Schizophrenia, schizotypal and delusional disorders 

o ICD10 F30-F39 Mood [affective] disorders 

o ICD10 F40-F48 Neurotic, stress-related and somatoform disorders 

 

Controls: No primary or secondary diagnosis of ICD-10 codes for: 

o ICD10 F10-F19 Mental and behavioural disorders due to psychoactive substance use' 

o ICD10 F20-F29 Schizophrenia, schizotypal and delusional disorders 

o ICD10 F30-F39 Mood [affective] disorders 

o ICD10 F40-F48 Neurotic, stress-related and somatoform disorders 

 

Cardio-metabolic disorder diagnosis definition: 

Cases: From Hospital Episodes Data from UK bodies (English HES Data, Scottish Morbidity 

Register, Patient Episode Data) (Fields 41270): 

Any primary or secondary diagnosis of ICD-10 Codes for: 

o ICD10 E11 Non-insulin-dependent diabetes 

o ICD10 I70 Atherosclerosis 

o ICD10 I63 Cerebral infarction  

o ICD10 I20-I25 Ischaemic heart diseases 

 

Controls: No primary or secondary diagnosis of ICD-10 codes for: 

o ICD10 E11 Non-insulin-dependent diabetes 

o ICD10 I70 Atherosclerosis 

o ICD10 I63 Cerebral infarction  
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o ICD10 I20-I25 Ischaemic heart diseases 

 

ALSPAC – Adolescent cohort:  The indicators of risk to develop psychiatric disorders comprised: 

a) total difficulties score as measured by the Strengths and Difficulties Questionnaire118 filled 

out by primary caregivers of 16.6 year old participants. This instrument evaluates behavioral 

problems, and a total difficulties score is computed by adding four domains of the scale 

(emotional symptoms, conduct problems, hyperactivity/inattention and peer relationship 

problems) that represent negative behaviors; b) depression score and c) anxiety score as 

measured by the Computerized Interview Schedule – Revised (CIS-R) that establishes the nature 

and severity of neurotic symptoms119, applied to 17.5 year old participants. The indicators of 

risk to develop metabolic disorders involved: d) insulin resistance as measured by the 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), calculated using plasma 

fasting glucose (mmol/l) and insulin (pmol/l) levels collected at 17.5 years of age. The 

calculation followed the updated version of the HOMA-IR index developed by Wallace et al 

(2004)120 and was computed using the HOMA2 calculation tool 

(http://www.dtu.ox.ac.uk/homacalculator/); and e) waist circumference (cm) measured at 15.5 

years of age. Similar to UK Biobank, we created comorbidity risk variable based on the 

indicators of risk to develop psychiatric and metabolic disorders. Precisely, to construct 

comorbidity risk variable we performed cluster analysis on five risk indicators: Total difficulties, 

depression and anxiety scores, HOMA-IR and waist circumference. All predictors were z-

transformed prior to entering the clustering procedure and adjusted by sex. We defined a 

cluster solution of two clusters, representing lower and higher risk for comorbidity. Regression 
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analysis was carried out to demonstrate the difference between the means for each variable 

included in the cluster analysis (Supplementary information, Supplementary Table 2, 

Supplementary Figure 3). 

 

Gray matter density in UK Biobank participants: T1 structural brain MRI pre-processed imaging 

data were generated by an image-processing pipeline developed and run on behalf of the UK 

Biobank67. High-resolution T1-structural images for the whole brain were acquired with straight 

sagittal orientation using a Siemens Skyra 3T running VD13A SP4, with a standard Siemens 32-

channel RF receive head coil. The following parameters were used: resolution 1x1x1mm; field-

of-view 208x256x256 matrix; 5 minutes duration; 1 mm isotropic resolution using 3D MPRAGE 

acquisition; in-plane acceleration iPAT=2; prescan-normalize. Full 3D gradient distortion 

correction (GDC) was applied to the original T1 image and the field of view (FOV) was cut down 

to reduce the amount of non-brain tissue. Tools used to achieve this include BET (Brain 

