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Abstract  

Previous work has demonstrated that the provision of feedback during arm movements enhances 

upper limb (UL) motor recovery after stroke. Error augmentation (EA) is an effective form of 

feedback that involves magnifying the errors in the patient’s movements, with respect to the 

desired task. EA can improve the extent of motor learning through the use of virtual reality 

platforms. Additionally, implicit motor learning, where participants adapt their motor performance 

to movement errors without conscious awareness, seems to be more resilient and effective over 

time than explicit motor learning. This study aimed at 1. Assessing the feasibility of performing 

an EA task in people who have had a stroke and in healthy participants, 2. Measuring the limit of 

EA that can be used to provide implicit feedback, without the participants’ conscious awareness, 

and 3. Estimating the extent of the error to which kinematic variables stay stable. 

In this study, eight healthy and nine poststroke participants in chronic stroke stage were recruited 

to perform reaching movements to one of three directions. Participants were aged between 42 and 

75 (yrs.) and performed the task with their dominant (healthy group) or affected arm (poststroke 

group). Participants' forearms were supported by an arm support device that allowed them to move 

their arm and forearm in the horizontal plane. A screen displayed the avatar of the participant's 

arm in real-time. During each trial, an error of 7.5° to 30° could be randomly added to the avatar’s 

elbow angle by manipulating the visual feedback. At the end of each trial, participants were asked 

whether they were aware of the presence of EA. Finally, psychometric curves were used to 

measure 50% of the detection threshold in both groups under different directions in order to 

measure the implicitly applicable domain of EA. Kinematic variables were also calculated and 

compared between groups and in different EA conditions. 
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Results showed that all participants with different sociodemographic characteristics were able to 

complete 180 trials in less than 2 hours and could detect the presence of a 16.6° error in more than 

50% of trials. Additionally, there were no between-group differences in either EA detection 

threshold or in any of the kinematic variables (speed, straightness, smoothness of the hand reaching 

movement, as well as elbow ROM). Furthermore, neither the kinematic variables nor the EA 

detection threshold was affected by movement direction. EA detection threshold for both groups 

was at 16.6° EA, and changes in the kinematic variables were observed as EA exceeded that 

threshold.  

Based on our findings, EA can successfully be added to the reaching movement and can be 

detected by all participants at a specific threshold. In another word, using EA blew the detection 

threshold can prevent EA detection. It might provide a new idea for implicitly improving 

poststroke reaching performance using virtual reality platforms. These results are useful for 

researchers and practitioners using EA in clinical domains. 
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Résumé 

Des travaux antérieurs ont démontré qu’un retour d'information pendant les mouvements du bras 

améliore la récupération motrice des membres supérieurs (MS) après un accident vasculaire 

cérébral (AVC). L'augmentation de l’erreur (AE) est une forme efficace de feedback qui consiste 

à amplifier les erreurs dans les mouvements du patient, par rapport à une tâche souhaitée. L'AE 

peut améliorer l'étendue de l'apprentissage moteur grâce à l'utilisation de plateformes de réalité 

virtuelle. De plus, l'apprentissage moteur implicite, où les participants adaptent leur performance 

motrice aux erreurs de mouvement sans en avoir conscience, semble être plus résilient et efficace 

dans le temps que l'apprentissage moteur explicite. Cette étude visait à : 1. Évaluer la faisabilité 

de l'exécution d'une tâche d'AE chez des personnes ayant subi un AVC et chez des participants en 

bonne santé, 2. Mesurer la limite de l'AE qui peut être utilisée pour fournir un feedback implicite, 

sans que les participants en aient conscience, et 3. Estimer l'ampleur de l'erreur à laquelle les 

variables cinématiques restent stables. 

Dans cette étude, huit participants en bonne santé et neuf participants au stade d'AVC chronique  

ont été recrutés pour effectuer des mouvements d'extension dans l'une des trois directions. Les 

participants étaient âgés de 42 à 75 ans et ont effectué la tâche avec leur bras dominant (groupe 

sain) ou affecté (groupe post-AVC). Les avant-bras des participants étaient soutenus par un 

dispositif de soutien mobile, qui leur permettait de déplacer leur bras et leur avant-bras dans le 

plan horizontal. Un écran affichait l'avatar du bras du participant en temps réel. Au cours de chaque 

essai, une erreur de 7,5° à 30° pouvait être ajoutée aléatoirement à l'angle du coude de l'avatar en 

manipulant le retour visuel. À la fin de chaque essai, il était demandé aux participants s'ils étaient 

conscients de la présence de l'AE. Enfin, des courbes psychométriques ont été utilisées pour 

mesurer 50% du seuil de détection dans les deux groupes sous différentes directions afin de 
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mesurer le domaine implicitement applicable de l'AE. Les variables cinématiques ont également 

été calculées et comparées entre les groupes et dans différentes conditions d'AE. 

Les résultats ont montré que tous les participants, avec des caractéristiques sociodémographiques 

différentes, étaient capables de réaliser 180 essais en moins de 2 heures et pouvaient détecter la 

présence d'une erreur de 16,6° dans plus de 50% des essais. En outre, aucune différence entre les 

groupes n'a été constatée en ce qui concerne le seuil de détection de l'AE ou l'une des variables 

cinématiques (vitesse, rectitude, douceur du mouvement d'extension de la main, et ROM du 

coude). En outre, ni les variables cinématiques ni le seuil de détection de l'AE n'ont été affectés 

par la direction du mouvement. Le seuil de détection de l'AE pour les deux groupes était de 16,6° 

AE, et des changements dans les variables cinématiques ont été observés lorsque l'AE dépassait 

ce seuil.  

D'après nos résultats, l'AE peut être ajoutée avec succès au mouvement d'atteinte et peut être 

détectée par tous les participants à un seuil spécifique. En d'autres termes, l'utilisation de l'AE en 

dessous du seuil de détection peut prévenir sa détection. Cela pourrait fournir une nouvel outil 

pour améliorer implicitement la performance d'atteinte post-AVC en utilisant des plateformes de 

réalité virtuelle. Ces résultats sont utiles pour les chercheurs et les praticiens qui utilisent l'AE dans 

des domaines cliniques. 
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CHAPTER 1: Introduction and Background 

 

1.1 Stroke  

Stroke, also called cerebrovascular accident, is a sudden loss of brain function caused by the 

interruption of blood flow and oxygen to the brain (ischemic stroke) or the rupture of blood vessels 

(hemorrhagic stroke). As a result, brain cells affected by stroke die (Public Health Agency of 

Canada, 2021). It is the leading cause of neurological disability in adults and the second leading 

cause of death worldwide (Feigin et al., 2019). According to the Public Health Agency of Canada, 

about 741,800 Canadians 20 years of age and older are living with a stroke. Of the number of 

stroke survivors, more than 400,000 Canadians are currently living with stroke-related disabilities, 

and this figure is expected to double in the next 20 years (Heart and Stroke Foundation, 2017). 

Despite many medical advances in management and prevention, only 10% of poststroke subjects 

completely recover. Almost 25% of them have a minor impairment, 40% have moderate to severe 

impairment, and 10% are left with severe disability, including hemiparesis, a condition 

characterized by motor weakness of one side of the body and requires long-term care (Heart and 

Stroke Foundation, 2017). It has been reported that the direct and indirect cost of stroke to the 

Canadian health care system is estimated to be approximately $3.6 billion per year (Heart and 

Stroke Foundation, 2017). 

1.1.1 Upper Limb Impairments after stroke 

Upper limb paresis is one of the most common impairments following a stroke, with loss of arm 

function occurring in up to 80% of stroke survivors (Lindsay et al., 2019). Upper limb motor 

complications can significantly impact mobility and health (Langhorne et al., 2009). Impairment 

of upper limb function contributes to functional disability in daily activities, including feeding, 
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dressing, bathing, grooming, and writing, which can place a significant burden on stroke survivors 

and their caregivers, physically, socially and psychologically (Williams, 2001). Despite 

rehabilitation efforts, the upper limb does not recover as well as the lower limbs (Nakayama et al., 

1994). In particular, individuals with stroke have difficulty with elbow extension movements. 

Elbow extension is a necessary component of many tasks of daily living (Oosterwijk et al., 2018). 

Lack of elbow extension is one of the main features of movement in people who have had a stroke, 

specifically in individuals with severe to moderate clinical impairments (Cirstea & Levin, 2000). 

Additionally, lack of elbow extension may considerably affect quality of life as it is an important 

predictor for motor recovery of UL in people who have had a stroke (Massie et al., 2011). Reaching 

is a fundamental element of many activities of daily living that requires elbow extension as well 

as shoulder flexion and wrist pronation or supination. The ability to reach and interact with the 

surrounding environment is an important component in a wide variety of everyday tasks. 

Therefore, even a minimal amount of recovery of the hemiparetic arm may lead to large changes 

in function. 

1.1.2 Upper Limb Rehabilitation 

Currently, a variety of techniques are employed for the rehabilitation of post-stroke individuals 

with upper limb movement impairments (Hatem et al., 2016; Pollock et al., 2014). There is some 

promise in these interventions for the reduction of motor impairment after stroke, but selection of 

the most appropriate intervention will differ between patients and depend on the severity of the 

impairment (Barreca et al., 2003). UL rehabilitation techniques include, mirror therapy and 

constraint-induced movement therapy (CIMT) which are specific interventions with promising 

early evidence for stroke recovery (Dohle et al., 2009; Yoon et al., 2014), conventional therapy, 

functional electrical stimulation, mental practice, robotics, and electromyographic (EMG) 
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biofeedback. Most upper limb recovery approaches emphasize the need for repetitive, intensive 

and task-specific training (Perry, 2004). CIMT is one of the most investigated interventions to 

reduce functional problems in the affected UL. It involves intensive rehabilitation therapy of the 

affected UL while constraining the use of the unaffected side. Patients with minimal sensory and 

cognitive deficits and some degree of active range of wrist and arm motion may benefit from this 

type of therapy (Kwakkel et al., 2015). In mirror therapy, the patient moves his unaffected limb 

while watching the movement in the mirror. Mirror therapy uses visual feedback to enhance upper-

limb function following stroke, improve activities of daily living and reduce pain (Gurbuz et al., 

2016). The use of functional electrical stimulation to improve UL function after stroke has been 

supported by high-quality evidence from a recent systematic review and meta-analysis (Monte-

Silva et al., 2019). Additionally, neurodevelopmental techniques and mental practice appear to be 

no more effective than other conventional therapy approaches (Gelber et al., 1995; Paci, 2003; 

Park et al., 2018). Evidence also suggests that EMG-biofeedback can result in modest 

improvements in arm function. According to the result of one systematic review, there was a 

significant improvement in UL function using a combination of EMG-biofeedback treatment and 

physiotherapy compared to physiotherapy alone (Langhorne et al., 2009).  

