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. Abstract - .

A view of type in programming languages is proposed A language, M, is designed primarily
as a means to illustrate shis view : A

M's type system uses simple type fundamentals and a few, ort,hogon!ally apphed
combining forms to provide extens\{bllity Following the principle of type-completeness
([Demers & Donahue 80a]), all identifiers have a type (including type identifiers) and all
values are first class citizens of the language Both parameterization' of types and
parameters of any type (including those of type TYPE) are permitted ®

An adjective syntax 1s introduced to provide a (ype a()étractzorz facility in W];l(‘h a
type 1s clearly viewed as an algebra (1.e, as a set of operations) Type compatibility 1s
defined in terms of algebraic compatibility. A generalized type hierarchy becomes possible
in which a single entity, though belonging to one specific type, may also belong to many
abstract types. Polymorphism is provided by allowing routines to be parameterized by such
abstract types -

. ' ® .
The proposed type system pérmits type flexibility while maintaining strict type

security
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Une vue-du fype dans les langages de programmation est propésé’é" Un.langage, M, est
congu afln d’illustrer cette vue - '

V
3

L.e systgme de type de M utilise des regles de base et quelques formes de, combinaison
qui peuvcnt.é‘cre appliquées orthogonalement pour rcm\lr'e le langage extensible Selon le
principe de fype-completeness ([Demers & Donahuc 80a]). tous les identificateurs ont un
type (méme les identificateurs de type} et toutes des valeurs sont des ciloyens de premiere
classe du langage Le paramétrisation de type et des parametres de tous types (incluant les
parameatres de type TYPE) sont permis
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Une syntare pour les adjectifs est introduite pour permettre 'abstraction de type, un
type est considéré comme un algebre (comme un ensemble d’opérations) Deux types sont

compatibles s1 leurs algébres‘ sont compatibles Une hxérarchﬂie générahsée pour les types ’

devient possible, olt une entité appartient 4 un seul type.mals peut aussi appartenir i
plusieurs types abstraits. Le langage permet le polymorplhisme en permettant d’utibiser les
types abstraits pour paramétriser des expressions.

A

Lre systeme de type proposé est sécuritaire mais flexible
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Introduction - .

[

1.1 Problem, Goal, and Focus ° N ‘
o > '

Computers are a revolutionizing force. They perform not only a wide variety of tasks that
we do not want to do ourselves, but also thoge that we carinot do ourselves. They perform
repetitive and mundane tasks as well as tasks.that can be described as intelligent 1n some
sense- pattern matching, theorem proving, qurrmg L_

What makes these machines so flexible js their ability to be prografimed by software:
an algormthm is designed to model a given situation or to solve a certain problem, this

’ algbribhm 1s expressed 1n a programming language to create a program the program may be

acted upon by a machine to produce the appropriate results General purpose programming
languages can express a large number of such a.lgonthms ‘

.,

—_—

The development of this software, however, 15 proving to be a bottleneck Rather
than being a labour-saving activity, it is° labour intensive While "hardware prices are
Hecreasmg, software is proving to Be“more and_more’ costly Relea.smg this bottleneck has

been the object of current research < ey . : ‘ 4

+
v

If we are to exploit the adva,ntages‘ of computer technalogy Lhrough software, we

~ must build and manage soltware systems eflectively In "addressing the problem the Umted

St,ar,es Department of Defence notes ([STARS 83]' p 60) b

.

“The goal 13 to improve software productivity, wh)le achlevmg
greater system rehiabihity and adaptability ”

v

Productivity is an obvieus goa]. Rehability improves the correctness and robustness' of the )

product Adaptability ensures both that the so‘ftware"ls reusable, thereby avoiding
uninecessary duplication of effort, and that a particular system 1s maintainable or modifiable
LY !

throughout 1ts evolution ' > . ' . —_— S i
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To satisfly this goal, research has focused on prof'idiﬁg effective progra\mming
environments conducive to the development and maintenance of software systems. At the
heart of the environment is the programming language; it is the primary tool used for

describing our models, a.lgorighms, and solutions., * ' - .

&

- a

. 4 . .

) Linguists beTleve that the structure of language defines the boundaries of thought.
The use of a particular programring language, then, though it might nét prevent one from
thinking certain thoughts, ‘may facilitate or impede certain modes of thought; 1t may.
influence, the class of soluti(;ns onhe 1s hke]y‘r}o see. The language should aid us in solving
problems and in extending the class of problems that we 'can olve Many researchers;
therefore, have focused on the programming language as a means out of the tar-pit ([Brooks
75]) © Any step forward 1n the programihing language arena is a'step closer to releasm'g; the.
software bottleneck < ’

1.2 Thesis Motivation .

¢

‘This thesis was motivated by the perception that current type. systems were both'mﬁexible '
and composed of an unorthogonal applicabtion of concelpts An attempt is madé to isolate

.the, constructs imherent 1n other {ype systems and, lgy re-combining them orthogonally, to |
derive a smaller set of require“d ~primitives. Some of the inflexible qualities of exXisting

languages cap be attributed to a ‘limiting concept, of* type and we can enhance thé_
expressiveness of programming languages by viewing types more abstractly: Such an

. enhancement can be achieved without sacrificing the semantic security afforded.by the type

system. ’ ) . *, s e

« gt
\

I3

'

"1.3 Thesis Outline
, .

In Chapter 2, the concepts inherent in current type systems are nvestigated. Specially
noted are the abstractive facilities provided. The uses and demands programmers make of
such systems are examined . .
Chapter 3 defines the type fundamentals of M The principle of type-completeness is
discussed. The use of this principle ensures that all identiflers in M have a type (including
‘type identifiers), that all values are first class citizens of the language, and that
patameterization 1s unmiversally applicable. Parameterization of types and parameters of any

type (including those of type TYPE) are permitted. ’
a m -
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Chapter 4 discusses the concept of type abstraction in M. A {ype is viewed as an
slgebra (i.e., as a set of operations). An abstract type encompasses all specific types which ) .
share a common (sub)algebra. This view of type abstracmon supports a generalized type
+ hierarchy in which a single entity, though belonging to one specmc type, may alsé belong to
many abstract types. A polymorphic routine in M, then, is defined as a routine that is
parameterized by such an abstract type ’
1

Chapter 5 reviews the entire thesls and suggests directiong for future research.

.
9

1 .4' Language Sources

“

The languages referred to throughout this thesis are taken to be defined by the following
documents: Adal, [Ada 83]; Algol 68, [Algolss 76); Alphard, [Alpha,rd 81]; CLU, [Liskov et
al. 79]; Buclid, [Lampson et al. 77); FORTRAN, [FORTRAN 68); L; [Cormmack 81a), LISP,
[LISP 62]; Pascal, [Jensen & Wirth 78); Red, [Red 77); Russell, [Demers & Donahue 79];
SIMULA, [Birtwistle et al 74); Smalltalk, [Goldberg & Robson 83]; Tartan, [Shaw et al. 78],
~ *In the absence of an explicit reference, these sources should be assumed Other documents
are referenced explicitly. e :

M v @ - w n
o - . . s \ H

¥ Ada i3 a registered trademark of the U.S. Government, Ada Joint Program Office.

1) : |
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CHAPTER 2
Overview of Type Systems

2.1 Introductioﬂ

A type system allows programmers to define the types of entities in their world, to define an
algebra on these types, and to enforce the algebra strictly ‘The next sections develop ‘these
concepts morée fully by discussing the state of type systems as embodied in current
languages and by pointing out the evolution of such systems over time. Type information is
shown to serve the dual purposes of abstraction and reliability both of which impact the
program development process ) -

2.2 Classification . <

By nature, humans are tool makers and tool users. Qne of their greatest tools is the ability
to abstract Abstraction—“the process of separating qualities or attributes from the
ihdividual objects to which they belong”*—takes many forms. One, termed classification, is
particularly relevant to the concept of type.

A cless is “a number of objects, facts, or events grouped together as having common
properties; a-set; category; kind™*; a’'fype is “a class, kind, or group sharing one or more
characteristics; category”*. ) ‘

To classify—"to arrange or put in a class or classes on the basis of resemblances or
differenices”*-one has to name the things in common. Simply collecting things in a set is
fairly unimportant since it 18 the properties defined on the set that give the elements some
relation; only In an extremely abstract mathematical sense are they related at all (i.e., being

members of the same set). For instance, one has very llttle feel for the relation among
elements of the set

X = { clothes iron, Sam, encyclopedia, wedge }

’

* Funk & Wagmalls Standard College Dictionary. ' :

N s
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until a property such as

V xe X, x can prop open a door

& +

is given.

In programming language parlance, the values of a type are isomorphic to the
elements of a set. The fact that an element f belongs to a set T implies that “f is of type
.T”. It is membership within a certain set that gives any value its type.

. Imtially, types were thought of simply as sets of values. [Morris 73b] pointed out
that a type was better thought of as this set of values plus the set of operations allowed on
the set It 1s the set of operations, in fact, that provides a real interpretation of the
elements. Any operation (e.g., procedure or function) defined having a parameter or result
of type T contributes to the properties of the type T, it extends the concept of what it
means to belong to the type T. The set of properties defined on a type 1s, by definition, the
algebra for that type.

Early languages defined types that, in most cases, reflected the behaviour of the
underlying machine. The notion of type in these languages was not extensible. All
programs had to be wfitten using these types whether the types were appropriate to the
problem at hand or“not. Modern languages include a capability to extend types by allowing
simple programmer-defined types and by supplying combining forms to generate compound
types. Tybpical examples of these combining forms are the constructors array, record, and
pointer which can be used to construct both hormogeneous and heterogeneous compound
types

Reiterating, types are useful precisely because of their abstractive ability During
program development, objects with distinct properties can be clearly distmguished&
Knowledge about common properties can be collected in one place and named, the type
name then refers to these properties Such factorization alds mamtamnability and
readability Enforcing the distinction between types improves reliabil‘my

°

2.3 Type Enforcement

Most assembly languages provide an operator “+” for fixed-point addition, but do not
require that 1ts operands be, in fact, flxed-point values. Any argument supplied to this
operation is simply -blessed as being a fixed-point operand. Wild errors can easily appear
within a program. Worse yet, subtle errors can 'appear This blessedness is due to the fact
that most values share the same representation; the type of a particular value is

t
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indistinguishable at:run-time.

Ensuring that the type of an argument passed to a routihe is compatible Vitﬁ the
type expected is_called type-checking. The degree of type checking inherent iy a type
system ranges from weak (little or no checking) to strong (total assurance of type
compatibiity). The point in time that this type-checking takes place can be either static

(checked prior to execution) or dynamic (checked at run-time)

‘

Early type systems provided type-checking for built-in operations only, though user-
defined subroutines extended the functional capability of the language, no checking was
done across these boundaries With the growing recognition that relability was at lqast as
important as the more traditional goals of efficiency and writability came a desire for
stronger type-checking. The type system 1s one of the first lines of attack against unreliable
programs in that 1t strengthens the semantic checking The growing breadth of type
syst;:mg has occurred in an effort to enlarge the class of errors that can be detected by the
compiler. \

+

%y

In principle, a mathematicdl function may be gpriied only to values that are i 1its
domain of arguments. [Tennent 81} terms the application of an operation to a value that 15
not in 1ts domain of arguments a domain incompatibility He cites the examples.of dividing
by zero, adding truth values+sggating a character, and reading from an empty file as being
typical of domain incompatlmies The main objective of typeA checking 1s to determine
whether a domain mcompaﬁbility can occur,

L Tennent’s view 1s derived from 't:he fact that ultimately the program must be run on a
machine tHat knows nothing about types The expression j(:r) entails checking that the
type of z1s compatible with the type expected by f If the only definition of f were one that
required an 1integer parameter, t’.hen{\f(f) 5} would be 1illegal since a real number Is not
allowed as a parameter to f. Alternatively, one may view type-checking as a check for the
existence of a certain algebra. Under this view, the expression f{z) entails checking that a
function f exists for the type€ of z Here, f(3 5) is 1llegal since -no function f exists that
accepts a real parameter. The focus changes somewhat ‘Though the two approaches seem
equivale:}t,, only therecond view suﬂ‘lées 1n the presence of overloaded function names

1

N

Static type checking 1s often preferred to dynamic type checking First, type checks
before execution are generally more “efficient than type checks durtng exccution ‘The
application of a function to a particular argument may oceur several times during execution
yet need only be type-checked once Second, being able to catch minor programming errors
before execution simphfies program debugging and testing Detecting them at this time
allows one to deal with the error when something can be done about it Third, dynamic
checks require that the type of a value be inherent in the representation of a value Static

| (
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C s cheekihg.dpes not denfand that one carry around this information during execution.
: : 4, . ’
gL e « - Dynamic clécking, however, allows the sysl;em to be extremely flexible. The typeof a
. /{V\A\n lexical entity i1s a run-time property andeati differ LTOgS, vdqferent‘ execyclo‘;ls The
validity of applying a certain operation to this entity, and mdeed the meaning of the
operation itself, is then dependent upon the type of the entity at that pownt in time The
‘ compiler does not bind the type information before such mforma.mm_l 1s avallable

*
Even in statically type-checked systems,“ though, checks during execution are

someci'mes required {Buckle 77] notes that when checking a program for correctness, it is

- ' often necessary to assoclate iivariant properties with specific variables and to prove that
the behaviour of these variables 1s compatible with their respective properties When such a
proof happens to be difficult or 1mpossible to establish, tests are sometimes included in the
program to check at run-time that the properties are indeed verified.

