
IMPROVING COMPANION AI IN SMALL-SCALE ATTRITION
GAMES

by

Shuo Xu

School of Computer Science

McGill University, Montreal

October 2015

A THESIS SUBMITTED TO MCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2015 by Shuo Xu

Abstract

Artificial Intelligence (AI) has been widely used in modern video games for creating inter-

active non-player characters (NPC) and opponents. Although the design of NPC enemy AI

has been studied for years and has many commercial implementations such as StarCraft,

World of Warcraft, a good AI for NPC companions is still under-analyzed. In this thesis

we investigate several approaches for solving companion decision problems in small-scale

attrition games that involve two teams competing to eliminate the other. Then by introduc-

ing an action oriented analytical model, we analyze specific combat choices and improve

the existing greedy heuristics. Our experimental results show that the improved heuristics

indeed achieve better performance under various combat scenarios.

1

Résumé

L’intelligence artificielle (IA) est largement utilisée dans les jeux vidéo afin de créer des

personnages non-joueurs (PNJ) et des adversaires interactifs. Bien que la conception du

PNJ ennemi IA a été étudiée pendant de nombreuses années et a maintes applications com-

merciales dans des jeux tels que StarCraft et World of Warcraft, un bon IA pour les PNJ

compagnons reste encore sous-analysé. Dans cette thèse, nous examinons plusieurs ap-

proches pour résoudre les problèmes de décision de compagnon dans les jeux d’usure à

petite échelle impliquant deux équipes qui s’affrontent pour éliminer la partie opposante.

Ensuite, en introduisant un modèle analytique orienté vers l’action, nous analysons des

choix de combat spécifiques et améliorons les heuristiques gloutonnes déjà existantes. Nos

résultats expérimentaux démontrent que, effectivement, les heuristiques améliorées per-

forment mieux dans quantité de situations de combat.

2

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Professor Clark Ver-

brugge, who constantly encourages and helps me explore the AI area for modern computer

games. He also instructs me to write this thesis in a clean, concise and formal way. Without

his guidance this thesis would not have been completed.

I would also like to thank my fellow student, Jonathan Tremblay, who has helped me in-

vestigate several AI strategies including Rapidly Exploring Random Tree and Monte Carlo

Search.

Finally, I would like to thank to my parents and friends, who continuously support me

in pursing my M.Sc degree.

3

Table of Contents

1 Introduction 9

1.1 Contributions . 11

1.2 Thesis Roadmap . 11

2 Analytical Game Model 13

2.1 Introduction to the Game Model . 14

2.2 Basic Elements . 15

2.2.1 Players and Teams . 15

2.2.2 Moves . 17

2.3 Game Type . 19

2.4 Agent Decision Process . 20

2.5 Combat Configurations . 21

2.5.1 Fixed Assumptions . 22

2.5.2 Optional Assumptions . 23

2.6 Combat Flow . 23

2.7 Combat Result Evaluation . 24

2.8 Experimental Model . 27

2.8.1 The Pokémon Game and Combat 27

2.8.2 Experimental Setup . 29

3 Search Approaches 33

3.1 Search Process . 34

3.2 Search Tree . 34

4

3.3 Brute-Force Approach . 36

3.4 RRT Approach . 40

3.5 Limitations and the Next Step . 45

4 Heuristic Approach for Sleep Moves 46

4.1 Sleep Analysis . 47

4.1.1 Time-Damage Chart . 47

4.1.2 Trade-off Analysis . 50

4.2 Sleep Decisions . 54

4.3 Experiment . 55

5 Heuristic Approach for Heal Moves 62

5.1 Heal Move Setting . 62

5.2 Heal Analysis . 63

5.3 Heal Decisions . 65

5.4 Experiment . 66

6 An Experiment with All Move Types 75

6.1 Combined Smart Heuristic . 75

6.2 Experimental Setup . 76

6.3 Result . 77

7 Related Work 83

7.1 Analyzing Attrition Games . 83

7.2 Tree Search Strategies . 84

7.3 Other General AI Approaches . 85

8 Conclusions and Future Work 86

8.1 Conclusions . 86

8.2 Future Work . 87

5

List of Figures

2.1 A battle scene screenshot in Final Fantasy IV 14

3.1 A tree link connecting two nodes . 35

3.2 Relation of K, average time cost, and the probability of a solution 44

4.1 Time-damage chart for c1 against e1 . 48

4.2 Time-damage chart for c1, c2, c3 against the enemy team 48

4.3 Time-damage chart for c1, c2, c3 against the enemy team with sleep involved 49

4.4 Time-damage chart for e1, e2, e3 against the companion team with sleep

involved . 50

4.5 Total remaining health of companions by each sleep strategy 58

4.6 Averaged total number of sleep casts per combat of companions 59

4.7 Percentage win-rate for the companion team over all 1000 test cases by

each sleep strategy . 61

5.1 Total remaining health of companions by each healing strategy 68

5.2 Average total number of rounds spent in combat of “vs. 2 enemies” 69

5.3 Average number of healing casts . 70

5.4 Total damage dealt by companions by each healing strategy 71

5.5 Average number of healing casts for vs. 8 enemies case 72

5.6 Percentage win-rate for companions over all 1000 test cases by each heal-

ing strategy . 74

6.1 Percentage win-rate for companions by each combined strategy 78

6

6.2 Total remaining health of companions by each combined strategy 80

6.3 Average number of each move casts . 81

7

List of Tables

2.1 List of companion pokemons . 30

2.2 List of enemy pokemons . 30

3.1 The running time of brute-force search for different player and move settings 38

3.2 Running time of a brute-force search for different player and move settings,

with maximum sleep and heal move allowance PPmax increased to 5 39

3.3 Comparison of the RRT search approach and the brute-force search approach 43

8

Chapter 1

Introduction

Artificial Intelligence (AI) has been widely used for Non-Player Characters (NPC) in mod-

ern video games, especially for a combat or battle environment. We see a number of ex-

amples in Real-Time Strategy (RTS) games, Role-Playing games (RPG), as well as other

popular genres where AI plays an important role. In StarCraft (an RTS game), the AI

controls enemy agents to play against the human players in order to train human skills for

humans to compete in the more challenging Player versus Player (PvP) game mode. In the

Pokémon series (an RPG game) and Counter Strike (an FPS game) on the other hand, AI is

implemented for both enemy agents and allies (companions) during combat, where com-

panion agents are designed to help players win against enemies. Research on designing

and optimizing AI for NPC enemies has gone quite deep nowadays and is recognized as

capable of providing players an interesting and challenging game experience. However, the

design of good AI for NPC companions who support human players is still under-analyzed.

A typical way for many commercial game companies to implement the AI for NPC

companions in combat is to use a scripted behavior tree [Ogr12]. Game designers hard-

code each behavior by observing how humans play, and then organize the sequence of

behavior executions to produce the final NPC companion AI. This experience-based ap-

proach works well to a certain extent; without further analyzing how AI agents’ behaviors

are related to the actual game results theoretically, however, it becomes hard to maintain

the good quality of such heuristics when we scale up the game and increase the complexity.

Moreover, even for veteran players it is possible that their perception of “correct” actions

9

to take may not be the optimal decision to help them win the game in the end.

In this thesis, we investigate the AI combat decisions for NPC companions in the con-

text of small-scale attrition games—games in which two teams compete to eliminate the

other. We first build an analytical game model that defines the game elements and combat

flows that simulate attrition games. Inside the model we inject AI agents who decide on

actions for one of the teams, giving us a problem space to represent combat decisions that

need to be made. An experimental framework is then used to test our solutions and evaluate

the theoretical result in more realistic game scenarios.

Our initial approach for solving decision problems is to apply search algorithms. Search

algorithms have been heavily used in solving traditional games like Go, Chess, etc. For

attrition games, player actions are more diverse in that an action may somehow change

the target’s combat status such as lowering the defense value, or preventing the target from

attacking (“sleep” mode), as well as the basic “attack”, “defend” and “movement” in space.

This results in a large action branching factor so that even if search algorithms can solve

attrition games of small size, they fail rather quickly in term of the time and memory cost

as we add more action choices and players to the game. Heuristic algorithms on the other

hand run very fast and are fairly easy to implement in general, and so are much preferred

in interactive, real-time game environments. However, if the heuristic depends purely on

a player’s experience and feedback without further theoretical analysis, maintaining and

properly designing an AI becomes difficult.

Based on investigations of the search approaches, we thus propose an action-specific

enhancement for heuristic strategies. We focus on evaluating two specific move types,

sleeping and healing, which can be often seen in many games including League of Legends,

Pokémon, World of Warcraft, etc. They represent two different genres of actions: sleeping

weakens the enemy by preventing its actions in future game turns, while healing conversely

increases the chance of ally survival. By applying our game model, we analyze the benefit

and cost of using each type of move under various combat scenarios and give suggestions

on move decisions accordingly. We test our heuristics against some common strategies

taken by modern games and discuss the performance and restrictions. Our goal in this

work is to improve the quality of companion AI strategies in a realistic game environment.

10

1.1. Contributions

1.1 Contributions

The contributions of this thesis include:

• An analytical attrition-game model: We define a game framework that describes

key elements and the basic combat flows of small-scale attrition games. The frame-

work supports AI players implementing a variety of strategies for making move de-

cisions. It also allows configurations to be added as assumptions for creating and

simulating different combat scenarios.

• Search approaches: We have proposed search methods using both brute-force and

RRT game-tree growing techniques to solve companion decision problems. With

experiments we have identified the corresponding the complexity and limitations of

such search approaches in our context.

• Move impact analyses: Search approaches are limited in their ability to scale, and so

we further investigate heuristic approaches, analyzing strategies for using two actions

core to common game combats, the sleeping move and the healing move. We give

a formal analysis of the benefit and cost for each move type and discuss how each

move could impact the players and influence the game results.

• Heuristics of using specific moves: Based on the move analysis, we define heuristics

for choosing move types and move targets wisely under different combat scenarios.

• Experiments and evaluations: To augment and validate our theoretical model, we

perform experiments based on real game data. We explore the application of our

sleep and healing heuristics on battles based on the Pokémon game and test the per-

formance of enhanced heuristics. The result show improvements of AI strategies

over other scripted greedy strategies made by modern game designers.

1.2 Thesis Roadmap

This thesis contains eight chapters in total, including this introductory chapter. In Chapter 2

we build up analytical game model that defines key components, flows and an experimental

11

1.2. Thesis Roadmap

model for attrition game combats. In Chapter 3 we analyze the search oriented approaches

for solving companion AI decision problems. In Chapter 4 we focus on the sleeping move,

investigating the move benefit and cost in combat while proposing heuristics on using it.

Experiments are presented for performance comparisons with other strategies. In Chap-

ter 5 we follow a similar analysis on the healing action and define corresponding healing

heuristics, again with experimental evaluation. In Chapter 6, we combine the heuristics

developed in previous chapters for sleeping and healing together, and take an experiment

to test the performance of the new strategy in combats allowing multiple actions. Chapter

7 provides an overview of related work, while Chapter 8 gives conclusions for the entire

thesis and identifies possible future work.

12

Chapter 2

Analytical Game Model

Nowadays, thousands of titles have implemented AI-vs-AI battle gameplays. Some are

of a pure combat type, including most real-time strategy (RTS) games such as StarCraft,

and the recent, also quite popular multiplayer online battle arena (MOBA) games such as

League of Legends. Others include typical role-playing games (RPG), allowing human

players to build their team with non-player character (NPC) allies in order to win battles

against NPC enemies or enemy teams. Examples can be found in the Final Fantasy series,

the Pokémon series, etc. Variations among all these genres are huge in terms of the actual

game experience. However, it is feasible to generalize and abstract the key components of

the “combat” concept from real games.

In this chapter, we form an analytical game model that includes the most important

factors in attrition game combat. After an introduction in Section 2.1, we start with giving

definitions to the basic components, including players, moves, and teams in Sections 2.2

and 2.3. Then, within this game framework we define the decision process of NPC AI

agents to simulate the thinking of real game players in Section 2.4. We add configurations

to combat settings in Section 2.5 so that the broad, complex strategy problems can be

divided into simpler sub-problems. Section 2.6 describes the overall game flow, and we

discuss different types of game result evaluations in Section 2.7. Lastly, in Section 2.8 we

describe the experimental model and specific environment settings on which we will test

the AI strategies. Throughout the entire thesis we use the model developed in this chapter

as a basis for our analyses and discussions.

13

2.1. Introduction to the Game Model

Figure 2.1: A battle scene screenshot in Final Fantasy IV

2.1 Introduction to the Game Model

The analytical model aims to describe and simulate real video games of different genres.

It provides a framework to test, analyze, and evaluate behaviors and performance of AI

agents who control the participating players in the game combat.

To motivate and give intuition to the model, we first we look at a combat example taken

from Final Fantasy IV, as shown in Figure 2.1. We observe two teams which are trying to

eliminate the other. The player highlighted in white on the right-hand side is controlled by

a human while his companions and enemies are controlled by AI programs. Each player

has a list of combat moves or actions to choose from (note that “move” and “action” will

be used interchangeably in rest of this thesis), shown in the center of the bottom blue bar,

and a health bar indicating their current status, shown on the right of the bottom bar.

Therefore, our model starts with the basic elements, players and moves. Each player

has a set of moves they are allowed to use. Players are assumed to form teams (a team

needs at least 1 player) and each team has a game goal to be set. A game goal could be

eliminating all the other teams, or staying alive in the combat for as much time as possible,

depending on the combat scenarios we simulate. Each combat scenario may require certain

14

2.2. Basic Elements

configurations of the model, including assumptions about each team’s strength, limitations

on the move set or use, etc. The choice of configurations impacts generality of our model;

we will discuss configuration issues in more depth in Section 2.5.

Then after we have defined all the elements and settings, the model initiates the combat.

