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Abstract

Firms in several cL -'-ete parts manufacturing industries, e.g., electronics

equipment, computers,telecommunications equipment etc. operate in a multi

plant environment where products are processed successively at several plants.

Prior studies have ignored the interaction between different plants in a multi-plant

scenark. The objective of this dissertation is to study the impact of coordination

on the cost performance of a two-plant firm.

We propose a model that jointly determines production and inventory

decisions so that the total cost of holding inventory and overtime, at the two plants

is minimized. Our model captures the interaction between the two plants and

is preferable to the uncoordinated or the sequential approach which ignores this

interaction. We consider the case with limited capacity and explicitly model setup

times. Strategies based on Lagrangian relaxation and Lagrangian decomposition

methodologies are proposed to solve the mode!.

Two main findings emerge from this research. First, our results indicate

that coordination could lead to improved cost performance and enhanced profits

for firms. Two parameters, the setup time to processing time ratio and the ca

pacity utilization at the two plants played a significant role in determining the

cost improvements. Managerial implications relating to implementation of the

coordinated model are discussed. The second important finding of this research

is that Lagrangian decomposition consistently outperforms Lagrangian relaxation

in terms of achieving better deviation from the optimal solution, for this problem.

A Linear Programming based technique for further enhancing the convergence

between the upper and lower bounds is presented.

In the quest for improved performance, multi-plant coordination repre

sents an important strategy for firms. The contribution of the current research is

in modelling some of the salient issues of this problem and exploring promising

methodological directions.
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Preface

Les entreprises de plusieurs industries manufacturières de pièces physiques,

e.g. équipement électronique, ordinateurs, équipement de télécommunication,

etc... ont une infrastructuœ multi-usines, Le. où les produits sont fabriqués

successivement à plusieurs usines. Des aspects importô,üts du problème de la

planification de la production, relativement aux entreprises multi-usines et dans

le contexte d'une entreprise à deux usines, fonts l'objet de cette dissertation.

Nous propowns un modèle qui détermine les décisions de production et

d'inventaires de sorte que le cot total de storage et d'heures supplémentaires

soit minimisé aux deux usines. Notre modèle retient bien l'interaction entre les

deux usines et il est préférable à comparer aux approches séquentielles et non

coordinnées, lesquelles ignorent cette interaction. Nous analysons le cas réaliste

et modélisons explicitement les temps d'installation, ce qui est une représentation

plus précise du type de système de prodution étudié que celle de modèles qui

utilisent un coût d'installation constant comme proxy pour le temps d'installation.

Nous proposons différentes stratégies, basées sur la relaxation de Lagrange et sur

la décomposition de Lagrange, comme solutions pour résoudre le modèle.

Deux principales découvertes resortent de cette recherche. En premier

lieu, nos résultats indiquent que la coordination pourrait mener à une meilleure

performance au niveau du cot ainsi qu'à des profits supplémentaires pour les en

treprises. L'analyse de variance a révélé que la valeur de deux paramètres, le ratio

du temps d'installation au temps de fabrication et la capacité d'utilization aux

deux usines, jouent un rôle significatif dans la détermination des améliorations de

coûts. Nous élaborons sur l'importance de cette recherche au niveau du manage

ment. Le deuxième résultat important est que la décompostion de Lagrange sur

passe constamment la relaxation de Lagrange en obtenant une meilleure déviation

de la solution optimale pour le problème de coordination dans une structure multi

usines. Une technique d'algèbre linéaire pour accentuer la convergence entre les



•

•

•

limites (supérieures et inférieures) est enfin proposée.

Dans la recherche d'une performance améliorée, la coordination de la

structure multi-usine est une stratégie importante pour les entreprises. La contri

bution de cette recherche est au niveau de la modélisation de certains points (du

problème) les plus à propos tout en explorant différentes méthodologies promet

teuses.
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Introduction

1.1 Background and Issues

The erosion of market shares in several important industries has forced North

American firms to take a new look at their manufacturing practiccll. Studies of

succcssful Japanese and American companies underline, among others, the need

to reduce inventory levels and manufacturing lead times, to achieve better coordi

nation between the different autonomous units that comprise the organization and

to effectively adapt to rapidly changing manufacturing requirements as product

life cycles shorten (Dertouzos et aL, 1990). Reduccd inventory (and lead time)

results not only in better cost performance but also exposes the inter-dependencc

of individual units providing impetus for better quality management, coordina

tion between units and flexibility to switch to new products quickly as consumer

requirements change. Sorne authors have advocated surplus production capacity

as a strategy for inventory minimization. This option facilitates the scheduling of

production as close as possible to actual requirement of items, reducing the need

to hold inventory, but it entails higher capital investment. Moreover, in micro

electronics industries like computers, telecommunications equipment etc., which

are characterized by increasingly compressed product life cycles, demand for in-

1
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dividual items may fluctuate rapidly from period to period. Providing excessive

capacity may therefore be uneconomical. Given fixed capacity, an important de

cision problem for the firm is to satisfy demand while ensuring optimal use of its

limited productive resources such as investment in inventory, payment for regular

and overtime labour etc. While regular labour is often a fixed, committed charge

in the short to medium term, costs incurred fQr carrying inventory and for schedul

ing overtime depend on managerial decisions which must be made prudently.

Another reality that managers must confront in today's business environ

ment is an increasingly complex and globalized supply chain. A supply chain

refers to a network of facilities that procures raw materials, transforms them into

intermediate and finished goods and delivers the finished products to customers

through a distribution system (Lee and Billington, 1992). To remain globally com

petitive, firms must source raw materials from the most effective supplier (who

may be considerably far-flung), and supply a disbursed customer base. Pressure

to provide good service to customers invariably results in an increased accumula

tion of inventories in the supply chain. For example, it has been estimated that

Hewlett-Packard Company has more than 3 billion dollars invested in worldwide

inventories (Billington, 1994).

In the context of supply chain management, a strategie imperative for the

firm is to minimize inventory throughout the supply chain while providing good

service to customers. A vital requirement for effective supply chain management

is coordination between the individual units comprising the organization. From

an inventory point of view, coordination is desirable because it captures the com

plex inter-relationships between inventory at different sites, in the firm's decision

making process. The benefits that flow from improved communication between

different units when coordinated decisions are implemented are also of consider

able value to the firm. This advantage is increasingly seen as being critical to the

firm's market responsiveness. Planning for coordination between different entities

2
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in a supply chain is therefore likely to be a significant management concern in

future. We use an example of a supply chain to describe the two main types of

entities, manufacturing and distribution, to develop the pattern of interaction be

tween these entities and to enumerate the benefits of coordination. Figure 1.1 is a

representation of a supply chain which is adapted from Lee and Billington (1992).

These authors have described the supply chain for a computer manufacturer where

work-in-process undergoes value addition at several manufacturing plants till the

finished computer systems are obtained. The finished computer systems are sent

to distribution centres from where they are distributed to customers.

Ali manufacturing plants and distribution centres carry inventory stock

piles and receive inputs from external suppliers. The manufacturing plant at the

first level is concerned with serniconductor manufacturing. At this plant, silicon

discs sliced from a silicon crystal are imprinted with the dense patterns of an

integrated circuit. The main technical processes at this plant include wafer fab

rication, wafer probing, device assembly and device testing. For details of the

manufacturing processes, see Cooper et al., (1992) and Bassok and Akella (1991).

The chips, as the tested devices are called are sent to the next level plant which

is responsible for printed circuit board (PCB) manufacturing. Several different

chips are mounted on plastic boards to produce PCBs. The main processes here

include surface mounting and through hole insertion of components, in-circuit

testing, functional testing and the burn-in test for weeding out infant mortality.

Details of PCB manufacturing can be found in Bhatnagar et al., (1993) which

describes a field study carried out at a telecom equipment plant of Northern Tele

com Fiberworld Division. After testing, PCBs are sent to the third level plant

where severa! PCBs and other electronic devices are assembled to produce finished

computer systems. The completed computer systems are sent to the distribution

centres from where they are distributed to the final customers. In a company like

Hewlett Packard, manufacturing plants may be as far apart as United States and

3



•

•

•

Asia for eatering to a customer base spread over USA, Europe and Asia (Billing

ton, 1994). This trend towards procuring, manufacturing and selling globally has

increased considerably in the last decade or so and it appears unlikely to diminish

in future.

Spurred in a large measure by this trend, the study of supply chain man

agement has received notable research attention recently. Work to date encom

passes a broad range of issues. There has been much debate about the eifectiveness

of the different organisational structures found in North America and Japan. This

stream of research has focused on determining empirical1y if either of these organ

isational structures is inherently more flexible and adaptable for today's uncertain

and rapidly changing business environment (DECO, 1991). The enterprises are

typically organized in a modular structure consisting of a network of interlinked

facilities called keiretsu, a grouping of industrial firms linked by equity eross

ownership, interlocking management, and long term buying-selling relationships.

Each firm in a kciretsu specialises in the process associated with a part of the

value addition chain. Such an organization has resulted in substantial benefits

to each profit making centre within the keiretsu and is believed to be one of the

main sources of Japan's overwhelming industrial competitiveness (DECO, 1992).

In contrast to the Japanese system of networking and subcontracting within the

group structure, North American firms have extensively relied on a strategy of

horizontal and vertical integration. Sometimes vertical integration may be neces

sary due to strategie reasons. Examples in the computer industry are International

Business Machines (IBM) in North America and Acer Computers in Taiwan which

manufacture their requirements of semiconductor chips in-house. Acer Comput

ers was forced to establish its own wafer fabrication facilities in collaboration

with Texas Instruments of USA after its sales of eomputers were affected by the

U.S.-Japan Semiconductor Agreement of 1986 which resulted in a severe shortage

and steep price increases of dynarnic random access memory chips (ORAMs) (Far

4
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Figure 1.1: Representation of Supply Chain

Source: "Managing Supply Chain Inventory: Pitfalls and Opportunities," Lee

H.L., and Billington C., Sloan Management Review, Spring 1992.
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Eastern Economic Review, 1989).

Unfortunately, despite vertical integration, firms in North America are

characterized by lack of intra-firm cooperation. The focus on narrowly defined

short term performance measures to judge managerial performance often results in

extremely compartmentalized organizations where managers responsible for suc

cessive stages of the value addition chain have little motivation to coordinate their

efforts. For example, the problems arising from the lack of interaction between

product design and production departments is weil documented in Dertouzos et

al., (1990). In a similar manner decisions relating to production planning in differ

ent plants within the same firm are often addressed in a sequential manner. The

downstream plant typically takes its production planning decisions independently

and communicates these decisions to the upstream plant which uses this infor

mation as input. This method ignores interaction between the plants and results

in sub-optil.lal planning for the organization as a whole, thereby increasing the

overall cost of operations.

Whether firms adopt a keiretsu type of structure or choose to integrate

vertically, it appears inevitable that firms in North America will have to improve

their coordination patterns both within the organization and with their supply

network if they are to be competitive in the business environment of the future. A

modified form of the Japanese keiretsu may weil be the likely future structure of

firms in North America, with different firms specializing in different parts of the

value addition process. This view is supported by Drucker (1990) who observes

that the manufaeturing firms of the future will probably be organized as a fiotilla,

consisting of interlinked modules centred around closely related production pro

cesses. The trend towards networking will be accelerated by the availability of

on-line information exchange systems via efficient telecommunications such as

Electronic Data Interchange (EDI). To propose a decision making framework for

such an organization, a range of issues need to be deliberated at both strategie

6
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and operational levels. See Table 1.1 for a summary of the most salient of these

issues. These issues relate to the two main types of entities, manufacturing and

distribution that exist in a supply chain. Our discussion of these issues is from

a fairly broad perspective with the objective of bringing out both strategic and

operational imperatives for firms.

In a broad sense, manufacturing entities encountcr decisions relating to

two main activities, material procurement and production or the transformation

of the procured items into finished goods. The issues of material procurement and

supplier relations have been in the spotlight as these are believed to be a major

source of the competitiveness of Japanese companies. An excellent treatment of

these issues is contained in a recent book which makes a cross-regional comparison

of automobile companies in the United States, Europe and Japan (Womack et al.,

1990). Although this book deals with the automobile industry, most issues are

pertinent to other industries as weIl. For examples in the electronics industry,

see OECD 1991, 1992 publications. Sorne features that characterize the Japanese

procurement system are, tiered structure, long term relationship between the sup

plier and the buyer, close association of the supplier from early stages of the design

process, rational joint cost analysis for ensuring reasonable mutual profits and a

continuous decline in cost of product over the lifetime of the product (see Table

1.2). Toyota Motor Company, for example sources out complete parts to about

300 first tier suppliers who in turn sub-contract the required components to a

second level of suppliers. General Motors, by contrast deals with almost 2500

suppliers, by directly procuring aIl compommts and doing the assembly at its

own plants. One of the most distinguishing aspects of the relationship between

Japanese firms and their suppliers is a pricing system that works on a market

priee minus rather than a supplier eost plus system. Starting from a target

market priee, techniques like value engineering and value analysis (see Womack

et al., 1990 p.148 for details) are used to reduce costs so that reasonable profits

7
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can be assured for both the firm and its suppliers. The core of this system is

a rational framework for analyzing costs, establishing prices and sharing profits

which replaces the relative bargaining power of the two sides.

Establishing such a framework requires a long term vision that motivates

the supplier to share proprietary information for the benefit of both the parties.

Japanese suppliers are willing to share process information with the buyer firms,

not because they are inherently more cooperative, but because cooperation has

continuously ensured higher profits in the pasto A worthwhile measure towards

improved supplier buyer relations maybe a long term policy that rewards the

supplier for coordination efforts by an investment in process improvement out of

cash benefits of coordination. Also this policy needs to be integrated with the

operationallevel supply policy by setting out suitable performance measures that

reinforce coordination.

For production activities, strategie issues that are criticai are enumerated

in Table 1.1. Choice of appropriate technology is critical, given the realities of

compressed product life cycles which in the computer industry may be as short

as six months to one year. The firm must consider the trade-off between the

costs and benefits of dedicated versus flexible technology. The issue of production

capacity that the firm chooses to have at different facilities has been alluded to

before. The traditional trade-off in capacity planning is between the economies

of adding large capacities versus the cost of installing capacity before it is needed

(Luss, 1982). In the context of a supply chain, an additional concern is to allocate

limited resources to add capacity judiciously across aIl entities. Capacity added at

one entity in isolation in a supply chain may fail to give adequate improvements

unless capacity is suflicient at other entities. The capacity decision needs to be

integrated with good product and process design to ensure ease of manufacturing,

8
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Activity Issues Benefits of Coordination

Manufaeturing

(a) Materiai Strategie

Procurement 1. Structure of 1. Increased

Supplier Network Competitiveness

2. Reduced Costs

Operational

1. Efficiency of 1. Greater Reliability

Ordering Policy 2. Reduced Costs

(b) Production Strategie

1. Technology Choice 1. Increased

2. Capacity Expansion Competitiveness

3. Facility Location 2. Improved Capital

4. Product/Process Utilization

Design

Operational

1. VVIP Management 1. Reduced Costs

2. Process 2. Improved Service

Improvement

3. Overtime/Expediting

Subcontraeting

Di5trib~,tion

Strategic

1. VVarehouse 1. Reduced Costs

Location

Operational

1. Inventory 1. Reduced Costs

2. Transportation 2. Faster Response

3. Expediting

Table 1.1: Issues for Supply Chain Management



• Japanese North American
f----
1. Tiered Structure 1. Untiered Structure

- Sourcing of complete parts - 2500 suppliers at

- 300 suppliers at Toyota General Motors

2. Long term relationship 2. Short term contracts

3. Suppliers closely associated 3. Suppliers brought in late

with design into design process

4. Rational joint '::ost analysis 4. Intense cost pressure from

buyer

5. Merging learning curves of 5. Little exchange of process

buyer and supplier information

•

•

Table 1.2: Features of Material Procurement

reduced costs, good quality and flexibility to meet future changes. From the point

of view of supply chain management, the focus of product and process design

must be on good performance on these measures for the entire set of entities.

Interaction between processes of different manufacturing entities must therefore

be captured in the decision making process.

At the operational level, the trade-off relates to the optimal balancing

between inventory, setup, overtime, backorder and expediting costs. As mentioned

earlier, these decisions are typically done sequentially for different manufacturing

entities in the supply chain and the interaction between processes at different

entities is ignored. Sequential planning results in sub-optimality and hence higher

costs for the firm as a whole. Coordination between different entities results not

only in reduced costs but also fosters better communication between managers at

different entities.

Distribution entities serve as an interface between manufacturing plants
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and customers. As outlined in Table 1.1, at a strategie level, the important de

cision making issue relates to warehouse location, while at the operational level,

decisions must be taken regarding inventory, transportation and expediting. From

the point of view of supply chain management, coordination between manufactur

ing and distribution assumes significance. Most companies manage manufacturing

and distribution planning independently, without any coordination between the

two functions. The rationale for coordination between these functions arises from

the conflicting impact of their individual objectives. Manufacturing would like to

plan large production lots to increase efficiency, but this increases inventory and

limits f1exibility. Distribution on the other hand, would like to consolidate batches

of different items together to reduce transportation costs necessitating additional

setups or increased inventory. Frequent shipments (espoused in just-in-time man

ufacturing systems) reduce inventory but result in increased transportation costs.

Planning either function in isolation from the other may therefore worsen the

performance of the other function as weil as the overall performaI).ce of the firm.

Bendiner (1993) has argued that production and distribution planning are an

interrelated set of activities and must be managed and controlled as part of an in

tegrated system. The author recommends instituting performance measures and

organizational changes that reinforce integration. Lee et. al., (1993) present an

other aspect of coordination between manufacturing and distribution entities in

a supply chain by using the concept of design for customization. The authors

show that by performing customization of products at distribution centers instead

of at the manufacturing plant, companies can benefit substantially in terms of in

ventory costs and f1exibility. This represents an integration of the product/process

design process across both manufacturing and distribution entities.

These are sorne of the salient issues that are important for the study of

supply chain management. It is evident from the previous discussion that these

issues represent a rich and varied set of research questions that are likely to he

11
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pertinent in the years to come. Analysis of these issues poses an important chal

lenge to researchers in both academic and industrial settings. Treating all the

above issues explicitly in a single model will apparently make the model very

diflicult to solve. A good strategy in such a scenario is to first consider subsets

of the above issues within sub-models and to later build linkages between these

sub-models. One distinction which we have already made in Table 1.1 serves as

a intuitive guideline for differentiating sub-models, i.e., strategie versus opera

tional issues. A set of manufacturing entities and one manufacturing plus one

distribution entity are alternative ways of differentiating sub-models. These rep

resent different approaches to coordination using distinctive sets of issues. In this

dissertation we focus on the operational issues relating to coordination between

manufacturing entities and hence the term multi-plant coordination. We use a real

life multi-plant manufacturing situation at IBM as the motivating example for this

research. However the constructs defined herein apply in general to discrete parts

manufacturing industries.

The multi-plant structure is found in discrete part manufacturing in

dustries like computers, telecommunication equipment etc., (Bassok and Akella,

1991). In a multi-plant scenario, an important managerial issue is the determi

nation of production quantities at each plant such that total costs at aU plants

are minimized. This problem is typically addressed sequentially or in an unco

ordinated manner. For example, in a two-plant firm, the problem is first solved

for the downstream plant and its production plan is determined. This defines the

demand vector for the upstream plant. Using this demand as input, the problem

for the upstream plant is then solved independently. The uncoordinated approach

is inadequate because it does not consider the interactions that exist between the

two plants and can result in sub-optimal production plans.

In contrast, we propose a coordinated approach which jointly deter

mines production quantities at both plants. The objective of this research is to
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compute the cost benefits of coordinated production planning, in a multi-plant

manufacturing system. The two-plant case is cOllsidered although the extension

to the more general n-plant scenario is not difficult. The products are successively

processed at the two plants. See Figure 1.2 for a representation of the problem.The

upstream plant, A, produces senùconductor devices called chips which are then

mounted on ceranùc substrate called modules at Plant B. Each module requires

several chips and a chip could be used in several modules. We consider a single

bottleneck workcenter at each plant. If a weil defined hottleneck workcenter does

not exist, the workcenter could represent what Karmarkar et al., (1992) call an

approximate composite model of an entire facility. Given demand forecasts

over a planning horizon, the problem is to determine productionfinventory levels

at each plant so that the overall costs are nùnimized. While the optimal solution

to this problem may not he optimal for any of the plants considered individually,

it represents the best result for the joint problem. This approach is distinct from

the uncoordinated approach where an optimal solution is found for the down

stream plant considered individually but the upstream plant must find the hest

solution for the demand defined by the production plan of the downstream plant.

We consider the capacitated case, wherein the total of setup and processing times

must not exceed the specified capacity.

An important aspect of the kind of manufacturing systems under study is

that the cost in terms of actual cash outRow associated with setting up a machine

is often negligible. This is because no materials are consumed in setting up the

machine. The cost of a setup is essentially the time consumed which reduces the

productive capacity of the facility. Most previous efforts in literature have dealt

with setup time indirectly by means of a pre-deternùned setup cost. Theoretically,

the setup cost should reRect the shadow price of the capacitated resource. Since

the shadow priee depends on resouree usage, the use of a pre-deternùned setup

cost is an inaccurate representation of the production system. In this paper we
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explicitly model setup times, which more accurately refiects the true situation in

the class of manufacturing systems under study.

Since we formulate our models as mixed-integer programs, the method

ological underpinnings of this research are built around the theory relating to

the optimization of mixed-integer problems. The specifie methodology that we

use is Lagrangian relaxation. The main justification for this choice is that La

grangian relaxation has often provided good solutions to diflicult combinatorial

problems. We also present an alternative solution strategy based on Lagrangian

decomposition (called variable splitting by sorne authors) which is a generalized

version of Lagrangian relaxation. Details of these alternative methodologies are

described in later chapters. Our results indicate that the coordinated approach

to production planning in multi-plant firms leads to improved cost performance,

reducing total costs by more than 10% in several cases. Exploration of a variety

of experimental factors at different levels demonstrates the robustness of our re

sults, i.e., cost improvement is shown to be not dependent on a specifie mix of

input factors. The gap between the lower and upper bounds (which represents

the maximum deviation from optimality) turns out to be moderate and does not

increase with increase in problem size. This is reasonable, given that the problem

we are considering is extremely diflicult. In general, Lagrangian decomposition

outperforms Lagrangian relaxation as a solution methodology, yielding higher cost

improvements and lower gaps between upper and lower bounds.

An important outcome of this research is that it establishes the impor

tance of multi- plant coordination and provides motivation for further research

efforts. We believe that the issues outlined in this dissertation represent an im

portant set of research questions. Given the emphasis on supply chain coordina

tion, this effort relating to multi-plant coordination is timely. A general direction

of research is outlined in the research framework presented in Chapter 2. We

believe that this framework could serve as a guide for future efforts in this area

14



• • •
Oemand for ModulesOemand for Chips

----------
~- -- --------, - -- --

..". ...... - - .....'" ".,"'" .....

f '. ( '\
PLANT A PLANT B

X kl Chips X. Modules. It

I kt 1it

Information Flow

Malerial Flow

Figure 1.2: Reprcscntaùon of Mulù-Plam Coordinaùon Problem



•

•

•

which in turn will help clarify this framework. The alternative methodologies that

ha.ve been used, help to focus on their relative advantages and disadvantages. The

technique used for analyzing the gap between bounds also helps to generate better

feasible solutions. In conclusion, this dissertation provides meaningful answers to

several aspects of the multi-plant coordination problem. Specifically, we success

fully model the critical issues explicit treatment of setup times and inter-plant

interaction.

1.2 Summary

Giobalization of manufacturing activities has led to intensified competition forc

ing companies to improve their manufacturing practices. Pressure has mounted

on companies to effectively manage their supply chain by reducing inventory at

each entity, while providing good service to customers. Vitally important for

achieving this objective is coordination, between functions (e.g., manufacturing

and distribution) and within functions (e.g., multiple manufacturing plants). A

host of important issues at both strategie and operationallevels need to be delib

erated in order to implement such coordination. Considering ail issues in a single

model however can quickly overwhelm the decision maker and make the model

computational1y intractable. Sub-models focusing on subsets of related issues are

the answer to this problem. This dissertation is an effort at defining one such

sub-model. Specifically, the focus here is on coordination between multiple plants

in a multi-plant manufacturing firm. Two important aspects of this work set it

apart from previous related research efforts. We model setup times explicitly and

also consider the interaction between processes at different plants. Simultaneous

treatment of these issues in a single model has not been attempted till now and

hence this dissertation bridges a gap in our knowledge of multi-plant coordination.

Alternative solution algorithms based on Lagrangian relaxation and Lagrangian
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decomposition are presented. In general, Lagrangian decomposition appears to

be the superior approach providing sharper bounds between the upper and lower

bounds. Experimentation on random data provides evidence for the superior per

formance of our model. Analysis of variance of cost improvement obtained for a

variety of experimental factors at different levels establish the robustness of our

results.

1.3 Organization

The rest of this dissertation is organized as follows. In Chapter 2 we review a broad

segment of literature relevant for studying multi-plant coordination issues with the

objective of positioning our research within an overall framework. In Chapter 3

we formally state the assumptions and describe the uncoordinated and the co

ordinated models for multi-plant operations. Chapter 4 describes our research

methodology where we present alternative strategies for relaxing constraints for

efficient solution of the coordinated model. An algorithm for obtaining an approx

imate solution to the coordinated problem is taken up. In Chapter 5 we discUBB

results and show that the coordinated model provides superior cost performance.

Important managerial implications of the research are discussed. Finally in Chap

ter 6 we present conclusions and outline directions for future work.
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Chapter 2

Literatnre Review

For studying coordination in manufacturing systems we distinguish between two

distinct streams in literature. At the most general level, coordination has been

studied in terms of integrating decisions in different functions, e.g., facility lo

cation, inventory planning and production planning, distribution, marketing etc.

We refer to research efforts at this level of functional integration as general co

ordination. At another level, the problem of coordination has been addressed

by linking decisions within the same function at different echelons in the orga

nization. A large vertically integrated firm has a hierarchy of production plants

making semi-finished products for assembly into final products. Production deci

sions at these plants must be coordinated, if the firm is to achieve the performance

measure targets it has set for itself. In order to be effective, such coordination

must take into consideration, the effects of, uncertainty of final demand, uncer

tainties in production process at each plant, capacity constraints at each plant

and the interaction between the plants. We refer to this second level of coordina

tion as multi-plant coordination. Each plant here refers to a manufacturing

facility that is centred around related production processes. There is considerable

overlap and interaction between the areas of general coordination and multi-plant

coordination as defined above. However, there is currently no weil defined frame-
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work in literature that explains such interaction. Moreover, there is no unified

body of literature that deals comprehensively with either type of coordination. In

this chapter, we review previous research relating to each of these streams. The

objective of this exercise is to provide an underpinning for our work in terms of

the current state of research. A review will also help us identify different solution

methodologies and their relative advantages and disadvantages.

2.1 General Coordination

General coordination can be seen as an attempt by firms to integrate decisions

pertaining to different functions, e.g., production and distribution. Research ef

forts in this area have been directed towards coordinating the operations of firms

with a multi-echelon production-distribution structure and measuring the effect

of such coordination in terms of the impact on operational performance measures

like total cost (setup and inventory holding), overalllead time, average service

level etc. We have classified general coordination research into three categories

each representing attempts to coordinate different operations of the firm. These

categories represent respectively, integration of decision making pertaining to (i)

supply and production planning (ii) production and distribution planning (iii)

inventory and distribution planning. Table 2.1 presents a classification of the

research in general coordination and later we describe the major issues in each

category.

Insert Table 2.1 here.

"

The importance of a coordinated relationship between the supplier and

the buyer has been emphasized in literature, As Goyal and Gupta (1989) note,

coordination between the supplier and buyer can be mutually beneficial to both.
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Supplyand Production and Inventory and

Production Distribution Distribution

Planning Planning Planning

Monahan(1984), King and Love(1980), Federgruen and

Rosenblatt and Williams (1981), Zipkin(1984),Burns

Lee(1985), Lee Blumenfeld et al., et al., (1985),Dror

• and Rosenblatt (1987), Ishi, and Bali (1987),

(1986),Banerjee Takahashi and Chandra(1990),

(1986a,1986b), Muramatsu(1988) Anilyand

Goyal (1988), Pyke and Cohen(1990a,b), Federgruen(1990)

Goyal and Gupta Chandra and Fisher

(1989) ,Zoller(1990) (1992)

Table 2.1: General Coordination Issues
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Studies on coordination between supplier and buyer have focused on determining

the order quantity which is jointly optimal for both. Using such an order quantity

may lead to increase in overall profits which could be shared in sorne equitable

manner between the two parties. For a given annual supply, vendors are often

interested in procuring large individual orders, to benefit from redueed costs of

order processing, manufaeturing and distribution. However a buyer would want

to purchase his optimal order quantity each time sinee any deviation from this

quantity would increase his total cost of inventory holding and ordering. Monahan

(1984) proposed a quantity discount model in which he showed that the vendor

could increase his profits by enticing the buyer to purchase a greater quantity in

return for a discount on purchase priee. He showed that by offering a discount

to offset increased holding costs, the vendor could motivate the buyer to increase

his order quantity by a factor K = vif; +1 , where S2 is the vendor's fixed

order processing and manufacturing setup cost and SI is the buyer's fixed order

proeessing cast. The author assumes a lot for lot policy i.e., the vendor's lot

size (for productionjprocurement) is identical to the arder quantity of the buyer.

AIso, the results suggest that sinee the buyer is compensated only exactly (and

no more) for his increased holding cost (due ta higher arder quantity) he would

be indifferent towards increasing his order quantity. Bannerjee (1986a, 1986b)

generalized Monahan's model by incorporating the effect of the vendor's inventory

cast which had been ignored by Monahan (1984) in ca1culating the discount that

the vendor must offer to the buyer. Aiso see Joglekar (1988) for related work.

The assumption of identicallot size for vendor and buyer was relaxed by

Rosenblatt and Lee (1985). They showed that the optimal ordering quantity of the

vendor is an integer multiple of the buyer's order quantity and proposed a linear

discount schedule to determine the optimal prieing policy which the seller could

offer to the buyer. Given such a discount schedule, the authors showed that the

buyer would optimize his total cost by revising his economic order quantity. This
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could be exploited by the supplier to increase his profits. This result is stronger

than that of Monahan(1984) because there is motivation for both the supplier

and the buyer to increase the order quantity. The interested reader is referred

to Goyal and Gupta(1989) for a comprehensive review of literature pertaining to

buyer-vendor coordination.

