
Controlling the Scanning Electron Microscope with Deep
Learning for Automated Acquisition and Image Quality

Improvement

Sabrina Clusiau

Department of Materials Engineering

McGill University, Montreal

April 2024

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

© Sabrina Clusiau 2024

i

Abstract

Controlling image acquisition hardware with image processing software is the future of

microscopy. The efficiency of microscopy techniques is currently limited by manual intervention

and the need for microscopist supervision during acquisitions. More importantly, proper

interpretation of image data requires quantitative analysis with computational methods.

Automating simple and complex tasks on the scanning electron microscope (SEM) specifically,

is feasible by replacing microscopist involvement with appropriate software algorithms and deep

learning. Guided acquisitions on the SEM with hybrid methods is the solution to higher

throughput and to generating better data, faster.

In this work, computational approaches to microscopy are presented. Foremost, two workflows

for automated acquisitions are described, for imaging and image processing in Dragonfly, an

image processing software. First, a feedforward workflow sequentially positions the beam in a

predetermined grid layout, stitches the images, segments the feature of interest and computes

measurements for quantitative analysis. Second, a workflow with a feedback loop between

imaging and analysis is developed to enable dynamic imaging with feature segmentation and

feature tracking. Guiding the hardware to image areas of interest with smart beam positioning is

an optimized solution for acquiring only relevant data and minimizing acquisition duration.

Then, microscope routines, prior to acquisitions, are enhanced by integrating computational

methods, focused on artificial intelligence. Microscopists spend a considerable amount of time

tuning microscope parameters and aligning the beam until a desired image quality is observed.

To assist with interpretation of image quality, a regression model is trained to optimize SEM

ii

parameters thus boosting image quality for quantitative analysis. This work is presented in two

parts. The first elaborates on how to generate a complete training set with MC X-ray simulations

and acquired SEM data. The second describes the model architecture and steps for integrating

model predictions during microscope parameter tuning routines.

Computational methods indisputably improve microscopy, as demonstrated in this thesis, with

work achieved on the SEM. Progress towards integration of image processing generates smarter

acquisitions, with considerably less effort, optimizing resources for analysis.

iii

Résumé

Le contrôle de l’équipement d'acquisition d'images avec les logiciels de traitement d'images

représente l'avenir dans le domaine de la microscopie. Actuellement, l’efficacité des techniques

de microscopie sont limitées par des tâches manuelles et par le besoin de supervision des

acquisitions par les microscopistes. Surtout, l'interprétation adéquate des données d'image

nécessite une analyse quantitative avec des méthodes computationnelles. L'automatisation des

tâches simples et complexes, particulièrement sur le microscope électronique à balayage (MEB),

est réalisable en remplaçant des fonctions effectuées par les microscopistes, par des algorithmes

logiciels appropriés et par l'apprentissage profond. Les acquisitions guidées sur le MEB, à l’aide

de méthodes hybrides, forment la solution optimale vers un rendement plus élevé et pour la

génération de données de qualité supérieure, plus rapidement.

Cette thèse présente des approches computationnelles à la microscopie. Tout d'abord, deux plans

de travail sont décrits pour acquérir des données de manière automatisées, incluant les étapes

d'imagerie et le traitement des images acquises dans Dragonfly, un logiciel de traitement

d’image. Le premier est exécuté sans rétroaction : le faisceau à électrons est positionné

séquentiellement dans une disposition de grille prédéterminée, les images sont recallées, les

composantes d’intérêts sont segmentées, et des données sont calculées pour en effectuer

l’analyse quantitative. Le deuxième est réalisé avec une boucle de rétroaction entre l'imagerie et

l'analyse d’images. Cette technique est développée pour permettre des acquisitions dynamiques,

d’abord avec la segmentation de composantes pour ensuite suivre ces composantes. Avec un

positionnement intelligent du faisceau, le microscope est guidé vers les zones d'intérêt pour

iv

imager. Cette solution est donc optimisée pour acquérir uniquement des données pertinentes et

minimiser la durée des acquisitions.

Ensuite, les procédures de calibration du microscope, avant les acquisitions, sont améliorées en

intégrant des méthodes computationnelles, axées sur l'intelligence artificielle. Les microscopistes

dévouent beaucoup de temps à ajuster les paramètres du microscope et à aligner le faisceau

jusqu'à ce que la qualité d'image souhaitée soit obtenue. Pour aider les microscopistes à

interpréter la qualité des images, un modèle de régression est conçu afin d’optimiser les

paramètres du MEB pour améliorer la qualité des images pour l'analyse quantitative. Le travail

est présenté en deux parties, la première explique comment générer un ensemble de données

pour l’apprentissage profond, comprenant de simulations de MC X-ray et des données acquises

avec le MEB. La seconde décrit l'architecture du modèle développé et les étapes requises pour

intégrer les prédictions du modèle lors des procédures de réglage des paramètres du microscope.

Les méthodes computationnelles améliorent incontestablement la microscopie, tel que démontré

dans cette thèse, avec le travail réalisé sur le MEB. Les progrès vers l'intégration du traitement

d'images génèrent des acquisitions plus intelligentes et nécessitant beaucoup moins d'efforts pour

enfin optimiser les ressources pour l'analyse.

v

Contribution of Authors

The candidate is the first author for all manuscripts in the thesis, other authors contributed as

references and were often consulted throughout the completion of the work. Specifically, the

candidate’s supervisor Professor Raynald Gauvin and co-supervisor Professor Mike Strauss, both

regularly contributed ideas and resources that led to the progression of the project.

For the manuscript entitled Workflow Automation of SEM Acquisitions for Nanoparticle Analysis

the code for workflows was developed by the candidate. Python scripts are implemented in a

commercial environment, Dragonfly, with built-in libraries and frameworks. Indeed, algorithms

used for image processing, such as mutual information and scale-invariant feature transform

(SIFT) for stitching, the Otsu thresholding for segmentation, measurement computations from

segmentations and conversion of the segmentation to a graph were all already implemented by

the Dragonfly team. Presented workflows were created by the candidate by selecting appropriate

algorithms, combining available tools, and applying them to the current context. The remainder

of the code was designed and implemented by the candidate. Regarding all information about the

SEM and the experimental set up, Nicolas Brodusch was often consulted for advice and ideas,

especially for managing instrument instabilities.

For the two-part manuscript entitled Optimizing SEM Parameters for Segmentation with AI, the

entirety of the code was developed by the candidate. The simulation data generated by the

candidate used the MC X-ray plugin in Dragonfly implemented by the Dragonfly team and

developed by Professor Gauvin’s group. Outside the scope of this project, the candidate was one

of the developers on the Dragonfly team that contributed to the integration of the MC X-ray

plugin in Dragonfly. With prior knowledge on how to use the code to generate simulations, the

vi

candidate generated simulated data autonomously. The entire training set and model were

designed and built by the candidate. Benjamin Provencher and Nicolas Piché, both experts in

deep learning, provided valuable feedback regarding the model architecture and model

performance to improve results.

vii

Acknowledgements

I would first like to acknowledge my thesis supervisor Prof. Raynald Gauvin, who has given me

many opportunities to develop confidence in my work and present my research. Combined with

the assistance of my co-supervisor Prof. Mike Strauss, both have provided the guidance and the

expertise to allow me to excel in my research.

Also, I would like to thank my colleagues and the staff in the Prof. Gauvin’s research group,

especially for their assistance with training on the electron microscopes, with a special mention

for Nicolas Brodusch.

To my colleagues at Dragonfly, who have developed image processing tools that have allowed

me to have an excellent bases for creating more complex original contributions. A special

mention to my employer Nicolas Piché, thank you for the constant support, advice, and laughter.

Last but not least, thank you to my mom, Simon and Lana, for being the best audience to the

countless practiced presentations, giving feedback on lengthy documents and manuscripts and

constant emotional support.

Thank you.

viii

Contents

Abstract ... i

Résumé ... iii

Contribution of Authors .. v

Acknowledgements ... vii

List of Figures .. xi

List of Tables ... xv

1 Introduction ... 1

2 Review of the relevant literature .. 3

2.1 SEM imaging .. 3

2.1.1 Instrumentation ... 3

2.1.2 Electron-matter interactions .. 4

2.1.3 Monte Carlo X-ray simulations .. 9

2.2 Microscope parameter optimization ... 12

2.2.1 Beam energy ... 13

2.2.2 Probe current ... 16

2.2.3 Magnification .. 17

2.2.4 Capture settings ... 18

2.3 Workflow automation ... 19

2.3.1 Requirements .. 19

2.3.2 Overview of current solutions ... 21

2.3.3 Feature detection ... 22

2.4 Deep learning models ... 25

2.4.1 Linear models.. 26

2.4.2 Multi-layer perceptron .. 29

2.4.3 Convolutional neural networks ... 31

2.4.4 Architecture design ... 34

3 Workflow Automation of SEM Acquisitions for Nanoparticle Analysis............ 39

3.1 Preface... 39

3.2 Abstract ... 40

3.3 Introduction ... 41

ix

3.4 Implementation ... 43

3.4.1 Grid Acquisitions .. 44

3.4.2 Stitching .. 50

3.4.3 Segmentation... 51

3.4.4 Tracking .. 52

3.5 Results ... 56

3.5.1 Nanoparticle size distributions .. 56

3.5.2 Total Acquisition time ... 57

3.6 Discussion ... 58

3.7 References ... 62

4 Optimizing SEM Parameters for Segmentation with AI – Part 1: Generating a

Training Set .. 64

4.1 Preface... 64

4.2 Abstract ... 65

4.3 Introduction ... 66

4.4 Data generation workflows ... 68

4.4.1 Simulated training examples ... 71

4.4.2 Acquired training examples .. 76

4.5 Diversifying the training set.. 78

4.6 Results ... 81

4.6.1 Simulated training examples ... 82

4.6.2 Acquired training examples .. 84

4.7 Discussion ... 85

4.7.1 Virtual sample design .. 85

4.7.2 Extending workflow to other contexts .. 86

4.8 Conclusion .. 88

4.9 References ... 89

5 Optimizing SEM Parameters for Segmentation with AI – Part 2: Designing and

Training a Regression Model ... 91

5.1 Preface... 91

5.2 Abstract ... 92

5.3 Introduction ... 93

5.4 Model architecture .. 95

x

5.4.1 Overview ... 95

5.4.2 Model parameters.. 97

5.5 Model training ... 101

5.5.1 Callbacks ... 101

5.5.2 Learning curves ... 102

5.6 Model testing .. 104

5.6.1 Workflow .. 104

5.6.2 Test data .. 107

5.6.3 Training sets .. 108

5.7 Model performance ... 109

5.8 Discussion .. 111

5.8.1 Training sets .. 111

5.8.2 Model performance testing ...114

5.9 Conclusion ...115

5.10 References ..116

6 Concluding remarks ... 118

6.1 Conclusions ..118

6.2 Contributions to original knowledge .. 121

6.3 Future work ... 123

7 Bibliography .. 125

xi

List of Figures

Figure 2.1 Electron emitter types from left to right: tungsten filament, LaB6 filament, tungsten

filament with ZrO2 and tungsten tip [4]. .. 4
Figure 2.2 Signals generated from the interaction of the electron beam with a bulk sample. [6] .. 5
Figure 2.3 Interaction volume shape dependance on material atomic number or density [4]. 6
Figure 2.4 Schematic of available electron detector positioning on the NX5000, with examples of

associated contrast obtained [9]. .. 7
Figure 2.5 Examples of SE signal producing topographic contrast (left) and BSE signal

producing compositional contrast (right) [4]. .. 8
Figure 2.6 Variations of SEs produced with topography, generating signal fluctuations [10]. 9
Figure 2.7 Outputs from CASINO program [14] (left) BSE images of an Al/Mg2Si/Al sample at

5 keV for different Mg2Si thicknesses and (right) electron trajectories in blue and

backscattered electrons in red from simulation at 1 keV. ...11
Figure 2.8 Combining conventional microscopy with computational microscopy to improve

image quality [22]. ... 13
Figure 2.9 Interaction volume of electrons into a) bulk and b) thin specimen [24] 14
Figure 2.10 CASINO Monte Carlo simulations for different beam energies [23] 15
Figure 2.11 Images of the same specimen captured at 15 kV (left) and 5kV (right) with strong

charging at 15 kV [25] ... 16
Figure 2.12 Effect of the probe size from the probe current on the image quality [2] (left) probe

diameter 15 nm, probe current 1 pA, (middle) probe diameter 20 nm, probe current 5 pA and

(right) probe diameter 130 nm, probe current 320 pA. ... 17
Figure 2.13 Short integration time, noisy image and longer integration, noise free image [20] .. 18
Figure 2.14 Communication between the PC-SEM with the proprietary software is done through

socket communication by TCP/IP protocol with and external computer (EXT PC) 20
Figure 2.15 A. Centering the acquisition box to the feature of interest with part of the organelle

outside the field of view. B. Optimal acquisition box computation with extracted mask,

followed by stage rotation to fully contain the feature to be imaged [31] 24
Figure 2.16 (Left) Tuning values of w0 and w1 will generate three different linear fits to describe

the collection of datapoints. (Right) The best linear fit is found by minimizing the loss

function that compares the real data point value (y) with the predicted value (ŷ). L2 loss

computes the squared differences between the two values. [46] ... 27
Figure 2.17 Linear classifier that correctly separates the data in red and blue [44] 28
Figure 2.18 Example of nonlinear bases used to tweak inputs x for higher expressive power of

linear models.. 28
Figure 2.19 Simulated function in blue showing the true fit. Data points in blue obtained by

adding and subtracting noise to simulated function data points. (Left) Best linear fit in green

obtained for blue data points. (Right) Best fit with nonlinear Sigmoid bases in green for blue

data points [46]. ... 29
Figure 2.20 Fully connected neural network representing the MLP architecture with two hidden

layers, three nodes each. [47] .. 30

xii

Figure 2.21 a) Training example of an image 28x28 showing a handwritten 7 in the MNIST

dataset. b) Handwritten digits range from 0 to 9 and shape will vary slightly depending on

the example [49] .. 31
Figure 2.22 Scaling and repositioning of original digits to modify training examples and test

model performance [52]. ... 32
Figure 2.23 Convolution results from filters that detect horizontal and vertical edges for digits 3

and 4 [53] ... 33
Figure 2.24 Decision tree to assist researchers in selecting the appropriate machine learning

method depending on the task to complete [54]. ... 35
Figure 2.25 Increasing model expressive power with increasing input dimension (D) to

demonstrate underfitting and overfitting [46]. Blue curves are the simulated function

representing the true fit, blue dots are data points in the simulated function with added or

substracted noise and green curves are model fits. At D=5, the model fit is not ideal, the data

is slightly underfit, at D=10, the model fit in green is ideal, at D=50, overfitting is beginning

to be observed and at D=200 there is an obvious overfitting of the model to the training data.

 ... 37
Figure 3.1 Backscattered electron (BSE) images of platinum nanoparticles on carbon nanotubes

at beam energy 5keV and beam current 20 µA on the SU8230 cold field emission gun (FEG)

from Hitachi. Left: 20,000x, Middle: 60,000x, Right: 200,000x. ... 43
Figure 3.2 Microscope control is achieved through external communication between the PC

SEM and EXT PC. EXT PC will send text commands to the PC SEM, which will execute

the commands with the microscope’s proprietary software. Commands include stage

movements and beam shifts. Once images are captured, they are transferred from the PC

SEM to the EXT PC for image analysis with image processing software (Dragonfly). 46
Figure 3.3 Grid imaging patterns: row-by-row, column-by-column, snake-by-column or snake-

by-row. ... 48
Figure 3.4 Proposed automated workflow for automated acquisitions and quantitative analysis. 1.

Grid acquisitions at selected magnification, (left) three magnifications (20,000x, 60,000x

and 200,000x) are used for comparing size distributions and (right) both SE and BSE images

are acquired at every position to benefit from a multi-signal approach. 2. Grid SE images are

either a. registered with mutual information algorithm or b. stitched with SIFT algorithm. 3.

Stitched BSE image is segmented with Otsu thresholding for quantitative analysis of NPs. 49
Figure 3.5 Proposed automated workflow for feature tracking. A. Acquire low magnification

(20,000x) image containing features of interest. B. Import image to image processing

software and segment feature to track. C. Convert segmented pixels to a graph of vertices

and edges. D. Establish imaging sites from the vertex positions. E. Position beam at imaging

sites for high magnification (100,000x) acquisitions. ... 53
Figure 3.6 Schematic of selected vertices to position imaging sites. Graph of vertices and edges

is in blue, vertices circled in green will determine the center position of imaging sites,

vertices within a certain range are excluded and circled in yellow with an X and imaging site

is delimited by an orange rectangle with the dashed rectangle smaller than the imaging site

to accommodate for any imprecise stage or beam movements. 55

xiii

Figure 3.7 NP size distribution based on segmentation at three different magnifications

(20,000x, 60,000x, 200,000x) for visual comparison. ... 57
Figure 4.1 (Left) Secondary electron (SE) image and (Middle) back scattered electron (BSE)

image of platinum nanoparticles on carbon nanotubes and (Right) Surface of volumetric

virtual sample, a labelled 3D MultiROI, background labelled as carbon (C) and white

spheres labelled as platinum (Pt). .. 69
Figure 4.2 (Left) Flow chart diagram of worklow for generating simulated training examples.

(Right) Flow chart diagram of worklow for generating acquired training examples. 71
Figure 4.3 Cross sections of MultiROI visualized in 3D, in Dragonfly, with arrow illustrating the

direction of electron beam. From left to right, depth into MultiROI increases, new

nanoparticles are revealed, while others disappear. ... 72
Figure 4.4 Surface of virtual samples used to simulate BSE images with nanoparticles of

different shapes and sizes and at multiple magnifications A. 20,000x B. 60,000x C. 80,000x

D. 100,000x and E. 200,000x to diversify the training set. ... 79
Figure 4.5 A. Surface of virtual samples with low density nanoparticles. B. BSE simulated image

from low density nanoparticle virtual sample with 3 keV and 1.23 pA producing a Dice

score of 3.7% C. Surface of virtual samples with high-density nanoparticles. D. BSE

simulated image from high density nanoparticle virtual sample with 3 keV and 1.23 pA

producing a Dice score of 70.9%... 80
Figure 4.6 (Left) Virtual sample surface used to compare with final segmentation. (Middle)

Selected examples of BSE simulated images (grey scale values) from the surface of the

virtual. (Right) Associated Otsu segmentation. Images are simulated with different beam

energies and probe currents and segmentations are attributed a Dice score listed next to Otsu

segmentation A. 1 keV, 1.2 pA, Dice: 22% B. 1 keV, 614 pA, Dice: 93% C. 20 keV, 1.2 pA,

Dice: 25% D. 20 keV, 614 pA, Dice: 83%. ... 84
Figure 4.7 Cropped areas on SEM acquired BSE images for training A) obvious increase in SNR

with increased current and B) Pt NPs are revealed as energy increases. Combinations of

beam energy and probe current lead to observed variations in image quality. Segmentation

results obtained with Otsu thresholding are shown under each cropped BSE image with

computed Dice score in bottom right of segmentation. ... 85
Figure 4.8 Examples of automatically generated samples with OpenPNM or PuMA in Dragonfly,

from left to right, random spheres, Voronoi edges, random fibers and porous structures. 87
Figure 5.1 Regression model architecture. ... 96
Figure 5.2 Detailed schematic of model architecture. .. 98
Figure 5.3 Training and validation curves for the MSE beam energy loss, MSE beam current

loss, adjusted R squared score for beam energy and adjusted R squared score for beam

current. ... 104
Figure 5.4 A. SEM data acquisition workflow with integrated model for parameter prediction.

With the input image and input desired Dice score, the model suggests parameters to set to

improve image quality for segmentation. Results of segmentation with Otsu thresholding B.

of initial input image in blue and C. of resulting image in orange. 105
Figure 5.5 Generalized depiction of workflow to test model performance. Multiple images with

different combinations of beam energy (Xi) and probe current (Yi) are sent to the model to

xiv

evaluate output parameters suggested by the model. Performance is quantified comparing

the Dice final and Dice initial. ... 107
Figure 5.6 Training sets with varying proportions of simulated and acquired data. 109
Figure 5.7 Resulting mean Dice score and success rate for models trained with all training sets.

 .. 111
Figure 5.8 (Left) Acquired BSE image at 2 keV and 169 pA of CNTs and Pt NPs. (Right)

Segmentation obtained with Otsu thresholding, in yellow, of acquired BSE image.113

xv

List of Tables

Table 3.1 Python commands used to perform microscope task in the proposed automated

workflow including grid layout acquisitions and smart beam positioning for tracking. 45
Table 3.2 NP statistics at three different magnifications (20,000x, 60,000x, 200,000x) with

associated pixel size. .. 57
Table 3.3 Comparison of total acquisition time based on number of images taken for grid

acquisitions and CNT tracking. ... 58
Table 4.1 Representation of how training instances are stored in a Python Pandas DataFrame, a

2D array. Columns are inputs: the BSE image, the beam energy, the probe current and the

Dice score. Rows are training examples. Two training examples are shown: training example

1 is simulated and training example 2 is acquired on the SEM. .. 70
Table 4.2 Parameters used in MC X-ray plugin for simulations launched to generate BSE images.

 ... 74
Table 4.3 Virtual sample characteristics included to diversify generated BSE images in the

training set. .. 81
Table 5.1 Layer parameters ... 100
Table 5.2 Summary of model variables set for training. ... 100
Table 5.3 Parameters used to initialize callbacks ReduceLROnPlateau and EarlyStopping during

training. .. 102
Table 5.4 Parameters used to acquire input images for model performance testing. 108
Table 5.5 Training set proportions of simulated and acquired data. ... 109

1

1 Introduction

Automation has transformed multiple disciplines, elevating the limits of productivity to new

heights. Notably, microscopy is a field that greatly benefits from automation since routine

workflows on microscopes consist of repetitive tasks. Efforts towards automation with

computational microscopy, by integrating image processing tasks with image formation tasks,

are increasingly relevant particularly for scanning electron microscopes (SEMs). The SEM is

unequivocally a powerful tool for sample analysis, as it is extremely versatile due to the variety

of signal channels that is available to collect. Interpreting the acquired SEM data requires

quantitative analysis, which in turn, requires computational approaches.

Widely employed for research and industrial purposes, beam time on the SEM is a valuable

commodity, in high demand. Scientists with the required expertise to manipulate SEMs can

either purchase their own microscope with specific functionalities or schedule beam time on a

microscope open to external users, if available. When techniques required for sample analysis are

beyond their expertise, scientists also have the option of mandating more skilled microscopists to

complete acquisitions on the provided sample. Regardless of the chosen method for obtaining

results for analysis, all options are expensive and have limited access. The required analysis is

therefore understandably executed as rapidly and efficiently as possible.