A subtype is a property of an instance of a type and serves to restrict this instance to
™ asubset of the total values aliowed for the given type. The’Ada declaration

' \
x: INTEGER range 1. 10; s

P restricts the variable z to a certain subrange of the integers Buckle's concept of a
¢ restricted data type allows more complex constraints to be defined, the restriction is to a

more general concept of subset, not simply a subrange.
A

: ‘ In most languages, since static determination of whether an Instance 15 properly
i constrained at all times s difficult, subtype checking 1s deferred until run-time. In some
mnstances the constraints can be guaranteed at compile-time .

g Type enforcement is not always complete Languages. often provide loopholes
, whether madvertently or not FORTRAN's EQUIVALENCE, for example, and Pascal's
variant records both permit circumvention of strict type security Some programmers
perceive a need for loopholes 'This need caﬁ be attributed to the existence of a type system

that 1s foo restrictive, often due to a poor concept of type compatibility. Pascal’s concept of
equivalence between array types, for instance, falls into this category .
¢
', A

The reliabihty and safety provided by error detection through mechanization of type
checking 1s an important aspect of a programmed system More and more, programmers
feel the need for strong type checking but without a corresponding loss m abstractive
ability. ’
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2.4 Type Compatibility

If type checking 1s to be done, one must have a concept of type equivalence or type
compatibility Two common approaches are termed name equivalence _and structural
equivalence ) : '

Structural equivalence generally assumes that two types are equivalent if they are the
same primitive type or if they both arise from the same type génerator (1e, Both are
records or both are arrays) and the types of their components are equivalent Algol 68
additionally specifies that the names of the selectors of two structured modes would also
have to be equivalent A type identifler, then, simply serves as an abbreviation for a
representation One well-known weakness of such a scheme 1s that two types may
unintentionally be equivalent It 15 not clear that such impersonation ([Morris 73a}) 1s all

that frequent but supplying an abstract data type1 can, explicitly pre\;ent such misuse

Name equivalence considers two entities to be of the same type il they are declared
using the same (perhaps anonymous) type name This approach does eliminate any
unintentional equivalence but, unfortunately, also severely restricts the abstract notion of a
type Strictly enforced, all formal parameters would have td have a named type

A third, ‘more abstract approach 1s termed funclional or behavioural equivalence and
is based more on the c4ompatib1!it,y of an actual parameter with a corresponding formal
parameter than the cquz:valcnce of types per se A formal type simply characterizes a set of
objects that share some behavioural properties An actual parameter will be compatible
with this formal type if it is an instance of this set This ~amproach resembles structural
equivalence.

* -4

Most current languages implement a hybrid of name and structural equivalence. It s
the contention of this thesis that a blend of the behavioural approach with abstract data
types provides a better concept of compatibility by allowing type abstractions to be
expressed while enforcing chsr,mct types wheére necessary

]

2.6 Type Hierarchies

[Carbonell 81] points out that the type hierarchies which abound in the flelds of artificial
intelligence, databases, and programming laﬁguageslall share a central inference mechanism-
inheritance of information. Inheritance implies that properties of a type are transmitted to

1 gee Section 2 6 for a discussion of abstract data types.

i emme—— o ' ?



all instances of that type "I‘his inheritance can be achieved in a downward, upward, or
lateral fashion

Grouping hke entities together 1s achieved through data typing 1n most languages and
through classes 1n Smalltalk Classes describe the properties of all instances of that cigss
The properties of a smalltalk class are defined by an internal state, by 1ts recognized
messages, and by the internal methods required for responding to those messages

.

A class may be modified to create another class  This new subc~lass mmherits
everything about its superclass, the class beimng modified Such a modification may extend
the internal state, the recognized messages, and the internal methods . The sqbclass refines
the 1dea of 1ts superclass In fact, all objects in the Smalltalk world are refinements of the
most abstract class named Object and mhent nformation from - this Object class A
subclass 19 allowed to redeflne a method described by one of its superclasses 1n order to tune

_the method s

Smalltalk’s world 1s based on the abstraction technique termed. speciafization.
SIMULA embodies the same technique through its preflx classes

Ada's derwved types show a lateral inheritance. The Ada declaration
type X is new Y,

implies that Y inherits all the properties of X (literals, aggregates, attributes, built-in and
user-defilned subprograms) but 1s a different type altogether Vanables of the two types are
not assignalile, for nstance, though values of the two tyI;es may be converted from one type
to the other by built-in conversion routines.

Parameterized types, as found in Alphard, also define a hierarchical structure since
the parameterized type is a generalization of each of its type instances For example, “hist|x
TYPE]” is a gg;rbgra,liz'ation of “list[Integer]” and “Iist(Complex]” Such a facility
approximates the capabilities of a Smalltalk class; the parameterized type 1s akm to a
superclass

Zilles ([Types 81]) notes that a definition of type is not necessarily depengienc upon
the set of values buq rather the existence of certain operations on thosle values The 1dea of
a sortable type simply implies that an ordering relation is deflned for vdlues of the type;
integers, reals, and characters would be partitions of this type. The type hierarchy is built
bottom-up by a process of generalization rather than specialization

s o e e e e M e wL. T naN Wi GRS ], (Sher
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Another simple bottom-up technique is often p?‘ovided with union types or the rc[ated

idea of a varmnt‘record. The unton type is defined by enumerating its constituent types,

2.6 Abstract Data Types

a

With the emergence of the belief that data was at least as 1mp6rtant as algorithms, an °

object-oriented view of the world and the related concept of data abstraktion came 1nto
being W

[Parnas 79] developed sgveral principles to guide the decomposition of a program 1nto
modules One, his principle of mformation hiding, states that there should be one module
for each difficult design decision in the program The results of each decision should be
hidden in a module, if this decision were later changed, only that -module would need to be
modified )

a »

One common design decision 18 the data gt.ructure representation In a well-
modularized program there will be one module for each data structure Any manipulation
of the data structure must then be done through the procedures provided by the module
because the representation of the data structure is hidden in the module Users of the
module are required to use abstract operations on the data structure, since the
representation is hidden, no concrete operations are known A module that provides a set
of abstract operations on a data structure 1s termed an abstract data type; this approach
corresponds to the vision of a type as a set of data values together with a set of operations
on those values One can tune the internals of an abstract data type without affecting users
of the type Program development is improved by encapsulating the scope of change
Several languages encorporate the idea of abstract data types explicitly.

;

CLU’s clusters deflne abstract data types. A cluster implements a new data ty;Se
consisting of a set of objects and a set of primitive operations. Within the cofuster, a
concrete representation is chosen for the objects of the type. Only routines defined within
the cluster may access this representation directly. Alphard provides a similar technique
with its forms.

.

One pl_‘oblem associated with the cluster approach, however, is noted by [Schwartz

78}

“Interesting operations will often have multiple parameters, and
often several of these parameters will *be logically compound
objects. The cluster mechanism cannot treat these parameters
symrr}etrically, but perforce regards one of them, call it z, as a

=

o
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principal parameter to which the operation belongs, while the
others are auxiliary .. This approach is not well suited to the
escription of operations which use multiple logically compound
iaramecers in relatively symmé’mc ways When one writes an
operation 1nvolving several equally important logically complex
parameters there 1S no unique, parameter-ty pe-determined, place 1n
which to put the code representing tfle operation Thus one

”

i important support of the cluster approach breaks down ” -

To overcome this sort of ﬁroblem, languages now supply other encapsulation methods
that do not directly deflre abstract data types but can be used to group logically related
items together Ada’s packages, Tartan's modules, and Red’s capsules all exemplhfy this
mechanism Visibility rules can hide internal components of such an encapsulation An
Algol 68 progra}nmer can stmulate an abstract data_type but the language cannot prevent

°

its misuse

- 3

Importantly, data abstraction mduces correctness into the language' the user cannot
ruin the mtegrity of an object if allowed access only through a (presumably coirect)
interface to the éncapsulabion . Reliability 1s enhanced

. \
i

Built-in types are truly abstract data types Allowing programmer deflmition of
abstract data types blurs the distinction between what 1s built-in and what is user-deflned
Conceptually, they are equivalent,

2,7 Summary

Programming can be reduced to three main activities. (1) classifying the various objects one
deals with into sets (types), (2) defining an algebra on these sets, and (3) using the algebra
to solve prc»b]ems.1 This view of programming points out the import of types' defining the
types and the related algebras is all that is involved The type system 1s the backbone of
the programming language.

., Type systems are not without their drawbacks. Statically typed languages in
particular seem to be too inflexible It is an mability to express the abstractions inherent in
one’s world that makes type systems appear too restrictive. Circumventing this mability
should be the goal of any new language. )

1 Actually, the second and third activities, though perceived differently, are one in the same, one
solves a problem by extending the algebra to include the solution.
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CHAPTER 3
Type Fundamentals of M

+ + 3.1 Introduction

A language M has been created 1n order to study both the primitive and abstract co}lcepts
of type and with the primary motivation of gaining type flexibility. In/ the design of M,
static typing was regarded as a positive force 1n the program development process but
restrictions inherent in the type system of many current languages were recognized M was
intended to be made fiexible by allowing type abstraction while maintaining static type
security ) .

The facilities inherent in a type system were discussed in Chapter 2‘ This chapter
discusses the fundamentals of the type system in M and shows how such [lacilities are
provided. In Chapter 4, a more abstract view of type is defined in order to increase the
expressiveness of the language

Before discussing the specifics of M, the principle of type-completeness is explained
Through the use of this principle, M can be defined using primitive constructs that are few
1 number but which provide a flexible and expressive language. .

.

3.2 Type-Completeness .
To design a languagqé with many changeable parts, it is necessary first to design a language
framework that specifies how the parts must béhave and how they may be composed The
idea of type-completeness is to require that this framework consist of a type structure which
specifies the legal use of names and a few, uniformly applicable composition rules, which
specify the types and meanings of composite expressions 1n terms of the types and meanings
of their components This idea 1s a fundamental tenet of M.

[Demers & Donahue 80a] argue that the idea of type—co‘mpleteness 15 of the utmost
importance in the design of programming languages. They define this 1dea as follows.

«

1. Each name, be it an identifler or an operator symbol, and each

o teats

-
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; ' expression in the language has a type; the type of any composite

expression is composed from the types of its components
- o0

2. For each type 1n the type §tru'cture ‘of the language, it 1s

possible to write an expression 1n the language having this type.

, 3. Any expression can be parameterizegd with respect to any free

name having any type in the expression to yield a function of an -

: » even more complex type This imphies that functions must be able «

to have parameters of any type and to produce results of any type

Type-completeness, then, is used to simplify language design by generalizing the

concepts of parameterization and declaration Lack of type-completeness forces the

* introduction of special mechanisms to handle cases where common combining forms would
suffice. The type structure of a language 1s the language's real framework.

. The focus of type-completeness changes the fundamental role of the language designer

* from one whose responsibility i1s to put together a large number of “features” to one who

.must devise a rich but small type structure and who 1s then forced to live within 1ts

constraints A type-complete language has a wider range of flexibihty than much larger

languages with many special features Both user and des-xgner are aided by the simplicity

f_ inherent in type-completeness the user has fewer concepts to master and the designer

knows that only a few combining forms will suflice thus lessening the concern about what

' should or should not be added to the language.

—

: 3.3 Flavour of M

M is a block-structured, type-complete, expression-oriented language v‘ery much 1 the spirit
e of Algol 68. Many of its design decisions can be traced to this language as well as to the
B
s languages Russell ([Demers & Donahue 79])! and L ([Cormack 81a))

Someone conversant in Algol 68 will be able to assimilate the basics of M easily since
the?overall styles are similar To a Pascal programmer, though the style 1s certainly
different, the types in M parallel those 1n Pascal This section gives a quick feel for the
language M before discussing types in depth. Two mmportant concepts are noted’ the lexical
structure of M is unique and is _discussed first, the difference between the creation and the
naming of entities, being separate concepts in M, i1s then made expheit

s

I gee also [Demers & Donahue 80a] and [Demers & Donahue 80b]
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8.8.1 Lezical Elements - / * ’
. ‘ ~

The character set'in M is divided as follows:

alphanumeric ":== letter | digit | underscore

letter  * = ‘a” | “b"| .. |“z”|“A”|“B"| ... | 2"

Jdigit =om | “1m| . | “o” ‘ ) ‘

underscore =" R N ' .

bracket = | )" [l [0 |00 [P T

o [ “ac” | > . \
. separator == ,
symbol == underscore | { any other prigtable character }

€

Yy

Each bracket and each separator-form a tokén. Tokens are also formed by a sequence of®

alphanumeric characters or by a sequence of symbol characters, the tokens so formed are

_ termed identifiers. Note that the underscore is both an qlp‘hanumeiic and symbol character. :

Each of the following is a legal identifier.

&y : ,
The first four are sequences of alphanumeric characters; the last two are” sequences of
symbol charatters.

et

foo 237 2nd if_then_else_ i _+ == s

, ’ '

At a lexical level, where Pascal distinguishes among dentiflers, numbers, and
operators, M makes no such distinction Nevertheless, an M token may be- semantically
treated as an identifier, numBer, or operator by declaring it to beone of these.

]
- . ‘

The underscore is included as both an alphanumeric and a symbol character and.

plays a special role in M by allowing an extensible syntax Extensible syntax 15 discussed in
more detail in Section 3.4.4. . o '

| 8.82 Program Structure ' ‘ L

L

The following grammar rules a,pply.l‘2

15

, T The entire (synthesized) grammar can be found in Appendix A. T

2 The notation x y dénotes a (non-empty) list of x's separated by y's. ] oo
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T A program 1S smply a list of expressnons Very ot‘ten initial expressmns n such a list

are declara.mons All expressnons have a type and, like Algol 68 all yield .a (posmbly void)
° £
value ‘ : )

»

3..4.3 Simple Values . ' S - : . )

‘ . | . N ’ . .'
The simplest type constructor in M is che enumeranon type and 1S, defined by the grammar . . °
rule:, ‘ ’ R . . 5 o

T . s Y ' * ‘ N
s en m?r e TY R ‘d u ”» " L]
“ umType - = *{ Yot ‘ .

. »
i

-The enumType exﬁressnon i1tself deflnes both a new type and ht,era,ls (.values) for thls type.
The expression T : o

H . »
i

, ’ {"false, trie } o . : oo . ‘ :

.

depxcts the common notioh of a boolean type It defines a new type vahje—a. new mstance of »

the t.ype TYPE; the expression 1s of type 'I‘YPE Both “false” and “brue .are Values of this R

type. The instances ‘of the typetTYPE can ba determined by locating all type expressions in
a program; i.e, the_enumeration of-these instances is spread thro{lgh.,dut the program.

) ¢ )

r - A LOY
‘. ) \ °
§ 5 N f ' LI
it

. . 5 -

8.8.4 Declarations and Qualified Ezpressions » - ' : —

7

P

N [P} e +
\ v !