It is evident from the above discussion that there are sorne limitations

of the research on supplier-buyer coordination. First, most studies assume that

the vendor faces a constant, deterministic demand. Second, the treatment of the

production process at the vendor is a gross simplification of the actual situation

- single machine, single product and uncapacitated situations. Third, with the

emphasis on just-in-time manufacturing, larger purchase quantities in order to

get discounts would be diflicult to justify as a matter of policy. However it must

be noted that just-in-time purchasing can be successful only when demand is

stable over time as noted by Karmarkar (1989). In situations where demand is

dynamic (which is very often the case in reallife) the research direction outlined

by Goyal and Gupta (1989) is likely to be useful.

The second type of general coordination research treated in literature is

at the level of integrating production planning and distribution planning. Given

customer demands over the planning horizon, the decision problem for a produc

tion manager is to determine optimal production/inventory levels for all products

so that the total cost of setup and inventory holding is minimized over the entire

horizon. The distribution manager, on the other hand, must determine schedules

for distribution of products to customers so that the total transportation cost is

minimized. The decisions relating to production and distribution can be made

independently, if there is a sufliciently large inventory buffer to decouple the two.

However this would lead to increased holding costs and longer lead times of prod

ucts through the supply chain. Pressure to reduce inventory and lead times in

the supply chain has forced companies to explore the issue of closer coordination
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between production and distribution. Recently there have been sorne noteworthy

attempts in this area. King and Love (1980) describe the irnplementation of a co

ordinated production-distribution system at Kelly Springfield, a major tire manu

facturer with four factories and nine major distribution centres located throughout

the United States. The authors present a case study describing a coordinated sys

tem for the manufacturing plants and distribution centres. The implementation of

this system resulted in substantial improvements in overalllead times, customer

service and average inventory levels. The annual costs were also reduced by al

most $ 8 million. Williams (1981) considered the problem of joint scheduling of

production and distribution in a complex network. The performance of a dynamic

programming based algorithm was compared to several existing heuristics. The

objective of the problem was to minimize average production and distribution

cost per period. However the author assumed a constant demand rate limiting

the applicability of his work. Pyke and Cohen (1990) have )resented a model

of a single product integrated production-distribution system with stochastic de

mand. The authors obtain steady state distributions for key measures of system

performance. This work was later extended to cover the multi-product case (Pyke

and Cohen, 1990b). However these results do not hold in the case where demalid

is dynamic. Blumenfeld et al., (1987) considered the problem of synchronized

scheduling of production and distribution for a parts producer supplying parts to

a final assembly shop. The scenario that these authors considered assumed fixed

transportation costs per shipment and one destination per part type. The authors

reported the successful implementation of this research at the Delco electronics

division of General Motors, that resulted in a 26% reduetion in logistics costs.

Ishii, Takahashi and Muramatsu (1988) have described a model for minimizing

the inventory of dead stock or unsold inventory left over at the end of the prod

uct life cycle. This issue is likely to become more important product life cycles

compress further.
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Cohen and Lee (198e) presented the first comprehensive model for coordi

nating decisions in a supply chain. They proposed a framework for the evaluation

of a supply chain in terms of performance attributes like cost, manufacturing lead

time etc. Their analytical model seeks to address the following issues:

1. How can production and distribution control policies be coordinated to achieve

synergies in performance ?

2. How do service level requi .'llents for material input, work-in-process and

finished goods availability affect costs, lead times and flexibility ?

The authors subdivided the problem into four sub-models each corresponding to

major physical activities in the supply chain viz., material control, production,

finished goods stockpile and distribution. Each sub-model had a cost associated

with it comprising setup cost (wherever apnlicable), holding cost and shortage

cost. The objective of the problem was to minimize the total cost over ail the sub

models. The sub-models were linked together by means of local service targets

which were the fill rates that had to be satisfied for each sub-model. An overall op

timization model which minimizes the cast over all the sub-models involves a con

strained, nonlinear optimization problem and is intractable. Instead the authors

used a hierarchical heuristic which decomposes the problem into sub-problems

corresponding to each of the sub-models described above. Each sub-problem was

optimized separately in a given sequence. The output of a sub-model solution

was used as the input data for other sub-problems. This methodology yields an

upper bound on the objective of minimum overall cost. The research represents

an innovative attempt at integrating several subsystems in a supply chain. Cohen

and Lee (1989) consider resource deployment decisions in a global manufacturing

and distribution network. Their work addresses issues that are specifically rele

vant for firms that source material globally. The objective used is to maximize

global after tax profits. The model considers variable and fixed costs for procure

ment, production, distribution, transportation as weil as the tariffs, duties and
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transfer pricing. The authors have assumed a standard fixed transportation cost

for transporting items from one place to another. When considering production

distribution systems for bulky items (like petrochemicals) or for items requiring

considerable transportation through a distribution network (like automobiles), a

more detailed treatment of transportation cost is necessary. One approach is to

consider detailed vehicle routing rather than use a fixed transportation cost.

The aspect of integration of vehicle routing and production planning has

been analyzed recently by Chandra and Fisher (1992). The authors have devel

oped an integrated model to coordinate production scheduling at a manufacturing

plant with the distribution policies to serve a set of geographically disbursed cus

tomers. They consider a plant (with a finished goods stockpile) which supplies

finished goods to a set of retailers located over a large geographical area. The

fol1owing trade-offs have to be considered in order to coordinate production and

distribution decisions. (i) Large batches to meet production's objective of few

setups pushes up the inventory of finished goods at the warehouse. (ii) Consoli

dating loads of different items to reduce transportation costs requires additional

setups or inventory requirements. (iii) Frequent shipments may result in higher

transportation costs and increased setup costs although inventory levels may be

reduced. The proposed mode! coordinates the capacitated lot sizing problem (at

the manufacturing plant) and the vehicle routing problem (for minimum cost dis

tribution of finished goods to customers). The authors report a reduction in total

operating cost, for a range of problem parameters, of 3% to 20% compared to an

uncoordinated approach where production and distribution decisions are made

independently. They also suggest that the benefits of coordination increases as

the length of the planning horizon, the number of products & retail outlets, and

vehicle capacity increases. It is also found beneficial to coordinate these functional

activities where production capacity at the plant is less binding, and distribution

costs increase relative to production costs.
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A number of authors have also addressed the third type of problem in

general coordination i.e., coordinating inventory planning with distribution plan

ning. This problem considers the scenario where a number of customers have

to be supplied from one or more warehouse(s). The decision problem is one of

deciding the replenishment policy at the warehouse and the distribution schedule

for each customer so that the total oost of inventory and distribution is mini

mized. The trade-off is one of reduction in inventory costs versus an increase in

the transportation costs. For example, shipping in smaller quantities and with

higher frequency would reduce the inventory level at the warehouse but would

entail a higher transportation cost. Federgruen and Zipkin (1984) consider a one

warehouse, multiple retailer systems and a single planning period but allow for

random demands at the retailers. The authors show that the coordinated model

results in substantial cost savings. Bell et a\., (1983) developed a computerized

multi-period coordinated inventory control/distribution scheduling mode\. Pror

and Bail (1987) and Chandra (1990) have reported heuristic solution methods for

coordinated multi period models. Chandra (1990) considers the case where the

customers face dynamic demand. The minimization problem is treated over a fi

nite planning horizon of discrete time periods and heuristic solutions are provided.

The author compares the results of a coordinated model (warehouse ordering pol

icy and distribution schedules to retailers determined jointly) with a base case

where the two decisions are taken independently. The results show that signifi

cant savings may be achieved with the coordinated mode\. This is primarily due

to the fact that replenishment at the warehouse occur as close as possible to the

transportation. The author a1lows for products to be shipped to customers before

due date (but not later). The findings indicate that the coordinated policy results

in cost savings even if the plant incurs the holding cost for goods that were shipped

to the customer before due date. This direction of research is important in cases

where transportation is a substantial part of the overall cost for the operations of
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firms.

Burns et al., (1985) developed an infinite horizon coordinated model for

the above problem. Anily and Federgruen (1990) modeled this problem in a sce

nario where one warehouse supplies several geographically dispersed customers.

The authors assumed that the customers face a constant demand although the

rate could vary from one customer to another. The model is specifie to the sce·

nario wherein ail customers are divided into various regions. Each time one of the

customers in a given region receives a delivery, this delivery is m,\de by a vehicle

that visits ail other outlets in the region as weil. Heuristics are presented for

computing the upper and lower bounds on the system wide costs and these are

shown to be asymptotically tight as the number of customers increases. Since the

proposed heuristics attempt to link two very difficult problems, the above mod

els may be particular!y useful in addressing the multi·plant coordination problem

which would require a similar linkage. An important extension of the above re

search could be to study the impact of errors in demand forecast and the role of

safety stock at different locations.

In this section we have briefiy surveyed models where authors have ana

lyzed the impact of functional coordination on performance measures like cost and

lead time. Most of the above models consider multi-item, single stage manufac

turing systems and then try to improve the system performance by coordinating

different functions. However when the product being manufactured is complex,

as for example in the case of computers, telecommunication equipment etc., the

processing is often divided between a number of plants. Such an organization

of the production process among different specialized plants was called focused

factories by Skinner (1974). In such cases it is important to consider the problem

of coordinating the production plans of the different manufacturing plants. This

is the problem of multi-plant coordination and is the focus of the next section..
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As mentioned earlier, the multi-plant coordination problem seeks to link together

the production plans of several manufacturing plants which are part of a verti

cally integrated firm i.e., output from one plant becomes an input into another

plant. The objective of such coordination is to achieve near optimal results on

performance measures like total cost, manufacturing lead time etc., for the en

tire organisation. Coordination efforts must model the impact that production

planning at one plant has on production planning at another plant. Such models

must also take into consideration uncertainties associated with both the demand

and the productioll processes. Published work in this area is seant and to our

knowledge not many researchers have addressed the above problem. A possible

approach to this problem can be seen in the work of Cohen and Lee (1988). In

their work the authors model a seriai multi-stage, batch production process. A

product is allowed to be processed on more than one line. For each batch of a

product processed at a workstation, the authors approximate the total production

lead time by the weighted sum of setup times, processing times, material delay

times and the waiting times at the workstations. The workstation is treated as a

M/G/1 queue and this enables an estimation of the waiting time at the worksta

tion in the spirit of Karmarkar, Kekre and Kekre (1983) and Zipkin(1986). The

authors make the approximation that the departure process from one worksta

tion to another is poisson. They also do not consider·any capacity limitations on

the production line. Nevertheless this study is noteworthy for being the first to

describe a comprehensive coordination mode!.

Beek, Bremer and Putten (1985) have addressed the issue of flexibility

and design in multi-Ievel assembly systems. Flexibility can be achieved by cutting

down setup costs which reduces the batch size and the assembly lead time. Design

issues relate to physical structuring of the assembly network. An industrial appli-
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cation of the model at Philips Industries in Eindhoven is described. The model

is useful in comparing different assembly structures for assembling complex prod

ucts. The batch size calculation takes into consideration the inventory holding

costs, setup costs and assembly lead times. This research direction is important

as the model coordinates operations at several facilities with the objective of re

ducing lead time. The authors assume constant demand and future research is

needed to extend the findings to other demand scenarios.

Kumar et al., (1990) have considered a variant of the above production

planning problem in a supplier-buyer scenario with uncertain but bounded de

mand conditions. They assume a supply contract wherein the quantity to be

supplied in each period is specified in the contract (for N periods) in terms of an

upper bound (U) and a lower bound (L). At the beginning of each period the

buyer specifies the actual quantity he will purchase and this quantity is contrac

tually obliged to be between U and L every period. In certain cases, describing

the demand by only U and L rather than approximating a distribution for the

demand amounts to (possibly) ignoring available information. However the au

thors justify this on the basis that it makes the model much more easy to solve

since exact closed form solutions are known to exist for only very simple prob

lems (single period) under the assumption of stationarity of demand. They also

assert that in certain industries with short product life cycles, it may be difficult

to gather sufficient data to deduce the demand distribution with a high degree

of confidence and the demand patterns may show nonstationarity. The value of

available information is traded off against the ease of solving the problem. Given

this type of requirement specification (in terms of upper and lower bounds) for

each future period, the plant manager at the supplier's plant must decide how

much to produce in each period so that his total costs are minimized. The model

charges holding costs against positive inventories and penalty costs against back

orders. A state variable whose value can range between 0 and 1 determines the
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actual demand for product i in period t. The decision variables are the produc

tion quantities of each product in every period. Each decision is evaluated at

each set of realized demands determined by the state variable. The objective is

to choose the minimum of the maximum costs of all deeisions (Minmax problem).

The problem considered is a multi-period, multi-product, single stage one with

capacity constraints. This research is also dependeut on the type of supply con

tract specified by the authors and therefore the scope of this research is limited to

the industries (e.g., semiconductor industry) where such contracts are applicable.

Bassok and Akella (1991) have solved the integrated production planning problem

for a two plant firm where the downstream plant faces stochastic demand and the

yield from the upstream plant is random. The objective is to simultaneously de

termine the optimal production level , and the raw material order quantity (from

the upstream plant) so that total expected cost is minimized subject to capacity

and release level constraints. However given the complexity of the problem, these

authors make several strong assumptions. It is assumed that all products require

only a single raw material which is manufactured at the upstream plant. Also,

the time horizon considered for the problem is a single period.

The above discussion brings out one critical issue that needs to be ad

dressed when we attempt to coordinate the operation of multiple plants i. e.,

the question of lotsizing. Lotsizing in a multi-plant scenario is complicated by

the fact that lotsize of a product at one plant wil\ affect the lotsize of all the

components that go iuto this product. One alternative to the above problem is to

completely isolate the plants from each other by means of intermediate inventory.

However the increased cost of inventory and the increased lead time for products

through the supply chain makes this a poor choice. Another approach (already

referred to earlier) is the sequential determination of production plans for the

plants. Beginning with the plant that supplies the finished goods warehouse, the

production plan is prepared and this defines the requirements for the previous
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plant. This procedure is continued till the production plan for all plants is pre

pared. Such a procedure ignores the interaction between various plants and will

yield sub-optimal production plans. A lotsizing model in a multi-plant scenario

must correctly account for the interdependence between different plants. Research

in this area can draw upon the substantialliterature in lotsizing. Another issue

is the actual implementation of the lotsizing algorithms. Most lotsizing algo

rithms are implemented on a rolling horizon basis. This method of resolving

the model at the beginning of each time period causes disruption of previously

planned production activities which is known as nervousness. In order to be ef

fective, multi-plant coordination must consider the impact of nervousness on cost

and lead time. Also, consideration of stochastic demand would make it necessary

for managers to define safety stock levels necessary to maintain required customer

service levels. Effective multi-plant coordination must be able to integrate the

issues of lotsizing, nervousness and safety stock into a coherent framework. At

tempts to address the multi-plant coordination problem can draw on the existing

research on the above questions. We now discuss the major research efforts in the

areas of nervousness, lotsizing and safety stock and c1assify these efforts in order

to identify important issues. This is important for integrating the relevant issues

so that a framework of multi-plant coordination may be proposed.

2.2.1 Nervousness Issues

An important issue that arises in coordinating the multi-plant structure is the

impact of nervousness of demand on total cost and lead time. Nervousness arises

due to two reasons. The first reason for nervousness is the horizon effect. Sched

ules are developed on a rolling basis wherein a sequence of production decisions is

determined by successive solution of the finite-horizon, multi..period mode!. The

decision for the current period is implemented and as the period elapses, demand

for a new period is appended to the horizon and the model is re-solved with the

31



•

•

•

additional information. This may lead to changes in the production plan in a later

period which disrupts the schedules made earlier. This may also lead to increase

in total cost of operation. The second reason that gives rise to nervousness is the

new forecast effect. As new and more accurate data regarding requirements in

future periods becomes available, it is incorporated in the model to get a new

production plan. Both types of nervousness can be disruptive for manufacturing

systems. For example, if a schedule revision specifies a setup in a period where no

production was planned or considerably alters the production quantity, this will

disrupt plans concerning personnel scheduling and machine loading. In a multi

plant structure such disruption can propagate to ail plants necessitating frequent

revision of production plans. It is therefore important in a multi-plant scenario

to choose a strategy that maintains a balance between the disruptive effect of

nervousness and the need to respond to new and more accurate information. Re

search efforts in nervousness pertaining to both horizon effect and new forecast

effect are outlined in Table 2.2.

Baker (1977) has studied the efficiency of optimizing a finite-horizon,

multi-period model for a single stage production system and implementing those

decisions on a rolling basis. Finite horizons are used in production planning

because of the limited availability of future demand data and the uncertainty

associated with these data. The author focuses on the finiteness of the future

information. The motivating question in this study was to find how good were

optimal, static decision models for the system when implemented on a rolling

basis.Given reliable but limited demand data for future demand, the Uncapac

itated Oynamic Lot Sizing (OLS) Model (Wagner and Whitin, 1958) was used

to evaluate the cost of implementing rolling schedules. The length of the rolling

forecast horizon was varied and the schedule was rolled successively over 48 time

periods. The solution of the OLS model for the entire 48 periods (assuming that
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Stage

Multi

Stage

Horizon Effect

Baker(1977), Baker and

Peterson(1979),

Sridharan et al., (1987)

Chand(1983), Blackburn et al.,

(1986)

New Forecast Effect

Carlson et al.,(1979),

Blackburn and Millen(1980)

Carlson,Beckman and Kropp

(1982) De Bodt and Van

Wassenhove (1983),Kropp and

Carlson (1984), Ho(1989),

Sridharan and Berry(1990)

•

•

Table 2.2: Nervousness Issues

this much information is available;~t the outset) was treated as the benchmark

or the optimal solution for making comparisons. The results showed that rolling

schedules achieved costs within 10% of optimality. The choice of the most appro

priate length of forecast horizon was dependent on whether or not the demand

pattern was seasonal. Without seasonality, the best forecast period was found to

be the natural cycle. The natural cycle is the replenishment interval for the

EOQ Model. However, when demand showed a seasonal pattern, the use of multi,.
pIes of seasonal cycle as forecast horizon was found to be effective. The results of

this study imply that the numher of periods used as forecast horizon is a crucial

parameter if rolling schedules are to he utilized effectively. The choice of a proper

length of forecast horizon may be dependent on the demand pattern (whether

seasonal or not). Once a good forecast horizon is chosen, the use of rolling hori·

zons in a multi-period dynamic demand model can lead to efficient performance.

However the systems considered are very simple - uncapacitated, single stage with
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no forecast errors.

Baker (1977) also does not consider any specifie cost of disruption of

schedules. Disruption due to nervousness is clearly undesirable in production

systems and has an associated cost. At the same time it may be economically

infeasible to ensure perfect stability of plans. In this context, it becomes impor

tant to define what is a reasonable level of nervousness. Carlson et al., (1979)

address the issue of determining the amount of nervousness that can be deemed

economically tolerable in a manufacturing system. They suggest that prac

tising managers have a tendency to tolerate non-optimality more than unstable

schedules. However it may be a better strategy to strike a balance between the

cost of dealing with nervousness (Le., cost of schedule changes) and the cost of

a non-optimal solution (resulting from ensuring stability of plans). Nervousness

imposes two kinds of costs : (i) cost of lot size changes for periods in which se

tups are already scheduled (H) cost of scheduling setups in periods in which they

were not previously scheduled (new setups). The authors analyze the effects

of only new setups and assume that the changes involved in the first category

are far less costly to implement. This view is similar to the suggestions made

by Mather (1977). The cast of scheduling a new setup dcpends critically on the

period for which it is scheduled. New setups for the first several periods in the

horizon may be impossible to effect due to unbreakable commitments and can be

considered to have an infinite cost. On the other hand a new setup near the end

of a long scheduling horizon may have a relatively low cost. The authors express

the cost function of implementing a schedule change in period k, (Vk), as follows:

00 when k = 1,2,....p

Vk = f {k} when k = p+1,p+2, ,r

o when k = r+l,r+2, ,N

where N is the length of the forecast horizon. In the first p periods, no schedule

changes are allowed. The authors suggest that a reasonable value for p may be the
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minimum achievable lead time offset for the item being currently produced. This

implies that items have already been released for final assembly and no changes

can be made in the schedule. Similar1y r might be set equal to the cumulative

lead time of all components and raw materials required to produce the item in

question. This implies that the product has not entered even the first stage of

manufacture and so changes can be made at very low costs. The objective of the

model is to minimize the total cost function which consists of setup, holding and

schedule change costs.

Minimize C = 2::f=1 hk.h+l +2::f=1 Sk.8(Xk) +2::f=1 vk8(8(Xk) - 8(ik))

subject to

/k+l = 2::j=1 Xj - 2::j=1 dj

{

1 ifz>O
where 8(z) =

o if z ~ 0

i k - Production Lot Size in period k in the existing schedulej

Xk - Production Lot in new schedule (to be determined)j

h - Beginning inventory in period k

dk - Amount demanded in period k;

hk - holding cost per unit of inventory carried into period k+ lj

Sk - setup cost;

Vk - schedule change cost;

The algorithm is applied to analyze both the horizon effect and the new forecast

effect for small problems (6 periods). The authors also perform sensitivity analysis

to test the changes in the value of the optimal solution as a result of changes in the

values of schedule change costs. This is important for the decision maker because

he can be confident that the most imminent scheduling decision is optimal for a

range of schedule change costs.

The methodology outlined in the last paper allows the manager to strike
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a balance between the cost of making schedule changes and the savings that such

changes bring about. The result is neither complete dependence on repeated use

of the scheduling algorithm whenever new information is obtained nor a striving

for stability at ail costs. Determining realistic values of p and r as weil as the

schedule change cost function f{k} is important from the point of view of multi

plant coordination. The important issue here, not considered by the authors, is

the relationship of these parameters to capacity. Disruption of planned produc

tion needs to be analyzed in terms of the additional demands it makes on the

available capacity and the cost of providing additional capacity. Extreme insta

bility of schedules can then be avoided by either freezing the production schedule

over a period of time or by limiting the change in schedule to a specified limit.

This is common in companies like Toyota (Monden, 1983) which have successfully

implemented just-in-time production systems.

The approach suggested above is used by Sridharan et al., (1987) who

analyze the effect of freezing a part of the master production schedule (MPS)

in order to ensure stability in operations within the context of an MRP system.

The authors consider uncapacitated lot sizing decisions using the Wagner-Whitin

algorithm. Uncertainty in demand forecast is assumed to be negligible and safety

stock is set to zero. Renee only nervousness due to horizon effect (i.e., addition

of new periods at the end of the horizon) is considered. The objective of this

research is to examine the impact of three important design factors in terms of

cost and the stability of the MPS when lotsizing decisions are implemented on a

rolling basis. The factors considered are (i) method used to freeze the MPS, (ii)

proportion of the MPS that is frozen and (iii) length of the planning horizon for the

MPS. Cost is represented by the percentage increase in total cost over the optimal

cost. The schedule instability represents the average change in quantity per order

over the simulation run and incorporates changes in both quantity and timing

of the MPS orders. Two methods can be used to freeze the MPS - specifying
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the number of periods (for which the MPS is frozen, e.g., 1,2 N periods in

future) or specifying the number of future orders (as determined in the current

period) to be frozen. In the first case the schedule rolls over to the next period

and the model is re-solved. In the second case the schedule rolls over to the period

immediately succeeding the last frozen order. The second factor i.e., proportion

of the planning horizon to be frozen, is the ratio of the freeze interval (number

of periods frozen, K ) and the length of the planning horizon (numher of periods

forming the planning horizon, N). The third factor is the length of the planning

horizon (N) and this was expressed as a multiple (K) of the natural cycle (T).

The analysis of results shows that cost error hecomes significant only when the

frozen portion of the planning horizon exceeds 50% of the total planning horizon

and that the cost of freezing increases rapidly if more than 80% planning horizon

is frozen. The cost error for freezing schedules for the period based model exceeds

that for the order based procedure when the proportion of planning horizon frozen

is greater than 0.5. This research demonstrates the important effect of freezing

the MPS on both the cost performance as weil as schedule stability. However the

authors consider very simple single stage, single product, uncapacitated systems,

which limits the generalizability of the findings.

The above work has been extended to the stochastic demand case in Srid

haran and Berry (1990). Given stochastic demand and a required service level,

the authors seek to determine the impact of design parameters for MPS freezing

on cost and schedule instability under rolling planning. Cost and schedule insta

bility are used in the same context as before. The design parameters considered

are (i) the MPS lotsizing method (ii) planning horizon length (iii) frequency of re

planning production schedule (iv) proportion of MPS that is frozen and (v) type

of planning information used to freeze the MPS (number of periods versus number

of orders). Freezing a portion of the MPS provides a means of stabilizing plant

and vendor schedules against nervousness due to demand uncertainty. However
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freezing the MPS introduces a lag in responding to the changes induced by the

uncertainty and this may lead to shortages or excessive inventories at the MPS

level. The results indicate that using order based MPS freezing leads to more

beneficial results as against period based MPS freezing. Longer freeze intervals

produce higher cost errors and reduce schedule instability using either type of

freezing. The cost errors become larger as the amount of demand variability is

increased. An interesting result is that in order to meet a given customer service

level goal, an increased level of safety stock is required under frequent re-planning,

producing an increase in the total production and inventory costs and hence the

cost error. Another finding pertains to the length of the planning horizon. Longer

planning horizons lead to increased cost error and this effect becomes more pro

nounced as the variability increases. These findings suggest that although lead

time considerations may warrant the use of long planning horizons, a reduction in

the planning horizon length can lead to more stable schedules and a lower MPS

lotsizing cost error when demand uncertainty exists. The results of the study

provide an important comparison of MPS freezing techniques under deterministic

and stochastic demand conditions. However the study pertains to a simplified

single stage, uncapacitated case. An important direction of future research could

he to extend the above results to more complex operating conditions.

De Bodt and Van Wassenhove(1983) analyze the impact of forecast er

rors on total system cost (setup plus holding) under conditions of demand uncer

tainty. The authors consider the effectiveness of single levellotsizing techniques

in a rolling scheduie environment with forecast errors. The performance of two

weIl known heuristics (Silver Meal Heuristic (SM) and Least Unit Cost Heuristic

(LUC)) is analyzed under a constant demand pattern with normally distributed

random errors. The presence of forecast crrors leads to more frequent ordering

as compared to the case when the demand is known with certainty. The authors

show that the cost increase due to forecast errors results in an additional cost of
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continuously carrying half a period's demand. The major drawback of this study

seems to be in its restrictive consideration of single level, uncapacitated systems

which limits its applicability. The results are also dependent on the assumption

of level demand with normally distributed errars. Nevertheless it is among the

first efforts to consider the effect of uncertainty in demand on lot sizing process

within the MRP context.

Blackburn et al., (1986) examine the effectiveness of alternative strategies

for dealing with the problem of nervousness. The authors compare the relative

effect of alternative strategies like freezing the master production schedule, use

of safety stock, lot for lot policy, forecasting of demand beyond the planning

horizon etc,. The authors suggest an alternative strategy called the change cost

procedure which is based on the work of Carlson et al., (1979). Each time new

information is available, the model is re-solved after modifying the setup cost

for each period, depending on whether the item is scheduled in that period or

not. The objective is to encourage setups in periods where they are scheduled

previously and vice versa. This approach ensures that the schedule will change

only when the joint consideration of the setup, carrying and the schedule change

costs indicates that it is beneficial to do so.

The above review of literature relating to nervousness issues in production

systems underlines sorne of the basic trends. Current research has focused on the

determination of the optimal planning horizon length as the production schedule

and its cost has been found to be sensitive to the planning horizon considered. The

cost of disruption due to schedule changes has also been addressed although these

costs are hard to establish. Since production planning is implemented in multi

plant firms on a rolling basis, nervousness issues need to be addressed in such a

scenario. Most authors have focused on single stage, uncapacitated systems. This

is unrealistic in reallife situations. More realistic systems need to be considered

in future research where the propaga.tion of nervousness through severa\ plants
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can be correctly accounted for. There is also a need to study nervousness in terms

of capacity requirements as weU as the cost of providing additional capacity. For

discrete parts manufacturing firms, setup time needs to be used in the models

because in these firms there is no setup cost for items in terms of actual cash

outflow but the only cost is in terms of the time consumed. Another direction of

research could be to consider bounds on forecast revision. As pointed by Kumar

et al., (1990), the supplier-buyer relationship in the semi-conductor industry is

coordinated by a contract which specifies the upper and lower bounds on demand.

This mechanism is also used in firms in computer industry, operating in a multi

plant scenario. Given such bounds on forecast revision, algorithms need to be

developed for guiding managers in the choice of lotsize, so that required customer

service is achieved.

2.2.2 Lotsizing Issues

The multi-plant structure is a complex multi-stage manufacturing system. Each

plant itself represents a multi-stage system in which the f10w of products may be se

riai, paraUel, assembly or general (Billington et al., 1983). Lotsizing is important

when the operations of multiple plants is considered under tight capacity con

straints. The problem is complicated by the interdependence of different plants.

Two distinct issues need to be addressed. First, each individual plant needs to be

represented by a simpler but an equivalent system which captures the salient fea

tures of the original plant, especiaUy capacity usage. Second, a suitable lotsizing

technique needs to be developed which can be applied to the simplified system.

These issues can draw on the considerable literature on lotsizing. Lotsizing litera

ture can be broadly classified into two main streams : models which assume that

time required for setups is negligible, and models that explicitly consider setup

time. We first discuss models that do not consider setup time. A classification of

sorne of the major problem types which have been tackled till now, is presented
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in Table 2.3.

Insert Table 2.3 here.

The dynamic programming based solution procedure for the uncapaci

tated, single item dynamic demand situation, proposed by Wagner and Whitin

(1958) has served as an important paradigm for lot sizing analyses. Approximate

solutions to the uncapacitated, single item, single stage model have been sug

gested by De Matteis (1971) and Silver and Meal (1973). The major advantage of

these approaches is that they are computational1y much more efficient than the

exact solutions. Zangwill (1969) extended the basic model to include backlog

ging of demand. However none of the above models takes into consideration the

finite processing capacity of the manufacturing facility. The inclusion of this con

straint considerably complicates the analysis. Florian and Klein (1971) deviscd a

dynamic programming based shortest path algorithm for the case with constant

capacity in every period with concave production and storage costs. The authors

showed that the optimal solution to the above problem consists of independent

sub-plans wherein the inventory level is non-zero in every period except the last.