1.1.3 Conventional Therapy 

Conventional therapies for patients recovering from stroke designed to treat physical disabilities 

and sensory impairments include approaches such as Bobath or neurodevelopmental techniques, 

and proprioceptive neuromuscular facilitation (PNF). Conventional care for stroke management is 

delivered across a variety of healthcare settings and can be highly variable in duration, intensity, 

and type. In Bobath approach, the focus is on normalizing the muscle tone while facilitating normal 

movement patterns. In the PNF approach, muscles and nerves are manually stimulated to promote 
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more functionally relevant movements. Therefore, in neurofacilitative approaches, therapist has 

an active role in applying movement and stimulating nerves and patient remains relatively passive 

in the treatment process (Pollock et al., 2014).  

1.1.4 Robotic Training 

Among different rehabilitation interventions, robotic training provides the opportunity to create 

individualized and enriched practice environments for upper limb improvement in chronic stroke 

survivors (Burgar et al., 2000; Krebs et al., 1999). Robotic-assisted arm devices can provide 

passive assistance (weight bearing), active assistance or resistance to movements during training 

for an isolated joint or multiple segments. Robotic therapy is also expected to provide stroke 

survivors with high-intensity, repetitive, and goal-directed trials that leads to normalized muscle 

tone, as well as improved strength and range of upper limb motion (Fasoli et al., 2003; Krebs et 

al., 2003; Posteraro et al., 2009). The importance of repetitive training is related to the exercising 

time that has been shown to be a critical factor for functional motor recovery (Mehrholz et al., 

2012).  

1.1.5 Benefits and Importance of Robotic Training in Stroke Rehabilitation 

Effort has also gone into studying the benefits of training with robotic-assisted devices. It was 

shown that robotic-assisted training not only contributes to a decrease in upper limb disability by 

reducing motor impairment and improving arm muscle strength, but it is also a well-accepted 

treatment for people after stroke, as it can provide an opportunity for independent exercise and 

increase motivation due to the feedback provided by the device (Mehrholz et al., 2018; Prange et 

al., 2006).  
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The use of such technologies is rapidly increasing in stroke rehabilitation. Incorporation of such 

technologies as complementary therapies may increase motor learning and outcomes in stroke 

survivors and can lead to higher patient’s satisfaction (Gilmore & Spaulding, 2007). However, 

based on current research, there is still no evidence for the added beneficial effects of high-

intensity, technology-based upper-limb therapies over intensive usual care in stroke participants. 

A systematic review has indicated that when the duration and intensity of robotic-therapy are 

matched with usual care, no significant between‐group differences were found in motor recovery, 

daily living activities (ADL), strength, and motor control (Norouzi-Gheidari et al., 2012). Other 

systematic reviews have shown that using robotic-assisted therapy with usual care is more effective 

than robotic therapy alone, in terms of ADL, motor control and muscle strength (Bertani et al., 

2017). While the advantages of robotic training over usual care in terms of functional benefit are 

not clear, studies suggest that robotic-therapy may be an innovative approach to address the needs 

of repetitive, high accurate and task-oriented rehabilitation regimens (Duret et al., 2015; Levin et 

al., 2009). 

1.1.6 Virtual reality for upper limb rehabilitation 

Robotic devices used for therapy can be coupled with a virtual environment, which is commonly 

called a virtual reality environment. This combination may offer opportunities for new forms of 

motor skills retraining that could increase the potential for motor recovery after stroke (Laver et 

al., 2010; Mekbib et al., 2020). 

One of the biggest advantages of virtual environments for UL rehabilitation is that they can enable 

patients to experience an environment that closely resembles the real world and perform activities 

that are similar to their real-world counterparts, which lets people who have had a stroke 

immediately begin to adapt their activities with necessary functional performances (Weiss et al., 
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2006). The use of virtual reality interventions for rehabilitation may enable simulated practice of 

functional tasks at a higher dosage than traditional therapies, as it can be more engaging for 

poststroke people to practice through 3D virtual environments and video games with motivating 

tasks than the traditional repetitive practice (Adamovich et al., 2009). Also, with the use of virtual 

reality, stroke individuals can also safely perform some activities that may be impractical or could 

not be performed in a clinical setting, such as shopping or cycling. 

Several studies have demonstrated greater improvement of motor function in patients treated with 

virtual environment than conventional rehabilitation (Kiper et al., 2018; Lucca, 2009; Pollock et 

al., 2014). The findings from a Cochrane review on the efficacy of virtual reality on upper limb 

function and activity showed that interactive video gaming has a small positive effect on improving 

upper limb impairments in comparison with conventional rehabilitation therapy (Laver et al., 

2017). Moreover, when virtual reality was used in addition to usual care there was a significant 

improvement in function of the arm (Kiper et al., 2018; Laver et al., 2017).  

Despite all rehabilitation approaches including robotic therapy for UL recovery after stroke, the 

result has been disappointing in terms of functional improvement and impairments persist in 55% 

to 70% of the cases, despite intensive and prolonged rehabilitation (Chen & Winstein, 2009). 

1.2 Motor learning 

Motor learning has been defined as: “the acquisition of motor skills, the performance enhancement 

of learned or highly experienced motor skills, or the reacquisition of skills that are difficult to 

perform or cannot be performed because of injury, disease and the like (Magill, 2011).” There are 

two different motor learning mechanisms: explicit and implicit motor learning; meaning that 

learning can occur both intentionally and unintentionally. 
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Explicit motor learning can be defined as learning by verbal knowledge of movement or 

performance (Johnson et al., 2013). It is a more conscious form of learning that depends on 

working memory involvement. Indeed, the learner is aware of the rules about movement 

performance and the process of learning. To encourage explicit motor learning in rehabilitation, 

therapists may instruct patients to do bridging exercises while thinking about their performance, 

for example: “While lying on your back in bed, bend your knees up, press the feet into the mattress 

and lift your bottom off the bed”. Augmented feedback regarding the correct movement production 

is one way to transmit this knowledge and encourage learning. 

In contrast to explicit learning, implicit motor learning refers to the acquisition of skills by 

exploration or under trial-and-error conditions, with little to no working memory involvement and 

with no or little conscious awareness (Kleynen et al., 2014). It is suggested that implicit motor 

learning takes place more automatically and in a less conscious manner than explicit motor 

learning (Kal, Prosée, et al., 2018).To learn implicitly basically means the learner is aware of the 

process of learning but is not informed of the facts and rules of the motor skill to be acquired. For 

example, in learning to ride a bicycle, the child is not necessarily aware of the rules and processes 

for cycling while trying to learn it but is able to learn and succeed by trial and error.  

The ability to unconsciously adapt the nervous system to the environment is one of the most 

important aspects of recovery in terms of functioning for people who have had a stroke, so implicit 

learning might have a significant effect on everyday life for these individuals. Orrell and 

colleagues (2006) investigated implicit motor learning on a whole-body task after stroke. In this 

study, participants were instructed to practice a balance board task. In order to induce implicit 

motor learning, an errorless learning procedure was implemented, and task difficulty was gradually 

increased by reducing the balance board’s rotational resistance throughout practice. Practice 
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resulted in a significant improvement in balance performance, which lasted a week later during a 

delayed retention test. A systematic review of 20 studies investigating implicit motor learning after 

stroke in different clinical settings indicated that implicit learning does not result in superior 

learning compared to explicit learning (Kal et al., 2016a). However, motor skills that are implicitly 

acquired may be better suited when performing a variety of cognitive tasks simultaneously (Kal et 

al., 2016a). 

Current clinical practice shows therapists tend to rely on explicit motor learning or switch 

frequently between implicit and explicit learning approaches (Kal, van den Brink, et al., 2018; 

Kleynen et al., 2017). However, the type of learning that produces a change in performance is 

believed to be related to the complexity of the task (Halsband & Lange, 2006). It seems that the 

learning of complex tasks mostly occurs through the process of implicit learning. In addition, for 

people after stroke with cognitive deficits, it can be difficult to process large amounts of verbal 

explicit information; therefore, implicit motor learning could be useful by minimizing the 

involvement of cognitive resources, especially working memory. Studies also showed that 

performance of an implicitly learned task might aid multitask performance, so it can be more stable 

under dual-task conditions (use of two tasks performed simultaneously) and more durable in 

healthy population compared with its explicit counterparts (Kleynen et al., 2017; Orrell et al., 

2006). In summary, while evidence about the relative benefits of explicit versus implicit learning 

is still lacking, implicit learning seems to be beneficial for poststroke individuals (Kal et al., 2016a; 

Kleynen et al., 2017; Lee et al., 1994).  

1.2.1 Feedback  

Feedback is a general term that refers to the sensory information people receive about their 

performance either during or following a motor task. Feedback is very important in the motor 
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learning process. Some form of feedback is essential for learning to take place (Yamamoto & 

Ohashi, 2014).  

When people perform a motor skill, they have access to two types of feedback: intrinsic and 

extrinsic. Intrinsic feedback refers to information that comes from producing movements and that 

is captured through the human senses. Information may come from outside of the body 

(exteroception), or within the body (proprioception: refers to the sense of position). Extrinsic 

feedback is provided by external sources (Gilmore & Spaulding, 2001). Examples include when a 

poststroke individual hears verbal feedback about his or her performance from a therapist, or when 

movement is tracked and is provided as feedback to the user in the form of a hand trajectory on a 

computer screen. Extrinsic feedback can provide information about the success or failure of a task 

(knowledge of results, KR) or about the quality of performance (knowledge of performance, KP). 

For example, when throwing a ball, feedback about task success or failure is KR, whereas 

information about the quality of the movement required to perform the task is KP. 

1.2.2 Rehabilitation system based on visual feedback 

Cirstea and colleagues (2006) analyzed the performance of a reaching task in physical and virtual 

environments, in both presence and absence of visual and haptic feedback. In this study, chronic 

stroke participants with mild-to-moderate and moderate-to-severe arm impairment were recruited. 