The following grammar rules are related to declarations:® - : - *

A declaration 1s an expression that associates a name with a value and yields a void result;
it makes the name a synonym for the value Asa means of redundancy, one must explicitly
: 0

- decl L=1d " qualiﬁedf;}xpr . T,
AL . . L .
» qualfledExpr = {ypeEXpr “=" expr o ‘ . )

. 4 3
. v L -
‘ ) . N P
\ N .
n

» ¥
H f .
A
' - »

1 Italics imply a semantic constraint; not™a syntactic one.
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state the type of the value (In the grammar description, both tds and names are identifiérs;
td is the deflning instance of an éntity; a name is a use of an entity defined by ‘the
1 )
corresponding id.) s - 1

A declpration itself creates no new, entity, it simply provides another name fer an

existing entity The binding of the name to the value is known throughout the scope of t_he
declaration A scope is a syntactic form in which namesg may be defined and over which the
use of a name has meaning. i -

1y 5
o
]

To name the boolean type mentioned previously, the following daclaration would be
appropriate: . . )

e

Boolean TYPE == { false, true }

Each entity in M may be de‘noted by its name or, more fully, by both its name and
its type (a quahﬁedEipr). Both “false” and “Boolean = false” ‘idem}ify the firsy literal of the
type Boolean defined above Since a single name may be used to denote many separate
entities, a {ype == name palr may sometimes be the only way to d:stmgumh among the

named entities For instance, given t‘,he followmg definition, «
0 TernaryBoolean . TYPE = { false, mayhe, true } A
3 i 1\

By

.ma,ybe” is uniquely defined as a “Terna,ryBoblean” but “false” may denote either
“TernaryBoolean == false” or “Boo@ean = false” in a given context Usmg 8 smgle name .,
like this to denote separate entities 15 termed overloading and 1s dealt w1th in more detail in..
Section 3 8 ®

. . . _
The following sections develop the concept of type- within M more t‘ully The,

discussion deals with the functional and non-functional aspects of the language separately

3.4 Functional Type Features : SR e

Type expressions exist in M which parallel the enumeration, record and array, types"of
Pascal. Such expressions deﬁne new type values-values of type TYPE. Most.-typk
expressions are usually fou d in declaratlons since chey must be hamed to be used furl:her"
the declaration

. V. ° L)

’ X . TYPE = ..,

typifles most type declarations. The ellipsis here must be replaced by. one of, the various

v
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type expfessions to be described shortly.

X

Ideally, a type expression would be as genera.i as any other expression gl .th'e language.

In order to maintain static typing:; however, some restrictions are pecessari. "These b
* restrictions are described in Section 3.7. T e T . \
g
9.4.1 Simple Types . , . . . .. !

Scalar types are the primitives of any_type system; they have no sgbcobmponents. Early

languages, * designed if response to the requirement for scientific and engineer,ihg-

applications, supply scalar numeric types such as INTEGERs and REALs Later, when the {
need to manipulate non-numeric datz’a{ was recognized, symbolic enumeratton types were o,
included. Thé enumeration ttype is a mechanism for constructing a type by enumerating all o

of its possible values, Each of the enumerated values is a literal of the type. ' !

v

Enumeration types are the only scalar types in M and form the simplest method of
classifying entities info sets. ’

s

enumType = “{" id "} ; .

Several familiar concepts may be modeled sxrﬁply: .

3

TraflicSignal - TYPE = { Red, Yellow, Green } ;

o,

" DaysOfWeek : TYPE = { Sun, Mon, Tues, Wed, Thu, Fri, Sat } ; £
Digit "TYPE=1{0,1,234,5,6,7,80}; . .
1' . Boolean : TYPB = { trae, false } ;. . . ’
CardSuit : TYPE = { Spades, Hearts, ;)iamonds, Clubs } ; .
-‘CardFace, ° TYPE = o

{ Ace, 2, 8,4, 5, 6,7, 8, 9, 10, Jack, Queen, ng\} ,

'
°

+ 'Fhe sets defined by enumeration types are disgoint. INo one value can bélong to two .
enumeration’ types. Two different values can, however, be denoted by the same identifler
The Digit “3” and the CardFace “3”, though two very different values, are denoted by the
same identifier. These two values can be uniquely identified by the qualified expressions
“Digit = 3” 4nd “CardFace = 3".

~
.
[
.
1 P 0
N

.
.
:
gt
e A
N
e gt

,.
>
o
3
&~
L%

A4,
Toitan =

H
i
{
!
|
|
]



R

e, L

L PP & g e Ry W EY gy

o By BRI

i expr.  expr . . 4
, o pl pQ . @
e * ‘ w b . .

There are no bhuilt-in operations for scz;lar types. All must be explicitly defined. -If
one intends an enumeration type to be ordered, the ordering must be explicitly defined.
Supplying a built-in’ algebra is an attempt to guess At the operations inherent for a new
type and may add some convemenc& Nevertheless, this is not regarded as a funct,ion of a
‘type system; it* does not necessarlly add to t;he expressweness of the language dr the
, ﬂexxbllxt;y of the type system. ' )

B
o

v

The concept of a subtype is not fully discussed in this thesis since the motivating
- interest is thé cémpile-time' properties of t;}jpe.' Some notation is required though. The
expression ’ ’ R o ¥
o v ‘ ' . ¢ N I .
enum TypeName
. denotes the usual subrange notation. The subtype comprises the points “expr . and “expr)”
* and all other values of “enumTypeName” lymg between these two points Between-ness is
.defined’ by the. ‘bextual ordering of the lex1cal tokens used in deﬁnmg the original

enumeration type " The type expression . *

~ . R ‘“ ]

1
¥

Mon Frr e .

I~

L DaysOI'Week

depicts a subtype of the typ/e DaysOfWeek. Sy
cL . s % N W )
The type VOID, to be discussed in Sect.lon 352 is the only built-in enumeration
mype It behaves as if it had been deﬁned by the declaratxon : *
VOID TYPE = { void } ; ‘ ‘ .
* Some other enumera,tion types may be pre‘deﬂned in & standard library. Imégers and
reals may have to be-implicitly gleclared They will be treated a3 enumeration types in any

bl +

case. ' . .

E3

,8.4.2 Product Types N

o W

2 N [ =

In set theory, a Cartesian Pnoduct of two set,s 'S and T, denoted S x T, is the set of all
. ordered pairs (s,t) such that’ seS and teT. This concept of a product extends to. an

a.rbltra,ry number of diménsions so that, in general S X S e X Sn = the set of all n-
tuples (xl, p 0 X )such t.hab b'e eS x2652 e xnesn. % L
’&‘. - Ar N "‘: I - r
. . N hFd [ v .
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M embodies the concept of a Cartesian Product simply: s ’ f
productType = “[” id *:” formalTypeExpr “,” “]” . °
N - n : A
Examples of product types are’ - ) . -
o Complex . TYPE == [ real Real, imag : Real J , v
Card TYPE = [ suit : CardSuit, face. CardFace ] , oo

The first definition not only defines a 2-dimensiona:l space {(Real x Real) named
Complex but also denotes a simple algebra on this space "This algebra takes the place of
field selection in other languages. Implicitly defined is a function from the type Complex
onto Real named “real” which projects a pomnt in Complex space onto 1ts first axis
Similarly, “imag” is the prJojeccion onto the second axis' ’

s

~ / .l

Literals for produén types are expressed as a comma-separated list of literals which
correspond to the component types of the product. A literal for the type Cardface could be
“(Jack, Hearts)” (The parentheses, though not technically required, are often present in

order to parse properly; “ffack, Hearts” 1s acceptable )

Ar product type 1s not described by an enumeration of its values, i1ts values are
implicitly garnered from the underlymng constituent sets. Any list of enumerated values
must be simple 1n that they are 1-tuples or atomic. Scalars pérmit a 1-space; products
allow multi-space. ’

6

-

In several languages, elements of simple types are viewed as values buf elements of -
product types are viewed as ol;j'ects. They are lbot‘,h values to M Rather than an object
with several components manageable at Will, M treats an instance of a product type as a
single value but with some obvious properties Even scalars have properties (For instance,

1 is less than 2.) An implementation of the language may have to use ebjects to represent
values, but forcing a programmer to view the world 1n such a manner 1s enigmatic.

o 9

Note that there is no restriction on the constituent types of a product type.

’

8.4.8 Map, Types

If S and T are sets, thén any subset of S x T is termed a relation on S x T. If, in this
subset, each member of S appears exactly énce as the first component of an ordered pair
then the relation is termed a function. (The discussion of maps in this thesis is restricted to

¢

|
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‘functions only.) If (s,t) belongs to a function F, say, then t is'denoted by F[s| and F is said
to map s to t. The set S 18 termed the source; T is termed the target. -

“S — T denotes ﬁ'e set of all subsets of S x T which are t:unc(:ions. The cardinality- |

of this set, denoted [S — T}, is ITI’Sl A particular mmstance of the map could be denoted by
enumerating the constituent ordered pairs { (5,0 &) (5, B,)s - (S 6)) }-

A map, then, simply expresses a relationship between sets By way of example,
consider the two sets ~
Month = { Jan, Feb, ., Jun, ., Dec }, and :
Count == { 28, 29, 30, 31 }.

There are 4% different possible maps (functions) in Month — Count. One of these, the mac.f)

- { (Jan, 31),(Feb, 20), (Mar, 31), (Apr, 30), (May, 31), (Jun, 30);
(Jul, 31), (Aug, 31), (Sep, 30), (Oct, 31), (Nov, 30), (Dec, 31) }

specifies the number of days in each month of the year 1984 R

. 4

o

Maps occur frequently 1n programming. Some view an array, say “array (Integer
range 1..5) of Colour”, as a map from a set of subscripts, here Integer, into a set
corresponding to the array element type, here Colour. A program itself, even, may be
viewed as a map from an Input set into an Qutput set; the set of all (input, output) pairs
expresses precisely the meaning of the program. An enumeration of all vahd pairs is
genérally not feasible and other notations for a map must be found Instead, one may

provide an algorithm for calculating the output from a given mput This is the baSis or

computer programming and of problem solving in general.
In M, a map is defined via parameterization

TR Ta T

mapType = *[" formaITypeExpr[ s formalTypeExpr
T

»

Where a mathematician would specify a map as “Month — Count”, the alternative notation
“{ Month ] Count” 15 used in M; this notation should be familiir to Algol 68 programmers.
This map type comprises the 42 functions from Month .into Count




.

{ The syntax for a map literal follows i Ada’s footsteps and uses the notation Q

{513’”1' S, => by, ., 5, tn} . --

instead of the usual ordered pair enumeration.

-

The only operation allowed for a map is selection. The normal functional notation is
maintained though alternate syntactic forms, discussed 1n Section 3 4.4, are allowed

N ", The source or target of any map 15 unrestricted Higher-order functions are provided
by allowing the source or target to be a map type 1itself ,

M’s map may be conceptualized as an array, there is no requirement for an array type
constructor per se¢ A parameterized construct may be seen as creating an array of
constructs. a parameterized mmteger creates an array of integers, a parameterized procedure
creates an array of procedures, each one tuned to 1ts respective parameter. These entities
are constant arrays, though, like instances of product types, they are simply values, not )
objects wiph components. ’ \_/

3.4.4 Ezxpressions

-

x -

This section exemplifies the syntax of M expressions, shows the types of various expressions,
and exhibits the preferred style of M programs. The power of the various forms of
expression is made apparent,

Expressions iIn M are similar to expressions in most other ﬁrogrammmg languages -
They are built up from the scalar elements of the type sets in a type safe manner; the

. arguments to the maps are of the‘correct type Simple expressions are \ -
3 -- of type Digit i
true, 6 -- of type [| Boolean, Digit ]
_and_ -- of type [Boolean, Boolean] Boolean, say

More complex expressions are constructed by supplying arguments te a map and possibly
. using the result as the source to a further map.

T s

T

Selection from a map (termed a function call or array indexing in other languages)
may be expressed using the normal functional notation or dot notation For nstance, “fx]”
iIs equivalent to “x[”.  Other forms are also allowed since the underscore character serves a
special purpose in M by supporting an extensible syntax Underscores actually denote the

o e e = . T s S AN

\ : : ~ N
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expected form of selectlor; expression by indicating parameter positions. This allows a
natural form of expression The identifler “_+" denotes a map with two parameters, a call
will take the infix form “x -+ y” Similarly, “abs b
form, and “loop_until_pool™ a matchflx form ! Purther examples follow

”»

will take a prefix form, “_!" a postfix

*Form Expression Functional Equivalent
matchfix If false then 3 else 4 fi if_then_else_fi[false, 3, 4] .
prefix: NOT true NOT_[true] &
postfix’ X by
dot obj.fleld field ob}]
infix 3+(2+8) _*_[3, _+_[2,8]] '
functional.  SIN(z] *  SINjz] )

The use of synonym declarations 1s expected to be used} wisely and liberally. For
instance, even the “simple” expression |

- e
-t

oo .
. 2.0 * 3 1415926 % 100

might better be expressed by the following list of expressions (an exprList)

(P Real = 3 1415926,
. radius - Real = 10.0; }
diameter : Real = 2 0 x radius,

perimeter - Real = p1 * diameter,
perimeter .

P .}.’ ™

This mirrors the style of an Algol 68 closed clause. The compound expression is a better
documented, more understandable version of the intent to express the peruneter of a circle
with a radius of 10.0 units Both expressions are of type Real, the exprList takes its type
from the type of the final expression

5

The style of expression shown above uses synonym declarations to aid in
comprehension and maintainability and 1s the preferred style in M All lines other than the
last simply define names which are to denote values and subexpressions used within the

1 [Leclerc 84] has implemented such a scheme for the language L. While other languages implement
an extensible syntax by generating grammar rules on the fly, his scheme simply adds (scoped) lexical
keywords Also see [Goguen & Meseguer 83); they define a more general mizfiz notation.
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overall expression. These deflnitions aid in understanding but also allow names to be used
in all places where a common subexpression is found.

Aside: The term single asstgnment, often applied to this style of expression, 15
not indicative of the true semantics of the construct since ‘no variables or
assignments are involved. In M, the' style is supported solely with sygonym
declarations. Nevertheless, the style is expressive and easily understood. LISP
would b€ enhanced tremendously, while remaining pure, if it allowed definitions
of this sort

3.4.5 Map Ezpressions

Maps play an important role in programming la{)guages’ Pairwise enumeration of the
elements in maps is the simplest form of definition but this enumeration is tedious and,_ at
times, impossible Map literals, therefore, take two forms (1) pairwise enumeration, and (2)
parameterized expressions. The pairwise enumeration uses Ada-like pairing notation and is
used more often for maps with small domains. )

{1=1,2=23=04=1,5=26=>0}

M permits parameterization of ﬁny expression with the syntactic form allowed by the
grammar rules )

)

Wwon

parameterizedBxpr :=-“[" id “:” formalTypeBxpr L “]”expr ,
1

Therefore, the following three expressions denote the same map.

