In compliance with the
Canadian Privacy Legislation
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the dissertation.






Cycles on the moduli space of hyperelliptic curves

M¢élisande Fortin Boisvert

Department of Mathematics and Statistics, McGill University

805 rue Sherbrooke Ouest, Montréal, Québec, H3A 2K6 Canada
January, 2003

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of
the degree of Master of Science

Copyright (¢) Mélisande Fortin Boisvert, 2003



National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

[ b |

Canada

Your file Votre référence
ISBN: 0-612-88196-2
Our file  Notre référence
ISBN: 0-612-88196-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



Acknowledgements

First of all, I would like to thank my supervisor Eyal Goren for all the help gave
rme. Despite his very busy schedule and his family obligations, he spent very many
hours coaching me, explaining new theory, guiding my writing, pushing me to greater

heights and helping my English.

I would also like to thank all the professors who taught me during my graduated
studies. I have gained a lot from the courses they gave me, they greatly stimulated
my interest for mathematics. I also want to thank the Department of Mathematics

and Statistics of McGill University, FCAR, and ISM for their financial support.

I hereby express my infinite gratitude to my family, that is, all my friends and
relatives, for their constant love and support. Finally, I would like to give a special
thanks to Neil for all his patience and for all the encouragement he gave me during

the last year.






Abstract

Oort gave a complete description of symplectic commutative group schemes killed
by p and of rank p*. Each such group appears as the p-torsion group scheme of some
principally polarized abelian variety and this classification can be given in terms of
final sequences. In this thesis, we focus on the particular situation where the abelian
variety is the Jacobian of a hyperelliptic curve. We concenirate on describing the
subspace of the moduli space of hyperelliptic curves, or rather the cycle, corresponding
to a given final sequence. Especially, we concentrate on describing the subspace

corresponding to the non-ordinary locus, which is a union of final sequences.

i






Résumé

Une description compléte des schémas commutatifs symplectiques de rang p*¢ an-
nihilés par p a été donnée par QOort. Cette classification peut étre donnée en termes de
suites finales et chacun de ces schémas peut étre réalisé comme le schéma en groupes
de p-torsion d’une variété abelienne principalement polarisé. Dans ce mémoire nous
nous restreignons au cas particulier ou la variété abélienne est la Jacobienne d’une
courbe hyperelliptique. Nous nous appliquons a la description du sous-espace de
Pespace des modules des courbes hyperelliptiques, qui est en fait un cycle, correspon-
dant a une suite finale donnée. Nous nous attardons particulierement a la description

du lieu non-ordinaire, sous-espace correspondant & une union de suites finales.
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Introduction

A complete description of symplectic commutative group schemes killed by p and
of rank p* is known and can be given in terms of final sequences. Each such group
appears as the p-torsion group scheme of some principally polarized abelian variety.
This classification gives a stratification of A, the moduli space of principally polarised
abelian varieties, called the Ekedahl-Oort stratification. In this thesis, we focus on
the particular situation where the abelian variety is the Jacobian of a hyperelliptic
curve. We concentrate on describing the subset of the moduli space of hyperelliptic
curves corresponding to a given final sequence, that is a stratum in 4. This thesis is

subdivided in two major sections.

In the first chapter, we discuss all the theory involved in our explorations. Start-
ing with the basic definition of a curve, we introduce the general background for
the topic, such as divisors and Jacobians. In the second, the genus of a curve is
introduced. We also discuss two main theorems: the Riemann-Roch theorem and
the Hurwitz formula. Section 3 is devoted to the particular curves we are interested
in: the hyperelliptic curves. It is a self contained section and leads to a very precise

description of these curves in terms of Weierstrass points.

The fourth section introduces the theory of moduli spaces. For this section only,
we assume that the reader is familiar with the theory of schemes. After some basic
definitions, we construct H,, the moduli space of genus g hyperelliptic curves. Also we

construct the moduli space of these special curves together with a level structure. The

xi



xii INTRODUCTION

definition of an affine group scheme is developed in section 5. These group schemes
are central in our study. Indeed, it turns out that for a genus g curve C defined over a
field of characteristic p, the p-torsion of its Jacobian, Jac(C)[p], is a self-dual p-torsion
commutative group scheme of order p?. The Frobenius morphism is also introduced

in this section and is used in a later classification of the hyperelliptic curves.

There is an equivalence of categories between these particular p-torsion groups
and certain Dieudonné modules. These modules are finite dimensional vector spaces
over k together with two maps: F' and V/, and an alternating pairing such that certain
identities hold. The last section of the first chapter deals with these new objects. A
partial classification of our curves in terms of ordinary and non-ordinary curves can
be given using the Hasse-Witt matrix. This matrix describes the Frobenius morphism
on H'(Jac(C), Ojae(cy)- Since we have an equivalence of categories, with some work
we deduce that the matrix can be given through the action of V on H°(C, Q) which
gives an explicit matrix. To end this theorical section, a complete classification of
self-dual p-torsion commutative group schemes of order p° is introduced. This classifi-
cation is given in terms of final sequences and can also be used to describe Diendonné
modules. With all these tools in our hands, the main goal of the second part of this

thesis is to relate these final sequences with the moduli space of hyperelliptic curves.

A brief description of the general problem is given first in the exploration chap-
ter. We start with a very general and difficult question and finally narrow down to
a very particular case. Omne can try to describe the subset of the moduli space H,
that corresponds to a given final sequence v , i.e., the subset of points x, such that
the corrseponding hyperelliptic curve C, has that fixed elementary sequence . Also,
one can seek to describe the points that correspond to the non-ordinary locus, which

corresponds to a union of sequences.
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We then consider the same problem for coverings of curves, especially degree 2 un-
ramified double coverings of genus ¢ hyperelliptic curves. These particular coverings
of hyperelliptic curves can be described by a moduli space H, 92. We then give special
attention to describing the subspace of Hg corresponding to non-ordinary coverings,
that is coverings v : D — C for which D is non-ordinary. A special curve is then
introduced: the maxno-2 curve, which is a hyperelliptic curve such that all its double
unramified coverings are non-ordinary. We have specially considered the situation for
genus 2 curves. One example of maxno-2 curve is provided and we prove that for

each prime p there is only a finite number of maxno-2 curves defined over a field of

characteristic p.



CHAPTER 1

General Theory

Throughout this thesis, we assume the basic background of algebraic geometry.
For the very beginning we work over an algebraically closed field k and we use the

convention that a variety is irreducible.

1. Curves

DeriniTION 1.0.1. A curve C over k is a smooth projective variety over k of

dimension 1.

For a curve C defined over k, its function field £(C) is of transcendence degree one
over k. It follows that k(C) is an algebraic function field, i.e., k(C) is algebraic over
any subfield k(z) generated by a non constant function z € k(C). Thus, £(C) can
be written as k(x,y), where  and y are two non-constant functions on C satisfying
F(z,y) = 0, an algebraic relation. If we let Cy be the affine curve defined by F', and
C, the projective curve obtained by taking the closure of Cy in P?(k), we get that Cj
and C; are birational to C. Such curves are called models of C, and every curve has
a plane projective model and a plane affine model. Note that usually these models

are not smooth.

An example that is central in this thesis is F(z,y) = v* — f(z) with f(z) € k(z)
and char(k) # 2. Note that by changing y, we may assume that f(z) is in k[z]
and is squarefree, hence separable. The affine curve defined by F(z,y) = 0 is then
non-singular, but its projective closure defined by homogenizing F'(x,y) is usually

singular.
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Conversely, given K, a finitely generated field extension of transcendence degree
one of k, that we define as a function field, we would like to consider the curve C
whose function field is K. To do so, we consider C, the set of all discrete valuation
rings of K/k. For every smooth curve C and every point P on it, the local ring
Oc¢p of P on C is a discrete valuation ring contained in k£(C). Hence, the following

definition of the curve Cg seems to be natural.

DEFINITION 1.0.2. An abstract non-singular curve C' is an open subset U C C,
where K s a function field of dimension 1 over k, with the induced topology, and the

notion of reqular functions on its open subsets. (See [8, page 42].)

'To link these abstract curves with our first definition, one can find the following

theorem in [8, I, § 6, Thm 9.

THEOREM 1.0.1. Let K be a function field of dimension 1 over k. Then the
abstract nonsingular curve Cy 1s isomorphic to a nonsingular projective curve over k

whose function field s K.

If we consider Y, a variety of dimension 1 which is not necessarily smooth and
projective, having function field K, then Y is birationally equivalent to the abstract
curve C which is non-singular and projective. Also, we can always write a function
field as k(x)[y]/(F(z,y)) to get a planar curve. Then by taking the projective closure
and then taking the normalisation we get a non-singular projective curve. Therefore,

we can restate the above theorem:

COROLLARY 1.0.1. Every curve, in the general sense, is birationally equivalent

to a non-singular projective curve.

Theorem 1.0.1 and Corollary 1.0.1 are fundamentals for the following equivalence

of categories that allows us to study curves in different contexts.

THEOREM 1.0.2. The following categories are equivalent:
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(1) non-singular projective curves, and non-constant morphisms;
(2) quasi-projective curves, and non-constant rational maps;

(3) function fields of dimension 1 over k, and k-homomorphisms.

Remark: The equivalence between (2) and (3) reverses arrows.

1.1. Divisors on curves over an algebraically closed ground field.
Let k, be an algebraically closed field and let C' be a non-singular projective curve

over k. A divisor D on C over k is, by definition, a formal
D= Z np[PL

where the P are points on the curve, np € Z and only finitely many n, are non-zero .

The set Div(C) of all divisors D on a curve C is a free abelian group on the basis
{[P]: PeC}. Weletdeg(D):= )" n,denote the degree of a divisor D. We denote
by Div?(C) the group of divisors of degree zero, and we say that a non-zero divisor
D = > np[P] is effective if np > 0 for all P. Furthermore, D = > np[P] is said to
be greater or equal to D' = 3 np[P] if np > nlp for all P. We use the usual the
notation D > D).

To any function f in £(C)* we can associate a divisor

(f) = valp(f)[P],

pPeC
where valp(f) is given by the valuation of f at the point P in the local ring O¢ p.
Such divisors are called principal divisors. If N denotes the set of zeros of f, and Z

denotes the set of poles of f, we define

(flo:= Z valp(f)[P], the zero divisor of f,

PeN
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(Noo = >_ —valp(f)[P], the polar divisor of f.

pez
Clearly, (f)o 20, (f)oo = 0 and (f) = (f)o — (f)oo. Also, one can find in |8, I1,56]
that deg(f)o = deg(f)w. The relation (f - ¢) = (f) + (g) shows that the principal

divisors form a group denoted

Pr(C): ={(N | f € k(C)},

where the zero element is the empty divisor (1), and the inverse of (f) is (f~1).

The following factor group
Pic(C) := Div(C)/Pr(C),

is called the divisor class group. Two divisors D and D' are said to be linearly
equivalent if D — D' is a principal divisor, i.e., if they are equal in Pic(C) . Since
the degree of a principal divisor (f) is, counting multiplicity, equal to the difference
between the number of the poles of f and the number of zeros of f, we have that
deg(f) = 0. Therefore, Pr(C) is a subgroup of Div’(C) and we can define the Jacobian

of a curve C to be:
Jac(C) = Div’(C)/Pr(C).

It is well known that Jac(C) is the k-points of an abelian variety over & see [20, §10]
and the result has been given first by Weil.

To a divisor D, we can associate the k-vector space £(D) defined by

LID) =A{f e k(C) | (f) z -D}u{0}.

The dimension of £(D) is denoted I(D). For D = np[P] — > mglQ] with np > 0
and mg > 0, the k-vector space £(D) consists of elements f in k(C') such that

(1) f has a zero of order at least mg at every point @), and
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(2) f may have poles only at the points P, with the pole order at P being at

most np.

Clearly, if deg(D) < 0, then £(D) = {0} and /(D) = 0. One can also prove that
L(D) is finite dimensional, and that £(D'") = L(D) if the two divisors are linearly
equivalent, see [9, A,§ 2.2].

1.2. Divisors on curves over arbitrary ground fields.

Let k be any perfect field and k its algebraic closure. We séy that a curve C' is
defined over k if there exist homogeneous polynomials fi,...f, € k[z] such that C/k
is a curve defined as the zero set of I = (fy,...f;), an ideal in k[z]. For the situation
k = k we will often omit the ground field and denote the curve just by C. For any

Galois extension,

5

we easily check that C(L), the L-rational points on the curve C, are also given as

C (k)" where I' = Gal(k/L).

On the other hand, if we consider, instead of the category of curves, the category
of function fields of dimension 1 we have that F' = k(C}/k, the function field over
field k, has field extension k(C)/k. The set k := {z € k(C) | z is algebraic over k}
is a subfield of £(C) and is called the field of constants of k(C')/k. We say that k is
the full constant field of k(C) if k = k. Since the transcendence degree of F is 1, the
field of constants of an algebraic function field F' is a finite extension field of k, thus
F can be regarded as function field over k. Therefore from here on, k(C) will always
denote an algebraic function field of one variable such that % is the full constant field

of k(C)/k. In this scope it is also possible to introduce the notion of divisor.
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DEFINITION 1.2.1. A place P of the function field k(C) is the mazimal ideal of
some valuation ring Op € Cyc). We denote the set of all such places by Py, and
the residue class field by k(C)p := Op/P.

For f € k(C), we say that a place P is a zero of f if vp(f) > 0, that is if f belongs
to P. We denote deg P = [k(C)p : k] the degree of the place P and one can find in
[30, page 6] that deg P < [k(C) : k(z)] < co. In this situation, the free abelian group
which is generated by the places of £(C') is named the divisor group defined over k

and denoted Div,(C). The divisors can now be expressed this way

D= Z np[P| with np € Z and almost all np = 0,
PePrc)

and the degree of such divisor is defined by

deg(D) := Z valp(D) deg P.
PePrcy

Indeed this definition is analogous to the definition of divisors over algebraically
closed fields. To see that assume that C is affine with ring of regular functions
R =klz1,...,zn)/(f1, ... fs). Every prime ideal is maximal (since R is of dimension 1)
and hence, by Hilbert’s Nullstellensatz, of the form (z; — a4, ..., 2, — «,) for suitable

oy, ..., 0. We therefore see that places correspond to points.

As for the previous situation, for f € k(C) and for any place P, valp(f) still
makes sense, therefore we can define (f) to be the principal divisor associated to the
function f. One can verify easily that except for the Jacobian of such curve, the

definitions made previously hold in this situation. Moreover for z € £(C), we can

find in [30, page 18] that deg(z)y = deg(z)w = [K(C) : k(z)].
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Let C/k be a curve over k and let I = Gal(k/k) act on Div(C) and Divy(C) by
the rule

D@ D7 = Y nplP?], cel,

PE/PE(C)

and where the corresponding valuation is given by
valy(p(y) = valp (07" (y)) for y € k(C).

The main point here is that a place of k(C) corresponds to a Galois orbit of places
of k(C). In fact, the Galois group Gal(L/K) acts transitively on the set of places
P. € L lying over a given place ¢ € K.

THEOREM 1.2.1. Let L be a Galois extension of K and Py, Py € P;, be extensions
of @ € Px. Then Py = o(Py) for someo € I' = Gal(L/K).

Proof: Assume the opposite, i.e. that o(Py) # P, for all 0 € T'. By the approxima-
tion theorem, see [30, 1.§3.1], there is an element z € L such that valp,(z) > 0 and
valp(z) = 0 for all P € Py, lying above @ and different of P,. Let Ny« : L — K be

the norm map. We obtain

valp, (Niyk(2)) = valp ([ o(2)
o€l

= Z ValPl (U(Z))

oG

= ZV&IO-—I(pI)(Z)

o€l

= Zvalg(pl)(z) =0,

cel
since P, does not occur among the places o(F), for 0 € G.
On the other hand,

Valp2(NL/K(Z)) = Z’\’alg(pﬂ(/ﬂ > 0.
gel
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But Ny k(z) € K, therefore

Valp1 (LNL/K(Z)) = O <> ValQ(NL/K(Z)) = O <:> V&IPZ(IVL/K<Z)) = U,

a contradiction. I

Thus, we can consider Divy(C) as a subset of Divg(C) the following way:

Divg(C) = {Zni[PiHniEZ}

1

= {Z nL(Z[Q}) | ni € Z, 0; is the orbit of I in Py corresponding to F;

L1 Qc8;
C DiVE(C).

Since every orbit corresponds to a place in Divi(C'), the only divisors in Divg{C) fixed

by I' will be of this form and we have the following equality:

Divy(C) = {z”: m(Z[P]) | n; € Z, 6; is an orbit of I' in P;(C)} = (Divi(C)F.

) pED;

It follows similarly that the group of divisors of degree 0 defined over k will be
Divi(C) = (Divi(O)'.

For instance, take k = Q and the curve C : y*— 2z = 0. Let m = (y?—~2,2—1); it
is a maximal ideal of some valuation ring of Q(C'). Therefore the place P associated
to this ideal can be viewed as [1,+/2] + [1, —v/2] and this place corresponds to one
orbit of Gal(Q/Q). Note that one place in Q(C) is sent to the other via

V2 =2

For f € k(C)*, we can, as done previously, associate to it the divisor

()= Y valp(NPI= D valp(H)(D_ Q)

PEPrien PePycy Qcop

}
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where fp is an orbit of T' in Preoy corresponding to P. And for any o € T' we easily

check that

(£ = > valp(H(D_ Q) = (f),

PePro) Qchp

since o permutes the elements in the orbits. Therefore
Prx(C) = { D € Divp(C) | D = (f) for some f € k(C)*} ¢ (Prz(C))",

and we would like to have equality. Since k is perfect, k/k is a separable extension,

so k= k, and (E(C)")' = k(C)*. We consider the exact sequence
1ok — B(C) S8 Pre(C) — 0.
By applying Galois cohomology we get
(1) 1— &) — &) - (Pr(O) — H'(T,E) — - - -,
which leads to the short exact sequence
1— k" — k(C) 8 Pro(C)F — 0,
since by Hilbert’s 90, H 1(F,F) = (. Therefore, we have the equality

Pl’k (C) = PI‘TE(C)T.

We can also define Jac,(C) to be the subgroup of Jacy(C) fixed by I'. In general,
Jac,(C) is not the quotient of Div}(C) by its subgroup of principal divisors. But in
the particular case that will interest us, the case where k is a finite field, we have

what we would expect.

For k =TF, and I = Gal(F,/F,) we have another exact sequence

00— Pl"Fq (C) —r Div%q (C) — JaCFq (C) — 0,
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and, by taking the Galois cochomology, we get
0 — Prg, (C) — Divy, (C) — Jacg, (C) — H'(T, Prg (C)) — -~

As stated before, this is generally not a short exact sequence. But in the case of
finite fields, the cohomology group H(T, PI’F‘q(C)) is zero. For if we consider the

continuation of the sequence (1.1) we have
Cee— HI(F,F:) — HYD,F,(C)*) — Hl(F,PrFq(C)) — HQ(F,F;) —y
Again by Hilbert’s 90, we get that H'([,F,) = 0 = H'(I',F,(C)*) and one can find
in [18] that the Brauer group H*(T, FZ\} is zero for finite fields. Therefore,
Jacg, (C) : = Jac((])%q
= (Divy, (O)/(Prg, (C))F
= DIV}, (C)/Pry, (€).
1.3. Covering of curves.

We will be interested in this thesis in particular morphisms between curves, thus

the following terminology will be needed.

DermNITION 1.3.1. A covering of a curve C 1is a finite separable morphism of

curves f: D — C.

In terms of function fields it corresponds to a finite separable extension k(D) /k(C).
As stated before, we assume that the field k is perfect, i.e., that all algebraic extensions

L/k are separable. For example, k is perfect if it is algebraically closed or if it is a
finite field.

DEFINITION 1.3.2. Let k(D) be an algebraic extension of k(C), and let P € Pyp)
be a place of k(D) lying over Q € Pyc). The integer ep satisfying

valp(z) = ep - valg(z)

for any z € k(C) is called the ramification index of P over Q.
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If k is algebraically closed, the equivalence of categories between curves and func-

tion field allows the following equivalent formulation:

DeEFINITION 1.3.3. Let f : D — C be a finite morphism of smooth projective
curves. For P € D, @ = f(P), and t € Og(C) an uniformizing parameter, the

integer ep = valp(f*t) is called the ramification index of f at P.

We say that a covering of curves (or an extension of function fields) is unramified
at a point (or a place) P if ep = 1, otherwise the covering is said to be ramified
at this point (or place). Such a covering (or extension) will be called unramified if
it is unramified at every point (or place) of 1. For instance, for k a field of odd
characteristic, consider the curve D with affine model y* = zg(z) and such that
g(0) # 0 (note that this condition is needed to have a smooth curve). We then have

a canonical mapping from D to the projective line. The degree two map

D — P

(z,y) — =z

is ramified since there is at least one ramification point on the curve. Indeed the map
has a ramification index ep = 2 at the point P = (0,0). But note that some points on
D are unramified, for instance the points on D of the form R = («a, ), where § # 0,

have ramification index ep = 1.

Let k(D) /k(C) be a Galois extension and let ¢) be any place of k(C). The Galois
group I' = Gal(k(D)/k(C)) acts on the set of places P; lying over @ via o(F;) =

{o(z)| = € P;}, where o € I" and the corresponding valuation is given by
valy(p)(y) = valp, (07 (y)) for y € k(D).

In fact, Theorem 1.2.1 shows that the Galois group Gal(k(D)/k(C)) acts transi-
tively on the set of places P; € k(D) lying over a given place ) € k(C).
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2. The genus of a curve

One of the most important invariants in the study of curves is the genus which is

a birational invariant. One way to define it is the following:

DEFINITION 2.0.4. The genus of a non-singular projective curve C is the dimen-

ston of the k-vector space of holomorphic differentials on C', denoted
gc = dim H°(C,Q}).