Teams fight against each other by their players using moves on specific targets, until even-

tually one team wins the game—at least one player in the team is alive and all other teams

are eliminated. In the course of players using moves, there is a “brain” behind each player

telling them which move should be used, and how the move should be used (on which

target). Typically in real games, this decision process is either done by a human being

(who literally controls a particular player) or by programmed AI agents. In our thesis, we

focus on improving the companion AI and how the companion agents pick correct strate-

gies in combat, and so human actions are generally not considered, although the possibility

of complex human-agent cooperation does exist and could be an interesting direction for

future work.

When the combat ends, the model evaluates the game result, such as in terms of how

much damage each team has done, etc. Evaluation criteria will be discussed in Section 2.7.

Based on the evaluation, we will then be able to analyze the behavior and performance of

our AI agents and make an effort to improve them.

2.2 Basic Elements

In this section, we provide specific detail on the basic model elements, players, teams and

moves. We define each element individually and clarify their relations to each other.

2.2.1 Players and Teams

Players are entities involving in the combat. A player p is defined as a 6-tuple:

p = 〈hmax, h, a, state, debuffTime,M〉

• p.hmax ∈ N
+ is a positive integer marking the initial and maximum health value

setting of p

15

2.2. Basic Elements

• p.h ∈ Z is an integer representing the real-time health of p. When p gets attacked

or healed, this real-time health is decreased or increased, but may not increase above

maximum health: p.h ≤ p.hmax.

• p.a ∈ N
0 is a non-negative integer representing the attack power of p. In general this

is the amount of damage p can inflict on an opponent in a single attack move.

• p.state ∈ {Healthy, Dead, InSleep, ...} is a discrete value marking the state of p.

When p is alive with p.h > 0, its state is simply p.state = Healthy. When p is killed

and p.h ≤ 0, then p.state = Dead. Note that if an action deals a special effect on

p, p.state will be altered to that specific effect, such as sleeping (p.state = InSleep).

The set of states is extensible.

• p.debuffTime ∈ N
0 is the remaining time of a harmful effect existing on player p.

For example, in a turn-based combat when someone uses sleep to cause p to sleep

(p.state = InSleep) and p.debuffTime = 2, this means p will wake up in 2 turns. For

players in Healthy state, p.debuffTime is always zero. Note that a player can only

have at most one “debuff” (harmful effect) at any given point. Also note that we use

a non-negative integer value, as we will focus on turn-based games, but in general

this could be of a float type to model continuous time in real-time games.

• p.M is the set of move types available for p. Moves and move types will be discussed

in the next section.

A team is composed of one or many players. In this thesis, we set our model to allow

exactly 2 teams in the combat. This is the case in most attrition games such as the Pokémon,

the Final Fantasy, the League of Legends where fights occur between the player team and

the enemy team. For combat involving more than two teams, our analyses may not be

applied and the model would require further extensions such as to include multidimensional

ally-enemy relationship.

As mentioned in the previous section, the actual human player is not considered for

companion AI strategy analyses in our model. The human’s team, however, does define the

protagonists versus the antagonists, giving us two teams, a Companion Team C (presumed

16

2.2. Basic Elements

to include the human player) and an Enemy Team E. We label the players in the companion

team as c1, c2, c3, . . ., and the players in the enemy team as e1, e2, e3, . . . If C has n players,

and E has m players, we will have:

• Companion team C: {c1, c2, c3, ..., cn}

• Enemy team E: {e1, e2, e3, ..., em}

2.2.2 Moves

Moves are actions allowed to be used by players during the game. Each move instance m

is a 3-tuple:

m = 〈user, target, type〉
.

• m.user is the player who uses the move m. For companions, m.user ∈ C, and for

enemies, m.user ∈ E.

• m.target is the player (target) who is to be affected by the move m. It could be in

either companion team or enemy team depending on the type of move.

• m.type is a discrete value defining the genre (or name) of the specific action. In

the simplest attack-defense combat games the basic type is attack. When an attack

move is used, the user deals damage to the target and directly reduces the target’s

health. In modern video games, there are moves that are more complex than the

simple attacking one. In World of Warcraft combat, for example, players may use

“state-modifying” moves such as a sleep move, or a freeze move to put the target into

a state such that that the target’s future moves are restricted. In League of Legends,

player can also use a heal move in order to heal a wounded ally player whose current

health is low. In Pokémon combat there also exists so-called “attack-modifying”

moves to double or half the attack strength of a player for a certain range of time.

During our research, we will include the following three representative move types:

m.type ∈ {attack, sleep, heal}

17

2.2. Basic Elements

In addition, we define a noaction move type in the model for situations where a player

runs out of move choices, because of all the opponents being dead for example. The

noaction type should be used only when no other moves are available. This makes

the entire set of move types in our research be:

m.type ∈ {attack, sleep, heal, noaction (restricted)}

The type category is also extensible.

Execute the move
When a player uses a move on a target, we calculate health h, attack power a and other

move-specific attributes to update the game state. Below we show the execution of the

three move types we use in this thesis (noaction type is trivial):

• attack move execution

move.target.h ← move.target.h − move.user.a

if move.target.h ≤ 0, then

move.target.h ← 0

move.target.state ← Dead

• sleep move execution

if move.target.state �= Dead and move.target.state �= InSleep, then

move.target.state ← InSleep

move.target.debuffTime ← SLEEP_DURATION

• heal move execution

if move.target.state �= Dead

move.target.h ← move.target.h + HEAL_AMOUNT

if move.target.h > move.target.hmax, then

move.target.h ← move.target.hmax

Here SLEEP_DURATION and HEAL_AMOUNT are globally defined integers representing

the effective time for a sleep move and the portion of health increased by a heal move.

Their values are discussed in the experimental setup in Section 2.8.

18

2.3. Game Type

The cost of a move is another important factor in modern games. When a player makes

a move, it is usually accompanied with consumption of certain resources to restrict the

number of move cast within a designed time frame. This is particularly important for

powerful moves, such as sleep and heal. There are many implementations of the cost,

and most games have some form of “mana” resource and consumption. In our model, we

will be using a move cast counter “PP” taken from the Pokémon games, and introduced in

Section 2.8.

2.3 Game Type

Strategy games are widely known to be divided into two types, turn-based and real-time.

“The key measure of how games proceed is the manner in which time is concerned”

[Sha13]. Turn-based games make players execute their actions as a strict chain of events,

following certain defined rules and turn orders. Real-time games on the other hand are

more close to real life battles, in which actions from both sides are taken asynchronously,

and the player executes its move as long as the move is ready. Real-time games still pro-

cess player moves discretely, and typically include a limited range of “Cool-Down” (CD)

values that constrain how frequently an attack can be performed, and thus can in principle

be reduced to turn-based at some granularity. In our research, we thus consider only turn-

based combat games. A turn-based combat game is split into rounds, where in each round

each team is processed, allowing every team member to execute a move. In most games

the player side (companion team) moves first, in order to give the player an advantage. In

our model, for example if we have two companions c1, c2 in the companion team and two

enemies e1, e2 in the enemy team, then a possible game flow would be:

Round 1: c1 attack e2

c2 attack e2

e1 heal e2
e2 attack c1

Round 2: . . .

19

2.4. Agent Decision Process

2.4 Agent Decision Process

As mentioned in Section 2.1, in our model we assume players are controlled by AI agents

(“brains”). The agent makes decisions each turn on how the player chooses the best move

type and on which target the move is to be used, under fast-changing combat situations.

As the main challenge of this entire thesis, the decision making process of AI agents is

presented in two steps, shown below. Note, however, that these steps are not entirely in-

dependent, and while we present and analyze them separately, there is overlap. In this we

suppose a player c1 is to make a move, labelled c1.nextMove, and

c1.nextMove = 〈c1, target, type〉

Step 1: Choose the move type

As player c1 has multiple move choices available,

c1.nextMove.type ∈ {attack, heal, sleep, noaction}

the choice of move comes down to a benefit-trade-off comparison among the set of possible

moves. Generally, the move that can maximize the player’s profit towards its team’s goal is

preferred, such as to maximize the team’s total health left so that there is more chance for

the team to stay alive.

There are several possible approaches to pick the best choice. One approach could

be to generate all possible game states by trying each move and build a search tree, then

using search algorithms to back-propagate the best solution. Such an approach has been

used widely in solving board games like Chess. Alternatively, we could make a greedy

approach by evaluating each move’s benefit individually based on the current game state,

designing a proper benefit formula, and then choosing the one with highest benefit value.

Either approach has challenges. The first has heavy CPU and memory requirements in

creating and evaluating the entire decision tree (with all possible moves) for current and

future rounds, while the second is somewhat ambitious in that the proper benefit formula

may be hard to come up with. The analyses on these approaches will be discussed in detail

in the following chapters.

20

2.5. Combat Configurations

Step 2: Choose the move target

Choosing the proper target is known as the “targeting problem” [TDV14] in the game

area. In our case it involves assigning a specific enemy to the target field of our move

object:

c1.nextMove.target ∈ {e1, e2, e3, ...}
When a companion uses a move on an enemy, the selection of the correct enemy based

on the enemy’s attributes (attack power a, health h, etc.) may influence the eventual game

result, and is thus a non-trivial decision. Similar to Step 1, in this step either search methods

or a greedy method could be applied to find the best target of the move to maximize the

profit for the current player or team. Tremblay et al. introduced a nice greedy approach in

the context of combat with only the attack move type: choose the target that has the highest

threat [TDV14], with threat positively related to enemy attack, and inversely related to

enemy health. In our thesis we extend the targeting problem to consider more complicated

moves including the sleep and the heal types. To provide perfect solutions for such problem

may be hard, yet the aim is to give insight into trade-offs of different targeting decisions

for handling various complex combat scenarios.

Note that in neither step does the AI agent know what actions players on the opposing

team will do.

2.5 Combat Configurations

Before the game starts, we impose another list of settings and assumption options on the

model. The purpose is to map each combat configuration to a real specific situation, such

as the beginner phase of most games where enemies are designed to be relatively weak.

Additionally, these assumptions divide the broad decision strategy problems into a set of

sub-problems with lower complexity, making it feasible to analyze. However, by doing this

we inevitably lose some generality in our analyses and conclusions. This drawback will be

discussed specifically after each assumption description in this section.

21

2.5. Combat Configurations

2.5.1 Fixed Assumptions

The following fixed assumptions will be applied to all the combat cases in this thesis.

[1] The companion team C always moves first:
Moving first is an obvious advantage for the companion team in turn-based game se-

tups. The impact of this assumpption is enlarged as the length of the combat becomes

shorter, and in special cases where in a single round either the companion team or

enemy team could eliminate the other, this assumption directly decides on a combat

winner. In our analysis we try to keep the combat duration relatively long (at least

four to five rounds) to avoid the influence on game balance as much as possible.

[2] Moves should be used only on targets that are alive (move.target.state != Dead):
Generally in attrition games, dead player units are immediately removed from the

combat. The setting of using moves on only living targets also implies that AI agents

for both companions and enemies should make real-time decisions within a round

depending on the changing situation. For example, if c2 moves after c1 in a certain

round and c1 kills enemy e1 in that round, c2 will be aware of the e1’s death and will

not attack e1 any more. The drawback of this assumption is trivial, as the existence

of “wasted” moves attacking an enemy already killed is easy to avoid in turn-based

contexts, and commonly disallowed in commercial games.

[3] Players within one team move in fixed order:

If the companion team is built as {c1, c2, c3}, then within one round c1 always moves

first, then c2 moves and c3 moves last (same for enemies). This assumption is to

simplify the game flow. However, the impact is that it implies no order variation

and any further analyses and conclusions based on this cannot be applied to combat

that either has randomization on the move order or uses attributes such as speed or

initiative to define the move order specifically.

[4] Enemy AI uses deterministic heuristics:

Most modern games implement the NPC enemy AI in a deterministic fashion so that

the enemies follow scripted strategies to make move choices each time. This allows a

22

2.6. Combat Flow

player to learn best strategies, treating combat as another kind of game puzzle which

they can eventually master. In other, more sophisticated games enemies may them-

selves adapt to companion behaviors and improve their strategies at runtime. From

an automated companion’s perspective, however, while changes in enemy strategies

could influence the actual combat result, the choice of combat move is assumed to

depend on the current game state, irrespective of enemy evolution.

2.5.2 Optional Assumptions

We also consider optional assumptions in specific cases. These can heavily affect the com-

bat simulation, and potentially causing greater loss of generality.

[1] The number of move types is restricted:

When the number of move types is restricted, analyses of trade-offs among the dif-

ferent types are simpler, but do not necessarily generalize to situations in which more

move types are available. We consider restricted move situations in order to manage

the complexity of game analysis, although these situations are also interesting in be-

ing representative of partial stages of an entire combat, and/or as part of a specific

level setup such as the tutorial combat.

[2] Predicting and assuming enemy strategies:

Knowing enemy next moves makes it possible for companion agent to build a look-

up game tree so that future moves and states of combat are searchable, and a possible

solution might be found. Although applying this assumption may influence the deci-

sion quality in practice due to the accuracy of enemy behavior prediction, it allows

evaluations on various search-based approaches that are less dependent on specific

move definitions, especially useful for games whose elements and logic are complex.

2.6 Combat Flow

With all basic elements (players, teams, moves) and configurations ready, we can now

incorporate combat simulation into the model.

23

2.7. Combat Result Evaluation

Our combat begins with initialization of players in both two teams. For each player

c ∈ C and e ∈ E,

c.h ← c.hmax, e.h ← e.hmax

As the companion team moves first, each c ∈ C decides on its next move (type and target)

independently, in a fixed sequence, which we assume follows player indexing order. After

every companion completes its move, the turn switches to the enemy side, and each enemy

AI agent decides and executes a move. After all enemy moves are complete, the round

ends. The model then verifies if the game is over in that either all companions or all

enemies have been killed. If so, the combat ends and we may evaluate the result. If not, the

game proceeds to the next round, and continues the previous procedures.

The pseudocode in Algorithm 1 on page 25 shows the entire combat flow process algo-

rithmically. The AIAgentC and AIAgentE are agents making move decisions for compan-

ions and enemies respectively (referring to Section 2.4). Function ExecuteMove() updates

a player’s health and states as described in Section 2.2.2, while UpdateDebuffTime() de-

creases the player’s debuff remaining time by 1 each round if it is in an unhealthy state like

InSleep.