(1) [i.Integer ] (imod 3) -

(2) {1 = (1 mod3),2=>(2od3),.,6 6= (6mod3)}

3) {1=>1, 2=2 .., 6=>0 }
Most languages allow a form of parameterized expreésion but they usually restrict this
parameterization solely to procedures or functions.

The “perimeter” expression shown previously was specific for a circle of radius 10.0

units It could be made more general through the use of parameterization The M
expression would be.

' , 3-12
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[ radius: Real ]

( pi . Real = 3.1415926;
diameter Real = 20 * radius,
perimeter ' Real = p1 * diameter;
perimeter -

)

This expression describes the perimeter for- a circle of any size Due to 1its infinitude, 1t
could not possibly be expressed as a list of “radius = perimeter” pairs The type of this
expression 1s garnered fromi the types of the forma.i paMers and the type of the
parameterized expression. Here, the type would be “[Real] Real” The names of the formal
parameters and any subtype information is immaterial to the type

A typical map declaration might be

_nor_ - [Boolean, Boolean] Boolean =

where the elhpix,s must be replaced by an expression whose type is “[Boolean, Boolean|]
Boolean”. Such an expression will either be a map aggregate (which 1s quite possible in this
case) or by a parameterized expression such as

(I- Boolean, r: Boolean] (not (l or 1))

: <

The full declaration would t;hep be

_nor_ [Boolean, Boolean] Boolean =
{1 Boolean, r. Boolean] ( not (1 orr) ),

»

yet this form 1s verbose. The following version is allowed in its place.

nor_ : [I' Boolean, r: Boolean] Boolean = [ .] (not (1 or 1)),

The parameter names on the left-hand side of the qualifiedExpr do not reflect on the type
but may add some semantic intent. The “[..]” syntax on the right-hand side of “=~
inherits the parameter list from the left-hand side.

3-13
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8.4.6 Discriminated Union Types
v -
If S and T are sets, then the union of S and T, denoted S QT is the set of all elements in S
or T (or both) Programming languages often include a similfr-concept M’s syntax 1s

unionType 2:= typeName “U”
i i Ml

Since’ the values for each type are disjoint, the programming language union 1s termed
a discrimnated union:''an element m the discriminated union of S and T can be traced to
exactly one of these component sets. A discriminated union is partitioned into its .
component sets. This data structuring technique closely parallelsy the conditional or case

control structure of standard languages.

Discriminated uniox%s have been used to supply polymorphism-the ability to describe
routines which are applicable across types—and to provide a variant record facility. Their
necessity is lessened by a more abstract view of type in M  Nevertheless, they are
particularly useful as a basis for recursive data stryctures The following example illustrates

-such a t;ype:2

Operator * TYPE = { +, -, %, /- },

Expr TYPE = FORWARD;
. © BmaryExpr TYPE = [ left' Expr, op Operator, right: Expr [;
: Expr TYPE = Integer U BmaryExpr; .

X . Bxpr = (1, +, (2, %, 3)),
The infinitude of values denoted by the types BinaryEzpr and Ezpr is an implementation
problem but’not something about which the programmer need worry Importantly,

references or pointers are not required in order to express a recursive data structure

The only operation allowed on a discriminated union type is the deUnion operation
whose syntax is given by the follov)vmg rules:

unionExpr ;1= parameterizedExpr , “v”

deUnionExpr = 'l}nionExpr “[" expr “]"

L Discriminated union is the term used by [Hoare 72]. Algol 68 calls this a untted mode. CLU uses
the.term oneof

2 The keyword “FORWARD?” is intended to have the same semantics as Pascal’s Jorward

.
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Each parameterizedExpr must have a singlg parameter and this parameter must correspond
to one of the possible type alternatives in the unionType. The unionExpr must cover the
unionType 1n that for each alternative in the unionType there must be a corresponding
alternative 1n the unionExpr This operation mirrors the tagcase construct of CLU and the
conformuty clause of Algol 68. ’

“

For the unigonType “Expr” deflned above, the code

1

( [r Integer] ezpr! <7 {b: BinaryExpr] ezpr2 ) | x ]

expresses one particular deUnion expression Here, there are two alterpatives corresponding
to the possible type of z The alternative used will correspond to the actual type of =
during execution If this type 1s “Integer”, then the value ex;ﬁressed is

([i* Integer] exprl) [ x ] \ .

which 1s a normal selection expression .

3
3.6 Non-Functional Type Features g
Previous sections dealt with types in a functional world The world, however, does not
seem to be totally functional; a concept of state does exist Programming languages,
therefore, supply variables in an attempt to capture this state ’

The next sections discuss the primitives supplied by M for non-functional
p'rogramming. Variables 10 M capture state information while procedures permit execution
within a state. The operations which manipulate this state are intentionally more explicit
in M than in other Ianguages.' Importantly, both variables and procedures are brought into
the type structure of the language

8.5.1 Variables

[Hehner 82] notes that the concept of a reference is well understood outside the
programming arena. A fitle, say “Chairman”, may Be associated with a parti'cular person,
this title may be transferred to another person at some point in time. The title “Chairman”

'

never changes but r:a.ther the person to whom it refers. In this respect, the title (or name)
“Chairman” 1s a variable reference On the other hand, a person’s name is with them
forever; 6ne’s name cannot be transferred to refer to another. The name of each pérson is
not variable, it is 2 synonym for the actual person.
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A variable is somewhat like a reference-hence the Algol 68 term REF-in that 1t

relates a name with a value; i e., a name refers to a value At any given pomt in time, that
| . .

name refers to exactly one entity but is free to refer to other entities at different points in
time. ’ .

The concept of a variable in M 1s very much hke that of CLU-

“[CLUJ variables are names used 1n programs to ‘denote’ particular

_ob,]ecbs at execution time. Unhke variables 1n many common
programming languages, which are containers for values, CLU
variables are simply names that the programmer uses to refer to
objects As such, it is possible for two variables to denote {or
'share’) the same object CLU variables are much like those in
LISP, and are similar to pointer variables in other languages ”

Unlike M, however,

/ “

CLU variables are ‘not’ objects; they cannot be denoted by
other variablps or referred to by objects Thus, variables declared
within one routine cannot be accessed or modifled by any other
routine " ~

In M, variables are allowed to be grouped together and manipulated as a group? they c\(m be
denoted by other variables, they can be referred to by objects M's variables subsume the
concept of pointers }nherenn in many.languages In short, a variable can be treated like any
other value in the language since variables are typed-variables are encorporated into the
type schéme For example, a type “VAR Integer” exists An entipy of this type is a hiteral
of the type-“VAR Integer”, it may refer only to an Integer, it may be referred to by a “VAR
YAR Integer” -

Pl
+~

,

Two operations are bull‘t in for variables The first, the normal assignment operator
“:=="_is an infix operator taking a variable on the left-hand side and a value on” the right
The second, the postfix ope.rator “~” (called the deVAR opera-tor), when applied to a
variable, yields the current referent of the variable. These operators, though built-in, look

very much like!

»
)

1 The expression “P_ROC VOID” is explained in the next section.

S -
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_: [ VAR Integer, Integer | PROC VOID =
.~ = [ VAR Integer | Integer = .. o

3

They work handg- in-hand When a varnable 1s assigned to bhrbugh the assignment operator
all deVAR operamons will yleld the value found on the rlghb of the assxgnment, operator
until such time as a new assignment is made : ‘ )

.
o

»

The individual elements of the type “VAR Integer” are not enumqré,tqd in the normal
sense since their enumeralion 1s spread across several declarations © Fhe expression “new
VAR Integer” creates a new integer variable and the varnable so created may be nam‘ed by
t.he normal declaration rules This declaration, strictly spea\mg, would have to take on Lhe
following form:

£
v

X : VAR Intéger = new VAR Integer; .

: '
-~ v .
'

The syntax is relaxed somewhat for this case by replacing the qualifiedExpr simply by the
type of the variable itself and allowing an additional initialization phrase. The code’

3

W
-

x VAR Integer == new VAR Integer, . T
X = 5!

niay also be expressed as

x : VAR Integer := 5!

This sdgarsng is allowed only for variable declarations Note that, unlike Algol 68 which

drops a “REF” from a variable declaration in a similar sugared ‘form, M does not drop the
» A

“VAR". L .

T One important distinction between variables in Mdand variables in other language§ is
best illustrated by the following comparison. The code expressed below shows stmilar
dec}aramons of.an instance of a Complex type. '

e
.

1 The s~ operator is explained in the next section.
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L . Prod»uct TYPE = [ x: VAR Integer, y: VAR Real]]

£

'y ' '
Y - Pascal : ’ ) ﬁ .
. T)(PE Com,plex =z RECORD re: Real; im: Real END; . .
. » VAR x! ?omplex,} * \ . . -
 M: ) ’ . " . ¢ . R
*  Complex- TYPE,_.. ]I re: Real im: Real [; ' e .
. X VAR Complex, . . o
N . r

If ' Pascal, “x”; x re”, and “x.im” are all variables. Ea.ch of these may be assigned
individually., In M howevei‘ ‘“x g == 3.5” ,would be 1llegal since “x".[” i$ not'a VAR, “x.f
. = 3.5” would be illegal since “f” Is not a ﬁcld of i'x” (but is a field of “x*™) The varnability
of a reference 15 restricted solely t,o that referencé and 1s not distributed to the referenced
components since tlus would treac variables as objects{rather than as references to values

-

Nevertheless, if variable components are required such a type can be described. Note
the following variation on the previous <Complex type ’

o ’ - -
" By o

- Complex: TYPE = | re.aVA‘R Real, im" VAR Real [; : .
x: Complex =*..; . ; ’

; o I . . . . .
-"%x re”"” and “x.lm”' are now legal
' l’ ' o ’

r AN 1
The lnitlallza.t.xon of “x" was purposely avonded here Agatn the separa,mon of crea,t;xon from
declaration creates a certain syntactic verbosxty in the declaramon of a: compound entity

- with varjable components. Strictly spea:king, given the types

s
a

)\.rra.y TYPE = [Integer ] VAR Integer;
"tl‘le following declarations would Ke necessary. C

p: Product = (new VAR Integer, new VAR Real)
a: Array ‘= {0=>new VAR Integer, ., 6=>new VAR Integer}

¢
Where an instance is declared for a composite t&pe’ whose components are ll variables, the
shortened declardtion “id . typeExpr” 1s allowed in plaée of the full; the “new VAR ...”
expressions are made imphclt. _The previous declarations can be shortened to

4

. 4 '
k' . .
1
. . h .
D: eroduct, o, <
% ’ v .
. . . '
t a: Array; ' v A ¢
.y 1 . .
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A product type declaration is also allowed to have an initialization clause for 1ts variable
L] - .

components. This initialization will occur for the corresﬁmﬂing components yh.e.n,_-an

instance is defined. For example, given the type declaration o

Prodiict Type = [ x* VAR Integer := 1!, y: VAR Real ;== 10!];

\

w

the declaration . ‘ ’ S L AR
pl Product = (new VAR Integer ;== 1t, newq VAR Real 1 0Y; | : _ B
: ) s .1 .‘ -~
may be replaced by the declaration ) C .
pl: Product; : : oL L e

Neo such mmahzamon Is allowed for a map type wwfx vanables Assxgnmenc r,o each
component must be on an individual basis, ie., “a[o] == 1 [1] :=91; .". (In the next.
chapter, it will be gshown how such an entity may be assigned to en: masse, i.e., “a = {O=:>

1,1=> 2, }"’ / oo P

8.52 Procedures ' . T

A procedure (PROC) 1s an expression syntactically enclosed between “<<”  and W
brackets. The brackets delay the elaboration of the contained expression until some later
point in blnf\l An exphclt use of the postfix dePROCIing operator “1” forces the execumon of
the PROC, i replaces the call mechanism of some current languages

" s
)

A procedure is intended to be executed within a state, the state being represented by

the current references of all varlables Execution of a procedure ylelds the value of the .

contained expression, this value is usually depefident upon the state It-may be, thougk,
that ‘only the state 15 to be affected, that no value is expressecf by the elaboration of the’

procefiure. Here, as in Algol 68, M allows an expression to return ‘a VOID result

-
h

Two examples of procedures follow:

(1) « 3> ' T S ! Co T
(22 < y. Integer = x"* * 2; write[y}! > " b R

« -

" Here, the ﬂrst example and the Integer expression “g" are very similar Exec ixfg this~

PROC a.lways yields the Integer “3”. PROCSs are only mt.erest;mg when there ar va,rlables

v
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present. The second example will output the value “x" * 2”; dxact.ly wha,t this value is will
depend upon the state of “x” at the time the procedure is execut.ed*

ok
It is important that the distinction between procedures in M and procedures in other

languages be made clear.' Most common languaged provide a procedure construct in order
- to '
- (a) narme an expression/statement,
. (b) parameterize an expression/staterpent, ‘
(¢) create a scope for local definitions, and
(d) defer binding of variables to values. e
In M, these features are independent. In particular, on€ can parameterize a procedure in
,order to achieve the procedure_conceptsw of other languages but this is not the real intent of
PROCs. Simply, they are to delay execution (i.e., binding of variables to values) until a
'later more specific time. M’s dePROCing operator 1s made explicit to assure that the
programmer has the correct time frame in mind. .

The effect of a procedure, as illustrated by the next example, should be noted
carefully .

- z : VAR String ‘= “abc ",
- “&&” cencatenates two Strings

T'wice: Str‘i}lg =(z" && 2" °);
" - The value of Twice is known now.

Double: PROC String = << 2" && 2" >
S— - -- The value of Double is also know now but the value LT
-~ Double! will depend upon when Double is dePROCed. '

... Twice ... - value-is “abc abe ”;
.. Double! ... -- value is “abc abe ”; ’ .

v

1 In general, though no means of exLe$ing ‘operator precedence has currently béen defined, postfix

operators are assumed to have the Htghes‘f’f)recedence followed by preflx, rollowed by infix. Inflx and

-post.ﬂx are left~associative; prefix is right-associative. The built-in postﬁx opemt,or “1” is given special
" status and has the lowest precedence of all. The expression “x := x"!" {5 parsed as “(X = (x '))"’

o
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t z = xyz ’;, - 5
. Twice == Value is “abc abe ”; W .
. Double!\.'.. -- value is “Xyz Xyz ”; : o

S

}

~ . A ) \ M ‘<
The following procedure declaration shows how an exprList can yield a PROC result.

random : PROC Real = ' Y o .,
: ( seed : VAR Real = 0.2753168!; '

< seed = {[x]"seed” > " /

); \ -
,\ A}
.

