
-
(;

i

t

1
r

\
\
i

"

'-

A VIEW OF TYPES AND PARAMETERIZATION

. ~ ..

,

:IN PROGRAMMING LANGUAGES

by
'.

Mark Judd

School of Computer Science
McGill University
Montréal, QUébéc ' •

August, 1 {lS5

. ..

A tbesis submitted to the
Fa.culty of Graduate Studies and Research ~

in partial fulflllment of
the requirements fol' the degree of

Master of Science

in.
t

Computer Science

" .,;t\.
Copyright © Mark JUdd, 19S5'

" .

«',

--------------------------------________ .. ____ ~_L t -<

11

1

..

A View of Types and Parametefizatlon in Programming Languages ,

)

o
\

.,

L
1(

--------_____ H_'1 ___ _ ,

\-

1 , .

Abstract

A vlew of type in prQgrammmg languages is Rroposed

as a means ta lllllstrate l'Ihls VICW

A language, M, is deslgncd primanly

T
!

o M's type system uses simple type fllndamental5 and a few, ort,!1ogonaIlY ap'plled

combining forms to provide extens[bllity Following the prmclple of typc-comp/eteness

([Demers & Donahue 80a]) , ail identifiers have a type (mcludmg type identifiera) and ,111

values are first c/ass .citlzens' of the language Bath parameteTlZatlOn\ of types and

paramet,ers of any type (includmg those of type TYPE) are permltted '"

An adjective syntax JS introduced to provide a type abstractlOTI facIlity III wluch a

type 1$ c1early viewed as an a/gebra (Le, as a set of operatIOns) Typ(' compatiblllty 18

dellned in term~ of algebralc compatibllity. A generallzed type lllerarchy becomes possIble

ln which a smgle entity, though belonging ta one speclfic type, may also belong to many

abstract types, Polymorphism Is provided by allowmg routines to be parametcrlzed by sllch

abstract types

'1>
The proposed type system permits type flexlblhty while mamt:.lIl1mg strIct type

securlty

- i - .

..

Résumé

Une vue-du type dans l('s langages de programmation est propos(><]t UIL langage, l'vI. est

concu afin d'illustrer cette vue
)

LE' syst~rne de type de M ut.i1lse des règle" de base et quelques formps de. combinaison

QUI peuvent. è'tre appliquées orthogonalement pour re~lre le langage extensible Selon le

prinCipe de type-completeness ([Demers &. Donahue 80a]) , tous les identificateurs ont un

type (même les identificateurs de type) et toutes \(les valeurs sont des cltoye1l8 de premIère

classe du l;:tngage Le paramétrlsatlon de type et des paramètres de tous types (incluant les

paramètres de type TYPE) SOl)t permis

, a
Une syntaxe pour les adjectIfs est introdUite pour permettre l'abstractlOn oe type, un

, type est considél'é comme un algèbre (comme un ensemble d'opérations) Deux type& ;,ont

compatibles SI leurs algèbres, sont compatibles Une hlérarcl~ie généralisée pour les types"

devient pOSSible, où une entité appartient à. un seul ty.pe" mais peut aussI appartrnlf à.

plusieurs types abstraits. Le langage permet Je polymorphzsme en permettant d'utilIser les

types abstraits pour paramétriser des expressions.
\ -

.
lJe système de type proposé est sécuritaire mais flexible

)

'"

- Il -

1

t r

..

1

. ,
Acknowledgements

1 woûJd like to thank my thesis advisor. Prof. G V Cormack, for h;s helpful comments on

drafts or th.i} the~ls and for 1115 encouragement durmg thlS work Thanks also are cxtended

'ta Denis Leclerc through whom most of these thoughts were dlstlllcd 1 am also mdebtcd , ~,

rbr the,.flnancial ald r~cel~ved through a Natural SClCnces and Engmecl'Ing Rc~earch Council

of Canada Scholiirshlp and through an M H Beattle Bursary

.. "

- iII -

-

/

)--------

..

\ '

-",- -~- -- ---

.,.,
..

Table of Contents

1. Introduction
1 1 Problem, Goal, and Focus
1.2 Thesls Motivation
1.3 Thesls Outlme , ,
1 4 Language Sources

2. Overview of Type Systems

,

... : ~ ... , ~~

.......... (>1,. •••

2 1 IntroductIOn , ,

Page

1- J,..
1 - 2'
1 - 2
'1 - 3

2 - 1
. 2.2 CIa.5SltlcatlOn ""."."."" " .. " 2 - 1

'.2- 2
,

.... p.... -. 2.3 Type Enforcement
24 Type Compatlblhty
2.5 Type HIerarchIes

• • _ .. ,,_ ... ""'" p .. " & 2 - 5
2- 5
2 - 7 2.6 Abstract Data Ty'pes

27 SlImmary " ... " " , " 2 - 8

3. Type Fundamentals of M
3 1 Introduction
32 Type-Completeness
33 Flavour of 1\1 " , " " '"

3 3 1 LeXical Elements ,..........
332 program Structure '"'' ""'"
3 3.3 SImple Values ""."". ,
3 3 -1 Declarations and Qualtfted ExpreSSions . '"

34 FunptionaJ.,.,Type Features
3 4 1 Simple Types
342 Product,Types
3 -1 3 M:ap Types . .
3 4 4 Expressions
3 4.5 Map Expres;>ions

, 34 6 Discriminated Union Types
35 Non-Functlonal Type Features

3 5 1 Variables
35.2 Procedures

3.6 Parametenzation
36.1 Types
362 Maps
3 6.3 Variables
36-1 Procedures

3 7 StatJé:. Typing RestrictIOns
3.8 Overloadmg
3.g Summary of Type Features

... \ ...
\

)

"\;

1 •

.,

A., •••••••••

- IV -

\

3 - 1
3 - l ,

3 - 2
3 - 3
3 - 3
3 - 4
3 - 4
3 - 5
3 - 6
3 - 7
3 ~ 8
3 - 10
3 - 12 '
3 - 14
3 - 15
3 - 15
3: Hl
3 - 21
3 - 22
3 - 23
3 - 24
3 - 24
3 - 24
3 - 25-
3 - 27

'-

~

!