Extraction Tool), FLIRT (FMRIB's Linear Image Registration Tool), and the MNI152 “nonlinear 6th 

generation” standard-space T1 template. A non-linear registration to MNI152 space was used 

with FNIRT (FMRIB's Nonlinear Image Registration Tool). Using the inverse of the MNI152 

alignment warp, a standard-space brain mask was transformed into the native T1 space and 

applied to the T1 image to generate a brain-extracted T1. Tissue-type segmentation was applied 

to T1 weighted images using FSL/FAST (FMRIB's Automated Segmentation Tool). Then, the T1-

weighted gray matter images were selected and adjusted for age and sex. For each voxel 

separately, we applied linear regression analysis to regress the intensity on age and sex and 

used the residuals in p-ICA analysis. 
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Chapter VII. Discussion 

The high prevalence and comorbidity of psychiatric and cardiometabolic disorders present a 

complex puzzle in clinical research that is not easily understood if we consider diseases as static 

entities. This thesis shows that the elucidation of the mechanisms involved in these two types of 

disorders can be contextualized in a developmental perspective. We started by showing that 

DRD4 predicted gene expression variation significantly interacted with a measure of early life 

environment to predict emotional eating in children. As discussed earlier, this altered eating 

behavior, especially early in life and related to a pro-intake eating behavior, may serve as an 

endophenotype linked to the development of metabolic disorders, including obesity. The same 

reasoning is applied to the emotional domain of this behavior, which is related to emotional 

regulation278 and might also act as an endophenotype for later psychopathology. Subsequently, 

we showed that a genetic score based in a network of genes coexpressed with the SLC6A3 gene 

in the striatum significantly interacts with birth weight, which represents the quality of the 

uterine environment, to predict cardiometabolic and psychiatric comorbidity in adults. In the 

same study we showed that in adolescents, a profile indicative of high risk for the development 

of psychiatric and metabolic comorbidity is also predicted by the same GxE interplay seen in 

adults. The profile indicative of high risk to develop these disorders comprised metabolic 

markers, including high insulin resistance score and higher waist circumference, and 

psychological markers, including high depression and anxiety scores. These results together 

highlight the role of behavioral and metabolic endophenotypes as precursors of a possible 

cascade of events that lead to the development of chronic disorders in adulthood. These 

cascades of events are thought to start with ELA exposure, that leads to early in life 
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behavioral2,231,238 and metabolic alterations49,99,102, but also at the dopaminergic system 

level235,238,239, which consequently may further impact metabolism and behavior, especially the 

ones related to value processing. These alterations in behavior, metabolism, and 

neurotransmission, even if small, are persistent over the life course and interact with several 

layers of the environment, both at the macro and individual level, leading to the magnification 

and/or further alterations in these domains. The findings described in chapters III and VI are 

aligned with this view, and a conceptual framework of this cascade of events is discussed in 

chapter I, as well as in Alberry & Silveira (2023)263, which details the role of insulin signaling 

alterations followed by ELA exposure and Silveira et al (2018)110 that discussed the impacts 

followed by LBW in this context. The view that disease development is dynamic is aligned with 

other important conceptual frameworks, such as the ecological system theory, which states that 

human development is shaped by the complex interplay between the individual and the many 

layers of its environment. In this view, there is a contextual and individual variability that shapes 

human developmental processes301. Likewise, the developmental origins of health and disease 

hypothesis also considers the development of chronic disorders in a dynamic fashion, either by 

conferring increased sensitivity to environmental influences or by programming development 

through alterations led by ELA exposure17,285. 

In Chapter VI we found that the score based on the SLC6A3 striatum gene network, which 

significantly interacts with birth weight, is enriched for gene ontology process related to insulin 

signaling. Early life alteration in insulin signaling, such as augmented insulin sensitivity seen in 

LBW, is thought to be related to altered eating behaviors seen in these individuals, such as 

increased intake of palatable foods, rich in fat and sugar2,238,241,257,258 and altered hedonic 
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responses to sweet taste231,259. These altered eating behaviours, related to the processing of 

reward information, have been linked to alterations in dopaminergic signaling238,239,241,242. 

