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Abst:ract 

Oort gave a complete description of symplectic commutative group schemes killed 

by p and of rank p29. Each such group appears as the p-torsion group scheme of sorne 

principally polarized abelian variety and this classification can be given in terms of 

final sequences. In this thesis, we fOClIS on th~ particular situation where the abelian 

variety is the Jacobian of a hyperelliptic curve. VVe conCentrate on describing the 

subspace of the moduli space ofhyperelliptic curves, or rather the cycle, corresponding 

to a given final sequence. Especially, we concentrate on describing the subspace 

corresponding to the non-ordinary locus, which is a union of final sequences. 
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Résumé 

Une description complète des schémas commutatifs symplectiques de rang p2g an­

nihilés par p a été donnée par Oort. Cette classification peut être donnée en termes de 

suites finales et chacun de ces schémas peut être réalisé comme le schéma en groupes 

de p-torsion d'une variété abelienne principalement polarisé. Dans ce mémoire nous 

nous restreignons au cas particulier où la variété abélienne est la Jacobienne d'une 

courbe hyperelliptique. Nous nous appliquons à la description du sous-espace de 

l'espace des modules des courbes hyperelliptiques, qui est en fait un cycle, correspon­

dant à une suite finale donnée. Nous nous attardons particulièrement à la description 

du lieu non-ordinaire, sous-espace correspondant à une union de suites finales. 
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Introduction 

A complete description of symplectic commutative group schemes killed by p and 

of rank p2g is known and can be given in terms of final sequences. Each such group 

appears as the p-torsion group scheme of sorne principally polarized abelian variety. 

This classification gives a stratification of A, the moduli space of principally polarised 

abelian varieties, called the Ekedahl-Oort stratification. In this thesis, we focus on 

the particular situation where the abelian variety is the Jacobian of a hyperelliptic 

curve. We concentrate on describing the subset of the moduli space of hyperelliptic 

curves corresponding to a given final sequence, that is a stratum in A. This thesis is 

subdivided in two major sections. 

In the first chapter, we discuss all the theory involved in our explorations. St art­

ing with the basic definition of a curve, we introduce the general background for 

the topic, such as divisors and Jacobians. In the second, the genus of a curve is 

introduced. We also discuss two main theorems: the Riemann-Roch theorem and 

the Hurwitz formula. Section 3 is devoted to the particular curves we are interested 

in: the hyperelliptic curves. It is a self contained section and leads to a very precise 

description of these curves in terms of Weierstrass points. 

The fourth section introduces the theory of moduli spaces. For this section only, 

we assume that the reader is familiar with the theory of schemes. After sorne basic 

definitions, we construct Hg, the moduli space of genus g hyperelliptic curves. Also we 

construct the rnoduli space of these special curves together with a level structure. The 

xi 



xii INTRODUCTION 

definition of an affine group scheme is developed in section 5. These group sehemes 

are central in our study. lndeed, it turns out that for a genus 9 curve C defined over a 

field of characteristic P, the p-torsion of its Jacobian, Jac( C) [pl, is a self-dual p-torsion 

commutative group scheme of order p2g
. The Frobenius morphism is also introduced 

in this section and is used in a later classification of the hyperelliptic curves. 

There is an equivalence of categories between these particular p-torsion groups 

and certain Dieudonné modules. These modules are finite dimensional vector spaces 

over k together with two maps: F and Il, and an alternating pairing such that certain 

identities hold. The last section of the first chapter deals with these new objects. A 

partial classification of our curves in terms of ordinary and non-ordinary curves can 

be given using the Hasse-vVitt matrix. This matrix describes the Frobenius morphism 

on H 1 (Jac(C), OJac(C)). Since we have an equivalence of categories, with some work 

we de duce that the matrix can be given through the action of V on HO (C, n~) which 

gives an explicit matrix. To end this theorical section, a complete classification of 

self-dual p-torsion commutative group schemes of order pB is introduced. This classifi­

cation is given in terms of final sequences and can also be used to describe Dieudonné 

modules. With an these tools in our hands, the main goal of the second part of this 

thesis is to relate these final sequences with the moduli space of hyperelliptic curves. 

A brief description of the general problem is given first in the exploration chap­

ter. We start with a very general and difficult question and finally narrow down to 

a very particular case. One can try to describe the subset of the moduli space Hg 

that corresponds to a given final sequence 'ljJ , i.e., the subset of points x, su ch that 

the corrseponding hyperelliptic curve Cx has that fixed elementary sequence 'ljJ. Also, 

one can seek to describe the points that correspond to the non-ordinary locus, which 

corresponds to a union of sequences. 
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We then consider the same problem for coverings of curves, especially degree 2 un­

ramified double coverings of genus 9 hyperelliptic curves. These particular coverings 

of hyperelliptic curves can be described by a moduli space Hg. vVe then givespecial 

attention to describing the subspace of Hg corresponding to non-ordinary coverings, 

that is coverings 1 : D ---t C for which D is non-ordinary. A special curve is then 

introduced: the maxno-2 curve, which is a hyperelliptic curve such that aH its double 

unramified coverings are non-ordinary. We have specially considered the situation for 

genus 2 curves. One example of maxno-2 curve is provided and we prove that for 

each prime p there is only a finite number of maxno-2 curves defined over a field of 

characteristic p. 



CHAPTER 1 

General Theory 

Throughout this thesis, we assume the basic background of algebraic geometry. 

For the very beginning we work over an algebraically dosed field k and we use the 

convention that a variety is irreducible. 

1. Curves 

DEFINITION 1.0.1. A curve C over k is a smooth projective variety over k of 

dimension 1. 

For a curve C defined over k, its function field k( C) is of transcendence degree one 

over k. It follows that k (C) is an alge braic function field, i. e., k (C) is algebraic over 

any subfield k(x) generated by a non constant function x E k(C). Thus, k(C) can 

be written as k(x, y), where x and y are two non-constant functions on C satisfying 

F(x, y) = 0, an algebraic relation. If we let Co be the affine curve defined by F, and 

Cl the projective curve obtained by taking the dosme of Co in P2(k), we get that Co 

and Cl are birational to C. Such curves are called models of C, and every curve has 

a plane projective model and a plane affine model. Note that usually these models 

are not smooth. 

An example that is central in this thesis is F(x, y) = y2 - j(x) with f(x) E k(x) 

and char(k) i= 2. Note that by changing y, we may assume that f(x) is in k[x] 

and is squarefree, hence separable. The affine curve defined by F(x, y) = ° is then 

non-singular, but its projective closure defined by homogenizing F(x, y) is usually 

singular. 

1 
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Conversely, given K, a finitely generated field extension of transcendence degree 

one of k, that \ye define as a function field, we would like to consider the curve C 

whose funetion field is K. To do so, we consider C K, the set of ail diserete valuation 

rings of K/k. For every smooth curve C and every point P on it, the local ring 

Oc,P of P on C is a discrete valuation ring eontained in k(C). Henee, the following 

definition of the curve C K seems to be natural. 

DEFINITIOl'i 1.0.2. An abstract non-singular curve C is an open subset U ç CK, 

where K is a function field of dimension lover k, with the induced topology, and the 

notion of regular functions on its open subsets. (See [8, page 42].) 

1'0 link these abstract curves with our first definition, one ean find the following 

theorem in [8, l, § 6, Thm 9]. 

THEOREM 1.0.1. Let K be a function field of dimension lover k. Then the 

abstract nonsingular curve CK is isomorphic to a nonsingular projective curve over k 

whose function field is K. 

If we consider Y, a variety of dimension 1 which is not necessarily smooth and 

projective, having function field K, then Y is birationally equivalent to the abstract 

curve CK which is non-singular and projective. Also, we can always write a function 

field as k(x)[y)j(F(x, y)) to get a pl anar curve. Then by taking the projective dosure 

and then taking the normalisation we get a non-singular projective curve. Therefore, 

we can restate the above theorem: 

COROLLARY 1.0.1. Every curve, in the general sense, is birationally equivalent 

to a non-singular projective curve. 

Theorem 1.0.1 and Corollary 1.0.1 are fundamentals for the following equivalence 

of categories that ailows us to study curves in different contexts. 

THEOREM 1.0.2. The following categories are equivalent: 
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(1) non-singular projective curves, and non-constant morphisms; 

(2) quasi-projective curves, and non-constant rational maps; 

(3) Junction fields oJ dimension lover k, and k-homomorphisms. 

Rernark: The equivalence between (2) and (3) reverses arrows. 

1.1. Divisors on curves over an algebraically closed ground field. 

3 

Let k, be an algebraically closed field and let C be a non-singular projective curve 

over k. A divisor D on C over k is, by definition, a formaI 

D = :L np[P], 
PEC 

where the P are points on the curve, np E IL and only finitely many np are non-zero. 

The set Div( C) of an divisors D on a curve C is a free abelian group on the basis 

{ [Pl : P E C }. We let deg(D) := 2.:: np denote the degree of a divisor D. We denote 

by DivO(C) the group of divisors oJ degree zero, and we say that a non-zero divisor 

D = 2.:: np[P] is effective if np 2: 0 for aU P. Furthermore, D = 2.:: np[P] is said to 

be greater or equal to D' = 2.:: n~[P] if np 2: n~ for an P. We use the usual the 

notation D 2: DI. 

To any function 1 in k(C)* we can associate a divisor 

(f) = :L valp(f)[P], 
PEC 

where valp(f) is given by the valuation of 1 at the point P in the local ring Oc,p. 

Such divis ors are called principal divisors. If N denotes the set of zeros of l, and Z 

denotes the set of poles of l, we define 

(f)o := L valp(f)[P], the zero divisar of l, 
PEN 
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(1)00 := I:: -valp(1)[P], the polar divisor of f. 
PEZ 

Clearly, (f)o :::: 0, (1)00 :::: 0 and (1) = (1)0 - (1)00' Also, one can find in [8, II,§6} 

that deg (1) ° = deg (1) 00' The relation (1 . g) = Cf) + (g) shows that the principal 

divisors form a group denoted 

Pr(C) : = {(f) 1 f E k(C)*}, 

where the zero element is the empty divisor (1), and the inverse of (1) is (1-1). 

The following factor group 

Pic(C) := Div(C)jPr(C), 

is called the divisor class group. Two divisors D and D' are said to be linearly 

equivalent if D - D' is a principal divisor, i.e., if they are equal in Pic(C) . Since 

the degree of a principal divisor (1) is, counting multiplicity, equal to the difference 

between the number of the poles of f and the number of zeros of f, we have that 

deg(1) = O. Therefore, Pr(C) is a subgrollP of DivO(C) and we can define the Jacobian 

of a curve C to be: 

Jac(C) = DivO(C)jPr(C). 

It is well known that Jac(C) is the k-points of an abelian variety over k see [20, §10] 

and the reslllt has been given first by Weil. 

To a divisor D, we can associate the k-vector space L(D) defined by 

L(D) = {f E k(C)* 1 (1) :::: -D} U {O}. 

The dimension of L(D) is denoted l(D). For D = I: 'np[P] - I: mQ[Q] with 'np > 0 

and mQ > 0, the k-vector space L(D) consists of elements f in k(C) such that 

(1) f has a zero of order at least mQ at every point Q, aad 
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(2) f may have poles only at the points P, with the pole order at P being at 

most np. 

Clearly, if deg(D) < 0, then L(D) = {O} and l(D) = o. One can also prove that 

L(D) is finite dimensional, and that L(D') rv L(D) if the two divisors are linearly 

equivalent, see [9, A,§ 2.2]. 

1.2. Divisors on. curves over arbitrary ground fields. 

Let k be any perfect field and kits algebraic dosure. We say that a curve C is 

defined Guer k if there exist homogeneous polynomials fI, .. .fs E k[x] such that C fk 

is a curve defined as the zero set of l = (fI, .. .fs), an ideal in k[ x]. For the situation 

k = k we will often omit the ground field and denote the curve just by C. For any 

Galois extension, 

k 

L 

we easily check that C(L), the L-rational points on the curve C, are also given as 

C(k)f where r = Gal(kfL). 

On the other hand, if we consider, instead of the category of curves, the category 

of function fields of dimension 1 we have that F = k(C)jk, the function field over 

field k, has field extension k( C) jk. The set k := {z E k( C) 1 z is algebraic over k} 

is a subfield of k(C) and is called the field of constants of k(C)jk. 'vVe say that k is 

the full constant field of k (C) if k = k. Since the transcendence degree of F is 1, the 

field of constants of an algebraic function field F is a finite extension field of k, thus 

F can be regarded as function field over k. Therefore from here on, k( C) will always 

denote an algebraic function field of one variable such that k is the full constant field 

of k(C)jk. In this scope it is also possible to introduce the notion of divisor. 
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DEFINITION 1.2.1. A place P of the function .field k(C) is the maximal ideal of 

sorne valuation ring Op E Ck(C). We denote the set of all su ch places by pk(C)) and 

the residue class field by k(C)p := Op/P. 

For f E k(C), we say that. a place Pis a zeTa of f if vp(f) > 0, t.hat is if f belongs 

to P. We denote degP = [k(C)p : k] the degree of the place P and one can find in 

[30, page 6] that deg P :S [k(C) : k(x)] < 00. In this situation, the free abelian group 

which is generated by the places of k (C) is named the divisor group defined over k 

and denoted Divk( C). The divisors can now be expressed this way 

D = L np[P] with np E Z and almost aH np = 0, 
PE'Pk(C) 

and the degree of such divisor is defined by 

deg(D):= L valp(D) deg P. 
PEPk(c) 

Indeed this definition is analogous to the definition of divisors over algebraically 

closed fields. To see that assume that C is affine with ring of regular functions 

R = k[Xl, ... , xn]/(h, .. .fs). Every prime ideal is maximal (since R is of dimension 1) 

and hence, by Hilbert's Nullstellensatz, of the form (Xl - Œl, ... , x n - Œn) for suit able 

Œ1, ... , Œn. We therefore see that. places correspond to points. 

As for the previous situation, for f E k(C) and for any place P, valp(f) still 

makes sense, therefore we can define (f) to be the principal divisor associated to the 

function f. One can verify easily that except for the Jacobian of such curve, the 

definitions made previously hold in this situation. Moreover for x E k( C), we can 

find in [30, page 18] that deg(x)o = deg(x)oo = [k(C) : k(x)]. 
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Let C / k be a curve over k and let r = Gal(k / k) act on Divk ( C) and Div%( C) by 

the ru le 

D 8 DO" = L np[PO"], 0- E r, 
PEPIee) 

and where the corresponding valuation is given by 

The main point here is that a place of k( C) corresponds to a Galois orbit of places 

of k(C). In fact, the Galois group Gal(L/K) acts transitively on the set of places 

p. ç:: L lying over a given place Q E K. 

THEOREM 1.2.1. Let L be a Galois extension of K and Pl, P2 E PL be extensions 

of Q E PK· Then g = o-(Pl) for some 0- E r = Gal(L/K). 

Proof: Assume the opposite, i. e. that 0-( Pl) 1= P2 for aH 0- Er. By the approxima­

tion theorem, see [30, I.§3.1], there is an element Z E L such that valp2(z) > 0 and 

valp(z) = 0 for all P E PL lying above Q and different of P2 - Let NL/K : L ---t K be 

the norm map. We obtain 

L va10"-I(Pl)(z) 
O"Er 

L va10"(pJ)(z) = 0, 
O"Er 

since P2 does not occur among the places o-(H), for 0- E G. 

On the other hand, 

valp2(NL/K(Z)) = LvaI0"(P2)(z) > o. 
O"Er 
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But NLjK(Z) E K, therefore 

a contradiction. o 

Thus, we can consider Divk (C) as a subset of DivI( C) the following way: 

DiVk(C) = {~n;[Pill ni E Z} 
{ t n,(2::: [Q Il 1 ni E Z, Oi is th e or hi t of r in PcC C) correspondi ng \0 p,} 
,! QEOi 

c Div;dC). 

Since every orbit corresponds to a place in Divk (C), the only divis ors in DivI( C) fixed 

by r will be of this form and we have the following equality: 

Divk(C) = {t nl2:=[P]) 1 ni E Z, (Ji is an orbit of r in Pk(C)} = (Divk(C))f. 
! pEei 

It follows similarly that the group of divisors of degree 0 defined over k will be 

Div~ (C) = (DivÏ( C))f . 

For instance, take k = Q and the curve C : y2 - 2x = O. Let m = (y2 - 2, x -1); it 

is a maximal ideal of sorne valuation ring of Q( C). Therefore the place P associated 

to this ideal can be viewed as [1, V2] + [1, -V2J and this place corresponds to one 

orbit of Gal(QjQ). Note that one place in Q(C) is sent ta the other via 

(J : h f--1- -ho 

For f E k( C)*, we can, as done previously, associate to it the divisor 

(f) = L valp(f)[P] = L valp(f)( L [Q]) 
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where ()p is an orbit of r in pk(C) corresponding to P. And for any (J" E r we easily 

check that 

(fr' = L valp(f)( L [Qr) = (f), 
PEPk(C) QE()p 

since cr permutes the elements in the orbits. Therefore 

Prk(C) = { DE Divk(C) 1 D = (f) for sorne f E k(C)*} C (Prk(C))f, 

and we would like to have equality. Since k is perfect, k / k is a separable extension, 
-f -

so k = k, and (k(C)*)f = k(C)*. We consider the exact sequence 

By applying Galois cohomology we get 

which leads to the short exact sequence 

since by Hilbert's 90, H1(r, k*) = O. Therefore, we have the equality 

We can aiso define Jack(C) to be the subgroup of Jack(C) fixed by r. In general, 

Jack (C) is not the quotient of Divg (C) by its subgroup of principal divisors. But in 

the particular case that will interest us, the case where k is a finite field, we have 

what we would expect. 

For k = lFq and r = Gal(ÏFq/lFq ) we have another exact sequence 

° -+ PrlF (C) -+ Div-lFo (C) -+ JaclF (C) -+ 0, 
q q q 
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and, by taking the Galois cohomology, we get 

As stated before, this is generally not a short exact sequence. But in the case of 

finite fields, the cohomology group H 1(r, PrW
q 
(C)) is zero. For if we consider the 

continuation of the sequence (1.1) we have 

... ----* H1(r,ïF:) ----* H1(r,ïFq (c)*) ----* H 1(r,Prw
q
(C)) ----* H2 (r,iF:) ----* .... 

Again by Hilbert's 90, we get that H 1(r, iF:) = 0 = H1(r, iFq(C)*) and one can find 

in [18] that the Brauer group H 2 (r, IF;) is zero for finite fields. Therefore, 

Jac(C)~ lFq 

(Div~ (C))1' j(Prw (C))r 
~q q 

1.3. Covering of curves. 

We will be interested in this t.hesis in particular morphisms between curves, thus 

the following terminology will be needed. 

DEFINITION 1.3.1. A covering of a curve C is a finite separable morphism of 

curves f : D ----* C. 

In terms offunction fields it corresponds to a finite separable extension k(D)jk(C). 

As stated before, we assume that the field k is perfect, i. e., that aIl algebraic extensions 

L j k are separable. For example, k is perfect if it is algebraically closed or if it is a 

finite field. 

DEFINITION 1.3.2. Let k(D) be an algebraic extension of k(CL and let P E Pk(D) 

be a place of k(D) lying over Q E Pk(C). The integer ep satisfying 

for any x E k(C) is called the ramification index of Paver Q. 
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If k is algebraically closed, the equivalence of categories between curves and func­

tion field allows the following equivalent formulation: 

DEFINITION 1.3.3. Let f : D -7 C be a finite morphism of smooth projective 

curves. For P E D, Q = f(P), and t E 0dC) an uniformizing pammeteT, the 

integer ep = valp(J*t) is called the mmification index of f at P. 

We say that a covering of curves (or an extension of function fields) is unmmified 

at a point (or a place) P if e p = 1) otherwise the covering is said to be mmified 

at this point (or place). Such a covering (or extension) will be called unramified if 

it is unramified at every point (or place) of D. For instance, for k a field of odd 

characteristic, consider the curve D with affine rnodel y2 = xg(x) and such that 

g(O) =1 0 (note that this condition is needed to have a smooth curve). We then have 

a canonical mapping from D to the projective line. The degree two rnap 

D --+ pl 

(x,y) H x 

is ramified since there is at least oné ramification point on the curve. lndeed the map 

has a ramification index ep = 2 at the point P = (0,0). But note that sorne points on 

D are unramified, for instance the points on D of the form R = (a, (3), where f3 =1 0, 

have ramification index eR = 1. 

Let k(D)jk(C) be a Galois extension and let Q be any place of k(C). The Galois 

group r = Gal(k(D)jk(C)) acts on the set of places Pi lying over Q via CT(Pi) 

{ CT( x) 1 x E Pi}, where CT E r and the corresponding valuation is given by 

In fact, Theorem 1.2.1 shows that the Galois group Gal(k(D)jk(C)) acts transi­

tively on the set of places Pi E k(D) lying over a given place Q E k(C). 
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2. The genus of a curve 

One of the most important invariants in the study of curves is the genus which is 

a birational invariant. One way to define it is the following: 

DEFINITION 2.0.4. The genus of a non-singular projective eurve C is the dimen­

sion of the k-veetor spaee of holomorphie difJerentials on C, denoted 

The genus of a curve can be expressed in different ways, in particular, one can 

show that the dimension of Jac(C) is precisely ge, that 9c = dim H1(C, Oc) and 

that over the complex numbers rkzHl (C(C), Z) = 2gc· 

2.1. The Riemann-Roch theorem and the Hurwitz formula. 

Sorne of the most important tools in the study of curves are the Riemann-Roch 

theorem and the Hurwitz formula. For example, the Riemann-Roch theorem allows 

us to link elements of k( C) with the genus of the curve. Given a covering of curves, 

the Hurwitz formula links the genus of the two curves with the number of ramification 

points. It is known that the sheaf of differential forms [2~ is locally free of rank one: 

where Kc is a divis or on C. This is weIl define up to a principal divisor. Let 

w E HO(C, [2~), i.e., w is a holomorphie differential, then the canonical divisor is 

given by Kc = (w). 

Example: 

(1) For C =]pl we have w = dz = -21du for u = l thus Kc = -200' , u z ' , 

(2) for C an elliptic curve, Kc= 0 is the empty divisor; 
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(3) for C a smooth projective model of 1P - f(x), with f(x) a separable polyno­

mial of degree 2g + 2, \'le have w = dx = A~)dy. Therefore 

Ke = I: [(À, 0)] - 2001 - 2002, 

>.,J(),)=o 

where 001, 002 are the two points lying over 00 under the natural map 

C ----+ ]pl. 

THEOREM 2.1.1. (Riemann-Roch) Let C be a curve and Ke a canonical divisor, 

then for all divisors D, 

l(D) - l{Ke - D) = deg(D) - ge + 1, 

where ge is the genus of the curve C. 

One can find a proof of this theorem in [30, 1.5], and this corolarry will be usefull 

in our later study. 

COROLLARY 2.1.1. 