In the sub-plans the production level, if positive, is at capacity except for at most

one period. Love (1973) developed an optimal schedule for the concave cost model

with constraints on production and inventory in each period. Using network f10w

concepts the author showed that for arbitrary bounds on production and inventory

there is an optimal schedule such that if for any two periods production does not

equal zero or its upper or lower bound, then the inventory level in sorne interme

diate period equals zero or its lower or upper bound. An algorithm for searching

for such schedules is provided. Swoveland (1975) developed a shortest path pro

cedure for this problem with piecewise concave production and holding costs.
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Single Stage Multi- Stage

A. Single Item

Exact Unr.apacitated Uncapacitated

Approaches Wagner and Whitin(1958), Zangwill(1969),Love(1972)

Zangwill(1969) Afentakis et al.,(1984)

Capacitated Capacitated

Florian and Klein(1971), Lambrecht and

Jagannathan and Rao(1973), VanderEecken(1978a)

Love(1973), Swoveland

(1975), Baker et al., (1978)

Lambrecht and VanderEecken

(1978b),Chung and Lin(1988)

Approximations Uncapacitated Uncapacitated

De Matteis(1971), Berry(1972), More(1974),

Silver and Meal(1973) New(1974), Coleman and

Mcknew(1991)
- - "Capacitated Capacitated

Bitran and Matsuo(1986)

B. Multj-Item

Exact Uncapacitated Uncapacitated

Approaches Zangwill(1966),Crowston

and Wagner(1973),Crowston

et a1.,(1973),Steinberg

and Napier(1980)

Capacitated Capacitated

Barany et a1.,(1984),Van Roy Bassok and Akel1a(1991)

ana Wolsey(1987),Pochet and

Wolsey(1991)

Table 2.3: Lotsizing Issues
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Single Stage

Approximations Uncapacitated

Capacitated

Manne(1958) ,Dzielinski

and Gomory(1965), Lasdon

and Terjung(1971 ),Lambrecht

and Vanderveken(1979),Dixon

Silver(1981),Thizy and Van

Wassenhove(1985) ,Karmarkar

and Schrage(1985),Eppen and

Martin(1987), Trigeiro et

al.,(1989),Lozano et al.,

(1991 ),Diaby et al. (1992a,b)

Multi-Stage

Uncapacitated

Blackburn and Millen(1982)

Capacitated

Billington, McClain and

Thomas(1983), Zahorik, Thomas

and Trigeiro(1984)

•

Table 2.3 Lotsizing Issues (contd.)
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Jagannathan and Rao (1973) consider the above production planning problem for

a generalized oost function with bounds on backlogging, inventory and production

capacity. Baker et al., (1978) present a tree search capacity constrained dynamic

demand problem. Lambrecbt and VanderEecken (1978b) also present a model

for the capacity constrained lotsizing problem with different production cost and

holdingfshortage cost functions than those used by Baker et al., (1978). Barany

et al., (1984) solved the multi-item capacitated lotsizing problem to optimality

by adding strong valid inequalities. Also see Van Roy and Wolsey (1987), Pochet

and Wolsey (1991) and Magnanti and Vachani (1990) for related work.

The simplest version of the multi-item, single-Ievel capacitated dynamic

lotsizing problem (MISLCLSP) consists of scbeduling N items over a horizon of

T periods sucb that demands are fu1filled without backlogging. The objective is

to miniuùze the sum of setup costs and inventory holding costs over the horizon

subject to constraints on total capacity in eacb period. These algorithms are solved

on a rolling basis (Baker, 1977). MISLCLSP is NP-hard since the single item

version of this problem is known to be NP-hard (Florian et al., 1980). Most of the

optimal approaches discussed above for capacitated, single stage lotsizing mode1s

have been tested only on small to medium sized problems and analysis of these

algorithms indicates that running times would increase substantially for reallife

problems. Therefore efficient heuristics have been found to be necessary for solving

larger problems. Heuristics for solving MISLCLSP can be divided into common

sense heuristics and mathematical programnùng based heuristics (Maes and Van

Wassenhove, 1988). Common sense heuristics comprise tbree main steps : (i) A

batching step in whicb available capacity is first allocated to fulfil demand for that

period (for all items) and then, balance capacity, if any is used to produce a batch

of items for a future period. The decision to produce an item for a future demand

is based on a priority index whicb trades off the savings in setup cost against the

increase in holding cost. (il)!' feasibility routine whicb ensures that a feasible
:-, :

t '
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solution is obtained when the algorithm stops. (iii) An improvement step to

perturb the solution slightly in order to make additional savings. Examples of such

heuristics can be found in Eisenhut (1975), Lambrecht and Vanderveken (1979),

Dixon and Silver (1981), Maes and Van Wassenhove (1986a,b), Dogramaci et al.,

(1981), Kami and Roll (1982) etc. As Maes and Van Wassenhove (1988) note, the

above heuristics have important shortcomings. While they yield reasonable cost

performance on the average, in certain specifie situations (e.g., seasonal demand,

very tight constraints etc.) they can lead to substantially poor resu1t,~ compared

to the mathematical programming based heuristics. These heudstics cannot be

applied in situations where there are several constrained resources. They are also

less flexible in the sense that they are designed for specifie problem instances

and the heuristics will not be applicable to changed problem characteristics (e.g.,

addition of constraints on product life, aggregate inventory levels etc.).

The second type of heuristics that have been proposed for L,).ving MIS

LCLSP are the mathematical programming based approaches. These heuristics

relax the capacity constraint and solve the resulting N independent sub-problems

(one for each item) efficiently by Wagner-Whitin algorithm. This solution is likely

to violate the capacity constraint in the original problem. Different strategies have

been used to perturb the solution so that it is feasible in the original problem. For

periods where capacity is violated, Newson (1975a, 1975b) forced the production

of one item at a time to zero (by assigning it infinite setup cost) and then found

the best way of scheduling this item in the rest of the periods using Wagner

Whitin algorithm. The item with the least cost for shifting was moved to the

period shown by the Wagner-Whitin schedule. This procedure was repeated till

ail infeasibilities were removed. The problem with this procedure is that it may

fail to find a feasible solution. Thizy and Van Wassenhove (1985) suggested a La

grangian Relaxation based procedure for solving the above problem. Lagrangian

Relaxation of the capacity constraints yielded a lower bound to MISLCLSP. Fix-
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ing the setups given by this solution, the authors solved a transportation problem

to determine a primaI feasihle solution which was an upper bound to the above

problem. The lagrangian multipliers were updated using subgradient optimiza

tion (Held Wolfe and Crowder, 1974) and the above procedure was repeated for a

pre-determined number of iterations. Computational results have been presented

for sman problems. A shortcoming of the above approach is that the solution time

for the transportation sub-problem increases rapidly with increase in the number

of periods and therefore it will be diflicult to use for reallife problems.

Eppen and Martin (1987) used a variable redefinition approach for solving

MISLCLSP. They developed an alternative equivalent formulation to the classical

formulation of MISLCLSP which had the property that its LP Relaxation had

a value equal to the Lagrangian dual with respect to the capacity constraints.

Bitran and Matsuo (1986) have studied approximate formulations for the above

problem. They proposed heuristics for two alternative forms of the above problem

and showed that under mild conditions of forecast error these forms of the problem

are equivalent to the original problem. The heuristic procedure proposed by the

authors is shown to he pseudo polynomial.

An the ahove models consider setup times indirectly by using a constant

setup cost. As noted earlier, an important aspect of discrete manufacturing sys

tems is that the cost associated with setting up a machine is often negligible.

The cost of a setup is essentiany the time consumed which reduces the productive

capacity of the facility. Since the cost of the resource consumed depends on the

actuallevel of resource usage, constant setup cost is an inaccurate representation

of the production system.

The earliest work on the lotsizing problem with explicit treatment of

setup times was by Manne (1958) who used a linear programming based approach.

Manne showed that the linear programming solution to the problem provides a

good solution whenever the number of items is large compared to the number of
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periods in the planning horizon. His work was extended by Dzielinski and Go

mory(1965) using approximations based on Dantzig-Wolfe decomposition(1960)

and by Lasdon and Terjung(1971) using generalized upper bounding procedure.

Billington et al.,(1983) suggested a Lagrangian heuristic based on the idea of

product compression. The authors suggest that in most production systems

there are only a few constrained workcenters i.e., workcenters where capacity

is likely to be a binding constraint so as to cause scheduling difliculty. Lotsizing

is critical only for the constrained workcenters and the other workcenters can be

scheduled on a lot for lot basis. The proposed heuristic can handle setup times.

However little experimentation is reported. Trigeiro et al.,(1989) addressed the

issue of single stage capacitated lotsizing with explicit treatment of setup times.

They provided interesting insights into the diflicu1ty of the problem. They showed

that when setup times are considered, even the problem of determining whether

a feasible solution exists, is NP complete. The authors considered nonstationary

costs, demands and setup times. Lagrangian relaxation of the capacity constraint

led to decomposition into a set of uncapacitated problems solvable by dynamic pro

gramming. The Lagrangian dual costs were updated by subgradient optimization

and a heuristic routine was used to generate a fcasible solution at each iteration of

the algorithm. The procedure was terminated when the duality gap between the

Lagrangian solution (lower bound) and the feasible solution (upper bound) were

within specified limits or after a specifie number of iterations. This study repre

sents an important departure in that it considers production systems and demand

patterns often found in reallife. While it has been established that the problem

is very diflicu1t to solve, other models (as for example those that use setup costs

as a proxy for setup time) solve a less realistic version of the problem. Several

important extensions need to be established for the above problem. The relative

importance of the parameters needs to be established to identify which ones have

maximum impact on cost. Such studies would suggest a direction for the future
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improvement of production systems. The work of Trigeiro et al., (1989) con

siders single stage systems. Unfortunately most real life manufacturing systems

are multi-stage. Lozano et al., (1991) have also addressed the lotsizing problem

with setup times using the primai-dual method. The algorithm was shown to

have monotone and finite convergence properties. The authors showed that this

method yielded better results than the subgradient method although it required

greater CPU times. Lagrangian relaxation based approaches for large systems

have been reported by Diaby et al., (1992a, 1992b). Aiso see Lozano et al., (1991)

for related work.

Models for multi-stage systems have been proposed both within the MRP

framework and as general production models. Zangwill (1969) and Love (1972)

have developed efficient dynamic prograrnming based algorithms for uncapaci

tated seriai systems. Love (1972) shows that the optimal policy is nested for

concave production and storage costs if storage costs are non-decreasing in order

of facility and production costs are non-increasing in time. Nested policy implies

that if a facility orders an item in a particular period, ail downstream facilities

also order in that period. Crowston et al., (1973) consider the issue of lotsizing

in multi-stage assembly systems. The authors propose a dynamic prograrnming

algorithm for such a system with constant, continuous final product demand and

infinite planning horizon. They show that under the assumption of time invariant

lot sizes, the optimal lot size at each facility is an integer multiple of the lot size at

the successor facility. Steinberg and Napier (1980) develop an optimal procedure

for the multi-period, multi-product, multi-Ievel lotsizing problem by modelling

the system as a constrained generalized network problem with fixed charge arcs

and side constraints. The resulting minimum cost flow problem yields optimal

lotsizing decisions at alileveis. Blackburn and Millen (1982) address the issue of

lotsizing in multi-stage material requirement planning (MRP) systems. The au

thors sequentially apply a single stage heuristic to each stage with a set of modified
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setup and holding costs to account for the inter-dependencies among stages. The

modification of the setup cost at each stage refiects the incremental cost across

aU stages of a setup at this stage. Similarly, the modified holding cost refiects the

incremental cost of holding an extra unit at this stage, at aU other stages. The

intention here is similar to transfer price mechanism i.e., to achieve coordination

of decisions at different stages of the process without a central planning unit dic

tating production schedules.The advantage of this kind of an approach is that it

retains the simplicity of a single stage lotsizing algorithm and gives reasonably

accurate results for products which do not have many levels in the hill of mate

rials. However deviation from optimality increases as the number of levels in the

product structure increase. Also the authors consider uncapacitated production

systems at aU stages. The results of the heuristic are compared to optimal results

obtained by solving the multi-stage lot sizing problem to optimality. The results

show that the deviation from optimal results increases as the number of levels in

the product structure increases. The advantage of this approach is that it retains

the simplicity of single stage lotsizing algorithms and gives reasonably accurate

results for product structures that do not have many levels. Capacity constrained

extensions of the above model for general product structures are likely to he useful,

given the intractability of optimal algorithms for multi-stage lot sizing. Billing

ton et al., (1983) have introduced the idea of product structure compression

which has the objective of reducing the size of the problem while retaining the

salient features of the problem in terms of demand, cost, lead times and capacity

requirements. The authors suggest that in most production systems there are

only a few constrained facilities, i.e., workcenters where capacity is likely to he

a binding constraint so as to cause scheduling difficulty. Lotsizing is critical only

for the constrained workcenters and other workcenters can often he scheduled on

a lot for lot basis. Karmarkar et al., (1992) concur with this view when they talk

about approximate c.:omposite model to represent a manufacturing system.
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The above discussion on lotsizing touches on one area in this multi-issue

domain. From the point of view of multi-plant coordination, there are two promis

ing directions for research. The first area to focus on is to work on approximate

representations of single plants in the spirit of Billington et al., (1983) such that

the number of workcenters representing a plant are reduced considerably. This

representation must be able to capture the salient features of the original system.

The objective here is to reduce a complex manufacturing system into its most

critical constrained facilities. Once this is achieved, it may be easier to use this

approximate representation of a plant in a multi-stage lotsizing algorithm where

each stage is an individual plant. The second area is the development of robust

heuristics which capture the interaction between the plants. Consideration of

setup times in the spirit Trigeiro, McCiain and Thomas (1989) is an important

criterion in discrete parts manufacturing systems. Clearly this is a very diflicult

problem to solve optimally. However good heuristics would help quantify the

benefits of coordination as compared to the eurrent practice of optimizing the ob

jective plant by plant which ignores the inter-linkages between plants. One more

direction needs to be investigated in this context. Usually, firms establish opera

tional performance targets for measures like lead time at a higher strategie level of

decision making, taking into consideration, the firm's priorities, competitive en

vironment and industry norms. A two level procedure may be envisaged in such

a situation where operational performance measures targets have been defined.

First an optimization based heuristic is solved to determine lotsizes and these are

plugged into a detailed simulation to check whether the targets are achieved.

2.2.3 Safety Stock Issues

In the previous subsection we discussed models for lotsizing in multi-stage produc

tion systems. Most oC these models have assumed deterministie demand. However

this is rarely true in real situations. The use of safety stock is widely prevalent in
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industry to counte~variability that may be present in various forms, e.g., variabil

ity in demand forecast, variability in processing time or yield, variability in vendor

replenishment time and quantity etc. Products also have to compete for limited

processing time and resources at each stage. Consequently the manufacturing

system does not have full flexibility to reschedule to combat the above forms of

variability. Setting of safety stock in a mu.1ti-plant scenario is further complicated

on account of the inter-dependencies which exist between plants. An important

issue that arises in this context is the determination of safety stock at each plant

if the firm has to achieve a pre-specified customer service level. As we pointed out

in our discussion of nervousness, firms with a multi-plant structure often consider

bounds on forecast revision for each plant, to limit schedule nervousness. This

maybe treated as a limit on the flexibility of the plants to adjust their level of

production to changing forecasts. If however the firm wishes to provide a better

service level, use of safety stock may be necessary. In this subsection we brielly

review research on safety stock from the point of view of multi-plant coordination.

The interested reader is referred to Graves (1988) for a more complete review of

safety stock in manufacturing systems. A classification of the work on safety stock

is presented in Table 2.4.

Clark and Scarf (1960) presented an optimal inventory policy for a seriai

system with stochastic demand. The authors assumed a linear processing cost

and a linear inventory holding cost. No ordering costs are considered. The ob

jective used was to minirnize the expected discounted costs. The optimal policy

is computed by solving a series of one stage inventory problems.Beginning with

the last stage the optimal policy is computed under the assumption that sufficient

input is available from the previous stage. From this optimal policy for the last

stage, the authors then determine the costs imputed on the downstream stage by

a stockout at the upstream stage. This analysis is successively carried oI:!. t0 the
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Uncapacitated Capacitated

Exact Clark and Scarf(1960),

Analyses Schmidt and Nahmias(1985)

Approximations Simpson(1958),Hansmann

Without Lotsizing (1959),Miller(1979) ,

• (Le., lot for lot) Wijngaard and Wortmann(1985)

Graves(1988)

Approximations Clark and Scarf(1962), Lambrecht et al.,(1985)

With Lotsizing Lambrecht et al., (1984), Carlson

and Yano(1986),Yano

and Carlson(1985,1987)

Table 2.4: Safety Stock Issues
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upstream stages.The model has been extended to the case of an assembly system

(two components with differing lead times being assembled into a single end item)

by Schmidt and Nahmias (1985). However this modest change in structure makes

the analysis considerably difficult. It would therefore appear that extension of the

above models to general structures would be difficult. Given the complexity of

exact analysis, the focus should largely be on good heuristics.

Approximation models for setting safety stock in manufacturing systems

faU into two categories. The first category is where lotsizing is not considered

i.e., lot for lot policy is foHowed with each stage ordering in every period. For

this lotsizing policy, Simpson (1958) argues that planning must be done for a

maximum reasonable demand which has been pre-specified. Each stage must be

able to always fulfil the request of the downstream stage under such demand

conditions and safety stock must be planned likewise. The inherent assumption

here is that when an extraordinary demand situation arises, the system will take

extraordinary actions (like expediting etc.). Hence the manager only needs to

plan safety stock for satisfying the maximum reasonable demand. This idea is

in consonance with the idea of a bound on forecast revision that came up in

our discussion on nervousness. The authors show that the optimal policy is an

aH or nothing policy i.e., either there is no inventory between two stages or

there is sufficient inventory to completely decouple the two stages. Hansmann

(1959) considers a similar problem except that he assumes that there can he a

delay in supplying the demand of the downstream stage. The poorer the service

provided by the upstream stage, the longer will he the replenishment lead time

for the downstream stage and more excess inventory will he needed. In this

case the optimal policy tums out not to be an aH or nothing policy. Miller

(1979) introduced the concept of hedging which consists of infiating the master

production schedule to refieet the uncertainty in the end item demand.

The second category of approximation methods for setting safety stocks
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consists of those models that consider lotsizing. Clark and Scan (1962) extend

their previous work to allow for a fixed ordering cost at each stage. Their model

computes a (s, S) policy for each stage with successive stages being linked by a

penalty cost of a stockout. Lambrec.ht et al., (1984, 1985) extend the above anal

ysis to assembly systems and to the case where downstream lotsizes are greater

than the upstream lotsizes. The authors suggest that protection against uncer

tainty may take the form of either safety stocks or safety time. Safety time is the

time between the production batch or procurement lot becorning available and the

time when it is needed to produce sorne subsequent assembly or finished product.

The authors use a Markov Decision Process analysis to provide insight into near

optimal policies for the above systems.

Carlson and Yano (1986) address the issue of deterrnining cost effective

safety stock levels for each item in the product structure under stochastic demand.

A single product is considered which is assumed to have a multi-level assembly

structure. The objective is ta rninirnize average total setup and holding costs per

period subject to achieving a specified customer service level. The problem is

a general nonlinear (non-convex) stochastic integer optirnization problem and is

computationally intractable. The authors used a heuristic approach and proposed

upper and lower bounds on the optimal solution. The results indicate that safety

stocks can be utilized beneficially at production stages where setup and disruption

costs are high. This has important implications for the multi-plant scenario where

we need to determine the amount of safety stock that must be carried at each plant.

However, this study ignores capacity constraints. Consideration of capacitated

systems is specially relevant for multi-plant coordination. Research needs to be

done to establish how capacities of different plants affect the need and level of

safety stock for achieving a given customer service level.

Graves (1988) addresses the issue of planned lead time for each stage

which serves as the target figure for this stage. The author suggests that the
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greater is the planned lead time, smoother is the aggregate outp"t and hence

lower is the required production system flexibility. However with higher planned

lead time, the inter-stage and intra-stage inventory also increases. Therefore the

trade-off examined is between inventory cost and production f1exibility. Should

we eliminate the need for production system flexibility by having long lead times

and as a consequence carry greater amount of work in process inventory. Or

alternatively should the production system be designed to be flexible in terms of

varying load from period to period. The current emphasis on reduced inventory

and lead time c1early makes the first alternative unattractive to implement. The

issue of capacity is once again ignored. Research needs to be donc to iink planned

lead times, setup times and capacity of equipment.

The above discussion brings up sorne of the important issues relating to

safety stock that need to be addressed for multi-plant coordination. First there is

need for establishing the concept of a maximum reasonable demand. This is the

maximum level of demand for which safety stock planning needs to be donc. This

concept needs to be integrated with the idea of limited production flexibility as

used by Graves (1988) i.e., the limited ability of a plant to adjust its capacity to

changing forecasts. This limit could conform to the forecast revision bounds that

have been discussed in the subsection on nervousness. This limit on forecast bound

represents the flexibility of the system to adjust its output to match changed

forecasts. Safety stock needs to be planned only for demand beyond this bound.

Research is needed to c1arify the above issues. There is also need to establish

inter-linkage between plant capacity and the need for safety stock.

2.3 Summary of Literature Review

In this chapter, we have reviewed research relating to three issues that are criticai

for multi-plant coordination. Sorne trends are evident from the above review.

55



•

•

•

Research on nervousness has largely focused on single stage, uncapaci

tated systems. This represents an important gap in our knowledge about the

phenomenon of nervousness in production systems. In multi-plant firms, there is

limited flexibility to respond to changed forecasts due to finite capacity and the

dependence of the downstream plants for components or subassemblies on the up

stream plants. These issues are important for multi-plant coordination and need

to be addressed in future research.

Research on lotsizing is extensive and multi-faceted. However, sorne im

portant aspects of production systems are relatively less weil represented. The

first aspect is the explicit treatment of setup times which makes the capacitated

lotsizing problem much more difficult to solve. This issue need to be addressed,

especial1y for production systems wit,h tight capacity constraints where setup time

mi.y have a significant impact. The second point relates to the interdependence

of the production planning process at different plants on one another. This issue

assumes greater significance when forecasts are inaccurate and an upstream plant

may fail to provide the required inputs if the revised forecasts are substantially

larger than the previous requirements.

Research on safety stock has addressed several important issues. However,

many question remain to be answered. The concept of a maximum reasonable

demand needs to be c1arified for planning for safety stocks. Work is also needed

for the case where the demand process is not fully known, as is common in the

industries that we are concerned with in this research.
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Before articulating the specifies of a model for multi-plant coordination, it would

be useful to first establish a broad framework which will serve as a guideline

for research. This has two important purposes. First, t.his will aid us in the

modelling process for the current research. Second, it will serve as a guideline for

related future efforts on multi-plant coordination. Evidently, the study of multi

plant coordination embraces several varied aspects and it would not be possible

to address aIl concerns comprehensively in the current research alone. We hope,

however, that this framework will motivate other similar efforts in this area which

will in turn help to elucidate the proposed framework.

As has been previously argued, decision problems relating to lotsizing,

nervousness and safety stock determination are critical to studying multi-plant

coordination and these need to be integrated in an appropriate unified mode!.

However, a large problem incorporating aIl these issues could easily become in

tractable. We therefore propose the following hierarchical approach. The deter

mination of lotsizes is of primary importance and must be addressed first. The

important aspects that this problem must be able to capture are explicit treat·

ment of setup times and interdependence between dilferent plants. Each plant

must be modeled by minimal number of workcenters. If a weil defined bottleneck

workcenter exists, it becomes the natural choice for modelling the entire plant.

If there is no weil defined bottleneck, the workcenter could represent what Kar

markar et al., (1992) cali an 'approximate composite model which approaches

the performance of the entire facility. For this purpose constrained facilities need

to he identified in the spirit of Billington et al., (1983). We need to distinguish

here between the macro and micro levels of modelling. At the macro level, the

approximate workcenters (representing the entire plant) need to be considcred.

57



•

•

•

The results from this mode! may then be plugged into a detailed micro model to

test if the performance targets are being met. The micro model would be sim

ulation based and would include most of the shop-floor details which have been

ignored in the macro mode!.

Once the above situation is successfully modeled, the issues of imple

mentation of the above scheme on a rolling basis as weil as the determination of

appropriate safety stock need to be operationalized. For this there would be need

to define (as in Graves, 1988) the concept of a maximum reasonable demand

which is the maximum level of demand for which safety stock planning needs to

be done. This concept will need to be integrated with the idea of limited produc

tion flexibility or the limited ability of a plant to adjust its capacity to changing

forecasts. The limits could conform to the forecast revision bounds that have

been discussed in the section on nervousness. This limit on forecast bound repre

sents the flexibility of the system to adjust its output to match changed forecasts.

Safety stock would need to be planned only for demand beyond this bound.

In this dissertation, we focus primarily on the macro level model relating

to losizing issues in order to address the twin concerns of setup time and interde

pendence between different plant~. In the next chapter, we will address the above

issues when we formally define our model for multi-plant coordination.
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Chapter 3

Model for multi-plant

coordination

Figure 1.2 is a representation of the multi-plant coordination problem which,

as earlier stated, is motivated by a real life situation at IBM. Our model is a

combination of the manufacturing system at IBM and the framework outlined in

the previous chapter. The basic details of the IBM organization are as follows.

The upstream plant, A (located in Burlington, Vermont), produces semiconductor

devices called chips. The chips are then transported to Plant B (located in

Bromont, Quebec) where they are mounted on ceramic substrate called modules.

In terms of the plant structure, we consider the two plant case as depicted in Figure

1.2 as this adequately demonstrates the phenomenon of interaction between plants.

We shaH show subsequently that the extension to the more general n plant case

is straightforward. Within each plant, we consider the case of a single bottleneck

workcenter. This choice is guided by the fact that a model with a single workcenter

is an important building block for the more realistic model with multi workcent,er~

at each plant. Later in this dissertation, we will propose ways in which this more

complex modelling can be approached.
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The product structure adopted, mimics reality and allows for chip com

monality i.e., a chip is used in several different modules. Similarly, a module may

require several different chips. In keeping with our framework described earlier,

we focus our attention on the deterministic case, where the demand process for

modules can be perfectly predicted over the forecast horizon and shortages are

prohibited. However the demand is allowed to be dynamic in time which is an

important aspect of the business environment in the computer industry.

At IBM (as is the case in most discrete parts manufacturing industries),

productive capacity is expended on two distinct activities. Setting up a machine

requires a setup time which is independent of the batch of items being processed

while a standard time per unit is required for processing of items. The interested

readers can find details of the chip making process in Cooper et al., (1992) and of

module fabrication in Chandra and Gupta (1993). Due to the impact on problem

complexity, a vast majority of previous research efforts have ignored setup times

by using a constant setup cost as a surrogate. In contrast, we follow the lead of

Trigeiro et al., (1989) and others and explicitly model setup times as this is a more

accurate representation of the problem. Setup costs are not considered because the

productive capacity lost in setting up the machine is the sole cost implication of

setups in discrete parts manufacturing industries. If required however, setup costs

can be included in our model with no impact on the problem complexity. Capacity

is assumed to be limited, i.e., the total requirements for setup and processing times

for ail items must be within the specified regular capacity in each period. However

in case of need, limited overtime resources can be used. For example, IBM uses

five week days as regular capacity, while the two weekend days are treated as

overtime. Two types of costs are incurred for use of overtime resources. A fixed

cost is incurred in each period in which overtime usage is positive. This refiects

the fixed portion of costs relating to scheduling of overtime work. A variable cost

proportional to the amount of overtime usage is also incurred. Holding costs are
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incurred on end of period inventory while produ.:tion costs using regular resources

are assumed to be constant in aU periods and are ignored.

The cost of transportation of chips between Plant A and B is captured

implicitly in our model due to the uniqueness of the prohlem. The main mode

of transfer of chips between Burlington and Bromont is by trucks which oper

ate every weekday. Transportation cost incurred during weekdays is largely fixed

and can be ignored. If however, there is work over the weekend (i.e., overtime),

extra transportation has to be scheduled for transferring chips without delay to

Bromont. Once the decision to schedule ovcrtime is taken, the additional trans

portation costs are largely fixed. The implication of this for our model is that the

fixed overtime costs at Plant A need only be inflated by the fixed transportation

costs between Burlington and Bromont to capture the effect of transportation

during overtime. This is easily accommodated in the structure of our overtime

costs.

Given demand forecasts over a planning horizon, the objective of the

multi-plant coordination problem is to determine production/inventory levels at

each plant so that the overaU costs of inventory holdillg and overtime (induding

transportation) are minimized. Our focus on this set of costs was forroborated in

our discussions with managers at IBM.

We now proceed to define the notation which will he used throughout, in

the rest of this dissertation.