---..,---

.---=------.~-:. t

\ ...

1
!
î A
f
1

t

'.

r .;

'4. Polymorphism
4.1 In trod u ction
4.2 Type Restrictlveness '" .. " ,
4.3 Generahzed Hlerarchy ... '" .. ,
4.4 "",Type Abstractlon : ... '"

-4 4 1 Type Compatlblhty" ~ :; ~ '
4.42 Use-Site Bindmg
443 Adjective Syntax _...... ..'

4.5 Polymorphlc Expressions
4.6 Overload Res~ution and Type Abstractions
4.7 T}pe Abstraction III Other Langua'ges :.7
48 Summary

5. Su~mary
5.1 Synop~ls

5.2 Future DirectIOns
5 3 Closmg Thoughts

References

App en dix

A. M Syntax.

",

\

........................... ~ •••• '" ••••••• , , .. ft • •

" . , .
- \ ,

.~

If)

4 - 1
4 - 1 .
4 -) 3
4· 6
4~ 8

,4· 12
-4. 14
4· 16
4.. 20
4·22
4·25

S·
S' •

5·'

, ,

1
2
4

/("

\

,1

. , t '
."

• v -

-

'.

, . ,

.. , ,

,1

t·

, .

. "", .. ,

(•
i
\

l
f
\

1: ..

, .

, '

"

... ,

, '. , ", ·r
, "

,"

1

fi

CHAPTERI ---.-
~ntroductioii-

1'.1 Problem, Goal, and FOè'US

Computers are a revolutlonlzing force. They .perrorm no~ on!y a wide vanety of tasks that

we do not' want to êto ourselves, but also those that we cannot do ourselves. They perform
~

repetitive and mundane tasks as well as tasks"that can be,described as intelligent In sorne

sense' pattern matchmg, theorem provmg, mr~rrlllg

L
M'hat makes these mach mes so flexible IS thelr ablhty to be prograrumed b'y software: ,

an algontnm is deslgned to model a given situation or to solve a certain problem, thiS

e algorithm IS expresSed m a programmmg language to create' a program, the prbgram may be
, ,

acted upon b)' a machme to produce the appl'oppate results G~neral purpose programming

l'nguage; can express a large number br such algonthms ','

The development o~ thls sot'ttware, however, IS provulg to be a bôttleneck Rather

'than ·bemg a labour-savIng actlvlty, it is' laoour IntenSive While 'hardware priees are

aecreasmg, software is provmg to' oe"more and more' eostly ReleasIng thls bottleneek has

been the obJeet of eurrent researeh ' • \ "

If we are-, to explOIt the advantages' of computer teehnQlogy tlirough software, we
must bUlld and manage software systems effectlvely In ~addressing the problem,. the United

States Department of Defenee notes ([STXRS 831: p 60)

"The goal IS to Improve software productlvlty. wh~le aehieving

greater system rehabIllty 'and adaptablhty "
'.

Pr0ductlVIty \s an ObVl0US goa~. Rehablht! Improves the eorreètnèss and rQ!JUstness' of the

product Adaptabllity ensures both that the software' IS rè'usable, t,hereby avolding
.. '

unnecessarry duplicatlon of effort, and that a particul~r system lS maintatnable or modifiable
'\ ~' .

throughout Its evolution" ,~

. .~

r
1

- \

,e,~_'

r. ' .. ---.... ----~--~~-, ,

"

r,
, "

•

"

....

,_iL

./

..

\
)1 ~ '

,~
1

'.

" 1.

. J,

1 .:1>

l
i
t
t
1
f
i
;.
ï, , ,

'.1 (
"

"

,

\-

, .

. ,
To satisfy this goal, res'earch. has focused on providing effective progra'mming

environments condUClve to the development and· mainten~nce of software syatems. At the

heart of the environ ment is the programming language; it is the primary tool uSE:d for

desçnbing our models, algori~hms, and solutions. '

~

LingUlsts beIJeve that the structure of language deftnes the boundanes of thought.

The use of a particular programmlng langu.age, then, though it mlght not prevent one from

thinkmg certaIn tho~ghts, 'may' facihtate or impede certain modes of thought; It may,

influence the class of solutions one IS hkely t·o see. The language shauld ald us in solvlng

problem~ and in extending the class of pr~blems that we ~a~olve Many researcheis,

therefore, have focused on the programmqIg language as a means out of the tar-'plt ([Brooks

75]) , Any step forward ln the programming language arena is a'step closer ta releasm'g; the

software bottieneck

1.2 Thesis Mqtivation

. This thesis was motlvated by the perceptIOn that curre,n t type systems were bath 'Ill fÎexible

a.nd composed of an unorthogonal applicatIon of concepts An attempt is madé to isolate

. the! constructs Inherent ln other ~ype systems and, by re-combnling them orthogonally; to

denve a sm aller set of refjuire"d 'PrImItIves, Sorne' of the inflexIble quallties of existmg'

l~nguages C'l18 be attnbuted to a '!imlting concept, of'< type ~nd wc caTI enhance th~.
eXpressiveness of prbgramming languages by vlewmg types more abstraCtly: Such an

enhancernent can be achIe,ved without sacrifiCing the sem an tiC security afforde,d .by the type
system. . "

,P'