Currently, SEM workflows rely too heavily on microscopist labor and expertise, and instruments

are not optimized for high throughput. Microscopists routinely book beam time for hours on the

SEM, and that time is often not entirely productive. Ideally, beam time would be largely spent

acquiring useful data for analysis. However, a high percentage of time is spent tuning

2

microscope parameters and aligning the beam, necessary steps at the start of any SEM session.

Furthermore, acquisition workflows require constant microscopist supervision, microscopes

therefore have a significant amount of downtime outside of working hours.

Automated image processing pipelines with the SEM, particularly with deep learning [1], pushes

the boundaries of productivity and enables users to acquire more and better data for analysis.

Functionalities range from simple to complex tasks and longer acquisitions can resume overnight

when microscopes are normally inactive.

The objective of this work is to present developments made in computational microscopy by

integrating image processing tasks and deep learning to actively control the SEM hardware to

automate acquisitions and efficiently improve image quality for segmentation.

First, a thorough review of the relevant literature is presented. Generating code to automate

workflows on the SEM requires expertise in both electron microscopy and in software

development, specifically in deep learning and image processing algorithms. The intention is to

create reliable and robust software to improve workflows by automating tasks and optimize

productivity on the SEM. Then, the following chapter presents an automated workflow for

acquiring images on the SEM in grid layout and with feature tracking. Subsequently, the two

next chapters are Parts 1 and 2 describing workflows for generating a training set and training a

regression model, respectively. The regression model is designed for optimizing parameters to

set on the SEM during acquisitions with computational approaches. Finally, concluding remarks

on the presented work will summarize findings, list contributions to original knowledge and

present anticipated future directions.

3

2 Review of the relevant literature

2.1 SEM imaging

The scanning electron microscope is a complex instrument; multiple components are involved in

generating high quality images. Understanding individual components and their functioning is an

important first step to workflow automation on the microscope and integrating algorithms for

acquisitions.

The SEM column produces a beam of accelerated electrons and scans the sample surface on a

specific area. The electron beam is focused through the column by magnetic lenses with Lorentz

force, to the sample inside an evacuated chamber. Once electrons hit the sample surface, distinct

signals arise from the interactions between electrons and the material, collected by multiple

detectors and visualized on computer screens. In fact, a multitude of signals can be acquired for

analysis, which makes the SEM a very powerful tool to analyze objects from the micrometer to

the nanometer scale. Sample scanning, detectors signal collection and image display are all

simultaneously executed, allowing microscopists to examine their sample in real time.

2.1.1 Instrumentation

Essential SEM components include the electron gun source that produces the electron beam, the

lenses, and apertures that direct, focus and filter the beam towards a specific point on the sample

and the high vacuums that regulate the pressure in the chamber. The exact microscope hardware

will vary from one instrument to another depending on requirements.

Electron guns are grouped into three main categories depending on the mechanism of electron

emission: conventional guns by thermionic emission, hot cathode by Schottky effect and cold

4

cathode by tunnel effect [2]. Electrons are extracted from either a tungsten filament, a

monocrystalline and oriented LaB6 filament, a tungsten filament coated with zirconium oxide

film or a monocrystalline tungsten tip [3]. Filament types are shown in Figure 2.1. Each electron

source will have a different lifetime, brightness, probe current, probe diameter, temporal

coherence, current stability which will impact the resulting aberrations and image quality [2].

The appropriate gun will depend on analysis requirements, sample types and desired resolution.

Figure 2.1 Electron emitter types from left to right: tungsten filament, LaB6 filament, tungsten

filament with ZrO2 and tungsten tip [4].

Conventional SEM columns have condenser lenses with the purpose of reducing the beam size

with cross over, and perpendicular scanning coils to deflect the beam to scan the sample surface

[5]. The objective lens is the final lens encountered by the beam before reaching the sample, it

will determine the focus of the beam.

2.1.2 Electron-matter interactions

The SEM column will produce and focalize the beam to the sample surface and the exposed

surface is then imaged from the detected signals. In fact, the interaction of electrons with the

sample surface creates a multitude of signals that can be acquired for analysis shown in Figure

2.2. Electrons travel inside the sample in a pear-shaped interaction volume, encountering sample

5

atoms and producing backscattered electrons (BSEs) through elastic collisions and secondary

electrons (SEs) through inelastic scattering. Interaction volume size and the amount of generated

signal depends on the sample material. Samples with higher atomic number atoms will generally

produce more BSEs and the primary electrons will not travel as deep within the sample,

shrinking the interaction volume. As seen in Figure 2.3, when comparing the interaction volume

for atomic number (Z) of 13 and 79, the shape is restricted by the density of material atoms.

Figure 2.2 Signals generated from the interaction of the electron beam with a bulk sample. [6]

6

Figure 2.3 Interaction volume shape dependance on material atomic number or density [4].

Detector type and position will both determine the extent of the observed contrast of acquired

signal. Normally, backscattered electrons (BSEs) are detected with solid state detectors, placed

above the sample. The backscattered electron will hit the detector, a doped semiconductor

material, and generate an electron-hole pair. The higher the energy of the backscattered electron,

the more electron-hole pairs are generated [7].

Secondary electrons (SEs) are detected commonly with an Everhart-Thornley detector,

essentially a scintillator within a positively charged Faraday cage. The positive charge will attract

the negatively charged electrons and the scintillator accelerates the electrons, converting them to

photons for image formation [8]. Positioning of the SE detectors will determine the type of SEs

collected, leading to variable contrast.

More detectors can be attached such as energy dispersive spectroscopy (EDS) detectors for X-ray

detection, contributing to image formation and maximizing the amount of collected information

to analyze a sample. As seen in Figure 2.4, positioning multiple BSE and SE detectors in

7

different areas in the column or chamber will produce a unique contrast providing additional

information for analysis.

Figure 2.4 Schematic of available electron detector positioning on the NX5000, with examples of

associated contrast obtained [9].

Mostly, detected BSEs will produce atomic density contrast, providing qualitative information on

the sample’s material composition. When the primary beam electrons are scattered, they can

escape the specimen with high energy. Brighter regions in Figure 2.5 (right) designate areas with

higher atomic number, where more BSE signal is detected, while darker regions designate areas

with lower atomic number.

8

Figure 2.5 Examples of SE signal producing topographic contrast (left) and BSE signal

producing compositional contrast (right) [4].

Detected SEs contain surface information generating topographic contrast shown in Figure 2.5

(left). The primary beam will dislodge specimen electrons from the surface, generating SEs. SEs

will therefore have low energy, unable to escape from deep areas within the sample without

being absorbed by the sample. As demonstrated in Figure 2.6, variations in sample surface

topography will produce different amounts of SEs, which in turn generates variations in detected

signal and high contrast.

9

Figure 2.6 Variations of SEs produced with topography, generating signal fluctuations [10].

For the scope of the presented project, only SE and BSE signals are acquired. However,

additional signals such as X-ray spectra from EDS detectors are entirely useful for analysis,

giving more specific compositional information by attributing an element’s characteristic peaks

to areas on the sample [11]. Indeed, this occurs when electrons are dislodged from specific orbits

of atoms in the specimen resulting in an emission of a characteristic photon. Moreover, electron

backscatter diffraction (EBSD) detectors are available for further analysis of Kikuchi patterns

with information on crystal boundaries and orientation [12].

2.1.3 Monte Carlo X-ray simulations

Simulated SEM data is extremely useful for many microscopy applications, including material

characterization and parameter estimations. Mainly, simulated images are advantageous as they

are simpler to generate than acquired SEM images. Simulations do not require typical sample

preparation methods, there are no physical constraints when positioning the sample, column and

10

detectors in space and usual beam alignment routines are avoided. More importantly, simulations

are a time efficient way to obtain a large amount of data for training deep learning models.

In recent years, there has been extensive development using statistical probabilities from Monte

Carlo simulations to simulate electron trajectories [13]. Multiple physical models have been

implemented, describing electron interactions with solids from low to high energies (0.1-30 kV)

[14] and simulated results have been validated through comparison with SEM acquired results

[15]. Implemented algorithms have succeeded because of the exponential progress in

computational capabilities. With extremely powerful workstations, improved computational

resources including more available memory and strong GPU power, large scale, realistic

simulations of SEM images are possible in a timely manner.

Simulated SEM images are generated with Monte Carlo programs [14], [16] where electron

trajectories into virtual samples are obtained from set microscope parameters. The beam

accelerating voltage, probe size, number of simulated electrons, angle to the sample, beam

direction and detector parameters are amongst the variables that are specified for simulations.

Virtual samples are designed by the users, they consist of regions, with any composition from

elements of the periodic table. Physical models used to describe cross sections, electron atom

interactions, energy loss, absorption coefficient and more are also selected. Launched

simulations produce multiple outputs, including generated and emitted x-rays, backscattered

electron coefficient, maximum electron range, phi rho z distributions and more.

MC X-ray, specifically, is an extension of both Casino [17] and Win X-Ray [18], a Monte Carlo

program with more features, improved to compute simulations on heterogeneous materials and a

wider variety of geometries. MC X-ray was later integrated in Dragonfly [19], an image

processing software, as the MC X-ray simulator plugin. Essentially, the plugin acts as a virtual

11

microscope. The architecture of the original code was reorganized, all the while preserving the

main algorithms and core concepts. Two major improvements, specific to MC X-ray in

Dragonfly, are first, the simulations run approximately 100 times faster, as electron trajectories

were optimized with multi-threading. Due to the high amount of data required for training,

accelerated simulations are especially beneficial for the scope of this project. Second,

simulations are not limited to virtual samples with simple geometries. Virtual samples geometries

were typically limited to multilayers, grain boundaries or spherical inclusions [14], whereas in

Dragonfly, any virtual sample of any complexity can be designed. The interface in Dragonfly is

also useful to visualize the simulation set up in 3D, positioning the beam, sample, and detectors

in space.

Figure 2.7 Outputs from CASINO program [14] (left) BSE images of an Al/Mg2Si/Al sample at 5

keV for different Mg2Si thicknesses and (right) electron trajectories in blue and backscattered

electrons in red from simulation at 1 keV.

Electron trajectories can be simulated for specific points, line scans or complete image scans,

with established resolution. Image scans will generate BSE images illustrated in Figure 2.7 (left)

and EDS maps. Figure 2.7 (right) shows a lateral cross section of a sample with electron

trajectories, where the interaction volume shape is available for analysis. The depth and lateral

range of trajectories will depend on the simulation parameters and the sample composition. In

12

fact, image quality will vary depending on microscope parameters. Appropriate parameters can

be evaluated with simulations to obtain the desired image quality, prior to experimenting on the

SEM, minimizing sample exposure to the beam.

2.2 Microscope parameter optimization

Optimizing SEM parameters is performed iteratively with the beam alignment, where the beam

must be adequately aligned at higher magnification than the intended magnification for

acquisitions. Lens alignment and astigmatism correction are primordial for best image resolution

and the focus is to be adjusted as well, to avoid beam distortions [20].

Tuning SEM parameters, after loading the sample and aligning the beam, is routine for

improving or adjusting the image output. Highlighting features of interest with microscope

parameters will not only depend on the instrumentation but also on the specimen material.

Therefore, SEM parameters are optimized differently for every acquisition [21]. A collection of

parameters is involved in generating the desired image quality with SEMs. Ideally, images are

considered to have optimal quality when features are efficiently distinguished and identified,

achieved with high contrast, best spatial resolution, high signal-to-noise ratio, and low

acquisition time. However, compromises are inevitable and middle grounds depend on what

material is being imaged and the type of signal to be detected. Signals available to detect are

covered in the previous Section 2.1.2 on electron matter interactions (SE, BSE, EDS, EBSD).

Post processing approaches with algorithms that improve image quality with filtering, denoising

and super-resolution methods are also available rather than dynamically tailoring microscope

parameters during acquisitions. Ideally, with such powerful computational methods, adaptive

13

acquisitions are preferred, where computation is used synergistically with microscope parameter

optimization as demonstration in Figure 2.8 [22]. The image signal is manipulated during

acquisitions with the electron beam settings: the incident energy, the current, and the

magnification. Additionally, settings used to capture images will contribute to image quality:

acquisition time, image size and integration number.

Figure 2.8 Combining conventional microscopy with computational microscopy to improve

image quality [22].

2.2.1 Beam energy

The accelerating voltage determines the beam energy and the depth of penetration of electrons

into the sample. SEMs operate at energies ranging from 1-30 keV [23], and samples are typically

bulky rather than thin. Higher energies are favorable for thin samples since electrons will

penetrate more efficiently and with less beam scattering, towards detectors underneath the

sample, as illustrated in Figure 2.9b. For thin samples, increased beam energy will increase the

image resolution, whereas selecting the optimal beam energy for bulk samples is not as

14

straightforward. There are many implications relating to the interaction volume of electrons into

bulk samples, shown in Figure 2.9a.

Figure 2.9 Interaction volume of electrons into a) bulk and b) thin specimen [24]

With bulk analysis, interaction volume of electrons in the sample is an important consideration

since it will impact the resolution, observed contrast and charge accumulation. Simulated

interaction volumes, to scale, for different energies into Cu are shown in Figure 2.10,

demonstrating the decreasing lateral and depth range of the electron trajectories as the beam

energy decreases. Interaction volume shape will also vary with specimen density, shown in

Figure 2.3, higher density will restrict electron trajectories, while lower densities samples will

permit electrons to travel larger ranges.

15

Figure 2.10 CASINO Monte Carlo simulations for different beam energies [23]

Depending on the imaged material, low SEM electron beam voltages (< 3kV) are often favorable

to help avoid surface charge build up, improve lateral resolution, and reduce beam damage

associated to high beam doses. Surface charge build up is observed as the charging effect, it is

well exemplified in Figure 2.11 (left). Microparticles imaged at 15 kV have strong brightness

with obscured surface features, whereas at 5 kV, Figure 2.11 (right), particles are well defined.

However, lower beam energies generate images with lower contrast as well as providing only

surface information. Optimal beam accelerating voltage is essentially achieved when images

have sufficient contrast. Objects without a threshold contrast cannot be distinguished from noise

of background fluctuations [20].

16

Figure 2.11 Images of the same specimen captured at 15 kV (left) and 5kV (right) with strong

charging at 15 kV [25]

2.2.2 Probe current

Electron probe current is the number of electrons that hit the sample surface per unit of time, and

it is directly related to the signal-to-noise ratio (SNR). Without sufficient current, images are

very “noisy”, and the scan speed should be decreased, or the acquisition time prolonged, when

capturing images, to compensate. However, with excessively high currents, the probe diameter

increases, and the resolution is compromised leading to loss of information. When selecting the

probe current, there is an implied tradeoff between the SNR and spatial resolution. The

conductivity of the imaged sample also determines the relevant current to apply. Non-conducting

samples require lower currents (10 to 100 pA) to avoid charge accumulation and damage, while

conducting specimens can handle higher currents (100 to 1000 pA) to improve the amount of

signal and contrast [21].

Noise in images is inevitable as there are multiple sources, other than lack of signal, that cannot

all be managed. For instance, imaging systems introduce noise, from analogue-to-digital

conversion by detectors. The appropriate probe value is therefore related to the proportion of

signal to noise, quantifying the amount of useful information in images. Probe current values are

17

tuned to obtain sufficient SNR as the amount of signal and noise is fundamentally tied to the

observed image quality [22]. Identifying features of interest requires enough signal, without

lowering resolution to where features of interest can no longer be resolved. The effects of the

probe current are shown in Figure 2.12 as the current is increased from left to right. The middle

image is the best compromise between SNR and resolution, where ridges can be observed and

are otherwise hidden in the left image by noise and in the right image by low resolution.

Figure 2.12 Effect of the probe size from the probe current on the image quality [2] (left) probe

diameter 15 nm, probe current 1 pA, (middle) probe diameter 20 nm, probe current 5 pA and

(right) probe diameter 130 nm, probe current 320 pA.

2.2.3 Magnification

The parameters selected may vary depending on the magnification used. Higher magnifications

will concentrate the beam on a smaller area of the sample and a persistent beam on one region

will result in a higher flux of electrons for the same parameters at lower magnifications. A high

flux can cause beam damage, contamination, and sample drifting. These all contribute to

reducing image sharpness and lead to charge accumulation at the surface, introducing artefacts in

the image as seen in Figure 2.11. It is therefore preferable to reduce the time spent scanning the

surface at high magnification or decrease the beam current and energy accordingly to reduce the

electron flux.

18

2.2.4 Capture settings

When capturing an image, the scanning speed, image size and integration number are specified

to reduce the noise quantity. Longer scanning speeds, large images and higher integration

numbers will lead to clearer image, sharper edges, and smoother surfaces, at the expense of the

acquisition time. Scan speed is the time spent per pixel, image size is the number of pixels in x

and y per image, and the integration number is the number of frames or lines used to average the

final image. Integration number can be beneficial to reduce noise, and if the sample is stable,

reduce charge accumulation. However, it also introduces a time-gap, where image shift or

specimen shrinking can occur. Higher integration number can ultimately lead to lower image

quality or sharpness. When comparing the images in Figure 2.13, there is an obvious noise

reduction when increasing the integration number.

Figure 2.13 Short integration time, noisy image and longer integration, noise free image [20]

19

2.3 Workflow automation

Electron microscopes have evolved from optical instruments into complex systems, requiring

computer interfaces due to digitization and technological advances. Automation is an area of

interest in the development of applications on the SEM, where repetitive and tedious tasks

should be completed through microscope control. Automation improves reproducibility by

minimizing human bias and enhances data-adaptive imaging methods. Algorithms are more

reliable than humans at undertaking repetitive tasks that require constant concentration over long

periods of time. Controlling the SEM with hybrid methods, integrating computation software and

microscope hardware for successful workflow automation, has specific requirements. Three

distinct group of experts are necessary to develop optimal tools for automation: microscope

hardware experts, software developers and scientists that use SEMs for their research [26].

Feedback loops between microscope hardware components and image processing software is key

to automating simple to complex workflows on the SEM.

2.3.1 Requirements

Software for microscope control requires a complete API for external communication to

automate acquisitions. SEM control is normally achieved through proprietary software installed

on a computer (PC SEM) connected to the microscope. However, the PC SEM does not connect

to the internet, and it runs in a very controlled environment to avoid corruption from external

access. As such, external communication can only be realized through socket communication by

TCP/IP protocol, with an external computer connected directly to the same router, shown in

Figure 2.14. The external computer (EXT PC) will send commands in text format to the PC

20

SEM, to set or get parameters and capture images. Information is then received, and images

transferred to the EXT PC for analysis. EXT PC does not run in a controlled environment and

with strong computational power and sufficient data storage space, it can run image processing

software with the intelligence to automate tasks.

Figure 2.14 Communication between the PC-SEM with the proprietary software is done through

socket communication by TCP/IP protocol with and external computer (EXT PC)

SEM workflow automation should also reduce the steep learning curve associated with using the

instrument. A flexible, maintainable, open-source package with the possibility to customize

protocols is a main system requirement [26]. If manual operations are easier than navigating the

automation software, users will likely avoid automation. Software should be designed with

object-oriented programming, where abstract classes allow for easy integration of any future

microscope and in open-source language such as Python.

Robustness is another important automation requirement since many applications currently

require reactiveness and unplanned interventions. Adaptive software is achieved by engineering

methods to recover from system malfunctions and adjust to imaging conditions with feedback

between analysis and acquisitions and reliable microscope parameter selection. Minimal

microscopist involvement requires, for instance, error detection or loss of focus detection during

acquisitions and subsequent seamless recovery by triggering the appropriate corrective routine

[27]. Mechanical instabilities and charging can produce inconsistencies requiring drift correction

21

and post-processing for image registration. Drift correction is accomplished to ensure that

images remain in the user-defined drift correction box [28]. For instance, realignment in the

software SerialFIB is completed only with beam shifts, based on image cross-correlation. The

process consists of registering a low current (10 pA) image of the current view with the initial

reference image [29]. As for selecting the appropriate parameters, algorithms are available such

as deep learning refocusing methods for SEM images, and proposed convoluted neural networks

can be applied to accelerate acquisitions [30]. Also, a specific region or an autotune box can be

used as a designated area to maintain good image quality, without exposing the entire surface to

the beam [31]. The amount of time in which operations can be executed without supervision

depends on the instrument itself, and its compatibility with prolonged operation times.

2.3.2 Overview of current solutions

Solutions for automation in microscopy are relatively new and often rely on commercial

software and hardware, leading to challenges when attempting to develop new applications that

integrate specific components [32]. Limitations have led researchers to develop custom software,

in proprietary programming languages, often tailored to a specific technique and difficult to

adapt to different microscopy modalities. A common framework, accessible to researchers, is

necessary to break barriers to efficient microscope control [33].

Orchestrating the actions of microscope components with software is possible with µManager, a

software that enables novel approaches to computer control of microscopes [34]. With a

translation layer that converts code to Python functions and objects, Pycro-Manager has

implemented the flexibility available with µManager in a much more user-friendly programming

22

environment [33]. Although µManager is well established, it does present some limitations for

more complex microscopy modalities such as performing image acquisition and image analysis

tasks simultaneously. MicroMator software, also in Python, incorporates reactivity with

implemented Triggers and Effects during image acquisition loops [27]. Python-based software is

more compliant to further development and convenient for debugging [32].

AutoscanJ is a solution that enhances acquisitions by targeting areas of interest and driving the

microscope to corresponding locations. Selective imaging dramatically reduces the amount of

data acquired and by consequence the acquisition duration. As a suite of ImageJ scripts, it is

compatible with motorized microscopes for autonomous operation of selective imaging [35].

SerialEM [36] for TEM workflows and SerialFIB [29] for FIB workflows are user friendly

software that offer interfaces for easy execution of protocols. Several modalities require

reconstruction algorithms to obtain images from microscope acquired data. Software that can

perform image analysis of data in real-time are highly beneficial.

2.3.3 Feature detection

Workflow automation requires software to control the microscope hardware to reposition the

field of view on the sample and to adjust parameters for beam alignment. Feature detection is

also a necessity for workflow automation, to reliably guide acquisitions. Repetitive repositioning

tasks completed by microscopists are automated with algorithms for feature detection. Mostly,

identifying imaging sites leads to capturing images of regions of interest exclusively, saving a

23

considerable amount of time. Also, it will substantially reduce the terabytes of data that would be

collected by capturing the entire sample surface without excluding non-informative areas.