The genus of a curve can be expressed in different ways, in particular, one can
show that the dimension of Jac(C) is precisely g¢, that go = dim H*(C,O¢) and
that over the complex numbers rkz H,(C(C),Z) = 2g¢.

2.1. The Riemann-Roch theorem and the Hurwitz formula.

Some of the most important tools in the study of curves are the Riemann-Roch
theorem and the Hurwitz formula. For example, the Riemann-Roch theorem allows
us to link elements of £(C) with the genus of the curve. Given a covering of curves,
the Hurwitz formula links the genus of the two curves with the number of ramification

points. It is known that the sheaf of differential forms QF is locally free of rank one:
Qé = OC(KC)7

where K is a divisor on (. This is well define up to a principal divisor. Let
w € HYC,QL), i.e., wis a holomorphic differential, then the canonical divisor is

given by K¢ = (w).

Example:

(1) For C' = P!, we have w = dz = ;—zldu foru =1  thus Ko = —200;

z

(2) for C an elliptic curve, K¢ = 0 is the empty divisor;
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(3) for C' a smooth projective model of y? — f(z), with f(z) a separable polyno-
mial of degree 2g + 2, we have w = dzx = ﬁ%dy. Therefore

Ke= Y [()\0)]— 200 — 200,
MF)=0

where o0;, 002 are the two points lying over oo under the natural map

C — PL

THEOREM 2.1.1. (Riemann-Roch) Let C be a curve and K¢ a canonical divisor,

then for all divisors D,
UD) ~ (Ko — D) = deg(D) — go + 1.
where go ts the genus of the curve C.

One can find a proof of this theorem in [30, 1.5}, and this corolarry will be usefull

in our later study.

COROLLARY 2.1.1.

(1) For K¢ a canonical divisor, we have
{Kc) = gc, deg(Kc) = 2g9c — 2.
(2) If deg(D) > 2g¢ — 2, then
(D) = deg(D) — go + 1.
Proof: (1) By taking D = 0, we get
1(0) — l{K¢) = deg(0) — gc + 1,

since £(0) = k and deg(0) = 0, we get that [(K¢) = go. Setting now D = Ke, from

this previous result, we obtain the following:

gc — 1= deg(KC) — gc + 1,
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which easily leads to the equality deg(K¢) = 2g¢ ~ 2.

(2) From Riemman-Roch theorem, we only need to show that (Ko — D) = 0.
Since deg(D) > 2g¢ — 2 and deg(K¢) = 2gc — 2, we have that deg(Ke — W) < 0,
therefore, it follows that I(Ks — D) = 0. O

THEOREM 2.1.2. (Hurwitz’s formula) Let C' be a curve of genus gc, let D be a
curve of genus gp, and let f : D — C be a finite separable morphism of degree n. For
each point P € D, write ep for the ramification index of f at P, and ossume that
either char(k) = 0 or else that char(k) does not divide the ep’s, i.e., the covering is
tamely ramified. Then

290 —2=(2gc —2n+ > _(ep —1).
pPeD

A proof can be found in [30, I11.4] and, in order to introduce the analogue of
the Hurwitz formula in the situation of function fields, we need some preliminary

definitions. We will consider an algebraic function field k(C) and a finite separable

extension k(D)/k(C).

DEFINITION 2.1.1. For P € Pyc), let Op denote the integral closure of Op in
k(D). Then the set

Cp = {z € k(D) | Triyme)(z - Op) € Op}
is called the complementary module over Op.

One can verify that Cp is an Op-module. In fact O} is contained in Cp and there
is an element ¢ € k(D) (depending of P ) such that Cp = ¢ - O%. One can also show
that valp:(t) < 0 for all P’ lying above P and Cp = O for almost all P € P (C).
Then we define the different exponent of P’ over P by

d(P'|P) := —valp(t).
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Since Cp = 1- O} for almost all P, then d(P'|P) = 0 almost everywhere so we can
define the divisor
Diff(k(D)/k(C)) == Y > d(P'|P)- P,
P&Py(cy P'|P

called the different of k(D)/k(C).

THEOREM 2.1.3. (Hurwitz formula IT) Let k(C) be an algebraic function field of

genus gc, and k(D) a finite separable extension of genus gp, then

29p — 2 = (29c — 2)[k(D) : k(C)] + deg Diff(k(D)/k(C)).

Remark: In fact, Q}, o = Oc(Diff(k(D)/k(C)), where Q7 ., is the sheaf of rela-

tive differentials.

2.2. Classification of curves by their genus.
The genus of a curve allows us to make a distinction between some of them, and,
in the scope of the above theorems, this invariant can give a good description of some

particular curves.

2.2.1. Genus 0.

If we consider a curve defined over an algebraically closed field, the only curve
of genus 0 is the projective line. Indeed, if the genus of the curve is 0, by the
Riemann-Roch Theorem, I([P]) = 2 for all points in C. Therefore we have a non
constant function x € L(P) having at most a pole of multiplicity one at P. So
deg(z)oo = 1 = [K(C) : k(x)], i.e., the curve C is birationaly equivalent to P'. We
therefore restrict our attention to P'. If D = 3 n,[P] is a divisor of degree 0, where

P = |ap, Bp] € P!, then D is clearly the divisor associated to the function

= H(ﬁPX —apY )" € k(P).
P
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Hence, Pic(P!) 22 Z and Jac(P') is trivial, therefore it has dimension gp: = 0.

If the curve is not defined over an algebraically closed field, problems may arise
when there is no k-rational point on the curve. One can find in [9, A,§ 4.3], that one

of these two situations will occur.

e The curve C is isomorphic over k to a conic in P? i.e., a variety defined by
an irreducible quadratic polynomial.
e The curve C is isomorphic over k to P! if and only if it possesses a k-rational

point.

2.2.2. Genus 1.

The curves of genus 1 principally consist of the well known elliptic curves. An
elliptic curve is a non-singular curve of genus 1 with a specified rational point. Over
certain fields there are curves of genus 1 that are not elliptic curves, for instance one

can find in [9, X,§4] that the curve of genus 1
2uw? =1— 1724,

has no Q-rational point. But for C a genus 1 curve, Jacg(C) will always be an
elliptic curve over k since the empty divisor ié rational. The elliptic curves deserve a
particular interest because we have that C/k = Jac,(C). Indeed, we can show that
there is a group law on the elliptic curve E that corresponds to the addition of the

elements of Jac(E).

PROPOSITION 2.2.1. Let Py a fized basepoint on E, then the following map

¢: E — Jac(E)

P = [P]-[R].

18 an 1somorphism.



Proof:

2. THE GENUS OF A CURVE 17

® ¢ is injective.

Suppose ¢(P) = [P] — [Po] = [Q] — [P] = ¢(Q), then there exist f € k(E)
such that (f) = [P]—[Q]. Then f € L£([Q)]), and since deg([Q]) = 1 > 2gp—2,
by Corollary 2.1.1, we have that

Q) = deg([Q) — gp +1=1.

But £([Q]) already contains the constant functions, hence f € k and P = Q.

 is surjective.

Consider D € Div’, and let D' = D + [Py]. Since deg(D') =1 > 2gg — 2,
again by Corollary 2.1.1 we deduce that [(D") = 1. Therefore, there exist
[ e L(D') such that (f) > —D — [F]. Since deg(f) = 0, and since the

function f can not have other poles, we have
(f) =-D — [R] + [P]

for some P € E. Hence D ~ [P]— [P, so every divisor in Jac(F) is reached
by ¢.

¢ is a homomorphism of groups.

Consider the points P and ) on the curve. By applying the same argument
we have used for the surjectivity, with D' = [P] + [Q] — [Pp], we can find a
function f and a point P* such that

(f) = [P"] = [P = [Q] + [R].

Hence, ¢(P*) = [P*] —[Po] = [Q] = [Po] +[P] = [Po] = ¢(P)+¢(Q) in Jac(E).
It suffices now to show that there is a group law on F and that the point
P* is in fact the sum of P and (). To do so we will consider the group law

induced by ¢. We can assume first that E lies in P2. We can take P, to be
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the point O at infinity and choose [; the line through P and ), we will denote
R the third intersection point. We can also consider the line [, through Py
and R where P*' is the other intersection point. Therefore ¢ = % € k(E)
and (g9) = [P] + [Q] + [R] — [Fo] — [P] — [P*]. If we counsider g - f € k(E)
we obtain the principal divisor [P*] — [P*']. But there is no rational function
on E with only one pole and one divisor, therefore [P*'] = [P*]. This defines
a composition law @ given by the following rule: Let P,Q) € E, L the line
connecting P and @ (the tangent line if P=Q), and R the third point of
intersection of L with F. Let L' be the line connecting R and Py, then P& Q)
is the point such that L' intersect the curve E at Py, R, and P & (. i

2.2.3. Genus > 2.

The curves of higher genus are, with no surprise, more complicated. We will focus

only on those that interest us, which are the hyperelliptic curves, in the next section.
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3. Hyperelliptic curves

For this section we will consider k to be a perfect field not necessarily algebraically

closed.

DEFINITION 3.0.1. A hyperelliptic function field over k is an algebraic function
field E(CY/k of genus g > 2 which contains a rational subfield k(z) C k(C) with
[k(C) : k(x)] = 2. A hyperelliptic curve is a smooth projective curve associated to

such a hyperelliptic function field k(C).

In other words, a curve of genus ¢ > 2 is said to be a hyperelliptic curve if it
is a double covering of the projective line 7 : C — P!. The points in C that are
sent to ramification points are called Weierstrass points and the rational subfield
7*(k(x)) will often be denoted k(z) to ease our notation. We shall see below that the

terminology is appropriate, it does not depend on 7.

ProrosiTiON 3.0.2.

(1) A curve C of genus g > 2 is hyperelliptic if and only if there ezists a divisor
D with deg(D) = 2 and (D) > 2.
(2) Any curve C of genus 2 is hyperelliptic.

Proof: (1) Suppose that k(C) is hyperelliptic. We can take z € k(C) such that
[£(C) : k({z)] = 2, and consider the divisor D := (z)s. Then the divisor D has
degree equal to [k(C) : k(z)] = 2, and since the elements 1, z € L£({D) are linearly
independent over k, we have that [(D) > 2.

Conversely, suppose that k(C) has genus gc > 2 and D is a divisor of degree 2
with [(D) > 2. We know [30, 1.4] that there exist an effective divisor D; ~ D such
that deg(Dy) = 2 and I(D;) > 2. Therefore we can find an element z € £(Dy) \ k
with () < Dy. Hence [k(C) : k(z)] = deg(2)s < 2. Since k(C) is not rational, we
conclude that [k(C) : k(z)] = 2.
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(2) Consider now a function field of genus go = 2. For any canonical divisor
K¢ € Dw(C), from corollary 2.1.1 of the Riemann-Roch theorem, we get that
deg(K¢) = 29c — 2 = 2 and [(K¢) = g¢ = 2. By (1), this implies that k(C) is
hyperelliptic. 0J

If £(C) is hyperelliptic and k(z) is a rational subfield of k(C) with [k(C) : k(z)] =
2, the extension k(C)/k(z) is separable, see [30, V1.2] for more details. Hence
kE(C)/k(x) is a cyclic Galois extension of degree 2, Indeed it is a cyclic Artin-Schreier
extension if the characteristic of k£ is 2, and a cyclic Kummer extension otherwise.
These extensions are well known and provide an explicit description of hyperelliptic

curves.

3.1. Hyperelliptic curves over field of characteristic different from 2.
Let k be a perfect field of characteristic different from 2, the case where £(C) is a
Kummer extension of degree 2. Recall that a Kummer extension with Galois group

Z/nZ can be written as,
k(C) = k(z,y) with y" = u

for k(x) containing a n-th root of unity, (n,char k) = 1 and u € k(x) satisfying the
following conditions: u # w? for all w € k(z) and d > 1 dividing n. Moreover, it is

well known, see [30, 111.7.3], that for P € Py, and P' € Py lying over P, we have

e(P'|P) = % and d(P'|P) = % ~1,

where 7p := ged(n, valp(u)).

PROPOSITION 3.1.1. Let k be a field of characteristic different from 2.

(1) Let kK{(C) be a hyperelliptic function field of genus gc. Then there exists
z,y € k(C) such that k(C) = k(z,y) and
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(1.2) y* = f(z) € Klz]

with a square-free polynomial f(z) of degree 2gc + 1 or 2g¢ + 2.
(2) Conversely, if k(C) = k(z,y), y* = f(z) € K|z] with a square-free polyno-
mial f(z) of degree m > 4, then k(C) is hyperelliptic of genus
(m—1)/2 if m=1 mod 2,
gc =
(m—2)/2 if m=0 mod 2.
(3) Let k(C) = k{z,y) with y* = f(x) as in (1.2). Then the places in Py which
ramify in k(C) are the following:
e all zeros of f(z) if deg(f) =0 mod 2;
o all zeros of f(x) and the pole of z if deg(f) =1 mod 2.
Hence, if f(z) decomposes into linear factors, exactly 29c + 2 places of k(x)

are ramified.

Proof: Since k(C) is cyclic of degree two, there exists an element w € k(C) such

that k(C) = k(z,w) and w? = u(z) € k(z). To get a squarefree polynomial, write

u@) =c [[m@) , 0£ce K,

with pairwise distinct irreducible monic polynomials p;(z) € K{z] and r; € Z. Let

ri =2s; +1;, s; € Z, and l; € {0, 1}. Set

Y= w - Hpi(:n)“si.
Then k(C) = k(y,z) and y* = f(z) = p1(z)p2(x) - - - ps(z) a squarefree polynomial in

k[z], which proves the first part of (1).

Let P; € Py denote the zeros of p;(2), P the pole of z in k() and m the degree

of f(z). Then valp,(f(z)) = 1 and valpo(f(z)) = —m. The numbers rp are easily
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seen to be
Tp, = 1 fori=1,..,s,

1 ifm=1 mod 2,
e, =
2 ifm=0 mod 2,

Tp = 2 for all the other places.

Since e(F;|p;) = -, this gives us exactly the ramification points needed in (3). By

the Hurwitz formula and some manipulations we get

205y —2 = (20K — 2)[K(C) : k(x)] + deg Diff(k(D)/k(C))

= (2:0-2)-2+ Z (n—r,) deg P,
PePy)

—4+37 degP+1 if m=1 mod?2,

—4 4+ 37 deg P if m=0 mod2.
\

.

m—3 if m=1 mod 2,

m —4 if m=0 mod?2.

\

Thus the degree of the polynomial f(x) is either 29 4 1 or 2g + 2 and this allows us

to conclude the proposition. Cl

Over an algebraically closed field, the relations above give the following affine

model for C
2042

C:y’=fl)=][]@z-N)

i1
This model is called the Rosenhain normal form and is given by the 2¢ + 2 distinct
Weierstrass points. A complete smooth model for C is obtained by gluing this affine

curve to the affine curve given by the equation

v = f(u) s =ulf(u),
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where d = deg(f) if deg(f) is even, and d == deg(f) + 1 otherwise. The two affine

subsets of C are glued together using the map
(u,v) — (x4, yz~4?).

3.2. Hyperelliptic curves over a field of characteristic 2.
We now consider the situation where char k = 2, the case of an Artin-Schreir

extension. Recall that in such an extension
k(C) = k(y,2) with ¢* —y = u,

for u € k(z) satisfying v # w? — w for all w € k(z) and p the characteristic of
the field. In this situation, all ramified places of k(z) in the quadratic extension are
wildly ramified and one can show that the number of such places, say s, lies in the
range 1 < s < g+ 1, where we can find an example for each integer [30, VI.2]. Such

hyperelliptic curves have an affine model given by

v —y = f(z)

and their behavior is less known and more difficult to understand then that of hyper-
elliptic curves defined over fields of odd characteristic. In our study of hyperelliptic
curves, we will restrict ourselves to the simpler situation, when the field &£ has odd

characteristic.

3.3. The hyperelliptic involution.

ProposiTION 3.3.1. Consider a hyperelliptic function field k(C) of genus gc and
a rational subfield k(z) C k(C) with [k(C) : k(z)] = 2. Then dll rational subfield
k(z) C k(C) with [k(C) : k(2)] < gc are contained in k(z). In particular, k(x) is the
only rational subfield of k(C) with [k(C) : k(z)] = 2.

To prove the above proposition we will need to use Riemann’s inequality that

gives the following estimate for the genus of a function field. A proof can be found
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in [30, I11.10.4].

Riemann’s inequality: Let F' = k(z,y) then
g<([F k(@) =1)-(F: k()] - 1).
Proof of the proposition: Suppose that [£(C) : k(2)] < gc but z ¢ k(z). Then
k(C) = k(z, z), and by the Riemann’s inequality,
go < ([K(C) : k(z)] = 1) - ([K(C) : k(2)] — 1).

On the other hand,

(HO) k(@) ~ 1) (k(C) k()] - 1) <@~ 1) (g~ 1) = go — 1.

a contradiction. O

ProrPOSITION 3.3.2. Let C be an hyperelliptic curve over k, a field of odd char-
acteristic.
(1) There exists a unique canonical involution « : C — C, characterized by

inducing a non-trivial automorphism of k(C) over its unique rational subfield

of index two.

(2) The fized points of ¢ are the Weierstrass points of C.
(3) v € Z(Aut(C)).
(4) Let f,g: C —> P be double coverings, then f = % for some invertible

cg-+d
matriz (¢ %) € PGLy(k).

Proof:
(1),(2) We see easily that the map

1 C — C

(:U7y) — (1:7 My>
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is the one we are looking for. Note that if C has two points at infinity, that is when
C is given by an even degree polynomial, + permutes the two points; and if C has
a single point at infinity, ¢ fixes it. Clearly ¢ induces a non-trivial automorphism ¢*
of k(C) that fixes k(z) and the uniqueness follows from [k(C) : k(z)] = 2. Thus,
the fixed points of ¢ are the ones of the form (z,0) and, depending of the situation,
the point at infinity. These points are exactly the ramification points of the double

covering of the projective line.

(3) Let 7 : C — P! be a double cover, to avoid confusion we will denote the rational
field k(m*(x)), and we have [k(C) : k{«*(z))] = 2. Consider j, any automorphism of
C, similarly, from the double cover 7 o j : C — P! we have [k(C) : k(j*n*(z))] = 2,
thus, by Proposition 3.3.1, k(7*(z)) = k(5*7*(z)). But k(j*n*(x)) = j*(k(z*(z))
therefore j* preserves k(m*(z)). It follows that the automorphism 7*¢*(5*)~! is trivial
on k(m*(z)), thus by (1), j¢j~! = 1, which means that the involution commutes with

any element of Aut(C).
(4) Note first that double coverings correspond to embeddings

If K = k(z) is the unique rational subfield contained in £(C), since k(z) C K, every
embedding f* factors through K

and therefore we have that f* = g* o o for 0 € Aut(k(x)) = PGLo(k). O
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DEFINITION 3.3.1. For S C P we will define
Aut(P', S) = {0 € Aut(P") | 0(S) C S}
the subgroup of the automorphism group of P! fizing S.

COROLLARY 3.3.1. Let C; be hyperelliptic curves, S; be the set of ramification

points of the double cover C; L P'. Then:

(1) O /k=Cy/k < Tv € PGLy(k) such that v(S;) = Ss.

(2) There is an exact sequence
(1.3) 0 — Z./27 %5 Aut(C) 2 Aut(P, S1) — 0,

where a(l) = .

[fa

Proof: (1) Suppose first that C,/k = Cy/k. Considering the associated function

fields, we have the following picture

k(Cy) =5 K(C)
T T

Therefore ¢ o 75 and 77 are two maps from k(z) to k(C;), thus, by the above
proposition, differ by an automorphism v : k(z) — k(z), giving the commutative
diagram

C, G

4 m 17y

Pt s P

which clearly sends the image of Weierstrass points of C to the one of Cj.
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Conversely, suppose that we have the following picture

Cy Coy
L 1o
Pt 2 P!
with »(S7) = Ss. It will induce a map between k(Cs) to k(CY) provided by v* €
Aut(k(z)). The function fields of these curves can by given as

29+2

K = K@)l fory? = () = [[ - o)

k(Co) = k(z)lz]  for 22 = g(z) = [[ (= - 5).

=1

and we can consider the map
o": k(Cy) — k(Cy)

= U(z)
2g+2

2 o) = [T @ -8).

i=1

Since 0*g(x) is a degree 2¢g+2 polynomial sharing the same roots with f(z), that is the
@;’s, we can assume without lost of generalities by adjusting y that f(z) = o*(g(z)).
Thus by specifying the image of z (we have the choice between ¢*(z) = y and

0*(z) = —y) the map o* is a well defined morphism.

(2) Note that b is well defined since from the first part of the corollary, every
automorphism of C' must fix the set of ramification points. The injectivity of a is
trivial and Im(a) = Ker(b) since ¢* is the unique non-trivial automorphism of k(C)
over its rational subfield £(z). The surjectivity of b is again immediate from the first

part of this corollary. U
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4. Moduli spaces

In a sense it is possible to parameterize isomorphism classes of hyperelliptic curves
of a given genus with their Weierstrass points. We will try to solve the “Moduli prob-
lem” for these objects, i.e. we will try to give the parameter space some structure
close to the structure of the objects we want to study. Before we dive into the par-
ticular case of hyperelliptic curves, we first need to be comfortable with the general
settings of the moduli problem. For this section, we will assume that the reader is

familiar with the language of schemes and categories.

4.1. General moduli spaces.

To state a moduli problem we can consider several categories C of schemes. In
order to state it correctly, these categories will need to have fibered products and
products. To have a notion of continuity in our parameterization, we will work with
families of objects in C. Recall that families are flat morphisms of schemes 7 : X — S
such that for each s € S the scheme theorical fiber X, := Spec(k(s)) xs X is an object
of C. Such a scheme S is called a parameter space. Furthermore, we will expect our
category to be equipped with an equivalence relation ~ that can be extended to
any family parameterized by an object in PS, the category of parameter spaces. By
solving the moduli problem for (C, ~, PS) we will try to parameterize the objects in
C (a subcategory of PS) in a kind of continuous way up to the equivalence relation .

