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ABSTRACT 
	

The management of breast cancer is complicated by inter- and intra-tumour 

heterogeneity. In particular, triple negative breast cancer (TNBC) is a difficult to treat, 

molecularly heterogeneous cancer subtype that lacks actionable targets. The heterogeneity of the 

TNBC microenvironment (stroma) has not been well characterized despite the key role that it 

may play in tumor progression. Similarly, the impact of intra-tumoral heterogeneity on 

therapeutic response and patient outcome remains largely unknown. 

To address these challenges I investigated the transcriptome of tumor-associated stroma 

isolated from TNBCs (n=57), as well as comprehensive single-cell gene expression profiling 

from a treatment-resistant breast patient-derived xenograft (PDX) displaying heterogeneity for 

the therapeutically targetable HER2 receptor (n=33 cells). 

Analysis of the TNBC stroma identified four stromal properties associated with T cells 

(T), B cells (B), invasive epithelial cells (E), or a desmoplastic reaction (D) respectively. My 

method, entitled STROMA4, assigns each sample as either low, intermediate, or high for each 

property independently in stromal or bulk expression profiles. I provide evidence that 

TNBCType, a previously reported subtyping scheme for TNBC, underestimates the complexity 

of some tumors, and show how stratification by the STROMA4 method can predict patient 

benefit from therapy with increased sensitivity. Combining the STROMA4 property assignments 

generates a novel TNBC subtyping scheme, and analysis of this subtyping scheme revealed that 

only 15 of 81 possible subtypes had larger than expected populations. This combinatorial 
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approach revealed that the B, T and E properties are prognostic only when the D property is not 

high, providing a potential explanation for misprediction by existing classifiers.  

Analysis of single-cell RNA-seq (scRNA-seq) data from a PDX heterogeneous for HER2 

expression identified distinct cellular subpopulations and revealed a predominantly basal breast 

cancer subtype. Unsupervised hierarchical clustering distinguished two major cellular 

subpopulations with differential expression of EGFR, which was validated 

immunohistochemically in the resected tumour. Further investigation into differences between 

the EGFR-high and -low cells in the scRNA-seq data indicated that EGFR-high cells were more 

“stem-like”, which was then validated experimentally. The presence of EGFR-high stem cells in 

this PDX model, as well as in other PDX models, is associated with sensitivity to EGFR 

inhibition. 

Analysis of the TNBC stroma, using a multi-parameter classification model, produces a 

simple ontology that captures TNBC heterogeneity, and informs how tumor-associated 

properties and biologies interact to affect prognosis; while analysis of the scRNA-seq data 

identified two groups of cells with differential expression of EGFR and stem-like characteristics, 

which is associated with response to EGFR inhibition. Thus, this work adds to our understanding 

of the contribution of inter- and intra-tumoral heterogeneity to the complexity of the cancer 

ecosystem, and the effect it has on response to therapy. 
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RÉSUMÉ 
	

L’hétérogénéité inter et intra-tumorale participe à la complexité de la biologie du cancer 

du sein. Plus particulièrement, le cancer du sein triple négatif (CSTN) est difficile à traiter en 

raison de son hétérogénéité au niveau moléculaire et manque de cibles thérapeutiques 

actionnables. L’hétérogénéité du microenvironnement tumoral des CSTN reste peu caractérisée 

malgré le rôle clé que ce dernier peut jouer dans la progression tumorale. De façon similaire, 

l’impact de l’hétérogénéité intra-tumorale sur la réponse thérapeutique et la survie des patients 

demeure inconnue. 

Afin d’élucider ces mécanismes, j’ai analysé le transcriptome du stroma tumoral isolé à 

partir de CSTN (n=57) ainsi que le profil d’expression cellulaire (cellules individuelles ; n=33) 

d’une xénogreffe dérivée de tumeur de patient (XDP) résistante à la thérapie et arborant une 

hétérogénéité d’expression du récepteur HER2. Ce récepteur peut être ciblé de façon 

thérapeutique en clinique.  

L’analyse du stroma des CSTN a permis d’identifier quatre propriétés stromales 

associées aux cellules T (T), B (B), aux cellules épithéliales invasives épithéliales (E),  ou à une 

réaction desmoplasique (D). La méthode que j’ai développée, intitulée « STROMA4 », assigne 

un score faible, intermédiaire ou élevé pour chaque propriété à partir des profils d’expression 

génique du stroma (stroma tumoral) ou de la tumeur globale (tumeur en entier). J’ai pu montrer 

que le « TNBCType », une méthode de sous-typage des CSTN ayant préalablement été publiée, 
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sous-estime la complexité de certaines tumeurs. De plus, la stratification des patientes selon la 

méthode « STROMA4 » permet de prédire la réponse à la thérapie avec une meilleure sensibilité 

que la méthode « TNBCType ». La combinaison des différentes propriétés identifiées par la 

méthode « STROMA4 » génère une nouvelle stratification des CSTN. L’analyse de cette 

nouvelle classification a permis de montrer que seul 15 des 81 sous-types possibles (d’après les 

différentes combinaisons de scores des propriétés) sont représentés par une population plus 

grande qu’attendue. Cette approche combinatoire révèle que les propriétés B, T et E sont 

pronostiques seulement quand la propriété D est de faible score. Ceci pourrait expliquer, en 

partie du moins, la mauvaise prédiction des classificateurs existants. 

L’analyse des données provenant du séquençage ARN de cellules isolées (scRNA-seq) 

d’une XPD hétérogène pour l’expression de HER2 identifie des sous-populations cellulaires 

distinctes et révéle, de façon dominante, un sous-type basal de cancer de sein. La classification 

hiérarchique (« hierarchical clustering » en anglais) non supervisée distingue deux sous-

populations cellulaires majeures ayant des taux d’expression du récepteur  EGFR différentes au 

niveau de l’expression génique. Cette différence est validée au niveau protéique par 

immunohistochimie sur un échantillon de tumeur humaine réséquée au moment de la chirurgie 

de la patiente.  L’étude des différences entre les cellules à forte et faible expression de EGFR par 

scRNA-seq indique que les cellules ayant une expression élevée de EGFR arborent des 

propriétés de cellules « souches ». Ce résultat a été validée de façon expérimentale. La présence 

de cellules ayant un fort taux d’expression de EGFR dans ce modèle ainsi que dans d’autres 

modèles XPD, est associée à une sensibilité vis à vis de l’inhibition de EGFR.   
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 L’analyse du stroma des CSTN, utilisant un modèle de classification multi-paramètrique, 

génère une classification simple qui récapitule l’hétérogénéité des CSTN. Cette classification 

permet de comprendre comment les différentes propriétés biologiques associées à la tumeur 

interagissent et affectent le pronostic. D’autre part, l’analyse des données du scRNA-seq identifie 

deux groupes de cellules avec des différences de (i) niveaux d’expression de EGFR, (ii) 

propriétés de cellules « souches ». Ces cellules sont également  associées avec une réponse à 

l’inhibition de EGFR. Ainsi, ce travail permet une meilleure compréhension de la contribution de 

l’hétérogénéité aux niveaux inter- et intra-tumoral à la complexité de l’écosystème du cancer et 

son effet sur la réponse à la thérapie.  
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“From the very beginnings of Islam, the search for knowledge has been central to our 

cultures. I think of the words of Hazrat Ali ibn Abi Talib, the first hereditary Imam of the Shia 

Muslims, and the last of the four rightly-guided Caliphs after the passing away of the Prophet 

(may peace be upon Him). In his teachings, Hazrat Ali emphasized that ‘No honour is like 

knowledge.’ And then he added that ‘No belief is like modesty and patience, no attainment is 

like humility, no power is like forbearance, and no support is more reliable than consultation.’ 

 

Notice that the virtues endorsed by Hazrat Ali are qualities which subordinate the self and 

emphasize others - modesty, patience, humility, forbearance and consultation. What he thus is 

telling us, is that we find knowledge best by admitting first what it is we do not know, and by 

opening our minds to what others can teach us.” 

 

- Address by His Highness the Aga Khan at the American University in Cairo 
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1.1	An	overview	of	the	normal	breast	

The mammary gland is present in female mammals that functions to feed offspring. The 

functions of the adult mammary gland are mediated through several distinct cell types, as is 

observed in other glandular tissues. During a female’s lifetime the mammary gland can change 

quite dramatically; the mammary gland is only partially developed during embryogenesis, and 

final development occurs postnatally (Figure 1) [1].  

 

1.1.1 Epithelial cells 
Several types of epithelial cells can be identified in the mammary gland. Apically facing 

luminal epithelial cells make up the secreting cells that line the milk duct. The basal surface is 

lined by a layer of myoepithelial cells that contract to facilitate milk secretion. In addition to the 

myoepithelial cells, cell sorting experiments have identified additional cell types with putative 

stem-like functions in the basal layer [2]. 

During puberty the mammary epithelium invades into the mammary fat pad in response to 

hormonal cues [3,4], and undergoes rounds of proliferation and apoptosis during the menstrual 

cycle [5]. However, it is only during pregnancy that the epithelial cells develop the capability to 

secrete milk. When the stimuli for milk production are lost during weaning, the mammary 

epithelium loses its milk producing capability and returns to its pre-pregnancy state in a process 

known as involution [1]. 



Figure 1: Schematic of mouse mammary gland development during puberty, pregnancy and lactation 
(Aa–d). Adapted from Figure 1, Hennighausen and Robinson, 2005

Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology 
(Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 
2005;6:715–25.), Copyright © 2005
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1.1.2 Stromal cells 
Mammary epithelial cells are embedded within a microenvironment, or stroma, that is made 

up of a diverse mix of cell types. Fat-filled adipocytes comprise a large portion of the adult and 

non-lactating gland, are involved in milk production, and have endocrine signaling functions [6].  

Fibroblasts are often found in close proximity to the basal epithelial layer, and function to 

support the mammary epithelial cells [7]. Fibroblasts have the ability to produce and remodel the 

extracellular matrix (ECM) [8], which results in the entrapment and release of growth factors 

that influence neighboring cellular functions [9]. 

Blood and lymphatic vessels are also present in normal breast stroma and play an important 

role, particularly during lactation where they serve to deliver nutrients and drain the breast of 

waste metabolites [10]. Distinct populations of immune cells are also present in the breast 

stroma. In addition to providing protection against infection, immune cells such as eosinophils, 

mast cells, and macrophages also perform additional functions during the branching, and 

involution phases of the mammary gland [11]. The immune system is also able to identify and 

kill transformed epithelial cells. This process is termed immune surveillance and is mediated by 

B-cells, T-cells, and natural killer cells, among other cells [12]. 

Sakura and colleagues demonstrated the substantial effect that stroma has on mammary 

epithelium development. They observed that mixing mammary epithelial cells with salivary 
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stromal cells resulted in the formation of structures more reminiscent of the salivary gland rather 

than a mammary gland [13]. 

 

1.2 Breast tumorigenesis 
Normal cells go through a regulated cycle of growth and death to maintain tissue architecture 

and function. The abnormal, uncontrolled growth of cells can lead to either non-cancerous 

(benign) tumors or a malignant lesion. Tumors that originate from the epithelial cells lining the 

ducts are the most commonly occurring breast cancers, though tumors can also form in the 

lobules and other breast tissues. Tumors arising from the ductal epithelial tissue can be classified 

as ductal carcinoma in-situ (DCIS) or invasive ductal carcinoma (IDC). DCIS tumors are 

characterized by an abnormal proliferation of cells that fill the local duct but do not invade the 

surrounding tissue. In contrast, IDC tumors invade through the membrane surrounding the ducts 

into the local microenvironment [14].  

 

1.3 Tumor epithelial-stromal interactions 
Normal cells have checkpoint mechanisms present to prevent their progression to a malignant 

phenotype. In response to this tumor cells develop several complementary functions to 

circumvent these checkpoints. The deregulation of signals promoting progression through the 

cell cycle, enabling cell growth, promoting cell survival, and deregulating energy metabolism are 

some of the functions gained by tumor cells as they become malignant. These ‘hallmarks of 
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cancer’ [15] are achieved through gain of function mutations in oncogenes, or through loss of 

function mutations in tumor suppressor genes. Epithelial cells also adapt to avoid destruction by 

immune cells, either by mitigating the effect of the immune cells or by escaping detection by 

immune cells [12].  

As with the normal mammary gland, breast tumors are not made up solely of epithelial cells. 

The tumor interacts with its microenvironment and the tumor microenvironment provides 

complementary functions for tumor growth. In addition to contributing to functions such as 

tumor vascularization, stromal cells can also contribute to achieving the hallmarks of cancer 

[16].  

The strong interactions between the stroma and epithelial compartments in breast tumors are 

not limited to the breast. In particular it has been observed that tumor cells can mobilize stromal 

cells from the bone marrow to allow a tumor located in the adjacent breast to change from being 

indolent to metastatic [17]. A few examples of how stromal cells aid in tumor progression are 

described below.  

 

1.3.1 Tumor cell proliferation and growth 
Although driving mutations can lead to chronic proliferation, it has also been observed that 

stromal cells have the capacity to support the hyperproliferation of adjacent epithelial cells. For 

example cancer associated fibroblasts can be induced to express and secrete growth factors, or to 
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degrade the ECM to release growth factors. This in turn stimulates proliferation in the 

neighboring epithelial cells [18]. 

 

1.3.2 Cell death resistance 
Stromal cells also enable the tumor cell to resist cell death. For example tumor associated 

macrophages have been observed to adhere to tumor cells and mimic the interactions usually 

present between two epithelial cells. This allows the tumor cell to circumvent cell death 

pathways usually triggered by anoikis, or detachment from epithelial cells [19]. Cancer 

associated fibroblasts have also been observed to mediate tumor cell survival [20]. 

 

1.3.3 Preventing destruction by immune cells 
The tumor stroma contains distinct subsets of mononuclear immune cells commonly referred 

to as “tumor infiltrating leukocytes” (TILs). Higher proportions of TILs in the tumor has been 

associated with better patient prognosis [21]. TILs consist of distinct cell types such as B-cells, 

CD4 T-cells, dendritic cells, and other immune cell types that have been observed to have both 

pro-tumorigenic and anti-tumorigenic roles. The presence of one cell type in particular in the 

tumor stroma, CD8+ cytotoxic T-cells, has been associated with good prognosis in several 

different cancers. This is likely due to the ability of cytotoxic T-cells to clear damaged cells by 

targeting them specifically and programming them to undergo apoptosis [22]. For malignant 

cells to grow into a tumor these epithelial cells must be able to evade or suppress these cytotoxic 
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T-cells, and other immune cells that would otherwise induce epithelial cell death. Infiltrating 

immune cells have been observed to develop phenotypes normally associated with wound 

healing and inflammation [23]. This aberrant activation of the immune cells can lead to the 

generation of an immunosuppressive microenvironment thus allowing the tumor to evade 

immune cell mediated death.  

 

1.4 Breast cancer epidemiology 
Breast cancer is a major health concern among women and, with the exception of non-

melanoma skin cancers, is the most frequent cancer among women worldwide [24]. In Canada it 

is estimated that in 2015 alone 25,000 women will be diagnosed with breast cancer and 5,000 

will die from it [25]. Historically, breast cancer incidence was lower in developing countries, but 

increases in life expectancy and changes in lifestyle has seen a rise of breast cancer incidence in 

these countries [24]. Despite the stability of breast cancer incidence rates over the last 20 years, 

the mortality rates of breast cancer have seen a dramatic decrease due to advances in screening 

and treatment of the disease. Current rates estimate that 88% of Canadian women diagnosed with 

breast cancer will survive past five years [26], which is a marked improvement when compared 

to the average survival rate of 76% observed between 1985-1987 [27]. 

The majority of breast cancer research focuses on female breast cancer. While male breast 

cancer does occur, its incidence is much lower. While 1 in 9 Canadian women are estimated to 
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develop breast cancer in their lifetime, the incidence rate for Canadian males is a much lower 1 

in 220 [25]. 

Despite not knowing the etiology of most breast cancer cases, numerous risk factors have 

been linked to breast cancer incidence. In addition to the increased risk present for females, 

increased age, a family history of breast cancer, and mutations in genes such as BRCA1/2, TP53, 

and ATM [28], represent some additional risk factors associated with an increased risk to 

develop breast cancer [29]. 

 

1.5 Breast cancer in the clinic 
In developed countries, most breast cancer patients are diagnosed by mammography. 

However, many breast cancers are diagnosed with masses that are not detected by mammograms, 

or during the interval between mammograms (15% and 30% respectively) [29]. The benefit of 

regular screening by mammograms has only been observed among women aged 50-74 [30]. For 

women above the age of 75 there is insufficient evidence to evaluate the benefits and harms. 

Among younger women, the sensitivity of the mammographic screens has been observed to be 

significantly lower [31]. This led to the recommendation for regular mammographic screening to 

be only applied to older women. 

The decrease in mammogram sensitivity is associated with increased breast density, and is 

present even among older women [32]. Despite this decrease in mammogram sensitivity, the risk 

of breast cancer incidence is significantly higher among women with dense breasts. Thus there is 
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a large body of women at high risk for breast cancer who do not undergo regular mammographic 

screening, and for whom diagnosis of the disease may be delayed. 

Following the identification of a suspicious growth, a biopsy is performed to confirm if the 

growth is malignant. Often the biopsy is performed by fine needle aspiration (FNA) which is a 

minimally invasive technique involving a small bore needle. FNAs are typically performed when 

the mass is palpable, but can also be performed on non-palpable lesions by leveraging the use of 

imaging technologies (e.g. ultrasound). Core needle biopsies (CNBs) and excisional biopsies are 

two alternate methods that provide additional accuracy in the evaluation of non-palpable lesions 

at the expense of being more invasive than the FNA method. CNBs use a larger hollow needle to 

remove suspicious tissue samples from the breast. CNBs can provide additional information over 

FNAs with regards to whether cells have breached the basement membrane, and thus are more 

informative when the malignancy of the lesion is unclear. In contrast to the non-surgical FNA 

and CNB methods, excisional biopsies are the surgical removal of either the entire breast mass or 

a suspicious section of the breast. Biopsies allow a clinician to determine whether a suspicious 

mass is malignant, and in the case of a malignant mass, can provide additional information for 

patient care [29]. 

 

1.6 Breast cancer subtypes 
Histopathological examination of tumor biopsies is a common classification scheme used for 

breast cancer. While invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) 
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make up the majority of breast cancers, (85-90%), there are many additional histological 

subtypes with much lower rates of incidence. For the remainder of this thesis, the term ‘breast 

cancer’ will refer to IDC cases unless otherwise specified. 

In addition to the histological subtypes, the tumor can also be classified by several additional 

features. Tumor grade is a prognostic score calculated based on the architecture of the tumor. By 

assessing nuclear atypia, mitotic activity, and tubule formation a grade between 1 and 3 can be 

assigned to the tumor, with higher grades being associated with progressively poorer outcome.  

Tumors are also stratified into subtypes defined by differential protein expression of the 

estrogen receptor (ER) and progesterone receptor (PR), as well as expression and/or genomic 

amplification of human epidermal growth factor receptor 2 (HER2) (Figure 2). These proteins 

have been selected as subtype markers as they have targeted treatments that led to an improved 

patient prognosis within the associated subtype. These subtypes are typically determined from 

biopsied tissue. ER and PR status is typically determined by immunohistochemistry (IHC) 

testing, while HER2 can either be assessed by IHC or fluorescence in situ hybridisation (FISH). 

Tumor proliferation can also be assessed independently by IHC staining with Ki67, with higher 

staining intensity and number of positive cells associated with increased proliferation. 

The main treatment modality implemented for breast cancer patients is surgery to remove the 

primary tumor. In addition to surgery ER/PR positive patients receive tamoxifen or aromatase 

inhibitors to inhibit the estrogen receptor or decrease estrogen levels respectively. HER2 positive 

patients are treated with Trastuzumab, a monoclonal antibody targeting the HER2 receptor. 



Figure 2: IHC (A–C) and FISH (D) analyses of breast cancer. A: ER+ strong intensity. B: PR+ 
moderate intensity. C: HER-2 overexpression, score 3+. D: HER-2 gene amplification. Original 
magnification: ×20 (A and B).

Figure 3 from Francine B. De Abreu, Wendy A. Wells, Gregory J. Tsongalis (2013), The Emerging 
Role of the Molecular Diagnostics Laboratory in Breast Cancer Personalized Medicine
Retrieved December 12 2016 
Copyright © 2013 American Society for Investigative Pathology
This article is published under the terms of the Creative Commons Attribution-NonCommercial-No 
Derivatives License (CC BY NC ND) 4.0.
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Additionally radiation therapy and chemotherapy may also be administered, especially among 

patients where the tumors have metastasized to the lymph nodes. Neo-adjuvant therapies can also 

be administered preoperatively to reduce tumor burden and limit the amount of breast tissue that 

is removed [29]. 

 

1.7 Triple-negative breast cancer 
The 10-15% of breast carcinomas that lack expression/amplification of ER, PR or HER2 

form a subtype that is termed triple-negative breast cancer (TNBC) [33]. Tumors of the TNBC 

subtype are associated with earlier age of onset, and higher grade at presentation [34]. Since 

tumors of this subtype are negative for ER, PR, and HER2, the only adjuvant treatments that 

patients diagnosed with TNBC receive are a combination of chemotherapy and radiation. The 

type and dose of chemotherapy that TNBC patients receive depends on the stage of the tumor, 

with stage I tumors receiving less toxic regimens than stage IV tumors [33]. Despite the general 

improvement in breast cancer patient outcome as a result of chemotherapy, TNBC patients 

display an overall poorer patient prognosis when compared to other subtypes of the disease. 

While some TNBC patients respond well to chemotherapy, other tumors show resistance to the 

same treatment indicating that the TNBC subtype is heterogeneous. It has been observed that the 

presence of infiltrating lymphocytes in TNBC tumors has been associated with better overall 

prognosis, possibly due to an increased sensitivity to chemotherapeutics [33]. Further 
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stratification may be able to further differentiate patients who may benefit from chemotherapy 

from those who don’t. 

 

1.8 Gene expression microarrays 
Gene expression profiling is a class of methods aimed at capturing a quantitative snapshot of 

RNA levels in cell or tissues [35]. Gene expression microarrays have traditionally been utilized 

for gene expression analysis, and represent a low cost method to assess the transcriptional profile 

of a sample. These microarrays consist of DNA oligonucleotide probes adhered to a solid 

surface. These probes have been generated to be complementary to RNA sequences found within 

the species of interest and can vary in number from several thousand to several millions to more 

accurately quantitate the RNA levels in the sample. RNA from the sample of interest is first 

labeled with fluorescent nucleotides and upon exposure to the microarray the fluorescent RNA 

molecules bind to their complementary probes. A snapshot of the microarray is taken with a 

highly sensitive camera and the fluorescence of each probe is quantitated. The resultant 

fluorescent intensity gives an estimation of the abundance of each RNA within the sample. 

 

1.9 Bioinformatic approaches 
Analysis of large gene expression datasets would not have been possible if not for the 

development of bioinformatics approaches and tools. This thesis makes use of many such tools 

to ensure that the data is of good quality, and to analyze the data to address specific hypotheses 
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regarding the heterogeneity of breast cancer. An overview of standard methods used in the 

analysis of gene expression microarray datasets is presented below. These methods have been 

implemented in the projects presented as well as in previous work published by this lab [36–40]. 

 

1.9.1 Proper study design 
The proper design of a dataset is of key importance as a poorly designed dataset may prevent 

proper analysis. Due to the highly sensitive nature of gene expression technologies, small 

differences during sample preparation may greatly impact the dataset. Examples of such 

differences include the ambient temperature of the room in which the samples are prepared, the 

batch of chemicals used to extract the RNA, or even the person who extracts the RNA. These 

differences are commonly referred to as ‘batch effects’ and they can be prevented by proper 

planning. 

While some technical aspects can be controlled and planned for: e.g. ensuring that only one 

person handles all the samples or that only one batch of chemicals is used – other aspects are not 

as easily controlled. Environmental factors are an example of one such uncontrollable factor, and 

thus proper study design must be implemented to prevent such factors from ruining the dataset. 

Study design involved the planning of the experiment such that groups of interest are not handled 

in the same batch and are instead spread over different batches. For example, it would be 

improper to handle all the control samples one day and the treated samples from an experiment 

on another day. Doing so will likely result in differences between control and treated samples 
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being confused with batch effects resulting from handling on two different days and thus 

confound identification of relevant biological signals. 

Proper study design becomes more complicated with larger datasets, especially when groups 

of interest are not known a priori, and batch effects may be unavoidable in some circumstances. 

In such scenarios tools to correct for batch effects may be utilized. One such method 

implemented by the LIMMA package [41] first fits a linear model to estimate the association of 

each feature with the batch effect, and then takes the residuals of this linear model to remove the 

association. However caution must be exercised when attempting to remove a batch effect so as 

not to hide relevant biological signals or introduce unintentional noise into the dataset. 

 

1.9.2 Data normalization 
After the dataset has been generated, the raw data needs to be harmonized to permits the 

comparison of distinct samples within the dataset. In the case of microarrays, the fluorescent 

value that the image extraction software captures is assumed to be a combination of the signal 

from the hybridized RNA and some background noise that results from technical variability. For 

transcripts with low signal intensities the background noise may mask the signal and lead to 

underestimation of the signal. Thus methods for determining and subtracting the background 

noise from the signal were developed. It has been observed that background subtraction 

introduces additional noise for some two-color Agilent arrays, and that the signal is most reliably 

estimated when no background subtraction is performed [42]. 
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In order to assess the quality of individual arrays of 2-channel microarrays, MA plots can be 

utilized. These plots compare the log2-ratio of the two channels (M) and the average of the two 

channels (A). Gene expression datasets make use of two assumptions: (1) the first that the 

majority of genes do not significantly vary in expression across samples, and (2) the second that 

the variance of a probe is not correlated with overall intensity. Thus it can be assumed that the 

MA values should be centered around 0 and that samples with distributions that deviate strongly 

from 0 may be of poor quality. Methods such as LOESS [43] can correct for within-array bias by 

fitting a regression to the MA-values, and attempt to center the distribution around 0 by taking 

the residuals of the fit. 

Lastly, “between-array” correction can be performed to permit comparison between different 

samples. This correction step is based on the assumption that there are no gross changes between 

the overall expression profiles between samples. Quantile normalization makes use of this 

assumption and transforms the samples such that they have the same empirical distribution 

across the dataset. 

 

1.9.3 Class discovery 
In a typical breast cancer dataset, pre-existing information such as patient survival and 

receptor status may be available to separate samples into distinct classes. However, class 

discovery can be used in cases where this information is not available, or when trying to identify 

novel classes to distinguish samples. Class discovery attempts to partition the samples in a gene 
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expression datasets into groups of similar samples in an unbiased manner based solely on the 

data presented. 

Class discovery involves three steps, the first being the identification of appropriate features. 

One method of selecting features is to select transcripts with high variance as they are more 

likely to provide a signal for identifying subtypes. The second step for class discovery involves 

converting the features into a distance metric to determine the similarity of samples. Two 

distance measures often used are Euclidean distance, which represents the shortest distance 

between two points, and a correlation-based distance, which uses one minus the standard Pearson 

correlation coefficient, to measure similarity. Following feature selection and identification of an 

appropriate distance metric, clustering is used to group similar samples together [44].  

Hierarchal clustering is a commonly used method to summarize data in a 2-dimensional 

space, to be easily visualized as a heatmap. With hierarchical clustering each sample is initially 

assigned to its own cluster. Next, the two closest clusters are joined based on the chosen distance 

metric. This is repeated iteratively until all clusters have been combined [45]. This clustering 

approach can be summarized using a tree structure, known as a dendrogram, where leaves that 

are closer together represent clusters that are more similar to each other. Clustering can be 

performed on both the features (genes) and samples independently to identify groups of samples 

with similar patterns of gene expression, and groups of genes with similar patterns of expression 

across samples.  
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While this approach groups samples based on how similar they are, it does not determine the 

number of groups present. To determine the number of groups, the stability of clusters can be 

measured using permutation based approaches [46] and highly stable clusters can be used to 

determine the appropriate number of groups. 

Subsequent to the identification of groups of samples, these groups can be analyzed to 

determine if there is association with known clinical variables (e.g. tumor size, grade, stage, 

outcome, etc.). Typically this is done through the use of a enrichment test such as the 

hypergeometric test. This identification of patient subtypes, and their association with clinical 

variables, allows for a better understanding of the disease. 

 

1.9.4 Linear ordering 
 Gene expression signatures are often used as a surrogate to estimate the level of 

activation of a pathway in a sample. Pathway activation levels may not always be discrete (e.g. 

on or off) and may instead be represented as a continuous variable. Clustering based approaches 

attempt to partition samples or features into distinct groups, and are therefore not appropriate to 

order samples based on a continuous variable. A more appropriate method is to linearly order 

samples according to increasing levels of the signature. Therefore, while clustering can be used 

to identify gene signature, linear ordering may be more appropriate to estimate the activation of 

pathways associated with the gene signature.  
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Several methods have been utilized to estimate a linear ordering, including the estimation of 

a ‘metagene’ by simply averaging the expression of all the genes within the signature [47]. 

