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Abstract

A classical result due to Dougherty, Jackson and Kechris states that tail equivalence on

Cantor space is a hyperfinite Borel equivalence relation, that is to say that it is the increasing

union of finite Borel equivalence relations. This tail equivalence relation is Borel bireducible

with the orbit equivalence relation induced by a free group on the boundary of its Cayley

graph. We generalize this result to a wider class of hyperbolic groups. Namely, we prove that

if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced action

on the Gromov boundary is hyperfinite.
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Abrégé

Un résultat classique dû à Dougherty, Jackson et Kechris affirme que l’équivalence de queue sur

l’espace de Cantor est une relation d’équivalence borélienne hyperfinie, c’est-à-dire qu’elle est

la réunion croissante de relations d’équivalence boréliennes finies. Cette relation d’équivalence

de queue est Borel biréductible avec la relation d’équivalence d’orbite induite par l’action

d’un groupe libre sur le bord de son graphe de Cayley. On généralise ce résultat à une classe

de groupes hyperboliques plus large. À savoir, on prouve que si un groupe hyperbolique

agit géométriquement sur un complexe cubique CAT(0), alors l’action induite sur le bord de

Gromov est hyperfinie.
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Introduction

Descriptive set theory is classically concerned with studying the structural properties of Borel

sets in Polish spaces. More recently, the theory of Borel equivalence relations has emerged

as an active area of research, with connections to classification problems in such areas as

operator algebras, ergodic theory and topological dynamics.

The notion of Borel reducibility induces a partial order on the class of Borel equivalence

relations. The simplest class under this partial order is the class of smooth equivalence

relations, which are the Borel equivalence relations which are Borel reducible to the identity

relation on the real numbers. A Borel equivalence relation is said to be hyperfinite if it is the

increasing union of finite Borel equivalence relations. It was shown by Dougherty, Jackson

and Kechris that the class of hyperfinite relations is the minimal class of Borel equivalence

relations which properly contains the class of smooth equivalence relations. Thus a hyperfinite

relation is relatively tame among all Borel equivalence relations.

In their seminal work on hyperfinite equivalence relations, Dougherty, Jackson and Kechris

proved that the tail equivalence relation on 2ω is hyperfinite. This tail equivalence relation is

Borel bireducible with E∂F2
F2

, the orbit equivalence relation induced by the action of the free

group on two generators on its Gromov boundary ∂F2. It is thus natural to wonder if the

same hyperfiniteness result can be obtained for other hyperbolic groups. Although this is still

an open question for hyperbolic groups in general, we have been able to prove with Jingyin

Huang and Marcin Sabok that if the hyperbolic group additionally admits a geometric action

on a CAT(0) cube complex, then the induced action on the Gromov boundary is hyperfinite.

In the first chapter, we will give an overview of the classical descriptive set theory, and then

present the theory of Borel equivalence relations. In the second chapter, we introduce notions

central to metric geometry, including hyperbolic groups and CAT(0) cube complexes. In the
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INTRODUCTION 2

final chapter, we present a proof of the main result.

We fix some notation. The natural number n is the Von Neumann ordinal n = {0, . . . , n− 1},

and the ordinal ω denotes the set of natural numbers. If f : X → Y is a function, we define

graph(f) = {(x, y) ∈ X × Y : f(x) = y}. The projection projX : X × Y → X is defined

by projX(x, y) = x, and projY is defined analogously. If P ⊂ X × Y , then for x ∈ X, we

define Px = {y ∈ Y : (x, y) ∈ P}, and Py is defined analogously. A function f : X → Y is

countable-to-one if f−1(y) is countable for every y ∈ Y .



Chapter 1

Descriptive set theory

1.1 Classical descriptive set theory

Descriptive set theory takes place in Polish spaces:

1.1 Definition. A Polish space is a second countable completely metrizable space.

1.2 Proposition.

1. A closed subspace of a Polish space is Polish.

2. Let (Xn) be a sequence of Polish spaces. Then
⨆
Xn and

∏
Xn are Polish spaces.

Proof. (1) is clear. We prove (2). For each n, fix a complete metric dn on Xn which is

bounded by 1. To get a complete metric on
⨆
Xn, let d(x, y) = dn(x, y) if x, y ∈ Xn, and

otherwise set d(x, y) = 2. To get a complete metric on
∏

Xn, we can do the following:

d((xn), (yn)) =
∑
n

dn(xn, yn)

2n

1.3 Example. Some examples of Polish spaces are as follows:

• R, 2ω

• Compact metrizable spaces.

3
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• Lp spaces for 1 ≤ p < ∞.

Some non-examples of Polish spaces are as follows:

• Spaces which are not second countable, such as uncountable discrete spaces and L∞

spaces.

• Spaces which are not completely metrizable, such as Q.

A Polish space cannot be too large:

1.4 Proposition. Let X be a Polish space. Then |X| ≤ 2ℵ0.

Proof. If A ⊂ X is a countable dense subset, then the map X → RA defined by x ↦→ d(x, ·)

is an injection.

We can actually say more about the possible cardinalities of a Polish space:

1.5 Proposition. Every uncountable Polish space has cardinality 2ℵ0.

Proof. This follows from the Cantor-Bendixson theorem; see [Kec95, Corollary 6.5].

The topology of a Polish space is a bit too rigid for our purposes, so we introduce a more

flexible notion.

1.6 Definition.

1. A σ-algebra on a set X is a nonempty subset A ⊂ P(X) which is closed under

complement and countable union.

2. A measurable space is a set equipped with a σ-algebra, whose members are called

measurable sets.

1.7 Definition. Let X and Y be measurable spaces. A map f : X → Y is measurable if

the preimage under f of every measurable set is measurable.

1.8 Definition. Let X be a Polish space. The Borel σ-algebra of X is the σ-algebra

generated by the open sets in X.
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1.9 Definition. A standard Borel space is a measurable space which is isomorphic to a

Polish space with its Borel σ-algebra. In the context of standard Borel spaces, measurable

sets and functions are called Borel.

We will usually not need the entire topological structure of a Polish space, and we will most

often pass to the underlying standard Borel space.

1.10 Proposition.

1. If (Xn) is a sequence of standard Borel spaces, then
⨆

Xn and
∏

Xn are standard Borel

spaces.