In addition to visual feedback in a virtual environment, a robot arm provided haptic feedback for 

the users by stopping the movement when they reached the virtual button. The results showed that 

accuracy and efficiency of the reaching movement were both increased when movement was 

presented with feedback than without feedback. The authors also reported that the performance 

was similar in both the physical and virtual environments. The effects of feedback on movement 
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performance in stroke survivors indicated gradual improvements in UL performance compared to 

no-feedback treatment.  

Indeed, adding extrinsic visual feedback to the environment may provide an encouraging condition 

for people with chronic neurological injuries to interact with the robotic devices (Boian et al., 

2002; Popović et al., 2014). Therefore, robotic therapy can be paired with visual feedback 

delivered on a computer screen to enable task-specific training in order to improve upper extremity 

control in people who have had a stroke (Brewer et al., 2006). Linking visual feedback with robotic 

therapy represents an appropriate tool to enhance patient’s motor output during the training 

session.   

1.3 Robotic training paradigms 

Interactive virtual reality and robots offer methods to further facilitate motor learning. Besides 

increasing intensity and number of trials, robotic devices can deliver visual feedback or haptic 

forces to assist in training. Two main robotic training paradigms have been developed so far are 

error reduction (ER) and error augmentation (EA).  

In error reduction, the robotic device will aid in minimizing movement errors relative to the 

prescribed behaviour. ER can improve motor learning by assisting participants to learn movements 

with little attention to the desired trajectory through improvement of proprioception awareness of 

the body (Patton & Mussa-Ivaldi, 2004). However, EA is an alternative and effective form of 

feedback that magnifies the errors in the stroke survivor’s movements from the desired task. EA 

can boost explicit motor learning by providing error feedback and consequently increasing a 

person’s awareness of movement errors or implicit motor learning by improving movement control 

in response to changes. In 2000, (Thoroughman & Shadmehr, 2000) revealed by EA that the motor 



 23 

system detects kinematic errors in one trial and proportionally corrects them in the subsequent trial 

in order to gradually improve performance of the new task. 

1.3.1 Error Reduction Strategies 

As mentioned previously, in an ER protocol, the practice conditions are set-up so that the 

likelihood of errors is reduced during learning. Indeed, the robot assists people who have had a 

stroke in performing a desired movement in order to simulate the desired “feel” of the movement. 

Assistance can be provided in a variety of ways, including, assisting with arm support (Kahn et 

al., 2006), limiting movement variability through viscoelastic forces (Patton et al., 2006), etc.  

Robotic therapy devices can be paired with virtual reality simulations of activities of daily living, 

such as walking (Ekkelenkamp et al., 2007) or reaching (Kahn et al., 2006; Wang et al., 2011). In 

this method, the virtual reality platform can create different environments that allow practice of 

correction and control over a wide range of real-life scenarios. There is some evidence that 

suggests haptic stimulation might be as effective as conventional therapy in the initial stage of 

motor recovery (Liu et al., 2018). Krebs and colleagues (2006) demonstrated that training with 

robot assistance did not show any obvious advantage overactive reaching training in people who 

have had a stroke. Kahn and colleagues (2006) found in a pilot study that training with a haptic 

stimulator significantly increased range of arm movement, velocity of motion, and reaching 

movement ability.  

1.3.2 Error Augmentation Strategies 

The role of error in motor adaptation has been emphasized in many theoretical methods. In EA, 

the robot amplifies movement errors via haptic or visual feedback. It has been shown that 

presenting magnified visual feedback of the original error during training can improve the extent 
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of motor learning (Patton et al., 2006). Some authors also reported that error leads to learning, so 

healthy individuals can learn more quickly if the error is larger (Yejun, Patton, et al., 2005). In 

addition, EA studies have shown that by drawing more attention to errors, participants are more 

likely to pay attention to them and make appropriate corrections. Indeed, EA makes errors more 

noticeable to the senses and hence may trigger adaptative responses.  

 Sharp and colleagues (2011) performed a reaching task in a robotic optical operation machine 

with healthy participants. The results showed that subjects who received EA were able to reach 

their desired target more quickly and accurately than their baseline performance in comparison 

with the control group. According to similar studies, it seems that error-enhancing training may be 

a potential way to promote motor recovery for brain-injured individuals (Patton et al., 2006).  

1.3.3 EA Methods 

There are various ways in which EA can be implemented. Robotic devices can visually or 

haptically amplify the error. Indeed, one of the commonly used haptic techniques to artificially 

increase performance error is to create a force-field that disturbs the limb motion during the 

movement (Patton et al., 2013).  

Errors can also be visually augmented through manipulation of visual feedback. One method for 

visually augmenting the error is by adding an additional error to the visual feedback of the hand 

and arm movement and displaying the new hand path on the screen. Another method could be 

through prism glasses that deviate vision by some degrees and shift the visual scene to the right or 

left. It has been shown that in visual EA training, small reaching errors became more noticeable to 

the participants and encouraged them to make faster responses to correct their movement (Huang 

et al., 2010). Indeed, it has been proposed that amplified errors can increase the signal-to-noise 

ratio of the error, which may improve cognitive processing and self-evaluation (Yejun, Bajaj, et 
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al., 2005). In a study conducted by (Patton et al., 2013), participants were asked to perform 

reaching movements under visuomotor rotation while holding the handle of a robotic system. The 

groups that had visual EA had better reaching performance than those who trained without 

augmented errors. Despite the effectiveness of visual feedback in the EA strategy alone, recent 

experiments demonstrate that providing physical and visual feedback in one trial can promote the 

adaptation process faster and can increase the subject’s satisfaction with the task, leading to high 

engagement during the training (Shirzad & Loos, 2012). In this study, healthy subjects tended to 

be more satisfied during visual-haptic EA methods, in comparison with only the visual EA method.  

1.3.4 EA Mechanisms  

Early results suggest that EA can facilitate neurorehabilitation strategies in post-stroke individuals. 

Error signals may stimulate both sensory and motor function pathways with the aim of improving 

upper limb movements in both healthy and stroke subjects (Abdollahi et al., 2011). However, the 

neurological mechanism behind this phenomenon is still unclear. 

One possible mechanism is the presence of a feedback/error-learning neural network, which could 

facilitate the learning process more quickly when the error is larger. Such an error-driven learning 

strategy might be related to neuromuscular adaptation during skill acquisition (Kawato, 1990). 

Another possibility is that increasing errors may heighten motivation and attention to reduce errors 

until participants experience only small or no errors. In addition, errors might speed up the process 

of updating motor commands by being exposed to motor errors and trying to reduce errors in the 

learning period (Shadmehr et al., 2010). 

Recent work by Milot and colleagues (2018) revealed the activation of the error detection system 

and motor planning network during EA training. They used fMRI (Functional magnetic resonance 

imaging) to detect brain network activation in both EA and error reduction conditions in healthy 
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subjects playing a computer-based pinball-like game. Results showed that the error detection 

system was strongly triggered during the whole training time period with EA more than with ER  

1.3.5 Effectiveness of EA for stroke rehabilitation 

Several clinical studies have endorsed EA for rehabilitation of upper limb movement and 

specifically on arm reaching abilities among individuals with poststroke hemiparesis (Patton et al., 

2006; Yejun, Patton, et al., 2005) 

In the study of (Abdollahi et al., 2014), robotic therapy with EA, compared with an equivalent 

amount of reaching practice without EA, resulted in improvements in arm function, as measured 

by the Fugl-Meyer Assessment and in the Wolf Function Motor Test. There was, however, no 

significant improvement in range of elbow motion in either group. Similarly, in a study conducted 

by (Patton et al., 2006), eighteen people who have had a stroke experienced training forces that 

either enhanced or reduced their errors in hand movement (haptic EA). Following this intervention, 

the EA group showed greater improvement in terms of Fugl-Meyer Assessment in comparison 

with the control group. Therefore, EA can be an effective method to enhance motor recovery.  In 

2013, Tropea and colleagues conducted a crossover experimental paradigm with eighteen post-

stroke individuals in a six-week therapy program comparing ER and EA. They revealed that 

although ER led to a non-significant UL improvement in post-stroke participants, EA led to a very 

large effect size improvement in both the Modified Ashworth Scale and in the Motor Status Score 

(Tropea et al., 2013).  

Brewer and colleagues (2005) used visual feedback distortion to encourage stroke survivors with 

motor deficits to push harder than their original capability (Brewer et al., 2005). Rossetti and 

colleagues showed a therapeutic benefit of using prisms to shift the visual field in stroke survivors 

with hemi-spatial neglect (Rossetti et al., 1998). Also, a recent systematic review concluded that 
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error-amplification techniques benefit subjects more in motor learning than error-reduction 

methods. It has indicated that EA can not only promote motor learning processes greater and faster 

than the interventions involving ER paradigms, it also can be more effective than conventional 

repetitive practice in UL recovery (Liu et al., 2018). However, most of the considered studies have 

either short training periods or small sample sizes. 

1.3.6 Error Amplification and skill level 

It is worth considering that the effectiveness of EA is closely linked to the severity or nature of the 

motor deficit. In one comparison study, Milot and colleagues (2010) compared learning effects of 

ER and EA in a timing task. In their experiment, participants had to press a button with the use of 

wrist motion to activate a flipper in a computerized pinball-like game. Additionally, errors were 

reduced or increased through the use of a robotic device that alters the velocity of the wrist 

movement. The goal was to press the button to hit the target at a precise time to achieve an accurate 

trajectory. In the haptic guidance condition, when the participant hit the button late, the error was 

corrected by speeding up the motion, and by slowing down the motion when they hit the button 

early. However, in EA, early actions were sped-up and late actions were slowed down. The result 

of this study showed that EA-based training led to greater learning than ER on a timing-based 

tapping task for skilled participants, and haptic guidance was beneficial for unskilled participants 

(Milot et al., 2010). Thus, errors should be augmented according to the individual’s initial skill 

level. Similarly, in 2017, (Marchal-Crespo et al., 2017) conducted an experiment in healthy 

subjects to investigate the effect of EA on complex tasks. Results showed that the training strategy 

that enhanced learning depended on the subjects' initial skill level. Although EA had a particular 

effect on more skilled individuals, motor training without error was suitable to increase motor 

learning in less-skilled participants. Even though these research experiments worked on healthy 
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participants, it seems that for each person, there is a certain level of EA that can be optimal for 

learning and the added challenge of an EA paradigm is only beneficial for people with appropriate 

skill levels. 

