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Abstract

The Optimal Power Flow (OPF) is an optimization problem which tackles both the econ-

omy and physics of power systems operation. Due to high non-linearity in the power flow

equations, the OPF problem is non-convex. Consequently, optimally solving for the OPF

problem at a reasonable computational time presents a serious challenge.

Several approaches were presented to solve the OPF problem. These include local solvers,

heuristic methods and the approximation of non-linear equations. However, these approaches

either do not bound the true value of the objective function or are lacking in the trade-off

they provide between solution time and quality.

As an alternative, convex relaxation techniques could be used to address this challenge.

A convex relaxation is obtained by means of finding a convex representation of the problem’s

feasible space. As a natural byproduct of the convexity of the resulting problem, a wide array

of convex optimization techniques could be utilized. Furthermore, the solution obtained

presents a lower bound on the global solution of the original non-convex problem.

Several factors influence the tightness and scalability of convex relaxations. Those include

the number and type of constraints used in the relaxation of the original non-convex problem.

Most relaxations of the optimal power flow problem are based on second order conic or

positive semidefinite type of constraints. Alternatively, in this dissertation we address the

utilization of the linearly representable diagonally dominant cone in relaxing the optimal

power flow problem.

First, we investigate the diagonally-dominant-sum-of-squares relaxation of the problem.

We evaluate the reasons behind its poor optimality gaps and scalability issue. We demon-

strate that diagonal dominance could be utilized in creating a similar, yet tighter relaxation.

The relaxation we propose is based on the semidefinite relaxation of the problem.

This dissertation then follows to improve the tractability of the aforementioned relax-

ation. We achieve that by an investigation into the optimal exploitation of the sparsity and

structure of the OPF problem.
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Several methods exist for the exploitation of sparsity in semidefininte programming.

Specifically, chordal decomposition has been applied with great success to improve the

tractability of the semidefinite relaxation of the optimal power flow problem. Accordingly,

we investigate the utilization of chordal decomposition in improving the diagonal dominance

based relaxation proposed in this thesis.

We find that the direct exploitation of sparsity requires a number of linear inequalities

that scales linearly with the size of the problem. Alternatively, chordal decomposition in-

troduces equality and inequality constraints into the problem which needlessly increases its

computational demand. We prove the direct exploitation of sparsity to be more beneficial

in the case of a relaxation similar to that of this dissertation. Additionally, we exploit the

structure of the problem in further reducing the number of linear inequalities by half. We fur-

ther suggest two more relaxations based on the empirical results of the improved relaxation

proposed.
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Résumé

Le flux de puissance optimal est un problème d’optimisation qui concerne à la fois l’économie

et la physique du fonctionnement des systèmes électriques. En raison de la forte non-linéarité

des équations de flux de puissance, le problème de flux de puissance optimal est non convexe.

Par conséquent, la solution optimale du problème de flux de puissance optimale à un moment

de calcul raisonnable représente un grand défi.

Plusieurs approches ont été présentées pour résoudre le problème du flux de puissance op-

timale. Elles comprennent des solveurs locaux, des méthodes heuristiques et l’approximation

d’équations non linéaires. Toutefois, ces approches ne limitent pas la valeur réelle de la fonc-

tion objective ou ne permettent pas de trouver un compromis entre le temps de solution et

la qualité des résultats.

Comme alternative, des techniques de relaxation convexe pourraient être utilisées pour

relever ce défi. Une relaxation convexe est obtenue en trouvant une représentation convexe

de l’espace réalisable du problème. Comme sous-produit naturel de la convexité du problème

résultant, un large éventail de techniques d’optimisation convexes pourrait être utilisé. En

outre, la solution obtenue présente une limite inférieure à la solution globale du problème

non convexe originale.

Plusieurs facteurs influencent l’étroitesse et l’extensibilité des relaxations convexes. Parmi

ceux-ci figurent le nombre et le type de contraintes utilisées dans la relaxation du problème

originale non convexe. La plupart des relaxations du problème de flux de puissance optimal

sont basées sur des contraintes de type conique du second ordre ou semi-définies positives.

Alternativement, dans cette thèse, nous abordons l’utilisation du cône diagonalement domi-

nant linéairement représentable dans la relaxation du problème de flux de puissance optimal.

Tout d’abord, nous étudions la relaxation du problème par la somme des carrés diago-

nalement dominante. Nous évaluons les raisons de ses faibles écarts d’optimalité et de son

problème de scalabilité. Nous démontrons que la dominance diagonale pourrait être utilisée

pour créer une relaxation similaire, mais plus étroite. La relaxation que nous proposons est

iii



basée sur la relaxation semi-définie du problème.

Cette thèse suit ensuite pour améliorer la tractabilité de la relaxation susmentionnée.

Nous y parvenons par une étude de l’exploitation optimale de la structure et de sparsité du

problème de flux de puissance optimale.

Plusieurs méthodes existent pour l’exploitation de sparsité dans la programmation semi-

définie. En particulier, la décomposition cordale a été appliquée avec beaucoup de succès

pour améliorer la traçabilité de la relaxation semi-définie du problème de flux de puis-

sance optimal. En conséquence, nous étudions l’utilisation de la décomposition cordale dans

l’amélioration de la relaxation basée sur la dominance diagonale proposée dans cette thèse.

Nous constatons que l’exploitation directe de la sparsité nécessite un certain nombre

d’inégalités linéaires qui s’échelonnent linéairement en fonction de la taille du problème.

Alternativement, la décomposition cordale introduit des contraintes d’égalité et d’inégalité

dans le problème, ce qui augmente inutilement sa demande de calcul. Nous prouvons que

l’exploitation directe de la sparsité est plus bénéfique dans le cas d’une relaxation similaire à

celle de cette thèse. En outre, nous exploitons la structure du problème en réduisant encore

de moitié le nombre d’inégalités linéaires. Nous suggérons en outre deux autres relaxations

basées sur les résultats empiriques de la relaxation améliorée proposée.
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Chapter 1

Introduction

1.1 Background and Motivation

The physics of power systems and their stability require that generation-demand balance

be met at all time. For that purpose, fast intervention mechanisms are introduced into the

operation of power systems. Due to the serious ramifications of failure in power system

operation, these mechanisms often prioritize system integrity above all else, including econ-

omy. Accordingly, the improper introduction of such mechanisms could significantly strain

the economics of power systems. Cyclical changes in demand, the introduction of renew-

able energy, protection against contingencies and asset congestion are all some of the factors

crucial to power systems operation. Therefore, and considering the high cost of operating

the system in a non-economic fashion, it is paramount to properly navigate the trade-off

between the different operational aspects and the economy of power systems. Accordingly,

the balance of energy generation and demand is one of the most challenging issues in power

systems from the perspectives of both operation and economy [2].

2020/08/29

1



Power system optimization aims at the proper integration of the different conflicting

factors in power systems. The field includes a variety of problems which differ in both

complexity and scope. The most common problem formulations aim at reducing the overall

cost in the power system with respect to certain operational considerations. Economic

Dispatch (ED), Unit Commitment (UC) and the Alternating Current Optimal Power Flow

(AC-OPF) problems are some of the most common in this field. Below, we will provide

an abstraction of these problem formulations, gradually progressing into the topic of this

dissertation.

ED is one of the simplest variants in power system optimization. In summary, it relates to

the problem of matching supply with demand for a given number of generators during real-

time operation. These generators operate between an individual lower and upper generation

bound. Accordingly, this problem assumes the availability of all generators and that they

all operate under the same marginal cost. It also neglects all other operational constraints.

Despite not being that representative of the operation of power systems, this problem reduces

to solving a linear program and thus is significantly scalable and amenable to real-time

solution. On the other hand, UC could be considered as a more complicated variant of ED.

In UC, generator selection (on/off status) is included in the problem definition. Accordingly,

the simplest definition of this problem boils down to solving a non-convex Mixed Integer

Linear Program (MILP) [3].

There are many variants of the aforementioned problems. For the sake of consistency we

will confine our discussion to the definitions introduced earlier. Introduced in the work of [4],

the AC-OPF problem relates to solving an ED problem with the inclusion of operational and

network constraints. The problem introduces a much needed link between the economical

and operational aspects of power systems. In view of the inherent non-convexity of the

power flow equations, that link results in the non-convexity of the problem’s feasible space.

Due to the highly non-convex nature of the AC-OPF problem, obtaining a solution is a

computationally expensive process. Accordingly, the non-convexity of the problem presents
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a serious challenge for its implementation in real time operation. Local and heuristic solution

techniques are utilized in solving this non-convex problem albeit with some limitations to

scalability and solution optimality [5, 6].

Power systems need to react to changes in a timely manner, as well as operate at the most

economically advantageous settings for a given scenario. The Direct Current Optimal Power

Flow (DC-OPF) is an approximation of the AC-OPF problem. The DC-OPF approximation

is obtained by making a number of simplifying assumptions. These assumptions are derived

from the usual operating conditions of power systems. For one, the power system is assumed

to work close to unity per unit voltage magnitudes throughout the entire system. Addition-

ally, the difference in voltage angles is assumed to be so small that the problem structure

could be further simplified. As a consequence of these assumptions, this formulation could

only solve for real powers in a given power system 1. DC-OPF reduces to solving a linear

program and is an extremely scalable variant of the OPF problem. However, the DC-OPF

leaves much to be desired. While it tackles the scalability issue of its parent formulation, it

lacks guarantees and bounds on the obtained objective value. Additionally, the solution of

this approach is not one of the original problem and, as a result, could be infeasible [2].

A relaxation is an technique by which a bounded solution could be obtained for an

otherwise hard to solve optimization problem. The earlier solution is obtained by solving

for a simplified optimization problem (i.e., a relaxation). The relaxation itself is obtained

by either eliminating or replacing complicating constraints in the original problem. Convex

relaxations in particular relate to when this process results in a convex optimization problem.

To circumvent the earlier limitations, convex relaxations have been applied to the OPF

problem. A convex hull of a non-convex set, is a convex set which includes the non-convex

set [7]. Convex relaxations are in essence formulations of the OPF problem which replace the

non-convex set representing the AC-OPF by a convex hull [8]. The hull is defined based on

the manner by which a given relaxation is obtained. Therefore, the problem is transformed

1This assumption allows for the replacement of trigonometric functions by the first term of their respective
Taylor series expansion.

3



into one that closely resembles the original. The resulting convex problem could be solved

to global optimality, which is not the case for the original non-convex formulation. As such,

this approach provides a lower bound on the objective value of the original problem. It

follows that the end goal of convex relaxations is to globally solve the non-convex problem.

Optimally, we would like a relaxation to also provide a solution (in terms of the decision

variables) that is feasible with regards to the operation of the power system.

The research on convex relaxations has been targeting three major aspects. The first is

the tightness of the relaxation, where tightness represents the fidelity of the bound obtained,

relative to the true objective value. The second aspect is scalability, while the third relates

to the possibility of extracting feasible operating variables from a given relaxation [9]. This

thesis addresses both the tightness and scalability aspects of an OPF convex relaxation.

In summary, The problem that this thesis tackles is the non-convexity of the OPF prob-

lem. We approach this problem by obtaining a convex representation of the original non-

convex feasible space. Our work is based on a pre-existing linear relaxation which fails

at producing acceptable bounds [1]. Using the underlying concept of diagonal dominance,

addressed in Chapter 3, we attempt to create a tighter and a more scalable variant.

1.2 Thesis Statement and Contribution

Thesis statement

In this dissertation, we explore the first order Diagonally Dominant Sum-Of-Squares (DSOS)

[10] relaxation of the AC-OPF problem. This relaxation suffers from two important limita-

tions. First, it demonstrates poor bounds. The second limitation lies in the scalability of

the relaxation, which is demonstrated by how it is incapable of solving cases as large as a

300 bus system [1].

We begin by an investigation into the reasons behind the poor optimality gaps demon-

strated by the aforementioned relaxation. We then move to remedy the cause. In our work,
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we utilize the same underlying concept of the DSOS relaxation (i.e. diagonal dominance).

We then follow by an exploration into approaches that could help improve our relaxation’s

scalability. For that purpose we investigate how to best utilize the inherent sparsity of power

systems in the making of a more tractable relaxation.

Contribution

Our contribution is threefold. We first manage to significantly improve the tightness of the

first order DSOS relaxation. Second, we investigate the utilization of chordal decomposition

in our relaxation. We then demonstrate how this approach is, contrary to belief, counter-

productive in the case of problems defined in this manner. Following that, we exploit the

structure of the problem in further reducing the size of our relaxation, and propose a slightly

faster relaxation based on empirical findings.

1.3 Organization

This section describes the organization of this dissertation. In Chapter 2, we present the

classical formulation of the AC-OPF problem. This chapter further discusses the literature

surrounding the non-convexity issue of the problem and its convex relaxations. Chapter 3

presents the mathematical preliminaries, as well as a detailed review of relevant OPF convex

relaxations. In Chapter 4, we present a way for tightening the first order DSOS relaxation

of the OPF problem. An investigation into how to best exploit sparsity in improving the

tractability of our relaxation follows in Chapter 5. In Chapter 5, we discuss the merit of

chordal decomposition and structure in improving our relaxation. Furthermore, this chapter

provides a new slightly faster relaxation based on empirical findings derived from the relax-

ation proposed in Chapter 4. We conclude our work in Chapter 6 which summarizes the

final findings, as well as possible future directions of our work.
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Chapter 2

Literature Review

This chapter reviews the literature relevant to the AC-OPF problem. The first section

provides a background on the problem and introduces its classical formulation. The second

reviews the non-convexity issue of the problem. It further draws a canvas of the available

literature in the area of OPF convex relaxations. An outline of the work done in this thesis

in the context of the literature is also provided.

2.1 Optimal Power Flow (OPF)

2.1.1 Introduction

Optimal Power Flow (OPF), Economic Dispatch (ED) and Unit Commitment (UC) are all

example realizations of resource allocation in power system optimization. These realizations

relate to the proper allocation (i.e. dispatch) of generation resources so that a predefined

cost is minimized for a given power network [3].

Load flow is the set of non-linear equations that relate the power flow in a power system

to network parameters (e.g., line reactances), control and state variables (e.g., voltages) and

nodal complex power injections [2]. An optimal operating point is determined in AC-OPF

with the incorporation of load flow equations and other operating constraints. Therefore,

the identifying (relative to its peers) aspect of the OPF problem is the inclusion of the
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complicating network constraints. Non-convexity is introduced into the OPF problem as a

natural artifact of that inclusion [11]. Having said that, the OPF problem is considered as

one of the most challenging optimization problems in the field of power systems.