(1) For Ke a canonical divisOT, we have 

l{Ke) = ge, deg(Ke) = 2ge - 2. 

(2) If deg(D) > 2ge - 2, then 

l(D) = deg(D) - ge + 1. 

Proof: (1) By taking D = 0, we get 

l(O) - l(Kc) = deg(O) - ge + 1, 

since ..c(0) = k and deg(O) = 0, we get that l(Ke) = ge. Setting now D = Kc, from 

this previous result, we obtain the following: 

ge - 1 = deg(Ke) - ge + 1, 
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which easily leads to the equality deg(Kc) = 2gc - 2. 

(2) From Riemman-Roch theorem, we only need to show that 1(I<c - D) = o. 
Since deg(D) > 2gc - 2 and deg(Kc) = 2gc - 2, we have that deg(Kc - lV) < 0, 

therefore, it follows that l(Kc - D) = O. 0 

THEOREM 2.1.2. (Hurwitz's formula) Let C be a curve oJ genus gc, let D be a 

curve oJ germs gD, and let J : D --+ C be a finite separable morphism oJ degree n. For 

each point P E D, write ep Jor the ramification index oJ J at p, and a.S8ume that 

either char(k) = 0 or else that char(k) do es not divide the ep 's, z.e., the covering i8 

tamely ramified. Then 

2gD - 2 = (2gc - 2)n + L (ep - 1). 
PED 

A pro of can be found in [30, IlI.4] and, in order to introduce the analogue of 

the Hurwitz formula in the situation of function fields, we need sorne preliminary 

definitions. We will consider an algebraic function field k (C) and a finite separable 

extension k(D)jk(C). 

DEFINITION 2.1.1. For P E pk(C) , let O~ denote the integral closure oJ Op in 

k(D). Then the set 

Cp := {z E k(D) 1 Trk(D)/k(C)(Z . O~) ç Op} 

is called the complementary modl1'ze over Op. 

One can verify that Cp is an O~-module. In fact O~ is contained in Cp and there 

is an element t E k(D) (depending of P ) sueh that Cp = t· O~. One ean also show 

that valp'(t) :S 0 for aH P' lying above P and Cp = O~ for almost aU P E lf\(C). 

Then we define the difJerent exponent of pl over P by 

d(P'IP) := -valp,(t). 
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Since Cp = 1 . O~ for almost an P, then d(P'IP) = ° almost everywhere so we can 

define the divisor 

Diff(k(D)jk(C)):= L L d(P'IP) . P', 
PEPk(C) pllP 

called the different of k(D)jk(C). 

THEOREM 2.1.3. (Hurwitz formula II) Let k(C) be an algebmic function field of 

genus gc, and k(D) a finite separable extension of gen'us gD, then 

2gD - 2 = (2gc - 2)[k(D) : k(C)] + deg Diff(k(D)/k(C)). 

Rernark: In fact, nbjc = Oc(Diff(k(D)jk(C)), where nbjc is the sheaf of rela­

tive differentials. 

2.2. Classification of curves by their genus. 

The genus of a curve allows us to make a distinction between some of them, and, 

in the scope of the above theorems, this invariant can give a good description of some 

particular curves. 

2.2.1. Genus O. 

If we consider a curve defined over an algebraically closed field, the only curve 

of genus ° is the projective hne. lndeed, if the genus of the curve is 0, by the 

Riemann-Roch Theorem, l([P]) = 2 for an points in C. Therefore we have a non 

constant function x E C(P) having at most a pole of multiplicity one at P. So 

deg(x)oo = 1 = [k(C) : k(x)], i.e., the curve C is birationaly equivalent to pl. We 

therefore restrict our attention to pl. If D = L np[P] is a divisor of degree 0, where 

P = [ap, pp] E pl, then D is clearly the divisor associated to the fun ct ion 

f = II (ppX - apYt i ' E k(pl). 
P 
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Renee, Pic (]Pl ) ~ Z and Jac(]PI) is trivial, therefore it has dimension gJf'l = O. 

If the curve is not defined over an algebraically closed field, problems may arise 

when there is no k-rational point on the curve. One can find in [9, A,§ 4.3], that one 

of these two situations will occur. 

• The curve C is isomorphic over k to a conie in ]p2 i. e., a variety defined by 

an irreducible quadratic polynomial. 

• The curve C is isomorphic over k to ]pl if and only if it possesses a k-rational 

point. 

2.2.2. Genu.s 1. 

The curves of genus 1 principally consist of the weIl known elliptic curves. An 

elliptic curve is a non-singular curve of gellUs 1 with a specified rational point. Over 

certain fields there are curves of genus 1 that are not elliptic curves, for instance one 

can find in [9, X,§4] that the curve of genus 1 

has no Q-rational point. But for C a genus 1 curve, Jack(C) will always be an 

elliptic curve over k since the empty divisor is rational. The elliptic curves deserve a 

particular interest because we have that C / k ~ Jack ( C). Indeed, we can show that 

there is a group law on the elliptic curve E that corresponds to the addition of the 

elements of Jac(E). 

PROPOSITION 2.2.1. Let Po a fixed ba.sepoint on E, then the following map 

cp: E -+ Jac(E) 

P I---t [P]- [Po]. 

i.s an i.somorphi.sm. 
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Proof: 

@ <jJ is injective. 

Suppose <jJ(P) = [Pl - [Pol = [Ql - [Po] = <jJ( Q), then there exist f E k(E) 

such that (f) = [Pl-[Ql· Then f E 1:([Q]), and sin ce deg([Q]) = 1 > 2gE -2, 

by Corollary 2.1.1, we have that 

l([Q]) = deg([Q] - gE + 1 = 1. 

But C([Q]) already contains the constant functions, henee f E k and P = Q. 

@ à is surjective. 

Consider D E Divo, and let D' = D + [Po]. Since deg(D') = 1 > 2gE - 2, 

again by Corollary 2.1.1 we deduee that l(DI) = 1. Therefore, there exist 

f E C(D' ) sueh that (f) ~ -D - [Po]. Since deg(1) = 0, and sinee the 

function f ean not have other poles, we have 

(1) = -D - [Pol + [Pl 

for sorne PEE. Henee D rv [P]- [Po], so every divisor in Jac(E) is reaehed 

by <jJ. 

@ <jJ is a homornorphism of groups. 

Consider the points P and Q on the curve. By applying the sarne argument 

we have used for the surjeetivity, with D' = [Pl + [Ql - [Po], we can find a 

function f and a point P* sueh that 

(f) = [P*] - [Pl - [Q] + [Po]. 

Henee, <jJ(P*) = [P*] - [Po] = [Q]- [Pol + [Pl - [Po] = <jJ(P) + <jJ( Q) in Jae(E). 

It suffices now to show that there is a group law on E and that the point 

P* is in fact the sum of P and Q. To do so we will consider the group law 

indueed by <jJ. We can assume first that E lies in JP2. We can take Po to be 
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the point 0 at infinity and choose II the line through P and Q, we will denote 

R the third intersection point. 'vVe can also consider the hne l2 through Po 

and R where P*' is the other intersection point. Therefore 9 = ~ E k(E) 

and (g) = [Pl + [Ql + [Rl - [Po] - [Pl - [P*'J. If we consider g. f E k(E) 

we obtain the principal divisor [P*J - [P*'J. But there is no rational function 

on E with only one pole and one divisor, therefore [P*'] = [P*]. This defines 

a composition law EB given by the following IUle: Let P, Q E E, L the hne 

connecting P and Q (the tangent Hne if P=Q), and R the third point of 

intersection of L with E. Let V be the hne connecting R and Po, then PEBQ 

is the point such that L' intersect the curve E at Po, R, and P EB Q. 0 

2.2.3. Genus 2: 2. 

The curves of higher genus are, with no surprise, more complicated. We will focus 

only on those that interest us, which are the hyperelliptic curves, in the next section. 
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3. Hyperelliptic curves 

For this section we will consider k to be a perfect field not necessarily algebraically 

closed. 

DEFINITION 3.0.1. A hyperelliptic function .field over k is an algebraic function 

field k(C)jk of genus g 2:: 2 which contains a rational subfield k(x) ç k(C) with 

[k(C) : k(x)] = 2. A hyperelliptic curve is a smooth projective curve associated to 

such a hyperelliptic function field k( C). 

In other words, a curve of genus g 2:: 2 is said to be a hyperelliptic curve if it 

is a double covering of the projective line 1T : C --+ pl. The points in C that are 

sent to ramification points are called Weierstrass points and the rational subfield 

1T*(k(x)) will often be denoted k(x) to ease our notation. We shaH see below that the 

terminology is appropriate, it do es not depend on 1T. 

PROPOSITION 3.0.2. 

(1) A curve C of genus g 2:: 2 is hyperelliptic if and only if there exists a divisor 

D with deg(D) = 2 and I(D) 2:: 2. 

(2) Any curve C of genus 2 is hyperelliptic. 

Proof: (1) Suppose that k(C) is hyperelliptic. We can take x E k(C) such that 

[k(C) : k(x)] = 2, and consider the divisor D := (x)oo. Then the divisor D has 

degree equal to [k(C) : k(x)] = 2, and since the elements 1, x E L(D) are linearly 

independent over k, we have that I(D) 2:: 2. 

Conversely, suppose that k( C) has genus gc 2:: 2 and D is a divisor of degree 2 

with l(D) 2:: 2. We know [30, 1.4] that there exist an effective divisor Dl cv D such 

that deg(D1 ) = 2 and l(Dd 2:: 2. Therefore we can find an element x E L(D1) \ k 

with (x)oo :::; Dl. Hence [k(C) : k(x)] = deg(x)oo :::; 2. Since k(C) is not rational, we 

conclu de that [k(C) : k(x)] = 2. 
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(2) Consider now a function field of genus gc = 2. For any canonical divis or 

Kc E Div(C), from corollary 2.1.1 of the Riemann-Roch theorem, we get that 

deg(Kc) = 2gc - 2 = 2 and l(Kc) = gc = 2. By (1), this implies that k(C) is 

hyperelliptic. D 

If k(C) is hyperelliptic and k(x) is a rational subfield of k(C) with [k(C) : k(x)] = 
2, the extension k( C) / k(x) is separable, see [30, VI.2] for more details. Renee 

k(C)/k(x) is a cyclic Galois extension of degree 2, lndeed it is a cyclic Artin-Schreier 

extension if the characteristic of k is 2, and a cyclic Kummer extension otherwise. 

These extensions are wen known and provide an explicit description of hyperelliptic 

curves. 

3.1. Hyperelliptic curves over field of characteristic different from 2. 

Let k be a perfect field of characteristic different from 2, the case where k( C) is a 

Kummer extension of degree 2. Recall that a Kummer extension with Galois group 

Z/nZ can be written as, 

k(C) = k(x, y) with yn = U 

for k(x) containing an-th root of unit y, (n, char k) = 1 and u E k(x) satisfying the 

following conditions: u =1= w d for aIl w E k(x) and d > 1 dividing n. Moreover, it is 

well known, see [30, lII.7.3], that for P E pk(x) and P' E pk(C) lying over P, we have 

n n 
e(P'IP) = - and d(P'IP) = - -1, 

rp rp 

where rp := gcd(n, valp(v,)). 

PROPOSITION 3.1.1. Let k be a field of characteristic different from 2. 

(1) Let k(C) be a hyperelliptic function field of genus gc. Then there exists 

x, y E k(C) such that k(C) = k(x, y) and 
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y2 = f(x) E K[x] 

with a squar'e-free polynomial f(x) of degree 2gc + 1 or 2gc + 2. 

(2) Conversely, if k(C) = k(x, y), y2 = f(x) E K[x] with a square-free polyno­

rnial f(x) of degree m > 4, then k(C) is hyperelliptic of gen'us 

{

(m - 1)/2 if m 1 mod 2, 
gc = 

(m - 2)/2 if m ° mod 2. 

(3) Let k(C) = k(:r, y) with y2 = f(x) as in (1.2). Then the places in Pk(x) which 

ramify in k( C) are the following: 

* all zeros of f(x) if deg(f) = ° mod 2; 

* ail zeros of f(x) and the pole of x if deg(f) 1 mod 2. 

Hence, if f(x) decomposes into linear factors, exactly 2gc + 2 places of k(x) 

are ramified. 

Proof: Since k(C) is cyclic of degree two, there exists an element w E k(C) such 

that k(C) = k(x,w) and w2 = u(x) E k(x). To get a squarefree polynomial, write 

with painvise distinct irreducible monic polynomials P·i(X) E K[x] and ri E Z. Let 

ri = 2Si + li, Si E Z, and li E {a, I}. Set 

Then k(C) = k(y, x) and y2 = f(x) = Pl (X)P2 (x) ... Ps(x) a squarefree polynomial in 

k[.T], which proves the first part of (1). 

Let Pi E pk(x) denote the zeros of Pi(X), pX! the pole of x in k(x) and m the degree 

of f(x). Then valpi(f(x)) = 1 and valp=(f(x)) = -m. The numbers rp are easily 
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seen to be 

rp; 1 for i = 1, .", s, 

C 
ifm -1 mod 2, 

rpoo 

ifm - 0 mod 2, 

rp 2 for aIl the other places. 

Since e(Pilpi) = r~' this gives us exactly the ramification points needed in (3). By , 
the Hurwitz formula and sorne manipulations we get 

2gk (c) - 2 (2gk (x) - 2)[k(C) : k(x)] + deg Diff(k(D)jk(C)) 

(2·0 -·2).2 + 2.:: (n - rp) degP, 
PEJPk(x) 

if m == 1 mod 2, 

if m - 0 mod 2. 

= {m -3 if 

m-4 

m -1 mod 2, 

if m - 0 mod 2. 

Thus the degree of the polynomial f(x) is either 2g + 1 or 2g + 2 and this allows us 

to conclude the proposition. o 

Over an algebraically closed field, the relations above give the following affine 

model for C 
2g+2 

C: y2 = f (x) = II (x - Ài). 
i=l 

This model is called the R08enhain normal form and is given by the 29 + 2 distinct 

Weierstrass points. A complete smooth model for C is obtained by gluing this affine 

curve to the affine curve given by the equation 
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where d = deg(f) if deg(f) is even, and d = deg(f) + 1 otherwise. The two affine 

subsets of C are glued together using the map 

3.2. Hyperelliptic curves over a field of charaderistic 2. 

We now consider the situation where char k = 2, the case of an Artin-Schreir 

extension. RecaIl that in such an extension 

k(C) = k(y, x) with yP - y = u, 

for U E k (x) satisfying u *' wP -- w for aIl 'ID E k (x) and p the characteristic of 

the field. In this situation, all ramrfÎed places of k (x) in the quadratic extension are 

wildly ramified and one can show that the number of such places, say s, lies in the 

range 1 :s: s :s: 9 + 1, where we can find an example for each integer [30, VL2]. Such 

hyperelliptic curves have an affine model given by 

y2 - y = f(x) 

and their behavior is less known and more difficult to understand then that of hyper­

elliptic curves defined over fields of odd characteristic. In our study of hyperelliptic 

curves, we will restrict ourselves to the simpler situation, when the field k has odd 

characteristic. 

3.3. The hyperelliptic involution. 

PROPOSITION 3.3.1. Consider a hyperelliptic function field k(C) ofgenus gc and 

a rational subfield k(x) c k(C) with [k(C) : k(x)] = 2. Then aU rational sublield 

k(z) c k(C) with [k(C) : k(z)] :s: gc are contained in k(x). In particnlar, k(x) is the 

only rational subfield of k(C) with [k(C) : k(x)] = 2. 

To prove the above proposition we will need to use Riemann's inequality that 

gives the following estimate for the genus of a function field. A pro of can be found 
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in [30, III.10.4]. 

Riemann's inequality: Let F = k(x, y) then 

9 ::; ([F : k(x)] - 1) . ([F : k(y)] - 1). 

Proof of the proposition: Suppose that [k(C) : k(z)] ::; gc but z tf. k(x). Then 

k(C) = k(x, z), and by the Riemann's inequality, 

gc ::; ([k(C) : k(x)] - 1) . ([k(C) : k(z)] - 1). 

On the other hand, 

([k(C) : k(x)] - 1) . ([k(C) : k(z)] - 1) ::; (2 - 1) . (gc - 1) = gc - 1. 

a contradiction. o 

PROPOSITION 3.3.2. Let C be an hyperelliptic curve over k, a field of odd char-

acteristic. 

(1) There exists a uniq'ue canonical involution t: C --+ C, characterized by 

inducing a non-trivial automorphism of k( C) over' its unique rational subfield 

of index two. 

(2) The fixed points of i are the Weierstrass points of C. 

(3) i E Z(Aut(C)). 

(4) Let J, g: C --+ pl be double coverings, then f = ~:~~ for some invertible 

matrix (~~) E PGL2 (k). 

Proof: 

(1), (2) We see easily that the map 

(x, y) I---t (x, -y) 
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is the one we are looking for. Note that if Chas two points at infinity, that is when 

C is given by an even degree polynomial, [, permutes the two points; and if Chas 

a single point at infinity, [, fixes it. Clearly [ indu ces a non-trivial automorphism [,* 

of k (C) that fixes k (x) and the uniqueness follows from [k (C) : k (x)] = 2. Thus, 

the fixed points of [, are the ones of the form (x, 0) and, depending of the situation, 

the point at infinity. These points are exactly the ramification points of the double 

covering of the projective hne. 

(3) Let 7f : C ---+ pl be a double cover, to avoid confusion we will denote the rational 

field k(7f*(x)), and we have [k(C) : k(,:c*(:c))] = 2. Consider j, any automorphism of 

C, similarly, from the double cover 7f 0 j : C ---+ pl we have [k(C) : k(j*7f*(x))] = 2, 

thus, by Proposition 3.3.1, k(7f*(x)) = k(j*7f*(x)). But k(j*7f*(x)) = j*(k(7f*(x)) 

therefore j* preserves k(7f*(x)). It follows that the automorphism j*i*(j*)-l is trivial 

on k(7f*(x)), thus by (1), jij-l = i, which means that the involution commutes with 

any element of Aut(C). 

(4) Note first that double coverings correspond to embeddings 

k(x) y k(C). 

If K = k(x) is the unique rational subfield contained in k(C), since k(x) ç K, every 

embedding 1* factors through K 

k(x) f* <'4 k( C) 

a t /" g* 

K 

and therefore we have that 1* = g*J a for a E Aut(k(x)) = PGL2 (k). o 
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DEFINITION 3.3.1. For 8 ç]pl we will define 

the subgroup of the automorphism group of]pl fixing 8. 

COROLLARY 3.3.1. Let Ci be hyperelliptic curves, 8i be the set of ramification 

points of the double cover Ci -4 ]pl. Then: 

(1.3) 

(1) Cdk ~ Cdk {::} :=Iv E PGL2 (k) such that v(81) = 82 . 

(2) There is an exact sequence 

where a(l) = L. 

- CT -
Proof: (1) Suppose first that Cdk C':!. Cdk. Considering the associated function 

fields, we have the following picture 

k(x) k(x) 

Therefore a* 0 112 and 11~ are two maps from k(x) to k(C1), thus, by the above 

proposition, differ by an automorphism v* : k(x) ----+ k(x), giving the commutative 

diagram 

Cl ~ C2 

+ 111 + 112 

]pl ~]pl 

which clearly sends the image of 'Weierstrass points of Cl to the one of C2 . 
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Conversely, suppose that we have the following picture 

Cl C2 

t 'ifl t'if2 

pl ~ pl 

with 1/(51 ) = 52' It will induee a map between k(C2) to k(Cd provided by 1/* E 

Aut(k(x)). The function fields ofthese curves can by given as 

29+2 

k(Cl ) = k(x)[y] for y2 = f(x) = rr (x - ai) 
i=l 

29+2 

k(C2) = k(x)[z] for Z2 = g(.r.) = rr (x - (3i ). 

i=l 

and we can consider the map 

x f-+ 1/* (x) 
29+2 

Z2 f-+ (7*(g(x)) = rr (I/*(x)- !3d· 
i=l 

Sinee (7* g(x) is a degree 2g+2 polynomial sharing the same roots with f(x), that is the 

a/s, we can assume without lost of generalities by adjusting y that f(x) = (7*(g(x)). 

Thus by specifying the image of z (we have the choice between (7*(z) = y and 

(7* (z) = -y) the map (7* is a well defined morphism. 

(2) Note that b is weIl defined sinee from the first part of the corollary, every 

automorphism of C must fix the set of ramification points. The injectivity of a is 

trivial and Im(a) = Ker(b) sinee i* is the unique non-trivial automorphism of k(C) 

over its rational subfield k(x). The surjectivity of bis again immediate from the first 

part of this corollary. o 
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4. Moduli spaces 

In a sense it is possible to parameterize isomorphism classes of hyperelliptic curves 

of a given genus with their VVeierstrass points. VVe will try to solve the "Moduli prob­

lem" for these objects, i. e. we will try to give the parameter space sorne structure 

close to the structure of the objects we want to study. Before we dive into the par­

ticular case of hyperelliptic curves, we first need to be comfortable with the general 

settings of the moduli problem. For this section, we will assume that the reader is 

familiar with the language of schemes and categories. 

4.1. General moduli spaces. 

To state a rnoduli problem we can consider several categories C of schemes. In 

order to state it correctly, these categories will need to have fibered products and 

prodncts. To have a notion of continuity in our pararneterization, we will work with 

families of objects in C. Recall that families are fiat rnorphisms of schemes 'if : X ----+ S 

such that for each sES the scheme theorical fiber X s := Spec(k(s)) xsX is an object 

of C. Such a scheme S is called a parameter space. Furthermore, we will expect our 

category to be equipped with an equivalence relation f"V that can be extended to 

any farnily parameterized by an object in PS, the category of parameter spaces. By 

solving the moduli problem for (C, f"V, PS) we will try to parameterize the objects in 

C (a snbcategory of PS) in a kind of continuons way up to the equivalence relation. 

Now let 

<1> : P S ----+ (Sets) 

be the map which associates to each SEPS the set <1>(S) containing aH the equiva­

lence classes of families of objects in C parameterized by S. One can show that this 

is functorial and we can introduce a first type of moduli space, 
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DEFINITION 4.1.1. The fv:nctor 

<P : PS --+ (sets), 

29 

is said ta be representable in PS if there exists M E Obj (PS) such that the functor 

<P is isomorphic ta the functor Homps ( . ,M). In such a case, M is said ta be a fine 

moduli space for the moduli problem (C, l'V, P S). 

In particular, this means that for each S E Obj(PS) there exists a set bijection: 

<p(S) +---t Homps(S, M), 

~. e. each class of families parameterized by S corresponds to one and only one mOT­

phism between Sand M. Thus, for any family defined over a scheme S, there is a 

morphism 'lj; such that the object in the family over the geometric point sES will 

correspond, via the morphism, to a point 'lj;(s) E M. Conversely, given any morphism 

from a scheme in PS to M, it will be possible to find a family of objects over that 

scheme with the same correspondence between objects in C and points in M. One 

can find in [4, §2.1] that we have an equivalent notion of fine moduli space. 