Now let

®: PS — (Sets)

be the map which associates to each S € PS the set ®(S) containing all the equiva-
lence classes of families of objects in C parameterized by S. One can show that this

is functorial and we can introduce a first type of moduli space.
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DeriNtTiON 4.1.1. The functor
$:PS — (sets),

is said to be representable in PS if there exists M &€ Obj(PS) such that the functor
® is isomorphic to the functor Homps( - , M). In such a case, M is said to be a fine

moduli space for the moduli problem (C, ~,PS).

In particular, this means that for each S € Obj(PS) there exists a set bijection :
P (S) +— Homps(S, M),

i.e. each class of families parameterized by S corresponds to one and only one mor-
phism between S and M. Thus, for any family defined over a scheme S, there is a
morphism ¢ such that the object in the family over the geometric point s € § will
correspond, via the morphism, to a point ¢(s) € M. Conversely, given any morphism
from a scheme in PS to M, it will be possible to find a family of objects over that
scheme with the same correspondence between objects in C and points in M. One

can find in [4, §2.1] that we have an equivalent notion of fine moduli space.

DEFINITION 4.1.2. A fine moduli space for the problem (C,~,PS) is an object
M € Obj(PS) together with a family U — M which is universal in the following
sense. For each famuly m: X — S there in an unique morphism f € Hompg(S, M)

such that X = S x U = f*(U).

In the simpler language of varieties, we are seeking a variety M parameterizing
C, a category of varieties. A family over a variety B is a surjective algebraic map
m : X — B where the fiber X, = 771(b) is a variety in C. To pose the moduli
problem, we consider C a category of varieties with ~ an equivalence relation that
can be extend to PS, the category of the parameter space. In this setting M will be
a fine moduli space for (C,~,PS) if for any variety B in PS we have a correspon-

dence between morphisms ¢ from B to M and families 7 : X — B. According to
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this correspondence, for each point b € B, its image ¢(b) in the moduli space will
corresponds to the variety X, in our family. We then have a correspondence between
the points on the moduli space and the varieties considered. The possibility to use
this correspondence for the inclusion map N — M for any subvariety of M gives a
kind of continuity. Note that according to the second version of a fine moduli space,
the solution to the problem is a universal family 7 : «f — M on which each fiber is

a variety in the category C.

The functor ® is not representable in general. Usually, the obstruction is created
by objects in C admitting non-trivial automorphisms. However, more frequently, there

exists a coarse solution for this problem.

DEFINITION 4.1.3. A coarse moduli space for the moduli problem (C,~,PS) is

an object M € Obj(PS8) for which there is a natural transformation of functors,
\I’M ® — HOmps( . ,M),

such that:

(1) For an algebraically closed field k,

Uy 0 Daq(Spec(k)) — Hompgs(Spec(k), M)

is bijective;

(2) For any N € Obj(PS) and any natural transformation of functors
Yy:d — HOmpg( . ,N),
there s an unique transformation of functors

K : Hompg( - , M) — Hompg( - , V),
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making commutative the following diagram of natural transformations of

functors:
$ —‘I,-% Hompg( : ,M)

N LK
Homps( -, N).

In the language of varieties, we still have correspondence between points on the
moduli space with varieties in the fixed category. But given a map from B € ObjPS
to M there is not necessarily a corresponding family over B. As a matter of fact, the

coarse moduli space is as close as possible to be a fine moduli space.

We can consider a simple example of a fine moduli space. Let C be the category

of finite sets, the equivalence relation given by
S~ R<« S| =|R|

and PS the category of all sets. The set N is a fine moduli space for the prob-
lem (C,~,PS) and the universal family &/ — N is given by attaching the set
U, = {0,1,....,n — 1} over the integer n € N. Notice that the presence of non-
trivial automorphisms on some of the objects in the category, (finite sets certainly
have non-trivial automorphisms) does not necessarily implies that there is no fine

solution to the moduli problem.

In general, if there is only a coarse moduli space for the objects we want to study,
we can put some extra structure on them to get rid of any non-trivial automorphisms
and then often get a fine moduli space. For instance, for the category of curves we

can label a sufficient number of points on the curves to avoid automorphisms.

LEMMA 4.1.1. Let T be a non-trivial automorphism of the genus g curve C, then

T has at most 2g + 2 fized points
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Proof: For any automorphism 7, it is clear that Fix(T'), the set of fixed points is a
finite set. Choose P € C such that T(P) # P and by the Riemann-Roch theorem we

have that

I(r{P]) = r—g+1+I(K, —r[P)])

> r—g+12>2 if r>g+1.

If we take r = g+1 and f € L(r[P]) non-constant we get (f)oo =nP forl <n < g+1.
Consider then h = f— foT. We have (h)o = n[P)+n[T(P)]. Therefore we get that
deg((h)o) = 2n < 2¢g + 2 and since Fiz(T) C (h)o, we can conclude the proposition.
O

Thus, for n > 2¢ + 2, a genus g curve with n marked points does not admit non
trivial automorphisms. There are several ways to introduce a level structure and we
will consider some of them for the particular case of hyperelliptic curves in a later

section.

4.2. Moduli space for curves.

For the special case of curves we first fix a base scheme S, usually S = Spec(k)
for k a field, and the parameter space PS is Schg, the category of all schemes over
S. The objects we are interested in parameterizing are the objects in C(g), the
category of smooth projective curves of genus g over S. The equivalence relation is
given by isomorphism of curves. For a fixed scheme S, a curve of genus g over S is
a morphism of schemes C —— S which is proper, flat and such that all geometric
fibers are irreducible smooth projective curve of genus ¢g. If C; and C; are curves

over S, they are said to be isomorphic as curves over S if there is an isomorphism
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[ Cy — (5 making the following diagram commutative

¢, Lo,
1 1
S = S

One can ask if the functor
&, : Schg — (Sets),

defined by:
@, (T} = { Isomorphism classes of curves 7 : X — T of genus g},

is representable, i.e., if there is a scheme M, over S such that the functor ¢,( - )
is isomorphic to the functor Homgeng( - , M,). We remark that there are plenty of
curves having non-trivial automorphisms. Therefore, as noted before, we can expect
that there is no fine moduli space for this problem. However, it is known [11] that
this moduli problem only has a coarse solution and the coarse moduli space has di-

mension 3g — 3.

For instance, the coarse moduli space of elliptic curves is known as the Weierstrass
absolute invariant j, also named the j-line. For a field of characteristic p > 3, we may

assume that the elliptic curve has a Weierstrass equation of the form
v* =2+ Az + B.
Then the j-invariant is explicitly given by
7 =1728(44)}/A where A = —16(44* + 27B?).

It is an invariant of the isomorphism class of the curve, and it does not depend on

the particular equation chosen.
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One can easily see that the j-line is not a fine moduli space. For instance we can

consider the quadratic twist. The two curves associated to the affine model:

v =x34+az +b
dy? =13+ ax + b

are isomorphic over the the field Q(v/d), thus they have the same j-invariant. But
with some work, one can show that if d is not a square, the two curves are not iso-
morphic over the field Q while they share the same invariant. Furthermore, over
an algebraically closed field, one can find in [29, II1,§1] that two elliptic curves are
isomorphic if and only if they have the same j-invariant. For a description of this

invariant in characteristic 2 and 3 see |29, Appendix A].

The particular case of genus 2 curves, which are all hyperelliptic, has been consid- -
ered by Igusa in [10] and can be given explicitly in every characteristic. Recall that
a curve defined over a field of odd characteristic can be described by its Rosenhain
normal form:

v =z(z — 1)z — M) (2 — A)(z — A3).
If the characteristic of the field is 2, the curve C can be given by the normal forms
az + fz +y(z - 1)
v =y =141 +az+ Bz
z° + axd.

To define its moduli space, Igusa worked with the universal normal form
2 2 2 2y _
zy” + (1 +ax +bz*)y +2°(c+dx +2°) =0

which is valid for every characteristic. Note that now this form depends on four,
instead of three variables and one can recover quite easily our previous forms from
this one. The moduli space of hyperelliptic curves in characteristic different from two

is closely connected with projective invariants of binary sextics. And surprisingly this
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connection also holds in characteristic 2 if we work with the universal normal form.

For a sextic ugz® + w2’ + ... +ug = ug [[o_y (& — @), if we abbreviate (o; — ;)
by (i5), the following expressions
A(f) = uld> (12)*(34)*(56)°,
B(f) = wugy (12)*(23)*(31)°(45)%(56)°(64)”,
C(f) = uf) (12)%(23)°(31)7(45)7(56)*(64)*(14)°(25)7(36)",
D(f) = w' ]G
<

define homogeneous integral invariants and D(f) is the discriminant of the sextic.

We can evaluate these expressions for the following polynomial,
(1+az + b2?)?* — az®(c + dx + 17,

which is the sextic of Weierstrass points associated to universal normal form.

In characteristic 2, the Weierstrass points behave badly under reduction modulo 2,
thus these integral invariants are not adequate. Instead we need to consider arithmetic
invariants which are rational invariants whose value at the above sextic has integral
coefficients as a polynomial in a,b,¢,d. Note that according to this new definition,

every integral invariant is an arithmetic invariant. Igusa introduced the five basic

invariants,
J2 = 2—3,4 J4 - 2—-53“1(4]22 - B)
J5 - 2-63_2(81]5’ - 160J2J4 e O) Jg == 2~2(J2J6 - Jz)
Jig = 272D

and showed that they make sense for every characteristic. The moduli space of genus
2 curves he described is Hy := Spec(R), where R is the ring of invariant elements

of Z[y1, y2, Y3, y4] under the transformation y; — £'y;, where £ is a fifthroot of unity,
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Y1, Yo, Y3 are some independent variables over @ and yy = %(ylyg — y2). The elements

in R are named the absolute invariants and we have the following correspondence
€1 7€2 7€3 y€4 7—E€5 €1,,62, €3, €4 —€5
Iyt I Jg gt g T = YU s Y s

in which the e; are non-negative integers satisfying e; +2e,+3e3+4e4 = Hes. Further-
more, R is an integrally closed noetherien integral domain over Z with 10 generators

that can be given explicitly. For instance we can take

J25J1~01, J23J4 i)l, J22J5= 1_01, JQ-Jng_Ol, J4J6J1_01,
Jo 2 T2, JEIdit,  JRIRE, ST, TR

4.3. Moduli space for hyperelliptic curves.

Our main concern here is to understand the moduli problem for hyperelliptic
curves of a fixed genus. Later on we will consider some particular hyperelliptic curves
and we will try to describe the subset of the coarse moduli space associated to these

special curves. We consider the functor
Qp, : Schg — (Sets)
defined by:
$44(T) = { Isomorphism classes of hyperelliptic curves 7 : X — T of genus g}

and try to relate it to a coarse moduli space H,.

In order to get concrete results, we will only consider curves defined over k&, an
algebraically closed field of odd characteristic. We have seen in our study of hy-
perelliptic curves that these curves can be associated with the space of non-ordered
(2g + 2)-tuples of distinct points in P! (k). These ramification points are the image of
the Weierstrass points under the covering of the projective line and we will also refer

to them as Weierstrass points. We have seen in Corollary 3.3.1 that two curves over



4. MODULI SPACES 37

k are isomorphic if there exists y € PGLy(k) sending the Weierstrass points of one

curve to those of the other.

For any curve, we can label the Weierstrass points to get an element W' =
(A1, Az, s Aggya] of PH(R)*9F2\A =: H* where A = Z([[,.; (2 ~;)). The symmetric
group Ygy9 acts on Hy* by permuting the Weierstrass points and PGLy(k) acts on it
componentwise. Therefore these two actions commute and H,, the parameter space

of the hyperelliptic curves, can be described as
Hy = (P'(k)¥"*\ A)/PGLy(k) X Tagia,
which is isomorphic to
(P (k)**2\ A)/ PG La(k)]/Sag 2.

We can focus for the moment on Hy = [(P'(k)*~*\ A)/PGLy(k)] and one can use
an appropriate and unique element of PGLy(k) to force the first three Weierstrass
points to be [0,1,00]. We get this way a representative for each classes and this

representative is described by the remaining 2¢g — 1 points. Thus we have
x _ (ol 291
Hy = (P (k) \ {0,1,00})% "\ A,

where
A = { [z, ...xggq] | z; = z; for i # j 1

This quasi-projective variety is not the space we are looking for. Indeed, a permu-
tation of the labeled points will give different elements in Hj but will represent the
same hyperelliptic curve. Therefore, to get a better description of H,, we will need

to erase the marking done previously using the action of the symmetric group 2og40

N
on Hg.

PROPOSITION 4.3.1. Let H} be the quasi-projective variety (P'(k)\{0,1,00})%97\

A, then there is an action of Xago on Hj.
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Proof: Consider first © = |21, ..., Z9g_1] € H;, there exists at least one element in
Hyr =PHE)Y T2\ A, say A = [\, ... Agg12), associated to x and such that

()\1 — 33)(/\3 — A )
()\3 - 56‘)()\1 /\2)
The permutation o € Yy, acts on z by 27 = [z7,...25, ;] where

(o0(M1) —o(x)) (0(X3) = a(X2))
(0(A3) — o(=)) (0(A1) — o(A2))

=1¥(Aips) for  U(z) =

€ PGLy(k).

z7 =7 (Aiyz)  for  7(z) =

% € PGLy(k).

We need to show that this action is well defined. Indeed suppose that we have two
elements in H*, say A = [A1, ..., Aggpo] and N = [f(A1), ..., F(Aggya)] for f € PGLy(k),
which are associates to z. If we consider the action of o through ), the element z”
is given by

: / a(f(M)) —a(f(x) o(f(Xs)) — o (f(Aa2))
zy = Y7 (N for ¢ (z) = =
Pir) = S0 — o (F@) o (F ) — o(FO)

Since the two action commutes and the cross-ratio is stable under PG Ls(k), the map

Y’ can be written as

W (5) = flo(M) = fla(z)) flo(As)) = flo(Xa))
flo(As)) = flo(x)) flo(A)) = flo(A2))
_ o) —a(x) o(As) — a(Xs)
o(A3) — o(z) o (A1) — o(A2)
= ¢7(z).
One easily verifies that we have id(z) = z and (o7)(z) = o(7(x)). l

Since a finite group acting on a quasi-projective variety leads to a quotient which

is also a quasi-projective variety, the set

Hy = [(P'(k) \ {0, 1,001\ A']/Z.

is also a variety. In fact, it will be the coarse moduli space of our moduli problem.

As stated before, there is no fine solution for this problem and one can find a proof
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of this in [25]. Note that the dimension of H, is 29 — 1 and this agrees with the fact

that all genus 2 curves are hyperelliptic.

4.4. Level structure on hyperelliptic curves.

To simplify the moduli space associated to hyperelliptic curves and to be able to
parameterize some coverings, we will add some level structure on H,. For instance,
among the Weierstrass points, one can fix a non-ordered m-tuple of points, and con-
sider H}" the moduli space of (C,s) where s € S, :={ 5 : |s| =mand s C W¢ },
i.e., the genus g hyperelliptic curves together with a choice of m Weierstiass points

(not labeled). This new moduli space can be describe as:
Hy = [([P(k)*"*™™ x P (k)™ \ A)/PGLa(k)}/S2g42-m X Tom,
where PG L,(k) acts componentwize and A = Z([[,,;(z: — z;)).

2942

For a curve C' in H, there are ( -

) ways to pick a set s of m Weierstrass points,

2942
m

thus the map p : H* — H, has degree (*/*#). This map will be ramified if C admits
particular automorphisms. Two elements (C, s1) and (C, s9) in H" with s; # 55 will
be isomorphic if there is ¢ € PGLy(k) that sent W to itself and s; to sp. Remark
that if we consider a curve C with a set of Weierstrass points W = {\y, ..., Ayg42} and
¥ € Aut(C), by Corollary 3.3.1 we have necessarily that ¢(W) = W, i.e., the map
permutes the Weierstrass points. Since the involution ¢ is trivial on the Weierstrass
points, we will only consider the elements in Aut(C)/ < ¢ >=: Aut(C)* named the re-

duced automorphism group. From the same corollary, the isomorphism ¢ corresponds

to an automorphism in the reduced group that sends s; to ss.

We therefore have an action of Aut(C)* on S, that induces trivially an action on

p~H(C) the fiber of the map p: H* — Hy. If Aui(C)* is not empty, there will exist
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elements in the fiber that were a priori distinct but will be associated by ¢ € Aut(C)*.

In this situation, the map p will be ramified over the curve C.

LeMMA 4.4.1. Let p~'(C) the fiber of the map p : H» — Hy over C and m #
2g + 2, then the action of Aut™(C) on p~'(C) is faithful.

Proof: For any automorphism ¥ in Aut(C)*, from Corollary 3.3.1, there exists
z € W such that ¢(z) # x. If m # 2g + 2 there is at least one set s € S, containing
x but not ¢(x), thus ¥ acts non-trivially on (C, s). Therefore, the kernel of this action
is the identity, hence the action is faithfui. 0O

We denote by Aut(C)% the elements in Aut(C)* that send the set s € Sy, to itself

and we can state the following.

LEMMA 4.4.2. Let p~'(C) the fiber of the map p: H* — H, over C, then
(1) the elements of the fiber p~'(C) correspond to the orbits of the action of
Aut(C)* on Sy,;
(2) the stabilizer of (C,s) € p~H(C) (also of s € Sy )in Aut(C)* is Aut(C):.
Proof: (1) Consider (C, s1) and (C, s2) two elements in the fiber of C' where s; # $9,

they will correspond to the same element in H* if and only if there is ¢ € Aut(C)*
such that ¢(s;) = s, that is, if and only if they are in the same orbit.

(2) Clear from the definition of Aut(C)%. O

Another way to put a level structure on hyperelliptic curves is to label the Weier-
strass points by U :={ §| §:{1,2,...,29 + 2} —E—«WVC}. Once the points are labeled,
as we have seen, one can send the first three points to [0, 1, 0o] and we get a moduli

space encountered before

Hy = (P'(k)\ {0, 1,00} \ A,
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The map p; : H; — H, has degree (29 + 2)! and again this map will be ramified if
the curve admits an automorphism beside the hyperelliptic involution. Two elements
(C,81) and (C, 8) in H; with §; # §; will be isomorphic if there is ¢ € PG Ly(k) that
sent §; to §,, that is if ¢ € Aut(C)* and send 5, to §,. Again the action of Aut(C)*
on V¥ is faithful and induces naturally an action on p7'(C). Similarly we have the

following:

LEMMA 4.4.3. Let p7'(C) the fiber of the map p Hy — H, over C, then:

(1) the elements of the fiber p7'(C) correspond to the orbits of the action of
Aut(C)* on ¥;

(2) the stabilizer of (C,8) € py ' (C) in Aut(C)* is the identity;

(3) the fiber over the curve C consists of (2g + 2)!/|Aut(C)*| elements.

Proof: (1) Consider (C,§;) and (C, 3;) two elements on the fiber where §; # 3§,
they correspond to the same element in H; if and only if there is ¢ € Aut(C)* such
that ¢(8,) = 8, that is, if and only if 8, € Orb(5;, Aut(C)*).

(2) Since by Corollary 3.3.1, every elements in Aut(C)* permutes some of the

Weierstrass points, an ordered 2g + 2-tuple § is sent to itself only via the identity.

(3) If two different automorphisms « and § in Aut(C) induce the same per-
mutation of the Weierstrass points, from the exact sequence 1.3 in Corollary 3.3.1,
af~! =1 thus @ = f in Aut(C)*. Since each element in the reduced automorphism
group acts non-trivially and differently on every § € ¥, every orbit of the group
Aut(C)* consists of |Aut(C)*| elements. Therefore there is (2g + 2)!/|Aut(C)*| el-
ements the fiber p;(C) and the ramification index of these elements is |Aut(C)*|. O

One can also consider the degree (29+2—m)!-m! map ps : H; — HJ" given first

by sending the m first points of (C, §) to the set s € S,;, and then by forgetting all the
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labels. Again ramification will occur when the curve has non-trivial automorphisms
but only particular automorphisms will produce ramification. The only way to get
ramification over (C,s) € H" is when two different ordering of s, say ) and
give the same element in H i.e. when there is ¢ € Aut(C); such that ¢(s;) = 5.
Remark that Aut(C) acts on S and on S, and this action induces an action on

p~HC), p7H(C) and py*(C,s). Also note that Aut(C)*\ Aut(C)* does not induces

an action on p;1(C, s).

LEMMA 4.4.4. Let p;'(C,s) the fiber of the map py : H; — H, then the

elements of the fiber p;(C, s) correspond to the orbits of the action of Aut(C)* on S.

5

Proof: Consider (C, 3;) and (C, §2) two elements over (C, s). This mean that §; and
39 are two different orderings of the Weierstrass points where the m first components
are s. They will correspond to the same element if and only if there is. ¢ € Aut(C)*
such that ¢(3;) = §5 and ¢ send the first m components to themselves, that is, if and

only if they are in the same orbit of Aut(C)?. tJ

We can compose p, with p to get a degree (29 +2 — m)! - m!l- (*%) = (29 + 2)!
map which clearly corresponds to p;. The following diagram summarizes the moduli

spaces we have considered and the morphisms between them.