2.7 Combat Result Evaluation

After the combat ends, we could evaluate the result (referring to EvaluateCombatResult()

in Algorithm 1) in different ways. Most games use the attrition evaluation, where winning

is defined by surviving—the only outcome is either “win”, “lose”, or “tie” and the strategy

that leads to the highest probability of winning is preferred. In our model, this means we

are optimizing the move decision strategy towards the likelihood of companions success-

fully eliminating all enemies. However, some games evaluate the combat result by also

considering how much total health the player team has left at the end, as this can be an ad-

vantage in subsequent combats if health is not automatically restored, or has a resource cost

to do so. In this case, even if the possible outcomes are all “win”s, we are looking for the

win that has the highest sum of all companion’s health (as healthy as possible). We could

also have special cases of evaluation such as when the game has a primary player pimportant

24

2.7. Combat Result Evaluation

Algorithm 1 Combat Flow
procedure STARTCOMBAT

Initialize team C, team E, AIAgentC, AIAgentE

round ← 1

while not ISGAMEOVER() do

for c in C do

if c.state = Healthy then

move ← GETNEXTMOVE(AIAgentC, c)

EXECUTEMOVE(move)

UPDATEDEBUFFTIME(c)

for e in E do

if e.state = Healthy then

move ← GETNEXTMOVE(AIAgentE, e)

EXECUTEMOVE(move)

UPDATEDEBUFFTIME(e)

round ← round + 1

EVALUATECOMBATRESULT()

function GETNEXTMOVE(AIAgent, player)

Initialize nextMove

nextMove.user ← player

nextMove.type ← AIAgent.GETNEXTMOVETYPE(player)

nextMove.target ← AIAgent.GETNEXTMOVETARGET(nextMove.type)

return nextMove

25

2.7. Combat Result Evaluation

whose health and alive status is paramount, while the state of other players is negligible.

Modern RPG games with companion teams typically strive to have players emotionally

invest in their companions, and so we do not model the latter, and assume the companion

team members are equally important.

Games can also have combat situations where it is impossible to eliminate the enemy

completely. For example, in “boss fights” of World of Warcraft the enemy leader may not

be supposed to be killed. In these situations the goal is to do as much damage as possible

before players die or within some time period. Since any time period can be modeled by a

fixed damage rate to players, we thus also consider a decision strategy that aims to produce

the highest damage before players expire.

In our thesis, the choice of combat result evaluation depends on the specific problem

we try to solve. We summarize the basic types of combat result evaluation below:

• P_CWIN - Probability of combat winning
We will repeat the combat simulation for a number of K times and count the number

of times companion team wins as Cwin. Then we calculate Cwin
K

∗ 100 to obtain a

percentage win-rate as the result.

• SUM_H - Sum of companion health
Given companion team C = {c1, c2, c3, ..., cn}, we measure the sum of the remaining

health of each living companion after combat terminates as
n∑

i=1

ci.h. Note that this

includes all combats, whether or not the companions win.

• SUM_D - Sum of damage dealt to enemies
Given enemy team E = {e1, e2, e3, ..., em}, we measure the sum of damage compan-

ions have dealt as
m∑
j=1

ej.hmax −
m∑
j=1

ej.h. This evaluation uses the indirect measure

of looking at remaining enemy health, and so assumes no enemy healing. This is

primarily aimed at evaluating simulations where enemies are unbeatable.

26

2.8. Experimental Model

2.8 Experimental Model

To test and verify the result of our analyses, we would like to take a real commercial game

and form an experimental model. Many games can be appropriate, such as Pokémon or

Final Fantasy, which have the advantages of simplicity and well-supported online database

resources for detailed game information. In our work, we take the Pokémon game and its

basic combat setup to perform our experiments. We will use moves, players (with attribute

settings) and part of the scripted AI strategies defined in Pokémon. First, however, we give

an introduction to the Pokémon game.

2.8.1 The Pokémon Game and Combat

The Pokémon game is a role playing game (RPG) consisting of turn-based combat between

different classes of creatures—“pokemons” (pocket monsters). The human player encoun-

ters wild pokemons while exploring a virtual world, and collects them while increasing

their skills and skill ranking (level) in various pokemon combats, until finally he or she is

able to challenge the Pokémon League champion with a last pokemon combat.

Definition of “pokemon”

During the combat, the player controls his or her pokemons (as the Player Team) to

compete against the game NPC’s pokemons (the Enemy Team). The combat involves 1 to

3 pokemons on each team at the same time. The game includes a total of 721 different

pokemons as of the year 2015, with each pokemon having a set of base integer attributes

〈 hp, attack, defense, sp.atk, sp.def, speed 〉

and a set of possible moves pre-defined. Here hp stands for health, namely hmax. The

attributes sp.atk and sp.def stand for special attack and defense. Together with defense and

speed, they are used for extra combat damage calculation specific to the Pokémon game

and will not be considered in our core game model.

A pokemon example would be “Bulbasaur,” indexed 001 in the pokemon database

27

2.8. Experimental Model

list [pok] with base attributes:

〈 hp (45), attack (49), defense (49), sp.atk (65), sp.def (65), speed (45) 〉

and available moves:

{Growl (decrease attack), Vine Whip (attack), Synthesis (sleep), ...}

Note that moves are usually variations of the same type with different names. All the defi-

nitions and data can be found at the pokemon wiki website [pok].

Moves

The Pokémon game has a total number of 621 moves. Besides the three basic moves

(attack, heal, sleep) we have set in our model, the game also includes “state-modifying”

and “attack-modifying” moves mentioned in Section 2.2.2 to increase the fun of gameplay.

Moreover, the three moves attack, sleep and heal in Pokémon are implemented in a slightly

different way:

• attack move has its own “power” attribute for the game to use a more complex dam-

age calculation formula during combat. This influences the design of attribute values

for each player, although the basic idea of an attack action resulting in a loss to enemy

health does not change.

• sleep move inflicts InSleep state for a random duration of 2 to 4 rounds.

• heal move heals half of the ally target’s maximum health.

On the other hand, the cost of moves in Pokémon is implemented in the so-called “Power

Points (PP)” mechanism. Each type of move has a defined constant PPmax (varying from 5

to 40) indicating the maximum number of move casts the player can use within one com-

bat. Healing types of moves usually have PPmax = 15 while sleeping types of moves in

general have PPmax = 10. Normal attacking moves have PPmax = 40, although the player

seldom runs out of attack moves before the game terminates. Initially, the PP value (re-

maining move casts) is set to PPmax for every move. Whenever a move type is used, its PP

is decreased by 1. For example, if in Round 1 c1 uses sleep on e1, then remaining casts of

28

2.8. Experimental Model

sleep for c1 is 9 out of 10.

Combat

The combat of Pokémon is similar to our game flow, except that combat order respects

the speed attribute: the pokemon (player) with the highest speed value moves first, and the

rest move in order of decreasing speed. We will not include this setting in our experiments,

following the assumptions made in Section 2.5.1 [1] and [3].

AI Behaviors

The AI that controls NPC enemy behavior in Pokémon combat follows a fixed decision

procedure. By considering each player’s items (not in our model), moves allowed, and the

opponent states and attributes, the AI picks the “best” action choice for the NPC enemy for

the current round [ess]. Although the exact action selection process is not officially released

by Nintendo (the developer of Pokémon), many clues of the move choosing criteria can be

found in player communities [bul]. We list some below.

• An enemy only uses healing moves (if available) for its allies whose health is below

25% of the maximum hp.

• An enemy uses state-modifying (such as sleeping, paralyzing) moves at the begin-

ning with a probability of 70%.

In general, the Pokémon game uses custom scripted heuristics to implement intelligence

for the enemies. The NPC companion AI of Pokémon follows similar decision rules as the

NPC enemy AI.

2.8.2 Experimental Setup

In this subsection, we adapt the Pokémon game to our lightweight analytical model by

mapping the elements we already have. We then assign real values from the Pokémon

game to the variables in our framework and define the environment for testing AI strategies.

Although we do not support all the features in the original game such as sp.atk, sp.def and

speed-driven moving order, the Pokémon game is still a good benchmark for testing basic

29

2.8. Experimental Model

elements and combat strategies with a reliable source of data, as well as in providing a

realistic sense of how the various move parameters should be scaled for a good simulation.

Player Setup

The players are pokemons whose data comes from the Pokémon database. A typical

team setup example is shown in Table 2.1 (companions) and Table 2.2 (enemies), in which

pokemons are selected randomly from Index 001 to Index 721. For simplicity we use this

setup as a default team composition, which is subject to changes by varying the team sizes,

pokemon choices, etc., according to specific experimental cases.

Companion Choices c1 c2 c3

pokemon name Lapras Chandelure Gardevoir

pokemon index 131 609 282

pokemon icon

base health hmax 130 60 65

base attack a 27 45 21

moves {attack, sleep} {attack} {attack, sleep, heal}

Table 2.1: List of companion pokemons

Enemy Choices e1 e2 e3

pokemon name Vaporeon Mightyena Gengar

pokemon index 134 262 094

pokemon icon

base health hmax 130 70 60

base attack a 21 27 18

moves {attack, heal} {attack} {attack, sleep}

Table 2.2: List of enemy pokemons

30

2.8. Experimental Model

Move Setup

In our experiment, the default settings for the three moves (attack, sleep, heal) are as

follows:

• attack deals damage equal to the user’s attack power, the same as in Section 2.2.2.

• sleep causes the opponent in sleep for SLEEP_DURATION rounds. SLEEP_DURATION

is a variable with default value 3.

• sleep heals the target by HEAL_AMOUNT health. HEAL_AMOUNT is a variable

with default value target.hmax/2.

The move cost setup will follow the same “PP” cost implementation as mentioned in the

Pokémon game in the previous subsection.

Decision Strategies Setup

We apply a non-evolving deterministic intelligence for our enemies, as much the same

as the original game as we can determine from online sources. By not interfering with the

enemy AI performance too much, we would like to simulate the NPC enemy behaviors as

close to the real Pokémon game as possible. Thus we choose some of the tactics (again not

officially confirmed) summarized by human players [bul] that appear similar to the actual

game experience. The implicit assumption of using deterministic AI of NPC enemies may

refer to Section 2.5.1 [4]. Note that the companions are by default blind to the strategies

the enemies are using, regardless of its determinism.

Below we specify the details of our EnemyAgent in experiment:

1. EnemyAgent.GetNextMoveType() (move choice decision):

return sleep in the first round with a probability of 70%

return heal if one ally’s health is below 25%

return attack otherwise

2. EnemyAgent.GetNextMoveTarget() (targeting decision):

return random target on using sleep

return ally with the lowest health h on using heal

return opponent with the lowest health h on using attack

31

2.8. Experimental Model

Meanwhile for CompanionAgent, we test several decision strategies discussed in the

rest of the thesis. Knowing the exact strategies of companions in Pokémon game would be

impossible, and thus we will also compare our strategies to some commonly-used compan-

ion tactics applied in general attrition games [TDV14].

Evaluation Setup

We will use the combat evaluations described in Section 2.7.

Software and Hardware Setup

Our test programs are written in Java SE(1.7.0) and run inside Windows 7 64-bit operating

system with Intel(R) Core(TM) i5-2500K CPU @ 3.50GHz and 8 GB of memory. This

environment setting remains the same for all experiments in the thesis.

32

Chapter 3

Search Approaches

In some commercial games, players may have foreknowledge of how the enemies would act

in combat, or are more or less able to predict enemy behaviors. Examples can be seen in the

game World of Warcraft where players quickly learn the enemy AI either by practicing or

through online forum discussions. In our experimental model Pokémon there are also many

observable routine strategies, as partially listed in Section 2.8. For such games, knowing

the enemy behaviors does not imply the players could win the game easily, however, due to

the complexity of numerous move types, combat rules, team sizes, etc. A proper decision

making to select appropriate moves is still critical for players in order to win or achieve a

better score.

In this chapter, we propose tree search methods to solve the move decision problems

for companions in the games where enemy behaviors are predictable. In Section 3.1 a

brief description of the search process is presented. In Section 3.2 we define the basic

components of our search tree. In Section 3.3 we show a brute-force method that grows

the search tree completely, together with experiments to test its time-cost in real game

scenarios. Then in Section 3.4 we propose another, more efficient search method based on

the Rapidly Exploring Random Tree (RRT) approach that grows the search tree selectively

and wisely. We then present experiments and compare RRT with the brute-force method in

terms of both time complexity and search precision. Finally we summarize the limitations

of search approaches in Section 3.5 including the loss of generality by assuming predictable

enemy behaviors.

33

3.1. Search Process

3.1 Search Process

A search-based approach to move selection involves constructing and traversing a data

structure representing the possible game states. Before both teams make any move in com-

bat, the companion AI agent builds a game tree whose root represents the combat start

state. The tree then grows and adds future game states generated by possible player moves.

The growing process could be implemented in several ways (as discussed in Section 3.3

and Section 3.4) and finishes when all the leaf nodes are game end-states (with one team

winning) or the search process reaches a time limit. The AI agent then finds the best end

node in the produced tree using one of the combat result evaluations (see Section 2.7) and

back-propagates the move path to construct a series of moves from the root to the best end

node. The moves in the path are eventually picked by companions accordingly in each turn

during the combat.

Different from making a move decision in each round, the AI agent pre-produces the

solution in advance, a strategy we can employ because we have assumed enemies have

deterministic behaviors, and so the actual combat flow is guaranteed to follow the gener-

ated move path. Note that building and searching a game tree itself does not necessarily

require enemy behaviors to be deterministic or predictable. The game-tree searching can

be extended to non-deterministic behaviors with minimax [BW84b] or alpha-beta [BW84a]

algorithms. In terms of understanding whether search may be a feasible approach, however,

assuming behaviors of enemies is sufficient to give us a sense of baseline performance.

3.2 Search Tree

In this section we define the basic components of the search tree that represents the move

choices and states of the combat.