« s .

-

-

’

' e

The example also serves to illustrate the notion of stor'age in M. “Seed” will exist wheh the
declaration of-“random” is elaborated and will be initialized at that time. This initialization
is independent of any call to “random” The value permsts between separate mvocatnons
This simulates the i1dea of an own vanable The waibxhty of “seed" is both defined by and
restricted to the exprList itself. +

\ i .

, . . - N
3.6 Parameterization -

~
¢ .

Previous sections have dealt with parameterization’by discussing maps. ‘The expansion of

thé paramét.erlization subject matter ﬁe_re signifies its import in programming. . ‘L
In M, a reliance on the concept of ‘type-completeness' ensures that pararri'et,eriz'al;ion
gnd selection are universally applicable: aAny name can be a parameter, a parameter can be
of a.nyht,ype and an argument can be consﬁructed that can be bound to ‘any parameter.
Since parameterization is the fundamental tool 1n ahy programmmg language for Drov1dmg
changeable parts in a program, 1t 15 important not to .place any constraints on the forms or

parameters and arguments If we want to use the same program for many dlﬁ"erent values

,.of z, we can do so by making x a pa.ramexer' Type-completeness guarantees that this can

always be done no matter how z happens to be used in the m‘ogram e

(A
N .

Since M has brought ‘variables,,_brocadures, maps, and types into its tyﬁe structure, it
is important to discuss, their relat,ggnsirip_ to'parameterization. During this discussion, some .
seemingly Qatdral programming concepts are shown to be unorthogonal. Somé of the
subt}etigs !inherent, in the language are made explicit here.

. © 4
' '
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3.6.1 Types

- B

In many languages, one often needs to create separate routines in order to process objects of
different types even when the algorithms are idemtical. This increases complexity while
degrading the clarity, modifiability, and reliability of the entire system. M does not suffer®

this degradation. , !

’ -
~

The definition of type-completeness implies that 1if we can give a ndme to a type, thén
we must be able to make that name a parameter. Type declarations exist in most
languages yet type parameters do not. Newer languages, such as CLU, Alphard, and Ada,
have attempted to remedy this omission but they do not approach type parameters {rom a
type-completeness viewpoint Thése languages yiew type parameters as a compile-time
feature, this Bemg especially obvious in Ada’s generic types. The concept of parameterized
types should not be a special construct i the language but should come about naturally by
using type-completeness as a design decision In M, type parameters are not grafted onto
the language as an afterthought.

-
s

Some languages provide built-in parameterized types. Pascal, for mstance% }Enows of
the concept of array and allows a programmer to deflne arrays with aly componpent type,
Sets and flles are also parameterized. The syntax, though, hides this parameterization, type
paralpete'rs. are identifiers preceded by the symbol of. [Steensgaard-Madsen 81] noted this
technique and used it to provide pa.rametérized types

. ’

Other languages providé parameterized types explicitiy Alphard, for instance, CLU
. with its parameterized clusters, and Mary ([Holager 78]) with its statically parameterized
modes [Tennent 77] describes a Pascal-like language with class parameters and
parameterized classes 'Ada, Red, and Tartan simulate parameterized types via a generic
facility. (In tﬁeir favour, it must be noted that this restriction was forced by the Steelman
([DoD 78]) requirements.) SIMULA’s class hierarchy provides an equivalent facility.
Euclid’'s parameterized types are somewhat limited and serve to provide variant records;
they cannot be parameterized by types. :

No new construct is needed to implement parameterized types since parameterization
is universdlly applicable in M. The following examples illustrate both type parameters and

parameterized types. . (

?
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Example: One-dimensional array type

1dimArray : [size: Integer, component: TYPE] TYPE = [..] ’ .
([Im;eger1 Slze] VAR component); )

x. 1dimArray/| 10, Integer |;

v: 1dimArray| 20, 1dimArray|[ 5, Rea.ll ;

- L 4

Ezample: A “generic” hist type .

List- {t: TYPE] TYPE = FORWARD; ~ )
EmptyList. TYPE = { n},

NonEmptyList: [t- TYPE] TYPE == [. | [ car: t, cdr: List[t] [;

List: [t TYPE] TYPEA= [. ] ( EmptyList U NonEmptyList|t] );

IntList. TYPE == List{Integer],

~

This all said, however; It seems that type parameters normally only parameterize other
types; the syntax might very well be different. Normal values can parameterize types but
they simply serve to deflne, directly or indirectly, _restricted types (subnypes)._ Type

parameters will not normally be required for the usual parameterized entities, where the |

type of an entity is important, it can be garnered by other means . ?

Chapter 4 further-illustrates parameterized types.

3.6.2 Maps ) . v,

- [}

*

Most languages allow array parameters but not all of these allow function parameters. To
M, these are both maps (i.e., parameterized values) which, being declarable entities, must
also be able to be passed as parameters under the concept of type-completeness. A
functional programming style 15 well supported since higher-order functions can be defined
and can be passed. For example, the declaration

f —

integrate’ [func: [Real] Real, low: Real, high- Real] Real = ...

1}
takes a ru;rccion parameter over which integration will take place. . J;
] ) |

.
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8.6.8 Variables

Parameterizéd variables can simulate arfay objects and reference-returning functions. A
variable parameter simulates pass-by-reference parameter passing semantiés.
\ 2o

8.6.4 Procedures ‘ L

1
)

A PROC in M is normally used to affect or to query one’s environment and 'must be
explicitly dePROCed to be executed within this environment TakKing advantage of this

explicitness and of the type-completeness of M, one can define primitive control structures..

(Control structures are not built into the language itself.)
if‘_then__ﬂ ’ t N
[ cgndition: Boolean, block. PROC VOID | PROC VOID
({ true = block, false! => << void > } | condition );.

i

-

while_do_od :
[ condition PROC Boolean, block: PROC VOID | PROC VOID
if condition' then << block!, while condition do block od!>> 1,

—_—
——

.

if (x~ 55 128) then «< X = X" ** 2 > fi!

'
’

while <«<x™ 55 128> do «< X .= X" *x 2 > fi!

]
t

-
Though “if _then_fi” takes a simple boolean condition, the condition for “while_do_od” is a

'procedul;]_,—\’rhls emphasizes the distinction between the two control structures. The

“while” cgndition must be execute}d repeatedly over differing states in order to terminate.

P 1.

1

3.7 Static Typing Restrictions

¢

Though, ideally, types were to be first class citizens of M, some restrictions are necessary to '
ensure static typing. Specifically, a variable type is not allowed It is not statically obvious,
for instance, whether the following declaration of “z” 1s legal.

» X*VAR TYPE = Real!;

if condition then <<X := Integer>> fil;

.- z: X" =3}

=
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A dynamically typed language would allow the declaration of “2” and would determine its
legality at run-time,

-1

2 »

Since all types are established at compile time, all type expressions must be static
One of these type expressions may be a selection expression on a parameterizéd type; the
actual arguments 1n the selection must be compile-timeé knowable. In general, no type
expression may involve deVARing or dePROCmgJ either directly or indirectly.

3.8 Overloading ‘ A

»
'

t
Recent languages allow overloadinig-identifying many distinct entlties by the same name.

[Brender & Nassi 81] note that '

“

. (the overloading) facility contributes to both abstraction and

namespace management Abstraction is aided because the same

procedure name can be used for conceptually equivalent operations

on different types of data For example, SQRT can be used for the

square root operation for the various precisions of floating-pons

types Name management 1s alded because few'er names are

needed, and naming conventions can be simplified or avoided ” -
Overloajdmg enhances the ability to write understandable (1e, readable) programs, where
the semantic distinction between two entities Is minimal, so should be the syntactic
distinction (The typical aritthmetic operators are prime targets for overloading ) Forcing
different names for “conceptually equivalent operations” can be distracting, the prolhferation
of maz and min functions iIn FORTRAN 1s one such edxample

Overloading 1s ofter{ allowed for both subprogram identifiers and enumeration .llteralsl
but not for variables, constants, or types. To truly overload one another, two subprog;ams
must be distinguishable in some respect other than their name In Ada, this distinction 1s
based on the parameéter and result type profiles of the individual entities. In contrast, Algol
88 and Red look only at the parameter types. One entity hides another if they are not
disﬁinguishaléle by their profile Two subprograms declared in the same scope must have
dissimilar proflles

e

“

1t Ada, enumeration literals are actually treated as parameterless runct,'ions. 1

e T sy
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: When names are overloaded, some method of overload resolution fs required to
disambiguate or determine the entity intended While each entity 1s uniquely determined by
a type = name pair, always qualifying each name would be distracting Resolution
techniques, based on the visibility rules of the language and on' the type mnformation
associated with each visible, entity, ‘must infer the ty"pe of the entity from the):urroundmg

context.
Y

L

Each use of an overloaded identifier must be unambiguous In statically typed
languages, if an ambiguity does exist,. it must be detected at compile time Several
techniques exist for overload resolution in Ada. Arguments abound on the number of passes
of the parse tree required, the type of passes (bottom-up vs top-down), and effliciency In
time and storage for each resolution technique 1 BL1 allows some overload resolution to take
place at run-time though 1t takes only parameter types into account

Special ' rules sometimes help to enforce “conceptually equivalent operations”
Overloading of operators 1s allowed, but since they are generally parsed as preflx or inflx

. operations, any new definition must adhere to these parser-related restrictions In Ada, the

equa:ﬁty-operabor is allowed to be overloaded but to return only a Boolean type, the {
inequality operator may'non be overloaded and 1s always the negation of the corresponding
equality operator ‘ .

el )

Overloading is inherent 1n the generics of Red: all instantiations are implicit and the
name of the instantiation takes the name of the generic unit These 1ndividual
instantiations are “conceptually equivalent” Though individual mmstantiations in Ada are
not required to have the same name, common practice may be similar to Red’s policy

Due to the concept of literals in M, the usual sense of overloading lhiterals 15 made
somewhat more complex. Since all identifiers are literals for some type, all 1dentifiers
(including those which name variables) should be allowed to be overloaded Functions are
overloadable in many languages but arrays are not No such disparity exists in M since
they are' treated simx]@&l’y In fact, in M, there are no restrictions on what may be
overloaded °

One further point must be made. [Dijkstra 76, p. 06] states his preference for using
dot notation over functional notation In his view, arrayX.lowBound 1s better than
lowBound(arrayX) since

“unless we 1ntroduce different sets of names for these functions

- .

Lgee [Ada Raticnale 79], [Persch et al 80}, [Cormack 81b], [Baker 82]).
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defined on boolean arrays and integer arrays respectively (whicr{
would be awkward) we are forced to introduce functions of an
argument that may be of more than one type, something I would
~ hike to avoid as long as possible.”
This does not solve the problem of name resolution but rather treats it in an inverse
fashion The overloading still exists Furthermore, 1n M, the dif{erence 1S me}ely syntactic

3.9 Summary of Type Features

In M, a normal enumeration type defimtion mechanism 1s provided along‘wmh generators to
create product, union, and map types This shares a common ground with several
languages  Application of " the principle of type-completeness, though, allows types,
variables, and procedures in M to be typed, and also permits parameterization to be applied
orthogonally Parameterized types become natural, control structures need not be built-in;

expressions are more powerrul.

An 1mportant distinction 1s made between arrays, functions, and procedures in M bug
this distinction is not common to other languages Functions are ordinary maps, arrays are /
functions whose target 1s a variable type (1 e., a parameterized variable), procedures are not
maps at all though they are often parameterized .

Other factors should be noted Firgt, a clean split 1s made between the creafzon and
the /‘haming of entities' naming provides a synonym for an (already existing) entity Second,
the functional and non-functional 'aspeCts of M are _aﬁlsp split The non—funcmbnqi world 18
intentionally made more explicit Third, since all 1dentifiers have a type, overloading has
been generalized

This cl);adpter has laid the groundwork for a language whose type system, with fewer
primitives, surpasses the power of a language such as Pascal The next chapter builds on
this foundation and a more abstract view of type to support still greater expressiveness
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CHAPTER 4
Polymorphism

4.1 Introduct;ion

Parameterization allows one to widen an expression to cover many similar cases. We widen
the expression “1 * 27 to “[I' Integer] (1 * 2)” to describe not just the doubling of a
particular nteger value, but the doubling of any integer Parameterization imphes
generalization.

Most languages allow~one to generalize and to describe the set of values for which the
generalized expression holds In programming languages, this set of values 1s described via a
Jormal parameter list, the type of each formal parameter restricts the set of allowable actual
values If one’s view of type'ls narrow, then parameterization 1s less general By widening
one’s view of type, one can widen the parameterization thereby mcreasirig the
generalization

The next section discusses a view of types 1n current languages and points out how

this vnev& is particularly limiting Polymorphz‘s‘m1 1s then deflned- and a more general view of,

type 1s discussed Next, the type compatibility rules in M are stated; in essence, the actual
view of type in a language is defilned by such rules Finally, examples of polymorphic code

- are given

4.2 Tyi)e Restrictiveness-

Strong typing specifles that in any context 1n which an entity is used, the type of that enpity
must agree with the type expected In particular, the types of actual parameters must

- agree with the types of the corresponding formal parameters A narrow view of type

ensures a narrow role for parameterization !

1 See [Milner 78] for a theory of type polymorphism.

.
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One oft-quoted criticism of Pascal is apropos. Pascal's restrictive array type is a
result of two requirements

1 All types must be determinable at compile type
2 The dimensions are part of an array type

Since the dimensions of an array are part of its type, the dimensions of an actual array
parameter must agree with the dimensions 61“ the corresponding formal array parameter.
This, mn 1tself does not pose a problem Indeed, If one must make the dimensions of an
array part of the type, so be 1t, “an array of 10 Integers” ean be a type However, one
should then provide a mechanism to express “ah array of Integers” -(where the size 1s not
mportant) and “an array” (where the component type is not important etther)
Overspecification defeats the purpose of parameterization

In Pascal, however, such a type abstraction mechanism 1s not present. If one intends
to write a “sum” routine to sum an array, one must provide a separate instance of the
routine for each size array. = This, unfortunately, makes the language excessively
cumbersome for programs that perform similar mampulatxons‘on a large number of different
size arrays It i1s impossible to write a general array manipulation procedure in Pascal.
Standardization eflorts have made an attempt to solve this pharticular problem; several

Iy

dialects have applied “fixes” (See [Kidman 78] for various proposals )

Pascal haé Eeen criticized for 1ts lack of dynamic arrays but this 1s a symptom of a
more general problem that most languages méur the mnability to abstract the properties of
an entity 1n which one 1s mterested, the essential properties required should cdetermine the
type required The design of M has been motivated by the need-to express such type
abstractions One must be careful not to confuse this concept of type abstraction with the
more common notion of an abstract data type ’

We wish to be able t6 write routines that can handle many different types if, in fact,
these types have common properties. Though one may view “a list of Integers” as being
diﬂ‘erﬁom “a hst of Reals”, say, there are operations which can be performed on “lists”
themselves and upon which the types of the components have no bearmng A polymorphic
routine (polymorph meaning approximately “many forms”) 1s a routine that can operate on
an argument which can be one of “many types” .It can subsume many mstances of routines
coded for different types Usually these “many types” have a certain set of properties in

common and the polymorphic routine 1s allowed to use these properties in 1ts deflnitiomr—~

Expressing this set of properties is the focus of the subsequent sections n this chapter
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4.3 Generalized Hierarchy )

\
o

The diagram below depicts the (nearly) hierarchicaf nature of objects in a Vehicle _world.