However, these methods make assumptions about the distributions of the individual genes of the 

signature. In contrast, the method used in this thesis avoids making such assumptions by rank-

ordering samples based on the sum of ranks of the genes in the signature. 

 

1.9.5 Class distinction 
While class discovery focuses on identifying groups of samples, class distinction builds on 

this stratification by identifying features that define these groups. The groups used for class 

distinction can be defined based pre-existing information for the samples (e.g. patient survival, 

receptor status) or based on classes identified by class discovery. A variety of statistical methods 

have been developed to perform class distinction. 

Student’s t-test is a traditionally used parametric method that tests the alternate hypothesis if 

the means of two groups are significantly different. The t-test assumes that the two groups are 

derived from two normal distributions with approximately equal variance, and that the groups are 

of a reasonable size. These assumptions are not always valid when analyzing gene expression 

datasets. 

Modified versions of the Student’s t-test have been developed for microarrays to circumvent 

some of these assumptions. LIMMA [41] is one such method that is attempts to reduce the 

uncertainty associated with determining the standard deviation for each probe by shrinking the 
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estimated variances for each probe to a pooled variance. This generates a far more stable 

inference of the t-statistic and improves the power of the analysis, especially for experiments 

with fewer samples. 

These class distinction methods test each feature independently. It is expected that a large 

number of features may be wrongly identified as being significantly different (false positive) by 

chance alone. This is the multiple testing problem. One technique to minimize the number of 

these false positives is to adjust the raw p-values obtained from the individual tests. The 

Benjamini–Hochberg (BH) method [48] is one such method for estimating the False Discovery 

Rate (FDR) and adjusting the raw p-value. The BH method first orders the determined p-values 

from lowest to highest, and then determines the highest value of (k) that satisfies the equation: 

 

! ! <  !! ! 

  

where k is the rank of the feature as determined by the p-value, P(k) is the p-value for the 

feature, m is the total number of features, and α is the FDR value to be calculated.  

All features of rank 1...k are determined to be significant even if they did not satisfy the 

equation individually. The result of this is that for an FDR of 0.05, 5% of the features are 

estimated to have been falsely identified as differentially expressed for an FDR adjusted. 
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1.9.6 Class prediction 
The bioinformatics community also makes use of machine learning techniques to classify 

samples. This problem can be summarized as the ability to predict the class of a future sample 

based on a set of previously derived rules. To derive these rules the classifier is first trained on a 

dataset where the class labels of the samples are already known. Ideally, the classifier can then 

be tested on an independent dataset. If no such dataset is available, the testing can be performed 

using a leave k out cross validation. This approach repeatedly leaves random samples out of the 

original dataset and then uses these samples to optimize the classifier. 

Naïve Bayes classifiers (NBCs) are a classification method utilized in our analyses. NBCs 

have been observed to perform well in the classification of microarrays [49]. NBCs are based on 

a model of conditional probability and assume that the genes used for classification act 

independently to classify samples. NBCs calculate a posterior probability for a class based on the 

following formula: 

Posterior =  !"#$%"ℎ!!" × !"#$"
!"#$%&'%  

Therefore, a simple NBC built to predict the outcome of a patient based on ER and HER2 

status would calculate the following: 

Pr !"#$%&' !" !ℎ!" !"#$%&# = Pr !" !"#$%&')×Pr (!"#2|!"#$%&') ×Pr (!"#$%&')
Pr (!",!"#2)  



21	

	

Given that the Prior and Evidence probabilities are constant when the values of the features 

are known, the likelihood probabilities are what influence the posterior probability. When there 

are multiple possible classes, a posterior probability is determined for each class, and the class 

with the highest posterior probability is determined to be the most likely classification.  

 

1.9.7 Pathway analysis 
Class distinction analyses can generate lists differentially expressed genes that vary in size 

from fewer than ten to several hundreds, or thousands, of differentially expressed genes. Since 

the size of these differentially expressed gene lists are often too large for manual analysis, 

bioinformatics tools are required to identify relationships between groups of genes that may be 

interacting, performing similar biological processes, or be part of the same pathway. These tools 

are termed ‘pathway analysis tools’ and can be classified into several distinct categories 

depending on the pathway genelists (signatures) used and the type of statistic used. In the 

analyses described in this thesis we use two pathway analysis methods: over-representation 

analysis and Gene Set Enrichment Analysis [50]. 

Over-representation approaches compare the differentially expressed genes against other 

publically available signatures. The overlap between the list of genes determined to be 

differentially expressed genes by class distinction, and publically available genelists is 

determined. Statistics such as the Fisher’s Exact Test ask whether there are a surprisingly 

number of genes in common between the target pathway and the list of differentially expressed 
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genes. The FET compares two categorical groups and determines if the observed overlap 

between two groups is higher than would be expected by random chance alone. 

In contrast to over-representation approaches, GSEA does not only utilize the subset of genes 

determined to be differentially expressed. Instead all genes are ranked based on the results from 

class distinction, and the enrichment of gene signatures at the low and high tails of these ranked 

lists is determined. The significance of the this enrichment is determined using permutations of 

the gene or sample labels. 

While pathway analysis can offer a better understanding of large lists of differentially 

expressed genes, these methods are not always informative. Despite advancements of statistical 

approaches for pathway analysis, the lack of similar advancements in the gene signature 

databases means that often no significant pathways are identified. This can be especially 

pertinent when analyzing datasets with novel cell types for which signatures have not previously 

been identified. 

 

1.10 Breast cancer informatics in the clinic 
In the early 2000s, the introduction of a gene expression microarray that could 

simultaneously detect the level of thousands of transcripts promised to revolutionize the field of 

breast cancer research. It was hypothesized that generating gene expression profiles from breast 

cancer patients would enable further stratification of breast cancer in addition to what was 

observed by traditional IHC approaches, and that this in turn would allow for the stratification of 
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patients into distinct groups that are responsive to standard of care and thus required no 

additional intervention, and a distinct group where patients were non-responsive and thus require 

additional therapeutics. Two distinct approaches were implemented to stratify patients.  

 

1.10.1 Stratifying patients by a clinical end-point: prognosis 
The first type of approach made use of patient outcome information and attempted to build 

classifiers that could distinguish patients based on their clinical outcome. These initiatives built 

classifiers based on lists of genes associated with patient outcome. These genelists were derived 

using class distinction to identify genes that differed in expression based patient outcome [51], or 

were based on prospectively selected genes previously associated with patient outcome [52]. 

Therefore this approach built classifiers based on a set of genes that have differential expression 

between patients with poor and good clinical outcome. One successful classifier that resulted 

from this approach is a 70-gene panel [53] that was redeveloped as a clinical assay named 

‘Mammaprint’. Despite being identified as a prognostic geneset that stratifies patients based on 

clinical outcome, it was observed that the Mammaprint geneset also had the capacity to predict 

which patients would have good outcome without chemotherapeutic intervention. It has since 

been repurposed to distinguish high-risk patients that would benefit from chemotherapy from 

low-risk patients who will likely have good outcome despite not receiving chemotherapy among 

early-stage breast cancer patients [54]. 
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1.10.2 Subtyping breast cancer 
The second approach used class discovery to identify patient subtypes. As previously 

described, this approach labels samples with new class labels solely based on the data presented. 

Therefore these subtypes were identified independent of patient outcome information and other 

clinical characteristics of the tumor. These ‘molecular subtypes’ of breast cancer grouped 

patients that were most similar by their gene expression profiles (Figure 3) [55,56]. 

Despite being identified independently of clinical information, the molecular subtypes were 

differentially associated with ER/PR and HER2 status and with patient prognosis. In particular 

two subtypes were strongly associated with ER/PR positive patients (Luminal A and B), another 

subtype enriched for HER2 positive patients (HER2-enriched), and a subtype enriched for TNBC 

patients (Basal-like). A fifth controversial subtype (Normal-like) clustered with the samples 

taken from the normal breast and thus it is debated whether this subtype represents samples 

contaminated by normal tissue. 

Following the identification of this subtyping scheme alternate schemes have also been 

proposed. These schemes have been developed using gene expression and other genomic 

technologies. An example of an alternative scheme are the IntClust subtypes that used the 

combined analysis of DNA and mRNA samples from ~2,000 samples to identify 10 distinct 

subtypes [57]. As was observed with the intrinsic subtypes, these IntClust subtypes also varied in 

their prognostic association. However the majority of the IntClust subtypes further stratified the 

Luminal subtypes, whereas there was little advance in the stratification of the HER2 or Basal-

like subtypes. 



Figure 3: Gene expression patterns of 85 experimental samples representing 78 carcinomas, three 
benign tumors, and four normal tissues, analyzed by hierarchical clustering using the 476 cDNA 
intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on 
differences in gene expression. The cluster dendrogram showing the five (six) subtypes of tumors 
are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light blue; 
normal breast-like, green; basal-like, red; and ERBB2+, pink. (B) The full cluster diagram scaled 
down (the complete 456-clone cluster diagram is available as Fig. 4). The colored bars on the right 
represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) 
Basal epithelial cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene 
cluster containing ER.

Figure 1, Therese Sørlie et al. PNAS 2001;98:10869-10874, Gene expression patterns of breast 
carcinomas distinguish tumor subclasses with clinical implications
Retrieved December 12 2016 
©2001 by National Academy of Sciences
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These subtyping schemes for breast cancer propose varying numbers of patient partitions that 

range from just four subtypes via classic approaches based on ER, PR and HER2 status to 10 

subtypes identified by IntClust through joint DNA and mRNA analysis. 

However these subtyping schemes often make assumptions about the nature of the dataset. 

One such assumption is that the distribution of subtypes in the dataset used for classification 

mimics the distribution of subtypes in the training dataset. The AIMS approach was developed to 

circumvent this assumption [58]. AIMS uses a set of binary rules to classify samples individually 

and independent of a dataset and thus negates this assumption. By not requiring samples to be 

normalized before being assigned to subtypes, AIMS is able to classify samples independently of 

the dataset composition. 

 

1.11 The importance of looking within subtypes 
The efficacy of subtyping schemes is measured by the prognostic association of the subtypes. 

An investigation by Venet and colleagues [59] speculated that nearly all genes and processes are 

prognostic in breast cancer. In contrast, Tofigh and colleagues [40] observed that the majority of 

gene signatures are in fact associated with tumor subtype. This is due in part to the large 

transcriptional signature of the estrogen signaling pathway which is differential amongst the 

subtypes, and is associated with patient survival. Therefore the ability of most genes to predict 

patient subtype is confounded with their ability to predict patient prognosis. Further investigation 

revealed that the prognostic capacity of gene signatures within subtypes was significantly 
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reduced when investigated within individual subtypes [40]. This stressed the importance of 

identifying signatures that could stratify patients within a subtype, and to identify novel schemes 

to further sub-stratify patients within subtypes. 

Additionally a subset of patients were identified whose observed outcome was consistently 

mispredicted by almost all reported prognostic gene signatures. The consistent misprediction of 

patients by signatures generated a novel definition of ‘inherent difficulty’. Patients defined as 

inherently difficult have a clinical prognosis that can not correctly be predicted by gene 

signatures. 

 

1.12 TNBC subtypes 
Previous studies, including several high-throughput profiling efforts, have indicated that the 

TNBC subtype has higher levels of inter-tumoral (patient-to-patient) heterogeneity when 

compared to other subtypes with respect to both gene expression [40], and somatic genomic 

aberrations [60,61]. This heterogeneity may at least partially underlie why TNBC is a poor 

outcome subtype [62,63]. Several efforts have investigated whether there are subtypes within 

TNBC with distinct cellular processes and responses [47,64,65]. These studies however have 

used gene expression profiling of bulk samples enriched for epithelial cells of the tumor proper.  

One scheme in particular, proposed by Lehmann and colleagues [64], has received much 

focus from the community and has since been translated into an assay for clinical 

implementation (INSIGHT TNBCTYPE™) [66]. This scheme identified six subtypes within 
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TNBC patients and demonstrated that these “TNBCType” subtypes are associated with 

differential responses to neoadjuvant chemotherapy [67]. The six subtypes were given distinct 

titles based on the elevated expression of specific genes and the association with different 

pathways. BL1 (basal-like 1), BL2 (basal-like 2), M (mesenchymal), MSL (mesenchymal stem-

like), IM (immunomodulatory), and LAR (luminal androgen receptor). A second scheme [65] 

identified 4 subtypes that were strongly associated with the subtypes identified by Lehmann and 

colleagues, which lends credence to their validity. 

 

1.13 Investigating tumor stromal heterogeneity 
The previous studies mentioned have used gene expression profiles of whole tumor tissue, 

Finak and colleagues [36,37] used gene expression profiles derived from laser capture 

microdissected (LCM) stromal tissue to investigate stromal heterogeneity in a pan-breast cancer 

cohort. LCM presents a powerful tool to isolate tissue in a compartment specific manner that is 

amenable to gene expression profiling. This investigation revealed that tumor stroma was 

heterogeneous between tumors, and that there are distinct stromal subtypes. Additionally, they 

observed that these stromal subtypes are associated with patient prognosis, and can contribute to 

identifying patients that may require additional therapeutic intervention [37]. 

The importance of stromal heterogeneity within the TNBC subtype in particular was 

observed by Tofigh and colleagues [40] who observed that stromal gene expression signatures, 

and immune-related signatures in particular, were particular efficate within the TNBC subtype. 
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This was further strengthened by the identification of an immune-related signature in the 

TNBCType subtyping scheme. These observations warranted an unbiased investigation of the 

stroma of TNBC patients to identify additional sources of stromal heterogeneity. Additionally 

the current interest in the field of immunotherapeutics, which seeks to reactivate the immune 

cells in a tumor, would likely benefit from such an investigation. 

 

1.14 Intratumoral heterogeneity 
As mentioned previously, breast cancers display various sources of inter-tumoral 

heterogeneity, that is heterogeneity between distinct tumors, with respect to histopathological 

categories and the measurement of epithelial characteristics. While this heterogeneity can be 

exploited in the treatment of the disease by stratifying patients into subtypes that are associated 

with distinct prognosis, or by identifying patients that may respond to a specific treatment 

regimen, it is insufficient to completely explain the disparate response to treatment observed 

among patients within each of the subtypes. 

In addition to inter-tumoral heterogeneity has also been observed within a tumor (intra-

tumoral heterogeneity). A common example of this heterogeneity is observed when classifying a 

tumor based on its ER-positivity. Clinically, a tumor is defined as ER-positive when at least 1% 

of cells stain positive for the estrogen receptor [68], and it has been observed that tumors with 

higher number of ER-positive stained do respond better to endocrine therapy. Therefore these 
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tumors display substantial heterogeneity with respect to ER-positivity, and this heterogeneity is 

linked to therapeutic efficacy. 

Intra-tumoral heterogeneity can be subclassified as spatial or temporal. Spatial heterogeneity 

refers to observable heterogeneity between different regions of a tumor. This heterogeneity can 

represent distinctions between different regions of the primary tumor, between the primary and 

metastatic lesions, or between metastatic sites. In addition to its observation at the 

histopathological level, proof of intra-tumoral heterogeneity has also been observed through 

genetic analysis of distinct regions of the tumor. It was observed that there were distinct genetic 

aberrations associated with distinct sections of the tumor [69]. This heterogeneity may be tied to 

therapeutic resistance as treatments that would be effective on one region of the tumor but not on 

the other. Thus individual treatment decisions must be necessary for distinct regions of the 

tumor. 

In addition to spatial heterogeneity, tumors have been observed to evolve as they progress. 

This is similar to ecosystems that evolve under stress from external pressures. A commonly 

investigated form of temporal heterogeneity is related to the evolution of a tumor as it progresses 

from primary to metastatic disease [70]. A second form of temporal heterogeneity that has been 

studied are the changes present in the residual tumor after being treated [71]. These study of 

these sources of temporal heterogeneity can help identify potential treatment avenues for patients 

who do not respond to standard of care. 
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1.15 Patient-derived xenografts (PDXs) 
The limited availability of patient derived breast cancer tissue coupled with the lack of 

accurate models for studying breast cancer has led to the development of PDX models [72]. 

PDXs are derived by growing of a human tumor in immune-compromised mouse. These PDXs 

have been observed to recapitulate the primary tumor using several distinct metrics. Historically 

tumors were implanted subcutaneously, but it was observed that when the tumors were 

transplanted orthotopically (i.e transplanted into the mammary fat pad of recipient mice) the 

resultant tumors more faithfully recapitulated the stromal environment of the primary tumor [73]. 

While the models do present with some limitations, the most prominent being the inability to 

investigate interactions between the immune system and the tumor, they do offer a renewable 

resource to study breast tumors in a biologically relevant setting [74].  

PDXs have also been observed to mimic drug responses observed in the primary tumor. 

While the growth rate between different PDXs can be highly variable, they have been used to 

predict drug response for future patients, as well as to offer insight into what may cause drug 

resistance in these patients [74].  

 

1.16 Single cell RNA sequencing (scRNA-seq) technology 
While	traditional	transcriptomic	analysis	experiments	average	the	gene	expression	profiles	

over	thousands	of	cells,	recent	technological	development	have	enabled	the	isolation	and	

sequencing	of	single	cells,	thus	providing	a	method	for	estimating	the	gene	expression	profile	of	
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single	cells.	While	the	data	from	single	cell	experiments	resemble	data	derived	from	bulk	

expression	profiles	(i.e.	a	matrix	of	m	samples	x	n	transcripts)	the	methods	for	isolating	single	cells	

and	the	limited	availability	of	starting	material	in	single	cell	experiments	gives	rise	to	additional	

sources	of	noise	that	need	to	be	adjusted	for	[75].	These	sources	of	noise	include	a	large	set	of	

transcripts	for	which	no	reads	are	detected,	as	well	as	a	strong	relationship	between	the	mean	

expression	of	a	transcript	and	its	variance.	

	

1.17 Novel challenges presented with analyzing scRNA-seq data 
The recent development of massively parallel sequencing technologies have allowed for the 

measurement of RNA frequencies by sequencing of sample cDNA. This development 

dramatically overcame some of the challenges faced by microarray based gene expression 

profiling, including the limited range of detection. Thus it has also allowed for novel 

implementations of gene expression profiling. Single cell RNA-sequencing (scRNA-seq) is one 

such implementation that allows us to profile the transcriptomes of single cells, a feat that was 

not possible with traditional microarrays. However this technology comes with some distinct 

challenges. These include the higher cost associated with sequencing to achieve sufficient 

coverage to detect low or rarely expressed transcripts, as well as the need to develop novel 

methodologies to normalize and analyze the data. 

As a result of the challenges associated with analyzing this data, namely with the unbiased 

identification of distinct cell populations, scRNA-seq has seen limited use in the investigation of 
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intratumoral heterogeneity. Studies that have previously investigated intratumoral heterogeneity 

using single cells have either used markers from normal breast tissue to stratify single cells into 

distinct populations [76] or known protein markers to stratify cells prior to sequencing [77]. 

However neither of these approaches have allowed for a completely unbiased investigation into 

intratumoral heterogeneity. 

Bioinformatic tools have traditionally been developed to investigate whole tumor expression 

profiles or profiles generated from a large number of cells. The analysis of single cell RNA-

sequencing (scRNA-seq) data poses novel challenges that need to be addressed, and new 

workflows developed, to allow the proper utilization of this resource. Some of these challenges 

can be more easily addressed (e.g. through the inclusion of RNA standards to estimate technical 

variability) while others, such as the identification and removal of confounding factors, require 

further development [78]. The work in this thesis presents a novel workflow that addresses some 

of these challenges to allow the unbiased analysis of a scRNA-seq dataset. 

 

1.18 Rationale 
While the prognosis of breast cancer patients has seen a vast improvement, and the 

identification of patient subtypes has allowed for the tailoring of therapy, the response to 

treatment within patient subtypes still remains heterogeneous. While some efforts have been 

undertaken to identify drivers of this heterogeneity, the unbiased investigation of this 

heterogeneity and its functional consequences have not been investigated. This unbiased 
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investigation will allow for the identification of additional sources of heterogeneity not observed 

in normal tissues, or previously investigated tumor models. 

Through the work presented in this thesis I will investigate two hypotheses regarding sources 

of tumoral heterogeneity. The first hypothesis is that the heterogeneity of the stroma of triple 

negative breast tumors is associated with patient prognosis. The second is that the heterogeneity 

exhibited within tumor epithelial cells of a single tumor has functional consequences, and that 

these are associated with response to therapy. 

While the heterogeneity of triple negative breast cancer has been previously investigated 

[47,64,65], these studies utilized LCM isolated tumor epithelial profiles or whole tumor 

expression profiles biased toward epithelial content. The work presented here investigated LCM 

isolated tumor stromal profiles to identify novel sources of heterogeneity unidentified in these 

previous efforts. 

Similarly, studies of intratumoral heterogeneity have focused on identifying clonal 

substructures and tumoral lineages through the DNA sequencing of single cells [79]. The 

analysis of intratumoral heterogeneity through the use of scRNA-seq prevents a novel approach 

as it allows for the identification of functional differences between clonal populations not easily 

determined by DNA sequencing. 
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2. RESULTS 
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2.1 Identification of interacting stromal properties in triple-negative breast 

cancer 

2.1.1. Confirming tissue specificity of the LCM-derived material 
To investigate stromal heterogeneity across TNBC tumors, 57 patient samples were selected 

based on negative ER, PR, and HER2 status according to clinical-pathological reports (Table 1). 

Tumor epithelial and non-epithelial (stromal) compartments were separately isolated by laser 

capture microdissection (LCM) and subjected to microarray-based gene expression profiling 

[36–38] (See methods). Matched histologically normal epithelial and stromal tissue were also 

isolated for a subset of cases (n=11).  

Following quality control and data normalization, we investigated if there was a difference 

between the normal and tumor-associated stromal gene expression profiles. Under the hypothesis 

that the profiles should harbour two distinct patterns of expression corresponding to the normal 

and tumor-associated stromal components, we selected the most variable genes across all 

samples (IQR > 2, n=282 genes) as our features for subsequent analysis using the Partitioning 

Around Medoids (pam) function from the cluster package in R [version 2.0.1]. PAM requires a 

distance measure (correlation distance was chosen) and a specification as to the number of 

clusters k. We selected k=2 as we expected all samples to fall into two clusters along a single 

dimension (i.e., normal samples vs tumor-associated samples). These two clusters intuitively 

correspond to the subset of genes that are more highly expressed in normal (versus tumor-

associated) stromal samples and the subset of genes that are more highly expressed in tumor-



No. Patients 57
Number of samples
Tumor Stroma Samples 57
Normal Stroma Samples 11
Size
<= 20mm 24
> 20mm 33
mean (mm) 25.17
Standard deviation 13.56
Grade
Grade 1 0
Grade 2 5
Grade 3 51
Unknown 1
Lymph node status
Positive 18
Negative 29
Unknown 10
Age
<= 55 27
> 55 30
Age: mean in years (range) 58.63 (33 - 91)
Outcome
Total relapse 16
Total relapse free 38
Unknown relapse information 3
Total follow up: mean in months (range) 67.30 (0.0 - 172.2)
Chemotherapy
Patients receiving Chemotherpy 35
Patients NOT receiving Chemotherapy 8
Unknown 14

Table 1: Description of the patient and tumor characteristics of 
our cohort 
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associated (versus normal) samples. To linearly order the patient samples using this set of genes, 

we ranked samples based on the sum of expression of all the genes in the normal-enriched 

dataset, and the sum of expression of all genes in the tumor-associated-enriched dataset, after 

first negating these values. This method does not reweight genes and is thus an unbiased 

approach for ranking patients. We observed strong differences in expression of these highly 

variable genes (Wilcoxon test, p < 0.01), and that the normal stroma samples ordered separately 

from their tumor-associated counterparts (Figure 4). This confirmed the success of the LCM 

procedure in isolating distinct tissue compartments.  

 

2.1.2. Expression profiling of microdissected tissue reveals four stromal properties in 

TNBC  
 To establish if differences are observed in TNBC stroma, the most variable genes in 

TNBC tumor stromal samples (IQR > 2, n=211 genes) were subjected to hierarchical clustering 

(Ward’s algorithm, Pearson correlation distance). Four distinct clusters were observed that 

contained a significant number of genes with strong pairwise gene-gene correlations of 

expression (Figure 5A, colors along rows). These clusters, termed the characteristic gene sets, 

are statistically stable and reproducible (pvclust Approximately Unbiased p-value > 85%), and 

exhibit strong co-expression across the patient cohort.  

 To measure the level of expression of the stromal properties in TNBC tumors, patients 

were linearly ranked based on the overall amount of observed expression of the characteristic 



Outcome

PAM50

TNBCType

Grade

Tumor Size

Lymph Node

Tissue Type

Outcome

PAM50

TNBCType

Grade

Tumor Size

Lymph Node

Tissue Type

Outcome

PAM50

TNBCType

Grade

Tumor Size

Lymph Node

Tissue Type

Heatmap Color Key

−2 0 2

Figure 4: Laser capture microdissection (LCM) successfully isolates distinct compartments of the tumor.
Separation of the most variable genes (IQR > 2) unbiasedly into two opposing directions using the 
Partitioning Around Medoids (pam) function and subsequent ranksum ordering of gene expression profiles 
distinguishes epithelial from stromal samples (A), and normal from tumor samples (B, C). Pink, light blue, 
dark blue, and red tissue types represent adjacent normal epithelium, adjacent normal stroma, tumor 
stroma, and tumor epithelial respectively. Rows represent transcripts and columns represent stromal 
samples. Values are centered and scaled per transcript across all samples and represented by the color key. 
Patients with the smallest sum of expression are ranked lowest (right) and those with the largest sum are 
ranked highest (left).
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Outcome Good (DMFS > 5 years) Poor (DMFS < 5 years) 
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Figure 5: Hierarchical clustering identifies four stromal gene clusters in TNBC samples
A. Hierarchal clustering of tumor stromal gene expression profiles using genes with IQR > 2. Rows, transcripts; 
columns, samples. Stable clusters with A.U. > 0.85 and > 12 genes are indicated by colored bars at left. Values 
are centered and scaled per transcript across all samples before clustering. Scaled and centered values are 
represented by the color key.
B. Assignment of samples into 3 classes (high, intermediate (ROI), or low) for each property using ROI95 
(classes demarcated by dashed lines in heatmaps). Patients with the smallest sum of expression are ranked 
lowest and depicted in lightest color (at right) and those with the largest sum are ranked highest and depicted in 
the darkest color (at left). Vertical colored bars at left of each heatmap correspond with the color assigned to 
samples high for that subtype. Rows, transcripts; columns, samples. Values are centered and scaled per 
transcript across all samples and represented by the color key.
C. Relationships between the assignments for each stromal property. Rows, transcripts; columns, patients as in 
panel A above. Patient rankings for each cluster are denoted by colors as in panel B. Note that samples can be 
high for multiple stromal properties.
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genes for each stromal property independently (see Methods). A rank-based permutation test 

(ROI95) [80], was applied to each linear ordering to estimate boundaries of regions that delineate 

samples that are low, intermediate or high for the characteristic gene set (Figure 5B, black bars). 

Hence, each patient sample is independently measured for each of the four ternary properties 

(low, medium, high). This approach differs from traditional subtyping approaches that partition 

the patient cohort into distinct, non-overlapping subtypes (Figure 5C).  

 

2.1.3. Each stromal property is associated with markers of distinct cell types and 

processes 
To characterize the molecular pathways and presence of specific cell types in each stromal 

property, we identified differentially expressed genes between patients deemed low versus those 

deemed high for each stromal property (LIMMA, FDR adjusted p < 0.05 after ROI95, Table 2). 

For the first property, genes differentially expressed include both general (CD2, CD3D, IL-2Rα 

IL-2Rβ, IL-2Rγ), and lineage-specific (CD4, CD8A, CD8B) T cell-associated markers, as well 

as markers of a Th1-mediated anti-tumor response including IL-15 [81], granzymes (GZMA, 

GZMB, GZMK, GZMH) [82], markers of an interferon response (IFI30, IFIT5) [83], 

transcription factors involved in Th1 differentiation (STAT1, STAT4) [84,85], and TNFα-

induced genes (TNFAIP2, TNFAIP8) [86,87]. These genes had greatest expression in patients 

deemed high for this property (purple, Figure 5B & C). 
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For the second property, genes differentially expressed between low and high classes 

(magenta, Figure 5B & C) include B-cell markers (CD19, CD79A, CD72), immunoglobulins 

(IGLL5, IGLL1, IGJ), and transcription factors associated with B-cell activation (POU2AF1, 

XBP1). These genes have greatest expression in high expressors of the property. 

For the third property, differentially expressed genes (teal, Figure 5B & C) include keratins 

(KRT6B and KRT23), and metallothioneins. These genes are expressed by tumor epithelial cells 

[88] and thus may represent invasive tumor cells that have retained some of their epithelial 

characteristics due to tumor plasticity [89]. 

For the fourth property, differentially expressed genes (orange, Figure 5B & C) include 

multiple collagens (collagens 1A1/2, 3A1, 5A1/2, 8A1/2, 10A1, 12A1, 16A1), PDGFRB, FAP, 

in addition to collagen stabilizing and modifying enzymes (P4HA2, MMP2, LOXL1). All of 

these are factors associated with a desmoplastic reaction [90,91]. 