2. If X is a standard Borel space and B ⊂ X, then B is a standard Borel space.

Proof. (1) follows from Proposition 1.2 (2). (2) follows from Proposition 1.2 (1) since we can

assume that B is clopen by [Kec95, Theorem 13.1].

1.11 Theorem (Borel isomorphism theorem). If X and Y are standard Borel spaces with

|X| = |Y |, then X ∼= Y .

Proof. This can be proved by using a measurable version of the Cantor-Schröder-Bernstein

theorem; see [Kec95, Theorem 15.6].

The following is a typical application of the isomorphism theorem:

1.12 Proposition. Every standard Borel space admits a Borel linear order.

Proof. By Theorem 1.11 and Proposition 1.5, every standard Borel space is isomorphic to

one of the following:

0, 1, 2, . . . ,N,R

all of which admit a Borel linear order.

1.13 Definition.

1. A standard Borel group is a standard Borel space G with a group operation such

that the maps (g, h) ↦→ gh and g ↦→ g−1 are Borel.
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2. Given a standard Borel group G, a Borel G-action on a standard Borel space X is a

group action of G on X such that the map (g, x) ↦→ gx is Borel. We say that X is a

Borel G-space.

1.14 Proposition. Let X be a standard Borel space and let A ⊂ X. Then the following are

equivalent:

1. There is a standard Borel space Y and a Borel set P ⊂ X ×Y such that A = projX(P ).

2. There is a standard Borel space Y , a Borel set B ⊂ Y and a Borel map f : Y → X

such that A = f(B).

3. There is a standard Borel space Y and a Borel map f : Y → X such that A = f(Y ).

Proof. (1 =⇒ 2) holds since X × Y is a standard Borel space, and (2 =⇒ 3) holds since B is

a standard Borel space by Proposition 1.10. For (3 =⇒ 1), we can take P = graph(f).

1.15 Definition. Let X be a standard Borel space and let A ⊂ X.

1. A is analytic if it satisfies any of the equivalent conditions in Proposition 1.14. Σ1
1(X) ⊂

P(X) denotes the collection of analytic sets in X.

2. A is coanalytic if its complement is analytic. Π1
1(X) ⊂ P(X) denotes the collection

of coanalytic sets in X.

Analytic sets can be used to show that maps are Borel:

1.16 Theorem. Let X and Y be standard Borel spaces and let f : X → Y be a function.

Then the following are equivalent:

1. f is Borel.

2. graph(f) is Borel.

3. graph(f) is analytic.

Proof. This follows from Suslin’s theorem; see [Kec95, Theorem 14.12].
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The following uniformization theorem is of great use when dealing with countable Borel

equivalence relations:

1.17 Theorem (Luzin-Novikov uniformization theorem). Let X and Y be standard Borel

spaces and let P ⊂ X × Y be Borel such that each Py is countable. Then projY (P ) is Borel,

and there is a Borel map f : projY (P ) → X such that f(y) ∈ Py for all y ∈ Y .

Proof. See [Kec95, Theorem 18.10].

1.18 Corollary. Let X and Y be standard Borel spaces and let f : X → Y be a countable-

to-one Borel map. Then f(X) is Borel and there is a Borel map g : f(X) → X with

fg = id.

Proof. Apply Theorem 1.17 to P = graph(f).

Finally, we state a reflection theorem, which allows us expand an analytic set to a Borel set

sharing the same properties.

1.19 Definition. Let X be a standard Borel space with Φ ⊂ P(X)× P(X).

1. Φ is Π1
1 on Σ1

1 if for any standard Borel space Y and Z and any A ∈ Σ1
1(X × Y ) and

B ∈ Σ1
1(X × Z), we have {(y, z) ∈ Y × Z : Φ(Ay, Bz)} ∈ Π1

1(X).

2. Φ is hereditary if Φ(A,B) and A′ ⊂ A and B′ ⊂ B imply Φ(A′, B′).

3. Φ is continuous upward in the second variable if Φ(A,Bn) and Bn ⊂ Bn+1 imply

Φ(A,
⋃

n Bn).

1.20 Theorem (Second reflection theorem). Let X be a standard Borel space with Φ ⊂

P(X)× P(X). If Φ is Π1
1 on Σ1

1, hereditary and continuous upward in the second variable,

then for any A ∈ Σ1
1(X) with Φ(A,Ac), there is a Borel set B ⊃ A and Φ(B,Bc).

Proof. This follows from the existence of coanalytic ranks; see the remark after [Kec95,

Theorem 35.16].
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1.2 Borel equivalence relations

We will always view an equivalence relation E on a set X as a subset E ⊂ X2. We introduce

some important examples:

1.21 Definition. Let X be a set.

1. The identity relation on X, denoted id(X), is the equivalence relation defined as

follows:

x id(X)y ⇐⇒ x = y

2. The eventually equality relation on Xω, denoted E0(X), is the equivalence relation

defined as follows:

xE0(X)y ⇐⇒ ∃k∀n[xk+n = yk+n]

We write E0 and E1 for E0(2) for E0(2
ω) respectively.

3. The tail equivalence relation on Xω, denoted Et(X), is the equivalence relation

defined as follows:

xEt(X)y ⇐⇒ ∃k, l∀n[xk+n = yl+n]

We write Et for Et(2).

4. Let G be a group acting on X. The orbit equivalence relation on X, denoted EX
G ,

is the equivalence relation defined as follows:

xEX
G y ⇐⇒ ∃g ∈ G[gx = y]

We define some basic notions:

1.22 Definition. Let E be an equivalence relation on X and let B ⊂ X.

1. The restriction of E to B, denoted E ↾ B, is E ∩B2. This is an equivalence relation

on B.

2. B is invariant if it is a union of equivalence classes.



CHAPTER 1. DESCRIPTIVE SET THEORY 9

3. The saturation of B, denoted [B]E, is the smallest invariant subset containing B. In

particular, we will denote the equivalence class of x by [x]E.

4. A selector is a function s : X → X such that s(x)Ex for every x ∈ X, and s(x) = s(y)

whenever xEy.

5. B is a transversal if it intersects each equivalence class exactly once.

1.23 Definition. Let E ⊂ F be equivalence relations on X. We say that E has finite

index in F if every F -class contains finitely many E-classes.

1.24 Proposition. Let X be a G-set and let H ≤ G be a finite index subgroup. Then EX
H

has finite index in EX
G .

Proof. For any x ∈ X, we have

Gx =
⋃

cosets Hg

Hgx

which is a finite union since [G : H] is finite.