DEFINITION 4.1.2. A fine moduli space for the problem (C, l'V, PS) is an abject 

M E Obj(PS) together with a family U --+ M which is universal in the following 

sense. For each family 1ï : X --+ S there in an unique morphism f E Homps(S, M) 

such that X = S x;\.1 U := j*(U). 

In the simpler language of varieties, we are seeking a variety M parameterizing 

C, a category of varÏeties. A family over a variety B is a surjective algebraic map 

1ï: X --+ B where the fiber X b = 1ï- 1(b) is a variety in C. To pose the moduli 

problem, we consider C a category of varieties with cv an equivalence relation that 

can be extend to PS, the category of the parameter space. In this setting M will be 

a fine moduli space for (C, ""', PS) if for any variety B in PS we have a correspon­

dence between morphisms <p from B to M and families 1ï : X -----+ B. According to 
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this correspondence, for each point b E B J its image cjJ(b) in the moduli space will 

corresponds to the variety X b in our family. vVe then have a correspondence between 

the points on the moduli space and the varieties considered. The possibility to use 

this correspondence for the inclusion map N '---+ M for any subvariety of M gives a 

kind of continuity. Note that according to the second version of a fine moduli space, 

the solution to the problem is a universal family 1T : U ---+ M on which each fiber is 

a variety in the category C. 

The functor cI> is not representable in general. U sually, the obstruction is created 

by objects in C admitting non-trivial automorphisms. However, more frequently, there 

exists a coarse solution for this problem. 

DEFINITION 4.1.3. A coarse moduli space for the moduli problem (C, ""', PS) ~s 

an object M E Obj(PS) for which there is a natural transformation of functors, 

\[t M : cI> ---+ Homps( . ,M), 

such that: 

(1) For an algebraically closed field k, 

is bijective; 

(2) For any N E Obj(PS) and any natural transformation of functors 

\[IN : cI> ---+ Homps( . ,N), 

there is an unique transformation of functors 

J( : Homps( . ,M) ---+ Homps( . ,N), 
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making commutative the following diagram of natural transformations of 

functors: 

<I> ~ Homps(', M) 

~N tIC 

Homps( . ,N). 

In the language of varieties, we still have correspondence between points on the 

moduli space with varieties in the fixed category. But given a map from B E ObjPS 

to M there is not necessarily a corresponding family over B. As a matter of fact, the 

coarse moduli space is as close as possible to be a fine moduli space. 

vVe can consider a simple example of a fine moduli space. Let C be the category 

of finite sets, the equivalence relation given by 

8 cv R {=} \8\ = \R\ 

and PS the category of aH sets. The set N is a fine moduli space for the prob­

lem (C, cv, PS) and the universal family U --+ N is given by attaching the set 

Un = {D, 1, ... , n - 1} over the integer n E N. Notice that the presence of non­

trivial automorphisms on sorne of the objects in the category, (finite sets certainly 

have non-trivial automorphisms) does not necessarily implies that there is no fine 

solution to the moduli problem. 

In general, if there is only a coarse moduli space for the objects we want to study, 

we can put sorne extra structure on them to get rid of any non-trivial automorphisms 

and then often get a fine moduli space. For instance, for the category of curves we 

can label a sufficient number of points on the curves to avoid automorphisms. 

LEMMA 4.1.1. Let T be a non-trivial automorphism of the genus g curve C, then 

T has at most 2g + 2 fixed points 
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Proof: For any automorphism T, it is clear that Fix(T), the set of fixed points is a 

finite set. Choose P E C such that T(P) =1- P and by the Riemann-Roch theorem we 

have that 

l(r[P]) r - 9 + 1 + l(Kc - rlP]) 

> r - 9 + 1 2: 2 if r 2: 9 + 1. 

Ifwe take r = g+l and f E 'c(r[P]) non-constant we get (1)00 = nP for 1:; n:; g+1. 

Consider then h::c:: f ·--foT. We have (h)oo = n[P]+n[T-1(p)]. Therefore we get that 

deg((h)o) = 2n :; 2g + 2 and sinee Fix(T) c (h)o, we can conclude the proposition. 

o 

Thus, for n > 2g + 2, a genus 9 curve with n marked points does not admit non 

trivial automorphisms. There are several ways to introduee a leveZ structure and we 

will consider sorne of them for the particular case of hyperelliptic curves in a later 

section. 

4.2. Moduli space for curves. 

For the special case of curves we first fix a base scheme S, usually S = S pec( k ) 

for k a field, and the parameter spaee PS is Schs , the category of aH schemes over 

S. The objects we are interested in parameterizing are the objects in C(g), the 

category of smooth projective curves of genus 9 over S. The equivalence relation is 

given by isomorphism of curves. For a fixed scheme S, a curve of genus 9 over S is 

a morphism of schemes C ----t S which is proper, fiat and such that aIl geometric 

fibers are irreducible smooth projective curve of genus g. If Cl and C2 are curves 

over S, they are said to be isomorphic as curves over S if there is an isomorphism 
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f : Cl ---t C2 making the following diagram commutative 

t t 
S s. 

One can ask if the functor 

<1>9 : Schs -, (Sets), 

defined by: 

<1> 9 (T) = { Isomorphism classes of curves 7r : X ---t T of genus 9}, 

is representable, i. e., if there is a scheme Mg over S such that the fun ct or <1>9 ( • ) 

is isomorphic to the functor HomSchs ( . ,Mg). We remark that there are plenty of 

curves having non-trivial automorphisms. Therefore, as noted before, we can expect 

that there is no fine moduli space for this problem. However, it is known [11] that 

this moduli problem only has a coarse solution and the coarse moduli space has di­

mension 39 - 3. 

For instance, the coarse moduli space of elliptic curves is known as the Weierstrass 

absolute invariant j, also named the j-line. For a field of characteristic p > 3, we may 

assume that the elliptic curve has a Weierstrass equation of the form 

Then the j-invariant is explicitly given by 

It is an invariant of the isomorphism class of the curve, and it does not depend on 

the particular equation chosen. 
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One can easily see that the j-line is not a fine moduli space. For instance we can 

consider the quadratic twist. The two curves associated to the affine model: 

y2 = x 3 + ax + b 

dy2 = x·3 + ax + b 

are isomorphic over the the field Q(Vd), thus they have the same j-invariant. But 

with sorne work, one can show that if d is not a square, the two curves are not iso­

morphic over the field Q while they share the same invariant. Furthermore, over 

an algebraically closed field, one can find in [29, III,§l] that two elliptic curves are 

isomorphic if and only if they have the same .j-invariant. For a description of this 

invariant in characteristic 2 and 3 see [29, Appendix Al. 

The particular case of genus 2 curves, which are an hyperelliptic, has been consid­

ered by Igusa in [10] and can be given explicitly in every characteristic. Recall that 

a curve defined over a field of odd characteristic can be described by its Rosenhain 

normal form: 

If the characteristic of the field is 2, the curve C can be given by the normal forms 

ax + f3x-l + "y(x - 1)-1 

y2 - Y = x 3 + ax + f3x-l 

To define its moduli space, Igusa worked with the universal normal form 

which is valid for every characteristic. Note that now this form depends on four, 

instead of three variables and one can recover quite easily our previous forms from 

this one. The moduli space of hyperelliptic curves in characteristic different from two 

is closely connected with projective invariants of binary sextics. And surprisingly this 



4. MODULI SPACES 35 

connection aiso holds in characteristic 2 if we work with the universal normal form. 

For a sextic UOX6 + U1X5 + ... + U6 = Uo n~=l(X - ai), if we abbreviate (ai - aj) 

by (i j), the following expressions 

AU) u~ 2:(12)2(34)2(56)2, 

BU) u6 2:(12)2(23)2(31)2( 45?(56)2(64?, 

CU) ug 2: (12)2(23)2 (31)2 (45)2 (56)2( 64)2 (14)2(25)2 (36?, 

DU) u6° I1 (ij)2, 
i<j 

define homogeneous integral invariants and DU) is the discriminant of the sextic. 

We can evaluate these expressions for the following polynomial, 

which is the sextic of Weierstrass points associated to universal normal form. 

In characteristic 2, the ·Weierstrass points behave badly under reduction modulo 2, 

thus these integral invariants are not adequate. Instead we need to consider arithmetic 

invariants which are rational invariants whose value at the above sextic has integral 

coefficients as a polynomial in a, b, c, d. Note that according to this new definition, 

every integral invariant is an arithmetic invariant. Igusa introduced the five basic 

invariants, 

J2 = 2-3A 

J6 = 2-63-2(8J~ - 160J2J4 - C) 

J lO = 2-12 D 

J4 = 2-53-1(4J~ - B) 

J8 = 2-2 (J2 J6 - JJ) 

and showed that they make sense for every characteristic. The moduli space of genus 

2 curves he described is H 2 := Spec(R) , where R is the ring of invariant elements 

of Z[Y1' Y2, Y3, Y4] under the transformation Yi 1-7 t;iYi, where ç is a fifthroot of unit y, 
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Yl, Y2, Y3 are sorne independent variables over Q and Y4 = ~(YIY3 - yi). The elements 

in Rare named the absoluie invariants and we have the following correspondence 

in which the ei are non-negative integers satisfying el +2e2+3e3+4e4 = 5e5' Further­

more, R is an integrally closed noetherien integral domain over Z with 10 generators 

that can be given explicitly. For instance we can take 

J~ Jïf/ , J~ J4 Jlo \ JiJ6 J10
1 

, 

J4 Jl J10
2

, J't J8 J10
2 

, J~ JJf/' 

4.3. Moduli space for hyperelliptic curves. 

J 5J-4 
8' 10 . 

Our main concern here is to understand the moduli problem for hyperelliptic 

curves of a fixed genus. Later on we will consider sorne particular hyperelliptic curves 

and we will try to describe the subset of the coarse rnoduli space associated to these 

special curves. vVe consider the functor 

<I> Hg : Schs ---+ (Sets) 

defined by: 

<I> Hg (T) = { Isomorphisrn classes of hyperelliptic curves 7r : X ---+ T of genus g} 

and try to relate it to a coarse moduli space Hg. 

In order to get concrete results, we will only consider curves defined over k, an 

algebraically closed field of odd characteristic. We have seen in our study of hy­

perelliptic curves that these curves can be associated with the space of non-ordered 

(29 + 2)-tuples of distinct points in pl (k). These ramification points are the image of 

the Weierstrass points under the covering of the projective hne and we will also refer 

to them as Weierstrass points. We have seen in Corollary 3.3.1 that two curves over 
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k are isomorphic if there exists fi, E PGL2 (k) sending the ·Weierstrass points of one 

curve to those of the other. 

For any curve, we can label the Weierstrass points to get an element lV' = 

[À 1) À2' ... , À29+2] of]P1(k)29+2\.6. =: H;* where .6. = Z(ni,tj(Xi -Xj)). The symmetric 

group 2::2g+2 acts on H.;* by permuting the Weierstrass points and PGL2(k) acts on it 

componentwise. Therefore these two actions commute and Hg, the parameter space 

of the hyperelliptic curves, can be described as 

which is isomorphic to 

VVe can focus for the moment on H; = [(]Pl (k )2g-2 \ .6.) / PG L2 (k)] and one can use 

an appropriate and unique element of PGL2 (k) to force the first three Weierstrass 

points to be [0,1,00]. We get this way a representative for each classes and this 

representative is described by the remaining 2g - 1 points. Thus we have 

H; = (]Pl(k) \ {O, 1,00})2g-1 \ .6.', 

where 

This quasi-projective variety is not the space we are looking for. Indeed, a permu­

tation of the labeled points will give different elements in H; but will represent the 

same hyperelliptic curve. Therefore, to get a better description of Hg, we will need 

to erase the marking done previously using the action of the symmetric group 2::2g+2 

on H;. 

PROPOSITION 4.3.1. Let H; be the quasi-projective variety (Pl (k) \ {O, 1, 00 } )2g -1 \ 

.6.', then there is an action of 2::2g+2 on H; . 
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Proof: Consider first X = [Xl, ... ,X2g-1] EH;, there exists at least one element in 

H;* = IP1(k)29+2 \ 6, say À = [À 1, ... À29+2], associated to X and sueh that 

for 

The permutation 0" E 2.:2g+2 acts on X by xeT = [xL ... X~9-1l where 

for 

We need to show that this action is well defined. lndeed suppose that wc have two 

elements in H;*, say À = [À 1, ... , À29+2] and X = [1(À1), 0<" f(À 2g+2)] for f E PGL2(k), 

which are associates to x. If we consider the action of 0" through X, the element x eT 

is given by 

for 
1);eT' (x) = 0"(f(À1)) - O"(f(x)) 0"(f(À3)) - 0"(f(À2)) 

a(f(À3)) - O"(f(x)) O"(f(Àr)) - 0"(f(À2))' 

Since the two action commutes and the cross-ratio is stable under PGL2 (k), the map 

1);' can be written as 

f(0"(À 1) - f(O"(x)) j(0"(À3)) - f(0"(À2)) 
f(0"(À3)) - f(a(x)) f(O"(À 1)) - f(a(À 2)) 

a(Àr) - O"(x) a(À3) - 0"(À2) 
0"(À3) - a(x) 0"(À1) - 0"(À2) 
1);eT (x). 

One easily verifies that we have id(x) = x and (O"r)(x) = O"(r(x)). o 

Since a finite group acting on a quasi-projective variety leads to a quotient which 

lS also a quasi-projective variety, the set 

is also a variety. In fact, it will be the coarse moduli space of our moduli problem. 

As stated before, there is no fine solution for this problem and one can find a proof 
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of this in [25]. Note that the dimension of Hg is 2g - 1 and this agrees with the fact 

that aU genus 2 curves are hyperelliptic. 

4.4. Level structure on hyperelliptic curves. 

To simplify the moduli space associated to hyperelliptic curves and to be able to 

parameterize sorne coverings, we will add sorne level structure on Hg. For instance, 

among the Weierstrass points, one can fix a non-ordered m-tuple of points, and con­

sider H;' the moduli space of (C, 8) where 8 E Sm := {8 : Isi = m and s c tVc }, 
i. e., the genus 9 hyperelliptic curves together with a choice of m WeierstI."ti:iS points 

(not labeled). This new moduli space can be describe as: 

where PGL2 (k) acts componentwize and 6 = Z(TIi;Lj(Xi - Xj)). 

For a curve C in Hg there are (2~2) ways to pick a set 8 of m \Veierstrass points, 

thus the map p : H;' --t Hg has degree (2~2). This map will be ramified if C admits 

particular automorphisms. Two elements (C, 81) and (C, S2) in H;' with SI 1= 82 will 

be isomorphic if there is 4> E PGL2 (k) that sent W to itself and SI to 82. Remark 

that if we consider a curve C with a set of Weierstrass points W = P'l, ... , À2g+2 } and 

'ljJ E Aut(C), by Corollary 3.3.1 we have necessarily that 'ljJ(W) = W,i.e., the map 

permutes the Weierstrass points. Since the involution i is trivial on the Weierstrass 

points, we will only consider the elements in Aut( C) / < i >=: Aut( Cy named the re­

duced automorphism group. From the same corollary, the isomorphism 4> corresponds 

to an automorphism in the reduced group that sends 81 to 82' 

We therefore have an action of Aut(C)* on Sm that induces trivially an action on 

p-l(C) the fiber of the map p : H;: --t Hg. If Am(C)* is not empty, there will exist 
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elements in the fiber that were a priori distinct but will be associated by cP E Aut( C)*. 

In this situation, the map p will be ramified over the curve C. 

LEMMA 4.4.1. Let p-l(C) the fiber of the map p : H; ------t Hg over C and m f-
2g + 2, then the action of Aut* (C) on p-l (C) is faithfuJ 

Proof: For any automorphism 7/J in Aut(C)*, from Corollary 3.3.1, there exists 

xE W such that 7/J(x) f- x. If m f- 2g + 2 there is at least one set s E Sm containing 

x but not 7/J (x), thus 7/J acts non-trivially on (C, s). Therefore, the kernel of this action 

is the identity, hence the action is faithful. o 

We denote by Aut(C); the elements in Aut(C)* that send the set S E Sm to itself 

and we can state the following. 

LEMMA 4.4.2. Let p-l(C) the fiber of the map p: H; ------t Hg over C, then 

(1) the elements of the fiber p-l(C) correspond ta the orbits of the action of 

Aut(C)* on Sm; 

(2) the stabilizer of (C, s) E p-l(C) (also of fi E Sm)in Aut(C)* is Aut(C);. 

Proof: (1) Consider (C, SI) and (C, S2) two elements in the fiber of C where SI f- S2, 

they will correspond to the same element in H; if and only if there is cP E Aut(C)* 

such that cP(Sl) = S2 that is, if and only if they are in the same orbit. 

(2) Clear from the definition of Aut(C);. o 

Another way to put a level structure on hyperelliptic curves is to label the Weier­

strass points by 'li := { sis: {1, 2, ... , 2g + 2} ~W c}. Once the points are labeled, 

as we have seen, one can send the first three points to [0,1, ooJ and we get a moduli 

space encountered before 
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The map Pl : HZ --+ Hg has degree (2g + 2)! and again this map will be ramified if 

the curve admits an automorphism beside the hyperelliptic involution. Two elements 

(C, 81) and (C, 82) in H; with 81 #- 82 will be isomorphic if there is 1:> E PGL2 (k) that 

sent 81 to 82, that is if 1:> E Aut( C)* and send 81 to 82. Again the action of Aut( C)* 

on 'lI is faithful and induces naturally an action on PlI (C). Similarly we have the 

following: 

LEMMA 4.4.3. Let Pl 1(C) the fiber of the map Pl : H; --+ Hg over C) then: 

(1) the elements of the fiber PlI (C) correspond to the orbits of the action of 

Aut(C)* on 'lI; 

(2) the siabilizer of (C, 8) E Pl1 (C) in Aut(C)* is the identity; 

(3) the fiber over the curve C consists of (2g + 2)!/IAut(C)*1 elements. 

Proof: (1) Consider (C,81) and (C,82) two elements on the fiber where 81 #- 82, 

they correspond to the same element in H; if and only if there is 1:> E Aut( C)* such 

that 1:>(81) = 82 that is, if and only if 82 E Orb(81' Aut(C)*). 

(2) Since by Corollary 3.3.1, every elements in Aut(C)* permutes sorne of the 

Weierstrass points, an ordered 2g + 2-tuple 8 is sent to itself only via the identity. 

(3) If two different automorphisms 0: and f3 in Aut( C) induce the same per­

mutation of the Weierstrass points, from the exact sequence 1.3 in Corollary 3.3.1, 

0:(3-1 = L thus 0: = (3 in Aut(C)*. Since each element in the reduced automorphism 

group acts non-trivially and differently on every 8 E 'lI, every orbit of the group 

Aut(C)* consists of IAut(C)*1 elements. Therefore there is (2g + 2)!/IAut(C)*1 el­

ements the fiber Pl1(C) and the ramification index ofthese elements is IAut(C)*I. 0 

One can also consider the degree (2g + 2 - m)! . ml map P2 : H; --+ H;: given first 

by sending the m first points of (C, 8) to the set s E Sm and then by forgetting an the 
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labels. Again ramification will occur when the curve has non-trivial automorphisms 

but only particular automorphisms will produce ramification. The only way to get 

ramification over (C, s) E H;: is when two different ordering of s, say sî and s'2 

give the same element in H; i. e. when there is cp E Ant( C); snch that cp( lI) = l2. 

Remark that Ant( C); acts on S and on Sm and this action induces an action on 

p-I(C), Pl1(C) and P2 1 (C, s). Also note that Ant(C)* \ Aut(C); does not induces 

an action on P2 1(C, s). 

LEMMA 4.4.4. Let P2 1 (C,S) the fiber of the map P2 : H; ---t H;:, then the 

elements of the fiber P2 1 (C, s) correspond ta the orbits of the action of Aut(C); on s. 

Proof: Consider (C,3l) and (C, 82) two elements over (C, s). This mean that 31 and 

32 are two different orderings of the Weierstrass points where the m first components 

are s. They will correspond to the same element if and only if there is cp E Ant(C)* 

snch that cp(31) = 32 and cp send the first m components to themseives, that is, if and 

only if they are in the same orbit of Aut(C);. 0 

We can compose P2 with P to get a degree (2g + 2 - m)! . ml· (2g:2) = (2g + 2)! 

map which clearly corresponds to Pl. The following diagram snmmarizes the moduli 

spaces we have considered and the morphisms between them. 

;/ 
Hm 

9 

~ 

H** g 

t 
H* g 

Pl 

Hg 

1 
(]Pl \ {O, 1,00} )29- 1 \,6.' 

P2~ 

~ 



4. MODULI SPACES 43 

Thercfore this decomposition provides a better description of the ramification over 

C. Suppose that (C, 31) and (C, ,52) correspond to the same element in Pl1(C), then 

this identification can be explained by these two situations: 

• If the first m components of 31 and 32 are the same, say 8. Thus they have 

the same basepoint (C, 8) in H;'. Therefore 31 is send to S2 with sorne 4> in 

Aut(C); . 

• If the first m components of SI and S2 are different. Thus they have different 

basepoints in H;", say (C,81) and (C,82) for 81 of. 82· Rence SI is sent to S2 

via an automorphism 4> that do es not fixes 81 nor 82· Therefore, 4> must be 

in Aut(C)* \ (Aut*(C)Sl U Aut*(C)sz)' 
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5. Affine group schemes 

We have previously seen that Jac( C) is a particular example of an abelian variety. 

Let X be an abelian variety over a field k and X[n] the kernel of the multiplication 

by n map. Then X[nJ has a natural srtuctureof an affine group scheme. The group 

law on su ch a scheme X[n] will induce naturally on k[X[n]J, the coordinate ring of 

the scheme, sorne k-algebra homomorphisms. Together with this structure, these k­

algebras are known as Hopf algebras. In general, one st arts with a k-algebra with 

appropriate structure on it and obtains an affine group scheme. Note that this group 

scheme will not necessarily come from an abelian variety. By a theorem of Oort, 

any commutative finite group ncheme is a subgroupscheme of X[n], for sorne abelian 

variety X and sorne n. 

5.1. Affine group scheme as representable functors. 

If we consider R, any k-algebra, there are sever al ways to get a group from it. 

For instance, we can consider R with only its additive law, we can also consider 

GLn(R) the n x n matrices with entries in Rand with invertible determinant. In 

general, given any k-algebra R we would like a group G(R) and that a given k-algebra 

homomorphism cP : R --7 S, will induce a group homomorphism G(R) ---+ G(S). 

Indeed, we want G to be a covariant functor from k-algebras to groups. Furthermore, 

if, like in the situation of affine varieties, the elements in G(R) correspond to solutions 

in R of sorne family of polynomials, say l = ({fj} jE}), one ean find A a k-algebra and 

a natural eorrespondenee between G(R) and Homk(A, R). Note that the converse 

also holds, every k-algebra A arises in this way from sorne family of equations. Sueh 

functors are ealled representable and we say that A represents G. Note that if A has 

finitely many generators it can be written as k[Xl' ... xnl/ I, a eoordinate ring. 