1.3.7 EA for elbow extension movements in stroke 

As explained, visual feedback can facilitate movement retraining. Visual feedback activates the 

neural network that links motor and cognitive processes (Hanakawa., 2011), therefore it can 

encourage individuals to increase the active range of elbow motion (range of elbow motion that 

can be performed by people with stroke independently) during the designed task. Amplifying error 

with visual feedback makes the elbow seem as if it moves less than in reality, hence participants 

attempt to correct the error by moving and extending the elbow more than their usual extension. 

In other words, subjects are encouraged to work beyond the limit of the designed task and expand 

the range of elbow extension movement more than at the beginning of practice. The most recent 

experiments demonstrate that the combination of high intensity and repetitive practice with EA 

feedback to improve UL motor function, especially directed at elbow extension movement, is a 

successful strategy to improve upper limb rehabilitation in post-stroke individuals (Israely et al., 

2018). Although repetitive, intensive training can have a significant effect on upper limb 

rehabilitation, measuring the limit of EA, that can be implicitly implemented to improve range of 

elbow motion, can provide important information for the design of effective robotic devices and 

rehabilitation programs based on individual needs. 

1.4 Rationale 

Among different rehabilitation techniques involving technology, EA is considered as a promising 

form of training for improving UL function after stroke. According to the study conducted by 
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Abdollahi and colleagues (2011), a real improvement in reaching performance occurred after a 6-

week EA intervention. However, the key to a successful use of EA is to integrate it with a proper 

practice environment. When EA is combined with an appropriate robotic device, it might provide 

a good condition for people who have had a stroke to practice UL movements. Considering the 

role of VR in improving motor function, this can be done in a VR environment to improve UL 

function in people who have had a stroke. 

In addition, implicit motor learning seems to be more resilient over time and more effective in 

dual-task conditions than explicit motor learning (Hodges & Williams, 2020; A. J. Orrell et al., 

2006). For example, implicit learning in individuals with impaired movement and cognitive 

deficits was associated with a positive impact on their rehabilitation process, as it required less 

attention, as compared with explicit motor learning (Hochstenbach et al., 1998; Steenbergen et al., 

2010).  

EA can be implemented both explicitly and implicitly, although implicitly would be preferable, 

for reasons expressed before. In addition, EA seems to be promoting implicit motor learning based 

on subjects’ skill levels (Lagarde et al., 2002). Scheidt and colleagues (Scheidt et al., 2001) 

demonstrated that there might be a practical limit to error augmentation. They have found that 

when force was used to disturb motions, participants gradually updated their movement based on 

the latest error they had experienced. Indeed, there may be a limit to which error could be 

amplified, with learning still occurring implicitly. Thus, one important question is how much can 

error augmentation be manipulated before it becomes explicit? Using EA in high-intensity training 

improves UL rehabilitation. However, the limit of EA can play an important role in a better 

functional outcome. Knowing the maximum level of EA that can implicitly be amplified is useful 
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in designing robotic training devices which optimize individualized impairment-based training, 

through EA and implicit motor learning.  

To determine if EA detection is happening implicitly, it is essential to know whether the error is 

affecting kinematic variables of motor performance. Motor reactions rely on conscious and 

unconscious learning processes (Kibele, 2006). Accordingly, the perception of error would have 

an impact on the quality of movement. Kinematic outcomes describe the spatiotemporal 

characteristics of the movement and measure its quality, such as straightness, smoothness, speed, 

and timing. Kinematic variables are often used to measure the quality of endpoint movement, 

however, in this study, we mainly focused on hand path straightness, smoothness, speed, and the 

extent of elbow movement (ROM). The reason for analyzing hand path motion was to see the 

effect of EA, applied to the elbow, on hand kinematic variables. Indeed, due to kinematic 

redundancy in arm movements, hand path may remain the same during reaching movements, even 

if elbow ROM increases due to the presence of EA. It is also known that participants, with or 

without stroke, tend to maintain similar hand paths despite the presence of perturbations during 

movement (Adamovich et al., 2001; Archambault et al., 1999). Therefore, hand path motion could 

provide a better understanding of the effects of EA on kinematic variables after stroke than elbow 

extension ROM. 

1.5 Objectives and Hypotheses of the thesis  

OBJECTIVE 1: As no previous study has examined awareness of elbow range error in an EA 

paradigm, the first objective of this study was to determine if healthy and poststroke individuals 

with different sociodemographic characteristics could safely perform EA tasks at four different 

EA levels and three directions, and are able to finish 180 trials in less than 2 hours. The purpose 

of a feasibility and pilot study is to assess the potential for a successful implementation of EA in 
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healthy and poststroke individuals for measuring the practical limit of EA and to reduce threats to 

the validity of future studies.  

HYPOTHESIS 1: 

For specific objective I, it is hypothesized that this study is feasible in terms of recruitment, 

intervention, and outcome measurement. 

• All participants are able to perform the task of reaching different EA levels and directions. 

• Participants are able to detect the presence of 30° EA in more than 50% of trials. 

• Both groups of participants are able to finish 180 trials in less than 2 hours. 

• Participants do not experience minor or major side effects. 

 

OBJECTIVE 2: 

The second aim is to measure the practical limits of EA, that implicitly (without the participant’s 

conscious perception) enhances elbow extension range of motion after stroke. Indeed, knowing 

the maximal level of error that can be added to a movement without conscious perception may 

then improve UL functional recovery during the exercise. 

HYPOTHESIS 2: 

There will be a threshold to the level of EA, beyond which participants will be aware of the 

presence of EA in 50% of trials. 

OBJECTIVE 3: 

The third objective is to estimate the extent of error to which kinematic variables including, 

smoothness, straightness, and speed of hand movement would remain unchanged during the 

reaching task. 

HYPOTHESIS 3: 
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Elbow range of motion will increase with the level of EA, while smoothness, straightness and 

speed of hand movement will remain unchanged during the reaching task.            
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2.1 Abstract 

 

Bckground and Rationale: Impairment of upper limb (UL) function is one of the most common 

deficits following stroke. Visual error augmentation (EA) is an effective form of feedback that 

involves magnifying the error during movement. EA is considered a promising form of training to 

improve UL function after stroke. Furtheremore, implicit motor learning, where participants adapt 

to performance errors without conscious awareness, seems to be more resilient and effective over 

time than explicit motor learning. However, there might be a practical limit for motor learning 

with EA to occur implicitly. Indeed, there may be an upper limit to which error could be amplified, 

at which participants become consciously aware of its presence.  

Objectives: 1. Assess the feasibility of performing reaching tasks under different EA conditions 

2. Measure the practical limits of EA, that implicitly (without conscious perception) enhance elbow 

extension range of motion after stroke 3. Estimate the extent to which visual EA of hand 

movements is naturally adaptable (without changing smoothness, straightness, and speed) to 

improve elbow extension.  

Methods: Nine poststroke participants with mild to moderate UL impairment, aged 42 to 75 (yrs.), 

and eight age-matched healthy individuals, were recruited to practice arm reaching movements in 

a simple virtual reality environment. All participants performed 120 reaches with four different 

EA levels in 7.5° increments (i.e., 7.5, 15, 22.5, and 30°), as well as 60 no EA trials in three 

different directions. Then, they were asked if they felt that EA was present or not (objective 2). 

Kinematic variables of the hand movement including, elbow range of motion, smoothness, 

straightness, and speed were computed based on the collected motion capture data (objective 3). 

These movement quality variables were compared using repeated-measures ANOVA with two 

within-subjects factors (3 directions, and 5 EA levels)  
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Results: This study was feasible in terms of EA implementation and outcomes. There were also 

no significant differences between the two groups in EA detection threshold and in the kinematic 

variables. Both groups were able to detect the presence of EA with errors above 16.6°+/- 5.2. As 

for the kinematic variables, significant changes were observed when elbow error was above the 

EA detection threshold. 

Conclusion: It is concluded that there is a limit beyond which participants become consciously 

aware of the presence of EA. Knowing the 50% detection threshold will be useful in designing 

virtual reality tasks with EA, to optimize UL functional recovery through implicit motor learning. 

Keywords: Error augmentation, Upper limb, Stroke, Arm reaching, Rehabilitation, Motor 

learning 

2.2 Introduction 

Impairment of upper limb (UL) function is one of the most common deficits following stroke, with 

approximately 40% of people experiencing UL paresis despite intensive and prolonged 

rehabilitation (Nakayama et al., 1994). Reaching is a fundamental element of 

many activities of daily living, and in stroke survivors, poor reaching performance is strongly 

correlated with UL impairments (Kamper et al., 2002). Various rehabilitation strategies can be 

used to improve UL function after stroke  (Teasell & Kalra, 2004) and most UL recovery 

approaches emphasize the need for repetitive, intensive and task-specific training (Perry, 2004).  

Skill acquisition and retention can be facilitated through the application of motor learning 

principles (Schmidt & Lee, 2011). Two major types of motor learning mechanisms are explicit 

and implicit learning. Explicit motor learning can be defined as learning by extrinsic feedback 

(external sources provide feedback during or after a performance) (Johnson et al., 2013). It is a 

conscious form of learning, relying on working memory processes. Indeed, through feedback about 
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motor performance, the learner becomes aware of the movement rules and the process of learning. 

In contrast, implicit motor learning refers to the acquisition of skills by exploration or under trial-

and-error conditions, with little to no working memory involvement or awareness (Kleynen et al., 

2014). Implicit motor learning is suggested to take place more automatically and in a less conscious 

manner, as compared to explicit learning. To learn implicitly basically means that the learner is 

aware of the process of learning but is not informed of the facts and rules of the motor skill. Studies 

show that performance of an implicitly learned task might be more stable under dual-task 

conditions (use of two tasks performed simultaneously) and more durable in healthy populations 

compared with an explicitly learned task (Kleynen et al., 2017; Orrell et al., 2006).  

Error augmentation (EA), is a promising form of feedback that involves physically magnifying the 

errors in the participant’s movement during a task (Rozario et al., 2009) or magnifying the visual 

representation of movement, for example on a computer screen. Either method will first cause the 

movement to deviate from its intended course. Haptic and visual error augmentation increases 

movement control, with the participant gradually learning to neutralize the error-driven 

disturbance to the motion. In stroke rehabilitation, (Rozario et al., 2009) the current evidence 

suggests that augmenting visual error may enhance acquisition of skills and motor learning process 

(Yejun, Bajaj, et al., 2005). In the study of Abdollahi et al. (2014) involving 26 stroke participants, 

robotic therapy with EA, compared with an equivalent amount of reaching practice without EA, 

resulted in significant improvements in UL motor ability through functional tasks (Abdollahi et 

al., 2014). In a study conducted by Patton et al. (2006), eighteen post-stroke patients experienced 

training forces that either enhanced or reduced their errors in hand movement (haptic EA). 