Notation

•

. {index for chips

t = index for modules

= 1, ... ,m

= m+l, ... ,m+n
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• t = index for time periods = 1-L, ... ,T

•

p = index for plants

Decision Variables

Xi! -
lit -
Dpt =

l'it -

Zpt

Parametel's

Uik

= 1 Plant A

= 2 Plant B

Quantity of product i processed in period t

Inventory for product i in period t

Amount of Overtime used at Plant p in period t

{0

1 if produet i is produced in period t

otherwise

{ 0

1 if overtime is used at Plant p in period t

otherwise

Quantity of module i required in period t

number of units of chip k required for producing

each unit of module i

hi - holding cost per unit of product i per period

Si - setup time for product i

bi - processing time per unit of produet i

Cappt - available regular c::.pacity at Plant p in period t

Vpt - variable cost of overtime at Plant p in period t

Jpt - fixed cost of overtime at Plant p in period t

DTpt - maximum allowable overtime at Plant p in period t

Mm - Min ([(CaP2t +DT2t - si)/bi], 'Ef,=t dit')

Milt - Min ([(Caplt +DTlt - si)/bi], 'Ef,=t 'Ek'I'::+l Uni.dit')• 62



• 3.1 Uncoordinated Model

•

As mentioned earlier, the production planning problem in a multi-plant scenario

is typically addressed sequentially or in an uncoordinated manner. This is

a direct consequence of the way in which managerial roles are defined in the

North American industry. Managers focus on their immediate responsibilities

and since this is the basis of their performance appraisal, there is little motivation

to communicate with the interlinking parts of the organization, either upstream

or downstream. Operationally, this translates into the following scenario. The

downstream plant first solves its own production plaT.ning problem and determines

the production plan for modules. This defines the demand vector for chips which

is passed onto the upstream plant. Using this demand as input, the problem for

the upstream plant, A, is then solved independently. Formally the problem for

Plant B may be stated as follows :

Plant B

Minimize
m~ T T T
L: L: hi.lit +L:V2,.o2t +L:h,.Z2'

i=m+l t=l t=l t=l

subject to

lit-l + Xit - lit = dit \;ft = 1, ... ,T,

i =m+ l, ... ,m+n
m+n

~ (s•.Yit + bi.Xit) - 0 21 S; Cap2' \;ft = 1, ... ,T
t=m+l

0 21 S; OT2t.z2, \;ft = 1, ... ,T

Xit < Mi2,.Yit \;ft = 1, ... ,T,

i = m+ 1, ... , m+ n

(3.1)

(3.2)

(3.3)

(3.4)

•
Z2t, Yit E (0, 1), Xit, lit ;::: 0, 1.0 = °
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Constraints (3.1) are the inventory balance constraints which ensure that demand

for modules is satisfied either through production in the current period or by using

inventory carried over from a previous period. The capacity constraints (3.2)

impose the restriction that the total of processing and setup time for all modules

scheduled in a period must be within the regular and overtime capacity available

at Plant B in that period. Constraints (3.3) lirrùt the amount of overtime resources

that can be used and ensure that appropriate fixed costs of overtime are incurred

in each period in which overtime usage is positive at Plant B. Constraints (3.4)

are the setup enforcement constraints which ensure that if a module is produced

in a given period, setup time will also be incurred for this module in that period.

Constraints (3.5) impose non negativity on the production and inventory variables,

force the setup and fixed overtime variables at Plant B to be binary, and the

starting inventory of modules in period 1 to be zero for the appropriate indices.

The objective is to minimize the total costs at Plant B, comprising inventory

holding costs and the fixed and variable costs of scheduling overtime over the

entire horizon.

The solution of the above problem for Plant B defines the chip require

ment Ez;,t:'+l Uik.Xit for every chip k in each period from Plant A which uses this

as an input to determine its own production plan. A constant lead time of L

periods is assumed between the two plants. The planning horizon for Plant A is

therefore 1 - L to T - L. The problem for Plant Amay be stated as follows :

Plant A

Minimize
m T-L T-L T-L

2: 2: hi.lit + 2: Vlt.Olt + 2: flt·zlt
i=1 t=I-L t=I-L t=I-L

subject to

•
m+n

lit-I +Xit - lit - 2: lli·k.Xi't
"=m+l
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• m

~(Si.l'it +bi.xit) - Olt ~ Caplt Vt = 1 - L, ... ,T - L (3.7)
i=l

Olt < OTlt.zlt Vt = 1 - L, ... , T - L (3.8)

Xit ~ Milt.Y;t Vt = 1 - L, ... , T - L, (3.9)

i = 1, ... ,m

zihl'it E (0,1), X it , lit ~ 0, lio = 0 Vt =1 - L, ... , T - L,

i =1, ... ,m (3.10)

•

o

Constraint (3.6) is the inventory balance constraint at Plant A, which ensures that

demand for chips is satisfied either through production in the current period or by

using inventory carried over from a previous period. Constraint (3.7) imposes the

restriction that the total of processing and setup time for ail chips must lie within

available regular and overtime capacity at Plant A in each period. Constraint (3.8)

ensures that in each period with positive overtime usage, fixed overtime costs are

incurred. Constraint (3.10) is the setup enforcement constraint which ensures that

if a chip is produced, a setup must also be incurred in that period. Constraint

(3.10) imposes non negativity on the production and inventory variables and forces

the setup variable and the fixed overtime variable at Plant A to be binary, and

the starting inventory of chips in period 1 to be zero. The planning horizon for

Plant A is offset by L time periods as compared to Plant B as the constant lead

time for supplying ail components required by Plant B is assumed to be L time

periods.

3.2 Coordinated Model

The uncoordinated approach is inadequate for production planning in a multi

plant scenario because it ignores the interactions that exist between the processes

at the two plants. This approach can result in sub-optimality for the firm as a

whole. For optimal performance, the objective must be to determine the best mix
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of inventory of modules and overtime usage at the two plants in each period so

that overall cost is minimized. In the uncoordinated approach, Plant B drives the

model and this may impose a bad demand vector on Plant A to which it cannot

adapt, resulting in excessive inventory/overtime costs and consequent1y higher

overali costs. In contrast, the coordinated approa(;h jointly determines production

quantities at both the plants by minimizing the total costs at the two plants.

This objective captures the important goal of integrating the processes at the two

plants and has been much emphasized in operations management literature. The

coordinated problem may be stated as follows:

Problem ç

Minimize Copi =

PlantB.
m+n T T T m T-L T-L T-L

L: L: hi.lit +L: f2t, Z2t +L: V2t.02/ +L: L: hi.lit + L: fl/·zl/ + L: Vl/.Ol/
i=m+l t=1 t=1 t=1 i=1 t=l-L t=l-.l" t=l-L.

subject to

Iit-t-_+ Xit - lit = dit Vt = 1, ... ,T,

i = m +1, ... ,m +n (3.11)
m+n

L: (Si.Yit + lii.Xit) - 02/ S Cap2t Vt = 1, ... ,T (3.12)
i=m+l

02t S OT2t.Z2/ Vt=I, ... ,T (3.13)
1

Xit < Mm.Yit Vt = 1, ... ,T,

i=m+l, ... ,m+n (3.14)

I it- 1 +X it - lit - Pit Vt = 1 - L, ... ,T - L,

i=l,oo.,m (3.15)
m+n

L: Uik,Xit = Pkt-L \ft = 1, ... T, k = 1, ... m (3.16)

• i=m+t
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~]8;.YiI +bi,X;I) - Olt < Capu
i=l

Olt ::; OTlt.zu

XiI ::; Milt.Yi,

\/t=l-L, ,T-L (3.17)

. Vt = 1 - L, ,T - L (3.18)

Vt = 1 - L, ,T - L, (3.19)

i = l, ... ,m

Zpl, Yi, E (0,1), Xit,lit ~ 0, liD = 0 Vt, i, p (3.20)

•

•

The formulation of Problem C is a priari superior to the uncoordinated approach

described before, because it accounts for the interaction between the two plants.

However, this formulation is computationally intractable because of two sets of

complicating constraints: the capacity constraints (3.12) and (3.17) and con

straints (3.16) which contain the coupling terms Er.:'::+I U:k'X;" The capacity

constraints tie the products together at each plant while the coupling constraints

tie the chips and the set of modules for which they are used (according to the bill

of materials). For the given formulation of C, direct application of branch and

bound will be computationally so expensive as to be impractical for reallife prob

lems. Evidently the problem needs to be restructured so that alternative strategies

other than direct application of branch and bound method can be implemented

to solve the problem efficiently. Lagrangian relaxation is one methodology which

has often provided the best existing algorithm for some of the most difficult com-
~':O

binatorial optimization problems. Lagrangian relaxation transforms the original

problem by relaxing the complicating constraints and adding a penalty term equal

to the product of the complicating constraints' violations and Lagrange multipli

ers. In the next chapter we deliberate the significance and operational details of

Lagrangian relaxation as a solution methodology for our mode!.
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Chapter 4

Research Methodology

As stated in the previous chapter, Lagrangian relaxation has often provided

the best existing algorithm for several complex combinatorial optimization prob

lems (Geoffrion (1974) and Fisher (1981) for a comprehensive review and detailed

treatment of the theory of Lagrangian relaxation). The overall objective of this

chapter is to deliberate the significance of Lagrangian relaxation as a solution

methodology and to specify the operational details for a Lagrangian relaxation

based solution algorithm for our mode!. We first present a brief review of the

theory of Lagrangian relaxation. Next, we examine the advantages and disad

vantages of different strategies of relaxation of constraints and present algorithms

based on these strategies.

4.1 Background

Using constructs from Fisher (1981), we reproduce sorne of the major building

blocks necessary for the successful application of Lagrangian relaxation method

ology. The original problem C can be stated in a generic form as follows:
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Minimize

Cprimal = ex

subjeet to

Ax = b

Dx = e

x ?: 0 and integral

The objective funetion ex in the above formulation is a generic representation of

aU cost terms in Problem C (see page 66) and is defined over the cost coefficients

and the decision variable set x. The constraints in the above formulation may

be partitioned into two sets, one of which is relatively easy to solve by special

algorithms white the other set comprises complicating constraints (for Problem C

this is the set of the coupling and the capacity constraints). As noted above, La

grangian relaxation transforms the original problem by relaxing the complicating

constraints and adding a penalty term incorporating the product of the complicat

ing constraints' violations and Lagrange multipliers, >.. The transformed problem

is caUed the Lagrangian problem and can be represented as foUows: Minimize

CLogrongion(>') = ex +>'(b - Ax)

subjeet to

Dx - e

x ?: 0 and integral

For any >., the Lagrangian problem is relatively easy to solve due to the special

structure of the constraint set Dx=e and is a lower bound on the optimal value

of the primai problem (Fisher, 1981). The best choice of >. would be the optimal

solution to the Lagrangian dual problem.
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Alternative procedures may be used for selecting promising values of the Lagrange

multipliers, >.. Most schemes for determining appropriate values of >. have as their

objective, finding optimal or near optimal solutions to the above Lagrangian dual

problem. Ideally we would like to relax constraints in such a manner that the

Lagrangian problem is easy to solve and the optimal solution to the Lagrangian

dual is close to the primai optimal. Then, by suitably perturbing these near

optimal solutions, good feasible solutions to the primai problem can be obtained.

The true optimal solution value is therefore bounded between the value of the

best known Lagrangian problem (lower bound) and the value of the best known

feasible solution (upper bound). The smaller the gap between the lower and the

upper bounds, the more certainty we have that the feasible solution is close to the

optimal. Several authors have observed (Fisher (1981), Thizy (1991), Chen and

Thizy (1991) and Millar and Yang (1993) for specifie examples) that the choice

of the constraints to relax has a critical impact on the quality of the bounds and

the computational requirements for solving the Lagrangian problem. The specifie

constraints that we choose to relax will therefore exert considerable influence on

the size of the gap we can obtain between the upper and the lower bounds. We

now analyze sorne of these alternative relaxations of Problem C and this analysis

will be used later to evolve an efficient algorithm for the multi-plant coordination

problem.

4.2 Choice between Competing Relaxations

The choice of the constraint to be relaxed is clependent on the trade-off between

the ease of solving the relaxed problems, and the quality of bounds obtained.

Relaxing fewer or different constraints may result in sharper bounds but may

increase the computational requirements so heavily as to make such a relaxation
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impractical for large problems. In the formulation of Problem C, there are two

sets cf compâcating constraints: the capacity constraints (3.12) and (3.17) and the

coupling constraints (3.16). We analyze the relative advantages and disadvantages

of thœe competing relaxations which may be derived from Problem C as fol1ows:

(1) Relax only coupling constraints.

(2) Relax both capacity and coupling constraints.

(3) Do not relax any constraints but reformulate the problem by creating copies of

variables. As described later, this technique cal1ed Lagrangian decomposition

(also referred to as variable splitting by sorne authors) creates independent

sub-problems by using one copy in two different subsets of constraints and then

relaxing the condition that the two copies should be identical.

We now describe these relaxations/reformulations and our preliminary

computational experience with them. We present the Lagrangian problems for

each of the above cases, discuss the structure and the advantages/disadvantages

of the relaxed problems and methods for optimizing the Lagrangian dual.

4.2.1 Relaxing Coupling Constraints

For Problem C we note that if the coupling constraints (3.16) are relaxed, the

problem decomposes into two independent single plant problems for Plant A and

Plant B respectively. However, each of thesfJ sub-problems are capacitated lotsiz

ing problems and we cannot expect to get optimal solutions efliciently, for large

problem instances. For reallife problems therefore, this relaxation appears a pri

ori impractical f~om an implementation point of view. Nevertheless, we explored

the impact of relaxing the coupling constraints on the quality of bounds for smal1

problems. Starting with Problem C, the coupling constraints were dualized using

Lagrange multipliers and adding the appropriate penalty term to the objective

function. The procedure fol1owed is detailed below.
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• a. Dualize constraints (3.16) with àual variables 7rkt and add the pemùty function

7rkt.(Pkt-L - L~;:+I l.lik.X it) for ail k = 1, ... ,m and t = 1, ... T to the

objective function.

•

The above yields a Lagrangian problem which decomposes into two inde

pendent capacitated single-plant problems. These problems CRCoupieB and CRCoupleA

are shown below:

Problem CRCoupieB

Minimize
m+n T T T m+n T m

2:: 2:: hi.lit +2:: V2t· 0 2t +2:: !2t·Z2t - 2:: 2:: 2:: 7rkt.l.lik.Xit
i=m+I t=1 t=1 t=1 i=m+l t=1 k=1

subject ta

I it_ 1 +Xit - lit - dit \;ft = 1, ... ,T,

i=m+l, ... ,m+n (4.1)
m+n

2:: (Si.Y;t + bi.Xit) - 0 21 ~ Cap2t \;ft = 1, ... ,T (4.2)
,"=m+l

0 21 ~ OT2t.z2t \;ft = 1, ... ,T (4.3)

Xit ~ Mm.Y;t \;ft = 1, ... ,T,

i=m+l, ... ,m+n (4.4)

\;ft = 1, ... ,T,

•

i = m +1, ... ,m +n (4.5)

Problem CRCoupleA

Minimize
m T-L T-L T-L m T-L

2:: 2:: hi·lit + L VIt.0lt + 2:: !It.Zlt +2:: 2:: 7r",.P",
i=1 t=I-L t=I-L t=I-L i=1 t=I-L

subject ta

\;ft = 1 - L, ... ,T - L,
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• m

2:(8;.1';, +b;.Xit ) - Olt ~ Capu
i=1

i = 1, ... ,m

Vt = 1 - L, ... ,T - L

(4.6)

(4.7)

,
2: Pkt• >

t'=l-L
Vt = 1 - L, ... ,T - L,

k = 1, ... ,m

Vt = 1 - L, ,T - L

Vt = 1 - L, ,T - L,

i = 1, ... ,m

Vt = 1 - L, ... ,T - L,

i = 1, ... ,m

(4.8)

(4.9)

(4.10)

(4.11)

•

•

We note that a new constraint (4.8) which was not present in C has been added in

the formulation of Problem CRCo"plcA' By ensuring that the cumulative produc

tion of chips in each period is at least equal to the cumulative demand for chips up

to this period (i.e., there are no backorders for chips), this constraint strengthens

tho formulation for Problem CRCo"plcA. This constraint is redundant in Problem C

because constraints (3.15) and (3.16) automatically ensure the above l~quirement.

Solving problems CRCo"plcB and CRCo"plcA to optimality (using branch and bound)

yields a lower bound on C. An upper bound was generated using the sequential

approach i.e., solve CRCo"plcB, define requirements for Plant A, solve CRCo"plcA.

The procedure used for optimizing the Lagrangian dual was Bubgradient op

timization, the operational details of which are described later. Obviously, wc

could only select small problems for this exercise because capacitated single plant

problems were required to be solved to optimality by a branch and bound proce

dure. For the few problems that were solVE , the average gap between the upper

and lower bounds was in the vicinity of 5%. This gap could be further reduced

by continuing subgradient optimization for a larger number of iterations (we ter

minated the procedure after only 10 Iterations because of the difficulty of solving
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capacitated lotsizing problems by direct application of branch and bound). In

order to get a better feel for the quality of bounds in the cases considered, the

original problem was solved to optimality. In ail cases there was a tight fit between

the upper bound and the true optimal value (less tha,n 1%deviation). While we

have run very few experiments for this relaxation, in general it appears that the

gap between the upper and lower bound for this relaxation will be quite small. As

well, the upper bound appears to be quite close to the optimal. However, from a

computational point of view, the above relaxation is clearly impractical because

of the heavy requirements for solving capacitated lotsizing problems optimally by

branch and bound. The bounds obtained are useful as a bench mark to compare

the bounds from the other relaxations that are considered later.

4.2.2 Relaxing Capacity and Coupling Constraints

The second relaxation we consider is obtained from Problem 0 by the Lagrangian

relaxation of the capacity constraints at both the plants (Constraints (3.12 and

(3.17)) and the coupling constraints between the two plants (3.16). The problem

then decomposes into independent problems for Plant A and Plant B respectively.

Moreover since there are no complicating constraints tying up the products, the

problem for each plant decomposes into independent problems for each individual

item. We first pre~!lnt Problem 0 in an equivalent form, OLRel.r by creating

copies of the overtime variables Opt. As explained later, creating copies in this

manner gives a better structure to the relaxed problems by separating the overtime

problems and facilitates their efficient solution. The equivalent problem OLRel.r

is presented below.

Problem OLBe/:;"
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• Minimize 0LHel•.• =

PlantB.
m+n T T T m T-L T-L T-L

L: L: hi.li. + L: ht.Z2t + L: V2t. 0 2t +L: L: hi.lit + L: flt.Zlt + L: Vlt.Olt
i=m+l t=l t=l t=l i=1 t=l-L t=l-L t=l-L.

•
PlantA

subject to

lit-1 + Xit - lit = dit Vt=l, ... ,T,

i = m+ 1, ... ,m+n (4.12)
m+n

L: (Si.Yit + bi.Xit) - O;t < Oap2t Vt = 1, ... ,T (4.13)
i=m+l

Xit < Mi2!.Yit Vt = 1, ... ,T,

i = m+ 1, ... ,m+n (4.14)

021 ~ OT2t .Z2t Vt = 1, ... ,T (4.15)

lit-1 + Xit - lit - Pit = 0 Vt = 1 - L, ... ,T - L,

• i = 1, ... ,m (4.16)
m

L:(Si.Yit + bi.Xit) - O~t < Oaplt Vt = 1 - L, ... ,T - L (4.17)
1'=1

Xit ~ Milt.Yit Vi, t =1 - L, ... , T - L,

i = 1, ... ,m (4.18)

Olt ~ OTlt·zlt Vt = 1 - L, ... ,T - L (4.19)
m+n

L: Uik,Xit = Pkt- L Vt = 1, ... T,k = 1, ... m (4.20)
i=m+l

02t = O~t \it = 1, ... T (4.21)

Olt = O~t Vt =1 - L, ... T - L (4.22)

Zpt, Yit E (0,1), Xit,!it > 0, liO =0 Vt, i,p (4.23)

•
It can be e'lSily seen that 0 and OLH,'." are equivalent. In the formulation,

OLHel.", constraints (4.12), (4.13), (4.14) and (4.15) represent the problem for

Plant B while constraints (4.16), (4.17), (4.18) and (4.19) represent the problem for

Plant A. Constraints (4.20) are the coupling constraints between the two plants.
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• Constraints (4.21) and (4.22) create copies of overtime variables at either plant.

The addition of these constraints facilitate the decomposition of the 1agrangian

problem into easily solvable, independent overtime sub-problems. The relaxation

procedure is detailed below.

a. Dualize constraints (4.13) with dual variables 'Y2t and add the penalty function

'Y2t.(Gap2t - ~?::-::+l (Si.Y;t +bi.Xit) +O;t) for ail t = 1, ... ,T to the objective

function.

b. Dualize constraints (4.17) with dual variables 'Ylt and add the penalty function

'Ylt.(Gaplt - ~~l(Si.Y;t +bi.xit ) +O~t) for ail t = 1-1, .. , ,T-1 to the objective

function.

c. Dualize constraints (4.20) with dual variables 'lrkt and add the penalty function

'lrkt.(ht-l - ~~-::+l Uik.Xit) for ail k = 1, ... ,m and t = 1, ... T to the

objective function.

• d.

e.

Dualize constraints (4.21) with dual variables 02t and add a penalty function

02t(0;t - 02t) for ail t = 1, ... ,T to the objective function

Dualize constraints (4.22) with dual variables olt and add a penalty function

Olt(O;t - Olt) for ail t = 1-1, '" ,T-1 to the objective function

•

Problem GLRela~ with the penalty terms added in the objective function and the

constraint set defined by the special structure constraints namely, (4.12), (4.14),

(4.15), (4.16), (4.16), (4.18), and (4.19) represents the 1agrangian problem for

the current relaxation. Separating subsets of constraints we get two independent

problems for each plant. We cali these decomposed problems BLRelaz1' BLRela~2,

ALRela~l and ALRela~2 respectively. These problems can be represented as follows:

Decomposed Problems for GLRela~

Problem BLRelaz1
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Minimize CBLRelazl =
m+n T m+n T m+n T m m+n T T

L: L: hi.lit- L: L: 1'2t.bi.X it- L: L: L: 7l"kt.U ik.Xit- L: L: 1'21'S;,Y;,+L:(021+1'2t).0;
Î=m+l t=1 i=m+l t=1 i=m+l t=1 k=l i=m+l t=l t=1

subjeet to

lit-l + Xit - lit - dit Vt = 1, ... ,T, i=m+l, ... ,m+n

Xit :s; Mi2t .Y;t Vt = 1, ... ,T, i=m+l, ... ,m+n

O;t :s; OT2t Vt = 1, ... ,T

Problem BLRelaz2

Minimize CBLRelaz2 =
T T T

L:V2t .o2' +L: ht.Z21 - L: 02,.021
t=1 t=1 '=1

subject to

Vt=I, ... ,T

Problem ALRelazl

Minimize CALRela"l =
m T-L m T-L m T-L m T-L T-L

L: L: hi.lit- L: L: 1'll.bi.Xit+L: L: 7l"kt.Pkt-L: L: 1'll.Si·Y;t+ L: (Oll+1'll).O;1
:'=1 t=l-L .=1 t=l-L 1=1 t=l-L 1=1 t=l-L t=l-L

subject to

Vt = l - L, ... ,T - L, i = l, ... ,m

Mill.Y;t Vt=l-L, ... ,T-L, i=l, ... ,m
m+n t+L

L: L: Uik.dit' Vt = l - L, ... , T - L,
i=m+l f'=1

•
t

L: Pkt, >
t'=l-L

k = l, ... ,m

Vt = l - L, ... ,T - L
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• Problem ALRelax2

Minimize CALR.lax2 =

T-L T-L T-L

L Vlt.Olt + L flt.Zlt - L Slt.Olt
t=l-L t=l-L t=l-L

subject ta

Vt = 1 - L, . .. ,T - L

•

Problems BLRelaxl and ALRelaxl decompose into uncapacitated single item lotsiz

ing problems (one for each item) which can be efficiently solved by the dynamic

programming based Wagner-Whitin (1958) algorithm. For these problems, O~t

is fixed at its upper bound if the appropriate coefficient (Spt + IPt) is negative

and takes the value 0 otherwise. We note that an additional constraint has been

added in Problem ALRelaxl' The justification for adding this constraint is the same

that for the previous relaxation (see page 73). Problems BLRelax2 and ALRelax2

represent the overtime problems which can be easily solved by the following easy

inspection procedure.

If

•

then

Zpt = 1, Opt = OTpt

e1se

Zpt = O,Opt = 0

Optimal solutions to the above problems provide a lower bound on C. Using the

solution of the Lagrangian problem as a starting point, a complex heuristic was

used to generate feasible solutions (upper bound). Subgradient optimization was
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used for the optimization of the Lagrangian dual and this procedure was termi

nated after reaching a specified number of iterations. The details of the subgra

dient optimization procedure and the heuristic are explained in the next chapter.

The gap between upper and lower bounds appears to be much larger than was the

case when only the coupling constraints were relaxed. This large gap (between

the upper and the lower bounds) may be attributable to either an inherent duality

gap between the optimal solution to the primaI problem and the optimal solution

to the Lagrangian dual (for the given relaxation) or a large deviation of the best

known feasible solution from the true optimal or an incomplete computation of

the best lower bound. This is an unfortunate ambiguity and we address this issue

in Chapter 5. As earlier we also compared the best feasible solution to the truc

optimal value of the primaI problem (obtained by direct application of brandI

and bound). The best feasible solution on the average turned out to be 1 %more

expensive than the true optimr.l solution. While the large gap betwccn the best

upper and lower bounds is a cause for concern, we observe that the upper bound

deviates from the true optimal by a much smaller quantity. Comparing the results

for the two relaxations (see Figure 4.1), it appears that a large portion of the gap

arises due to the relaxation of capacity constraints at either plant, rather than

the relaxation of the coupling constraints. A scheme which explicitly incorporates

the capacity constraints rather than dualize them could result in a lower duality

gap. We discuss one such approach in the next section.

4.2.3 Variable Splitting/Lagrangian Decomposition

Sometimes the complicating constraint may not be the best choicc for relaxation.

Millar and Yang (1993) show that good results may be obtained for the multi

item, single stage, capacitated lotsizing problem (witho.lt setup times) by using a

:eformulation approach which avoids the most obvious choice of relaxing the ca

pacity constraint (earlier used by Thizy and Van Wassenhove, 1985). The authors
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created two copies of Xi., the production quantity variables, used one copy in a

different subset of constraints, and then relaxed the condition that the two copies

should be identical. This separated the problem into two different sub-problems

each of which could be efliciently solved by exploiting the special underlying struc

ture. The gap between the upper and lower bounds were shown to be consistently

better than those obtained by using traditional Lagrangian relaxation of the ca

pacity constraints. This technique wa: pioneered by Glover and Mulvey (1980)

who gave it the name variable splitting. Later Guignard (1984) established sev

eral important properties and used the term Lagrangian decomposition. Guignard

and Kim (1987) analytically showed that Lagrangian decomposition is superior to

traditional Lagrangian relaxation where all but one specially structured constraint

set are dualized.

Guignard and Kim (1987) provide an interesting interpretation of what

the Lagrangian decomposition does from a primai viewpoint. They show that op

timizing the Lagrangian decompositicn dual is equivalent to optimizing the primai

objective function on the intersection of the convex hulls of the constraint sets.

They also prove that if any of the constraint subsets possess the integrality prop

erty (Geoffrion, 1974) then Lagrangian decomposition will provide as good (but

no better) a lower bound as the strongest of the Lagrangian relaxation bounds.

If none of the subsets has the integrality property, Lagrangian decomposition is

likely to provide better bounds. Considering the Lagrangian relaxation of capacity

constraints in Problem G, we observe that the constraint subsets do not have the

integrality property. Lagrangian decomposition therefore promises lower bounds

which are potentially better than those obtained by Lagrangian relaxation of the

capacity constraints.

With the above background, we now explore a new formulation equiva

lent to Problem Gand its Lagrangian decomposition on lines similar to Millar and

Yang (1993) which may lead to tighter bounds than those obtained by Lagrangian
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• relaxation of capacity and coupling constraints. The goal here is to explicitly in

clude the capacity constraints in one of the decomposed problems rather than

relaxing them and adding the corresponding penalty term to the objective func

tion. This formulation CLd"omp (equivalent to the original problem C), is obtained

by making copies of the variables Xi', the production quantity variables, Y;" the

setup variables and Op" the overtime requirement variables. Creating copies of

variables in this manner enables us to use the original variables in one sub-problem

and copies of these variables in another. The sub-problerns are linked by the re

quirement that the copies (of variables) created must be identical to the original

variables. Later the last requirement will be relaxed in order to exploit the spe

cial underlying structure of the individual sub-problerns for developing efficient

solution algorithms. CLd,eomp can be represented as follows:

•
Problem CLdocomp

Minimize CLdocomp =

PI.ntB. ,
m+n T T T m T-L T-L T-L

L L hi.l" +L ht.z2t +L V2t.02t +L L hi.lid L !lt.Zlt + L Vlt.Olt
i=m+l t=l t=l t=l i=l t=l-L t=l-L t=l-L.

subject to

1,,-1 +X" - 1" - dit

m+n

L (Si'Y;~ +bi.X!t) - O~t ~ Cap2'
i=m+l

X" ~ Mm.Y;,

Vt=l, ... ,T,

i = m +1, ... , m +n

Vt = 1,oo.,T

Vi,t = 1, ... ,T,

(4.24)

(4.25)

•
i=m+l, ... ,m+n

0 21 ~ OT2t .z2t Vt = 1, 00', T

Vt = 1 - L, ... ,T - L,

i = l, ... ,m
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• m

~(Si'Y;~ +bi.xit) - 0;, S; Capu Vt = 1 - L, ... ,T - L (4.29)
;=1

Xit S; MiU.lit Vi, t = 1 - L, ... ,T - L,

i=l, ... ,m (4.30)

Ou < OTu.zu Vt = 1 - L, ... ,T - L (4.31 )
m+n

~ Uik.Xit - Pk'-L Vt= 1, ... T,k = 1, ... m (4.32)
i=m+l

Xii = Xi, Vi,t (4.33)

lit = Y;~ Vi,t (4.34)

O2, = O~, Vt = 1, ... ,T (4.35)

Ou - 0;, Vt = 1 - L, ... ,T - L (4.36)

zp"lit E (0,1), XiI,!it ~ 0, lia = 0 Vt, i,p (4.37)

•
It can be easily seen that C and CLd,eomp are equivalent. In the formulation,

CLdccomp, constraints (4.24), (4.25), (4.26) and (4.27) represent the problem for

Plant B while constraints (4.28), (4.29), (4.30) and (4.31) represent the prob·

lem for Plant A. Constraints (4.33), (4.34), (4.35) and (4.36) represent copies of

variables as described before. The Lagrangian problem is obtained by dualizing

constraints (4.32), (4.33), (4.34), (4.35) and (4.36), and adding the appropriate

penalty term (comprising the product of the violations of the dualized constraints

and the Lagrange multipliers) to the objective function. The dualizing procedure

is detailed below:

•

a.

b.

c.

Dualize constraints (4.32) with dual variables 'lrk' and add the penalty function

'lrkt,(Pkt- L - Ei:t:'+l Uik.Xit) for ail k = 1, ... ,m and t = 1, ... T to the

objective function.