Insulin signaling in the brain is increasingly being recognized as a modulator of dopaminergic 

activity111,302,303. Gruber et al (2023)302 suggest that the actions of insulin on dopaminergic 

reward processing are a possible pathophysiological mechanism linking major depressive 

disorder and type 2 diabetes comorbidity. Similarly, Sullivan et al (2023)303 discuss that insulin 

signaling in the brain plays an important role in behavioural relevant CNS functions, including 

behavioral flexibility. DA, especially in the prefrontocortical area, is also related to behavioral 

flexibility304 and, as discussed earlier in chapter I, plays a crucial role in adaptive behavior. Both 

hyper and hypo-responsive DA systems could result from different ELA exposures158, implicating 

DA in phenotypic versatility. Thus, both insulin and DA signaling alterations and their interplay 

are involved in the development and manifestation of altered behavioral endophenotypes seen 

early in life followed by ELA exposure, especially in the case of LBW.  

It is important to mention that sensitivity analyses are crucial tools when evaluating the 

differential effects of composite genomic scores, such as the ePGS. The calculation of the ePGS 

facilitates tailoring the score according to the gene network of interest and the expression of 

this network of genes in a specific tissue. A common inquiry is to what extent the results, both 

at the GxE interaction level and in the investigation of putative gene ontology processes, are 

specific to the score used in the study. Sensitivity analyses were performed for the results seen 

in Chapters V and VI (data not shown), testing the same GxE interaction effect and investigating 

gene ontology processes. These preliminary data have shown that the results are, in fact, 

specific and distinct for each tailored ePGS, underscoring the capability of the ePGS to reflect 
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specific gene networks. This is an advantage when investigating underlying biological 

mechanisms at the human translational level. The ePGS, although stablished and used in several 

publications including high impact journals162,305, is still considered a novel technique and a 

difficulty is observed in the scientific community to absorb the full scope and potential of the 

ePGS. Earlier submissions of the manuscript from Chapter VI lead us to consider that the ePGS 

performance would be better benchmarked in terms of clarity if compared to traditional PRS, 

rather than alternative ePGS featuring different gene networks and based on different brain 

regions. 

The interpretation of GxE interaction effects implies that the risk for a certain phenotype can be 

either attenuated or increased by an environmental exposure, or that genetic factors can modify 

the impact of environmental factors. These interpretations take into account the nature of 

moderation analysis, in which the genetic component can modify the strength of the 

relationship between independent and dependent variables. An important distinction when 

investigating GxE interaction effects is the examination of the gene-environment correlation 

phenomenon, wherein genes can influence individual variations in exposure to different types 

of environments306. If GxE correlation exists, the interpretation of GxE interaction effects is 

hindered. In Chapter VI, our environmental predictor, birth weight, significantly correlates with 

our genomic predictor, striatum SLC6A3 ePGS, in the UK Biobank cohort (See Table 4), which 

should be considered a possible confounder for interpreting the results of GxE interactions. 

However, the relationship between large sample sizes, as in the case of the UK Biobank, and the 

identification of statistically significant minuscule effects exists and, in some cases, leads to the 

identification of misleading associations307,308. The correlation coefficient between birth weight 
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and striatum SLC6A3 ePGS on the UK Biobank is extremely small, being hundreds of times 

smaller than the small correlation threshold of 0.3309. In Chapter VI, if we examine the same 

gene-environment correlation on the ALSPAC cohort, a much smaller sample size in comparison 

to the UK Biobank reveals no significant correlation (See Table 5). The absence of gene-

environment correlation in ALSPAC, together with the extremely small correlation coefficient in 

the UK Biobank, leads us to assume that, in Chapter VI, no gene-environment correlation 

phenomenon exists. Thus, this guides our interpretation of the results in the direction of GxE 

interactions. 

The work presented in this thesis contributes to the growing knowledge on the long-term 

effects of ELA exposure, which underscores the imperative for further efforts to address and 

alleviate the consequences associated with ELA exposure. The meritocratic ideology within 

societies that prioritize individuality and personal gain becomes disconcerting when considering 

the research findings that link ELA exposure to numerous developmental challenges and 

subsequent risks for psychiatric and cardiometabolic diseases in adulthood. The field dedicated 

to studying the effects of ELA exposure highlights the injustices concealed by such a simplistic 

worldview, emphasizing the urgent need to formulate public policies that prioritize health 

equity. The concept of equity acknowledges the diverse circumstances of each individual, 

necessitating the fair distribution of resources and opportunities to achieve an equal outcome. 