Following this intervention, the EA group showed greater improvement in terms of Fugl-Meyer 
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Assessment compared to the control group (Patton et al., 2006). Hence, error augmentation training 

may be an effective method to enhance motor recovery.  

Additionally, Scheidt and colleagues (Scheidt et al., 2001) demonstrated that there might be a 

practical limit to error augmentation. They have found that when force is used to disturb motion, 

healthy participants gradually updated their movement based on the latest error they had 

experienced. Indeed, there may be an approximate limit to which error could be amplified before 

changing from implicit to explicit motor learning. For implicit motor learning practice with EA, it 

is essential to know whether the error is affecting kinematic variables of motor performance. Motor 

reactions rely on conscious and unconscious learning processes (Kibele, 2006). Consequently, 

quality of the movement would be affected by error perception.  

Therefore, the goal of the experiment was to measure the practical limits of EA which implicitly 

(without the participant’s conscious perception) enhances elbow extension range of motion after 

stroke. We hypothesized that: 1) Performing elbow EA task in different conditions is feasible for 

healthy individuals and people who have had a stroke. 2) Additionally, there would be a threshold 

to the extent of EA that participants are able to detect the presence of EA. 3) And finally, we 

hypothesized elbow range of motion would increase with the level of EA, while movement 

smoothness, straightness and speed would remain unchanged during the reaching task. 

2.3 Method 

2.3.1 Population and Recruitment 

The target populations included two subject groups: stroke survivors with moderate UL 

impairments and healthy adults of a similar age range without UL disabilities. Healthy participants 

were recruited from recruitment posters on social media, while poststroke participants were 

recruited from the CISSS Laval / Jewish Rehabilitation Hospital (JRH). All participants provided 
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informed written consent in accordance with the Center for Interdisciplinary Research in 

Rehabilitation (CRIR) ethics committee and were aware that they always had the option of 

withdrawing from the study at any time. The study took place at the Jewish Rehabilitation Hospital, 

Laval, Canada. 

2.3.2 Eligibility for participation  

In order to join the study, stroke survivors had to meet the following inclusion criteria: 1) had 

ischemic or hemorrhagic stroke; 2) were in the chronic stroke stage (at least 6 months 

after stroke onset); 3) were aged between 18-75 years to reduce confounding effects of age-related 

changes on smoothness, straightness and speed of hand movement (Yan et al., 1998); 4) were 

medically stable and no longer receiving treatment; 5) had at least 30° active elbow movement; 6) 

had mild to moderate UL motor deficits (4-6/7 on Chedoke McMaster Hand or Arm Stroke 

Assessment) Gowland et al. (1993); 7) were able to understand and sign the consent form. They 

were excluded if they had: 1) additional neurological, orthopedic or rheumatoid impairments that 

could have an impact on task performance, such as severe sensory impairments (Nottingham 

Sensory Assessment, <25, (Lincoln et al., 1998), shoulder pain, muscle atrophy, or contracture; 2) 

visual impairment even with the use of contact lenses and glasses that could influence participant’s 

ability to perform the task (MVPT-3, <55/145) (Brown et al., 2003); 3) elbow flexor muscle severe 

spasticity (Modified Ashworth Scale total arm >3/4) (Dunning, 2011); 4) proprioceptive deficits 

in the elbow (Fugl-Meyer UL Proprioception scale, <6/12); 5) aphasia or major cognitive 

impairment which could influence the ability to perform the experiment (Mini-Cog, 0-2) (Seitz et 

al., 2018). 

The inclusion criteria for healthy individuals: 1) were aged between 18-75 years to reduce 

confounding effects of age-related changes; 2) were able to understand and sign the consent form. 
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Healthy participants were excluded if they had: 1) Upper limb disabilities; 2) major cognitive 

impairment, people who had difficulty understanding the experimental tasks (Mini-Cog, 0-2); 3) 

visual impairment that could influence participant’s ability to perform the task. 

2.3.3 Sample Size  

Sample size calculation for this experiment was based on Julious study (Julious, 2005) which 

recommends a minimum sample size of 12 per group for feasibility studies. However, the 

recruitment process was affected by the outbreak of COVID-19, and we ended up having eight 

healthy participants and nine stroke survivors.  

2.3.4 Data Collection  

Clinical assessments and data collection were completed in a single 120-minute session for stroke 

participants (one-hour clinical assessments, one-hour data collection) and one 60-minute session 

for healthy individuals. Data collection took place at a research laboratory located at the Jewish 

Rehabilitation Hospital in Laval, from August 2021 to March 2022. 

After the clinical assessments, all participants performed repetitive trials of a reaching task in a 

virtual reality environment. Different levels of error and conditions were randomly added to each 

trial, and participants were asked if they felt that EA was present or not after completing each task. 

This task is described in more detail in section 5.2.4. 

2.3.5 Clinical Assessment  

Clinical examinations were performed by researchers and used to verify the participant’s eligibility 

for the study. Clinical assessments consisted of measuring range of elbow motion (ROM) by 

manual goniometer as well as clinical measurements, specifically: Chedoke-McMaster Stroke 

Assessment (Gowland et al., 1993), Motor-Free Visual Perception Test (MVPT) (Brown et al., 
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2003), Nottingham Sensory Assessment (Lincoln et al., 1998), Modified Ashworth Scale 

(Dunning, 2011), and Mini-Cog test (Seitz et al., 2018).  

The Chedoke-McMaster stroke assessment evaluates the functional ability of the hemiparetic arm. 

This test consists of 7 tasks which are scored on a 7-point scale ( 1 to 7, most impairment through 

to no impairment, respectively) (Barreca et al., 2004). The MVPT was used to assess visual 

perception independent of motor ability. It consists of 65 items, each with 4 multiple response 

options. The visual procedural speed is also calculated by averaging the time spent on each 

question. This test has excellent test-test reliability (r = 0.92) (Brown et al., 2003). The Nottingham 

Sensory Assessment assesses tactile sensation, movement position, direction, and joint position. 

Items are scored on a 3-point scale for each join (from 0 = no proprioception and sensation to 2 = 

normal proprioception and sensation) (Lincoln et al., 1998). The Modified Ashworth Scale is used 

to measure muscle tone. This test is scored on a 6-point scale (from 0 = no increase in muscle tone 

to 4 = limb rigid in flexion and extension, including 1+ = slight increase in muscle tone). This test 

yielded reliable measurements in poststroke population (Gregson et al., 1999). Finally, the Mini-

Cog test assesses cognitive and memory impairments, language comprehension, and visual-motor 

skills. The Mini-Cog has a sensitivity ranging from 76-99%, and specificity ranging from 89-93% 

with a 95% confidence interval (Borson et al., 2000). A score of 0-2 on this test indicates positive 

cognitive impairment and a score of 3-5 indicates negative cognitive impairment. 

2.3.6 Experimental setup 

Participants sat comfortably in an armless chair in front of a projection screen with their feet resting 

flat on the floor (Figure 1). Trunk flexion and rotation movements were restricted by wrapping a 

harness around the chair, the non-tested arm rested comfortably on the lap, and the tested forearm 

was connected to a mobile arm support device by a Velcro strap. This device supported the arm 
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against gravity while allowing participants to perform planar reaching movements of the arm, 

using their elbow and shoulder (Figures 2 and 3).  

 

 

Figure 1. Illustration of physical set-up of the experiment 

An armless chair was placed in front of the projection screen. Participants sat comfortably with feet flat on 

the floor and hips and knees at 90°. Trunk movements were restricted by a harness, and the testing elbow 

was attached to an arm support device by a Velcro strap. 

 

The height of the arm support device could be adjusted and was placed at the elbow level so that 

participants could move their arms in the horizontal plane. Participants also wore “anti-down” 

glasses, which prevented them from looking down to see their own arm. Anti-down glasses not 

only helped participants to concentrate on the screen while performing hand movements, but they 

also minimized the risk of bias by preventing a mismatch between the position of the real arm and 

the arm avatar displayed on the screen (Figure 4). Additionally, the room was darkened by turning 

off all lights in the physical environment to optimize viewing of the screen.  
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Figure 2. Participant’s arm on arm support device 

The arm support device was designed to restrain vertical arm movements while allowing horizontal 

movements. 

 

Figure 3. Top-down view of 

Arm Support Device 

Figure 4. Anti-down glasses 

Anti-down glasses used to avoid 

mismatch between seeing the position 

of the arm in one place and feeling it in 

another place 
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2.3.7 Motion Tracking  

The three-dimensional arm position and orientation was recorded using an Optotrak Certus motion 

capture system (NDI, Canada). The Optotrak system tracked shoulder, elbow, and hand 

movements in different positions using two cameras; one camera was placed horizontally on the 

top of the projection screen and the other one was positioned vertically about 2-3 meters away 

from the chair (the vertical camera was positioned according to the participant’s tested arm).  

For motion recording with the Optotrak system, 15 infrared emitting markers (three rigid bodies 

and six individual markers) were placed on specific body landmarks, as follows. The rigid bodies 

were attached to the hand (three markers), forearm (three markers), arm (three markers), and six 

individual markers were placed on the anterior aspect of glenohumeral joints of the right and left 

arm, manubrium sternum, lateral side of elbow (lateral epicondyle), styloid process of the ulna, 

and the dorsal section of distal phalange of the middle finger. Data from the rigid bodies were used 

to calculate arm joint angles in order to provide a desired configuration of the avatar motion (Figure 

5). 
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Figure 5.  Placement of the markers on the reaching arm  

Three rigid bodies (black triangles) were placed on the hand (three markers, 7,8,9), forearm (three markers, 

4,5,6), upper arm (three markers, 1,2,3). Six individual markers (red dots) were placed on the anterior 

aspects of the glenohumeral joints (ipsilateral and contralateral; 10, 12), manubrium sternum (11), lateral 

side of elbow (13), styloid process of the ulna (14), and the dorsal section of distal phalange of the middle 

finger (15). 