Hy (B2 A
H; (P1\{0,1,00})29 -1\ A/
p2 o2 /
//
H;” Pl AEH2F2T @Y INAY PG Ly x (Bogt 3 X B ) 2
X x

Hg [(Pl\{()?lvoo})zg—l\A,]/Z‘Jsg%»?
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Therefore this decomposition provides a better description of the ramification over
C. Suppose that (C, §;) and (C, 3;) correspond to the same element in p;*(C), then

this identification can be explained by these two situations:

e If the first m components of §; and $, are the same, say s. Thus they have
the same basepoint (C,s) in H{'. Therefore 5; is send to $; with some ¢ in
Aut(C)2.

e If the first m components of §; and §, are different. Thus they have different
basepoints in H}", say (C,s1) and (C, s3) for s; # s,. Hence 5; is sent to 3,
via an automorphism ¢ that does not fixes s; nor s,. Therefore, ¢ must be

in Aut(C)*\ (Aut™(C),, U Aut™(O)s,).
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5. Affine group schemes

We have previously seen that Jac(C') is a particular example of an abelian variety.
Let X be an abelian variety over a field k and X|[n] the kernel of the multiplication
by n map. Then X[n] has a natural srtuctureof an affine group scheme. The group
law on such a scheme X|[n] will induce naturally on k[X[n]], the coordinate ring of
the scheme, some k-algebra homomorphisms. Together with this structure, these k-
algebras are known as Hopf algebras. In general, one starts with a k-algebra with
appropriate structure on it and obtains an affine group scheme. Note that this group
scheme will not necessarily come from an abelian variety. By a theorem of Oort,
any commutative finite group scheme is a subgroupscheme of X|n], for some abelian

variety X and some n.

5.1. Affine group scheme as representable functors.

If we consider R, any k-algebra, there are several ways to get a group from it.
For instance, we can consider I with only its additive law, we can also consider
GL,(R) the n x n matrices with entries in R and with invertible determinant. In
general, given any k-algebra R we would like a group G(R) and that a given k-algebra
homomorphism ¢ : R — S, will induce a group homomorphism G(R) — G(S).
Indeed, we want G to be a covariant functor from k-algebras to groups. Furthermore,
if, like in the situation of affine varieties, the elements in G(R) correspond to solutions
in R of some family of polynomials, say I = ({f;};es), one can find A a k-algebra and
a natural correspondence between G(R) and Hom,(A, R). Note that the converse
also holds, every k-algebra A arises in this way from some family of equations. Such
functors are called representable and we say that A represents G. Note that if A has

finitely many generators it can be written as k[zy, ...z,]/I, a coordinate ring.

DEerINiTION 5.1.1. An affine group scheme over k is a representable functor from

the category of k-algebras to the category of groups.
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There are many examples of affine group schemes, and the most relevant are the

following.

e G, : The additive group assigning to every k-algebra R its underlying addi-
tive group. The functor G, is represented by k[x].

e G, : The multiplicative grbup assigning to every k-algebra R the group R*
of its invertible elements together with its multiplicative law. The functor
G,, is represented (as a scheme)by k[z, z7'] = klz,y]/(zy — 1).

e [, : It assigns to every k-algebra R the multiplicative group {¢ € R | (" = 1},
the n-th roots of unity. The functor p, is represented by k[z]/(z" — 1).

e oy : For k a field of characteristic p, it assign to every k-algebra R the addi-
tive group {z € R | 27" = 0}. The functor s is represented by kz]/(z?").

e GL, : The matrix group, assigning to every k-algebra R the n by n invertible
matrices with entries in R. The functor GL,, is represented by the ring
klz11,212, 0, Znn, Y]/ (y - det(zy;) — 1).

e I': The constant group scheme represented by A = k. One can show that
if R is a k-algebra with no idempotents except 0 and 1, any element of
Hom(A, R) is given by assigning one element in I' to the unity of R, thus one

can, in a certain way, consider I'(R) as the group I itself.

It is well known that there are plenty of maps between groups. For instance,
cousider det : GL, — G,,. For each ring R, det gives a map from GL,(R) to
G..(R). This is, in fact, a natural transformation of functors since for any ¢ : R — S

the following diagram commutes:
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This comes from the fact that we have an explicit formula for det involving only
polynomials in the matrix entries. In fact, such natural maps arise only from such a

situation.

THEOREM 5.1.1. (Yoneda’s lemma) Let E and F be functors represented by k-
algebras A and B. Every natural transformation of functors E — F corresponds to

k-algebra homomorphisms B —> A.

Proof: Since an element in E(R) corresponds to a morphism A — R, for any
Y 1 B —» A, the composition B — A — R define an element in F(R). We get
clearly a natural transformation of functors E — F'.

Conversely, we can apply our natural map ¥ : E — F to E(A) corresponding
to the identity map ids : A — A. Applying ¥ to it we get an element of F(A),
i.e., a homomorphism @ : B — A. Since any element in any E(R) comes from a

homomorphism A — R, and

commutes, we see that ¥ is exactly the map defined from ¢ in the first step. O

COROLLARY 5.1.1. The map E — F is a natural equivalence iff B — A is an

isomorphism.

Notice that affine group schemes can also be consider as contravariant func-
tors from k-algebras R to groups if we describe them in terms of their representing

objects, A.

5.2. Hopf Algebras.
As noted before, the group structure on G induces naturally some maps on the

k-algebra A. This is a well known structure, known as a Hopf algebra. Consider a
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group I' ;= G(R) for some G and some R. Saying that T is a group is equivalent to
giving the maps:
multiplication m: I'xI' — T

unit u: {e}—7T

inverse 7: I — T

such that the following diagrams commute:

IxTxD “@xm  pyr
b mxid I m {associativity),
I'x T SN r

{e} xT 2% ©xT
|2 L m (left unit),

r = r
r @ pyr
1 L om (left inverse).

{e} = r

Suppose now that G is represented by A; then A ®; A represents G x G and we

can apply Yoneda’s lemma to get the following k-algebras maps:

comultiplication A: A— AR A
counit e€: A—k

coinverse S: A — A
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such that the following diagrams commute:

A A A E2% ApA

T A®id T A,
A® A A A
oA £29  ApA4 A4 & Ag4
[ + A and ¢ A
A = A k VLN A

DEFINITION 5.2.1. A k-algebra with specified maps A, €, S satisfying the above

conditions s called a Hopf algebra.

One can show that affine group schemes over &k correspond to Hopf algebras over
k, see [32, 1,§ 1.4]. Note that in terms of functions, from f € A where f: G — k
we get Af € A® A where Af : G x G — k is given by Af(z,y) = f(zy). If we
return to the above examples we easily work out the structure of their respective Hopf

algebras.
e For G,, we have
Az =)+ (1®z)=z+y,
e: x 0,
S: z — -z,

where @1 =z and 1 ® z =: y.

e For (5,,, we have
A 2z mzzrz=(21) (1®z) ==y,
€. T —1,

S: z —z,
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where r ® 1=z and 1 @z = y.

e For p,, this group scheme is in fact the kernel of the homomorphism G,, —
G, given by z — z™ and the maps on the Hopf algebra k[x]/(z“" — 1) are
the same as for k[z,z™!] modulo the ideal.

e For ays, this group scheme is in fact the kernel of the homomorphism Fr® :
G, — G, given by x — z”° and the maps on the Hopf algebra k[z]/(z?")
are the same as for k[z] modulo the ideal. Note that Fr® is the well known
Frobenius map that we will study later.

e For T, if we denote by e, the element in A such that e, (o) = 1 and e,(7) =0
for all the other elements + in the group, we get that {e, },er is a basis of A.

In this setting we have

A: e, Z(em; ® es-1),
ser
1 ifo=1ud
€: €y >
0 otherwise,

S: e, eyt

5.3. Cartier dual.

In addition to the maps A, ¢, rmS, a Hopf algebra A has the following maps:

ring multiplication m: A® A — A

k-algebra structure w: k — A.

Hence, it seems possible to consider the dual of these Hopf algebras. A group scheme
G is said to be finite if it is represented by A, a finite dimensional vector space
over k. First note that taking the dual NV = Homg(N, k) of a finite-rank free module
commutes with the usual operations on modules: (M&N)Y ~ (MYeNY), (M@N)" ~
(MY ® NY), Hom(M,N) ~ Hom(NY,M") and (M @ k)¥ ~ MY ® k. Since the

operations Hom and & commute with finite direct sums, taking the dual of A4 still
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make sense if G is a finite abelian group scheme. The maps A, €, S, m and u induce

new maps on the dual which are very similar to some we know:

mY: AV — AV AY,
u’: A — k,

SV A — AY,

AV: AV@AY — AY,

eV k— AY.

THEOREM 5.3.1. (Cartier duality). Let G be a finite abelian group scheme rep-

resented by A. Then AY represent another finite abelian group scheme G'. Here

(GY)Y = G and Hom(G, H ) ~ Hom(H", G").

We can find a proof of this theorem in [32] and it is an easy exercise to show that

(Z/nZ)" =~ p, and (oys)" = pe.

5.4. The Frobenius map.

Given any field map & — k' we can perform a base change and get a group scheme
over k' represented by A®y k'. By considering the Frobenius map Fr® : a +— o from
k to itself, for any affine group scheme G over a field k of characteristic p, we get a
new group scheme denoted G®). If G and G®") are represented by respectively A
and A®) = A®;... k, the map from AP to A given by a® a — a?’ a gives a group
homomorphisms

Fr*: G — GP),
again called the Frobenius map. If A = k[xy,...,z,]/(f1, ..., fm) then AP =
klz1,...,za}/ (g1, - gm) represents G®") where the ¢; are obtained by raising each
coefficient of the f; to the p® power. Then the morphism Fr® is given as morphism of
k-algebras by

Fre: AP 5 A s 2l fori=1,..,m,
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and corresponds, as a homomorphism of groups, to

5

Fr* - G(S) — GP)(S),  (s1,...,80) = (57 ,...,87).

If G is a finite abelian group scheme, we can apply the same argument to the dual

of G and get the map
Fr: GY — (GY)),
that induces, by duality, a morphism called the Verschiebung morphism given by
Ver := Fr¥ : GP —; G,

and such that Frg o Vergy = [p]G(p) and Vergw o Frg = [p|G, see (5] for details.

5.5. Etale group schemes.

For k a perfect field of characteristic p and G a finite commutative abelian scheme
represented by A, we will say that G is étale if it becomes a constant group scheme
after base change, that is, if A ®; k represents a constant group scheme. We have
seen that given any finite abelian group one can construct a corresponding constant
group scheme. Indeed we have a bijection between these two sets, and if we consider

étale group schemes we have again a bijection given bhy.

Etale group schemes } Finite abelian groups I' + }
Aaaad .

over k an element of H'(Gal(k/k), Aut(T))

Any ¢ in Hom(Gal(k/k), Aut(T')) will gives an étale group scheme, see [19, 1,§5]
for the equivalence of categories between finite étale group schemes over & and the
category of groups endowed with Gal(k, k) action. Two elements 6, & will represent
the same étale group scheme iff there is 0 € Aut(I') such that § = 06’0~ i.e. iff they

define the same cohomology class.
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If G has order [", where [ is prime to p, one can show that G is always étale and
therefore G will also be étale. On the other hand, if G has order p®, it may or may
not be étale. We will say that G is local if G is represented by an artinian local ring
A. Since geometric points come from maximal ideals, G(k) consists of the identity
element only. For instance, in the examples seen before, oy, and p, are local group
schemes over fields of characteristic p. We will say that a local group scheme of order
p® is local-étale if its dual is étale. Also if an étale group has order p® it is not difficult

to show that its dual will necessarily be local, such group schemes are called étale-local.

It is now possible to decompose the category of finite commutative group schemes

over a perfect field in four categories, see [31] for proof and details.
( local-local ) @ ( local-étale ) @ ( étale-local ) @ ( étale-étale ).
For each of these categories, we have a non-trivial example given respectively by
Oy, Up, Z/pZ and Z/[IZ,

where [ is any prime different of p, the characteristic of the field k. Moreover, over an
algebraically closed field &, every finite commutative group scheme has a composition

series whose quotients are one of those group schemes, see [24, Lemma 6.1].

5.6. G[n| as an affine group scheme.

Given any commutative affine group scheme G of dimension g we can consider

the functor from k-algebras to groups
Gn]: R — G[nl(R) = {z € G(R) | nz = 0}.

If G is a g dimensional abelian variety, one can prove, see [19], that the multiplication
by n map is an isogeny and the kernel G[n] is an affine group scheme represented

by a Hopf algebra A of rank n?*. One can also show that ([n] is étale, that is
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Gln]®@ik® 2 (Z/nZ)*, if and only if the characteristic of k is coprime to n. Moreover,

if p = char(k) then
|Gpl(k)] < 1%,

and the kernel of the map Fr : Gp] — G®[p] is also an affine group scheme of

order pJ.

5.7. Polarization.

In a later classification of A[p] we will assume that these group schemes are self-
dual. This duality comes from the fact that we consider principally polarized abelian
varieties A, which is always the case when A is the Jacobian of a curve. Without

going into great details, we will give some explanations.

For any divisor D in A we consider the line bundle £ = O4(D) and T, : A —
A the translation by z map on A, T,(y) = = +y. The dual abelian variety A"
parameterizes line bundles on A that are algebraically equivalent to zero. For every z
and a line bundle £, we have that 7,(£)® L ™! is equivalent to zero, hence corresponds

to a point on AY. We define the map

At A — AY

r —T(L)eLt

which is in fact an homomorphism of groups, see [21, §6, Corollary 4]. The dual A
of the abelian variety A is Pic’(A), where here Pic®(A) is the identity component
of Pic(A) and one can show that (AY)Y = A. Recall that a polarization of A is a

homomorphism,

FiA— A
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where f = A for some ample line bundle £ over A/k. The polarization is said to be

principal it f is an isomorphism.

For a curve C and a point P on it, there exists a particular divisor on the Jacobian

of C, named the theta-divisor, which is given as follow

@:{ia-(g—l)mﬂec}.

Changing the basepoint P results in a translation of © and thus the theta divisor
is canonical up to translation and one can show that it is ample. Therefore, for
L = Ojac(cy(©), the map Az : Jac(C) — Jac(C)” is a canonical polarization and

one can show that it is an isomorphism, see [20, Theorem 6.6] for details.

We only consider self-dual abelian varieties in the next sections. From the exact

sequence
0 — A[n] — A B4 — 0,
we get by duality theory
0 — (A[n])Y — A G 4v 0.

Because (xn)Y = xn we have that (A[n])Y = A"[n] and by self-duality we conclude

o~

that AV[n] = A[n]. Since for every finite commutative group scheme G over k, there

exists a canonical perfect pairing G x G — G,,, we obtain
Aln] x (A[n])" — pin,
which leads in this setting to the Weil Pasring

Aln] x Aln] —> ftn.
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6. Dieudonné Modules

For the questions that interest us, we may restrict our attention to self-dual p-
torsion commutative group schemes of order p® over k, a perfect field of characteristic
p. We will denote the Froebenius morphism on &k by ¢. In order to study these group

schemes, we will often work on an equivalent category: the covariant Dieudonné mod-

ules.

Given G, a p-torsion commutative group scheme of order p*, we have a correspond-
ing Dieudonné module D(G) which is a s-dimensional vector space over k together
with two maps: F' and V', and an alternating pairing. The formation of these modules

commutes with base changes, that is
(G ® L) = D(G) ® L.
The construction is functorial, see [5, Appendix A,5], thus from
Fr: G — G,
there is a linear map:
Fr' : D(G) — D(GP) = D(G) @4, &

that gives the o~ *-linear map

V:D(G) — D(G).
Similarly we get the o-linear map

F:D(G) — D(G)
from Verschiebung and the two maps are such that

(14)  FV=VF=0, F(\)=MF(v) and V(\) = \s V(1) VA€ k.
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A morphism of Dieudonné modules is a morphism of vector spaces that commutes with
V and F. Also, one can show that we have the duality D(GY) = Homp(D(G), k) =
D(G)V.

THEOREM 6.0.1. The functor D from the category of finite commutative group
schemes of order a power of p over a perfect field k of characteristic p to the category
of finite dimensional k-vector spaces equipped with two maps F and V' satisfying (1.4)

1s an equivalence of categories.

The equivalence can be refined to an equivalence between the self-dual group
schemes i.e., group schemes G equipped with an isomorphism A : G — G such

that A = AV and k-vector spaces V equipped with a perfect alternating pairing
<>V xV—k

such that < Fz,y >=< z,Vy >7. This new category will be an useful tool to classify
Jac(C)[pl.

For instance, we can consider u, and Z/pZ which are dual to each other and have
order p. One easily verifies that Frobenius acts as zero on p, and as the identity on
Z/pZ, thus V acts as an isomorphism on D(Z/pZ). Or equivalently, F' acts as an
isomorphism on (g, ). Therefore the group p, has the Dieudonné module D(y,) = £,
where p and V act as zero and F' acts as an automorphism of k. The group scheme
Z/pZ has the Dieudonné module I(Z/pZ) = k where p and F act as zero and V acts
as an automorphism of k. Since Verschiebung and Frobenius act as zero on the group
scheme o, using the equivalence of categories, we have the trivial Dieudonné module

D(ay) = k, where F', V and p act as zero.

6.1. The a-number and the f-number.
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Consider Hom(e,, G) for any finite commutative group scheme G. This is a finite
dimensional vector space. One can prove it directly, see [5], or use the equivalence
of categories. Indeed for ¢ € Hom(D(ay, ), D(G)) = Hom(k, D(G)), since ¢(F(x)) =
¢(V(z)) = 0 by linearity we would expect to have F(¢(z)) = V(¢p(z)) = 0 for any
z € k. Thus if we denote the k-vector space W = { y e D(G) | Fy=Vy =0} =
Ker(F) N Ker(V) we have that:

Hom(ID(ey, ), D(G)) = Hom(k, W),

a k- vector space. We define the a-number of the finite commutative group scheme

G, as the dimension of this space, i.e.,
af(G) = dimy Hom(a,, A)
= dimy Hom(k, W)
= dimy W.

Furthermore we have that W = k% 2 (D(a,))* as vector spaces and, again by
the equivalence of categories, there exists a finite commutative group scheme o C G,

the alpha group scheme, such that D(a) = W and o = oft.

We return to our classification of commutative group schemes G over a perfect

field of characteristic p. For any p-torsion group G, it can be decomposed as
G = Gl—l D Gl—e @ Ge—l.

where G'™! is its local-local component, G'~¢ its local-étale component and G its

étale-local component. We therefore have
D(G) =D(G) e DG @ D(G™).

Note that on I(G'™%), F is an isomorphism and V is nilpotent and on D(G*™), V
is an isomorphism and F' is nilpotent. Therefore F' and V both have kernel only

on D(G") and it follows easily that af(G) = af(G'™"). Moreover, since F and V
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are nilpotent we can conclude that W # 0, hence af(G"™") > 0 for any local — local
group scheme. Also, for G an abelian variety of dimension g, the kernel of the map

Fr: Glp] — G®)[p] has order p?, thus we have an upper bound for the a-number.

For instance we can find the a-number for all the possible p-torsion groups of the

elliptic curves. As stated before, every elliptic curve is principally polarized, thus

Elp] is self-dual.

Consider first the case when F is an ordinary elliptic curve, that is when E[p](k) &

Z/p Z. By self-duality we have 1, C Ep] @ k so

L, ®Z/pZ C Elpl @1 k

and we get the equality by considering the rank on both sides. Remark that Elp)

does not have local-local component thus the a-number of an ordinary elliptic curve
is 0.

If E is a supersingular elliptic curve, that is when E[p](k) = 0, then the p-torsion
group has no étale-local component, thus, by self-duality, no local-étale component
either. Therefore, F[p] is local-local, so af(F[p]) > 0 and by the upper bound we
have that af(E[p]) = 1. Thus we have the non-split exact sequence

0 — o, — Elp| — a, — 0,

where the embedded «,, that we will denote H, is unique and is both in the kernel
of Frobenius and Verschiebung. The group scheme E[p] ®; k will be denoted M and

one can show that it is independent of F.
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One can also show that if we apply twice Frobenius to the group scheme Gp] of

order p?9, we get that Fr?(G[p]) is a group scheme of order p?=%.

Another number that will interest us is the integer ff such that
" = |Gp](k)].

It is called the f-number of the commutative group scheme G[p|. Remark that the
f-number depends only of the étale component, therefore f4(G) = f#(G°™). In fact
for G = Alp] the f-number is often defined as

dimy, [ VIID(G)) = dim;, D(G*™)

i=1
since D(G®™!) is the largest submodule of I(G) on which V is an isomorphism.

(Equivalently, G®™' is the largest subgroup of G on which F is an isomorphism.)

For instance, we can find the f-number for our previous example, the p-torsion
groups of elliptic curves. Since the p-torsion group of a supersingular curve has
no étale-local component, the f-number is 0. For the ordinary case we have that

ELp]eﬁl = Fp|(k) = Z/pZ, thus the f-number is 1.

Together with the a-number, the f-number will allow us to describe partially
Frobenius and Verschiebung for the finite commutative group schemes that interest
us: the p-torsion group of the Jacobian of hyperelliptic curves. The a-number and the
f-number should be thought of as (very coarse) discrete invariants we can associate

to an abelian variety in positive characteristic.

6.2. Dieudonné modules and cohomology.
As noted before it will be useful to study abelian varieties using Dieudonné mod-

ules. Also, using cohomology we will get very concrete tools for our study. Let A
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be an abelian variety of dimension g over a perfect field of characteristic p. We can
consider two order p? group schemes, A[Fr] C A, the kernel of the Froebenius mor-
phism Fr : 4 — A® and A[Ver] C A, the kernel of the Verschiebung morphism

Ver : A — AW/P). Together with Alp] we have the following exact sequence:

0 — A[Ver] —s Ap] ~5 AUPF] —s 0.

This uses that FroVer = [p] and that both A[Ver] and A[Fr] are of order p?. Applying

the covariant Dieudonné functor we get
(1.5) 0 —» D(A[Ver]) —s D(A[p]) == DAY Fr)) = D(A[F]) ) — 0
(where F is a linear map). We note that this sequence is nothing else then
0 — D(F) — D 2 DV) —> 0,
where D = D(Ap]), D(F) ={2z€D | Fz=0},DV)={zeD|Vz=0}and F

is now a o-linear map.