It is also defined by the absence of avoidable or remediable differences among groups of 

people310. In this view, a public health system lacking prevention strategies is unlikely to provide 

equitable care to its population. Thus, preventive measures are crucial to mitigate the impacts 

of ELA exposure, especially the ones concerning the enhancement of prenatal care and 
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implementation of postnatal support policies for mothers and caregivers, domains that have a 

direct impact in the child's early life environment. Efforts in these areas are essential to address 

the disparities resulting from ELA exposure and promote a more equitable and just society. 

Medicine has revolutionized prenatal and neonatal care, significantly decreasing mortality rates 

for both mother311,312 and infants under the age of five313 in the last decades. Similar efforts 

should be put in place to mitigate other types of ELA exposure, including socioeconomic and 

psychological challenges, ideally by prevention rather than remediation, since contributing 

factors are known and potentially preventable. Our results showing a differential effect of 

enviroment exposure according to our genomic predictors, possibly indicates why some children 

benefit more than others from early childhood intervations to improve multiple domains314. In 

fact, the impact of these interventions has been relatively modest315, suggesting that children 

do not profit equally. This variation in response to enviromental interventions leads to 

opportunities to better understand and effectivelly evaluate variations in intervention 

effectivenness and also indicates the need to plan for flexible implementation of interventions, 

aiming to increase the impact for those who may benefit the least.  

This thesis work brings a translational perspective to explore the joint contribution of genetics 

and environment in disease development and manifestation. Leveraging from extensive 

knowledge from basic science we elaborated hypothesis-driven explorations of the 

neurobiological mechanisms involved in the association between ELA exposure and altered 

eating behavior and psychiatric and cardiometabolic comorbidities. Our hypothesis about 

individual differences in the expression of a dopaminergic gene network was tested by 

computing genetic scores that leveraged basic science data in animals and humans. We then 
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used this information to explore GxE effects in humans at different developmental stages. The 

results from chapters III and VI are contextualized at the human association level and may 

inform future molecular studies preoccupied with exploring and causally testing ELA exposure 

effects. Back translation from the findings of this work is fundamental for the effective 

progression of the objectives addressed here. The continuous translation of information from 

basic science to its application at the human association level, or through more robust research 

designs like randomized controlled trials, and the subsequent backtranslation to bench work, is 

a crucial process that should remain at the forefront while pursuing a research agenda over 

time. Instead of marginalizing diverse research methodologies, scientific progress is better 

achieved by prioritizing the integration of information and the seamless translation and back-

translation from micro to macro aspects of a phenomenon.  

In chapters IV and V, we discussed ways of capturing GxE effects. We concluded that GWAS is 

not suited to capture GxE effects and discussed the idea that utilization of genome-wide 

isolated signals may be detrimental when exploring possible underlying biological mechanisms 

involved in complex diseases, since these genome-wide isolated signals are not aggregated by 

biological function but by statistical association. We propose the incorporation of a complex 

system in biology approach, that considers genes as part of a co-regulatory network, instead of 

isolated signals. The complex system approach not only favors the utilization of gene networks 

instead of isolated genetic signals but also the incorporation of the interaction between the 

elements of a system, including macro-scale objects such as environment and genome. The 

complex system in biology is a shift from a reductionist paradigm often adopted in biological 

sciences, preoccupied with knowing and understanding the contribution of small parts of a 
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system with a cross-sectional view of time, usually resulting in moving away from the larger 

scenario. Medicine also traditionally follows this view, and approaches disorders as separate 

entities, with treatment following the same reasoning316. The reductionist paradigm is 

detrimental when complex diseases are being investigated, such as psychiatric and 

cardiometabolic conditions and their comorbidity, especially facing emerging evidence that 

pleiotropy – defined by one gene affecting multiple phenotypes and suggestive of shared 

genetic architecture288 – is abundant among many complex disorders289 and that genes, 

environment, and the interplay between them play a role in the etiology of these diseases149-153. 