 

There were three calibration procedures for setting the position of the arm avatar in the virtual 

environment, the task workspace, and movement onset.  Calibration for setting the position of the 

virtual reality environment was first performed by asking the participant to straighten the tested 

arm to 90 degrees of shoulder flexion. Consequently, limb lengths were measured and input into 

the system. In the second calibration operation, participants were asked to move their arm in large 

circles, while resting on the mobile armrest, to determine the task domain or workspace area. In 

the third calibration process, participants were instructed to set their starting position by moving 

their hand in front of their chest, about five centimetres away from the xiphoid process.  
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2.3.8 EA procedure 

To display the hand position on the screen, the Optotrak camera was used to measure the position 

of the shoulder, elbow, and wrist. A custom-written computer algorithm read these data in real-

time and calculated shoulder and elbow angles, which were then applied to the arm avatar 

appearing on the screen by forward kinematics. Forward kinematics uses specific equations to 

compute the end position of the hand, given the limb lengths and joint angles. The representation 

of the elbow on the screen could be manipulated by subtracting a fixed number of degrees from 

the measured elbow extension angle. As a result, the participant’s arm avatar moved their elbow 

less than in reality. Thus, when EA was turned on, the participant needed to produce more elbow 

extension in order to obtain the same hand trajectory on the screen, as without EA. 

2.3.9 Experimental Procedure 

The arm of the participant was represented in real-time by an avatar in the virtual environment, 

while they engaged in a simple pick-and-place game (Figure 6). 

 

 

 

Figure 6. Display of the participant's arm avatar during reaching movements 
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In this task, participants were asked to place the hand on the initial target, displayed on the screen 

(movement onset). At that time, a second target appeared, and the participant had to reach for it 

and stop the motion (movement offset). The reaching task designed here required a combination 

of shoulder and elbow motion. EA could increase the active range of motion (AROM) in the 

shoulder and the elbow by increasing the error into the actual motion. The increase in elbow ROM 

could be helpful in preparation for later functional reaching activities in rehabilitation.  

At the start of the session, participants took part in a series of practice trials, during which they 

were asked to perform reaching movements without, and then with EA to each target, to develop 

a basic understanding of the task. Specifically, they were instructed to move their arm and reach 

the target on the screen and practice nine EA and nine non-EA trials in different directions. An EA 

level of 30 was used, and participants were asked to notice the difference between EA and non-

EA. The habituation block was repeated if participants needed more practice.  

Following the practice trials, participants performed a total of 180 trials (~40 minutes), where 

target location and EA level were randomized. This included 120 reaches with 4 different EA 

levels in 7.5° increments (i.e., 7.5, 15, 22.5, and 30°) and with 3 target directions: midline, 

contralateral and ipsilateral. The remaining trials (60/180 or 33%) were performed to the same 

targets and without EA. The order in the level of EA (from 0 to maximum) and in target location 

was randomly selected to avoid any anticipation of the EA condition by participants.  
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To control for distance, targets were placed at 90% of the participant’s calibrated reaching distance 

in each direction. The velocity of the movement was also controlled by asking participants to 

‘move at a comfortable speed’. To avoid fatigue, participants were able to rest between trials, as 

needed. 

The EA levels used in our study (7.5° to 30°) were determined through pilot testing.  Specifically, 

we constructed a profile based on the average reports of 5 healthy individuals. We set different EA 

values (more than 50 trials) and asked participants if they felt its effect or not. Then, we measured 

the maximal EA value for the experiment, based on the minimal EA level detected by all 

participants in more than 80% of trials. These measurements were used to determine four EA 

levels, from 7.5° to maximal value.  

2.4 Data analysis  

2.4.1 Outcome measures 

In this thesis, we attempted to determine whether the reaching task under different EA conditions 

could be performed within two hours without causing any adverse effects on the participants and 

EA conditions Ipsilateral Midline Contralateral 

With EA 7.5° 10 10 

 

10 

 

15° 10 10 10 

22.5° 10 10 10 

30° 10 10 10 

Without EA 0° 20 20 20 

Table 1. Number of trials per condition 
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to detect the highest EA level in more than 50% of trials. The feasibility assessment considered 

the percentage of participants with different age, sex, stroke type, side of lesion, score in spasticity 

and hand dominance, who could successfully perform and complete the task and detect EA, with 

different EA values and directions.  

 

 

 

 

 

Table 2. Feasibility indicators 

The feasibility of the study was assessed using indicators for recruitment, procedure, and outcome. 

 

Feasibility 

Indicators 

Measurement Criteria for success 

Age Interview No effect on outcomes 

Sex Interview No effect on outcomes 

Stroke type Interview No effect on outcomes 

Side of lesion Interview No effect on outcomes 

Hand 

dominance 

Interview No effect on outcomes 

Spasticity Modified Ashworth Scale  Scores > ¾, participants can 

complete the task 

Arm paresis Chedoke McMaster Stroke Assessment Scores between 4 to 7, 

participants can complete the task 

EA levels Reaching the final target in at least 50% of 

trials in different EA levels 

Participant is able to perform the 

task in different EA levels 

Target 

directions 

Reaching the final target in at least 50% of 

trials in different directions 

Participant is able to perform the 

task in different directions 

EA detection Ask participants if EA was present or not Participant is able to detect the 

presence of 30° EA in more than 

50% of trials 

Length of the 
intervention 

Time to perform the assessment and 180 

trails 

Participants complete task in ≤ 2h 

Adverse 

effects during 

assessment 

Participant or assessor’s report  No major injuries or adverse 

events 

Adverse 

effects during 

intervention 

Participant or assessor’s report No major injuries or adverse 

events 
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The main outcome for the second objective was the participant’s awareness of different values of 

EA. Accordingly, we asked participants, after each trial, to tell us if they had perceived that EA 

was present or not; then we calculated the percentage of successful EA detection for each trial 

condition (each direction and EA level).  To quantify the perception of EA, we calculated the 50% 

detection threshold. This was performed by first plotting the probability of detection (Y axis) 

against EA level (X-axis). We expected that the EA detection rate would follow a sigmoid 

function. Therefore, for each participant and target direction, we used appropriate regression 

methods to fit a sigmoid function (Psychometric curve, Fig 7) to the measured error detection rate 

and then determined the EA angle at which 50% of errors were detected.  

To analyze the arm movements, 2D hand position data in the X-Y plane were used to derive several 

kinematic variables. Position data were first filtered using a Butterworth, low-pass 2nd order filter 

(6 Hz cutoff). We then computed the hand speed with the use of hand marker, which was calculated 

as the center of 3 markers, 6, 7, and 8. Movement onset was defined as the time at which the speed 

of the hand marker exceeded and remained above 10% of its peak velocity for at least 20 

milliseconds for participants with stroke or 5% of the peak velocity for at least 20 milliseconds for 

healthy participants. Movement offset was defined as the time at which the actual speed of the 

hand marker fell and remained below 10% of the peak velocity for at least 20 milliseconds for 

stroke participants or 5% of the peak velocity for at least 20 milliseconds for healthy participants. 

The following kinematic variables were then computed, using a custom MATLAB script: 1. Elbow 

range of motion (elbow ROM); 2. Average speed; 3. Movement straightness; and 4. Smoothness. 

Elbow ROM was calculated as the difference in elbow angles between movement onset and offset. 

Speed was the average speed between movement onset and offset. Straightness of hand trajectory 
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was computed as the ratio of the length of the straight line over the actual length of the reaching 

path between onset and offset positions, and smoothness was the calculation of the number of 

velocity peaks during the reaching movement.  

2.4.2 Statistical analysis  

The primary outcome measure was the comparison of the 50% EA detection threshold across both 

groups and movement directions. To that end, we conducted a repeated measures analysis of 

variance (ANOVA) with one within-subjects factor (target direction: ipsilateral, midline or 

contralateral) and one between-subjects factor (group: stroke or healthy). 

The performance and movement quality variables of the healthy and stroke groups in different 

conditions were also compared using repeated-measures ANOVA with two within-subjects factors 

(target direction: ipsilateral, midline or contralateral; and EA level: 0, 7.5, 15, 22.5 or 30) and 

one between-subjects factor (group: stroke or healthy). Then, partwise differences corrected using 

Bonferroni method. To verify normality assumptions and identify potential outliers, distributions 

were examined, and homogeneity of variance assumptions was assessed with Levene's test. 

Aditionally, partial eta squared were used to estimate the effect sizes of different comparisons in 

the ANOVA models. 

2.5 Results 

2.5.1 Feasibility Indicators 

Participant characteristics: 

A total of 17 participants performed the reaching tasks (healthy group=8, poststroke group=9). 

Mean +/- SD age was 53.8 +/- 13.84 years. The groups were not significantly different in terms of 
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age (t =-1.09, p=0.14), handedness (χ2 =0.007, p=0.92), or sex (χ2 =3.08, p=0.07). Participant 

characteristics are summarized in Tables 3 (poststroke) and 4 (healthy). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age (yrs.) Mean 61.6 

Median 65 

Range 42-75 

Gender Male 8 

Female 1 

Handedness Right 8 

Left 1 

Stroke type Ischemic 7 

Hemorrhagic 2 

Side of lesion  Right 6 

Left 3 

MAS scale (/4) 

 

Mean 1 

Median 1 

Range 0-1+ 

Chedoke McMaster 

Stroke Assessment 

(/49) 

 

Mean 5.5 

Median 5 

Range 3-7 

Elbow ROM 

 

Mean 128° 

Median 140° 

Range 50°-150° 

MiniCOG (/5) 

 

Mean 4 

Median 4 

Range 3-5 

Table 3. Demographic variables and clinical assessments 

Summarizes the demographic characteristics and clinical assessments of the 9 poststroke participants. 

Participants were between 42 to 75 years of age. 
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Analysis showed that all healthy participants with different age, gender, and hand dominance were 

able to complete the 180 trials in different EA conditions (EA levels and directions) in less than 

two hours and detect the presence of errors at the EA level of 30° in more than 50% of trials. The 

poststroke individuals participating in our study were considered well-recovered with high scores 

in motor (mean Chedoke McMaster Stroke Assessment =5.5), muscle tone (mean MAS scale=1), 

and sensory assessments (sensation was intact for all participants except one). All poststroke 

participants were in the chronic stroke stage and among them, eight people of different ages, 

genders, stroke types, sides of lesion, elbow ROM, and functional abilities were able to complete 

the 180 trials in less than two hours and detect the presence of error during movements at an EA 

level of 30° in at least 50% of the trials. Due to a low cognitive score (Mini-Cog score of 3 out of 

5), one participant in the poststroke group could not understand the difference between trials with 

and without EA and detect the error in trials. Consequently, this participant’s data were excluded 

from further analyses. 