DEFINITION 5.1.1. An affine group scheme over k is a representable functor from 

the category of k-algebras to the category of gT'O'Ups. 
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There are many examples of affine group schemes, and the most relevant are the 

following. 

• Ga : The additive group assigning to every k-algebra R its underlying addi­

tive group. The functor Ga is represented by k[x]. 

• G m : The multiplicative group assigning to every k-algebra R the group R* 

of its invertible elements together with its multiplicative law. The functor 

G m is represented (as a scheme)by k[x,x- 1] = k[x,y]/(xy -1). 

@ /-Ln : It assigns to every k-algebra R the multiplicative group {( E R 1 (n = l}, 

the n-th roots of unity. The functor /-Ln is represented by k[x]/(xn - 1). 

• Op' : For k a field of characteristic p, it assign to every k-algebra R the addi­

tive group {x E R 1 xps = O}. The functor op' is represented by k [x] / (xPs 
). 

® GLn : The matrix group, assigning to every k-algebra R the n by n invertible 

matrices with entries in R. The functor GLn is represented by the ring 

k[Xl,l' Xl,2, ... , xn,n, yl/(y· det(xij) - 1). 

• r: The constant group scheme represented by A = kf. One can show that 

if R is a k-algebra with no idempotents except 0 and 1, any element of 

Hom(A, R) is given by assigning one element in r to the unit y of R, thus one 

can, in a certain way, consider r(R) as the group r itself. 

It is well known that there are plenty of maps between groups. For instance, 

consider det : GLn ---+ G m. For each ring R, det gives a map from GLn(R) to 

Gm(R). This is, in fact, a natural transformation offunctors since for any 4; : R ---+ S 

the following diagram commutes: 
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This cornes from the fact that we have an explicit formula for det involving only 

polynomials in the matrix entries. In fact, such natural maps arise only from such a 

situation. 

THEOREM 5.1.1. (Yoneda's lemma) Let E and F be functors represenied by k­

algebms A and B. Every naiuml tmnsfoTmaiion of functors E ---t F corresponds to 

k-algebm homomorphisms B ---t A. 

Proof: Since an element in E(R) corresponds to a morphism A ---t R, for any 

1j; : B ---t A, the composition B ---t A ---t R define an element in F(R). We get 

clearly a natural transformation of functors E ---t F. 

Conversely, we can apply our natural map 'li : E ---t F to E(A) corresponding 

to the identity map idA : A ---t A. Applying 'li to it we get an element of F(A), 

i. e., a homomorphism 1j; : B ---t A. Since any element in any E(R) cornes from a 

homomorphism A ---t R, and 

E(A) ---t E(R) 

t t 
F(A) ---t F(R) 

commutes, we see that 'li is exactly the map defined from 1/) in the first step. 0 

COROLLARY 5.1.1. The map E ---t F is a natuml equivalence iff B ---t A is an 

isomorphism. 

Notice that affine group schemes can also be consider as contravariant func­

tors from k-algebras R to groups if we describe them in terms of their representing 

obj ects, A. 

5.2. Hopf Algebras. 

As noted before, the group structure on G induces naturally sorne maps on the 

k-algebra A. This is a well known structure, known as a Hopf algebra. Consider a 
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group f := G(R) for sorne G and sorne R. Saying that f is a group is equivalent to 

giving the maps: 

multiplication m: f x f --t f 

unit u: {e} --t f 

mverse 1,: f --t f 

su ch that the following diagrams commute: 

fxfxf 

t m x id 

fxf 

id X I?7. f x f 

t m 

f 

{e}xfU~ fxf 

1 ~ t m 

f f 

f (~) f x f 

(associativity) , 

(1eft unit), 

t m (left inverse). 

{e} ~ r 

Suppose now that G is represented by A; then A ®k A represents G x Gand we 

can apply Yoneda's lem ma to get the following k-algebras maps: 

comultiplication ~: A --t A ® A 

counit f: A --t k 

coinverse S: A --t A 
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such that the following diagrams commute: 

A®A®A if! 06- A®A 

t 6- @id t 6- , 

A®A ~ A 

k®A f-!!2-id A®A A ~d) A®A 

1 ( t 6- and t t 6-

A A k ~ A 

DEFINITION 5.2.1. A k-algebra with specified maps 6, E, S satisfying the above 

conditions is called a Hopf algebra. 

One can show that affine group schemes over k correspond to Hopf algebras over 

k, see [32, I,§ 1.4]. Note that in terms of functions, from f E A where f : G ------7 k 

we get 6f E A ® A where 6f : G x G ------7 k is given by 6f(x, y) = f(xy). If we 

return to the above examples we easily work out the structure of their respective Hopf 

algebras . 

• For Ga, we have 

6: x H(x01)+(10x)=x+y, 

E: X HO, 

S: X H -x, 

where x® 1 =: x and 1 ®x =: y . 

• For G m , we have 

6: x H x ® x = (x 0 1) . (1 0 x) = xy, 

E: x Hl, 

S: X H x-1 , 
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where X ® 1 =: X and 1 ® X =: y. 

® For /.ln, this group scheme is in fact the kernel of the homomorphism G m --j 

G m given by .T H xn and the maps on the Hopf algebra k[xJl(xn - 1) are 

the same as for k[x, x-Il modulo the ideal. 

@ For cxp" this group scheme is in fact the kernel of the homomorphism Frs 
: 

Ga --j Ga given by X H xps and the maps on the Hopf algebra k[xl/(xPS
) 

are the same as for k[x] modulo the ideal. Note that Frs is the well known 

Frobenius map that we will study later. 

@ For r, if we den ote by e(T the element in A such that e(T (cr) = 1 and e(T ( T) = 0 

for aIl the other elements T in the group, we get that {e(T} (TEr is a basis of A. 

In this setting we have 

5.3. Cartier dual. 

il: e(T H~) em5 ® eJ-l), 
JEf 

if cr = id 

otherwise, 

In addition to the maps il, E, rmS, a Hopf algebra A has the following maps: 

ring multiplication m: A 0 A --j A 

k-algebra structure u: k --j A. 

Hence, it seems possible to consider the dual of these Hopf algebras. A group scheme 

G is said to be finite if it is represented by A, a finite dimensional vector space 

over k. First note that taking the dual N V = Homk(N, k) of a finite-rank free module 

commutes with the usual operations on modules: (JvI(f)N)V :::::: (Mv(f)NV), (M®Nt :::::: 

(M V 0 N V), Hom(AI, N) :::::: Hom(NV, .lV/V) and (M (f) kt :::::: J"\1 v EB k. Since the 

operations Hom and EB commute with finite direct sums, taking the dual of A still 
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make sense if G is a finite abelian group scheme. The maps 6, E, S, m and 'U induce 

new maps on the dual which are very similar to sorne we know: 

m V
: AV -----7 AV Q9 AV, 

'uv: AV -----7 k , 

Sv: AV -----7 AV , 

6 v : AV Q9 AV -----7 AV, 

EV : k -----7 AV. 

THEOREM 5.3.1. (Cartier duality). Let G be a finite abelian group scheme rep­

resented by A. Then AV represent another finite abelian group scheme GV
• Here 

(GV)V = Gand Hom( G, H) ~ Hom(Ir, GV). 

We can find a proof of this theorem in [32] and it is an easy exercise to show that 

(71/n71)V ~ Mn and (O:p.t ~ O:p" 

5.4. The Frobeniu.s map. 

Given any field map k -----7 k' we can perform a base change and get a group scheme 

over k' represented by A Q9k k'. By considering the Frobenius map Frs 
: 0: M o:ps from 

k to itself, for any affine group scheme G over a field k of characteristic p, we get a 

new group scheme denoted GCpS). If Gand GCpS) are represented by respectively A 

and ACpS) = AQ9kOFr. k, the map from A(p") to A given by aQ9O: M aPso: gives a group 

homomorphisms 

again called the Frobenius map. If A = k[Xl' ... ,xnJ/(h, ... , fm) then A(p·) = 

k[Xl 1 ••• , xnl/(gl' ... , gm) represents GCpS) where the gi are obtained by raising each 

coefficient of the fi to the pS power. Then the morphism Frs is given as morphism of 

k-algebras by 

Frs : A(p·) -----7 A, Xi M xr for i = 1, ... , m, 
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and corresponds, as a homomorphism of groups, to 

If G is a finite abelian group scheme, we can apply the same argument to the dual 

of Gand get the map 

that induces, by duality, a morphism called the Verschiebung morphism given by 

Ver := Frv : G(p) ---+ G, 

and such that FrG 0 VerG(p) = [P]G(p) and VerG(p) 0 FrG = [pJG, sec [5J for detétils. 

5.5. Étale group schemes. 

For k a perfect field of characteristic p and G a finite commutative abelian scheme 

represented by A, we will say that G is étale if it becomes a constant group scheme 

after base change, that is, if A ®k k represents a constant group scheme. We have 

seen that given any finite abelian group one can construct a corresponding constant 

group scheme. lndeed we have a bijection between these two sets, and if we consider 

étale group schemes we have again a bijection given by. 

{

Étale group schemes 

over k } { 

Finite abelian groups f + } 
~ an element of H 1(Gal(kjk), Aut(r)) . 

Any 6 in Hom(Gal(kjk), Aut(r)) will gives an étale group scheme, see [19, 1,§5] 

for the equivalence of categories between finite étale group schemes over k and the 

category of groups endowed with Gal(k, k) action. Two elements 6,6' will represent 

the same étale group scheme iff there is 0- E Aut(f) such that 6 = 0-6'0'-1 i.e. iff they 

define the same cohomology class. 
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If G has order zr, where l is prime to p, one can show that G is always étale and 

therefore G v will also be étale. On the other hand, if G has order pS, it may or may 

not be étale. We will say that G is local if G is represented by an artinian local ring 

A. Since geometric points come from maximal ideals, G(k) consists of the identity 

element only. For instance, in the examples seen before, op and f1p are local group 

schemes over fields of characteristic p. vVe will say that a local group scheme of order 

pS is local-étale if its dual is étale. Aiso if an étale group has order pS it is not difficult 

to show that its dual will necessarily be local, such group schemes are called étale-local. 

It is now possible to decompose the category of finite commutative group schemes 

over a perfect field in four categories, see [31] for proof and details. 

( local-local) E9 ( local-étale) E9 ( étale-local) E9 ( étale-étale). 

For each of these categories, we have a non-trivial example given respectively by 

where l is any prime different of p, the characteristic of the field k. Moreover, over an 

algebraically closed field k, every finite commutative group scheme has a composition 

series whose quotients are one of those group schemes, see [24, Lemma 6.1]. 

5.6. G[n] as an affine grou.p scheme. 

Given any commutative affine group scheme G of dimension 9 we can consider 

the functor from k-algebras to groups 

G[n] : R -+ G[n](R) = {x E G(R) 1 nx = O}. 

If Gis a 9 dimensional abelian variety, one can prove, see [19], that the multiplication 

by n map is an isogeny and the kernel G[n] is an affine group scheme represented 

by a Hopf algebra A of rank n2g
. One can also show that G[n] is étale, that is 
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G[n]®kkS 
rv (71/n71)2g

, if and only if the characteristic of k is coprime to n. Moreover, 

if p = char ( k) then 

and the kernel of the map Fr : G[p] ---+ G(p)[p] is also an affine group scheme of 

order pg. 

5.7. Polarization. 

In a later classification of A[p] we will assume that these group schemes are self­

dual. This duality cornes from the fact that we consider principally polarized abelian 

varieties A, which is always the case when A is the Jacobian of a curve. Without 

going into great details, we will give sorne explanations. 

For any divisor D in A we consider the hne bundle C = OA(D) and Tx : A ---+ 

A the translation by x map on A, Tx(Y) = x + y. The dual abelian variety AV 

parameterizes line bundles on A that are algebraically equivalent to zero. For every x 

and a line bundle C, we have that Tx(C)®C-1 is equivalent to zero, hence corresponds 

to a point on A v. vVe define the map 

which is in fact an homomorphism of groups, see [21, §6, Corollary 4]. The dual AV 

of the abelian variety A is PicO(A), where here PicO(A) is the identity component 

of Pic (A) and one can show that (AV)V = A. Recall that a polarization of A is a 

homomorphism, 
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where .f = À.c for sorne ample hne bundle [, over AI k. The polarization is said to be 

principal if.f is an isomorphism. 

For a curve C and a point P on it, there exists a particular divis or on the Jacobian 

of C, named the theta-divisor, which is given as follow 

Changing the basepoint P results in a translation of 8 and thus the theta divisor 

is canonical up to translation and one can show that it is ample. Therefore, for 

[, = G.Jac(C) (8), the map À.c : Jac(C) --+ Jac(C)V is a canonical polarization and 

one can show that it is an isomorphism, see [20, Theorem 6.6] for details. 

We only consider self-dual abelian varieties in the next sections. From the exact 

sequence 

o --+ A[n] --+ A ~A --+ 0, 

we get by duality theory 

Because (xn)V = xn we have that (A[n])V = AV[n] and by self-duality we conclude 

that AV[n] rv A[n]. Sinee for every finite commutative group scheme G over k, there 

exists a canonical perfect pairing G x G V --+ G m1 we obtain 

A[n] x (A[n]t --+ Itn, 

which leads in this setting to the Weil Pairing 

A[n] x A[n] --+ Itn. 
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6. Dieudonné Modules 

For the questions that interest us, we may restrict our attention to self-dual p­

torsion commutative group schemes of order pS over k, a perfect field of characteristic 

p. vVe will denote the Froebenius morphism on k by J. In order to study these group 

schemes, vve will often work on an equivalent category: the covariant Dieudonné mod­

ules. 

Given G, a p-torsion commutative group scheme of order li, we have a correspond­

ing Dieudonné module llJl( G) which is a s-dimensional vector space over k t.ogether 

with two maps: F and V, and an alternating pairing. The formation ofthese modules 

commutes with base changes, that is 

The construction is functorial, see [5, Appendix A,5J, thus from 

Fr: G ---+ G(p), 

there is a linear map: 

that gives the J-l-linear map 

V : llJl( G) ---+ llJl( G ) . 

Similarly we get the J-linear map 

from Verschiebung and the two maps are such that 

(1.4) 
1 

FV = VF = 0, F()"v) = )"PF(v) and V()..v) = )..ïJV(v) 'II)" E k. 
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A morphism of Dieudonné modules is a morphism ofvector spaces that commutes with 

F and F. Also, one can show that we have the duality JI])(G V
) = Homk(JI])(G),k) = 

JI])( G) v. 

THEOREM 6.0.1. The functor JI]) from the category of finite commutative group 

schemes of order a power of p over a perfect field k of characteristic p to the category 

of finite dimensional k-vector spaces equipped with two maps F and Il satisfying (1.4) 

is an equivalence of categories. 

The equivalence can be refined to an equivalence between the self-dual group 

schemes i. e., group schemes G equipped with an isomorphism À : G --+ G v such 

that À = À v and k-vector spaces F equipped with a perfect alternating pairing 

< " . >: F x F --+ k 

such that < Fx, y >=< x, Vy >17. This new category will be an useful tool to classify 

Jac(C)[p]. 

For instance, we can consider Pp and 'il/pZ which are dual to each other and have 

order p. One easily verifies that Frobenius acts as zero on Pp and as the identity on 

'il/pZ, thus F acts as an isomorphism on JI])(Z/pZ). Or equivalently, F acts as an 

isomorphism on JI])(pp). Therefore the group Pp has the Dieudonné module JI])(pp) = k, 

where p and F act as zero and F acts as an automorphism of k. The group scheme 

'il/pZ has the Dieudonné module JI])(Z/pZ) = k where p and F act as zero and V acts 

as an automorphism of k. Since Verschiebung and Frobenius act as zero on the group 

scheme O:p, using the equivalence of categories, we have the trivial Dieudonné module 

JI])(o:p) = k, where F, F and p act as zero. 

6.1. The a-number and the f-number. 
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Consider Hom(ap, G) for any finite commutative group scheme G. This is a finite 

dimensional vector space. One can prove it directly, see (5], or use the equivalence 

of categories. Indeed for cjJ E Hom(]j])(ap),]j])(G)) = Hom(k,]j])(G)), since q;(F(x)) = 

cjJ(V(x)) = 0 by linearity we would expect to have F(cjJ(x)) = V(q;(x)) = 0 for any 

x E k. Thus if we denote the k-vector space W = { y E ]j])(G) 1 Fy = ·Vy = 0 } = 

Ker(F) n Ker(V) we have that: 

Hom(]j])(ap),]j])(G)) = Hom(k, W), 

a k- vector space. Vve define the a-number of the finite commutative group scheme 

G, as the dimension of this spaee, i.e., 

dimk Hom(ap, A) 

dimk Hom(k, W) 

Furthermore we have that W rv ka~ ~ (]j])( ap ) ) a~ as vector spaces and, again by 

the equivalenee of categories, there exists a finite commutative group scheme a c G, 

the alpha group scheme, such that ]j])( a) = W and a ~ a~~. 

We return to our classification of commutative group schemes G over a perfect 

field of characteristic p. For any p-torsion group G, it can be decomposed as 

where G 1
-

1 is its local-local component, G l
-

e its local-étale component and G e
-

1 its 

étale-local component. We therefore have 

Note that on ]j])(G I- e
) , F is an isomorphism and V is nilpotent and on ]j])(G e

-
1
) , V 

is an isomorphism and F is nilpotent. Therefore F and V both have kernel only 

on ]j])(Gl-l) and it follows easily that aU(G) = a~(GI-I). Moreover, sinee F and V 
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are nilpotent we can conclude that VV of- 0, hence a~(GI-I) > 0 for any local - local 

group scheme. Also, for G an abelian variety of dimension 9, the kernel of the map 

Fr : G[pl ---+ G(p) [pl has order p9, thus we have an upper bound for the a-number. 

For instance we can find the a-number for aIl the possible p-torsion groups of the 

elliptic curves. As stated before, every elliptic curve is principally polarized, thus 

E[p] is self-dual. 

Consider first the case when E is an ordinary elliptic curve, that is when E[P] Cf) ~ 

Z/p 'Il. By self-duality we have flp C E[P] 0k k 80 

and we get the equality by considering the rank on both sides. Remark that E[p] 

does not have local-local component thus the a-number of an ordinary elliptic curve 

is O. 

If E is a supersingular elliptic curve, that is when E[p] (k) = 0, then the p-torsion 

group has no étale-local component, thus, by self-duality, no local-étale component 

either. Therefore, E[p] is local-local, so a~(E[p]) > ° and by the upper bound we 

have that a~(E[p]) = 1. Thus we have the non-split exact sequence 

where the embedded CYP ' that we will denote H, is unique and is both in the kernel 

of Frobenius and Verschiebung. The group scheme E[p] 0k li will be denoted :MI and 

one can show that it is independent of E. 
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One ean also show that if we apply twice Frobenius to the group seheme G[p] of 

order p2g , we get that Fr2 (G[p)) is a group seheme of order r- art . 

Another number that will interest us is the integer fU sueh that 

It is ealled the f-number of the commutative group seheme G[pl. Remark that the 

f-number depends only of the étale component, therefore fU(G) = n(Ge
-

1
). In fact 

for G = A[pl the f-number is often defined as 
(X) 

d· n l!"i(']jJ)(G\\ " JD)(Ge- 1) Imk v ' J} :.;::cc d1TI1k J • 

i=l 

slllee IIJl(G e
-

Z
) is the largest submodule of IIJl(G) on whieh V is an isomorphism. 

(Equivalently, G e
-

1 is the largest subgroup of G on whieh F is an isomorphism.) 

For instance, we can find the f-number for our previous example, the p-torsion 

groups of elliptie curves. Since the p-torsion group of a supersingular curve has 

no étale-local eomponent, the f-number is O. For the ordinary case we have that 

E[Ple-1 = E[p](k) ~ Z/pZ, thus the f-number is 1. 

Together with the a-number, the f-number will allow us to deseribe partially 

Frobenius and Verschiebung for the finite commutative group schemes that interest 

us: the p-torsion group of the Jacobian of hyperelliptie curves. The a-number and the 

f-number should be thought of as (very eoarse) discrete invariants we can assoeiate 

to an abelian variety in positive characteristic. 

6.2. Dieudonné modules and cohomology. 

As noted before it will be useful to study abelian varieties using Dieudonné mod­

ules. Also, using cohomology we will get very conerete tools for our study. Let A 
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be an abelian variety of dimension g over a perfect field of characteristic p. We can 

consider two order pg group schemes, A [Fr) c A, the kernel of the Froebenius mor­

phism Fr : A --+ A(p) and A [Ver) c A, the kernel of the Verschiebung morphism 

Ver: A --+ A (l/p). Together with A[p) we have the following exact sequence: 

0--+ A[Ver] --+ A[p) ~ A(l/p) [Fr) --+ O. 

This uses that Fra Ver = [Pl and that both A[Ver] and A[Fr] are of order p9. Applying 

the covariant Dieudonné functor we get 

(1.5) 0--+ D(A[Ver)) --+ D(A[P]) -~-+ ILV(A(ljp)[FrJ) = ])l(A[Fr])(1/p) --+ 0 

(where F is a linear map). We note that this sequence is nothing else then 

o --+ D(F) --+ D ~ D(V) --+ 0, 

where D = D(A[p]), D(F) = { x E D 1 Fx = a } , D(V) = { x E DIV x = a } and F 

is now a a-linear map. 

One can a1so show that there is an isomorphism of k[F, V)-modules of D with 

HdR(A) if A has a polarization prime to p. It is known that the vector space HdR has 

the following filtration 

,vhich can be related to (1.5). Indeed, it is not hard to show that Fr acts as zero on 

differential forms, thus we can associate D(F) with HO(A, n~). A1so we can identify 

Im(F(D)) with H 1(A, 0 A)' Assuming that A has principal polarization, we have that 

D/D(F) = Im(F) = Ker(V) = ILV(V) 

but notice that the map that identifies D/D(F) with D(V) is a-linear. Therefore we 

have the association: D(V) rv H 1(A, ('lA) <2h
OFr 

k which give the following diagram 



o ---+ HO(A, D\) 

-1,. II( 

o ---+ ]j))( F) 
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---+ HJR(A.) ---+ H1(A.,Ort) ---+ 0 

-1,. 112 -1,. 112 

---+ ]j)) ~ ]j))(V) ®kOFr k ---+ O. 