Yehicle
landVehicle waterVehicle airVehicle
Cars ° Trucks Amphibians Sailboats Jets

Several impgprtant aspects must be mentioned The lowest level of this hierarchy comp?lses

the actual entities in the Vehicle world, the sets at this level are disjoint. The levels above

the bottom level denote abstractions i1n this world. Amphibians, being able to travel on
both land and water, belong to two of the abstractions expressed on the middle level.

These middlg level abstractions are not disjoint. The top level here comprises ali vehicles, 1t
is the most abstract entity in the Vehicle world

5

It is often convenlent to treat entities as belonging to one of these abstractions.

Theré may be a single process required to register a Vehicle, for instance, independent of the

actyal vehicle type. The action of bailing out a waterVehicle could be described without

referring specifically to reference to Amphibians or Sailboats

One cannot construct a landVehicle per se how does one assemble the parts of such

an entity? One can, however, construct a Car, Truck, or Amphibian and this entity, once
constructed, can be referred to as a landVehicle

v
1

’The Vehicle world diagrarhed above, even assuming that no other specific types of

vehicles really do exist, is by no means complete. Other abstractions can be inserted into

the hierarchy' motorizedVehicle, for example, or wheeledVehicle.

\_._‘
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Abstractioné, and -a related hierarchy; ar;z ‘Often described in a natural language by

nouns and adjectives.

A noun is “a word that is the na’rﬁe_ot‘ a subject of discoulrse";1 an

adjectivg:‘ is “a.word standing for the name of an attribute which being added to the name

of a thing describes the thing more fule and deflnitely

"2 In expressing a particular class

of entities, the preciseness of the descrlptlon (or- lack thereof) can be tailored by an

appropriate choice of noun and qualifying adjectives.

To expand on this concept, the following notation is introduced:

The following sets are i)osited:

Notice t.hat these sets have propertles in common. The set U
Bbc & A hierarchic rela.monsmp exists as deplcbed by the dmgram

' Ubﬁ ' .
A B

Other properties are also shared.

.
’

’

»

1 Webster's Dictionary
2 Oxford English Dictionary

denote specific sets of objects . .

. - . ’

"y

denote properties of objects . '

denotes a specific set “T” whose elements’ have the proxbertnes

“b’l and c" . .
IS i . ' N Y

3

3 R \ '
dendtes all elements in ‘the universe Wwith propertles “u” and

[

A4 ;ﬂ the set so formed encompasses all specific sets Wwhose
elements ha.ve)'opertles which 1nclude both “a” and “v”;

consequently; ~“U” denotes the umverSe of objects” and

comprises all specific sets

6 -
acd,e v ‘o

1

comprises both A ; R and

.

a

“ At y Y N [
M B A e .
¥ ] -
. . ‘ Al .
. w
Adding U, U & a.n'd U, the hierarchic relationship dan’
o
N N 'l \\’
. - : N
- . . *
k2 » - s > .
s i .
4-4 '

,_’-".5 A = 3
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be drawn as shown below Other abstract10n§ doexist (U, U even the empty Ub e) but are
noc drawn.” o, v Lo i ' . Y .
. . A
' a b LY S L

aq®
@

/] ~ " 3 . 1

YA sohd arrow “T_..__.U. impties t,hat the spemﬁc set T is contained in the ébsbract

“set U . A similar ‘relationship of contamment between abstratt sets is, deplct.ed by t,he
dashed arrow. ' A ' :

. v
N ' “
- i
& I

o
2
N I

@
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Just as n the rgal world objects are classified via i;heir propérmes mnto a{{gefje’ralized
’hierar'chical structure, so, may be the types in a type systern  While in ‘natural languages
ﬁroperties of an object, are deséiibeq via adjectives, 'In programmmg languages these
propertigs are deﬂned by the exrsﬁ’ence of a cértain algebra. This type abstraction facility

allows each entlty to‘belong to' many (abstract) types. Deylcted below 1s a portion of a’ type
world. v s .

as % w N
BOOlea‘nS,md or,not, = suce, preg, PP
4 o
- a Integers - '
: € +,-,%,/,<,=,suce,pred,
o~ L - 3 ; . . ,
. ‘ML S R B S L ) . ) ’
) N > < T i LA N . :

v

In this type world, the abscraction “U” would correspond to “any type” Agaih,nnot;ic:e that
the two type abstracbions here overlap: both comprlse t.he Intégers. T

N -

An 1mporta.nt dxstmctlon sbetween this generahzed ‘hierarchy and the type hierarchy

allowad by a language such as Smalltalk must bé noted, In Smalltalk, the hierarchy is built

-top—down. Each of its subclasses is'a refinement of a single superclass. These superclasses

(read “abstractions”) cannot overlap. The previously diagramed Vehicle world cannot truly

»

/,/

s
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{ . exist in Smalltalk since Amphibians cannot be an mstance Qf both a landVehicle and a
waterVehicle.

. » 3 - ©
! o .

Smallt:alks type hierarchy, built top-down through a process of spec‘zalzzatzon, is
structured as a tree FEach node in this tree must be named. A generalized h1erarchy, buift

" . bottom-up t;l’frough generalizafion, allows an expression to denote a node 'and permits
flexibility Any possible type abstraction can be expresséd An expl.‘essmn parameterlied by
such a type abstraction can be much more general Parameterized types m M though, do
provide a h1erarch1cal structure re%emblmg a cop-down structuring technique.: ,

[y

v s ‘
/ . ¢ . 2

4.4 Type Abstraction o . -
> Overloading and polymorphism are related, 1déas in M Overloading can bé'us;:d at the level *
of a specific type to state what /'rre conceptually equivalent operations™: these operations
define the common properties. Taking advantage of this knowledge, one’can then define a
type abstraction. A polymorphic. routine-onre with a parameter whosp .type 1s an
. -abstractlon—tl;en defines a “higher order ope}@tioﬁ” which 1s independent of any actual type.
P 0 - : ! 13 .

- [ "

An array of Integers 1s orderable precisely because its component type.s ordered and

e - the type Integer 1s ordered precisely because the relation “<<  [Integer, Integer] Boolean”
‘{ o exists. In fact, any type T, say, 1s ordered iIf bhe rela,t;lbn “< [T, T) Boolean” exists, any .
’ array of these T's would then be orderable ’ - L .

® —— 4 N s ]

» o
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- Such an ordered type abstraction would be mirrored by the expression

a

N 3

. " T | < * [T,"T] Boolean

MY ‘ 4

and is read “any type T such that ‘<< (T, T) %Boolqa.n’ exists”. {“?T” is termed a,;x'abqtr.act
identiﬂerl Integers and Reals would fall in this category; indeed many types are ordérable.
The use of such expressions, is restricted to formal parameter lists and their semantics: mllst
be discussed after thé rules for type compa,tlblllty are stated. However, the I‘urtherl
-examples prleded 1 this section should sumce to suppc3rt a proper«mtultlve fee}mg for cype

"abstraction. . i . . ' o
P . )
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Ezample 1: Printable Type
?t | stringify (t] String
Since only Strings, say, can be written out, the ability to “stringify” 2 value

(i.e, the existence of a map “stringify” from one type to the type String) makes
that value printable \

Ezxample 2 Summable Type

)

7% | + [t, t] t, additiveldentity: t

I3

Note that two “properties™ are required Assuming the normal concept of
Integers with “+” defined, the type Integer would then be summable if the
declaration ' "

additiveldentity Integet = O;

existed.

- Ezample 8. Iterable Type

7t | first : ¢,
last ™ ¢, '
) - succ: [t] t,

< :[t, t] Boolean .

s
One can normally iterate over the Integers but not over the Reals. The first 4

two properties here .may be viewed as parameterless functions; they mirror
Ada’s built-in attributes . -

The designers of Euclid intended that the knowledge of how to enumerate
the elements of some data type should generally be associated with the type
(module) rather than with each loop that needs such an enumeration. In M,

this sterator facility can be replaced by a type abstraction.

e
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4.4.1 Type Compat:'b{h'iy . ' ' ’ L.

Though othér languages have the notion§ of “assignablllt;y"’ and “r.y'pe e&uiva.lence", the
question of whether a give.n expression 1s type correct In M reduces to.asking “Is the
expression ‘typeExXpr = expr’ legal?” Type compatibility, then, must be estZblished for
each qualifiedExpr “Assignment” is treated like any other operation- 1t 1s & map selection.
All selection operations, though, are defined 1 terms of a synonym declarations so that for
the declaration “f [p pT] rT = . », “f}x]" is legal 1f and only 1If “pT = x” is legal “Type
equivalenceé” 15 a too stronog a term Ideally, the i:ype of an argumeént (Ta) should be
'compat;ble with the type of a formal (T!) 0when the algebra defined on Ta Supporis at }east

the algebra. of Tf . )
Only three forms of type expressions are vahd formal types (though an extension will

be mentioned later) . N

JormalTypeExpr oo

;== name - Lo (Form 1) ‘
' ;== pame “[" expr “,” “]” (Form 2)
S
. = "[" formalTypeExpr “,” “]" formalTypeExpr (Form 3)

[

ra

The first form corresponds to any named type, the name pmmpoints a particular type value.
An argument 1s compatible if 1t 15 an instance of this same type Enunferation, product,
and union types must be named to be used since anonymous types are not allowable formal

parameter types. For example, “p. {a, b, c}”’ cannot be a formal pararnetér though 1f, the ’

deflnition “T TYPE = {a, b, c}” exists, “p T" can be This simple restriction allows a
type matching scheme which will seem: na\:uyal to programmers familiar with other
languages It 1s 1mportant l;on note that different type names in M do.not necessarily
detergnine different types Many n%mes can be synonyms for the same type thqugh this
should not be a preferred programming style ‘ ’

e second form sigmfies an instapfe of a parameterized typé An argument is
compatible 1f its type is a member of the same parameterized type and if the parameters
supplied to the parameterized type at the declaration of the argument express thé same
value, i.e., are synonyms for the parameters to this formal parameterized type

‘The third fofm is 2 map type An argument is compatible 1If it 1tself is a map with
the same number of parameters as the formal and each of these parametérs match the
corresponding formal parameter. In addition, the result type of the argument must match
the result type of the vformal This allows maps to be passable without restricting the

6
: -




. \ matching scheme to name equivalence.
Ezample: Form 1 - . -
o Colour TYPE = { pink, magenta, red }; ’ \

Color TYPE = { pink, magenta, red };
isPrimary [x: Colo'hi‘] Boolean = .

.

°
[

: ... 1IsPrimary [Colour=magenta] -- legal N
I ... 1sPrimary [Color =magenta] .. -- lllegal ,
. Ezample: Form 2 .
5
. 1dimArray [size Integer, componant TYPE] TYPE = .. N

[

printArray {ldimArray(5, Integer]] PROC YOID = .

! c .
x1. 1dimArray|{10, Integer| = ..
x2: 1dimArray (20, Integer| = . . o .
' ;x3. 1dimArray|(10, Real] = . -
g4 . printArray{x1]! -- legal
- a
printArray[x2]! -- llegal, 20 is not a synonym of 10
printArray[x1]! -; illegal, Real is not a synonym of Integer /
! Ezxemple. Form 8
\ ) .
V- ; .
. integrate. [func- [Real] Real, low Real, high Real] Real ==
\ .. integratelsin, 0.0, 10.0] . -- legal (assuming a normal interpretation of “sin”)
\ S integrate[_+_, .1, .2] -- illegal, _+__ has wrong number of parameters

& \
-

~—c
Though type abstraction "expressions”. as alluded to earher, do not really exist, such
abstractions are expressible through a different means (but surprisingly similar syntax)

An “abstractld” 1s a lexical enmt,y' similar to an ordinary identifier but has an nitial
“Pr_“2t”, for insQanée The “baseld” corresponding to an “abstractld” is the abstractid
s’trip‘ped ot\lts‘leading “?". In the defimtion of a formal parameter. an abstractld may take
’ the place of a type name or of an argument to a parameterized type The intent of such a

substitution 1s best realized by examples ’fhe following parameter declarations parallel the?
- ) - ¢ g .

-
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Faid

.three forms noted above but abstractIds have been h'introduced.
[}

. a

pi- 7, L
p2' List{Pcomponent];
p3 ["target] *source, 7
Abstractids minimize the importance ol: the actual type. An argument corresponding to the
parameter “pl”, for instance, can be of any type, the abstractld “?t1” acting much hke a
{property-less) type abétractlon.l The parameter “p2” 1s matched by a “List” of any type, a
List of Integers (“List|Integer]”) perhabs or a List of Reals (“LISD[R{EZI”"), the actual
component type 1s of hittle importance The parameter “p3” 1s matched by a map with one
parameter; again, the source and target of the map 1s 1mmaterial

Ty’pe consistency throughout a parameter list can be effected by an appropriate use of
baselds and abstractlds Though a parameter. of type “?t”, say, will be.matched by an
argument of any type, any further use of the corresponding baseld “t” within the parameter
list must also be bound to the same type Note the following declaration

ma;; {pl [Ptjt]t=.