Additional pathway analysis for the first property identified signatures linked to the 

proliferation of T lymphocytes and activation of cytotoxic T cells, confirming the associations 

with T-cells (purple, Figure 5B & C). Similarly, pathway analysis for the second property 

identified signatures of B-cell proliferation (magenta, Figure 5B & C), and analysis of the fourth 

property identified a signature of desmoid-type fibromatosis [92] (hypergeometric test, p < 0.05; 

orange, Figure 5B & C; see also Methods and Table 3).  



Stromal Property Representative Significant Pathways 
from Ingenuity Pathway Analysis Representative Genes Property

cell viability of B lymphocytes, quantity of B 
lymphocytes, differentiation of B 
lymphocytes, maturation of B lymphocytes

CD79A, POU2AF1, PDK1, PRDM1, 
TNFRSF13C, TNFRSF17, CD38, CD72, 
IGHM, IGLL1

B-cells (B)

KRT6B, KRT23, Metallotheionins Invasive Epithelial Cells (E)
quantity of T lymphocytes, T cell 
development, activation of T lymphocytes, 
cytotoxicity of leukocytes

CD2, CD3D, IL-2Rα IL-2Rβ, IL-2Rγ, 
CD4, CD8A, CD8B, GZMBA, GZMB, 
GZMK, GZMH, STAT1, STAT4, 
TNFAIP2, TNFAIP8

T-cells (T)

Hepatic Fibrosis / Hepatic Stellate Cell 
Activation, Adhesion of connective tissue 
cells

COL1A1, COL1A2, COL3A1, COL5A1, 
COL5A2, COL8A1, COL8A2, COL10A1, 
COL12A1, COL16A1, PDGFRB, FAP, 
P4HA2, MMP2, LOXL1

Desmoplastic stroma (D)

Table 3: Representative pathways and genes for the four stromal properties
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Based on these observations, we labelled the four stromal properties as T (T-cell, purple), B 

(B-cell, magenta), E (invasive epithelial cells, teal), and D (desmoplastic reaction, orange) 

respectively. 

 

2.1.4. Stromal properties can be accurately estimated in bulk expression profiles 
The limited size of our dataset precludes an investigation into which, if any, of the stromal 

properties are associated with clinical variables (e.g., tumor size, grade, stage), or outcome 

information. We note also that the TNBC-restricted focus of our patient cohort greatly reduces 

the observed variability for many of these variables. For example, although low-grade TNBC 

tumors do occur, their epidemiologic frequency is low. In order to explore associations between 

the stromal properties and these variables in larger TNBC cohorts, we required methodology to 

“translate” signatures of the four properties to bulk expression tissue. The ability to explore bulk 

expression datasets would also allow us to explore associations between the stromal properties 

and patient subtyping schemes such as TNBCType. 

The approach leverages our previous effort to generate gene expression profile bulk tumor 

samples for 54 of the 57 TNBC patients studied here [40]. Using the list of differentially 

expressed genes obtained from contrasting high versus low patient samples in our microdissected 

stroma-specific data (per property), we linearly ordered the matched patient samples in the bulk 

expression dataset. Then, the ROI95 procedure was used to delineate those regions in the order 

that correspond to patients with high, intermediate or low status for the property. We observed 
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statistically significant agreement between the two ternary classifications for all four properties 

(Kappa test, all p < 0.01; Figure 6 and Table 4). When the two classifications disagree, the vast 

majority estimate an intermediate stromal profile as either a high or low bulk profile, or vice 

versa (T property: 12/54, B property: 26/54, E property: 11/54, D property: 24/54). Only five 

disagreements estimated a high profile in stroma to be low in bulk, or vice versa (B property: 

3/54, D property: 2/54). Together this suggests that the underlying signals from these stromal 

processes are conserved and detectable in bulk expression profiles despite their predominantly 

epithelial content, and that the stromal properties can be used to interrogate bulk expression 

datasets. 

We then interrogated a large cohort of TNBC patient samples selected from a compendium 

of publicly available breast cancer datasets (n=1098) [40] to investigate potential associations 

between the stromal properties and clinical, patient, and outcome information. The compendium 

comprises 13 individual, non-overlapping microarray datasets generated from (non-

microdissected) bulk tumor material. Estimation of the status for each stromal property was 

computed independently per dataset, and pooled across the constituent datasets (Table 5). 

  

2.1.5. Stromal properties are associated with outcome in bulk expression profiles 
To test associations between the stromal properties and clinical variables (e.g. tumor size, 

grade, stage, outcome, etc.) requires a larger cohort of TNBC patient samples. Due to the 

unavailability of TNBC stromal datasets, we developed and tested a statistical method to 
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Figure 6: Concordance between assignments of matched patients in LCM stroma and bulk expression 
datasets. Columns, patient assignments from LCM stroma profiles; bar color density, assignments to low 
(light), intermediate (medium), or high (dark) from bulk expression profiles. Bar plots represent T (T-cell, 
purple), B (B-cell, magenta), E (invasive epithelial cells, teal), and D (desmoplastic reaction, orange) stromal 
properties respectively,

Figure 7: Kaplan-Meier survival analysis of the stromal properties for distant metastasis free survival of 
TNBC patients in external TNBC bulk expression datasets (n=1,098). Log-rank test p-values are 
indicated at bottom left for each graph.

Stromal Property Assignment Low Intermediate High

Stromal Property Assignment Low Intermediate High



T stromal property Whole tumor low Whole tumor Intermediate Whole tumor high Kappa test p-value
LCM low 17 1 0

1.34E-10LCM intermediate 5 4 4
LCM high 0 2 21

B stromal property Whole tumor low Whole tumor Intermediate Whole tumor high Kappa test p-value
LCM low 9 9 3

9.54E-03LCM intermediate 5 5 2
LCM high 0 10 11

E stromal property Whole tumor low Whole tumor Intermediate Whole tumor high Kappa test p-value
LCM low 6 3 0

2.88E-10LCM intermediate 5 22 2
LCM high 0 1 15

D stromal property Whole tumor low Whole tumor Intermediate Whole tumor high Kappa test p-value
LCM low 9 1 1

5.89E-05LCM intermediate 14 8 8

LCM high 1 1 11

Table 4: Agreement between the ternary classifications in stroma and whole tumor samples for all four 
properties
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estimate the status of each stromal property in bulk expression data. Briefly this method uses the 

list of differentially expressed genes for each property and the ROI95 method to assign samples 

as low, intermediate, or high. This method, entitled STROMA4, was applied to a large cohort of 

TNBC patient samples (n=1098) selected from 13 individual non-overlapping publicly available 

breast cancer datasets [40] (See Methods). Stromal property assignments were computed 

independently per dataset, and pooled across the constituent datasets (Table 5). This enabled us 

to test if the low, intermediate and high partitions of each property stratified patients by clinical 

outcome. While the D property (orange) did not demonstrate significant association with 

outcome, the T, B, and E properties (purple, magenta, teal) were significantly correlated with 

outcome (log-rank test, distant metastasis free survival (DMFS) at 5 years all p < 0.05, Figure 7). 

This demonstrates that that the T, B and E properties of the stroma inform on clinical outcome 

for TNBC patients.  

 

2.1.6. Stromal properties are associated with clinical variables 
Stromal property assignments for the compendium were assessed for association with clinical 

variables. We observed that patients low for the T property tend to have intermediate or low 

grade tumors (FET, p < 0.01); however of the 369 T-low tumors only 24% are of intermediate or 

low grade. The ternary partitions of the D property are associated with grades I-III, while the 

partitions of the E property are strongly associated with lymph node status (both Kappa test, p < 

0.01). Again, although there are significant associations here for the D and E properties with 



Stromal Property Assignment Number of patients Fraction
T high 460 0.42
T intermediate 168 0.15
T low 470 0.43

B high 260 0.24
B intermediate 620 0.56
B low 218 0.20

E high 239 0.22
E intermediate 675 0.61
E low 184 0.17

D high 444 0.40
D intermediate 206 0.19
D low 448 0.41

Table 5: Summary of assignments of stromal proeprties across 
our TNBC compendium
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respect to grade and lymph node status, these are not one-to-one relationships. For example, 92% 

of the 368 D-low tumors are grade III. 

 

2.1.7. Stromal properties succinctly summarize TNBC heterogeneity 
To establish whether the stromal properties are associated with subtypes of TNBC derived 

from bulk tumor gene expression profiles (TNBCType) [64] we first applied our approach to the 

TNBCType subtypes. Using the data from Lehmann and colleagues [64], the gene sets that 

underlie each of the six TNBC subtypes were subjected to our methodology, estimating their 

activation as either low, intermediate or high across the TNBC compendium (Methods). This 

procedure places the six ‘Lehmann properties’ in a format that allows comparison with the four 

stromal properties. 

To examine if any of the Lehmann properties interact (eg whether samples positive for one 

subtype, are also positive for the second), associations between all possible states of all possible 

pairs of Lehmann properties were determined. Subtyping schemes partition patient samples into 

disjoint groups with the assumption that if a patient belongs to one subtype (for which they have 

the appropriate molecular profile), they do not belong to another subtypes (their profile is 

sufficiently distinct). However, we observe strong statistical correlations between 11 out of 15 

pairs of TNBCType properties (Figure 8A, Kappa test, all p values < 0.01). While the 

mesenchymal (M) and immunomodulatory (IM) properties display a near perfect (p < 1e-10) 

anti-correlation that is consistent with distinct subtypes, we also observe an equally strong (anti-
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)correlation between the basal-like-2 (BL2), luminal androgen receptor (LAR), and 

mesenchymal stem-like (MSL) properties. Hence, for example, even though by our method 

many patients are high for both BL2 and LAR, each will be assigned to only one of these 

subtypes under the TNBCType approach, This correlation does not support their identification as 

distinct subtypes. 

To establish if the four stromal properties show similar associations we repeated this analysis 

with the stromal properties (Figure 8B). Of the 6 pairs tested, only the T and B stromal properties 

were strongly correlated (p < 1e-10), while the D property showed a weak anti-correlation (p < 

0.01) with the T and E properties. 

To investigate associations between the Lehmann properties and our TNBC stromal 

properties we performed a similar analysis comparing the Lehmann and stromal properties 

(Kappa test, Figure 9A-D). Notably the T stromal property (Figure 9A), and to a lesser extent the 

B property (Figure 9B), captures the inversely-correlated M and IM properties (p < 1e-10). The 

stromal E property exhibits strong correlation with the BL1 property and anti-correlation with 

the LAR property (p < 1e-10; Figure 9C). Patient samples estimated high for the D property are 

almost always estimated high for the BL2, LAR, and MSL properties and low for the BL1 

property (p < 1e-10, Figure 9D). These observations highlight that the ‘Lehmann properties’ are 

strongly associated with the stromal properties, and suggests that TNBC heterogeneity can be 

succinctly summarized by three distinct properties related to immune infiltration (B and T), 

androgen receptor signaling (E), and a desmoplastic stroma (D).  
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2.1.8. The D property is the stromal image of tumor proliferation 
High expression of the MSL and BL1 Lehmann properties was observed to be negatively and 

positively correlated with the proliferative index of the tumor respectively [64], and in the 

preceding subsection we show that our D stromal property is also strongly positively and 

negatively associated with the MSL and BL1 Lehmann properties respectively, suggesting that 

the D property reflects the stroma-derived image of tumor proliferation. 

We investigated this relationship in three ways. First, samples with expression of the D 

property had a significantly lower percentage of Ki67-positive tumor cells than samples with low 

expression of D (two sided t-test p < 0.05, Figure 10). Second, using a gene signature of 

proliferation [93] and the ROI95 to estimate proliferative states, we observed a strong statistical 

association between expression of the D property and expression of the proliferative signature 

(Figure 11A, B, Kappa test, p < 0.01). Third, we observed that low expressors of the D property 

are associated with higher grade (Figure 12). High-grade tumors tend to have a higher mitotic 

index [94]. Together these findings indicate that the D property is the stromal image of tumor 

proliferation from the neighbouring epithelial cells. 

 

2.1.9. Stromal property interactions induce 15 enriched subtypes with larger than 

expected populations 
The many alternative subtyping schemes for breast cancer propose varying numbers of 

patient partitions that range from just four subtypes via classic approaches based ER, PR and 
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Figure 10: Boxplot showing the association of the D property with Ki-67 staining as a marker for 
proliferation. * indicates comparisons which are significantly different (two-sided two-sample t-test, p < 
0.05)
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HER2 status to 10 subtypes identified by IntClust through joint DNA and mRNA analysis [57]. 

Similarly, there have been different numbers of “sub-sub” types proposed for TNBC [64,65]. 

Our four ternary stromal properties suggests that as many as 34(=81) such sub-subtypes could 

exist; each such subtype is described as a combination of the four properties (eg T-high, B-high, 

E-low, D-int). However, using our compendium of ~1000 TNBC profiles, we observed that the 

number of patients assigned to each of the 81 subtypes varied significantly, with some subtypes 

populated by many samples and others with very few.  

To measure this statistically, the enrichment or depletion of subtype populations were 

assessed relative to a background model (binomial-based test, see Methods). Only 15 of the 81 

subtypes are significantly enriched beyond levels that would be observed solely by chance across 

our compendium (Table 6). Many of the 15 enriched subtypes were either of the form T-high, B-

high/B-intermediate, or of the form T-low, B-low/B-intermediate, suggesting a strong interaction 

between the T and B properties. Conversely, 17 of the 81 subtypes were significantly depleted, 

suggesting selection against some specific combinations of stromal properties (for example, the 

T-high, B-low/intermediate, D-high, E-high combination), in turn suggesting a complex 

interaction between these properties. The remaining 49 subtypes were populated as would be 

expected under a null binomial model.  

 

  



Subtype Number of 
successes

Hypothesized 
probability of 

success

Hypothesized 
number of 
successes 
(rounded)

p-value (enrichment) p-value (depletion) Enriched/Depleted

T-low,B-Intermediate,D-high,E-low 44 0.016378759 18 1.16E-07 0.999999956 Enriched
T-low,B-low,D-low,E-Intermediate 44 0.021317034 23 7.65E-05 0.999961767 Enriched
T-low,B-low,D-Intermediate,E-high 13 0.003470644 4 0.000166983 0.999955949 Enriched
T-high,B-high,D-Intermediate,E-Intermediate 28 0.011441759 13 0.000106353 0.999955615 Enriched
T-high,B-high,D-low,E-Intermediate 49 0.02488305 27 9.45E-05 0.999950454 Enriched
T-low,B-low,D-low,E-high 21 0.007547809 8 0.000140421 0.999948949 Enriched
T-low,B-low,D-high,E-low 15 0.005758983 6 0.002220861 0.99915791 Enriched
T-high,B-high,D-high,E-low 16 0.006722373 7 0.003848074 0.998401694 Enriched
T-high,B-high,D-low,E-low 16 0.006782935 7 0.004183773 0.998247347 Enriched
T-high,B-high,D-high,E-Intermediate 42 0.02466088 27 0.004215117 0.997465284 Enriched
T-low,B-low,D-Intermediate,E-Intermediate 20 0.009802029 11 0.007179468 0.996493291 Enriched
T-low,B-low,D-high,E-high 16 0.007480418 8 0.010072303 0.995370615 Enriched
T-Intermediate,B-Intermediate,D-high,E-Intermediate 36 0.021477234 24 0.009602033 0.994171835 Enriched
T-high,B-high,D-low,E-high 17 0.008810443 10 0.020139737 0.989756745 Enriched
T-high,B-Intermediate,D-low,E-high 33 0.021009517 23 0.028549504 0.981661295 Enriched
T-high,B-high,D-Intermediate,E-high 8 0.00405123 4 0.081971238 0.962412399
T-Intermediate,B-low,D-Intermediate,E-Intermediate 7 0.003503704 4 0.094992225 0.95774673
T-low,B-low,D-high,E-Intermediate 31 0.021126703 23 0.067492574 0.954032293
T-low,B-Intermediate,D-high,E-Intermediate 78 0.06008512 66 0.07428032 0.94121958
T-high,B-high,D-Intermediate,E-low 6 0.003118939 3 0.132268612 0.940662506
T-Intermediate,B-Intermediate,D-Intermediate,E-low 5 0.002716293 3 0.181571748 0.918110553
T-Intermediate,B-Intermediate,D-low,E-high 12 0.007673041 8 0.144183169 0.914350637
T-high,B-Intermediate,D-low,E-Intermediate 75 0.059336503 65 0.117569128 0.904801867
T-high,B-high,D-high,E-high 13 0.008731778 10 0.170127314 0.89360361
T-Intermediate,B-Intermediate,D-high,E-low 9 0.005854535 6 0.199437007 0.8840836
T-Intermediate,B-low,D-low,E-Intermediate 11 0.007619706 8 0.221398293 0.860654927
T-high,B-Intermediate,D-Intermediate,E-high 13 0.009660626 11 0.268493073 0.817277715
T-high,B-low,D-low,E-high 10 0.007387217 8 0.2968454 0.805415659
T-Intermediate,B-Intermediate,D-Intermediate,E-high 5 0.003528229 4 0.34651877 0.804802026
T-Intermediate,B-high,D-high,E-high 4 0.003188997 4 0.463867823 0.725308773
T-Intermediate,B-high,D-high,E-Intermediate 11 0.009006582 10 0.403040645 0.709869544
T-Intermediate,B-high,D-low,E-low 3 0.002477246 3 0.5114835 0.709751411
T-low,B-Intermediate,D-Intermediate,E-high 12 0.00987064 11 0.40130022 0.706913803
T-Intermediate,B-high,D-Intermediate,E-Intermediate 5 0.00417873 5 0.484791226 0.687935497
T-Intermediate,B-low,D-Intermediate,E-high 1 0.001240571 1 0.744106081 0.604891928
T-Intermediate,B-Intermediate,D-Intermediate,E-Intermediate 11 0.009964663 11 0.533639267 0.586322097
T-low,B-low,D-low,E-low 6 0.005810866 6 0.613926481 0.545274277
T-high,B-Intermediate,D-high,E-low 17 0.016030274 18 0.590148909 0.505870875
T-Intermediate,B-Intermediate,D-low,E-Intermediate 23 0.021670723 24 0.59374123 0.488884686
T-low,B-low,D-Intermediate,E-low 2 0.002671961 3 0.791148954 0.437895132
T-Intermediate,B-low,D-low,E-high 2 0.00269794 3 0.795561259 0.431385696
T-Intermediate,B-Intermediate,D-high,E-high 7 0.007604532 8 0.728455604 0.404607381
T-low,B-Intermediate,D-Intermediate,E-Intermediate 28 0.02787733 31 0.708935294 0.358755305
T-Intermediate,B-low,D-Intermediate,E-low 0 0.000955084 1 1 0.35022374
T-Intermediate,B-low,D-high,E-low 1 0.00205853 2 0.895920015 0.339813699
T-Intermediate,B-low,D-low,E-low 1 0.002077075 2 0.898022241 0.335035244
T-high,B-Intermediate,D-Intermediate,E-Intermediate 27 0.027284196 30 0.733435418 0.332922905
T-Intermediate,B-high,D-Intermediate,E-low 0 0.001139091 1 1 0.286094103
T-low,B-Intermediate,D-Intermediate,E-low 6 0.007599154 8 0.839295464 0.272203682
T-Intermediate,B-high,D-high,E-low 1 0.002455128 3 0.932730253 0.249057136
T-Intermediate,B-Intermediate,D-low,E-low 4 0.005907279 6 0.887911417 0.224392326
T-high,B-low,D-Intermediate,E-low 1 0.00261511 3 0.943592444 0.218800387
T-Intermediate,B-low,D-high,E-high 1 0.002673852 3 0.947124809 0.208527069
T-Intermediate,B-high,D-Intermediate,E-high 0 0.00147958 2 1 0.196757821
T-low,B-Intermediate,D-low,E-Intermediate 59 0.060626427 67 0.846508841 0.18664233
T-high,B-Intermediate,D-low,E-low 13 0.016174691 18 0.900997575 0.153136231
T-low,B-high,D-high,E-high 6 0.008921599 10 0.925684333 0.142383713
T-low,B-high,D-Intermediate,E-low 1 0.003186742 3 0.969942099 0.135568008
T-Intermediate,B-high,D-low,E-high 1 0.003217727 4 0.970950692 0.13201369
T-Intermediate,B-high,D-low,E-Intermediate 6 0.009087722 10 0.93295501 0.130361597
T-high,B-low,D-Intermediate,E-high 1 0.003396801 4 0.976151554 0.113098859
T-low,B-Intermediate,D-low,E-high 17 0.021466246 24 0.935686472 0.098781269
T-high,B-Intermediate,D-Intermediate,E-low 4 0.00743747 8 0.962636362 0.089680295
T-low,B-Intermediate,D-low,E-low 11 0.016526315 18 0.97269202 0.050042459
T-low,B-high,D-high,E-Intermediate 17 0.025196986 28 0.988954008 0.01950195 Depleted



T-low,B-high,D-high,E-low 2 0.006868512 8 0.995557801 0.01933253 Depleted
T-high,B-Intermediate,D-high,E-Intermediate 48 0.058806713 65 0.988457744 0.01652559 Depleted
T-low,B-Intermediate,D-high,E-high 13 0.021274583 23 0.992898091 0.013891054 Depleted
T-low,B-high,D-Intermediate,E-high 0 0.004139301 5 1 0.010520973 Depleted
T-low,B-high,D-low,E-high 2 0.009001974 10 0.999465084 0.002957237 Depleted
T-high,B-low,D-high,E-high 1 0.00732126 8 0.999686689 0.002850512 Depleted
T-Intermediate,B-low,D-high,E-Intermediate 1 0.007551673 8 0.999757183 0.00227151 Depleted
T-high,B-low,D-high,E-low 0 0.005636451 6 1 0.002016623 Depleted
T-high,B-Intermediate,D-high,E-high 10 0.020821932 23 0.999198514 0.001979431 Depleted
T-high,B-low,D-low,E-low 0 0.00568723 6 1 0.001906658 Depleted
T-low,B-high,D-low,E-low 0 0.00693039 8 1 0.000482727 Depleted
T-high,B-low,D-Intermediate,E-Intermediate 1 0.009593475 11 0.999974694 0.000294447 Depleted
T-high,B-low,D-low,E-Intermediate 7 0.02086348 23 0.999973741 9.22E-05 Depleted
T-low,B-high,D-Intermediate,E-Intermediate 1 0.011690493 13 0.999997531 3.45E-05 Depleted
T-high,B-low,D-high,E-Intermediate 4 0.020677199 23 0.999999743 1.56E-06 Depleted
T-low,B-high,D-low,E-Intermediate 5 0.025423986 28 0.999999983 1.00E-07 Depleted

Table 6: Enrichment of the 81 subtypes across our TNBC compendium. Subtypes in pink, green, and white are over-represented, under-represented, or represented at levels expected 
by chance alone respectively.
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2.1.10. The D property is a master controller of the prognostic role of the T, B and E 

properties 
Above we have investigated the prognostic capacity (DMFS at 5 yrs) of the stromal 

properties individually, of which the B, T and E properties were statistically significant. To 

establish if the interactions between the stromal properties have prognostic capacity in the TNBC 

compendium we focused on the 15 stromal subtypes that had larger than expected populations. 

We observe that all subtypes where D is high, were not significantly different in terms of the 

prognostic capacity (Figure 13A, log-rank test, p > 0.05). However, when D is low or 

intermediate, the spectrum of subtypes (varying states of B, T and E) do have significantly 

different survival characteristics (Figure 13B; log-rank, p < 0.05).  

 To verify our observation that the D property controls the prognostic capacity of the B, T, 

and E properties we performed univariate survival analyses of these three properties in D-high 

and D-low(/intermediate) patient cohorts. Patients were first stratified into a D-high or D-low 

cohort based on their expression of the D stromal property and then univariate survival analysis 

for the B, T, and E properties was performed as before.  

 

2.1.11. The D property and the inherent prognostic difficulty of some patients 
The vast majority of previously reported prognostic gene signatures for breast cancer are 

derived from bulk expression data from the tumor proper. These signatures measure a broad 

range of tumoral hallmarks and cancer-related processes (e.g., proliferation, genomic instability, 



A) B)

Le
ve

l o
f s

tro
m

al
 p

ro
pe

rty

T B D E Legend

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0
%

 D
M

FS

Time in months

p=0.935

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

M
FS

Time in months

p=6.2e−06

Figure 13: The D property controls the prognostic effect of the B, T, and E properties
A. Kaplan-Meier curves showing lack of prognostic value of B, T or E properties in D-high patients. Only 
the D-high subset of the 15 overrepresented combined classes is shown. ↑, |, and ↓ represent high, 
intermediate, and low assignments for stromal properties respectively.
B. Kaplan-Meier curves showing prognostic value of B, T and E properties in D-intermediate and D-low 
patients. Only the D-intermediate and D-low subsets of the 15 overrepresented combined classes are 
shown.  ↑, |, and ↓ represent high, intermediate, and low assignments for stromal properties respectively.
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immune response). In a previous effort [40], we identified a subset of patients whose observed 

outcome was consistently mispredicted by almost all reported prognostic gene signatures 

(inherently difficult patients). As our stromal D property appears to be a master controller of the 

prognostic capacity of the T, B and E properties, we hypothesized that patient samples estimated 

high for the D property might have higher inherent prognostic difficulty, i.e., gene signatures that 

predict prognosis will almost always incorrectly predict D-high patients. If this is true, then 

knowledge of the state of the D property might provide a significant breakthrough that would 

increase the accuracy of prognostic classifiers. 

Using the inherent difficulty score from Tofigh and colleagues [40], we observed a 

significant difference in inherent difficulty of observed poor-outcome patients contingent on D-

high versus D-low or D-intermediate status (two sample, two-sided t-test; p < 0.05; Figure 14, 

DMFS at 5yrs with blue and red representing good and poor outcome respectively). Thus, those 

poor outcome patients that are high for the D property are systematically mispredicted as good-

outcome.  

 

2.1.12. The TNBC stromal properties are generalizable to other patient cohorts 
Although the stromal properties were identified within a TNBC cohort, a natural question is 

to ask if they have prognostic capacity in other breast cancer subtypes. It is well-established that 

signatures related to cell cycle and tumor proliferation provide prognostic information especially 

within ER-positive related cohorts [40,95,96], suggesting potential efficacy for the D stromal 
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Figure 14: Boxplot showing the association of the D property with difficulty to predict poor prognosis but 
not good prognosis.
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property. The prognostic capacity of immune-related signatures are also well established, 

particularly within ER-negative cohorts, suggesting efficacy for the T and B properties 

[40,95,97,98]. We asked if there is evidence that the microenvironmental states captured by our 

TNBC stromal properties can be used universally across the disease to predict disease 

progression. 

Following the methodology of Tofigh and colleagues [40], we trained prognostic predictors 

for each of the stromal properties and compared these predictors with previously reported 

predictors (n ~ 120), trained in the same manner for each breast cancer subtype, across a large 

collection (n ~ 5000) of invasive breast cancer profiles (Figure 15). More specifically, for the 

gene set of each stromal property and each prognostic signature, a Naive Bayes’ Classifier was 

generated under statistical cross-validation within datasets while reserving several complete 

datasets for additional independent validation. The use of such classifiers allows, for example, 

the learning procedure to “weight” specific genes within a gene signature as more or less 

important in predicting patient outcome. DMFS at five years was used as the clinical end point, 

and performance was measured by the product of accuracy, via standard survival analyses (log-

rank test) and via a random sampling based approach. 

As perhaps expected, the T predictor was one of the best predictors in the TNBC cohort. 

However, it was also significantly associated with prognosis in all subtypes except the ER 

positive/HER2 positive cohort. While the D predictor was also significant in these cohorts, it was 

among the top predictors of prognosis in unstratified pan-breast cancer analysis. Although the D 
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predictor is significant in the TNBC subtype (p < 0.001), it was not among the highest-

performing classifiers. The B predictor is significantly associated with prognosis in the same 

cohorts as the T predictor, although it never appears amongst the highest performing signatures. 

Interestingly the E predictor showed a stronger association with prognosis in unstratified, and in 

ER-positive cohorts, than within the TNBC subtype. Together these results suggest that the 

stromal properties are nearly universal to breast cancer, and have different prognostic capacities 

in different subtypes. 
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2.2 Functional consequences of intra-tumoral heterogeneity in a TNBC tumor 

2.2.1. Identification of an index case to study intra-tumoral heterogeneity 
To explore the possibility of functional heterogeneity existing in breast cancer and response 

to treatment, an index case, diagnosed as a hormone receptor-negative, high-grade invasive 

ductal carcinoma, displaying heterogeneity in histopathology as well as HER2 positivity by 

immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) , was selected for in-

depth analyses. As a renewable source of tissue for functional studies, a patient derived xenograft 

(PDX) was established at the time of surgery, following a lack of response to neoadjuvant 

treatment. The PDX preserved histomorphology of the primary tumour, and was concordant for 

hormone receptor negativity and HER2 status, including HER2 IHC and FISH heterogeneity. 

The similarity of the PDX with the primary tumour was confirmed by gene expression 

profiling, followed by unsupervised hierarchical clustering of the most variable genes (IQR > 2). 