Furthermore the Frobenius operator F on ]j))(V) induces a a-linear operator on 

Hl(A,OA)' There is also a a-linear operator on H1(A,OA) induced by the map of 

sheaves 0 A ---+ OA given by x H- xp . One can prove, see [22], that these two maps 

agree. We denote this morphism also by F. This sequence has many applications in 

our study. For instance, it is now possible to expless the a,-number of A[p] in terms 

of cohomology. Since ]j))(V) = ]j))(A[Fr]) is already the kernel of V we have 

dimk Ker(F : ]j))(V) ---+ ]j))(V)) 

dimkKer(F: H 1(A,OA) ®kOFr k ---+ H1(A,OA) ®kOFr k) 

dimk Ker(F : H1(A., 0 A) ---+ H1(A, 0 A))' 

Therefore, if A is the Jacobian of a curve C, it will be possible to study prop­

erties of the Frobenius morphism, for instance the a-linear operator induced by F 

on H1(Jac(C), OJac(C))' The matrix describing this operator on H 1(Jac(C), OJac(C)) 

in named the Hasse- Witt Matrix. It is known that there is an isomorphism between 

H1(C, Oc) and Hl (Jac(C) , OJac(C)), see for instance [20, Lemma 9.5]. Therefore it 

will be possible to describe the Hasse-Witt matrix in terms H1(C, Oc) and this is 

equivalent to studying the Verschiebung operator V on HO(C, Db). 

6.3. The Cartier operator. 

We will see in a moment that studying the Verschiebung operator V on HO(C, Db) 

is the same as studying the Cartier cperator. But before we introduce this operator 
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we need some preliminaries on the theory of differential over fields of positive char­

acteristic. All the proofs related to this topic can be found in (2, Chapter 2] 

We say that an application () of a field k to itself is a derivation if it satisfies these 

two properties 

()(x +y) 

()(xy) 

()(x) + ()(y), 

()(x)y + X()(y) for x, y E k. 

One can easily show that the set of elements annihilated by a derivation ()is in fact 

a subfield k(tl) containing kP . A derivation () which is null for each element of L, a 

subfield of k, is said to be a L-derivation and we will denote g(k/ L) the set of aIl 

L-derivations. 

For k, a finite extension of a field L containing kP , we call a p-basis any minimal 

system of generators of the extension k/ L. Since (k : L] is finite, a p-basis is also 

finite. A sequence of elements {xih:Si:Sn in k, is a p-basis if and only if the monomials 

xii ... x~n ( for 0 :S jk < p and 1 :S k :S n ) are a basis of k over L as a vector space. 

Also, if {xd1:Si:::n is a p-basis of the extension k/ L, there exists a basis {tldl:Si:Sn of 

the k-vector space g(k/L) completely determined by the condition 

For each integer r we denote D.T(k/L) the k-vector space of the k-multilinear al­

ternating forms of r variables in g( k / L). We denote n* (k / L) the direct sum of the 

nr (k / L), indeed the exterior algebra of nI (k / L). The elements of n* (k / L) are called 

differentials of k over L. 
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For xE k we denote dx the differential f E 0.1(kjL) given by f(b) = (J(x). The 

application x H dx from k to 0.1 (kj L) is L-linear and we have 

d(xy) = d(x)y + xd(y). 

Given a p-basis {Xdl:Si:sn we have that < (Ji, dXj >= 6i j for 1 ::::: i, .i,::::: n. Thus 

{dXih:Si:Sn is a basis of 0.1 (kjL) dual to {Dih:Si:Sn' the basis of g(kjL). It is well 

known that there exists a unique L-linear operator d satisfying the relation 

d(w' 1\ w) = dw' 1\ w + (-lYw' 1\ dw, d(d(w)) = 0, 

for w' E 0. r (kjL),w E 0.*(kjL), and extending the application x H dx from k = 

CtO (k jL) to 0.1 (k j L). The kernel of d, that we denote by Z, is a subalgebra of thp 

L-algebra 0.(kj L) and the image of d, denoted E, is an ide al of Z. 

PROPOSITION 6.3.1. Let {xih:Si:sn be a p-basis of k over L. The subalgebra Z of 

the L-algebra 0.* (k j L) is the direct sum of the ideal E and the L-algebra genemted by 

the elements fi = xf-1dxi' where 1 ::::: j ::::: n. 

For simplicity consider the case L = kP , and let {xih:Si:Sn a p-basis of k on kP. 

We know that for an the strictly increasing sequences (il, ... , ir ) and fi = xf-1dxi' the 

monomials fil 1\ ... 1\ fiT are a basis of Z modulo E on kP. Thus we can write any 

element wEZ as 

The Cartier opemtor C from Z to 0.*(k) := 0.*(kjkP ) is defined as 

We can now focus on the particular situation where k is the function field of a 

hyperelliptic curve. vVe change our notation. Let C be a complete non-singular curve 

over k, an algebraically closed field, defined by the equation 

C : y2 = f(x), 
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where f(:.:c) E k[x] is a degree 2g + 1 polynomial. The field k(C) has a unique sub­

field kP(xP,yP) = k(xP,yP) = k(C)P over which k(C) is separably generated, e.g., 

k(C) = k(C)P(x) for a separably generating transeendental element xE k(C) \k(C)P. 

The p-basis ofthis extension is therefore {:r}. Note that since C is a curve Çl*(k(C)) = 

ktBÇll(k(C)). We consider Çll(k(C)) the set ofdifferential forms ofdegree 1 on k(C) 

and d: k(C) -+ Çll(k(C)) the canonical derivation of k(C). 

Since dx =1 0 for a separating element x E k \ kP and sinee dw = 0 for every 

w E n1(k(C)), by Proposition 6.3.1, every w can be expressed uniquely in the form 

w = d4> + 1]PxP-1dx with 4>,1] E k(C). 

Thus the Cartier operator is given by 

Cw 1]dx. 

It is a well defined (j-l-linear operator and C(d4» = o. 

It is weIl known [29, II] that the g-dimensional k-vector spaee Çll(k(C)) of differ­

entials forms of degree one of the first kind of k( C) has the following basis 

xidx 
B = {Wi = -: i = 0, ... , 9 - 1 }. 

y 

Due to the work of Manin [15], the images of the Wi'S under the Cartier operator C 

are determined in the following way. We can rewrite Wi as 

. N 
~~ . 1 .~. 

Wi = -- = xZy-PyP- dx = y-PxZ L... CjXJ dx, 
y . j=O 

where the coefficients Cj E k are obtained from the expansion 

N 

yp-l = f(x)? = I: CjX
j

, where N = p; 1 (2g + 1). 
j=O 
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Then we get for i = 1, ... ,9, 

Wi y-P( 2: cjxJ+idx) + 2: C(l+l)P_(i+l)X(I+l)p-(i+1)+i y - Pdx 

j 1>0 
'i+j+l$ Omodp 

C-Xj +i+1 x 1p 

d(y-P 2: . J . 1) + 2: C(I+1)p-(i+l) -xp-1dx. 
j J + ~ + 1>0 yP 

i+j+l$ Omodp -

Note here that 

o :S l:S N + i + 1 _ 1 = ((p - 1)/2)(29 + 1) + 9 - 1 < 9 _ ~. 
P P 2 

Thmi we have 
g-l 1 

_ ""' l/p X 
CWi - L... c(l+l)p-(Hl) -dx. 

1=0 y 

This shows that HO (C, n~) is closed under the Cartier operator C. Thus, we can 

represent C by a matrix. Indeed, if we write W = (Wl 1 •• " wg ), we have 

where ACl/p) is the 9 x 9 matrix with elements in k given as 

l/p 
c p_ 1 

l/p 
c p_ 2 

l/p cp_ g 

l/p l/p l/p 

A(l/p) = C2p - 1 C2p- 2 c 2p_ g 

l/p cgp_ 1 
l/p c gp _ 2 

l/p 
Cgp_ g 

The usual care as to the meaning of representing a a- 1 linear operator by a matrix 

must be exercised. vVe note that this formula shows that the Cartier operator C : 

n1(k(C)) -+ n 1(k(C)) de fines a a-1-linear operator HO(C, n~/K) -+ HO(C, n~/K) 

that we denote by the same letter C. If we raise to the p power each of the coefficients 
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of the matrix AU/p), we get the matrix 

A= 

Cgp-l Cgp-2 Cgp _ g 

This matrix is called the Cartier-Manin matrix associated to the hyperelliptic curve 

C of genus 9 defined over k. If S = (Sij), is a non-singular 9 x 9 matrix with entries 

in k and Sep) = (sfj) , then the change of basis for HO(C, n~/K) by S results in the 

Cartier operator being represented by Sep) AS- l . 

6.4. The Hasse-Witt rnatrix. 

One can also find in again in [33, Lemma D, El that the Hasse-Witt matrix can 

be identified with the Cartier-Manin matrix of a given curve C / k. 

Indeed if we come back the sequence 

we have that HO := H°(Jac(C), nLc(c)) ~ HO(C, nh) is in duality with Hl .­

Hl(Jac(C),OJac(C») i.e.: 

< Fx, y >=< x, Vy >(5 Hl = (HO)V 

< Hl, Hl >= 0 < HO, HO >= O. 

In fact, writing the matrix of F on Hl, the Hasse-Witt matrix, corresponds to writing 

the matrix of V in HO, the Cartier-Manin matrix. Suppose that {(i} is a basis of 

Hl and that {17J is a basis of HO, then < (i, 17j > = 6ij . Then the coefficients of the 

Cartier-Manin matrix can be written as 

9 

Cji =< L Cki(i, 17j >=< F(i, 17j > . 
k=l 
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On the other hand, sinee < F(i, 'T}j >=< (i, Vr/j >(Y, we get that aij, the coefficients 

of the Hasse-vVitt matrix can be recover 
9 

afj =< (i, Lakj'T}j >(Y=< (i, V'T}j >0"= Cij. 

k=l 

Therefore the matrix A (l/p) found in the above calculations is the Hasse-Witt matrix 

but usually we will consider the matrix to be A. 

6.5. Ordinary, non-ordinary and supersingular abelian varieties. 

We have encountered the definition of an ordinary genus 1 curve in our previous 

example and this definition can be extended to hyperelliptic curves of higher genus. 

THEOREM 6.5.1. Let A be a g-dimensional abelian variety over a perfect field k 

of characteristic p. The following statements are equivalent: 

(1) IA[p](k) 1 = p9 

(2) A[p]0k k rv g(j1p EB 7l/p71) 

(3) The Frobenius map Hl (A, 0 A) ---+ Hl (A, 0 A) is an isomorphism. 

If these properties hold we say that A is ordinary, and otherwise we say it is non­

ordinary. One can also prove that f < 9 if and only if a > O. There is in this theorem 

other statements about Newton polygon and the formaI group of J ac( C). They are 

not relevant for ours needs but for those who could be interested, the complete ver­

sion, together with the proof, can be found in [33]. A genus 9 curve C is said to be 

ordinary if its Jacobian Jac(C) is ordinary. By definition, the f-number of a genus 9 

ordinary curve is g, the a-number must be 0 and the Hasse-Witt matrix has non-zero 

determinant. 

A germs 9 curve C is said to be non-ordinary if its Jacobian Jac(C) is not an 

ordinary abelian variety. For such a curve, the a-number is greater than 0 and the 

f-number is less than g. Again, this can be translated in terms of the Hasse-Witt 
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matrix. A hyperelliptic curve defined over a field of characteristic P > 2 will be non­

ordinary if and only if the Hasse-Witt matrix has zero determinant. The non-ordinary 

curves can be subdivided into supersingular, superspecial and mixed curves. 

An abelian variety A over an algebraïcally closed field of characteristic p > 0 is 

called super-singular- if there exists an isogeny A "-' En , where E is a supersingular 

elliptic curve. Again we say that a curve is supersingular if its Jacobian is supersin­

gular. If A is supersingular abelian variety then 1 A [pl 1 = 1 but the converse does not 

hold if the dimension of A is greater then 2. We call A super-special if it is isomorphic 

to a product of supersingular elliptic curves. vVe will say that aH the other possible 

non-ordinary curves are of mixed type. Note that if lJac(C) [pl 1 = pB then the p-torsion 

group of Jac(C) will have the component s({lp EB 'il/pZ). 

6.6. Final sequences and classification of rank 2g Dieudonnés modules. 

As stated before it is possible to construct Dieudonnés modules from p-torsion 

commutative group schemes. This construction enables us to classify the objects we 

want to study. To do so, we consider self-dual group schemes with perfect alternating 

pairing 

G x G ---7 {lp 

and we say that these group schemes are symplectic. This classification is given by 

this main theorem. 

THEOREM 6.6.1. (F. Oort) Let k be an algebmically closed field of chamcter-istic 

P, then ther-e exist, up to isomor-phisms, 29 symplectic commutative gmup schemes 

G mnk p29 killed by p. Mor-eover-, each such gr-oup scheme appear-s as the p-tor-sion 

gmup scheme of some pr-incipally polar-ized g-dimensional abelian var-iety over- k. 
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The theorem cornes from the following lemma. In the scope of the equivalence 

of categories, the classification given in this lemma will also allow us to classify the 

Dieudonnés modules. 

LEMMA 6.6.1. Let k be an algebraically closed field of chamcteristic p 

a. Given a group scheme as in Theorem 6.6.1 there exists a final filtration, 

{O} = Go C G1 C ' .. C Gi C ... C G29 = G, 

with the following properties: 

1. rankai = pi; 

2. Gy = G29 - j ; 

3. Ver ( G j ) = G1/J(j) for a suitable function '1/) : {O, .. " 2g} --7 {O, "') 2g} 

called a final sequence. 

b. The function 'ljJ has the following properties: 

1.' 'ljJ(O) = 0 and 'ljJ(i) ~ 'ljJ(i + 1) ~ 'ljJ(i) + 1 for ail i; 

2.' 'ljJ(i + 1) = 'ljJ(i) + 1 {:} 'ljJ(2g - i) = 'ljJ(2g - i - 1), 

c. Let 'ljJ a final sequence satisfying (l') and (2'), then it determines the isomor­

phism class of the group Gand every such function comes from some group 

scheme G,1fJ over k. There are 29 such functions determined by their values 

on {O, ... ,g}. 

d. The f-number of G1/J is max{i: 0 ~ i ~ g, 'ljJ(i) = i}. The a-number of G1/J 

is given by 9 - 'ljJ(g). 

Thus there are always 29 such functions and the final sequence is completely de­

termined if we know its first 9 + 1 values. If we omit the first zero the restriction of 

'ljJ on the set {l, ... , g} is called the elementary sequence. 

Example: If 9 = 1, we would expect to have two group schemes. We have seen 

before that we first have the situation of an ordinary elliptic curve, that is when 
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E[p](k) ~ fLp EB 'Il/p 'Il. The filtration is then the following 

{O} C ILp C (fLp EB 'Il/p 'Il), 

where Ver(fLp EB 'Il/p 'Il) = lip and Ver(fLp) = fLp' Therefore the function 'ljJ is given by 

1, 0 1 2 

1j;( i) 0 1 1 

where the a-number is 0 and the f-number is 1. The only other possible final sequence 

is given by 

7 0 1 2 

1j;( i) 0 0 1 

with 1 as a-number and 0 as f-number. The filtration associated to this function is 

glVen as 

{O} C lHI c:Mi 

where Ver(M) = lHI, Ver(lHI) = 0 and lHI ~ Œp' This filtration corresponds to the 

situation of a supersingular elliptic curve. 

Note that in general, since the f-number of the ordinary curves is g, the sequences 

associated to these curves, or rather their Jacobians, are the on es where 'ljJ(g) = g. 

There is only one such final sequence, named the ordinary sequence, given by 

1, 0 1 2 ... 9 g+l , .. 2g 

'ljJ( i) 0 1 2 ... 9 9 .. , 9 

Remark also that this consistent with the fact that aU(Jac(C)[p]) = 'ljJ(g) - 9 = 0 . 

It is possible to construct the Dieudonné modules associated to these particular 

group schemes using final sequences. Let 'ljJ be a final sequence and denote by 
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the set of integers i such that 1/)(i - 1) < 'IjJ(i) and fill the blanks of the length 29 

string with 

1 ::; ng < ng-l < .. , < nl ::; 29· 

Note that the integers in the second set are the integer i such that 'IjJ(i - 1) = 'IjJ(i) 

and we have the following relation: mi + ni = 29 + 1. 

The basis for the Dieudonné module can be given as 

It will be convenient to introduce the following notation 

At this point, we need only to construct V, F and the alternating pairing for the 

module 9;;lk. 2i. The two maps are given by 

V(Y;) = 0, 

Here E = 1 if Z2g-i+l E {YI, ... , y;} and E = -1 otherwise. Finally, the pairing is given 

by 

Note that KerF is spanned by 2 1 , ... 2 g , KerV is spanned by YI, ... , Yg , and F 0 V = 

VoF = O. 

For instance, consider for 9 = 2, the final sequence 

't 0 1 2 3 4 

'IjJ( i) 0 0 1 1 2 
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This sequence augments at the second and the fourth position (we do not consider 

the first zero in the set of integers) thus ml = 2, m2 = 4 and we have the following 

data: 

'ljJ 0 1 1 2 

n2 ml nI m'2 

Basis Zl Z2 Z3 Z4 

Y2 Xl YI X 2 

V 0 Y2 0 Xl 

F 0 0 Y2 -YI 

which gives the 4 dimension al Dieudonné module M = EBi=l k . Zi together with V, 

F and the pairing. 

Conversely, one can start with M, a 2g dimensional Dieudonné module killed by 

p with ImF = KerV, ImV = KerF and with a symplectic pairing and then construct 

a final sequence which corresponds, by Lemma 6.6.1 to an group scheme with the 

needed properties. For such module there is always a V -filtration and a F -filtration. 

The F -filtration of the module corresponds to the Verschiebung filtration of the group 

schemes. If we apply it to a Dieudonné module constructed from a final sequence, the 

filtration will give back the original sequence. If instead we consider the V -filtration 

we would not necessarily get our original sequence. 

80 using F we need to construct a filtration 

0= Mo C Ml C ... C M 2g- 1 C M 2g = M 

where the Mi have dimension i and F(1\I1i) = M1jJ(i)' To do so we apply F to ]1.1 to get 

1\I1il = 1\I1'1/)(2g), we then again apply F to Mil to get Mi2 = ]\4'1j;(iI) and so on until we 
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do not get new modules. vVe get this way a partial filtration of Dieudonnés modules 

OcNI c···cl\;! cAf 
1,8 'lI' 

with a portion of the final sequence. vVe then take Afi
v , the dual of each of these 

submodules Ali with respect to the pairing and we apply F on each Afi
v , on their 

images, etc. We then take the dual of the new submodules and do this algorithm 

until its stabilizes. Once nothing new can be obtained with this procedure, there is 

no guarantee that aU the submodules will be reached. If so, we consider the first 

index which is not reached, say j, and the first submodule containing strictly N1j _ l , 

say Mk . We define 1I1j = Mj - 1 EB kZj where Zj is the first generator of .i1;[k not in 

M j - l . We then take the dual of Mj and apply the algorithm until we get an the 

submodules, indeed the whole final sequence. 

We can find in appendix 1, a program that enables us to work with these Dieudonné 

modules. From a final sequence or from a type (note that the type is not relevant in 

our considerations but can be pertinent in other situations) the program constructs 

the Dieudonné module, its F-filtration and thus give back the sequence. Also given 

s final sequences it compute each Dieudonné modules Ml, Nh, ... M s , the module 

M = œ:==l Mi and the final sequence associated to M. 

6.7. Ekedahl-Oort stratification. 

DEFINITION 6.7.1. Let 1/J be a final sequence and let A the moduli space of princi­

pally polarized abelian varieties. Let E"ljJ be the locally closed set of A with the property 

that its geometric points x are such that (Ax[P], Àx) has a final sequence 1/J. 

We will need a partial order on the final sequences 1/J and it is possible to define 

one as follows, 

1/J' -< 1/J {::} 1/J'(i) ::; 1/J(i) Vi::; g. 

With these definitions we can state the following theorem from F. Oort, see [23]. 
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THEOREM 6.7.1. Let 1P be a final sequence then 

(1) The sets E1f; form a stratification of the moduli space A. There exists a set 

6. (1j;) that con tains all .final sequences 1j;' -< 1j;) and possibly other sequences 

such that E1jJ) the closure of E,p) is the union of E1jJ' for ~/ E 6.(1j;). That is 

(2) The dimension of E1jJ is 

E1jJ= U E1jJ'. 
1jJ' E!:l( 1jJ) 

9 

dim(E1jJ) = 11j;1 := L 1j;(i). 
i=l 

If\ve corne hack to the example 9 = 1, the one dimension al ordmary locus of 

the j-line is the stratum of the elementary sequence {O, 1}, while the stratum of the 

sequence {O,O} is the zero dimensional supersingular locus. For 9 = 2, the three 

dimensional ordinary locus is the stratum of the elementary sequence {O, 1, 2}. The 

stratum of {a, 1,1} is two dimensional and the stratum of {O, 0,1} is one dimensional 

and is open and dense in the supersingular locus. Its closure is a family of Moret­

Bailly families meeting transversely at the superspecial locus, which is the stratum 

of the sequence {a, 0, a}. 

Remark: In general it is not known which E1jJ' is in the boundary of E1jJ. Oort 

gave an example of E1jJ' in the boundary of E1jJ and 1j;' f< 1j;. 



CHAPTER 2 

Exploration 

1. General problem 

We have seen that given a genus 9 hyperelliptic curve C defined over a perfect 

field of characteristic p, we can associate to it a final sequence of 29 integers. This 

sequence is given by the unique final filtration of Jac(C) [p]. The first thing one can 

try to describe is the subset of the moduli space Hg that corresponds to a given final 

sequence 'IjJ, i. e. a subset on which every point x, that is every hyperelliptic curve 

cx, has that fixed final sequence 1j;. Also, one can seek to describe the points cor­

responding to a union of different sequences. For instance, the non-ordinary curves 

have sequence belonging to the union of aU possible sequences except the ordinary 

sequence. Another way to define sets in the moduli space of curves is to eonsider 

for every curve C the final sequence of a eurve D associated to C. For example, one 

ean try to describe the eurves having sorne unramified eovering of a fixed degree su ch 

that the covering curve has a given sequence 'IjJ. This problem seems very diffieult in 

this generality therefore we fix many parameters to ease our study and finally narrow 

down to the study of unramified double eoverings of hyperelliptic eurves and even to 

unramified eovering of genus two eurves by an non-ordinary genus three eurve. This 

last problem will be the one we will foeus on. For the moment, however, we ean give 

an overview of the general question. 

We will consider the affine model, 

2g+1 

C : y2 = f (x) = II (x - À i ) 

i=l 

75 
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of a genus g hyperelliptic curve over k, an algebraically closed field of characteristic 

p #- 2 with a ramification point at infinity. This model is called the Rosenhain normal 

form and its associated Hasse-"Witt matrix is given explicitly in section 6.4. In this 

setting, the entries of the matrix A(C) = (aij) are 

aij = The coefficient of the degree i . P - j term of f (x) P;l 

We consider the moduli space Hg of genus g hyperelliptic curves over k. Given a 

type 'IjJ we define 

Hg('Ij,J) = {x E: Hg 1 The final sequence of Jac(Cx)[p] is 'IjJ }, 

and 

Hg(N) = {x E Hg 1 The final sequence of Jac(Cx)[p] is not the ordinary sequence }. 