Node

A tree node is a game state that contains information of all the players at a given point of

34

3.2. Search Tree

combat. In our model:

node = 〈{c1, c2, ..., cn}, {e1, e2, ..., em}〉

The node keeps track of the players’ updated attributes such as current health h, current

debuff time debuffTime, etc. The root node is defined as the start of the combat where

every player is in its initial state.

Link

The link that connects two nodes will be a set of moves made by all players in a single

round. This means each level of the tree represents the boundary of exactly one round. For

example in Figure 3.1, we have shown one possible link between two game states. Since

Figure 3.1: A tree link connecting two nodes

each companion could have multiple action choices, we will end up with a large set of

such move combinations. On the other hand, the enemy move choices are deterministic (or

predicted) as the main assumption of this chapter (may also refer to assumption 2.5.1[4]).

We discuss situations where enemy moves are unpredictable and unknown in Section 3.5.

The cardinality of the move combination set defines the branching factor of the entire

game tree. The more move or target choices we have, the more links and possible children

can be generated.

35

3.3. Brute-Force Approach

Note that both companion moves and enemy moves are aggregated into one link. This

greatly reduces the tree size over a more naive tree where each edge represents just a single

agent move, and is possible given a fixed combat sequence and deterministic behavior of

the enemy.

3.3 Brute-Force Approach

Rooted at the combat start, the search tree can be grown in various ways. We begin by

attempting a brute-force approach that grows the tree by executing every possible move

combination (link) of the companions and generating the subsequent children nodes with

deterministic enemy moves. We recursively repeat this process on the child nodes, round

by round, until we have finally reached the end of game at every leaf. With all the leaf

nodes stored in memory, we find the best leaf and back-propagate the move decision path

throughout the entire combat from it. The pseudocode is shown in Algorithm 2 in the next

page.

The advantage of this approach is that given knowledge of enemy behaviors, we can

search the entire space of game states and guarantee the optimal solution by foreseeing all

possible future game states. This works regardless of how each individual move is defined.

However, by considering every possible move combination choice, we introduce a risk that

the tree branching factor will become too large, resulting in unacceptable time complexity

as we increase the number of moves allowed.

Time Performance

To determine time performance, we compute the running time of the search process mea-

sured in milliseconds, including generating the tree, finding the best node, and returning

the move decision. In modern video games, the NPCs are often required to deliver a fast

response to output so that human players can have a good, responsive and interactive game

experience. This means the AI thinking process needs to be unnoticeable (within fractions

of a second)—Churchill et al. [CSB12] suggest a single decision frame be less than 50ms

in order for the human player to not notice game delays. Note that we expect that during

the combat the companion AI will be able to fetch the move decision from the searched so-

36

3.3. Brute-Force Approach

Algorithm 2 Brute-force Move Decision Search

function GENERATEBESTMOVEPATH() � Entry point

root ← initial game state

root.leaves ← new List<Node>

BRUTEFORCEGROWTREE(root)

bestEndNode ← FINDBEST(root.leaves)

movePath ← BACKPROPAGATEPATH(bestEndNode, root)

return movePath

function BRUTEFORCEGROWTREE(root)

if ISENDOFGAME(root) then root.leaves.Add(root) return

for node in GETCHILDREN(root) do

node.prev ← root

root.children.Add(node)

BRUTEFORCEGROWTREE(node)

function GETCHILDREN(node)

links ← Find all move combinations of the companion team

for link in links do

for e in node.enemies do

incorporate enemy e’s next move (given or predicted) into the link state

children ← map each link in links to node and create child nodes

return children

function FINDBEST(nodeList)

switch Evaluation_Method � refer to the last two evaluations in Section 2.7

case SUM_H return node with highest companions’ health in nodeList

case SUM_D return node with lowest remaining enemies’ health in nodeList

function BACKPROPAGATEPATH(node,root)

i ← 0, path ← new List<Move>[]

while node.prev �= root do

path[i] ← node.link.moves

node ← node.prev

i ← i+ 1

return path.reverse() 37

3.3. Brute-Force Approach

lution for each companion more or less instantly; our main interest is in the time required

to grow the game tree and run the search at beginning of combat, which can be much larger

than 50ms, but must still be less than a second or so in order to not overly delay the start of

combat.

Experiment 1: Brute-force Performance

In order to determine whether the brute-force search method has a reasonable scalability

and time cost for the size of problems we need to consider, the following experiment is

made. We use the default experimental setup (including teams) defined in Section 2.8.2.

Additionally, we manipulate the following variables:

• Number of move types allowed for each player changes.

• Move cost (restriction) is implemented as maximum cast count PPmax (see Section

2.8.1). Initially, PPmax is set to a small number 2 for both sleep and heal. We will

increase this number as the experiment moves on.

To select the best node we use SUM_H evaluation (highest companions total health score),

as defined in Section 2.7. The result is shown in Table 3.1.

Allowed move set {c1} vs. {e1} {c1, c2} vs. {e1, e2} {c1, c2, c3} vs. {e1, e2, e3}
{attack} 2 ms 4 ms 72 ms

{attack, sleep} 2 ms 33 ms 1483 ms

{attack, heal} 2 ms 25 ms 588 ms

{attack, sleep, heal} 4 ms 1871 ms ∞ (out of heap)

Table 3.1: The running time of brute-force search for different player and move settings

From Table 3.1 we observe that in the trivial 1 vs 1 case, the running time required for

brute-force search approach does not vary too much for different move restrictions. When

the number of players in combat gets increased, however, the execution time grows dra-

matically and soon becomes far beyond a tolerable AI response time (say within a second).

We can also note that the running time is also proportional to the number of move types

38

3.3. Brute-Force Approach

allowed, with some variation due to move interactions. In the 3 vs 3 case, for example, “at-

tack+sleep” takes more time than “attack+heal”, because sleep potentially reduces attack

moves for both companions and enemies and thus increases the number of rounds needed

to terminate the combat while heal would only affect companions’ attack moves. Further

impacting time is the excessive memory cost—in the last row where all the three moves are

allowed, we are not even able to compute a solution due to lack of memory.

Next, we verify how the move cost setting could affect the searching time. The initial

PPmax was 2 for both sleep and heal move types, which is fairly low. By increasing it to 5

for both, we allow each of heal and sleep to be used 3 more times in one game, based on

the length of combat being around 4 to 5 rounds on average in the previous test.

Move set {c1} vs. {e1} {c1, c3} vs. {e1, e3} {c1, c2, c3} vs. {e1, e2, e3}
{attack} 2 ms 4 ms 72 ms

{attack, sleep} 2 ms 34 ms 5978 ms

{attack, heal} 2 ms 808 ms ∞ (out of heap)

{attack, sleep, heal} 4 ms 4714 ms ∞ (out of heap)

Table 3.2: Running time of a brute-force search for different player and move settings, with

maximum sleep and heal move allowance PPmax increased to 5

As we can see in Table 3.2, if we allow more casts for using sleep and heal move, the

running time rises. The heal move for example, may be used again and again, allowing a

companion to stay alive in combat longer, and increasing the number of rounds to finish

the game. This leads to a larger height of the search tree and an exponential growth in the

number of possible children nodes. The time for “attack+sleep” does not increase as much

as “attack+heal”, though, due to the restriction of sleep move itself that it can be only used

on non-sleeping targets.

A 3 vs 3 scenario is a reasonable, but still small size for combat. A multi-second delay

in combat start for this scale of problem is thus a concern, and in combination with the out

of heap errors that occur in both experiments indicates that a brute-force method does not

scale very well, and would require multiple order-of-magnitude improvements in time and

memory to be useful. When it comes to more complex games with a larger set of move

39

3.4. RRT Approach

types and more players involved, the AI would need unacceptable time and space resources

to search the game space and make a decision. Although our experimentation here is quite

limited and many improvements are possible, it strongly suggests that an exhaustive, brute-

force strategy is not viable in a real-time environment.

3.4 RRT Approach

As we are looking for a faster and more efficient algorithm to grow the search tree wisely,

we investigate a heuristic tree search strategy known for its rapid execution. In 1998, Steven

M. LaValle suggested a new search algorithm, called Rapidly Exploring Random Tree

(RRT) [Lav98] for solving path planning problems. This approach was originally designed

to find the best path from a current position to a goal position in a search space. The idea is

to construct a search tree by randomly sampling points in the search space. When a sample

is picked, the algorithm finds its nearest node in the current tree. If the connection between

these two nodes is feasible, the sample node is added to the tree. The process repeats and

the tree grows until a goal is found, or until it reaches the preset maximum number of

iterations K.

We modify his approach to adapt to our game search tree. As mentioned previously,

each tree node contains the current health for each companion and enemy. We set the search

space to be the nodes whose health value is between 0 and the corresponding max health

value hmax for each companion and enemy. The tree begins with adding the root node.

Then we randomly sample a node, labeled Nsample, with possible health values for every ci

and ej (as a potential game state). We search for all current nodes in the tree and find the

“closest” node, labeled Nclose, to the sample node using a distance function D that looks at

the difference between health values of corresponding players:

D(node1, node2) =
n∑

i=1

|node1.ci.h− node2.ci.h|+
m∑
i=1

|node1.ei.h− node2.ei.h|

For example,

D((c1.h = 10, e1.h = 3), (c1.h = 5, e1.h = 1)) = |10− 5|+ |3− 1| = 7

40

3.4. RRT Approach

Even if it is closest to our sample node, it is not necessarily true that an action from

state Nclose can take us to state Nsample. For example, if health of a player in Nsample is higher

than in Nclose, but all heals have already been used, it is not possible to connect these nodes.

Thus we then search all possible children of Nclose to find a reachable state that gets as close

as possible to Nsample. Once we find the child with the shortest distance to the sample node

Nsample, labeled Nnew, we add it to the search tree (connect it to Nclose) if Nnew is not already

in the tree. Because a child is created by certain actions from the parent node, we ensure

the feasibility of this newly added node Nnew. The tree keeps growing until it reaches the

maximum iteration count K. The pseudocode is shown in Algorithm 3 in the next page.

The nice property of this approach is that the tree is constructed rapidly and the game

space is explored fast. By selecting the best explored node, however, one may obtain a

sub-optimal move decision for the companion. When the game becomes complex (for

example, with more move types or players added), the actual game space grows, and with

a constant iteration limit K the chance to find an acceptable game end node (Nnew) in the

generated tree drops quickly. Without any explored node representing a combat finish, the

move decision obtained is considered local (foreseeing only few rounds ahead) and is less

useful. We are thus interested in the time improvement RRT provides over brute-force, but

also in relative quality of solution found.

The following experiment helps us test the time complexity and performance of the

RRT approach compared to the brute-force one. We here use the subset of experimental

settings which brute-force was able to solve, focusing on the more interesting case when

all 3 of our move kinds are allowed.

Experiment 2: RRT vs Brute-force

Setup:

• 1 vs 1 and 2 vs 2 combat cases included (players defined in Section 2.8.2)

• All the three moves (attack, sleep, heal) are allowed.

• PPmax is set to 2 for sleep and heal

• Node selection uses SUM_H evaluation

41

3.4. RRT Approach

Algorithm 3 RRT Move Decision Search

function GENERATEBESTMOVEPATH() � Entry point

root ← current game state

RRTGROWTREE(root)

bestNode ← FINDBEST(root.getLeaves())

movePath ← BACKPROPAGATEPATH(bestNode, root) � Same as Algorithm 2

return movePath

function RRTGROWTREE(root)

k ← 0

while k < K do

Nsample ← SAMPLENODE()

Nclose ← FINDCLOSESTNODE(root.allnodes, Nsample)

childrenset ← GETCHILDREN(Nclose)

Nnew ← FINDCLOSESTNODE(childrenset, Nsample)

Nnew.prev ← Nclose

Nclose.children.Add(Nnew)

k ← k + 1

function FINDCLOSESTNODE(pool, target)

min ← Integer.Max

Nclosest ← pool[0]

for node in pool do

distance ←D(node, target) � Distance function D

if distance < min then

Nclosest ← node

min ← distance

return Nclosest

42

3.4. RRT Approach

We run both the brute-force search and the RRT search at the beginning of the combat.

The brute-force search is executed only once as it is deterministic. The RRT search is

executed 100 times (repeated from the initial state each time) and we take the averaged

combat result calculated using SUM_H evaluation. Note that since the RRT search does

not guarantee to find a game end node because of the random sampling, in the cases where

a game end node is not found, we consider the result to be 0. The test data is shown in

Table 3.3, with standard deviations for RRT data less than 5%.

Combat with {c1} vs. {e1} Brute-force RRT (K = 5000)

Running time in milliseconds 4 408 averaged

Combat best result in SUM_H 130 129 averaged

Combat with {c1, c2} vs. {e1, e2} Brute-force RRT (K = 5000)

Running time in milliseconds 1871 409 averaged

Combat best result in SUM_H 195 186 averaged

Table 3.3: Comparison of the RRT search approach and the brute-force search approach

Table 3.3 shows that in 2 vs 2 combat, the RRT approach with K set to 5000 can search

for a solution much faster than the brute-force approach, with little sacrifice to the game

result (186 health on average compared to 195 health). In the simpler 1 vs 1 case, the RRT

comes even closer in terms of solution quality, but retains the higher runtime of the larger

situation due to the constant K numbers of iterations. (Note that even in the 1 vs 1 case,

the entire search space can have over 10000 nodes in our test, depending on the players’

health and attack.)

We also note from the these results that an increase in the game size, while keeping the

boundary K unchanged, correlates with the RRT search producing a worse combat result

(186/195 as opposed to 129/130). This is expected, as there is decreasing chance of find-

ing a game end in RRT (and we consider the result as 0 in this case) as the search space

increases but our maximum RRT tree size stays constant. We verify this trend further in

the next experiment where the iteration boundary K is modified and we investigate the re-

lationship between the running time, K and the probability of finding a game end node.