One can also show that there is an isomorphism of k[F,V]-modules of D with
H(A) if A has a polarization prime to p. It is known that the vector space H}, has

the following filtration
0 — H°A, QL) — Hip(A) — HY(A,04) — 0,

which can be related to (1.5). Indeed, it is not hard to show that Fr acts as zero on
differential forms, thus we can associate D(F) with H°(A4,Q}). Also we can identify

Im(F(D)) with H' (A, O,). Assuming that A has principal polarization, we have that
D/D(F) = Im(F) = Ker(V) = D(V)

but notice that the map that identifies D/D(F) with D(V') is o-linear. Therefore we
have the association: D(V) = H'(A, C4) .y, k which give the following diagram
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0 — HYAQY) — HRA) — HY A0, — 0
b Uk o
0 — DF) — D S DV)e,k — O

Furthermore the Frobenius operator ' on D(V') induces a o-linear operator on
HY(A,04). There is also a o-linear operator on H'(A, O,4) induced by the map of
sheaves Oy — O,4 given by z — 2P. One can prove, see [22], that these two maps
agree. We denote this morphism also by F. This sequence has many applications in
our study. For instance, it is now possible to expiess the a-number of Afp] in terms

of cohomology. Since D(V') = D(A[Fr]) is already the kernel of V' we have

af(Alp]) = dimgKer(F : D(V) — D(V))
= dimgKer(F : H'(A,04) @ b — H'(A,04) Ry, k)

= dimy Ker(F : HY(4,04) — H'(4,04)).

Therefore, if A is the Jacobian of a curve C, it will be possible to study prop-
erties of the Frobenius morphism, for instance the o-linear operator induced by F
on H'(Jac(C), Ojacicy). The matrix describing this operator on H*'(Jac(C), Ojac(c))
in named the Hasse- Witt Matriz. It is known that there is an isomorphism between
HY(C,0¢) and H'(Jac(C), Ojac(c), see for instance [20, Lemma 9.5]. Therefore it
will be possible to describe the Hasse-Witt matrix in terms H'(C,O¢) and this is
equivalent to studying the Verschiebung operator V on H®(C, QF).

6.3. The Cartier operator.
We will see in a moment that studying the Verschiebung operator V on H(C, QL)

is the same as studying the Cartier cperator. But before we introduce this operator
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we need some preliminaries on the theory of differential over fields of positive char-

acteristic. All the proofs related to this topic can be found in [2, Chapter 2]

We say that an application 0 of a field & to itself is a derivation if it satisfies these

two properties

oz +y) = o(x)+0(y),

o(zy) = o(x)y+oo(y) forz,y € k.

One can easily show that the set of elements annihilated by a derivation 9.s in fact
a subfield k() containing kP. A derivation ® which is null for each element of L, a
subfield of k, is said to be a L-derivation and we will denote g(k/L) the set of all

L-derivations.

For k, a finite extension of a field L containing kP, we call a p-basis any minimal
system of generators of the extension k/L. Since [k : L] is finite, a p-basis is also
finite. A sequence of elements {z; }1<i<» in k, is a p-basis if and only if the monomials
z - -zr (for 0< j, <pand 1 <k <n)are a basis of k over L as a vector space.
Also, if {Z;}1<i<n is a p-basis of the extension k/L, there exists a basis {9;}1<i<n of

the k-vector space g(k/L) completely determined by the condition
01(113]) = 5ij for 1 < Z,] <n.

For each integer r we denote Q" (k/L) the k-vector space of the k-multilinear al-
ternating forms of r variables in g(k/L). We denote 2*(k/L) the direct sum of the
Q(k/L), indeed the exterior algebra of Q!(k/L). The elements of Q*(k/L) are called
differentials of k over L.
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For x € k we denote dx the differential f € Q'(k/L) given by f(0) = o(x). The

application z +> dz from k to Q*(k/L) is L-linear and we have
d(zy) = d(z)y + zd(y).

Given a p-basis {%;}1<i<n We have that < 9;,dz; >= 0 for 1 < 4,7, < n. Thus
{dz;}1<i<n is a basis of Q'(k/L) dual to {9;}1<i<n, the basis of g(k/L). It is well

known that there exists a unique L-linear operator d satisfying the relation
dWw Aw) =dw ANw + (=1)"w' A dw, d(d(w)) =0,

for ' € U(k/L),w € Q*(k/L), and extending the application = ~— dz from k =
Q%k/L) to Q'(k/L). The kernel of d, that we denote by Z, is a subalgebra of the
L-algebra Q(k/L) and the image of d, denoted B, is an ideal of Z.

PROPOSITION 6.3.1. Let {z;}1<i<n be a p-basis of k over L. The subalgebra Z of
the L-algebra QV*(k/L) is the direct sum of the ideal B and the L-algebra generated by

the elements f; = a¥~ 'dx;, where 1 < j < n.

For simplicity consider the case L = kP, and let {z;}1<i<, a p-basis of k on kP.
We know that for all the strictly increasing sequences (iy, ..., %,) and f; = 2’ "dx;, the
monomials f;, A ... A f; are a basis of Z modulo B on kP. Thus we can write any

element w € Z as

w=dp+Y o fu A AFi form, s, in k.

-----

The Cartier operator C from Z to Q*(k) := Q*(k/kP) is defined as

Cw = Z Dir oy G5y A o N diy,

We can now focus on the particular situation where £ is the function field of a
hyperelliptic curve. We change our notation. Let C be a complete non-singular curve

over k, an algebraically closed field, defined by the equation
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where f(z) € k[z] is a degree 2g + 1 polynomial. The field k(C) has a unique sub-
field kP(2P,y?) = k(zP,y*) = k(C)P over which k(C) is separably generated, e.g.,
k(C) = k(C)P(z) for a separably generating transcendental element z € k(C)\ k(C)*.
The p-basis of this extension is therefore {x}. Note that since C is a curve 0*(k(C)) =
k@ QL (k(C)). We consider Q! (k(C)) the set of differential forms of degree 1 on k(C)
and d : k(C) — Q}(k(C)) the canonical derivation of k(C).

Since dz # 0 for a separating element x € k \ k? and since dw = 0 for every

w € QY(k(C)), by Proposition 6.3.1, every w can be expressed uniquely in the form
w=d¢+ 2" dx with ¢, € k(C).
Thus the Cartier operator is given by
C:QNK(C) — QMK(C)),
| Cw = ndz.

It is a well defined o~ *-linear operator and C(d¢) = 0.

It is well known [29, I1] that the g-dimensional k-vector space Q' (k(C)) of differ-
entials forms of degree one of the first kind of £(C) has the following basis

id

ci=0,.,9-1}

Due to the work of Manin [15], the images of the w;’s under the Cartier operator C
are determined in the following way. We can rewrite w; as

N
= gy Py ldy = y Px E c;x’dx,
§=0

ridx
Yy

Wi =
where the coeflicients ¢; € k are obtained from the expansion

N
- _ -1
gl = f(x)’lz—l = chxj, where N = 25—(29 +1).
§=0
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Then we get fore=1,..., 9,

w; = y_p( Z ijvj_l—idx) -+ Z C(H1)p,(i+1)x(l+l)p_(i+1)+i'y_pdx

J >0
i+7-+1% Omodp -
c_$j+i+l I,lp
= d(y™” E ) o g Clayp—(ir1) ——2 dz.
(y : ]+Z+1) — (I4+1)p—(i+1) y:

i+j+1E Omodp

Note here that

N+i1+4+1 —_ 232 1
Oglg—-ﬁ-——l.—_((p 1)/)(9+)+g_1<g~1.
p p 2
Thus we have
g—1 y 7t
_ P
Cuw; = C(l-f—l)p—(i-}-l)gd‘r'
I=0

This shows that H°(C,%) is closed under the Cartier operator C. Thus, we can

represent C by a matrix. Indeed, if we write w = (wy, ...,w,), we have
Cw = AU/P,,

where A(/?) is the g x g matrix with elements in k given as

1/p 1/p 1/p

Cp-1 Cp-2 Cp—g
1/p 1/p 1/p

A(l/p) — CQp——l C2}0«2 ch—g
1/p i/p 1/p

Cop—1 Cyp-2 Cop—g

The usual care as to the meaning of representing a o~ ! linear operator by a matrix
must be exercised. We note that this formula shows that the Cartier operator C :
QNE(C)) — Q(K(C)) defines a o~'-linear operator H°(C, Qg ) — HY(C, Q)
that we denote by the same letter C. If we raise to the p power each of the coefficients
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of the matrix AU/P) we get the matrix

Cp—1 Cp—2 Cp—yg

Cop—1 Cop—2 ' Cop—yg
A=

Cop—-1 Cgp—2 """ Cygp—yg

This matrix is called the Cartier-Manin matriz associated to the hyperelliptic curve
C of genus g defined over k. If S = (s;5), is a non-singular g x g matrix with entries
in k and S = (s7), then the change of basis for H%(C, QLC/K) by S results in the

Cartier operator being represented by S®AS™!,

6.4. The Hasse-Witt matrix.
One can also find in again in [33, Lemma D, E] that the Hasse-Witt matrix can

be identified with the Cartier-Manin matrix of a given curve C/k.

Indeed if we come back the sequence
0 — H°(Jac(C), Qo)) — Hir(Jac(C)/E) — H'(Jac(C), Osacicy) — 0,

we have that H® := H°(Jac(C), Q.. ) = HO(C,Qp) is in duality with H' =
Hl(Jac(C),OJaC(C)) i.e.:

< Fr,y>=<z,Vy>° H'=(HY
<HY H'>=0 < H° H? >=0.
In fact, writing the matrix of F on H', the Hasse-Witt matrix, corresponds to writing
the matrix of V in H®, the Cartier-Manin matrix. Suppose that {(;} is a basis of
H' and that {n;} is a basis of H?, then < (;,7; >= d;5. 'Then the coefficients of the
Cartier-Manin matrix can be written as

g9
cji =< Zcmé}:: n; >=<Fq,n; > .
k=1
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On the other hand, since < F'(;,n; >=< (;,Vn; >, we get that a;;, the coefficients

of the Hasse-Witt matrix can be recover
g

al, =< (i, ¥ aggmy >°=< (i, Vg >°= ¢,
k=1

Therefore the matrix AP found in the above calculations is the Hasse-Witt matrix

but usually we will consider the matrix to be A.

6.5. Ordinary, non-ordinary and supersingular abelian varieties.
We have encountered the definition of an ordinary genus 1 curve in our previous

example and this definition can be extended to hyperelliptic curves of higher genus.

THEOREM 6.5.1. Let A be a g-dimensional abelian variety over a perfect field k
of characteristic p. The following statements are equivalent:
(1) [A[pl(R)] = p*
(2) Alp] @k = g(up ® Z/pZL)
(3) The Frobenius map H*(A, O4) — H'(A, O4) is an isomorphism.

If these properties hold we say that A is ordinary, and otherwise we say it is non-
ordinary. One can also prove that f < g if and only if @ > 0. There is in this theorem
other statements about Newton polygon and the formal group of Jac(C). They are
not relevant for ours needs but for those who could be interested, the complete ver-
sion, together with the proof, can be found in [33]. A genus g curve C is said to be
ordinary if its Jacobian Jac(C') is ordinary. By definition, the f-number of a genus g
ordinary curve is g, the a-number must be 0 and the Hasse-Witt matrix has non-zero

determinant.

A genus g curve C is said to be non-ordinary if its Jacobian Jac(C) is not an
ordinary abelian variety. For such a curve, the a-number is greater than 0 and the

f-number is less than g. Again, this can be translated in terms of the Hasse-Witt
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matrix. A hyperelliptic curve defined over a field of characteristic p > 2 will be non-
ordinary if and only if the Hasse-Witt matrix has zero determinant. The non-ordinary

curves can be subdivided into supersingular, superspecial and mixed curves.

An abelian variety A over an algebraically closed field of characteristic p > 0 is
called supersingular if there exists an isogeny A ~ E™ | where E is a supersingular
elliptic curve. Again we say that a curve is supersingular if its Jacobian is supersin-
gular. If A is supersingular abelian variety then |A[p]| = 1 but the converse does not
hold if the dimension of A is greater then 2. We call A superspecial if it is isomorphic
to a product of supersingular elliptic curves. We will say that all the other possible
non-ordinary curves are of mized type. Note that if |Jac(C)[p]| = p’® then the p-torsion
group of Jac(C) will have the component s(up ® Z/pZ).

6.6. Final sequences and classification of rank 2g Dieudonnés modules.

As stated before it is possible to construct Dieudonnés modules from p-torsion
commutative group schemes. This construction enables us to classify the objects we
want to study. To do so, we consider self-dual group schemes with perfect alternating

pairing
GxG—

and we say that these group schemes are symplectic. This classification is given by

this main theorem.

THEOREM 6.6.1. (F. Oort) Let k be an algebraically closed field of characteristic
p, then there exist, up to isomorphisms, 29 symplectic commutative group schemes
G rank p*9 killed by p. Moreover, each such group scheme appears as the p-torsion

group scheme of some principally polarized g-dimensional abelian variety over k.
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The theorem comes from the following lemma. In the scope of the equivalence
of categories, the classification given in this lemma will also allow us to classify the

Dieudonnés modules.

LEMMA 6.6.1. Let k be an algebraically closed field of characteristic p

a. Given a group scheme as in Theorem 6.6.1 there exists a final filtration,
{0}=GoC G, C---CG,C--C Gy =G,

with the following properties:
1. rank G, = p';
2. G}/ = Gyy—j;
3. Ver(G;) = Gy for a suitable function ¢ : {0,...,29} — {0,...,2g}
called a final sequence.

b. The function ¥ has the following properties:

1. ¥(0) =0 and (i) < P+ 1) < (i) + 1 for all i;
20 Y+ 1) =v({E)+1o P29 —1) =929 —1—1).

c. Let ¥ a final sequence satisfying (1') and (2'), then it determines the isomor-
phism class of the group G and every such function comes from some group
scheme GV over k. There are 29 such functions determined by their values
on {0,...,g}.

d. The f-number of G¥ ismax{i:0<4i<g, ¥(i) =1 }. The a-number of G¥
is given by g — ¥(g).

Thus there are always 29 such functions and the final sequence is completely de-
termined if we know its first g + 1 values. If we omit the first zero the restriction of

¥ on the set {1,..., g} is called the elementary sequence.

Example: If ¢ = 1, we would expect to have two group schemes. We have seen

before that we first have the situation of an ordinary elliptic curve, that is when
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Elp|(k) = p, ® Z/p Z. The filtration is then the following

{0y Cpp C 1y @Z/p Z),

where Ver(u, ® Z/p Z) = 11, and Ver(p,) = u,. Therefore the function ¢ is given by

i Jol1]2
W(E) o111

where the g-number is 0 and the f-numberis 1. The only other possible final sequence

is given by

i fol1|2
pE) | o]oe]1

with 1 as a-number and 0 as f-number. The filtration associated to this function is

given as
{0}cHCM

where Ver(M) = H, Ver(H) = 0 and H = «,. This filtration corresponds to the

situation of a supersingular elliptic curve.

Note that in general, since the f-number of the ordinary curves is g, the sequences
associated to these curves, or rather their Jacobians, are the ones where ¥(g) = ¢.

There is only one such final sequence, named the ordinary sequence, given by

i lolilel lglags1l.. |29
Y@ 0112 ..|g] g |.-|g

Remark also that this consistent with the fact that af(Jac(C)[p]) = ¥(g) —g=0.

It is possible to construct the Dieudonné modules associated to these particular

group schemes using final sequences. Let ¢ be a final sequence and denote by

1_<*m1<m2<.u.<mg§29
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the set of integers ¢ such that (i — 1) < (i) and fill the blanks of the length 2g

string with
I <ng <ng. <..<n <2g.

Note that the integers in the second set are the integer ¢ such that (i — 1) = ¥(7)

and we have the following relation: m; +n; = 2¢g + 1.

The basis for the Dieudonné module can be given as

{Z;, .. 20}

It will be convenient to introduce the following notation

At this point, we need only to construct V, F' and the alternating pairing for the

module @22 k - Z;. The two maps are given by

V(X;) = 2 V(Y =0,
F(Zl) = 07 F(Z2g—-i+1) = 6Y;, 1= 1, v g.

Here e = 1if Zyy ;41 € {Y1,...,¥,} and e = —1 otherwise. Finally, the pairing is given
by

<X27Y3> = 5%” <Xi:Xj> =0= ( 117Y>

Note that KerF is spanned by Z,,...2Z,, KerV is spanned by ¥3,...,Y,, and FoV =
VoF =1

For instance, consider for ¢ = 2, the final sequence




72 1. GENERAL THEORY

This sequence augments at the second and the fourth position (we do not consider

the first zero in the set of integers) thus m; = 2,

my = 4 and we have the following

data:
Y o111, 2
No | My | Ny | Mo
Basis | Z1 | Zy | Z3 | Z4
o X | Vi) X
Vv 01Y, | 0] Xy
F 010 |Yy| -1

which gives the 4 dimensional Dieudonné module M = @?:1 k - Z; together with V,

F" and the pairing.

Conversely, one can start with M, a 2g dimensional Dieudonné module killed by

p with ImF = KerV, ImV = KerF and with a symplectic pairing and then construct

a final sequence which corresponds, by Lemma 6.6.1 to an group scheme with the

needed properties. For such module there is always a V-filtration and a F-filtration.

The F-filtration of the module corresponds to the Verschiebung filtration of the group

schemes. If we apply it to a Dieudonné module constructed from a final sequence, the

filtration will give back the original sequence. If instead we consider the V-filtration

we would not necessarily get our original sequence.

So using F' we need to construct a filtration

O:M()CMlC"'CMgg_lCMQg:M

where the M; have dimension ¢ and F'(M;) = My;. To do so we apply F to M to get

M;, = Myg), we then again apply F' to M, to get M,

== My@,) and so on until we
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do not get new modules. We get this way a partial filtration of Dieudonnés modules
0C M, C---CM;, CM,

with a portion of the final sequence. We then take M., the dual of each of these
submodules M; with respect to the pairing and we apply F' on each M), on their
images, etc. We then take the dual of the new submodules and do this algorithm
until its stabilizes. Once nothing new can be obtained with this procedure, there is
no guarantee that all the submodules will be reached. If so, we consider the first
index which is not reached, say 7, and the first submodule containing strictly M;_,,
say M. We define M; = M;_ ® kZ; where Z; is the first generator of M not in
M;_,. We then take the dual of M; and apply the algorithm until we get all the

submodules, indeed the whole final sequence.

We can find in appendix 1, a program that enables us to work with these Dieudonné
modules. From a final sequence or from a type (note that the type is not relevant in
our considerations but can be pertinent in other situations) the program constructs
the Dieudonné module, its F-filtration and thus give back the sequence. Also given
s final sequences it compute each Dieudonné modules M, Ms,...M,, the module

M = @;_, M; and the final sequence associated to M.

6.7. Ekedahl-Oort stratification.

DEFINITION 6.7.1. Let ¢ be a final sequence and let A the moduli space of princi-
pally polarized abelian varieties. Let Ey be the locally closed set of A with the property
that its geometric points x are such that (A.[p], A\z) has a final sequence 1.

We will need a partial order on the final sequences ¢ and it is possible to define

one as follows,
P <y e i) <96) vi<yg

With these definitions we can state the following theorem from F. Oort, see [23].
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THEOREM 6.7.1. Let ¥ be o final sequence then
(1) The sets Ey form a stratification of the moduli space A. There exists a set
A1) that contains all final sequences ' < 1, and possibly other sequences
such that By, the closure of Ey, is the union of Ey for ' € A(x). That is

E,= U By
Y eA(Y)

(2) The dimension of Ey is
g
dim(Ey) = |9 :== Y 9().
=1

If we come bhack to the example ¢ = 1, the one dimensional ordinary locus of
the j-line is the stratum of the elementary sequence {0, 1}, while the stratum of the
sequence {0,0} is the zero dimensional supersingular locus. For g = 2, the three
dimensional ordinary locus is the stratum of the elementary sequence {0,1,2}. The
stratum of {0, 1,1} is two dimensional and the stratum of {0,0, 1} is one dimensional
and is open and dense in the supersingular locus. Its closure is a family of Moret-
Bailly families meeting transversely at the superspecial locus, which is the stratum

of the sequence {0,0,0}.

Remark: In general it is not known which Ey is in the boundary of F,. Oort
gave an example of Ey in the boundary of E, and ¢ £ 4.



CHAPTER 2

Exploration

1. General problem

We have seen that given a genus g hyperelliptic curve C' defined over a perfect
field of characteristic p, we can associate to it a final sequence of 2g integers. This
sequence is given by the unique final filtration of Jac(C)[p]. The first thing one can
try to describe is the subset of the moduli space H, that corresponds to a given final
sequence 1, i.e. a subset on which every point z, that is every hyperelliptic curve
C,, has that fixed final sequence 70. Also, one can seek to describe the points cor-
responding to a union of different sequences. For instance, the non-ordinary curves
have sequence belonging to the union of all possible sequences except the ordinary
sequence. Another way to define sets in the moduli space of curves is to consider
for every curve C the final sequence of a curve D associated to C. For example, one
can try to describe the curves having some unramified covering of a fixed degree such
that the covering curve has a given sequence . This problem seems very difficult in
this generality therefore we fix many parameters to ease our study and finally narrow
down to the study of unramified double coverings of hyperelliptic curves and even to
unramified covering of genus two curves by an non-ordinary genus three curve. This
last problem will be the one we will focus on. For the moment, however, we can give

an overview of the general question.