Feature detection is initially accomplished by capturing an overview image from the SEM, that

serves as a reference image, to simplify subsequent stage navigation through target identification.

Stage movements or beam shifts are relative to the stage coordinates in the initial reference

image. The initial step is to detect features for site specific imaging. Identification of target sites

can be achieved through segmentation algorithms, including segmentation with deep learning, of

the overview image. A feedback loop is implemented between feature detection through model

predictions and beam positioning for SEM imaging. Segmented features are translated to

positions in space either by centroid identification or by conversion to a graph of vertices and

edges. Centroids are useful when features are sporadic and separated, while graphs are useful to

track connected features that span large areas.

Imaging sites can then be targeted sequentially by centering the SEM with stage movements,

corrected for backlash and drifting. Compensating stage shifts, larger micron scaled movements,

with beam shifts, smaller nanometer scale movements, is implemented during the backlash

correction step for increased targeting precision. Indeed, generally, the stage movement functions

are used for large distance offsets (> 1 μm) while beam shift functions are used for subtle

corrections.

Once imaging sites are detected, next steps include adjusting the field of view with

magnification, stage rotations, and beam shifts to keep the entirety of features contained in the

image as demonstrated in Figure 2.15. Positioning the beam at the imaging site does not

guarantee that the full feature is properly included, demonstrated in Figure 2.15A and

verification with appropriate adjustments are necessary. Increased magnification will scan a

24

smaller area of the sample, potentially optimizing the acquisition box. The accuracy of the target

site positioning will depend on the segmentation result.

Figure 2.15 A. Centering the acquisition box to the feature of interest with part of the organelle

outside the field of view. B. Optimal acquisition box computation with extracted mask, followed

by stage rotation to fully contain the feature to be imaged [31]

Detecting features in SEM images regardless of noise, contrast, and intensity is much more

successful with deep learning algorithms [37][38]. Other machine learning algorithms or feature

point detection algorithms are sensitive to image variations such as brightness, contrast,

resolution, and stigmatism. Consequently, segmentation with deep learning is prioritized, models

are straightforward to train, specifically in image processing software Python environments.

Workflows are implemented in Dragonfly, with the Keras TensorFlow deep learning engine, for

training and applying a segmentation model [39]. Models are easily integrated during acquisition

workflows for reliable feature detection. Pretrained models are provided by the software [40],

but new models can be trained and tailored to specific data.

25

2.4 Deep learning models

Automating workflows on the SEM with computational methods improves microscopists’

productivity, generating more data efficiently [22]. Additionally, it can assist microscopists in

selecting the appropriate parameters for acquisitions, achieved by training artificial neural

networks. AI aids in decision-making in complex situations, where there are multiple microscope

parameters involved in producing high quality images and evaluating which combination is best,

can be overwhelming [41]. Indeed, each parameter will have an individual impact on the output

image quality and the result will depend on the sample composition. Therefore, when operating

the instrument, selecting the correct parameters to obtain high quality images does require an

expertise and prior knowledge on electron material interactions. Ultimately, workflows on the

SEM are enhanced and much more accessible with data driven microscopy, by integrating deep

learning models to automatically suggest microscope parameters to set during acquisitions.

Deep learning models for decision-making are separated into regression and classification

problems. Classification will predict categorical or discrete outputs. It is applied by segmentation

models, where each pixel in the image is labelled to a specific class. Regression models will

predict a continuous value, or multiple continuous values from inputs [42]. A familiar example of

regression is predicting the price of a house from multiple inputs, image data and numerical data:

area code, square footage, number of rooms [43]. Trained models that suggest parameters will

solve a regression problem, as opposed to classification. Both regression and classification

algorithms that use supervised learning, are trained with available data that consists of pairs of

inputs and outputs. Inputs are labelled data with desired outputs or ground truth. Building a

model for a particular context, with specific data, requires an understanding of deep learning

26

algorithms, not only to optimize model performance, but also to have a general idea of what to

change if the model is not predicting properly.

The following literature review on machine learning models is concise. The statistics and linear

algebra involved in algorithms is only briefly covered and complete overview of concepts are

available in other reference material [42], [44], [45].

2.4.1 Linear models

The most simplistic way of understanding how models predict outputs from input data is to

explore linear models: linear regression and logistic regression. From there, more complex, and

expressive models are built.

As the name states, linear regression solves for regression with a linear function that links the

input to the output as shown in Equation 2.1, where f(x) is the output, x are the inputs and w are

the weights. For one input, or with dimension (D) equal to one, the equation is reduced to

Equation 2.2 and the remaining weights are w0 and w1. Linear regression can be applied to higher

dimensions and the concept remains. The weights can have any combination of values, as shown

in Figure 2.16 (left), resulting in different linear fits. The objective is to find the weight values

that will best fit the data. The best fit is found by introducing a loss function, that will quantify

the accuracy of the linear fit [44]. With supervised learning, the loss is computed with the

provided ground truth. For linear regression, the square error loss (L2 loss) is commonly used,

where for each data point value (y), the square difference from the predicted value from the

linear function (ŷ) is computed as shown in Figure 2.16 (right). The error for each data point is

summed and assigned to the combination of weights that generated the linear fit. During

27

learning, the model will attempt to minimize the loss, or the difference between the real and

predicted values, by tuning the weights.

2.1

𝑫 = 𝟏 𝑓(𝑥) = ŷ = 𝑤0 + 𝑤1𝑥 2.2

Figure 2.16 (Left) Tuning values of w0 and w1 will generate three different linear fits to describe

the collection of datapoints. (Right) The best linear fit is found by minimizing the loss function

that compares the real data point value (y) with the predicted value (ŷ). L2 loss computes the

squared differences between the two values. [46]

Logistic regression adapts linear regression to classification. Linear regression will fit the data,

while logistic regression will separate the data, as shown in Figure 2.17. As a linear classifier, the

objective is to find the most appropriate way to separate the data into classes, achieved with the

appropriate loss function.

𝑓𝑤(𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝐷𝑥𝐷 = 𝑤𝑇𝑥

28

Figure 2.17 Linear classifier that correctly separates the data in red and blue [44]

Linear models are great tools that fit data efficiently and reliably, they are however, limited by

linear functions. Data is rarely well defined by linear functions, and more expressive models are

required for optimized model prediction accuracy. Fitting non-linear data is achieved by using

nonlinear basis functions, such as polynomial, Gaussian or Sigmoid bases shown in Figure 2.18.

Nonlinear bases are applied to the inputs, tweaking them for a better fit, maintaining the linear

form, Equation 2.3 is the modified form.

Figure 2.18 Example of nonlinear bases used to tweak inputs x for higher expressive power of

linear models.

 2.3

Improvements are apparent when comparing the model fits in green in Figure 2.19. In both

images the blue simulated function is the true fit, where a small dose of noise is added or

𝑓𝑤(𝑥) = ∑ 𝑤𝑑ɸ𝑑(𝑥)𝑑

29

subtracted to each data point to obtain the blue data points. On the left, without nonlinear bases,

the model generates a linear fit, however on the right, with applied Sigmoid bases to each input,

a much more expressive fit is obtained, very similar to the true fit. Model predictions from the fit

on the right will obviously generate a lower overall loss, than predictions from the linear fit on

the left.

Figure 2.19 Simulated function in blue showing the true fit. Data points in blue obtained by

adding and subtracting noise to simulated function data points. (Left) Best linear fit in green

obtained for blue data points. (Right) Best fit with nonlinear Sigmoid bases in green for blue

data points [46].

2.4.2 Multi-layer perceptron

Linear models are limiting since they do not integrate the interaction between any two inputs

during training. The multi-layer perceptron (MLP) will connect multiple inputs inherently as a

neural network, its architecture is biologically motivated. The model will approximate a complex

function that maps an input to an output, from the provided data. The architecture is represented

by composing multiple different functions shown in Equation 2.4. Each function represents a

hidden layer with a series of nodes analogous to neurons illustrated in Figure 2.20, termed

hidden since the output of each layer is not seen, only the output of the final layer is obtained.

30

The number of hidden layers will determine the depth of the model and the number of nodes in

each hidden layer determines the width. A nonlinear base can be added to inputs in each layer in

the network to generate a high expressive power. Ultimately, with the correct depth and

complexity, MLPs can describe any smooth function with an appropriate fit.

 2.4

Figure 2.20 Fully connected neural network representing the MLP architecture with two hidden

layers, three nodes each. [47]

The MLP is basically a series of logistic regression models at every layer, with the final layer set

as either another logistic regression if the model does classification or a linear regression

function if the model is solving for regression.

A popular example of applications of the MLP is with the MNIST dataset [48], where ten

thousand labelled handwritten digits are available for training and classification, a training

example is shown in Figure 2.21a. The input is a vector from a 2D image of the handwritten

digit. All images are 28x28 pixels, vectorized into a 1D vector of 784 pixels with grey scale

values. Each pixel in the vector is an input x connected to the hidden layers in the model and the

output is the predicted digit from 0 to 9. During learning, training examples will tune the weights

𝑓(𝑥) = 𝑓3(𝑓2(𝑓1(𝑥)))

31

w in the layers to predict the digit appropriately according to the computed loss. Only weights

are changed during training; the connections, layers, and nodes are not added or removed. The

weights are figuratively like knobs and dials that are tweaked during training, allowing the model

to predict differently. The best weight values are found by minimizing the loss, as previously

seen, and the model’s prediction accuracy is computed.

Figure 2.21 a) Training example of an image 28x28 showing a handwritten 7 in the MNIST

dataset. b) Handwritten digits range from 0 to 9 and shape will vary slightly depending on the

example [49]

2.4.3 Convolutional neural networks

Although the MLP predicts quite accurately with the MNIST dataset (up to 98% accuracy [50]),

the model learns nothing about the image structure. The 784 pixels in the 1D input vector could

be shuffled, then used to train the model and a similar performance would be obtained [51]. Its

high performance is most likely attributed to the large amount of training data available, tens of

thousands of images. Also, for all training examples, digits are of similar size and positioned

similarly in images (no big blank spaces). When digits are scaled and repositioned in the image

as shown in Figure 2.22, the MLP algorithm does not predict accurately. In fact, MLPs are most

32

appropriate when inputs are numerical, whereas for image data, convolutional neural networks

(CNNs) are implemented.

Figure 2.22 Scaling and repositioning of original digits to modify training examples and test

model performance [52].

CNNs are better suited for image data because they preserve the 2D image structure, without

collapsing the entire image into a 1D vector. Vectorization leads to loss of spatial information.

The model will be more reliable and capable of scaling to bigger tasks when it can learn about

neighboring pixels and understand how inputs are related to one another. CNNs are a specialized

kind of neural network for processing data that has a known grid-like topology, such as 2D grids

of pixels.

The architecture of the CNN is the same as the MLP, both models train identically. CNNs are

defined by convolutional layers, with filters that apply a mathematical operation called

convolution, a linear operation [45]. Filters, also known as feature extractors or kernels, will

detect patterns such as shapes, edges, objects. The values in the filter matrix will determine the

specific detected pattern, for example horizontal and vertical edges of digits illustrated in Figure

2.23. The convolution operation will create a 2D map, highlighting certain features found in the

33

input, termed a feature map. The feature map extracted from one convolutional layer is the input

to the next layer.

Figure 2.23 Convolution results from filters that detect horizontal and vertical edges for digits 3

and 4 [53]

Also, instead of a fully connected network like with the MLP, sliding a filter over the input will

generate parameter sharing, where weights in the hidden layers are tied together. The value of a

weight applied to one input is tied to the value of a weight applied elsewhere. Instead of using

the full weight matrix, there is sparse connectivity, where patches of the input are connected to

the hidden layers. Input patches are therefore building blocks that each describe only local

interactions [45]. Much fewer parameters are stored with sparse connectivity, reducing memory

requirements, improving statistical efficiency, and requiring fewer operations.

As the model depth increases, patterns detected by filters transition from abstract, or low level to

detailed, or high level. For example, with the MNIST dataset, at the first layers the model would

34

learn to detect horizontal and vertical edges and the second layer would learn to detect shapes,

like circles and lines that make up numbers.

2.4.4 Architecture design

Multiple established deep learning model architectures exist, for classification or regression and

supervised, self-supervised or unsupervised learning. Model architecture depends on the input

data, numerical, categorical or image, and the desired result, segmentation, denoising, super

resolution, language generation and more [54]. Existing model architecture, often referred to as

‘black boxes’, can be trained with any individual training set to perform desired tasks

successfully without any required expertise on deep learning. When training data is not available,

it is even possible to skip the training step and simply use pretrained models to predict an output.

Selecting the appropriate model type for training depends on the defined task and decision trees

such as Figure 2.24 serve as useful guides.

35

Figure 2.24 Decision tree to assist researchers in selecting the appropriate machine learning

method depending on the task to complete [54].

It is often extremely useful to use existing models, especially when they apply well to collected

data, since building a model from scratch is a daunting task. There are unlimited possibilities,

and multiple parameters to tune to optimize model performance. Often the best network

architecture is found through trial-and-error; even applying best practices may require

modifications following training and testing. Using preconstructed model architectures like U-

Net [55], ResNet [56] or VGG [57] for segmentation, GPT [58] for language generation or

Noise2Void [59] for denoising often saves a considerable amount of time.

When nontypical tasks need to be addressed with a different combination of inputs, building a

new model may be necessary. Models can be customized to any need with open-source packages,

most commonly in Python, such as PyTorch [60], Keras Tensor Flow [61], scikit-learn [62] and

more. These packages act as frameworks and offer tools to build a model, greatly simplifying

implementation and optimize computation for users. Still, all model parameters remain to be

specified. Model parameters to identify include the depth, width, optimizer, loss function,

learning rate, number of epochs, batch size. For each layer the activation function, connectivity,

regularization should also be defined. If the layer is a convolutional layer in a CNN, the filter

sizes, number of filters, pooling, padding and more are also to be considered [63]. The perfect

combination of model parameters is therefore difficult to determine, and there are certain

guidelines to follow to help optimize the model. Nonetheless, building a model requires

sufficient research and knowledge on the workings of deep learning algorithms.

Model performance can only truly be evaluated once training data is available. There are also

certain outcomes to monitor, such as overfitting and underfitting. During training, the data is

36

often separated into three sets: train, validation, and test. Much of the data is kept for training, for

the model to have the most examples from which to learn. A small portion of the data is set aside

and used for validation during training, to diagnose model tendencies [64]. Finally, the remainder

of the data, also a small portion, is kept for testing, after the training is completed, to evaluate the

model’s prediction accuracy. Data used to validate, or test, is never used for training.

The validation set will help determine if underfitting or overfitting is occurring. Underfitting is

exemplified in Figure 2.25 (D=5) where the model fit in green is not expressive enough to

represent the training set adequately. The model will not predict accurately, as previously seen

with the linear fit in Figure 2.19 (left). Increasing the expressive power to remedy underfitting is

possible by adding activation functions in model layers, often the ReLU activation function is

implemented [65]. Conversely, when the model is too expressive, as seen in Figure 2.25

(D=200), every single data point is accounted for with the model fit in green. The model will fit

the training data too well. Overfitting will give great results with the training set [66], but terrible

results with the test set or with other data. The model loses its ability to generalize to unseen

data, or new data.

Techniques such as regularization, pooling, dropout exist to reduce overfitting. Regularization is

typically used to penalize parameters with large coefficients when the model suffers from high

dimensionality [67]. Pooling reduces the size of the output from the previous layer in a CNN and

dropout will randomly exclude weights in layers [68].

Also, halting training with built-in callbacks can help avoid overfitting [69]. Callbacks are

mostly triggered by learning curves, plotted dynamically during training. After every epoch, a

loss value is computed using the loss function with the training set and the validation set,

generating a training loss and validation loss. Since the training set is used during training to tune

37

the model parameters (w), the loss value computed with the training set is biased. However, the

validation loss computed with the validation set, provides an unbiased evaluation of the model’s

performance during training because validation data is unseen data. As training progresses, loss

values for every epoch are plotted, ideally the loss value decreases since the objective is to

minimize the loss during learning. Therefore, learning curves include the validation loss curves

combined with the training loss curves, and they are extremely useful to diagnose model

performance. In fact, they should always be plotted dynamically for every epoch to efficiently

establish how well model architecture is built for the training set, during training.

Figure 2.25 Increasing model expressive power with increasing input dimension (D) to

demonstrate underfitting and overfitting [46]. Blue curves are the simulated function

representing the true fit, blue dots are data points in the simulated function with added or

substracted noise and green curves are model fits. At D=5, the model fit is not ideal, the data is

slightly underfit, at D=10, the model fit in green is ideal, at D=50, overfitting is beginning to be

observed and at D=200 there is an obvious overfitting of the model to the training data.

The collected training data is extremely important to consider for optimal results. For training

data, the size of the training set, or the quantity, is crucial, as well as the training example

diversity. An optimal training set will have a sufficient amount of data, that is also diversified

and unbiased. The main goal of training is to create a model that is efficient at generalizing.

38

Obviously, the more data provided to the model, the better it will learn, with more examples

from which to learn. However, the diversity of the data will impact its ability to predict to unseen

data as well. The model learns from the distribution of the input data, it needs an adequate sample

to represent values across all the response categories. If data is not diversified, the algorithm will

work very well but only in specific cases.

39

3 Workflow Automation of SEM Acquisitions for

Nanoparticle Analysis

Sabrina Clusiau, Nicolas Piché, Nicolas Brodusch, Mike Strauss, Raynald Gauvin

Manuscript currently under review

3.1 Preface

This chapter presents the initial work performed on the SEM, establishing a connection between

the microscope hardware and the image processing software. Controlling the microscope

properly requires a thorough investigation of the available commands, functionalities, and

limitations of the instrument. Once settings are well understood, software algorithms can perform

appropriate corrections and compensate for instrument instabilities such as drifting and backlash.

Different strategies are explored throughout this chapter to manage microscope outputs and

obtain reliable results, building complete automated workflows. Available microscope commands

are used seamlessly throughout Python scripts in the Dragonfly developer environment to get

and set parameters and capture images for quantitative analysis. A selected sample was used for

experiments, to automate grid imaging, without selective positioning and to automate smart

beam positioning with feature tracking on the SEM. Multiple images are captured for analysis by

including software to microscopy workflows. Gathering a maximum of information on a sample,

with quantitative measurements, is beneficial for fully understanding a material. Automation of

full acquisition workflows is possible with methods presented in this chapter, the main objective

remaining to assist microscopists, relieving them of repetitive tasks.

40

3.2 Abstract

Acquiring multiple high magnification, high resolution images with scanning electron

microscopes (SEMs) for quantitative analysis is a time consuming and repetitive task for

microscopists. We propose a workflow to automate SEM image acquisition and demonstrate its

use in the context of nanoparticle (NP) analysis. Acquiring multiple images of this type of

specimen is necessary to obtain a complete and proper characterization of the NP population and

obtain statistically representative results. Indeed, a single high magnification image only scans a

small area of sample, containing only few NPs. The proposed workflow is successfully applied

to obtain size distributions from image montages at three different magnifications (20,000x,

60,000x and 200,000x) on the same area of the sample using a Python based script. The

automated workflow consists of sequential repositioning of the electron beam, stitching of

adjacent images, feature segmentation, and NP size computation. Results show that NPs are best

characterized at higher magnifications, since lower magnifications are limited by their pixel size.

Increased accuracy of feature characterization at high magnification highlights the importance of

automation: many high-magnification acquisitions are required to cover a similar area of the

sample at low magnification. Therefore, we also present feature tracking with smart beam

positioning as an alternative to blind acquisition of very large image arrays. Feature tracking is

achieved by integrating microscope tasks with image processing tasks, and only areas of interest

will be imaged at high resolution, reducing total acquisition duration.

41

3.3 Introduction

A proper characterization of features at the nanometer scale by scanning electron microscopes

(SEMs) requires high magnification, high-resolution images. Indeed, at lower magnifications the

smallest features of the images are pixelated and consequently analyzed with less precision. This

is demonstrated in Figure 3.1, where platinum nanoparticles (NPs) are visibly more well-defined

as the magnification increases from 20,000x to 60,000x, and ultimately to 200,000x, due to the

increasing number of pixels used to describe a given area. However, increasing the magnification

alone is not sufficient to obtain realistic measurements from quantitative analysis. For this, high

resolution is also necessary, with sufficient resolving power to distinguish individual NPs. The

required high resolution at high magnification can be achieved with a suitable electron gun, well-

tuned optics, and adequate beam current [1].

Yet, in the context of quantitative analysis of nanometric features, the biggest inconvenience with

high magnification images is that only a small area of the sample will be scanned per image. To

obtain a reliable statistical representation of quantitative results, a significant area of the sample

should be considered. Therefore, a series of high magnification images must be acquired to

measure an acceptable number of features to effectively describe their distributions.

Current workflows for acquiring multiple high magnification, high-resolution images with the

SEM involve continuous microscopist intervention. The beam must be manually repositioned

repeatedly to capture an image, or image array, in the newly selected area. These tasks are

tedious, time consuming and biased to the areas that the microscopist chooses to image. In

addition, image processing steps following microscope acquisitions are labor intensive, including

data transfer, image stitching, feature segmentation and distribution calculations.

42

Existing add-on software such as SerialEM[2] and SBEMimage[3] have successfully assisted

microscopists with specific workflows on the transmission electron microscope (TEM) and the

serial block-face electron microscope (SBEM), respectively. SerialEM enables automated

acquisitions through communication with the microscope’s control software. Functionalities

include tilt series for electron tomography, imaging for 3-D reconstruction from serial sections,

and acquisition of datasets of macromolecules for analysis by single-particle methods.

Furthermore, SBEMimage, a software compatible with SBEMs, integrates data acquisition with

image post-processing. Stitching and alignment during acquisitions ensures high reliability and

prevents data loss since sections are destroyed during acquisitions.

SEMs can also benefit from add on software to automate routine acquisitions, first to collect data

with minimal microscopist intervention, and second, to improve workflows with integrated

image analysis. This paper presents an automated, optimized workflow for acquiring high-quality

data with image processing that is appropriate for quantitative analysis. The proposed workflow

can run overnight and unattended when the microscope would normally be idle. The objective is

not only to increase the amount of data output by the microscope but also improve the quality of

the data acquired. The main workflow steps include grid imaging, stitching, segmentation, and

quantitative analysis. Images of the same area on the sample are taken at three different

magnifications 20 000x, 60 000x and 200 000x to compare final distributions and demonstrate

the improved accuracy of quantitative analysis as magnification increases. Feature tracking is

also explored to minimize duration of acquisitions by imaging only areas of interest.