43

3.4. RRT Approach

Experiment 3: Relation of K, Running Time, and Reachability of RRT

In this experiment the game size increases to 3 vs 3 by adding c3 and e3. We test on differ-

ent values of K, and observe the probability of getting at least one game end node. Again

for each value of K, we run the search for 100 times and take the averaged result. The

result is shown in Figure 3.2.

Figure 3.2: Relation of K, average time cost, and the probability of a solution

The diameter of the blue spots represents the averaged execution time in each scenario.

The smallest one with K = 1000 represents a time of 80ms while the largest one with

K = 5000 takes 413ms. On the y-axis we mark the probability of having a game end node

explored in each case, computed as the ratio of successful searches in 100 search runs. We

can see that although the time required for the search to complete reduces to an acceptable

80ms with K = 1000, we have a very low (14%) chance of finding a suitable game end

node. When the search space gets even bigger as we add more players, this probability will

be further reduced. The RRT approach is thus a promising replacement for the brute-force

method in being able to solve larger problems, but as game size increases we are faced with

the difficulty of trying to maintain the quality of the searched result while still keeping the

44

3.5. Limitations and the Next Step

running time low enough.

3.5 Limitations and the Next Step

Given the knowledge of the enemy AI, the brute-force and the RRT search approaches

could provide decent move solutions to the companion in small-scale combat. Nevertheless

both of them have limitations on the scalability. When the combat contains a large number

of players and move choices, even our limited experiments show that these approaches will

struggle to reach a solution in a reasonable time frame due to the fast growth of the tree

size.

The assumption that enemy strategies can be predicted at the beginning of this chapter

further restricts the use of the search methods. When the enemy decisions are unknown,

generating the tree link is meaningless because the enemies may not behave deterministi-

cally with respect to certain companion moves. To fix this, a possible solution is to use a

minimax method assuming that each enemy uses the move maximizing its profit each turn

and thus makes its behavior partially predictable again. This approach has been profitably

applied to many turn-based combinatorial games, such as Chess, but still faces scalability

concerns, especially in real-time game combat situations.

In the rest of the thesis, we focus on a more analytical approach, considering each

move type individually. This analysis is aimed at determining an AI strategy that heuristi-

cally makes decisions based on the current game and move information, is able to produce

good results, and does not require an expensive search process or foreknowledge of enemy

movements.

45

Chapter 4

Heuristic Approach for Sleep Moves

Heuristic oriented approaches focus on evaluating the move impact on the current combat

situation, providing move decisions that may not be optimal, but help in gaining sufficient

benefit for players. By calculating the benefit and cost of selecting each move type and

target, the AI agent outputs a solution that guarantees minimum advantages over other

choices. Different from search approaches, the heuristic strategies do not explore future

game states and are supposed to run fast so that they should be practical for AI agents

(with less thinking time) in real game scenarios and consoles with limited CPU power. We

attempt to tackle the problem by investigating each move type individually.

In this chapter, the sleep move is discussed. Based on the game model in Chapter 2, the

two major decision tasks for the AI agent are to choose which move type the companion

should use, and to find the best target for the move. To simplify the problem at the first stage

we restrict the move types to have only the attack and sleep moves, with the assumption of

limiting the number of moves specified in Section 2.5.2.

Recall that the basic effect of sleep is to put the target into the InSleep state, preventing

it from making any moves for SLEEP_DURATION numbers of round. The cost of sleep is

based on the PP implementation (referring to Section 2.8.1) so that one player can only use

sleep a maximum of PPmax times. We set PPmax = 10 by default for sleep as the numerical

setting in Pokémon game.

In Section 4.1 we analyze the trade-off between sleep and attack moves, based on time-

damage charts which link the benefit and cost of moves with the actual damage in combat.

46

4.1. Sleep Analysis

In Section 4.2 discussions and suggestions on move type and move target selection are

provided. In Section 4.3 we undertake experiments to examine our analyses in real combat

scenarios inspired by the Pokémon games.

4.1 Sleep Analysis

In this section, we formalize the problem of using sleep by giving a trade-off analysis. First,

a time-damage chart is introduced to illustrate and motivate the benefit and cost of different

move types in terms of the damage dealt by players. We use this to develop equations for

the trade-off calculation, and discuss different scenarios case by case.

4.1.1 Time-Damage Chart

The time-damage chart plots a (discrete) curve for each player p, p.damage : N+ → N
0

mapping rounds to total damage dealt during the entire combat. The x-axis of the chart

indicates the round number of the combat and the y-axis is the total damage the player has

dealt so far. When different types of moves get involved and used, the chart could change

with respect to the specific move type.

Figure 4.1 illustrates a basic example of the time-diagram chart for companion c1 in a

1 vs 1 combat against e1 (c1 and e1 refer to definitions in Section 2.8.2). In this simple

example only the attack move is used by both players. The chart tells that c1’s attack is

dealing 27 (equal to c1.a) damage each round and kills e1 in Round 5 (so e1 has maximum

health in [109–135]).

47

4.1. Sleep Analysis

Figure 4.1: Time-damage chart for c1 against e1

Now if there are more players in one team, the chart will have several lines representing

the damage of each player. Figure 4.2 shows the time-damage chart of one possible 3 vs

3 combat scenario for c1, c2, c3 against e1, e2, e3. Again only attack is used and targets are

randomly picked for demonstration purposes.

Figure 4.2: Time-damage chart for c1, c2, c3 against the enemy team

48

4.1. Sleep Analysis

Based on the chart, we can calculate the total damage the companion team has dealt

so far at any given point of the combat by adding up the y-axis values of each line. For

example, in Round 3, the total team damage is:

∑
i

ci.damage = 81 + 135 + 63 = 279

Next, the sleep move is added and used in the combat. Suppose SLEEP_DURATION =

2 and companion c1 uses sleep on enemy e1 in Round 2, the change to the chart is shown

in Figure 4.3.

Figure 4.3: Time-damage chart for c1, c2, c3 against the enemy team with sleep involved

The dashed lines represent the damage companions dealt in the previous case without

using sleep, and the arrows indicate the changes to the damage-dealing after sleep is used.

As the figure shows, when c1 uses sleep in Round 2, it foregos an attack move and thus

loses a portion of damage to the enemy team. To compensate this damage drop by c1,

companion c2 makes extra damage in Round 4 in order to kill the last enemy.

On the other hand, the enemy team also experiences damage changes due to the sleep

move, as illustrated in Figure 4.4.

49

4.1. Sleep Analysis

Figure 4.4: Time-damage chart for e1, e2, e3 against the companion team with sleep in-

volved

When e1 gets slept in Round 2, it makes no damage in that round and the total damage

dealt decreases by the end of the combat.

4.1.2 Trade-off Analysis

The time-damage charts imply that using a sleep move has both benefits and cost with re-

spect to using a normal attack move. In this subsection, we formalize the benefit-cost of

using sleep and discuss the trade-offs.

Benefit

The benefit of using sleep for companions is the damage drop of the target enemy (la-

beling it eslept) during the time it cannot attack. This decreased portion of damage is es-

sentially the product of eslept’s attack power and the length of sleeping rounds (namely

SLEEP_DURATION). Note that this product is also the maximum loss for the enemy

team (equivalently the maximum benefit for companions) since after SLEEP_DURATION

50

4.1. Sleep Analysis

rounds the slept enemy recovers to normal, if it is still alive. Thus we have,

benefitmax = eslept.a ∗ SLEEP_DURATION (4.1)

For example in Figure 4.4 where e1 gets slept and e1.a = 21, SLEEP_DURATION = 2,

the damage drop for e1 is 21 ∗ 2 = 42.

However, when eslept is attacked and dies early, within the sleeping rounds, the damage

drop is less than the value Equation (4.1) gives. Instead, the benefit becomes,

benefit = eslept.a ∗ number of rounds survived after being slept

To know the exact time the eslept survives after being slept is not possible because at this

deciding moment the companion does not know the future moves by other companions,

and thus cannot necessarily estimate the death of eslept. Nevertheless, we can calculate the

minimum time of eslept’s future survival, labeling it rmin. To kill eslept as quickly as possible

to obtain this rmin means that every companion is using attack against eslept until eslept dies

(except the sleep caster for the current round). This gives the following equation where ck

stands for the sleep caster (companion),

rmin = 1 +
⌈max(0, eslept.h− ∑

i �=k

ci.a)

∑
i

ci.a

⌉
(4.2)

assuming eslept.h > 0 and that sleep takes 1 round to cast.

Note that rmin could be either greater or smaller than SLEEP_DURATION, depending on

other companions’ attack power (denominator in Equation 4.2). So we write the minimum

benefit of using sleep as,

benefitmin = eslept.a ∗min(rmin, SLEEP_DURATION) (4.3)

Interestingly, when the target enemy has enough health to make rmin > SLEEP_DURATION,

then

benefitmin = benefitmax

Combining Equation (4.1) and (4.3), we have the benefit range as follows,

eslept.a ∗min(rmin, SLEEP_DURATION) ≤ benefit ≤ eslept.a ∗ SLEEP_DURATION (4.4)

51

4.1. Sleep Analysis

Cost

The direct cost of using sleep is the damage loss by the casting companion foregoing an

attack move (as well as the PP cost). The amount of loss is equal to the attack power of

the current companion ck. Under our assumption that sleep casting requires one round, this

gives,

cost = ck.a (4.5)

Trade-off

Subtracting the cost from benefit we get the trade-off of using sleep,

trade-off = benefit − cost

If the result is positive, it means using sleep brings more profit to the companion team than

using attack and the AI agent should consider sleep as the next move type. Otherwise the

attack is used. Based on Equation (4.4), without knowing or predicting when eslept dies,

we could not quantify the precise benefit for using sleep and thus could not compare the

benefit and cost exactly. Accurately predicting the death of enemies requires considering

future game states, implying the decision problem resort to the heavy-weighted searching

solutions discussed in Chapter 3 again (unless the combat is the trivial 1 vs 1 case).

Therefore, instead of calculating the exact trade-off value, we investigate the boundary

values case by case.

• Case A:

If eslept.a is low or the SLEEP_DURATION is short such that

eslept.a ∗ SLEEP_DURATION < ck.a,

regardless of what rmin is, the largest benefit is lower than the cost by Equation (4.1)

and (4.5) so that the trade-off is negative.

• Case B:

If eslept.a ∗ SLEEP_DURATION > ck.a and,

rmin > 1 , eslept.a > ck.a

52

4.1. Sleep Analysis

then by multiplying both sides together we have

rmin ∗ eslept.a > ck.a

The left-hand side is the minimum benefit in Equation (4.3), greater than the cost in

the right-hand side, indicating that the trade-off is positive.

• Case C:

If eslept.a ∗ SLEEP_DURATION > ck.a and eslept has low health with

rmin = 1

then it is possible to kill eslept by other companions in one round. This greatly reduces

the value of sleep, although in a general sense some positive trade-off may be possible

as the actual benefit depends on which enemies each companion attacks.

• Case D:

If eslept.a ∗ SLEEP_DURATION > ck.a and,

1 < rmin < SLEEP_DURATION , eslept.a < ck.a

then the relation between benefit and cost is ambiguous. In this case we require

multi-round attention from other companions in order to eliminate eslept.a. This may

be difficult to ensure, and so the death point of eslept.a will likely vary, and the actual

benefit falls into the range

[eslept.a ∗ rmin, eslept.a ∗ SLEEP_DURATION]

and thus may be either greater or smaller than the cost. For example, assuming a

SLEEP_DURATION of 3, eslept.a = 10 and ck.a = 25, we have a fixed cost of 25.

If eslept survives just 2 rounds after being slept and dies during sleep then we have a

benefit of eslept.a ∗ 2 = 20, which is net negative, whereas if eslept survives at least 3

rounds after being slept then we have a benefit of eslept.a∗SLEEP_DURATION = 30,

and thus leading to a positive trade-off.

53

4.2. Sleep Decisions

• Case E:

If eslept.a ∗ SLEEP_DURATION > ck.a and,

rmin ≥ SLEEP_DURATION

then the enemies suffer from the maximum damage loss making the benefit for com-

panions as large as possible,

benefit = benefitmax = eslept.a ∗ SLEEP_DURATION

This is greater than ck.a, thus we have a positive trade-off of using sleep.

Summary

The trade-off calculation shows that the players’ health, attack power, as well as the dura-

tion of sleep moves are the three key factors in deciding whether to use sleep. Different

games may have different value settings for combat players and moves so that the actual

gain of using sleep could vary greatly. If the cost model of moves is more complex than

the PP count model in Pokémon, such as based on a global resource consumption that fuels

multiple kinds of moves, then the trade-off would need to be associated with more factors

besides damage. Such a more advanced move cost model is discussed and left as future

work in Chapter 8.

4.2 Sleep Decisions

In this section, based on the trade-off analysis of using sleep, we discuss and suggest deci-

sions for both move type selection and move targeting problems.

Move Type Decision

According to the case studies in the trade-off analysis, if the current combat state satisfies

case B, D or E for any of the enemy targets, then the companion has significant potential

for benefit from using sleep and would consider sleep as the next move type. If for all the

enemies the situation falls into case A or C, then the attack is chosen as the next move type.

54

4.3. Experiment

Move Target Decision

Once a sleep move type decision is made, we ought to find the best target to maximize

the profit for companions. If there is only one enemy who satisfies the condition of using

sleep, certainly it is the right target. If there are multiple candidates, then the problem gets

complex.

Expression (4.1) showed the maximum benefit one companion could obtain is

eslept.a ∗ SLEEP_DURATION

So choosing the enemy whose attack a is high would probably be preferred. On the other

hand, Equation (4.3) reminds us that an enemy with high health could guarantee the lower

bound, and so ensure the minimum benefit for companions, and thus could also be a decent

choice.

Therefore, the enemy having both large health and attack is potentially a better target

for companions to use sleep. This matches the common intuition that strongest enemy

should be restricted as much as possible. In the following section we conduct experiments

to further confirm this conclusion.