Age (yrs.) Mean 54.7 

Median 52 

Range 40 - 68 

Gender Male 4 

Female 4 

Handedness Right 7 

Left 1 

MiniCOG (/5) 

 

Mean 4.5 

Median 5 

Range 3 - 5 

Table 4. Demographic variables 

Summarizes the demographic characteristics of the 8 healthy participants who completed the task (180 

trials). Participants were between 40 to 68 years of age. 
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2.5.2 Error Detection Threshold 

The second objective of this study was to identify the practical limits of EA, that implicitly enhance 

elbow extension range of motion. It was considered that there would be a threshold to the level of 

EA, beyond which participants would be aware of the presence of EA in 50% of trials (2nd 

hypothesis). For the measure of mean error detection, psychometric curves were used to determine 

the 50% detection threshold in different conditions. Figure 7 displays the psychometric curves and 

the computed detection thresholds, obtained for one stroke and one healthy participant, for each of 

the three movement directions. 

Stroke participant 

 

 
 

Healthy participant 

 

 
 

Figure 7. Psychometric curves  

Psychometric curves were used to determine the 50% detection threshold in three conditions (ipsilateral, 

midline, contralateral), and two groups (stroke and healthy). 
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2.5.3 Mean Error Detection Rate 

Figure 8 shows the results of mean EA detection rates for both groups of participants under all 

movement conditions (5 EA levels and 3 target directions). As can be seen, both groups s displayed 

a similar EA detection pattern for movements in all three directions, and EA detection rate 

increased with the level of EA. 

 

 

Figure 8. Mean EA detection rate 

Graphs show mean detection rate by practice groups for each EA level and direction. Error bars are 95% 

confidence intervals of the mean.  

 

The detection rates at EA levels of 22.5° and 30° were higher than the odds due to chance (i.e., 

50%) for both groups, except for the stroke group at 22.5° in the ipsilateral direction where the 

rate was 48.8%. Conversely, the rate of EA detection at EA levels of 15° or less for both groups 

was less than 50%.  

Figure 9 displays the mean 50% EA detection threshold for both healthy and stroke groups for all 

three target directions. Mean 50% detection threshold varied between 14.7° (SD=5.1) to 20.2° 

(SD=4.9) for both groups for targets in all directions.  
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Figure 9. 50% detection threshold  

50% detection threshold was calculated for both groups and three directions. Error bars are 95% confidence 

intervals of the mean.  

 

 

Analysis was conducted to compare the 50% detection threshold between the three directions and 

two groups. Repeated ANOVA showed that there were no significant differences between healthy 

and poststroke groups in terms of the 50% detection threshold (F=1.22, p=0.29, df=1). There were 

also no statistically significant differences between the three directions (F=1.22, p=0.48, df=2). 

Finally, there was no group * direction interaction in EA detection (F=0.4, p=0.67, df=2). 

Considering that there were no meaningful differences in detecting the presence of error by each 

group and across all movement directions, we can say that the 50% error detection threshold was 

equivalent to the overall mean, e.g., at 16.6° of EA.   

2.5.4 Reaching Performance  

Figure 10 shows typical hand  mean trajectories of a healthy and a poststroke participant in three 

different directions and three EA conditions. Average trajectories are shown by lines in different 
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colors. The error ellipses around the mean trajectories of no-EA configuration are shown for 

clarity. 

 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

We analyzed changes in straightness, smoothness, speed, and elbow ROM of hand movement 

(Figure 11) to understand kinematic variable changes in the context of error augmentation. We 

expected that as error increased, kinematic variables would stay stable. Although there were no 

significant differences between groups in different EA conditions, there was a significant change 

in all kinematic variables above the EA detection threshold.  To analyze these kinematic data, we 

Healthy participant 

 

Poststroke participant 

 

Figure 10. Movement Trajectories 

Typical hand trajectories for one healthy and one poststroke participant, for each of the three directions 

and five EA conditions. Lines indicate the average trajectories. The ellipse indicates the error and, for 

clarity, is added to the ’no EA’ condition only. Errors for other EA conditions were similar. 
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performed a repeated analysis ANOVA with two within-subject factors (EA levels and target 

directions) and one between-subject factor (group). 

 

 

 

Table 5 summarizes the ANOVA results for the kinematic data of interest, for group effect, EA 

Level effect, direction effect, and EA level * direction interaction. Data analysis revealed that there 

were no group differences in any of the movement variables.  The EA level effect was always 

significant for all four variables. Pairwise comparisons were analyzed to examine differences 

between each EA level and baseline (no EA). Clearly, the changes in the kinematic variables 

appeared at detectable EA domains (EA > 15°), except for elbow ROM, where differences were 

significant starting at 7.5° of EA.  

 Group Effect EA Level Effect Direction Effect EA Level * Direction 

Effect 

Variables F Sig.   2 F Sig. 2 EA F Sig. 2 F Sig. 2 EA 

Straightness 

 

0 1.00 0 

 

10.45 <0.0

01 

0.43 30° 6.71 0.004 0.32 2.15 0.04 0.13 30° 

Smoothness 

 

0.78 0.37 0.06 

 

22.24 <0.0

01 

0.61 15° 0.65 0.53 0.04 1.15 0.34 0.08 ns 

Speed 

 

3.05 0.10 0.18 

 

4.27 0.004 0.23 30° 34.32 <0.00

1 

0.71 1.85 0.07 0.12 ns 

Elbow 

ROM 

3.01 0.10 0.17 

 

32.29 <0.0

01 

0.70 7.5° 2.19 0.13 0.14 1.64 0.12 0.13 ns 

Table 5. Summary of Group, EA Level, Direction and interaction effects for kinematic outcomes 

The table shows the F value (F)m the significance (Sig.) and partial eta squared (2) for each main effect 

and for EA Level * Direction interaction. EA indicates the lowest level of EA at which the kinematic 

variable is different than at baseline (no EA), computed through pairwise comparisons. 
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Target direction had a significant effect on straightness and speed, but not on the smoothness and 

elbow ROM. Smoothness did not vary with different movement directions, despite there being a 

strong association between movement straightness and direction. In addition, straightness was the 

only movement variable with a significant EA level * direction interaction, meaning that either 

reaching a target in different EA levels or directions affected the movement straightness. 

Particularly, straightness was only significantly different than the baseline in 30° of EA and 

ipsilateral direction.  Pairwise comparisons indicated that there is a strong association between all 

described movement variables and EA levels greater than 30°. 
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Figure 11. Movement variables 

Movement variables were compared between 2 groups and 3 directions to analyze the effect of EA on 

performance. There were no significant differences between groups in different EA conditions, however, 

there was a change in movement variables as EA levels increased. Error bars are 95% confidence intervals 

of the mean. 
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2.6 Discussion 

2.6.1 Feasibility of study 

The objectives of this study were to assess the feasibility of an elbow EA task in stroke and healthy 

participants and to assess these participants’ awareness of the presence of a movement error. Based 

on the evaluation of the feasibility criteria (table 2), it can be concluded that healthy individuals 

with different sociodemographic characteristics were able to complete the EA task under all 

defined conditions. Specifically, all eight healthy participants with different age, gender, 

handedness, and MiniCOG score were able to complete 180 trials in less than 2 hours and detected 

the presence of error at 30° of EA in more than 50% of trials.  

Additionally, our sample included a total of nine poststroke participants. Among them one 

individual with minor UL motor deficits (MAS=1+, CMSA=3) and eight well-recovered (mean 

MAS=1, mean CMSA=6, mean elbow ROM=116.3°) poststroke participants. Only one of our 

stroke participants, with a low cognitive score (3/5 MiniCog) and restricted ROM (40° elbow 

extension), was unable to perform the task (e.g., unable to reliably differentiate between the error 

and the no error conditions during the practice of the EA task). Other eight poststroke participants 

with different age, gender, stroke type, and side of lesion were able to successfully complete all 

180 trials, with no report of minor or major side effects such as elbow pain. The presence of error 

was detectable by these eight stroke participants in more than 50% of trials when EA level was at 

30°, and in all three movement directions.  

A 50% detection threshold was calculated for all 16 participants who completed the experiment 

and in all target conditions. Moreover, significant changes in the observed kinematic variables 

occurred in the detectable EA levels, and there was no difference in smoothness, straightness, and 
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speed of hand movement below the EA detection threshold. Thus, it can be said that this study was 

feasible in terms of recruitment, EA implementation, and outcomes.  

2.6.2 Practical Limit of Error Augmentation 

In both groups, the rates of EA detection increased with the increase in EA level. In addition, 

neither group showed significant changes in EA detection threshold for different target directions.  

These results support the idea that there is a specific limit of error which is detectable for all 

movement directions. Specifically, the mean EA detection threshold was estimated at 15.6° +/- 5.5 

for poststroke participants and 17.6° +/- 5.3 for healthy participants. As ANOVA did not reveal 

any significant group effects, then it can be said that the overall mean EA detection was 16.6° +/- 

5.2 for both groups. This estimated detection threshold is only applicable to our small sample of 

well-recovered participants in the chronic stage of stroke. However, that sample included ischemic, 

hemorrhagic, right, and left-sided lesions.  

According to the change in movement kinematic variables, it seems that the movement was 

modified without conscious perception. Considering the idea that poststroke rehabilitation 

practices can benefit from implicit motor learning paradigms, implementing error which takes 

place without participants' awareness at specific EA levels can be useful for improving UL 

rehabilitation for this group of patients. 

2.6.3 Relationship between Error Detection and Implicit Motor Learning 

The poststroke individuals participating in our study were considered well-recovered with close to 

normal scores in their motor and sensory assessments. However, they still had mild motor deficits, 

in comparison with their unaffected side or with healthy participants. Past research has indicated 

that the capacity for implicit motor learning could be affected for movements with the paretic arm 
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in people with cerebellar lesion (Gómez-Beldarrain et al., 1998; Kal et al., 2016b). Additionally, 

the motor network of individuals with chronic subcortical stroke is also less engaged than that of 

healthy individuals (Wadden et al., 2015). In other words, there might be a difference between 

healthy individuals and those with even sub-cortical stroke lesions in their implicit motor learning 

capabilities. However, in our study, there were no significant differences between poststroke and 

healthy participants in EA detection threshold nor in the movement quality variables. This may 

contradict what has been previously proposed in the literature, as the capacity for implicit motor 

learning was similar in both of our groups. This discrepancy may be due to the fact that our sample 

was composed of mostly mild poststroke cases. In fact, the absence of implicit motor learning 

could depend on the stage of motor recovery (Pohl et al., 2001) and 8/9 of participants in our study 

were in the chronic stroke stage and close to completely recovered. 