1.25 Definition. Let X be a standard Borel space. An equivalence relation E on X is

Borel (resp. analytic) if E is Borel (resp. analytic) as a subset of X2.

1.26 Example.

1. If X is a standard Borel space, then id(X), E0(X) and Et(X) are all Borel equivalence

relations.

2. If X is a Borel G-space, then EX
G is an analytic equivalence relation. Moreover, if G is

countable, then EX
G is Borel.

There is a dichotomy theorem characterizing when an analytic equivalence relation does not

have countably many classes:

1.27 Theorem (Silver). If E is an analytic equivalence relation, then exactly one of the

following holds:

1. E has countably many classes.
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2. id(2ω) ≤ E.

Proof. The modern proof is due to Harrington and uses effective descriptive set theory; see

[Gao09, Theorem 5.3.5].

1.28 Definition. Let E and F be Borel equivalence relations on standard Borel spaces X

and Y respectively.

1. A Borel reduction from E to F is a Borel map f : X → Y such that

xEx′ ⇐⇒ f(x)Ff(x′)

2. E is Borel reducible to F , denoted E ≤ F , if there is a Borel reduction from E to F .

3. E and F are Borel bireducible, denoted E ∼ F , if E ≤ F and F ≤ E.

4. E and F are Borel isomorphic, denoted E ∼= F , if there is an isomorphism f : X → Y

which is a reduction witnessing E ≤ F .

1.29 Example.

1. Every Borel injection X ↪→ Y induces a reduction Xω ↪→ Y ω witnessing E0(X) ≤ E0(Y )

and Et(X) ≤ Et(Y ).

2. E0(2
<ω) ≤ E0 in the following way: let ⟨·, ·⟩ : ω2 → ω be any computable bijection,

and define f : (2<ω)ω → 2ω by f(x)⟨n,m⟩ = (xn)m (where 2<ω is embedded in 2ω by

appending 0∞). Then f witnesses E0(2
<ω) ≤ E0. Thus we have E0(X) ∼ E0(Y ) for

X, Y countable.

3. Et(2
<ω) ≤ Et in the following way: Define f : 2<ω → 2<ω by f(s1 · · · sn) = 0s10s2 · · · 0sn11.

Then the induced map (2<ω)ω → 2ω defined by s1s2 · · · ↦→ f(s1)f(s2) · · · witnesses the

reduction Et(2
<ω) ≤ Et. Thus we have Et(X) ∼ E0(Y ) for X, Y countable.

4. The map 2ω → 3ω defined by s1s2 · · · ↦→ s12s22
2s32

3s42
4 · · · is a reduction witnessing

E0 ≤ Et(3). Thus we have E0(X) ≤ Et(Y ) for X, Y countable.

We now introduce the notion of a smooth equivalence relation:
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1.30 Theorem. Let E be a Borel equivalence relation. Then E ≤ id(2ω) iff E ≤ id(X) for

some X.

Proof. (2 =⇒ 1) is obvious, and (1 =⇒ 2) holds since every standard Borel space embeds

into 2ω.

1.31 Definition. E is smooth if it satisfies either of the equivalent conditions in Theo-

rem 1.30.

1.32 Proposition. Let E be a Borel equivalence relation on X.

1. E has a Borel selector iff it has a Borel transversal.

2. If E has a Borel selector, then E is smooth.

Proof.

1. If s is a Borel selector, then:

{x ∈ X : s(x) = x}

is a Borel transversal.

Conversely, if A is a Borel transversal, then

s(x) = y ⇐⇒ xEy ∧ y ∈ A

defines a selector s : X → X whose graph is Borel. Then s is Borel by Theorem 1.16.

2. Every Borel selector witnesses a reduction E ≤ id(X).

We will show in the next section that E0 is not smooth. In fact, the following dichotomy

theorem shows that E0 is the only obstruction to smoothness:

1.33 Theorem (Harrington-Kechris-Louveau). Let E be a Borel equivalence relation. Then

exactly one of the following holds:

1. E is smooth.

2. E0 ≤ E

Proof. The standard proof goes via effective descriptive set theory; see [HKL90, Theorem

1.1].
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1.3 Countable Borel equivalence relations

1.34 Definition. An equivalence relation E is finite (resp. countable) if every E-class is

finite (resp. countable).

1.35 Example.

1. id(X) is finite for any X.

2. E0(X) is countable for any countable X. In particular, E0 is countable.

3. Et(X) is countable for any countable X. In particular, Et is countable.

4. If G is a countable group and X is a Borel G-space, then EX
G is countable.

There is a lowest countable Borel equivalence relation:

1.36 Proposition. If E is a countable Borel equivalence relation on an uncountable space

X, then id(2ω) ≤ E.

Proof. This follows from Theorem 1.27.

1.37 Proposition. Let E be a countable Borel equivalence relation. Then the following are

equivalent:

1. E is smooth.

2. E has a Borel selector.

3. E has a Borel transversal.

Proof. By Proposition 1.32, it suffices to show (1 =⇒ 2).

If f : X → 2ω is a reduction witnessing E ≤ id(2ω), then f is countable-to-one so by

Corollary 1.18, f has a Borel section g : f(X) → X. Then gf is a selector.

We can show that E0 is not smooth.

1.38 Proposition. E0 is not smooth.
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Proof. By Proposition 1.37, it suffices to show that E0 does not have a Borel transversal. Note

that E0
∼= EG

X , where G =
⨁

n Z/2Z and X =
∏

n Z/2Z with the natural G-action. If EG
X

has a Borel transversal A ⊂ X, then since the G-action is free, we can write X =
⋃

g∈G gA,

so if µ is the Lebesgue measure on X, then µ(X) =
∑

g∈G µ(gA) =
∑

g∈G µ(A), which is not

possible.

The following is an indispensible tool in the study of countable Borel equivalence relations:

1.39 Theorem (Feldman-Moore). Let E be a countable Borel equivalence relation on X.

Then there is a countable group G and a Borel G-action on X such that E = EX
G .

Proof. See [FM77, Theorem 1].

The following is a typical application:

1.40 Proposition. Every finite Borel equivalence relation is smooth.

Proof. By Theorem 1.39, E = EX
G for some Borel action of a countable group G. Fix a Borel

linear order on X by Proposition 1.12. Then

{x ∈ X : ∀g ∈ G[x ≤ gx]}

is a Borel transversal for E, so the result follows from Proposition 1.32.