4.3 Experiment

In this section, we test our theoretical result to see how the derived smart sleep strategy

(described below) performs in practice, compared with some common strategies seen in

many games. These simulations are based on the experimental model described in Section

2.8. Additionally, we include various team setups to simulate different combat scenarios.

Setup

The companion team consists of 3 pokemons as the default choices (c1, c2, c3) defined in

Section 2.8.2. The enemy team, on the other hand, is based on different sizes in order to

simulate games of different difficulty, and to see how effectively sleep plays under various

situations, giving us the test scenarios below:

• Against 3 Enemies - To simulate the combat where enemies are equal to companions

55

4.3. Experiment

• Against 4 Enemies - To simulate the combat where enemies are slightly stronger

• Against 5 Enemies - To simulate the combat where enemies are much stronger

• Against 6 Enemies - To simulate the combat where companions are very unlikely to

win

Enemy pokemons are selected at random from the entire Pokémon monster database (in-

troduced in Section 2.8.1). Additionally, we want each individual enemy and companion

to be equally competitive so that the tests of different team sizes are valuable, therefore

the following criteria is also applied when randomly choosing enemy pokemons. We take

the enemy’s average individual attack power 1
|E| ∗

∑
e∈E

e.a and average individual health

1
|E| ∗

∑
e∈E

e.hmax, and make sure they differ at most ±20% from those averaged attributes of

the companion team:

1

|E| ∗
∑
e∈E

e.a ∈
[
0.8

|C| ∗
∑
c∈C

c.a,
1.2

|C| ∗
∑
c∈C

c.a

]

and
1

|E| ∗
∑
e∈E

e.hmax ∈
[
0.8

|C| ∗
∑
c∈C

c.hmax,
1.2

|C| ∗
∑
c∈C

c.hmax

]

The SLEEP_DURATION is set to 3 as the default value in Pokémon. For combat result,

we use both SUM_H (remaining health score) and P_CWIN (percentage win-rate of com-

panions over all test cases) evaluation methods in this experiment.

Strategies

We have implemented 3 strategies in deciding the move type between sleep and attack,

and 4 targeting strategies for the chosen move type. The move type selection strategies for

companion AI in test are:

• Move Type - Smart Sleep: uses sleep if the current combat satisfies Case B, D or E in

Section 4.1.

• Move Type - Random Sleep: uses sleep or attack randomly (around 50% each) as

long as the move is valid (sleep is only used on a Healthy enemy).

56

4.3. Experiment

• Move Type - No Sleep: no sleep is used (attack only). Comparison with this baseline

strategy will show whether sleeping is at all useful.

The targeting strategies (once move type is decided) are as follows:

• Highest Health Targeting: chooses the enemy who has the highest remaining health.

• Lowest Health Targeting: chooses the enemy who has the lowest remaining health.

• Highest Attack Targeting: chooses the enemy who has the highest attack power.

• Lowest Attack Targeting: chooses the enemy who has the lowest attack power.

Result

We simulate each strategy combination (move type selection and move targeting) and each

scenario (“against 3 enemies”, “against 4 enemies”, etc.) for 1000 times. In each run, the

choices of enemies are randomized (from Index 001 to Index 721 in database) to create a

specific team size, and then becomes fixed for all strategy tests within that run to reduce

noise in comparing strategies. When combat terminates, the averaged SUM_H health score

as well as the P_CWIN win-rate score are taken for each strategy.

The SUM_H result is shown in Figure 4.5, with error bars indicating ±1 standard

deviations. In the “vs. 3 enemies” scenario, we can see that Smart Sleep performs roughly

the same as Random Sleep. When there are equal numbers of companions and enemies,

the setting that companions always move first results in huge disadvantage to enemies,

and individual enemies have a high likelihood of being killed by companions in a single

round: companions barely suffer any damage as long as some sleep is cast. The average

number of times sleep is used per combat is plotted in Figure 4.6. In this, for the “vs. 3

enemies” case, it can be observed that the Smart Sleep strategy uses less sleep according

to the sleeping condition of Case C in Section 4.1. This implies Random Sleep actually

wastes some unnecessary sleep casts on enemies while achieving similar SUM_H scores

as Smart Sleep.

As the combat becomes more difficult for companions in the “vs. 4 enemies”, “vs.

5 enemies” and “vs. 6 enemies” cases, Smart Sleep starts to show advantage over the

Random Sleep. In these situations some companions die during the combat, and enemies

57

4.3. Experiment

Figure 4.5: Total remaining health of companions by each sleep strategy

58

4.3. Experiment

Figure 4.6: Averaged total number of sleep casts per combat of companions

59

4.3. Experiment

thus have less risk of being eliminated within one round. Smart Sleep is able to detect this

real-time situation (as Case B or Case D in Section 4.1) and input more sleep casts (as

shown in Figure 4.6), reducing enemy damage, and bringing higher remaining health to

companions. On the other hand, sleep targeting strategies also begin to have an impact on

the result in these tougher scenarios for companions. Highest Health Targeting and Highest

Attack Targeting appear to be the better targeting tactics for sleep as the number of enemies

increases, confirming our deduced conclusion in Section 4.1 and 4.2 that an enemy with

either high health or high attack power should be a better target to sleep.

In all the four charts, the No Sleep strategy performs the worst. Although sleep is de-

signed to be useful in most games, the dominant pattern of using sleep against using attack

in this experiment implies that the Pokémon game’s data and move settings specifically

strengthen the power of sleep. We note that this is not necessarily the case in every attrition

game, especially in games that have more complex moves or synergy between the moves

of different characters. In the game World of Warcraft for example, the attack of a player

can be temporarily magnified by teammates [wow], potentially making sleep less beneficial

than the enhanced attack move (although with a higher cost).

Next, we take a look at the P_CWIN score for all strategies, shown in Figure 4.7.

The trend remains similar to the SUM_H chart as the Smart Sleep has increasingly larger

advantages over the other two strategies. Surprisingly, however, in the “vs. 5 enemies” and

“vs. 6 enemies” scenarios, we notice that Random Sleep has very low chance of winning,

even if its remaining health score (in winning situations) in Figure 4.5 does not differ that

much from Smart Sleep. This suggests further that Smart Sleep implicitly focuses more

on helping companions win the game rather than achieving high health, especially when

enemies are stronger, which is preferred by many modern games in general.

60

4.3. Experiment

Figure 4.7: Percentage win-rate for the companion team over all 1000 test cases by each

sleep strategy

To conclude, the derived Smart Sleep strategy shows improvements to a sleeping strat-

egy in practice by considering and categorizing the current combat information each turn.

In comparison with Random Sleep we do not see any degradation between equivalent tar-

geting strategies, and we always exceed the No Sleep strategy. Experimental results also

show that the different targeting strategies match our analytical inference done in previous

sections.

61

Chapter 5

Heuristic Approach for Heal Moves

Healing moves appear frequently in combat systems of many modern games. Different

from moves like sleep that restrict or harm the enemy, healing moves raise health for the

move caster itself or its allies, improving the outcome by giving opportunities for staying

alive longer. In this chapter, we follow the same analytical pattern as we did for sleep to

investigate heuristic strategies of using healing moves specifically.

In Section 5.1, we briefly review the heal move setting in the game model. Then in

Section 5.2, based on the evaluation of how companions can benefit from the extra health

gained by healing, we analyze and approximate the trade-offs between using heal and at-

tack moves, given that enemy strategies are not fully visible to companions. In Section 5.3,

we provide suggestions on the move type selection and move targeting problem accord-

ing to the heal analysis. Finally in Section 5.4, we perform experiments to determine the

performance of our decision heuristics in practice.

5.1 Heal Move Setting

As introduced in Section 2.2.2, a heal move heals the target for HEAL_AMOUNT health

and can only be used on the move caster itself or its allies. The maximum times a com-

panion can use heal in one combat, PPmax, is set to 15 by default for experiments in the

Pokémon game. The value of HEAL_AMOUNT varies in different games. For our experi-

mental model it has been set to 50% of the target’s maximum health. Note that in the case

62

5.2. Heal Analysis

of over-healing where a target’s maximum health target.hmax may be exceeded, the health

value is capped at target.hmax. Let cH be the healed companion and h′ be the companion’s

health after healed, then

cH .h
′ = min(cH .hmax, cH .h+ HEAL_AMOUNT)

5.2 Heal Analysis

Recall that in our trade-off analysis of sleep, the benefit and the cost are represented by a

damage decrease to enemies and to the sleep move user respectively, and so both benefit

and cost can be both described in terms of a time-damage chart. For heal, the cost remains

the same—by foregoing an attack move the companion team loses an amount of damage

equal to the heal user’s attack:

cost = ck.a (5.1)

where ck is the heal user.

However, the benefit part has no direct relation to the damage dealt by any player in

combat. In a trivial sense, the benefit is simply the health increase provided to the heal-

ing target—the HEAL_AMOUNT itself. Intuitively, however, healing is most useful when

applied to character who would otherwise be killed by the enemy, and this then relates to

the amount of damage done to the enemies. The recovered portion of health potentially

extends the healed companion cH’s lifetime by a certain number of rounds, Δt, and the

damage dealt by cH during this extra time is the gain for the companion team. This gives

benefit = Δt ∗ cH .a (5.2)

where Δt is given by

Δt = TH − TB (5.3)

TH is the number of rounds enemies take to kill cH after heal is used on cH , expressed by

TH =
⌈ cH .h

′

E(cH)H .a

⌉
(5.4)

63

5.2. Heal Analysis

where E(cH)H .a is the total attack power of the alive enemies targeting companion cH after

healing. TB is the number of rounds used to eliminate cH by enemies without heal and it is

expressed by

TB =
⌈ cH .h

E(cH)B.a

⌉
(5.5)

where E(cH)B.a is the attack sum of enemies targeting cH for the non-healing case.

Calculating TH and TB is hard because both E(cH)H .a and E(cH)B.a are unknown

and highly dependent on how enemies make their actual attacking target assignments. To

ensure that using heal has advantage over using attack, we find the minimum benefit and see

if it is greater than the constant cost. According to Equation (5.2) and (5.3), the minimum

benefit is obtained by a smallest Δt, which is then produced by the smallest possible TH

and largest possible TB. By Equations (5.4) and (5.5) this means all the enemies switch

their targets from other companions to cH right after heal is used on cH , so that E(cH)H .a

is maximized and E(cH)B.a is minimized. Note that E(cH)B.a could be zero in theory

making TB undefined (divide by zero). In this case we treat E(cH)B.a as infinitesimally

small, and simply set TB to be a very large number.

In real games, however, this target switching rarely happens. Enemies usually follow

a scripted attacking routine and their priority ranking of targets remains relatively constant

over time (also shown in the paper [TDV14]). Here we make a reasonable hypothesis

that enemies do not switch their target once decided. This allows us to approximate these

unknowns at least as far as assuming E(cH)H .a = E(cH)B.a. Given this constraint, we

can find the lower bound of Δt so that the benefit is minimized by setting E(cH)H,B to be

the set of all living enemies, and so maximizing the attack sum:

E(cH)H .a = E(cH)B.a =
∑
e∈E

e.a (5.6)

Then by expanding Equation (5.3) we get

Δtmin ≥
⌈ cH .h

′∑
e∈E

e.a

⌉
−

⌈ cH .h∑
e∈E

e.a

⌉
(5.7)

and thus the benefit of using heal in terms of increased damage done to the enemy is

64

5.3. Heal Decisions

approximated as

benefit ≈
(⌈ cH .h

′∑
e∈E

e.a

⌉
−

⌈ cH .h∑
e∈E

e.a

⌉)
∗ cH .a (5.8)

On the other hand, the timing of using heal also matters. Think of a situation where

companions are about to win the game with a huge advantage against the enemies. In

such a situation using heal may increase the length of game by losing damage to enemies

but provide no benefit as it does not change the combat result. In this case players would

probably prefer to finish the game as quickly as possible and use SUM_D evaluation instead

of SUM_H (defined in Section 2.7). To avoid such unnecessary healing, we make another

hypothesis that heal is used only when there is an ally in danger. If one of the companions

could potentially get killed within the next round, then saving it would most likely achieve

a benefit, assuming healing can prevent the untimely death. The minimum health that could

surely prevent a kill is expressed by

hsafe >
∑
e∈E

e.a (5.9)

This ensures the companion’s current health is larger than the maximum damage enemies

could possibly deal in one round. Therefore, the condition of using heal is

cH .h ≤
∑
e∈E

e.a and cH .h
′ >

∑
e∈E

e.a (5.10)

Note that here we overestimate the opponents’ damage on one companion slightly by as-

suming the attack set is the entire set of enemies. This is conservatively necessary because

losing a player means the entire companion team loses a portion of damage for all future

combat rounds.

5.3 Heal Decisions

Based on the analysis in the previous section, we now summarize the heuristic for deciding

the move type between heal and attack, as well as selecting the healing target.

For the move type decision, if the current companion ck is eligible to use heal (enough

remaining PP) and there exists a companion cH such that the condition in Equation (5.10)

65

5.4. Experiment

is satisfied, we estimate the benefit of using heal on cH by Equation (5.8) and compare it

to the cost by Equation (5.1). If the benefit is higher, then ck uses heal, otherwise it uses

attack.

For the move targeting decision, if there are multiple qualified healing candidates, we

compare the value of approximated benefit for all and choose the one with the highest

value.

5.4 Experiment

The theoretical result provides an insight into the trade-off of using heal moves from a gen-

eral perspective. Actual game combat, however, contains many variables such as size of the

team, the value of health and attack, and so forth. In this section, we examine the perfor-

mance of the derived smart healing heuristic in practice by comparing it with other common

strategies, based on the data and combat framework from the Pokémon game. The test in-

cludes various team setups to simulate different scenarios with specific combat evaluations.