We will consider the affine model,
29+1

=1

75
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of a genus ¢g hyperelliptic curve over k, an algebraically closed field of characteristic
p # 2 with a ramification point at infinity. This model is called the Rosenhain normal
form and its associated Hasse-Witt matrix is given explicitly in section 6.4. In this

setting, the entries of the matrix A(C) = (a;;) are

p—1

a;; = The coefficient of the degree 1 -p — j term of f(z) 3

We consider the moduli space H, of genus g hyperelliptic curves over k. Given a

type v we define
H,(¢) = {z ¢ H, | The final sequence of Jac(C;)[p] is ¢ },
and
Hy(N) = {z € Hy | The final sequence of Jac(C;)[p] is not the ordinary sequence }.

We would like to describe these sets as subvarieties of the moduli space H,. As a
matter of fact, we will try to describe them in terms of the Weierstrass points. For
instance, the condition for a curve to be non-ordinary can be described by a specific
polynomial. Indeed the entries of the Hasse-Witt matrix can be expressed in terms
of the coeflicients of the Rosenhain normal form. Therefore, the Weierstrass points

of the curve need to solve the polynomial equation of the determinant.

2. Unramified degree n coverings

Let v : D — C be an unramified degree n covering of a genus g hyperelliptic

curve . The Hurwitz formula

29p — 2 = (2g9c — 2) deg(p)
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gives the genus of the covering curve . So D needs to be a genus 1 + n(gc — 1)

curve. We will denote

H, J(.4) z € H, | 3 i degree n unramified coverings v: D — C,
n\¥,1) = ’
’ where the sequence of Jac(D)[p] is ¥
and denote
H, . (N.1) z € H, | 34 degree n unramified coverings of v: D — C,
nl4¥, ) = .
’ where Jac(D)[p| does not have the ordinary sequence

We will say that these particular coverings of curves are non-ordinary coverings.
We would also like to find a moduli space M for these degree n unramified coverings.

To do so, consider the two projection maps
m(y:D—C)=C, and m(y: D — C)=D.

Consider also t : My ng-1) = Ai4n(g—1), the Torelli morphism from the moduli space
of genus 1+ n(g — 1) curves to the moduli space of dimension 1+ n(g — 1) abelian
varieties which sends a curve to its Jacobian. If we choose a base points Py € C and

consider

¢! — Jac(C)
(Pl,...,Pg) = Z(P1~P0)

i=1
The theta divisor discussed in Chapter 1 section 5.7 is the image of CY7 x {Fy} and

we have seen that it induces Ap(e), a principal polarization that does not depend on

Py. The Torelli morphism is given by
C— (Jac(C),)\@(@))

and is injective with this polarization. Therefore we have the following picture:
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T t
M T Mgy = Ay
T
H,
It is known that there is a correspondence between unramified degree n abelian

coverings of a curve C and degree n maps to its Jacobian. To get a feeling for the

situation we can work over C.

Recall that an unramified degree n abelian cover of C corresponds to a normal
subgroup N < 71((7) where m(C)/N is abelian of cardinality n. This normal sub-
group corresponds to exactly one subgroup of index n of 7%(C) = H,(C,Z). But
H(C,Z) = Hy(Jac(C), Z) for Jac(C) = C?/L and L a lattice. Then Hy(Jac(C),Z) =
L and the index n subgroup corresponds to a sublattice J C L of index n. Therefore
the covering induces a map at the level of abelian varieties C¢/J — C9/L. Also
from any such map C9/K —> C9/L, we can recover an abelian degree n unramified

covering of C.

In fact, this correspondence also holds if the curve is defined over an algebraically

closed field of characteristic prime to n. For instance, one can find the following in

[20, §9]:

THEOREM 2.0.2. If J —> Jac(C) is an wnramified covering of degree n of
Jac(C), then C" = C X joe(cy J' — C' is an unramified covering of degree n of C' and
every unramified abelian covering of C s obtained this way. FEquivalently, the map

71(C, p)® —3 7 (Jac(C),0) is an isomorphism.

Therefore, a degree n unramified abelian cover of C is equivalent to a subgroup
of order n of Jac(C'). Thus we can deduce that the map m; is quasi-finite. We can

deduce that the map 75 is also quasi-finite using the following theorem.
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THEOREM 2.0.3. (de Franchis-Severi) Let D be a non-singular projective curve.
Then there are only a finite number of finite separable morphisms v : D — C (taken

. up to isomorphism) where C ranges through all non-singular projective curves of genus

> 2.

There is an analog of this theorem for Riemann surfaces and a proof of it can be

found in [16, page 227]. We then have the following.

PRrOPOSITION 2.0.1. The map 7; is a finite morphism and the map 7y is a quasi-

Jfinite morphism.

Proof: From the above discussion, we have that the two maps are quasi-finite and
it remain to show that m; is finite. It will be sufficient to show that 7, is a proper
morphism of affine varieties, see [8, Ex 4.6, page 106]. For the properness of m; we

will use the following criterion that can be found in [8, § 71, Theorem 4.7].

THEOREM 2.0.4. (Valuative criterion of properness) Let f : X — Y be a
morphism of finite type, with X noetherian. Then f is proper if and only if for every
valuation ring R with quotient field K and for every morphism of Spec K to X and

Spec R to Y forming a commutative diagram

Spec K ——= X

Spec R — Y

there exists a unique morphism Spec R — X making the whole diagram commuta-

tive.
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Remark that we may consider this criterion for a discrete valuation ring R only,

see [8, § I1, Exercise 4.11]. Therefore, we need to show that in the following diagram

Spec K LA H?

Spec R g H,

we can define a morphism h.

Notice here that giving a map ¢ is equivalent to giving a family of genus ¢ hy-
perelliptic curves C/r — Spec R. (This is essentially a curve whose equations are
defined using coeflicients from R and has good reduction modulo m, where m is the
unique maximal ideal of R.) The canonical map i : Spec K —Spec R corresponds
to taking the generic fiber C/x of Cjg, C/x = C)r ®g K. Indeed, we can think of
C as a curve over K. And finally, the map f corresponds to giving an unramified

double covering v/x : D/ — C/k.

So what we need to show is that we can extend D,k to a curve over R and also ex-

tend v,k to a morphism v,g : D/r — Cg such that v, is a double unramified cover.

We have seen that the double covering 7,k corresponds to a sugroup H /g of order
2 in Jac(C)x). Let us denote by B/ the quotient Jac(C)x)/(H k). Since Jac(C/k)
is principally polarized, we have the following diagram
Dk o = B>/K
Y/ K l degree 2
¥

C/KC——-> JaC(C/K) = JaC(C/K)

l degree 2

Bk
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Since C)p is a smooth curve over a discrete valuation ring, there exists an abelian
scheme whose generic fiber is Jac(C)x) and special fiber is Jac(C ®g (R/m)) that we
denote Jac(C)r). This follows from the representability of the functor Picc,,, see i1,

9.3, Theorem 1].

It is well known that H/x can be extended to a unique subgroup scheme f g
of Jac(C/g). In fact, Jac(C/k)[2] is a finite étale group scheme over R, and Hp
is the closure of H/x in Jac(C)g). Since Jac(C)g) is also principally polarized, for

B = Jac(Cyr)/(H/g), we have the following

D/R ---------- > B>/R

YR ldegree 2
¥
Cip——= Jac(Cig) = Jac(C/g)
l degree 2

B/r

Thus, it follows that v,z is an unramified double cover. Therefore, since this con-
struction commutes with base change, the morphism /g is an extension of vk, thus

Ty 1S proper.

We know that the moduli spaces H, and Hg are both quotients by a finite group
of the variety H} = (P'(k) \ {0,1,00})* "'\ A', where A’ is the fat diagonal. We
know that the variety (P(k)\ {0,1,00})??~! is affine, and since A’ is a divisor, it fol-
lows that H is also an affine variety. Therefore, since they are quotients of an affine

variety by an finite group, we can conclude that I, and Hg are also affine varieties. [J

Given a final sequence % we have By, C Aj,,—1) an Ekedahl-Oort stratum. We
can pull it back to My -1y via £*, and again pull back to M via 75. At this

point, with the map my, we can describe a cycle of H, relative to the sequence 1 in
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the following way: m,(73t*(Ey)) € H,. Remark that m, is well define since 7 is
finite. Later on, we will be interested in curves having 7 particular degree n covers,

denoted by H,,(¢,%), and in a sense they correspond to points of multiplicity ¢ in
T (w3t (By)).

One can ask what are the possible degrees of unramified covers of hyperelliptic
curves which remain hyperelliptic. Machlachlan proved [13] that the only possible
degrees of unramified normal extensions of hyperelliptic surfaces are n = 2 and n = 4.
He also proves that for g > 2, an unramified extension of degree 2 or 4 of a genus
g hyperelliptic surface need not to be hyperelliptic. Machlanchlan’s results can be
shown very simply by using the properties of Weierstrass points on hyperelliptic Rie-

mann surfaces, see [3], and these proofs can be extended to hyperelliptic curves.

3. Unramified degree 2 coverings

For the next discussion, we will restrict ourselves to the particular case of degree

two coverings and for the beginning we shall give the ideas that lead to the following

theorem.

THEOREM 3.0.5. (Farkas [3]) Let C be an genus g > 1 hyperelliptic curve defined
over a field of odd characteristic and let v : D — C an unramified degree 2 covering.
Then the genus of D is 29—1 and there are exactly (292”) degree 2 unramified coverings
for which D is hyperelliptic. The remaining 2°9 — 1 — (29;2) are not. In particular

when g = 2 all the coverings curves are hyperelliptic.
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The calculation of the genus is straightforward using Hurwitz formula. The map

v : D — C induces the following degree 2 maps of abelian varieties

A AY
i T
Jac(C) = Jac(C)V.
Thus Ker(fV) = {0, P} for P a 2-torsion point and there is a correspondence between
unramified double cover of C and Jac(C)[2]. Since |Jac(C)[2]] = 2%, we then have

229 — 1 different coverings of the curve C. Note that two different covering curves can

be isomorphic as curves.

Let We = {1, ..., Agg12} be the set of Weierstrass points of the curve C. We now
construct all the 2-torsion points on Jac(C). Note that for any {;, \;} C We we

have

T — /\z
xTr — /\j
thus A, — A\; € Jac(C)[2]. Without lost of generality, we let v € W be the point at

h = N and (h) = 2)\1 - 2)\7

infinity, thus f(z) has odd degree, and take s C W any set of even cardinality. We
consider the divisor of the form
Dy= (X~ v) € Jac(C).
AEs
One easily shows that D; belongs to Jac(C)[2]. Since there are 227! such divisors and -
only 229 non-zero points having order at most 2, there is necessarily some repetition.
The following lemma gives us the complete description of Jac(C)[2], (corresponding

to degree 2 unramified double coverings) in terms of the Weierstrass points.

LeMmma 3.0.1. Let v € W, and s C We, a set of even cardinality. Let Dy =
Yones(Ni =), @ point in Jac(C)[2]. Then Dy = D, if and only if t=Wc\s.

Proof: Note that D, is defined also for s of odd cardinality and D, = D1y = Da\fu}-

Remark also that if s; N sy = s3, then D, + D, = D(5,us,)\s5, and we may subtract
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or add v to (s; Uss) \ s3 to have even cardinality. Therefore D, — Dy = D, + D, =0
if and only if Dyypsne = 0, thus showing the lemma is equivalent to show that for a

set of even cardinality we have D; = 0 exactly when s = Wg or s = @.

Note first that since (y?) = f(z) = 2Dy, we have that (y) = Dy, = 0. On
the other hand, if for s # @ we have D, = 0, then there is a function on C, say g,
such that (g) = 3, ., (A — v). Therefore, we have ¢° = fi(z) := [Theso(z— ). I
[s\ v| < 29 + 1 we get a contradiction with the fact that the genus of the curve is g.
Since s can’t have 2g + 1 elements, we get that s = W. ]

Therefore all the coverings will correspond to some 2-torsion point given by a
divisor D,. In terms of function fields, such coverings can be given in terms of degree

two Galois extensions of the function fields k£(C'). Recall that:
k(C) = k(@) [V f] = ko) VT a2,
where the A; are in W. Thus
k(D) = KC)Vh] = k(C)[]/(z* — ().

where h € k(C) and (h) = 2D, for some set s C W¢ of 2r elements. This function

field can also be described as

_ ko) (@)1
KO = 56 9 2~ hia))

This shows that D is the normalization of C Xp1 k(F'), where F is a curve with
function field %%—L Some automorphisms of D can be given explicitly. The Galois

group of the extension is

I'=Gal(k(D)/k(z)) =< 1,0 >Z ZL/2L S ZL/2Z
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where the two generators are given by

e r— T
Lo yk—}wy g . yr——)y
Z bz Z > —Z

From Galois theory, the subsets of I' give us the following three subfields:

k(D)
o/ To-t Nt
k(C) E(E) k(F)
AN T a
k(z)

PROPOSITION 3.0.2. Let C be a genus g hyperelliptic curve defined over a field
of odd characteristic and let s C W with |s| = 2r. Then for the unramified double
covering v : D —> C defined by Dy, there are two other coverings, v : D — F and

€: D — E, where E and F are hyperelliptic curves of genus respectively r — 1 and
g—r.
Proof: We consider first the subfield fixed by u

K(F) = k(z)[Vh] = k(z)[2]/(z* = h(x)).

We then have a hyperelliptic curve F' with Weierstrass set s, thus of genus r — 1. On

the other hand, if we consider the subfield fixed by o - ¢ we get

k(E) = k(z)[v/g] = k(@)[t]/ (" - 9(=)),

where g(z) = f(z)/h(z) and t = y/z. In fact (g) = 2Dw,\s = 2D, and |t| =
2(g — r) — 2. Therefore E is also a hyperelliptic curve of genus g — r. O
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Note that we clearly see the symmetry discussed in Lemma 3.0.1. Indeed, if
consider W \ s, instead of s, we get the same covering; we only interchange k(F)
with k(E). Therefore, we will only consider the sets s where |s| < g + 1 and the

following corollary is almost immediate.

COROLLARY 3.0.1. Let C be a genus g hyperelliptic curve defined over a field of
odd characteristic and let v : D — C be a degree two unramified covering. Then there
exrists (29;2) coverings for which D is hyperelliptic. Furthermore one can associate a

genus g — 1 hyperelliptic curve to each such coverings.

Proof: We have seen that D is an hyperelliptic curves if and only if it is a dou-
ble covering of the projective line and such covering corresponds to an inclusion
E(t) — k(D). If the genus of the curve D is greater than 3, from the Proposition

3.3.1 seen in the first section, since
94 2 [k(D) : k(z)] =4

we get k(z) C k(t). Thus, by Galois theory, D can only be a double cover of the
three curves (', F and F'. Therefore one of these curves need to be the projective line.
Since |s| < 2¢ the curve with lower genus is F’ with genus r—1 = 0, thus |s| = 2r = 2.
The only other possible genus for the curve D is 3 and in this particular situation,

g=2,7=1and |s| = 2, therefore F is also the projective line. Since there is (2"; 2)

way to choose 2 points in W we get exactly (*f*) such coverings and the curve E

will necessarily have genus g — 1. U

Later, we will try to understand the action of Froebenius on Jac(D). Using the
decomposition made in Proposition 3.0.2 it will be possible to decompose this action

in three parts. ’
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THEOREM 3.0.6. Let C be a genus g hyperelliptic curve defined over a finite field

of odd characteristic, and v : D — C' an unramified double covering.
(1) The map

Y Jac(C) & Jac(E) @ Jac(F) — Jac(D)

1S an 1sogeny.

(2) The kernel of ¥ in contained in
Jac(C)[4] @ Jac(E)[4] & Jac(F)[4].

Proof: (1)Note first that both sides are abelian varieties that have the same dimen-
sion

g+(r—-1)+(g—r)=29-1
Thus, it is enough to show that W is surjective. For v : D — (' we have
U(Jac(C)) = ~*(Jac(C)) C Ker(l — o) =: ',
U(Jac(E)) = €' (Jac(F)) C Ker(1 —ou) =: F/,
U(Jac(F)) = o*(Jac(F)) C Ker(l — ) =: F".
We then have the following diagram

C'+E+F g Jac(p)
+ @ P
Jac(C) @ Jac(E) & Jac(F),

where @ is the composition
Jac(C) @ Jac(E) @ Jac(F) c C'" @ E' ¢ F — C'+ E'+ F'.

Note here that the elements which are invariant under the automorphisms o, ¢

and ot are divisor classes. For the needs of the proof we need to show that for an
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element f in, say C without lost of generality, there is always a representative which

is o-invariant. Indeed consider the divisor ¢ representing § then

5 - o(8) = (f).

Since 02 = id we also get that

(c(f)=0a(f)=0(d) —0=(f7),

which implies that f - o(f) is constant, without lost of generality say equal to 1. We
can apply Hilbert’s Theorem 90, see [12, Theorem 6.1], to f-o(f). Hence there is a
function g such that g/o(g) = f. Then

[0+ 0(g)] = 0ald +a(g)] = (f) +0(g) = (9) =0,

thus (0 + 0(g)) is a representative of 8 which is o-invariant as a divisor. Consider

now the exact sequence
0 — Jac(D)[2]NC" — C" 23207 — 0.

Since Jac(D)[2] is finite 2C" C C" will have finite index. For any 8 € C’ take a o-
invariant representative 8’ and o = v,(#') € Jac(C), thus v (7.(8')) = B + 3, where
o(f1) = f'. But since §' is o invariant v*(7.(8')) = 28" € ¥(Jac(C)). Therefore
2C" C ¥(Jac(C)) which implies that ¥(Jac(C)) C C' will also have finite index. By
doing it for ¥ and E we conclude that the image of the map @ has finite index.

We need to show now that the inclusion ¥’ is surjective. For any ¢ in Jac(D) we
can write 20 = (1 +0)d + (1 — 0)d. We get easily that (1 +0)d is in Ker(1 — o) =’
and we denote (1 — 0)d by &;. It is again possible to write 26; as (1 +4)d; + (1 — 1)y
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where (1 +¢)d; € Ker(1 —¢) = F' and since
(1—o)(1 =)o, = (1—o)(1—0)(1—0)d
= (1~1w0—1—0+ %0 +10° +10—1*0%)§
= (l-w—-1-0+o+i+w0—1)6=0=0,

we get that (1 — ¢)d; is in Ker(l — o¢) = E’. Since Jac(D) is divisible, there exists
n € Jac(D) such that n = 46 so we can decompose ¢ in three parts

d=dn=(1+0)2n+ (1 —-0)(1+)m+(1-0)1—1)m,

respectively in C”, F' and E’. Since the image of ¥ = @ has finite index and is an

abelian variety having the same dimension as Jac(C) we conclude that ¥ is surjective.

(b) Consider now w = (z,y,2) € Jac(C) @ Jac(F) @ Jac(F) an element in the
kernel of ¥. Then we have z +y + z = 0 and also ox + oy + 0z = 0. If we add these

two equations, since x is o-invariant, we get
O0=22+ (1+o0)y+ (1+0)=z.

Again we get easily that (1 + o)z is o-invariant and furthermore (1 + o)z is still in

Jac(F'). Indeed o corresponds to the involution of F' thus oz € Jac(F'), so is z + oz.

Since F' is an hyperelliptic curve, there is a double covering p : F — P! that
induces p* : Jac(P') — Jac(F). By the same argument as above, we have that twice
any o-invariant element lead to an element in Jac(P!) and since Jac(P') is trivial, we

get that
2(1+o0)z=0.

The same argument hold for (1 + o)y and we get:

0=4z+2(1+o0)y+ 2(1 + 0)z = 4z.
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By applying the same argument for y, and z, respectively with (o and ¢ we get that

4y = 4z = 0 which allows us to conclude the theorem. ]

It is interesting to describe the p-torsion group of Jac(D) in terms of this isogeny.

COROLLARY 3.0.2. For all primes p > 2 there 1s an isomophism between the

p-torsion group of Jac(D) and the p-torsion group of Jac(C) & Jac(E) & Jac(F).
Therefore the action of F on H%(Jac(D), Qyac(n)) decomposes in three parts on
H'(Jac(C), Qaciey) & H(Jac(E). Qac(my) & H(Jac(F), Qyac(r))-

Let A(X) be the Hasse-Witt matrix of X. It is then possible to describe the Hasse-

Witt matrix of the curve D in the following way:

From now on we will concentrate on the specific coverings v : D — C for which
D is hyperelliptic. Since |s| = 2, such a covering corresponds to a choice of two points
{Ai, A\j} € We. We will denote the polynomial h by hy;, the covering curve by Dj;
and the genus g—1 curve by E;;. Note that two curves D;; and Dy, can be isomorphic

and recall that F;; has function field
k(EU) - k(.l')[ HA};;GWC (37“/\19)]'
RELG ]

In this particular situation, we have a correspondence between degree 2 unramified
covering and points in A 92, the moduli space of genus ¢ hyperelliptic curves with a

choice of 2 Weierstrass points. The map € can be translated in terms of moduli space
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to give the following:
€: Hg2 — Hy_y
(CAAL A D) = (We\ {A, A).

In terms of moduli space we get this new picture:

b
Hygr = Aggn

/!
H? =5 Hyyo b Ay
P
Hg

We now will focus on a particular subset of Hg: the non-ordinary coverings, that

we will denote N,. That is the space on which a geometric point corresponds to

v : D — C where Jac(D) is non-ordinary abelian variety.

ProprosiTiON 3.0.3. The subset N, of Hg corresponding to unramified degree 2

non-ordinary coverings of a genus g hyperelliptic curve is a divisor.

Proof: We have seen that H, 92 is a variety of dimension 2¢g—1. Since it has finite cover
H; which is irreducible, Hg is also irreducible. We can consider f, the polynomial
given by the determinant of the Hasse-Witt matrix. Since our field is algebraically
closed N, = Z(f) # @ is a hypersurface. Thus every irreducible component of the
intersection has dimension > 2g—2 by [29, 1§7.1]. Since N, & H7, it has codimension

1, thus it is a divisor.