43

Figure 3.1 Backscattered electron (BSE) images of platinum nanoparticles on carbon nanotubes

at beam energy 5keV and beam current 20 µA on the SU8230 cold field emission gun (FEG)

from Hitachi. Left: 20,000x, Middle: 60,000x, Right: 200,000x.

3.4 Implementation

The proposed workflow is open-source, composed of Python-based scripts in the Dragonfly

developer environment [4], soon to be a plugin. The code repository is obtained when installing

the developer version of Dragonfly, a software that specializes in image processing [5]. Building

the microscope control scripts in the Dragonfly environment simplifies postprocessing and

quantitative analysis, since many image processing tools and packages are already implemented

and available in the software to recycle. Implemented in object-oriented programming, the

scripts have abstract classes, enabling Python programmers to integrate any microscope with

external communication capacities. The software does not currently include standard microscope

alignment routines and optimal microscope parameter selection. The correct focus, stigmatism,

beam energy, probe current, etc. should be set prior to launching acquisitions.

The scripts for microscope control send commands that execute multiple tasks, limitations

depend on the SEM manufacturer and external communication capabilities. With the provided

44

commands, the script can acquire an image externally, set the active detectors, set and get the

capture settings, set and get the stage position in x, y, z, r and t, shift the beam in x and y, set and

get the focus, stigmatism, magnification, current, voltage and more. This metadata can be saved

and used for later analysis.

The steps in the automated workflow, illustrated in Figure 3.4, include (1) acquisition of arrays

of images, x images wide and y images high, at a selected magnification on the microscope,

images are then transferred to image processing software for (2) stitching adjacent images in grid

layout and (3) segmentation of features of interest for quantitative analysis.

3.4.1 Grid Acquisitions

Automation of acquisitions at high magnification and high resolution is achieved through

external communication with the microscope’s control software. Specifically, images were

collected on the SU8230 cold-field-emission SEM from Hitachi [6]. Commands are sent from an

external computer (EXT PC) using socket communication by TCP/IP protocol, to the SEM

computer (PC SEM) equipped with the proprietary software. The complete list of implemented

commands used to acquire a grid layout is shown in Table 3.1. Commands are first converted to a

manufacturer defined string format before sending to the microscope computer. An EXT PC is

necessary for SEM workflow automation because PC SEMs function in a very restrictive

environment to manage corruption, with no internet access, minimal GPU power and memory

and the computer often runs on old operating systems (Windows 7). The EXT PC is purchased

by the microscope users and will have all the requirements to run computationally expensive

image processing tasks and can be upgraded as needed with changing demands. With external

control of the microscope, through communication illustrated in Figure 3.2, both simple and

45

complex tasks can be automated, and image processing is incorporated during workflows to

optimize and guide acquisitions. This is exemplified in Section 3.4.4 when feature tracking is

presented.

Python command Description

set_capture_settings Sets the following capture settings:
- scan mode: Rapid, Fast, Slow, CSS, Slow1Integration
- resolution (pixels): 640x480, 1280x960, 2560x1920, 5120x3840
- scan time (seconds): 10, 20, 40, 80, 160, 320
- integration number (frames): 8, 16, 32, 64, 128, 256, 512, 1024

Values are specific to the SU8230 and included in a Python
dictionary.

set_magnification
get_magnification

Sets the magnification to specified value in range for High Mag
mode or Low Mag mode. Gets the current magnification set on
the microscope, from magnification, pixel size is computed.

set_capture_and_save Runs image capturing and saves the captured image(s), one or all
screens are captured and saved depending on how many
detectors are set up.

The image(s) is saved with fixed file names in fixed folder on the
microscope computer. If command is repeated, files are
overwritten to avoid exhausting memory resources on the
microscope computer. Files are therefore directly transferred to
the external computer after being captured to avoid data loss.

set_image_shift_X
set_image_shift_Y

Sets the image shift in X and Y to move the image horizontally or
vertically.

get_stage_position Gets the current stage position for the 5 axes: x, y, z, r, t

set_stage_XY Sets the x and y coordinates only, keeps all other axes identical

Table 3.1 Python commands used to perform microscope task in the proposed automated

workflow including grid layout acquisitions and smart beam positioning for tracking.

46

Figure 3.2 Microscope control is achieved through external communication between the PC SEM

and EXT PC. EXT PC will send text commands to the PC SEM, which will execute the commands

with the microscope’s proprietary software. Commands include stage movements and beam

shifts. Once images are captured, they are transferred from the PC SEM to the EXT PC for image

analysis with image processing software (Dragonfly).

Grid imaging is a relatively straightforward operation, consisting of sequential repositioning of

the beam or the sample stage with 10% overlap between images. Stage shift or image shift

commands are sent to the microscope to change the image view, followed by a capture command

to acquire the image. Stage shifts are achieved by specifying stage coordinates, while beam shifts

require a specific value within a range, included in the command. The given value is equivalent

to a certain distance depending on the magnification. Generally, for higher magnifications

(90,000x or more) the beam is repositioned using beam shifts for more precise movements.

Whereas at lower magnification (90,000x or less) the stage is shifted since stage movements are

suited to longer distances and tend to have courser steps driven by motors, while beam shift

range is limited. Through testing, it was found that stage movements are not precise below

47

approximately 1 micron on the SU8230, which is larger than the image size at high

magnification. For instance, at 200,000x, with the microscope used for experiments, the image

size is approximately 650x480 nm. Therefore, 1 micron stage shifts are not appropriate and

smaller shifts are required at higher magnifications for 10% overlap between images. Capturing

sufficient overlap between neighboring images in the grid layout improves the success of

stitching algorithms used to correct imprecise beam or stage movements, covered in Section

3.4.2.

There are multiple possible image acquisition patterns, a few are shown in Figure 3.3: row-by-

row, column-by-column, snake-by-row or snake-by-column. Imaging pattern has an important

impact on the assembly of the grid layout, since larger stage movements are motorized and

imprecise, leading to stage drift and backlash. Snake patterns require fewer corrections, as

movements are smaller with less mechanical instabilities, the motor stops and repositions the

stage with more precision. Drifting occurs when there is torque remaining at the transmission

between the motor and the stage mechanism. Drifting is more prominent when the stage is

moved at high magnification. The image will drift slowly in the direction of the movement of the

stage after the stage stops moving. The distance traveled is not the only issue, the direction of the

movement will contribute to imprecisions. Backlash is the result of moving the stage in one

direction, followed by movement in the reverse direction. With backlash, the stage does not

move the same degree in each direction, and the actual stop position varies depending on the

direction of stage movement, even if the same coordinates are specified. For row-by-row and

column-by-column, large distances are traveled in opposite directions, when returning to the

initial row or column, and drifting and backlash are heightened. Images will not be aligned

perfectly when assembled side by side in the grid layout, even if the correct coordinates are

48

requested during acquisitions. These undesired effects are minimized by acquiring images in a

snake pattern, where one forward direction is used throughout acquisitions.

Figure 3.3 Grid imaging patterns: row-by-row, column-by-column, snake-by-column or snake-

by-row.

In our imaging scheme, an overview image is first captured at low magnification (20,000x), then,

grid layouts of the same area on the sample are acquired at higher magnifications (60,000x and

200,000x). These magnifications can be tailored to the type of sample being acquired and the

size scale of the information desired. The purple, red and green rectangles in Figure 3.4.1 (left)

represent images taken at 20,000x, 60,000x and 200,000x respectively. Although the rectangles

are not to scale, the figure is meant to illustrate that images at different magnifications are not

equivalent in size. Higher magnification acquisitions require more images to cover a comparable

area of the sample at lower magnification.

Additionally, the microscope is equipped with both secondary electron (SE) detectors and

backscattered electron (BSE) detectors, enabling a multi-signal approach. Acquiring multiple

signals at every position shown in Figure 3.4.1 (right) does not cost extra time, will simplify

image processing tasks that follow, and is encouraged in all contexts. Indeed, the different

contrasts obtained from signals can serve different purposes during analysis. This is in fact the

case for the sample used throughout this paper, platinum nanoparticles (Pt NPs) on carbon

nanotubes (CNTs) identified in Figure 3.4.1 (right). The presented automation workflow,

however, is not limited to this material nor to spherical NPs.

49

In this context, qualitative analysis of images in Figure 3.4.1 (right) demonstrates that secondary

electron (SE) images are feature-rich, making them ideally suited for stitching algorithms,

however they lack sufficient contrast between the NPs and other components for feasible

segmentation. Backscattered electron (BSE) images present the opposite challenge, contrast

between platinum and carbon is perfect for segmentation, while images do not contain enough

features for proper stitching by algorithms.

Figure 3.4 Proposed automated workflow for automated acquisitions and quantitative analysis.

1. Grid acquisitions at selected magnification, (left) three magnifications (20,000x, 60,000x and

200,000x) are used for comparing size distributions and (right) both SE and BSE images are

acquired at every position to benefit from a multi-signal approach. 2. Grid SE images are either

Multi-signal

50

a. registered with mutual information algorithm or b. stitched with SIFT algorithm. 3. Stitched

BSE image is segmented with Otsu thresholding for quantitative analysis of NPs.

3.4.2 Stitching

Grid imaging, especially at higher magnification, requires postprocessing corrections such as

stitching, due to imprecise beam or stage movements, explained in the previous section. Added

intelligence in scripts will guide acquisitions, ensuring high reliability and facilitating the

correction achieved by stitching algorithms. For example, the presented acquisition workflow

selects either beam shift or stage shift depending on the scale of step movements and ensures that

sufficient overlap between neighboring images is captured in the grid layout, preventing gaps in

the final image. Overlapping regions are prioritized because of the features they contain.

Detected features will determine the performance of stitching algorithms during post processing.

Two different stitching approaches are proposed, demonstrated in Figure 3.4.2a and Figure

3.4.2b, to ensure that if one algorithm fails, a second option is available to compensate. The first

option, in Figure 3.4.2a, is to register high magnification SE images to a low magnification SE

image with the mutual information algorithm [7][8]. The second option in Figure 3.4.2b is to

stitch high magnification SE images with overlapping regions using feature points with the scale-

invariant feature transform (SIFT) algorithm [9][10]. The performance of either algorithm

depends on the data acquired, and especially the contrast achieved. The translation and rotation

transformations found by stitching algorithms with the SE images are then applied to the BSE

images since as mentioned previously, they are more easily segmented for analysis of the Pt NPs.

But, in principle, the accurate stitching of the signal type giving the best contrast can seamlessly

be applied to all other signal types.

51

3.4.3 Segmentation

Next, NP segmentation is implemented for quantitative analysis. Manual segmentation of one

image with multiple NPs can take hours. With grid acquisitions, 50 images or more are to be

expected, requiring users to perform precise and accurate manual segmentation for days or

months. For this reason, automation of the segmentation process will greatly improve workflow

duration.

Again, the appropriate segmentation algorithm depends on the contrast in the acquired images,

highlighting the importance of tuning microscope parameters before acquiring data, for

successful segmentation. Microscope parameters can be tuned to reduce noise, improve

resolution, and emphasize contrast on features of interest, simplifying image processing tasks to

avoid manual labelling. In this case, BSE images of Pt NPs present such high contrast on carbon

background that Otsu thresholding is easily applied. A portion of the segmented NPs are

illustrated in Figure 3.4.3. Features of interest are, however, rarely easily segmented with simple

thresholding and more sophisticated algorithms are required. Multiple segmentation algorithms

including deep learning are available in Dragonfly [11] and workflows can be flexibly adapted to

data requirements. Once the segmentation is complete, NP size distributions are computed on the

final segmentation, with the 2D Equivalent Diameter [12], shown in Equation 3.1. With an

adequate segmentation of features of interest, several measurements are available to apply in

image processing software. For spherical NPs, the diameter, eccentricity, roundness, and surface

area are all useful for analysis. For other features, with varying shapes, the orientation, ferret

box, perimeter, longest length, anisotropy, roughness and more can all be of interest.

52

𝑑 =
4×𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 3.1

3.4.4 Tracking

Feature tracking was explored as an alternative to grid layout imaging, to propose a solution for

imaging only areas surrounding features of interest. The main objective is to reduce total

acquisition time, which is accomplished by avoiding regions devoid of features. The workflow

for feature tracking also integrates image processing tasks, including segmentation, smart beam

positioning and stitching, in a feedback loop with microscope tasks, specifically, data acquisition.

Combining data acquisition with image processing is beneficial for saving time and resources,

optimizing imaging to acquire more and better data, faster.

The feature tracking workflow consists of the following steps summarized in Figure 3.5:

A. Acquire an overview, low magnification image (20,000x) with the SEM.

B. Transfer data to an image processing software (Dragonfly) for CNT segmentation (in

red).

C. Convert the segmentation to a graph of vertices (spheres) and edges (segments) with

boost library [13] implemented in Dragonfly.

D. Use the graph vertex positions to establish imaging sites (outlined in dashed lines).

E. Position the beam at each imaging site through established referential with Dragonfly

coordinate system, acquiring high magnification (100,000x) images.

The resulting 100,000x images acquired are shown in Figure 3.5E, after stitching, on top of the

initial 20,000x image.

53

Figure 3.5 Proposed automated workflow for feature tracking. A. Acquire low magnification

(20,000x) image containing features of interest. B. Import image to image processing software

and segment feature to track. C. Convert segmented pixels to a graph of vertices and edges. D.

Establish imaging sites from the vertex positions. E. Position beam at imaging sites for high

magnification (100,000x) acquisitions.

The tracking workflow is also open-source in the Dragonfly code repository, composed of

Python-based scripts in the Dragonfly developer environment. The complete list of commands

used for acquiring images is identical to the one for grid imaging in Table 3.1. However, an extra

54

command, to change the scan status, was found useful for minimizing image drifting during

image analysis tasks. The scan status can be set either to RUN, where the beam will scan the

sample surface continuously, or to FREEZE, where the scanning is paused, and the beam is

diverted elsewhere in the chamber, away from the sample surface. Maintaining continuous

scanning of the sample at a specific location for a certain period, leads to charge accumulation

which then leads to image drifting. The tracking workflow transitions from the microscope to the

software and back to the microscope. The scan status is therefore set to FREEZE while image

processing tasks are carried out, while the microscope is waiting for repositioning, to minimize

negative effects of charge accumulation. Pausing the sample scanning is especially important for

identifying the high magnification imaging sites correctly. The imaging site coordinates are

identified by the software on the low magnification image used as a reference, and they will be

inaccurate if image pixel positions vary in time. If image drift does occur inadvertently, it should

be compensated for with image registration using correlation techniques or key point detection

algorithms [14]. The low magnification image used as reference is automatically imported from

the microscope computer to Dragonfly software, with real image size found in the image’s

associated metadata file, and a specified position in the coordinate system. Once in Dragonfly, all

required image processing algorithms are available to include in the script.

The segmentation algorithm used in Figure 3.5B depends on the feature that is being tracked. For

this specific CNT segmentation, simple thresholding was used, the CNT to be tracked was then

isolated by separating connected components. Thresholding is often appropriate for tracking

workflows since the segmentation does not need to be perfectly defined, it will be converted to a

graph, where segmentation details are lost. The objective of feature segmentation is simply to

highlight the features of interest, to then identify high magnification imaging sites.

55

Also, only a portion of vertices in the graph are selected to center the imaging sites, as seen in

Figure 3.5D, where there are more vertices than imaging sites. The schematic in Figure 3.6

demonstrates that for a graph in blue, vertices contained within a certain range of the vertex

(circled in green) used to position the image area sites (orange rectangle) are excluded, to avoid

imaging the same area multiple times. Excluded vertices are marked with a yellow circled X.

Overlapping regions are considered for stitching (dashed line in imaging site). Smart beam

positioning is therefore accomplished by first obtaining a rough segmentation of the features of

interest, converting the segmentation to a graph, and then selecting the vertices to position

imaging sites. Selected vertices will be far enough apart to prevent multiple images of the same

region, but close enough for sufficient overlapping regions for stitching without gaps.

Figure 3.6 Schematic of selected vertices to position imaging sites. Graph of vertices and edges

is in blue, vertices circled in green will determine the center position of imaging sites, vertices

within a certain range are excluded and circled in yellow with an X and imaging site is delimited

by an orange rectangle with the dashed rectangle smaller than the imaging site to accommodate

for any imprecise stage or beam movements.

56

Converting the segmentation to a graph is a useful approach when features are elongated and

connected. If features are small, disconnected and scattered, like nanoparticles, each individual

feature centroid should be used for smart beam positioning. Nanoparticles would be segmented

and separated by connected components, for which the centroid is computed. The centroid is a

position vector (x, y, z) in the coordinate system, and therefore determines where high

magnification imaging sites should be located, analogous to graph vertices. The appropriate

technique, conversion to graph or centroid computation, also depends on the magnification

required to adequately analyze features of interest. Generally, low magnifications need only one

image to include the entire feature and the centroid can be used to position the beam. Higher

magnifications require multiple images to cover the entire features, and the graph vertices will

more adequately determine the multiple imaging sites to fully image the feature of interest.

3.5 Results

3.5.1 Nanoparticle size distributions

The proposed automation workflow was tested on three separate magnifications (20,000x,

60,000x and 200,000x) and the results are presented in Figure 3.7 and Table 3.2. NP size

distributions are computed using 2D equivalent diameter, from final segmentations with Otsu

thresholding.

Results are presented side-by-side in Figure 3.7 for quick visual comparison. Distributions

follow similar trends with highest frequency at approximately 10 nm diameter. The pixel size for

each magnification, statistics describing the distribution including the minimum, maximum, and

mean values, as well as the total number of NPs are shown in Table 3.2. The results demonstrate

57

a few key points: minimum NP size at lower magnification is restricted by the associated pixel

size, resulting in gaps in the 20,000x size distribution, and the total number of detected NPs

decreases with magnification.

Figure 3.7 NP size distribution based on segmentation at three different magnifications

(20,000x, 60,000x, 200,000x) for visual comparison.

Magnification
Pixel size

(nm)
Min size

(nm)
Max size

(nm)
Mean
(nm)

Total detected
NPs

20,000x 4.961 5.60 51.3 15.26 350

60,000x 1.654 4.17 52.4 13.88 505

200,000x 0.496 3.80 45.4 12.75 554

Table 3.2 NP statistics at three different magnifications (20,000x, 60,000x, 200,000x) with

associated pixel size.

3.5.2 Total Acquisition time

For NP analysis, only high-resolution images of areas surrounding CNTs were considered

because most Pt NPs are latched onto or located near CNTs in the sample. Tracking CNTs will

58

considerably reduce the number of acquired images needed, therefore abridging a significant

amount of time, and avoiding empty images i.e., areas without NPs.

Table 3.3 compares the amount of time required to acquire a grid layout and to track CNTs at

100,000x based on the number of images taken for the same area on the sample, shown in Figure

3.5. The grid layout consists of 25 images, a 5x5 grid containing the entire area on the sample as

seen in the 20,000x image in Figure 3.5A, whereas the CNT tracking considers the 10 images

required to cover the segmented CNT in Figure 3.5E. The total time is considerably reduced as

the number of images acquired decreases by more than half, where 65 minutes are required for a

grid layout and only 20 minutes for CNT tracking.

Acquisition type
(100,000x)

Number of
images

Total acquisition
time

(minutes)

Grid 25 65

CNT tracking 10 20

Table 3.3 Comparison of total acquisition time based on number of images taken for grid

acquisitions and CNT tracking.

3.6 Discussion

Firstly, the study carried out for NP quantitative analysis evaluated size distributions at low

(20,000x) and high (60,000x and 200,000x) magnification from an automated workflow

consisting of grid acquisitions, stitching and segmentation. The presented results show that (1)

the proposed automated workflow achieves reliable NP quantitative analysis for low to high

magnification acquisitions, (2) multi-signal approaches are beneficial, providing different image

contrasts useful for image processing tasks, and (3) acquiring multiple high magnification

59

images of a sample area, comparable to the area covered by a low magnification image, results in

a more accurate representation of NP distributions.

The appropriate magnification depends on the size of the features to be analyzed and should be

established prior to launching acquisition. The highest magnification may be unnecessary if

features are larger, since similar results will be accomplished at lower magnification.

Consistently selecting the highest magnification for workflows, without accommodating to

feature size, will waste time and resources, acquiring an excessive number of images to cover the

same sized region as a lower magnification grid layout. Additionally, the number of total images

required to adequately describe distributions should be determined prior to acquisitions. A grid of

5x5 for a total of 25 images is four times quicker to acquire than a 10x10 grid for a total of 100

images. However, increasing the number of images leads to increased data for quantitative

analysis. The appropriate grid size should generate enough data for a statistically representative

analysis without exhausting an unnecessary number of resources. For NPs, with a mean size of

10 nm, a grid size of 5x5 was acquired and higher magnifications (60,000x and 200,000x)

resulted in an improved size distribution and more detected NPs, emphasizing the need for

automation. However, perhaps a lower magnification would have been sufficient to adequately

represent the sample. With half the magnification, half the images need to be acquired,

considerably reducing acquisition time.

Acquiring multiple high magnification images, side by side, for representative statistics, is

repetitive and time consuming. By combining grid acquisitions on the SEM and image

processing tasks into a complete automated workflow, automation enables scientists to spend

time on more productive, complex tasks. Acquisitions can now run unattended and overnight

60

when microscopes would otherwise be idle. Further analysis by examining results for multiple

grid sizes would help determine the best grid size for accurate description of NP distributions.

Secondly, our feature tracking results demonstrate that (1) the proposed automated workflow

successfully finds imaging sites for high resolution imaging of features of interest, (2) integrating

microscope tasks with analysis tasks leads to more intelligent and efficient acquisitions, and (3)

tracking features considerably reduces the total acquisition time when compared to grid

acquisitions.

Feature tracking can be especially beneficial when a feature spans a large, nonlinear area of the

sample, for instance a crack, where grid imaging would not be appropriate and quite time

consuming. Imaging large grid arrays, without selecting favored areas manually or without smart

beam positioning will almost certainly result in the acquisition of images without features of

interest. Acquiring these empty regions in grid layouts impairs total acquisition speed, since

many images will be discarded, as they are not useful for analysis. By tracking features of

interest with smart beam positioning, time and resources are better spent by imaging only

relevant areas that contain the features of interest.

The proposed algorithms for stitching and segmentation in both workflows may not apply to all

contexts, and we have designed these procedures so they can be adapted to the imaged sample,

where multiple options are available and implemented in Dragonfly. The workflows are

implemented in the Dragonfly environment specifically for this reason, where other algorithms

can be easily swapped in the Python script, to accommodate any image processing need. As a

future direction, we intend to include a graphical user interface (GUI) as a plugin in Dragonfly.