Setup

The companion team consists of 3 pokemons as usual (refer to the default ones in Section

2.8.2). To simulate combats of different difficulty, and thus where healing may be useful,

we alter the size of the enemy team, giving us the following test cases:

• Against 2 Enemies - To simulate the combat where enemies are weak

• Against 3 Enemies - To simulate the combat where enemies are equal to companions

• Against 4 Enemies - To simulate the combat where enemies are slightly stronger

• Against 5 Enemies - To simulate the combat where enemies are much stronger

• Against 8 Enemies - To simulate the combat where companions are very unlikely to

win

Enemy pokemons are selected randomly from the entire Pokémon database and are individ-

ually competitive with companions (same as experiment in Chapter 4). Note that here we

66

5.4. Experiment

test against both a lower and a higher number of enemies than we did for our sleep tests,

in order to consider situations where we expect healing to likely be ineffective, and where

it is likely to be useful. For the enemy teams of size 2, 3, 4 and 5, we evaluate the combat

using SUM_H health score, under the expectation that the companions are able to at least

sometimes able to survive. For the enemy teams of size 3, 4, 5 and 8, we test by using

SUM_D evaluation to investigate the situation where just maximizing the damage made by

companions is important (such as in a boss fight where enemies may be unbeatable). For

the SUM_D evaluation, we assume that the enemies do not heal themselves to minimize

the noise in result. Lastly, we evaluate the percentage win-rate P_CWIN for all five test

scenarios to find out whether a good healing strategy is truly effective in raising the chance

of winning for companions.

Strategies

We have implemented 4 strategies in deciding the move type, and 2 strategies in deciding

the target of heal for companions. The targeting strategy for attack is the highest threat

strategy discussed in the paper [TDV14].

• Move Type - Smart Heal: the smart strategy derived in Section 5.3.

• Move Type - Greedy Heal: uses heal if there is at least one companion whose health

is below a certain threshold (here we set it as 50%). This strategy is commonly used

in modern games.

• Move Type - Random Heal: uses heal or attack randomly, regardless of each com-

panion’s health.

• Move Type - No Heal: no healing is used (attack only). Comparison with this baseline

strategy will show whether healing is at all useful.

The healing targeting strategies are as follows:

• Smart Targeting: the targeting strategy based on comparing the healing benefit as

described in Section 5.3

• Random Targeting: randomly picks the target among qualified candidates

67

5.4. Experiment

Result

Simulations of each strategy combination in each scenario are run 1000 times, sufficient

for the data result to show trends and patterns. In each run, the choices of enemies are

randomized (from Index 001 to Index 721 in database) and fixed for all strategy tests within

that run. We visualize the results in three figures with SUM_H evaluation in Figure 5.1,

SUM_D evaluation in Figure 5.4 and P_CWIN evaluation in Figure 5.6. The error bars in

Figure 5.1 and 5.4 represent ±1 standard deviation of the data.

Figure 5.1: Total remaining health of companions by each healing strategy

In Figure 5.1, when using SUM_H evaluation, Smart Heal does show advantages over

other strategies in most cases. An exception is seen in the left-top chart where companions

play against only 2 enemies. Unsurprisingly, when enemies are relatively weak companions

are very likely to survive without healing themselves. This explains the result that Smart

Heal behaves similar to No Heal. The Greedy Heal strategy, however, focuses only on

68

5.4. Experiment

the companions’ health and heals even if healing is not necessarily needed. This is also

true of Random Heal, and thus in combat against few enemies we can see that Greedy and

Random Heal substantially increases the final health of companions, deriving benefit from

the simple increase in final health a heal action provides. We note that this improvement

comes at the price of a longer combat length, as shown in Figure 5.2.

Figure 5.2: Average total number of rounds spent in combat of “vs. 2 enemies”

As the combat becomes more difficult, and especially in the bottom two charts “vs. 4

enemies” and “vs. 5 enemies” of Figure 5.1, we can see not only that Smart Heal becomes

a much better strategy, but also that Greedy and Random Heal start to perform even worse

than No Heal. With more enemies, it is possible for many enemies to target the same com-

panion and one heal might not be enough to allow chealed to survive. Evaluating the current

combat situation and each companion’s status becomes more crucial in deciding whether or

not heal is used. We can see the impact of selective healing by plotting the average number

of heal casts, shown in Figure 5.3. In this we notice that for 3 or 4 enemies, Random Heal

has made many more heal’s than Smart Heal, and these are very likely to be unnecessary—

the wasted healing action merely causes a loss of attack opportunity, allowing enemies to

live longer, leading to more damage to companions. This chain reaction also reflects the

importance of applying the healing condition in Equation (5.10). At 5 enemies Smart Heal

and Random Heal are healing at approximately the same rate. Here again, however, intel-

ligently choosing heal moves where benefit outweights cost has a large positive impact.

69

5.4. Experiment

Figure 5.3: Average number of healing casts

70

5.4. Experiment

Interestingly, the healing targeting strategy seems to have relatively little influence on

the result. This is possibly caused by the enemy strategy of trying to focus on the same

target as often implemented in modern games, so that most of the time we would have

only one healing candidate with very low health, distinguished from other companions.

In Random Heal, because of the imprecise use of heal that leads to a set of potentially

unwanted candidates, Smart Targeting turns out to be better than the Random Targeting by

further filtering companions with low healing benefit.

In general, Figure 5.1 implies that with more enemies involved, healing moves should

be used more carefully if the remaining health in particular is concerned.

Figure 5.4: Total damage dealt by companions by each healing strategy

On the other hand, Figure 5.4 with the SUM_D evaluation illustrates a slightly differ-

ent pattern of behavior. In the “vs. 3 enemies” case against equal number of opponents,

companions deal roughly the same amount of damage regardless of the healing strategies,

71

5.4. Experiment

even though the remaining health given by each strategy may differ. This implies that ene-

mies are all killed in each game, where SUM_D is exactly the total sum of their maximum

health.

In the games where enemies may survive and win, Smart Heal begins to show advan-

tages much like in the SUM_H evaluation. Notice that in these cases the No Heal strategy

tends to do quite well. By not including any heal moves, attacks are maximized, and thus

so is the total damage score. This comes, of course, at the cost of having a much lower

remaining health (referring to Figure 5.1).

When we simulate more unbalanced combat with 3 companions playing against 8 en-

emies, all the healing strategies performs more or less equally again. Here healing is no

longer effective at all, as enemies can easily eliminate a companion with full health in one

round, leaving no candidates for Smart Heal or even Greedy Heal. Random Heal, which

performs some casts of heal regardless, only makes the situation worse in this kind of sce-

nario. The number of heal casts for this specific scenario is shown in Figure 5.5, further

verifying that healing is barely used by Smart Heal, only slightly more by Greedy Heal,

and although much by Random Heal it remains ineffective.

Figure 5.5: Average number of healing casts for vs. 8 enemies case

Finally, the PC_WIN percentage win-rate score is displayed in Figure 5.6. The first

four charts (“vs. 2” – “vs. 5”) follow a similar distribution to the health scores in Figure

5.1. However, by comparing the last four charts (“vs. 3” – “vs. 8”) with Figure 5.4 we

notice that the Random Heal’s winning probability drops quickly despite its damage score

72

5.4. Experiment

being close to others. Meanwhile, the Smart Heal strategy makes best use of each portion

of damage when it is not using heal, toward the ultimate victory. Combining the previ-

ous figures we can see that the advantage of Smart Heal over other strategies gets larger

and larger when combat becomes more challenging for companions, as long as winning is

feasible, under all types of evaluations.

Overall, the tests have shown that the performance of healing strategy is stably im-

proved in practice by using Smart Heal compared with some other common heuristics, at

least outside of situations where healing is moot because the enemy team is either too weak

or too strong. This is consistent with the theoretical deduction.

73

5.4. Experiment

Figure 5.6: Percentage win-rate for companions over all 1000 test cases by each healing

strategy

74

Chapter 6

An Experiment with All Move Types

In this chapter, we combine the smart heuristics of both sleep and heal in the previous

chapters, developing and testing a straightforward strategy that decides on the best move

type among all three actions (sleep, heal, attack). We undertake an experiment specifi-

cally to test the combined smart heuristic against greedy and random strategies, which are

commonly implemented in the game industry.

In Chapter 4 and Chapter 5, we derived conditions and benefits of using sleep and heal

based on damage as well as health of players. By checking the conditions against using

attack separately, we could know whether sleep or heal is individually valid to be used or

not. If it turns out that both of them are superior to attack, then by comparing the benefit

values of sleep and heal directly, we can obtain a final decision out of all three move types.

Section 6.1 describes details of the combined smart heuristic for choosing move types.

Section 6.2 gives the experimental setup for comparing the smart heuristic with greedy and

random strategies. Lastly, results and discussions are included in Section 6.3.

6.1 Combined Smart Heuristic

Recall that in the analysis in Section 4.1 we decided on sleep over attack if any of the

following condition is satisfied:

• eslept.a ∗ SLEEP_DURATION > ck.a , rmin > 1 , eslept.a > ck.a

75

6.2. Experimental Setup

• eslept.a ∗ SLEEP_DURATION > ck.a , 1 < rmin < SLEEP_DURATION ,

eslept.a < ck.a

• eslept.a ∗ SLEEP_DURATION > ck.a , rmin ≥ SLEEP_DURATION

Additionally, in Section 5.2 we chose heal over attack based on the following condition:

• cH .h ≤ ∑
e∈E

e.a , cH .h′ >
∑
e∈E

e.a

Combining these conditions is trivial if at most one of our tests is true: if only sleep or

only heal is considered viable, we perform the action, and if the conditions for neither are

satisfied then we attack. When conditions for both sleep and heal are satisfied we select

the action with the highest benefit, determining the sleep benefit as in Section 4.1, and the

heal benefit as in Section 5.2. If both benefits are equal, we (arbitrarily) default to sleep.

For targeting strategies, we choose the Highest Attack Targeting if sleep, Smart Tar-

geting if heal, and Highest Threat Targeting if attack, as these targeting strategies were

individually shown best in previous experiments. Other targeting approaches are of course

possible, but the purpose of this chapter is to investigate move type selection in scenarios

allowing all three move kinds, rather than to test the targeting strategies themselves.

6.2 Experimental Setup

The experiment is again based on the Pokémon data and combat framework specified in

Section 2.8.2, with fixed move targeting strategies as explained above. To reduce potential

noise due to individual pokemon’s having distinct move-sets, we make each player capable

of using all three move types (sleep, heal, attack) and set the PPmax for each move type to a

very large number (40).

In terms of team composition, we categorize the test data into two groups. The first

one represents combat of small team sizes. The companion team contains exactly 3 com-

panions and the enemy team’s size varies from 2 to 8, similar to what we have done in

sleep and heal chapters. The second group simulates relatively larger combat scenarios,

with the companion team’s size fixed to 10 and enemy team’s size varying from 8 to 18.

76

6.3. Result

This time, players of both teams are randomized from Index 001 to Index 721 (with equal

competitiveness, as described in Section 4.3) in the Pokémon database.

Apart from the Combined Smart strategy we have derived in Section 6.1, we also in-

clude the Combined Greedy strategy and Combined Random strategy in test, defined as

follows,

• Combined Greedy:

if there exists a living companion whose health is below 25% then

moveType ← heal

else if the living enemy with highest attack is not InSleep then

moveType ← sleep

else

moveType ← attack

This baseline strategy is similar to the Pokémon’s scripted NPC behavior and is sim-

ple enough to be adapted to many modern games.

• Combined Random:

Randomly assign sleep, heal, or attack to moveType with 1/3 chance each.

This baseline strategy represents a very naïve approach, but by comparing with it we

can know whether a heuristic strategy (even the greedy one) is truly necessary.

6.3 Result

For each group of data, we run the test for each combined strategy 1000 times. The aver-

aged percentage win-rate of companion team P_CWIN is taken over all the 1000 runs for

each strategy and is shown in Figure 6.1, while the total remaining health score SUM_H of

two data groups is shown in Figure 6.2. Last but not least, we have recorded the number of

each moves casts in Figure 6.3 to reproduce and investigate companion behaviors during

combat under each strategy.

From the P_CWIN result we can see that, surprisingly, just by straightforward compar-

ison of the potential benefit of each move type produced by formulas in previous chapters,

the Combined Smart strategy achieves a much better performance than Combined Greedy

77

6.3. Result

Figure 6.1: Percentage win-rate for companions by each combined strategy

78

6.3. Result

and Combined Random. In the “3 companions vs. 5 enemies” case shown in the top chart

for example, Combined Smart could still maintain a high win-rate (close to 90%) while

both of the other two strategies have fallen below 50%.

A further comparison of the two charts with different combat sizes shows that as the

number of players increases, the Combined Smart strategy becomes less effective. The

curves are much closer in “Companion Team with Size 10” as opposed to the “Size 3”

case, implying that our derived strategy works best in small-scale attrition games. We can

attribute this change to the increasing complexity of enemy behaviors when more players

are added, which leads to a greater challenge in accurately approximating the benefit of

each move type. With more players involved the range of potential benefit between dif-

ferent approaches becomes quite large—consider, for example, the difference between 10

enemies focusing attack on 1 companion and distributing their attack equally on 10 com-

panions. Our heuristics, while demonstrably effective with limited options, are not able to

find best moves as consistently at large scales as they can within the small scale attribution

games we have focused on.

The SUM_H results in Figure 6.2 show a more or less similar trend to the P_CWIN

data. Some slight differences exist, however, and we can see that in terms of remaining

health, the Combined Smart seems to have a larger advantage over Combined Greedy in

the small-scale case, and also that the difference between the three strategies is even less in

the large-scale combat case.

More interesting results are found in the average number of move casts, shown in Figure

6.3. Here we see that overall the use of sleep and heal tends to reach its peak at the

largest combat sizes for Combined Smart, smaller for Combined Greedy, and smaller still

for Combined Random. This essentially matches the way win rates decay for the different

strategies, reflecting the fact that the better a strategy is the larger a combat situation it can

handle and still be effective. Interestingly, the use of sleep and heal by Combined Greedy

and Combined Smart in the Size 10 results is much less than in the Size 3, in proportion

term. In fact, in the top-right chart (Sleep Casts, Size 10) we notice that the Combined

Smart strategy does not cast sleep at all. According to Case C of calculating the sleeping

benefit in Section 4.1, this is not unexpected: it is possible to kill any individual enemy

in one round given a large number of living companions attacking it, and so casting sleep

79

6.3. Result

Figure 6.2: Total remaining health of companions by each combined strategy

80

6.3. Result

Figure 6.3: Average number of each move casts

81

6.3. Result

is not considered necessary. This, however, further reveals the limitation of the derived

combined heuristic for handling large-scale combat, where a more complex distribution of

targets and moves may have significant advantages. Nevertheless, combining heuristics of

individual moves still shows good potential in improving existing scripted strategies for

more general small-scale situations.