Numerous aspects influence the operation of power systems. Accordingly, many formula-

tions of the AC-OPF problem have been adapted to account for security (security constrained

OPF)[12], uncertainty (e.g. robust or stochastic OPF) [13] and many of the other conditions

detrimental to power system operation.

The AC-OPF, which is the focus of this thesis, is the paradigm that deals with the exact

description of a power system’s physical quantities. Accordingly, this paradigm makes up a

basis on top of which all of the aforementioned considerations are adapted. Although the

AC-OPF is the most true realization to the steady-state analysis of power systems , this

paradigm is seldom utilized. Due to its computational intractability [14, 15] and lack of

guarantee for optimality [16], cheaper and less accurate variations are leveraged in the work

of both academia and industry (such as the linear DC-OPF approximation [17]).

2.1.2 Classical OPF

This subsection serves to introduce the classical AC-OPF for an n bus arbitrary power

network with an admittance matrix Y =G+jB [18]. This formulation is relaxed into an

SDP in the work of [19]. The SDP relaxation of [19] was further expanded in [20, 21] to

incorporate the more practical considerations of parallel lines, multiple generation units at

a node and piece-wise linear generator cost functions.

Notation

The following notation will be used throughout the second and third chapters. The fourth

chapter will utilize the more generalized representation introduced in [20]. An n bus power

system is modeled as an un-directed graph with sets of vertices N and edges L. It follows

that N has the following definintion
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N := {1, 2, 3, ..., n} (2.1)

Each vertex corresponds to a bus i ∈ N and each edge a line (l,m) ∈ L. Since not all busses

contribute to the generation of power in the network, we define the subset Ng ⊆ N as the set

of generator busses. Consider an arbitrary bus i ∈ N . The apparent power demand (SDi)

and complex voltage (Vi) at bus i are defined as

SDi = PDi + jQDi (2.2)

Vi = Vdi + jVqi (2.3)

Similarly, at a generator bus g ∈ Ng, the apparent power generation is defined as

SGg = PGg + jQGg (2.4)

Thermal limits are of great importance to the operation of power systems [22]. For a

line (l,m) ∈ L, these limits are imposed through the line’s apparent power flow which is

denoted as Slm. Power flow equations capture the relationship between the power injections

and voltages in the network. Therefore, these equations are utilized in solving for the power

mismatch as a function of the voltages. For the utilization of the power flow equations in

rectangular coordinates 1, the rectangular voltage magnitudes should satisfy the following

constraint

|Vi|2 = V 2
di + V 2

qi (2.5)

Accordingly, the power flow equations in rectangular coordinates can be written as

1The resulting power flow equations are polynomials in the real and imaginary parts of the voltage. As
such, OPF in rectangular coordinates could be treated as a polynomial programming problem [9].
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Pinj,i = Vdi

n∑
h=1

(GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh + GihVqh) (2.6)

Qinj,i = Vdi

n∑
h=1

(−GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh −GihVqh) (2.7)

As shown in the two equations above, power flow provides the required link between the

operating parameters of the network. However, the resulting problem is non-convex. By

virtue of the power flows being defined in terms of bi-linear and quadratic voltage products,

the power flow equations are non-linear. Consequently, the non-convexity of the problem

comes as a natural result of the inherent non-linearity of these equations [9].

The OPF solves for the minimum value of an objective function. In our work, we solve

for the commonly used objective; the total cost of generation. This formulation considers

generators with quadratically defined cost functions. Accordingly, the total cost of generation

is the sum of the individual cost for each generator bus. For a generator bus g, let the

quadratic cost function f q
g be defined as follows

f q
g (PGg) = cg2(PGg)

2 + cg1(PGg) + cg0 (2.8)

The classical OPF formulation includes thermal limits, generator capabilities, line ther-

mal limits and limits on the voltages of each bus. It additionally accounts for the mismatch

in both active and reactive power. The upper and lower bounds of a variable are denoted

by their respective superscripts. Accordingly, the classical OPF formulation (in rectangular
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coordinates) can be cast as the following optimization problem

min
∑
g∈Ng

f q
g (PGg) (2.9a)

subject to

Pmin
Gg ≤ PGg ≤ Pmax

Gg ∀g ∈ G (2.9b)

Qmin
Gg ≤ QGg ≤ Qmax

Gg ∀g ∈ G (2.9c)

|V min
i |2 ≤ |Vi|2 ≤ |V max

i |2 ∀i ∈ N (2.9d)

− Smax
lm ≤ Slm ≤ +Smax

lm ∀(l,m) ∈ L (2.9e)∑
g∈Gi

PGg − PDi = Vdi

n∑
h=1

(GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh + GihVqh) ∀i ∈ N (2.9f)

∑
g∈Gi

QGg −QDi = Vdi

n∑
h=1

(−GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh −GihVqh) ∀i ∈ N (2.9g)

This adaptation of the OPF problem is constructed using the voltage-based Bus Injection

Model (BIM) formulation of the load flow equations. Alternative formulations include that

of Distflow, which is valid for radial systems and otherwise known as the Branch Flow Model

(BFM) [23]. BFM, as the name suggests, relates to quantities in branches rather than values

at nodes of the network. The work in [24, 25] relate to the equivalence relation between BIM

and BFM when applied to relaxations over the non trivial case of mesh networks.

2.2 OPF Non-Convexity and Convex Relaxations

2.2.1 Non-convexity

As seen earlier, the OPF problem is constructed using non-linear power flow equations.

Therefore, any discussion of the convexity of the feasible set of said problem has to relate

to the structure of these equations. Convexity in OPF is not the general case. What might

not be so obvious in rectangular coordinates is more so in polar coordinates. Taking a look

at the power flow equations in polar coordinates, one can clearly see the apparent periodic
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behaviour, with a period of 2π in the angles of the voltage variables [11].

In some specific cases, convexity can be established. For a constrained network the set

of active and reactive power injections is convex in rectangular coordinates [26]. The same

can be said for a constant voltage, small angle difference formulation of the problem [27].

As such, a lot of effort was made towards studying the feasible sets of power systems and

determining the conditions for which the sets are convex. Accordingly, several techniques

were developed to identify and characterize non-convexity in the OPF problem [28–32].

Due to the problem’s non-convexity, the possibility for multiple local solutions exists. The

number of these local solutions and their distribution with respect to one another is highly

dependant on the network [16]. It follows that the OPF problem is NP-hard [14][15]. Several

classical local optimization techniques are utilized in solving this problem [5, 33, 34]. The

application of these techniques requires a number of simplifying assumptions. Consequently,

provided that a local solutions exists for the instance of this problem being solved, the

solution obtained would be local [16]. Additionally, the convergence of these techniques to

a specific local solution is highly dependent on initialization. As such, local optimization

techniques are ill-equipped for the global solution of the OPF problem. That is the case

specifically for instances characterized by multiple local solutions.

Heuristic algorithms, such as genetic algorithms (GE) and particle swarm optimization

(PSO) to name a few, are employed in globally solving the OPF problem. By design, heuristic

algorithms can bypass the local optimality issue of non-convex problems. However, these

algorithms suffer from poor scalability which in turn limits their practical implementation

to large systems. Furthermore, whereas local optimization techniques are dependent on the

starting point of the solution process, these techniques are highly influenced the choice of

hyperparameters [6].

Alternatively, and since the guarantees of convex optimization techniques are not valid

for a non-convex problem, the approach in [35] was developed to certify the global optimality

of a given local solution.
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2.2.2 Relaxations

For a given non-convex optimization problem, convex relaxations are the different convex

sets utilized in the convex representation of the problem’s non-convex feasible space [8]. That

representation, which can be solved using convex optimization techniques, is then used to

find an outer bound on the problem’s global objective minimum or maximum.

Two measures of quality are used in the comparison between different relaxations. These

measures are scalability and tightness. The notion of a relaxation’s scalability of interest to

our work is a reflection of its complexity in terms of the number and type of constraints.

On the other hand, tightness relates to how true a relaxation is to the feasible space being

relaxed. Tightness is therefore quantified using the difference between a relaxation’s outer

bound and the true objective value. However, it is not always possible to obtain the true

objective value for a given instance. As such, the best solution obtained by heuristic methods

(or the best bound among the different relaxation techniques) could be utilized instead. The

following relation is used for that purpose

Optimality Gap =
TrueObjectiveV alue−Relaxation

TrueObjectiveV alue
(2.10)

Over the past decade, a number of relaxations have been proposed for the AC-OPF problem.

These relaxations were motivated by the non-convexity inherent to the OPF problem. The

monograph [9], provides a detailed treatment of the subject.

A relaxation of the OPF problem aims at finding a convex representation of the problem

which can give a tight enough answer in polynomial time. Another aspect relevant to the

research in this area is whether a feasible solution (i.e., feasible operating variables) can be

efficiently extracted from a given relaxation. Accordingly, even for a relaxation resulting in

zero duality gap, the solution it provides might not be an optimal solution in the decision

variables of the problem [9].

We should note that convex relaxations compete not only with their counterpart relax-
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ations, but also with the different local and heuristic solvers which could in practice either

provide more accurate solutions or scale much more favourably. Accordingly, [36] suggests

an approach that uses a hybrid of a local solver and convex relaxations in solving the OPF

problem.

The following is a review of the most prominent relaxations of the OPF problem. A more

detailed treatment to the relaxations most relevant to our work follows in Chapters 3 and 4.

Lasserre Hierarchy : Based on the work in [37], a Polynomial Program (PP) can be

solved by means of an iterative hierarchy. Each iterative step (identified as the order in the

hierarchy) involves the solution of an SDP with a semidefinite constraint on a larger matrix

than that of the preceding order. Successively, the relaxation is tightened in a manner that

eventually converges to the optimal solution. When discussing this approach one should note

the immaturity of current SDP solvers, and the exponentially increasing size of the positive

semidefinite constraints on the decision variables. As a consequence of the aforementioned,

this approach is limited by the dramatically increasing cost of each order in the hierarchy

(relative to its predecessor), and therefore, is not scalable. For PPs that satisfy certain

conditions, convergence occurs at a finite order in the hierarchy, which is the case for the OPF

problems [38]. Nonetheless, since at low orders in the hierarchy the semidefinite constraints

are already too large even for moderately sized systems, scalability remains to be an issue

[39–42].

DSOS and SDSOS Hierarchies: The Diagonally Dominant Sum-Of-Squares (DSOS)

and Scaled Diagonally Dominant Sum-Of-Squares (SDSOS) hierarchies were introduced by

the authors of [10]. Each order in the Lasserre Hierarchy requires the solution of an SDP.

Alternatively, DSOS and SDSOS are hierarchies of linear and second order programs which

can be utilized to solve PPs. In place of the expensive SDP based Lasserre Hierarchy, these

hierarchies provide a faster, yet more conservative (i.e., of higher optimality gaps) alternative.

Respectively, the cones of diagonally and scaled diagonally dominant matrices are employed

in the design of the linear and second order constraints of these hierarchies. Accordingly,
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these hierarchies scale much more favorably compared to Lasserre’s [43]. DSOS and SDSOS

hierarchies were applied in [1] to obtain a relaxation of the OPF problem. The work in this

thesis relates to tightening the first order relaxation of the DSOS hierarchy.

Shor Relaxation: Due to the quadratic nature of the power flow equations, the OPF

problem can be modeled as a Quadratically Constrained Quadratic Program (QCQP) [24].

An SDP relaxation of an QCQP was first proposed in [44]. Accordingly, the OPF problem

was relaxed into an SDP in the work of [45]. The SDP relaxation is equivalent to the

first order relaxation of the Lasserre Hierarchy [42]. The Lasserre Hierarchy is in turn a

generalization of this relaxation [41]. Even though this relaxation is not as computationally

demanding as Lasserre’s, it still suffers from the immaturity of SDP solvers and scales rather

poorly. Accordingly, the SDP relaxation is limited to networks with only a few hundred

busses [9]. The work in this thesis utilizes the implementation of [19, 20] in creating a

tighter variant of the first order DSOS relaxation of [1]. A similar approach was used to

solve for the UC problem [46].

Shor Relaxation Exploiting Chordal Decomposition: Although the SDP relaxation is more

tractable (compared to Lasserre’s Hierarchy), it still suffers from poor scalability. Power

systems are very sparse in practice. Accordingly, the entries in the positive semidefinite

constraint are defined according to the graph of the network, thus reflecting whatever sparsity

pattern the network has. In such cases, the Matrix Completion Theorem provides a necessary

and sufficient semidefinitiness condition for the original problem in terms of smaller matrices

[47]. By the Matrix Completion Theorem, the positive semidefinite constraint of the SDP

relaxation is satisfied if and only if all submatrices defined based on the network’s graph are

positive semidefinite. Consequently, the Matrix Completion Theorem can be used to leverage

the sparsity pattern in power systems, thus making the Shor relaxation more tractable.

This implementation of the SDP relaxation can solve for networks sized at thousands of

busses [9]. As such, chordal decomposition (i.e., a decomposition of the positive semidefinite

constraint based on the maximal cliques in a chordal graph) was first applied to the OPF
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problem in [48]. Additional speedup was attained in [20] by providing more control over the

problem’s overall computational cost. This approach still does not scale as favorably as some

of the other alternatives. Nonetheless, a significant speedup was achieved, thus making the

almost exact SDP relaxation much more practical. This relaxation is used in investigating

the effectiveness of utilizing chordal decomposition in tandem with the relaxation of this

dissertation.

Second Order Conic Programming (SOCP) relaxation: First proposed by Jabr [49], an-

other notable relaxation is achieved by formulating the problem as an SOCP. This relaxation

was formulated utilizing the BIM model for radial networks. BIM is formulated in terms of

a mapping in the product of the voltages. This mapping leads to forfeiting a constraint on

the sum of the voltage angles in a loop. As a result, this formulation is exact for radial, but

not for mesh networks. The relaxation is then achieved by means of relaxing a non-convex

equality constraint on the voltages into a rotated Second Order Cone (SOC) constraint. The

positive semidefinitness for all the 2×2 sub-matrices at a transmission line is a necessary, but

not a sufficient condition for positive semidefinitness in the Shor relaxation [50]. It follows

that the same relaxation can be attained by relaxing the tighter Shor relaxation formulated

in complex variables [24]. Accordingly, the SOCP relaxation can be obtained by imposing the

aforementioned necessary condition. Similarly, a weaker and less computationally tractable

variant can be obtained on the real-valued formulation of the Shor relaxation [9].