Dualize constraints (4.33) with dual variables Pit and add a penalty function

Pit(Xit • Xii) for all i, t to the objective function

Dualize constraints (4.34) with dual variables 'YiI and add a penalty function

'Yit(Y;~ - lit) for ail i, t to the objective function
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• d.

e.

Dualize constraints (4.35) with dual variables éu and add a penalty function

é2t(0;t - 02t) for aU t = 1, ... ,T to the objective function

Dualize constraints (4.36) with dual variables élt and add a penalty function

élt(O~t - Olt) for aU t = l-L, .. , ,T-L to the objective function

•

Problem CUecomp with the penalty terms added in the objective function and the

constraint set defined by the constraints (4.24) to (4.31) and (4.37) (i.e., con

straints that are not relaxed), represents the Lagrangian problem for the current

Lagrangian decomposition based procedure. Separating subsets of constraints, the

Lagrangian problem decomposes into three independent problems for each plant.

We caU these decomposed problems BUecompl, BLdecomp2, BUecompa, AUccompl,

ALdecomp2 and AUeeomp2 respectively. These problems can be represented as fol

lows:

Decompased Prablems far CLdecomp

Problem BUecompl

Minimize CBLdecompl =
m+n T m+n T m+n T m m+n T

L: L: hi.lit - L: L:Pit.Xit - L: L: L: 1I"kt·U ik·X it - L: L: 1'it.Yit
Î=m+l t=l Î=m+l t=l i=m+l t=l k=1 i=m+l t=l

subject to

\ft = 1, ... ,T,

i = m+ l, ... ,m +n

\ft = 1, ... ,T,

•

i = m +1, ... , m +n

Problem BUecomp2

Minimize CBLdeeomp2 =
T T T

~>2t.02t +L:f2t.ZU - L:é2t.02t
t=l t=l t=l
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• subject to

Vt=I, ... ,T

Problem BLd,eomp3

Minimize CBLdccomp3 =

m+n T m+n T T

2: 2: Pit.XIt + 2: 2: 'Yit J '';; +2: 82t.o~,
i=m+l t=l i=m+l t=l t=l

subject to

i = m +1, ... , m +n•

m+n

2: (s•.Y;; +b•.XIt) - O~, < Cap2t
i=m+l

O~t ~ OTz,

XI, < Mm.Y;;

Vt=I, ... ,T

Vt = 1, ... ,T

Vt=I, ... ,T,

Problem ALdcoomp1

Minimize CALdccomp1 =
m T-L m T-L m T-L m T-L

2: 2: h•.l i, - 2: 2: Pit.Xit +2: 2: 'Il'it. Pit - 2: 2: 'Yit.Yi,
i=1 t=1-L i=1 '=1-L i=1 t=1-L .=1 t=1-L

subject to

Iit-1 + Xit - lit - Pit = 0 Vt =1 - L, ... ,T - L,

i = 1, ... ,m

•
t

2: Pkt, 2:
t'=1-L

Vt = 1 - L, ... ,T - L,

i = 1, ... ,m

Vt = 1 - L, ... ,T - L,

k =1, ... ,m
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• Problem AUecomp2

Minimize CALd••omp2 =

T-L T-L T-L

L VH.OH + L fH.zH - L SH.OH
'=I-L '=I-L '=I-L

subject to

\lt = 1 - L, ... ,T - L

•

Problem AU.compa

Minimize CALd.compa =
m T-L m T-L T-L

L L pi'.X!, +L L li'.Y;; + L S2'.O~,
i=l t=l-L i=l t=l-L t=l-L

subject ta

m

L(Si.Y;; +bi.Xi,) - O~, ~ CapH
i=l

O~, ~ OTH

Xi, ~ Mil'.Y;;

\lt = 1 - L, ,T - L

\lt = 1 - L, ,T - L

\lt = 1 - L, ... ,T - L,

•

i = 1, ... ,m

Problems BU.comPI and AU.compI can be efliciently solved by using the dynarnic

programming based algorithm of Wagner-Whitin (1958). As for the previous

relaxations, an additional constraint has been added in Problem AUccompI to

improve bounds. Problems Bu.comp2 and ALd.comp2 can be solved easily by the

same inspection procedure described in the previous subsection for the problems

BLRclaz2 and ALR.laz2.

If
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•

•

then

Zpt = 1, Op, = OTp'

else

Zpt = 0, Op, = 0

Problems B Ld,comp3 and ALdeeomp3 represent continuous knapsack problems which

can be easily solved for large instances. It is evident from our decompositions that

we are unable to solve both capacity and demand feasibility constraints in the

same sub-problem. It was this procedure that enabled Millar and Yang (1993) to

reduce the gap between the upper and lower bounds considerably. However those

authors did not consider setup times in their problems. The presence of non-zero

setup times eliminates the possibility of simultaneously solving capacity and de

mand constraints in a single problem. We tested the three relaxations described

above, i.e., Lagrangian relaxation of coupling constraints, Lagrangian relaxation

of capacity and coupling constraints and the Lagrangian decomposition, for a ran

domly generated problem. Our computational experience with this problem indi

cates improved lower bounds for Lagrangian decomposition than those obtained

by relaxing the capacity and the coupling constraints. This confirms our earlier

belief that for the current problem Lagrangian decomposition is likely to give a

better lower bound than Lagrangian relaxation (see Figure 4.1 for a comparison

of the bounds for the Lagrangian relaxations and the Lagrangian decomposition

considered).

Another benefit of implementing Lagrangian decomposition for the cur

rent problem was that it helped uncover hidden underlying structures in the prob

lem. The knapsack problems that emerge as a consequence of the decomposition

(i.e., BUeeomp3 and A U ,comp3) were obscured in both the original problem as weil

as previous case of Lagrangian relaxation of capacity and coupling constraints.

This issue has been discussed earlier in Guignard and Kim (1987) for a produc-
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UB 5:·~ 1%
pptimal

S% 28% 14%
Solution

UB: Upper Bound
LB LB: Lower Bound

LB

LB

Lagr.mgian Lagr.mgian Lagr.mgian

Rclaution of Relaxation of Decomposition
Coupling Constraints Coupling and

Capacity Constraints

Figure 4.1: Comparison of Bounds for competing relaxations

tion scheduling problem in the process industry environment. The above provides

evidence for the assertion of Guignard and Kim (1987) that Lagrangian decompo

sition may be viewed as a tool for extracting out of complex real world problems

various weil studied, special1y structured, simpler problems for which efficient

algorithms exist.

As stated earlier, Problems G, GLRel." and GLDecomp given below are

equivalent. From the theory of Lagrangian relaxation/decomposition, LDualLRelax

and LDualLDecomp provide a lower bound on G. For proof, see Geoffrion(1974),

Fisher(1981) for Lagrangian relaxation and Guignard (1984) and Guignard and

Kim (1987) for Lagrangian decomposition.

•

Problem G

(see page 66

Problem

(see page 74

Problem

Min G

subject to

(3.11) to (3.20)

Min GLRel••

subject to

(4.12) to (4.23)

Min GLDecomp
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CLDecomp

(see page 81)

Problem

LDualLRelQ~

Problem

LDualLDocomp

subject to

(ldinvb) to (ldnon)

Max (Min CB~RelQ~1 + CBRelQ~2

+ CARelQ~1 + CARelQ~2)

subject to

(4.13), (4.14), (4.15)

(4.17), (4.18), (4.19), (4.23)

Max (Min CBLdeoompl + C BLd,comp2 + CBLdeoomp3

+ CALdocompl + CALdocomp2 + CALdocomp2)

subject to

(4.24), (4.25), (4.26), (4.27),

(4.28), (4.29), (4.30), (4.31),(4.37)

•

LDualLRelQ~ is the Lagrangian dual for the case where the capacity and

coupling constraints are relaxed and represents the greatest lower bound that can

be achieved by the dualization of these complicating constraints. LDualLDocomp

is the Lagrangian dual for the Lagrangian decomposition case (where only vari

able copying constraints are relaxed) and its optimal value represents the best

lower bound that can be achieved for this procedure. The inner minimization in

LDualLRelQ~' above, has the SI - block angular structure i.e., the minimization

decomposes natural1y into SI independent problems. In our case, SI is equal to

m + n +2T i.e., number of chips plus number of modules plus twice the number

of time periods in the planning horizon. For Plant B, this yields n uncapacitated

single item lotsizing problems (one for each module) plus T problems for over

time decision, one in each period. For Plant A, we get m uncapacitated single

item lotsizing problems (one for each chip) plus T problems for overtime decÎ-
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•

sion, one in each period. The inner minimization in LDualLD,eomp has an '~2 

block angular structure with the minimization decomposing naturally into S2 =

m + n +4T independent problems. Of these problems, m + n problems are sin

gle item uncapacitated lotsizing problems which can be solved by the dynamic

programming based Wagner-Whitin (1958) algorithm white 2T problems can be

solved trivially by the inspection procedure explained. Additionally 2T continuous

knapsack problems must be solved for Problems BLdccomp3 and ALdccomp3'

White the number of products and time periods considered determine the

problem dimensions in terms of the number of constraints and variables, there

may be some variations between different formulations of the problem. For ex

ample, the Lagrangian relaxation formulation i.e., GLRcl.", has T * (3m +2n +6)

constraints and T * (m +n +4) variables (m here represents the number of chips,

n the number of modules and T the number of time periods). For the case with

10/20 (modules/chips) and 4 time periods, this represents 344 constraints and 376

variables (128 ofwhich are required to be binary). The Lagrangian decomposition

formulation i.e., GLdccomp, has T * (5m +4n +6) constraints and T * (5m +5n +4)

variables. For the case with 10/20 (modules/chips) and 4 time periods, this rep

resents 584 constraints and 616 variables (248 of which are required to be binary).

Therefore the optimal solution to the inner minimization in LDualLR,'."

and LDualLDccomp can be obtained by solving S1 and S2 sub-problems respective1y,

which are much smaller and much easierthan the original problem. The approach

taken to solve LDualLRcl." and LDualLDeeomp is subgradient optimization in both

cases, the detaits of which are explained later. In the next section we describe,

in detail, the approximation algorithm that is used to solve LDualLR,'." and

LDua1LDccomp using the relaxations/reformulations described in this section.
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• 4.3 Algorithm for obtaining an Approximate

Solution

•

•

W", now describe the approximation algorithm that is used to solve Problems

LDualLRela", and LDualLDecomp, described in the previous section. As mentioned

in Section 2.2 (in our discussion of the generic form of Problem Cl, for a given

À, the optimal solution to the Lagrangian problem provides a lower bound on the

optimal solution to Problem C. The solution to the Lagrangian problem is then

perturbed heuristically to generate a feasible solution which provides an upper

bound on the optimal solution to Problem C. The optimal solution to Problcm

C is thus bounded between the upper and the lower bounds. The updating of À

is done by the subgradient optimization procedure. A description of algorithm to

solve the Lagrangian dual problems must therefore include the following:

(a) Heuristic for generating feasible solution.

(b) Operational details of subgradient optimization implemcntation.

We first present detailed outlines of the procedures used for cach of the

problems, LdualLRela", and LduaiLDecomp. We discuss the heuristics used to per

turb the optimal solutions to the Lagrangian problems CLRelar and CLD"omp to

generate a feasible solution to Problem C. These heuristics are callcd Heuristic 1

and Heuristic 2 respectively. Next we describe the implementation of subgradient

optimization procedure which is similar for both the Lagrangian dual problems.

4.3.1 Heuristic 1: Lagrangian Relaxation of Capacity

and Coupling Constraints

A fiowchart of the algorithm used for Problem LdualLRelor is given in Figure 4.2.

The steps that are implemented may be described as follows:
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A good starting point for the Lagrange multiplier for each relaxed con

straint could be the value of the dual priee associated with that constraint in the

optimal solution to Problem CLP i.e., LP relaxation of the primai problem C.

Problem CLP is equivalent to Problem C with the binary constraints relaxed.

At step 2 we solve problems A deel and Bd"l' Since the relaxed problems

are uncapacitated, they are separable into independent problems for each indi

vidual item and hence solvable usillg the dynamic programming based Wagner

Whitin (1958) algorithm.

At step 3 we solve the overtime decision sub-problems for each time period

at both the plants using the inspection procedure described earlier. The sum of

optimal solutions for ail these problems (CBd"l + CAd"l + CBdec2 + C Adec2)

provides a lower bound to problem Ceq • The results at steps 2 and 3 are likely to

violate the capacity constraints and the link constraints. The capacity violations

at the two plants are:

•

•

•

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Initialize Lagrange multipliers "(pt> Opt and 7I"/d.

Set current upper bound to +00.
Solve independent, uncapacitated lotsizing problems Adeel and Bd"l

using the Wagner-Whitill (1958) algorithm.

Solve overtime decision sub-problems Ad"2 and Bd"2 by the inspection

procedure described in the previous section.

Generate a feasible solution using the feasibility h~uristic. If the feasible

solution found is better than the "current" upper bound, store this feasible

solution.

Update the Lagrange multipliers using subgradient optimization.

If the termination condition is satisfied, go to Step 7.

Else, go to Step 2.

Print the solution.
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•
Solution Methodology for Lagrangian Relaxation

Relax capacity and
link constraints

•
Solution is
optimal

Stop

Inltlalize
Lagrangian
muttipliers

No

Solve single item
uncap'acitated problems for

ail Items and overtime
problems for each period

at both plants

No

Generale feasible
solution

Feasibility Routine

1. Read X{I,T)
2. Apply Feasibility Heuristic

for Plant B
3. Generale chip demand
4. Solve uncapacitaled problems

for Plant A
5. Apply Feasibility Heuristic

for Plant A

Update Lagrangian
muttipliers based

on violation

Slore feasible
solution

•

Figure 4.2: Flowchart for Lagrangien Relaxation based Algorithm
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• Plant A Gap" - 2:y,:,I(Si.Y;, + bi.Xit ) +0" for every t

Plant B Gap2t - 2:~;:+l Si.Y;' +bi.xit) +O2, for every t

The link constraint violation is (2:y,:,;:+l Uik.Xit - Pkt) for each chip k in every

period t.

Coupling

Processing

Overtime-fixed

Inventory

Setup

At step 4, a feasibility heuristic is used to generate a feasible solution. The

feasibility heuristic is somewhat inspired by the heuristic of Trigeiro et al.,(1989)

which has been modified to incorporate the multi-plant structure of our problem.

The heuristic begins with the uncapacitated results obtained at Step 2 for one

of the plants and attempts to generate a solution that is capacity feasible at the

given plant in every period. This is done by shifting production from the period in

which there is capacity violation to another period in which capacity is available,

while ensuring that demand requirements are satisfied in al! periods. Once a

feasible solution is found at the selected plant, the demand (or availability as the

case may be) for chips is generated for the other plant and the Wagner-Whitin

lotsizing problems and overtime sub-problems are re-solved at this second plant.

The feasibility heuristic is then applied to the second plant in the same manner as

for the first plant. Two scenarios are considered and these are explained later in

this section. The objective of the feasibility heuristic is to minimize the Lagrangian

cost of total shifting. The Lagrangian cost Li of shifting a quantity Xl of item i

from period t to period t' has the fol!owing components - inventory, processing,

setup, overtime and coupling ~ as detailed below. These costs are defined on the

set of chips for Plant A, and on the set of mC'dules for Plant B.

X 1.hi(t - t' )

-Si(oyt2.(1 - lin - 1't'2(1 - li~,))

-bi.X1( 1't'2 -1't2)
Plant B Li =

+f2,'(Z~t' - Z~t') - ht(z~t - Z~t)

+(V2t' + 02t' ).(O~t' - 0;,,) - (V2t + 021)'(O~, - 0;,) Overtime-variable

+2:;;:'1 X 1.Uik(1l"kt' -1l"kt)•

•
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•
Plant A Li =

X1.hj.(t - t' )

-Sj.(-yn(1- Y,~) -'t'I(1- Y,;,))

-bi,X1(-Yt'l -,n)

+!IdZ~t' - ztt') - flt(zt, - Z~t)

+(VIt' + Olt,).(O~t' - O~t') - (Vlt +Olt).(Of, - O~,)

+XI (7I"kt - 71"W)

Inventory

Setup

Processing

Overtime-fixed

Overtime-variable

Coupling

•

•

The inventory term represents the holding cost that is either saved or

expended depending on whether the shift is ta an earlier period or ta a later

period. The setup term is the difference between the cost of setting up in t versus

the cost of setting up in t ' . This term will corne into play for an item only if the

shift results in either the elimination of the setup for this item in t or the incurring

of a new setup in t ' (or both of these simultaneously). Y;~ here represents the setup

variable for item i in period t after the proposed shift of XI units of that item

from period t to t ' while Y,: represents the setup variable for item i in period l'

before the proposed shift. The processing term represents the impact of shifting of

the processing (excluding the impact on setup time) of the item from the current

period t to t ' . The next two terms measure the impact on the avertime cost as a

result of the shift. The superscript b refers ta the value of the variable before the

shift, while the superscript a refers to the modified value of the variable after the

shift. The term relating to fixed avertime cast measures the net impact of shifting

the item, on the fixed overtime cost. This term will become active only if the

overtime status (as indicated by the value of the Zlt or Z2') changes in eitherJboth

periods t and t ' as a result of the shift. In a similar spirit, the variable overtime

term measures the impact of the shift on the variable overtime costs. Finally the

coupling term measures the effect of the shift in terms of the changes it produccs

on the demand for chips in the periods t and t'. The Lagrangian cast of shifting

is determined by summing up each factor for ail items as described above.
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The heuristic comprises four passes: two backward passes and two for

ward passes. The first backward pass starts with the result of the uncapacitated

problems obtained at Step 2. Beginning with the last period, production is shifted

to earlier periods if there is a capacity violation in the current period. The objec

tive as earlier stated is to minimize the Lagrangian cost of al! shifting. Production

can be shifted to either the previous period or to the previous setup of the same

item. The item with the least Lagrangian cost is shifted first, and if capacity vi

olation persists, other items are considered in ascending order of Lagrangian cost

of shifting. Shifting halts when feasibility is achieved in the current period. No

attempt is made to achieve feasibility in the period into which production is being

shifted. This pass will ensure feasibility in al! periods except at most the first one.

The first forward pass begins with the result of the earlier pass. Beginning from

the first period, production is shifted from periods with capacity violation to fu

ture periods. The target period is always the next period while the shift quantity

is the end of period inventory. The objective once again is to minimize Lagrangian

cost of shifting. Shifting halts when cumulative feasibility is achieved. The second

backward pass is similar to the first backward pass, except for the initial state of

the system. The second forward pass is similar to the first forward pass, except

that it is more rigorous and continues shifting of production till feasibility (versus

cumulative feasibility in the first pass) is achieved in the current period.

We note that this procedure will not necessarily find a feasible solution

even if one exists. Our overal! approach is different from that of Trigeiro et al.,

(1989) in that for each iteration we use an alternative heuristic to generate a fea

sible solution. Starting with the solutions of Problems BLRel."'l (uncapacitated

lotsizing problems for downstream module plant), and B LRel."'2 (overtime prob

lems), we retain the setup decisions and the overtime scheduling decisions but

discard the production quantities and the amount of overtime recommended. The

fol!owing problem is then solved, using Y;~ and O~t as known parameters obtained
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• from the solution of problems BLRe/••1 and B LRd••2.

Problem BHeur2

Minimize CBHeur2 =
m+n T T

L: L:hi.lid L: V 2•• 0 2.
i=m+ 1 t=l t=l

subjeet to

Vt= 1, ... ,T
m+n

::; Cap2. + O~. - L: Si.Y;~
i:::m+l

Vt = 1, ... ,T,

m+n

L: bi.Xit ) - O2•

1'='1'11+1

li'_1 +Xi. - Ii' = dit

i = m +1, ... , m +n

•
Problem BHeur2 is a linear program with T(n + 1) constraints and can

be easily solved for praetical problems. If a feasible solution is found for Blleur2,

the demand for chips Pk' is generated by summing up over the set of ail modules

~~t:'+t Uik.Xit. The setup and overtime decisions are retained from the uncapac

itated lotsizing and overtime problems while the production quantities and the

amount of overtime are discarded. A feasible solution for the problem at Plant A

can be obtained by solving AHeur2

Problem AHeur2

Minimize CAHeur2 =

m T-L T-L

L: L: hi.li• + L: VIt·OIt
i=1 '=I-L '=I-L

subject to

Vt = 1 - L, ... ,T - L,lit-I +Xi. - Ii. - PI:•
m

L: bi.Xi. - Olt
1=1

m

::; Caplt +O"lt - L: Si.Y;~
1'=1

Vt = 1 - L, ... ,T - L
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i = 1, ... ,m

P::(= ~~;:+I Uik.Xi.) represents the number of chips demanded by Plant B in

period t and is obtained from the result of Problem BHeur2' Problem AHeur2 is a

linear program with T(m +1) constraints and can be easily solved for practical

problems. The solution to AHeur2 gives a feasible solution for Plant B. If feasible

solutions are found at both plants, the sum of the two solutions gives a feasible

solution to Problem C. Once again we note that the above procedure is not bound

to find a feasible solution for either plants. Our procedure is superior to that of

Trigeiro et al., (1989) because two potentially feasible solutions are generated at

each iteration and the least cost solution is stored as the best known upper bound.

Since the objective is to find the best feasible solution, it could pay off to generate

a larger set of feasible solutions, starting from different initial conditions.

At step 5, the Lagrange multipliers for the capacity constraints and the

link constraints are updated using suhgradient optimization. The operational

details of the subgradient optimization procedure will be explained in Section

5.1.2

At step 6 the algorithm checks if a pre-specified termination condition is

satisfied. If the condition is satisfied, the algorithm terminates. If the stopping

criterion is not met, the control loops back to Step 2 and the entire procedure

is repeated. Termination criterion rnay either he the number of iterations of

subgradient optimization or a pre-specified gap between the lower (Step 2 and 3)

and the upper bounds (Step 4). Specifying nurnber of iterations as a stopping

criterion runs the risk of stopping subgradient optimization when we are still far

from optirnizing the Lagrangian dual. This may leave sorne of the reducible gap

unexploited and as a consequence also affect the quality of the feasible solution.

Specifying a target gap (between upper and lower bounds) as a stopping criterion

rnay create problems if the actual duality gap between the optimallower bound
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• and the optimal primai solution is large. We discuss this issue in greater detail in

the next chapter and propose alternatives to resolve it.

4.3.2 Heuristic 2: Lagrangian Decomposition

A f10wchart of the algorithm used for Problem Ldua/LD.comP is given in Figure

4.3. The steps that are implemented may be described as follows:

•

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Initialize Lagrange multipliers "Il"kt, Pit, "lit, and Spt.

Set current upper bound to +00.

Solve independent, uncapacitated lotsizing problems ALDecompl and BLDecompl

using Wagner-Whitin (1958) algorithm.

Solve overtime decision sub-problems ALDecomp2 and BLDecomp2 by inspection

procedure described in previous section.

Solve knapsack sub-problems ALDecomp2 and BLDecomp2

using any standard continuous knapsack algorithm

Generate feasible solution using feasibility heuristic. If feasible solution

found is better than "current" upper bound, store feasible solution.

Update Lagrange multipliers using subgradient optimization.

If termination condition is satisfied, go to Step 7.

EIse, go to Step 2.

Print solution.

•

Ali the above steps are identical to the procedure described for the La

grangian relaxation case except that the sub-problems B LD.compl, B LDecomp2, ALDecompl

and ALDecomp2 are substituted for their corresponding counterparts of the La

grangian relaxation case. We therefore omit the details of the heuristic for La

grangian decomposition
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• Solutl2n..MID.hodology for Lagranglan Decomposition

No

•

Relax variable
copying constraints

Initialize
Lagranglan
muttipliers

Solve single nem
uncapacnated problems for ail
items, overtime problems for

each period and knapsack
problems at both plants

Solution Is
optimal ~--<
Stop
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Figure 4.3: Flowchart for Lagrangian Decomposition based Algorithm
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4.3.3 Computational Requirements

The computational requirements of a given algorithm may be characterized by its

worst case running time. For details of analysis of algorithms, see Cormen ct al.,

(1990). For the coordinated model, the running time needs to be characterized

for several problems. For the Lagrangian problem using Lagrangian relaxation,

the sub-problems that arise are the single item lotsizing problems and overtime

problems. The complexity of the lotsizing problems (solvable by the Wagner

Whitin dynamic programming algorithm) is O(T2
), while the overtime problems

are solvable in O(T) (T represents the total number of periods in the planning

horizon). The feasibility heuristic can be characterized as a sorting problem and

hence its worst case running time will be O(N log N), where N is the number of

products (Cormen et al., (1990), page 172). In the scenarios that the coordinated

model will be typical1y concerned with, N will be considerably larger than T and

therefore the running time of the overall model will be bounded by O(N log N).

When Lagrangian decomposition is used, the sub-problems are the single item

lotsizing problems (O(T2 )), the overtime problems (O(T)), and fractional knap

sack problems, solvable by a greedy heuristic (O(N log N)). As for the previous

case, the feasibility heuristic has a worst case running time of O(N log N). The

overal1 model therefore has the same worst case running time as in the case of

Lagrangian relaxation.

4.3.4 Subgradient Optimization

The procedure used for solving the Lagrangian dual problems i.e., LdualLRelax

and LduaiLDeeomp is subgradient optimization. An impof!.ant consideration that

guided our selection of this procedure was its successful use for up<Jating Lagrange

multipliers in models relating to single stage problems, particularly in Trigeiro et
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al., (1989) and Diaby et al., (1992b). Given an initial value /10 of the multiplier

(where the general symbol /1 is used to represent Opt, Ipt and 7l"kt), a sequence /1k

of multipliers is generated by the fol!owing rule.

where (bp - Ax;) is a generic representation of the violation of the pth violated

constraint (capacity constraint at Plants A/B or link constraint) on the kth iter

ation, xk is an optimal solution to the decomposed problems Adecl' Adec2' Bdecl

and B dec2 and tk is a positive scalar step size for the kth iteration. The step size

we have used is the fol!owing:

>'k is a positive scalar (::; 2) and Z· is an upper bound on the decomposed prob

lems obtained usually by applying a heuristic (in our case we use the result from

the uncoordinated problem and replace it whenever a better feasible solution is

obtained by the cost of this improved solution). The denominator term represents

the sum of squares of the violation (of the p violated constraints). Justification

for this stepsize is provided in ReId, Wolfe and Crowder(1974). The sequence >'k

is determined by setting >'0 = 2, and reducing it by a fixed multiplier whenever

the lower bound does not improve after a given number of iterations. The mul

tiplier and the number of iterations used, were determined through preliminary

testing. The above procedure terminates after the duality gap between the upper

and lower bounds is within specified limits or after reaching a specified iteration

limit. Specifying the number of iterations as a stopping criterion runs the risk

of stopping subgradient optimization when we are still far from optimizing the

Lagrangian dual. This may leave sorne of the reducible gap unexploited and as a

consequence also affect the quality of the feasible solution. Specifying a target gap
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(between upper and lower bounds) as a stopping criterion may create problems if

the actual duality gap between the optimal lower boundand the optimal primai

solution is large. We discuss this issue in greater detail in the next chapter. We

also propose an experimental design for our study and present results relating to

our experimentation.

It has been established that a divergent series of multipliers would lead

to the Lagrangian dual converging to its optimal value (Goffin (1977) and Fisher

(1985)). We implemented one example using a divergent series of multipliers for

6000 iterations. Convergence however was extremely slow and this series did not

outperform the sequence of multipliers explained above.
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Chapter 5

Results

From a managerial perspective, it is important to know the extent of benefits

that can accrue by adopting superior models and to identify critical parameters

that significantly affect these benefits. We take this as the primary focus of this

research. We take the view, as in Geoffrion (1974), that the Lagrangian dual need

not he solved optimally and need not he devoid of duality gap in order to he use

fuI. An important aspect of Lagrangian decomposition/relaxation methodology is

to generate improved feasihle solutions for complex integer programs like the one

being considered here. Nevertheless, from an algorithmic point of view, it is im

portant to evaluate the performance of the model against the true optimal. If the

model gives near optimal results, we can be confident about the validity of our con

clusions and the managerial implications derived from them. In this chapter, we

address hoth these issues of analysis of cost benefits of coordination and the anal

ysis of the performance of Lagrangian relaxation and Lagrangian decomposition

methodologies as compared to the true optimal. The first section of this chapter

provides a summary of the results relating to the cost benefits of implementing

the coordinated model, and managerial implications of these results. Cost bene

fits are defined as the percentage reduction in total costs (comprising inventory

and fixed and variable overtime costs) for the coordinated versus uncoordinated
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mode!. Detailed results are presented for a typical problem to provide a flavour

for the underlying source of cost benefits accruing from multi-plant coordination.

Next, the experimental design and the choice of the experimental factors are ex

plained. The experimental design is implemented for both Lagrangian relaxation

and the Lagrangian decomposition cases, as discussed in the previous chapter.

For the purpose of analysis of the cost benefits of coordination, we use the higher

cost improvement obtained from the two methods. Cost improvement results are

provided for a variety of different cases and the implementation aspects of the

coordinated model are discussed. Statistical analysis of the variance attributable

to the effect of each of the experimental factors is presented. Insights from this

analysis are used for defining guidelines for managerial action. At a broad level,

we address how and where the results from this research can be applied by man

agers. In the second section of this chapter, we focus on the convergence results

of Lagrangian relaxation versus Lagrangian decomposition for the multi-plant co

ordination problem. The performance measure used for evaluating convergence

is the residual gap between the best lower bound obtained and the best known

feasible solution on reaching a pre-specified termination condition. Details are

discussed later in the chapter.