82

Chapter 7

Related Work

Our work in the thesis analyzes several AI decision problems for NPC companions in

small-scale turn-based attrition games. We initially addressed this problem by investigat-

ing search approaches, such as the brute-force tree search and the more efficient RRT algo-

rithm. The model for our game simulation is extensible so that other approaches may also

be applied. In the bulk part of thesis, however, we focused on the properties and trade-offs

of two popular, individual moves and came up with heuristic strategies for each move. The

heuristic approaches have improved the performance of making companion AI decisions

under most scenarios compared to other commonly used strategies, without the cost of

doing expensive searches.

7.1 Analyzing Attrition Games

The main focus of our work in on small-scale attrition games. Attrition games can be

very complicated in general. The paper by Furtak, T. et al. [FB10] presents proofs on

the complexity of two-player attrition games to show that the problem is computationally

hard for most game cases: to decide the existence of deterministic winning strategies for

basic attrition games is PSPACE-hard and in EXPTIME. The research by Ontanón et al.

[OSU+13] provides a survey of existing works on solving AI problems in the commercial

game StarCraft—a much larger scale example of an attrition game compared to the ones

we consider. They discuss topics such as current tactics, strategies, and state-of-art AI

83

7.2. Tree Search Strategies

agents for StarCraft, shedding light on challenges in general attrition games.

In analyzing attrition games, some people tend to use behaviour based methods. The

work by Swen Gaudl et al. [GDB13] describes the Behaviour Oriented Design (BOD)

approach, a technique based on Finite State Machines, and Behaviour Trees. Behaviour

Trees are a general decision-making framework [Ogr12], heavily used in real games and

have great potential to be combined with our move-specific heuristic models in Chapter 4

and Chapter 5. When we start to merge heuristics for different types of moves, Behaviour

Trees could provide a framework to further test and improve these AI decisions, and inte-

grate them into more general decision-making.

7.2 Tree Search Strategies

We have analyzed several discrete space search strategies in this thesis (mainly in Chap-

ter 3) for solving AI players’ decision problems. In particular we have discussed brute-

force search and Rapidly Exploring Random Tree (RRT) search. The brute-force method

is often considered an initial approach in many searching problems. Faiz Ilham Muham-

mad [Muh12] describes the implementation of brute-force search using BFS in small-scale

games such as turn-based games, maze games, etc. RRT was first introduced by Steven

M. LaValle’s work [Lav98] in 1998 to solve path-finding problems, while Morgan Stuart

Bruce then adapted it to the sampling-based planning algorithm for discrete space problems

in his thesis in 2004 [MB04].

Besides these two approaches, there has been research on other methods as well. Monte

Carlo Tree Search (MCTS) [MTC] is a heuristic search algorithm that also relies on ran-

dom sampling. Bruce Abramson first experimented with the idea in turn-based two-player

games including Tic-tac-toe, Chess, in his work [Abr91] in 1991. Years later the MCTS

algorithm had been extended to solve AI problems in more genres of modern computer

games including real-time games such as Total War: Rome II [Cha14], card games such

as Magic: The Gathering [WC09], etc. Recently a paper by Browne et al. [BPW+12]

provided a snapshot that summarized recent work on the MCTS algorithm itself.

Work on Fast Alpha-Beta Search [CSB12] suggests another possibility for improv-

ing game AI in combat scenarios. The Alpha-Beta Search is based on durative moves

84

7.3. Other General AI Approaches

in Real-Time Strategy (RTS) games, which could be potentially reduced to a turn-based

game model to fit our thesis. Experiments have shown that this search algorithm performs

better than many scripted strategies in RTS games. It runs efficiently and is scalable for

large combat scenarios involving over 20 player units. The Alpha-Beta Search is also men-

tioned in the paper [KB05] by Alexander Kovarsky et al., which briefly discusses a list of

different feasible strategies.

7.3 Other General AI Approaches

For improving general game AI, there are a variety of other approaches. Neural Networks

are one such technique that can be used as a tool to decide actions for AI players. Darryl

Charles and Stephen McGlinchey reviewed the history of using neural networks in games

and identified its advantages and disadvantages [CM04]. Kenneth O. Stanley et al. ex-

plained in the paper [SBM05] how neural networks could be used to train AI players in

video games based on the NERO project [Col03]. Ross Graham et al. addressed in their

paper [RGS04] an approach to enhance the AI path-finding ability by using neural net-

works. In our turn-based game models, neural networks can be considered as an alternative

method to help NPC companions make move decisions through training so that the more

games they play the better action they choose, although this is in general an expensive

strategy in terms of time required.

Adaptive Spatial Reasoning [BS08] is another approach in designing a Turn-Based

Strategy (TBS) AI. Based on the ADAPTA architecture (Allocation and Decomposition

Architecture for Performing Tactical AI), this approach yields more satisfactory perfor-

mance over multiple scripted AI tactics. It is possible that using this ADAPTA architecture

could further optimize our enhanced heuristic strategies in this thesis.

85

Chapter 8

Conclusions and Future Work

In this chapter, we summarize and conclude our work in the thesis and give an insight into

possible future work.

8.1 Conclusions

Artificial Intelligence (AI) in modern video games has obtained increasing attention from

both academics and game designers. Not only do we expect smart behaviors generated for

both NPC companions and enemies to make games fun, but also we require fast AI response

to provide better play experience. While the AI of NPC enemies has been analyzed for

decades, the AI of NPC companions still has a large amount of room for optimization.

In this thesis we built an analytical game model for attrition games, explored different

existing algorithms for solving AI decisions for NPC companions and in the end improved

the decision strategies for various moves and scenarios. We found out that although state-

based search algorithms such as brute-force or RRT can be applied to help find best moves

for companions, their time efficiency is generally not acceptable for even turn-based inter-

active games, at least not without a great deal of further optimization. On the other hand,

some commonly used greedy algorithms run fast and are simpler to implement, with the

drawback that we have to resolve complexity concerns for games allowing a large set of

various actions. A straightforward greedy strategy can easily fail to find good solutions

under certain game settings.

86

8.2. Future Work

By looking at the specific actions of sleeping and healing, we made an approach in the

rest of the thesis to improve the performance of heuristic algorithms, especially with re-

spect to the possibility of finding a better game result compared to commonly implemented

strategies in modern games. Based on the move cost/benefit evaluations, we have shown

for each move, how, when and on which target it should be used so that the outcome is

generally better than with simple greedy algorithms. Meanwhile, we argue that for some

decision problems, an optimal solution may not be feasible at the point the companion AI

agent is required to respond; still, we can find good (if not necessarily optimal) solutions

under certain assumptions and restrictions on the game. Our experiments applying data

from the small-scale battles in the Pokémon game have further verified that our enhance-

ment for companion AI is potentially effective in real game contexts.

8.2 Future Work

There are many extensions to this work. We have investigated how companions should use

each individual action wisely depending on costs and benefits, and made an simple experi-

ment of directly combining the individual heuristics together by comparing damage-related

benefits. The improvement of game result for larger combats, however, is not so obvious.

It could be worthwhile to theoretically analyze multiple moves together if they are given at

the same time in combat. Figuring out the relations among all types of moves and trying

to design the corresponding decision trees can help us further increase the performance of

existing greedy approaches.

In our experiments for heuristic approaches, the move cost parameter PPmax for each

move type was set to the default value from the game Pokémon, and it was relatively large

(10 for sleep and 15 for heal) with respect to the number of combat rounds, so that the actual

move count rarely exceeded this value. Nevertheless, PPmax could impact the decision

strategies if it is set small enough. Each single use of a move type with limited casts

could become more crucial. Think of the situation where PPmax = 1 for heal. Intuitively,

the only heal should be used to save the most important ally player, sacrificing other less

critical allies (even when healing has a positive trade-off value at that point). A possible

approach for handling this is to assign weights to the benefit calculation of each move type,

87

8.2. Future Work

additionally considering the remaining PP amount as well as the value of each target as

factors in move decisions. The less PP the move type has, the more tendency it has to be

used for the most valuable player.

Using a more advanced move cost model is another big challenge. Our experiments and

moves implemented the cast count model that assigned a PPmax limitation to each individ-

ual move type. When all move types share a mutual resource, such as in the game World of

Warcraft where all moves cost certain amount of “mana”—a player-specific attribute, con-

sidering the mutual resource consumption would be another task for trade-off calculation.

This is especially necessary for lengthy combat in which players may run out of resources.

Apart from possible move oriented analyses, we may also apply other AI techniques to

potentially improve companion decisions. As mentioned in related work in Chapter 7, we

can adapt other search algorithms such as Monte Carlo search, or Alpha-Beta search to our

game model. Monte Carlo search is famous for its excellent performance in solving Go,

whose complexity also relies on the large number of move choices. It is possible that Monte

Carlo search would work well for our small-scale attrition games, although we would have

to carefully choose parameters in its node evaluation function so that the search tree is

well-balanced [BPW+12].

88

Bibliography

[Abr91] Bruce Abramson. Expected-Outcome Model of Two-Player Games. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1991.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas,

Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.

Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1–

43, 2012.

[BS08] Maurice H. J. Bergsma and Pieter Spronck. Adaptive Spatial Reasoning for

Turn-based Strategy Games. In Artificial Intelligence and Interactive Digital

Entertainment Conference. The AAAI Press, 2008.

[bul] Bulbagarden Forums. http://bmgf.bulbagarden.net/.

[BW84a] Alan Bundy and Lincoln Wallen. Alpha/beta pruning. In Alan Bundy and

Lincoln Wallen, editors, Catalogue of Artificial Intelligence Tools, Symbolic

Computation, pages 4–4. Springer Berlin Heidelberg, 1984.

[BW84b] Alan Bundy and Lincoln Wallen. Minimax. In Alan Bundy and Lincoln

Wallen, editors, Catalogue of Artificial Intelligence Tools, Symbolic Compu-

tation, pages 75–75. Springer Berlin Heidelberg, 1984.

[Cha14] Alex J. Champandard. Monte-Carlo Tree Search in TOTAL WAR: ROME

II’s Campaign AI, 2014. http://aigamedev.com/open/coverage/

mcts-rome-ii/.

89

Bibliography

[CM04] Darryl Charles and Stephen McGlinchey. The past, present and future of arti-

ficial neural networks in digital games. In Proceedings of the 5th international

conference on computer games: artificial intelligence, design and education.

The University of Wolverhampton, pages 163–169, 2004.

[Col03] Digital Media Collaboratory. Neuro Evolving Robotic Operatives (NERO),

2003. http://dev.ic2.org/nero.

[CSB12] David Churchill, Abdallah Saffidine, and Michael Buro. Fast Heuristic Search

for RTS Game Combat Scenarios. In Eighth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2012.

[ess] Pokemon Essentials. http://pokemonessentials.wikia.com.

[FB10] Timothy Furtak and Michael Buro. On the complexity of two-player attrition

games played on graphs. In Proceedings of the Sixth AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment Conference,

2010.

[GDB13] Swen Gaudl, Simon Davies, and Joanna J. Bryson. Behaviour oriented de-

sign for real-time-strategy games: An approach on iterative development for

STARCRAFT AI. In Foundations of Digital Games Conference 2013 (FDG

2013), pages 198–205, May 2013.

[KB05] Alexander Kovarsky and Michael Buro. Heuristic search applied to abstract

combat games. In Advances in Artificial Intelligence, pages 66–78. Springer,

2005.

[Lav98] Steven M Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path

Planning. Technical report, Iowa State University, 1998.

[MB04] Stuart Morgan and Michael S Branicky. Sampling-based planning for dis-

crete spaces. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2004.

90

Bibliography

[MTC] Monte Carlo Tree Search. http://mcts.ai.

[Muh12] Faiz Ilham Muhammad. Graph searching implementation in game program-

ming cases using BFS and DFS algorithms. Master’s thesis, Sekolah Teknik

Elektro dan Informatika, 2012.

[Ogr12] Petter Ogren. Increasing Modularity of UAV Control Systems using Com-

puter Game Behavior Trees. In AIAA Guidance, Navigation and Control

Conference, Minneapolis, MN, 2012.

[OSU+13] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David

Churchill, and Mike Preuss. A survey of real-time strategy game AI research

and competition in starcraft. Computational Intelligence and AI in Games,

IEEE Transactions on, 5(4):293–311, 2013.

[pok] Bulbapedia, the community driven Pokémon encyclopedia. http://

bulbapedia.bulbagarden.net/wiki/Main_Page.

[RGS04] Hugo McCabe Ross Graham and Stephen Sheridan. Neural Networks for

Real-Time Pathfinding in Computer Games. In Proceedings of ITB Research

Conference, 2004.

[SBM05] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolving Neu-

ral Network Agents in the NERO Video Game. In Proceedings of the IEEE

2005 Symposium on Computational Intelligence and Games (CIG’05), Piscat-

away, NJ, 2005. IEEE.

[Sha13] Jon Shafer. Turn-Based VS Real-Time. http://jonshaferondesign.

com/2013/01/03/turn-based-vs-real-time/, 2013.

[TDV14] Jonathan Tremblay, Christopher Dragert, and Clark Verbrugge. Target selec-

tion for AI companions in FPS games. In FDG’14: Proceedings of the 9th

International Conference on Foundations of Digital Games, April 2014.

91

Bibliography

[WC09] Colin D Ward and Peter I Cowling. Monte Carlo search applied to card se-

lection in Magic: The Gathering. In Computational Intelligence and Games,

2009. CIG 2009. IEEE Symposium on, pages 9–16. IEEE, 2009.

[wow] World of Warcraft Official Website. http://us.battle.net/wow/

en/.

92