. 1.3 Thesis Outline

" In Chapter 2, tl).e concepts Inherent in cummt type systems are lnvestlgated, Specially

noted are the abstractive facihties proVlded. The uses and demands programme'rs make of

such systems are examined

Cbapter 3 defines the type funda"men tais of M The prInciple, of type-compteteness is

dlscussed. The use of thlS prmcIple ensure~ that ail identlflers ln M have a t~pe (mcluding

'type identifters), that ail values are first class dtizens of the language, and that

p3:tametenzatlOn lS ulllversally applicable. Parameterization of types and parameters of any

type (including thase of type TYPE) are perrriItte~.
CP

1 - 2
1

1

--_._---------- ---- - -- --'.~ -·,-.. ---.~ ... __ ... liIII .. _~. """r ___ lllii_;llâryi<AA~;:"_ t

"

, \

," 1

\' .
L

(

(;

'.

• • , ft ,
• ,\

o

. .
J'

Chaptèr 4 dlscusses the concept of type abstraction in M. A type is vlewed as an

algebra (i.e., as a set of operations). An abstraet type encompasses al! specifte types which
share a eommon (sub)algebra. This view 'of type~ abstra~'tion supports a generalized type

• hlerarchJ.: in which a, singlè enti'ty, though belon.g4ng to one specifie type, may alsô belong to

many abstract types. A polymorphie routine in M, then, is deftned as a routine that 18

parameterlzed by su eh an ~bstract type

Chapter ~ reviews the en tire thesls and suggests dlrection~ for future research.

1.4' Language Sources ---
The languages referred to throughout this thesls are taken to be deftned by the followlng

documents: Adat , [Ada 83J; Algol 68, [AIgo168 76J; Alphard, [Alphard 81); CLU, tLisk9v et
J

al. 7Q]; Euclid, [Lampson et al. 77];)!'ORTRAN, [FORTRAN 66J; L; [Cormack 81a], LISP,

[LISP 62]; Pascal, [Jensen & Wirth 78); Red, [Red 77]; Russell; [Demers &; Donahue 7g];

SIMULA, [Birtwistle et al 14]; Smalltalk. [Goldberg & Robson 83]; Tartan, [Shaw et al. 78J. . .
, • In the absence of an explicit reference, these sources should be assumed. Other documents

are reterenced explicitly.

, \..

"

"

--------------~.~------ 0 l ,

~ t Ada 1s a reglstered trademark oC the U.S. Government, Ada Joint Program Office. . ,
",."

1· 3

1 \ , f-,.
" .

l
" ' ~

\
_----'----'0;-_________ 1&

.,... ,~', ~

"

" f

·1
1

"

..

'L_ ---

, CHAPTER2

Overvièw of Type Systems

• 2.1 Introduction

A type system allows programmers to deftne the types of entities in their world, to deflne an
algebra on these types, and to enforce the algebra strictly The next sections develop 'these

concepts more fully by dlscussing the state of type systems as embodied III current

languages and by pomting out the evolution of su ch systems over tlme. Type information is

shawn to serve the dual purposes of abstraction and rehability both of which Impact the

program development process

2.2 Classification
. ..

By nature, hum ans are tool mâ.kers and tool users. One of their greatest tools is the ability

to abstract Abstraction-"the process of separat\ng qualities or attributes from the
ihdivid ual obJects to which they belong"* -takes many forms. One, termed classification, is

particularly relevant to the concept of type.

A class is "a number of objects, facts, or events grouped together as havmg corn mon
properties; a· set; category; kind ,,*; a' type is ua class, kind, or group sharing one or more

cbaracteristics; category"*.

To classify-"to arrange or put in a class or classes on the basis of resemblances or

dUferences"t-one has to name the things in common. Slmpl:v, colle ct mg things in a set ls

fairly unimportant since it lB the properties defined on the set that give the elements sorne

relation; only ID an extremely abstract mathematical sense are they related at al! (Le., being
, "

members of the same set). For instance, one has very little feel for the relation among
elemen ts of the set

! { X = clothes iron, Sam, encyclopedia, wedge }

* Funk & Wagmù.ls Standard College Dictlonary.

2·1

, '

, ,

"

(

o

)

until a property such as

'It(/ X E X, x can prop open a door

is given.

In programming language parlan ce, the values of a type are isomorI>hic to the

elements of a set. The fact that an element 1 belongs to a set T implies that .. t is of type

.1"'. It is rnembership within a certain set that glves any value its type.

Imtially, types wer, thought of simply as sets of values. [Morris 73b] pointed out

that a type w.as better tQought of as thls set of values plus the set of operatIOns allowed on

the set It 15 the set of operations, in tact, that provides a real III terpretatlon of the

elements. Any operatIOn (e.g., pT:Qcedure or funclzon) deHned having a parameter or result

of type T con tribu tes to the properties of the type T; It extends the concept of what it

means to belong to the type T. The set of properties deflned on a type IS, by definitlon, the

algebra for that type.

Early languages deHned types that, in most cases, reftected the behaviour of the

underlying machine. The notion of type in these languages was not extensible. AlI

programs had to b~ltten using these types whethlfr the types were appropnate to the

problem at hand or not. Modern languages include a capability to extend types by allowing

simple programmer-deflned types and by supplying combming forms to generate compound

types. Typical examples of these combming forms are the constructors array, record, and

pointer which can be used to construct both homogeneous and heterogeneous compound

types

Reiteratmg, t~pes are useful preclsely because of their abstractlve abili ty Dunng

program development, objects wlth distlDct propertles can be clearly distmguished.
(!I

Knowledge about corn mon propertlCs can be collected in one place and named, the type

name then refers to these propertles Such factorization alds mamtamabihty and
,

readabiIity Enforcing the distInction between types improves reliabihty

2.3 Type Enforcement

Most assembly languages provide an operator u+" for fixed-point addition, but do not
q

require that Its operands be, in fact, fixed-point values. Any argument supplied to this

operation is simply ,blessed as being a Hxed-point operand. Wild errors can easily appear

within a program. Worse yet, subtle errors can 'appear This blessedness is due to the fact

that most values share the same representatlon; the type of a particular value is

2-2
, .