To describe this divisor, we will use the decomposition made in proposition 3.0.6.

Considering the Jacobians of the curves C', D;; and E;; we have the following isogeny:

Jac(Dy;) ~ Jac(E;j) x Jac(C).

(]
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And again the action of Verschiebung on H°(Jac(D;;), Qac( Dij) decomposes in two
parts on H°(Jac(C), Qyac(cy) ® H(Jac(Eij), Qac(e,;)). Thus, the Hasse-Witt matrix
can be written as:

AC) 0
0 A(E;)

Therefore, if C' is non-ordinary, that is if
det(A(C)) = 0, necessarily the (*,%) coverings D;; will also be non-ordinary. This is .
the trivial way to have non-ordinary covering. If (' is ordinary, the only way to have a

zero determinant for Ap, will occur when det{A(E;;)) = 0, when Ej; is non-ordinary.

Hence, it is possible to decompose N, in the following way. From the projection
p:H? — H, we get p~'(Hy(N)) a subset of Ny. From the map € : H; — Hy_, we
get € }(H,_1(N)) which is also a subset of N, given by -

- (Weg U{z,y}, {z,y}) |[WE = Weierstrass set of the curve E }
E :

where z,y § Wpg are distinct

Using this decomposition we can write N, as p™'(H,(N)) U e (H,-1(N)) and one
interesting problem would be to describe the set p™'(H,(N)) Nne ™ (H,_1(N)).

Another decomposition of N, can be made from Theorem 3.0.6. Indeed, the

variety IV, decomposes in two disjoints sets:
Ny = Ny U Ny
where

Ngn = {z € H} such that C is non-ordinary },

Ny = {z€ Hg such that C is ordinary and Ej; is non-ordinary }.
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Remark that p™ ! (Hy(N)) = Ny, and €1 (Hy_ (N)) 2 N,o. Later we will consider
curves for which all the degree 2 unramified coverings are non-ordinary in a non-
trivial way. We call such curves mazno-2 and denote E the subspace of the moduli
space H, consisting of all the maxno-2 curves. Using these decompositions we can
tryv to build all these spaces by induction and the base step will be to understand the

situation for genus 1 hyperelliptic curves.

3.1. H{(N), non-ordinary elliptic curves.

Any elliptic curve E can be given as a set of 4 Weierstrass points say Wg =
{A1, A2, A3, Ag}. One can easily find in the literature, for instance in [27], that given
two sets of ordered and distinct three points in P'(k), say [a1, ag, a3] and [by, ba, b3]
there is an unique ¢ € PGLy(k) such that ¢(a;) = b; for i € {1,2,3}. Therefore,
we can label the set of Weierstrass points Wg to get an ordered set, say Wy =
[B1, B2, B3, B4] and by an appropriate ¢ € PGLy(k) we can send Wj to [ 0,1, 00, A
A is the image of the fourth point by ¢ and this point is called the cross ratio of this
particular ordering of Wj. Notice that in general, given a different ordering, we get
a different cross-ratio. We expect 4! possible cross-ratios but luckily several are the
same and there is always at most 6 possible values. If the cross ratio of [a,b, ¢, d] is

A, depending of the ordering of these four points, we get the following cross-ratios:

1 (A=1) 1 A
{’\’1_’\’? A ’(1—/\)’(/\—1)}’

and we will denote this set by [A]. The cross-ratio of four points A = [a, b, ¢, z] can

also be describe as

_(@-ab-¢
cr(A) = =06 =a

which can be considered as element in PG Lo(k) with the usual special care for the

point at infinity. We will denote ¢r the map sending W, an unordered set of four
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distinct points, to its cross-ratio set [cr(W)].

It follows that the Rosenhain form of the elliptic curve can be rewritten as
By =y =z(z ~ 1)(z ~ \),

for A € £—{0,1}. It is also called the Legendre form. If we consider the moduli space
of elliptic curves, for A € k — {0,1}, it is possible with simple calculation to get the

j-invariant of F)y:
(A2 =X +1)?
AN —1)2

Of course, by easy calculation, we check that the j-invariant is independent of the

J(Ey) =2°

choice of the element in [A]

Notice that this association respects isomorphism classes since given any § €
PGLy(k), we have cr([a,b,c,d]) = er([6(a),d(b),0(c),d(d)]). Also, if two different
ordered sets give the same cross ratio there exists § € PGLy(k) sending one to the
other, see [27] for more details. One can also find, for instance in [29, V§4], that the
above association is exactly six-to-one except for two special cases. For j = 0 and

7 = 1728 the association is two-to-one and three-to-one, respectively.

Thus, for a genus 1 curve given by W’ = [0,1, 00, A], the Hasse-Witt matrix has
only one component, the coefficient of 2?71 in f(z)™ = (z(z — 1)(z — \))™, where
m = ?—;. Easy computations, see [29, V§4] for details, give us the one-by-one Hasse-
Witt matrix:

T m)\? p—1
A(Ey) = AL m = —.
=3 (1) .
=0

Therefore, the non-ordinary elliptic curves, also known as the supersingular ellip-

tic curves, correspond to the roots of A(x), a degree ’%1 polynomial. Note that if an

element in [A] is a root of this polynomial, the five other elements will also be roots of
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the same polynomial. Also, one can show that up to isomorphism, there are exactly
p
—| te
5]+
supersingular elliptic curves in characteristic p, where 3 = 1, and for p > 5,
ep=0,1,1,2 if p=1,5,6,11 mod 12;

see [29, V.§4] for details.

3.2. N,, non-ordinary covering of genus 2 hyperelliptic curves.
For C, a genus 2 hyperelliptic curve with an affine model y? = f(x), the Hasse-
Witt matrix is given by

Cip-1 Chpe
A(C) = fvp 1 fsp 2 ,

Crap-1 Crap-2

where the Cj, corresponds to the coefficient of z* in f(:z:)‘p;—1 The non-ordinary

curves are the ones for which C, 1Cfop—2 — Cfp—2Cf2p—-1 = 0 and the subset Hy(N)
is two dimensional. As stated before, all coverings of such curves will be non-ordinary,

i.e., p H(Hy(N)) C Ny

The non-trivial non-ordinary unramified double coverings arise when the associ-
ated genus 1 curve is non-ordinary. Given a ordinary curve C, with Weilerstrass points
We = {1, ..., A6}, we will have a non-ordinary covering associated to s; = {A;, A;}

~1

if and only if the cross-ratio of the four points in W¢ \ s is a root of the degree &5~

polynomial A(z). That is, if for the multivalued map:

e: H2 — MX—line

(C, Sz‘j) > CA';'(WC \ Sij)7

we have that €(C, s;;) is a root of the polynomial A(z).
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DEFINITION 3.2.1. Let C be a genus 2 hyperelliptic curve given by siz Weierstrass
points W = {A1,..., A¢}. We say that the set s;; = {\;, \;} is a supersingular set if

and only if the elliptic curve given by the remaining four points is supersingular.

One question we are interested in answering is the following: is it possible that
a genus two curve has (§) = 15 non-ordinary coverings in a non-trivial way? Or
equivalently does there exist a genus 2 maxno-2 curve? If so, does it imply that the
curve C' is also non-ordinary? In fact,using our previous notation, we are trying to

describe

.ﬁ; N Hy(O) in Hy or equivalently p"l(ffg) N Ny, in Hs.
Explicitly, we are seeking the hyperelliptic curves for which the 15 couples of Weier-
strass points are supersingular. As noted before, if a curve admits non-trivial auto-
morphisms, the number of elements in the fiber will be less then 15, therefore less
conditions will be needed to be satisfied. We will study this question later, after a

better comprehension of the moduli spaces involved.

One can also associate points in Hj with double coverings simply by considering
the first two points in the Weierstrass ordered set to be in s;;. The association is then

given by the map €* = €0 p, by

€ Hy —> A-line

(C,la,b,c,d,e, f]) —  cr(le,d,e, f]),

Clearly this association in not one-to-one but given a point (C,s) in HZ all the
elements (C, §) in the fiber of p, : Hy — Hj will have the same behaviour as (C, s).
That mean that (C, s) will corresponds to a supersingular elliptic curve if and only if
any element (C, §) in the fiber corresponds to a supersingular curve. Since the moduli

space Hj is easier to study then HZ, instead of considering (C, s;;), we will consider
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only one element in its fiber.

Given A, a root of the polynomial A(z), the elements in Hj corresponding to
the “supersingular” points will be €7 () = [z, ¥, A, Ao, A3, A4] where 2, and y can
be almost anything and [A1, Ag, A3, A¢] is unique up to PGL,. Therefore, for all the
roots of A(z) we get two dimensional subsets of H denoted H;(\). These subsets
are also disjoint since one element in H; is associated to only one cross ratio via
the map €*. Thus Ny, := p; " (N,,) = Uy, H;(\;) and our main question turns out to

be: Given a curve C, is it possible that all the elements in the fiber of p; belong to N3,7

Consider a point We = {0, 1,00, Ay, A9, A3} in H, associated to the curve C, then
the 15 elements in the fiber p~(C) in HZ are the following:

We,hde)) (Wofoad) (Wl (Wodoomd)  (Wel{0,1})
(WC,{AI,)\3}) (WC'1{0’A2}) (WCa{la)\Q}) (WC7{001)‘2}) (WC'){OaOO})

(WC={A2=A3}) (WC7{07A3}) (WC’7{1:)‘3}) (WC>{007)‘3}) (WCs{lvoo})a

Thus, to study these elements (C,s) we have seen that we can, for each of them,
study only one element in the fiber p;*(C, s). Thus to decide if a curve is a maxno-2

curve it will suffice to study this (non unique) set of elements in Hj, that we will

denote by W*(C):

[Alu)‘2,0;11007)‘3] [07/\171,003A2:)\3] [1:A130700a)‘2:}‘3J [003)‘130711A25A3] [0,1,00,/\1;)\2;)\3]
[A1,23,0,1,00,00]  [0,A2,1,00,21,28]  [L,A2,0,00,A1,23]  [00,42,0,1,A1,A8]  [0,00,1,A1,22,23]

[A2,23,0,1,00,A1]  {0,A3,1,00,A1,A2]  [L,A3,0,00,a1,A2]  {00,X3,0,1,A1,22]  [1,00,0,A1,A2,A3].

To show that a curve C' is maxno-2, we will have to check if all the elements
in W*(C) correspond to a supersingular elliptic curve via the map ¢*. Using this

particular subset of p;'(C) we can state the following theorem.
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THEOREM 3.2.1. Let k be an algebraically closed field of odd characteristic. Up to
isomorphism, there is only a finite number of genus 2 mazno-2 hyperelliptic curves C
over k, i.e., curves having 15 supersingular sets of Weierstrass points. Furthermore if

the characteristic of k is p, there are at most pal)(pgg)(ph‘r’) such hyperelliptic curves.

Proof: In order to get such curve it is necessary that the 15 chosen elements in H3,
the elements in W*(C'), correspond to supersingular points. In particular, the three

elements
}\; == [/\1, )\2, O, 1, o0, /\3], /\; = [Al, )\3, O, 1, oG, )\2} and )\; = [)\7, /\\3, 0, 17 o0, )\1]

need to correspond to supersingular curves. Therefore, the cross ratio of the last four

components, given by €*(Af) need to be sent to a root of the polynomial A(z).

The cross ratio maps are quite trivial in this specific case. Indeed, they all send
0, 1 and oo respectively to 0, 1 and oo thus the three cross ratios need to be the

identity. Therefore we have
() =[A] for i=1,2,3.

Hence Ay, A and A3 need to be distinct roots of the degree 22 polynomial A(x).
Therefore there is at most &= ;3)(” 5) possible ways to fix such set of Weierstrass
points. ]

Remark: For a genus 2 hyperelliptic curve C, having a Weierstrass set W¢ =
{0,1,00, A1, A2, A3}, where Ay, Ag, and A3 are roots of the polynomial A(z), is a nec-
essary but not a sufficient condition to be a maxno-2 curve. In fact only 3 of the
conditions are satisfied and a priori, there is no reason why the set should satisfy
the 12 other conditions. If we consider the same choice of 15 elements in H;, the

conditions to have 15 supersingular sets is equivalent to having the following roots of



3. UNRAMIFIED DEGREE 2 COVERINGS 99

the polynomial A(z).

moRs) G G 2
Yo (R5h) G () (03

)\1 ()\)\22:)\11 ) (AzAf)q ) ()\J)\;_)\ii\l ) ()\3):?)\7 )(M)\:/\z }

3.3. Computational attempts.

Several attempts have been done computationally to get a feeling of what can
happen. One easy approach is, for a fixed field &, to check all the possible sets of
Weierstrass points W = [0, 1, 00, A1, Ag, As] giving a genus 2 hyperelliptic curve C' and
check explicitly the number of coverings such that A(E;;) is zero. For instance for
the field F32 each curve has either 0, 2 or 3 supersingular sets. Remark that for Is
such a curve can not be defined and also note that in this process we consider the
same isomorphism class of curves more then once. According to the moduli space of
hyperelliptic curve H3, in general, we do the computation [Sa,y2] = 6! times for the
same class. However it is faster than computing the equivalence classes and we are
not interested for the moment in the number of class having such properties. The
following results have been provided by Maple and Macaulay2. The two programs

can be found in Appendix B and C:
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One can find in [26, Proposition 3.1] that there is a bound on the genus of a non-

2. EXPLORATION

Finite field

0
9
0,2,3
4,5,6
0
0
0,1,2,3,4,6
3,4,5,6,7,8,9,10,12
0,1,2,3,4
0,1,2
0
2,3,4,5,6,7,9,11
0
0
0,1,2,3,6
0,1,2,3,4,5,6,7,8,9,10
0,1,2,3,4,5,6,7,8,9
0,1,2,3

ordinary hyperelliptic curve.

field in characteristic p, and suppose the Cartier operator C has rank m. Then

One could easily extend these computations for higher genus hyperelliptic curves.

PRrRoPOSITION 3.3.1. Let C be a hyperelliptic curve over an algebraically closed

gc < (p—1)/2+mp.

Possible numbers of associated

supersingular elliptic curves
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For the general situation of non-ordinary hyperelliptic curves, we have that m <
g — 1. This bound only allows us to conclude the trivial fact: g > 1. But if we
restrict ourselves to a more precise strata we can get non-trivial results. For instance,
if we consider supersingular curves, the Cartier operator has rank 0. Thus we have
the following equality:

gc < (p—-1)/2,

and we can conclude, for instance, that there is no supersingular hyperelliptic curve
of genus 2 over a field of characteristic 3, no supersingular genus 3 hyperelliptic curve
over a field of characteristic smaller than 11, etc. Also given a prime p, if we want to
find supersingular hyperelliptic curves over a field of characteristic p, we only have to

seek for curves with genus less then (p — 1)/2.

3.4. Genus 2 hyperelliptic curves with many automorphisms.

We have seen in our study of the moduli spaces H, that a curve with many
automorphisms, that is a curve with a non trivial reduced group of automorphisms
Aut(C)* = Aut(C)/ < ¢ >, will have less than 15 elements in its fiber p~*(C).
Therefore, if we are seeking for maxno-2 curves, we shall expect that these curves

would have less than 15 conditions to be satisfied, indeed we have the following:

LEMMA 3.4.1. Let C be a genus 2 hyperelliptic curve over k, a finite field of odd
characteristic, and let ¢ € Aut(C)*. The set {\;, \;} is supersingular if and only if
the set {op(N;), ¢(N;)} is supersingular.

Proof: This is straightforward since ¢ can be considered as an element in PG L, and

the cross-ratio is stable under such transformations. ]

Therefore, these curves deserve a special attention. For instance, if for We =
{0,1,00, A1, A2, A3} the \; are roots of the polynomial A(z), in general there will be
less then 12 other conditions to be satisfied to get a maxno-2 curve. Igusa in [10] gave

a description of the curves with many automorphisms. Denote by 1)s, the dihedral



102 2. EXPLORATION

group of order 2n. A curves with many automorphisms is given by the following set

of Weierstrass points:

1: W = {0,1,00, A\, 11, A(1 = A)7'(1 — w)} and the reduced group of automor-
phisms is cyclic of order 2, unless by specialization this case reduces to one
of the cases below;

2: W ={0,1,00, A\, A1 (A — 1), (1 — A\)"'} obtained by specializing y in (1) to
A7H(A=1). The reduced group of automorphisms is Dg, the symmetric group
of permutation of three letters, unless by specialization this case reduces to
one of the cases below;

3: W = {0,1,00,A, A7}, —1} obtained by specializing p in (1) to A™'. The
reduced group of automorphisms is Dy, the Klein four group, unless by spe-
cialization this case reduces to one of the cases below;

4: (For p# 3,5) W = {0,1,00,2,271, —~1} obtained by specializing A in (2) or
in (3) to 2. The reduced group of automorphisms is Ds.

5 W = {0,1, 00,1, —i,—1} obtained by specializing X in (3) to 7 = (~1)z. If
p # 5, the reduced group of automorphisms is Dy, while for p = 5 it is the
whole group of projective transformations PG Lo (Fs);

6: (For p #£5) W ={0,1,00,1+ {1+ + %1+ ¢+ %+ (3} where ( is a
primitive fifth root of unity. The reduced group of automorphisms is cyclic

of order 5.

Note that a similar classification for genus 3 hyperelliptic curves can be found in
[14, Table 3].

The first candidate for a maxno-2 curve will be the curve C given by W =
{0,1,00,4,77}, —1} = {00,0,1,2,3,4} over a field of characteristic 5 having 120 au-

tomorphisms (type (5)). One can check that it is a non-ordinary hyperelliptic curve.
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There is only one element in the fiber p(C), that is, up to isomorphisms, only one as-
sociated elliptic curve. Therefore only one check need to be done to verify if the curve
is a maxno-2 curve and we easily compute that the elliptic curve is not supersingular.
After this particular curve, the curves having the largest number of automorphisms
are the curves of characteristic p > 7 given by We = {0,1,0¢,2,271 ~1} (type (4)).
Depending on the characteristic of the field over which the curve is defined, this par-
ticular curve can be ordinary or not. Computations have been done using Maple and
the first example of a curve having 15 supersingular pairs of Weierstrass points have

been found for p = 191. The curve has affine model
C:y* =z(z -~ Dz —2)(z — 96)(z — 190),

where 27! = 96 and, as expected, the Weierstrass points 2,96 and 190 are roots of the
degree 95 polynomial A(x). Note that there are also 5 other roots of this polynomial

that are reached by some cross-ratio of these 6 points. Also, one check that this curve

is non-ordinary.

Computations have been done up to characteristic p = 1000 for the curves defined
over [, with automorphisms of type (4), and this is the only example of a maxno-2
curve found. In general, a curve of type (4) defined over F, where 2, —1, 272 are roots
of the polynomial A(z) has 6,9 or 12 supersingular sets. This program cau be found
in appendix D. For the moment no other maxno-2 curves have been found, and we

are still seeking for an ordinary maxno-2 curve.

4. Conclusion

So, after all, what have we done during these last 103 pages? Let us recall the main
points we have seen. We focused on some very particular curves, the hyperelliptic

curves that are in a sense the generalization of elliptic curves to a higher genus. We
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saw that these curves have affine models

and are characterized by their unique involution fixing the set of Weierstrass points.
The moduli space H, of these curves were constructed and we built other moduli
spaces with level structures H; and Hj in order to handle these objects with more

ease.

In order to classify the hyperelliptic curves, we considered the p-torsion group on
the Jacobian of these curves. We saw that it is a self dual affine group scheme of
rank p? (where g is the genus of the curve) to which one can associate a Dieudonné
module. From a theorem of Oort, there are 29 different possible p-torsion groups and
each can be associated to a final sequence. We focused on two particular types of
curves: the ordinary curves, that is the curves for which Jac(C)[p|(k) = (up X Z/pZ)9,

and the non-ordinary curves, that is the curves having any other p-torsion group.

One important question raised in this work was the following: How can we trans-
late properties related to the Ekedahl-Oort stratification in terms of the moduli spaces
H,? We looked at the particular situation of unramified coverings of genus g hyperel-
liptic curves by an other hyperelliptic curve. From [3], we saw that the only possible
degree of such a cover is 2 or 4. We concentrated our efforts in the situation of de-
gree 2 maps. Recall that such a covering v : D — C leads to two other degree
2 coverings of hyperelliptic curves £ and F of genus respectively ¢ — r and r — 1
for 1 < r < g— 1. We showed that there is an isogeny of degree a power of 2
U Jac(C) & Jac(E) @ Jac(F) — Jac(D) and the p-torsion group of D can be
studied via the p-torsion groups of C, E, and F. It would be interesting to see if it

is possible to generalize our results for degree 4 coverings.
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Again, we narrowed our investigation to the case where F' is the projective line,
i.e., when DI is also a hyperelliptic curve. In this setting, the moduli space of such
coverings is H 5 and our main concern was the description of N, the subspace of the
coverings v : D — C for which D is non-ordinary. Using the above isogeny, the
elements in [V, arise from two situations: either C' is non-ordinary and so D — C
belongs to N,,, or C is ordinary and the associated genus g — 1 curve is non-ordinary
and D — C belongs to Ny, Thus N, = Ny, U Ny, and from the knowledge of non-
ordinary curves of genus g and g — 1 we can recover N,. Indeed Ny, C € (Hy-1(NN))
and Ny, = p~'(Hy,(N)). It would be interesting to find if the codimension of
Ngn Ve H(H,-1{N) is two or more, we hope to come back to this question in the

future.

We studied in detail the situation of non-ordinary curves for genus 1 and degree
2 unramified coverings of genus 2 hyperelliptic curves. Several attempts were done
computationally to understand the problem. We proved that ﬁ; < o0 and found an
example of such an element. However, this particular curve is also non-ordinary and

we are still seeking for a curve in j{vg N Hy(0).