The parameter “pl1” here would be matched by an entity whose type 1s “(Integer] Integer”,
but not one whose type 1s “/Integer] Real” since the individual “t”s ‘must be consistent.
Furthermore, if the argument were of type “[Integer] Integer”, then the resuit of'such a map
selection will also be “Integer”. The defimition of “map”, however, knows nothing about “t”
other than that it 1s a type The type of the argument is imnconsequential to the definition
of “map”

Normally, an abstractld is used where a type expression is required It would then be
of type TYPE and each use of the corresponding ‘i)aseld must treated as a TYPE 1In a
selection expréssjon to a parameterized type ‘(see the previous decfaratxon pf “p2”), the
abstractld may take the place of something other than a type expression (chou‘gh not in the
case of “p2”). Parameters of a parameterized type can be of- any/ﬂype, the usage of the
abstractld (and related baselds) must be Eclnsmnent/w?h the corresponding déclaration of
the parameter for whieh it stands._ Inthe expression “1dimArray|?size, *componentType]”,
“sizé” is an Integer (as determined by the declaration of “ldimArray” above) and can only
be ustd as such, similarly, “component” can only be used as a TYPE Since type identiflers
cannot be overloaded, “1dimArray” 1s uniquely defined and the types of both “size” and

1 A parallel exists in the EL1 mode “ANY" (also solely a formal type) [Wegbreit 74] terms this a »

restricted unton
/
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“component” are made obvious. o

The next examples further illustrate the use of an abstractld.

o

~

Ezample Abstractld/Baseld Consistency .

<_: [x' ?someType, y. someType] Boolean =

L1 <l -- legal, someType bound to Integer
.1 <15 -- illegal, someType bound to Integer but second afgument is Real

Ezample: Abstract Instance of a Parameterized Type
List [t TYPE] TYPE =

printEach: [List{Integer|] PROC VOID == ...
writeBach: (List(?t]] PROC VOID =

intList: List{Integer] = ..; .
realList: List[Real] = . ; ‘

-printEach[in'cList]!' -- legal i

printEach[realList]! -- illegal since Real does not match Integer
writeEach{intList]!  -- legal . )
writeEach{realList]! -- legal

We assumed earlier, however, that the type abstraction expression
<.t t]t

was to encompass all types defined with the ordering _r:alation “<”, How 1s such a type
matched? How do we check that the type of an argument is compatible? Certainly an
Integer argument would seem to be legal but how do we know that “<C” s actually defined
for Integers? After all, unlike CLU, there is no “abstract data type” for Integers where we
can locate such a deflnition. The answers to ‘these questions are dealt with next.
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4.4.2 Use-Site Binding.

Normally, all identifiers not bound locally within an expression or to the harameters of that

expression, need to be bound to entities more globally declared at a definition site

M also

allows parameters to be use-site bound-bound to an wdentifier at the site of the use of the
corresponding parameterized entity Some languages term this call-site bound ' This is not
dynamic binding, rather, the identifier is still statically bound but ! the environment of the

user.

The example below shows the syntax and semantic effect of such a use-site binding.,

Explicit parameters 1n a formal parameter list are separated from the implicit parameters
by a | symbol; the implicit ones, bound in the environment of the user, lie to the-right of

the symbol

procedure

I'm M, supplying parameters to a procedure solely binds the parameters without executing the
Since, in other languages, the term call denotes both the binding and the execution, the
term call-aite is avoided when describing M; the term usge-site is substituted.
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Ezample. Use-Site Binding’ . '
-- Deflnition Site

negate' [ x ?t| _~_ . [t, t] t, additiveldentity: t] t = [...]"
(additiveldentity — xj, .

-~ The value associated with “x” will be passed explicitly

- from the use site .

-- There must exist an entity named “_~_" at the use site whose type

- is “[t, t] t” where “t” 1s the type of the argument associated

- with “x”, an entity named “additiveldentity” must also exist

-- at the use site whose type 1s “t” v
-- Use Site
-- The type Integer will normally be global to all use sites since s

1t will probably be pre-defined Assume that the normal “properties”
are defined Similarly assume that Real exists

-- In order for the up-coming use of “negate” to be legal, If a declaration
-- of “additiveldentity” 1s not defined or 1s not visible from here,
-- then it must be exphicitly declared. Assume one does not exist

additiveldentity Integer == 0O,

v

negate| -1 | .
-- legal, the additive identity for Integers is known here

negate{ 1 0]
-- 1llegal, no definition of “additiveldentity [Real, Real] Real” i1s visible

As stated previously, mn checking the type compatibility of a call to “negate”, the type
corresponding to the abstractld “?t” is bound to the type of the related argument In the
first use, this type 1s Integer The implicit parameters “_—_" and “additiveldentity” must

then have the types “{Integer, Integer] Integer” and “Integer”, these definitions do, indeed,
exist ’

>




Though previous discussion treated

3

? | _~_ [t t] t, additiveldentity: t

as a type expression {a type abstraction), such an expression is really only a incomplete
portion of a paran{”er,er list The defimition of “negate” does not have one parameter whose
type 15 expressed by a type abstraction expression Rather, 1t has three parameters—one
e‘:xp.licm and two implicit Nevertheless, the actual concept of type abstraction 1s provided
through an appropriate use of use-51ite binding and abstractlds Use-site binding 1s mntended
as a scheme whereby type information (operations, attributes) can be passed 1mphceitly
Note that type compatibihty 1s independent of whether ay argument 1s explicitly passed or

use-site bound RN /
‘ A

4.4.8 Adyective Syntax

Semantically, neither abstractlds nor use-site binding is essential. One could simply say
sum [Component TYPE, o

array [Int,egerl 10]

+ [Component, Component] Component,

Component,
additiveldentity Component '
] Component = ' 4

to declare the summation routine if parameters were allowed to depend upon previous type
parameters The following use of “sum” would be typical .

realArray [Incegerl w] Real =

sum/( Real, realArray, _+_, 00 |
The only use of the type parameter “Component” 1s to ensure that other parameters involve
the same type Type information is static, though, and a type parameter can deliver no
extra information at runtime To lessen the verbosity of the definition and use of such____
maps, type information may be captu;'ed implicitly  In place of the preceding declaration,

i

the following is allowed:

sum [array [Integer | ?Compotient,

110 o
+ ' [Component, Component] Component,
additiveldentity Component

| Component =
.

4-14
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and then the form
sum| anArray, -+, additiveldentity]

would typify eagh use The last two formal parameters of “sum”, however, are actually
intended ﬁo express properties of the type of first parameter Again, In order to capﬁure this
“type” mmformation mmplicitly, the declaration could he changed to allow use-site binding.
The above example would be declared as '

h)
1 10
, + [Component, Component} Component;

sum [array [|Integer ?Component |
additiveldentity Component
] Component =

(note the “|”) so that each use could then be simphfied to the form
sum{ anArray |

which 1s certainly a more abstract form:; it retains the semantics of the original'even though
some arguments are impheit '

‘

In M, the declaration of “sum” may be simplified further through the use of
adjectives The relevant syntax is ’

adjective == 1d * " abstractld [ properties
, properties == 1d " formalTypeExmJ .
SJormalTypeExpr ==

.= adjectiveName abstractid

This adjective syntax mirrors that of abstract type expressions discussed n Section 44
Adjectives have no type, they are not values, they simply proyi(le syntactic sugar

An adjectiveName may be used in describing 4 formal parameter; the properties
. associated with the adjective are substituted as implicit parameters Given the following
adjectives,

4-15
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Iterable :: 7t | first : ¢, last . t,
_<_:1t, t] Boolean, succ : [t] ¢ ;

Summable - ?t | _+_ . [t, t] Integer, additiveIdentity : t ,
the declaration

sum | array : [?Index] ?Component |
first ".Index, last Index,
_<_ [Index, Index| Boolean, succ : [Index] Index, '
e ‘
additiveldentity Component
| Component =

[Component, Component] Component,

may be replaced by
\ [ ‘ .

sum . [ array [Iterable "Index] Summable ?Component | Component = .

The implicit parameters of each adjective are made implicit parameters of the map “sum”.

-

The advantage of the adjective syntax is that it allows a programmer to envision the
incended'type abstraction. The required operations can be viewed as properties of a type

rather than parameters of an expression .

4.5 Polymorphic Expressions

When types, procedures, variables, and values can be passed both imphcitly and explicitly,
the expressions we write can be far more general. General array manipulation, for instance,
becomes possible The next example sums the elements of an"array Notice that the size of
the array 1s not important All that matters i1s that we can 1terate over its elements and

that these elements are able to bé summed

. v
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" sum: [ array: [Iterable ?s| Summable ?t | t = [...]
( result- VAR t .= additiveldentity!,

\ index: VAR s := first!, .
while <« 1mdex < last > do
E << result ‘= result” + array[ipdex”]};
. index = suécfindex")! -
7 >> ’ "
od!; C
* result” o ’ X
)i )

[

The power of polymorphism can be seen by the fact that many language-supphed
operations can be viewed as polymorphic expressions The type “VAR Integer”, for
instance, 138 not defined through a VAR type generator Rather, 1t 15 an instance of the
variab‘ie type family defined by the parame'tenzed type )

“VAR_ . [component TYPE} TYPE = .

The extensible syntax allows declarations to take on the natural notation “x VAR Integer”,
say, but this 15 equivalent to “x° VAR_[Integer]”. Compatibihity with a formal parameter

whose type 15 “VAR_[ . expr |” is determined by the parameterized type rule\(see Section
4.41, Form 3)

An algebra exists for VARs independent of any actual component type ' This algebra
includes the operations

_==_ [variable: VAR ?t, value- t}| PROC VOID
[variable VAR ?t] t = .

li

&

These are provided directly by the language and cannot be explicitly defined However, the
abstractions of assignment and deVARing exist across all variables regardless of component
type. Other maps involving variables may be user-defined.
Y
swap |left: VAR ?t, right VAR t | PROC VOID = | ..}
‘ << temp. t = left”,
“left = right™!,
right .= temp!
> . . .

-
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The following definitions of “_:2=_" allow “ass@i;nment," to be defined on enr,‘;ties\thm
are not variables shemselyes but which contain va:ria.bles; an ‘array of variables can be
assigned to en masse ' . .

—=_ . [ target: [?s] VAR 2t, source: s} VAR t | PROC VOID
( [i: s] (target(i] := sourceli]") ).
™ -- copies 1 array (of variables)-to-another

ll

]

f

=_ - [ target [?s] VAR °t, source' [s]t | PROC VOID = [. | |
( [i. s] (target{t] = sourceli]) ). ”
-- copies an array of constants to an array of variables

The following declarations describe the (bullt-in) parameterized type PROC and the
dePROCing operator. :

RO PROC_a [component TYPE] TYPE = ...
! [routineText- PROC.?t] t = .

-

The following examples illustrate how actual routines can be written in M which

' other languages must build,an

>

Ezample: if then_else_fi expression .

-

d if_then_else_fl [condjtion Boolean, Then °t, Else tj = | ]

({true => Then, false = Else} [condition]);’
This 18 not. built into M It can be user-defined The previous definition of *
if _then_fl can be rewritten. -

FEzample: Ordering Relation , 0
‘ ‘
If one method of ordering is deﬁt;éd”, say via “_<_", other orderings may be
declared simply
_2__‘? [left: 2, right: ¢ | _<_. [t, t] Boolean | = [.. | ‘ .
(not (left < right)); ) )
L : <
: [}
4 - 18 i 't
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Ezample: Polymorphic Stack
Stack. [Component: TYPE] TYPE = [..]
t
store: {Iﬁ‘beger1 100 VAR Component, .
"1st* VAR Inl;eger0 100 = 0!
I]y
push' [stack. Stack[?t], element: t) PROC VOID == | ]
< . N
7 stack 1st -+ = 1!;
stack.store[stack.1st”] .== element! 3
>;
ppp: | {stack: Stack[?t]] PROC t = [...] , _ -
< )
: element. t = stack.store[stack 1st7]”,
. stack.1st —== 1!, '
element !
>,
top . [stack Stack{?t]] t =1. ] (stack store[tst"}"),
empty: [stack: Stack[?t]] Boolean = |[. ] (stack.Ist” = 0); |

4.8 Overload Resolution and Type Abstractions

‘Overloading 1s partially subsumed by an adherence to the principle of type-completeness

and the use of parameterized types For,.instance, “push' [?t, Stack[t]] PROC VOID”
subsumes the two instances of “push [Int, Stack[Int]] PROC VOID” and “push. [Real,
Stack[Real]] PROC VOID” Where generics in Ada and Red create copies and perhaps

' overloaded identifiers, the polymorphism in M maintains a single abstraction Though
’ S

instantiation is itself contrary to the concept of polymeorphism, the implicit instantiation of
Red better approximates this concept than the explicit instantiation of Ada
“4

»

f Unfortunately, polymorphic entities can also exacerbate the problem of overload

resolution. Note the following example.

2

.
4 o
* =
- -
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Female: TYPE == . .
Male: TYPE = . ‘

Person: [t TYPE] TYPE =

Mary. Person(Female] = \ .
John Person(Male] = k "
isTalented [p Person{?t]] Boolean =..
isTalented [p Person[Male]] Boolean =
1sTalentedMary|
- unambdlguous, can qnly match 1st defimition of 1sTalented

.

A\
isTaIen‘ced(John]
-- ambiguous, matches both definitions
» o
Here, it 1s natural to presume that the deflnition of “isTalented” whose formal parameter is
“p: Person{Male]” is a refinement of the one whose formal parameter 1s “p Person[?t]” We
would like the more specific definition to take precedence.

If two definiticns both match .a g)ven use then we know that each d;ﬂnlbxon has the
same number of explicit parameters and that the corresponding expllcn paratneter types are
related, ie., they either are the same type or one type 1s an abstraction of the” other-one
encompasses the other. “Anry/ type”, signifled by use of an abstractld, encompasses all
types; a parameterized type encompasses all of its mstances, a formal map type
encompésses all map types with compatible parameters and result A priornity of types
exists: the more abstract type—the one that encompasses—is said to have lower pnomy’ than
the other. ) ' o

o b

Overload resolution in M must allow for the precedence rule defined by the following

algorithm: '

Given two matching definitions, find an explicit parameter position
where one type has priority over the other (If no such position
o, exists then the situation -1s ambiguous ) Let dI signify the a
‘ definition whose parameter type has priority, d2 will be the other
If at all explicit parameter positions, the priority of the type of di’s
parameter is greater than or equal to that of d2s, then the
definition dI has precedence. Otherwise, the situation 1s
ambiguous {

-




&
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Such a precedence scheme gives the definition “isTalented- {p Person|Male] Boolean”

precedence for the use “xsTalented{John'}" User-defined “.==" can be defined on a specific
type and will have precedence over the built-in definition. If the declarations ‘

I

f [x ?s.y Integer; Integer
f Ix Integer.y ’t; Integer = *

v

I

both match a particular gse (“f,1, 2)", say) then neither declaration has precedence; the first

has priority for the parameter “x” while the second has priority for the parameter “y”
- }

The rule prevents arbitration bhetween two definitions such as

fx{p, ,p,it
f[x."t]pl Tt

I

(The p,’s are mtended to be properties of c‘iﬁle type “t") ‘If a particular use of f is
ambiguous., neither definition will be given precedence even though the first seems more
" specific {(1n that we know more about the type “t”) It’1s not apparent whether or not this
sort of collision will occur naturally :

n k)

4.7 Type Abstraction in Other Languages
Other languages do%support the notion of a type abstraction though this is Rnot their
terminology. J’—‘ﬁ

In CLU, the cluster mechanism 1s used to implement a new data type and serves to
collect a set of objects and a set of primitive operations together that will define this data
type The cluster may be parameterized Type parameters are allowed and a where clause
serves to constrain the permissible actual types The following header describes a routine
which will accept an array of elements so long as the elements are orderable b .