..
~------------................ -~,

--- ----------- ----------

»

'.

indistingulshable at' run-tlme.

o • •

Ensuring that the type ot an argument passed to a routihe is compati~le fUh the

type expected Is called type-checking. The degree of type checkmg inherent ~ a type
o

system ranges from weak (li,ttle or no checking) to strong (total assurance of type

compatlblhty). The point III tlme that thls type-checking takes place can be elther statlc

(checked prior to executlon) or dynamic (checked at run-time)

Early type systems provlded type-checkmg for bUllt-ln operatIOns only, though user

deftned subroutines extended' the functlonal capablllty of the language, no checking was

done across these boundanes Wlth the growmg recogllltion that relzabzlzty was at least as ,
Important as the more traditlOnal goals of efflclency and wntabihty came a desire for

stron,ger type-checkmg. The type system IS one of the ftrst hnes of attack agalnst unreliable

programs ID that lt strengthens the semantlc checking The growmg bread th pf type . ,
system,~ has occurred in an effort to enlarge the class of errors that can be detected by the

compiler.

In principle, a mathematlcâl functlon may be ~w.pI51led only to values that are III ItS

domain of ~rguments. [Tennent 81J terms the application of an operation to a value that IS

not in ItS domain of argumen ts a domain Incompatlb:/zty He cItes the exam ples_ of dlvldmg

by zero, adding truth values~gating a character, and readlng from an empty flle as being

typical of domaln incompatlbll~ties The mam objective of type- checkmg IS to determ'ine

wh ether a domain lllcompatibility can occur.

t.. Tennent's vlew IS denveo from the fact that ultlmately the program must be wn on a

machine tHat knows nothing about types The expression f{x) entalls checking that the

type of x IS compatible wlth the typc expected by J If the only defimtion of J were one that
'-.. ' .

required an mteger parameter, then f(S~) wolÎld be Illegal SInce a real number IS not

allowed as a parameter to f Alternatlvely, one may Vlew type-checking as a check for the

existence of a certain algebra. Under thls Vlew, the expression f{x) en talÙil checklllg that a

function f eXlsts for the type' of x. Bere, f(S 5) is Illegal SInee· no functlon f eXIsts that

accepts a rea1 parameter. The foc~s changes somewhat Though the two approaches seem . . .
equivalel.l,t, only the second view sufflces lU the presence of overloaded functlon names

.. j •

Statlc type checkmg IS often p~pferred to dynamic type checking FITSt, type checks

before execution are generally more :'efficient than type checks durtng executlOn The

application of a functlOn to a particular argument may occur several tlmes during executlOn .
yet need only be type-checked once Second, being able ~o catch minor programming errors

before execution slmplJftes program debuggmg and testing Detectmg them at this tlme

allows one to deal with the error when something can be donc about it Thnd, dynamic

checks require that the type of a value be Inherent in the representation of a value Statlc

(
-1 2 - 3

- --_._-----

'.

.~

"

•• '1""....".-

\ ,

"

• Dtty

cheeking .t\?;S fiOt denfand that one carry around this information during execu tion.

t. , .
... ''- - Ill- • DynamlC c'flécking, !lowever, allows the system to be extremely flexible. J'he type of a

).5,v n lexical entlty IS a run-time properry all{.f""~all dUfer S!:,cro\'la~dtV\'r~nt..e:lCecJJtlons The •
::';,'.<W t,; lI ' q' ~ .;~,

validity of applying a certam operatIOn to thls entlty, and Ihdeed the meanlng 'of the I~
operatIOn itself, is then dependent upon the type of the entlty at that pomt III tlme The

compiler does not bmd the type mformation before su ch mformatlon IS avallable

.;

Even in statically type-checked systems.d though. checks durmg execution are

SOI!letÏmes reqUired [Buckle 77] notes that when checking a program for correctness. It is

orten necessary to assocmte nivanant propertlCs Wlth specIfie vaflables and to prove that

the behavlOur of these vanables IS compatible wlth theIr respective proper~ies When such a

proof happens to be dlfflcult or Impossible to establish. tests are sometlmes' mcluded In the

program to check ai run-tlme that the propertles are mdeed venflcd.

A. subtype is a property of an instance of a type and serves to restnct this mstance to

a subset of the total value~ allowed for the glven type. The'Ada declaratlon

x: INTEGER range 1. 10;
\ .

restricts the vanable x to a certain subrange of the mtegers Buckle's concept of a

restncted data type allows more complex constramts to be deftned, the r.estrictlon IS to a

more gcneral concept of subset, not slmply a subrange.
\

In most languages, since statlc dcterminatiOn of whether an Instance IS properly

constrained at ail tlmes 18 dlfflcult. subtype checking IS deferred untll run-time. In some

lllstances the constramts can be guaranteed at compile-time ,

Type enforcement is not always complete Languages • often provlde loopholes

whether madvertently or not FORTRAN's EQUIVALENCE, for exarnple, and Pascal's

vanant records bath permit circumventlOn of strIct type secunty Sorne programmers
• perceive a need for loopholes This need can be attnbuted ta the existence of a type system

that IS tao restrictIve, often due to a poor concept of type compatiblhty. Pascal's concept of

eqUlvalence between onay types, for Instance, falls into this category
fJ

The rehabihty and safety provided by error detection through mechallization of type

checking IS an important aspect of a programmed system More and more, programmers

feel the need for strong type checkmg but wlthout a correspondmg loss m abstractive

ability.