This revealed that the PDX and patient primary tumour cluster adjacently within a dataset 

comprising of 428 breast tumours [40] (Figure 16). The tumour and PDX clustered with tumours 

of the basal-like intrinsic subtype, but subclustered within this subtype with tumours positive for 

HER2 by immunohistochemistry. Utilising gene expression tests for intrinsic subtype prediction, 

one of these, PAM50 [99], classified the patient’s primary tumor and PDX as basal-like, whereas 

a more recent single-sample predictor of subtype, the absolute intrinsic molecular subtype 

(AIMS) [58], classified the primary tumour as HER2E and the PDX as basal-like, supporting the 

histological heterogeneity of this case. 



Figure 16: PDX and primary tumor display similar gene expression profiles. 
Unsupervised hierarchical clustering of gene expression data from 429 breast tumours using the most 
variable genes (IQR > 2). Colored bars below indicate specific samples (primary or PDX), ER and HER2 
status, and PAM50 and AIMS subtype. Heatmap color intensity represents row z-score. 
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2.2.2. Single-cell RNA-seq reveals intra-tumour heterogeneity 
To uncover the extent of cellular diversity within this tumour and to begin to understand the 

functional consequences, viable single cells isolated from the PDX were genomically analysed 

by RNA sequencing (RNA-seq). RNA-seq was performed from 33 viable single cells isolated 

from the PDX and captured using the Fluidigm C1 autoprep system [100]. Quality control 

checks verified that the cells were viable at isolation, and that they resembled the bulk tumor. An 

average of 6,675,705 reads were generated for the single cell RNA-seq (scRNA-seq) dataset, 

92.8% of which mapped to the human genome (hg19). 

Due to the novelty of the sc-RNASeq technology standard normalization methodology has 

not yet been developed. A significant challenge present when normalizing sc-RNASeq data is to 

estimate and remove latent sources of variation to enable for the proper identification of 

biological signals. Different methods have been suggested to estimate this latent variation, and 

these methods make use of various factors including using cell cycle stage, library size, and 

exogenous spike-ins, among others [78].  

To determine which of these factors could contribute to the latent sources of variation within 

our data, we calculated summary values for the library size, number of features detected, and for 

the controls for each sample within our dataset. These factors were compared to the 1st and 2nd 

principal components for our data. We observed that the strongest (anti-)correlation was 

observed between the number of features detected and the1st principal component confirming 

that this was a large source of latent variation. Additionally technical variability (estimated by 



52	

	

the ERCC spike in controls) and library size also contributed as sources of latent variation 

(Figure 17). 

To mitigate the effects of these sources of variation, a novel method of normalization and 

analysis was developed based on the LIMMA/voom framework [41]. In addition to log2-scaling 

the read count values, this framework normalizes for differences in library size when samples are 

loaded. The effects of the remaining two sources of latent variation were estimated and removed 

using the removeBatchEffect function. This function fits the summary values for the two latent 

variables into a linear model for each gene and the residuals of the model returned as the 

corrected values. These corrected values were used for clustering and for class discovery. For 

class distinction, the summary values for latent variation were included in the model built to 

identify differentially expressed genes. 

 

2.2.3. Identification of PDX single-cell subgroups 
An exploration of transcriptome heterogeneity was performed by investigating subtype 

diversity at the cellular level. Two intrinsic subtype predictors, the single-sample AIMS and 

canonical, PAM50, were applied to the single-cell transcriptome data. Using AIMS, the majority 

of individual cells were classified as HER2E (59%) or basal-like (31%), with a minor population 

being classified as the normal-like subtype (10%) (Figure 18). This is in accordance with the 

classification of whole tumour samples derived from the patient’s primary tumour and from the 

PDX, which were classified by AIMS as HER2E and basal-like respectively (Figure 16).  
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Figure 17: Principal component 1 is strongly (anti-)correlated with library size, number of 
features detected, and total ERCC spike in counts.
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Figure 18: Absolute subtype assignment by AIMS and associated posterior p-values. Higher p-values 
(darker red) indicates increased likelihood to be of the associated subtype. TC200 and TC_RNA 
controls were determine to be of Basal-like subtype similar to the whole tumor sample. The majority of 
individual cells were classified as HER2E (59%) or basal-like (31%), with a minor population being 
classified as the normal-like subtype (10%)
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However, when PAM50 was applied to single-cell transcriptomic data, cells classifications 

were distributed across all five subtypes (Figure 19). This result was unexpected as cells lacked 

expression of the hormone receptors (ER or PR) typically associated with the luminal phenotype. 

It has been observed that the PAM50 method is susceptible to misclassification in unbalanced 

datasets, where non-luminal samples become classified as a luminal subtype as the composition 

of the dataset is changed [58]. AIMS does not require the dataset scaling step used by PAM50 

[58], supporting the suitability of AIMS as a single-sample predictor for breast cancer single-cell 

transcriptome data. 

To identify if distinct subsets of tumour cells are also identified using unbiased approaches, 

class discovery using the 200 most variable genes was performed on the single-cell RNA-seq 

dataset (Figure 20A). This identified that tumour cells isolated from the PDX, segregated into 

one of two major clusters (Figure 20A, blue and orange). 

To investigate differences between these clusters, class distinction was performed and 

identified a set of 575 genes differentially expressed between the clusters (edgeR FDR adjusted 

p-value < 0.01) (Figure 21A, Table 7). The epidermal growth factor receptor (EGFR) was among 

these genes and was a marker for the orange cluster (Fig 21B, Table 7). The heterogeneity of 

EGFR expression was validated by EGFR immunostaining which confirmed that EGFR was 

variable and identified distinct cell populations in the primary tumour as well as the PDX. 
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FIgure 19: PAM50 centroid-based assignment of molecular subtypes classifies cells across all 5 
subtypes.
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FIgure 20: Class discovery of single-cell RNA-seq data from 33 PDX-derived cells using 200 most 
variable genes (inter-quartile range). Colored bar below represents the cluster calls for the two 
subpopulations identified. Heatmap color intensity represents row z-score.



54	

	

In addition to EGFR, the orange cluster is also enriched in basal-like markers (KRT14, 

KRT6A) (Table 7). Consistent with this, the majority (13/16) of single cells in the orange cluster 

were classified as basal-like by AIMS (Figures 20, 21A; Fisher’s exact test p-value < 0.05).  

To confirm that these observations were not associated with distinct cell cycle phases, 

enrichment analysis of cell cycle phase signatures were performed. While some associations with 

these signatures was observed, the significant signatures were all associated with the orange 

cluster (Figure 22). This indicates that these functional differences are not associated with 

distinct cell cycle phases, but that they may be affecting cell cycle processes. 

 

2.2.4. Increase in stem cell characteristics among EGFR-high cells 
To determine if functional differences exist between the blue and orange clusters an 

enrichment test was performed on the differentially expressed genes. In addition to genes 

associated with EGFR trafficking, we observe genes associated with a hypoxic response, and 

with oxidative phosphorylation (Table 8). These pathways have previously been associated with 

stem cell populations. Grün and colleagues [101] have proposed a method for identifying 

putative stem cell populations from single cell transcriptomic data. This method makes use of 

linkages between clusters and transcriptomic entropy to determine cells with more stem-like 

characteristics.  

Given that we are comparing just two clusters, we do not expect distinct number of links 

between the clusters. We therefore calculated the transcriptomic entropy for each cell as 
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Figure 21: EGFR is significantly different between cell populations.
A. Hierarchical clustering of single-cell RNA-seq dataset using 575 genes differentially 
expressed between clusters identified in Figure 20 (edgeR FDR adjusted p-value < 0.01). 
Heatmap color intensity represents row z-score. 
B. Subset of heatmap form Figure 21A depicting EGFR expression across clusters.
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Figure  22: Enrichment of cell cycle stage signatures (A-E) in orange vs blue clusters. Top plot 
indicates enrichment score. Botttom plot indicates ranks of individual genes from the signature 
(lines) and association with orange cluster (left) or blue cluster (right)
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described, and compared the entropy between the two clusters. The transcriptomic entropy was 

observed to be higher among cells in the blue cluster compared to cells in the orange cluster (two 

sided t-test p < 0.05, Figure 23) leading to the hypothesis that cells in the blue cluster would 

possess more stem-like characteristics, and that the PDX would respond to EGFR inhibition. The 

increased stem-like properties of EGFR-high cells and sensitivity of the PDX to EGFR inhibition 

was subsequently confirmed by several independent assays. 

 

2.2.5. Identification of tumors that respond to EGFR Inhibition 
To validate our that our observation was applicable to other tumors as well, we identified 

four additional PDX models that displayed a similar mosaic pattern of EGFR expression as 

determined by immunofluorescence staining. Notably, three of these four tumors were also 

responsive to EGFR inhibition similar to the index tumor. To identify commonalities between 

these tumors and our index case we performed scRNA-seq on three of these additional tumors.  

As was observed with our index case, the library size, number of features, and technical 

variability were strongly correlated with the first or second principal component for these 

tumors. Thus these sources of latent variation were assessed and removed as done with our index 

case. Similar to our index tumor, we identified a subset of cells with high EGFR expression and 

high transcriptomic entropy (> 0.7). In addition, these cells were enriched for the gene signature 

identified in the index tumor (Figure 24). We therefore hypothesized that these EGFR-high cells 

would have stem-like characteristics similar to what was observed in our index case. EGFR-high 
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Figure 22: Transcriptomic entropy is significantly different between the clusters (two sided t-test p-value 
= 0.00757)
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cells isolated from these tumors by FACS were determined to have more stem-like 

characteristics than EGFR-low cells, similar to the index tumor. 
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3. DISCUSSION 
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The poor outcome TNBC subtype remains the focus of much research as we still lack 

effective classification markers, prognostic signatures, and targeted therapies. This study 

represents the first large-scale effort to investigate the tumor microenvironment in TNBC 

patients. With respect to the TNBC subtype, previous studies have focused on gene expression 

profiling [47,64,65] or DNA sequencing [102] of bulk material enriched for tumor cells. Efforts 

to study the tumor microenvironment, including our own [36–38,103], have used LCM to isolate 

stromal elements in a pan-BC fashion, not restricted to TNBC. 

Here, we identify four stromal properties in TNBC patients. A key distinction between this 

study and previous work is that we allowed patients to express multiple properties, rather than 

assigning samples to individual distinct subtypes. We observe that this method better captures 

the heterogeneity of the TNBC stroma. Despite being discovered in LCM-derived material, these 

stromal properties are shown to hold true even when applied to matching bulk expression sample 

profiles. This allows us to assign levels of the four properties to a large bulk-derived 

compendium of TNBC patients, revealing that the activation state of the B, T, and E properties 

were associated with patient outcome, and that the D property is associated with tumor 

proliferation. 

Using the infrastructure and concepts from Tofigh et al. [40], we show evidence that the vast 

majority of existing gene signatures for predicting patient prognosis fail for many D-high patient 

samples. In particular, these signatures often incorrectly predict D-high poor outcome patients to 

have good outcome. D-high patients are the least proliferative amongst the TNBC, although all 
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of these tumors are highly proliferative in comparison to non-TNBC tumors. This suggest that 

the D-high, least proliferative TNBC tumors have been problematic for existing prognostic 

signatures. Therefore, when our novel D signature identifies a sample as high, current prognostic 

predictors should not be utilized as they will likely fail. Conversely, it is only when a patient 

sample is deemed low (or intermediate) for D that the T, B, and E properties provide additional 

prognostic information. These observations allow us to generate a decision tree that ablates the 

complexity of having many (81) potential subtypes (Figure 25).  

When the D property is high, the immune response within the microenvironment (estimated 

via the T and B properties), and the E property are insufficient to predict outcome. The 

desmoplastic stroma as encompassed by the D signature may suppress the tumor-antagonistic 

effects of a stimulated immune response. This is consistent with the observation that the cohort 

of samples deemed high for D have moderate to poor prognosis when compared to the entire 

TNBC cohort. Hence, the prior or concurrent targeting of desmoplastic stroma may enhance the 

therapeutic benefit of immunomodulatory therapy in this patient cohort.  

Using bulk expression profiles, the TNBCType scheme [64] estimates that six subtypes 

capture the heterogeneity of TNBC patients. By applying our methodology to the genes that 

define their subtypes, we presented evidence that there is strong evidence that essentially every 

patient sample belongs to multiple Lehmann et al. subtypes. However, since their methodology 

assigns each patient to exactly one subtype (e.g., MSL and not LAR), these patients would be 

treated according to the standard of care for the MSL subtype, and potential anti-androgen 



TNBC
Patient

D low

D high

T/B high

T/B low E lowE high

Outcome: Poor Moderate GoodModerate

Figure 25: Decision tree to subtype TNBC patients based on observed associations with patient 
prognosis.
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therapies suitable for the LAR subtype would be ignored despite the evidence that the patient is 

also LAR positive. Therefore application of our approach may improve the already positive 

findings from Lehmann and colleagues [64,67]. 

Ng et al. [95] suggest that TNBC may be characterized by three or possibly four properties 

related to androgen signaling, immune infiltration, and a desmoplastic stroma, all of which are 

captured by our four stromal properties presented here. This effort is the first to offer a 

quantitative estimate of the number of distinct, populated TNBC subtypes. If there are four core 

properties of TNBC and each property is measured as high, intermediate or low, then there are a 

total of 34(=81) possible subtypes. We found that 15 of these 81 subtypes had more patients than 

expected by chance, and 17 subtypes that had significantly fewer subtypes than expected by 

chance. The remaining 49 subtypes had populations within our datasets that are not significantly 

different than what we would expect by chance, and therefore larger TNBC cohorts are 

necessary to investigate their prognostic and predictive values. 

We observed that the stromal properties, despite being discovered amongst TNBC patients, 

were associated with patient prognosis in other patient cohorts. The predictors derived from the 

stromal properties are observed to cluster closely with other predictors polling similar processes. 

Specifically the D predictor clusters with a predictor derived from comparing normal and tumor 

stroma [104], the T predictor clusters with other signatures linked to the presence of immune 

cells in the tumor [105], and the B predictor clusters amongst other B cell related signatures 

[47,106]. Interestingly the E property clusters amongst predictors of metastatic potential 
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(including metastasis to brain [107] and lung [108]) and amongst signatures related to immune 

suppression/pro tumor immune responses [109,110]. This suggests that the E property may 

represent an early signature in the microenvironment of invasion or metastases. Future work 

could determine if the molecular events underlying the E property could be therapeutically 

targeted to prevent metastases. It has been previously observed that signatures measuring 

proliferation have their best performance in unstratified analyses, likely because there are large 

concomitant differences in the proliferative indices and rate of poor outcome between ER+ and 

ER- patients [40]. Given that the D property correlates strongly with tumor proliferation, it is 

perhaps unsurprising that the D property predictor is one of the best predictors in unstratified 

analysis. 

Our approach has therefore identified four interacting stromal properties that can be 

combined to subtype TNBC patients. These properties have also displayed broader applicability 

among other cohorts of breast cancer patients indicating that they play a key role in determining 

breast cancer outcome. 

Although breast tumours are now considered to consist of a heterogeneous mixture of 

individual cells [102,111,112], the presence of multiple subtypes within breast tumours are still 

poorly understood. Thus, although whole tumour level data detect dominant transcriptional 

programs, they do not capture the true diversity of transcriptional subtypes within the tumour. 

Single cell RNA-sequencing enables us to investigate this heterogeneity. However the novelty of 
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the technology means that novel methods of normalization and analysis need to be developed to 

handle the data. 

Although most of the single cells in our index tumor were discretely classified by AIMS as a 

single subtype, several cells have expression patterns consistent with two subtypes, most 

commonly basal-like and HER2E (Figure 18). This “dual” state may reflect an altered 

differentiation program or an interconversion between these phenotypic subtypes [113], possibly 

reflecting a subtype transition. Single cells classified with a dual subtype expression phenotype 

have been observed in single-cell transcriptomic studies of glioblastoma [114] establishing that 

transition subtypes may exist in multiple cancers and contribute to intra-tumoural heterogeneity 

and/or plasticity with distinct biological and clinical responses. 

The expression of EGFR has been shown to be elevated in ~50% of basal-like breast cancers 

[115], which has lead to several efforts to target it. The EGFR monoclonal antibody, cetuximab, 

demonstrated underwhelming response rates in a TNBC phase II trial [116], despite strong pre-

clinical data. Due to the bulk expression profiling used previously to assess EGFR pathway 

activation, it was unclear at the time whether EGFR heterogeneity was responsible for the lack of 

clinical efficacy observed in these trials. 

This study identified a subset of tumors that exhibited a mosaic pattern of EGFR expression 

by immunostaining and single cell RNA-seq profiling. Due to its expression on the cell surface, 

EGFR could also be used as a marker to distinguish cells by FACS and enabled the isolation of 

live cell populations for use in subsequent functional assays. Investigation of these tumors 
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indicate that this variation is derived from two distinct cell populations present within these 

tumours, and that EGFR-high cells possess stem-like characteristics. The EGFR-mosaic subset 

of tumors also appears to be enriched for tumors that respond to EGFR-inhibition, and presents a 

putative diagnostic test for identifying patients who would respond to EGFR inhibition.  

The heterogeneity of breast tumors and the implications it has for determining treatment and 

how patients responds to treatment are poorly understood. The goal set out at the beginning of 

this thesis was to identify additional sources of heterogeneity in tumors, and to determine if they 

affect clinical outcome in breast cancer patients. To this end we identified two sources of 

variation amongst ER-negative tumors: one involving heterogeneity amongst tumor epithelial 

cells within a tumor, a second involving heterogeneity in stromal cell composition between 

different tumors. 

It is recognized that tumor composition is not static, and that it evolves as a tumor progresses. 

Previous studies have investigated breast cancer heterogeneity using whole genome sequencing 

of tumor DNA or through assessment of previously identified RNA markers. While the 

investigation of tumor DNA provides a snapshot of tumor epithelial heterogeneity, it does not 

indicate the functional consequences of this heterogeneity. The use of previously identified RNA 

markers from normal breast tissue [76] assumes that the heterogeneity in tumors is also observed 

among normal breast cells. Similarly studies investigating stromal heterogeneity used known 

stromal markers to differences in stromal cells.  



64	

	

Our approaches are the first to investigate the functional consequences of intratumoral or 

stromal heterogeneity in an unbiased manner. The profiling of tumor stromal samples and of 

single cells allowed us to assess the sources of variation in these samples without making any 

prior assumptions. This enabled us to identify previously unobserved sources of variation and to 

link this with response to therapy or patient outcome. 
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4. EXPERIMENTAL PROCEDURES 
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4.1 Methods for TNBC stroma analysis 
Sample selection 

Samples were collected from patients undergoing breast surgeries at the McGill University 

Health Centre (MUHC) between 1999 and 2012 who provided written, informed consent 

(MUHC REB protocols SDR-99-780 and SDR-00-966). All tissues were snap-frozen in O.C.T. 

Tissue-Tek Compound within 30 minutes of removal. Information regarding clinical variables 

was obtained through review of medical records. Samples used for this cohort (n=57) were 

reported as negative for ER and HER2 via immunohistochemistry (IHC) (ER and HER2) and/or 

fluorescence in situ hybridization (HER2). All patients were PR-negative (IHC), with the 

exception of one case with weak expression. Haematoxylin and eosin (H&E)-stained sections 

from each sample were evaluated by an attending clinical pathologist with expertise in breast 

tissue to identify representative areas of tumor and tumor-associated stroma, as well as 

histologically normal breast epithelium and stroma. 

  

Microarray dataset normalization 

R/Bioconductor (vers 3.20; Bioconductor 3.1) [117] was used for most analyses. 

Normalization was performed using the limma package [41] where loess was applied for dye 

bias correction, and quantile normalization was used across arrays. Replicates of non-control 

probes were aggregated by taking their mean value. To investigate technical error introduced in 
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the LCM/microarray procedure, the stromal and matched adjacent normal sample from a single 

patient were repeated and found to be highly concordant (>0.8). Replicate expression profiles 

were then averaged for the remainder of the analysis. The most variable probe was chosen when 

there were multiple probes for the same transcript.  

  

Discovery of stromal properties 

Probes with an interquartile range > 2.0 across all samples were used as features in 

hierarchical clustering (Ward’s algorithm, Pearson correlation distance). Samples were mean-

centered and scaled for each transcript across all patients prior to clustering. Pvclust (version 1.3-

2) was used to measure cluster stability with 100,000 iterations and we selected clusters 

containing at least 12 genes with an Approximately Unbiased (AU) value of >85%. 

  

Linear order and assignment of signatures using ROI95 

This unbiased approach, which is described in [80], ranks samples based on their expression 

of a specific gene set. In our case, we use the characteristic genes for each stromal and Lehmann 

et al. property. This method estimates each patient sample as either low, intermediate, or high 

using a random resampling technique with 1,000,000 iterations. 
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Differential Gene Expression and Pathway Analysis 

To identify differentially expressed (DE) genes for each stromal property, we fitted a linear 

model comparing the levels for each stromal property using the R package limma [41] and 

corrected with Benjamini-Hochberg (p < 0.05). DE genes lists were examined using QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) 

and compared against the Molecular Signatures Database (MSigDB) for pathway analysis. 

  

Assignment of other subtyping schemes to patients across large patient cohort 

We used our compendium of 5,901 bulk expression profiles of invasive breast cancer 

samples from 13 non-overlapping datasets generated on different technologies (5). We define 

poor outcome as an observed distant metastasis within 5 years of diagnosis (where available) and 

used ER and HER2 status as reported for each dataset where available. Since many datasets 

lacked information on PR status, we used ER and HER2 negativity to define TNBC patients. All 

patients within the compendium were also labeled with intrinsic subtype values via PAM50 [99], 

and TNBC patients were labeled by TNBCType via the web-based tool [118].   
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Assignment of stromal properties and Lehmann properties to TNBC whole tumor samples 

To assign the stromal properties to TNBC patients across the compendium of bulk expression 

profiles, we performed ROI95 using the lists of differentially expressed genes for each stromal 

property. Our software to estimate the level of stromal properties in a sample is available as a 

Bioconductor package entitled STROMA4. STROMA4 was applied to each (of the 13) datasets 

of our TNBC compendium independently and the three classes (low, intermediate, high) were 

combined across all of these datasets. Lehmann properties were similarly assigned using the 

characteristic genelist for each Lehmann subtype from the original publication. Assignments by 

ROI95 were compared to assignments by the TNBCType web-based tool [118]. Only four 

disagreements for “high” classification by both tools were observed (Table 9) confirming the 

accuracy of the ROI95 assignments. 

  

Statistical Analysis 

Cohen’s kappa statistic was used to measure agreement between two ROI95-based 

categorizations into low, intermediate and high (fmsb package vers. 0.5.1). Enrichment analyses 

were performed via a one-sided Fisher’s exact test in R. The minimum p-value between each 

one-sided test was used to determine if there was significant enrichment or depletion. For 

variables with more than two levels, multiple tests were performed to determine enrichment for 

each level individually against all other levels. 



Subtype assigned by webtool
ROI_95 Assignment for matching subtype
Low Intermediate High

BL1 0 0 161
BL2 0 3 84
IM 0 0 184

LAR 0 0 76
MSL 1 0 61

M 0 0 172

Table 9: Concordance between TNBCType and ROI95 Assignments 



70	

	

For comparisons between a ternary variable and a binary variable (for example, lymph node 

status versus high, intermediate low stromal property), we removed the intermediate category 

and then used Cohen’s kappa for the two binary variables. To determine association with distant 

metastasis free-survival we used a Cox proportional hazards regression model via the coxph 

function in R (vers. 2.38) using the three (ordinal) levels estimated by the ROI95. 

  

Testing for enrichment of combinations of stromal properties 

To determine if the fraction of observed combinations of stromal properties was higher than 

expected we used a one-sided binomial test (stats package in R) [117]. The observed number of 

patients with the combination being tested was used for the number of successes, the total 

number of patients was used for the number of trials, and the hypothesized probability of success 

was determined as the product of the fractions for the individual property levels being tested as 

observed in the TNBC patient compendium. A p-value less than 0.05 was deemed to be 

significant. 

 

Laser capture microdissection (LCM) and gene expression profiling. 

   Frozen sections embedded in Tissue-Tek O.C.T. compound (Sakura Finetek) were 

sectioned at 10 µm thickness, stained using the HistoGene kit (ThermoFisher), assessed by a 

practicing clinical pathologist with expertise in breast cancer (A.O.) and subjected to laser 
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capture microdissection on an Arcturus PixCell IIe LCM system to isolate non-epithelial 

(stromal) compartments of the tumor bed as identified above. All microdissections were 

performed within three hours of tissue staining. Patient-matched adjacent histologically normal 

stromal tissue that was at least 2mm outside of the tumor margin was isolated for a subset of 

patient samples (n=11). Total RNA was extracted from each population of microdissected cells 

using the Arcturus PicoPure RNA Isolation Kit (ThermoFisher) Following extraction, total RNA 

yield and quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies). For 

samples exhibiting distinct 28S and 18S peaks, 100 pg to 5 ng of total RNA were then subjected 

to two rounds of T7 linear amplification using the Arcturus® RiboAmp® HS PLUS Kit and 

labeled with Cy3 dye (using the Arcturus® Cy3 Turbo Labeling™ Kit) according to the 

manufacturer’s protocol. Hybridizations were performed using a common reference design. The 

reference used for all arrays was Universal Human Reference RNA (Stratagene), subjected to 

two rounds of T7 linear amplification using the Arcturus® RiboAmp® HS PLUS Kit and labeled 

with Cy5 dye (Arcturus® Cy3 Turbo Labeling™ Kit) according to the manufacturer’s protocol. 

Prior to microarray hybridizations, amplified products were quantified using a spectrophotometer 

(NanoDrop) and subjected to BioAnalyzer assays for quality control. Agilent Technologies 

SurePrint G3 Human GE 8x60K Microarrays (Cat#G4851A) were used for all experiments. 

Amplified RNA (300 ng) was subjected to fragmentation followed by 17 h of hybridization, 

washing, and scanning on an Agilent G2505C scanner according to the manufacturer’s protocol 

(manual ID #G4140-90050). Cy3-labeled samples were hybridized against Cy5-labeled reference 

for all arrays. Microarray data were feature extracted using Agilent Feature Extraction Software 
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(v. 10.7.3.1) with the default parameters. A full description of the patient and tumor 

characteristics of our cohort is presented in Table 1. 

 

Microarray dataset normalization 

 R/Bioconductor (vers 3.20; Bioconductor 3.1) [117] was used for most analyses. 

Normalization was performed using the limma package [41] where loess was applied for dye 

bias correction, and quantile normalization was used across arrays. Replicates of non-control 

probes were aggregated by taking their mean value. To investigate technical error introduced in 

the LCM/microarray procedure, the stromal and matched adjacent normal sample from a single 

patient were repeated and found to be highly concordant (>0.8). Replicate expression profiles 

were then averaged for the remainder of the analysis. The most variable probe was chosen when 

there were multiple probes for the same transcript. 

 

Differential Gene Expression and Pathway Analysis 

To identify differentially expressed (DE) genes for each stromal property, we fitted a linear 

model comparing the levels for each stromal property using the R package limma [41] and 

corrected with Benjamini-Hochberg (p < 0.05). DE genes lists were examined using QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) 

and compared against the Molecular Signatures Database (MSigDB) for pathway analysis.  
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Assignment of other subtyping schemes to patients across large patient cohort 

We used our compendium of 5,901 bulk expression profiles of invasive breast cancer 

samples from 13 non-overlapping datasets generated on different technologies [40]. We define 

poor outcome as an observed distant metastasis within 5 years of diagnosis (where available) and 

used ER and HER2 status as reported for each dataset where available. Since many datasets 

lacked information on PR status, we used ER and HER2 negativity to define TNBC patients. All 

patients within the compendium were also labeled with intrinsic subtype values via PAM50 [99], 

and TNBC patients were labeled by TNBCType via the web-based tool [118]. 

 

Building prognostic predictors from stromal properties 

We have previously used Naive Bayes Classifiers (NBCs) to investigate the prognostic 

capacity of 122 signatures and showed that a subset of these were prognostic in TNBC patients. 

NBCs may have an advantage over the linear ordering by ROI95 as they allow weighting of genes 

to better reflect an association with prognosis. To determine if the stromal properties could 

perform as prognostic predictors in addition to being classification predictors we trained an NBC 

for each stromal property to predict prognosis. The NBCs were trained under leave-one-out 

cross-validation for the four stromal properties in the TNBC patient cohort within four individual 

datasets of the compendium, for which there were sufficient numbers of event (distant metastasis 

within 5 years; poor-outcome) and event-free (good-outcome) individuals. 
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4.2 Methods for scRNA-seq analysis 
Confirming similarity of PDX with primary tumor 

The similarity of the PDX with the primary tumour was confirmed by gene expression 

profiling, followed by unsupervised hierarchical clustering of the most variable genes (IQR > 2). 

 

Normalization and analysis of scRNA-seq datasets 

The R statistical framework with Bioconductor (R version 3.20; Bioconductor version 3.1) 

was used to load the raw read counts, and to normalize and analyze the data for AIMS and class 

discovery and distinction. AIMS [58] was applied to the raw read count values to identify 

subtypes for each sample prior to normalization.  