We would like to describe these sets as subvarieties of the moduli space Hg. As a 

matter of fact, we will try to describe them in terms of the Weierstrass points. For 

instance, the condition for a curve to be non-ordinary can be described by a specifie 

polynomial. Indeed the entries of the Hasse-'Witt matrix can be expressed in terms 

of the coefficients of the Rosenhain normal form. Therefore, the Weierstrass points 

of the curve need to solve the polynomial equation of the determinant. 

2. Unramified degree n coverings 

Let 1 : D --+ C be an unramified degree n covering of a genus g hyperelliptic 

curve C. The Hurwitz formula 

2gD - 2 = (2gc - 2) deg(p) 
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gives the genus of the covering curve D. 80 D needs to be a genus 1 + n(gc - 1) 

curve. We will denote 

Hg,n(1j;, i) = { 

and denote 

Hg,n(N, i) = { 

x E Hg 1 :=1 i degree n unramified coverings ! : D -f Cx 

where the sequence of Jac(D)[p] is 'IjJ } 

x E Hg 1 :=1 i degree n unramified coverings of! : D -f Cx } 

where Jac(D)[p] do es not have the ordinary sequence 

We will say that these part.icular coverings of curves are non-ordinar-y coverings. 

vVe would also like to find a moduli space M for these degree n unramified coverings. 

To do so, consider the two projection maps 

Consider also t : M1+n(g-1) '-7 A1+n(g-1) , the Torelli morphism from the moduli space 

of genus 1 + n(g - 1) curves to the moduli space of dimension 1 + n(g - 1) abelian 

varieties which sends a curve to its Jacobian. If we choose a base points Po E C and 

consider 

cg -+ Jac(C) 
9 

(Pl, ... , Pg) H I::(Pi - Po). 
i=l 

The theta divisor discussed in Chapter 1 section 5.7 is the image of cg-1 x {Po} and 

we have seen that it induces ÀO(8), a principal polarization that does not depend on 

Po. The Torelli morphism is given by 

CH (Jac(C), ÀO(8)) 

and is injective with this polarization. Therefore we have the following picture: 
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M "2 M t A --'-"-+ l+n(g-l) y l+n(g-l) 

It is known that there is a correspondence between unramified degree n abelian 

coverings of a curve C and degree n maps to its Jacobian. To get a feeling for the 

situation we can work over te. 

Recall that an unramified degree n abelian coyer of C corresponds to a normal 

subgroup N <l 7TI(C) where 7TI(C)jN is abelian of cardinality n. This normal sub­

group corresponds to exactly one subgroup of index n of 7Tfb (C) = Hl (C, Z). But 

Hl (C, Z) ~ Hl (Jac(C), Z) for Jac(C) = CP /.c and .c a lattice. Then Hl (Jac(C), Z) = 

.c and the index n subgroup corresponds to a sublattice .:J ç .c of index n. Therefore 

the covering induces a map at the level of abelian varieties cg /.:J ---7 C9 /.c. Also 

from any such map C9 / K ---7 C9 /.c, we can recover an abelian degree n unramified 

covering of C. 

In fact, this correspondence also holds if the curve is defined over an algebraically 

closed field of characteristic prime to n. For instance, one can find the following in 

[20, §9J: 

THEOREM 2.0.2. If J' ---7 Jac(C) is an unramified coverzng of degree n of 

Jac(C), then C' = C X Jac(C) JI ---7 C is an unramified covering of degree n ofC and 

every unramified abelian covering of C is obtained this way. Equivalently, the map 

7TI(C,p)ab ---7 7TdJac(C) , 0) is an isomorphism. 

Therefore, a degree n unramified abelian coyer of C is equivalent to a subgroup 

of order n of Jac(C). Thus we can deduce that the map 1r1 is quasi-finite. We can 

deduce that the map 7T2 is also quasi-finite using the following theorem. 
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THEORElVI 2.0.3. (de Franchis-Severi) Let D be a non-singular projective curve. 

Then there are only a finite number offinite separable morphisms 1 : D --+ C (taken 

up to isomorphism) where C ranges through al! non-singular projective curves of genus 

> 2. 

There is an analog of this theorem for Riemann surfaces and a proof of it can be 

found in [16, page 227]. We then have the following. 

PROPOSITION 2.0.1. The map 'ifl is a finite morphism and the map 'if2 is a quasi­

finite morphism. 

Proof: From the above discussion, we have that the two maps are quasi-finite and 

it remain to show that 'ifl is finite. It will be sufficient to show that 'ifl is a proper 

morphism of affine varieties, see [8, Ex 4.6, page 106]. For the properness of 'ifl we 

will use the following criterion that can be found in [8, § II, Theorem 4.7]. 

THEOREM 2.0.4. (Valuative criterion of properness) Let f : X --+ Y be a 

morphism of finite type, with X noetherian. Then f is proper if and only if for every 

valuation ring R with quotient field K and for every morphism of Spec K to X and 

Spec R to Y forming a commutative diagram 

Spec K -----;,. X 

i J l f 
Spec R ----- Y 

there exists a unique morphism Spec R --+ X making the whole diagram commuta­

tive. 
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Remark that we may consider this criterion for a discrete valuation ring R only, 

see [8, § II, Exercise 4.11]. Therefore, we need to show that in the following diagram 

we can define a morphism h. 

Notice here that giving a map 9 is equivalent to giving a family of genus 9 hy­

perelliptic curves G/R ---)- Spec R. (This is essentially a curve who se equations are 

defined using coefficients from Rand has good reduction modulo m, where m is the 

unique maximal ideal of R.) The canonical map i : Spec K ---)-Spec R corresponds 

to taking the generic fiber G/K of G/R, G/K = G/R ®R K. Indeed, we can think of 

G as a curve over K. And finally, the map .f corresponds to giving an unramified 

double covering r/K : D/K ---)- C/K. 

So what we need to show is that we can extend D/K to a curve over Rand also ex­

tend I/K to a morphism I/R : D/R ---)- G/R such that I/R is a double unramified coyer. 

We have seen that the double covering I/K corresponds to a sugroup H/K of order 

2 in Jac(G/K). Let us denote by B/K the quotient Jac(C/K)/(H/K). Since Jac(C/K) 

is principally polarized, we have the following diagram 

• 'Y/K 

'1 
J degree 2 

G/K (~-..;".> Jac(C/K ) 

J degree 2 

B/K 
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Since CIR is a smooth curve over a discrete valuation ring, there exists an abelian 

scheme whose generic fiber is Jac(CIK ) and special fiber is Jac(C 0R (R/m)) that we 

denote Jac(C/R ). This follows from the representability of the functor PiCC!R' see [1, 

9.3,Theorem IJ. 

It is well known that HIK can be extended to a unique subgroup scheme HIR 

of Jac(CIR ). In fact, Jac(CIK )[2J is a finite étale group scheme over R, and HIR 

is the dosure of H/K in Jac(C/R ). Since Jac(CIR) is also principally polarized, for 

BIR := Jac(C/R)/(H/R), we have the following 

• '"t!R 

V 
1 degree 2 

C/R C __ > Jac(C/R ) 

1 degree 2 

B/R 

Thus, it follows that '/R is an unramified double cover. Therefore, since this con­

struction commutes with base change, the morphism '/R is an extension of 'IK, thus 

?rI is proper. 

We know that the moduli spaces Hg and H; are both quotients by a finite group 

of the variety H; = ClIlll(k) \ {0,1,00})2g -1 \ ,6.', where,6.' is the fat diagonal. We 

know that the variety (Pl (k) \ {O, 1,00} )2g-1 is affine, and since ,6.' is a divisor, it fo1-

lows that H; is also an affine variety. Therefore, since they are quotients of an affine 

variety by an finite group, we can condude that Hg and H; are also affine varieties. 0 

Given a final sequence 'IjJ we have E'Ij} ç A1+n(g-l) an Ekedahl-Oort stratum. We 

can pull it back to M1+n(g-l) via t*, and again pull back to M via 71"2. At this 

point, with the map 71"1, we can describe a cycle of Hg relative to the sequence 'IjJ in 
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the following way: 1fh(1f2t*(E1jJ)) ç Hg. Remark that 1fh is weIl define sinee 1fl is 

finite. Later on) we will be interested in curves having i particular degree n covers, 

denoted by Hg,n('I/;, i)) and in a sense they correspond to points of multiplicity i in 

1fh(1f2t*(E1jJ)). 

One can ask what are the possible degrees of unramified covers of hyperelliptic 

curves which remain hyperelliptic. Machlachlan proved [13] that the only possible 

degrees of unramified normal extensions of hyperelliptic surfaces are n = 2 and n = 4. 

He also proves that for 9 > 2, an unramified extension of degree 2 or 4 of a genus 

9 hyperelliptic surface need not to be hyperelliptic. Machlanchlan's results can be 

shown very simply by using the properties of Weierstrass points on hyperelliptic Rie­

mann surfaces, see [3], and these proofs can be extended to hyperelliptic curves. 

3. Unramified degree 2 coverings 

For the next discussion, we will restrict ourselves to the particular case of degree 

two coverings and for the beginning we shall give the ideas that lead to the following 

theorem. 

THEOREM 3.0.5. (Farkas [3]) Let C be an genus 9 > 1 hyperelliptic curve defined 

over a field of odd characteristic and let Î : D --+ C an unramified degree 2 covering. 

Then the genus of D is 2g-1 and there are exactly eg;2) degree 2 unramified covering8 

for which D i8 hyperelliptic. The remaining 22g - 1 - eg;2) are not. In particular 

when 9 = 2 all the coverings curves are hyperelliptic. 
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The calculation of the genus is straightforward using Hurwitz formula. The map 

r : D ---+ C induces the following degree 2 rnaps of abelian varieties 

A 

ft 
Jac(C) ~ Jac(Ct. 

Thus Ker(fV) = {O, P} for P a 2-torsion point and there is a correspondence between 

unramified double coyer of C and Jac(C)[2]. Since IJac(C)[2]1 = 22g
, we then have 

22g 
- 1 different coverings of the curve C. Note that two different covering curves can 

be isomorphic as curves. 

Let Wc = P'1' ... , À 2g+2 } be the set of VVeierstrass points of the curve C. We now 

construct aU the 2-torsion points on Jac(C). Note that for any {Àil Àj} C Wc we 

have 
x - Ài 

h = x _ À" and (h) = 2Ài - 2Àj 
J 

thus Ài - Àj E Jac(C)[2]. Without lost of generality, we let v E vVc be the point at 

infinity, thus f(x) has odd degree, and take 8 ç Wc any set of even cardinality. We 

consider the divis or of the forrn 

Ds = 'I:(Ài - v) E Jac(C). 
ÀiEs 

One easily shows that Ds belongs to Jac(C)[2]. Since there are 22g+1 such divisors and 

only 22g non-zero points having order at most 2, there is necessarily sorne repetition. 

The following lernrna gives us the complete description of Jac( C)[2], (corresponding 

to degree 2 unrarnified double coverings) in terms of the Weierstrass points. 

LEMMA 3.0.1. Let v E Wc, and 8 ç vVc , a set of ev en cardinality. Let Ds 

LÀiEs(.\ - v), a point in Jac(C)[2]. Then Ds = Dt if and only if t = vVc \ 8. 

Proof: Note that Ds is defined also for s of odd cardinality and Ds = Dsu{v} = Ds\{v}' 

Remark also that if 81 n 82 = 83, then Ds] + D S2 = D(Sl US 2)\S3 1 and we may subtract 
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or add V to (SI U S2) \ S3 to have even cardinality. Therefore Ds - Dt = Ds + Dt = ° 
if and only if Dsut\snt = 0, thus showing the lernrna is equivalent to show that for a 

set of even cardinality we have Ds = ° exactly when S = We or S = 0. 

Note first that sinee (y2) = f(x) = 2Dwc we have that (y) = Dwc = O. On 

the other hand, if for s #- 0 we have Ds = 0, then there is a function on C, say g, 

such that (g) = I:ÀiES(.'\ - v). Therefore, we have g2 = h(x) := TIÀiES\v(X - Ài ). If 

Is \ vi < 2g + 1 we get a contradiction with the fact that the genus of the curve is g. 

Since s can't have 2g + 1 elernents, we get that s = liVe. o 

Therefore aH the coverings will correspond to sorne 2-torsion point given by a 

divisor Ds. In terrns of function fields, such coverings can be given in terrns of degree 

two Galois extensions of the function fields k(C). Recall that: 

where the Ài are in We . Thus 

k(D) = k(C)[Y'h] = k(C)[z]/(z2 - h(x)). 

where h E k(C) and (h) = 2Ds for sorne set s C liVe of 2r elernents. This function 

field can also be described as 

k(x)[y] k(x)[z] 
K(D) = (y2 _ f(x)) @k(x) (Z2 - h(x))' 

This shows that D is the norrnalization of C X]p>l k(F), where F is a curve with 

function field (z~~~[(~))' Sorne autornorphisrns of D can be given explicitly. The Galois 

group of the extension is 

r = Gal(k(D)/k(x)) =< L,CT >::::' 7l/27lœ 7l/27l 
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where the two generators are given by 

XMX XMX 

/, : yM -y a: 

ZMZ ZM -z 

From Galois theory, the subsets of r give us the following three subfields: 

k(D) 

a)" ta· t "\.t 

k(C) k(E) k(F) 

"\. t /7( 

k(x) 

PROPOSITION 3.0.2. Let C be a genus 9 hyperelliptic curve defined over a field 

of odd characteristic and let s C Wc with 1 s 1 = 2r. Then for the unramified double 

covering 1 : D -----t C defined by Ds) there are two other coverings, 'I/J : D -----t F and 

E : D -----t E, where E and Fare hyperelliptic curves of genus respectively r - 1 and 

9 - r·. 

Proof: vVe consider first the subfield fixed by ~: 

k(F) = k(x)[v'h] = k(x)[Z]/(Z2 - h(x)). 

We then have a hyperelliptic curve F with vVeierstrass set s, thus of genus r - 1. On 

the other hand, if we consider the subfield fixed by a . L we get 

k(E) = k(x)[yIg] = k(x)[tJl(t2 
- g(x)), 

where g(x) = f(x)/h(x) and t = y/z. In fact (g) = 2Dwc\s = 2Dt and Itl 

2(g - 1') - 2. Therefore E is also a hyperelliptic curve of genus 9 - r. o 
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Note that we clearly see the symmetry discussed Hl Lemma 3.0.l. Indeed, if 

consider vVe \ s, instead of s, we get the same covering; vve only interchange k(F) 

with k(E). Therefore, we will only consider the sets s where Isl ::; .9 + 1 and the 

following corollary is almost immediate. 

COROLLARY 3.0.1. Let C be a gemts 9 hyperelliptic curve defined over a field of 

odd characteristic and let 1 : D ~ C be a degree two unramified covering. Then there 

exists (29;-2) coverings for which D is hyperelliptic. Furthermore one can associate a 

genus 9 - 1 hyperelliptic curve to each su ch coverings. 

Proof: We have seen that D is an hyperelliptic curves if and only if it is a dou­

ble covering of the projective hne and such covering corresponds to an inclusion 

k(t) "-+ k(D). If the genus of the curve D is greater than 3, from the Proposition 

3.3.1 seen in the first section, sinee 

gd 2:: [k(D) : k(x)] = 4 

we get k(x) c k(t). Thus, by Galois theory, D can only be a double coyer of the 

three curves C, E and F. Therefore one ofthese curves need to be the projective line. 

Sinee Isl ::; 2g the curve with lower genus is F with genus r -1 = 0, thus Isl = 2r = 2. 

The only other possible genus for the curve D is 3 and in this particular situation, 

9 = 2, r = 1 and Isl = 2, therefore F is also the projective tine. Since there is C9;-2) 
way to choose 2 points in We we get exactly (29;-2) such coverings and the curve E 

will neeessarily have genus .9 - 1. o 

Later, we will try to understand the action of Froebenius on Jac(D). Using the 

decomposition made in Proposition 3.0.2 it will be possible to decompose this action 

in three parts. 
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THEOREM 3.0.6. Let C be a genus g hyper-ellipiic curve defined over a finite .field 

of odd characierisiic, and,: D ---+ C an unramified double cover-ing. 

(1) The map 

W : Jac( C) EB Jac(E) EB Jac(F) ---+ Jac(D) 

zs an zsogeny. 

(2) The kernel of W in coniained in 

Jac(C)[4] EB Jac(E)[4] EB Jac(F)[4]. 

Pro of: (1) Note first that both sides are abelian varieties that have the same dimen-

slOn 

g + (r - 1) + (g - r) = 2g - 1. 

Thus, it is enough to show that W is surjective. For, : D ---+ C we have 

W(Jac(C)) 

W(Jac(E)) 

W(Jac(F)) 

,*(Jac(C)) c Ker(l - (J) =: C', 

E*(Jac(E)) C Ker(l - (JL) =: E', 

'l,b*(Jac(F)) c Ker(l - L) =: F'. 

We then have the following diagram 

C'+E'+F' 

t<P 

Jac(C) EB Jac(E) EB Jac(F), 

where <P is the composition 

W' c Jac(D) 

Jac(C) EB Jac(E) EB Jac(F) c C' EB E' EB F' ---+ C' + E' + F'. 

Note here that the elements which are invariant under the automorphisms (J, L 

and (JL are divisor classes. For the needs of the proof we nee\l to show that for an 
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element (3 in, say C without lost of generality, there is always a representative which 

is a-invariant. lndeed consider the divisor 0 representing (3 then 

0- a(o) = (J). 

Since a2 = id we also get that 

which implies that f . aU) is constant, without lost of generality say equal to 1. VVe 

can apply Hilbert's Theorem 90>, see [12, Theorem 6.1], to f· a(J). Hence there is a 

function 9 such that gja(g) = f. Then 

[0 + a(g)] - 0"[0 + O"(g)] = (J) + O"(g) - (g) = 0, 

thus (0 + 0" (g )) is a representati ve of (3 which is a-invariant as a divisoI'. Consider 

now the exact sequence 

o -+ Jac(D)[2] n C' -+ C' ~2C' -+ O. 

Since Jac(D)[2] is finite 2C' c C' will have finite index. For any (3 E C' take a a­

invariant representative ,B' and 0; = '* ((3') E J ac( C), thus ,* (/* ((3')) = (31 + ,B', where 

0"((31) = (3'. But since (3' is 0" invariant ,*(/*(,B')) = 2(3' E w(Jac(C)). Therefore 

2C' C W(Jac(C)) which implies that \]I(Jac(C)) C C' will also have finite index. By 

doing it for F and E we conclude that the image of the map <P has finite index. 

We need to show now that the inclusion \]l' is surjective. For any 0 in Jac(D) we 

can write 20 = (1 + 0")5 + (1- 0")0. We get easily that (1 + a)5 is in Ker(l - a) = C' 

and we denote (1 - 0")0 by 51' It is again possible to write 251 as (1 + ~ )51 + (1 - ~ )51 
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where (1 + l}51 E Ker(l - i) = F' and since 

(1 - cn)(l - 1,)(1 - o}5 

(1 - ta - L - J + J + i + ta - 1)6 = 06 = 0, 

we get that (1 - l,)61 is in Ker(l - J/,) = E'. Since Jac(D) is divisible, there exists 

'f] E Jac(D) such that 'f] = 46 so we can decompose r5 in three parts 

6 = 4'f] = (1 + J)2'f] + (1 - J)(l + l}'ll + (1 - J)(l - L)7]l , 

respectively in C', F' and E'. Since the image of W = <I> has finite index and is an 

abelian variety having the same dimension as Jac(C) we conclude that W is surjective. 

(b) Consider now w = (x, y, z) E Jac(C) EB Jac(E) EB Jac(F) an element in the 

kernel of w. Then we have x + y + Z = 0 and also JX + JY + JZ = O. If we add these 

two equations, since x is J-invariant, we get 

0= 2x + (1 + J)Y + (1 + J)z. 

Again we get easily that (1 + J)z is J-invariant and furthermore (1 + J)z is still in 

Jac(F). Indeed J corresponds to the involution of F thus JZ E Jac(F), so is Z + JZ. 

Since F is an hyperelliptic curve, there is a double covering p : F ----+ pl that 

induces p* : Jac(pl) ----+ Jac(E). By the same argument as above, we have that twice 

any J-invariant element lead to an element in Jac(pl) and since Jac(JP>l) is trivial, we 

get that 

2(1 + J)z = O. 

The same argument hold for (1 + J)Y and we get: 

0= 4x + 2(1 + J)Y + 2(1 + J)z = 4x. 
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By applying the same argument for y, and z, respectively with LCJ and L we get that 

4y = 4z = 0 which allows us to conclude the theorem. 0 

It is interesting to describe the p-torsion group of Jac(D) in terms of this isogeny. 

COROLLARY 3.0.2. For ail primes p > 2 there is an isomophism between the 

p-torsion gT'OUp of Jac(D) and the p-torsion gT'01.lp of Jac(C) EB Jac(E) EB Jac(F). 

Therefore the action of F on H°(Jac(D), DJac(D») decomposes in three parts on 

Let A(X) be the Hasse-Witt matrix of X. It is then possible to describe the Hasse.,. 

Witt matrix of the curve D in the following way: 

A(C) 0 

A(D) = o A(E) 
o 0 

o 
o 

A(F) 

From now on we will coneentrate on the specific coverings 1 : D ~ C for which 

D is hyperelliptic. Sinee Isl = 2, such a covering corresponds to a choice of two points 

{Ài' Àj} c Wc. We will denote the polynomial h by h ij , the covering curve by D ij 

and the genus g':""'l curve by Eij. Note that two curves D ij and Dkl can be isomorphic 

and recall that E ij has function field 

In this particular situation, we have a correspondence between degree 2 unramified 

covering and points in H;, the moduli space of genus 9 hyperelliptic curves with a 

choiee of 2 Weierstrass points. The map E can be translated in terms of moduli spaee 
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to give the following: 

E: H~ 

In terms of moduli space we get this new picture: 

We now will focus on a particular subset of H~: the non-ordinary coverings, that 

we will denote N g • That is the space on which a geometric point corresponds to 

1 : D ---+ C where Jac(D) is non-ordinary abelian variety. 

PROPOSITION 3.0.3. The subset N g of H; corresponding to unramified degree 2 

non-ordinary coverings of a genus 9 hyperelliptic curve is a divisor. 

Proof: We have seen that H~ is a variety of dimension 2g -1. Since it has finite cover 

H; which is irreducible, H; is also irreducible. We can consider f, the polynomial 

given by the determinant of the Hasse-Witt matrix. Since our field is algebraically 

closed Ng = Z(f) 1= 0 is a hypersurface. Thus every irreducible component of the 

intersection has dimension ~ 2g-2 by [29, I§7.1]. Since N g ç: H~, it has codimension 

1, thus it is a divisor. 0 

To describe this divisor, we will use the decomposition made in proposition 3.0.6. 