5.1 Summary of Cost Benefits of Coordination

and Managerial Implications

5.1.1 Structure of Solution: Importance of Coordination

We first present detailed results for a typical problem (see Table 5.1). The objec

tive of this exercise is to provide insights into the mechanism of cost improvement

that accrues from coordination. Numerical details of this problem, Le., processing

and setup times, holding costs, bill of material etc., are given in Appendix 1.
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Uncoordinated Coordinated % Change in Coat

(as %of TOTAL

Coordinated cast)

Plant B

Inventory Holding $5746.60 $6301.08 +6.4

Fixed Overtime $ 120.00 $ 120.00 0.0

Variable Overtime $ 526.53 $ 557.55 +0.4

Total(Plant B) $6393.13 $6978.63 +6.8

Plant A

Inventory Holding $ 986.23 $ 23.1 -11.2

Fixed Overtime $ 120.00 $120.00 0.0

Variable Overtime $ 1444.14 $1475.76 +0.4

Total(Plant A) $2550.37 $1618.86 -10.8

TOTAL $8943.50 $8597.49 -4.0

Table 5.1: Resulta for sample problem
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The total costs of inventory holding and fixed and variable overtime costs

for Plants A and B for this example (shown in Table 5.1) are $8943.50 for the un

coordinated approach and $8597.49 for the coordinated approach. The % change

in cost shown in the last column of Table 5.1 represents the difference between the

uncoordinated and the coordinated approaches as a percentage of the coordinated

solution (i.e., as a % of $8597.49). For this example, the coordinated approach

results in a total cost reduction of 4.0%. As a percentage of the cost of the co

ordinated solution, the coordinated approach leaves Plant B worse off by 6.8%

but results in a reduction of 10.8% in the costs for Plant A and consequently a

reduction of 4% in the total costs of both plants. We have observed that this trend

in cost changes is generalizable, i.e., in aIl instances where there is a reduetion in

total cost by implementing the coordinated model, this reduction cornes from a

decrease in the costs at Plant A which more than offsets (,he increase in costs at

Plant B. Sorne refleetion will convince the reader that this is intuitively mcan

ingful. Recall that in the uncoordinatcd approach, costs are first optimized for

Plant B independently, the resulting demand for chips is communicated to Plant

A, and the costs for Plant A are then optimized subject to this dcmand. Since

the uncoordinated model is biased in favour of Plant B, which drives the model,

there is greater concern for module inventory and constraints on the process at

Plant B. This is reaIly the crux of the issue. With the uncoordinated modcl, the

firm will gain at one end of its supply chain but may lose considerably at another

50 that overall, the firm may be worse off. In contrast, the coordinated model,

through the mechanism of Lagrange multipliers, considers the interaction betwccn

the costs and the processes at both the plants by associating a Lagrangian cost

with the viola',ion of every constraint. Coordination will therefore diminish Plant

B's cost performance while improving that of Plant A. The cost increase at Plant

B will at most be equal to the cost reduction at Plant A, in which case both

approaches perform equally weIl. However, if the cost saving at Plant A exceeds
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the cost increase at Plant B (as is the case in the example above), the coordinated

approach outperforms the uncoordinated approach. The coordinated model en

sures benefits for the firm by viewing the total costs globally for both the plants,

and by capturing the interdependence of the processes at both plants.

We further explore the distinguishing features of the coordinated ap

proach vis-a-vis the uncoordinated approach by studying the behaviour of iIi

ventory costs and setups at both the plants in the above example. Inventory of

modules and chips and the setups incurred at both plants for the two approaches

are shown in T~.bl-,g 5.2 and 5.3.

Two important points can be observed from Tables 5.2 and 5.3. First, the

reduction in total cost cornes through a counter-intuitive interchange of inventory

between the two plants. Carrying a larger inventory of the higher value modules

actually results in a reduction of overall costs for the two plants taken together.

This is because in the coordinated approach, the increased cost for Plant B, as a

consequence of carrying a higher inventory of modules is compensated by higher

cost savings for Plant A due ta reduced inventory of chips. Savings at Plant

A are achieved mainly through reduced inventory carrying requirements due ta

better match between the demand for chips and the available processing resources.

For instance, in the uncoordinated model, the total inventory (surnrned over ail

periods) at Plant B for modules 2 and 3 was 262 and 32, respectively. The larger

inventory of module 2 was mainly due ta its lower cost compared to module 3.

In the coordinated model, the total inventory of modules 2 and 3 was 39 and

273, respectively. In effect, the coordinated model swapped the inventory from

the lower value module 2 to the more cost1y module 3 (ilnd increased the total

inventory of modules 2 and 3 marginally). The reason why this swap makes sense

is that it drastically reduces the inventory of chips 3 and 4 at Plant A (71 and 210

for the uncoordinated model versus 0 and 7 for the coordinated model), thereby

reducing the total costs at both plants. The coordinated approach has therefore
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Uncoordinated Coordinated

Production

Periods Periods

Modules 1 2 3 4 Modules 1 2 3 4

1 50 a a a 1 50 a a a
2 56 180 a 57 2 la 89 97 97

3 37 a 183 121 3 93 88 80 80

Inventory

Periods Periods

Modules 1 2 3 4 Modules 1 2 3 4

1 35 8 2 a 1 35 8 2 a
2 48 171 43 a 2 2 34 3 a
3 1 a 31 a 3 57 144 72 a

Setups

Periods Periods

Modules 1 2 3 4 Modules 1 2 3 4

1 1 a a a 1 1 a a a
2 1 1 a 1 2 1 1 1 1

3 1 a 1 1 3 1 1 1 1

Table 5.2: Inventory and Setup Analysis for Plant B

Notes

1. Production and inventory figures represent number of modules for each period.

2. Setup = 1 if there is a setup for module i in period t, = aotherwise.

3. Numerical details of holding cost, processing and setup times etc., are

in Appendix 1.
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Uncoordinated Coordinated

Production

Periods Periods

Chips 1 2 3 4 Chips 1 2 3 4

1 50 0 0 0 1 50 0 0 0

2 106 180 0 57 2 60 89 97 97

3 130 251 295 299 3 196 265 257 257

4 119 0 147 75 4 100 81 80 80

Inventory

Periods Periods

Chips 1 2 3 4 Chips 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0 0 0 0 2 0 0 0 0

3 0 71 0 0 3 0 0 0 0

4 82 82 46 0 4 7 0 0 0

Setups

Periods Periods

Chips 1 2 3 4 Chips 1 2 3 4

1 1 0 0 0 1 1 0 0 0

2 1 1 0 1 2 1 1 1 1

3 1 1 1 1 3 1 1 1 1

4 1 0 1 1 4 1 1 1 1

Table 5.3: Inventory and Setup Analysis for Plant A

Notes

1. Production and inventory figures represent number of chips for each period.

2. Setup = 1 if there is a setup for chip i in period t, = 0 otherwise.

3. Numerical details of holding cost, processing and setup times etc., are

in Appendix 1. 109



•

•

•

been effective in capturing the interaction between the processes at the two plants.

The key to effective multi-plant coordination is therefore to determine the optimal

location of inventory.

The second observation from Tables 5.2 and 5.3 relates to productive re

sources expended in setups in the two approaches. In the uncoordinated approach,

there are a total of 11 setups for chips at Plant A and 7 setups for modules at

Plant B, while in the coordinated approach there are 13 setups for chips and 9 se

tups for modules. This observation makes intuitive sense. In the event of variable

capacity requirements in different periods coupied with tight capacity restrictions,

the uncoordinated approach tends to combine demands of two or more periods

in attempting to reduce the number of setups at Plant B. This forces reduced

number of setups at Plant A too, in order to satisfy Plant B's requirements for

chips. The coordinated model b,y contrast, is concerned with obtaining the least

cost fit between the capacity requirements and the available capacity, at the two

plants. In general therefore, the coordinated model recommends a larger number

of setups as compared to the uncoordinatr,d mode!.

To recapitulate, coordination achieves cost savings over the uncoordi

nated approach by taking a global view of the inventory and by considering the

implications of the processes at both the plants. This technique results in in

creased costs at Plant B but reduces the costs at Plant A. The inventory at the

two plants changes in such a way that the overall costs at the two plants are

reduced. Simultaneously, there is a trend in the coordinated approach towards

an increased number of setups. Overall, the coordinated approach captures the

interaction between the processes at the two plants and hence outperforms the

uncoordinated approach. An important issue that arises is the identification of

critical parameters whose presence or absence enhances benefits of coordination.

This will assist in establishing guidelines for managerial planning. We consider

this issue next when we present the experimental design for our study.
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5.1.2 Experimental Design

The objective of a good experimental design in the context of this research is to

evaluate the quality of results obtained for the coordinated versus the uncoordi

nated approach. For validity of this evaluation process, a variety of data which

has practical implications for the multi-plant coordination problem must be con

sidered. Ideally we would like to experiment on existing data sets from literature

in order to obtain comparative results relative to the existing methods. Unfor

tunately, since this problem has not been adequately addressed, no standardized

data sets are available. Ali experimentation was therefore carried out on randomly

generated problems. The experimental design showing the major parameters of

interest, is shown in Table 5.4. The choice of the experimental factors and their

different levels were guided by their relevance to the reallife situation at IBM as

weil as practical considerations of time. Details of each parameter are described

below.

A. Demand

The average demand level across all products was seleeted as 50 units/period.

With this value, the demand for each produet in every period was generated for

different levels of coefficient of variation (c.v.) in two steps. First, the average

demand for each product was generated by obtaining values from a uniform dis

tribution with the given c.v. and average demand of 50. Next for each produet,

the period·wise demand was generated by obtaining values for given c.v. and the

average obtained in the first step. For each of the steps referred to above, two

levels of c.v. were considered - high (0.57) and low (0.10). The high c.v. case

represents the situation where the range (Le., maximum value minus minimum

value) is twiee the average value. The low c.v. case displays much less variabil

ity with range equal to 35% of the mean. We therefore obtained four different

scenarios each representing different levels of variability of demand between prod

ucts and between periods. These scenarios are a good approximation of the real
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Parameter Value

Demand Average demand = 50 units/period

Average demand for products is uniformly distributed with

coefficient of variation = 0.10, 0.57

Demand between periods is uniformly distributed with

coefficient of variation = 0.10, 0.57

Capacity Average lot·for·lot utilization = 0.85, 0.95

Setup/ Setup time to processing time ratio = 2, 5

Processing coefficient of variation of setup times = 0.10, 0.57

Time coefficient of variation of processing times = 0.10, 0.57

Holding Holding cost of chips is uniformly distributed with

Cost average = 3.0 and coefficient of variation = 0.10, 0.57

Holding cost of module i = X/Y

where Xi is the sum of holding costs of ail chips required for

module i and Y == U(1,2)

Overtime Fixed overtime cost High (= 100*AHC)

Cost Low (= 10*AHC)

Variable overtime cost High(=5*AHC per unit of overtime)

Low(= AHC per unit of overtime)

where AHC is the average holding cost of chips (= 3.0)

Number of 3/4, 10/20

Modules/

Chips

Table 5.4: Experimental Design
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situation in fashion based industries (e.g., toys and clothing) and high technol

ogy industries (e.g., computers and consumer electronics) in which product life

cycles are characterized by rapid growth, maturity and decline phases as weil as

substantial seasonal variation (Kurawarwala and Matsuo, 1992). Demand vari

ability between products and between periods will be high if different products

show dissimilar seasonality effects at distinct times of the year. For example, dur

ing the high seasonality phase (around Christmas in North America) the sales of

novelty items may rise and that of regular items may dip giving high variability

between products. In order to avoid the number of combinations from exploding,

we retained only two combinations i.e., high variability of demand (c.v. = 0.57

for both steps) and low variability of demand (c.v. =0.10 for both steps) for our

experimentation.

B. Capacity

Capacity utilization was specified on a lot-for-Iot basis i.e., assuming that there

is a setup for each item in the period in which the demand occurs. Processing

and setup time requirements of ail periods were added and the available regular

and overtime resources were computed by dividing these total requirements by

medium and high target capacity utilization levels of 0.85 and 0.95. Overtime

resources were taken as 25% of the regular resourccs. In order to ensure cumula

tive feasibility of the problem, demand was reduced in the first few periods and

corresponding amounts added back in the later periods. As observed by Trigeiro

et al., (1989) this wouU approximate the reallife situation somewhat since sorne

of the demand of the initial periods can be satisfied through the starting inventory

carried over from the pasto

C. Costs

(i) Holding Cost

For Plant A, holding costs for different chips were generated by obtaining values

from a uniform distribution with a mean of 3.0, with c.v. being high (0.57) or
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low (0.10). For Plant B, the holding cost for each module i was computed as

the product of a multiplier, Y, and the sum of holding costs of all chips required

by this module, Xi. The value of the multiplier, Y for each module was chosen

randomly over the uniform interval (1.0, 2.0), i.e., the value added at Plant B

ranged from a minimum of 0.0 to a maximum of the total value added at Plant

A to all the chips used in this module, and was uniformly distributed. The zero

value addition represents the case where a single chip is mounted on a plastic

board at Plant Band hence the increase in value (cost of the plastic board) at

Plant B is negligible.

(ii) Overtime Costs

Varying levels of fixed (5.0 and 100.0 times average holding cost) and variable

overtime costs (1.0 and 5.0 times average holding cost per unit of overtime) were

selected, providing four different options. The high fixed overtime cost case cor

responds to the scenario where additional inter-plant transportation costs are

included in the fixed overtime costs if overtime is scheduled.

D. Processing and Setup Times

(i) Processing Times

The average unit processing time of chips at Plant A and of modules at Plant B

was taken to be 1.0 time unit with the actual processing times being computed

from a uniform distribution with c.v. high (0.57) or low (0.10). The choice of

different processing time c.v.s was guided by an important characteristic of high·

tech industries like computers and telecom equipment manufacturing etc. These

industries are characterized by continuously changing product mix and product

designs over the product life cycle. In this kind of a manufacturing environment,

there are occasions when certain products which are not fully integrated into the

manufacturing system due to unstable product design require significantly higher

processing times than the other products on a critical workcenter. This results in

a high c.v. of processing times. Once the designs stabilize, through learning, the
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variability of processing times across products and hence the c.v. of processing

times decreases. In Appendix 2, we demonstrate how the presence of even a few

such products can considerably affect the c.v. of processing times. Testing the

coordinated model under different c.v. 's of processing times therefore increases the

appropriateness of the experimental design since in a reallife system, it is Iikely

that the processing time c.v.'s would show a cyclical trend over a period of time

as product designs go through periods of relative stability or instability.

(ii) Setup Times

Setup times were specified through two parameters, the setup/processing time

ratio and the c.v. of setup times. Given the emphasis on setup time reduction,

it is important to test how cost improvements of coordination are affected as the

setup/processing time ratio changes. Using different c.v.s (0.57, 0.10) of setup

times, ref1ects once again the concern that the industries which are the focus of

this study exhibit rapid product changes which might necessitate different setup

requirements for different products.

E. Problem Bize

Different number of products (3 modules/4 chips, 10 modules/20 chips) were

selected at the two plants. The length of planning horizon was fixed at 4 periods

as this was the planning horizon that was being used at IBM. Longer planning

horizons are not very useful given the dynamic nature of demand in the kind of

manufacturing systems under study.

The above experiments were run on VAX3100 using a computer code

developed in FORTRAN. Initial experimentation revealed that the overtime costs

did not have a major impact on our results. We therefore limited our study to

the consideration of only one of the four possible combinations for overtime costs

i.e., low fixed and low variable cost of overtime. These experiments were also

useful from the point of view of exploring good parameters for use in subgradient

optimization (see section 4.3.4 on page 100). The parameters of interest relate
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to the number of iterations after which the multiplier Àk must be reduced and

the multiplier which must be used for the reduction. In general, we found that

the lower bounds obtained by using different values of the above parameters seem

to be robust i.e., results were not affected drastically by the values chosen for

these parameters. The best results were obtained for Ào = 2.0, and dividing À by

1.05 after every 15 iterations. Hence these values were adopted for subgradient

optirnization in ail the subsequent experimentation.

For a given problem size (in terms of number of products and periods), our

experimental design comprised 26 factorial experiments incorporating the main

effects of the six factors and 57 interaction effects of different combinations of

the factors and their levels. The six factors being investigated were measures of

demand variability, capacity utilization, setup/processing time ratio, setup time

variability, processing time variability and holding cost variability. As depicted

in Table 5.4, we used the coefficient of variation as a measure of the variability

of the factors. Each experimental factor was considered at two different levels,

as explained before. We therefore analyze the effect of 26 (=64) treatments. The

statistical validity of the results increases as the number of replications for each

treatment increases. However due to time considerations, we limited the number

of independent replications to 4 for each treatment in the case of Lagrangian

relaxation (3 modules/4 chips) and 2 in the case of Lagrangian decomposition

(3 modules/4 chips). These experiments suffice for studying the relative impact

of the different experimenta! factors. For the larger problems (10 modules/20

chips), we restricted ourselves to about 32 problems without replication using

Lagrangian relaxation only. This yields 416 (= 256 +128 +32) different problems

encompassing a wide variety of scenarios differing in terms of the values of the

experimental factors.
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5.1.3 Summary of Cost Improvement Results

In this section, we present the summary of cost improvement results of coordina

tion for our experimentation in order to determine the value of coordination as a

function of different problem parameters. The measure of cost improvement is the

reduction in the cost of the coordinated solution over the uncoordinated solution,

expressed as a percent of the coordinated solution. For the analysis of the cost

benefits of coordination the following procedure was adopted. The cost benefits

of coordination were determined for each treatment (or combination of experi

mental factors) using both Lagrangian relaxation and Lagrangian decomposition

methodologies as described before, and the higher cost reduction obtained from

the two methods was used for the analysis that is presented. As mentioned earlier,

four independent replications were made for Lagrangian relaxation (3 modules/4

chips) and two independent replications were made for Lagrangian decomposition

(3 modules/4 chips). We have classified these problems into four distinct cases as

follows:

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

High c.v.(demand), High Capacity Utilization, for 3 modules/4 chips case

Low c.v.(demand), High Capacity Utilization, for 3 modules/4 chips case

High c.v.(demand), Low Capacity Utilization, for 3 modules/4 chips case

Low c.v.(demand), Low Capacity Utilization, for 3 modules/4 chips case

High c.v.(demand), High Capacity Utilization, for 10 modules/20 chips case

High c.v.(demand), Low Capacity Utilization, for 10 modules/20 chips case

•

Cases 1 to 4 summarize the cost improvement results for 64 problems

while Cases 5 and 6 each represent the results of 16 problems. These results and

the values of parameters used in each case are shown in Tables 5.5 to 5.10 (see

pages 119 to 124). These results show that the coordinated model outperforms

the uncoordinated model in approximately 65% of the problem instances while in
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the rest of the problems, the two approaches perform equally weil. There seems

to be considerable variability in the cost improvement, with average improvcmcnt

for Cases 1 to 4 being 1.42%. However in certain cases, the improvement ex

ceeds 11.0%. There also appears to be significant variability between indcpendent

replications of the same set of experimental conditions.

Insert Tables 5.5 to 5.10 here.

We formally investigated whether the means of various treatmcnts werc

different, using the analysis of variance (ANOVA) approach. The results of this

analysis are presented in Appendix 3. The F value for the ANOVA mode! is

0.79 which leads us to interpret that the average cost improvements of diffcrent

treatments in our experiments are not significantly different. Sorne variability in

the ANOVA model was artificially damped because the value of inputs for two

different treatments were distinct only for those variables that had different input

values. For the variables that had the same input values in two treatments, the

aetual values for the variables were identical. For example, in Table 5.5, the

input data sets for the first two problems in the first row are identical, except

for the values of the setup times of items (as a consequence of the change in the

variable spratio). Under these conditions, the results of ANOVA provide evidenœ

of the robustness of our results. As noted by Fisher and Rinnooy Kan (1988),

one measure of the robustness of heuristics is the effeet that data transformations

have on performance - the smaller this effect, the more robust this method might

be called.

Among the individual factors, we note that the main effeets of the setup/processing

time ratio and of capacity utilization are significant at Ci = 0.02. Care however

must be taken in interpreting the main effects because the three way interaction

effect of (capacity utilization by c.v.(demand) by setup/processing time ratio) is

also significant at Ci = 0.02. We first interpret the main effeets and then present
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c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 0.2 0.0 1.1 0.0

5.9 3.4 2.7 5.0

(proc. 1.7 0.7 0.0 0.2

time) 0.0 0.0 1.1 0.0

c.v.(set)=0.10 0.4 0.0 0.0 0.0

- 5.7 3.7 3.2 5.0

0.0 0.3 0.0 0.0

0.57 0.9 0.0 2.7 0.0

c.v. c.v.(set)=0.57 0.0 0.2 0.0 0.0

10.6 0.7 0.0 0.1

(proc. 2.2 0.0 2.9 0.6

time) 0.6 0.0 1.2 0.5

c.v.(set)=0.10 0.0 0.0 0.0 0.0

= 1.6 1.1 1.5 0.0

4.0 0.0 4.3 0.3

0.10 0.7 0.0 0.5 0.0

Table 5.5: Percentage Cost Improvement for Case 1

Legend

•

c.v.(hcost)

c.v.(set)

c.v. (proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.95
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c.v.(hcost)=0.57 c.v.(hcost)=O.lO

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 0.0 0.0 1.3 0.0

2.7 3.8 5.0 5.0

(proc. 0.0 0.0 1.3 0.0

time) 0.0 0.0 0.5 0.0
r:

c.v.(set)=O.lO 0.0 1.0 0.0 3.2

- 3.2 2.5 5.0 5.0

0.0 0.0 1.2 0.0

0.57 0.0 0.0 0.0 0.0

c.v. c.v.(set)=0.57 0.0 0.0 0.0 0.0

2.2 1.2 0.0 0.0

(proc. 0.9 1.5 0.0 0.0

time) 1.3 0.0 0.0 0.0

c.v.(set)=O.lO 0.0 0.0 0.0 0.0

- 1.6 0.5 0.0 0.0

0.7 1.9 0.0 0.2

0.10 0.0 0.0 1.0 0.0

Table 5.6: Percentage Cost Improvement for Case 2

Legend

•

c.v. (hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.10)

0.95
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c.v.(hcost )=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 2.3 0.0 1.1 0.2

5.1 4.9 2.8 0.6

(proc. 0.0 0.0 0.0 0.9

time) 0.0 0.0 2.6 0.0

c.v.(set)=O.lL 0.0 0.0 0.9 0.5

= 5.9 5.1 3.1 0.1

0.3 0.0 0.2 0.0

0.57 0.0 0.0 2.8 1.1

c.v. c.v.(set)=0.57 5.6 10.4 0.9 0.9

1.4 6.4 0.0 0.0

(proc. 0.0 0.2 1.4 5.0

time) 1.6 0.7 2.5 0.4

c.v.(set)=0.10 4.3 10.1 0.0 0.0

- 0.0 0.4 0.0 0.0

0.0 0.3 1.6 1.3

0.10 2.4 1.4 1.6 0.9

Table 5.7: Percentage Cost Improvement for Case 3

Legend

•

c.v.(hcost)

c.v.(set)

c.v. (proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cast

coefficient of variation of setup times

coefficient of variation of processing times

setupjprocessing time ratio

coefficient of variation of demand (0.57)

0.85
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c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 3.7 0.7 6.4 1.2

7.2 7.2 0.2 0.0

(proc. 1.0 0.0 2.6 1.2

time) 0.3 0.2 5.0 0.2

c.v.(set)=0.10 2.0 0.0 0.4 0.3

- 11.2 4.6 3.8 2.0

0.0 0.0 2.6 1.2

0.57 0.6 0.2 5.0 0.2

c.v. c.v.(set)=0.57 2.9 2.1 0.0 0.0

4.9 0.0 1.4 0.0

(proc. 2.1 2.0 3.2 5.4

time) 0.7 0.6 3.1 0.4

c.v.(set)=0.10 2.4 2.1 1.1 0.0

- 3.5 0.0 0.6 0.5

2.3 2.6 8.0 1.6

0.10 1.8 0.0 1.0 1.6

Table 5.8: Percentage Cost Improvement for Case 4

Legend

•

c.v.(hcost)

c.v. (set)

c.v.(proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.10)

0.85
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c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 2.1 0.0 3.7 0.0

(proc.

time)

- c.v.(set)=0.10 0.0 0.0 1.6 0.2-

0.57

c.v. c.v.(set)=0.57 10.2 0.2 3.7 1.7

(proc.

time)

= c.v.(set)=0.10 2.6 1.4 3.8 1.8

0.10

Table 5.9: Percentage Cost Improvement for Case 5

Legend

•

c.v. (hcost )

c.v. (set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.95
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c.v.(hcost)=0.57 c.v.(hcost)=O.lO

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 2.7 1.9 5.1 4.3

(proc.

time)

= c.v.(set)=0.10 2.3 0.5 4.3 2.1

0.57

c.v. c.v.(set)=0.57 5.9 4.5 3.2 1.2

(proc.

time)

= c.v.(set)=0.10 3.2 1.4 4.0 2.8

0.10

Table 5.10: Percentage Cost Improvement for Case 6

Legend

•

c.v. (hcost)

c.v.(set)

c.v. (proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setupfprocessing time ratio

coefficient of variation of demand (0.57)

0.85
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an analysis of the interaction effects in Tables 5.11 and 5.12 respectively.

To highlight the impact of different experimental factors, we summarize

average cost improvement results for al1 of Cases 1 to 4 in Table 5.11. Table

5.11 is arranged so that inferences may be made about the relative impact of the

experimental factors on cost improvements due to coordination. An important

observation relates to the effect of capacity utilization. For al1 factors, we observe

that the cost improvements are significantly higher when the capacity utilization

is 0.85 than when it is 0.95. This is not surprising because when capacity utiliza

tion is lower, the set of production schedules which are jointly feasible in terms

of capacity at both the plants is larger. Hence the likelihood increases that one

of these would yield a better solution compared to the uncoordinated approach.

With high capaeity utilization, there is a lesser numher of jointly feasihle sched

ules and hence the flexibility to choose schedules is also lower. Of course the value

of coordination will reduce if the available capacity is very high. In the extreme

case with infinite capacity at both the plants (uncapacitated case), the value of

coordination will be zero because Plant A can accommodate the optimal sched

ule of Plant B at no greater cost than its own optimal schedule. Coordination

therefore exhibits enhanced value at intermediate levels of capaeity utilization but

relatively little value when the capacity utilization is very high or very low. From

the practical point of view this is important because managers can be assured of

benefits of coordination in the intermediate range of capacity utilization (80% to

95% on average, on critical resources) which they typical1y encounter in reallife

("ce Williams et al., 1992).

The other significant observation from Table 5.11 relates to setup to pro

cessing time ratios. On an average, cost improvement with a high setup/processing

time ratio (spratio=5) is 77% higher for the high capacity utilization case and

53% higher for the low capaeity utilization case than with a low setup/processing

time ratio (spratio=2). This has important implications for firms where the
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setup/processing time ratio is high. Cost benefits arising from coordination be

tween plants can be invested in a setup time reduction program. If the firm is

successful in reducing the setup/processing time ratio, it will see a reduced value

for the coordinated mode!. However, reduced setup times will free capacity result

ing in overall reduction in costs. The philosophy of coordination therefore fits in

with the long term perspective of improving the competitive position of the firm.

The previous discussion on the main effects of the significant factors must

be viewed in conjunction with an analysis of the three way interaction effect of

(capacity utilization by c.v.(demand) by setup/processing time ratio). In order to

highlight the interaction effect between the three factors, we analyze these factors

exclusively in Table 5.12.,

We can observe from Table 5.12 that benefits are significantly higher for

capacity utilization = 0.85 as compared to capacity utilization = 0.95, under

three out of the four possible combinations of the other two factors. However,

when c.v.(demand) = 0.57 and spratio = 5, there is very little difference betwœn

the two levels of capacity utilization. Similarly, the cost benefits are higher for

high value of spratio (=5), for two out of the four possible combinations of the

other two factors, while in the other two scenarios, there is little difference in the

cost benefits with high and low values of spratio. The highest benefits occur for

the case when spratio = 5, capacity utilization is 0.85 and c.v.(demand) = 0.10.

In general, the interpretation of the main effects of capacity utilization and the

setup to processing time ratio that was described earlier, holds true because in

none of the cases does the effect become completely reversed.

Insert Tables 5.11 and 5.12 here.

Of the other factors, the variability of demand and processing times show

different trends in relation to cost improvements depending on the capacity utiliza

tion. With high capacity utilization, the benefits are higher for high coefficient
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c.v. c.v. c.v. c.v. spratio Number %

(demand) (hcost) (proctime) (set) of Cost

Problems Improvement

a b

0.57 128 1.21 1.60

0.10 128 0.84 2.05

0.57 128 1.09 2.15

0.10 128 0.96 1.49

0.57 128 1.32 1.78

0.10 128 0.73 1.87

0.57 128 1.07 1.97

0.10 128 0.98 1.68

5 128 1.31 2.21

2 128 0.74 1.44

Table 5.11: Analysis of Experimental Factors - Average EfIect

Legend

•

c.v. (demand)

c.v.(hcost)

c.v. (proctime)

c.v.(set)

spratio

a

b

coefficient of variation of demand

coefficient of variation of holding cost

coefficient of variation of processing times

coefficient of variation of setup times

setup/processing time ratio

capacity utilization = 0.95

capacity utilization = 0.85
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• c.v.(demand)=0.57 c.v.(demand)=0.10

cap. util = 0.95 cap. util = 0.85 cap. util = 0.95 cap. util = 0.85

spratio = 5 1.74 1.58 0.87 2.84

spratio = 2 0.68 1.62 0.81 1.19

Table 5.12: Percentage Cost Analysis for Factors with Interaction

Legend

of variation of these factors while for low capacity utilization, the benefits are

higher when the coefficient of variation is low. Finally the benefits of coordina

tion are higher for high coefficient of variation of holding cost and setup time.

These results demonstrate that benefits of coordination accrue in a wide variety

of conditions, although the actual numerical value of these benefits may vary. As

we have argued in our discussion of the experimental design, real life production

systems in high-tech industries like computers, telecom equipment manufacturing,

consumer electronics etc., have to encounter a dynamically changing environment

charaeterized by compressed product life cycles, rapid product design changes and

product obsolescence, and widely fiuctuating demands. In such an environment,

the same firm may observe variability in relation to the above factors over a period

of time. For instance we show in Appendix 1 that if even a few produets have

significantly different processing times, the overall c.v. of processing time will be

high. This can happen when a. new product with a.n unstable produet design is

•

•

spratio

c.v. (demand)

cap. util.

setup/processing time ratio

coefficient of variation of demand (0.57)

capacity utilization
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not fully integrated into the manufacturing system and hence has a considerably

higher processing time on a critical resource, than the other products. As process

learning occurs, the manufacturing of this product stabilizes and its processing

time may approach that of the other products resulting in reduced c.v. of pro

cessing times. Similarly, for firms that have a well defined high sales season for

a specific type of products (e.g., novelty items around Christmas), there may be

differing variability of demand across products at different times of the year. Ta

ble 5.11 demonstrates that coordination benefits accrue for a wide range of values

of the above factors, incorporating sorne of the variability that exists in reallife.