To normalize the data, lowly expressed transcripts (reads detected in 3 or fewer cells) were 

first removed. The number of features, library size, and total counts from the ERCC spike-ins 

were calculated using the scater package. 

The data was log2 transformed and the first and second principal components were estimated 

using the prcomp function and compared to potential latent variables. The logCPM (log2) values 

for each sample was calculated using the voom function from the limma package [41]. 

Differences due to the number of features detected or technical variability (ERCC spike-ins) 

were modeled out for visualization and class discovery using the removeBatchEffect function 

from the limma package, and by adding them to the model for class distinction. 
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Class discovery was performed by clustering the 200 genes with the highest interquartile 

range. Class distinction was performed on the two resultant clusters using the edgeR package 

[119]. Enrichment of gene signatures was assessed by a hypergeometric test using signatures 

from MSigDB (Molecular Signatures Database). 

 

Estimation of transcriptomic entropy 

Transcriptomic entropy was estimated as previously described [101]. Briefly, for each 

transcript the fraction of reads is calculated by dividing the number of reads by the total number 

of reads in that cell. The entropy for each transcript is calculated by multiplying the fraction of 

reads by log2 of the fraction of reads and dividing this by log2 of the total number of transcripts. 

Lastly the sum of all the individual transcript entropies are calculated. 

 

Identification of EGFR-high “stem-like” cells 

 The additional PDX scRNA-seq datasets were normalized as was the index dataset and 

the transcriptomic entropy was estimated. A subset of EGFR high “stem-like” cells were 

identified as cells with the top ⅓ EGFR expression and a transcriptomic entropy > 0.7. Class 

distinction was performed as before to the EGFR-high stem-like cells and the remaining cells.  
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Enrichment of the index tumor and cell cycle gene signatures 

Genes were ranked from low to high by multiplying the negative of the -log10 p-value by the 

sign of the fold change. Enrichment of the signatures were then assessed using the barcodeplot 

and geneSetTest functions from the LIMMA package [41]. 
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lincRNA:chr5:95919519-95995094_R 0.462898786 6.65E-06
PRDM1 0.461380658 0.015945645



Gene log2 Fold Change FDR Adjust p-value
B-cells

lincRNA:chr16:11481046-11484311_F 0.460806487 4.32E-05
PSD4 0.457982027 1.03E-06
lincRNA:chr22:46451236-46516536_R 0.457616554 0.0002409
ENST00000390454 0.454507137 8.80E-07
ENST00000552290 0.452436721 9.83E-05
LRP3 0.449180369 1.81E-05
lincRNA:chr1:118374652-118400852_R 0.44836418 0.000287182
lincRNA:chr12:132832202-132856777_F 0.447953846 0.004840558
OR10J5 0.447838959 0.001252957
lincRNA:chr2:233444129-233451012_F 0.445748812 6.65E-06
SLC16A11 0.445155896 0.000123387
lincRNA:chr2:74212792-74262017_R 0.442658561 0.000158739
LOC652119 0.442526168 0.000181798
lincRNA:chr2:70212746-70263471_R 0.442494081 8.07E-05
lincRNA:chr7:93318289-93329939_R 0.440337356 5.97E-05
lincRNA:chr6:21666674-22221946_R 0.438442842 3.66E-05
lincRNA:chr2:74225470-74225673_R 0.437709059 4.02E-05
ADAMTS7 0.437188838 0.000428236
lincRNA:chr10:104838935-104844310_F 0.436333481 0.000737686
SEC11C 0.435284704 0.002879764
lincRNA:chrX:53685100-53711400_R 0.432541826 0.017283434
SEL1L3 0.431595621 0.01841489
GPR150 0.430293218 0.000282699
UBE2J1 0.42990845 0.035342804
ENST00000431767 0.429487613 0.004435321
ST6GAL1 0.429023043 0.021312603
lincRNA:chr5:1167850-1186275_R 0.428742767 0.000226064
lincRNA:chr18:3347700-3348205_F 0.428468405 2.01E-05
XLOC_l2_014959 0.427671078 0.00019992
ENST00000383417 0.426442303 1.61E-05
ZNF215 0.425087497 0.001182837
lincRNA:chr21:30565800-30660465_R 0.424838679 0.000856506
RP11-165H20.1 0.424336244 9.68E-05
lincRNA:chr10:5156300-5171275_F 0.422628211 0.0002409
lincRNA:chr5:149980882-149995557_F 0.42030632 0.000226064
A_33_P3407691 0.419947298 2.07E-05
DNAJC4 0.416550431 0.00018334
ENST00000390625 0.414089488 0.008716134
LOC150622 0.413802539 9.27E-06



Gene log2 Fold Change FDR Adjust p-value
B-cells

A_33_P3227010 0.411552742 0.000879447
lincRNA:chr1:33869120-33896238_F 0.411407491 0.000205103
LOC100133286 0.404301087 0.000623021
lincRNA:chr2:241928152-241929111_R 0.403850803 0.000632364
lincRNA:chrX:117240572-117247172_R 0.403187366 0.000400152
A_33_P3329104 0.402501521 0.000591294
lincRNA:chr18:36967212-37153620_R 0.402462151 6.45E-06
lincRNA:chr12:54128308-54135158_R 0.401242792 0.013678758
ENST00000446887 0.400782334 0.000122476
lincRNA:chr4:110462151-110470201_F 0.400467049 0.000271495
lincRNA:chr4:2460833-2464216_R 0.400232402 6.76E-05
DA197111 0.399813587 0.000278821
CU691877 0.397475968 0.00049583
lincRNA:chr9:23671778-23672397_F 0.393752768 9.83E-05
CTSL1P2 0.392171061 0.00247629
lincRNA:chr5:92762769-92774694_R 0.391864225 0.001550957
P39188 0.391500045 0.000158739
A_33_P3273399 0.388376206 0.001215456
lincRNA:chr9:133230324-133233284_R 0.38448929 9.22E-05
lincRNA:chr2:37776096-37862046_R 0.384274131 1.45E-05
BM477328 0.383771191 0.000130193
LRRC16B 0.383529574 0.000893748
C1orf190 0.381010397 0.018990823
lincRNA:chr1:181063077-181073127_R 0.380696646 0.000705801
KCNN3 0.380356015 0.006542414
A_33_P3261074 0.380230567 1.80E-05
lincRNA:chr6:29983946-29992471_F 0.380096819 3.00E-05
NKX1-2 0.379448283 0.000176743
ITM2C 0.377599744 0.036318642
GPR119 0.376449225 0.000161857
lincRNA:chr13:50657699-50697649_R 0.375046675 0.000269623
C2CD4C 0.372990274 2.78E-05
lincRNA:chr13:67955599-68781749_F 0.371263127 7.86E-05
RBMY1B 0.370181182 1.69E-05
HOXB13-AS1 0.368619053 0.000521338
A_24_P110273 0.36771052 0.000518454
LOC100130345 0.364099127 0.00159856
lincRNA:chr5:74327969-74348269_F 0.364012393 0.007609433
lincRNA:chr10:72800569-72813581_F 0.361460259 0.004650449



Gene log2 Fold Change FDR Adjust p-value
B-cells

NP511209 0.359610179 0.001291853
lincRNA:chr13:33888375-33923550_F 0.358513834 0.000108533
lincRNA:chr5:12625075-12747025_F 0.35804445 4.71E-05
GGT1 0.356556167 0.004647437
SPAG4 0.35490441 0.003952053
PARVG 0.354376366 0.000176743
SELK 0.353586004 0.017085212
lincRNA:chr14:59882547-59912047_F 0.352979489 0.000705801
MEX3D 0.351133407 0.019950065
TPP1 0.350430674 0.003109953
REEP1 0.35009443 0.001777006
lincRNA:chr13:103554249-103568024_R 0.349275477 1.23E-05
ENST00000478163 0.348506678 0.000124017
lincRNA:chr18:35246652-35296677_F 0.347733661 0.028641139
ENST00000485332 0.347138893 0.000428433
MOB1A 0.346005082 0.001455784
lincRNA:chr4:127694975-127709825_F 0.343951204 0.003769994
ERCC2 0.34364559 0.000818507
IQGAP2 0.34344513 0.013921771
LTB4R2 0.341801891 0.000656397
LOC497256 0.341013859 0.000634032
lincRNA:chr13:101223049-101236424_R 0.340294454 0.000204287
FAM90A10 0.34001973 0.00019992
MUC4 0.338958664 0.001036307
lincRNA:chr4:123620575-123629031_R 0.335257355 0.001247483
lincRNA:chr1:93796837-93806487_F 0.334237305 0.002755365
KRTAP10-1 0.33339494 0.000586091
UNC93B1 0.333065864 0.001200414
lincRNA:chr22:46476224-46493888_F 0.331092997 0.000256897
CC2D1A 0.330670584 0.00028513
ACAP1 0.329927783 0.000205587
ENST00000471857 0.32731059 0.008479071
TTC22 0.325385493 0.01076115
lincRNA:chr8:134368768-134379793_R 0.324578225 7.64E-05
lincRNA:chr12:101125994-101157894_F 0.323139502 0.001433066
lincRNA:chr16:11581190-11588611_F 0.322578928 0.001260818
TM6SF1 0.322108494 0.000705801
lincRNA:chr6:106858857-106926507_R 0.320452711 0.000818507
LOC100128675 0.320226154 0.001694532



Gene log2 Fold Change FDR Adjust p-value
B-cells

lincRNA:chr21:45573097-45578347_R 0.319639117 0.010183009
lincRNA:chr4:83812701-83821724_F 0.318501981 0.001667634
lincRNA:chr6:27663246-27683586_R 0.318001782 0.000591294
lincRNA:chr14:61762697-61774172_R 0.316915035 0.000395418
lincRNA:chr20:31148894-31161690_F 0.315891026 0.014976857
A_33_P3263747 0.315674731 8.49E-05
lincRNA:chr2:120443455-120452280_F 0.315640247 8.51E-05
FLJ34208 0.314780833 3.38E-05
lincRNA:chr2:201638597-201642676_R 0.313156967 0.000743941
A_33_P3247210 0.311566008 0.002904411
lincRNA:chr6:6683526-6811251_R 0.308893741 0.000226064
LILRA1 0.308445379 0.000240103
lincRNA:chr21:15443204-15457462_R 0.307111128 0.000271444
USP48 0.305275175 0.021333814
LOC439951 0.305026421 0.001029597
lincRNA:chr7:30216750-30313150_F 0.302398355 0.006870822
HAP1 0.301324039 0.002187596
THC2573121 0.299742802 0.000705801
A_33_P3316691 0.299469574 0.002677158
XLOC_l2_001196 0.297994624 0.003581242
SERPINA6 0.297329985 0.048728048
lincRNA:chr13:113549599-113574924_R 0.295828901 0.00067025
lincRNA:chr2:43148721-43166396_F 0.29570783 0.000271759
XM_003118986 0.295640324 0.016104413
lincRNA:chr8:22847955-22856530_F 0.29559879 0.000723355
lincRNA:chr12:9480083-9506383_R 0.294986649 0.002774937
lincRNA:chr13:74245699-74258424_R 0.294391911 0.003371184
LY96 0.294383512 0.046848849
lincRNA:chr2:216473880-216713730_R 0.293473225 0.035231271
lincRNA:chr1:223185802-223197477_F 0.291823673 0.001247483
lincRNA:chr8:105607224-105688174_R 0.291592237 0.000234701
Q29HP5 0.288905846 0.001886293
SMCR2 0.28812959 0.000788884
lincRNA:chr21:36128280-36139780_F 0.286819545 0.000705801
SLC25A45 0.2865845 0.004426847
lincRNA:chr17:70417969-70419213_R 0.2863442 0.000898036
FLJ40434 0.284957994 0.004070697
A_33_P3333677 0.284810304 0.00019992
lincRNA:chr8:90615284-90628709_F 0.284523882 5.21E-05



Gene log2 Fold Change FDR Adjust p-value
B-cells

THC2606816 0.284379822 0.001432392
TNFRSF13C 0.282020037 0.002959014
MRPS31 0.281696741 0.049654454
lincRNA:chrX:57001900-57013275_R 0.281337694 0.000205103
ENST00000433071 0.280686019 0.001432392
lincRNA:chr22:27067640-27070585_R 0.279790657 0.000705801
lincRNA:chr8:143274368-143286859_F 0.279080972 0.000518454
lincRNA:chr11:65068424-65079274_R 0.279076405 0.002093836
NEGR1 0.278803166 0.020532626
LOC100129648 0.27874931 1.60E-06
lincRNA:chr6:44006347-44033347_R 0.27692197 0.031462948
AK022213 0.275639012 0.000500739
XLOC_009868 0.274831736 0.017533391
AMPD1 0.274736475 0.042195933
RAB11FIP4 0.272838217 0.008749138
lincRNA:chr8:142273943-142310368_F 0.272783564 0.01099177
lincRNA:chr20:25213650-25221750_R 0.272431229 0.000529355
DNAL4 0.272222796 0.005303536
THC2485300 0.271966072 0.000666522
ARHGEF7 0.271637693 0.001061816
A_33_P3414228 0.271575062 0.001550957
lincRNA:chr1:145689868-145694918_R 0.271079777 0.003710585
lincRNA:chr6:138961057-139020207_F 0.270123705 0.018025858
MOP-1 0.269955253 0.022972249
A_33_P3291329 0.269913138 0.012682645
A_33_P3388883 0.268020454 0.001905163
TRIM78P 0.267711996 0.001252957
TBC1D3 0.266750468 0.014967474
HPX-2 0.265323273 0.03016607
lincRNA:chr3:136738660-136787685_F 0.264117781 0.000466732
lincRNA:chr15:69951596-69988646_R 0.263360921 0.001668282
lincRNA:chr9:36419075-36431725_F 0.262493823 0.02916401
lincRNA:chr10:80112419-80123044_F 0.262203138 0.025558052
PRDM4 0.261018226 0.002609476
lincRNA:chr5:61931044-61948469_F 0.260638246 0.001855437
lincRNA:chr15:38364787-38365169_F 0.260251322 0.001724242
lincRNA:chr5:134465126-134478076_R 0.258971144 0.004160236
ENST00000390606 0.258247961 0.000177631
A_33_P3274080 0.258018065 0.00227751



Gene log2 Fold Change FDR Adjust p-value
B-cells

LOC100130463 0.257899321 0.004994878
FNDC3A 0.257355248 0.005354422
CD72 0.255986407 0.034483146
lincRNA:chr20:47715043-47723493_R 0.255558458 0.025244864
CEACAM19 0.255333587 0.003460138
KRTAP4-12 0.255275303 0.005303536
EIF4G1 0.254638083 0.037170383
lincRNA:chr12:54128308-54135158_F 0.252744313 0.002153181
EVX1 0.251421819 0.00129941
BX648392 0.24981138 0.003159261
lincRNA:chr18:60249120-60256770_R 0.24972558 0.031191338
NP1243929 0.249317492 0.007419368
C1orf229 0.248572217 0.005062546
lincRNA:chr5:133837051-133848051_R 0.247870031 0.003175298
PLA2G4E 0.247490834 0.018587671
lincRNA:chr6:3999676-4018612_R 0.24656788 0.027599651
SUV39H1 0.246552762 0.01930593
lincRNA:chr1:30142313-30152488_F 0.245602659 0.047265486
lincRNA:chr12:57775433-57820783_F 0.244793107 0.002585852
ADARB2-AS1 0.24456143 0.002612787
BX096650 0.244558415 0.018241896
lincRNA:chr7:33664500-33886275_R 0.244538504 0.001555645
lincRNA:chr10:47041819-47063144_R 0.243575391 0.000126815
lincRNA:chr5:149866432-149882132_R 0.243326818 0.019454423
lincRNA:chr8:27416133-27435295_R 0.24286332 0.003801005
lincRNA:chr5:141143016-141169841_R 0.242062987 0.006870822
MYOG 0.241278469 0.001665356
lincRNA:chr2:72150317-72161342_F 0.240949731 0.010628919
ENST00000462693 0.240801916 0.02154164
AK124642 0.240258868 0.003532018
SPACA3 0.239448003 0.010375418
AK123110 0.239084628 0.048614162
GHSR 0.238340042 0.000163812
C9orf100 0.23812664 0.023377118
lincRNA:chr18:59236195-59282370_F 0.237146175 0.022972249
A_33_P3321682 0.236337924 0.007419368
lincRNA:chr13:33868250-33874375_F 0.235275271 0.015945645
BE561442 0.235158929 0.015055522
LOC729305 0.234757699 0.020785605



Gene log2 Fold Change FDR Adjust p-value
B-cells

UTS2R 0.234490132 0.002448219
ADAM17 0.234434509 0.011595529
ARSF 0.234006942 0.020900314
LOC646743 0.232022219 0.014967474
lincRNA:chr6:3999676-4018493_R 0.230825072 0.020785605
LINC00277 0.229675584 0.012872201
AA593742 0.228736097 0.000205818
lincRNA:chr5:131804581-131808735_F 0.2284958 0.002031285
lincRNA:chr3:175987356-176039381_F 0.22778946 0.002765515
DNAJB13 0.226922006 0.016019224
XLOC_005849 0.225843353 0.004912274
BC036215 0.224665387 0.002933591
XLOC_003462 0.223781252 0.00468934
NPY2R 0.22308496 1.67E-05
lincRNA:chr11:122009090-122080940_R 0.222377402 0.029783627
SH3GL3 0.221507126 0.012629946
KCNQ3 0.221286277 0.017454076
A_33_P3271885 0.220072826 0.019815855
lincRNA:chr7:54850800-54872648_R 0.218183577 0.009848631
OR4X2 0.217252116 0.003105988
LENG8 0.21536278 0.047241794
LINC00494 0.215111835 0.047241794
CDCP2 0.213034809 0.005026028
lincRNA:chr2:105421343-105428293_F 0.212378553 0.015065214
lincRNA:chr2:8001249-8036724_F 0.209446485 0.001217874
A_33_P3388527 0.209350733 0.01997125
Q39472 0.207966054 0.002095219
lincRNA:chr2:152627254-152653328_R 0.206228063 0.00227751
lincRNA:chr11:38083599-38261799_R 0.206013897 0.005303536
ENST00000434007 0.204836116 0.036368994
ENST00000359888 0.203399792 0.002360926
A_33_P3257479 0.203170105 0.004721845
OR4F15 0.202833837 0.011865028
lincRNA:chr10:114590927-114592210_F 0.202266671 0.017234411
lincRNA:chr2:8710460-8717085_F 0.20224809 0.003718991
lincRNA:chr3:15928546-15939996_F 0.201825264 0.02255201
A_33_P3210069 0.201312679 0.009859255
FCRLA 0.200172308 0.019663597
lincRNA:chr12:127650247-127665172_F 0.200137839 0.006454838



Gene log2 Fold Change FDR Adjust p-value
B-cells

CALML3 0.198907175 0.001579301
LOC145845 0.198841061 0.020532626
TRIM53P 0.197642762 0.005589169
XLOC_009483 0.196608748 0.002723375
lincRNA:chr6:125229601-125277876_R 0.194292964 0.030733033
lincRNA:chr18:33016877-33028102_R 0.193386491 0.040293652
BJ995728 0.193032192 0.005132739
lincRNA:chr4:6683199-6683665_R 0.192462707 0.03016607
lincRNA:chr5:131806223-131811702_R 0.191553303 0.005832283
DLG4 0.189384536 0.02469916
lincRNA:chr1:156851776-156860276_R 0.189284947 0.017542597
PSPN 0.188841031 0.018929415
FRG2C 0.187488814 0.015998528
lincRNA:chr11:70606952-70667252_F 0.186729364 0.018929415
C10orf53 0.186265517 0.004647437
lincRNA:chr8:103749649-103767499_R 0.186129128 0.01610056
LOC100128591 0.185794539 0.03827278
TUBB4A 0.185539198 0.016683429
LOC284757 0.185356041 0.019933885
ATP13A2 0.184930287 0.036283
lincRNA:chr8:99929224-99951124_F 0.184639367 0.043504949
lincRNA:chr8:127836493-128531243_R 0.184354483 0.006858791
lincRNA:chrX:133675909-133683184_F 0.184284335 0.009933196
ENST00000359838 0.183890555 0.015861367
lincRNA:chr11:75122727-75130002_R 0.181920424 0.049654454
lincRNA:chr7:55030831-55040930_R 0.180952962 0.023879794
lincRNA:chr14:69273097-69292047_F 0.180488746 0.019383236
lincRNA:chr4:104263901-104301551_F 0.180424571 0.028904018
lincRNA:chr2:232366756-232372381_F 0.177584386 0.005690804
lincRNA:chr3:50266021-50271246_R 0.176617486 0.012069387
LOC100131551 0.176616084 0.02088633
SEZ6 0.176325635 0.003458127
lincRNA:chr4:16239177-16275952_R 0.175717166 0.001016427
LOC642947 0.175445099 0.048817388
DCTN1 0.174180067 0.037911253
lincRNA:chr2:218595605-218618480_F 0.171981686 0.039261003
lincRNA:chr11:61685224-61691249_F 0.171564866 0.000674491
XLOC_002473 0.169437429 0.043949052
SNORA71C 0.168473298 0.010628919



Gene log2 Fold Change FDR Adjust p-value
B-cells

DCAF6 0.16829148 0.020770084
lincRNA:chr14:32398493-32399352_F 0.167524745 0.029067316
lincRNA:chr9:123606154-123611279_F 0.167491857 0.008479071
lincRNA:chrX:138994509-138999734_F 0.167100869 0.009960159
lincRNA:chr2:218834305-218867070_R 0.16562507 0.012371427
lincRNA:chr5:77285769-77295769_F 0.164498333 0.03416495
LOC148696 0.164336877 0.044946119
ENST00000425471 0.160535106 0.024598534
A_33_P3245133 0.159765485 0.011825369
CENPC1 0.159046549 0.04096689
lincRNA:chr5:60464943-60477543_F 0.158069114 0.022837557
OR4C15 0.157501829 0.001471181
SCAMP4 0.157186255 0.005019841
lincRNA:chr21:44919572-44938621_R 0.157022047 0.025906564
lincRNA:chr3:128268891-128271202_F 0.15684402 0.046766266
lincRNA:chr8:130695693-130741043_F 0.156758 0.001629653
A_33_P3381762 0.156545389 0.046766266
lincRNA:chr8:58126971-58142821_R 0.155254082 0.045465917
lincRNA:chr16:50304099-50310474_F 0.153578536 0.04096689
AK001094 0.153506567 0.011366551
TTC16 0.153004701 0.04774716
lincRNA:chr4:90365352-90484827_F 0.151283236 0.019208771
THC2588995 0.145663788 0.043022672
lincRNA:chr8:107055124-107072278_F 0.144604743 0.011825369
PIP5K1B 0.143200673 0.042769078
A_33_P3292126 0.1372898 0.030733033
TTTY13 0.133554639 0.020473123
lincRNA:chr11:29331349-29342299_R 0.132774208 0.014976857
SLC34A1 0.132743358 0.007419368
lincRNA:chr9:33011575-33024725_F 0.131111996 0.042939093
lincRNA:chr7:105551628-105553084_F 0.129052582 0.047228006
XPC 0.128145436 0.028331048
lincRNA:chr18:48872618-49058541_F 0.126108776 0.020698683
lincRNA:chr8:128976068-129037395_R 0.126080904 0.016749195
lincRNA:chr1:101518537-101561912_R 0.125502036 0.02463236
lincRNA:chr8:124456094-124469294_F 0.124071864 0.001455784
lincRNA:chr3:136790035-136808485_R 0.119521247 0.027119106
KRTAP23-1 0.117511559 0.034130375
SLC13A2 0.115929932 0.037371278



Gene log2 Fold Change FDR Adjust p-value
B-cells

lincRNA:chr15:79641195-79678020_F 0.114356699 0.046766266
H2AFB2 0.110543394 0.045154445
HEPACAM 0.105052649 0.011825369
TTLL11 0.10178753 0.046766266
CHST5 0.09810802 0.034130375
SLC38A8 0.095763956 0.019208771
PDCD1LG2 0.081657648 0.033068172
X56665 0.078917432 0.045154445
HPX 0.076574674 0.039376045
CRKL -0.070871075 0.034376844
A_33_P3253857 -0.090196193 0.02916401
SLC22A4 -0.110054629 0.034658694
LOC100130887 -0.121437032 0.041547541
CD46 -0.164916787 0.017785031
C1orf112 -0.243277025 0.009447456
ATP2B4 -0.287486592 0.016599421
SNHG6 -0.322935502 0.035357178
CATSPER1 -0.32358229 0.042231468
lincRNA:chr8:67834170-67838228_F -0.419228117 0.002051418
BBOX1 -0.423295305 0.044382792
ORM2 -0.754406777 0.045964782



Gene log2 Fold Change FDR Adjust p-value
MIA 2.320053033 5.20E-05
SERPINA3 2.287009902 0.020306368
KRT6B 2.15149619 0.047729093
KRT23 2.104182337 0.025104492
SAA1 1.681427942 0.004984948
LAMC2 1.488050696 0.039911072
ROPN1 1.483906812 0.016303728
MT1G 1.359709082 0.039911072
CBS 1.295060015 5.20E-05
lincRNA:chr1:205404014-205407007_R 1.2535815 6.07E-06
IGF2BP3 1.080272296 0.034734973
MT1E 1.040984277 0.021804873
MT1F 0.990579063 0.004984948
MT1M 0.903658952 0.025870536
MT1L 0.833900771 0.021804873
MT1H 0.805295842 0.010868213
MT1B 0.783949899 0.020306368
MT1A 0.696983104 0.021804873
FRMD3 0.615819012 0.010868213
PTX3 0.550470419 0.025870536
C11orf9 0.517274815 0.021804873
NDUFA5 -0.253579484 0.039911072
WAPAL -0.285653293 0.004984948
CTNND1 -0.309457244 0.021804873
LRBA -0.362928096 0.004984948
NDUFAF1 -0.363760916 0.022344852
C12orf29 -0.460321175 0.03746099

Invasive Epithelial Cells



Gene log2 Fold Change FDR Adjust p-value
CXCL9 2.139516119 5.87E-05
UBD 1.969430566 5.61E-08
NKG7 1.892015021 5.77E-09
CCL18 1.865147886 6.83E-05
GNLY 1.860953813 1.33E-07
ZNF683 1.78696826 8.38E-07
HLA-DQA1 1.757642541 0.005475434
IDO1 1.679267451 2.22E-07
GBP5 1.664691492 7.37E-08
GZMA 1.65474284 8.77E-10
CD2 1.574712393 1.13E-09
GZMH 1.540330199 1.25E-05
CXCR3 1.434825469 2.72E-10
ICOS 1.423626962 6.33E-06
CD3D 1.421210032 1.05E-10
CCL19 1.39803513 0.013990341
SIRPG 1.381595311 1.60E-09
KLHDC7B 1.355178098 0.000539038
CCR5 1.322297237 2.17E-11
CD52 1.314644954 4.57E-09
GZMK 1.308057017 5.61E-08
GPR171 1.306662947 2.62E-07
PVRIG 1.291280942 2.00E-09
MARCO 1.28932417 0.013011425
LAMP3 1.274108276 1.19E-05
CCR7 1.269844026 1.73E-05
IL18RAP 1.244349199 5.83E-07
GZMB 1.243544848 1.25E-06
CD8A 1.236542633 7.46E-10
IL2RG 1.219271249 1.08E-07
LGALS2 1.217765871 0.007390867
TIFAB 1.196571533 0.001323503
S1PR4 1.190953134 2.93E-07
AMICA1 1.184174622 0.000275842
LOC100508196 1.15950281 6.83E-05
ENST00000466254 1.154838041 9.37E-10
TBC1D10C 1.127571442 4.31E-07
SELL 1.116622454 2.35E-07
CD8B 1.101355138 5.95E-05

T-cells



Gene log2 Fold Change FDR Adjust p-value
T-cells

ENST00000390622 1.094093785 3.71E-05
RARRES1 1.093194915 0.033941338
RASGRP1 1.066627634 1.76E-07
A23747 1.065606935 2.72E-09
RAC2 1.050374031 1.47E-11
BATF2 1.046762584 0.001401365
CXCR2P1 1.030663069 0.000601885
GBP4 1.026767555 0.000356911
HLA-DPA1 1.004452887 0.002909403
STAT1 1.003030116 1.12E-05
BIRC3 0.972402234 2.46E-05
CXCL13 0.967951725 4.85E-05
CD40LG 0.966844772 2.40E-06
CCL5 0.958595387 8.38E-07
BATF 0.953148814 2.33E-05
FAM26F 0.950036441 8.89E-07
ENST00000390477 0.947147926 0.00015533
TRAF3IP3 0.947116072 1.22E-06
SKAP1 0.946162523 1.83E-05
C15orf48 0.92357029 0.007390867
PSTPIP1 0.921279323 0.000105715
ENST00000425189 0.912404498 0.002011439
IL7R 0.910971194 0.017064534
PATL2 0.906063016 5.29E-06
DENND1C 0.901574147 5.29E-06
RASAL3 0.897593522 7.25E-06
lincRNA:chr14:23018310-23025460_R 0.897435254 1.18E-07
LCK 0.892628187 2.48E-09
LOC100131733 0.88642743 7.23E-06
MIAT 0.886114285 0.0019702
C16orf54 0.879467837 1.21E-07
C1QA 0.878195877 0.000120226
HCST 0.87748847 1.05E-10
NCR3 0.870007925 0.000682857
IL21R 0.869353074 0.00070423
SAMD9L 0.86429737 3.24E-06
HLA-F 0.852137968 1.85E-05
IFI30 0.847781772 0.00116269
TAP1 0.838799882 9.70E-06