Alongside the reductionist paradigm, the deterministic view in biology is still present in modern 

science317. However, it is known that not all individuals exposed to ELA will develop chronic 

diseases in the long term133-135. There is individual variability, which is partly attributed to the 

genetic background136,137. A complex system in biology approach preoccupied with abandoning 

reductionist and deterministic paradigms is potentially more philosophically aligned with the 

nature of the complex interplay between environment and genetics resulting from ELA 

exposure. 

In chapter V we compared a technique that is informed by the gene networks perspective 

(ePGS) with the standard polygenic risk score calculations which considers isolated genetic 

signals (PRS). Through the examples given in chapter V we explored the promising aspects of 

ePGS in representing biological information, made possible by incorporating information into 

the ePGS that are not present in PRS. This additional information includes the coexpression 

between genes and the tissue-specific effect size of the association between genotyping and 

gene expression. Some authors suggest that the translation of findings using genetic risk scores 
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into actual improvements in healthcare requires the advancement of techniques that allow 

moving from the discovery of simple association signals to their functional interpretation. This 

could be achieved by incorporating other levels of data such as transcriptomics and proteomics, 

accelerating the translation of GWAS findings to therapeutic interventions318. This view is 

aligned with the conceptual framework of the ePGS technique.  

This thesis has limitations that should be considered. Results from chapters III and VI explore 

the idea that genetic individual variations of dopaminergic genes are related to the differential 

response to ELA exposure effects, and they do so at the human association level. Even though 

we have demonstrated the value of such results, they are limited to the association level and 

molecular studies are needed to causally link dopaminergic gene expression variations to the 

differential effects of ELA exposure. Results from chapters III and VI are interpreted as a 

potential developmental cascade of events that links ELA exposure to the development of later 

in life psychiatric and cardiometabolic comorbidities, but the data used in these studies are 

cross-sectional. Future studies addressing this idea from a longitudinal perspective are 

imperative to more robustly address the interpretation given here. In chapter VI, insulin 

signaling is suggested as an underlying biological mechanism involved in the interaction effect 

between LBW and SLC6A3 striatal gene network expression on psychiatric and cardiometabolic 

comorbidities. This result is from putative information, gathered through gene enrichment 

analysis, that systematically combines literature information to provide insight into genetic 

results. Thus, further molecular studies are needed to link insulin signaling, LBW, SLC6A3 striatal 

gene network expression and psychiatric and cardiometabolic comorbidities, ideally by animal 

models where confounding variables can be more rigorously addressed. Our genetic scores are 
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largely based on GWAS from European ancestries and further studies following the same steps 

but with appropriate ancestry specific GWAS are needed, in a future where such GWAS will, 

hopefully, be available. We also did not consider sex-specific analysis in the studies presented in 

this thesis. Psychiatric and cardiometabolic disorders have potential sex-specific biological 

pathways that should be addressed in future studies to better understand the shared biological 

mechanisms between these comorbid disorders and to effectively translate findings to human 

therapeutics.  
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Chapter VIII. Conclusion 

This thesis provides evidence that variations in dopaminergic gene expression in brain-specific 

regions significantly interact with environmental factors to predict emotional eating behavior in 

children, the probability of belonging to a high comorbidity risk profile in adolescents and the 

risk to developing psychiatric and cardiometabolic comorbidities in adulthood. Through the 

work presented in this thesis, we contribute to the growing body of knowledge on the potential 

neurobiological mechanisms connecting ELA exposure to the development of psychiatric and 

cardiometabolic disorders.  

Our findings suggest that GWAS may not effectively capture GxE effects, and we showed that a 

genetic score based on a gene network perspective, incorporating biological information into 

the calculation of these scores, may better capture GxE effects and provide insights into 

biological mechanisms. This work contributes to an increased awareness of the differential 

impact of ELA on individuals and emphasizes the necessity of fostering preventive interventions 

to mitigate the effects of ELA exposure. It also sheds light on the role of GxE in the development 

of chronic disorders and the influence of variations in dopamine-related brain gene expression 

in modulating the effects of ELA exposure. Finally, it underscores the importance of 

incorporating functional genomics into genetic prediction scores. 
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