1.41 Proposition. Let E be a countable Borel equivalence relation on X and let A ⊂ X be

Borel.

1. [A]E is Borel.

2. If E is smooth on A, then E is smooth on [A]E.

Proof.

1. By Theorem 1.39, E = EX
G for some Borel action of a countable group G. Then

[A]E =
⋃
g∈G

gA

so [A]E is Borel.

2. If B is a Borel transversal for E ↾ A, then B is a Borel transversal for E ↾ [A]E, so the

result follows from Proposition 1.37.
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1.4 Hyperfinite equivalence relations

1.42 Definition. Let E be a Borel equivalence relation. E is hyperfinite if E =
⋃

nEn

where (En)n is an increasing sequence (En)n of finite Borel equivalence relations.

Note that every hyperfinite relation is countable.

1.43 Example.

1. Every finite relation is hyperfinite.

2. E0(X) is hyperfinite for any finite X.

1.44 Proposition. Let E and F be countable Borel equivalence relations on spaces X and

Y respectively. Let A ⊂ X be Borel.

1. If X = Y , E ⊂ F and F is hyperfinite, then E is hyperfinite.

2. If X =
⨆

P∈P P is a countable partition of X into Borel sets and E ↾ P is hyperfinite

for each P ∈ P, then X is hyperfinite.

3. If E is hyperfinite, then E ↾ A is hyperfinite.

4. If E ↾ A is hyperfinite and [A]E = X, then E is hyperfinite.

5. If E ≤ F and F is hyperfinite, then E is hyperfinite.

6. If X = Y , E ⊂ F , E has finite index in F and E is hyperfinite, then F is hyperfinite.

Proof.

1. If F =
⋃

Fn, then E =
⋃
(E ∩ Fn).

2. If E ↾ P =
⋃

n E
P
n , then E =

⋃
n

⋃
P EP

n .

3. If E =
⋃

En then E ↾ A =
⋃
(En ∩ A2).

4. By Theorem 1.39, E = EX
G for some Borel action of a countable group G = (gn)n. Let

E ↾ A =
⋃

En for an increasing union of finite (En)n. Define Fn as follows:

xFny ⇐⇒ x = y ∨ ∃i, j ≤ n[gixEngjy]

Then E =
⋃

Fn.
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5. Let f be a reduction witnessing E ≤ F . By Corollary 1.18, f(X) is Borel and f has

a Borel section g : f(X) → X. Now F ↾ f(X) is hyperfinite by (3), but F ↾ f(X) ∼=

E ↾ g(f(X)) via g, so E ↾ g(f(X)) is hyperfinite. Thus since [g(f(X))]E = X, we have

that E is hyperfinite by (4).

6. By Theorem 1.39, F = EX
G for some Borel action of a countable group G = (gn)n. Note

that for each k < ω,

{x ∈ X : [x]F contains less than k E-classes}

is Borel since x is in the above set iff

∀h1, . . . , hk ∈ G∃i, j[hixEhjx]

Thus by (2), we can assume that every F -class contains exactly k E-classes. We

inductively construct Borel maps f1, . . . , fk : X → X such that [{f1(x), . . . , fk(x)}]E =

[x]F . Let fi(x) = gnx, where n is minimal such that

¬∃j < i[gnxEfj(x)]

Now let E =
⋃

En where (En)n is an increasing sequence of finite Borel equivalence

relations. Define the equivalence relation Fn by:

xFny ⇐⇒ ∃σ ∈ Sym(n)[fi(x)Enfσ(i)(y)]

Then F =
⋃

Fn, so F is hyperfinite.

1.45 Proposition. Every smooth equivalence relation is hyperfinite.

Proof. This follows from Proposition 1.44 (5) since id(2ω) is finite.

1.46 Proposition. Let X be a Borel G-space and let H ≤ G be a finite index subgroup. If

EX
H is hyperfinite, then EX

G is hyperfinite.

Proof. This follows from Proposition 1.24 and Proposition 1.44 (6).
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There are multiple characterizations of hyperfinite equivalence relations:

1.47 Theorem (Dougherty-Jackson-Kechris). Let E be a countable Borel equivalence relation

on a standard Borel space X. Then the following are equivalent:

1. E is hyperfinite.

2. E ≤ E0

3. E = EX
Z for some Borel Z-action on X.

Proof. See [DJK94, Theorem 5.1].

The ideas in the following proof form the basis for the proof of the result presented in the

final chapter

1.48 Theorem (Dougherty-Jackson-Kechris). Et is hyperfinite.

Proof. Let X = 2ω and let E = Et. For each x ∈ X and n < ω, let sxn be the lexicographically

least string of length n which occurs infinitely often in x. Note that we have:

sx1 ≺ sx2 ≺ sx3 ≺ · · ·

Now let kx
n be the first index at which sxn appears in x. Then since (sxn)n is increasing, we

have:

kx
1 ≤ kx

2 ≤ kx
3 ≤ · · ·

Now let Z = {x ∈ X : kx
n ̸→ ∞}. Then the map Z → Z defined by x ↦→ limn s

x
n is a Borel

selector on Z, so E is smooth on [Z]E by Proposition 1.32 and Proposition 1.41, and thus

hyperfinite by Proposition 1.45.

Now let Y = X \ [Z]E. Then the map Y → (2<ω)ω defined by x ↦→ (x ↾ [kx
n, k

x
n+1))n witnesses

the reduction E ↾ Y ≤ E0(2
<ω). Since E0(2

<ω) is hyperfinite, we get that E ↾ Y is hyperfinite

by Proposition 1.44 (5).

Thus by Proposition 1.44 (2), E is hyperfinite.
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1.5 Hypersmooth equivalence relations

We will have to deal with Borel equivalence relations which are not necessarily countable,

and for this we need the equivalent notion of hyperfiniteness:

1.49 Definition. Let E be a Borel equivalence relation. E is hypersmooth if there is an

increasing sequence {En}n of smooth Borel equivalence relations on X such that E =
⋃

n En.

1.50 Example.

1. Every smooth relation is hypersmooth.

2. By Proposition 1.40, every hyperfinite relation is hypersmooth.

3. E0(X) is hypersmooth.

There is a dichotomy theorem in this setting as well:

1.51 Proposition. A Borel equivalence relation E is hypersmooth iff E ≤ E1.

Proof. This is elementary; see [Gao09, Proposition 8.1.4].