Gene log2 Fold Change FDR Adjust p-value
T-cells

HLA-C 0.838055873 0.004381237
LCP1 0.836314668 1.73E-05
THC2502506 0.828717222 2.13E-05
IL10RA 0.825330284 2.62E-07
CD3G 0.823456995 1.08E-06
C1QB 0.814102547 2.60E-05
SH2D2A 0.808541952 2.37E-07
ORM2 0.794761465 0.043103307
ZBED2 0.793000569 1.04E-05
CTLA4 0.79256965 0.000857656
RARRES3 0.791585018 0.023267731
TMIGD2 0.790295137 0.00108626
OR10H2 0.789433901 5.33E-05
FPR3 0.782863403 0.001254777
RGL4 0.781581596 4.31E-07
CXorf65 0.780773687 0.005254664
ATP8A1 0.780761546 1.73E-05
SLAMF1 0.776052677 0.000134476
HLA-DOB 0.775966242 0.021977685
FYB 0.771643395 1.60E-09
FASLG 0.770054477 6.07E-06
PTPRC 0.767180035 0.001401365
HLA-DRB1 0.765132932 0.000827624
RTP4 0.76105925 0.014496118
CYTIP 0.760402605 5.23E-06
STAT4 0.753403487 1.08E-06
LAG3 0.748775608 0.000841256
PDCD1 0.748491814 0.001231425
TFEC 0.742423543 0.001470338
SERPINA1 0.740653307 0.024069081
NLRC3 0.735109231 2.68E-07
SPOCK2 0.733570678 0.000455915
IGFLR1 0.731859402 0.032773456
PPP1R16B 0.730991912 2.70E-07
WARS 0.723387976 5.56E-05
TMC8 0.723041239 0.000279929
JAK3 0.719559135 1.69E-05
WIPF1 0.715732418 0.001301367
lincRNA:chr14:23018310-23025460_F 0.710408611 0.001898614



Gene log2 Fold Change FDR Adjust p-value
T-cells

INSL3 0.707480993 0.002409961
CD97 0.706850974 1.61E-07
DOCK8 0.703874338 3.59E-08
TNFAIP8 0.703095887 2.63E-06
CD4 0.696084473 0.001612455
SAMD3 0.695917291 4.17E-07
ARHGAP25 0.694219481 4.01E-06
SOD2 0.693798375 0.0081295
ISG20 0.693522036 0.00057949
ITGB7 0.6931622 0.003674371
BST2 0.689295665 0.023267731
GIMAP7 0.68895296 0.001908074
TIGIT 0.688362707 5.95E-05
LY9 0.686722141 5.56E-05
WDFY4 0.684987888 0.000739878
FGD3 0.683298298 0.000279929
HMHA1 0.681830465 9.70E-06
GIMAP4 0.678653513 0.009893057
ARHGAP9 0.671981931 2.59E-06
CYBB 0.670442505 0.001449207
SNX10 0.668633462 0.000221447
PSMB10 0.668550913 2.48E-09
SOCS1 0.667837378 0.000201876
CASP1 0.664602207 3.62E-05
LILRB4 0.664128055 0.001518847
CD27 0.65523303 0.003886183
RHOH 0.649557395 0.000765615
VPREB3 0.644199025 0.032265961
HLA-G 0.643251582 0.023079676
OAS2 0.639119661 0.046056202
ACSL5 0.638300271 0.000702692
TYMP 0.638028334 0.00286531
DENND2D 0.637774706 2.49E-05
ASB2 0.63275113 0.04445213
CD38 0.62705977 0.001004586
RGS18 0.623657816 0.000136011
SLC9A9 0.62356833 0.000740523
IRF7 0.621863169 0.016389196
SUSD3 0.620804523 0.025433964



Gene log2 Fold Change FDR Adjust p-value
T-cells

HLA-DOA 0.618837023 0.017582852
LAP3 0.617680443 0.000449567
FCER1G 0.617373183 0.000783881
APOC1 0.613897759 0.04972821
GMFG 0.611176967 9.88E-06
IL32 0.609751081 0.000810805
CMPK2 0.609305925 0.022933684
TOX2 0.608436171 0.031636754
CD6 0.600495079 5.32E-05
LGALS9C 0.597679178 0.000513193
HCLS1 0.59590339 5.64E-05
SLAMF8 0.595117389 0.012885809
IRF8 0.592018932 0.001401365
ENST00000517927 0.591317282 0.003100875
LCP2 0.588063266 0.000608546
ARHGAP4 0.588041295 0.000682286
LILRB3 0.585731869 0.047838175
IL15 0.584059267 0.033024765
KLRB1 0.583577498 0.004868771
TNFRSF8 0.583287446 0.003053036
P2RY6 0.581616779 0.048736493
CXCR6 0.580179698 0.000476548
SLC2A6 0.578733926 0.04805169
FAM78A 0.578313796 0.000199006
FAM113B 0.57664248 0.002728343
NUAK2 0.57654064 0.002813175
ITGB2 0.576519666 0.01253306
SLAMF7 0.573111054 0.00051213
PRKCB 0.571194428 0.000735708
LOC439949 0.5668703 0.000198211
LAIR1 0.565784698 0.001703539
EMB 0.563586387 0.000419414
MYO1F 0.562500076 0.000151047
TXNDC3 0.561378882 0.011102966
CD28 0.561296222 0.009511801
GIMAP1 0.559139338 0.00030383
MNDA 0.559018488 0.025749671
HLA-DMA 0.555823462 0.007485655
TLR1 0.554900681 0.003416834



Gene log2 Fold Change FDR Adjust p-value
T-cells

INPP5D 0.553745137 1.98E-05
ABI3 0.553655361 0.023821712
AIF1 0.552482822 0.000120226
LRMP 0.550375747 0.000682286
TAP2 0.548599086 0.026830772
PSME2 0.547852063 0.000181491
PYCARD 0.543134875 0.000268881
DAPP1 0.543106513 0.003613365
B2M 0.540259229 0.04394629
HLA-DMB 0.539485064 0.019067719
HLA-E 0.536561895 0.00199459
HLA-A 0.526958213 0.030326702
CD79A 0.526501899 0.021048921
FLJ32255 0.526122267 0.036368787
GIMAP6 0.525471062 0.040282341
PTK2B 0.523942182 0.000236913
FAM20A 0.523286695 0.030326702
DHX58 0.518742778 0.007123335
PRIC285 0.515366867 0.036539587
MCOLN2 0.512746905 0.02498066
UBASH3A 0.512053254 0.000400731
C12orf35 0.511460034 0.005003397
VAMP8 0.511153502 0.009873334
SCO2 0.511056299 0.005003397
NR1H3 0.509996682 0.02652472
ARHGDIB 0.508993547 0.000230203
LST1 0.5084503 0.041824674
CLIC2 0.505473483 4.12E-05
HLA-DRB3 0.501930891 0.001420266
ICAM1 0.501443746 0.013002138
SLA 0.497124746 0.013003062
TRIM7 0.496704012 0.04478332
RLTPR 0.490483539 0.000614709
CYTH4 0.490409614 0.00243601
KLRC1 0.490307972 0.024540903
GPSM3 0.489871416 3.61E-05
MS4A4A 0.486742013 0.035232256
LOC100132707 0.485606208 0.041165814
PPP2R2B 0.485079231 0.016408526



Gene log2 Fold Change FDR Adjust p-value
T-cells

lincRNA:chr6:33091097-33099422_R 0.483041241 0.040030506
MMP25 0.4814842 0.006492563
DOCK10 0.481214522 0.003259531
GSTK1 0.480371947 0.019767583
PLAC8 0.480031364 0.001296974
JAK2 0.47773593 0.002450424
NFKBIE 0.476420296 0.005479488
MFNG 0.475659824 0.003118164
APBB1IP 0.474250763 0.017778975
TLR7 0.473839679 0.00301502
PARP10 0.469544053 0.020662461
SP140 0.467483563 0.015944644
VNN2 0.463548561 0.033133354
GPR155 0.460287511 0.00954799
CORO1A 0.459810607 0.046632115
NCEH1 0.459027543 0.001652497
PTPN7 0.458725173 5.56E-05
FCHO1 0.456974071 0.000532479
TYROBP 0.448277263 0.016555252
PRKCH 0.4449266 0.028863207
KLRC4 0.442354844 0.013696512
TNFRSF14 0.441149588 0.000689211
CIITA 0.44027343 0.038864409
RNASE6 0.439465119 0.005112366
VAMP5 0.437337726 0.043772581
NMI 0.434928072 0.002566889
IL2RB 0.433190515 1.83E-05
IDO2 0.432966626 0.02366632
MPEG1 0.432953212 0.012580665
TRIM22 0.429248702 0.003255135
CYFIP2 0.428341608 0.002902279
TNFAIP8L2 0.425972572 0.008993052
LINC00426 0.423850335 1.69E-05
CDC42SE2 0.422359598 7.91E-05
GBP2 0.419674561 0.000400731
IFIT5 0.419174994 0.021885502
TNFAIP2 0.414592743 0.03987753
SASH3 0.41422149 0.000185305
LAT 0.41391962 0.000449567



Gene log2 Fold Change FDR Adjust p-value
T-cells

KIR2DS2 0.413392316 0.003053036
AV659465 0.411542111 0.03822468
NFKB1 0.410372555 0.029010967
SH2D1B 0.408640035 0.010095257
TXK 0.405687527 0.045611011
MLKL 0.402545677 0.011682649
GIMAP5 0.401137263 0.013990341
LTB 0.400639709 0.031494059
LOC219731 0.398718589 0.049794867
RIMBP3 0.397773445 0.018269025
PLCB2 0.396570467 0.040178773
PLEKHA2 0.395527251 0.000783881
RHEBL1 0.393654138 0.024340177
TNFRSF25 0.393626991 0.027539506
C17orf87 0.393593611 0.000539038
GLRX 0.393096457 0.028600846
NR3C1 0.391361982 0.022456811
VMA21 0.390774186 0.010538684
WDR67 0.389047353 0.040805369
EFHD2 0.387983578 0.003370072
RAB37 0.385435212 0.012139801
ZBP1 0.385185221 0.003497863
SARDH 0.384395106 0.034208639
FYN 0.38383282 0.040030506
THC2601170 0.382798524 0.000759866
PTPN22 0.382021796 0.000400731
OBFC2A 0.381037307 0.001449207
CHST12 0.378504381 0.00387389
lincRNA:chr1:89874262-89947412_R 0.376092342 0.006049508
TNFSF13B 0.373595944 0.030184844
RASSF4 0.356176553 0.034081117
ARAP2 0.352181828 0.002516393
CASP10 0.351378131 0.024340177
AIM2 0.350488863 0.001676112
CD69 0.348970495 0.002748052
CXCL11 0.348852708 0.002382932
FLJ35776 0.348408828 0.019067719
ST8SIA4 0.34565134 0.000682286
PREX1 0.337572696 0.005457181



Gene log2 Fold Change FDR Adjust p-value
T-cells

ITM2B 0.336585989 0.029033716
MYO7A 0.334438281 0.033796483
RPS6KA3 0.331211585 0.004584005
USF2 0.331200731 0.047977164
LPXN 0.330972806 0.001259872
MPP1 0.326821964 0.014272003
STK4 0.326362066 0.00980755
LOC100507429 0.32355073 0.008695999
PPP3CC 0.320882998 0.008791236
TNFRSF10B 0.319883972 0.040805369
ZNF831 0.319177449 0.009772069
SGTB 0.316557425 0.039793192
CD53 0.31458335 0.023115671
FAM65B 0.312778378 0.000685636
FLI1 0.311673281 0.019778736
PTGER4 0.311472786 0.039657076
TREX1 0.30963184 0.011821306
TRAFD1 0.30844417 0.023896809
LEPROTL1 0.308079223 0.01292431
SERPINB9 0.305987162 0.009013992
OAZ1 0.301188468 0.004050529
GPR18 0.30037311 0.001259872
GBP3 0.299744644 0.005614489
RNASEH2B 0.297958429 0.006225539
CD5 0.297872461 0.001565606
RNF19A 0.291441775 0.023115671
UBR1 0.286440766 0.016408526
NECAP2 0.285619779 0.003975998
CCNDBP1 0.283892851 0.016810486
AHR 0.260724002 0.049179016
AK091525 0.255770209 0.018269025
BANK1 0.254593617 0.030184844
PPP1R18 0.254018461 0.047697992
ANKRD22 0.247387748 0.034253664
XRN1 0.247301873 0.031268657
MICB 0.246624997 0.023300626
CD96 0.235811101 0.022301871
TLR3 0.225860531 0.000706702
GAB3 0.220224996 0.000900197



Gene log2 Fold Change FDR Adjust p-value
T-cells

SPPL2A 0.21941485 0.046056202
RFFL 0.218005063 0.023677283
GLCCI1 0.216553428 0.023107773
NUB1 0.212938529 0.044746285
BTLA 0.205993957 0.026174873
LINC00324 0.205991253 0.016027504
STAT5B 0.205537737 0.030411791
CXCL10 0.196510218 0.009328456
STYK1 0.193194343 0.036702374
RTKN2 0.192684516 0.015426372
SP110 0.186959673 0.01837062
ITGA4 0.185564238 0.003579361
HERC1 0.170710674 0.010678154
ITGAL 0.170157846 0.032282454
CTSW 0.165305309 0.029956494
RASSF5 0.164931217 0.014496118
CYLD 0.161554297 0.04746914
KAT2B 0.138947059 0.009491283
GBP1P1 0.117178049 0.043356842
CD48 0.080994861 0.023300626
lincRNA:chr8:107282463-107284434_F -0.086812108 0.019767583
GPR32 -0.096540018 0.007485655
lincRNA:chr11:72855977-72913777_R -0.112449972 0.047838175
TNKS -0.115856548 0.022338145
TTLL11 -0.118684426 0.017778975
FAM114A1 -0.133261501 0.029674634
lincRNA:chr10:131977935-131987135_F -0.13833648 0.029081773
lincRNA:chr1:85933672-85934049_R -0.140916443 0.007564397
A_33_P3362548 -0.146057906 0.04592172
SPIN1 -0.150586053 0.040178773
lincRNA:chr7:105551628-105553084_F -0.16004247 0.009293247
TTC3 -0.1728851 0.023169641
RAI14 -0.189181205 0.018269025
ZNF782 -0.208115197 0.017310536
lincRNA:chr6:3708951-3719951_R -0.214787937 0.006134935
ARHGEF7 -0.221048736 0.025091853
C3orf75 -0.224834613 0.043341985
IL17RD -0.224957775 0.022473303
GTF2IRD1 -0.230333664 0.043631101



Gene log2 Fold Change FDR Adjust p-value
T-cells

MFAP2 -0.232331084 0.002343686
PTGER3 -0.235366324 0.007608077
WASL -0.245495665 0.027356516
WASF1 -0.279085701 0.026479075
KAT8 -0.28246554 0.014071411
FHOD3 -0.294040308 0.047697992
lincRNA:chr12:54523008-54559358_R -0.299039159 0.028863207
GLRX5 -0.300633705 0.002745854
ARMCX2 -0.306123563 0.042841914
ARHGEF37 -0.308212434 0.023113721
COQ7 -0.315739832 0.033278899
SORT1 -0.337950416 0.040030506
PPP1R13B -0.339304269 0.046632115
RNF24 -0.342358403 0.047977164
OSBPL10 -0.346109213 0.024780211
THAP4 -0.363980357 0.001385874
CYTH3 -0.373500683 0.027734719
FZD1 -0.37467226 0.015728638
FGFR2 -0.375523113 0.033359772
FERMT2 -0.386832134 0.026023354
DPCD -0.395027881 0.032773456
LGALSL -0.396782486 0.037364604
PTGFRN -0.404190336 0.032694573
TRIM45 -0.406166404 0.023821712
KIAA1217 -0.406756842 0.042067742
SIX5 -0.40931717 0.0124702
BPHL -0.409480863 0.047838175
CTSF -0.410505347 0.045748097
ITGB5 -0.41160257 0.031432571
FAM69B -0.41530026 0.024962379
SMTN -0.41673699 0.046632115
FNBP1L -0.417243173 0.035232256
TRO -0.420031976 0.0124702
ALDH7A1 -0.42013283 0.018269025
ZCCHC14 -0.42785925 0.007997362
GLI3 -0.434755055 0.046056202
FV367791 -0.44519922 0.023677283
GPR125 -0.44973623 0.009772069
CMTM4 -0.456979293 0.045435078



Gene log2 Fold Change FDR Adjust p-value
T-cells

MMP2 -0.465645293 0.035232256
CLEC11A -0.466617823 0.019067719
FAP -0.470845088 0.008695999
LEPREL4 -0.475567397 0.023079676
CHKA -0.478590219 0.016810486
SNURF -0.482419586 0.014655544
TMEM98 -0.495980526 0.013696512
CERCAM -0.497456802 0.019767583
TGFB1I1 -0.535149824 0.024069081
AEBP1 -0.540743928 0.016741858
LONRF2 -0.541192638 0.028863207
PARD3 -0.544646335 0.022064564
SPON2 -0.572273316 0.047697992
TMEM25 -0.588995456 0.03360061
EPCAM -0.595012315 0.033941338
THBS2 -0.59870053 0.027539506
PXDN -0.607636254 0.002516393
KHDRBS3 -0.691829728 0.01021203
SRPX2 -0.692416535 0.000740523
ZNF541 -0.692890005 0.018464555
PNMAL1 -0.703233719 0.034806621
HILPDA -0.717463453 0.000265993
SHANK2 -0.725387371 0.004083918
LEPREL2 -0.739410552 0.000532479
ENST00000372591 -0.772200789 0.025749671
CNIH3 -0.784126418 0.005832888
SYT7 -0.866317294 0.015558068
SPP1 -0.981227914 0.032939557
TET1 -1.070259359 0.001433068



Gene log2 Fold Change FDR Adjust p-value
CXCL14 1.964953007 0.001594263
COMP 1.827539439 7.25E-05
COL10A1 1.409766974 0.001283756
CILP 1.320262092 0.022913059
F13A1 1.306128699 0.007853826
MFAP4 1.284543691 0.000909989
FBLN1 1.248319033 0.001061442
DCN 1.222102956 0.000454777
COL12A1 1.19710349 0.000467466
WISP2 1.196053412 0.015606989
KANK4 1.163531347 0.046833258
COL8A2 1.139929998 7.65E-07
NKD2 1.136097134 0.021782282
ITGA11 1.12621455 0.000266049
COL8A1 1.11783849 0.000273848
ADRA2A 1.107365656 0.002628289
lincRNA:chr3:112308735-112318605_R 1.085394386 0.004664713
TIMP3 1.083855611 7.27E-05
SSC5D 1.07845779 0.003621717
HTRA1 1.076282758 0.000266049
CDH11 1.066934007 2.38E-05
lincRNA:chr3:112315643-112316945_R 1.057783056 0.003190571
LUM 1.025421985 0.000218907
C1orf151-NBL1 1.020964502 8.88E-05
MFAP5 1.006128534 0.014713187
OGN 0.989122398 0.002965255
DACT3 0.978606891 0.000190629
SYNDIG1 0.972903895 0.000895093
THBS2 0.968476624 0.000569621
SPARC 0.952382976 0.002628289
PALM 0.949857292 0.002777819
FNDC1 0.944748653 0.001016
COL1A2 0.939687209 0.00075133
CTSK 0.925107621 0.002041941
COL5A1 0.914967352 0.001037315
PTPRD 0.914024909 7.25E-05
COL16A1 0.912583718 0.000481831
TAGLN 0.908591067 0.011767443
FAM155A 0.897912723 0.011137795

Desmoplastic stroma (D)



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

CHRD 0.890964208 0.001085786
COL5A2 0.888841088 0.001752753
PPP1R3C 0.888517849 0.000944426
PDGFRL 0.874027095 0.00012541
COL1A1 0.869343357 0.001037315
AEBP1 0.85844977 0.000394681
MMP2 0.845625553 0.000218907
C1S 0.84555879 0.000394681
PPAPDC1A 0.83518839 0.002777819
CFH 0.828294693 0.000421061
MGC24103 0.811175238 0.011137795
COL3A1 0.806772181 0.002118081
ADAMTSL2 0.798715748 0.030854368
OSBPL5 0.78623637 0.010203199
ANTXR1 0.784796536 0.011137795
RASL11B 0.78279096 0.000827911
PCSK5 0.7775006 0.010782031
MXRA5 0.774002762 0.001547409
STMN2 0.773375388 0.021672786
FV367791 0.761135703 0.000245264
MRC2 0.761015725 0.000217452
SFRP4 0.758165976 0.025957206
SNED1 0.756108722 0.006843101
FMOD 0.75542576 0.002041941
LEPREL2 0.753787751 0.003190571
VCAN 0.74734068 0.000481831
CCDC80 0.742676413 0.013899723
FBXL7 0.739595233 0.002041941
EFEMP2 0.736199164 0.000116695
SRPX2 0.730181943 0.002804915
C1QTNF6 0.728190486 0.001283756
TIMP2 0.723279301 0.011524326
PRRX1 0.717851258 0.001005976
lincRNA:chr2:100851143-100863413_F 0.707525231 0.000394681
VSTM4 0.707263796 0.038023676
RAB31 0.700524948 0.001112703
THY1 0.700519439 0.00538503
lincRNA:chr2:216585154-216585719_F 0.690044555 0.013601144
CERCAM 0.689741455 0.00236183



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

HMCN1 0.683303011 0.000915054
CLEC11A 0.681966624 0.001112703
KIAA1217 0.679428936 0.000752925
NUAK1 0.678199164 0.038664568
C12orf70 0.677555846 0.011137795
SULF1 0.674476465 0.027326014
GPX8 0.672356794 0.000245264
ST6GAL2 0.672053302 0.002041941
SPON1 0.669813939 0.021672786
NOX4 0.668034894 0.010782031
MRVI1 0.667301017 0.012151582
ISM1 0.66408556 0.013588165
PLAT 0.658633932 0.002777819
FAM198B 0.653972215 0.008080131
ZFHX4 0.645246954 0.000342713
SYNC 0.639494092 0.000337148
SSPN 0.638835261 0.011911451
PRICKLE1 0.63151806 0.011524326
CTHRC1 0.630425267 0.015066331
MIR100HG 0.630170959 0.001005976
ZEB1 0.627411221 0.001061442
DPYSL3 0.622570146 0.014298774
GLI3 0.621226423 0.005495086
ITGBL1 0.620186004 0.003693311
CYS1 0.618599744 0.000782721
ZNF503 0.618171084 0.01380618
PDGFRB 0.616871735 0.041900257
FHL1 0.60956728 0.012286873
FIBIN 0.607013268 0.020248282
CYTH3 0.604873681 0.000569621
RECK 0.604379453 0.001061442
C1R 0.601426464 0.012151582
RARRES2 0.596442155 0.011767443
HHIPL1 0.591719915 0.043390524
DACT1 0.588906433 0.025957206
TMEM200A 0.588724591 0.001283756
MSRB3 0.585492801 0.013899723
PPIC 0.584846956 0.001406862
KANK2 0.582511038 0.008237649



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

SGCD 0.581828282 0.002118081
GPR124 0.571822163 0.012286873
FHOD3 0.570182726 0.00013999
MFAP3L 0.567242349 0.002804915
EMILIN1 0.565840231 0.021400242
HOXC6 0.564377244 0.003888844
lincRNA:chr14:96548697-96561747_F 0.560492413 0.006763746
CTSO 0.558540298 0.002628289
GPC6 0.557988474 0.044187966
LRRC15 0.555532993 0.000394681
PPAPDC3 0.549995206 0.005588328
GREM2 0.549986218 0.04425057
ASPN 0.547549272 0.043123479
XG 0.538170458 0.001061442
PMP22 0.535647296 0.038865831
PDGFC 0.529065488 0.000782721
LOXL1 0.524965988 0.000116695
C14orf132 0.524102998 0.004013811
IFI27L2 0.521835491 0.008341379
GLT8D2 0.52150705 0.000394681
MARVELD1 0.520400355 0.004385737
CYBRD1 0.51884758 0.005970936
lincRNA:chr14:96507172-96661947_F 0.517510657 0.012789429
LOC642361 0.515327541 0.010782031
CTSF 0.5081671 0.022663317
FKBP9 0.506562589 0.010782031
FAP 0.505828995 0.016183318
C1QTNF5 0.502519327 0.036922225
AKAP13 0.493280647 0.001444762
HSPA12A 0.491580707 0.044027757
TSHZ3 0.486649798 0.015451329
CARD6 0.482963615 0.034633694
C5orf62 0.474217651 0.021672786
ITGB5 0.466077344 0.034267078
FZD1 0.462028908 0.007506771
GXYLT2 0.461222067 0.04207749
ALKBH7 0.460130026 0.026297168
ABCB4 0.458142849 0.009225625
RUNX1 0.456503406 0.010782031



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

ZCCHC14 0.450585835 0.019003733
A_33_P3413997 0.450569245 0.025957206
LOC400236 0.444531031 0.015606989
DAPK3 0.444233857 0.042017256
CRAT 0.441170722 0.022913059
TRO 0.440570086 0.028422003
PDLIM5 0.440514474 0.046833258
FERMT2 0.432583315 0.031793089
BNC2 0.419417922 0.004201866
P4HA2 0.41445027 0.043341122
LIMA1 0.411118237 0.002804915
CYP2U1 0.411110638 0.014254277
PTN 0.406057718 0.02480253
CLMP 0.398972358 0.03321986
SFRP2 0.398440932 0.03696446
CMTM3 0.396942522 0.040862309

15-09-11 0.396023957 0.009012745
A_19_P00325768 0.394051985 0.015606989
UBR1 0.390950088 0.002246154
XLOC_001952 0.38712735 0.032178083
JDP2 0.383940379 0.004521294
C9orf3 0.382586363 0.00591145
CRY2 0.381052938 0.015866857
ECM2 0.380593464 0.014254277
SPOCK1 0.380380376 0.049883397
MVP 0.373898397 0.030603087
MYOF 0.372522336 0.014227493
MAGI2-AS3 0.364839684 0.014164032
lincRNA:chr12:46826133-46974783_F 0.363150787 0.045364578
PRAF2 0.359869116 0.045431558
lincRNA:chr3:114031960-114042235_R 0.337537826 0.039162916
KDELC2 0.336342667 0.049864996
GALNT10 0.332409391 0.024179081
DAB2 0.312341171 0.033681743
A_33_P3218564 0.31141921 0.034010287
PCOLCE 0.309031949 0.030854368
TLN2 0.304007202 0.027324495
GBP3 0.301532187 0.022761455
CILP2 0.299068098 0.046833258



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

SORCS2 0.297293263 0.015294362
IGFL2 0.291279505 0.03032998
SNTB2 0.281470467 0.008866293
TRPC1 0.281075662 0.020146363
COPZ2 0.274767736 0.003362133
RNASEL 0.273102827 0.015323055
ARL2BP 0.267211925 0.008080131
ZFPM2 0.259766999 0.013899723
ZFHX3 0.252060581 0.040133476
LOC283867 0.250248854 0.029467846
LPAR1 0.238708633 0.044458153
SEC14L2 0.194083745 0.030854368
RTN2 0.183198242 0.022761455
PRR5L 0.18302381 0.032876283
C14orf56 0.178886022 0.033015661
PRRX2 0.177941544 0.006699127
lincRNA:chr1:85933672-85934049_R 0.156412163 0.011524326
LOC727993 0.124437114 0.013077003
FGF4 -0.090045389 0.046833258
IL17F -0.094160377 0.044027757
AW593215 -0.102584455 0.03027083
RNU4ATAC -0.110298475 0.014673179
AB305952 -0.121540596 0.005495086
A_33_P3248077 -0.130189258 0.040895176
CCAR1 -0.139924274 0.049275705
TRDMT1 -0.140129883 0.049350435
LOC401588 -0.156148932 0.013899723
MAPKAPK5 -0.18259776 0.022761455
RAVER2 -0.192651748 0.011524326
MAPKBP1 -0.196999559 0.0361124
MELK -0.21027299 0.005867391
BRCA1 -0.212101557 0.017503303
CBLL1 -0.218636987 0.035087692
AURKA -0.229102799 0.015323055
YY1AP1 -0.234773719 0.010434893
EEF1E1 -0.236798751 0.020146363
DHX9 -0.241223626 0.019285026
WDR3 -0.241595384 0.015589714
CWC27 -0.243006039 0.044991597