The Quadratic Convex (QC) relaxation: The QC relaxation can be considered as a tight-

ened variant of the SOCP relaxation. The work in [51] employed the relatively tight convex

McCormick envelopes [52] in relaxing the non-convex quadratic, bilinear and trigonometric

terms of the AC-OPF problem. The QC relaxation is formed by utilizing the convex hull

of these terms, in addition to the SOC constraints of the SOCP relaxation. It was found to

neither dominate nor be dominated by the SDP relaxation, a feat achieved at a significantly

lower computational cost [53].

Linear relaxations: Several linear relaxations have been proposed for the OPF problem.
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The advantage of linear relaxation can be derived from the maturity of the different linear

programming (LP) solver technologies [7]. However, that advantage comes at the cost of

higher optimality gaps when compared to those obtained by other formulations. Several

linear relaxations have been suggested for the OPF problem including the network flow and

copper plate relaxations [54]. Network flow relaxation is a traditional network flow [55]

with additional constraints. This formulation constraints the difference in phase angles and

line losses while dropping the non-linear thermal constraints from the SOC relaxation of

the extended AC-OPF proposed in [54]. On the other hand, the copper plate relaxation

is obtained by further relaxing the network flow to completely neglect the network. Both

relaxations are valid for networks in which all series line impedances are of non-negative real

and imaginary parts. Additionally, a weak linear relaxation is obtained by using McCormick

envelopes to represent the power flow equations in rectangular coordinates [56]. The survey

[9] provides a detailed treatment of the different linear relaxations of the OPF problem.

Introduced in [10], the DSOS hierarchy aims at providing a more tractable, yet more

conservative LP alternative of Lasserre’s [37]. However, this approach can be seen to be

lacking when implemented to relax the OPF problem [1]. This thesis aims to improve the

first order relaxation of the DSOS hierarchy applied to the OPF problem. That is achieved

by utilizing the semidefinite relaxation of [19] and [20]. The merit of the sparsity exploiting

technique applied to the OPF problem in [20] is also investigated.

2.3 Summary

The topic of Convex relaxations is an active area of research which deals with non-convexities

in optimization problems. In this Chapter, we have presented the non-convex classical OPF

problem and provided a brief discussion into its non-convexity. We then followed through

by a review into the most prominent convex relaxations of the OPF problem. In the next

chapter, we provide a more detailed treatment on the background necessary to our treatment

of relaxing the OPF problem.
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Chapter 3

Preliminaries

In this chapter, we will explore the work in the literature with direct impact on this thesis.

The first two sections provide essential mathematical preliminaries. The third outlines the

OPF problem formulated using voltages vectors. We then follow by a presentation on the

SOS, DSOS and SDSOS optimization paradigms. The final section covers the Shor relaxation

of the OPF problem.

3.1 Semidefinite Programming

Semidefinite programming is a branch of mathematical programming concerned with the

minimization of an affine function over a spectrahedron (i.e., the space of square positive

semidefinite matrices). Let Sn be the set of real symmetric matrices of dimension n × n.

Pn ⊆ Sn is the cone 1 of real positive semidefinite matrices in Sn. We define the inner

product 〈., .〉 of two matrices A,B ∈ Sn according to the following equation

〈A,B〉 = Tr(ATB) =
∑
i,j

AijBij (3.1)

1A set Γ ⊆ Rn is a cone if βω ∈ Γ holds for all ω ∈ Γ and β ∈ Rn such that β ≥ 0 [7].

2020/08/29
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The data for the objective function is provided by a matrix C ∈ Sn. Additionally, the

constraint data is defined in terms of the sets {Az ∈ Sn|z = 1, ..., w} and {bz ∈ R|z =

1, ..., w}. Accordingly, the primal formulation of a semidefinite program is

min
X∈Sn

〈C,X〉

subject to

〈Az,X〉 = bz, z = 1, ..., w, (3.2)

X ∈ Pn.

We define a row vector b = [b1, ..., bw]. Exploiting Lagrangian duality, the dual SDP

formulation is

max
y∈Rw

b y

subject to

A = C −
w∑

z=1

yzAz, (3.3)

A ∈ Pn.

3.2 Diagonal Dominance and Scaled Diagonal Dominance

In the work of [10], the notions of diagonal dominance and scaled diagonal dominance were

utilized in providing cheaper alternatives to SOS optimization, namely the DSOS and SDSOS

optimization hierarchies. Subsequently, DSOS and SDSOS relaxations of the OPF problem

were introduced in [1]. Similarly, those notions were exploited to linearly inner and outer

approximate the positive semidefinite cone in semidefinite programming [57]. The author

of [57] further introduced an iterative technique to circumvent the gaps introduced by the

Diagonally Dominant (DD) and Scaled Diagonally Dominant (SDD) representations of the
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positive semidefinite constraint X ∈ Pn in an SDP. The aforementioned techniques were

later used to solve for the UC problem in [46]. In this section, we present the DD and SDD

Cones. We will also go through the extreme ray interpretation of the cone DD and its dual

cone [57].

3.2.1 The Diagonally Dominant and Scaled Diagonally Dominant Cones

We begin by defining the cones of DD and SDD matrices. We then describe the relation-

ship between the DD, SDD and positive semidefinite cones; as the latter is integral to the

semidefinite relaxation of the OPF problem.

Definition 1 Consider a symmetric matrix A ∈ Sn. A is said to be diagonally dominant if

the following holds

Aii ≥
∑
j 6=i

Aij ∀i (3.4)

Alternatively, A is said to be Scaled Diagonally Dominant (SDD) if there exists a diagonal

matrix D such that DAD is diagonally dominant.

If a matrix A is diagonally dominant or scaled diagonally dominant, then A is positive

semidefinite [58]. Let us denote the DD and SDD cones as DDn and SDDn such that the

following inclusion holds

DDn ⊆ SDDn ⊆ Pn (3.5)

The earlier inclusion implies that replacing the positive semidefinite constraint in an SDP

by a constraint to either the DD or SDD cone constitutes a convex restriction on the original

problem. Accordingly, for the purpose of relaxing an SDP we need to define the dual cones

of DDn and SDDn. We will present the derivation for the dual cone of DDn in the following

subsections. For that purpose we will utilize the extreme ray definition of the cone DDn

[57]. The same results could be easily extended for the case of the cone SDDn and its dual.
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3.2.2 Extreme Ray Interpretation

The extreme ray interpretation provides an alternate definition of the cone DDn previously

discussed. Accordingly, let Un,z be the set containing column vectors in Rn with at most z

non-zero elements. A vector u ∈ Un,z is defined such that every non-zero element is either

+1 or −1. Using the vectors in Un,z, define the set of n× n matrices Un,z as follows

Un,z := {uuT : u ∈ Un,z} (3.6)

For a finite set of matrices M = {M1,M2, ...,Mm} defines the cone, cone(M) as

cone(M) := {
m∑
i=1

αiMi : αi ≥ 0 ∀i} (3.7)

We now use the following theorem, provided here without proof (see [59] for the proof),

which states the equivalence between the cones DDn and cone(Un,2)

Theorem 1 ([59]) DDn = cone(Un,2)

The equivalence between the diagonally dominant cone DDn and cone(Un,2) demon-

strated by the previous theorem implies that the diagonally dominant cone has n2 extreme

rays. In the following section, we utilize this definition in determining the dual cone of DDn

by means of determining the easily attainable dual of cone(Un,2).

3.2.3 The Diagonally Dominant Dual Cone

Let the dual cone of cone(Un,2) be cone∗(Un,2). Similarly, define DD∗n as the dual cone of

DDn. Since (by Theorem 1), DDn and cone(Un,2) are equivalent, the equivalence between

their duals naturally follows. Accordingly, DD∗n can be obtained as shown below

DD∗n = cone∗(Un,2) = {A ∈ Sn : uTi Aui ≥ 0,∀ui ∈ Un,2} (3.8)
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A symmetric matrix A ∈ Sn is said to be positive semidefinite if and only if uAuT ≥ 0 :

∀u ∈ Un,n. The implication that cone∗(Un,n) is equivalent to Pn follows. Accordingly, and

by virtue of the following trivial inclusion

cone∗(Un,n) ⊆ cone∗(Un,2) (3.9)

the cone cone∗(Un,2) is a relaxation of the positive semidefinite cone Pn. Thus, replacing

the positive semidefinite constraint on the decision matrix X in the primal of an SDP by

a constraint on the cone DD∗n we obtain the following optimization problem which is a

relaxation of the original SDP of equation (3.2) [57]

min
X∈Sn

〈C,X〉

subject to

〈Az,X〉 = bz, z = 1, ..., w, (3.10)

X ∈ DD∗n.

Finally, the aforementioned relaxation can be obtained by imposing a DD restriction on

the positive semidefinite constraint in the dual SDP of (3.5) [57]. The earlier results are

easily extendable for the case of the cone SDDn. In a similar manner, a relaxation of the

original problem could be obtained by means of imposing an SDD restriction on the dual of

an SDP [57].

3.3 OPF formulated in the voltages vector X

The optimal power flow problem can be reformulated in terms of a vector of the bus voltages

in a power system. This formulation will be later utilized in the different relaxations of the

OPF problem. What follows is a treatment for the derivation based on the work in [19].

In an n bus power system, we may represent the voltages by the vector of length 2n
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defined as

X = [Vd1, Vd2, ..., Vdn, Vq1, Vq2, ..., Vqn]T (3.11)

It follows that the problem can be rewritten in terms of the vector of decision variables

X. The resulting problem would be a program composed of polynomials of a maximum

order of either 2 or 4. Based on the derivation in [42], we can rewrite the optimal power

problem as a program of degree 2. That is achieved by defining the problem in terms of the

decision variables of X, as well as the active and reactive line flows in the system. We begin

by defining a standard basis vector ei in Rn. Equation (2.5) can be written in terms of X in

the following manner

V 2
i = V 2

di + V 2
qi =

eieTi 0

0 eie
T
i

XXT (3.12)

Accordingly, we define a matrix Mi for each bus i in the system as

Mi =

eieTi 0

0 eie
T
i

 (3.13)

Let ylm and blm be the series admittance and shunt susceptance of the line connecting nodes

l and m respectively. Accordingly, we can define the matrices Yi and Ylm for each bus i and

line lm as follows

Yi = eie
T
i Y (3.14)

Ylm = (ylm + j
blm
2

)ele
T
l − (ylm)ele

T
m (3.15)

From the above, the complex power injection at bus i and apparent power flow in the line

between nodes l and m can be found using V∗YiV, VYlmV∗ respectively

S∗i,inj = V ∗i Ii = V∗eie
∗
i I = V∗YiV (3.16)
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S∗lm = V ∗l (V ∗l (ylm + j
blm
2

)) + V ∗l (Vl − Vm)ylm = VYlmV∗ (3.17)

where ∗ is the conjugate transpose operator and V is a vector of the complex bus voltages.

Let Re(.) and Im(.) respectively denote the real and imaginary parts of a matrix in Cn×n.

Accordingly, the active and reactive power injections at bus i can be formulated in terms of

X in the following manner

Pi,inj = Re{S∗i } = Re{V∗YiV} = XT

Re(Yi) −Im(Yi)

Im(Yi) Re(Yi)

X (3.18)

=
1

2
XT

Re(Yi + Y T
i ) −Im(Yi − Y T

i )

Im(Yi − Y T
i ) Re(Yi + Y T

i )

X

Qi,inj = −Im{S∗i } = −Im{V∗YiV} = −XT

Im(Yi) −Re(Yi)

Re(Yi) Im(Yi)

X (3.19)

= −1

2
XT

Im(Yi + Y T
i ) −Re(Yi − Y T

i )

Re(Yi − Y T
i ) Im(Yi + Y T

i )

X

Similarly, solving for the active and reactive power flows of line lm in terms of the voltage

vector X yields the equations below

Plm = Re{VYlmV∗} = XT

Re(Ylm) −Im(Ylm)

Im(Ylm) Re(Ylm)

X (3.20)

=
1

2
XT

Re(Ylm + Y T
lm) −Im(Ylm − Y T

lm)

Im(Ylm − Y T
lm) Re(Ylm + Y T

lm)

X
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Qlm = −Im{VYlmV∗} = −XT

Im(Ylm) −Re(Ylm)

Re(Ylm) Im(Ylm)

X (3.21)

= −1

2
XT

Im(Ylm + Y T
lm) −Re(Ylm − Y T

lm)

Re(Ylm − Y T
lm) Im(Ylm + Y T

lm)

X

We may then define matrices Yi, Ȳi,Ylm and Ȳlm as

Yi =
1

2

Re(Yi + Y T
i ) −Im(Yi − Y T

i )

Im(Yi − Y T
i ) Re(Yi + Y T

i )

 (3.22)

Ȳi = −1

2

Im(Yi + Y T
i ) −Re(Yi − Y T

i )

Re(Yi − Y T
i ) Im(Yi + Y T

i )

 (3.23)

Ylm =
1

2

Re(Ylm + Y T
lm) −Im(Ylm − Y T

lm)

Im(Ylm − Y T
lm) Re(Ylm + Y T

lm)

 (3.24)

Ȳlm = −1

2

Im(Ylm + Y T
lm) −Re(Ylm − Y T

lm)

Re(Ylm − Y T
lm) Im(Ylm + Y T

lm)

 (3.25)

such that

Pi,inj = XTYiX = Tr(YiX
TX) (3.26)

Qi,inj = XT ȲiX = Tr(ȲiX
TX) (3.27)

Plm = XTYlmX = Tr(YlmXTX) (3.28)

Qlm = XT ȲlmX = Tr(ȲlmXTX) (3.29)
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Substituting for equations (3.27)–(3.30), we obtain the following optimization program:

min
∑
g∈Ng

f q
g (PGg) (3.30a)

subject to

Pmin
Gi ≤ Tr(YiX

TX) + PDi ≤ Pmax
Gi ∀i ∈ N (3.30b)

Qmin
Gi ≤ Tr(ȲiX

TX) +QDi ≤ Qmax
Gi ∀i ∈ N (3.30c)

(V min
i )2 ≤ Tr(MiX

TX) ≤ (V max
i )2 ∀i ∈ N (3.30d)

P 2
lm +Q2

lm ≤ (Smax
k )2 ∀(l,m) ∈ L (3.30e)

Plm = Tr(YlmXTX) ∀(l,m) ∈ L (3.30f)

Qlm = Tr(ȲlmXTX) ∀(l,m) ∈ L (3.30g)

PGg = Tr(YgX
TX) ∀g ∈ Ng (3.30h)

The resulting program is composed of polynomials of an order of a maximum degree of 2

in the decision variables X, Plm and Qlm. This program is to be utilized in the SOS, DSOS,

SDSOS and SDP relaxations of the following sections.