One can pass from hypersmoothness to hyperfiniteness in the following way:

1.52 Theorem. If E is a countable hypersmooth equivalence relation, then E is hyperfinite.

Proof. See [DJK94, Theorem 5.1].



Chapter 2

Metric geometry

In this chapter, we develop some fundamental notions in the study of metric nonpositive

curvature, in particular the notions of hyperbolic group and CAT(0) cube complexes.

2.1 Coarse geometry

2.1 Definition. Let (X, d) be a metric space and let γ : I → X be an isometric embedding

for some space I.

1. If I is an an interval of the form [0, t] in R≥0 or N, then γ is a geodesic from γ(0) to

γ(t).

2. If I is R≥0 or N, then γ is a geodesic ray based at γ(0). In the case that I = N, we

may refer to this as a geodesic sequence.

2.2 Definition. A metric space X is geodesic if for all x, y ∈ X, there is a geodesic from x

to y.

2.3 Definition. Let G be a group acting by isometries on a geodesic metric space X.

1. The action is proper if for every compact subset K ⊂ X, the set {g ∈ g : K∩gK ̸= ∅}

is finite.

2. The action is cocompact if there is a compact subset K ⊂ X with GK = X.

18
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3. The action is geometric if it is proper and cocompact.

2.4 Definition. A metric space is proper if every closed ball is compact.

2.2 Hyperbolic spaces and hyperbolic groups

We will use Gromov products to define hyperbolic spaces, but there are many other approaches;

see [BH11, Chapter III.H] for alternate characterizations.

2.5 Definition. Let X be a metric space and let w, x, y ∈ X. The Gromov product of x

and y based at w, denoted (x · y)w, is defined as follows:

(x · y)w =
1

2
(d(x, z) + d(y, w)− d(x,w))

2.6 Definition. Let X be a metric space.

1. X is δ-hyperbolic for δ ≥ 0 if for all w, x, y, z ∈ X:

(x · z)w ≥ min{(x · y)w, (y · z)w} − δ

2. X is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

2.7 Definition. Let X be a metric space.

1. Given two sequences (xn) and (yn) in X and w ∈ X, we define:

((xn) · (yn))w = lim inf
i,j→∞

(xi · yj)w

2. A sequence (xn) converges at infinity if ((xn) · (xn))w = ∞ for all w ∈ X.

2.8 Example. Every geodesic (xn) converges at infinity.

2.9 Proposition. Let X be a δ-hyperbolic space and let (xn) and (yn) be geodesics based at

w. Then the following are equivalent:

1. limxn = lim yn.

2. d(xn, yn) ≤ 4δ for every n.
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3. There is some constant D such that for infinitely many n, there exists m with d(xn, ym) ≤

D.

Proof. For (1 =⇒ 2), let n < ω. Since ((xn) · (yn)) → ∞, choose m ≥ n with (xm · ym) ≥ n.

Then:

(xn · yn) ≥ min{(xn · xm), (xm · ym), (ym · yn)} − 2δ ≥ n− 2δ

which is equivalent to d(xn, yn) ≤ 4δ.

(2 =⇒ 3) is obvious.

For (3 =⇒ 1), let r ≥ 0. Let n ≥ r +D + 2δ such that d(xn, ym) ≤ D for some m. Note that

we have m ≥ n−D by the triangle inequality on w, xn, ym. Thus for i ≥ n and j ≥ m, we

have:

(xi ·yj) ≥ min{(xi ·xn), (xn ·ym), (ym ·yj)}−2δ ≥ min{n, n−D,n−D}−2δ = n−D−2δ ≥ r

We now introduce the Gromov boundary:

2.10 Proposition. Let X be a δ-hyperbolic space with fixed w ∈ X. Then for sequences (xn)

and (yn), define the relation Ur for r ≥ 0 as follows:

(xn)Ur(yn) ⇐⇒ ((xn) · (yn))w ≥ r

Then {Ur : r ≥ 0} is a fundamental system of entourages for the set of sequences converging

at infinity, turning it into a uniform space.

Proof. Clearly each Ur is symmetric and contains the diagonal, and {Ur} is closed under

intersection. Now let r ≥ 0. Then if (xn)Ur+δ(yn) and (yn)Ur+δ(zn), then for any i, j, k, we

have:

(xi · zj) ≥ min{(xi · yk), (yk · zj)} − δ

Taking lim infi,j,k, we get:

((xn) · (zn)) ≥ min{((xn) · (yn)), ((yn) · (zn))} − δ ≥ min{r + δ, r + δ} − δ = r

So (xn)Ur(zn).
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2.11 Definition. Let X be a hyperbolic space with w ∈ X fixed. The Gromov boundary,

denoted ∂X, is the Hausdorff quotient of the uniform space of sequences converging at infinity.

We write limxn for the equivalence class of (xn) in ∂X, and we say that xn converges to

limxn, denoted xn → limxn.

2.12 Proposition. Let X be a proper geodesic δ-hyperbolic space. Then ∂X is compact

metrizable. In particular, ∂X is a Polish space.

Proof. ∂X is metrizable because the uniform structure is separated and countably generated

(by {Un : n ∈ N}). Sequential compactness follows from the Arzelà-Ascoli theorem, and by

metrizability, this is equivalent to compactness.

2.13 Example.

1. If X is a tree whose vertex degrees are at least 3, then ∂X is a Cantor set.

2. ∂H2 ∼= S1.

2.14 Remark. Every action of a group G by isometries on a hyperbolic space X induces a

G-action on ∂X by homeomorphisms.

2.15 Definition. A finitely generated group G is hyperbolic if it has a Cayley graph which

is hyperbolic.

With regards to Borel complexity, every geometric action of a hyperbolic group on a space

induces the same Borel equivalence relation on the boundary:

2.16 Theorem. Let G be a group acting geometrically on proper geodesic metric spaces X

and Y . Then there is a G-equivariant homeomorphism from ∂X to ∂Y . In particular, we

have E∂X
G

∼= E∂Y
G .

Proof. See [Gro87].

2.3 Cube complexes

We introduce the notion of a cube complex:
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2.17 Definition. A cube complex is a polyhedral complex all of whose cells are Euclidean

n-cubes. It is naturally endowed with a piecewise Euclidean metric, making it into a geodesic

metric space.