\ e,

•

;;<.

1

f th' !

•
2.4 Type Compatibility

If type checking IS to be done, one must have a concept of type equwalence or type

compatibl/ity Two common approaches are termed name equivalence .Al;nd structural

equiva/ence

Structural equlvalence generally assumes that two types are equlvalcnt If they are the
p

sarne prImitive type or If they both arise from the same type generator (1 e, both are

l'ecords or both are arrays) and the types of thelr components are equivalent Algol 68

addltlOnally specifies that the names of the selee/ors of two structured modes would also

have to be eqUivalent A type identifier, then, simply serves as an abbrevlatlOn fop a

representatlon One well-known weakness of such a seheme IS that two types may

unintentlOnally be eqUivalent It IS not clear that sueh impersonatzon ([Mofns 73a]) IS ail
1 ' that frequent but supplying an abstract data type can, explIcltly prevent such mlsuse

Name eqUlva}ence considers tw'o entltles to be of the sarne type if they are declared

using the same (perhaps' anonymous) type name ThiS approach do es eHmmate any

unintentional equivalenee but, unfortunately, also severely restflcts the abstract notIOn of a

type Stnctly enforced, aIl formal parameters would have to have a named type

A third, 'more abstract approach lS termed funcllOnal or behavioural equlvalence and

is based more on the compatibllity of an actual parameter wlth a correspond mg formaI ,
parame ter than the equivalence of types per se A formaI type simply charactenzes a set of

obJects that share sorne behavioural properties An actual parameter will be compatible

with this formaI type if it ls an instance of thls set ThiS approach resembles structural

eqUivalence.

~

Most current languages Implement a hybrid of name and structural equivalence. lt IS

the contention of this thesls that a blend of the behavioural approach with abstract data

types provides a better concept of compatibility by allowing. type abstractipns to be
o

expressed while enforcing distinct types whére necessary.

2.5 Type Hierarchies

[Carbonell 81] pomts out that the type hierarchies which abound ln the fields of artificial

intelligence, databases, and programming languages ail share a central inrerence mechanisrn'
1

mhentance of information. Inheritœnce implies that properties of a type are transmltted to

l See Section 26 for a discussion of abstract d~ta types.

2-5

1

"

aIl instances of that type This inheritance can be achlCved ln a downwHrd, upward, or

làteral fashion

Groupmg hke entities together IS achleved through data typmg In most languages and

through classes In Smalltalk Classes descnbe the propertles of ail tnstances of that class

The propertles of a SmaIl\alk class ire defined by an In ternal state, by Its recogni~ed
messages, and by the internai methods required for r'esponding to those messages

\

A class may be modified to create another c\ass ThiS new subclass mhents

everythmg about lts superc/ass, the class belng modified Such a modification may ex tend

the mternal state, the recogmzed' messages, and t;\1e mternal methods . The su.bclass reflnes

the Idea of ItS superclass In fact, aIl obJects m the SmaIltalk world are rennements of the

most abstract class named ObJect and mhent InformatIOn from. thls ObJect class A

suhclass 15 allowed to redeflne a method descnbed by one of Its supercIasses In order to tune

the method

SmaIltalk's world IS based on the abstraction technique termed. speciaitzallOn.

SIMULA em bodIeS the same technIque through its prefix çlasses

Ada's denved types show a lateral inheritance. The Ada declaratlOn

type X is new Y,

implies that Y inherits aIl the properties of X (literais, aggregates, attnbutes, built-Ill and

user-defined sUbprograms) but IS a different type altogether Vanables of the two types are

not assigna1:lle, for m(3tance, though values of the two types may be converted from one type

to the other by bUllt-m conversIOn routines.

Parameterized types, as found in Alphard, also deflne a hierarchlcal structure since

the parameterized type is a generalization of each of its type instances For example, "hst[x

TYPE]" is a Ç'~raliiation of _"Jist[Integer]" and "hst[Complexj" Such a facllity

approximates the .capabllities of a Smalltalk class; the parametenzed. type IS akIn to a

superclass ""

Zilles ([Types 81]) notes that -a defillltion of type is not necessanly dependent upem \

the set of values bu\ rather the eXistence of cer.tain operations on those values The Idea of

a sortable type simply implies that an ordering relation is deftned f~r vàlues of the type;

integers, reals, and characters would be partitions of this type. The type hierarchy is built

bottom-up by a process of generalizalion rather than specialization

2 - 6

,

Another simple bottom-up technlql~e is often p~ovided wlth um'on types or the re~ated
idca of a. varWllt record. The unIOn type ls defined by enumeratwg Its constituent types,

•

2.6 Abstract Data Types

.
With the el'nergenee of the belief that data was at least as Important as algonthms, an

object-orien ted view of the world an d the related concept of data abstraktion came 111 to

bemg

[Parnas 70j developed syveral prwclples to gUide the decomposltlon of a program lI1to

modules One, hls prmclple of mformatlOn hlding, states that there should be one module

for each difficult deSign decision 10 the program The results of each decision should be

hldden in a module, if thls decÎslon were later changed, only that "moc\u)e would need to be

modlfied

~

One corn mon deSign declsion IS the data structure representatlon In a weIl-

mod ulanzed program there will be one module for each data structure Any manipulatIOn

of the data structure must then be done through the procedures provided by the module

because the representatlon of the data atructure is hldden in the module Users of the

o module are required to use abstract operations on the data structure, since the

representatlOn is hidden, no concrete operations are known A module that provides a set

of abstract operatIOns on. a data. structure IS termed an abstract data type; this approach

corresponds to the vision of a type as a set of data values together wlth a set of operatiOns

on those values One can tune the internais of an abstract data type wlthout affectlllg users

of the type Program development ls improved by encapsulatmg the scope of change

Several languages encorporate the idea of abstract data types explicltly.