This should serve as a motivating factor for the adoption of the coordinated model

by managers.

A comparison of the results in Tables 5.5 to 5.8 with the results in Tables

5.9 and 5.10 indicates that the cost improvement increases with increase in number

of products. For Cases 1 to 4, the average cost improvement is 1.4% while for

Cases 5 and 6, the average cost improvement is 2.6%. The reason for this increase

is that with a larger set of products, there is an enlarged set of possibilities for

transferring production of items from one period to another.

Table 5.13 depicts what we call the "maximum effect" of a treatment.

Here we choose the maximum cost improvement over the independent replications

as the representative effect of this treatment as opposed to the average of the

replications in Table 5.11. Most of the trends described for the average cost

improvements in Table 5.11 are also true for the maximum cost improvements.

Managers can jointly look at both these performance measures, when considering

the justification of the coordinated system.

Insert Table 5.13 here.

129



•

•

c.v. c.v. c.v. c.v. spratio Number %

(demand) (hcost) (proctime) (set) of Cost

Problems Improvement

a b

0.57 32 3.69 4.36

0.10 32 2.54 4.81

0.57 32 3.41 5.92

0.10 32 2.83 3.24

0.57 32 4.18 4.66

0.10 32 2.06 4.51

0.57 32 3.25 4.73

0.10 32 2.98 4.44

5 32 3.75 5.02

2 32 2.48 4.14

Table 5.13: Analysis of Experimental Factors - Maximum Effect

Legend

•

c.v.(demand)

c.v. (hcost)

c.v. (proctime)

c.v.(set)

spratio

a

b

coefficient of variation of demand

coefficient of variation of holding cost

coefficient of variation of processing times

coefficient of variation of setup times

setup/processing time ratio

capacity utilization = 0.95

capacity utilization = 0.85
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5.1.4 Implementation Aspects of Coordination

In this chapter, we have argued that the coordinated model is beneficial for the

firm as it reduces its total cost of operations. We have demonstrated the actual

cost benefits that accrue from coordination for a subset of problems which in

terms of sorne of the aspects we are modelling, are representative of real life

systems. We have also discussed the theoretical implications of our findings for

managers. We now address the implications of these results from the point of view

of implementation of the coordinated model in a firm. Broadly our objective here

is to identify how different management levels of the firm can use these results

in justifying the implementation of the coordinated mode!. We discuss the trade

offs that must be considered for such an analysis Le., the potential benefits that

accrue to each level of the firm versus the costs of making organizational changes

and adopting the incentive structures that reinforce coordination. In keeping with

our discussion of the issues in Chapter 1, we broadly discuss the implementation

aspects at the strategie and the operational levels in the firm.

At the strategic level, the top management of the firm would like to assess

the long term costs and benefits of adopting a coordinated approach to produc

tion planning. The typical questions that would have to be addressed at this level

would be, how the coordinated approach would enhance the competitive position

of the firm, what investment would be required for adoption of this approach,

what would be the payback period of this investment, what kind of incentive

structures would have to be put in place to motivate managers of the plant which

will perform poorly according to the current performance measures etc. One of

the most important prerequisites for the success of this approach is the commit

ment of the top management. This is a critical ingredient for the success of any

coordination effort, because without this any attempt towards coordination will

become very quickly mired in the set of current performance measures which are

clearly oriented towards the uncoordinated approach as they put a high premium
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• 1. Annual Sales $ 21.4b(17.1b)

2. Annual Profits $ 1.3b(O.5b)

3. Average Value of

Inventory $ 3.0b(2.4b)

4. Cost of Inventory @10% per annum @15% per annum

$ 300.0m(240.0m) $ 450.0m(360.0m)

5. Annual Benefits of Coordination

Average Effect (1.42%) $ 4.3m(3.4m) $ 6.4m(5.1m)

Maximum Effect (3.85%) $ 11.6m(9.2m) $ 17.3m(13.9m)

Table 5.14: Benefits of Coordination: Case of Hewlett-Packard

Figures are for 4 quarters upto 1/31/94(1/31/93)

•

•

Sources:

1. "How H·P continues to grow and grow", by Alan Deutschman in Fortune,

May 2,1994.

2. "Strategie Supply Chain Management", by Corey Billington, OR/MS Today,

April, 1994.

on the performance of the individual units, seen in isolation. We believe that large

firms are ideal candidates for implementing coordination as they stand to make

potential1y large savings. With this as the frame of reference, we estimate the

potential annual cash benefits of coordination for a large company. The exam

pie that we present is that of Hewlett·Packard (H-P) Company whose innovative

performance has been commended in a recent review in Fortune magazine. The

details of our analysis are provided in Table 5.14.

Using the cost improvements obtained from our average and maximum

analysis (across independent replications) in Tables 5.11 and 5.13, the potential
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henefits of the coordinated model for H-P are shown in Tahle 5.14. Sorne compu

tations will demonstrate that these cost improvements would have added 2% - 3%

to H-P's net profits in the previous two years. We emphasÎze that this estimate

is on the conservative side hecause as we discussed earlier, the cost henefits of

coordination increase with increase in numher of products. Therefore, in a real

life scenario, where the numher of products is much larger, the cost henefits would

he larger too. We have also demonstrated that for certain instances, the cost im

provements exceeded 10%. If these instances were to apply to H-P, the impact on

its net profits would he in the range of 4% to 8%. In addition, it must he noted

that the cost improvements alone do not reveal the true potential of coordination.

The positive spin-off effects of an effective coordination strategy would he many.

For instance, the savings could he channelled into a focused setup reduction pro

gram which as we earlier discussed will reinforce the benefits of coordination. In

addition, as we discussed in Chapter 1, multi-plant coordination is a subset of

the overall supply chain coordination domain. Effective multi-plant coordination

would likely inspire supply chain coordination and hence strengthen the competi

tive position of the firm. An important concern for top managers is to put in place

an incentive structure which refiects the objective of coordination. There would

therefore he an important need to incorporate the concerns of the entire firm in

performance evaluation measures as opposed to those of individual entities.

The cost implications of coordination would be quite minimal for large

companies, e.g., H-P, because they already have sophisticated information systems

linking manufacturing and distribution sites. In any case, any investment that is

made in improving the information system will he a one time cost while the

henefits would accrue perennially. The more important concern would he the

reaction of managers to what they may see as limiting their autonomy. One

alternative would be to evaluate the true benefits of the coordinated versus the

uncoordinated approach and equitahly al10cate these between different units. If
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the overall benefits are positive and the reallocation is equitable, ail units will have

incentive to cooperate as this would improve each unit's performance vis-a-vis the

uncoordinated approach. The same would apply to a buyer-supplier relationship

and a relationship based on coordination could lead to a cooperative partnership.

As discussed by Womack et al., (1990), such a relationship based on a rational

framework rather than the relative bargaining power of the different units could

be an important source of future competitiveness of firms.

Many of the organizational changes for implementing the coordinated

model would be done at the higher levels of management. Nevertheless, these

changes would have to percolate to the plant level workers who are responsible for

the day-to-day production activities. Individual plant managements would have

to be more sensitive to the concerns at the other plants. One important aspect

that would go a long way in increasing such sensitivity would be to encourage

exposure across plants both at the management and the worker levels. Benefits

of coordination also need to be communicated down to the lowest levels in order

to improve the awareness about the importance of coordination.

In summary therefore, the critical strategie inputs for the success of co

ordination are commitment of the top managers, the instituting of a reinforcing

incentive structure, and an effective mechanism for channelling the savings from

coordination. At the operationallevel, while the day to day responsibilities would

not change, cross training and sensitivity towards the benefits of coordination

would be important determinants of the success of the coordinated system.
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ation and Lagrangian Decomposition
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Till now, we have largely focused on the practical benefits and the implementa

tion aspects of the coordinated mode!. In this section we turn to the theoretical

concern of comparing the results obtained from the Lagrangian relaxation and

Lagrangian decomposition methodologies. The measure of performance we use

for this comparison is the gap between the best lower bound and the best feasible

solution obtained in each case expressed as a percentage of the best lower bound

(hereafter referred to as the gap). The gap signifies the maximum deviation of

the feasible solution from optimality. The gap was measured in each case when a

pre-specified termination condition was achieved. The termination condition was

to stop when either 500 iterations were completed or when the gap was reduced to

below 0.5%. The iteration limit was determined largely by the time restrictions.

We present results for the six cases discussed On page 117. Tables 5.15 to 5.20

summarize the results for the gaps obtained with Lagrangian relaxation while the

results for Lagrangian decomposition are in Tables 5.21 to 5.24. A comparative

analysis of the approaches is presented in Table 5.25 for the 128 cases where La

grangian relaxation and Lagrangian decomposition were used for the same set

of problems i.e., 2 independent replications of 64 treatments referred to in our

experimental design.

Insert Tables 5.15 to 5.25 here.

Lagrangian decomposition outperforms Lagrangian relaxation in 84% (107

out of 128) instances, while in the remaining 16% cases, Lagrangian relaxation

yields a smaller gap. In the 107 instances where Lagrangian decomposition gives

a lower gap, it outperforms Lagrangian relaxation by 3.9% . In contrast, when

Lagrangian relaxation is better, the average reduction in gap compared to La-
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grangian decomposition is 1.1%. Finally, as outlined in Table 5.25, in terms of

the average gap, the maximum gap and the standard deviation of t,he gap, La

grangian decomposition is distinctly superior to Lagrangian relaxation.

Another important concern from the algorithmic point of view is the

probable behaviour of the gap with increased problem size. For the two problem

sizes considered in this dissertation (3/4 and 10/20 modules/chips respectively),

we observed that the percentage gaps for the same set of input data sets were

noticeably similar. This can he verified by comparing the results in Tables 5.15

and 5.17, with those in Tables 5.19 and 5.20. Tables 5.15 and 5.17 summarize

the percentage gaps for the smaller problems under high c.v. of demand using

Lagrangian relaxation, while Tables 5.19 and 5.20 are the corresponding cases for

the larger problems. The average percentage gaps turn out to be 8.7chips. With an

approximately five fold increase in problem size, the percentage gap has remained

remarkably stable. Based on our experience with the two sizes considered, it is

reasonable to assume that the percentage gaps do not increase with increase in

problem size. Another observation is that while the maximum gap (for the cases

considered above) turned out to be 27.4only 15.5

From a practical point of view, an alternate comparison of the two ap

proaches coulti be based on the values of the heuristic solutions generated. We

have noted that in a vast majority of case~, Lagrangian decomposition yields

heuristic solutions that are at least as good as those obtained from Lagrangian

relaxation. Lagrangian relaxation yields better feasible solutions in only a handful

of instances. Rence the conjecture that better lower bounds also yield improved

feasible solutions. Our results provide an empirical proof for the above assertion.

Lagrangian decomposition therefore gives a superior performance in terms

of both the gap and the value of the feasible solutions. Nevertheless, there is sorne

concern with the maximum gap which in sorne problem instances turns out to be

close to 20%. In the next subsection, we address how this gap can he reduced
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further, using our existing results from subgradient optiIIÙzation.
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c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 4.4 3.8 6.2 5.9

7.9 10.3 12.1 12.0

(proc. 5.7 4.3 7.8 5.3

time) 1.9 4.2 1.2 4.4

c.v.(set)=0.10 4.1 4.3 6.6 7.4

= 8.8 1Q.4 11.0 12.8

5.2 4.4 5.4 5.0

0.57 6.2 5.1 2.5 5.5

c.v. c.v.(set)=0.57 3.3 2.3 2.2 2.2

0.6 1.7 2.1 3.0

(proc. 2.8 4.4 0.7 3.7

time) 1.2 3.2 3.7 3.0

c.v.(set)=0.10 2.1 2.6 1.7 2.2

- 1.6 1.7 1.9 3.0

3.3 4.2 2.1 5.7

0.10 1.5 4.6 2.4 4.1

Table 5.15: Percentage Gap for Case 1 using Lagrangian Relaxation

Legend

•

c.v. (hcost)

c.v.(set)

c.v. (proetime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.95
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 2.9 3.0 3.4 4.9

14.2 14.0 15.8 13.5

(proc. 3.8 3.9 2.5 4.9

time) 4.6 3.4 4.3 3.7

c.v.(set)=0.10 1.7 3.2 3.4 4.8

= 15.1 12.9 20.2 16.3

6.1 4.9 4.2 5.4

0.57 6.9 4.7 6.5 4.7

c.v. c.v.(set)=0.57 6.0 4.4 5.0 4.0

3.4 3.8 3.9 4.4

(proc. 2.6 3.4 2.4 3.9

time) 2.9 4.0 2.4 3.5

c.v.(set)=0.10 3.9 3.9 3.5 3.6

= 4.8 5.2 5.8 5.0

6.1 4.0 5.8 4.1

0.10 7.9 5.4 5.1 4.1

Table 5.16: Percentage Gap for Case 2 using Lagrangian Relaxation

Legend

•

c.v.(hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.10)

0.95
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 27.4 23.2 18.4 17.6

13.3 13.5 18.3 16.3

(plOC. 7.7 7.6 9.4 9.5

time) 19.6 17.4 11.2 14.2

c.v.(set)=0.10 26.1 22.7 18.7 17.1

= 13.9 14.0 18.8 16.1

7.8 7.5 12.0 10.3

0.57 21.7 18.8 12.4 13.9

c.v. c.v.(set)=0.57 19.2 16.8 8.6 7.7

9.0 8.9 12.4 11.2

(plOC. 5.3 5.2 5.1 6.2

time) 14.3 14.0 6.7 7.5

c.v.(set)=0.10 18.4 16.4 7.8 7.3

- 8.7 8.7 13.3 11.3

6.0 4.5 7.2 6.5

0.10 17.4 14.5 9.6 8.2

Table 5.17: Percentage Gap for Case 3 using Lagrangian Relaxation

Legend

•

c.v. (hcost)

c.v.(set)

c.v.(proetime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.85
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•

c.v.(hcost )=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 33.0 26.0 20.4 16.8

16.6 16.4 21.2 19.6

(proc. 5.1 6.2 8.8 8.8

time) 17.5 17.9 20.4 11.0

c.v.(set)=0.10 26.7 24.1 19.8 16.1

= 13.7 17.5 22.9 20.0

7.8 7.3 9.9 10.0

0.57 20.4 18.2 13.6 12.9

c.v. c.v.(set)=0.57 28.7 23.2 12.0 9.3

8.8 11.0 16.1 13.9

(proc. 4.9 3.7 8.9 6.0

time) 17.2 14.0 7.4 7.7

c.v.(set)=0.10 25.8 22.1 9.2 9.2

= 10.1 11.0 16.2 13.7

4.2 3.5 5.9 5.3

0.10 16.9 16.1 11.6 7.3

Table 5.18: Percentage Gap for Case 4 using Lagrangian Relaxation

Legend

•

c.v. (hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.10)

0.85
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 13.2 12.1 12.0 3.7

(proc.

time)

- c.v.(set)=0.10 12.0 10.9 8.4 8.8

0.57

c.v. c.v.(set)=0.57 15.5 9.8 3.7 5.0

(proc.

time)

- c.v.(set)=0.10 9.8 10.9 3.2 5.2

0.10

Table 5.19: Percentage Gap for Case 5 using Lagrangian Relaxation

Legend

•

c.v.(hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setupjprocessing time ratio

coefficient of variation of demand (0.57)

0.95
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 12.4 11.3 7.0 7.2

(proc.

time)

= c.v.(set)=0.10 11.2 10.6 7.2 8.4

0.57

c.v. c.v.(set)=0.57 8.9 10.5 5.9 5.9

(proc.

time)

- c.v.(set)=O.lO 8.9 10.8 5.6 5.2

0.10

Table 5.20: Percentage Gap for Case 6 using Lagrangian Relaxation

Legend

•

c.v.(hcost)

c.v.(set)

c.v. (proetime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.85
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 1.0 2.8 0.5 0.5

(proc. 7.3 8.0 10.6 8.7

time)

= c.v.(set)=0.10 0.5 0.6 0.8 2.1

8.0 7.7 8.9 8.5

0.57

c.v. c.v.(set)=0.57 2.3 1.0 1.2 0.6

(proc. 1.4 2.5 3.0 1.4

time)

= c.v.(set)=O.10 0.8 0.6 0.7 0.6

2.5 3.3 1.7 1.3

0.10

Table 5.21: Percentage Gap for Case 1 using Lagrangian Decomposition

Legend

•

c.v. (ucost)

c.v.(set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

.: coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.95
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•

c.v.(hcost)=0.57 c.v.(hcost)=O.lO

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 2.8 2.8 2.5 4.0

(proc. 8.4 13.7 7.1 12.5

time)

= c.v.(set)=O.lO 3.0 3.7 3.4 0.5

8.8 12.7 11.0 7.9

0.57

c.v. c.v.(set)=0.57 5.3 5.8 3.2 4.7

(proc. 2.6 5.2 3.1 4.0

time)

= c.v.(set)=O.lO 3.1 3.8 1.9 4.2

2.6 2.1 1.8 4.0

0.10

Table 5.22: Percentage Gap for Case 2 using Lagrangian Decomposition

Legend

•

c.v.(hcost)

c.v.(set)

c.v. (proetime)

spratio

c.v. (demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.10)

0.95
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•

c.v.(hcost)=0.57 c.v.(hcost)=O.lO

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 14.3 20.3 12.4 13.1

(proc. 13.8 12.7 12.1 15.3

time)

= c.v.(set)=0.10 19.4 19.2 13.6 12.2

12.1 12.8 12.0 14.4

0.57

c.v. c.v.(set)=0.57 4.4 0.6 2.5 1.7

(proc. 9.3 6.7 13.8 8.7

time)

= c.v.(set)=0.10 5.4 1.1 4.6 2.5

9.5 8.5 11.4 8.4

0.10

Table 5.23: Percentage Gap for Case 3 using Lagrangian Decomposition

Legend

•

c.v.(hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setup/processing time ratio

coefficient of variation of demand (0.57)

0.85
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•

c.v.(hcost)=0.57 c.v.(hcost)=0.10

spratio=5 spratio=2 spratio=5 spratio=2

c.v. c.v.(set)=0.57 18.8 19.2 19.1 18.4

(proc. 12.6 17..5 18.6 15.9

time)

- c.v.(set)=0.10 18.6 19.1 17.7 17.9

8.8 18.4 17.7 15.6

0.57

c.v. c.v.(set)=0.57 14.7 8.9 8.8 4.6

(proc. 1Q.4 9.4 14.8 13.4

time)

- c.v.(set)=0.10 15.1 7.5 6.4 7.7

11.5 10.3 14.5 10.5

0.10

Table 5.24: Percentage Gap for Case 4 using Lagrangian Decomposition

Legend

•

c.v.(hcost)

c.v.(set)

c.v.(proctime)

spratio

c.v.(demand)

capacity utilization

coefficient of variation of holding cost

coefficient of variation of setup times

coefficient of variation of processing times

setupjprocessing time ratio

coefficient of variation of demand (0.10)

0.85
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Lagrangian Decomposition Lagrangian Relaxation

Average Gap 8.1% 11.2%

Max-Min Range 0.5% to 20.3% 0.6% to 33.0%

Standard Deviation 5.9% 7.5%

of Gap

Number of times 107(= 84%) 21(= 16%)

gap lower

Average Gap

Reduction when

Approach superior 3.9% 1.1%

Table 5.25: Comparative Analysis of Gaps

5.2.1 Discussion of duality gap

(in the rest of this chapter, v(a) represents the optimal value of problem a.)

The quality of results from Lagrangian relaxation has traditionally been judgcd

in terms of the gap between the best lower bound obtained by solving the La

grangian dual and the upper bound obtained from the feasible solutions that are

generated at each iteration. If this gap is reasonably small, wc have found a

provably near optimal feasible solution. However, as observed by Trigeiro et al.,

(1989), in complex integer programs, the optimal value of the Lagrangian dual

may be substantially lower than the optimal solution to the primaI problem. If

the gap between the upper and the lower bounds is large, it is difficult to as

certain whether it is associated with a large duality gap or a large deviation of

the feasible solution from optimal or an incomplete computation of the optimal

lower bound. This ambiguity is unfortunate and has been recognized by several

researchers (e.g., Geoffrion, 1974, Trigeiro et al., 1989).
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• We extend the above analysis with the objective of clarifying the issue of duality

gap. For this purpose, we use an adapted version of a !inear prograrnrning for

mulation of a production planning problem which is due to Manne (1958). We

first re-state Problem C in the generic form, Cprima" earlier presented in Chapter

4 (see page 69).

Problem Cprimal

Minimize

Cprimal = ex

subject to

Ax - b (5.1)

Dx - e (5.2)

• x ~ 0 and integral (5.3)

In the above formulation, ex represents the objective function (inventory holding

and overtime cost terms). Constraints (5.1) represent the complicating constraints

(i.e., capacity constraints and !ink constraints). Constraints (5.2) represent the

special structure constraints (i.e., inventory balance, setup enforcement and over

time enforcement constraints). An adapted version of Manne's (1958) linear pro

gramming formulation, C dua" which has also been reported in Fisher (1981) is

reproduced below (the relationship between Cprimal and C dual is explained later).

Problem Cdual

Minimize
N

Cd == I: À...cx"
n=l

•
subject to
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•

N

:LÀn.Axn > b
n=l

N

:LÀn - 1
n=l

Àn > 0

x E X {X: Dx ;::: e, x;::: 0 and intcgral}

The superscript n (n going from 1 to N) defined over the set Nf... indexes ail

feasible vectors of decision variables for the decomposed problems (represented

by the special structure constraints (5.2) in Cprimal above). The set X can be

represented as X = {xn, n = 1, ... , N} (see Fisher (1981)). This set is known

to be finite because of the integrality and boundedness of the variables. However

the cardinality of X is extremely large. The À's are optimal non-negative weights

allocated to each individual vector of decision variables in X. Additionally, if

the À's are constrained to be binary, C dual will be recognized as being equivalent

to Cprimal. However, constraining À's to be binary is not very meaningful as it

makes Cdual as difficult to solve as Cprimal. For this reason, Cdual is formulated :,.s

a linear program with continuous À's. To emphasize the physical significance of

this problem, wc re-state its interpretation.

Minimize

subject to

Weighted Primai Costs

•

(1) Sum of weighted violations for ail relaxed complicating constraints is elimi

nated

(2) Sum of non-negative weights equals 1

v( C dual ) is a provable lower bound on v(Cl. However given the large car

dinality of X, complete enumeration is ruled out. We therefore follow a modified

approach towards solving Cdual' We cali this procedure, the Bound Improve

ment Procedure (BIP). A vector of decision variables relating to special struc-

150



•

•

•

ture constraints is included in a set called X' as it is generated in the course of

implementing suhgradient optimization (refer to methodology outlined in Chapter

4). After every :F iterations of suhgradient optimization, Problem Cduo1 is solved

in a modified form, C~uol (defined over X' instead of over X) which has substan

tially fewer columns as compared to Cduol. :F can be any convenient number of

iterations. From the structure of the problem, it is evident that each successive

feasible solution to C~uol decreases monotonically since addition of new variables

cannot make the result any worse. C~uol differs from Cduol in an important re

spect. It lacks sorne of the columns(variables) which would be present in Cduo1

which results in V(C~u..l) being higher than V(Cduo1 )' This prevents C~uol from

being a provable lower bound on v(Ceq ). However the convergence of V(C~uol) as

a function of the cardinality of X' can be empirically investigated. Initially, X'

is flot representative of X as C~uol lacks several columns (variables) of Cduol and

hence it is probable that V(C~uol) exceeds v(C). However, as vectors are added

into X' (based on additional iterations of subgradient optimization), it becomes

increasingly representative of X and V(C~uol) will decrease till it finally drops be

low v(C). At this point, V(C~uol) becomes a lower bound on v(C). Evidently, it

is difficult to know when V(C~uol) becomes a lower bound, since we do not know

v(C). We note however the following relationship between V(C~uol) and V(Cduol)'

v(C~uol) = V(Cduol) = v(LduaILRel.x)

as X' --> X

(See Fisher,1981)

Recall that LdualLRelox is the Lagrangian dual problem for the case of

Lagrangian relaxation of capacity and coupling constraints. We empirically in

vestigated the behaviour of Problem C~uol as a function of increasing iterations of

subgradient optimization. The above analysis was implemented on several prob

lems and the results are presented in Figures 5.1 and 5.2. As the number of

iterations increases, X' approaches X. After every 100 iterations (i.e., :F = 100),
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the resu1ts (i.e., production quantity Xi! etc.,) relating to the relaxed problems

BLrel.",}, BLrel.",}, ALrel•rl and ALrelax2, (see page 76 onwards) were added to X'

and C~u.l was optimized as explained before. Addition of the results of succes

sive iterations of subgradient optimization in this manner assures a monotonie

decrease in v(C~u.l)' v(C~u.' represents an upper bound on the optimal value of

the Lagrangian dual and hence we can ascertain the maximum deviation of the

lower bound (obtained from subgradient optimization) from the optimal value

of the Lagrangian dual. Without the Sound Improvement Procedure, no such

indication about the quality of the lower bound was available (exœpt the per

centage gap itself). One important use of C'dual is therefore to determine the

proper termination condition for subgradient optimization. C~u.l may be used as

an indicator as to when the solution of LduaILRel.", may be stopped, i.e., when

V(C~u.') - v(LduaILRiI.",) is sufliciently small. For example, subgradient optimiza

tion to solve LduaILRel.", may be continued till the gap between v( C~u.') and

v(LduaILRel.",) is less than 5%.

Another use of C~u.l is to utilize its solution to construct a feasible solution

for C. For this purpose we used the following heuristic procedure. Whenever a

feasible solution to C~u.' was obtained, the production variable for each product

i in every period t was determined by taking a weighted average of the optimal

" .A s, l.e.,

where Xi'n represents the production quantity for product i in period t in the

n'h iteration of subgradient optimization. Xit is therefore a synthesis of ail the

iterations of subgradient optimization. Xit was rounded downwards to obtain

integer production quantities. Setup and overtime enforcement variables were

obtained according to the following rules:
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• y" 1 if X" of 0

•

•

o otherwise

Zu - 1 if E?;t(X".bi +Y".Si) ~ Capu

o otherwise

Z2. = 1 if E?;t:'+1 (X".b i +Y",Si) ~ Cap2.

o otherwise

The determination of overtime quantities in each period at either plant is a simple

computation based on the above quantities. We cali this the composite solution

represented by C. C maybe both demand infeasible and capacity infeasible for the

original problem, i.e., Cprim." However the infeasibility may not be very large and

a feasible solution maybe heuristically obtained. We adopt the following two step

procedure.

(a) Demand Infeasibility: A single pass procedure is used to determine cumu

lative demand feasibility for each period, i.e., to determine whether cumulative

production for each product is at least as large as the cumulative demand in every

period. If the cumulative demand exceeds cumulative production, X" is increased

appropriately to ensure cumulative demand feasibility.

(a) Capacity Infeasibility: A modified form of the feasibility heuristic described

on page 93 is used. The procedure used here differs from the earlier heuristic in

that the cost of shifting items is limited to considering the inventory holding and

overtime costs only. This heuristic goes through the four passes described for the

feasibility heuristic on page 95.

In this section, we have outlined two different procedures. The first pro

cedure relates to solving Problem Cd••, which is a reasonably sized linear pro

gramming problem and is the dual of the Lagrangian dual, LduahRel.x, for the

Lagrangian relaxation procedure. The solution to this problem yields a measure

of the convergence of the lower bound obtained by optimizing the Lagrangian dual

using subgradient optimization. The above technique has been widely reported
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•

in literature (see Fisher, 1981) and the effectiveness of the dual problem in de

terrnining the quality of the lower bound has been recognized. However we have

found no evidence in literature of the second procedure that we have proposed

i.e., utilizing the solution of Problem C~ual to construct an improved feasible so

lution. This attempt therefore signifies a fundamental shift and seeks to establish

the importance of the dual problem C~ual from the point of view of improving the

upper bound. The practical significance of this procedure is considerable because

any improvement in the upper bound leads to an actual rednction in costs.

With this objective, the Bound Improvement Procedure (BIP) was ap

plied to 25 problems selected from Tables 5.17 and 5.18. The choice of these

cases was guided by the relatively large percentage gaps that remained unresolved

after implementing 500 iterations of subgradient optimization. The procedure

was implemented for the Lagrangian relaxation case (since the gaps were higher)

and the number of problems selected represented approximately 10% of the total

problem set on which Lagrangian relaxation was initially implemented. Wc first

diagrammatically present the details of the implementation for two different cases

to contrast the different conditions relating to the lower bound convergence, under

which the cost of the feasible solution could be improved. Next we summarize the

improved cost benefits for the 25 problems on which it was implemented.

The detailed results for two examples are presented in Figures 5.1 and 5.2

and incorporate the results of 4000 iterations. The important measures presented

in these figures are defined as follows:

a = (Heuristic 1 minus Lagrangian Dual)

b = (Bound Imp. Proc. minus Lagrangian Dual)

c - (Heuristic 1 minus Bound Imp. Proc.)

d - (Dual of Lag. Dual minus Lagrangian Dual)
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a represents the percentage gap between the upper bound obtained from

Beuristic 1 and the best lower bound obtained from the Lagrangian dual (gap is

defined exactly as on page 135 except that it is measured after 4000 iterations). bis

the percentage gap after the BIP has been applied to obtain a better upper bound.

c is the improvement in the cost of the coordinated solution after implementing

BIP over Beuristic 1 (expressed as a percentage of the cost of Beuristic 1). This

represents the actual cost savings as a result of implementing BIP. Finally, d

represents the convergence of the lower bound obtained by using subgradient

optimization for maximizing the Lagrangian dual i.e., in terms of the maximum

deviation from the optimal value.

In the first example (Diagram 5.1), we observe that implementing BIP

results in a reduction of the percentage gap between the best known upper and

lower bounds. The actual cost improvement in the value of the feasible solution

is approximately 7%, while the lower bound is shown to converge to 5.4% within

its optimal value. For this problem, we also obtained the true optimal solution by

direct application of branch and bound, and the best feasible solution deviated by

2.6% from the true optimal. Bence for this particular example, we can say that

out of the final unresolved g3.p of approximately 20.1%,2.6% is attributable to the

heuristic procedures that we have used, while a maximum of 5.4% is due to the

incomplete optimization of the Lagrangian dual. The remaining approximately

12% of the gap represents the duality gap inherent in the problem about which

nothing can be done (the percentages may not match exactly as they are defined

over different bases).