To impose a combinatorial nonpositive curvature condition, we introduce the following two

notions:

2.18 Definition. A simplicial complex is flag if every clique spans a simplex.

2.19 Definition. Let X be a polyhedral complex and let x ∈ X(0). The link of x is the

simplicial complex whose vertex set consists of the outgoing edges at x (counted twice if

there is a loop), and a collection of vertices spans a simplex iff there is one cell which contains

them all.

2.20 Definition. A CAT(0) cube complex is a simply-connected cube complex each of

whose vertex links is flag.

Note that simply-connectedness is not a large obstacle, as it is usually possible to pass to the

universal cover.

2.21 Example. A tree is a CAT(0) cube complex.

2.22 Definition. A group G is cubulated if it acts geometrically on a CAT(0) cube complex.

2.23 Example. Some examples of cubulated groups:

• Free groups, since their Cayley graphs are trees.

• More generally, fundamental groups of hyperbolic surfaces and hyperbolic closed 3-

manifolds (see [KM12] and [BW12])

• Uniform arithmetic hyperbolic lattices of “simple type” (see [HW12])

• Hyperbolic Coxeter groups (see [NR97] and [CM07])

• C ′(1/6) and C ′(1/4)-T (4) metric small cancellation groups (see [Wis04])

• Certain cubical small cancellation groups (see [Wis17])
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• Gromov random groups of density < 1
6

(see [OW11])

• Hyperbolic free-by-cyclic groups (see [HW16] and [HW15])

2.24 Definition. X is uniformly locally finite if the degrees of vertices in X are uniformly

bounded.

2.25 Example. Every CAT(0) cube complex which admits a cocompact group action is

uniformly locally finite.

Now we introduce the basic notions in the study of CAT(0) cube complexes. For the rest of

this section, let X denote a CAT(0) cube complex. First of all, we will describe the notion of

a hyperplane.

2.26 Definition. A subset C ⊂ X is convex if every geodesic with endpoints in C is

contained in C.

2.27 Definition. A mid-cube of [0, 1]n is a subset of form π−1
i ({1

2
}), where πi is a coordinate

function.

2.28 Definition. A subset h ⊂ X is a hyperplane if it is connected and for every cell

C ⊂ X, h ∩ C is either empty or a mid-cube. A hyperplane is dual to an edge if they

intersect.

2.29 Proposition. If e is an edge in X, then there is a unique hyperplane he dual to e.

Moreover, he is a convex subset of X and is a CAT(0) cube complex with the induced cell

structure from X. Finally, X \ he has exactly two connected components, called halfspaces.

Proof. See [Sag95, Sag12].

We can describe geodesics combinatorially by passing to the 1-skeleton:

2.30 Definition. Let u, v ∈ X(0).

1. The ℓ1-distance between u and v is the length of the shortest path from u to v in the

1-skeleton X(1).
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2. A combinatorial geodesic between vertices u and v is an edge path in X(1) from u

to v which realizes the ℓ1-distance between them.

2.31 Definition. Two points in X are separated by a hyperplane h if they are in different

connected components of X \ h.

2.32 Proposition. The ℓ1-distance between two vertices is equal to number of hyperplanes

separating them. Thus an edge path γ is a combinatorial geodesic iff he1 ̸= he2 for every pair

of distinct edges e1, e2 on γ.

Proof. See [HW08, Lemma 13.1].

The piecewise Euclidean metric and the ℓ1-metric give the same notion of convexity on X:

2.33 Proposition. Let Y ⊆ X be a convex subcomplex. Then Y is also convex with respect

to the ℓ1-metric, ie. every combinatorial geodesic with endpoints in Y is contained in Y .

Proof. See [HW08, Proposition 13.7].

2.34 Proposition. Let Y ⊆ X be a convex subcomplex and let γ be a combinatorial geodesic

from a vertex v to a vertex in Y realizing the ℓ1-distance between v and Y . Then a hyperplane

separates v from Y iff it is dual to an edge in γ. Thus d(v, Y (0)) is the number of hyperplanes

separating v from Y .

Proof. This is a special case of [HW08, Proposition 13.10].

There is a nearest point projection:

2.35 Proposition. Let Y ⊆ X be a convex subcomplex and let d denote the ℓ1-metric on

X(0). For any vertex v ∈ X, there is a unique vertex u ∈ Y such that d(u, v) = d(v, Y (0)).

Thus there is a nearest point projection πY : X(0) → Y (0).

Proof. See [HW08, Lemma 13.8].



Chapter 3

Hyperfiniteness of boundary actions

Let F2 = ⟨a, b⟩ be the free group on two generators. We can identify ∂F2 with the set of

infinite reduced words in {a, a−1, b, b−1}. In this setting, two words are in the same orbit of

the F2-action iff they are tail equivalent. It is not hard to show the following:

3.1 Proposition. E∂F2
F2

∼ Et. In particular, E∂F2
F2

is hyperfinite.

The following conjecture suggests one direction in which this result could possibly be general-

ized:

3.2 Conjecture. If G is a hyperbolic group, then E∂G
G is hyperfinite.

In general this question is still open, but we have been able to prove the result for the class

of cubulated groups:

3.3 Theorem. Let G be a hyperbolic group acting geometrically on a CAT(0) cube complex

X. Then the induced action on ∂X is hyperfinite.

The proof of the theorem uses the idea of Dougherty, Jackson and Kechris for proving

hyperfiniteness of tail equivalence. To imitate their proof, we rely on a crucial lemma which

is interesting in its own regard:

3.4 Lemma. Let X be a uniformly locally finite hyperbolic CAT(0) cube complex. Then for

any vertices x and y in X and any a ∈ ∂X, the symmetric difference Geo(x, a)△Geo(y, a)

is finite, where Geo(x, a) is defined as follows:

Geo(x, a) = {y ∈ X(0) : y lies on a combinatorial geodesic from x to a}

25
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All work done in this chapter is joint with Jingyin Huang and Marcin Sabok (see [HSS17]).

3.1 Proof of the main lemma

We start by establishing properties of adjacent vertices in CAT(0) cube complexes.

3.5 Lemma. Let X be a CAT(0) cube complex and let Y ⊆ X be a convex subcomplex.

Let u and v be adjacent vertices in X separated by a hyperplane h and let u′ = πY (u) and

v′ = πY (v).