CLU's clusters deflne abstract data types. A cluster Implements a new data type

conslsting of a set of objects and a set of prhmtive operatIOns. Wlthin' the cIuster, a

concrete representation Is chosen for the objects, of the type. Only routines deftned wlthlll

the c1uster may access this representatlon directly. Alphard prov;des a simllar technique

wlth its forms.
,'-.,.

78]:

One problem assoclated wlth the cluster approach, however, is noted by [Schwartz

"Interestlng operations will often have multiple parameters, and

often several of these parameters will <>he logically compound

objects. The cluster mechanism cannot treat these parameters

symmetrically, but perforee regards one of them, caH It x, as a
)-

Il

l'

principal parameter to which the operation belongs, whîle the

others are auxiliary This approach is not weil sUltcd to the

gescnption of operations whic~ use multiple loglcally compound

parameters in relatively symmetnc ways When one Wrltes an

operatIOn mvolvmg several equally important IOl1{lcallv complex

parameters there IS no unique, parameter-type-determined, place III

whlch "to put the code representmg the operation Thus one

lm port an t support of the cIuster approach breaks dDwn ",

,o.

Ta overcome this sort of problem, languages now supply other encapsulatlon methods

that do not dlrectly deflne abstract data types but can be used to group loglcally related

items together Ada's packages, Tartan 's modules, and Red 's capsules aIl e1emphfy thls

mechalllsm Vislbllity rules can bide internaI components of such an encapsulatlon An

Algol 68 programmer can slmulate an abstract data.type but the Lwguage cannot prevent

its mlsuse

Importantly, data abstraction mduces correctness Into the language' the user cannot

fUm the mtegnty of an object if allowed access only through a (presumably COI rect)

interface ta the èncapsulation Reliabihty 15 enhanced
\

f:
BUllt-m types are truly abstract data types AlIoWlllg progr.ammer deflmtlon of

abstract data types blurs the dlstmction between what IS bUllt-In and what is user-deflned

Conceptually, they are eqUlvalent.

2..7 Summary

Programming can be reduced to three main activities. (1) classifymg the vanous obJects one

deals wlth mto sets (types), (2) defining an algebra on these sets, and (3) using the algebra

to solve problems. 1 This vlew of programmmg points out the import of types' defimng the

.types and the related algebras is ail that is lllvolved The type system IS the backbone of

the programming languag(!.

.' Type systems are not without their drawbacks. Statlcally typed languages in

Paftlcu'lar seem to lie tao inflexible It is an mability to express the abstractions inherent' m

one's world that malses type systems appear too restnctive. Clrcumventing tqis mabiltty

should be the goal of any new language_

1 Actually, the second and thlrd activltles, though perceived difTerently, are one in the same, one
solves a problem by extending the algebra to Include the solution.

2 - 8

, f
"

. .

CHAPTER3

Type Fundarnentals of M

, " 3.1 Introduction

.
A language M has been created m order to study both the primitive and abstract concepts

of type and wlth the primary motivation of gainmg type flexibllity, In, the design of M,

static typing was regarded aS a positive force ln the program development process but

restrictions inherent III the type system of many curren t languages were recognlzed M was

intende~ to be made flexible by allowing type abstractIOn whlle mamtammg statlc type

security

The facilitles lllherent in a type system were dlscussed in Chapter 2 ThiS chapter

discusses the fundamentals of the type system in M and sllows how such faclhtles are

provided, In Chapter 4, a more abstract view of type is dcflI1ed III order to increase the

expressiveness of the language

Before dlscussing the specIfics of M, the prlllciple of type-completeness is explamed

Through the use of this princip le, M can be deflned using pnmitive constructs that are few

In number but which provide a flexible and expressive language,

3.2 Type-Completeness

To desIgn a languag", with many changeable parts, it is necessary first to design a language
, 1

framework that specIfies how the parts must behave and how they may be composed The

idea of type-completeneS8 i8 to re,quire that this framework ëonslst of a type stru~ture WhiCh
specifIes the legal use of names and a few, uniformly applicable compOSItion rules, WhlCh

specify the types and meanings of composite expressions III terms of the types and meamngs

of their components This idea lS a fundamental tenet of M,
'"

[Demers &, Donahue 80a] argue that theidea of type-co,mpleteness lS of the utmost

importance in the design of programming languages. They deflne' tlJIS Idea as follows.

1. Each name, be it an identifier or an operator symbol, and each

o

3 - 1

._. ------ --1 -.)
\.

'.

~

\ •

. ,

(

expression in the language has a type; the type of any composite

expression is composed from the types of its components
,"

2. For each type ID the type structure ·of the language, it IS

possible to write an expressIOn 10 the language havlng thls type.

-
3. Any expression can be parametenze..ç1 wlth respect to any free

name havmg any type ln the expression to Yleld a functlOn of an

. even more complex type This ImplIes that functlOns must be able.

to have parameters of any type and to produce results of any type

, l

•

Type-completeness, then, is used to slmphfy language deSign by generahzlng the

concepts of parameterization ançl declaratlOn Lack of type-completeness forces the

. introductIOn of specIal mechanisms to handle cases where comrnon combming forms wou Id

suffice. The type structure of a language IS the language's real framework.