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

GPT2 -0.253473709 0.006843101
ELAC1 -0.256056912 0.044907848
FAM83D -0.282610203 0.035087692
ENST00000440540 -0.283524671 0.025645253
LRR1 -0.291530162 0.022901507
CDK1 -0.305734401 0.01298707
TDG -0.313227353 0.039162916
CEP250 -0.313391953 0.015606989
LTV1 -0.325359955 0.044027757
NCL -0.326807968 0.018351011
FBXO5 -0.328030858 0.019285026
UTP3 -0.332313481 0.006843101
SMC4 -0.338448788 0.011524326
SLC7A11 -0.33873362 0.015451329
CHAF1A -0.339563936 0.013899723
DUSP12 -0.340010047 0.002162944
NUP107 -0.379819152 0.012286873
FDPS -0.381649085 0.030854368
DNAJC2 -0.382433797 0.015981712
HJURP -0.39274995 0.015606989
PDCD2 -0.394617995 0.046896851
USP1 -0.405679545 0.023712516
LOC152217 -0.408174626 0.023357417
SLC25A3 -0.408287848 0.040405414
SF3A3 -0.412402833 0.04363653
TIMELESS -0.414528536 0.01433629
SNRPF -0.415504138 0.015606989
MAGOH -0.422082561 0.046896851
NASP -0.424600742 0.011137795
CDC7 -0.426127953 0.040895176
PFDN2 -0.437870713 0.007506771
HNRNPA3 -0.438122484 0.018165483
PAXIP1 -0.451106264 0.006240825
NUP205 -0.453051284 0.001507005
GMPS -0.462769843 0.020115294
TXN -0.465220551 0.04363653
RRM1 -0.467760592 0.017194183
TRIM24 -0.478323148 0.004013811
KIF2C -0.487451153 0.035087692



Gene log2 Fold Change FDR Adjust p-value
Desmoplastic stroma (D)

TFDP1 -0.487506755 0.021672786
DKC1 -0.494389901 0.010782031
PTTG1 -0.495748139 0.046833258
PDHA1 -0.496830255 0.025904805
EZH2 -0.508642116 0.006843101
HAUS8 -0.517230281 0.03716752
NUSAP1 -0.522965666 0.022913059
FAM189B -0.526020435 0.003987493
LMNB1 -0.526202194 0.001098792
PPIF -0.528833459 0.009226491
HSPA14 -0.540921317 0.002118081
UBE2T -0.546132917 0.030854368
CDCA5 -0.54613389 0.03518804
PAICS -0.546966857 0.000895093
EBNA1BP2 -0.551771184 0.035087692
TYMS -0.607822544 0.027439312
UNG -0.61036562 0.008470762
GTPBP4 -0.623201456 0.004431711
UBE2C -0.645372322 0.01433629
MCM7 -0.698536661 0.030854368
C10orf35 -0.704736936 0.012286873
STMN1 -0.71700265 0.042725898
RAD54L -0.750315331 0.001005976
CDCA8 -0.843093687 0.029467846

Table 2: Differentially expressed genes between patients deemed low versus those 
deemed high for each stromal property (LIMMA, FDR adjusted p < 0.05 after ROI95)



HGNC	symbol
Entrez	Gene	

ID
log	Fold	
Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
value

DDOST 1650 10.695509 7.077294456 32.99157344 9.26E-09 7.65E-05
WDR7 23335 10.650178 4.42970173 16.44545715 5.01E-05 0.003107059
ALDH2 217 10.282923 5.209429091 23.94108214 9.93E-07 0.000532617
MRPS18A 55168 10.014386 3.810064536 20.31108552 6.58E-06 0.001265698
KATNA1 11104 9.9954849 4.285648497 15.55863519 8.00E-05 0.00400272
ACOT7 11332 9.9918353 5.097069987 26.27153665 2.97E-07 0.000327043
HMCES 56941 9.8300971 4.620531094 20.49762775 5.97E-06 0.001204152
BPGM 669 9.7841638 4.555812814 19.7075178 9.02E-06 0.001387666
PPIH 10465 9.760565 4.706831089 18.96249849 1.33E-05 0.001582074
NT5DC1 221294 9.6371352 5.500055048 24.93024868 5.94E-07 0.000427417
ZNF511 118472 9.552955 4.522318221 14.73614695 0.000123653 0.005024493
NT5DC2 64943 9.4783187 3.466538204 21.43637805 3.66E-06 0.000975649
LGALSL 29094 9.4543945 6.025967366 20.21523007 6.92E-06 0.001285872
NBAS 51594 9.4445886 6.017064143 16.39792253 5.13E-05 0.00312437
YIPF1 54432 9.4170809 4.890424043 18.81946187 1.44E-05 0.001605676
KYNU 8942 9.4141009 6.934894853 29.34239639 6.07E-08 0.000170277
HIBCH 26275 9.3982454 4.799649121 19.6414347 9.34E-06 0.001391891
MAVS 57506 9.3455803 4.133417518 14.59536036 0.000133242 0.005233142
NRSN2 80023 9.3260042 4.119691624 13.59088622 0.000227286 0.006772722
ANKS6 203286 9.3098514 3.192355195 18.14990893 2.04E-05 0.001940641
TIMM22 29928 9.2836042 4.865709196 20.6450433 5.53E-06 0.001163955
SLC25A1 6576 9.2592543 3.581369988 16.47548396 4.93E-05 0.003075646
LXN 56925 9.2222074 4.285350292 13.09919503 0.000295423 0.007767409
BDH2 56898 9.1840593 3.260668192 17.86605769 2.37E-05 0.002084939
ARG2 384 9.1551527 4.806681114 13.48704157 0.000240217 0.006909048
RGS14 10636 9.0274379 3.977988717 17.1128106 3.52E-05 0.002611089
NRM 11270 8.9546785 3.762018486 13.97522288 0.000185236 0.00613016
ARMCX6 54470 8.9449807 4.341179663 16.17203892 5.78E-05 0.003356438
NINJ1 4814 8.9425707 4.250956335 16.17668955 5.77E-05 0.003356438
SLC38A10 124565 8.8603547 5.126208581 17.34642089 3.11E-05 0.002429872
MRM2 29960 8.8472691 5.931213422 21.71661498 3.16E-06 0.000915808
EDNRA 1909 8.7827804 2.816929666 14.164435 0.000167507 0.005888917
ZNF615 284370 8.7655749 4.460756933 12.3571335 0.000439305 0.009546939
CREG1 8804 8.7038153 4.184452307 18.35589885 1.83E-05 0.001803929
SLC23A2 9962 8.6643641 3.866747446 14.25637848 0.000159519 0.005760108
HDDC3 374659 8.6567356 3.307964844 12.93887887 0.000321828 0.008052022
DIAPH2 1730 8.6500952 3.535009152 17.88575605 2.35E-05 0.002080292
IDH1 3417 8.6484292 5.746365475 18.77442686 1.47E-05 0.001633008
SQRDL 58472 8.6346391 5.206002294 17.90323109 2.32E-05 0.002080292
AGPAT1 10554 8.6119874 3.947901796 14.49308812 0.000140675 0.005334681
SEC23B 10483 8.5932009 6.806819792 28.74955159 8.24E-08 0.000170277
DHRS4L2 317749 8.5621898 2.505768725 17.22468443 3.32E-05 0.002542666
CDC20 991 8.4919468 3.627446142 12.34620652 0.000441883 0.00957781
FAM19A3 284467 8.4371737 2.914429385 12.6610544 0.000373352 0.008721029
NEO1 4756 8.4325475 4.760423338 13.67386524 0.00021746 0.006637216



HGNC	symbol
Entrez	Gene	

ID
log	Fold	
Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
value

MYBPC1 4604 8.3710099 5.785875512 19.84624987 8.39E-06 0.001387666
HHLA3 11147 8.3358462 3.36129162 13.53115502 0.000234636 0.006831696
ARFRP1 10139 8.3065409 4.594101986 15.35540521 8.91E-05 0.004184572
C4orf46 201725 8.2966485 2.776566706 16.03697001 6.21E-05 0.003451273
ZFP90 146198 8.1583733 4.713895388 17.69547473 2.59E-05 0.002198643
CDCA7 83879 8.1487554 4.093690381 13.33608524 0.000260347 0.007260748
TRAF7 84231 8.1043299 2.689152336 15.37903344 8.80E-05 0.004168092
GBP2 2634 8.1001272 4.328756362 12.22984931 0.00047031 0.009971777
ZSCAN12 9753 8.0663942 5.020359961 13.90940598 0.000191836 0.006257563
ZMIZ1 57178 8.0427978 2.138215175 14.78467309 0.000120511 0.004982528
BNIP3L 665 8.0298146 6.388779987 22.29164613 2.34E-06 0.00088036
C18orf25 147339 7.9359115 4.533841666 14.54639138 0.00013675 0.005262231
C20orf24 55969 7.9069412 5.06700578 22.53969052 2.06E-06 0.000851071
TNFAIP1 7126 7.9044745 6.295749032 21.92198559 2.84E-06 0.000883454
ACOT8 10005 7.9003237 1.868422754 13.82639011 0.0002005 0.006436729
SORT1 6272 7.8611044 3.568105034 15.27833287 9.28E-05 0.004262059
MT1L 4500 7.8409738 2.980382486 12.30753864 0.000451132 0.009714621
ZNF236 7776 7.7203691 3.465985247 13.20026494 0.00027991 0.007649749
ALAS1 211 7.7140479 5.273724744 13.78856634 0.000204577 0.006518887
ASCC1 51008 7.6905704 5.339691769 16.07635813 6.08E-05 0.003422289
FBXO34 55030 7.6283281 4.586497419 12.35988269 0.000438658 0.009546939
FH 2271 7.5664088 3.451258709 13.44032513 0.000246273 0.006974078
OLFML2A 169611 7.5314584 3.887230048 13.06395645 0.000301033 0.007840129
COMMD10 51397 7.529175 4.612900737 12.27225663 0.000459742 0.009828777
CRYZ 1429 7.5169434 6.447027484 19.51853044 9.96E-06 0.001435744
COPG1 22820 7.501829 5.359857867 16.4245077 5.06E-05 0.003107059
KLF13 51621 7.4800816 5.0444239 16.68242224 4.42E-05 0.002877127
DHRS4 10901 7.473421 2.026063775 19.99572724 7.76E-06 0.001387666
INHBB 3625 7.4445967 4.010754015 17.91844912 2.31E-05 0.002080292
SASS6 163786 7.4038038 2.496373679 15.79402257 7.06E-05 0.003711019
MFSD5 84975 7.3432382 3.472276288 18.36492754 1.82E-05 0.001803929
RNASEH1 246243 7.3115213 4.481678005 18.85649978 1.41E-05 0.001596371
CLDN12 9069 7.223355 3.893543323 13.67342219 0.000217511 0.006637216
POGLUT1 56983 7.1872656 5.457975054 21.28499479 3.96E-06 0.001022818
C1orf53 388722 7.1788274 2.457152497 12.87703404 0.000332639 0.008222995
VAMP3 9341 7.1752011 5.548264393 20.67100766 5.45E-06 0.001163955
ZNF623 9831 7.1714018 5.514408816 12.42946008 0.000422614 0.009343839
RCC2 55920 7.1510278 4.772811023 18.75190371 1.49E-05 0.00164028
TMEM248 55069 7.0610501 6.428830481 13.07591272 0.000299117 0.00782182
DOCK1 1793 7.0538308 3.420009898 13.13467579 0.00028988 0.007707464
C1orf115 79762 7.0383719 1.62822834 12.77483983 0.000351313 0.008426237
SETD3 84193 7.0373712 5.405679477 19.87321467 8.28E-06 0.001387666
ARFIP2 23647 6.9684731 5.295510082 16.97692135 3.78E-05 0.002662756
SDHAF2 54949 6.8237268 4.595171965 12.99744398 0.000311916 0.007936115
CHD1L 9557 6.8178147 6.289398681 14.53696881 0.000137436 0.005262231
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WDR54 84058 6.810171 4.977999642 12.89132676 0.000330108 0.008197195
FAAH2 158584 6.808084 4.376155353 14.07658266 0.000175515 0.005968147
EPRS 2058 6.7934027 7.458495149 19.71695384 8.98E-06 0.001387666
SDHAF4 135154 6.7918664 4.29305006 14.64053729 0.000130086 0.00518401
SMIM19 114926 6.7567787 3.219298022 13.57537875 0.000229172 0.006783202
GLI3 2737 6.7502244 2.250531001 13.10720119 0.000294163 0.007758955
ATP13A3 79572 6.7045699 5.337711103 12.87069663 0.000333767 0.008226296
ZDHHC13 54503 6.6795098 4.985056265 14.95373487 0.00011018 0.004684197
RWDD3 25950 6.650587 2.091039207 14.07258057 0.000175889 0.005968147
WLS 79971 6.6324449 0.729913871 15.82583291 6.94E-05 0.003704931
PNP 4860 6.6273936 6.499320607 21.97522185 2.76E-06 0.000883454
ATP6V1E1 529 6.6134959 5.762525849 27.66646433 1.44E-07 0.000179292
VEGFC 7424 6.6111029 0.905467622 13.14010693 0.000289041 0.007707464
SLC36A4 120103 6.6008775 4.41924514 12.47503187 0.000412428 0.00915534
COMT 1312 6.578476 5.826487064 25.60911469 4.18E-07 0.000384104
ECH1 1891 6.5559928 6.75907346 25.24467699 5.05E-07 0.000417574
VRK2 7444 6.4698052 3.60969523 15.44974352 8.47E-05 0.004105641
KRT14 3861 6.4464354 7.264603984 25.08993842 5.47E-07 0.000427417
ZNF426 79088 6.441064 3.427620944 13.59186582 0.000227168 0.006772722
RBBP8 5932 6.4365148 6.281491127 14.95575362 0.000110062 0.004684197
RBL2 5934 6.4333236 5.406396054 13.5525981 0.00023197 0.006783202
FDPS 2224 6.4226955 7.314359837 25.75614646 3.87E-07 0.000376863
PLIN2 123 6.4168123 4.92248438 12.68555636 0.000368491 0.008655762
FBXO7 25793 6.4149906 5.663346159 14.68433383 0.000127098 0.005093146
CTBS 1486 6.413642 2.711258868 14.27445983 0.000157994 0.005717521
TCF25 22980 6.3842708 3.7966207 16.64337336 4.51E-05 0.00288027
SNAP23 8773 6.3817022 3.513363322 15.45690395 8.44E-05 0.004105641
CCNF 899 6.3796285 3.261273135 12.62491484 0.000380639 0.008841308
CLDN10 9071 6.3718308 6.377486938 17.50276306 2.87E-05 0.002292074
MAF 4094 6.3679738 3.65354726 12.60085028 0.000385571 0.008892033
CENPE 1062 6.3611903 3.602441735 12.55434139 0.000395287 0.008992712
TBCB 1155 6.3174596 3.586779311 16.95550401 3.83E-05 0.002681554
CTSL 1514 6.3126598 5.569801438 13.22864528 0.000275703 0.007561486
SLC37A3 84255 6.2843896 3.772262271 16.52101971 4.81E-05 0.003025494
SCYL1 57410 6.2134803 1.793961253 13.17826564 0.000283215 0.007666863
LAMTOR3 8649 6.2019673 5.975742906 16.78138803 4.19E-05 0.002819707
OSTF1 26578 6.0301287 4.768433109 13.11772726 0.000292515 0.007752576
CCM2 83605 5.9362952 5.21885616 12.3578235 0.000439142 0.009546939
DERA 51071 5.8499731 6.218644541 21.9062579 2.86E-06 0.000883454
KCTD20 222658 5.7514149 5.210505945 18.60581001 1.61E-05 0.001703944
ZMYM4 9202 5.7499026 4.840768252 15.1757389 9.80E-05 0.004364474
ZFP91 80829 5.7478836 6.454566345 21.98983924 2.74E-06 0.000883454
FMR1 2332 5.6507117 3.974384887 14.35068876 0.000151724 0.005551359
PEBP1 5037 5.6031434 5.985973539 19.95460612 7.93E-06 0.001387666
LTBP1 4052 5.601331 6.729679032 12.88821201 0.000330658 0.008198538
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IQGAP3 128239 5.5921064 1.763845213 14.36779848 0.000150352 0.005537897
RBM45 129831 5.5836373 4.619842553 13.32396954 0.000262035 0.00729551
NFKB1 4790 5.5681406 5.917471444 17.53230152 2.82E-05 0.002281333
RBM41 55285 5.5635991 2.595617845 16.56557224 4.70E-05 0.002977884
ERP44 23071 5.5454126 5.671343131 17.59792637 2.73E-05 0.002267831
PARL 55486 5.5306037 7.17425752 17.08947253 3.57E-05 0.002611089
LAMC2 3918 5.4946851 7.748621842 28.11276841 1.14E-07 0.000179292
OPTN 10133 5.4821531 4.210281201 16.73480763 4.30E-05 0.002866481
TIGAR 57103 5.4497357 6.429674666 12.58765748 0.000388303 0.008919093
EIF4E2 9470 5.4290053 5.869887834 18.87789734 1.39E-05 0.00158945
ADAM10 102 5.3670953 5.602747356 13.985345 0.000184241 0.006125575
ZNF740 283337 5.3657125 1.205473682 15.74243489 7.26E-05 0.003786399
SMS 6611 5.353874 5.574567117 12.4933563 0.000408402 0.009114911
MSN 4478 5.3488372 6.507102007 17.66049389 2.64E-05 0.002216716
EGFR 1956 5.2518251 6.730520939 15.25663118 9.38E-05 0.004263837
DHRS7 51635 5.2126749 6.333722879 13.0177227 0.000308557 0.007923777
CBL 867 5.1587369 5.454951351 14.83197649 0.000117526 0.004909276
ECHS1 1892 5.1563804 5.862218143 12.99853283 0.000311735 0.007936115
COPS7A 50813 5.1561476 6.139757618 12.77397427 0.000351475 0.008426237
PPP4C 5531 5.1544648 4.596033486 15.94755656 6.51E-05 0.003554403
TMOD3 29766 5.1150886 5.03926498 16.39539035 5.14E-05 0.00312437
PNPO 55163 5.1147398 5.267950873 15.30892881 9.13E-05 0.004240604
RBFOX2 23543 5.1103297 5.617658646 18.9481387 1.34E-05 0.001582074
FAM114A1 92689 5.0698323 6.022942282 18.91344023 1.37E-05 0.001582074
VCL 7414 4.997882 6.752791547 13.86707337 0.000196206 0.006337607
FAM136A 84908 4.8042283 6.324536755 13.90075423 0.000192721 0.006274059
C14orf166 51637 4.7914806 7.080350494 22.03182609 2.68E-06 0.000883454
TMEM60 85025 4.7858025 6.742119257 12.82634289 0.000341773 0.008309532
UCK1 83549 4.7603181 -0.101699022 12.29287884 0.00045469 0.009753127
PARP6 56965 4.7453342 6.905386303 20.91173456 4.81E-06 0.001089558
TMEM179B 374395 4.7300943 6.158211976 14.01081402 0.000181762 0.006069071
AKR1A1 10327 4.7290886 5.443656321 13.44632962 0.000245486 0.006963717
IGFBP4 3487 4.7131793 7.526845936 29.33409282 6.09E-08 0.000170277
TPX2 22974 4.6995335 5.975026073 12.40702995 0.000427721 0.009431524
DAP3 7818 4.6863186 7.296291518 20.2178715 6.91E-06 0.001285872
MRPL15 29088 4.6165994 5.62544345 14.21346175 0.000163199 0.005854625
LRRC16A 55604 4.6072967 4.858377939 19.43571362 1.04E-05 0.00147992
HACD3 51495 4.6048292 7.959186803 24.45460411 7.61E-07 0.000483937
NRDC 4898 4.5930233 7.110490688 15.19913234 9.67E-05 0.00434787
TCEA1 6917 4.5903478 5.780574617 14.20859542 0.000163621 0.00585708
AKIP1 56672 4.583956 5.108661038 13.5696263 0.000229875 0.006783202
LTA4H 4048 4.4833844 6.387875017 14.06256297 0.000176829 0.005968147
VPS41 27072 4.47753 5.668583826 15.07936438 0.000103084 0.004489268
RPN2 6185 4.45508 8.255927152 13.092995 0.000296402 0.00778079
GNG12 55970 4.3790378 6.798346558 15.29507277 9.20E-05 0.004259858
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CBX5 23468 4.3684484 6.534932876 19.01781824 1.30E-05 0.001576209
PTPRF 5792 4.3093628 6.028800519 18.61622762 1.60E-05 0.001703944
MTPN 136319 4.2614373 4.867951977 13.60340576 0.000225776 0.006768624
PLAT 5327 4.2417356 6.254916714 13.81568842 0.000201645 0.00644768
TCF3 6929 4.206733 1.835534949 12.54224645 0.000397854 0.008992712
IARS2 55699 4.1270235 6.868574451 15.66101663 7.58E-05 0.003897078
HNRNPM 4670 4.1226035 5.507226212 14.07434334 0.000175725 0.005968147
KRT18 3875 4.1114841 7.49772582 12.99142259 0.000312921 0.007949447
MAP7D3 79649 4.0660394 5.349200836 13.63897123 0.000221539 0.006710272
COX7A2L 9167 4.0053919 7.228939481 12.62557784 0.000380504 0.008841308
PPT1 5538 3.9725498 6.644148277 13.71544856 0.000212698 0.006621864
TMED10 10972 3.9369979 8.823695186 18.22649937 1.96E-05 0.001885822
MALL 7851 3.828436 5.270219944 14.07950135 0.000175243 0.005968147
RAB5A 5868 3.7248507 6.409128066 12.95818661 0.000318526 0.008030146
HP1BP3 50809 3.6119046 6.750962477 15.48999451 8.29E-05 0.004058324
TMEM106B 54664 3.596183 4.971024923 12.2188623 0.000473088 0.009979496
TUFM 7284 3.5934374 6.640684262 12.36029766 0.000438561 0.009546939
TRIM29 23650 3.5792612 7.287663454 14.61087581 0.00013215 0.005233142
CCDC47 57003 3.5791083 7.210926638 15.13461565 0.000100111 0.004426822
UBR4 23352 3.5440205 7.6906679 14.53500228 0.000137579 0.005262231
COPB2 9276 3.5108161 7.902057511 12.99798606 0.000311826 0.007936115
TAPBP 6892 3.3761876 7.607900051 14.09720227 0.000173602 0.005968147
LONP2 83752 3.2974776 6.716924276 13.15451879 0.000286827 0.007688071
NEDD8 4738 3.264488 8.112575195 13.94682869 0.000188055 0.006170729
LAMP1 3916 3.1470017 2.726260773 12.85439631 0.000336687 0.00826109
KRT3 3850 3.1030634 -1.024895545 13.46854623 0.000242596 0.006920307
EMP2 2013 3.0668112 8.483185068 14.90644964 0.000112976 0.004765662
ZC3H11A 9877 3.0414494 7.497939274 17.44916549 2.95E-05 0.002346279
CALU 813 2.8308167 8.376476836 13.16769449 0.000284817 0.007666863
KRT6A 3853 2.3083226 11.48497681 13.712368 0.000213047 0.006621864
COMP 1311 -2.119547 0.156936351 12.94597237 0.000320611 0.008045913
SPATA4 132851 -2.150935 0.506759743 14.53230768 0.000137776 0.005262231
RBFOX3 146713 -2.161992 1.318433977 16.65831336 4.48E-05 0.00288027
NASP 4678 -2.169713 10.28133033 14.43706269 0.000144922 0.005424503
LMOD3 56203 -2.173807 1.465272796 13.69851056 0.000214625 0.006622131
LY9 4063 -2.177446 -0.449273701 12.52975695 0.000400522 0.009012015
ANKS1B 56899 -2.189074 0.385722065 15.98642784 6.38E-05 0.003516983
COL6A3 1293 -2.190445 2.734643048 12.5593068 0.000394238 0.008992712
SCUBE1 80274 -2.21472 1.060596581 12.5990831 0.000385936 0.008892033
C1orf158 93190 -2.226069 -0.151326003 13.73736768 0.00021023 0.006621864
PDE11A 50940 -2.246523 1.994210058 13.76269614 0.000207414 0.006559034
TIE1 7075 -2.296875 1.276569916 12.77081309 0.00035207 0.008426237
SERAC1 84947 -2.315348 1.982847273 12.83141761 0.000340847 0.008309532
GSDMB 55876 -2.323188 -0.024179421 13.03797838 0.000305237 0.00787522
MIXL1 83881 -2.323549 6.870287599 13.86184175 0.000196753 0.006342887



HGNC	symbol
Entrez	Gene	

ID
log	Fold	
Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
value

ZBTB8B 728116 -2.340974 3.700491592 13.16042802 0.000285924 0.007676305
FCRL2 79368 -2.347736 -0.299044129 15.51053148 8.20E-05 0.004050421
ZNF320 162967 -2.360122 1.271456612 14.12511903 0.000171044 0.005930257
LINC01134 100133612 -2.373711 0.260387181 13.01168127 0.000309554 0.007936115
PIWIL1 9271 -2.398244 2.815640386 13.83801031 0.000199264 0.006411342
TNFSF13B 10673 -2.398831 5.444639608 13.00575217 0.000310536 0.007936115
CACNA1D 776 -2.400582 1.994718517 13.24157549 0.000273808 0.007544984
IL10 3586 -2.403536 0.467209797 13.75540112 0.000208221 0.006571685
CACNG8 59283 -2.41529 -0.535103129 13.1349442 0.000289839 0.007707464
BTBD19 149478 -2.433386 0.238994616 18.54733772 1.66E-05 0.001734779
LINC00970 101978719 -2.434407 0.004183317 12.85224489 0.000337075 0.00826109
CSF2RA 1438 -2.447061 0.716369452 12.55913688 0.000394274 0.008992712
MS4A10 341116 -2.447544 1.103628905 15.49596054 8.27E-05 0.00405754
GBP1P1 400759 -2.456727 6.168240881 13.82328739 0.000200832 0.006436729
KCNMA1-AS1 101929328 -2.458039 2.514236232 13.70604614 0.000213765 0.006621864
RIPPLY3 53820 -2.470268 -0.22663217 14.8242626 0.000118007 0.004909276
MIB2 142678 -2.476678 0.343525525 12.70681003 0.000364326 0.008618624
SPN 6693 -2.481578 -0.154356294 13.35999902 0.000257048 0.007205198
FLG-AS1 339400 -2.486914 0.717192328 14.32631231 0.000153701 0.005598931
CATSPERD 257062 -2.48939 1.982598539 14.2798637 0.000157541 0.005713632
CRB1 23418 -2.49159 -0.628374054 12.91610187 0.000325768 0.008113771
CTRC 11330 -2.494119 2.216544506 13.46432664 0.000243142 0.00692098
L1TD1 54596 -2.503687 3.415472192 13.35155246 0.000258209 0.007217082
NCMAP 400746 -2.506217 0.6370653 12.65419564 0.000374724 0.008740736
NEGR1 257194 -2.532388 7.693341157 16.74167891 4.28E-05 0.002866481
DRAXIN 374946 -2.564747 1.434757872 13.21422425 0.000277832 0.007607274
HACD4 401494 -2.580546 -1.102714876 12.23536222 0.000468922 0.009967916
CD3G 917 -2.58408 0.62501907 14.40933426 0.000147071 0.005458554
CCDC180 100499483 -2.589708 2.116800078 14.70267497 0.000125868 0.005089291
HCK 3055 -2.595787 -0.42334637 13.13570701 0.000289721 0.007707464
CSPG4P12 440300 -2.61021 2.778750003 14.45732661 0.000143371 0.005413403
FLG2 388698 -2.616329 -0.481120982 13.76260931 0.000207424 0.006559034
PKN2-AS1 101927891 -2.621054 0.482522992 14.18930052 0.000165308 0.005886328
SLC30A2 7780 -2.621567 0.043237588 12.35290049 0.000440302 0.009556053
PKNOX2 63876 -2.623931 -0.112755575 12.28598568 0.000456372 0.009776535
TNR 7143 -2.643476 -0.031312046 12.32398789 0.000447174 0.009642769
MIRLET7BHG 400931 -2.65318 2.88743665 13.49605863 0.000239065 0.006902073
ZNF215 7762 -2.657537 -1.109364407 13.00232888 0.000311104 0.007936115
LILRA5 353514 -2.659056 0.211699619 16.25006093 5.55E-05 0.00329028
GBP6 163351 -2.661051 -0.50529544 13.55126197 0.000232135 0.006783202
TNFAIP8L1 126282 -2.661919 2.228636981 14.65866447 0.000128841 0.005146794
LRRC74B 400891 -2.663117 -0.087343374 14.0322423 0.000179703 0.006028243
FZD4 8322 -2.677242 -1.039431744 12.93050581 0.00032327 0.008075901
FAM221A 340277 -2.68425 0.786539386 12.84280737 0.000338779 0.008275814
GALNT16 57452 -2.688577 -1.066408212 13.39501351 0.000252294 0.007095987
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SEMA4C 54910 -2.699877 1.087093335 12.69442903 0.000366747 0.008629663
KCNMB1 3779 -2.700426 2.027031216 13.11139827 0.000293505 0.007753959
TMEM229B 161145 -2.702188 -0.906535577 12.84365141 0.000338626 0.008275814
RGSL1 353299 -2.714202 3.959364844 13.97420914 0.000185336 0.00613016
SLC2A5 6518 -2.715839 0.397638984 16.12756272 5.92E-05 0.003392124
LRRC27 80313 -2.725933 1.601712454 12.43949229 0.00042035 0.009318698
RIMKLA 284716 -2.729171 1.095120938 14.14062307 0.000169641 0.005906348
MIR519A2 574500 -2.730205 1.786519642 21.03608506 4.51E-06 0.001060074
TRIM73 375593 -2.74957 1.117173651 16.10605068 5.99E-05 0.003392124
MRLN 100507027 -2.757373 -0.904277633 12.32936641 0.000445888 0.009642769