1. If h ∩ Y = ∅, then u′ = v′.

2. If h ∩ Y ̸= ∅, then u′ and v′ are adjacent vertices in Y separated by h.

Thus the the nearest point projection πY : X(0) → Y (0) extends naturally to πY : X(1) → Y (1).

Proof. We can assume d(v, Y (0)) ≤ d(u, Y (0)). Let γv and γu be combinatorial geodesics

realizing the ℓ1-distances from v to Y (0) and u to Y (0) respectively.

1. Suppose h ∩ Y = ∅. Then h ∩ γv = ∅, otherwise we would have d(v, Y (0)) > d(u, Y (0)).

Thus h separates u from Y . Moreover, each hyperplane dual to an edge in γv separates

u from Y . By Proposition 2.32, we have d(v, Y (0)) + 1 ≤ d(u, Y (0)). On the other

hand, the concatenation of the edge uv with γv has length ≤ d(v, Y (0)) + 1. Thus this

concatenation realizes the ℓ1-distance from u to Y (0). It follows that u′ = v′.

2. Now suppose h∩Y ̸= ∅. First, by Proposition 2.34 we get γv ∩h = γu∩h = ∅ because

otherwise h would be dual to some edge in γv or γu and thus separate u or v from Y

and hence be disjoint from Y . Let γ be a geodesic joining v′ and u′. Note that γ is

contained in Y . The path obtained by concatenating γv, γ and γu must intersect h

because v and u lie on different sides of h. Thus h must intersect γ and thus separate

v′ and u′. To see that v′ and u′ are adjacent, it is enough to show that h is the only

hyperplane separating u′ and v′. Note, however, that if h′ is a hyperplane separating u′

from v′, then h′ must intersect the path obtained by contatenating γv, the edge from

v to u and γu. By Proposition 2.34 we get h′ ∩ γv = h′ ∩ γu = ∅ as above. Thus, h′

intersects the edge from u to v and hence h′ = h.
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3.6 Corollary. Let X be a CAT(0) cube complex and let Y ⊆ X be a convex subcomplex.

Then the image under πY of a combinatorial geodesic γ is the image of a combinatorial

geodesic. We will denote this geodesic by πY (γ).

We will also need the following:

3.7 Lemma. Let X be a CAT(0) cube complex. Let x and y be adjacent vertices in X

separated by a hyperplane h and let γ be a combinatorial geodesic ray based at y.

1. If γ does not cross h, then xy ∪ γ is a combinatorial geodesic ray, where xy is the edge

from x to y.

2. If γ crosses h and z is a vertex on γ after the crossing, then xz ∪ γz is a combinatorial

geodesic ray, where xz is any combinatorial geodesic from x to z and γz is the subgeodesic

ray of γ based at z.

Proof. Throughout this proof, we will be using the characterization of combinatorial geodesics

given in Proposition 2.32.

1. Since γ is a geodesic which does not cross h, the hyperplanes dual to distinct edges on

xy ∪ γ are distinct, and thus it is a geodesic.

2. Let h′ be a hyperplane dual to an edge on γz. Now γ is a geodesic, so h′ does not cross

γ between y and z, and thus y and z are on the same side of h′. Now since γz does

not cross h, h ≠ h′ and thus h′ does not separate x and y, so x and y are on the same

side of h′. Thus x and z are on the same side of h′ and thus xz does not cross h′. Thus

xz ∪ γz is a geodesic.

We now turn to the proof of Lemma 3.4.

Proof of Lemma 3.4. Suppose that X is δ-hyperbolic. We can assume that x and y are

adjacent. Let h be the hyperplane separating x and y. Suppose for a contradiction that
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Geo(y, a)△Geo(x, a) is infinite. We can assume that Geo(y, a) \Geo(x, a) is infinite. Since

X is locally finite, there is a sequence (zn)n in Geo(y, a) \Geo(x, a) with d(zn, y) → ∞. For

each n < ω, let γn be a geodesic from y to a containing zn.

Let hy be the combinatorial hyperplane containing y. Note that each zn ∈ hy by Lemma 3.7

(2). Now for each n, we have d(γ0, γn) ≤ 4δ by Proposition 2.9. Thus since d(y, zn) → ∞,

the distance from γ0 to hy is bounded by 4δ infinitely often. Thus if π : X(1) → h
(1)
y is the

nearest point projection, then the distance from γ0 to π(γ0) is bounded by 4δ infinitely often,

so by Proposition 2.9, π(γ0) converges to a. But π(γ0) contains z0 and it does not cross hy,

so by Lemma 3.7 (1), we have z0 ∈ Geo(x, a), which is a contradiction.

3.2 Proof of the main theorem

The following lemma allows us to restrict to the case of free actions:

3.8 Lemma. If a hyperbolic group acts geometrically on a CAT(0) cube complex X, then it

has a finite index subgroup acting freely and cocompactly on X.

Proof. By Agol’s theorem [Ago13, Theorem 1.1] (see also [Wis17]) there is a finite index

subgroup H acting faithfully and specially on X (see [HW08, Definition 3.4] for the definition

of special action). Now H embeds into a right-angled Artin group which is torsion-free, so H

is torsion-free. Since every stabilizer is finite by properness of the action, it must be trivial

since H is torsion-free, and thus H acts freely on X.

We will also need the following application of the second reflection theorem:

3.9 Lemma. Let X be a standard Borel space. Let A ⊂ X be analytic and let E be an

analytic equivalence relation on X such that there is some n < ω such that every E ↾ A-class

has size less than n. Then there is a Borel equivalence relation F on X containing E ↾ A

such that every F -class has size less than n.

Proof. We can assume wlog that A = X by replacing E with E ↾ A ∪ id(X). Now consider
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Φ ⊆ P(X2)× P(X2) defined as follows:

(B,C) ∈ Φ ⇐⇒ ∀x ¬xCx

∧ ∀(x, y)¬xBy ∨ ¬yBx

∧ ∀(x, y, z)¬xBy ∨ ¬yBz ∨ ¬xCz

∧ ∀n
i=1xi (

⋁
i ̸=j

xi = xj) ∨ (
⋁
i ̸=j

¬xiBxj)

Note that Φ(B,X \ B) holds iff B is an equivalence relation on X whose classes have size

less than n. Now Φ satisfies the conditions of Theorem 1.20 (2), so since E is analytic, there

is a Borel equivalence relation F ⊃ E whose classes have size less than n.

We now turn to the proof of Theorem 3.3.