The focus of type-completeness changes the fundamental raIe of the language designer

from one whose responslblhty IS to pu t together a large number of ';features" to one who

. must devise a nch bu t small type str'ucture and who IS then forced to live wlthln Its

constramts A type-complete language has a wlder range of flexiblhty than mu ch larger

languages wlth many speCial features Bath user and deSigner are aided by the slmplIcity

Inherent in type-completeness the user has fewer concepts to master and the deSigner

knows that only a few cambming forms will sufflce thus lessening tlLe concern about what

should -or should not be addcd to the langu\1ge.

r 3.3 Flavour of M

Mis a block-8tructured, type-complete, expression-oriented language ,Jery much m the spirit

of Algol 68. Many of its design decisions can be traced to. this language as weil as to the
1anguages Russell ([Demers & Donahue 19])1 aile! L ([Cormack 8Ial)

Someone conversan t in Algol 68 will be able to asslmllate the basiCS of M easily since

the' overall styles are slmilar Ta a Pascal programmer, though the style IS certainly

different, the types ln M parallel those ID Pascal ThiS section glves a quick feel for the

language M before discusslng types in depth. Two Important concepts are noted' the' lexical

structure of M is unique and is, discussed first, the difference between the creation and the

naming of entities, being separate concepts in M, 18 then made exphclt

1 See also [Demers & Donahue 80aJ and [Demers & Donahue 80b]

3-2

\

1 ___ ~ __ ""I"""':: ____________________ iflin ... r_t .. t ___ ;.,-. ______________ ~ ~---

,
! ..
f

-f '

r
(

'9.B.1 Lexical Elements. '

·111

The character set 'in M is divided as follows:

alphan umeric ':= let ter 1 digit 1 underscore

letter "= "a" l "'b" 1 .. l "z" l "A" l "B" 1 . ,. l "Z"

,digit ":= "0" l "1" 1 ' l "g" . .
underscore

bracket

separator

symbol

:: ' "(" l ")" 1'''['' l "1" l "{,, 1 u}" 1 U['; l''n''
1"«"1"»"

.. == u.,' 1"" .. , ,

,,= underscore 1 { any 9ther prigtable character }

,.

Each bracket and each separator' form a tokén. Tokens are also formed by a sequenc,e of ,1

alphanumeric characters or by a sequence of symbol characters, the tokens so form~d are

_ termed identifters. Note that the undersco~e is both an ll-lp'hanume'Fic and symbol character.

Eac,h or' the fOllowmg is a legalldentlfler.

The flrst four are sequ~,nces of alphanumeric characters; the last two are' seqùences of

symbol chara~tersr

At a lexical level, wh'ere Pascal dlstlnguishes among Iden tiflers, numbers, and

operators, M makes no such distinction Nevertheless, an M token mll;Y be· seman'tic~lly

treated as an identIfier, number, or operator by declaring it to be"one of these,

Tbe underscore i5 mcludecj as both an alphanumenc and a symbol charactër and.

plays a speCial role in M by allowing an extensible syntax Extensible syntax 1& discussed in

more detai! in Section 3.4.4.

9.8 f! Program Structure ' tt , .
rr •• /

Tbe following grammar rules app\y .1.2

:.

, l' The'entire'(syntheslzed) grammar can be round ln Appendlx A.

2 The notation x J y dénotes a (non-empt;) lÎst of x's separated by y·s.

• 3 - 3 o

\ ,

"

, -- ~~ - --_ -_ ... _-_ ... _~- ---------.. --.--------~

,1

1 •

f'

~'

~ ,

;.
,
1

t
! , ,
f

I~ , ,
i

" "

"
o i

f
• ! .

'1
!
\

·,1

~ ____ -' __ ~ __________ r-__ ~ ____ ~ ____ ~ ____ ~_, .. t_tW4~ ... ,=~t~,"t.~ __________ ~l ____ ~ ________ ~ __ ~ ______________ ~t , ____
." ~~- l,

,:tr;;-.

f
.\. ,. , '

."

~

(

\ ,

"

1 t

,
,

,.
"

:

, .
, .

J.

"

. ,

;, ,

.-

. '

"

J ,

.. '

pr-ogÎ'am
,)q(prLlst'

\

, ·èxpr'
"

, >

(

"

, .~ . 'exprl,.ist
" , , = e'Xp'Y' "." , ," l"

'= decla:ratiQn '

..
A progr!lm !f:,"simp1y a,li-st of expt'eSsio,ns, Very ~ften; initial expreSsions III such a list

arè declarati~ns Ail' expre~ions h,ave .~ typ~ 'anp, fike Algol 68," ail yield 'a (possiblY void)

value
" ,.

,

a.J./J Simpt'e Values
1 ~ •

The slmplest type constrûctor in M is the enumeration type antl l!', deftned by ~l)e grammar
" ~ ,\. . ..

rule:,

.
• T,he en~mType 'ex~;es~ion
The expression

Itself defines both a new type and litera18 ~vilues) for this type.

{'false, trÙe y
~

.. depicts·the éommon not'iofJ of a boolean type, ft defines a new type valùe-a new IDstan'ce of

the typ~ TYPE;' the expression IS of type TYPE. Both "talf!e" and "tru~';, are \TahleS oi tb:is

type. Tbe instance11 'or Ole typ~ \TYPÉ çan bé deteqpined by locating aIl tYP,e expression~ in

a program; i.e , the enumeration of,these instan~es is spread througn,Out the program. ' ; , ' -; "'\

" "

9.9'.4 DeclaratIOns a"nd Qua/,jied Expres(",ons ,
l , • • ~

. . ,
. :. \ 1
Th~ following grammar rules are ,related to declarations:

" ..
H) ...