The subspace fz has codimension 3 and we could conjecture that, in general, IA{;
has codimension 3 in H,. As stated before, we zoomed in considerably our study of
subspaces of H, related to some Ekedahl-Oort strata. This gives us a lot of open
windows for further work. For instance, I think that we could generalize several
statements about degree 2 coverings in the situation where D is not a hyperelliptic
curve. We could also work with a precise non-ordinary strata instead of all non-

ordinary curves, and so on...






Appendix A

Maple program written by Melisande Fortin Boisvert.

This file contains four programs which need several subprograms included at the
beginning. The first program, named DM, calculates the length 2¢ final sequence of
the Dieudonné module associated to the type given in input. The second program,
named DM2, calculates from a length 2¢ final sequence its associated Dieudonné
module and constructs the filtration that gives back the final sequence. The third
program, named DMC, calculates, for a series of types ( the type is an invariant
associated to an abelian variety with real multiplication, see [6]), their associated
Dieudonné modules of rank 2g;, takes the direct sum of these Dieudonné modules
and then computes the final sequence of all the constructed modules and the final
sequence of the direct sum. The fourth program, named DMC 2, calculates, for a
series of sequences of length 2g¢;, their associated Dieudonné modules, takes the direct
sum of these Dieudonné modules and then computes the final sequence of the new

module.

> restart;
> with(linalg):

>

Warning, new definition for norm Warning, new definition for trace

Subprogram perp: Takes the perp of the length 2g vector M[hh].
Input:z=s for the scalar case, z=vector containing the g,,

M=vector containing the submodules g=g or sum of the g;,

107
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hh=index of the submodule for which we take the perp,
Output:M[2gg-hh] the perp of M[hh].

> perp:=proc(hh,gg,MM,z)

A\

local j,p,i,N,n:

v

global M:

v

if z=s then

> #Scalar case

> if hh<>gg then

>  M[2*gg-hh] :=vector(2*gg,1):

> for j to gg do

> M[2*gg-hh] [j+ggl :=1+M[hh] [j] mod 2:
-2 od:

> for j from ggt+l to 2%gg do

> M[2*gg-hh] [j-ggl : =1+M[hh] [j] mod 2:
> od:
>  fi:

>  evalm(M[2*gg-hh]);

> else

>  #Vector case
> p:=0:
>  N:=vector(2*gg,1):

> for i to nops(z) do

> #here gg=+gi z=g=vector

> if hh<>gg then

> for j to z[i] do

> N{p+j+z[i11:=1+M[hh] [p+j] mod 2:
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> od:

> for j from glil+1 to 2*g[i] do

> N{p+j-z[il]:=1+M[hh] [p+j] mod 2:
> od:

> fi:

> p:=p+2*z[i]:

> od:

> n:=dotprod(N,N);
> MIn] :=evalm(N):
> fi;

> end:

End of perp program.

Subprogram words: Constructs the sword or the dword associated to a type.

Input: g=integer,
ti=type,
Output:a a sword or (w, wd) a dword.
> words:=proc(tt,gg)
> local A,i,j,t;
> global w,wd,a,n:
>
> n:=nops(tt):
> t:=[op(tt),gg+1]:
> if type(n,odd)=true then
> ar=array(l..2*gg): A:=0:

> for i from 2 to n+l do

> for j from t[i-1] to t[il-1 do
> aljl:=A;
> alj+ggl :=A+1 mod 2:

109
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> od;

v

A:=A+1 mod 2:

> od:

> else
> w:=array(l..gg):
> wd:=array(l..gg):

> A:=0:

> for i from 2 to n+l do

> for j from t[i-1] to t[il-1 do
> wljl:=A;

> wd[j]:=A+1 mod 2:

> od;

> A:=A+1 mod 2:
> od:

> fi:

> end:

End of word program.
Subprogram FV: Constructs the matrix M F' that will compute F on the submodules
Mih].
Input:g=g or sum of the g;,
n=parity of the type,
ww, wwd=dword,
a=sword,

Output:The matrix MF.

> FV:=proc(aa,ww,wwd,nn,gg)

> local i:



vV

A\

\'4

\%

A\

v
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global V,F,MF,X,M:

MF:=matrix(2*gg,2%gg,0):
Fr=array(1..2+%gg):

if type(n,odd)=true then

for i to 2%gg-1 do:
if ali]l=0 then

Flil:=X[i+1];
MF[i+1,i]:=1;

else F[i]:=0;
fi:

od:

if al[2xgg]=0 then
Fl2xggl :=X[1];
M[1,2%gg]l:=1;

else
F[2*gg] :=0:

fi;

else

for i to gg-1 do:
if wlil=0 then
FLi]:=X[i+1]:
MF[i+1,1i]:=1:
else F[i]:=0:
fi:
if wd[i]l=0 then
Fli+gg] :=X[i+1+gg]:

111
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> MF[i+i+gg,i+ggl :=1:

> else Fli+ggl:=0:

>  fi:

> od:

> if wlggl=0 then

> Flggl:=Xx[1]:

> MF[1,ggl:=1

> else
>  Flggl:=0:
> fi:

> if wdlggl=0 then
>  Fl2*ggl:=X[gg+1]:
>  MF[gg+l,2+ggl:=1
> else Fl2*gg]=0:

> fi:

> fi:

> end:

>

End of the FV program.
Subprogram Vperp: Constructs the first filtration.
Input: z = s for that scalar case, z=vector containing the g;,
MMF= matrix giving the map F obtained in FV,
g = g or sum of the ¢;,
Output:M=vector containing some submodules,
L=vector containing the indices i for which we have the sumbodule MT[z].
> Vperp:=proc(gg,MMF,z)

> local h, mm, j,i:
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> global L, M,n:

>

> h:=2%gg;

> mm:=vector(2*gg,1):

> L:=[]:

> n:=nops(L):

>

> #begin of the F function

A\

while h<>0 do:

> "mm:=mu1tiply (MMF ,mm) :

>  h:=dotprod(mm,mm) :

>  M[h]:=evalm(mm) :

>  #takes the perp of M[h] of length 2xg.
> perp(h,gg,M,z):

>  #end of perp function

> L:=[op(l),h]:

> if h<>gg then

> L:=[op(L),2*gg-h]:

> fi;
> od;

>

> end:

End of Vperp program.
Subprogram stab: Stabilizes the filtration M under F and perp.
Input: gg = ¢ or sum of the g;,
MMF=matrix giving the map F,
MM=vector containing the submodules,

LL=vector containing the indices of the submodules,
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z = s for the scalar case, z=vector containing the g;,

Output:MMF=The Matrix stabilized under F and perp.

> stab:=proc(gg,MMF,MM,LL,z)
> local L1,h,j,mm,h2,X;
> global L;

> Li:=LL:

> K:=LL:

> #We get new modules until we have a stabilization under perp and F.

> #At each loop, if i<=g Mi is stable under F and perp.

> while L1<>[] do

> h:=L1[1]:

> if h>gg then

> #beginning of the F function. We stop when we get a M[h] we had before
> #ie when hl is in L

> mm:=vector (2*gg,1):

> #h2 is there to keep track of h that we have to test before doing the loop.
> h2:=h:

> h:=dotprod(multiply (MMF ,MM[h]) ,multiply (MMF,MM[h]));

> while member (h,K)=false do:

> h:=h2:

> mm:=multiply (MMF,MM[h]):

> if member(h,K)=false then:

> K:=[op(K) ,h]:

> fi:

> if h<gg then:

> if member(2*gg-h,K)=false then:

> K:=[op(K) ,2*gg-h]:
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> Li:=[op(L1),2%gg-hl;
> #begin of perp function

> #takes the perp of M[h1l] of length 2x%g.

> perp(h,gg,MM,z) :
> #end of perp function

> fi:

> fi:

> h:=dotprod (mm,mm) :
> MM[h] :=evalm(mm) :
> h2:=h:

> od:

> #end of the F function.
> fi:

> #We delete hl on the 1list since it is stable under V and perp.

> L1:=subsop(1=NULL,L1):
> od:

> L:=sort(X);

>

> end:

End of stab

Subprogram gap: Fills the first gap in M and then stabilizes M.
Input gg = g or sum of the g;,
MMF=matrix giving the map F,
MM=vector containing the submodules,
LL=vector containing the indices of the submodules,
z = s for the scalar case, z=vector containing the g;,

Output:The matrix M.

> gap:=proc(gg,MMF,MM,LL,z)
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>

>

>

>

>

local f,k, kj, kk, K;
global L;

K:=LL:
for k from 2 to gg+l do
if K[k]J<>k-1 then
#k~1 is the position in L until there is no gap.
#S0 we know M_k-2, to found: M_k-1 and its perps.
#Conctruction of the M_k-1:
f:=evalm(MM[K[k]}~M[k—2]):
MMIk-1] :=evalm(MM[k-2]) :
kj:=1:
kk:=0:
while kk=0 do
kk:=f [kjl:
kj:=kj+i:
od:
MM[k-17 [kj-1]:=1:
K:={op(K) ,k-1]:
#begin of perp function
#takes the perp of M[k-1] of length 2xg.
perp(k-1,gg,MM,z);
#end of perp function
K:=[op(K),2*gg-(k-1)]:
K:=sort(K):
#begin of stab function
#Stabilise the sequence together with M[k-1]
stab(gg,MMF,MM,K,2) :
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4

#rnd of perp fumction
> fi:

> od:

\4

L:=K;
> end:
End of the program gap.
Subprogram af: Finds the final sequence, the a-number and the f-number of the
elementary sequence.
Input: gg = g or sum of the g;,
MMF =matrix giving the map F,
MM=vector containing the submodules,

Output:The final sequence, the a-number and the f-number.

> af:=proc(gg,MMF,MM)

> local 1i;

> global PHI,a,f;

> PHI:=vector(2+gg):

> £:=0:

> for i to 2*xgg do

> PHI[i]:=dotprod(multiply (MMF,MM[i]) ,multiply (MMF,MM[i]));
> if i=PHI[i] then

> f:=1
> fi:
> od:

> a:=gg-PHI[gg]:

> print (Phi,PHI):

> print(fnumber,f):
> print (anumber,a):

> end:



118 APPENDIX A
End of af function.
Subprogram sequ: Constructs the matrix which give ¥ from one final sequence.
Input:phi=a final sequence,
9=29
QOutput: The matrix MF.
> sequ:=proc(g,phi)
> local 1i,3,k;
> global mn,nm,MF;
> mn:=vector(2*g,0);
> nm:=vector(2*g,0};

> MF:=matrix(2*g,2*g,0);

> ju=1;
> k:=g-1;
> nm[1] :=2%g;

> for i from 2 to 2xg do

> if phi[il<>phili-1] then mn[i]:=j;
> ji=i+l;

> else nm[i]:=k+g; k:=k-1;
>  fi:

> od;

> nm:=evalm(nm+mn) ;

> MF:=matrix(2*g,2*g,0);

> for i to g do

> MF[om[i],i]:=1

> od:

> end:

End of seqn program.

Main program DM: Finds the final sequence, the a-number and the f-number from
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one type.
Input:tt=type beginning with 1,
gg = g or sum of the g;,
zs = s for the scalar case,

Output: The final sequence, the a-number and the f-number.

> DM:=proc(tt,gg,s)

> words(tt,gg):

> FV(a,w,wd,n,gg):
>  Vperp(gg,MF,s):

> stab(gg,MF;M,L,s):
> gap(gg,MF,M,L,s):
>  af(gg,MF,M):

> end:

End of DM program.

Example:

> g:=8: t:=[1,2,3,6]:
> DM(t,g,s):
phi, [0, 0, &, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8]
fnumber, 0

anumber, 4

Main program DM2: Constructs the final sequence, the a-number and the f-number
from a final sequence.
Input: z=scalar case,
phi=final sequence,
g=sum of the g;,

Output: The final sequence, the a-number and the f-number.

> DM2:=proc(gg,phi,z)
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> sequl(gg,phi):

>  Vperp(gg,MF,z):

> stab(gg,MF,M,L,z):

> gap(gg,MF,M,L,z):

> af(gg,MF,M):

> end:

End of the DM2 program.
Verification that the sequence we get is the same as the one we started with.

> g:=17; t:=[1,2,4,6,10,11,12,14]; DM(t,g,s);

>

g = 17
t := [1, 2, 4, 6, 10, 11, 12, 14]
Phi, [0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5,6, 7,8,9,9,9, 10, 11,
11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17]
fnumber, O
anumber, 8
> evalm(PHI);
>
[0, 0, 1,2, 2,2,3,4,4,4,5,6,7,8,9,9,9, 10, 11,
11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17]

> DM2(g,PHI,s);

Phi, [0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5,6, 7, 8,9, 9,9, 10, 11,
11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17]
fonumber, O

anumber, 8
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Main program DMC: Finds the final sequence, the a-number and the f-number from
many types.
Input:tt=vectors containing the types, all beginning with 1,
gg=sum of the g;,
onoff=on if we want the elementary sequence of each type,

Output:The final sequence, the a-number and the f-number.

\'4

DMC:=proc(tt,gg,onoff)

> local i,a,w,wd,n,Wi;

v

global W,nn,M, P;

A\

P:=vector(nops(gg));

v

nn:=0;
W:=[];

> for i to nops(gg) do

A\

> words(tt[il,gglil):

> FV(a,w,wd,n,gglil):

> 1if omoff=on

> then

>  Vperp(gglil ,MF,s):

> stab(gglil ,MF,M,L,s):
> gap(gglil ,MF,M,L,s):
>  af(ggli] ,MF,M):

> Pli]l:=evalm(PHI);

> fi:

> if i>1 then

> W:=stack(augment (op(W) ,matrix(nn,2xggli],0)),

\%

augment (matrix(2+gglil ,nn,0) ,op(MF)));
> else W:=evalm(MF);

> fi;
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> nn:=nn+2*ggli];

> od;

> nn:=floor(nn/2);

> Vperp(nn,W,gg):

> stab(on,W,M,L,gg):

> gap(on,W,M,L,gg):

> af(an,W,M) :

> end:

End of DMC program,

Example:

> t:=[[1,2],[1,2]]1: g:=[2,3]:
> nops(g);
> DMC(t,g,on);

2
Phi, [0, 0, 1, 2]
fnumber, O
anumber, 2
Phi, [0, 1, 1, 2, 2, 3]
fnumber, 0O
anumber, 2
Phi, [0, &, 1, 1, 1, 2, 3, 4, 4, 5]
fnumber, O

anumber, 4

Main program DM2: Constructs the final sequence, the a-number and the f-number

from many final sequences.
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Input:phi=vector containing all the final sequences,
g=sum of the g;,

Output: The final sequence, the a-number and the f-number.

> DMC2:=proc(gg,phi)

> local i,a,w,wd,n,Wi;

> global W,nn,M, P;

> nn:=0;

> W:=[1;

> for i to nops(gg) do

> sequlgglil,philil):

> if i>1 then

> W:=stack(augment (op(W) ,matrix(nn,2*ggli],0)),
> augment (matrix(2xgglil,nn,0) ,0op(MF)));
> else W:=evalm(MF);

> fa;

> nn:=nn+2*ggli];

> od;

> nn:=floor(nn/2);

> Vperp(nn,W,gg):

> stab(nn,W,M,L,gg):

> gap(on,W,M,L,gg):

> af (nn,W,M):

> end:

End.of DMC2 program.

Example using the output of the previous program.
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> g; evalm(P[1]);evalm(P[2]);

[2, 3]
[0, 0, 1, 2]
o, 1, 1, 2, 2, 3]
> DMC2(g,P);

Phi, [0, 1, t, 1, 1, 2, 3, 4, 4, 5]
fnumber, O

anumber, 4



Appendix B

Maple program written by Melisande Fortin Boisvert.

Given a prime p, it considers all the possible Weierstrass sets of genus 2 hyperel-
liptic curves defined over F,. For each of them, the program goes over the 15 pairs
of 2 points and check if they are supersingular. The number of supersinguiar sets
is then printed in Liste. Note that this program does not consider the isomorphism
classes of hyperelliptic curves. Indeed it computes the number of supersingular sets of

a curve more than once. This is not problematic, it’s only slows down the calculations.

Input:p=Cardinality of the field over which the curve is defined.

Output:Liste=Possible number of supersingular sets.

> p:=11:
> d:=p-1i:
> m:=floor ({(p-1)/2):

> s:=i->sum(’ (binomial(m,j))"2%i"j’,’j’=0..m) mod p:

A\

liste:=[]:

> mmax:=0:

\4

for z from 2 to d-2 do

\4

for y from z+1 to d-1 do

v

for x from y+1 to d do
> A:=[infty,0,1,z,y,x];

> compteur:=0:

125
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> for i from 1 to 3 do

> for j from i+l to 4 do

> for k from j+1 to 5 do

> for 1 from k+1 to 6 do B:=[A[i],A[j],A[k],A[1]];
> if i=1 then

> lam:=(B[4]-B[21)/(B[3]-B[2]) mod p; else

> lam:=((B[4]1-B[11)*(B[2]1-B[31))/((B[4]1-B[31)*(B[2]-B[11));
> fi;

> kk:=s(lam) ;

> if kk=0 then compteur:=compteur+i;

> fi;

> od;

> od;

> od;

> od;

> if member(compteur,liste)=false then
> liste:=[op(liste),compteur]
> fi;

> if compteur>mmax then

> mmax:=compteur; HH:=A:

> fi:

> if compteur=15 then

> print (wow);

> fi;

> od:

> od:

>od:

> print(liste):
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[4, 5, 6]






Appendix C

Macaulay 2 program written by Melisande Fortin Boisvert.

Given a prime p and an integer s, it considers all the possible Weierstrass sets of
genus 2 hyperelliptic curves defined over F,.. For each of them, the program goes
over the 15 pairs of 2 points and checks if they are supersingular. The number of
supersingular sets is then printed in List. Note that this program does not consider
the isomorphism classes of hyperelliptic curves. Indeed, it computes the number of
supersingular sets of a curve more than once. This is not problematic, it only slows

down the calculations.

Input: p=Characteristic of &, the field over which the curve is defined,
s=integer such that the cardinality of the k is p°,

Output:List=Possible number of supersingular sets.

p=3

s8s=3

F=GF (p~ss,Variable=>a)

d=p~ss-1

m=floor ((p-1)/2)

check=no

maximal=0

List={0} s=i->{aa=0; for j from 0 to m do

aa=aa+(binomial(m, j)) 2xi~j}; for x from 3 to d-2 do
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for y from 2 to x-1 do
for z from 1 to y-1 do
(A=[infty,0,1,a"z,a"y,a"x];
compteur=0;
for i from 0 to 2 do
for j from i+l to 3 do
for k from j+1 to 4 do
for 1 from k+1 to 5 do
(B=[A#i,A#j, A%k, A41],
if i==0 then (lam=(B#3-B#1)/(B#2-B#1))
else( lam=((B#3-B#0)(B#1-B#2))/((B#3-B#2)*(B#1-B#0)));
s(lam) ;
if aa==0 then( compteur=compteur+l) );
print (compteur);
if compteur>maximal then
(maximal=compteur; celui=A; );
if member(compteur,List)==false
then List=append(List,compteur);
if compteur==15 then check=yes)

print(List)

[0,1,2]
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Maple program written by Melisande Fortin Boisvert.

For p > 7, in an interval [a,b] this program considers the genus 2 hyperelliptic
curve with a affine model y* = z(z — 1)(z + 1)(z — 2)(1 — 27!)defined over F:, and
having automorphism group of type 4, see chapter 1, section 3.4. The program checks
first if the 3 Weierstrass points —1, 2,27 are roots of the polynomial A(z). If so, the
program makes all the other checks needed to have a curve with the maximal number
of supersingular sets. The program also gives the configuration of the supersingular
sets in the vector N. For each of the 15 sets, it writes 1 if the set is supersingular

either it writes 0. The program also checks if the curve C is ordinary or not.

Input: [a, b|=interval for the cardinality of the finite field F,,
Output: N=vector giving the configuration of the supersingular sets,
compteur=Number of supersingular sets of the curve C,

abba=Determinant of the Hasse-Witt matrix of the curve C.

>with(linalg):
>
> for p from 175 to 200 do

> if isprime(p)=true then

>  compteur:=0:

m:=floor ((p-1)/2);

v

131



132 APPENDIX D

>  s:=i->sum(’ (binomial(m,j))"2%i~j’,’j’=0..m) mod p;
Check for the 3 Weierstrass points
b:=s(2) ;
if b=0 then
a:=2"(-1)
c:=s(a);
if ¢=0 then
aa:=p-1 mod p:
d:=s(aa) ;
if d=0 then
Check for the other cross-ratios
A:=[infty,0,1,2,a,p-11;
for i from 1 to 3 do
for j from i+l to 4 do
for k from j+1 to 5 do
for 1 from k+1 to 6 do
B:=[A[i],A[3],A0k],A[L]Y;
if i=1 then
lam:=(B[41-B[2])/(B[3]-B[2]) mod p;
else
lam:=((B[4]1-B[11)*(B[2]1-B[31))/((B[4]-B[31)*(B[2]1-B[1]1));
fi;
kk:=s(lam);
if kk=0 then
compteur :=compteur+1; N[p]:=[op(N[pl),1];
else
Check for the configuration
Nipl:=[lop(Nipl),0]1;
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fi;
od;
od;
od;
od;
print (N{pl);
Check if the curve is non-ordinary
ri=xx (x-1) x (x-2) % (x-(1/2))*(x+1)mod p ;
pp:=collect{(r’m,x):
f := (i,j) -> coeff{pp,x,i*p-j) mod p:
HVC:=matrix(2,2,f);
abba:=det (HVC) mod p;
print (compteur,p,abba);
fi:
fi;
fi;
fi;
od;

[179,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1]
6, 179, 0
[191,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
15, 191, O
[199,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1]
6, 199, 12
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