This would greatly simplify the user experience, improve ease of use, and eliminate the need for

coding skills to apply the workflow. Users could more easily tailor the workflow to their sample,

61

select the appropriate algorithms from a list, set up acquisitions and visualize acquisition

progress.

62

3.7 References

[1] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and

D. C. Joy, “Scanning Electron Microscope (SEM) Instrumentation,” in Scanning

Electron Microscopy and X-Ray Microanalysis, J. I. Goldstein, D. E. Newbury, J. R.

Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Eds., New York, NY:

Springer, 2018, pp. 65–91. doi: 10.1007/978-1-4939-6676-9_5.

[2] “The SerialEM Home Page.” Accessed: Jan. 02, 2024. [Online]. Available:

https://bio3d.colorado.edu/SerialEM/

[3] B. Titze, C. Genoud, and R. W. Friedrich, “SBEMimage: Versatile Acquisition

Control Software for Serial Block-Face Electron Microscopy,” Front. Neural

Circuits, vol. 12, 2018, Accessed: Jan. 02, 2024. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fncir.2018.00054

[4] “Setup for development with PyCharm — Dragonfly 4.1 documentation.”

Accessed: Jan. 10, 2023. [Online]. Available:

http://dev.theobjects.com/dragonfly_4_1_release/Documentation/SetupForDevelop

mentWithPyCharm/setupfordevelopmentwithpycharm.html

[5] “Dragonfly | 3D Visualization and Analysis Solutions for Scientific and Industrial

Data | ORS.” Accessed: Apr. 10, 2022. [Online]. Available:

https://www.theobjects.com/dragonfly/index.html

[6] “Equipment | McGill Electron Microscopy Research Group,” memrg. Accessed:

Jan. 10, 2023. [Online]. Available: https://www.memrg.com/our-equipment

[7] “Mutual information as an image matching metric — Tutorials on imaging,

computing and mathematics.” Accessed: Jan. 10, 2023. [Online]. Available:

https://matthew-brett.github.io/teaching/mutual_information.html

[8] G. Egnal and K. Daniilidis, “Image Registration Using Mutual Information,” no. 117,

Jan. 2000, Accessed: Mar. 26, 2024. [Online]. Available:

https://repository.upenn.edu/handle/20.500.14332/7014

[9] “OpenCV: Introduction to SIFT (Scale-Invariant Feature Transform).” Accessed:

Jan. 10, 2023. [Online]. Available:

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html

[10] Z. Min, Z. Jiguo, and X. Xusheng, “Panorama Stitching Based on SIFT Algorithm

and Levenberg-Marquardt Optimization,” Phys. Procedia, vol. 33, pp. 811–818,

Jan. 2012, doi: 10.1016/j.phpro.2012.05.139.

[11] R. Makovetsky, N. Piche, and M. Marsh, “Dragonfly as a Platform for Easy Image-

based Deep Learning Applications,” Microsc. Microanal., vol. 24, no. S1, pp. 532–

533, Aug. 2018, doi: 10.1017/S143192761800315X.

63

[12] F. Latief, “Analysis and Visualization of 2D and 3D Grain and Pore Size

ofFontainebleau Sandstone Using Digital Rock Physics,” J. Phys. Conf. Ser., vol.

739, p. 012047, Aug. 2016, doi: 10.1088/1742-6596/739/1/012047.

[13] “Boost C++ Libraries.” Accessed: Jan. 10, 2023. [Online]. Available:

https://www.boost.org/

[14] N. Marturi, S. Dembélé, and N. Piat, “Fast Image Drift Compensation in Scanning

Electron Microscope using Image Registration.,” in IEEE International

Conference on Automation Science and Engineering, CASE’13., United States,

Jan. 2013, pp. 1–6. Accessed: Feb. 08, 2024. [Online]. Available:

https://hal.science/hal-00876194

64

4 Optimizing SEM Parameters for Segmentation with

AI – Part 1: Generating a Training Set

Sabrina Clusiau, Nicolas Piché, Benjamin Provencher, Mike Strauss, Raynald Gauvin

Manuscript currently under review

4.1 Preface

This chapter presents the first of two parts on optimizing microscope parameters for image

quality improvement. Acquiring images automatically as presented in the previous chapter is

extremely beneficial for quantitative analysis of samples, however collecting multiple images

without the appropriate image quality is a waste of time. Establishing the right microscope

parameters prior to automating acquisitions will facilitate quantitative analysis that follows

acquisitions. Segmentation is the primary concern for quantitative analysis, and parameters such

as the beam energy and the probe current should be selected for the purpose of generating image

quality where features of interest are easily segmented. Microscope parameter selection,

depending on the sample imaged, is accomplished by training deep learning models. Training a

model to predict accurately requires appropriate data, namely, a complete training set with

sufficient examples from which to learn. As demonstrated in this chapter, obtaining numerous

training examples is possible by launching simulations with MC X-ray and including real images

acquired on the SEM.

65

4.2 Abstract

Extracting significant quantitative results from SEM images requires feature segmentation with

image processing software. The efficiency of segmentation algorithms depends on the image

quality, determined largely by the parameters set on the microscope during acquisitions. By

integrating AI within SEM acquisition workflows, it is possible to suggest microscope

parameters that will produce images where the features to quantify will be easily segmented.

Specifically, a model is trained to automatically suggest the beam energy and probe current to set

on the microscope during acquisitions. This paper is the first of two parts, describing workflows

for generating a complete training set. The training set is carefully designed, consisting of both

simulated data and real data acquired on the SEM by varying the energy and current. Separate

workflows are required for generating simulated and acquired training examples. Simulated data

generation is accomplished with the MC X-ray simulator in Dragonfly, where multiple virtual

samples are created to intentionally diversify the training set. Acquiring data on the SEM for

training is a time-consuming process when compared to generating simulations and would

ideally be avoided but is included here to determine the degree to which it is required. Using

only simulated data for adequate training, we show that our data generation workflow can be

fully automated and produces a considerable amount of high quality data rapidly and with

minimal effort.

66

4.3 Introduction

Acquiring high quality images with scanning electron microscopes (SEMs) has led to a

comprehensive understanding of a variety of phenomena from the micrometer to nanometer

scale. Often, analysis of acquired images leads to quantification; qualitative analysis is not

sufficient to thoroughly describe processes [1]. A variety of quantitative measurements from

SEM images can be of interest, including preferential orientation of precipitates, dislocation

structures of additively manufactured materials and nanoparticle distributions. Currently,

computing these measurements from SEM images requires segmentation of features of interest.

In fact, improving segmentation results is possible by selecting the appropriate parameters during

acquisitions. Indeed, the set parameters on the SEM will determine the observed image quality,

including the resolution, noise, and contrast. Segmentation algorithms are limited by the signal-

to-noise ratio (SNR), resolution and contrast in images. Determining the appropriate values for

parameters, to optimize image quality, is a daunting task that often takes microscopists a

significant amount of time prior to acquisitions. To assist microscopists, the proposed solution is

to train a regression model, through supervised learning, to automatically suggest microscope

parameter values to set on the microscope during acquisitions.

Multiple microscope parameters are involved in acquiring high quality images on the SEM [2].

As a proof of concept, the regression model is trained to predict two parameters that are both

important for image quality: the beam energy and the probe current. Varying both parameters

results in an apparent difference in image quality and the optimized values to select depend on

the features to analyze and the sample being imaged.

67

The beam energy will determine the shape of the interaction volume within the sample [3]. At

higher energies the interaction volume is wider, including more lateral signal from the sample,

altering the image’s lateral resolution. Electrons will also have more energy to travel deeper

within the sample resulting in increased depth information, and features that are further from the

sample surface are detected. Conversely, at lower energies, the interaction volume is reduced

both laterally and in depth and only signal from or near the surface of the sample is collected.

The probe current will determine the size of the probe diameter at the sample surface, adjusting

the signal-to-noise ratio (SNR) and resolution [3]. At low currents, the SNR is low, producing

noisy images. Increasing the SNR by increasing the current can reveal features previously hidden

by noise. However, increasing the probe current excessively will also increase the probe size

which can lead to loss of resolution, masking features, since they can no longer be resolved.

Ultimately, the objective is for the model to suggest the appropriate beam energy and probe

current to obtain images where features of interest are easily segmented for quantification.

This paper is the first of two parts, providing a complete description of the methods used to

generate data for training. Model performance relies greatly on the data it is trained with,

therefore generating an adequate training set is a crucial step to successful predictions. A

thorough explanation of workflows for collecting both simulated data and real data is relevant,

more importantly for simulations that require creating virtual samples and setting up the virtual

microscope. Training examples are also diversified, as it is an important consideration when

developing a well-balanced training set.

68

4.4 Data generation workflows

By varying both the beam energy and the probe current, multiple images are obtained to generate

a training set. The specific sample used for training is platinum nanoparticles (Pt NPs) on carbon

nanotubes (CNTs), shown in Figure 4.1. The features of interest in this sample to be segmented

and quantified are the Pt NPs. There is a high atomic composition contrast between the carbon

and platinum that is especially evident in the backscattered electron (BSE) images shown in

Figure 4.1 (middle). Here, a noticeably higher signal (brighter) is evident where the Pt NPs are

located, resulting in an easier segmentation of NPs with BSE images when compared with

secondary electron (SE) images in Figure 4.1 (left). Facilitated segmentation of Pt NPs is

demonstrated when comparing the SE and BSE images, where some of the NPs are clearly

detected in the BSE image but are not visible in the SE images. For these reasons, the BSE

images are more appropriate, in this context, to use as training examples for training the model.

In Figure 4.1, the SE and BSE images are both real images acquired with the SEM. It is also

possible to create virtual samples for simulations, illustrated in Figure 4.1 (right). The virtual

samples are 3D MultiROI objects, designed to contain multiple spheres of different sizes and at

different depths in the sample. The MultiROI consists of two classes, the white spheres are

labelled as platinum and the dark background is labelled as carbon. From virtual samples, BSE

images are simulated with the MC X-ray simulator, explained in Section 4.4.1, and included

during training for a complete, extensive training set.

69

Figure 4.1 (Left) Secondary electron (SE) image and (Middle) back scattered electron (BSE)

image of platinum nanoparticles on carbon nanotubes and (Right) Surface of volumetric virtual

sample, a labelled 3D MultiROI, background labelled as carbon (C) and white spheres labelled

as platinum (Pt).

Each training example consists of a BSE image of the sample, the beam energy and the probe

current used to generate the image and an associated Dice score, listed in Table 4.1. All BSE

images are 130x130 pixels and all pixel values are normalized between 0 and 255. Image

normalization is commonly implemented prior to training, it improves the model’s convergence

and generalization efficiency [4]. The beam energy will range from 1 to 20 keV and the probe

current will range from 1.2 to 614 pA. The Dice score, or Dice similarity coefficient, is a

common metric used to evaluate segmentation accuracy [5] and is obtained by comparing two

segmentations. The BSE image segmentation is compared to a ground truth segmentation and its

accuracy is quantified with the Dice score; segmentation procedures are explained in Section

4.4.1.

All training examples are stored in a Python Pandas DataFrame [6], a two-dimensional data

structure, where the columns are the four inputs, and every row is a training example instance.

The general structure is illustrated in Table 4.1, including 2 training examples, additional training

examples are presented in Section 4.6. Training example 1 in Table 4.1 is a BSE image simulated

70

at 7 keV, 246 pA and 77% Dice score, training example 2 is an acquired BSE image at 12 keV,

30 pA and 82% Dice score. Workflows for generating training examples simulated and acquired

are presented in this section.

 BSE image
(130x130 pixels)

Beam energy
(1-20 keV)

Probe current
(1.2 – 614 pA)

Dice score (%)

Training
example

1

7 246 77

Training
example

2

12 30 82

Table 4.1 Representation of how training instances are stored in a Python Pandas DataFrame, a

2D array. Columns are inputs: the BSE image, the beam energy, the probe current and the Dice

score. Rows are training examples. Two training examples are shown: training example 1 is

simulated and training example 2 is acquired on the SEM.

71

Figure 4.2 (Left) Flow chart diagram of worklow for generating simulated training examples.

(Right) Flow chart diagram of worklow for generating acquired training examples.

4.4.1 Simulated training examples

The procedure for generating simulated training examples is entirely virtual. A Python based

script in the Dragonfly environment [7] will import a virtual sample, define the simulation set up,

generate a BSE image, segment the BSE image, and compute a Dice score. The complete

workflow is summarized as a flow chart diagram in Figure 4.2 (left).

72

Dragonfly is an image processing software with a virtual microscope, or MC X-ray plugin and it

provides a variety of options to create virtual samples as well. Virtual sample design is the first

step in the flowchart, with the tools available in Dragonfly, samples with features of any

complexity can be designed. These components can then be assigned an elemental composition

from the periodic table or a chemical composition. The virtual sample is formatted as a

MultiROI, a 3D array of values belonging to a class. In Figure 4.3, one of the virtual samples is

presented in a 3D view, with spheres (white) labelled as platinum, or class value 1, and the

background (grey), labelled as carbon, or class value 2. Images from left to right show the

progression, as cross sections are taken from deeper within the virtual sample and new

nanoparticles appear, while others disappear. Spheres are intentionally positioned at different

depths within the sample to observe the effect of using different parameters in the simulated data.

Figure 4.3 Cross sections of MultiROI visualized in 3D, in Dragonfly, with arrow illustrating the

direction of electron beam. From left to right, depth into MultiROI increases, new nanoparticles

are revealed, while others disappear.

73

By coding in the Dragonfly environment, the script can easily import the virtual sample, define

the entire simulation set up, and implement the virtual microscope functionalities. Indeed, all

tasks are executed using the MC X-ray plugin integrated in the Dragonfly software. The

simulation set up is first defined by selecting the surface to image on the virtual sample.

Selecting the surface will determine the direction of the electron beam, illustrated in Figure 4.3

by an arrow. Next, the detectors are positioned anywhere in space, relative to the virtual sample.

For the presented simulations, BSE images are generated and typically, BSE detectors are

located under the electron column, at a normal incident angle to the sample. Then, default

physical models and microscope and detector parameters are used, such as the working distance,

scanning pattern and detector geometry. Any parameters can be modified depending on

requirements. Lastly, the simulation parameters are set, with all parameters being kept constant

for simulations, except the beam energy and the probe current, or number of simulated electrons.

The complete list of setup parameters is summarized in Table 4.2.

Detector geometry
Ring

Inner radius: 1 mm Outer radius: 4 mm

Detector position 3 mm under beam

Beam direction 0° specimen normal

Probe size 1 nm

Beam energy 1 – 20 keV

Probe current 1.2 – 614 pA

Acquisition time 100 s

Physical models

Atom collision Browning [8][9][10]

Atom cross section Browning [8][11]

Atom energy loss Bethe [12]

Atom mean ionization
potential

Joy & Luo [13]

74

Atom screening Henoc & Maurice [14]

Region energy loss Bethe [12]

Table 4.2 Parameters used in MC X-ray plugin for simulations launched to generate BSE

images.

The probe current is defined for simulations by specifying the number of simulated electrons.

Increasing the number of electron trajectories increases the number of detected BSEs, resulting

in more signal in images. Normally, when working on the SEM, modifying the probe current will

also modify the probe size. As previously mentioned, increasing the probe current does increase

the SNR, but with an increased probe size, the resolution is negatively impacted. This is not

depicted in the simulations, only the number of electrons used for simulations is modified when

adjusting the current, without adjusting the probe size. Additional work towards establishing the

relationship between the probe size and probe current is required to accurately include the probe

size in simulations. Incorporating the probe size would lead to more realistic simulation results

and should definitely be considered in future work. The relationship between current and

number of electrons used for simulations is shown in Equation 4.1, with the unit for probe

current Amperes (A) and the seconds (s) are replaced by the acquisition time.

𝐴 =
𝐶

𝑠
=

6.24 ×1018 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

𝑠
 4.1

Once the setup is complete, simulations are launched, with multiple combinations of beam

energies and probe current. MC X-ray is a simulator, essentially a virtual microscope, scanning

the virtual sample surface, where the beam energy and probe current can be specified for every

75

simulation launched. The plugin is based on Monte Carlo simulations, more specifically, where

numerous electron trajectories into the sample are simulated [15]. With a different combination

of beam energy and probe current defined for every launched simulation, the virtual microscope

will generate multiple BSE images of varying image quality. BSE images are 2D arrays of pixels

with grey scale values obtained from the virtual sample (MultiROI), a 3D array of pixels labelled

to a class, 1 or 2. The MC X-ray plugin has previously been used, notably to generate synthetic

data to train a segmentation model for nanoporous structures [16]. MC X-ray was integrated in

Dragonfly and optimized to run over 100x faster, through the use of multithreading. Quicker

simulations are extremely beneficial, especially in the context of training a model, since a

substantial amount of data is required for optimal model performance.

Generating these simulated BSE images requires minimal effort, and thus it is possible to

automatically iterate through multiple beam energies and probe currents without routine beam

alignments. The script can run overnight and unattended, and a little under 7000 BSE simulated

images were generated for training. Obtaining this substantial amount of data, often required for

proper model training, with little effort and in minimal time, is not possible with a real

microscope.

For each instance of the simulated BSE image, the script automatically segments pixels as Pt

NPs or carbon with a segmentation algorithm of choice. For our sample, Pt NPs on CNTs, the

segmentation is performed with Otsu thresholding, a suitable algorithm since a simple binary

classification is required and platinum on carbon exhibits a high contrast. Other segmentation

algorithms are available in the Dragonfly environment, and they could potentially classify pixels

or features of interest more accurately than thresholding.

76

The final step is to compute the Dice score by comparing the Otsu segmented BSE image with

the surface of the virtual sample. The surface of the virtual sample is used as a ground truth, from

which the BSE simulated image is generated. The surface represents the true segmentation,

where pixels are correctly classified as Pt NPs or carbon. The Dice score will be higher when the

Otsu segmentation correctly classifies BSE image pixels.

4.4.2 Acquired training examples

The workflow for acquiring data on the SEM to generate training examples is not fully

automated: a few first steps in the flowchart diagram in Figure 4.2 (right) are executed on the

microscope and the rest is implemented in the script. The image acquisition process is completed

on the SU8230, a cold field emission gun Hitachi microscope [17].

First the sample is loaded and then, the beam is aligned, as a routine procedure. Beam alignment

is a manual task, and it is known to take a significant amount of time as it must be repeated every

time a parameter is modified. As illustrated in Figure 4.2 (right), as users iterate through the

acquisition parameters being varied, there is a constant loop between variable modification and

beam alignment. This additional step alone makes collecting a large amount of data on the

microscope much more time consuming and labor intensive than launching simulations.

The probe current is determined by selecting an emission current, a probe mode (High, Medium,

Low) and a condenser lens current. Modifying any of these values will have an impact on the

probe current, which is the current of the beam as it hits the sample surface. The resulting probe

current is measured by inserting a Faraday cup in the vacuum chamber [18] following the beam

alignment routine. This instrument is a Pico-ammeter allowing for precise measurement of the

77

current as the beam exits the column and hits the sample. Indeed, it is important to measure and

collect the probe current of each BSE acquired image for training, as the beam current will

undergo a large reduction of several orders of magnitude, from µA to pA, as the beam traverses

the column, experiencing deviations by the lenses and filtering from the apertures.

Also, when acquiring images at lower energies (< 3keV) sample surface cleaning is often

required as an additional step. Before loading the sample into the microscope, it should be

inserted into an ozone cleaner, for example, to remove any surface contaminants. Lower energies

generate small interaction volumes, close to the surface, and if the sample is not cleaned, images

will contain signal from the contamination instead of the sample surface.

Once the beam energy and probe current are set, and the beam is aligned, the BSE image can be

captured. Acquired BSE images are then imported to the Python script in the Dragonfly

environment. BSE images in training examples are all 130x130 pixels and therefore captured

images need to be cropped since microscopes typically have set image sizes. The cropped

regions are then segmented both manually and with Otsu thresholding. For the simulations, the

ground truth is the initial virtual sample segmentation, however, there exists no ground truth

segmentation for acquired BSE images. Instead, a manual segmentation is used as ground truth

and the Dice score is computed by comparing the two segmentations: the Otsu segmentation and

a manual segmentation.

Both beam alignment after every parameter change, and manual segmentation of multiple images

for ground truth data, are bottleneck steps that prevent workflow automation. Manual tasks are

required for acquiring training examples, including sample cleaning, sample loading, beam

alignment, probe current measurement and ground truth segmentation, whereas the workflow for

generating simulated training examples is fully automated. Ideally, including real data to the

78

training set should be avoided, as only 462 training examples were collected in significantly

more time than it took to generate the 6722 simulated training examples. In Part 2 of this paper,

we show that acquired data is beneficial for model predictions and the importance of virtual

sample design is explained. It is demonstrated that models trained with only simulated training

examples, generated from poor virtual sample design do not produce best results, necessitating

acquired training examples for improved model accuracy.

4.5 Diversifying the training set

When building a training set, it is important to consider not only the quantity, the number of

training examples, but also the diversity of the training examples. The model learns from the

distribution of the input data, and without sufficient variety, it will only perform well for specific

cases. By diversifying the virtual samples used to generate BSE images, the regression model is

intentionally trained with as much variety as possible therefore improving its prediction accuracy

[19]. A total of twenty different virtual samples were used for simulations.

Virtual samples with nanoparticles of different sizes and at different depths were added,

illustrated in Figure 4.3. Also, nanoparticles of different shapes are added (non-spherical) and

virtual samples at different magnifications are used for simulations: 20,000x, 60,000x, 80,000x,

100,000x, 200,000x, shown in Figure 4.4.

79

Figure 4.4 Surface of virtual samples used to simulate BSE images with nanoparticles of

different shapes and sizes and at multiple magnifications A. 20,000x B. 60,000x C. 80,000x D.

100,000x and E. 200,000x to diversify the training set.

Virtual samples with nanoparticles positioned at various depths within the sample will produce

different BSE simulated images, particularly when varying the beam energy. Higher beam

energies will detect nanoparticles further from the surface, whereas lower beam energies will

only detect nanoparticles on or near the surface. Indeed, at lower beam energies, the interaction

volume is limited to the surface.