There is evidence that deficits in proprioception can affect motor learning (Aman et al., 2014). 

Thus, there might be a probability of failure in EA detection due to somatosensory deficits, causing 

proprioception disorders (Hazelton et al., 2022). However, assessment results in our study 

(Nottingham test) showed that our stroke participants had intact proprioception and sensation, 

except for one (elbow score = 1/2), This might provide another explanation for why there were no 

statistically significant differences between the two groups in terms of EA detection threshold. 

In our study, we argued that the EA detection threshold represents the transition between implicit 

to explicit motor learning, as this represents the minimal level of error that participants begin to 

consciously perceive. This argument seems to be aligned with our findings, as a detection threshold 

could be calculated in all participants and for all movement directions, and the kinematic measures 

started to change when actual EA neared the detection threshold. 
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2.6.4 Relationship between Error Detection and Kinematic Measures 

Reaching movement time was not affected by group (poststroke or healthy) or movement 

direction. In addition, there were no differences in straightness or smoothness of hand movement 

between groups or target directions. Our hypothesis was that with the increase in EA, elbow range 

of motion would increase, while smoothness, straightness, and speed of hand movement would 

remain unchanged. We found partial support for this hypothesis as we discovered that the elbow 

ROM did indeed increase with the increase in EA level and significant changes in kinematic 

variables occurred after reaching targets with EA greater than 15°.  

2.6.5 Relationship between Kinematic Measures and Implicit Motor Learning 

One of the most important findings in this experiment was the evidence of the relationship between 

kinematic variables and implicit motor learning through the changes in EA level. Our results 

indicate a significant increase in movement speed, straightness, and smoothness as EA level was 

above the detectable EA threshold. This means that significant changes took place when 

participants detected the presence of error. The reaching performance at these EA levels happened 

explicitly and with conscious perception. Interestingly, our results are compatible with results from 

previous studies on the effects of implicit and explicit motor learning on movement kinematics. 

According to these studies, the change from implicit to explicit conditions seems to affect 

movement quality performance (Wang et al., 2019). 

2.6.6 Sample Size 

To better understand the effect of small sample size in this study, we performed a new analysis to 

calculate the effect size of EA level, direction, group, and EA level* direction, using partial eta 

squared (Table 5). Based on Cohen's benchmarks (2013), effect sizes can be defined as small (η2 
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= 0.01), medium (η2 = 0.06), and large (η2 = 0.14) while using eta squared. A large effect size 

indicates a more meaningfull and practical result. When the effect size of an intervention is large, 

it is possible to detect this effect in a small sample size, while smaller effect size would require a 

larger sample size (Sullivan & Feinn, 2012). As a result of the large effect sizes in most of 

movement variables (Table 5), we decided to stop recruiting more participants before we reached 

our goal of 12 participants per group. 

2.6.7 Study Limitations 

Although the findings of this study were consistent across the two healthy and poststroke groups, 

some important limitations should be considered. First, we were only able to recruit a low number 

of participants with a total of nine poststroke and eight healthy individuals who completed the 

experiment. This can be considered sufficient for ensuring the feasibility objective (El-Kotob & 

Giangregorio, 2018). However, our sample only included one stroke participant with moderate 

motor impairments and one with some sensory limitations. Based on the impact of recovery levels 

on implicit motor learning, it is possible that EA detection threshold could differ for individuals 

with moderate arm impairment following stroke. Thus we cannot determine if the results of our 

EA analyses would also apply to individuals with moderate motor or sensory deficits. Second, 

participants in this study were specifically asked to focus on the presence of EA. The actual 

threshold could be higher when participants are unaware of the mechanism of EA, nor were made 

aware of the fact that EA might be present.  

Finally, trial-to-trial changes of EA could have worked as a cue for EA presence and prevented 

participants from becoming accustomed to EA. Consiering the significant effect of repition on 

memory performance, the detection result might differ if we had a different EA implementation 

strategy, such as slowly increasing EA over many trials (Barber et al., 2008; Zhan et al., 2018). 
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2.7 Conclusion 

In this study, we provided initial evidence on the feasibility of a reaching task with different EA 

levels in three directions. Both groups successfully performed the reaching task in different 

conditions and were able to detect the presence of EA affecting their elbow movements, over 14.7° 

to 20.1° (mean = 16.6°), in more than 50% of trials. It should be mentioned that there were no 

between-group differences in terms of EA detection. In addition, this study gave us a better 

understanding of the relationship between EA detection and implicit motor learning. It seems that 

augmenting elbow error by less than 16° was not detectable by all participants, meaning that the 

learning when using such levels of error may be happening implicitly and without conscious 

perception. Kinematic variables provide more support to this notion as they began to change when 

EA exceeded the detection threshold. Our results support the implementation of EA in poststroke 

rehabilitative tasks to improve arm abilities. Having a practical limit of EA can be useful in 

designing virtual reality tasks and environments with EA, to optimize upper limb functional 

recovery while maintaining conditions for implicit motor learning to occur.  
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CHAPTER 3: Discussion and Conclusion 

 

3.1 Thesis Findings and Discussion 

The overall objectives of this study were to assess the feasibility of conducting EA detection 

experiment in different conditions and to investigate the error detection threshold during a reaching 

task in a poststroke population. Except for one poststroke participant with a low cognitive score 

(3/5 MiniCog) and restricted ROM (40° Elbow extension), all the other 16 healthy and poststroke 

participants with different age, gender, handedness, and cognitive score were able to complete the 

180 trials in less than two hours and detected the presence of error in more than 50% of trials when 

the EA level was at 30°. To this should be added that poststroke participants had different stroke 

type, side of lesion, elbow ROM, MAS, and CMSA scores. The mean 50% detection threshold 

was between 14.7° to 20.2° (overall mean = 16.6°) for both the stroke and healthy groups and for 

all three movement directions (ipsilateral, midline, contralateral). Additionally, there were no 

between-group differences for either the EA detection rate or for any of the observed kinematic 

variables (smoothness, straightness, speed, elbow ROM of hand movement). We found, moreover, 

that there was no effect of movement direction on EA detection threshold, smoothness, and elbow 

ROM. Speed and straightness were the only measured kinematic variable affected by movement 

direction. For example, when reaching to the contralateral target, both groups performed faster 

than for the midline and ipsilateral directions. 

Each of the four kinematic variables attempted to assess the quality of movement during the task 

performance at different EA levels. Interestingly, there was a significant change in all kinematic 

measures when elbow EA level neared its detectable range. This result provided the basis for a 



 67 

link between implicit learning and the EA detection threshold since participants were able to detect 

the error when there was a change in their reaching motion. 

We believe that trials with error above the EA detection threshold were mostly performed 

explicitly and with conscious awareness, whereas trials, where EA was below the detection 

threshold, were performed without implicit knowledge of the error. This may explain why, at error 

levels of 22.5° and 30°, the movement was less precise and straight than for EA levels below the 

detection threshold. 

Age, sex, or cognitive scores did not differ significantly between two groups, and that might 

explain the homogeneity of the results across groups. With regard to individual differences in arm 

movement kinematics, we might have obtained different results with a larger sample, that had 

included poststroke participants with more moderate functional impairments (Collins et al., 2018). 

Altogether, this thesis has generated important results regarding the relationship between level of 

EA and implicit motor learning. Providing error augmented intervention may allow functional 

enhancements based on implicit or explicit motor learning in poststroke population. Our approach 

revealed that error distributions could be unique for each poststroke participant according to their 

motor learning capabilities. Customization of EA paradigm according to each patient’s actual EA 

detection threshold could be useful in designing arm retraining protocols based on the level of 

impairments. This way, the detection threshold can be assessed through some practical trials and 

integrated into designed tasks to implicitly improve UL rehabilitation. Association between 

specific levels of EA and implicit learning establishes possibilities for new training environments 

using EA to enhance UL rehabilitation through implicit motor learning. However, further evidence 

would be required to verify the effectiveness of implicitly implementing EA in order to improve 

UL recovery. Such work is currently underway at the Jewish Rehabilitation Hospital (Laval, 
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Canada). This experiment involves practicing the reaching task in a virtual environment with 30° 

of error and measuring the participants' performance after the experiment to develop a personalized 

training program using EA conditions (Rajda et al., 2022).  

3.1.1 Directions for future studies 

A better understanding of EA perception threshold may open various related research areas in the 

future. The results presented in this thesis suggest new questions including 1. To what extent does 

implicitly implemented EA contributes to motor recovery? 2. In terms of EA perception, would 

more severe poststroke patients display similar results as that observed in our study? 3. And finally, 

does the EA detection procedure itself has any lasting effects on the rehabilitation of arm 

movements?  

As the number of participants in this study was limited, the next step would be to run a clinical 

trial (RCT) with a higher number of mild to moderate poststroke participants, to investigate the 

effectiveness of using EA below the detection threshold, for UL rehabilitation. Such a study EA 

can implicitly be implemented in a reaching task. Then, participants' functional recovery can be 

compared to the control group who practiced the same task in no EA condition. In this way, we 

can verify the effectiveness of practicing with EA in implicit conditions. Additionally, it would be 

important to consider the effects of the EA protocol on arm functional recovery after the 

intervention and at follow-up (three or six months). Answers to these questions would increase our 

understanding of the association between error augmentation and motor learning in stroke UL 

rehabilitation. 

The information collected about the EA detection threshold in this study can be used to inform 

future research. For example, a new training environment can be created to improve UL 
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rehabilitation through implicit or explicit motor learning, by modifying the EA level according to 

the patient’s EA detection rate.  

3.2 Conclusion 

In this thesis, we presented brief results of an EA detection experiment. The first aim was the 

feasibility of implementing EA in various conditions into the reaching task. Secondly, we were 

looking to measure the EA detection threshold and the effect of different EA conditions on 

movement performance. Results indicated an association between EA detection threshold and 

implicit motor learning. This might provide new interventions to implicitly improve reaching 

performance in poststroke population through the use of virtual reality platforms that implement 

some form of EA. However, we must wait for the results of ongoing studies before we can validate 

such ideas. 
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