Considering the Jacobians of the curves C, Dij and Eij we have the following isogeny: 
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And again the action of Verschiebung on HO(Jac(D ij ), DJac(Dij) decomposes in two 

parts on H°(Jac(C), DJac(c)) E9 HO (Jac(Ei,j) , DJac(Eij))' Thus, the Hasse-Witt matrix 

can be written as: 

(

A(C) 
A(Dij ) = 0 

Therefore, if C is non-ordinary, that is if 

det(A( C)) = 0, necessarily the Cg';2) coverings Dij will also be non-ordinary. This is 

the trivial way to have non-ordinary covering. If C is ordinary, the only way to have a 

zero determinant for ADij will occur wh en det(A(Eij )) = 0, wh en Eij is non-ordinary. 

Hence, it is possible to decompose N g in the following way. From the projection 

p: H; --+ Hg we get p-l(Hg(N)) a subset of Ng. From the map E : H; --+ Hg_1 we 

get c1(Hg_1(N)) which is also a subset of Ng given by 

VVE 1---7 . 
{

("VVE U {x, y}, {x, y}) IWE = vVeierstrass set of the curve E } 

where x, y t/ W E are distinct 

Using this decomposition we can write Ng as p-l(Hg(N)) U c1(Hg_1(N)) and one 

interesting problem would be to describe the set p-l(Hg(N)) n c 1(Hg_1(N)). 

Another decomposition of Ng can be made from Theorem 3.0.6. Indeed, the 

variety Ng decomposes in two disjoints sets: 

where 

Ngn { x E H; such that C is non-ordinary }, 

Ngo { x E H; such that C is ordinary and Eij is non-ordinary }. 
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Remark that p-l(Hg (N)) = Ngn and c 1(Hg _ 1(N)) :2 Ngo . Later we will consider 

curves for which aIl the degree 2 unramified coverings are non-ordinary in a non­

trivial way. We calI such curves maxno-2 and denote Hg the subspace of the moduli 

space Hg consisting of an the maxno-2 curves. Using these decompositions we can 

try to build aIl these spaces by induction and the base step will be to understand the 

situation for genus 1 hyperelliptic curves. 

3.1. Hl (N), non-ordinary elliptic curves. 

Any elliptic curve E can be given as a set of 4 Weierstrass points say VVE = 
PlI, Àz, À3, À4}' One can easily find in the literature, for instance in [27], that given 

two sets of ordered and distinct three points in ]P'l(k), say [al, az, a3J and [b1,b2,b3J 

there is an unique r.p E PGLz(k) such that r.p(ai) = bi for i E {1, 2, 3}. Therefore, 

we can label the set of Weierstrass points WE to get an ordered set, say Wê = 

[,81,,82,,83,,84J and by an appropriate r.p E PGLz(k) we can send Wê to [O,I,oo,ÀJ. 

À is the image of the fourth point by r.p and this point is called the cross ratio of this 

particular ordering of Wê. Notice that in general, given a different ordering, we get 

a different cross-ratio. We expect 41 possible cross-ratios but luckily several are the 

same and there is always at most 6 possible values. If the cross ratio of [a, b, c, dl is 

À, depending of the ordering of these four points, we get the following cross-ratios: 

{ 
1 (À - 1) 1 À} 

À, 1 - À , >:' À ' (1 _ À)' (À - 1) , 

and we will den ote this set by [À]. The cross-ratio of four points A = [a, b, c, xl can 

also be describe as 

cr(A) := (x - a)(b - c) 
(x-c)(b-a) 

which can be considered as element in PG L2 (k) with the usual special care for the 

point at infinity. VVe will denote cr the map sending vV, an unordered set of four 
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distinct points, to its cross-ratio set [cr(lV)]. 

It follows that the Rosenhain form of the elliptic curve can be rewritten as 

EÀ := y2 = x(x - l)(x - À), 

for À E k - {O, 1}. It is also called the Legendre form. If we consider the moduli space 

of elliptic curves, for À E k - {O, 1}, it is possible with simple calculation to get the 

j-invariant of EÀ : 

Of course, by easy calculation, we check that the j-invariant lS independent of the 

choice of the element in [À} 

Notice that this association respects isomorphism classes since given any J E 

PCL2 (k), we have cr([a, b, c, dJ) = cr([J(a), J(b), J(c), J(d)]). Also, if two different 

ordered sets give the same cross ratio there exists J E PC L2 (k) sending one to the 

other, see [27] for more details. One can also find, for instance in [29, V§4], that the 

above association is exactly six-to-one except for two special cases. For j = ° and 

j = 1728 the association is two-to-one and three-to-one, respectively. 

Thus, for a genus 1 curve given by W' = [0,1,00, À], the Hasse-Witt matrix has 

only one component, the coefficient of xp - 1 in f(x)m = (x(x - l)(x - À))m, where 

m = P;l. Easy computations, see [29, V§4] for details, give us the one-by-one Hasse­

Witt matrix: 

p-l 
m=--. 

2 

Therefore, the non-ordinary elliptic curves, also known as the supersingular ellip­

tic curves, correspond to the roots of A(x), a degree P;l polynomial. Note that if an 

element in [À] lS a root of this polynomial, the five other elements will also be roots of 
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the same polynomiaL Also, one can show that up to isomorphism, there are exactly 

supersingular elliptic curves in characteristic p, where C3 = 1, and for p 2: 5, 

Cp = 0,1,1,2 if p _ 1,5,6,11 mod 12; 

see [29, V.§4] for details. 

3.2. N 2 , non-ordinary covering of genus 2 hyperelliptic curves. 

For C, a genus 2 hyperelliptic curve with an affine model y2 = f(x), the Hasse­

Witt matrix is given by 

A(C):= (C
j
'P-1 C

j
'P-2) , 

Cj,2p-l Cj ,2P-2 

where the Cj,a corresponds to the coefficient of xa in f(x)Y. The non-ordinary 

curves are the ones for which Cj,p-1Cj,2p-2 - Cj,p-2Cj,2p-l = ° and the subset H2(N) 

is two dimensional. As stated before, an coverings of such curves will be non-ordinary, 

i.e., p-l(H2 (N)) C N2 . 

The non-trivial non-ordinary unramified double coverings arise when the associ­

ated genus 1 curve is non-ordinary. Given a ordinary curve C, with Weierstrass points 

Wc = {À 1, ... , À6}, we will have a non-ordinary covering associated ta Sij = {Ài' Àj} 

if and only if the cross-ratio of the four points in Wc \ S is a root of the degree P;l 
polynomial A(x). That is, if for the multivalued map: 

E : Hi --t À-hne 

we have that E(C, Sij) is a root of the polynomial A(x). 
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DEFINITION 3.2.1. Let C be a genus 2 hyperelliptic curve g'iven by six Weierstrass 

points VV = {-~l, ... , Àd. We say that the set Sij = {Ài' Àj} is a supersingular .set if 

and only if the elliptic curve given by the rernaining four points is .supersingular. 

One question we are interested in answering is the following: is it possible that 

a genus two curve has (~) = 15 non-ordinary coverings in a non-trivial way? Or 

equivalently does there exist a genus 2 maxno-2 curve? If so, does it imply that the 

curve C is also non-ordinary? In fact,using our previous notation, we are trying to 

describe 

Explicitly, we are seeking the hyperelliptic curves for which the 15 couples of Weier­

strass points are supersingular. As noted before, if a curve admits non-trivial auto­

morphisms, the number of elements in the fiber will be less then 15, therefore less 

conditions will be needed to be satisfied. We will study this question later, after a 

better comprehension of the moduli spaces involved. 

One can also associate points in H; with double coverings sim ply by considering 

the first two points in the Weierstrass ordered set to be in Sij. The association is then 

given by the map E* = E 0 P2 by 

f.* : H~ ----t À-line 

(C, [a, b, c, d, e, iD f-t ér([c, d, e, fD, 

Clearly this association in not one-to-one but given a point (C, s) in Hi an the 

elements (C, s) in the fiber of P2 : H; ----t Hi will have the same behaviour as (C, s). 

That mean that (C, s) will corresponds to a supersingular elliptic curve if and only if 

any element (C, s) in the fiber corresponds to a supersingular curve. Since the moduli 

space H; is easier to study then Hi, instead of considering (C, Sij), we will consider 
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only one element in its fiber. 

Given À, a root of the polynomial A(x), the elements in H; corresponding to 

the "supersingular" points will be E*-l (À) = [x, y, À1' À2, À3, À4J where x, and y can 

be almost anything and [À 1, À2' À3, À4l is unique up to PC L2. Therefore, for aH the 

roots of A(x) we get two dimension al subsets of H; denoted H;(À). These subsets 

are also disjoint since one element in H; is associated to only one cross ratio via 

the map E*. Thus N20 := p'21(Ngo ) = UÀiH;(Ài) and our main question turns out to 

be: Given a curve C, is it possible that aU the elements in the fiber of P2 belong to N 2o? 

Consider a point Wc := {D, 1,00, Àl' À2' À3} in H 2 associated to the curve C, then 

the 15 elements in the fiber p-1 (C) in Hi are the following: 

(WC,{Àl,ÀZ}) (Wc,{O,ÀI}) (Wc,{l,ÀI}) (Wc,{oo,ÀI}) (Wc,{O,l}) 

(WC,{Àl,À3}) (Wc,{O,À2}) (Wc,{1,À2}) (Wc,{oo,Àz}) (Wc,{O,oo}) 

(WC,{À2,À3}) (WC,{O,À3}) (Wc,{lh}) (WC,{OO,À3}) (Wc,{l,oo}), 

Thus, to study these elements (C, s) we have seen that we can, for each of them, 

study only one element in the fiber P'2 1(C, s). Thus to decide if a curve is a maxno-2 

curve it will suffice to study this (non unique) set of elements in H;, that we will 

den ote by W* ( C): 

To show that a curve C is maxno-2, we will have to check if an the elements 

in W* (C) correspond to a supersingular elliptic curve via the map E*. U sing this 

particular subset of PlI (C) we can state the following theorem. 
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THEOREM 3.2.1. Let k be an algebraically closed field of odd eharaeteristie. Up to 

isomorphism, there is only a finite nv,mber of genv,s 2 maxno-2 hyperelliptic eur'ves C 

over k, i.e., eurves having 15 supersingular sets of Weierstrass points. FUTthermOTe if 

the charaeteristic of k is p, theTe are at most (P-l)(P;3)(P-5) sueh hyperelliptie eurves. 

Proof: In order to get such curve it is necessary that the 15 chosen elements in H;, 

the elements in IV* (C), correspond to supersingular points. In particular, the three 

elements 

need to correspond to supersingular curves. Therefore, the cross ratio of the last four 

components, given by E*(Àn need to be sent to a foot of the polynomial A(x). 

The cross ratio maps are quite trivial in this specific case. Indeed, they all send 

0, 1 and 00 respectively to 0, 1 and 00 thus the three cross ratios need to be the 

identity. Therefore we have 

Hence À1' À2 and À3 need to be distinct roots of the degree ~ polynomial A(x). 

Therefore there is at most (P-l)(P;3)(P-5) possible ways to fix such set of 'Weierstrass 

points. o 

Remark: For a genus 2 hyperelliptic curve C, having a Weierstrass set Wc = 

{O, 1,00, À1, À2' À3}' where À1, À21 and À3 are roots of the polynomial A(x), is a nec­

essary but not a sufficient condition to be a maxno-2 curve. In fact only 3 of the 

conditions are satisfied and a priori, there is no reason why the set should satisfy 

the 12 other conditions. If we consider the same choice of 15 elements in H;, the 

conditions to have 15 supersingular sets is equivalent to having the following roots of 
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the polynomial A(x). 

À3 
( À.3- 1 ) 

À3-À2 
( À3 ) 

À3-À2 
ea-À3À2 ) 

À3- À 2 
e 1 -

À2 
) 

À3-À2 

À 2 
( À3- 1 ) 

À3-À1 C3~\) (À3- À3À1 ) 
À3-À1 

(À3- 1 )e1 - À2 ) 
À3-·À2 À 1-1 

À 1 
( À2-1 ) 

À2-À1 
( À2 ) 

À2-À1 
(À2-À2À1 ) 

À2-À 1 
( À3 )e1 -À2 '; 

À3 - À? . -;\-1 ) . 

3.3. Computational attempts. 

Several attempts have been done computationally to get a feeling of what can 

happen. One easy approach is, for a fixed field k, to check all the possible sets of 

Weierstrass points W = [0,1,00, À1' À2' À 3 ] giving a genus 2 hyperelliptic curve C and 

check explicitly the number of coverings such that A(Eij ) is zero. For instance for 

the field 1F32 each curve has either 0, 2 or 3 supersingular sets. Remark that for 1F3 

such a curve can not be defined and also note that in this pro cess we consider the 

same isomorphism class of curves more then once. According to the moduli space of 

hyperelliptic curve H;, in general, we do the computation IS2g+21 = 6! times for the 

same class. However it is faster than computing the equivalence classes and we are 

not interested for the moment in the number of class having snch properties. The 

following results have been provided by Maple and Macaulay2. The two programs 

can be found in Appendix Band C: 
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Finite field Possible numbers of associated 

supersingular elliptic curves 

lF5 ° 
lF7 9 

lF32 0,2,3 

lFu 4,5,6 

lFI3 ° 
lFl7 ° 
lFI9 0,1,2,3,4,6 

lF23 3,4,5,6,7,8,9,10,12 

lF52 0,1,2,3,4 

lF33 0,1,2 

lF29 ° 
lF31 2,3,4,5,6,7,9,11 

lF37 ° 
lF4I ° 
lF43 0,1,2,3,6 

lF47 0,1,2,3,4,5,6,7,8,9,10 

lF72 0,1,2,3,4,5,6,7,8,9 

lF34 0,1,2,3 

One could easily extend these computations for higher genus hyperelliptic curves. 

One can find in [26, Proposition 3.1J that there is a bound on the genus of a non­

ordinary hyperelliptic curve. 

PROPOSITION 3.3.1. Let C be a hyperelliptic curve over an algebraically closed 

field in characteristic p, and suppose the Cartier operator Chas rank m. Then 

gc < (p - 1)/2 + mp. 
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For the general situation of non-ordinary hyperelliptic curves, we have that rn :S 

9 - 1. This bound only allows us to conclude the trivial fact: gc 2:: 1. But if we 

restrict ourselves to a more precise strata we can get non-trivial results. For instance, 

if we consider supersingular curves, the Cartier operator has rank O. Thus we have 

the following equality: 

gc < (p - 1)/2, 

and we can conclude, for instance, that there is no supersingular hyperelliptic curve 

of genus 2 over a field of characteristic 3, no supersingular genus 3 hyperelliptic curve 

over a field of characteristic smaller than ll, etc. Also given a prime P, if we want to 

find supersingular hyperelliptic curves over a field of characteristic p, we only have to 

seek for curves with genus less then (p - 1)/2. 

3.4. Genus 2 hyperelliptic curves with many automorphisms. 

We have seen in our study of the moduli spaces H 2 that a curve with many 

automorphisms, that is a curve with a non trivial reduced group of automorphisms 

Aut(C)* = Aut(C)/ < ~ >, will have less than 15 elements in its fiber p-l(C). 

Therefore, if we are seeking for maxno-2 curves, we shaH expect that these curves 

would have less than 15 conditions to be satisfied, indeed we have the following: 

LEMMA 3.4.1. Let C be a genus 2 hyperelliptic curve over k, a finite field of odd 

characteristic, and let </J E Aut( C)*. The set {)'i, Àj} is supersingular if and only if 

the set {</J(Àd, </J(Àj)} is supersingular. 

Proof: This is straightforward since </J can be considered as an element in PG L 2 and 

the cross-ratio is stable under such transformations. D 

Therefore, these curves deserve a special attention. For instance, if for Wc = 

{D, 1, 00, À1' À2' Às} the Ài are roots of the polynomial A(x), in general there will be 

less then 12 other conditions to be satisfied to get a maxno-2 curve. Igusa in [10J gave 

a description of the curves with many automorphisms. Denote by Ihn the dihedral 
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group of order 2n. A curves with many automorphisms is given by the following set 

of Weierstrass points: 

1: W = {D, 1,00, À, M, À(1 - ;\)-1(1 - p,)} and the reduced group of automor­

phisms is cydic of order 2, unless by specialization this case reduces to one 

of the cases below; 

2: W = {D, 1, 00, À, À-1(À - 1), (1 - À)-l} obtained by specializing M in (1) to 

À -l(À -1). The reduced group of automorphisms is D 6 , the symmetric group 

of permutation of three letters, unless by specialization this case reduces to 

one of the cases below; 

3: W = {D,I,oo,'\,,\-l,-I} obtained by specializing Min (1) to À-l
. The 

reduced group of automorphisms is D4 , the Klein four group, unless by spe­

cÏalization this case reduces to one of the cases below; 

4: (For p =1= 3,5) W = {D, 1, 00, 2,2-1, -1} obtained by specializing À in (2) or 

in (3) to 2. The reduced group of automorphisms is D 12 . 

5: W = {D,I,oo,i,-i,-I} obtained by specializing À in (3) to i = (-1)~. If 

p =1= 5, the reduced group of automorphisms is D4 , while for p = 5 it is the 

whole group of projective transformations PGL2 (IF's); 

6: (For p =1= 5) W = {D, 1,00,1 + (, 1 + (+ (2, 1 + ( + (2 + (3} where ( is a 

primitive fifth root of unity. The reduced group of automorphisms is cyclic 

of order 5. 

Note that a similar classification for genus 3 hyperelliptic curves can be found in 

[14, Table 3]. 

The first candidate for a maxno-2 curve will be the curve C given by W = 

{D,I,oo,i,i-l,-l} = {00,0,1,2,3,4} over a field ofcharacteristic 5 having 120 au­

tomorphisms (type (5)). One can check that it is a non-ordinary hyperelliptic curve. 
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There is only one element in the fiber p( C), that is, up to isomorphisms, only one as­

sociated elliptic curve. Therefore only one check need to be done to verify if the curve 

is a maxno-2 curve and we easily compute that the elliptic curve is not supersingular. 

Afler this particular curve, the curves having the largest number of automorphisms 

are the curves of characteristic p ::::: 7 given by T'lie = {O, 1,00,2,2-\ -1} (type (4)). 

Depending on the characteristic of the field over which the curve is defined, this par­

ticular curve can be ordinary or not. Computations have been done using Maple and 

the first example of a curve having 15 supersingular pairs of \iVeierstrass points have 

been found for p = 191. The curve has affine model 

C : y2 = x(x l)(x - 2)(x - 96)(x - 190), 

where 2-1 = 96 and, as expected, the Weierstrass points 2,96 and 190 are roots of the 

degree 95 polynomial A(x). Note that there are also 5 other roots of this polynomial 

that are reached by sorne cross-ratio of these 6 points. Also, one check that this curve 

is non-ordinary. 

Computations have been done up to characteristic p = 1000 for the curves defined 

over lFp with automorphisms of type (4), and this is the only example of a maxno-2 

curve found. In general, a curve of type (4) defined over JFp where 2, -1,2-2 are roots 

of the polynomial A(x) has 6,9 or 12 supersingular sets. This program can be found 

in appendix D. For the moment no other maxno-2 curves have been found, and we 

are still seeking for an ordinary maxno-2 curve. 

4. Conclu.sion 

So, after an, what have we done during these last 103 pages? Let us recall the main 

points we have seen. 'iVe focused on sorne very particular curves, the hyperelliptic 

CHIves that are in a sense the generalization of elliptic curves to a higher genus. We 
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saw that these curves have affine models 

C : y2 = j(x) 

and are eharaeterized by their unique involution fixing the set of ·Weierstrass points. 

The moduli spaee Hg of these eurves were constructed and we built other moduli 

spaces with level structures H; and H; in order to handle these objects with more 

ease. 

In order to classify the hyperelliptie curves, we considered the p-torsion group on 

the Jaeobian of these curves. We saw that it is a self dual affine group scheme of 

rank p2g (where 9 is the genus of the curve) to which one ean assoeiate a Dieudonné 

module. From a theorem of Oort, there are 29 different possible p-torsion groups and 

each ean be associated to a final sequence. We focused on two particular types of 

curves: the ordinary curves, that is the curves for which Jac( C)[p](k) = (f..tp x ZjpZ)g, 

and the non-ordinary eurves, that is the curves having any other p-torsion group. 

One important question raised in this work was the following: How can we trans­

late properties related to the Ekedahl-Oort stratification in terms of the moduli spaces 

Hg? \Ve looked at the particular situation of unramified coverings of genus 9 hyperel­

liptie curves by an other hyperelliptic curve. From [3], we saw that the only possible 

degree of sueh a coyer is 2 or 4. We concentrated our efforts in the situation of de­

gree 2 maps. Recall that such a covering 1 : D ----t C leads to two other degree 

2 coverings of hyperelliptic curves E and F of genus respectively 9 - rand r - 1 

for 1 < r < 9 - 1. We showed that there is an isogeny of degree a power of 2 

\]i : Jac(C) EB Jac(E) EB Jac(F) ----t Jac(D) and the p-torsion group of Dean be 

studied via the p-torsion groups of C, E, and F. It would be interesting to see if it 

is possible to generalize our results for degree 4 coverings. 



4. CONCLUSION 105 

Again, we narrowed our investigation to the case where F is the projective hne, 

i. e., when D is also a hyperelliptic curve. In this setting, the moduli space of such 

coverings is H; and our main concern was the description of Ng , the subspace of the 

coverings 1 : D ---+ C for which D is non-ordinary. Using the ab ove isogeny, the 

elements in N g arise from two situations: either C is non-ordinary and so D ---+ C 

belongs to N gn1 or C is ordinary and the associated genus 9 - 1 curve is non-ordinary 

and D ---+ C belongs to N go . Thus N g = N gn U N go and from the knowledge of non­

ordinary curves of genus 9 and 9 - 1 we can recover N g . Indeed N go ç C l (H g-l (N) ) 

and Ngn = p-l(Hg (N)). It would be interesting to find if the codimension of 

Ngn n Cl (H9'_ 1 (N) is two or more, we hope to come back to this question in the 

future. 

We studied in detail the situation of non-ordinary curves for genus 1 and degree 

2 unramified coverings of genus 2 hyperelliptic curves. Several attempts were done 

computationally to understand the problem. We proved that H 2 < 00 and found an 

example of such an element. However, this particular curve is also non-ordinary and 

we are still seeking for a curve in H2 n H2 (O). 

The subspace H2 has codimension 3 and we could conjecture that, in general, Hg 

has codimension 3 in Hy- As stated before, we zoomed in considerably our study of 

subspaces of Hg related to sorne Ekedahl-Oort strata. This gives us a lot of open 

windows for further work. For instance, l think that we could generalize sever al 

statements about degree 2 coverings in the situation where D is not a hyperelliptic 

curve. vVe could also work with a precise non-ordinary strata instead of an non­

ordinary curves, and so on ... 
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Maple program written by Melisande Fortin Boisvert. 