Additionally, virtual samples with few nanoparticles are included, shown in Figure 4.5A, to

penalize noise. Indeed, when high nanoparticle density virtual samples are used (Figure 4.5C), it

is more probable that noise will fall correctly on where a nanoparticle is located and contribute to

the Dice score. With virtual samples that have low nanoparticle density (Figure 4.5A), noise is

80

more likely to fall incorrectly on background pixels and penalize the Dice score. Generated BSE

images with 3 keV and 1.23 pA from virtual samples in Figure 4.5A and Figure 4.5C are shown

in Figure 4.5B and Figure 4.5D, respectively. With such a low probe current, simulated BSE

image are very noisy, the low density nanoparticle virtual sample in Figure 4.5A, is therefore

highly penalized with a 3.7% Dice score compared to the high density nanoparticle virtual

sample in Figure 4.5C with a 70.9% Dice score.

Figure 4.5 A. Surface of virtual samples with low density nanoparticles. B. BSE simulated image

from low density nanoparticle virtual sample with 3 keV and 1.23 pA producing a Dice score of

3.7% C. Surface of virtual samples with high-density nanoparticles. D. BSE simulated image

from high density nanoparticle virtual sample with 3 keV and 1.23 pA producing a Dice score of

70.9%.

81

The training set is further diversified by including real images acquired on the SEM. Including a

considerable amount of real data for adequate training is, however, as mentioned, a non-

automated, time-consuming process. Ideally, the training set would consist of only simulations

since they require minimal effort to generate, seeing as data generating scripts can run overnight

and unattended, while SEM acquisitions involve microscopist intervention and repetitive tasks.

The complete list of characteristics considered when generating diversified virtual samples is

summarized in Table 4.3.

Characteristics Values

Nanoparticle size
Sphere diameter
2 – 20 nm

Nanoparticle shape
Spherical
Non spherical
Elliptical

Nanoparticle density
Low: 0.1%
High: 25%

Nanoparticle depth
Surface: 0 nm
Thickness: 15 nm

Sample magnification

20,000x
60,000x
80,000x
100,000x
200,000x

Type of sample
Simulated
Acquired

Table 4.3 Virtual sample characteristics included to diversify generated BSE images in the

training set.

4.6 Results

82

Workflow results for both simulated and acquired training examples are presented in Figure 4.6

and Figure 4.7, respectively.

4.6.1 Simulated training examples

Four selected examples of BSE simulated images are shown in Figure 4.6 (middle). Images

contain grey level values, generated from scanning the surface of the virtual sample, the 3D

MultiROI, shown Figure 4.6 (left). Each simulation is launched with a different combination of

parameters, the highest and lowest beam energies with the highest and lowest probe currents are

selected for presentation, to emphasize the effects of parameters on the simulation output. The

segmentation results are shown in the right column in Figure 4.6, pixels classified as belonging

to nanoparticles are white and pixels classified as background are dark grey.

Figure 4.6A was simulated at 1 keV and 1.2 nA. It evidently produces a very noisy image with

low SNR due to the low probe current and the BSE image only contains surface information due

to the low voltage. The Otsu segmentation is shown to the right of the BSE image and when

compared visually with the surface of the virtual sample, it is obvious that a lot of noise is

classified as nanoparticles. The parameters are not appropriate for imaging this sample, the

segmentation results in a low Dice score of 22%. Figure 4.6B was simulated at 1 keV and 614

nA. This image is simulated at low voltage but high current, resulting in much more signal and

therefore a much better segmentation than the first example in A. Nanoparticles under the sample

surface are faintly detected but the Otsu segmentation does not include them entirely. With these

parameters, the segmentation is satisfactory, with a relatively high Dice score of 93%. Figure

4.6C was simulated at 20 keV and 1.2 pA. Low current will necessarily lead to low signal as

83

clearly observed in the BSE simulated image. However, with a high voltage, electrons travel

much deeper within the sample, including information behind the nanoparticles. With these

parameters, the computed Dice score is low at 25%. Figure 4.6D was simulated with 20 keV and

614 pA. The high current produces an image with sufficient signal, the nanoparticles are clearly

defined. With high voltage, nanoparticles further from the surface are now fully detected. These

nanoparticles are not present in the initial virtual sample surface. The Dice score is 83% with

these parameters. The score is penalized by the additional segmented nanoparticles that are now

detected with higher energies.

84

Figure 4.6 (Left) Virtual sample surface used to compare with final segmentation. (Middle)

Selected examples of BSE simulated images (grey scale values) from the surface of the virtual.

(Right) Associated Otsu segmentation. Images are simulated with different beam energies and

probe currents and segmentations are attributed a Dice score listed next to Otsu segmentation A.

1 keV, 1.2 pA, Dice: 22% B. 1 keV, 614 pA, Dice: 93% C. 20 keV, 1.2 pA, Dice: 25% D. 20 keV,

614 pA, Dice: 83%.

4.6.2 Acquired training examples

The process of acquiring real data was included for experiments, to test model performance

when trained with and without real images. As shown in Figure 4.7, two regions (A and B) are

cropped of 130x130 pixels on acquired BSE images and extracted for training. Both regions

provide the model with useful information on the sample with observed variations in image

quality for different combinations of beam energies and probe currents. For instance, the first

area Figure 4.7A) highlights the relationship between the current and the SNR. The second area

(Figure 4.7B) reveals that new features appear as the energy increases, features that were located

deeper within the sample, which is comparable to positioning nanoparticles at different depths in

the virtual samples.

The beam energy and probe current used during acquisitions are listed above each cropped

region and Otsu segmentations are presented under each cropped regions in Figure 4.7. When

compared to a manual segmentation, the first row, representing the cropped region in Figure

4.7A produced segmentations with higher Dice scores than the second region in Figure 4.7B.

Associated Dice scores are noted on the bottom right of all segmentations in Figure 4.7. For

region A, at 3 keV and 17 pA, a 88% score is obtained, at 5 keV and 6 pA, the score is 65%, at

10 keV and 104 pA, the score is 84% and at 20 keV and 70 pA, the score is 89%. For region B,

85

at 3 keV and 17 pA, a 74% score is obtained, at 5 keV and 6 pA, the score is 36%, at 10 keV and

104 pA, the score is 50% and at 20 keV and 326 pA, the score is 55%.

Figure 4.7 Cropped areas on SEM acquired BSE images for training A) obvious increase in SNR

with increased current and B) Pt NPs are revealed as energy increases. Combinations of beam

energy and probe current lead to observed variations in image quality. Segmentation results

obtained with Otsu thresholding are shown under each cropped BSE image with computed Dice

score in bottom right of segmentation.

4.7 Discussion

4.7.1 Virtual sample design

88% 65% 84% 89%

74% 36% 50% 55%

86

Virtual sample design will have a huge impact on resulting training examples and therefore on

the model’s prediction tendencies. Including virtual samples with Pt NPs located deeper within

the sample will penalize higher energies as shown in Figure 4.6, where the training example in

Figure 4.6B has a higher Dice score than the training example in Figure 4.6D. The training

example in Figure 4.6B is generated with a lower beam energy, while training example in Figure

4.6D is generated with a higher beam energy for the same current. Higher beam energies will

detect Pt NPs farther from the surface and the Otsu segmentation will classify them as NPs,

although they are not present in the surface segmentation. The surface segmentation is used as

ground truth, to compare with the Otsu segmentation to obtain a Dice score. With this design,

higher energies are penalized by receiving a lower score, and the model will learn it is not always

favorable to use the maximum energy during acquisition. Depending on the context, and the

material being imaged, it can be beneficial to use lower energies, as they could avoid or reduce

some forms of beam damage. If higher energies are favorable, slices further from the surface can

be used as ground truth to compute the Dice score.

4.7.2 Extending workflow to other contexts

The training set is presented in a very specific context, with images from one sample and with a

particular segmentation algorithm. The proposed model can be extended to any other context by

generating a training set with any sample and any segmentation algorithm. More complex

algorithms are available to implement as an alternative, and they could potentially produce better

segmentation results than thresholding.

87

Virtual samples presented in this paper are designed manually and are relatively straightforward

to create, by adding multiple spheres throughout the volume. Not all samples have simple,

spherical nanoparticles to be analyzed, and when more complex shapes are to be constructed,

algorithms should be used to automatically generate the virtual samples. Available libraries such

as OpenPNM[20] and PuMA[21] are implemented in Dragonfly and generate a variety of

samples, a few are shown in Figure 4.8. Sample geometries range from spheres to cylinders to

lattices to Voronoi and more. Sample size, density or porosity and size of features is specified,

and positioning and orientation of features are randomized.

Figure 4.8 Examples of automatically generated samples with OpenPNM or PuMA in Dragonfly,

from left to right, random spheres, Voronoi edges, random fibers and porous structures.

Furthermore, the current workflow assumes that the sample compositions are known prior to

imaging. To generate a training set with MC X-ray simulations, virtual samples must be labelled

with the appropriate composition. The workflow can be extended to integrate an energy

dispersive spectroscopy (EDS) analysis as a first step for samples with unknown composition.

With an EDS map, sample composition is identified, and it can be automatically attributed to

features in the virtual samples.

88

4.8 Conclusion

Generating a training set for deep learning applications requires careful consideration since

model performance depends heavily on the data with which it is trained. Often a significant

quantity of training examples is necessary, therefore the time and effort required to collect data is

important to prioritize. Workflows for generating simulated and acquired training examples are

presented and simulated data is clearly beneficial in this context and should be favored over

acquiring real data for training. With a generalized workflow, where users can generate virtual

samples, set the material composition, and then launch simulations, training examples are easily

generated for model training. An excellent training set will not only have numerous training

examples but also diversified ones, both of which may be accomplished by creating virtual

samples that have multiple, different characteristics to help the model generalize properly.

89

4.9 References

[1] “The quest for quantitative microscopy,” Nat Methods, vol. 9, no. 7, Art. no. 7, Jul.

2012, doi: 10.1038/nmeth.2102.

[2] S. Chapman, “Understanding & Optimising Scanning Electron Microscopy

Performance,” Infocus, no. 14, Jun. 2009, doi: 10.22443/rms.inf.1.45.

[3] J. I. Goldstein et al., “Electron Beam–Specimen Interactions,” in Scanning Electron

Microscopy and X-ray Microanalysis: Third Edition, J. I. Goldstein, D. E. Newbury,

P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Michael, Eds.,

Boston, MA: Springer US, 2003, pp. 61–98. doi: 10.1007/978-1-4615-0215-9_3.

[4] J. Shao, K. Hu, C. Wang, X. Xue, and B. Raj, “Is normalization indispensable for

training deep neural network?,” Advances in Neural Information Processing

Systems, vol. 33, pp. 13434–13444, 2020.

[5] A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image

segmentation: analysis, selection, and tool,” BMC Med Imaging, vol. 15, p. 29,

Aug. 2015, doi: 10.1186/s12880-015-0068-x.

[6] “pandas documentation — pandas 2.2.0 documentation.” Accessed: Feb. 08,

2024. [Online]. Available: https://pandas.pydata.org/docs/index.html

[7] “Dragonfly | 3D Visualization and Analysis Solutions for Scientific and Industrial

Data | ORS.” Accessed: Sep. 25, 2023. [Online]. Available:

https://www.theobjects.com/dragonfly/index.html

[8] R. Browning et al., “Empirical forms for the electron/atom elastic scattering cross

sections from 0.1 to 30 keV,” Journal of Applied Physics, vol. 76, no. 4, pp. 2016–

2022, Aug. 1994, doi: 10.1063/1.357669.

[9] D. Drouin, R. Gauvin, and D. C. Joy, “Computation of polar angle of collisions from

partial elastic mott cross-sections,” Scanning, vol. 16, no. 2, pp. 67–77, 1994, doi:

10.1002/sca.4950160202.

[10] Mott N. F., The Theory Of Atomic Collisions. 1949. Accessed: Feb. 09, 2024.

[Online]. Available: http://archive.org/details/in.ernet.dli.2015.3748

[11] Z. Czyżewski, D. O. MacCallum, A. Romig, and D. C. Joy, “Calculations of Mott

scattering cross section,” Journal of Applied Physics, vol. 68, no. 7, pp. 3066–

3072, Oct. 1990, doi: 10.1063/1.346400.

[12] H. Bethe et al., Eds., Quantentheorie. Berlin, Heidelberg: Springer, 1933. doi:

10.1007/978-3-642-52619-0.

90

[13] D. C. Joy and S. Luo, “An empirical stopping power relationship for low-energy

electrons,” Scanning, vol. 11, no. 4, pp. 176–180, 1989, doi:

10.1002/sca.4950110404.

[14] K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, Use of Monte Carlo Calculations

in Electron Probe Microanalysis and Scanning Electron Microscopy: Proceedings

of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland,

October 1-3, 1975. U.S. Department of Commerce, National Bureau of Standards,

1976.

[15] R. Gauvin and P. Michaud, “MC X-Ray, a New Monte Carlo Program for

Quantitative X-Ray Microanalysis of Real Materials,” Microsc Microanal, vol. 15,

no. S2, pp. 488–489, Jul. 2009, doi: 10.1017/S1431927609092423.

[16] T. Sardhara et al., “Training Deep Neural Networks to Reconstruct Nanoporous

Structures From FIB Tomography Images Using Synthetic Training Data,”

Frontiers in Materials, vol. 9, 2022, Accessed: Nov. 13, 2023. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fmats.2022.837006

[17] H. H.-T. in Canada, “Scanning Electron Microscope FlexSEM 1000 II,” Hitachi

High-Tech in Canada. Accessed: Jul. 18, 2023. [Online]. Available:

https://www.hitachi-hightech.com/ca/en/products/microscopes/sem-tem-

stem/sem/flexsem1000.html

[18] “PELCO® Faraday Cup.” Accessed: Feb. 12, 2024. [Online]. Available:

https://www.tedpella.com/calibration_html/Faraday_Cup_for_Electron_Beam_Curr

ent_Measurement.aspx

[19] Z. Gong, P. Zhong, and W. Hu, “Diversity in Machine Learning,” IEEE Access, vol.

7, pp. 64323–64350, 2019, doi: 10.1109/ACCESS.2019.2917620.

[20] J. Gostick et al., “OpenPNM: A Pore Network Modeling Package,” Computing in

Science & Engineering, vol. 18, no. 4, pp. 60–74, Jul. 2016, doi:

10.1109/MCSE.2016.49.

[21] J. C. Ferguson, F. Panerai, A. Borner, and N. N. Mansour, “PuMA: the Porous

Microstructure Analysis software,” SoftwareX, vol. 7, pp. 81–87, Jan. 2018, doi:

10.1016/j.softx.2018.03.001.

91

5 Optimizing SEM Parameters for Segmentation with

AI – Part 2: Designing and Training a Regression

Model

Sabrina Clusiau, Nicolas Piché, Benjamin Provencher, Mike Strauss, Raynald Gauvin

Manuscript currently under review

5.1 Preface

This chapter presents the second part of optimizing microscope parameters to improve image

quality. While the first part describes how a training set is generated, this second part explains

the intricacies behind designing and testing a model. A new model architecture is created to

perform tasks adapted to the specific context of improving the image quality for segmentation.

From the generated training set, the model is trained to predict the optimal beam energy and

probe current to set during acquisitions on the SEM. The predicted microscope parameters will

modify output image quality to simplify the segmentation of designated features in Part 1.

With new model architectures, model parameters need to be optimized for best performance,

achieved by training and testing. First, learning curves are plotted during training with the

generated training set to supervise the model as learning progresses. Then, model accuracy is

obtained by testing model predictions with a portion of the generated data for training (split into

training, validation and testing sets). Once high accuracy is achieved, the model is tested in real

time, by integrating predictions into a routine acquisition on the SEM. Model testing in this

context will ultimately provide insight on how to proceed in the future to generate an adequate

training set for other samples in other contexts.

92

5.2 Abstract

Selecting the best microscope parameters for optimal image quality currently relies on

microscopists; there exist no procedures or guidelines for tuning parameters to ensure the desired

image quality is achieved. More importantly, for quantitative analysis purposes, adequate image

quality for segmentation should be prioritized. This paper is the second of two parts, describing a

regression model, mixed input, multiple output with Keras TensorFlow, trained to predict the

beam energy and probe current, two important parameters for image quality. Specifically,

parameters are predicted to optimize the image quality for segmentation, using a generated

training set, as described in Part 1 of this paper. Model performance is then tested on models

trained with multiple different training sets, and with different proportions of simulated and

acquired data. First, to examine the impact of the training set on the prediction accuracy and

then, to evaluate the importance of including real data during training. The model successfully

predicted the beam energy and probe current to set on the microscope to improve image quality

for segmentation. Models trained with both simulated and acquired data performed the best, as

evaluated by their efficacy at improving the image quality for feature segmentation.

93

5.3 Introduction

Segmentation is a necessary postprocessing step for quantitative analysis, however, it is not

always a simple task. Although image processing software offer multiple segmentation

algorithms to avoid manual labelling, these algorithms do not always perform well on provided

data. The choice of microscope parameters set during acquisitions contribute to image quality for

segmentation. The wrong set of parameters can completely hide features to quantify, making it

difficult for segmentation algorithms to perform well; or conversely, the appropriate selection of

parameters can produce images that highlight features of interest and allow them to be

segmented easily. Suitable microscope parameter selection will generally determine the outcome

of segmentation success.

Optimizing microscope parameters for quantitative microscopy currently relies on microscopist

expertise. It is not reproducible, since microscopists will select the parameters such as the beam

energy, the beam current, the magnification, and the capture settings depending on their personal

insights, prior knowledge, and competencies. Appropriate parameter selection requires an

understanding of how electrons interact with the sample, depending on the sample composition.

Furthermore, it is time consuming to manually cycle through beam alignment and parameter

tuning while searching for the desired image quality, even for more experienced microscopists.

More importantly, even if the selected combination of parameters produces impressive, high-

quality images, there is no guarantee that they will be segmented easily by algorithms during

postprocessing steps. Without successful segmentation algorithms, users must resort to the

alternative, manual labelling, which is known to be extremely time consuming and tedious, and

consequently cost ineffective.

94

The goal is to ensure that acquired images will be segmented easily, more specifically, that the

features to quantify are easily segmented. The proposed solution is to integrate artificial

intelligence (AI) within SEM acquisition workflows to consistently obtain images that are

optimized for efficient segmentation. A regression model is trained to automatically suggest

microscope parameters to set during acquisitions, allowing microscopists to spend their time

acquiring data instead of tuning parameters.

By training a regression model with supervised learning to automatically suggest what

microscope parameters to select, we can improve and simplify data acquisition with SEMs for

quantitative analysis by:

- Ensuring the success of segmentation algorithms, by producing images for that purpose

(efficiency).

- Providing an unbiased selection of microscope parameters with observed consistency

throughout images (reproducibility).

- Eliminating the need for an expertise on electron material interactions, to produce

desirable images (accessibility).

The following paper will first present the regression model architecture, explaining its design.

Then, the model is integrated into a usual SEM workflow, demonstrating how predictions are

applied for testing. Finally, the model performance is summarized.

95

5.4 Model architecture

5.4.1 Overview

The overview of the model architecture is shown in Figure 5.1, built in Python with Keras

TensorFlow. The model is a Functional API, a highly flexible model structure that handles any

type of input, numerical or image, combined to predict multiple or single outputs [1]. Acquired

or simulated training examples include a BSE image, Dice score, beam energy and probe current.

These are imported and contained in a Python Pandas DataFrame [2]. BSE images are simulated

using MC X-ray or acquired on a SU8230 SEM from Hitachi, Dice scores are computed from the

BSE image segmentation, and the beam energy and probe current are the parameters used when

simulating or acquiring the BSE image.

The inputs to the model are the BSE images, and their associated Dice score. The BSE image is a

2D array of pixel values normalized between 0 and 255, and the Dice score is numerical data, a

value between 0 and 1. The outputs are the parameters to predict, the beam energy and the probe

current. Combining image data and numerical data as inputs with two outputs, makes the model

mixed input, multiple output. A complete description of the training set and how it is generated is

covered in Part 1 of this paper.

As shown in Figure 5.1, the BSE image is the input to a convolutional neural network (CNN)

and the Dice score is the input to a multi-layer perceptron (MLP). A CNN is generally used to

train image data, it is preferred since the model will learn information about neighboring pixels

during training, whereas a MLP for image data requires vectorization and collapsing the 2D

image into a 1D vector will result in loss of spatial information [3]. CNNs will maintain the 2D

96

structure of the input, and layers will pass filters on inputs to extract features. Following the

CNN and MLP layers the inputs are merged with a concatenate layer in Keras TensorFlow [4] to

predict the outputs.

The model is designed as such since the goal is for the model to suggest acquisition parameters

to set on the microscope. The concept behind including the BSE image as input is for the model

to analyze the image and suggest parameters that will improve the image quality. More

importantly, the Dice score is included as input as well, for the model to suggest parameters that

will successfully improve the image quality for segmentation. For instance, if the input BSE

image has a high amount of noise, or low SNR, and the input Dice score is high, the model

should suggest a higher probe current.

Figure 5.1 Regression model architecture.

97

5.4.2 Model parameters

A more detailed description of the model architecture is illustrated in Figure 5.2, with all model

hyperparameters summarized in Table 5.1 and training details in Table 5.2. There are many

parameters to consider when creating model layers, including the depth or number of layers, the

number of weights for the MLP layers, the filter sizes, and the number of filters for CNN layers

and the input dimensions. Then, there are also techniques to implement at each layer to optimize

model performance such as regularization, max pooling, dropout, padding or adding an

activation function. Finally, training parameters like the learning rate, the optimizer and the loss

need to be selected [5].

Increasing the depth of the model will generally help improve the performance, the exact number

of layers was selected depending on the performance during training [6]. The resulting

architecture consists of four convolutional layers, two layers of weights for the MLP and two

dense layers after the concatenate layer. The last layer, for each output has a linear activation

function since outputs are continuous values, as the model solves a regression problem, not

classification.

98

Figure 5.2 Detailed schematic of model architecture.

Following best practices, the number of weights used per layer increases as the layer is deeper in

the model [7]. The best depth and width of layers was found by trial and error, evaluating model

performance during training with a validation set and testing set. For MLP layers, the first starts

with 2 weights and increases to 8 for the second layer. Similarly, the first dense layer after the

concatenate layer starts with 64 weights and increases to 128 weights for dense layer 2. For

convolutional layers, a similar concept is implemented. The number of filters used per layer

increases as the layers are deeper within the model, conv 1 has 16 filters, conv 2 has 32, conv 3

has 64 filters and conv 4 has 128 filters, and all filter sizes are the same at 3x3. Filter size, also

known as the receptive field size, are selected to be as small as possible since the input image

size is relatively small. Larger filter sizes (5x5 or 7x7) are typically used on larger image sizes

[7].