3.4 Sum-Of-Squares(SOS) relaxation

3.4.1 Sum-Of-Squares Approach For Polynomial Programming

A lot of convex relaxations of the OPF problem fail at obtaining a globally optimal solution

either in the value of the objective or in the decision variables. Due in part to its application

in evaluating the optimality of new approaches, as well as providing an optimal solution

by its own right, research effort towards the global solution of the OPF problem has been

getting a lot of interest [9].

A polynomial program (PP) is that such the constraints and objective are multivariate

25



polynomials in the decision variables of the problem. Where f(x) and gi(x) are polynomials

in x, the following is an example of a PP

min f(x)

subject to

gz(x) ≥ 0, z = {1, ..., w}. (3.31)

Solving the PP shown above boils down to certifying the non-negativity of the polynomials

gz(x). Accordingly, this problem is an optimization problem over non-negative polynomials,

which is unfortunately NP-hard [60]. Formulating the OPF problem as a PP affords us the

advantage of utilizing PP techniques to tackle its inherent non-convexity. One example of

these techniques is the Lasserre Hierarchy [37]. The Lasserre Hierarchy is a hierarchy of

relaxations that converges to the optimal solution of a polynomial program. Since the OPF

can be formulated as such [42], Lasserre Hierarchy can then be utilized in globally solving

the OPF problem [39–42].

By definition, an SOS polynomial is non-negative. However, not all non-negative poly-

nomials are SOS [61]. Accordingly, the set of SOS polynomials is a restriction on the set

of non-negative polynomials. It follows that imposing that restriction on the dual yields a

relaxation of the original problem. Accordingly, we consider the dual of (3.31) demonstrated

in the following equation

max ϕ

subject to

f(x)− ϕ ≥ 0, (3.32)

∀x : gz(x) ≥ 0, z = {1, ..., w}.
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The aforementioned program can be equivalently formulated as the conic program [62]

max ϕ

subject to

f(x)− ϕ ∈ Pd(SG) (3.33)

where SG constitutes the set of decision variables for which the set of polynomials G is non-

negative. Additionally, the cone Pd(SG) is the cone of non-negative polynomials of degree at

most d over the set SG. Despite the fact Pd(SG) is convex, optimizing over it is NP-hard [10].

Accordingly, the process of solving for (3.33) translates to obtaining a tractable replacement

for the set Pd(SG).

By imposing an SOS restriction on the dual (3.33), the problem of optimizing over non-

negative polynomials is relaxed into that of optimizing over the convex SOS polynomials.

Lasserre in his work proposes a hierarchy of successive relaxations [37]. Accordingly, a

relaxation of this problem can be obtained by constraining the polynomial to be SOS. That

is achieved by imposing the following restriction

f(x)− ϕ = σ0 +
m∑
i=1

gz(x)σz (3.34)

with r ≥ d being the order in the hierarchy. σ0 is an SOS polynomial of degree r, while the

degree of the SOS polynomial σi is (r − degree(gz(x)) for z = {1, ..., w}. Imposing that a

polynomial is SOS translates to an SDP, which follows from the following theorem

Theorem 2 ([63, 64]) Let z(x,d) be a vector of monomials, in the elements in x, of degree

at most d. A multivariate polynomial p := p(x) in n variables and of degree 2d is a sum

of squares if and only if there exists a positive semidefinite symmetric matrix Q such that

p(x)=z(x,d)TQz(x, d).

The matrix Q (i.e., the Gram matrix) is of the dimension
(
n+d
d

)
×
(
n+d
d

)
, which approxi-
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mately translates to nd×nd. If the order (r) is fixed then the following problem can be cast

as an SDP

max ϕ

subject to

f(x)− ϕ = σ0 +
m∑
i=1

gi(x)σi (3.35)

σ0 ∈ SOSr (3.36)

σi ∈ SOSr−deg(gi). (3.37)

From the above, we can see that each order in the hierarchy translates to solving an SDP.

Accordingly, in addition to the order in the hierarchy, the SDP cost is dependant on the

order of the polynomials being optimized over. Let Λ(X),Λ(PGg) and Λ(Plm, Qlm) be SOS

polynomials of degree at most 2. As such, the relaxation PP-SOS2 could be defined as [42]

max ϕ (3.38a)

subject to

(3.38b)∑
g∈Ng

f q
g (PGg)− ϕ = Λ(X) +

∑
g∈Ng

Λ(PGg) +
∑
k∈L

Λ(Plm, Qlm)

+
∑
i∈N

λ̄i(P
max
Gi − PDi − Tr(YixxT ) +

∑
i∈N

λi(−Pmin
Gi + PDi + Tr(Yixx

T )

+
∑
i∈N

γ̄i(Q
max
Gi −QDi − Tr(ȲixxT ) +

∑
i∈N

γi(−Qmin
Gi +QDi + Tr(Ȳixx

T )

+
∑
i∈N

µ̄i((V
max
i )− Tr(Mixx

T )) +
∑
i∈N

µi((−V min
i ) + Tr(Mixx

T ))

+
∑

(l,m)∈L

âlm((Smax
lm )2 − P 2

lm −Q2
k) +

∑
i∈Ng

b̂i(PGi − PDi − Tr(YixxT ))

+
∑

(l,m)∈L

ĉlm(Plm − Tr(YlmxxT ) +
∑

(l,m)∈L

d̂lm(Qlm − Tr(ȲlmxxT )
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Following the previous discussion we can see that, for all g ∈ Ng and (l,m) ∈ L, the SOS

polynomials Λ(X), Λ(PGg) and Λ(Plm, Qlm) accept the following representations

Λ(x) = XQXXT , QX ∈ Pn (3.39)

Λ(PGg) =

 1

PGg

QPGg

[
1 PGg

]
, QPGg

∈ P2 ∀g ∈ Ng (3.40)

Λ(Plm, Qlm) =


1

Plm

Qlm

Q(Plm,Qlm)

[
1 Plm Qlm

]
, Q(Plm,Qlm) ∈ P3 ∀(l,m) ∈ L (3.41)

The SOS relaxation is imposed via restricting the PP to the SOS cone. That restriction

is imposed via the positive semidefinite constraints shown above. Similarly, a DSOS and

SDSOS program could obtained via restricting the PP to either the cone of DSOS or SDSOS

polynomials. These programs translate to an LP and an SOCP respectively, and are thus

much more tractable. However, considering how both the DSOS and SDSOS cones are

contained in the SOS cone, such a restriction produces a relaxation of the program shown

above, a fact that we will utilize in our proposed relaxation [10]. More details on DSOS and

SDSOS optimization follow in the next section.

3.5 DSOS and SDSOS optimization

Two useful cones inside the SOS cone are those of diagonally-dominant-sum-of-squares

(DSOS) and scaled-diagonally-dominant-sum-of-squares (SDSOS) polynomials. While the

SOS cone lends itself to representations in the positive semidefinite cone, the cones DSOS

and SDSOS accept representations as LPs and SOCPs. By virtue of these representations,

DSOS and SDSOS present more tractable alternatives to SOS in solving for PPs. We first

begin by stating the definition for the DSOS and SDSOS cones.

Definition 2 ([10]) A polynomial p := p(x) is diagonally-dominant-sum-of-squares (DSOS)
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if it can be written as

p(x) =
∑
i

αim
2
i (x) +

∑
i,j

β+
ij (mi(x) +mj(x))2 +

∑
i,j

β−ij (mi(x)−mj(x))2 (3.42)

for some monomials mi(x),mj(x) and some non-negative scalars αi, β
+
ij , β

−
ij .

Definition 3 ([10]) A polynomial p := p(x) is scaled-diagonally-dominant-sum-of-squares

(SDSOS) if it can be written as

p(x) =
∑
i

αim
2
i (x) +

∑
i,j

(β̂+
ijmi(x) + β̃+

ijmj(x))2 +
∑
i,j

(β̂−ijmi(x)− β̃−ijmj(x))2 (3.43)

for some monomials mi(x),mj(x) and some scalars αi, β̂
+
ij , β̃

+
ij , β̂

−
ij , β̃

−
ij with αi ∈ R+.

Similarly to the definition of an SOS polynomial, a polynomial p(x) = z(x, d)TQz(x, d) is

DSOS if and only if the Gram matrix Q is DD. Alternatively, p(x) is SDSOS if and only if

Q is SDD [10]. Accordingly, a restriction on a polynomial to either the DSOS or SDSOS

cone translates to a restriction on the Gram matrix to be either DD or SDD respectively.

Since these restrictions respectively translate to an LP and an SOCP, one can clearly see how

DSOS and SDSOS programs are nothing but linear and second order conic programming

problems.

We denote the sets of n variable SOS, DSOS and SDSOS polynomials with a degree of

utmost 2d respectively as SOSn,2d, DSOSn,2d and SDSOSn,2d. Let PSDn,2d be the cone of n

variable non-negative polynomials of degree at most 2d. Accordingly, the following inclusion

holds

DSOSn,2d ⊆ SDSOSn,2d ⊆ SOSn,2d ⊆ PSDn,2d (3.44)

DSOS and SDSOS programs were applied to relax the OPF problem in [1]. From the

inclusion above we can make a number of observations. First, a DSOS restriction on the

dual of the OPF program constitutes a linear relaxation on the entire feasible set of the

OPF problem. The utilization of an LP representation in solving for a general PP was
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shown to be lacking when compared to other approaches [1, 65, 66]. This coincides with

the results obtained via the DSOS relaxation of the OPF problem. Accordingly, we could

attribute these poor bounds to the utilization of a polyhedral set for the relaxation of the

entirety of the feasible space. Second, for an n variable polynomial and at a fixed degree 2d,

restrictions on the cones SOSn,2d and SDSOSn,2d yield tighter yet less tractable relaxations

of the problem [1, 10, 43]. Consider the case of an n variable quadratic PP. For such PPs,

Table 3.1 illustrates constraint type, number and associated variable count for the first order

SOS, DSOS and SDSOS hierarchies.

Table 3.1 Comparison of number of conic constraints in first order of the
SOS, SDSOS, and DSOS hierarchies for quadratic n variable PPs. This
table is taken from [1].

Type Number of Conic Constraints Number of Variables Per Constraint

SOSn,2 SDP 1 (n+ 1)× (n+ 1)

SDSOSn,2 SOCP (n+ 1)n/2 3

DSOSn,2 LP n+ 1 n

LP n2 + n 2

Finally, and from the last two observations, we can conclude that a polyhedral restriction

on only a part of the feasible set (represented by the cone SOSn,2d) would yield a tighter re-

laxation. As such, we can assume that the correct utilization of a combination of polyhedral,

second order conic and semidefinite representations could yield a tighter and a more scalable

alternative to the DSOS2 relaxation of the OPF problem. That is the case especially if we

were to relax the more tractable SDP relaxation of the OPF problem instead of PP-SOS2

[1]. In the following chapter, we utilize these assumptions in the relaxation we propose.

3.6 Shor Relaxation

An SDP relaxation of a quadratically constrained quadratic program (QCQP) was first

proposed in [44]. Since the OPF accepts the formulation of a QCQP [24], an SDP relaxation
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of the problem can be obtained [19, 45]. Non-convexity in the OPF problem is in part an

artifact of the non-linearity in the problem formulation [19]. By inspection, we can see that

the matrix XTX contains all the non-linear terms of the problem. Accordingly, a convex

relaxation could be obtained by properly handling XTX. Introducing a mapping W = XTX

and the condition rank(W) = 2, the power flow equations can be rewritten in terms of

W. Having done that, all constraints in terms of the quadratic and bilinear elements of the

voltages are now linear with respect to W. This isolates the non-convexity of the problem

in the rank constraint introduced above. Accordingly, the SDP relaxation is achieved by

replacing the rank constraint by a positive semidefinite constraint on W [19, 45]. If the SDP

solution is of rank two (alternatively, rank one in the complex formulation of the problem)

then the relaxation is exact for that particular instance. Otherwise, this relaxation provides

a lower bound on the objective function. The primal formulation of the SDP relaxation of

the OPF problem is displayed below

min
∑
g∈Ng

f q
g (PGg) (3.45a)

subject to

Pmin
Gi ≤ Tr(YiW) + PDi ≤ Pmax

Gi ∀i ∈ N (3.45b)

Qmin
Gi ≤ Tr(ȲiW) +QDi ≤ Qmax

Gi ∀i ∈ N (3.45c)

(V min
i )2 ≤ Tr(MiW) ≤ (V max

i )2 ∀i ∈ N (3.45d)

P 2
lm +Q2

lm ≤ (Smax
k )2 ∀(l,m) ∈ L (3.45e)

Plm = Tr(YlmW) ∀(l,m) ∈ L (3.45f)

Qlm = Tr(ȲlmW) ∀(l,m) ∈ L (3.45g)

PGg = Tr(YgW) ∀g ∈ Ng (3.45h)

W ∈ P2n (3.45i)
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3.7 Summary

The OPF problem is a non-convex optimization problem. The non-convexity of the OPF

problem motivates the utilization of convex relaxations in relaxing the problem’s feasible set.

In this chapter we presented the SDP, SOS, SDSOS and DSOS relaxations of this problem.

As such, this chapter served to present the past treatments of the OPF problem relevant

to our work, the relationship between them and the mathematical preliminaries necessary

for their implementation. In Chapter 4, we discuss a different way of relaxation the OPF

problem which builds on top of the relaxations and mathematical preliminaries presented in

this chapter.
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Chapter 4

Diagonally Dominant Relaxation of

the OPF problem

The first order DSOS relaxation (DSOS2) was implemented to relax the OPF problem in

[1]. However, that implementation suffers from two limitations: poor optimality gaps and

intractability. This section serves to demonstrate how a more conservative utilization of

diagonal dominance could lead to tighter and more scalable relaxations. We first begin by

outlining the large scale SDP relaxation of the OPF problem presented in [20], and then

follow through with our proposed relaxation.

4.1 Large Scale OPF

The OPF formulation utilized in this chapter is that of [20]. This formulation was introduced

to provide a representation of the problem more suitable for large networks. Instead of

restricting the generation at a node to one generator, this formulation allows for the existence

of multiple generators at a node, each defined by its individual generation and respective

cost function. It further allows for the inclusion of generators with piece-wise linear cost

functions. Parallel transmission lines are also integrated into the definition of the OPF

problem. Following is a presentation of this formulation and its dual.