This file contains four programs which need several subprograms included at the 

beginning. The first program, named DM, calculates the length 2g final sequence of 

the Dieudonné module associated to the type given in input. The second program, 

named DM2, calculates from a length 2g final sequence its associated Dieudonné 

module and constructs the filtration that gives back the final sequence. The third 

program, named DMC, calculates, for a series of types ( the type is an invariant 

associated to an abelian variety with real multiplication, see [6]), their associated 

Dieudonné modules of rank 2g'i, takes the direct sum of these Dieudonné modules 

and then computes the final sequence of aU the constructed modules and the final 

sequence of the direct sumo The fourth program, named DMC 2, calculates, for a 

series of sequences of length 2gi , their associated Dieudonné modules, takes the direct 

sum of these Dieudonné modules and then computes the final sequence of the new 

module. 

> restart; 

> with(linalg): 

> 

Warning, new definition for norrn Warning, new definition for trace 

Subprogram perp: Takes the perp of the length 2g vector M[hh). 

Input:z=s for the scalar case, z=vector containing the gi, 

M=vector containing the submodules g=g or sum of the gi, 
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108 APPENDIX A 

hh=index of the subrnodule for which we take the perp, 

Output:M[2gg-hh] the perp of M[hh). 

> perp:=procChh,gg,MM,z) 

> local j,p,i,N,n: 

> global M: 

> if z=s then 

> 

> #Scalar case 

> if hh<>gg th en 

> M[2*gg-hh]:=vector(2*gg,1): 

> for j to gg do 

> M[2*gg-hh][j+gg]:=1+M[hh][j] mod 2: 

> od: 

> for j from gg+1 to 2*gg do 

> M[2*gg-hh] [j-gg] :=1+M[hh][j] mod 2: 

> od: 

> fi: 

> evalm(M[2*gg-hh]); 

> else 

> 

> #Vector case 

> p:=O: 

> N:=vector(2*gg,1): 

> for i to nops(z) do 

> #here gg=+gi z=g=vector 

> if hh<>gg then 

> for j to z[i] do 

> N[p+j+z[i]]:=1+M[hh] [p+j] mod 2: 
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> od: 

> for j from g[i]+l to 2*g[i] do 

> N[p+j-z[i]] :=l+M[hh] [p+j] mod 2: 

> od: 

> fi: 

> p:=p+2*z[i]: 

> od: 

> n:=dotprod(N,N); 

> M[n] :=evalmCN) : 

> fi; 

> end: 

End of perp program. 

Subprogram words: Constructs the sword or the dword associated to a type. 

Input: g=integer, 

tt=type, 

Output:a a sword or (w, wd) a dword. 

> words:=proc(tt,gg) 

> local A,i,j,t; 

> global w,wd,a,n: 

> 

> n:=nops(tt): 

> t:=[op(tt),gg+l]: 

> if type(n,odd)=true then 

> a:=arrayCl .. 2*gg): A:=O: 

> for i from 2 to n+l do 

> for j from t[i-l] to t[i]-l do 

> a[j] :=A; 

> a [j+gg] :=A+l mod 2: 

109 
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> od; 

> A:=A+1 rnod 2: 

> od: 

> 

> else 

> w:=arrayC1 .. gg): 

> wd:=array(1 .. gg): 

> A:=O: 

> for i frorn 2 to n+1 do 

> for j from t[i-1] to t[i]-1 do 

> wEj] :=A; 

> wd[j]:=A+1 rnod 2: 

> od; 

> A:=A+1 rnod 2: 

> od: 

> fi: 

> 

> end: 

End of word program. 

Subprogram FV: Constructs the matrix MF that will compute F on the submodules 

M[h). 

Input:g=g or sum of the gi, 

n=parity of the type, 

ww, wwd=dword, 

a=sword, 

Output:The matrix l'vIF. 

> FV:=procCaa,ww,wwd,nn,gg) 

> local i: 



> global V,F,MF,X,M: 

> 

> MF:=matrix(2*gg,2*gg,0): 

> F:=arrayC1 .. 2*gg): 

> 

> if type(n,odd)=true then 

> for i to 2*gg-1 do: 

> if a[i]=O then 

> F[i] :=X[i+1]; 

> MF[i+1,i] :=1; 

> else F[i] :=0; 

> fi: 

> od: 

> if a[2*gg]=0 then 

> F[2*gg] :=X[1]; 

> M[1,2*gg] :=1; 

> else 

> F[2*gg] :=0: 

> fi; 

> else 

> for i to gg-1 do: 

> if w[i]=O then 

> F[i] :=X[i+1] : 

> MF[i+1,i] :=1: 

> else F[i] :=0: 

> fi: 

> if wd[i]=O then 

> F[i+gg] :=X[i+1+gg] : 
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> MF[i+1+gg,i+ggJ :=1: 

> else F[i+ggJ :=0: 

> fi: 

> od: 

> if w[gg] =0 then 

> F [gg] : = X [1 J : 

> MF [1 ,gg] : = 1 

> else 

> F[gg] :=0: 

> fi: 

> if wd[gg]=O then 

> F[2*gg] :=X[gg+1J : 

> MF[gg+1,2*gg] :=1 

> else F[2*gg]=O: 

> fi: 

> fi: 

> 

> end: 

> 

End of the FV prograrn. 
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Subprograrn Vperp: Constructs the first nItration. 

Input: z = s for that scalar case, z=vector containing the 9i, 

MMF= rnatrix giving the rnap F obtained in FV, 

9 = 9 or surn of the 9i, 

Output:M=vector containing sorne subrnodules, 

L=vector containing the indices i for which we have the surnbodule M[i]. 

> Vperp:=procCgg,MMF,z) 

> local h, mm, j,i: 



> global L, M,n: 

> 

> h:=2*gg; 

> mm:=vector(2*gg,1): 

> L: = [] : 

> n:=nops(L): 

> 

> #begin of the F function 

> while h<>O do: 

> u@:=multiply(MMF,mm): 

> h:=dotprod(mm,mm): 

> M[h] :=evalm(mm): 
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> #takes the perp of M[h] of length 2*g. 

> perp(h,gg,M,z) : 

> #end of perp function 

> L:=[op(L),h]: 

> if h<>gg th en 

> L:=[op(L),2*gg-h]: 

> fi; 

> od; 

> 

> end: 

End of Vperp program. 

Subprogram stab: Stabilizes the filtration M under F and perp. 

Input: 99 = 9 or sum of the 9i, 

MMF=matrix giving the map F, 

MM=vector containing the submodules, 

LL=vector containing the indices of the submodules, 
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Z = s for the scalar case, z=vector containing the gi, 

Output:MMF=The Matrix stabilized under F and perp. 

> stab:=procCgg,MMF,MM,LL,z) 

> local Li,h,j,rnm,h2,K; 

> global L; 

> 

> Li :=LL: 

> K:=LL: 

> #We get new modules until we have a stabilization under perp and F. 

> #At each loop, if i<=g Mi is stable under F and perp. 

> while Li<>[] do 

> h:=Li[1]: 

> if h>gg then 

> #beginning of the F function. We stop when we get a M[h] we had before 

> #ie when hi is in L 

> rnm:=vector(2*gg,i): 

> #h2 is there to keep track of h that we have to test before doing the loop. 

> h2 :=h: 

> h:=dotprod(multiply(MMF,MM[h]),multiply(MMF,MM[h]»; 

> while member(h,K)=false do: 

> h:=h2: 

> rnm:=multiply(MMF,MM[h]): 

> if member(h,K)=false then: 

> K:=[op(K),h]: 

> fi: 

> if h<gg then: 

> if member(2*gg-h,K)=false then: 

> K:=[op(K),2*gg-h]: 



APPENDIX A 

> Ll:=[op(Ll),2*gg-h]; 

> #begin of perp function 

> #takes the perp of M[hl] of length 2*g. 

> perp(h,gg,MM,z): 

> #end of perp function 

> fi: 

> fi: 

> h:=dotprod(mm,mm): 

> MM[h] :=evalmemm): 

> h2 :=h: 

> od: 

> #end of the F function. 

> fi: 

> #We delete h1 on the list since it is stable under V and perp. 

> Ll:=subsop(l=NULL,Ll): 

> od: 

> L:=sort(K); 

> 

> end: 

End of stab 

Subprogram gap: Fills the first gap in M and then stabilizes M. 

Input gg = 9 or sum of the gi, 

MMF=matrix giving the map F, 

MM=vector containing the submodules, 

LL=vector containing the indices of the submodules, 

z = s for the scalar case, z=vector containing the gi, 

Output:The matrix M. 

> gap:=proc(gg,MMF,MM,LL,z) 
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> local f,k, kj, kk, K; 

> global L; 

> 

> K:=LL: 

> for k from 2 to gg+l do 

> if K[k]<>k-l then 

APPENDIX A 

> #k-l is the position in L until there is no gap. 

> #So we know M_k-2, to found: M_k-l and its perps. 

> #Conctruction of the M_k-1: 

> f:=evalm(MM[K[k]]-M[k-2]): 

> MM[k-1] :=evalm(MM[k-2]): 

> kj: =1: 

> kk:=O: 

> while kk=O do 

> kk:=f[kj]: 

> kj:=kj+1: 

> od: 

> MM [k-1] [kj-1] :=1: 

> K:=[op(K),k-1]: 

> #begin of perp function 

> #takes the perp of M[k-1] of length 2*g. 

> perp(k-1,gg,MM,z); 

> #end of perp function 

> K:=[op(K),2*gg-(k-l)]: 

> K : =sort (K) : 

> #begin of stab function 

> #Stabilise the sequence together with M[k-1] 

> stab(gg,MMF,MM,K,z): 



> #rnd of perp function 

> fi: 

> od: 

> L:=K; 

> end: 

End of the pro gram gap. 
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Subprogram af: Finds the final sequence, the a-number and the f-number of the 

elementary sequence. 

Input: gg = g or sum of the gi, 

l\1MF=matrix giving the map F, 

MM=vector containing the submodules, 

Output:The final sequence, the a-number and the f-number. 

> af:=proc(gg,MMF,MM) 

> local i; 

> global PHI,a,f; 

> PHI:=vector(2*gg): 

> f:=O: 

> for i to 2*gg do 

> PHI[i] :=dotprod(multiply(MMF,MM[i]),multiply(MMF,MM[i]»; 

> if i=PHI[i] then 

> f:=i 

> fi: 

> od: 

> a: =gg-PHI[gg] : 

> print(Phi,PHI): 

> print(fnumber,f): 

> print(anumber,a): 

> end: 
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End of af function. 

Subprogram sequ: Constructs the matrix which give F from one final sequence. 

Input:phi=a final sequence, 

9 = g, 

Output: The matrix MF. 

> sequ:=procCg,phi) 

> local i,j,k; 

> global mn,nm,MF; 

> mn:=vector(2*g,O); 

> nm:=vector(2*g,O); 

> MF:=matrix(2*g,2*g,O); 

> j:=1; 

> k:=g-1; 

> nm[1] :=2*g; 

> for i from 2 to 2*g do 

> if phi[i]<>phi[i-1] then mn[i] :=j; 

> j:=j+1; 

> else nm[i] :=k+g; k:=k-1; 

> fi: 

> od; 

> nm:=evalm(nm+mn); 

> MF:=matrix(2*g,2*g,O); 

> for i to g do 

> MF [nm[i] ,iJ :=1 

> od: 

> end: 

End of seqn program. 

Main program DM: Finds the final sequence, the a-number and the f-number from 
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one type. 

Input:tt=type beginning with 1, 

gg = 9 or sum of the gi, 

zs = s for the scalar case, 

Output: The final sequence, the a-number and the f-number. 

> DM:=proc(tt,gg,s) 

> words(tt,gg): 

> FV(a,w,wd,n,gg): 

> Vperp(gg,MF,s): 

> stab(gg,MF,M,L,s): 

> gapCgg,MF,M,L,s): 

> af(gg,MF,M): 

> end: 

End of DM program. 

Example: 

> g:=8: t:=[1,2,3,6J: 

> DM(t,g,s): 

Phi, [0, 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8J 

fnumber, 0 

anumber, 4 

119 

Main program DM2: Constructs the final sequence, the a-number and the f-number 

from a final sequence. 

Input: z=scalar case, 

phi=final sequence, 

g=sum of the gi, 

Output: The final sequence, the a-number and the f-number. 

> DM2:=proc(gg,phi,z) 
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> sequ(gg,phi) : 

> Vperp(gg,MF,z): 

> stab(gg,MF,M,L,z): 

> gap(gg,MF,M,L,z): 

> af(gg,MF,M): 

> end: 

End of the DM2 program. 

Verification that the sequence we get is the same as the one we started with. 

> g:=17; t:=[1,2,4,6,10,11,12,14J; DM(t,g,s); 

> 

Phi, [0, 0, 1, 2, 

11, 11, 

> evalm (PHI) ; 

> 

11, 

t - [1, 2, 

2, 2, 3, 4, 

11, 11, 12, 

g - 17 

4, 6, 10, 11, 12, 

4, 4, 5, 6, 7, 8, 

13, 13, 13, 14, 15, 

fnumber, ° 
anumber, 8 

14J 

9, 9, 9, 10, 11, 

15, 15, 16, 17J 

[0,0, 1,2,2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9,9,9, 10, 11, 

11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17] 

> DM2(g,PHI,s); 

Phi, [0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 9, 9, 10, 11, 

11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17] 

fnumber, ° 
anumber, 8 
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Main program DMC: Finds the final sequence, the a-number and the f-number from 

many types. 

Input:tt=vectors containing the types, an beginning with 1, 

gg=sum of the gi, 

onoff=on if we want the elementary sequence of each type, 

Output:The final sequence, the a-number and the f-number. 

> DMC:=proc(tt,gg,onoff) 

> local i,a,w,wd,n,W1; 

> global W,nn,M, P; 

> P: =vector(nops (gg» ; 

> nn:=O; 

> W: = [] ; 

> for i to nops(gg) do 

> words(tt[i] ,gg[i]): 

> FV(a,w,wd,n,gg[i]): 

> if onoff=on 

> then 

> Vperp(gg[i] ,MF,s): 

> stab(gg[i] ,MF,M,L,s): 

> gap(gg[i] ,MF,M,L,s): 

> af(gg[i] ,MF ,M): 

> PEi] :=evalm(PHI); 

> fi: 

> if i>1 then 

> W:=stack(augment(op(W) ,matrix(nn,2*gg[i] ,0», 

> augment (matrix(2*gg[i] ,nn,O),op(MF»)); 

> else W:=evalm(MF); 

> fi; 
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> nn:=nn+2*gg[i]; 

> od; 

> nn:=floor(nn!2); 

> Vperp(nn,W,gg): 

> stab(nn,W,M,L,gg): 

> gapCnn,W,M,L,gg): 

> af (nn , W ,M) : 

> 

> end: 

End of DMC program, 

Example: 

> t: = [[1, 2J , [1, 2J J: g: = [2, 3J : 

> nops(g); 

> DMC(t,g,on); 

Phi, 

2 

[0, 0, 

fnumber, 

anumber, 

Phi, [0, 1, 1, 

fnumber, 

anumber, 

Phi, [0, 1, 1, 1, 1, 

fnumber, 

anumber, 

1, 

0 

2 

2, 

0 

2 

2, 

0 

4 

2J 

2, 3J 

3, 4, 4, 5] 

Main program DM2: Constructs the final sequence, the a-number and the f-number 

from many final sequences. 
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Input:phi=vector containing all the final sequences, 

g=sum of the gi, 

Output: The final sequence, the a-number and the f-number. 

> DMC2:=proc(gg,phi) 

> 

> local i,a,w,wd,n,W1; 

> global W,nn,M, P; 

> nn:=O; 

> W:=[]; 

> for i to nops(gg) do 

> sequ(gg[i] ,phi[i]): 

> if i>1 then 

> W:=stack(augment(op(W),matrix(nn,2*gg[i] ,0», 

> augment (matrix(2*gg[i] ,nn,O),op(MF»); 

> else W:=evalm(MF); 

> fi; 

> nn:=nn+2*gg[i]; 

> od; 

> nn:=floor(nn/2); 

> Vperp(nn,W,gg): 

> stab(nn,W,M,L,gg): 

> gap(nn,W,M,L,gg): 

> af(nn,W,M): 

> 

> end: 

End of DMC2 program. 

Example using the output of the previous program. 
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> g; evalm(P[1J);evalm(P[2J); 

> DMC2(g,P); 

[2, 3J 

[0, 0, 1, 2J 

[0, 1, 1, 2, 2, 3] 

Phi, [0, 1, 1, 1, 1, 2, 3, 4, 4, 5J 

fnumber, ° 
anumber, 4 
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Maple program written by Melisande Fortin Boisvert. 

Given a prime p, it considers aH the possible Weierstrass sets of genus 2 hyperel­

liptic curves defined over lFp . For each of them, the program goes over the 15 pairs 

of :2 points and check if they are supersingular. The number of supersingular sets 

is then printed in Liste. Note that this program does not consider the isomorphism 

classes of hyperelliptic curves. Indeed it computes the number of supersingular sets of 

a curve more than once. This is not problematic, it's only slows down the calculations. 

Input:p=Cardinality of the field over which the curve is defined. 

Output:Liste=Possible number of supersingular sets. 

> p:=11: 

> d:=p-1: 

> m:=floor ((p-1)!2): 

> s:=i->sum('(binomial(m,j»)-2*i-j' ,'j'=O .. m) mod p: 

> liste: = [] : 

> mmax:=O: 

> for z from 2 to d-2 do 

> for y from z+1 to d-1 do 

> for x from y+1 to d do 

> A:=[infty,O,1,z,y,x]; 

> compteur:=O: 
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> for i from 1 to 3 do 

> for j from i+l to 4 do 

> for k from j+l to 5 do 

> for l from k+l to 6 do B:=[A[iJ ,A[j] ,A[kJ,A[l]J; 

> if i=l then 

> lam:=(B[4J-B[2])!(B[3J-B[2J) mod p; else 

> lam: = (B [4] -B [1J) * (B [2] -B [3]»! «B [4] -B [3J ) * CB [2] -B [lJ» ; 

> fi; 

> kk:=s(lam); 

> if kk=O then compteur: =compteur+l; 

> fi; 

> od; 

> od; 

> od; 

> od; 

> if member(compteur,liste)=false then 

> liste:=[op(liste),compteurJ 

> fi; 

> if compteur>mmax then 

> mmax:=compteur; HH:=A: 

> fi: 

> if compteur=15 then 

> print (wow); 

> fi; 

> od: 

> od: 

>od: 

> print(liste): 
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[4, 5, 6J 





Appendix C 

Macaulay 2 program written by Melisande Fortin Boisvert. 

Given a prime p and an integer s, it considers an the possible ~Weierstrass sets of 

genus 2 hyperelliptic curves defined over lFps. For each of them, the program goes 

over the 15 pairs of 2 points and checks if they are supersingular. The number of 

supersingular sets is then printed in List. Note that this program does not consider 

the isomorphism classes of hyperelliptic curves. Indeed, it computes the number of 

supersingular sets of a curve more than once. This is not problematic, it only slows 

down the calculations. 

Input: p=Characteristic of k, the field over which the curve is defined, 

s=integer such that the cardinality of the k is pB, 

Output:List=Possible number of supersingular sets. 

p=3 

ss=3 

F=GF(p-ss,Variable=>a) 

d=p-ss-1 

m=floor ((p-1)!2) 

check=no 

maximal=O 

List={O} s=i->{aa=O; for j from 0 to m do 

aa=aa+(binomial(m,j»-2*i-j}; for x from 3 to d-2 do 
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for y from 2 to x-l do 

for z from 1 to y-l do 

(A=[infty,O,l,a-z,a-y,a-x] ; 

compteur=O; 

for i from ° to 2 do 

for j from i+l to 3 do 

for k from j+l to 4 do 

for l from k+l to 5 do 

(B=[A#i,A#j,A#k,A#l] , 

if i==O then (lam=(B#3-B#1)!(B#2-B#1)) 

else( lam=«B#3-B#O)*(B#1-B#2))!«B#3-B#2)*(B#1-B#O))); 

s (lam); 

if aa==O then( compteur=compteur+l) ); 

print(compteur); 

if compteur>maximal then 

(maximal=compteur; celui=A; ); 

if member(compteur,List)==false 

then List=appendCList,compteur); 

if compteur==15 then check=yes) 

print(List) 

[0,1,2] 
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Maple program written by Melisande Fortin Boisvert. 

For p 2: 7, in an interval [a, b] this program considers the genus 2 hyperelliptic 

curve with a affine model y2 = x(x - l)(x + l)(x - 2)(1 - 2-1)defined over lFps, and 

having automorphism group of type 4, see chapter 1, section 3.4. The program checks 

first if the 3 Weierstrass points -1,2,2-1 are roots of the polynomial A(x). If so, the 

program makes aIl the other checks needed to have a curve with the maximal number 

of supersingular sets. The program also gives the configuration of the supersingular 

sets in the vector N. For each of the 15 sets, it writes 1 if the set is supersingular 

either it writes O. The program also checks if the curve C is ordinary or not. 

Input: [a, b]=interval for the cardinality of the finite field lFp , 

Output:N =vector giving the configuration of the supersingular sets, 

compteur=Number of supersingular sets of the curve C, 

abba=Determinant of the Hasse-Witt matrix of the curve C. 

>with (linalg) : 

> 

> for p from 175 to 200 do 

> if isprime(p)=true then 

> 

> compteur:=O: 

> m:=floor ((p-1)/2); 
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> s:=i->sum('(binomial(m,j»-2*i-j' ,'j'=O .. m) mod p; 

Check for the 3 Weierstrass points 

b:=s(2) ; 

if b=O then 

a:=Y(-1) 

c:=s(a); 

if c=O then 

aa:=p-l mod p: 

d:=s(aa) ; 

if d=O then 

Check for the other cross-ratios 

A:=[infty,0,1,2,a,p-1J; 

for i from 1 to 3 do 

for j from i+l to 4 do 

for k from j+l to 5 do 

for l from k+l to 6 do 

B : = [A [iJ , A [j J ,A [kJ ,A [lJ J ; 

if i=l then 

lam:=(B[4J-B[2J)/(B[3J-B[2J) mod p; 

else 

lam: = (CE [4J -B [1]) * (B [2J -B [3J» / (CE [4J -B [3J) * (B [2J -B [1]» ; 

fi; 

kk: =s (lam) ; 

if kk=O then 

compteur:=compteur+l; N[pJ:=[op(N[pJ),iJ; 

else 

Check for the configuration 

N[pJ :=[op(N[pJ),OJ; 



fi; 

od; 

od; 

od; 

od; 

print(N[p]); 

APPENDIX D 

Check if the curve is non-ordinary 

r:=x*(x-1)*(x-2)*(x-(1!2))*(x+1)mod p 

pp:=collect(r-m,x) : 

f .= (i,j) -> coeff(pp,x,i*p-j) mod p: 

HVC:=matrix(2,2,f); 

abba:=det(HVC) mod p; 

print(compteur,p,abba); 

fi: 

fi; 

fi; 

fi; 

od; 

[179,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1] 

6, 179, ° 
[191,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

15, 191, ° 
[199,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1] 

6, 199, 12 
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