In the second example (Diagram 5.2), while a, band c behave as ex

plained above for the first example, the behaviour of dis different. Bere, the dual

of the Lagrangian dual converges to an evidently non-optimal value which is even

above the value of the upper bound. In such a situation, d is virtually meaning

less. Nevertheless, despite the poor behaviour of the dual, we note that a cost
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improvement of 3.1% was obtained, as can be observed from c. Once again the

true optimal solution was obtained using branch and bound and this indicated a

deviation of 3.2% between the best feasible solution and the true optimal. For

this example, no assessment can be made about the allocation of the unresolved

gap to the three sources i.e., upper bounding and lower bounding procedures and

the duality gap, because of the poor value of the dual.

Table 5.26 represents the summary of results for the 25 problems that were

considered. x measures the cost improvement over 500 iterations (these are taken

from Tables 5.7 and 5.8). y represents the benefits of coordination after increasing

the number of iterations to 4000. z represents the coordination benefits after the

BIP has been implemented (over 4000 iterations). It can be observed that while

a substantial increase in the number of iterations yield no benefit on the average,

the implementation of BIP boosts the cost benefits of the coordinated model by

over 40% (3.0% versus 2.10%).

The Bound Improvement Procedure therefore provides an improved fea

sible solution as compared to the feasibility heuristic described in Chapter 4 (page

93). We have not used this procedure for the entire set of problems discussed in

Section 5.1.3 because solving G~u.' necessitates solving a large LP problem and

hence increases the computational effort considerably. However we have demon

strated that with better computational resources, improved feasihle solutions can

be obtained using the Bound Improvement Procedure. Our results relating to cos:'

improvements in Section 5.1.3 are therefore conservative. This coupled with the

fact that cost improvement increases with increased number of products should

reassure firms that the cost benefits of coordination will in faet be larger than

those reported in Section 5.1.3.
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Figure 5.1: Bound Improvement Procedure: Example 1

157



•
7400 -

64001- 28.7%

14.3% 3.1%
10.9%

3400 -; /-----r--r--
o

- --1-- -- -- -- -- ----------_.
d

,~ ~

------- '-----'f----- ---------------
4400 f-- ~

C 5400o
s
t

•
2400 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40

Iterations (/100)

~ Dual of Lag. Dual Sound Imp. Proc.

Heuristic 1 Lagrangian Dual

•
Figure 5.2: Bound Irnprovement Procedure: Example 2
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Problem 500 Iterations 4000 Iterations 4000 Iterations

Number with BIP

1 3.7 4.1 4.1

2 0.7 0.7 1.4

3 6.4 6.4 6.4

4 1.2 1.2 1.2

5 7.2 7.2 7.3

6 7.2 7.2 7.2.
7 0.2 0.2 0.2

8 0.0 0.0 1.4

9 2.9 3.5 5.5

10 2.1 2.1 3.1

11 0.0 0.0 0.0

12 0.0 0.0 O.il

13 2.4 2.4 4.6

14 1.1 1.1 1.1

15 0.0 0.0 0.0

16 0.0 0.0 0.0

17 0.0 0.0 1.3

18 0.9 0.9 2.3

19 0.5 0.8 0.8

20 0.0 0.0 3.0

21 2.1 2.1 6.7

22 2.3 2.3 4.9

23 5.1 5.1 5.7

24 4.9 4.9 5.7

25 0.6 0.6 1.3

Average 2.1 2.1 3.0

Table 5.26: Percentage Cost Improverneilts with Bound Improvement Procedure



• 5.3 Summary

•

•

The analysis outlined in the first section of this chapter indicates that the coordi

nated approach gives better cost performance as compared to the uncoordinated

approach. A general trend observed was a reduction in costs at Plant A and an

increase in the costs at Plant B. The cost decrease at Plant A was larger than the

cost increase at Plant Band hence the superior performance of the coordinated

mode!. The analysis of inventory and setup behaviour at the two plants indicates

that the coordinated model recommends a larger number of setups as compared

to the uncoordinated mode!. A range of cost improvements were observed for dif

ferent levels of experimental factors. Two factors Le., capacity utilization at the

two plants and the setup to processing time ratio werc observcd to be significant.

The second section of this chapter focused on the relative performance

of Lagrangian relaxation versus Lagrangian decomposition. Our results demon

strate the superiority of Lagrangian decomposition in terms of both lower gaps

between the upper and lower bounds and better values of feasible solutions. A LP

based Bound Improvement Procedure was presented which serves as a meaningful

indicator for terminating the subgradient optimization procedure and also yie!ds

superior feasible solutions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

At the outset we observe that coordination as a philosophy has been wide!y ad

vocated in the operations management literature. As discussed in Chapter 1, the

main reason for the widespread support for this approach is that it helps to inte

grate the sub-units of the organization by providing an optimal direction for the

firm as a whole on severa! critica! issues (see Table Lion page 9). Unfortunately,

there are very few success stories to study or emulate on the coordination front

and hence there is no empirical evidence relating to actua! implementation in the

industry. This study represents a step in that direction as it successfully illustrates

the use of ana!ytical tools to bring out the cost benefits of coordination.

A multi-plant coordination model which captures the interaction between

plants and explicitly incorporates setup times was proposed for a two-plant firm.

Using a reallife production system at IBM as the motivating examp!e, the objec

tive of this research was ta compare the relative performance of the coordinated

model and the uncoordinated modeJ. which ignores the interaction between the

plants. The model bridges an important gap in the literature, for this problem
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has not been addressed until now. Our model is realistic in terms of the cost

structure as it considers the important aspects of inventory holding costs and

overtime costs. Since the problem was computationally intractable in its original

form, several equivalent formulations were proposed and competing relaxa.tions

were discussed to solve the problem. Efficient solution techniques based on La

grangian relaxation and Lagrangian decomposition were implemented for solving

the mode!. The experimental design refiected the concern for realism and focuseù

on studying the elfect of several key parameters on coordination. The parameters

that were investigated were measures of demand variability, capacity utilization,

setupjprocessing time ratio, setup time variability, processing time variability and

holding cost variability. Variability in each case was represented by the coefficient

of variation of the parameter and hence the data used in the experimentation

was representative of an underlying distribution. Independent replications were

conducted for each set of parameter combination.

Our experimentation led to two general set of findings, one relating to cost

improvements and the other to the performance of the alternative methoùologies,

Lagrangian relaxation and Lagrangian decomposition.
1

In terms of the cost improvements, the coordinated model outperformeù

the uncoordinated approach in 62% of the problem instances, while for the other

problems the two approaches performed equally weI!. A general trend observed

in cases where the coordinated approach was better was that the costs decreased

for the upstream plant (A) while they increased for the downstream plant B. The

decrease at A were larger than the increase at B resulting in cost improvements.

There was also a tendency towards increased number of setups in the solution

of the coordinated mode!. A wide range of cost improvements were observed,

with the maximum improvement exceeding 11%. Using the average of the inde

pendent replications, the cost benefits were 1.42%. The improvement obtained

by averaging the maximum cost benefit for the independent replications of the

162



•

•

•

same parameters was 3.85%. We have estimated that for large companies like

Hewlett-Packard this could mean cost savings in excess of $ 17 million which is

approximately 2% to 3% of its net profits in the previous two years. We note

that these figures are conservative due to two distinct reasons. First, we have

demonstrated that cost benefits of coordination improve as the nuffiber of prod

ucts increase. Second, additional improvements could accrue by implementing the

Bound Improvement Procedure. The actual benefits of coordination in a reallife

scenario are therefole likely to be higher than those reported above. An important

contribution of this research is therefore to establish the use of coordination as a

strategy towards improving the firm's competitive position.

Statistical analysis established that the cost improvements obtained from

different parameter combinations (treatments) are not significantly different. Ben

efits of coordination will therefore accrue over a wide variety of values of parame

ters. Two factors out of the above i.e., capacity utilization and setup/processing

time ratio were found to be significant at ex = 0.02. The importance of coordi

nation is greater at medium ranges of capacity utilization since there is a greater

flexibility at the two plants to accommodate the other. Coordination also assumes

importance when setup/processing time ratio is high.

The above results relating to cost benefits of coordination have important

implications from the implementation point of view. Organizational changes need

to be initiated and new structures that support coordination need to be adopted

at the highest levels in the organization, if coordinated operations are to be suc

cessfully implemented. Appropriate incentive schemes, cross training of workers

and managers across different plants and exchange of information between plants

were identified as the important issues that need to address,~d in this regard.

In terms of the alternative met10dologies, Lagrangian decomposition pro

vided a superior performance, on the measure of the gap between the best known

feasible solution and the best known lower bound, for 84% instances. On the crite-
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rion of the average gap, maximum gap and the standard deviation, Lagrangian de

composition was consistently better than Lagrangian relaxation. The Lagrangian

decomposition was also superior to Lagrangian relaxation from the point of view of

generating better feasible solutions. While the superiority of Lagrangian decom

position has been established theoretical1y, our contribution is in demonstrating its

implementation for the multi-plant coordination problem. The underlying knap

sack sub-problems which were exposed as a result of implementing the Lagrangian

decomposition represent a unique method of solving this problem which has not

been reported before.

The LP based Bound Improvement Procedure strengthens our analyses

from two important viewpoints. 'First, it provides an upper bound on the optimal

value of the Lagrangian dual, thereby establishing its quality. This, as we have

earlier argued, could be used as a meaningful termination condition for subgradi

ent optimization. The second application of the Bound Improvement Procedure

that we have demonstrated in this dissertation is the generation of improved fca

sible solutions. This to our knowledge has not been reported in the literaturc and

represents another important contribution of this research.

In conclusion, this dissertation establishes the importance of coordination

in improving the performance of the firm and in strengthening its competitive

position. In addition, the methodological constructs proposed.

6.2 Future Directions

In I,his section we bring togethcr the insights accumulated from the modelling pro

cess and the computational experience to identify future research directions that

integrate the overall research framework for multi-plant coordination, outlined in

Chapter 2. In the current research, we have considered a two-plant model with

a single workcenter at each plant. A significant direction for future research is to
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consider a model with a more realistic production structure at each plant and also

the case with more than two plants. These two situations are depicted in Figures

6.1 and 6.2. We present the outline of a generic model which may be used to rep

resent both the above cases. We williater examine how the solution methodology

proposed in this dissertation can be used for solving the above mode!. Problem

CLdfuture represents the case with three plants depicted in Figure 6.2, but we will

demonstrate that this model is general enough to incorporate the situation with n

plants with N different workcenters at each plant (Figure 6.1). Ld in the subscript

of the problem name signifies that this is a formulation for using Lagrangian de

composition. We consider three plants A, Band C which successively add value

to products. The additional notation used is defined below.

Notation

index for processing at Plant A = 1, ... ,m

~ = index for processing at Plant B = m+l, '" ,m+n

index for processing at Plant C = m+n+1, ... ,m+n+q

t = index for time periods

p = index for plants

= l-LA , ••• ,T

= 1 Plant A

= 2 Plant B

= 3 Plant C

•

Constant manufacturing lead times of LA and LB are assumed for com

ponents to get from Plants A and B respectively to Plant C. Consequently, the

planning horizon is set from period 1 to T for Plant C, from period 1 - LB to

T - LB for Plant Band from period 1 - LA to T - LA for Plant A. A bill of

material index Uij is used in the coupling constraints between each pair of up

stream and downstream plants. This index represents the number of components

j, manufaetured at the upstream plant, which are required for each product i at

165



•

•

the downstream plant. Without 10SS of generality, Uij can have a value 1 for ail i

and j and this could represent two workcenters at the same plant. Our model can

therefore be generalized to the situation of n plants with N different workcenters

at eacb plant (Figure 6.1). The model is presented below.

Problem CLdiuture

Minimize CLdiuture =

Plante

m+n+q T T T

l: l: hi.lit +l: fat.zat +l:Vat.Oat
i=m+n+l t=l t=l t=l

PlantB

m+n T-LB T-LB T-LB

+ l: l: hi·lit + l: ht,Z2t + l: V2t· 0 2t
i=m+l t=l-LB t=l-Ls t=l-LB

PlantA,....
mT-LA T-LA T-LA

+l: l: h;.Iit + l: flt·Zlt + l: Vlt·Olt
1=1 t=l-LA t=l-LA t=l-LA

subject to

Vt = 1, ... ,T,

i=m+n+l, ... ,m+n+q
m+n

l: (s;.Y;; +b;.Xit) - O~t
i=m+l

< Capat Vt = 1, ... ,T

Vt=I, ... ,T,

(6.1 )

(6.2)

i = m +n +1, , m +n +q (6.3)

Oat S; OTat.zat Vt = 1, ,T, (6.4)

•
m+n

L (s;.Y;; +b;.Xit) - O~t
i=m+l

i=m+l, ... ,m+n

< Cap2t

i = m+ 1, ... ,m+n
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• 0 21 ::; OT21·Z2, Vt = 1 - LB,"" T - LB,(6.8)
m+n+q

~ Uij.Xi, = pBC Vt=l, ... T,jt-Ls
i=m+n+l

Vj = m+ 1, ... ,m+n (6.9)

li'_1 + XiI - Ii' - Pj/B = 0 Vt = 1 - LA,' .. ,T - LA,

i = 1, ... ,m (6.10)
m

~(8i'Y1. + bi.X:,) - 0;, ::; Caplt Vt = 1 - LA, ... ,T - LA (6.11)
i=l

Xi. < Milt.Yi, Vt = 1 - LA, ... ,T - LA,

i = 1, ... ,m (6.12)

Olt ::; OTlt·zlt Vt = 1 - LA, ... , T - LA(6.13)
m+n

E Ujk.Xjl-LB = pAB Vt = 1, ... T,k = 1, ... ,m(6.14)kI-LA
;=m+l

Xi. = X:I Vi,t (6.15)

Yi, - Yi; Vi, t (6.16)

• Op, = O~I Vp,t (6.17)

zph Yil E (0,1), Xit, Ii' ~ 0, lin = 0 Vt,i,p (6.18)

•

The cost terms in the objective function representing each of the plants

A, Band C are indicated above. These terms represent the total cost comprising

inventory holding, fixed overtime and variable overtime costs at each plant. COil

straints 6.1 to 6.4 represent the problem for Plant C, 6.5 to 6.9, the problem for

Plant Band 6.10 to 6.14, the problem for Plant A. The physical significance of

these constraints is identical to that explained in our earlier uncoordinatecl and

coordinated models and is not repeated here. Conotraints 6.9 represent the cou

pling constraints between the processes at Plant C and Plant B while constraints

6.14 couple Plants Band A. Constraints 6.15, 6.16, 6.17 represent respectively

copies of the production variable Xit, setup variable Yil and the overtime variable

Op, at each plant. In order to obtain tractable sub-problems, the variable copying

constraints are dualized and a penalty term is added to the objective function as
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explained below.

a. Dualize constraints (6.9) with dual variables 'Trjt and add the penalty function

·lrjt.(Pj~~LB - L~~:t:+! Uij.Xit ) for aU j = m+1, ... ,m+n and t = 1, ... ,1'

to the objective function.

b. Dualize constraints (6.14) with dual variables Çkt and add the penalty function

Çkt.(pJ~LA - Li}'::+! Ujk.Xjt-LB) for aU k = 1, ... ,m and t = 1, ... ,1' to the

objective function.

c. Dualize constraints (6.15) with dual variables Pit and add a penalty function

Pit(Xft - Xit) for aU i, t to the objective function

d. Dualize constraints (6.16) with dual variables 'Yit and add a penalty funetion

'Yit(li; - Yit) for aU i, t to the objective function

e. Dualize constraints (6.17) with dual variables Spt and add a penalty function

Spt(O~t - Opt) for aU p, t = 1, ... ,1' to the objective fUIlction

Separating subsets of constraints, the Lagrangian problem decomposes inta three

independent problems for each plant which ~an be solved in a manner identical

to that explained in Chapter 4.

Decomposed Problems for CLdfuture

Problem CLdfuturel

Minimize CCLdJuturel =
m+n+q T m+n+q T m+n+q T m+n m+n+q T

2: 2: hi.1it- 2: 2:pit .xit - 2: 2: 2: 'Trkt.Uik.Xit- 2: l::'Yit.Yit
i=m+n+l t=l i=m+n+l t=l i=m+n+l t=l k=m+l i=m+n+l t=l

subject to

Vt=l, ... ,T,

•
i = m + n + 1, ... , m + n + q

Vt = 1, ... ,T,

i = m+n+ 1, ... ,m+n+q
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Problem CLd,fu,u,e2

Minimize CCLd/u'u,e2 =

T T T

L: V3•.0 3' +L: f3,·Z3' - L: 83•.0 3•
1=1 1=1 t=1

subject ta

Vt = 1, ... ,T

•

Problem CLd/ u,ure3

Minimize CCLd/u.ure3 =

m+n+q T m+n+q T T

L: L:Pil.X !, + L: L: "Yi,.1·i; +L:83t.0;,
i=m+n+l t=1 i=m+n+l t=1 t=1

subject to

m+n+q

L: (Si.Y;; +bi.X!,) - O;t < Cap3'
i=m+n+l

0;, ::; OT3,

X!t < M i3•.Y;;

Vt = 1, ... ,T

Vt = 1, ... ,T

Vt = 1, ... ,T,

•

i = m+n+ 1, ... ,m+n+q

Problem BLd/uturel

Minimize CBLd/uturel =
m+n T-Ls m+n T-Ls m+n T-Ls m+a T-Ls

L: L: hi.Iit - L: L: Pit.XiI+ L: L: 1rit.Pi~C - 2: L: "Yit.Yit
i=m+l t=l-Ls Î=m+l t=l-Ls i=m+l t=l-Ls Î=m+l t=l-Ls

m+n T-Ls m

L: L: L: ek"Uik.XiI
i=m+l t=l-LB k=l

subject ta
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i=m+l, ... ,m+n

,
2: PBG >kt'

t'==l- Ls

Problem BLdfuture2

Minimize CBLdfultire2 =

i=m+l, ... ,m+n
m+n+q t+Ls

2: 2: Uik.dit'
i=m+n+1 t'=1

k = m +1, ... , m +n

•
T-LB T-LB T-LB

2: V2t.0 2t + 2: f2t· Z2t - 2: é2t .Q2t
t=l-Ls t=l-Ls t=l-Ls

subject to

Problem BLdfuture3

Minimize CBLdfuture3 =

m+n T-Ls m+n T-Ls T-Ls

2: 2: Pit.Xit + 2: 2: lit'Y;; + 2: é2t.0~t
i=m+l t=l-Ls i=m+l t=l-LD t=l-LB

subject to

i =m+l, ... ,m+n•

m+n

2: (Si'Y;; +bi .Xit) - O;t ::; Cn P2t
i=m+l

0 21 ::; 0'1'21

Xi, < Mm.Y;;

'Vt = 1- LB, ..• ,T- LB

'Vt = 1- LB, ..• ,T - LB,
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• Problem ALdluturel

Minimize CALdluturel =

mT-LA mT-LA mT-LA mT-LA

l: l: hi·Iit - l: l: Pit.Xit +l: l: Çit. Pi1
B

- l: l: 'Yit.Yit
.=1 t=l-LA .=1 t=l-LA i~l t=l-LA i=1 t=l-LA

subject to

i = 1, ... ,m

•
t

l: Pj1? ~
t'=l-LA

Problem ALcifuture2

Minimize C ALdluturc2 =

i =1, ... ,m
m+n t+LA -LB m+n+q t+LA

l: l: Ukj. l: l: Uik.dit l

k=m+l t'=l-LB i=m+n+l t'=1

Vt = 1 - LA, . .. , T - LA,

j= 1, ... ,m

T-L... T-L... T-L...

l: Vlt.Olt + l: flt.Zlt - l: Olt·Olt
t=l-L... t=l-L... t=l-L...

subject to

•
Problem ALcifuturc3

Minimize CALcifuturc3 =
m T-L... m T-L... T-L...

l: l: Pit.Xit +l: l: 7it.Y;; + l: Olt.O~t
i=1 t=l-LA i=1 t=l-LA t=l-LA
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• subject to

m

:L(s;.Y;; +bi.X;t) - O~t < Gaptt
i:::;l

Ott ::; OTtt

X;t < Mitt.Y;;

Vt = 1 - LA, .. . ,T - LA

Vt=I-LA ,· •• ,T-LA

•

•

i = 1, ... ,m

It is evident from above that the Lagrangian decomposition methodology

as described in Chapter 4, can be used to solve the above sub-problems. We thus

demonstrate the application of Lagrangian decomposition to the most general form

of the multi-plant coordination problem, i.e., n plants with N different workcenters

at each plant.

Some other directions emerging from this dissertation can be summarized as fol

lows:

• The results obtained here need to be confirmed by reallife case studies l'rom

the industry. The insights from this experience will he useful in strengthening the

proposed research framework. This is an important direction for future research.

• Reducing the gap between the upper and lower bounds could make use of

other methodologies than subgradient optimization. It has heen suggested (see

Guignard and Kim, 1987) that the dual ascent method may he more efficient in

cases where a large number of dual multipliers are involved. The suitability of the

dual ascent method for optimizing the Lagrangian dual of this problem needs to

be studied. A promising methodological direction that must be explored further

is the use of interior point methods. See for example Goffin et al., 1992.

• The exploitation of V(G~u.') as a stopping criterioll for the solution of the

Lagrangian dual, and especial1y for generating improved solutions, needs to be

explored further.
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Appendix 1

Numerical Details for Sample Problem on page 105

The following numerical details relate to the sample problem discussed on page

105.

Modules at Plant B

Module 1 2 3

Unit Holding Cost 16.68 16.88 17.92

(in $)

Processing Time 1.54 1.49 1.47

(time units per module)
,

Setup Time 5.65 5.47 4.87

(time units per module)

Chips at Plant A

Chips 1 2 3 4
Unit Holding Cost 4.39 4.92 4.13 3.30

(in $)

Processing Time 1.33 1.50 1.66 1.34

(time units per chip)

Setup Time 5.20 5.77 5.03 4.77

(time units per chip)

Regular and Overtime Capacity

Plant A Plant B

Regular Capacity 558 219

(time units per period)

Overtime Capacity 140 55

(time units per period)
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Module Demand

Periods

Modules 1 2 3 4

1 15 27 6 2

2 8 57 128 100

3 36 1 152 152

Bill of Materials

Chips

Modules 1 2 3 4

1 1 0 0 0

2 0 1 2 0

3 0 1 1 1

The above problem was randomly generated for the case with high c.v.

of demand and high c.v. of holding cost, low c.v. for setup and processing times,

high setup/processing time ratio and high capacity utilization.
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Appendix 2

Processing Time Variability (page 115)

We demonstrate the effect that unstable product designs could have on

processing time variability as discussed on page 115. The choiœ of different pro

cessing time c.v.s in our experimental design was guided by an important charac

teristic of high-tech industries like computers and telecom equipment manufactur

ing etc. These industries are characterized by continuously changing product mix

and product designs over the product life cycle. Here we show that the presence

of even a few such products can considerably affect the c.v. of processing times.

The example presented here is motivated by our experience at the Fiberworld Di

vision of Northern Telecom, Montreal (see Bhatnagar et al., 1993). We consider

9 representative products out of the set of products manufaetured at the above

plant. The actual process relates to the mounting of components on printed circuit

boards (PCBs). Typically this process is automated and is carried out by "pick

and place" surface mount machines. However when a new product is not fully

integrated into the manufacturing system or the PCB design is unstable, man

ual modification work may be necessary for these specific products. We consider

three different scenarios representing different levels of product design stability

as depicted below. Scenario 1 represents the situation when the product designs

for ail products are stable and therefore most of the products take similar times

on a critical workcenter. Scenario 2 is the case where two products require extra

manual work and hence bave considerably higher processing times than the rest of

the products. Scenario 3 is the converse of scenario 2, with two products requiring

significantly lower processing times than the other products. The processing times

of different products and the resulting c.v.s of processing times are shown below.
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Product Scenario 1 Scenario 2 Scenario 3

1 7 7 7

2 8 8 8

3 7 7 7

4 8 8 8

5 9 9 9

6 5 5 5

7 8 8 8

8 6 20 0

9 9 30 0

Average Processing Times 7.4 11.3 5.8

s.d. of Processing Times 1.25 8.2 3.5

c.v. of Processing Times 0.16 0.73 0.60

c.v. = coefficient of variation

s.d. = standard deviation

It is evident from the above that the current product life cycle stage of each

product could have a substantial impact on the c.v. of processing times. In

addition, the c.v. may vary over time, e.g., each of the scenarios l, 2 and 3 could

be true of the same firm at different points in time. Consideration of different

processing time c.v.s therefore makes our experimental design more valid in terms

of its content.



• Appendix 3

Analysis of Variance for Cost Improvement

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 887.71 192 4.62

caputil 40.72 1 40.72 8.81 .003

Cvdem .10 1 .10 .02 .882

Cvhcost 9.80 1 9.80 2.12 .147

Cvproc 4.03 1 4.03 .87 .352

Cvset 2.19 1 2.19 .47 .492

Spratio 28.56 1 28.56 6.18 .014

Caputil by cvdem 10.85 1 10.85 2.35 .127

Caputil by cvhcost 4.54 1 4.54 .98 .323

• Caputil by cvproc 7.53 1 7.53 1.63 .203

Caputil by cvset .65 1 .65 .14 .7,08

Caputil by spratio .71 1 .71 .15 .695

Cvdem by cvhcost 7.60 1 7.60 1.64 .201

Cvdem by cvproc 11.35 1 11.35 2.45 .119

Cvdem by cvset .87 1 .87 .19 .665

Cvdem by spratio 1.64 1 1.64 .36 .552

Cvhcost by cvproc 10.68 1 10.68 2.31 .130

Cvhcost by cvset 1.22 1 1.22 .26 .608

Cvhcost by spratio .37 1 .37 .08 .778

Cvproc by cvset .94 1 .94 .20 .653

Cvproc by spratio 1.20 1 1.20 .26 .612

Cvset by spratio .07 1 .07 .01 .905

• Table 6.1: Analysis of Variance for Cost Improvement



• Source of Variation SS DF MS F Sig of F

Caputil by cvdem .69 1 .69 .15 .699

by cvhcost

caputil by cvdem 1.43 1 1.43 .31 .579

by cvproc

caputil by cvdem .03 1 .03 .01 .933

by cvset

caputil by cvdem 27.63 1 27.63 5.98 .015

by spratio

caputil by cvhcost .69 1 .69 .15 .699

by cvproc

caputil by cvhcost .52 1 .52 .11 .739

• by cvset

caputil by cvhcost 5.09 1 5.09 LlO .295

by spratio

caputil by cvproc .00 1 .00 .00 .979

by cvset

caputil by cvproc 14.77 1 14.77 3.20 .075

by spratio

caputil by cvset 1.91 1 1.91 Al .521

by spratio

cvdem by cvhcost .22 1 .22 .05 .828

by cvproc

cvdem by cvhcost .28 1 .28 .06 .805

by cvset

Table: 6.1 Analyais of Variance for Coat Improvement (continued)

•



• Source of Variation SS DF MS F Sig of F

cvdem by cvhcost .01 1 .01 .00 .961

by spratio

cvdem by cvproc by 1.67 1 1.67 .36 .548

Cvset

cvdem by cvproc by .01 1 .01 .00 .965

Spratio

cvdem by cvset by .00 1 .00 .00 .975

Spratio

cvhcost by cvproc .59 1 .59 .13 .721

by cvset

cvhcost by cvproc .11 1 .11 .02 .878

• by spratio

cvhcost by cvset .32 1 .32 .07 .792

byspratio

cvproc by cvset by .18 1 .18 .04 .846

Spratio

caputil by cvdem 6.73 1 6.73 1.46 .229

by cvhcost by cvproc

caputil by cvdem .01 1 .01 .00 .956

by cvhcost by cvset

caputil by cvdem 4.76 1 4.76 1.03 .312

by cvhcost by spratio

caputil by cvdem .89 1 .89 .19 .661

by cvproc by cvset

Table: 6.1 Analysis of Variance for Cost Improvement (continued)

•



• Source of Variation SS DF MS F Sig of F

caputil by cvdem 4.70 1 4.70 1.02 .314

by cvproc by spratio

caputil by cvdem .07 1 .07 .02 .901

by cvset by spratio

caputil by cvhcost .13 1 .13 .03 .869

by cvproc by cvset

caputil by cvhcost .18 1 .18 .04 .846

by cvproc by spratio

caputil by cvhcost .31 1 .31 .07 .796

by cvset by spratio

caputil by cvproc .35 1 .35 .08 .783

• by cvset by spratio

cvdem by cvhcost .00 1 .00 .00 .975

by cvproc by cvset

cvdem by cvhcost .89 1 .89 .19 .661

by cvproc by spratio

cvdem by cvhcost 1.14 1 1.14 .25 .620

by cvset by spratio

cvdem by cvproc by .02 1 .02 .00 .951

Cvset by spratio

cvhcost by cvproc 2.66 1 2.66 .58 .449

by cvset by spratio

caputil by cvdem .19 1 .19 .04 .841

by cvhcost by cvproc

by cvset

• Table: 6.1 Analysis of Variance for Cost Improvement (continued)



•
Source of Variation SS DF MS F Sig of F

caputil by cvdem .75 1 .75 .16 .687

by cvhcost by cvpcoc

by spratio

caputil by cvdem .78 1 .78 .17 .682

by cvhcost by cvset

by spratio

caputil by cvdem .75 1 .75 .16 .687

by cvproc by cvset

by spratio

caputil by cvhcost .24 1 .24 .05 .819

• by cvproc by cvset

by spratio

cvdem by cvhcost .89 1 .89 .19 .661

by cvproc by cvset

by spratio

caputil by cvdem .89 1 .89 .19 .661

by cvhcost by cvproc

by cvset by spratio

(Model) 229.12 63 3.64 .79 .866

(Total) 1116.82 255 4.38

R-Squared = .205

Table: 6.1 Analysis of Variance for Cost Improvement (continued)

•