2020/08/29
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4.1.1 Formulation

In a network, consider an arbitrary bus i and line k (connecting busses lk and mk). The set

L is composed of all such lines in the network, thus permitting multiple lines between busses

l and m. As such, this definition allows for parallel connections between two busses in the

power system. Gpw
i and Gq

i are, respectively, the sets of generators with piece-wise linear

cost and generators with quadratic cost at bus i.

Let N be the set of all busses in the system. It follows that the sets N ,Gpw,Gq and G

are defined as

N := {1, 2, 3, ..., n} (4.1)

Gi := Gpw
i

⋃
Gq

i ∀i ∈ N (4.2)

Gpw :=
⋃
i∈N

Gpw
i (4.3)

Gq :=
⋃
i∈N

Gq
i (4.4)

The phasors SGg, Sdi and Vi follow the definitions of equations (2.6)–(2.8). However,

contrary to the earlier formulation of the problem, the parameter SGg is defined for each

generator g ∈ Gi, instead of g ∈ Ng. For each generator g such that g ∈ Gq, the cost of

generation is calculated using the cost function of (2.8), defined specifically for each such

generator g. Similarly, for each generator g ∈ Gpw, we define the following cost function

fpw
g (PGg) =



mg1(PGg − ag1) + bg1 PGg ≤ ag1

mg2(PGg − ag2) + bg2 ag1 ≤ PGg ≤ ag2

. .

. .

mgr(PGg − agr) + bgr agr ≤ PGg

(4.5)

where rg is the number of line segments. Each segment t ∈ {1, ..., rg} is specified by a
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slope mgt and a point (agt, bgt). Following the earlier definitions, the large-scale OPF problem

of [20] is cast as

min
∑

g∈Gpw

fpw
g (PGg) +

∑
g∈Gq

f q
g (PGg) (4.6a)

subject to

Pmin
Gg ≤ PGg ≤ Pmax

Gg ∀g ∈ G (4.6b)

Qmin
Gg ≤ QGg ≤ Qmax

Gg ∀g ∈ G (4.6c)

|V min
i | ≤ |Vi| ≤ |V max

i | ∀i ∈ N (4.6d)

− Smax
k ≤ Sk ≤ +Smax

k ∀k ∈ L (4.6e)∑
g∈Gi

PGg − PDi = Vdi

n∑
h=1

(GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh + GihVqh) ∀i ∈ N (4.6f)

∑
g∈Gi

QGg −QDi = Vdi

n∑
h=1

(−GihVdh −BihVqh) + Vqi

n∑
h=1

(BihVdh −GihVqh) ∀i ∈ N (4.6g)

4.1.2 SDP relaxation Primal and Dual Forms

We first begin by outlining the matrices used in formulating the SDP relaxation of the

optimization problem in (4.6). The SDP relaxation of this program employs the matrices

Yi, Ȳi and Mi, which were introduced in Section 3.3. A single connection at an edge of

a network in this formulation encompasses both the transmission line and transformer of

that connection. Following the work in [67], a connection k is therefore modeled by a

common branch model of a π transmission line in series with an ideal transformer of tap

ratio magnitude τk and phase shift angle θk.

Let fi be the ith standard basis vector in R2N , and define the parameters cl, cm, sl and

sm as

cl =

(
1

2τk

)(
gk cos (θk) + bk cos

(
θk +

π

2

))
(4.7)

cm =

(
1

2τk

)(
gk cos (−θk) + bk cos

(
−θk +

π

2

))
(4.8)
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sl =

(
1

2τk

)(
gk sin (θk) + bk sin

(
θk +

π

2

))
(4.9)

sm =

(
1

2τk

)(
gk sin (−θk) + bk sin

(
−θk +

π

2

))
(4.10)

Following the earlier definitions, the line flow constraints matrices can be cast as

Zkl =
gk
τ 2
k

(flkf
T
lk

+ flk+nf
T
lk+n)

− cl(flkfT
mk

+ fmk
fT
lk

+ flk+nf
T
mk+n + fmk+nf

T
lk+n)

+ sl(flkf
T
mk+n + fmk+nf

T
lk
− flkfT

mk+n − fmk+nf
T
lk

)

(4.11)

Zkm = gk(fmk
fT
mk

+ fmk+nf
T
mk+n)

− cm(flkf
T
mk

+ fmk
fT
lk

+ flk+nf
T
mk+n + fmk+nf

T
lk+n)

+ sm(flk+nf
T
mk

+ fmk
fT
lk+n − flkfT

mk+n − fmk+nf
T
lk

)

(4.12)

Z̄kl =−
(

2bk + bsh,k
2τ 2

k

)
(flkf

T
lk

+ flk+nf
T
lk+n)

+ cl(flkf
T
mk+n + fmk+nf

T
lk
− flkfT

mk+n − fmk+nf
T
lk

)

+ sl(flkf
T
mk

+ fmk
fT
lk

+ flk+nf
T
mk+n + fmk+nf

T
lk+n)

(4.13)

Z̄km =−
(
bk +

bsh,k
2

)
(fmk

fT
mk

+ fmk+nf
T
mk+n)

+ cm(flk+nf
T
mk

+ fmk
fT
lk+n − flkfT

mk+n − fmk+nf
T
lk

)

+ sm(flkf
T
mk

+ fmk
fT
lk

+ flk+nf
T
mk+n + fmk+nf

T
lk+n)

(4.14)

We draw on the formulation outlined before for the SDP relaxation of the OPF problem.

In the same manner displayed in Section 3.6, the active and reactive power injections as well

as the voltages at bus i are defined in terms of the matrices Yi, Ȳi and Mi. However, the

transformer inclusion of the common branch model produces an asymmetry in power flows

in a line k ∈ L, connecting an edge (lk,mk). Accordingly, the active and reactive power

flows for the line are defined separately for each terminal u as Tr(ZkuW) and Tr(Z̄kuW)

respectively. The quadratic cost functions and apparent line flow limits are formulated using
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Schur’s complement [7]. On the other hand, the constrained cost variable method of [67] is

utilized in formulating the piece-wise linear cost functions. The SDP relaxation obtained by

relaxing the rank constraint on W is

min
∑

g∈Gpw

βg +
∑
g∈Gq

αg subject to (4.15a)

Pmin
Gg ≤ PGg ≤ Pmax

Gg ∀g ∈ G (4.15b)

Qmin
inj,i ≤ Tr(ȲiW) ≤ Qmax

inj,i ∀i ∈ N (4.15c)

Pinj,i =
∑
g∈G〉

PGg − PDi = Tr(YiW ) ∀i ∈ N (4.15d)

Qmax
inj,i =

∑
g∈Gi

Qmax
Gg −QDi ∀i ∈ N (4.15e)

Qmin
inj,i =

∑
g∈Gi

Qmin
Gg −QDi ∀i ∈ N (4.15f)

|V min
i |2 ≤ Tr(MiW ) ≤ |V max

i |2 ∀i ∈ N (4.15g)
−(Smax

k )2 Tr(ZklW) Tr(Z̄klW)

Tr(ZklW) −1 0

Tr(Z̄klW) 0 −1

 � 0 ∀k ∈ L (4.15h)


−(Smax

k )2 Tr(ZkmW) Tr(Z̄kmW)

Tr(ZkmW) −1 0

Tr(Z̄kmW) 0 −1

 � 0 ∀k ∈ L (4.15i)

cg1PGg + cg0 − αg
√
cg2PGg

√
cg2PGg −1

 � 0 ∀g ∈ Gq (4.15j)

{βg > mgt(PGg − agt + bgt), ∀t = 1, ..., rg} ∀g ∈ Gpw (4.15k)

W � 0 (4.15l)
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Following the work of [19, 20], a Lagrangian dual of the earlier program can be obtained.

For that purpose, we define ψk, γk and µk to be the vector Lagrangian multipliers of in-

equalities relating to bounds on active power, reactive power and quadratic voltage terms

respectively. A bar is used to denote multipliers on upper bounds whereas an underlined

denotes those on lower bounds. An unconstrained Lagrangian multiplier is defined as λi.

The multiplier λi is the locational marginal price (LMP) at node i. For each line and at each

terminal u, define a 3×3 symmetric matrix Hku
1. Similarly, define a 2×2 symmetric matrix

Rg for each generator with a quadratic cost function2. Alternatively, a Lagrangian multiplier

ζgt is defined for each line segment t in the cost function of generators with piecewise-linear

cost functions. It should be noted that Hcd
ku and Rcd

g denote the (c, d) element of the la-

grangian multiplier matrices Hku and Rg respectively. The dual of (4.15) can be therefore

written as

min (−ρ)

(4.16a)

subject to

A � 0 (4.16b)

Hkl � 0,Hkm � 0 ∀k ∈ L (4.16c)

Rg � 0,R11
g = 1 ∀g ∈ Gq (4.16d)

rg∑
t=1

ζgt = 1 ∀g ∈ Gpw (4.16e)

{
λi = cgi + 2

√
cg2R

12
g + ψ̄g − ψg

,∀g ∈ Gq
i

}
∀i ∈ N (4.16f){

λi =

rg∑
t=1

ζgtmgt ,∀g ∈ Gpw
i

}
∀i ∈ N (4.16g)

ψ
g
, ψ̄g, γi, γ̄i, µi

, µ̄i, ζgt ≥ 0 (4.16h)

1Hku
is the Lagrangian Multiplier corresponding to equations (4.15h) and (4.15i) at terminal u (of line

k) equal to lk and mk respectively.
2Rg is the Lagrangian Multiplier corresponding to equation (4.15j).

39



where the scalar function ρ and the matrix valued function A are

ρ =
∑
i∈N

{
λiPDi + γ

i
Qmin

i − γ̄iQmax
i + µ

i

(
V min
i

)2 − µ̄i (V max
i )2

+
∑
g∈Gq

i

(
ψ

g
Pmin
Gg − ψ̄gP

max
Gg + cg0 −R22

g

)

−
∑

g∈Gpw
q

rg∑
t=1

(ζgt(mgtagt − bgt))
}

−
∑
k∈L

{
(Smax

k )2

(
H11

kl
+ H11

km

)
+ H22

kl
+ H22

km + H33
kl

+ H33
km

}
(4.17)

A =
∑
i∈N

{
λiYi + (γ̄i − γi)Ȳi + (µ̄i − µi

)Mi

}
+ 2

∑
k∈L

{
H12

kl
Zkl

+ H12
kmZkm + H13

kl
Z̄kl

+ H13
kmZ̄km

} (4.18)

4.2 Diagonal Dominance and the Optimal Power Flow Problem

This section presents the formulation and results of a relaxation that utilizes diagonal dom-

inance in relaxing the OPF problem. First, the formulation and rationale are introduced. A

comparison between the results of this relaxation and the SDP, SDSOS2, DSOS2 relaxations

of the OPF problem follows.

4.2.1 Shortcomings of the DSOS relaxation and proposed approach

A DSOS polynomial can be represented by restrictions on matrices to be diagonally domi-

nant. The program accordingly translates to an LP [10]. Consequently, the DSOS relaxation

of the problem is a linear relaxation of the entirety of the feasible space. The performance

of such a restriction can be seen to be lacking when implemented to relax the OPF problem

[1].

The DSOS relaxation of the OPF problem can be seen to suffer from high optimality gaps.

Additionally, as diagonally dominant restriction on a matrix of dimension n× n requires n2
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constraints, the DSOS relaxation requires an exploding number of linear inequalities. The

resulting memory limitations of such a requirement prevent the application of this relaxation

into networks with bus count as large as 300 [1]. It should be noted that by exploiting sparsity,

this relaxation could be made to be much more tractable. However, the high optimality gaps

do not encourage improving the scalability of that relaxation prior to producing a tighter

variant.

The first order DSOS relaxation is a relaxation of the first order SOS relaxation obtained

by imposing a polyhedral restriction of the entirety of the feasible set of the problem. It

therefore follows that a tighter relaxation could be obtained if only a part of the feasible

space is restricted in a linearly representable space. Since a relaxation highly concerns itself

with the notions of optimality gap, speed and scalability it therefore makes sense to impose

the relaxation on the most expensive segments of the problem.

The shortcomings of the DSOS2 relaxation are characteristic of LP convex relaxations of

general PPs [65, 66]. Accordingly, in this thesis, we propose that the problem is decomposed

into expensive and non-expensive segments, and that only the most expensive segment is

relaxed linearly. It follows that instead of relaxing the entire feasible space of the problem,

we end up with a tighter relaxation targeting only the most computationally demanding

constraints. In the following subsection, we present our tightened relaxation.

4.2.2 Formulation of the Proposed Relaxation

We attempt a decomposition of our problem into expensive and non-expensive segments. The

decomposition is attempted by means of utilizing the Shor relaxation which is equivalent to,

yet more tractable than, the first order SOS relaxation [1, 42].

The first order DSOS relaxation is a relaxation of the SOS formulation of the OPF

problem. The proposed relaxation of this thesis is a relaxation on the SDP relaxation. The

SDP relaxation is equivalent to, and more tractable than, the first order in the SOS hierarchy.

As such, the proposed relaxation is, by proxy, a relaxation of a problem that is equivalent
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to, yet more tractable than, the SOS problem relaxed by the DSOS relaxation. A detailed

proof for the equivalence between the two can be found in [42].

The main rationale behind this approach is that semidefinite solvers scale poorly when

semidefinite constraints of a large dimension are being solved for. On the other hand, SDP

solvers perform extremely well for constraints of small dimension. Accordingly, we reason

that replacing these constraints by a quadratic number of linear inequalities could be counter-

productive from the perspectives of both optimality gap and scalability. Considering Shor’s

relaxation, the semidefinite constraint on the 2n× 2n matrix W of the primal accounts for

the brunt of the computational demand of the optimization problem. The other semidefinite

constraints on matrices of dimensions 2 × 2 and 3 × 3 are computationally of no concern.

That is especially the case when we consider their contribution to our relaxation’s tightness.

The work in [1] relaxes the OPF problem into an LP. That naturally follows from how a

DSOS polynomial restriction is representable using a restriction to the diagonally dominant

cone [10].

Reference [57] presents an approach for relaxing an SDP using the set of diagonally

dominant matrices. A relaxation of the like is achieved by a diagonally dominant restriction

on the dual of an SDP as outlined in Section 3.2. We propose using this approach in relaxing

the Shor relaxation of the OPF problem.