Often, regularization is a technique applied to layers with a high number of weights to manage

overfitting [8]. As listed in Table 5.1, L2 regularization is applied to layers Dense 2, Conv 3 and

99

Conv 4. Max pooling is applied after every convolutional layer to down sample the feature map

and emphasize strong features in the images [9].

Model parameters are listed in Table 5.2, the input dimension of images is 130x130x1 and the

ReLU activation function [10] is used at every layer, except the last output layers that have a

linear activation function. Adding an activation function to layers will increase the model’s

expressiveness, a technique used to avoid underfitting. A standard loss function for regression

models is used, the mean squared error (MSE) [11], although other loss functions (mean absolute

error) were also tested. The metric used to evaluate the model’s performance on the test set is the

adjusted R squared score and explained variance score [12], where results are expressed as

percentages and more easily interpreted for performance than a loss value. Commonly, the

optimizer that implements the Adam algorithm is applied, since it is computationally efficient

and converges well [13]. A typically low learning rate of 0.001 is used as an initial value and the

entire data is split randomly into 90% training data, 5% validation data and 5% testing data. Data

augmentation was not included for the current context since data generation scripts can simply

launch more simulations and generate more training examples, if ever more training data is

required.

Finding the appropriate amount of data for training is a known uncertainty with deep learning

models. Splitting the data with multiple percentages of train, validation, and test sets, can help

establish what amount of training data is necessary for satisfactory model performance. The

model should be trained often to evaluate if prediction behavior is as anticipated, or if any

corrections are needed.

100

Layer Regularization Weights
Number
of filters

MLP 1 - 2 -

MLP 2 - 8 -

Dense 1 - 64 -

Dense 2 L2 128 -

Conv 1 - - 16

Conv 2 - - 32

Conv 3 L2 - 64

Conv 4 L2 - 128

Table 5.1 Layer parameters

Input dimension 130x130x1

Layer activation function ReLU

Loss function Mean squared error

Metric Adjusted R2 score

Optimizer Adam

Learning rate 0.001

Training data percentage 90

Validation data percentage 5

Test data percentage 5

Table 5.2 Summary of model variables set for training.

The model is designed diligently for best prediction accuracy, and it can be trained with any

training set, from any sample. Indeed, the model should be recycled for any context, while the

inputs and outputs provided for training may vary, the model architecture remains.

101

5.5 Model training

The listed hyperparameters and training details in Section 5.4.2 were mainly selected based on

review of literature of basic deep learning principles and trial and error during training. Once a

considerable amount of data is generated or collected, it is relevant to start training the model to

evaluate the performance and make modifications to the model or the training set iteratively.

Specifically, the portion of data set aside for validation was heavily used to tune hyperparameters

and train the model adequately.

5.5.1 Callbacks

Keras Tensorflow offers built-in callbacks that are easily included in scripts, to optimize training.

More specifically, three callbacks are implemented during training. The first callback notifies

when an epoch is complete, providing the current loss value. The model loss during training can

therefore be plotted dynamically to monitor training progress and determine if the algorithm is

converging adequately. Plotted learning curves are shown in Figure 5.3.

The second callback included is ReduceLROnPlateau [14], to monitor the slope of the plotted

model loss curves. Parameters used for the callback are listed in Table 5.3, the monitored loss is

specified, often the validation loss is preferred. When the loss no longer improves (or plateaus)

for a specified number of epochs, defined by the patience, the callback signals to decrease the

learning rate by a specified factor. The learning rate will decrease up to a minimum value, also

specified when instantiating the callback. Decreasing the learning rate at the right moment will

stabilize the training and help the algorithm converge more easily. Without this callback the

learning rate will remain the same as the initially specified value throughout training.

102

EarlyStopping [15] is the third implemented callback that also monitors the slope of the plotted

model loss curve. Parameters used for the callback are also listed in Table 5.3, the metric to

monitor is selected, often the validation loss, and the callback will signal a halt in training when

the loss no longer improves for a number of epochs (patience) within the range of a given delta.

The loss function is considered to improve when decreasing, however other metrics can improve

by increasing. The selected mode, minimum or maximum, will designate what to consider as an

improvement. Without this callback, the model will continue to train for the defined number of

epochs prior to beginning training, with no consideration for how the model is performing.

Training for an unnecessary number of epochs can lead to overfitting.

 Beam energy Probe current

ReduceLROnPlateau

Monitor Validation loss Validation loss

Factor 0.06 0.08

Patience 50 90

Minimum LR 0.0001 0.0001

EarlyStopping

Monitor Validation loss Validation loss

Minimum delta 0.00001 0.00001

Mode Minimum Minimum

Patience 70 70

Table 5.3 Parameters used to initialize callbacks ReduceLROnPlateau and EarlyStopping during

training.

5.5.2 Learning curves

During training, model performance is tracked, as mentioned, by plotting dynamic validation

curves, orange curves in Figure 5.3 and training curves, blue curves in Figure 5.3, of the MSE

loss and R squared score. Learning curves are frequently used to diagnose model performance,

103

they are helpful for tuning model parameters listed in Table 5.1 and Table 5.2 including the

number of layers (model depth), the CNN filter sizes, the learning rate and more [16]. Models

that overfit or underfit the training set will have training and validation curves with typical

features [17]. Interpreting and comparing training and validation curves is extremely helpful for

optimizing model parameters and it is common practice during training.

The final validation curves obtained, after model parameter optimization and including

callbacks, are shown in Figure 5.3. The losses are plotted over epochs, shown on the x axis, and

after about 100 epochs, an obvious stabilization of the curves is observed due to the

ReduceLROnPlateau callback. Also, the number of epochs specified for training was 300,

however the model stops training after about 120 epochs, the result of the EarlyStopping

callback.

Once the training and validation show typical features of a good fit model, the trained model is

ready for testing. The portion of data kept for testing is used to predict with the model and

evaluate model performance. With this architecture and these parameters, the model performs

relatively well on the test set with a 93% R squared score for predicting the beam energy and

98.8% R squared score for predicting the probe current. With satisfactory results, the trained

model is saved and easily integrated to data acquisition workflows to predict values.

104

Figure 5.3 Training and validation curves for the MSE beam energy loss, MSE beam current

loss, adjusted R squared score for beam energy and adjusted R squared score for beam current.

5.6 Model testing

5.6.1 Workflow

The trained model is integrated into a SEM acquisition workflow for testing, as illustrated in

Figure 5.4A. The workflow steps include first loading the sample, and aligning the beam at any

two arbitrary parameters, in Figure 5.4A, the beam energy is initially set to 8 keV and the probe

current to 13 pA. With the parameters set, the input image is obtained with a BSE detector,

shown in Figure 5.4A. The input image contains visible Pt NPs, however, there is no way to

determine how easily the NPs will be segmented in this image with Otsu thresholding.

The image is then sent to the model, requesting a relatively high Dice score of 90%, to get a

satisfactory segmentation. The trained model will suggest parameters, for this specific case, the

suggested beam energy is 3 keV and the suggested probe current is 130 pA. The new parameters

are set on the microscope and the beam is aligned to produce the resulting image in Figure 5.4A.

105

Figure 5.4 A. SEM data acquisition workflow with integrated model for parameter prediction.

With the input image and input desired Dice score, the model suggests parameters to set to

improve image quality for segmentation. Results of segmentation with Otsu thresholding B. of

initial input image in blue and C. of resulting image in orange.

At first glance, the image quality of the resulting image seems improved from the image quality

of the input image, facilitating the Pt NPs segmentation. The blue segmentation of the input

image includes a lot of noise and some of the CNT pixels are misclassified as well. The orange

segmentation of the resulting image is an obvious improvement, labelling only Pt NPs. The

noticeable improvement can be validated by computing the Dice score for both images. The

nanoparticles are segmented with Otsu thresholding for the input image shown in Figure 5.4B in

blue and for the resulting image shown in Figure 5.4C in orange. The Dice score for both images

is calculated by comparing each segmentation with the same manual segmentation. The initial

106

and final Dice scores calculated from the segmentations of the initial and final image

respectively, are used to evaluate the model performance. Indeed, parameters are selected to

optimize the quality of the segmentation. The objective is that the model suggests parameters that

will improve the segmentation of features of interest. The presented workflow, simplified in

Figure 5.5, provides a quantitative metric of model performance.

Multiple acquired BSE input images, with a constant requested Dice score of 90%, are used as

inputs to the trained model. All input images are acquired with different combinations of beam

energies (Xi), from highest energy to lowest, and probe currents (Yi), from highest current to

lowest. Testing a variety of initial combinations of parameters can help determine the model’s

prediction tendencies and how the model reacts to different input image quality. The model will

predict a beam energy (Xf) and a probe current (Yf), and the new parameters are set on the

microscope to obtain a resulting image. With an initial input image and a final resulting image,

the image quality is compared using the Dice score as previously mentioned. By comparing the

Dice score of the input image and the Dice score of the resulting image, it is possible to

determine model performance. Indeed, if the Dice final is higher than the Dice initial in Figure

5.5, then the model successfully suggested parameters that improved the image quality for

segmentation.

107

Figure 5.5 Generalized depiction of workflow to test model performance. Multiple images with

different combinations of beam energy (Xi) and probe current (Yi) are sent to the model to

evaluate output parameters suggested by the model. Performance is quantified comparing the

Dice final and Dice initial.

5.6.2 Test data

For testing, a total of 34 input images are acquired with the SU8230 SEM from Hitachi, using

the BSE detector. Images are taken at different beam energies and probe current, but also at

different magnifications, 60,000x, 80,000x, 100,000x and 200,000x. Table 5.4 summarizes the

parameters used for each of the 34 input images, including the associated Dice score computed

by comparing the segmentation with Otsu thresholding of the input image with a manual

segmentation. The mean Dice score of all input images in Table 5.4, or mean Dice initial, is

66.6%.

Magnification
(1000x)

Beam
energy
(keV)

Probe
current

(pA)

Dice
score
(%)

Magnification

(1000x)

Beam
energy
(keV)

Probe
current

(pA)

Dice
score
(%)

60 1 381 53.2 80 1 27 14

60 5 90 72.2 80 12 102 86.3

60 10 104 79.8 80 12 9 76.6

60 10 34 85.8 100 5 6 41.8

60 7 7 83.2 100 5 90 58.9

60 12 9 74.5 100 20 114 76.1

60 12 57 83.2 100 10 153 75.2

60 20 12 58.5 100 2 10 28.8

60 20 326 81.2 100 1 175 66

60 15 51 84.4 100 12 18 76.1

60 2 73 72.8 100 1 88 52.4

80 10 9 66.3 200 3 4 47.1

80 10 4 24.9 200 7 116 67.8

80 2 106 73.5 200 3 17 66.7

80 3 81 78.8 200 15 8 72.3

80 7 22 69.3 200 15 151 74.5

80 5 66 60.6 200 2 106 82.9

108

Table 5.4 Parameters used to acquire input images for model performance testing.

5.6.3 Training sets

With all data combined, there are 6722 simulated BSE images and 462 acquired BSE images.

The training set is notably disproportioned, simulations are much more abundant than real SEM

data. As mentioned in Part 1 of this paper, simulations are easier to generate for many reasons,

notably the workflow for generating simulated training examples is fully automated, whereas the

workflow for generating acquired training examples has multiple manual steps. Consequently,

the training set is imbalanced. Using different proportions of the simulated training examples

with all the acquired training examples produces multiple training sets, as illustrated in Figure

5.6. The objective is to train the model separately with different training sets, to then determine

which model performs best. The two main observations to be made are: first, the effect of the

training set size or the number of required training examples for acceptable model performance;

second, the contribution of the amount of acquired data included in the training set on model

performance.

Reducing the number of simulations will increase the weight of the real data for training,

summarized in Table 5.5. Training set 1 consists of 100% of the BSE simulated images only (no

real data is included). Training set 2 consists of all the available data, 100% of the BSE simulated

images and all the real data, the real data represents 6.4% of the training set. Training set 3 is half

of the simulated images, randomly selected, including all the real data, the real data represents

12% of the training set. Training set 4 is a quarter of the simulated images, also randomly

selected, including all the real data, the real data represents 21% of the training set. Training set 5

109

is reduced to 15% of the simulations with all the real data, the real data represents about a third

of the training set. Finally, training set 6 consists of only the real data (no simulated images are

included).

Figure 5.6 Training sets with varying proportions of simulated and acquired data.

Training set
Percentage
simulations

(%)

Weight of
real data

(%)

1 100 0

2 100 6.4

3 50 12

4 25 21

5 15 31

6 0 100

Table 5.5 Training set proportions of simulated and acquired data.

5.7 Model performance

Once the model is trained with one of the above listed training sets, it is saved, to be used to

predict parameters with the 34 input images. All models receive the same input images, to then

110

assess if the Dice score of the resulting image is higher than the Dice score of the input image.

Therefore, for a total of six models, performance is tested by evaluating their efficiency at

suggesting parameters that improve image quality for segmentation, or increase the Dice score,

as previously described. The mean Dice score of the 34 resulting images from suggested

parameters (mean Dice final) is computed for all 6 models. The model performance is

determined by evaluating the mean Dice final and the mean Dice initial from the input images.

The results are summarized in Figure 5.7, the model trained with training set 1, simulations only,

performed the least well. It predicted parameters that produced images with a mean Dice score of

62%. Its success rate was low, at only 26.5%, meaning that the model only successfully

increased the Dice score for a little over a quarter of the images. When the real data is included

in the training set, the models perform much better. The training set 2, that includes the entirety

of the available data, predicts parameters that produce images with a mean Dice score of 82.4%

and it successfully increased the Dice score for 85.3% of the input images. The mean Dice score

is 80.5%, with a success rate of 79.4% for the model trained with training set 3, with 50% of the

simulated data and all the real data. The mean Dice score computed for the model trained with

training set 4, with 25% of the simulated data and all the real data, is 82.5% with the highest

success rate of 94%. The last mixed training set, training set 5, with 15% simulated data and all

the real data, has a mean Dice score of 81.6% with a success rate of 88.2%. Finally, the training

set 6, with real data only, predicted parameters that produced images with a mean Dice score of

74.2% and has a success rate of 73.5%.

111

 Figure 5.7 Resulting mean Dice score and success rate for models trained with all training sets.

5.8 Discussion

5.8.1 Training sets

The results show that model performance depends on the data used for training. As anticipated,

models that included both simulated and acquired data (mixed training sets 2, 3, 4, 5), perform

similarly and much better than models trained with only simulated data or only acquired data

(training sets 1 and 6). Even with a small percentage of real data included to the training set, the

model performance is notably improved, suggesting that acquired training examples provide

information to the model that the simulated training examples do not.

Mixed training sets are likely to produce better results for three main reasons. First, the data is

more diversified when mixed. The model can learn from examples that vary significantly, from

simulated data produced with controlled parameters to acquired data influenced by microscopist

contributions for stigmatism correction, focus, contrast, brightness selection and more.

112

Second, with the mixed training set, the model can benefit from a greater amount of training

examples. The simulations only training set size is relatively large enough, however, the real data

only training set size is the smallest, and its trained model could potentially produce better results

with more data. Acquiring real data, aligning the beam after every parameter change, followed

by necessary post processing, including manual segmentation, is time consuming, cost

ineffective and tedious. The 462 training examples collected on the SEM are sufficient to

demonstrate that including real images for training has a significant impact on model

performance, although insufficient for best performance alone.

Third, the model trained with the simulations only training set has a questionable performance,

especially since the objective is to avoid including real data for training. It is most important to

note that the model is tested with real data (testing set), 34 images acquired on the SEM, as

described in Figure 5.5. For successful predictions, the training set should reflect the testing set

as much as possible. When creating virtual samples, some unintentional discrepancies between

the real sample and the virtual samples were introduced, altering the model’s prediction

performance. As seen in Figure 5.8, the real sample includes CNTs, whereas the virtual samples

do not, the current design, to label the background as carbon, is evidently oversimplified. In

some cases, especially for lower energies, the CNTs become very apparent in the SEM acquired

images as shown in Figure 5.8 (left) and are classified with the nanoparticles because Otsu

thresholding is not a specific algorithm. The Otsu segmentation of an acquired image at 2 keV

and 169 pA is shown in Figure 5.8 (right) in yellow, demonstrating the issue. For the model to

successfully suggest parameters that differentiate CNTs from Pt NPs in the testing set, improving

the performance, CNTs should be included in the virtual samples.

113

Figure 5.8 (Left) Acquired BSE image at 2 keV and 169 pA of CNTs and Pt NPs. (Right)

Segmentation obtained with Otsu thresholding, in yellow, of acquired BSE image.

Also, the real sample is much thicker, not electron transparent, as compared to the virtual

samples, designed relatively thin. Sample thickness has an impact on the resulting BSE images,

especially when varying the beam energy. At higher energies, for thin virtual samples, electrons

pass through and lower the number of detected BSEs, resulting in less signal. Consequently, the

model trained with simulation-only data typically suggested lower beam energies (1-2 keV)

because BSE simulated images at lower energies produced more signal. However, during testing,

when very low beam energies were set on the microscope, images did not have the desired image

quality for segmentation, impacting the model’s prediction accuracy.

The model learns practical information during training when real data is included in the training

set. Therefore, two major improvements in virtual sample design should be considered in the

future for best model performance: virtual sample design that is much more representative of the

real sample, include CNTs and appropriate sample thickness, and use of more specific

segmentation algorithms, rather than thresholding, to differentiate nanoparticles from nanotubes.

114

5.8.2 Model performance testing

A few important points are to be mentioned about how the testing was conducted to evaluate

model performance. First, the model was only tested with an input Dice score of 90%, selected

because it is a relatively high score. However, model performance should be tested with multiple

different Dice scores, higher and lower than 90% to assess prediction tendencies. Theoretically,

requesting a Dice score of 100% should increase the model performance, and requesting a Dice

score of 80% should lower the model performance, but this is yet to be confirmed

experimentally.

Second, four out of the six training sets used to evaluate model performance are mixed, including

portions of the simulated data, selected at random. Further testing should be conducted, first by

splitting the simulation data into smaller steps to find the ideal ratio for best model performance.

Currently, the simulated data is split at 15%, 25%, 50% and 100%. The optimal split can be

found by evaluating model performance with training sets consisting of more gradual portions of

simulated data combined with real data. Also, data is selected randomly, which could impact the

outcome of model performance. Some portions of the simulated data could lead to improving the

model’s prediction accuracy, while other training examples could impair it. Model performance

should be evaluated multiple times for a specific split, but with different random portions of the

simulated data, to ensure that performance is not correlated to the data included in the training

set.

Lastly, model performance was evaluated using the mean Dice score and the success rate, or how

often the model successfully suggested parameters that increased the final Dice score from the

115

initial Dice score. However, the success rate only confirms that the model increased the Dice

score, but it does not specify by how much. For instance, trained models that suggest parameters

that increase the Dice score by 20% should be selected over trained models that only increase the

Dice score by 1%. Therefore, success rate efficiency should also be considered, as it is valuable

information to include when evaluating the model’s prediction accuracy.

5.9 Conclusion

A carefully tailored mixed input, multiple output model was trained to successfully suggest the

beam energy and probe current on the SEM for improved image quality for segmentation.

Results depend on training sets used to train the model and further testing could potentially help

improve the model. Eventually, when a model is sufficiently trained, users can choose to

integrate pretrained models to acquisition workflow or train their own model with their own

dataset to set microscope parameters.

116

5.10 References

[1] “The Functional API | TensorFlow Core,” TensorFlow. Accessed: Sep. 15, 2023.

[Online]. Available: https://www.tensorflow.org/guide/keras/functional_api

[2] “pandas documentation — pandas 2.2.0 documentation.” Accessed: Feb. 08,

2024. [Online]. Available: https://pandas.pydata.org/docs/index.html

[3] K. P. Murphy, Machine learning: a probabilistic perspective. in Adaptive

computation and machine learning. Cambridge, Mass.: MIT Press, 2012.

[4] K. Team, “Keras documentation: Concatenate layer.” Accessed: Sep. 15, 2023.

[Online]. Available: https://keras.io/api/layers/merging_layers/concatenate/

[5] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and

Applications.” arXiv, Mar. 12, 2020. doi: 10.48550/arXiv.2003.05689.

[6] S. Ghosh and S. Ghosh, “Exploring the Ideal Depth of Neural Network when

Predicting Question Deletion on Community Question Answering.” arXiv, Dec. 07,

2019. doi: 10.48550/arXiv.1912.03585.

[7] J. Brownlee, “Crash Course in Convolutional Neural Networks for Machine

Learning,” MachineLearningMastery.com. Accessed: Feb. 16, 2024. [Online].

Available: https://machinelearningmastery.com/crash-course-convolutional-neural-

networks/

[8] K. Pykes, “Fighting Overfitting With L1 or L2 Regularization: Which One Is

Better?,” neptune.ai. Accessed: Feb. 16, 2024. [Online]. Available:

https://neptune.ai/blog/fighting-overfitting-with-l1-or-l2-regularization

[9] “Max Pooling,” DeepAI. Accessed: Feb. 16, 2024. [Online]. Available:

https://deepai.org/machine-learning-glossary-and-terms/max-pooling

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. in Adaptive computation

and machine learning. Cambridge, Massachusetts: The MIT Press, 2016.

Accessed: Apr. 14, 2023. [Online]. Available: http://www.deeplearningbook.org/

[11] “Mean Squared Error : Overview, Examples, Concepts and More | Simplilearn,”

Simplilearn.com. Accessed: Feb. 16, 2024. [Online]. Available:

https://www.simplilearn.com/tutorials/statistics-tutorial/mean-squared-error

[12] G. Casella and R. L. Berger, Statistical inference, 2nd ed. in Duxbury advanced

series in statistics and decision sciences. Australia: Thomson Learning, 2002.

Accessed: Feb. 16, 2024. [Online]. Available:

http://catdir.loc.gov/catdir/enhancements/fy1302/2001025794-t.html

[13] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan.

29, 2017. doi: 10.48550/arXiv.1412.6980.

117

[14] K. Team, “Keras documentation: ReduceLROnPlateau.” Accessed: Sep. 15, 2023.

[Online]. Available: https://keras.io/api/callbacks/reduce_lr_on_plateau/

[15] K. Team, “Keras documentation: EarlyStopping.” Accessed: Sep. 15, 2023.

[Online]. Available: https://keras.io/api/callbacks/early_stopping/

[16] J. Brownlee, “How to use Learning Curves to Diagnose Machine Learning Model

Performance,” MachineLearningMastery.com. Accessed: Sep. 15, 2023. [Online].