729348 -2.768445 7.111712451 12.37587141 0.000434918 0.00953935
KLRD1 3824 -2.77147 0.184106034 13.174373 0.000283804 0.007666863
ITIH5 80760 -2.790119 0.940243255 14.7603828 0.000122073 0.005006425

400748 -2.800446 0.796374978 17.52090145 2.84E-05 0.002281333
CYB5RL 606495 -2.804531 0.16533517 16.11011577 5.98E-05 0.003392124
CCDC158 339965 -2.810075 -0.698440675 14.23373323 0.00016145 0.005817134
RNF125 54941 -2.81328 0.645915833 19.357546 1.08E-05 0.001493796
ZNF718 255403 -2.819588 1.348409709 14.56271965 0.00013557 0.005262231
SIDT2 51092 -2.827722 -0.61405536 12.55301598 0.000395567 0.008992712
KLK10 5655 -2.833825 0.858873897 13.48244116 0.000240806 0.006913984
MAN1C1 57134 -2.843384 1.250421835 17.57302324 2.76E-05 0.002274862
NPFFR1 64106 -2.845468 0.78688442 18.61612774 1.60E-05 0.001703944
TPH1 7166 -2.859544 4.377800794 12.76618754 0.000352941 0.008434893

101928733 -2.861167 -0.9860682 12.95030227 0.00031987 0.008045913
ABCA8 10351 -2.865248 0.020288671 14.82371965 0.000118041 0.004909276
PIGR 5284 -2.876352 1.923868384 18.03411959 2.17E-05 0.002015973
LINC00924 145820 -2.877185 0.416331062 16.27102972 5.49E-05 0.003265772
ABCC9 10060 -2.893959 5.831215523 13.02739935 0.000306967 0.007907496

101927560 -2.895869 -0.361961645 15.0923328 0.000102378 0.004479185
FOXL2NB 401089 -2.901981 -0.877820179 14.76618795 0.000121698 0.005006425
BRDT 676 -2.905803 -0.435523902 21.85657463 2.94E-06 0.000883454

101928514 -2.906527 -0.246664084 17.96824873 2.25E-05 0.002063764
MYO3B 140469 -2.912011 -0.268188642 13.98315136 0.000184456 0.006125575
TMEM116 89894 -2.917647 0.358171226 12.59853564 0.000386049 0.008892033
AGRN 375790 -2.920726 0.907365791 15.27829002 9.28E-05 0.004262059
CNR2 1269 -2.922768 1.787229433 20.96816043 4.67E-06 0.001072627
SCRG1 11341 -2.928214 1.399709151 13.95932034 0.000186809 0.006154284
SLC16A10 117247 -2.932039 -0.692060062 12.27121125 0.00046 0.009828777
ACTG1P17 283693 -2.934841 -0.298322524 13.10400319 0.000294665 0.007759836
PLA2G2C 391013 -2.940976 -0.456584125 14.75923786 0.000122148 0.005006425
SLC15A1 6564 -2.946767 0.563669445 16.03790832 6.21E-05 0.003451273
PLCE1 51196 -2.952876 3.242482819 15.40384017 8.68E-05 0.00413744
CROCCP3 114819 -2.967846 0.988617918 14.03387525 0.000179547 0.006028243
ACSL6 23305 -2.979587 2.461238638 17.40189438 3.03E-05 0.00239385
EGR1 1958 -2.981661 10.06963609 14.71774647 0.000124865 0.005061336
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ID
log	Fold	
Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
value

RBM20 282996 -2.982335 -0.336057837 22.69571112 1.90E-06 0.00082599
SLC7A14 57709 -2.987843 -0.628329901 12.7043885 0.000364798 0.008618624
SLFN12L 100506736 -2.994845 -0.814215155 17.52755772 2.83E-05 0.002281333
ATP8B2 57198 -3.000731 -0.00357993 23.93125938 9.98E-07 0.000532617
DFFB 1677 -3.029438 0.898541106 19.01611243 1.30E-05 0.001576209
CEP112 201134 -3.03682 -0.801723485 15.85358273 6.84E-05 0.003689795
PAXBP1-AS1 100506215 -3.039814 0.94862503 12.39287916 0.000430974 0.009490615
SV2B 9899 -3.053989 -0.854510995 12.24802771 0.00046575 0.009926001

101929586 -3.075912 -0.454204097 17.08735722 3.57E-05 0.002611089
PCSK6-AS1 105371027 -3.08235 0.061750441 16.69315931 4.39E-05 0.002877127
ZSCAN2 54993 -3.092789 0.793251864 14.35857569 0.00015109 0.005551359
IFIT3 3437 -3.098434 0.578973551 18.26858134 1.92E-05 0.001862815
CFAP74 85452 -3.104792 1.22678192 24.47283345 7.54E-07 0.000483937
DNAJC5B 85479 -3.113288 -0.404810587 18.63895364 1.58E-05 0.001703944
LINC01482 101928104 -3.116282 -0.778719522 13.66987149 0.000217923 0.006637216
KCNQ1OT1 10984 -3.117184 8.745263517 18.32022255 1.87E-05 0.001827152
MPP4 58538 -3.154962 2.053723633 12.38132758 0.000433649 0.009536812
C1orf61 10485 -3.159018 0.962016782 17.84897913 2.39E-05 0.002092604
C1orf127 148345 -3.160194 -0.765377516 13.56744833 0.000230142 0.006783202
SPNS1 83985 -3.169162 0.606052915 14.16209351 0.000167716 0.005888917
FRRS1 391059 -3.18543 1.270474733 18.94181727 1.35E-05 0.001582074
CIITA 4261 -3.188319 -0.449683589 16.03479984 6.22E-05 0.003451273
RNF222 643904 -3.191933 -0.632186111 19.9064498 8.13E-06 0.001387666
HES1 3280 -3.200339 6.819022148 13.50036964 0.000238516 0.006902073
DUOX2 50506 -3.205662 4.647993492 14.98975374 0.000108097 0.00461938
SPATA6 54558 -3.221605 0.489696354 15.79969594 7.04E-05 0.003711019
LINC00683 400660 -3.236063 -0.856326062 13.46774114 0.0002427 0.006920307
FAM92A1P2 403315 -3.260861 -0.598875377 15.56147977 7.99E-05 0.00400272
BTBD8 284697 -3.265013 -0.053240421 18.39194531 1.80E-05 0.001791449

101927292 -3.271032 -0.620218537 17.88045323 2.35E-05 0.002080292
PDPN 10630 -3.273019 0.024078553 13.01830424 0.000308461 0.007923777
TRIM60 166655 -3.274737 -0.456670928 13.49547508 0.000239139 0.006902073
PSPN 5623 -3.276598 -0.753202735 13.42428547 0.000248388 0.007009956

101926911 -3.296471 -0.763499677 12.9401445 0.00032161 0.008052022
AFF3 3899 -3.302705 -0.459192127 15.84388765 6.88E-05 0.003693578
GALNTL5 168391 -3.306163 1.7485087 19.62061507 9.44E-06 0.001393037
TERB1 283847 -3.307429 -0.058331022 14.17609635 0.000166472 0.005886328
SLC35F1 222553 -3.313004 0.820331127 18.05098584 2.15E-05 0.002009481
IBA57 200205 -3.319228 3.297858135 21.18071145 4.18E-06 0.001049694
ATP1A4 480 -3.326669 0.287328082 21.56379168 3.42E-06 0.000959351
CD84 8832 -3.335667 0.707048811 19.0415179 1.28E-05 0.001576209
PDDC1 347862 -3.355086 2.327544385 21.68567511 3.21E-06 0.000915808
ACOT11 26027 -3.357738 2.137505174 14.68297386 0.00012719 0.005093146
CYB561A3 220002 -3.367704 3.872018214 16.88483385 3.97E-05 0.002759877
CASP16P 197350 -3.405662 -0.910888754 19.20033461 1.18E-05 0.001544612
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Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
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HSPG2 3339 -3.414044 0.889678749 15.92567308 6.59E-05 0.003583906
CCBE1 147372 -3.418671 0.511695579 17.71223696 2.57E-05 0.002197043
FAM179A 165186 -3.454595 1.963355833 19.78482234 8.67E-06 0.001387666
MIR3908 100500909 -3.476967 -0.917536071 12.25689239 0.000463543 0.009891705
PGF 5228 -3.47901 0.92963648 15.18481785 9.75E-05 0.004357273
ADGRG2 10149 -3.48093 -0.356929669 19.39134876 1.06E-05 0.00147992
AP4B1-AS1 100287722 -3.484704 0.151155313 19.85298018 8.36E-06 0.001387666
SLAMF7 57823 -3.487941 1.031599273 15.18720181 9.74E-05 0.004357273
KLRK1 22914 -3.498203 -0.339312499 13.60219744 0.000225921 0.006768624
CTSS 1520 -3.498221 0.508557837 14.17494317 0.000166574 0.005886328
TBXA2R 6915 -3.51956 0.837053761 15.55563533 8.01E-05 0.00400272
XKR9 389668 -3.524824 -0.366818516 16.42078438 5.07E-05 0.003107059

101929227 -3.529207 0.024564263 14.09222082 0.000174062 0.005968147
101926964 -3.532751 0.482430656 23.02360392 1.60E-06 0.000715267

BEST1 7439 -3.533443 0.356511637 12.98437975 0.0003141 0.007954965
SCYL3 57147 -3.535668 3.314071492 16.79735275 4.16E-05 0.002807497
PPP1R12B 4660 -3.543752 2.207029917 15.35863622 8.89E-05 0.004184572
MIR202HG 574448 -3.547929 -0.052829318 18.52379405 1.68E-05 0.001738283

283731 -3.548282 0.064616917 27.56659709 1.52E-07 0.000179292
RNF157 114804 -3.549665 -0.02524578 20.65099294 5.51E-06 0.001163955
RPS6KL1 83694 -3.554745 -0.746749418 12.82216324 0.000342537 0.008309532
SLC25A18 83733 -3.571203 1.670113641 16.71392638 4.35E-05 0.002877127
NMNAT1 64802 -3.588662 3.999396035 15.99825675 6.34E-05 0.003506766
TPGS1 91978 -3.594644 3.251265777 18.39911847 1.79E-05 0.001791449
ZNF835 90485 -3.635983 -0.057939037 13.31968487 0.000262634 0.00729991
SLC52A1 55065 -3.637379 0.944586773 13.88907215 0.000193923 0.006287256
PADI2 11240 -3.643616 -0.380378937 24.08240973 9.23E-07 0.000532617
NUGGC 389643 -3.683894 0.032014889 15.03634558 0.00010546 0.004540957
FRMPD1 22844 -3.687233 0.990300819 19.87059349 8.29E-06 0.001387666
ATCAY 85300 -3.691587 -0.44000244 25.01477705 5.69E-07 0.000427417
PCDH11Y 27328 -3.692035 2.396837942 14.69814435 0.000126171 0.005089291
GUCY1B2 2974 -3.706346 -0.011501054 15.596699 7.84E-05 0.003989033
ALS2CR12 130540 -3.713906 0.062405531 12.5301115 0.000400446 0.009012015
CLK1 1195 -3.719009 8.189697877 16.11001549 5.98E-05 0.003392124
GAS6-AS2 100506394 -3.720549 0.182225297 27.63417229 1.47E-07 0.000179292
OTUD6A 139562 -3.743592 0.062623129 13.1361549 0.000289652 0.007707464
WDR90 197335 -3.763945 -0.165041575 19.40321358 1.06E-05 0.00147992
MLLT4-AS1 653483 -3.764885 1.03877246 14.2154609 0.000163026 0.005854625
HRK 8739 -3.770029 0.167127152 15.65082821 7.62E-05 0.00390047
HOGA1 112817 -3.776053 0.405922142 16.60309914 4.61E-05 0.002930767
BHLHE40 8553 -3.80378 8.400929952 13.78443859 0.000205027 0.006520662
LINC01285 101928287 -3.812175 0.676911046 14.54409404 0.000136917 0.005262231
ST8SIA6-AS1 100128098 -3.829805 -0.642227289 13.1657786 0.000285108 0.007666863
SHANK2-AS1 100874198 -3.84971 -0.597671393 17.62719561 2.69E-05 0.002244474
MAP1LC3C 440738 -3.857731 2.666384489 17.94186805 2.28E-05 0.002080292



HGNC	symbol
Entrez	Gene	

ID
log	Fold	
Change log	CPM Log	Ratio P-value
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MORC4 79710 -3.877851 5.492677287 18.9241218 1.36E-05 0.001582074
EPB41 2035 -3.888086 1.421722421 19.66453585 9.23E-06 0.001387666
TRIB1 10221 -3.896834 9.471287668 17.90517697 2.32E-05 0.002080292
WNT9B 7484 -3.897793 -0.511431877 13.66392455 0.000218614 0.006638293
ACBD7 414149 -3.913509 0.001370552 17.52246799 2.84E-05 0.002281333
FBXO43 286151 -3.930642 -0.240709855 15.26188839 9.36E-05 0.004263699
SLC2A1-AS1 440584 -3.976824 0.68469937 15.4191151 8.61E-05 0.004136991
ATP1A3 478 -3.987638 0.646491127 18.91036781 1.37E-05 0.001582074
FMN1 342184 -3.995153 2.697509665 22.38170024 2.23E-06 0.00088036
DSEL 92126 -3.996477 4.17133835 13.42774818 0.00024793 0.007008989
LINC00954 400946 -4.026687 2.483930119 16.10696047 5.99E-05 0.003392124
FANCF 2188 -4.036209 1.876991911 12.32382759 0.000447213 0.009642769
TRPM3 80036 -4.04747 0.41570249 18.51288523 1.69E-05 0.001738283
LINC01502 100130954 -4.061271 0.882831964 15.87407752 6.77E-05 0.003670876
OPA3 80207 -4.084005 1.029181959 15.51940837 8.17E-05 0.004050421
WDR31 114987 -4.112884 0.551975894 17.38075305 3.06E-05 0.002399233
FAM73A 374986 -4.13499 4.230822895 22.02574437 2.69E-06 0.000883454
CX3CL1 6376 -4.135389 0.019168452 13.1120793 0.000293398 0.007753959
LRRC37A 9884 -4.1424 1.117701445 24.6775564 6.78E-07 0.000466983
ETV3L 440695 -4.146793 -0.653607293 12.48786714 0.000409604 0.009117125
ASB8 140461 -4.152424 0.143628616 14.90190478 0.000113249 0.004765662
MYC 4609 -4.18582 8.107184051 19.12553171 1.22E-05 0.001557072
ZYG11A 440590 -4.204527 2.758763894 14.18476486 0.000165707 0.005886328

14-Sep 346288 -4.216995 -0.208867543 12.78110044 0.000350139 0.008426237
PCDHA9 9752 -4.222042 -0.571347386 16.47977398 4.92E-05 0.003075646
CYP46A1 10858 -4.237933 0.704335112 26.01744537 3.38E-07 0.000349723
MAP3K15 389840 -4.249577 0.00021484 13.95313874 0.000187424 0.006162278
TCAM1P 146771 -4.25248 0.113456924 13.47046262 0.000242349 0.006920307
LINC00471 151477 -4.256091 1.792962755 12.50723564 0.000405379 0.009093264
GRK3 157 -4.276015 4.000413353 13.88573822 0.000194267 0.006287256

101927973 -4.28765 0.449339677 19.26937687 1.14E-05 0.001526235
CHEK2 11200 -4.302493 0.792202461 12.55899448 0.000394304 0.008992712

102723766 -4.34004 3.216179941 15.23700512 9.48E-05 0.004296571
101928567 -4.370201 -0.213560278 15.95185419 6.50E-05 0.003554403

ATP13A2 23400 -4.437404 3.045937688 14.16846009 0.000167149 0.005888917
100996291 -4.437515 0.345253898 19.75988553 8.78E-06 0.001387666

LAIR1 3903 -4.442186 3.494939254 23.54961469 1.22E-06 0.00061079
440446 -4.483544 0.228012071 20.86987496 4.92E-06 0.001098581

DMC1 11144 -4.487979 0.62910621 22.09479447 2.60E-06 0.000883454
283299 -4.520214 0.7638767 22.33219803 2.29E-06 0.00088036

TOR3A 64222 -4.521834 4.817395126 13.3505622 0.000258345 0.007217082
PDE4C 5143 -4.523079 0.828136207 14.43209067 0.000145305 0.005424503
IL6R 3570 -4.534984 6.420929844 13.56785669 0.000230092 0.006783202
EIF2B5-AS1 100874079 -4.539599 -0.081524795 12.85167587 0.000337177 0.00826109

101928118 -4.586833 1.462139897 14.49993926 0.000140164 0.005328812
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CELF5 60680 -4.647665 1.037643604 12.67366046 0.000370843 0.008674679
NKX3-1 4824 -4.658622 6.197520027 12.22389171 0.000471814 0.009978084
RPS6KB2 6199 -4.662378 1.09523961 17.58068968 2.75E-05 0.002274862
MOG 4340 -4.68508 0.157079752 16.17643533 5.77E-05 0.003356438
SYDE2 84144 -4.688391 1.923916618 16.36706618 5.22E-05 0.003149713
CNBD2 140894 -4.699015 0.406183347 15.16645151 9.84E-05 0.004364474
MCM3AP-AS1 114044 -4.716589 -0.156569457 17.56099534 2.78E-05 0.002277964
ZBP1 81030 -4.722309 0.294529668 13.70560697 0.000213815 0.006621864
MCF2L2 23101 -4.725039 3.783858183 17.67378616 2.62E-05 0.00221251
ATF3 467 -4.766379 7.925290432 14.06749405 0.000176366 0.005968147
TRPM6 140803 -4.77147 0.669733141 29.12028863 6.80E-08 0.000170277
CFAP69 79846 -4.795469 0.0485773 23.03461981 1.59E-06 0.000715267
GPRIN3 285513 -4.806506 0.812685079 19.17046102 1.20E-05 0.001544612
LINC00649 100506334 -4.812559 3.114961709 15.33068446 9.02E-05 0.004203858
CXCL2 2920 -4.812591 7.165527576 19.66482624 9.23E-06 0.001387666
ZNF37BP 100129482 -4.817106 2.642656888 14.00814188 0.000182021 0.006069071
C4orf36 132989 -4.817508 2.558511198 15.51457229 8.19E-05 0.004050421
RGPD5 84220 -4.841817 6.063685229 16.98419553 3.77E-05 0.002662756
ANKMY1 51281 -4.856705 0.499856777 18.12500841 2.07E-05 0.001954949

100129917 -4.873734 1.532630917 14.33189693 0.000153246 0.00559467
ICOSLG 23308 -4.932024 1.850388696 15.10988503 0.000101431 0.004461335
MLXIP 22877 -4.959525 3.361625721 22.64306244 1.95E-06 0.000827168
C12orf76 400073 -4.99084 3.23062363 15.0999837 0.000101964 0.0044729
FAM71D 161142 -5.01523 1.563150266 15.05272382 0.000104549 0.004526272
ARHGAP44 9912 -5.030905 3.658713965 21.45340516 3.63E-06 0.000975649
DTNA 1837 -5.098352 3.744462508 14.39779531 0.000147975 0.00546446
FGFR2 2263 -5.105154 0.495653034 19.05002072 1.27E-05 0.001576209
SNHG20 654434 -5.151696 4.20723041 14.81884463 0.000118347 0.004909276
FLVCR1 28982 -5.239668 6.658924625 21.30032243 3.93E-06 0.001022818
BBS1 582 -5.276197 0.647165564 14.39713369 0.000148027 0.00546446
FBRS 64319 -5.283566 1.642085348 15.06533131 0.000103853 0.00450794
METTL12 751071 -5.314914 4.153285146 20.01672536 7.68E-06 0.001387666
FAM86B3P 286042 -5.321754 -0.014125255 13.0478311 0.000303636 0.007866287
FAM153B 202134 -5.351187 0.552948244 17.06323619 3.62E-05 0.002611089
LOXL1-AS1 100287616 -5.359962 3.015177134 17.1878782 3.39E-05 0.002568624
CLNK 116449 -5.383978 0.364041749 19.90877685 8.12E-06 0.001387666
HYPK 25764 -5.418138 4.926087575 12.82190343 0.000342585 0.008309532
ZBTB16 7704 -5.422035 0.78354867 14.13515925 0.000170134 0.005911082

441072 -5.481064 2.623199692 13.47680588 0.000241531 0.006920307
100506083 -5.485485 1.45561287 14.10704999 0.000172695 0.005950073

ESAM 90952 -5.502859 0.55386337 13.72736882 0.000211352 0.006621864
SNHG23 79104 -5.519062 1.379880507 20.32654911 6.53E-06 0.001265698
DOC2A 8448 -5.530024 0.708938141 15.48330379 8.32E-05 0.004060701
TSIX 9383 -5.615211 3.31572938 21.47408772 3.59E-06 0.000975649
RGS16 6004 -5.662557 4.321704979 15.85198079 6.85E-05 0.003689795
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VGLL3 389136 -5.690017 0.747126178 12.22699055 0.000471031 0.00997428
SPDYE1 285955 -5.728661 3.354428928 14.42465999 0.000145879 0.005433682
WNT2B 7482 -5.780266 4.985659849 18.26098653 1.93E-05 0.001862815
TUBGCP4 27229 -5.786456 5.71160392 17.07817167 3.59E-05 0.002611089
RPARP-AS1 100505761 -5.822226 4.254540496 19.51453598 9.98E-06 0.001435744
SLC25A34 284723 -5.915867 3.683949205 18.8999726 1.38E-05 0.001582074
REXO1L1P 254958 -5.968681 2.004936849 13.55612721 0.000231534 0.006783202
FAM217B 63939 -5.993685 4.375371129 13.59823974 0.000226398 0.006770643
GSN-AS1 57000 -6.001878 0.472769279 16.1299083 5.91E-05 0.003392124
ZNF596 169270 -6.003161 1.812800967 16.65307576 4.49E-05 0.00288027
LACTB2-AS1 286190 -6.062908 5.324223622 18.70415217 1.53E-05 0.001660869
C1orf132 407025 -6.100325 1.890576066 13.05142859 0.000303053 0.007866287
GIT2 9815 -6.179879 3.590518489 15.03779927 0.000105379 0.004540957
IRF1 3659 -6.23193 2.928529639 19.20670722 1.17E-05 0.001544612
AKAP5 9495 -6.269642 3.666260067 17.83508592 2.41E-05 0.002096844
MMACHC 25974 -6.274479 3.306524131 17.78947644 2.47E-05 0.002125342
NFS1 9054 -6.286629 2.458782266 18.41779724 1.77E-05 0.001788861
CCDC84 338657 -6.323064 2.507937963 15.26259211 9.36E-05 0.004263699
ZNF83 55769 -6.332075 5.054968449 19.03051467 1.29E-05 0.001576209
ETFBKMT 254013 -6.332264 5.935745914 20.14136869 7.19E-06 0.001321645
FAAP24 91442 -6.347168 2.650011856 17.03990851 3.66E-05 0.002620477
COBLL1 22837 -6.393453 2.641396327 13.71269498 0.00021301 0.006621864
ITGA10 8515 -6.43062 2.129322767 13.62754195 0.000222892 0.006738903
SLC16A4 9122 -6.467666 4.162922726 19.76208583 8.77E-06 0.001387666

102724532 -6.485947 5.181890689 14.50571039 0.000139735 0.005324753
PINK1-AS 100861548 -6.491 2.349361471 14.53418066 0.000137639 0.005262231
AOC3 8639 -6.642884 1.952085536 13.09000304 0.000296876 0.007780877
MATN2 4147 -6.658558 4.031785356 15.28171439 9.26E-05 0.004262059
SNHG12 85028 -6.681623 6.289302077 37.36620323 9.79E-10 1.62E-05
SPATA21 374955 -6.748577 2.257509442 16.82175707 4.11E-05 0.002789352
TRIM65 201292 -6.832591 2.748611874 12.50023886 0.0004069 0.009093665
ZNF584 201514 -6.853105 2.801508921 14.60562499 0.000132518 0.005233142
ZNF700 90592 -6.877556 6.782150941 13.17737869 0.000283349 0.007666863
ZNF561-AS1 284385 -6.953768 4.8915147 15.03184577 0.000105712 0.004540957
ZFP82 284406 -6.960809 5.131701406 12.92212234 0.000324721 0.008099915
RAPGEF4 11069 -7.078777 1.215355687 14.01814748 0.000181055 0.006061303
CPA4 51200 -7.136833 5.948087699 15.01365107 0.000106736 0.004573069
FAM174B 400451 -7.185559 2.416233454 13.30956073 0.000264056 0.007327117
ZNF292 23036 -7.226714 7.051376656 16.18846784 5.73E-05 0.003356438
ARHGAP28 79822 -7.268756 2.538813016 14.19902068 0.000164456 0.005874243
TCEANC 170082 -7.32122 4.236484343 14.75222732 0.000122603 0.005006425
ZNF285 26974 -7.374588 4.042459086 15.56080579 7.99E-05 0.00400272
ANKRD46 157567 -7.51377 4.14591672 14.75683738 0.000122303 0.005006425
TMEM267 64417 -7.584835 2.999239868 15.40949892 8.66E-05 0.004136991
DENND6B 414918 -7.596089 4.179380235 25.36021453 4.76E-07 0.000413996



HGNC	symbol
Entrez	Gene	

ID
log	Fold	
Change log	CPM Log	Ratio P-value

FDR	adjusted	P-
value

DDHD1 80821 -7.670101 3.592303715 15.60390646 7.81E-05 0.003986122
101928053 -7.744694 3.594817287 15.21621234 9.59E-05 0.004332268

ZNF620 253639 -7.908539 5.787952804 21.11794916 4.32E-06 0.001049694
MIR1302-9 100422831 -8.005222 4.838546482 12.81432675 0.000343975 0.008310241
KIAA0922 23240 -8.103099 3.715850789 13.7116491 0.000213128 0.006621864
PTCH2 8643 -8.221238 2.684898852 12.37646638 0.000434779 0.00953935
LMBR1L 55716 -8.29643 3.20744298 14.44929286 0.000143984 0.005415927
SHISA2 387914 -8.48004 5.914753645 18.19829998 1.99E-05 0.001902887
ZKSCAN8 7745 -8.557042 5.800297152 20.27694251 6.70E-06 0.001273677
EDN2 1907 -8.576043 4.500724668 12.94709429 0.000320418 0.008045913
NEB 4703 -8.59392 4.789161409 13.06562265 0.000300765 0.007840129
UBAP1L 390595 -8.626988 4.055236717 14.63257493 0.000130637 0.005193443
TULP2 7288 -8.722725 4.246888283 19.32562487 1.10E-05 0.001506424
MBD5 55777 -8.769197 2.957199276 14.88566244 0.000114228 0.004794672
ARC 23237 -8.979471 5.796699942 18.95640852 1.34E-05 0.001582074
AP4B1 10717 -9.043399 5.885627895 23.54734692 1.22E-06 0.00061079
TRIM66 9866 -9.121437 4.702617936 19.30495776 1.11E-05 0.001510335

400512 -9.220656 3.579697556 12.75565809 0.000354934 0.008458063
FER1L5 90342 -9.33722 3.870985489 15.58223537 7.90E-05 0.003995079

100505658 -9.549445 3.528708609 13.04148443 0.000304667 0.007872773
101060498 -9.577044 3.982768811 12.50284767 0.000406332 0.009093264

HIST2H2BE 8349 -9.602855 5.369999903 17.80317693 2.45E-05 0.00212114
CLN5 1203 -9.759469 4.642449808 17.04174875 3.66E-05 0.002620477
DEPDC5 9681 -9.974682 5.219061306 13.45042992 0.00024495 0.006960453
ZHX3 23051 -10.01858 4.832239026 17.15556364 3.44E-05 0.002577228
WDR47 22911 -10.02017 4.533553234 15.65833784 7.59E-05 0.003897078
THAP9 79725 -10.14389 4.755678658 23.08315965 1.55E-06 0.000715267

101929595 -10.3839 4.932831337 22.34503079 2.28E-06 0.00088036
MAGI2 9863 -10.51061 4.865230129 16.17263338 5.78E-05 0.003356438
PCSK1 5122 -10.57115 5.008580425 12.56194316 0.000393682 0.008992712
SNORD99 692212 -10.67375 4.859883381 28.94967738 7.43E-08 0.000170277
RGS2 5997 -10.75496 7.386671094 18.50764006 1.69E-05 0.001738283
FDX1 2230 -10.75539 4.696498539 21.78401695 3.05E-06 0.000901119

100422737 -10.7703 4.540239917 14.07725077 0.000175453 0.005968147
NUP210L 91181 -11.15984 6.170722595 27.87808073 1.29E-07 0.000179292

Table	7:	Differentially	expressed	genes	between	orange	and	blue	clusters	as	determined	by	edgeR	(FDR	