Accordingly, we propose that a polyhedral relaxation is imposed only on the positive

semidefinite constraint of the matrix W. We achieve this by imposing a diagonally dominant

restriction on the dual’s positive semidefinite constraint A, as defined in (4.18). The first

order DSOS relaxation is a polyhedral relaxation of the entirety of the first order SOS

relaxation. Accordingly, relaxing a part of the first order SOS relaxation is by proxy a

tighter relaxation of the OPF problem than that presented by the DSOS variant. Due to

the equivalence relation between the Shor relaxation and the first order SOS relaxation, we

can conclude that this approach would produce a tighter variant of the first order DSOS

relaxation. A similar approach was utilized in relaxing a UC problem in [46].
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4.2.3 Experimental Setup

The different relaxations this thesis proposes are implemented using Matlab. We utilize the

package spotless in formulating the different optimization programs (including the SDP

Relaxation [20]) [68]. These different formulations are then solved using the solver MOSEK

[69]. Default solver settings are utilized in the solution of all instances. The instances used in

the evaluation of the different relaxations are those of distributed in the MatPower research

platform [67]. For a consistent comparison with the results from [1], the same test cases and

best bound values were utilized [42]. The optimality gaps are calculated utilizing equation

(2.10), replacing the true objective value with the best bound for each case respectively. The

experiments were conducted on a 2.9 GHz Intel Core i5 processor, 8 GB DDR3 RAM, 2016

13-inch Macbook Pro. The same experimental setup is used throughout this dissertation.

4.2.4 Experimental Results

This section outlines the results of the relaxation proposed in this chapter. The relaxation

is achieved by means of a DD restriction on only the positive semidefinite constraint A,

as defined in (4.18). The remaining positive semidefinite constraints of equation (4.16) are

maintained. Accordingly, we use the notation DD-SDP to represent this relaxation. Table

4.1 displays the resulting bounds of our relaxation relative to the SDP, PP-DSOS2 and PP-

SDSOS2 relaxations of the OPF problem. Chordal decomposition is utilized in significantly

improving the tractability of the SDP relaxation of the OPF problem. As such, and for

a better frame of reference we outline the results for the SDP relaxation utilizing chordal

decomposition in this subsection. A more detailed treatment of that relaxation follows in

the next chapter.

We should note that the optimality gaps obtained are different from those in [1]. This

could be attributed to a number of factors including but not limited to software and hardware

differences. For example, operating system, solver edition, and processor architecture are

some of the aspects that could have influenced these differences in bounds.
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Table 4.1 Comparison of the DD-SDP Relaxation Bounds and Gaps

Best SDP Relaxation PP-DSOS2 PP-SDSOS2 DD-SDP

Instance Bound Bound Gap (%) Bound Gap (%) Bound Gap (%) Bound Gap (%)

case9Q 5297.4 5297.41 0.00 4448 16.03 5220 1.46 5216 1.54

case14 8081.7 8081.7 0.00 6548.2 18.98 7660.1 5.22 7642.5 5.44

case30 576.8 576.9 0.02 355.1 38.44 567.75 1.57 565.21 2.01

case39 41889.1 41889.05 0.00 13378 68.06 41291 1.43 41217 1.60

case57 41738.3 41738.17 0.00 32518 22.09 41098 1.53 41003 1.76

case118 129372.4 129668.21 0.23 98698 23.71 126009.58 2.60 125934.12 2.66

case300 720031.0 719763.68 0.04 533496.97 25.91 706731.48 1.85 705710.15 1.99

As shown in Table 4.1, the DD-SDP relaxation provides significantly better bounds for

the OPF problem when compared to those obtained by PP-DSOS2 and comparable bounds

to those of PP-SDSOS2. The relaxation DD-SDP can be implemented on even larger cases

contrary to the PP-DSOS2 relaxation. The scaling behaviour of DD-SDP with respect to the

other relaxations is demonstrated in Table 4.2.

Table 4.2 DD-SDP Relaxation, CPU Run-Time Comparison

Instance
SDP Relaxation PP-DSOS2 PP-SDSOS2 DD-SDP

CPU Time (s)

case9Q 0.07 0.01 0.04 0.04

case14 0.04 0.02 0.07 0.03

case30 0.37 0.07 0.26 0.13

case39 0.48 0.09 1.10 0.45

case57 0.61 0.15 1.93 0.23

case118 1.24 0.52 10.42 0.58

case300 3.84 2.22 117.23 1.81

The results in Table 4.2 demonstrates the superiority of PP-DSOS2 for the smaller test

cases. For cases 9Q, 14, and 30, the relaxation DD-SDP has run times that are comparable

to the relaxation PP-SDSOS2. For larger test cases, DD-SDP outperforms PP-SDSOS2. For
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the largest two test cases DD-SDP shows the fastest run times among the three relaxations.

It can be clearly seen how for larger test cases, specifically the 118 and 300 bus systems, the

run time of DD-SDP outperforms the other relaxations under consideration.

As such, we can conclude that it scales much more favorably compared to first order

DSOS relaxation. However, some issues still remain relating to the scalability of the DD-SDP

relaxation. That is the case considering how the number of linear inequalities is proportional

4n2. Similarly to PP-DSOS2, we can reasonably conclude the exploding number of linear

inequalities to be an issue for larger instances.

Another important observation is that our relaxation provides bounds that are relatively

close to those of PP-SDSOS2. This leads us to the conclusion that the inherent weakness of

PP-DSOS2 is not derived from the polyhedral representation of the portion of the feasible

space defined by the positive semidefinite constraint on A. Furthermore, since the second

order conic representation of PP-SDSOS2 provides relatively close bounds to DD-SDP, we can

assume the remaining positive semidefinite constraints to be representable via second order

conic constraints. We will utilize this assumption in later relaxing the remaining positive

semidefinite constraints into SOC based constraints.

4.2.5 Summary

The DD-SDP relaxation can be seen to provide an improvement over the original PP-DSOS2

relaxation. The bounds obtained via the DD-SDP relaxation are comparable to the far supe-

rior PP-SDSOS2 relaxation. However, due to the number of linear inequalities this relaxation

entails, the computational demand of DD-SDP still needs to be addressed.

The scalability issue of the DD-SDP relaxation and the potential of utilizing second order

conic representations motivate the work of the following chapter. In the next chapter, we

investigate the utilization of chordal decomposition in circumventing the scalability and

tractability issues of this relaxation. Additionaly, we propose a couple of new restrictions on

the dual to further improve the tractability of our relaxation.
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Chapter 5

Sparsity and Structure

In this chapter, we discuss how to best exploit the inherent sparsity of power systems to

improve the tractability of the relaxation proposed in Chapter 4. For that purpose, we

investigate the utilization of chordal decomposition. We further explore the inherent problem

structure and empirical results in further improving the tractability of our relaxation.

5.1 Chordal Sparsity

Sparsity is an inherent property of power networks. As such, sparsity exploiting techniques

can and do in fact help in reducing the complexity of the different optimization programs

in the power industry [9]. Chordal decomposition is one of the most prominent techniques

for exploiting the sparsity of power systems. This approach provides a significant speedup

for the SDP relaxation of the problem and has yielded impressive results in improving its

tractability [20]. Accordingly, and since the relaxation of the previous chapter is based on the

SDP relaxation of the problem, this section serves to investigate the exploitation of chordal

decomposition in improving its tractability. In the first subsection, a review of the chordal

decomposition exploiting SDP relaxation of [20] is provided. The second subsection follows

with an implementation and discussion on the exploitation of chordal decomposition with

respect to our relaxation.

2020/08/29
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5.1.1 SDP Relaxation Exploiting Chordal Sparsity

The brunt of the computational demand the SDP relaxation is in the 2n×2n positive semidef-

inite constraint A, as defined in (4.18). Accordingly, several formulations were suggested

to decompose this constraint into positive semidefinite constraints on smaller matrices, thus

significantly improving the tractability of the SDP relaxation [20, 48, 70, 71].

This section outlines the application of a graph theoretic approach utilized in reducing the

computational burden of the Shor relaxation. We begin by defining the relevant terms essen-

tial for the proper understanding of this approach. That is then followed by an explanation

of its underlying theory and relevant application to the Shor relaxation [20, 48, 71].

In an un-directed graph, a cycle is a set of the edges in the graph forming a path which

concludes at the first vertex of the path. A chord in the cycle is an edge connecting two

non-adjacent nodes in the path forming the cycle. Subsequently, a graph is said to be chordal

if there exists a chord for each of its cycles of a length larger than three. A clique in the

graph is a subset of the vertices in the graph such that there exists an edge connecting every

vertex pair in the subset. A maximal clique is a clique in the graph for which no inclusion

in another clique of the graph holds. A clique tree is a maximum weight spanning tree of

a graph in which its maximal cliques are represented by nodes in the tree. Concurrently,

the number of shared buses between cliques is denoted by the weight on the edge forming a

connection between their respective nodes in the tree.

Let A be a symmetric matrix with an underlying un-directed graph such that its entries

are not completely determined. We define submatrices of A associated with each of the

maximal cliques of the underlying graph of the matrix. The Matrix Completion Theorem

states that the positive semidefinitness of the aforementioned matrices is both a sufficient

and necessary condition for the existence of a positive semidefinite completion of A [72].

It follows from the above that a positive semidefinite constraint on a given matrix can be

substituted by constraints on the sub-matrices associated with the maximal cliques of the

matrix’s underlying graph. Considering the highly sparse nature of power systems, significant
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computational savings were achieved by implementing this approach to the SDP relaxation

of the OPF problem [20, 48].

Jabr in his work [48], utilizes this theorem in decomposing the large 2n × 2n SDP con-

straint of the OPF problem. By definition, a decomposition of the like requires the deter-

mination of maximal cliques in a given graph. Maximal clique identification is achievable

in linear time for chordal graphs [73]. Whereas power networks are not chordal, a chordal

completion of a power network’s graph is needed for the determination of maximal cliques.

Following the proposition of Jabr [48], a chordal completion could be obtained by utilizing

the minimum fill-in Cholesky decomposition approach of [74].

Requiring Cholesky decomposition on the absolute value of the imaginary part of the

network’s admittance matrix, we can see how this approach is limited to networks for which

the aforementioned matrix is positive definite. However, that is not always the case. An

alternate approach which circumvents this limitation was proposed in [20]. Jabr’s chordal

extension depends on the location of non-zero entries in the matrix in question. It follows

that a different matrix which exhibits that same structure would provide for an equivalent

extension. Accordingly, defining the matrix of the same structure, such that it is always

positive definite would resolve the limitation of the earlier approach.

Another relevant breakthrough in [20] is the investigation of linking constraints and their

influence on the computational complexity of the program. Maximal cliques in the graph do

intersect. These intersections, which are represented by weights in the clique tree, require

that equality be enforced on the shared elements of a maximal clique pair. Henceforth,

equality constraints are introduced into the program. It follows that the larger the number

of cliques, the larger the number of linking constraints needed. Accordingly, a clique merger

algorithm was introduced in [20] to investigate the relationship between the number of linking

constraints introduced in the program and the number of maximal cliques (i.e. size of the

semidefinite constraints corresponding to the resulting maximal cliques).

To summarize, the utilization of chordal sparsity over the dual of the Shor relaxation
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translates to replacing the constraint of (4.16b) with the following set of constraints

ACq � 0, ∀q ∈ {1, 2, ..., p} (5.1)

where C1, C2, ..., Cp are the maximal cliques of the chordal completion for the underlying

graph of A. It follows that ACq is the sub-matrix corresponding to the maximal clique q.

In the following section, we investigate the fidelity of using this approach on the relaxation

proposed in this dissertation.

5.1.2 DD Relaxation and Chordal Sparsity

This section serves to investigate the utilization of the earlier technique in tandem with the

relaxation proposed in Chapter 4. A clear limitation of the relaxation proposed in Chapter

4 is the exploding number of equality constraints used in relaxing the program [57]. That

is apparent in how 4n2 inequality constraints are needed to restrict the 2n × 2n matrix

A in equation (4.18) to the cone DDn. This section serves to investigate how chordal

decomposition could be leveraged in reducing the number of inequality constraints needed

for such a restriction on A.

Let ε be the set of edges in the underlying graph of A which conveniently represent the

sparsity pattern in our problem. Cardinality of a set is defined by card(). The (i, j) element

of ECq ∈ Rcard(Cq)×2n is

Eij
Cq :=


1, Cq(i) = j

0,Otherwise

(5.2)

Similarly, to discuss how chordal decomposition could be utilized in tandem with the

relaxation DD-SDP, we employ the following proposition for DD restrictions.
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Proposition 1 (Miller, Zheng, Sznaier and Papachristodoulou [75])

A ∈ DDn(ε, 0) ⇐⇒ ∃ACq ∈ DDcard(Cq) s.t. A =

p∑
q=1

ET
CqACqECq .

From the earlier proposition, it can be seen how a diagonal dominant restriction on the

matrix A can be achieved by imposing it on the sub-matrices ACq . The number of inequality

constraints for a diagonally dominant restriction on a matrix is quadratically proportional to

the dimension of the matrix. It therefore follows that enforcing this restriction on the sub-

matrices corresponding to the maximal cliques of the chordal completion of the underlying

graph of A in equation (4.18) could produce a more favorable result. The earlier proposition

follows from

4n2 ≥
p∑

q=1

card(Cq)2
(5.3)

where
∑p

q=1 card(Cq)2 is the number inequality constraints required for a diagonal restriction

on all sub-matrices corresponding to each of the maximal cliques of A. It naturally follows

that the sparser the matrix, the greater the apparent advantage of using this approach.

Accordingly, the earlier proposal translates to

ACq ∈ DDcard(Cq),∀q ∈ {1, 2, ..., p} (5.4)

However, we should note that decomposing the constraint into those corresponding to

the maximal cliques requires the introduction of linking constraints at the intersection of

these cliques. In turn, the intersections add to the complexity of the program.

The work of [57] presents an iterative procedure by which the linear inequalities are

modified. To obtain a more accurate approximation of the objective, the Cholesky factor of

the answer is used in tightening the inner approximation of the positive semidefinite cone.

This approach was implemented on the decomposed problem considering how Cholesky is of
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order O(n3) [75]. Improvement in the objective is guaranteed under the assumption that the

matrix being factored is positive definite. Additionally, the convergence is highly problem

dependent [57]. Initial investigation of this approach in tandem with chordal decomposition

demonstrated slow convergence in addition to numerical difficulties for this problem.

5.2 Sparsity and Structure

In this section, we consider the properties (i.e. sparsity and inherent structure) of the diag-

onal dominance-based relaxation of this thesis. To better exploit sparsity, we take a deeper

look at the implications accompanying the chordal decomposition of the earlier section. In

the settings of the OPF problem and other problems of similar structures, we also investigate

the possible reductions allowed by the problem structure.