Proof of Theorem 3.3. By Proposition 1.46 and Lemma 3.8, we can assume that G acts freely

and cocompactly on X. Let E = E∂X
G .

Let V = X(0) be the set of vertices of X. Fix v0 ∈ V and fix a total order on V with

v ≤ w =⇒ d(v0, v) ≤ d(v0, w)

Fix a transversal Ṽ of the action of G on V (note the transversal is finite by cocompactness).

For v ∈ V , we denote by ṽ the unique element of Ṽ in the orbit of v. By a directed edge of

X we mean a pair (v, v′) ∈ V 2 such that there is an edge from v to v′.

We colour the directed edges of X as follows: assign a distinct colour to every directed edge

(v, v′) with v ∈ Ṽ , and extend uniquely (by freeness) to a G-invariant colouring on all directed

edges.

Let C be the set of colours (which is finite since X is locally finite), and let c(v, v′) be the

colour of (v, v′). Fix a total order on C. This induces a lexicographical order on C<ω.

For any geodesic η ∈ V <ω and m,n < ω, define:

c(η,m, n) = (c(ηm, ηm+1), c(ηm+1, ηm+2), . . . , c(ηm+n−1, ηm+n)) ∈ C<ω

For every a ∈ ∂X, define Sa ⊆ V × C<ω as follows:

Sa = {(ηm, c(η,m, n)) ∈ V × C<ω :

η is a geodesic from v0 to a and m,n < ω}
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Let san ∈ C<ω be the least string of length n for which there are infinitely many v ∈ V with

(v, san) ∈ Sa. Note that we have:

sa1 ≺ sa2 ≺ sa3 ≺ · · ·

Let

T a
n = {v ∈ V : (v, san) ∈ Sa}

and let van = minT a
n . Note that every vertex in T a

n has an edge coloured by sa1 leaving it,

so every vertex of T a
n is in the same orbit. Let ka

n = d(v0, v
a
n) and note that since (san) is

increasing, we have:

ka
1 ≤ ka

2 ≤ ka
3 ≤ · · ·

Now let Z = {a ∈ ∂X : ka
n ̸→ ∞}. Then for each a ∈ Z, since ka

n ̸→ ∞ and V is discrete,

there is a finite set containing all van, so there is some v ∈ V which is in T a
n for infinitely many

n. Thus the geodesic class determined by the geodesic starting at ṽ (which is determined by

ka
1) and following the colours of limn s

a
n ∈ Cω is a Borel selector on Z. Thus E is smooth on

[Z]E by Proposition 1.32 and Proposition 1.41, and thus hyperfinite by Proposition 1.45.

Now let

Y = ∂X \ [Z]E = {a ∈ ∂X : ∀bEa kb
n → ∞}

We will show that E is hyperfinite on Y . For each n < ω, define Hn : Y → 2V by

Hn(a) = ganT
a
n

where gan ∈ G is the unique element with ganv
a
n ∈ Ṽ . Let En be the equivalence relation on

imHn which is the restriction of the shift action of G on 2V . We claim the following:

3.10 Claim. There exists K < ω such that the equivalence classes of En ↾ imHn have size

at most K.

Proof. Let a, b ∈ Y and suppose g ∈ G is such that gHn(a) = Hn(b), i.e. gganT a
n = gbnT

b
n. Since

the vertices in both sets are in the same orbit, ganvan and gbnv
b
n are elements of Ṽ which are in

the same orbit, so they are equal, say to some v ∈ Ṽ . It suffices to show that d(v, gv) ≤ 12δ,
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since then we can choose any K < ω larger than maxv∈Ṽ |{g : d(v, gv) ≤ 12δ}|.

gganv0

gbnv0

γm4

v

gv

ηm2

γm5

η

γ

Note that since T a
n and T b

n are infinite, we have that ggana = gbnb, which we will call c ∈ ∂X.

Let η be a geodesic from gganv0 to c with ηm1 = gv. Now v ∈ gganT
a
n , so there is some m2 with

d(v, ηm2) ≤ 4δ. Note that by choice of van, we have m2 ≥ m1. Now let γ be a geodesic from

gbnx̂ to c with γm3 = gv. By the choice of vbn, there is some m4 ≤ m3 such that d(v, γm4) ≤ 4δ.

Also η and γ are 2δ-close after they go through gv, so since m2 ≥ m1, there is some m5 ≥ m3

such that d(ηm2 , γm5) ≤ 4δ. Thus

2d(v, gv) ≤ d(v, γm4) + d(γm4 , gv) + d(v, ηm2) + d(ηm2 , γm5) + d(γm5 , gv)

= d(γm4 , γm5) + d(v, γm4) + d(v, ηm2) + d(ηm2 , γm5)

≤ 2(d(v, γm4) + d(v, ηm2) + d(ηm2 , γm5))

≤ 2(12δ),

where the first equality follows from the fact that γ is a geodesic.

Now imHn is analytic, so by Lemma 3.9 there is a Borel equivalence relation E ′
n on 2V

containing En whose classes are of size at most K. Let fn : 2V → 2ω be a reduction for

E ′
n ≤ id2ω , and define f : Y → (2ω)ω by f(a) = (fn(Hn(a)))n<ω. Write E ′ for the pullback

of E1 via f . Note that since each E ′
n is finite, the relation E ′ is countable. As E ′ is clearly

hypersmooth, we get that E ′ is hyperfinite by Theorem 1.52. Now, f is a homomorphism

from E to E1. Indeed, if a, b ∈ Y with aEb, then by Lemma 3.4 there is N < ω such that
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Hn(a)EnHn(b) for n ≥ N , and thus f(x)E1f(y). Thus E ⊆ E ′, so since E ′ is hyperfinite, E

is hyperfinite by Proposition 1.44 (1).



Conclusion

The tail equivalence relation, which was shown to be hyperfinite by Dougherty, Jackson and

Kechris, is bireducbile with the action of the free group on the boundary of its Cayley graph.

We have been able to successfully extend this hyperfiniteness result to a much wider family

of hyperbolic groups, namely the cubulated hyperbolic groups. It is still an open problem

if this property holds for every hyperbolic group, and it would be sufficient to prove that a

version of Lemma 3.4 holds for Cayley graphs of hyperbolic groups. It seems that the CAT(0)

cube complex methods used here cannot be generalized to the setting of Cayley graphs, so

proving the result or the main lemma in general will most likely require an entirely different

approach.
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