« "

2

prpctype (array T)) returns T
where T has LT proctype (T, T) returns boolean

CLU's tn form allows abbreviations akin to the adjective syntax in M The previous routine
header could also be declared as follows




-

-

7 .
OrderableType = i
{ T | T has LT proctype (T, T) returns boolean }

proctype (array|[T]) returns T where T in OrderableType. -

The declarations after the has "keyword must mention routine types ‘These routines.
however, are not use-snt‘e bound The cluster which implements the type T must exphcitly
supply each routine Smﬁe It 1s 1mpossible to determine a prto'r: all the required operations
for a-given type. not ajl of themn can be grouped 1n the type’s cluster Though a user can
define a function on a buillt-in type, this definition cannot he placed 1n the appropnate
.cluster The cluster mechanism finds 1t especially hard to place a map, say that 1s defined
between types Use-site bmdmg allows a degree of flexibility not permitted in a type cluster
approach since any roucinve visible at a use site can be used .

In Ada, an type abstraction faciity is inherent in 1ts generic type parameters

“Generic type definitions may be array. access, or private type
definitions, or one of the forms including a box ("< >") The
operations avaitlable on values of a generic formal type_are those

"

assoclated with the corresponding generic tvpe definition

These generic typc;s are akin to built-in type abstractions Table 1 depicts the syntactic
form of various abstractions and how they are matched From the view of type -abstraction
in M, an integer type matches a discrete generic type precisely because the algebra 15 a
superset of the algebra supplied for discrete types This relationship is guaranteed 1in Ada
since the language built-in the algebras

Table 1. Type Abstractions in Ada

Syantactic Form Meaning

limited private any type

private any type such that “~=" and “=" exist

—access T : ’ an‘y access lype with base type T

(<>) any discrete type

range < > ' any integer type *

digits < > any floating point.type

delta <> ’ any fixed point type

array (Sx’ Jof T any array of the same dimensions. 1ndex types,
and component type




. e

XA

Parameter binding in Ada approximates that in M

“Generic parameters are elaborated 11 sequence A generic
parameter may only be referred to by another generic parameter of
the same generic part If 1t (the former parameter) i1s a type and
appears first "

This permits generic subprogram specifications to be dependent upon previously declared
generic formal types Complex algebras which go beyond the “built-in” and which use more
than one type can be described '

- -

~ Ada has a form ?f call-site binding If an argument correspo‘ndmg to the generic .

formal parameter

!

. with procedure SEND( )is <>,

were defaulted, M-hke semantics would be attamned.
In Red, a generic type parameter is used to stand for any arbijtrary type and the use
of “NEEDS” serves to supply an type abstraction facility An ordered type would be

t TYPE NEEDS << (t, t) = > Boolean B

Red also defines this in terms of call-site binding As 1n Ada, a gener?c type parameter may
be used subsequently in the definition of other generic parameters

Unfortunately, since Red’s concept of overloading 1s restricted, so 1s 1ts genelic
facility.

GENERIC B
. ’fYPE : ‘

\
FUNC ovld(p. Boolean) => ¢; .

END FUNC ovld, A !

v
3

This definition seemingly stands for all “ovid” functions which take ane boolean parameter. *

Unfortunaf’tely. the definition is illegal since these “ovld™ routines are indistinguishable in
Red, the result is not taken into account.

EYS]
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Other languages show similar constructs Alphard appends a bracketed hist <p Py
ey P> O B formal type parameter to denote the properties required of an actual type
Similarly, [Gries & Gehani 77] provide a require P, Py - P, clause Both languages,
however, allow only primitive operations to be specified |[Demers & Donahue 80b] describe
a type parameter which uses a with clause to list those operations which must be provided
by the type A facility defined by [Jones & Liskov 76], though designed ostensibly for
access control, ts a type abstraction facility

4.8 Summary

The language M, through a bottom-up technique of generalization supports a generalized
type hierarchy. The type abstractions in this hierarchy encompass any specitfic types which
share a common (sub)algebra, an entity can logically belong to many types at once

The hierarchical structure of types i1s actually sﬁpported by a single type
abstraction-“any type”-along with normal type matching rules Use-site binding permits
type properties to be passed umplicitly so that true type abstraction can be simulated

The flexibility gained by allowing type abstraction makes polymorphic programming
possible. even within a statically typed language. The parameterization bandwidth is
widened thereby allowing greater expression generality .

0
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CHAPTER 5

Summary

5.1 Synopsis

This thesis commenced by describing current concepts in type systems Type information, it
was noted, serves the program development phase well by allowing a problem space to be
partitioned 1nto classes Properties within each class and between classes can then be
expressed In programming languages, types deflne classes, algebras provide properties.
Hierarchical structures within typé systems were then discussed Desgnbmg an algébm 15
made simpler 1If one can form abstract views of type If a hierarchical structure exists, an
algebra defined on the higher end of the hierarchy will hold for a greater class of values and
will be, thereby, more general Hierarchies are valuable type abstraction facilities A
second form of type abstraction was noted in the concept of an abstract data type.
Although types must be represented explicitly on a machine, an abstract data type allows
one to divorce oneself from this level of detall so as to view the type abstractly Type
enforcement was viewed from two angles First, type checking prevents a problem solution
from being described n terms that are not meaningful to the algebra Second, proper
encapsulation of an abstract data type forces representation details to be hidden

To explore further the detalls of existing type systems and to challenge their designs,
the language M was defined The design of a type system was perceived as the backbone of
the total language design In M, orthogonality was to be achieved by adhering to the
principle of type-¢ompleteness, reliability by maintaining static typing, and flexibility by
permitting a less vfescncmve view of type

Though the basics of M’s type system, by drawing on [Hoare 72]'s view, remain along
classical lines, several deviations were introduced Only one form of scalar type-the
enumeration type-is allowed Product types mirror ordinary record types but treat fields as
contributing to the algebra of the type rather than as being components of each Instance
Arraysand functions are generalized to maps

R
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A non-functional sta'te 1s clearly separated from the functional world Variables are
defined in terms of variable references rather than buckets Procedures are no longer
viewed as special functions but rather as expressions to be _elaborated at some later explicit
point in tim

Since type-completeness is an underlying tenet in M, all expressions are typed Even
type expression ve a type An orchogonél application of parameterization allows user-
defined parameterized types, higher-order functions, and control structures Maps further
subsume the concept of generics. The ‘syntax, by permitting a mixture of functional
notations, allows expressions and control structures to be stated naturally

Introduced was the concept of {ype abstraction where a type can be ‘descrlbed by a set
9!' properties ‘Two concepts support this idea abstract type identiflers and cal}—site
binding | An abstract-type identifier used as a formal type 1s bound to the type of the
corresponding argument Properties of this type can then be garnered by imphcit call-site
bound parameters An adjeclive syntax is provided to encourage the conceptualization of
the intended abstraction Polymorphism 1s supported by both parameterized types and
type abstractions h

5.2 Future Directions
The design of the language M, as presented in this thesis, 1S not complete, so'me addressed
areas need further scrutiny while other related flelds need to be explored

One concept not addressed was that of an absfract dafa type Indeed, 1t may seem
absurd to design a type systermgavithout such a facihity In M, though, such a facility is
considered to be an nformation hiding technique-a technique not so much tied to the
concept of type as 1t 1s to modules and wsibility Since the maln concern was to add
flexibility to the type system, the design tended towards providing f(ype abstractions rather
than abstract data types

Nevertheless, abstract data types are important and an appropriate encapsulation
facility should be provided It 1s hoped that adding controlled visibility to the components
of a product type will suffice to support such a mechanisrn  This approach would be similar
to that taken by Euclhid whose modules are generahzed records

Also not discussed was the topic of coercions A lype conversion 1s a map from one
type to another, a coercion 1s a conversion amplicitly supphed If a user were able to state
which convetsions shouid be supplied implicitly, then a facility to supply automatic
coercions could be meshed with overload resolution techniques Currently, every expression




in M has exactly one type and the decision not to provide coercions serves to reinforce this
idea Unlike other languages, deVARIng and dePROCing operations are explicit This
overcomes Algol 68's ambiguity n “meekly coercible”™ situations Nevertheless, the
’ explicitness may be distracting <Coercions might be added but should be under programmer
control DeVARmg and dePROCIing may be prime candidates ,

! ?
The decision not to supply a built-in algebra for enumeration types maj be faulty

Enumeration types in M lack the properties (predefined operations, attributes) defined by
Ada and the programmer must necessarily define a map to ensure that the type 1s ordered
The point made was that no algebra had te be primitive In real use. though. some facility -
1s required to allow enumerated types to be “hnearly ordered”. perhaps “circularly ordered”,
or to remmn “unordered”, any necessary imphcit algebra would be supphed Such a
mechanism provides the added benefit of supplying “conceptually equivalent operations’

«

It 1s unclear whether the gencrahized overloading allowed 1n N will be beneficial but 1t
1s equally unclear how to justify any restrictions. Literals 1n many languages are
overloadable N views all identifiers as being literals of one type or another and, therefore,

. overioadable Experience may show that some restrictions are necessary but, for now, an
investigation of this generahzed scheme may prove interesting

One design decision that may be loosened 1s that of the demand for static typing
M’s type system does provide a high degree of flexibility but this may still be too restrictive
Indeed, we already have a degree of dynamic typing provided by union types we choose
from a lst of alternative types at run-time Subtypes are also a dyvnamic property
Support of the dynamic approach does not advocate fypelessness strong typing must still
exist but may be dynamically supphed and as in EL1, should only be necessary when static
typing s insufficient Harland and Gunn ((Harland & Gunn 84a  Harland & Gunn 84bj)
describe a dynamically typed polymorphic language and a possible architecture Their
approach 1s flexible but lacks an explicit means of expressing type abstraction Perhaps a
hybrid system. one that ncludes both static and dynamic type checking, mav be desited '
order to achieve the required mix of efficiency, flexthihity. and rehability  The ri<kier the

execution, the more the system should be statically checked

Subtypes have not been ad¢qressed properly Though they do not affect the static
properties of a type system, they should be incorporated smoothly within the overall type
structure

t
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5.3 Closing Thoughts :

In the process of researching and writing this thesis, two notions became apparent First,
design decisions can become intertwined. The actual number of concepts in a language,
though best kept to a minimum, is less important than the orthogonality of these concepts.
When concepts do not mesh cleanly, special rules are necessary, ‘these rules become

encumbrances ‘The use of the principle of type-completeness reduces language size while
increasing orthogonality

Second, 1deas on polymorphism have been around for some time Why is 1t that a
language based on such principles 1s not commonly available? Is it the pedantic nature of
the software community, a natural lapse between 1dea and general acceptance, or is 1t, as
[Holager 78] points out, that experience with polymorphic techniques has shown to be far
less useful than anticipated, Time will tell Nevertheless, 1t 1s hoped that the ideas
presented 1n this thesis make it apparent that a language embodying such principles

simplifies language design while increasing language expressiveness and facilitating the
programming process
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4
APPENDIX A
’ M Syntax
Nétation. [ x| denotes an optional x .
x ¥ denotes a (non-empty) list of x's separated by ¥'s
Italics denote a semantic constraint, not a syntactic one
program ' == exprlist :.= expr “,”
’ .
expr = decl == id *“:” qualhifiedExpr
.= qualifiedExpr = formalTypeExpr “=" expr
= enumType == id “" 7
3 p {"id ="~}
i == productType v=“[” [id “” | formalTypeExpr e
:= unionType . = typeName A “J”
:= parameterized Expr 7 “[” explicitParms [ “|” implicitParms ] “]” expr
;1= name
- = productExpr .= expr “”
\ -

= unionExpr

= mapExpr
_ - D o= selection

:i== procedure

‘ ' ::= parenthesizedExpr

\ explicitParms ::== [ id “ " | formalTypeExpr *,” h
o T

= “["id * " formalTypeExpr “]” expr A

= “{" expr “=>" expr “,” “}"
T

AT Y

.= expr “[" expr *,
Nl B
= “<x” exprList “>”

= u(" CXD}'LiSC u)” ) o

% . irr;plicitParms . =1id “:” formalTypeExpr

.adjective ::== id “::” abstractld “|” implicitParms

»

et e e

s TR
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formalTypeExpr ::= any “name”, “parameterizedExpr”, or “selection” yielding a
result of type TYPE
::== | adjectwveName | abstractld

Both “id” and “name” are lexical identifiers, “id” simply depicts the defining instances An
“abstractld”, also a lexical entity, 1s formed by prefixing any identifier with the character

uon

Y

A scope encloses each “exprList” and each “parameterizedExpr”

Syntactic sugar: .

A rnight-hand side of a qualifiedExpr can mmherit the parameter list from the

left-hand élde, the following two expressions are equivalent §
\
x-[tl, .,tn}T=[pltl, ,pntn]f . A

x {pl.tl, ..,pn tn]T=]||f

Special forms of lexical 1dentifiers permit alternate selection expressions: “_id_",
“id_", and “_1d” define an “infizld”, a “prefizid”, and a “postfizld”,
“idl_idz_.. _idn_l_idn” defilnes an identifler where “idl" and “idn" reflect the
opening and closing 1dentiflers for a matchflx expression while the other “id”s
reflect separators Selection 1s extended to

selection .=
‘= expr mfizName expr
= prefizName expr
== expr postfirName
.= openName expr separalorName closeName
g .
) . A-2 y !
o ) > N .
v
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