5.2.1 Sparsity

Sparsity is a prevalent property in power systems. As a result, optimization problems in this

domain inherit this property as part of their structure. Accordingly, significant computa-

tional gains could be achieved if sparsity is to be exploited properly. We are to investigate

the proper use of sparsity in the DD exploiting relaxation of this thesis. We begin our

investigation by a study of the chordal decomposition of the earlier section.

Tractability of semidefinite programs is significantly improved by decomposing a large

sparse semidefinite constraint into smaller, yet equivalent, set of positive semidefinite con-

straints. Additionally, a diagonally dominant restriction on an n×n matrix requires n2 con-

straints. Accordingly, the merit of chordal decomposition to a method that scales quadrati-

cally to matrix size could reasonably be inferred. Intuitively, a diagonally dominant restric-

tion on these smaller matrices would require a smaller number of constraints when compared

to the original matrix. Consequently, one might be tempted to utilize chordal decomposition

in improving the tractability of a sparse DD restriction.

As counter-intuitive as it may seem, that however is not the case. In this section our goal
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is to show how a chordal decomposition, when used in tandem with diagonal dominance, is

actually counterproductive. For that purpose, consider a symmetric matrix A ∈ S4 with a

sparsity pattern demonstrated by the following chordal graph

Fig. 5.1 Underlying graph of A

Our main result is demonstrated through an example of a chordal decomposition on a

sparse dual SDP which was provided in [76]. The maximal cliques defined by the graph in

Fig. 5.1 are C1 = {1, 3, 4} and C2 = {2, 3, 4}. Accordingly, the matrix A and the coupled

sub-matrices obtained by chordal decomposition are as follows

A =



A11 A12 0 A14

A12 A22 A23 A24

0 A23 A33 A34

A14 A24 A34 A44


∈ DD4 ⇔



AC1 =


A11 A12 A14

A12 a1 a3

A14 a3 a2

AC2 =


b1 A23 b3

A23 A33 Z34

b3 A34 b2


AC1 ∈ DD3,AC2 ∈ DD3

a1 + b1 = A22

a2 + b2 = A44

a3 + b3 = A24

(5.5)

From the chordal decomposition demonstrated above, we can make a number of observations.

Enforcing the restriction A ∈ DD4 normally requires 42 = 16 constraints. However, we can

represent the restriction by only 14 inequalities due to the zero off diagonal elements in A.
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Alternatively, enforcing an equivalent restriction on the sub-matrices ACq requires (3)2 = 9

constraints each. The computational demand of the program is further increased by the

linking constraints coupling the two sub-matrices. The net program requires 18 inequality

and 3 equality constraints.

The increase in constraints can be attributed to two factors. First, we notice how addi-

tional inequality constraints are introduced at the intersection of maximal cliques. For each

diagonal element at an intersection node, one additional inequality constraint is introduced.

Alternatively, two inequality constraints are required for each off diagonal element at the

intersection of maximal cliques. It should be noted that since the matrices are symmetric,

imposing the off diagonal constraints on either the upper or lower half is sufficient. Second,

at the intersection of cliques, the coupling constraints introduce another complicating factor

which further increases the complexity of our problem. That factor comes as a result of the

non-chordal nature characteristic of a power system’s underlying graph.

For the example above we have assumed the underlying graph of A to be chordal. How-

ever, that is not always the case in power systems [20]. Accordingly, the graph that we

used in the decomposition outlined above is a chordal completion of a non-chordal graph

better suited to represent a power system. As such, the process of chordal completion on a

non-chordal graph which enables the utilization of chordal decomposition imposes additional

constraints which can, for all intents and purposes, be avoided. Taking that into account, we

notice how even being a chordal completion, the matrix A ∈ S4 of Fig 5.1 can be restricted

to the cone DDn using only 14 inequality constraints. Furthermore, if we were to consider an

original non-chordal graph which was completed into that of Fig. 5.1, the diagonally domi-

nant restriction would be of even less expense (a maximum of 12 constraints). In summary,

the process of finding a chordal completion to a graph, in addition to the linking constraints

result in adding new constraints to our problem.

The earlier example of Fig. 5.1 is that for a case of practically negligible sparsity when

compared to applications such as power systems. However, the fact remains that by means

53



of imposing the DD restriction on the non zero entries of the matrix, a more efficient imple-

mentation is obtained than that using chordal decomposition. Let n be the number of buses

in the system and m the number of lines. It turns out that 2n + 8m linear inequalities are

sufficient for the diagonally dominant restriction on A of equation (4.18). Accordingly, the

size of the program scales linearly with respect to system size.

Alternatively, the iterative approach in [57, 75] depends on Cholesky factorizing of the

matrix being restricted in tightening the restriction to the cone DDn. Considering how

that decomposition is of the order O(n3), the matrix dimensions are of a much detrimental

concern for such an implementation. Accordingly, chordal decomposition might still be of

use. However, similar to the work done in [20], a recombination algorithm might play a vital

role in producing a variant of optimal tractability. For such an approach, our relaxation could

provide for a fast solution of the first iteration in the iterative approach proposed in [57, 75].

In the following section, we aim at utilizing the problem structure in further improving the

scalability of the linearly scaling sparsity exploiting relaxation of this subsection.

5.2.2 Structure

The steady state analysis of power systems operation is done in terms of phasor quantities.

As discussed earlier, the OPF problem is an optimization problem which relates to the steady

state line flows and operating parameters of a power system. Therefore, the OPF problem

is originally an optimization problem in the complex domain [2]. However, most currently

available SDP solvers are designed for real valued SDPs. Accordingly, the SDP relaxation

of the problem is that of an equivalent formulation in the real domain [9]. The equivalent

real valued reformulation of the SDP relaxation holds several structural properties which

prove to be advantageous to the work of this thesis. This section serves to investigate those

properties and how to best leverage them in the context of our relaxation.

We first begin by outlining the relationship between a positive semidefinite constraint for

an SDP in the complex domain and its equivalent reformulation in the real domain. Let b̂z

54



be a predefined real scalar. Define the matrices Âz and Ĉ as the data matrices for a complex

SDP. Accordingly, an SDP in the complex domain could be defined as follows

min 〈Ĉ,Ψ〉

subject to

〈Âz,Ψ〉 = b̂z, z = 1, ..., w, (5.6)

Ψ � 0.

where Ψ ∈ Cn×n is a Hermitian matrix.

The matrix Ψ is positive semidefinite if and only if

xHΨx ≥ 0 ∀x ∈ Cn (5.7)

This equation can be reformulated into

[
Re(x) Im(x)

]Re(Ψ) −Im(Ψ)

Im(Ψ) Re(Ψ)


Re(x)

Im(x)

 ≥ 0 ∀

Re(x)

Im(x)

 ∈ R2n (5.8)

Therefore, the positive semidefinite constraint on the Hermitian matrix Ψ ∈ Cn×n can

be replaced by a positive semidefinite constraint on a matrix in R2n×2n. Accordingly, it can

be seen how Ψ is positive semidefinite if and only if the following holds [7, 77]

Re(Ψ) −Im(Ψ)

Im(Ψ) Re(Ψ)

 ∈ P2n (5.9)

Similarly, and by Lagrangian duality, the same could be proven for the positive semidefinite

constraint of the dual of the semidefinite program shown in equation (5.6) (i.e., the positive
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semidefinite constraint of the dual has the structure displayed in equation (5.8)).

A matrix is diagonally dominant if it satisfies the relation of equation (3.4). For any

matrix of the structure shown in (5.8), several reductions could be made when imposing a

DD restriction. We can clearly see how imposing a diagonally dominant restriction on the

matrix of the structure displayed above could be done by satisfying the relation on either

the rows on the top or bottom half of the matrix. Additionally, and since Ψ is a Hermitian

matrix, the imaginary part of Ψ is skew-symmetric. The absolute value in equation (3.4)

requires two inequalities and one new variable. Due the skew-symmetric nature of Im(Ψ),

the same definition of the absolute value over the entries in the top off diagonal elements of

Im(Ψ) applies for the lower off diagonal entries in that skew-symmetric matrix. As such,

instead of defining the absolute value for all off diagonal entries, numbering (n2 − n) in

Im(Ψ), it is sufficient to define them for either the upper or lower off diagonal entries in the

matrix. This only requires ((n2 − n)/2) variables and ((n2 − n)) linear inequalities instead

of (n2 − n) variables and 2(n2 − n) linear inequalities.

The matrix we are interested in is matrix A of the dual formulation of the SDP relaxation

shown in equation (4.16). In addition to the derivation above, the earlier structural properties

we discussed can be also inferred from the definition of A in equation (4.18). These structural

properties can be exploited in the DD restriction on the matrix A.

As a consequence of matrix A having the structure shown in (5.8), it is sufficient to apply

the relation in (3.4) to only the first n rows of A for A ∈ DD2n to hold. As such, the number

of inequalities is reduced to n+ 6m.

Furthermore, Matrix A is a matrix in R2n×2n. This matrix is the real value formulation

of a semidefinite constraint on a Hermitian matrix in Cn×n. As such, the off diagonal block

matrices of A correspond to the imaginary part of the aforementioned Hermitian matrix.

Therefore, it follows that the off diagonal block matrices of matrix A will be skew-symmetric.

By virtue of their skew-symmetric nature, the number of linear inequalities is further reduced

by 2m. In summary, by exploiting these structural properties of A, the number of linear
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inequalities reduces from (2n+ 8m) to (n+ 4m).

5.3 Empirical Relaxation

This section discusses a relaxation aiming at further increasing the speed of the relaxation

outlined earlier at no apparent increase in optimality gaps.

The diagonally dominant restriction on the matrix A appears to operate in a manner

that would allow for a reduction in the size of the relaxation. Empirically, the entries

corresponding to the imaginary block matrices in the structure shown in (5.8), are being

set to very small values. As discussed earlier, we represent each entry in either the upper

or lower off diagonal part of A using two linear inequalities. Accordingly, having the prior

knowledge that certain off-diagonal entries are going to be close to zero allows for a reduction

in the size of the relaxation. We propose forcing such entries to zero. That would entail

replacing 2m inequalities by m equalities. As such, we end up replacing 2m inequalities of

the form x ≤ a and x ≥ −a with 2m inequalities of the form x ≤ 0 and x ≥ 0. It therefore

follows that the feasible set of our relaxation is reduced.

We move to discuss how this would yield a relaxation of the original problem. To prove

that the earlier procedure produces a valid relaxation of the OPF problem, consider the

following dual SDP

max
y∈Rw

b y

subject to

A = C −
w∑

z=1

yzAz, (5.10)

A ∈ P2n.

where b, C and Az are defined as in Section 3.1.

Let A be defined by the following block matrix
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Â =

Â1 Â2

Â3 Â4

 (5.11)

where Â1, Â2, Â3 and Â4 are matrices in Rn×n. We want to prove that setting the entries of

block matrices Â2, Â3 to 0 and restricting the matrices Â1 and Â4 to be diagonally dominant

would yield a valid relaxation of the primal SDP shown in equation (3.2). By setting the

matrices Â2 and Â3 to zero, the resulting matrix A is

Â =

Â1 0

0 Â4

 (5.12)

From (5.12), it can be clearly seen that Â is diagonally dominant if and only if the block

matrices Â1 and Â4 are diagonally dominant. It therefore follows that this procedure results

in a restriction on the matrix A to part of the diagonally dominant cone where the entries

of the off diagonal block matrices are 0. Accordingly, and by the extreme ray interpretation

of Section 3.2, this procedure can be seen to produce a valid relaxation of the primal.

We further attempt to relax the problem by imposing an SDD restriction on the remaining

positive semidefinite constraints. Based on the similarity between the bounds obtained via

the DD-SDP and PP-SDSOS2 relaxations, we assume that this relaxation would not suffer

from a significant increase in optimality gaps.

5.3.1 Experimental Results

Section 5.2.1 provided a detailed explanation of the disadvantages of using chordal decompo-

sition. In summary, this technique requires the introduction of linking constraints between

the sub-matrices corresponding to the maximal cliques in a graph. Additionally, the appli-
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cation of chordal decomposition in power systems necessitates the chordal completion of the

non-chordal power system graph. This introduces new variables to the matrix in question.

Consequently, those variables translate to an increase in the number of constraints needed

for a DD restriction on the resulting sub-matrices.

Following the work in [20], an upper bound was imposed on the number of maximal

cliques utilized in decomposing the positive semidefinite constraint of the SDP relaxation in

Chapter 4. Accordingly, a bound of 65% of the number of maximal cliques was utilized over

all test cases. Better run times may be obtained using a bound specifically tailored for each

instance. Since the matrix combination algorithm is out of the scope of this dissertation,

please consult [20] for more details on the topic. In the case of the DD-SDP relaxation, the

increase in computational demand chordal decomposition introduces comes at no advantage.

The remainder of this subsection is dedicated to the results of the different relaxations this

chapter proposes. Accordingly, the numerical results are displayed in Tables 5.1 and 5.2.

Table 5.1 Proposed relaxations, gap comparison

Instance
Best SDP Relaxation DD-SDP SAS-DD-SDP O-SAS-DD-SDP SAS-DD-SDD O-SAS-DD-SDD

Bound Gap (%)

case9Q 5297.4 0.013 1.537 1.537 1.537 1.537 1.537

case14 8081.7 0.0025 5.435 5.435 5.435 5.435 5.435

case30 576.8 0 2.009 2.009 2.009 2.009 2.009

case39 41889.1 0.082 1.605 1.605 1.605 1.605 1.605

case57 41738.3 0.001 1.762 1.762 1.762 1.762 1.762

case118 129372.4 0.218 2.658 2.658 2.659 2.658 2.66

case300 720031.0 0.044 1.989 1.989 2.019 1.989 2.019

1
DD-SDP: Relaxation Obtained by a DD restriction on matrix A in equation (4.18).

2
SAS-DD-SDP: Relaxation obtained by exploiting sparsity and removing redundant and duplicate constraints from DD-

SDP.

3
O-SAS-DD-SDP: Relaxation obtained by setting the off diagonal block matrices of A to zero in SAS-DD-SDP.

4
SAS-DD-SDD: Relaxation obtained by an SDD restriction on the 3 × 3 and 2 × 2 postivie semidefinite constraints in

SAS-DD-SDP.