Available: https://machinelearningmastery.com/learning-curves-for-diagnosing-

machine-learning-model-performance/

[17] K. S. V. Muralidhar, “Learning Curve to identify Overfitting and Underfitting in

Machine Learning,” Medium. Accessed: Feb. 17, 2024. [Online]. Available:

https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-

problems-133177f38df5

118

6 Concluding remarks

6.1 Conclusions

This thesis demonstrates in Chapters 3, 4 and 5 how computational microscopy, specifically with

SEMs, contributes to higher throughput and optimized workflows. In this study, software is

designed to control the SEM, a complex instrument, through external communication. The

practical implications of automation are clear, where optimizing workflows creates new

opportunities to assist microscopists during acquisitions. Microscopist should spend their time on

complex, innovative analysis rather than on of repetitive, tedious tasks. The proposed workflows

will minimize acquisition time, and consequently costs and beam exposure.

Automation with software enables new approaches to microscopy. Automated acquisitions can

run overnight and unattended when microscopes would normally be idle. Increasing the

microscope’s output will increase the amount of available data for analysis and more importantly,

guided acquisitions generate superior data. Indeed, by integrating segmentation algorithms to

find features of interest and guide acquisitions, more comprehensive data is obtained, faster. The

two main objectives of automation are to (1) track features throughout acquisitions and (2)

produce images with proper image quality for quantitative analysis, specifically for

segmentation. For this purpose, the proposed workflows in this thesis use artificial intelligence,

multiple detector signals and feedback loops between the instrument and software, to dictate

microscope positioning and tune microscope parameters.

Image processing software offer a strong basis for development of integrated solutions with

implemented frameworks, programmers consistently maintaining code and implementing new

119

computationally efficient algorithms. Microscopists are not software developers; they do not

have the capacity and resources to build powerful image processing software on their own time.

Building methods for acquiring data in collaboration with existing image processing software is

key to the efficient and robust progress of optimization in microscopy. For this reason,

workflows presented in this thesis were developed as scripts in the Dragonfly environment, a

proficient image processing software. The approach is to import images to Dragonfly, rather than

creating an entirely new platform from scratch, where multiple image processing algorithms are

available and implemented. Many tools were found useful during the development of presented

workflows, including the virtual microscope, segmentation algorithms, stitching and registration

algorithms and data storage. Built in frameworks eliminate the need for recreating existing code,

leaving room for innovation. Image processing software is an important resource for the

development of new computational methods in microscopy. Once merged with acquisitions,

workflows have the potential to fill important gaps in existing systems.

As for contributions related to optimizing microscope parameter selection, multiple findings

provide a new perspective in quantitative microscopy. Images are not necessarily acquired for

esthetical purposes but rather, for obtaining quantitative results. More accurate data is acquired

by suggesting parameters that generate the best image quality for segmentation. Parameters

should be tuned according to algorithms, thereby eliminating any inherent microscopist bias.

When parameter selection relies on microscopists, workflows are not reproducible, but also

depend on individual expertise to correctly set up the instrument.

Segmentation is the known bottleneck step during quantitative analysis that can be overcome by

optimizing microscope parameters during acquisitions. Effectively, enhanced acquisitions will

produce images that are successful for obtaining quantitative results including the number, shape,

120

3D distribution, connectivity, and integrity of structures. Quantitative microscopy also becomes

more accessible to scientists, without the need for prior knowledge on electron-material

interactions for obtaining desired image quality. Acquired images are guaranteed to be easily

segmented, presenting evident practical implications.

121

6.2 Contributions to original knowledge

- Automation of repetitive tasks through microscope control and integrating microscope

tasks with image processing tasks are not original ideas. However, the methods used for

automation are unique to this study. By coding in the Dragonfly software environment,

all image processing algorithms are available to implement seamlessly for quicker

development of innovative acquisition routines.

- This is the first study to automate a complete workflow on the SEM, with added

intelligence, from acquisitions to image processing to quantitative analysis. Automation

has important practical implications in microscopy. Strategies used to accomplish

automation include guiding the beam or stage to specific positions on the sample,

collecting information from multiple signals, importing images to Dragonfly, applying

stitching and segmentation algorithms and computing measurements.

- Feature tracking by converting a segmented reference image to a graph is an innovative

technique. The beam is relocated at imaging sites with the graph vertex positions, using

an established referential between the imaging processing software and the microscope

stage. This technique is termed smart beam positioning for guided acquisition, described

in Chapter 3.

- The deep learning model designed for suggesting microscope parameters to set during

acquisitions is an original contribution. This is the first study to train a model to suggest a

beam energy and probe current for improved image quality. A properly trained model can

replace parameter tuning routines.

122

- This is the first study to create scripts for automatically generating high volumes of

training examples with MC X-ray. Simulations are essential to obtaining the required

quantity of data for training.

- This is the first study to train a model that suggests parameters during acquisitions to

improve image quality for segmentation. Quantitative analysis of images relies on

segmentation and segmentation results depend on image quality. Optimizing microscope

parameters for segmentation has important practical implications in microscopy.

123

6.3 Future work

This study contributes to the work performed towards computational microscopy. Specifically,

towards combining microscopy techniques with image processing algorithms. The work

completed on the SEM for workflow automation and parameter selection requires a user-friendly

interface for adaptability purposes. Scripts developed in Dragonfly should be translated to a

plugin for microscope control, available in the software. In the form of a plugin, computational

microscopy is much more accessible. Users do not need to know how to read and modify code

snippets. Users should potentially customize and build their workflows with selected algorithms

and monitor acquisition progression. For this, future work on developing a user interface is

required, creating generalized solutions that users can customize individually. The code can be

extended to other microscopes as it was not designed for a specific microscope system.

Furthermore, the work would be extended to the FIB-SEM, a dual beam system, controlling both

the FIB and the electron beam. Having already accomplished a considerable amount with one of

the two beams, the SEM, functionalities can be added to tackle the FIB. Although the level of

complexity is increased with the addition of the FIB, workflows can certainly be automated with

integrated image processing algorithms. Tracking features and optimizing parameters is

especially significant when performing 3D imaging, as the FIB slices through layers and the

SEM images newly exposed surfaces.

Only two microscope parameters were selected for optimization in Chapters 4 and 5, the beam

energy and the probe current. As a future direction, more parameters will be incorporated into

predictions, namely the acquisition time. Minimizing the acquisition time, all the while

124

conserving the appropriate image quality for segmentation can be beneficial for multiple reasons.

It generates quicker results for analysis and reduces the exposure time to the sample. Although

images may be noisier and less esthetically pleasing with lower acquisition times, image quality

will be proper for segmentation and therefore for quantitative analysis.

Automation of alignment routines is an additional prospective goal to simplify microscope tasks

and assist microscopist, specifically, by sending commands to adjust the focus and stigmatism

settings with artificial intelligence and by measuring the sharpness of images. Automated beam

alignment combined with automated parameter selection presents the ideal solution to creating

an acquisition set up efficiently and quickly on the SEM.

125

7 Bibliography

[1] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen, “Deep learning
for cellular image analysis,” Nat Methods, vol. 16, no. 12, Art. no. 12, Dec. 2019, doi:
10.1038/s41592-019-0403-1.

[2] J. I. Goldstein et al., “Electron Beam–Specimen Interactions,” in Scanning Electron
Microscopy and X-ray Microanalysis: Third Edition, J. I. Goldstein, D. E. Newbury, P.
Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Michael, Eds.,
Boston, MA: Springer US, 2003, pp. 61–98. doi: 10.1007/978-1-4615-0215-9_3.

[3] M. I. Szynkowska, “MICROSCOPY TECHNIQUES | Scanning Electron Microscopy,”
in Encyclopedia of Analytical Science (Second Edition), P. Worsfold, A. Townshend,
and C. Poole, Eds., Oxford: Elsevier, 2005, pp. 134–143. doi: 10.1016/B0-12-
369397-7/00385-X.

[4] “Contact - Institut de minéralogie, de physique des matériaux et de cosmochimie.”
Accessed: Feb. 21, 2024. [Online]. Available: https://impmc.sorbonne-
universite.fr/fr/plateformes-et-equipements/plate-forme-de-microscopie-electronique-
meb-fib/contact.html

[5] “Scanning Electron Microscopy | Nanoscience Instruments.” Accessed: Feb. 18,
2024. [Online]. Available: https://www.nanoscience.com/techniques/scanning-
electron-microscopy/

[6] A. Nanakoudis, “SEM: Types of Electrons and the Information They Provide,”
Advancing Materials. Accessed: Jun. 20, 2024. [Online]. Available:
https://www.thermofisher.com/blog/materials/sem-signal-types-electrons-and-the-
information-they-provide/

[7] “SEM working principle: the detection of backscattered electrons - CA.” Accessed:
Mar. 22, 2024. [Online]. Available:
https://www.thermofisher.com/ca/en/home/global/forms/industrial/backscattered-
electrons-sem.html

[8] “Different Types of SEM Imaging – BSE and Secondary Electron Imaging,” AZoM.
Accessed: Mar. 22, 2024. [Online]. Available:
https://www.azom.com/article.aspx?ArticleID=14309

[9] “Focused Ion and Electron Beam System Ethos NX5000 Series.” Accessed: Feb.
22, 2022. [Online]. Available: https://www.hitachi-
hightech.com/global/science/products/microscopes/focused-ion-beam-
systems/nx5000.html

[10] M. Dunlap and Dr. J. E. Adaskaveg, “Introduction to the Scanning Electron
Microscope Theory, Practice, & Procedures.” FACILITY FOR ADVANCED
INSTRUMENTATION, U. C. Davis, 1997.

[11] “Energy-dispersive detector (EDS),” Geochemical Instrumentation and Analysis.
Accessed: Feb. 18, 2024. [Online]. Available:
https://serc.carleton.edu/research_education/geochemsheets/eds.html

[12] A. Winkelmann, T. B. Britton, and G. Nolze, “Constraints on the effective electron
energy spectrum in backscatter Kikuchi diffraction,” Phys. Rev. B, vol. 99, no. 6, p.
064115, Feb. 2019, doi: 10.1103/PhysRevB.99.064115.

126

[13] D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis.
Oxford University Press, 1995.

[14] P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C
language for electron beam interaction —part I: Description of the program,”
Scanning, vol. 19, no. 1, pp. 1–14, 1997, doi: 10.1002/sca.4950190101.

[15] E. Lifshin, B. Thiel, and R. Gauvin, “The Validation of Monte Carlo Methods for
Scanning Electron Microscopy and Electron Microprobe Analysis,” Microscopy and
Microanalysis, vol. 11, no. S02, pp. 1346–1347, Aug. 2005, doi:
10.1017/S1431927605506792.

[16] K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, Use of Monte Carlo
Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy:
Proceedings of a Workshop Held at the National Bureau of Standards,
Gaithersburg, Maryland, October 1-3, 1975. U.S. Department of Commerce,
National Bureau of Standards, 1976.

[17] D. Drouin, P. Hovington, and R. Gauvin, “CASINO: A new monte carlo code in C
language for electron beam interactions—part II: Tabulated values of the mott cross
section,” Scanning, vol. 19, no. 1, pp. 20–28, 1997, doi: 10.1002/sca.4950190103.

[18] R. Gauvin, E. Lifshin, H. Demers, P. Horny, and H. Campbell, “Win X-ray: A New
Monte Carlo Program that Computes X-ray Spectra Obtained with a Scanning
Electron Microscope,” Microscopy and Microanalysis, vol. 12, no. 1, pp. 49–64, Feb.
2006, doi: 10.1017/S1431927606060089.

[19] “Dragonfly | 3D Visualization and Analysis Solutions for Scientific and Industrial
Data | ORS.” Accessed: Apr. 10, 2022. [Online]. Available:
https://www.theobjects.com/dragonfly/index.html

[20] O. Meckes and N. Ottawa, “Part 1: Optimizing the Image Output: Tuning the SEM
Parameters for the Best Photographic Results,” in Biological Field Emission
Scanning Electron Microscopy, John Wiley & Sons, Ltd, 2019, pp. 625–636. doi:
10.1002/9781118663233.ch30_1.

[21] “Comment pouvez-vous optimiser les paramètres d’imagerie MEB pour différents
échantillons ?” Accessed: Feb. 19, 2024. [Online]. Available:
https://fr.linkedin.com/advice/1/how-can-you-optimize-sem-imaging-parameters-
mdrnc?lang=fr

[22] H. Shroff, I. Testa, F. Jug, and S. Manley, “Live-cell imaging powered by
computation,” Nat Rev Mol Cell Biol, pp. 1–21, Feb. 2024, doi: 10.1038/s41580-024-
00702-6.

[23] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and
D. C. Joy, “Scanning Electron Microscope (SEM) Instrumentation,” in Scanning
Electron Microscopy and X-Ray Microanalysis, J. I. Goldstein, D. E. Newbury, J. R.
Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Eds., New York, NY:
Springer, 2018, pp. 65–91. doi: 10.1007/978-1-4939-6676-9_5.

[24] L. Tian and C. A. Volkert, “Measuring Structural Heterogeneities in Metallic
Glasses Using Transmission Electron Microscopy,” Metals, vol. 8, no. 12, Art. no. 12,
Dec. 2018, doi: 10.3390/met8121085.

[25] “How to Combat Electric Charge Buildup in Scanning Electron Microscopy |
Nanoscience Instruments.” Accessed: Feb. 19, 2024. [Online]. Available:

127

https://www.nanoscience.com/blogs/how-to-combat-electric-charge-buildup-in-
scanning-electron-microscopy/

[26] R. Chhetri, S. Preibisch, and N. Stuurman, “Software for Microscopy Workshop
White Paper.” arXiv, Apr. 30, 2020. doi: 10.48550/arXiv.2005.00082.

[27] Z. R. Fox et al., “Enabling reactive microscopy with MicroMator,” Nat Commun,
vol. 13, no. 1, Art. no. 1, Apr. 2022, doi: 10.1038/s41467-022-29888-z.

[28] T. Zachs et al., “Fully automated, sequential focused ion beam milling for cryo-
electron tomography,” Elife, vol. 9, p. e52286, Mar. 2020, doi: 10.7554/eLife.52286.

[29] S. Klumpe et al., “A Modular Platform for Streamlining Automated Cryo-FIB
Workflows.” bioRxiv, p. 2021.05.19.444745, May 20, 2021. doi:
10.1101/2021.05.19.444745.

[30] J. Na, G. Kim, S.-H. Kang, S.-J. Kim, and S. Lee, “Deep learning-based
discriminative refocusing of scanning electron microscopy images for materials
science,” Acta Materialia, vol. 214, p. 116987, Aug. 2021, doi:
10.1016/j.actamat.2021.116987.

[31] J. M. Serra Lleti, “Automated Correlative Light and Electron Microscopy using
FIB-SEM as a tool to screen for ultrastructural phenotypes.” Accessed: Feb. 21,
2022. [Online]. Available: https://archiv.ub.uni-heidelberg.de/volltextserver/26154/

[32] X. Casas Moreno, M. M. Silva, J. Roos, F. Pennacchietti, N. Norlin, and I. Testa,
“An open-source microscopy framework for simultaneous control of image
acquisition, reconstruction, and analysis,” HardwareX, vol. 13, p. e00400, Mar. 2023,
doi: 10.1016/j.ohx.2023.e00400.

[33] H. Pinkard et al., “Pycro-Manager: open-source software for customized and
reproducible microscope control,” Nat Methods, vol. 18, no. 3, Art. no. 3, Mar. 2021,
doi: 10.1038/s41592-021-01087-6.

[34] A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control
of microscopes using µManager,” Curr Protoc Mol Biol, vol. Chapter 14, p.
Unit14.20, Oct. 2010, doi: 10.1002/0471142727.mb1420s92.

[35] S. Tosi et al., “AutoScanJ: A Suite of ImageJ Scripts for Intelligent Microscopy,”
Frontiers in Bioinformatics, vol. 1, 2021, Accessed: Feb. 25, 2024. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fbinf.2021.627626

[36] “The SerialEM Home Page.” Accessed: Jan. 02, 2024. [Online]. Available:
https://bio3d.colorado.edu/SerialEM/

[37] N. O. Mahony et al., Deep Learning vs. Traditional Computer Vision, vol. 943.
2020. doi: 10.1007/978-3-030-17795-9.

[38] Y. Lai, “A Comparison of Traditional Machine Learning and Deep Learning in
Image Recognition,” J. Phys.: Conf. Ser., vol. 1314, no. 1, p. 012148, Oct. 2019, doi:
10.1088/1742-6596/1314/1/012148.

[39] R. Makovetsky, N. Piche, and M. Marsh, “Dragonfly as a Platform for Easy
Image-based Deep Learning Applications,” Microscopy and Microanalysis, vol. 24,
no. S1, pp. 532–533, Aug. 2018, doi: 10.1017/S143192761800315X.

[40] How to use a pretrained deep learning model for additive manufacturing porosity,
(Oct. 26, 2022). Accessed: Jan. 25, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=enkLJhnlG5k

128

[41] A. Durand et al., “A machine learning approach for online automated optimization
of super-resolution optical microscopy,” Nat Commun, vol. 9, no. 1, Art. no. 1, Dec.
2018, doi: 10.1038/s41467-018-07668-y.

[42] K. P. Murphy, Machine learning: a probabilistic perspective. in Adaptive
computation and machine learning. Cambridge, Mass.: MIT Press, 2012.

[43] A. Rosebrock, “Keras: Multiple Inputs and Mixed Data,” PyImageSearch.
Accessed: Jan. 29, 2024. [Online]. Available:
https://pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/

[44] C. Bishop, “Pattern Recognition and Machine Learning,” Jan. 2006, Accessed:
Jan. 26, 2024. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/pattern-recognition-machine-learning/

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. in Adaptive
computation and machine learning. Cambridge, Massachusetts: The MIT Press,
2016. Accessed: Apr. 14, 2023. [Online]. Available:
http://www.deeplearningbook.org/

[46] R. Rabbany, “CS551 McGill.” Accessed: Apr. 14, 2023. [Online]. Available:
http://www.reirab.com/Teaching/AML23/index.html

[47] “Building a Regression Multi-Layer Perceptron (MLP).” Accessed: Apr. 14, 2023.
[Online]. Available: https://kaggle.com/code/mejbahahammad/building-a-regression-
multi-layer-perceptron-mlp

[48] “MNIST handwritten digit database | BibSonomy.” Accessed: Jan. 29, 2024.
[Online]. Available:
https://www.bibsonomy.org/bibtex/2935bad99fa1f65e03c25b315aa3c1032/mhwomb
at

[49] A. Baldominos, Y. Saez, and P. Isasi, “A Survey of Handwritten Character
Recognition with MNIST and EMNIST,” Applied Sciences, vol. 9, no. 15, Art. no. 15,
Jan. 2019, doi: 10.3390/app9153169.

[50] N. Manral, “nipunmanral/MLP-Training-For-MNIST-Classification.” Jan. 30, 2024.
Accessed: Mar. 05, 2024. [Online]. Available: https://github.com/nipunmanral/MLP-
Training-For-MNIST-Classification

[51] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring
Catastrophic Forgetting in Neural Networks.” arXiv, Nov. 09, 2017. doi:
10.48550/arXiv.1708.02072.

[52] R. JAIN, “Convolutional neural networks(Part-1),” Medium. Accessed: Feb. 01,
2024. [Online]. Available: https://medium.com/@rajatjain0807/machine-learning-
6ecde3bfd2f4

[53] L. Gao, P.-Y. Chen, and S. Yu, “Demonstration of Convolution Kernel Operation
on Resistive Cross-Point Array,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 870–
873, Jul. 2016, doi: 10.1109/LED.2016.2573140.

[54] J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A guide to machine
learning for biologists,” Nat Rev Mol Cell Biol, vol. 23, no. 1, Art. no. 1, Jan. 2022,
doi: 10.1038/s41580-021-00407-0.

[55] “Papers with Code - U-Net Explained.” Accessed: Feb. 25, 2024. [Online].
Available: https://paperswithcode.com/method/u-net

[56] “ResNet: The Basics and 3 ResNet Extensions,” Datagen. Accessed: Feb. 25,
2024. [Online]. Available: https://datagen.tech/guides/computer-vision/resnet/

129

[57] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition.” arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556.

[58] “OpenAI Platform.” Accessed: Feb. 25, 2024. [Online]. Available:
https://platform.openai.com

[59] A. Krull, T.-O. Buchholz, and F. Jug, “Noise2Void - Learning Denoising from
Single Noisy Images.” arXiv, Apr. 05, 2019. doi: 10.48550/arXiv.1811.10980.

[60] “PyTorch,” PyTorch. Accessed: Feb. 25, 2024. [Online]. Available:
https://pytorch.org/

[61] “Keras | TensorFlow Core,” TensorFlow. Accessed: Feb. 25, 2024. [Online].
Available: https://www.tensorflow.org/guide/keras?hl=fr

[62] “scikit-learn: machine learning in Python — scikit-learn 1.4.1 documentation.”
Accessed: Feb. 25, 2024. [Online]. Available: https://scikit-learn.org/stable/

[63] J. Brownlee, “Your First Deep Learning Project in Python with Keras Step-by-
Step,” MachineLearningMastery.com. Accessed: Feb. 01, 2024. [Online]. Available:
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

[64] K. S. V. Muralidhar, “Learning Curve to identify Overfitting and Underfitting in
Machine Learning,” Medium. Accessed: Feb. 17, 2024. [Online]. Available:
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-
problems-133177f38df5

[65] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU).” arXiv, Feb.
07, 2019. doi: 10.48550/arXiv.1803.08375.

[66] T. Chen, Z. Zhang, S. Liu, S. Chang, and Z. Wang, “Robust Overfitting may be
mitigated by properly learned smoothening,” presented at the International
Conference on Learning Representations, May 2021. Accessed: Feb. 25, 2024.
[Online]. Available: https://research.ibm.com/publications/robust-overfitting-may-be-
mitigated-by-properly-learned-smoothening

[67] K. Pykes, “Fighting Overfitting With L1 or L2 Regularization: Which One Is
Better?,” neptune.ai. Accessed: Feb. 16, 2024. [Online]. Available:
https://neptune.ai/blog/fighting-overfitting-with-l1-or-l2-regularization

[68] H. Wu and X. Gu, “Max-Pooling Dropout for Regularization of Convolutional
Neural Networks,” arXiv.org. Accessed: Feb. 25, 2024. [Online]. Available:
https://arxiv.org/abs/1512.01400v1

[69] K. Team, “Keras documentation: Callbacks API.” Accessed: Feb. 25, 2024.
[Online]. Available: https://keras.io/api/callbacks/