5
O-SAS-DD-SDD: Relaxation obtained by setting the off diagonal block matrices of A to zero and an SDD restriction on

the 3× 3 and 2× 2 postivie semidefinite constraints in SAS-DD-SDP.
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Table 5.2 Proposed relaxations, CPU run-time comparison

Instance
SDP Relaxation [20] DD-SDP SAS-DD-SDP O-SAS-DD-SDP SAS-DD-SDD O-SAS-DD-SDD

CPU Time (s)

case9Q 0.07 0.04 0.03 0.04 0.02 0.02

case14 0.04 0.03 0.03 0.01 0.02 0.01

case30 0.37 0.13 0.09 0.13 0.03 0.02

case39 0.48 0.45 0.29 0.39 0.10 0.07

case57 0.61 0.23 0.06 0.03 0.07 0.03

case118 1.24 0.58 0.20 0.15 0.12 0.10

case300 3.84 1.81 0.40 0.30 0.31 0.25

We denote the sparsity and structure exploiting relaxation as SAS-DD-SDP. We obtain

this relaxation by means of removing redundant constraints in the DD-SDP relaxation of

Chapter 4. The process is outlined in Section 5.2. As can be seen in Table 5.1, the bounds

obtained via this relaxation are identical to its parent relaxation. Those bounds are achieved

at a significantly lower computational cost as shown in Table 5.2. The speedup comes as

a natural consequence of the reduction in the number of constraints and variables (with

respect to system size) required for imposing a DD restriction.

The number of constraints in DD-SDP scales quadratically with the number of busses in

the system. Consequently, this would hinder the implementation of this relaxation to larger

test cases. On the other hand, the number of constraints needed for the relaxation SAS-DD-

SDP scales linearly with the number of busses and lines in the system. First, the sparsity of

the matrix is utilized in removing redundant constraints on zero elements of the matrix A.

This achieves linear scaling in the number of the busses and lines in the system. Second,

the structure of A is utilized in halving the number of necessary constraints. To achieve

this reduction, duplicates in the linear inequalities necessary for the diagonally dominant

restriction are remove. As such, the speedup obtained by the relaxation SAS-DD-SDP comes

at no cost in optimality gap.

Empirically, the values of the off diagonal block matrices at the solution of DD-SDP are
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set to small, close to zero, values. Therefore, we implement a relaxed variant of SAS-DD-SDP

which sets those matrices to zero and denote it by O-SAS-DD-SDP. This relaxation replaces

two inequalities constraints by an equality constraint in addition to eliminating the need for

additional m variables in the relaxation formulation. This results in reducing the feasible

set of the dual and thus further relaxing the problem. Since these entries are already set to

small values in SAS-DD-SDP, imposing this restriction on the off diagonal entries has little to

no influence on the optimally gaps.

The relaxation O-SAS-DD-SDP is slower for small test cases. Alternatively, the solution

time for larger instances is an improvement over that of SAS-DD-SDP. For small test cases, the

gaps resulting from this relaxation are identical to those of SAS-DD-SDP. However, a marginal

increase in the gaps can be noticed for the 118 and 300 bus test cases.

Building on the observations over the results of Chapter 4, we replace the remaining posi-

tive semidefinite constraints in the SAS-DD-SDP relaxation by second order conic constraints.

That is achieved by replacing the positive semidefinite constraints of equations (4.16c) and

(4.16d) by an SDD restriction. We identify this relaxation as SAS-DD-SDD. This approach

yields a more consistent speed-up than that of the O-SAS-DD-SDP at lower cost in the gaps

for larger test cases. However, one point of comparison between these two relaxations is that

the SAS-DD-SDD relaxation introduces an extremely small increase in the optimality gaps for

small test cases, contrary to O-SAS-DD-SDP.

In the test cases utilized for the evaluation of our relaxations, only cases 9Q, 30 and

39 include apparent power line flow limits. Accordingly, only these cases could serve for

evaluating the impact of the SDD restriction on the matrices Hkl and Hkm . From the

earlier results, we can reasonably conclude the reason behind the poor bounds of the PP-

DSOS2 relaxation to be in its attempt at linearly representing the constraint Rg � 0. The

aforementioned constraint corresponds to the quadratic cost function on generator g. It

naturally follows for a linear relaxation to have such a negative impact on the bounds.

In the O-SAS-DD-SDD relaxation we combine the aforementioned techniques in creating

61



the fastest and most scalable implementation of our relaxation. Accordingly, we impose the

SDD restriction of the SAS-DD-SDD, as well as set the elements of the off diagonal block

matrices in A to zero. Similar to its parent relaxations, the change in optimality gaps

introduced by this relaxation can be seen to be negligible.

The resulting objective bounds seem to be proportional to the upper bound on the

absolute values of the off diagonal entries. The weakness of this relaxation can be attributed

to its failure in reasonably relating the imaginary values (off-diagonal block matrices) to their

real counterparts (diagonal block matrices) of the matrix A. Therefore, we can reasonably

assume that finding valid upper bounds on these imaginary values can therefore provide for

a tighter relaxation.

Overall, SAS-DD-SDP provides identical bounds to those of DD-SDP. This comes by virtue

of their identical representation of the relaxed feasible set. The number of linear inequalities

entailed by SAS-DD-SDP scales linearly, contrary to the quadratically scaling DD-SDP. The

diagonal dominance restriction forces the entries of the off diagonal block matrices in A to

small values. As such, forcing those entries to zero provides a very small increase in the

optimality gaps while improving the run time for larger test cases. An SDD restriction of

the remainder positive semidefinite constraints in the problem results in a speedup over all

the cases. That is achieved at the cost of a very small increase to the optimality gaps.

We have demonstrated that the least expensive DD restriction could be used in obtain-

ing optimality gaps on bar with those obtained via an SDD restriction on the entirety of

the feasible set of the problem (namely the SDSOS relaxation). The sparsity, structure and

general behavior of the relaxation could be utilized in further reducing the computational re-

quirements of the relaxation to yeild a better compromise between scalability and obtimality

gaps than those of the first order DSOS and SDSOS relaxations.

The SAS-DD-SDP relaxation is an improvement over the first order DSOS relaxation in

terms of both scalability and optimality gap. However, there exists several relaxations which

provide a good balance between scalability and optimality gap such as the SOCP and QC

62



relaxations. The SOCP and QC relaxations employ second order cone constraints in relax-

ing the positive semidefinite constraint of the semidefinite relaxation of the OPF problem.

Alternatively, the relaxations proposed in this thesis relax that constraint utilizing linear

inequalities. As such, the second order cone representation inherent to the QC and SOCP

relaxations results in lower optimality gaps. We must also bear in mind that to fully assess

how the different relaxation of this thesis perform in comparison to other relaxations, the

difference in scalability needs to be properly addressed.

Setting the off diagonal elements to zero as well as replacing the 3×3 and 2×2 semidefinite

constraints of equations (4.16c) and (4.16d) by second order cone based constraints improves

the scalability of the relaxation SAS-DD-SDP. For the test cases under study, this improvement

is obtained at almost no cost in the optimality gap. However, this implementation could

yield poorer bounds for test cases of other power systems. Furthermore, the semidefinite

relaxation produces higher optimality gaps for the challenging test cases of power systems

operating under congestion [78]. We can assume that applying this thesis’s relaxations on

such challenging test cases will result in higher optimality gaps. That is the case since the

different relaxations of this thesis are relaxations of the semidefinite relaxation of the OPF

problem. We should also note that the influence of setting the off diagonal elements to zero

and replacing the 3× 3 and 2× 2 semidefinite constraints by second order cone constraints

could be of higher consequence for such test cases.

5.4 Summary

The relaxation DD-SDP exploits diagonal dominance in only relaxation the semidefinite con-

straint on the matrix A. This relaxation achieved a significant improvement in the bounds

obtained by means of using diagonal dominance to relax this problem. Due to the nature of

power systems, sparsity could be utilized in improving the tractability of this relaxation. As

such, this chapter served to investigate the optimal utilization of sparsity in tandem with

the relaxation DD-SDP. We demonstrated the superiority of direct sparsity exploitation when
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compared to chordal decomposition. We further investigated the influence of replacing the

remaining semidefinite constraints by an SDD restriction, thus creating a hybrid DD and

SDD based relaxation. We concluded this chapter by a relaxation based on empirical obser-

vations. This relaxation forces the off diagonal block matrices of A to zero thus reducing

the feasible set of our problem. Utilizing DD and SDD restrictions, in addition to forcing

the off diagonal block matrices of A to zero prove to be the most scalable implementation

of our relaxation at relatively no cost in the optimality gap. The next chapter provides a

summary for the work presented in this thesis in addition to some future directions.
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Chapter 6

Conclusion and Future Work

In this thesis, we examined the utilization diagonal dominance in relaxing the optimal power

flow problem. We made use of the pre-existing first order DSOS relaxation of the OPF

problem, as well as developed a much more tractable and a tighter variant exploiting the

same underlying principle (i.e., diagonal dominance). This chapter summarizes the main

findings of our work and the questions they raise in the context of future research.

6.1 Conclusions

In Chapter 2 we provided a survey of the literature surrounding the OPF problem. Chap-

ter 3 followed with a detailed discussion on the mathematical preliminaries, as well as the

most relevant OPF relaxations. Chapter 4 included an alternative way of utilizing diagonal

dominance whereas Chapter 5 tackled the tractability of our proposed relaxation.

By definition, the PP-DSOS2 relaxation is obtained via a polyhedral restriction on the

entire feasible space of the dual of the original OPF problem. Accordingly, the PP-DSOS2

relaxation is an LP. In Chapter 4, we discussed the apparent disadvantages of this relaxation

in the context of the OPF problem. As demonstrated by a previous implementation, this

relaxation has two significant limitations. First, the optimality gaps this relaxation displays

are poor. Second, despite being an LP, the PP-DSOS2 relaxation suffers from poor scalability.

2020/08/29
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The poor scalability of this relaxation comes as a consequence of the large number of linear

inequalities it requires [1].

We then proposed a tighter variant of the PP-DSOS2 relaxation. Our variant utilizes

the same underlying principle of diagonal dominance. The DSOS2 relaxation is a relax-

ation of the SOS2 relaxation of the OPF problem. Accordingly, we use the SDP relaxation

(which is equivalent to the SOS2 relaxation) in creating a tighter variant of PP-DSOS2.

The computational demand of the SDP relaxation of the OPF problem can be attributed

to a segment of the entire program, specifically the positive semidefinite constraint on the

2n × 2n matrix A. Whereas the PP-DSOS2 relaxation relaxes the entirety of the problem,

we suggested that only the positive semidefinite constraint on the matrix A is restricted to

the cone DD2n. A relaxation of the other parts (obtained by a restriction on the matrices

Hku and Rg) introduces linear inequalities which hinder the scalability and performance of

the relaxation. Accordingly, the constraints concerned with these matrices are maintained as

they introduce no significant computational overhead. As a result, our relaxation provides

significant improvements in the bounds over the objective function.

In Chapter 5, we explored how to best utilize the inherent sparsity of power systems in

improving the tractability of our relaxation. We then demonstrated how structure could

be utilized in further improving our final relaxation. Chordal decomposition demonstrated

exceptional results when applied to improve the tractability of the SDP relaxation of the OPF

problem [20]. Therefore, we investigate its application with respect to our relaxation. We

demonstrate how the direct exploitation of sparsity would prove to be most beneficial. That is

the case considering how chordal decomposition introduces additional constraints, therefore

increasing the complexity of the program. Having established that a direct exploitation

of sparsity is optimal, we move to exploit the structure of the problem. Exploiting the

Hermitian and skew-symmetric structures in our problem, we are able to further reduce the

number of necessary linear inequalities from (2n+ 8m) to (n+ 4m), where n and m are the

number of busses and lines in the power system, respectively.
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Empirical evidence suggested that the off-diagonal block matrices of A, which correspond

to the imaginary part of the Hermititan semidefinite constraint, are being set to zero. Fi-

nally, we explored how forcing these matrices to zero would affect the optimality gaps and

scalability of our relaxation. By virtue of setting these block matrices to zero, 2m linear

inequalities are replaced by m equalities. The optimality gaps do not seem to significantly

deviate from those obtained by our original relaxation of the problem. This approach results

in an increase in solution time for smaller instances but a decrease for the larger test cases.

It should be noted that the value of the upper bound imposed on the absolute value of the

entries in the block off diagonal matrices is directly proportional to the objective value.

Considering how the bounds of our relaxation are close to those obtained by the SDSOS2

relaxation, we proposed an SDD restriction on the remaining positive semidefinite con-

straints. No noticeable change in the bounds was observed, whereas a notable and consistent

speedup is demonstrated for all the test cases.

The relaxation, combining the past two restrictions, represents the fastest variant of the

relaxations proposed in this dissertation. No significant change in the bounds was noticed

in the case of this relaxation. Ultimately, a relaxation is evaluated based on the lower limits

they provide, their speed and scalability. In that regard, we believe that our implementation

efficiently utilizes diagonal dominance in providing a relaxation that reasonably compromises

between scalability and tightness.

6.2 Future Work

In this section we aim to provide a number of paths and unanswered questions that could

be factored into tightening the relaxations of this thesis. This relaxation provides bounds

similar to those provided by copper plate relaxation of [54]. As such, one path forward

could be an investigation into the similarities between these two relaxations. Furthermore,

an interesting avenue could be the investigation into the optimality gaps and run times

with respect to other relaxations for larger test cases and for test cases emulating specific
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operating conditions.

Out empirical investigation demonstrated that the diagonally dominant restriction on

the matrix A of equation (4.18) forces the entries of the off-diagonal block matrices in

A to small values. Accordingly, it can be inferred that this relaxation does not properly

account for the relationship between the imaginary and real parts in the original Hermitian

positive semidefinite constraint of our problem. This can be empirically verified by means of

restricting the diagonal block matrices in the original SDP to be diagonal dominanat while

maintaining a positive semidefinite constraint on A. This shows how such a restriction does

not account for much of the optimality gaps of our DD based SDP relaxation. Accordingly,

finding a way to better relate the imaginary and real block matrices would, in essence, yield

a significantly tighter relaxation of the OPF problem.

Another interesting direction would be an investigation into the upper bounds of the

absolute values in the off diagonal block matrices. The upper bound on the absolute values of

the off-diagonal block matrices is directly proportional to the value of the objective function.

Accordingly, the proper determination of these upper bounds such that the program is still

a relaxation of the primal could yield a tighter relaxation. These upper bounds could be also

specified in a manner that the resulting program is instead a restriction or an approximation

of the OPF problem.

Lastly, the work in [79] serves to provide a fast method by which sparse sum of squares

program can be solved. Comparison to the more conservative DSOS and SDSOS relaxations

demonstrate promising results. However, the performance of such an approach on power

systems remains to be seen.
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