,
decl Id u ... qualifledExpr

" ,

..
"' " ~,

qQahftedEx~r = lypeExpr u~ .. expr

A declaratiJJn lS an expreSSIOn that associates

it makes ,the Dame a ,synoDym for the value

a Dame wlth a value and yields a voi~' result;
,. +

As 11 means of redund!loncy, one must explicitly
~ ,

~----------------------~.-- , , 1

1 I~allc!s Imply a, semantlc conslralnt •• not"'a synt~tlc one.

, t

'.

. , , 1, .~.

\

0;'.

,;'~, I~ JI

, .

. ..
~ "

.>

:1'\

."

...

"

, , ,..
" •

t-

."

(

~
~~ -

c

1

(

t
4

pp ";'7"$ (

>

state the type of the value (In the grammar description, bath ,ds and names are iderrtiflèrs;

id is the deftnmg instance of an èntity; a name' is a ulSe of an entity deflned by 'trie
~

corresponding id,).

A dec"ration itself creates no new, entity, it simply provldes another name f®r an ""
existing entity The binding of the name to the value i~ known throughout the scope ~f ~he

declaration A scope is a syntactic form in which nam~ may be detlned and over which the

use of a name hM meaning. . ,

To name the boolean type mentioned previously, the folIowmg daclaration wou Id be

appropriate:
;

Boolean TYPE == { faIse, true }

Each entity in M may be denoted by its name or, more fully, by bath its name and

ita type Ca quahfiedExpr). Both "faIse" and "Booiean = false" ldentifY tJ1e first literaI of the
, " . type B~olean detlned above Since a sIngle name may be used ta denote many separate

" entities, a type == name palr may sometimes, be the only way to distmguish among the
named entities For mstance, given the following definition, If

TernaryBoolean . TYPE == { false, mayqe, true }
",

':maybe" is uniquely dellned a.s ,"TernarYBoolean" but "fa:Ise': may deno\e eithér
"TernaryBôolean =:;; false" or "Bo~ean ;::: false" in a given context :, Using a single na:me ..

Ilke thlS to denote separate en tities 18 termed overloadmg and lS dealt with in more detail in_
.. , Section 3,8

The followmg sections develop the concept of type· within M more fully. The

discussion deals with the functional and non-functional aspects of the la:ngû.age separately,

3.4 Functional Type Features

Type expressions exist in M w{llCh parallet the enumeration, record, and arra:Y: type'S' 'Of. ,
Pascal. Such expressions define new type values-values of type TyPE. Most ..tYp~

expressions are usually fOU} in
the declaration

x, TYPE = ...

declarations since they must b~ tlamed to ~e used further;'

" ,

typiftes most type declarations. The ellipsis here must be 0 re,pÎ~ed by .. one of, the various

3-5
"

' ..

"

/. 1, • • ,~------____________ ,,_u__ I~ _ ~M ___ __ ~ __ _

c

,

t
~

1

\

1 •

()

~
1

type expressions to be desCl"ibed shortly,

, .
Ideally, a type expression would be as general as any other expression in ,the language. . ~ ,

In order to maintaln stlttlc typing~ however, sorne restrictions at;e ~ecessari. T.hese

restrictions are describ"ed tn Section 3.7.

"

9.4.1 Simple Types

•
< Scalar types are the primitives of any type system; they have no subcornponents. Ea.rly

languageg~ 0 designed it response to - the, requirement for sCienttftc and engineerJng,

apPlications, supply scalar nurnerjc types such as IN~EGE:ij.s and REALs Later, when the

need to manipulate non-numeric dat~ was recognized, symbolic enumeration types ~ere
included, The enumeration type Is a rnechanism for constructing a type by enu'merating all

~~ .
of its possible values. Each of the en-umerated values is a literaI of the type. •

Enumeration types are the only scalar types in M and form the slmplest method of
classifying entities lnto sets,

enumType ::= H{" id "," "},, . -4---=-

Several familiar concepts may be modeled sImply:

TrafficSignal . TYPE . { Red, Yellow, Green} ; 0,

DaysOfWeek : TYPE s { Sun, Mon, Tues, Wed, Thu, Fri, Sat } ;

Digit ' TYPE == { 0, 1,2,3,4, 5, 6, 7, 8, g } ;

Boolean : TYPE == { true, false } ; ,

CardSuit : TYPE == { Spacles, Hearts, Diamonds, CJubs } ;
, , "

, 'CardFace . TYPE ==
{ Ace: 2, 3,4, 5, 6, 7, 8, g, 10, Jack, Queen, Kmg} ,

'Fhe sets defined by enumeration types are diTint. No one value can bélong to two

enumeration' types, Two dllferent values can, however, ,be denoted by the sarne" identifier

The Digit "3" and the CardFace "3", though two very different values, are de-noted by the
same identifter. These two values can be unlquely Identifled by the qualifled expressions

"Digit == 3" and "CardFace == 3". . .'

3 - 6

,
>

. ,
1

. .

. \

------~'''''i ---.:----.
'"

~-_z~_;_:_t--- --------------------------~~ " . "t

'v • ~
1 Ik" ~

i

t
1
t

1
r
r
t

,1

- ,

. i
i

(

»

,
"

. , .
~ :

Ct 4

. '

There are no built-in operations for scalar types. AlI must be explicitIy deflned. -If

one intends an enurneration type tb be ordered, the ordering must be exp.licitIy ~~ftned.

Sùpplying a built-in' algebra is an attemp,t to guess nat the operations inherent for a new

type and may add sorne cpnvenience. Nevertheles~,. this ls not r~garded as a functlon of a
• () v

;type system; it· does not necessarily ad'd to ~hè èxptessive!'less ~f the language dr the

. flexibllity of the type system.

,
The concept of a subtype, is }lot fully discussed in thlS thesis since the motivating

interest is thf) compile-time' properties of tJ:'pe. So~e notation is reqUlred though. The
v •

expression

- enumTypeNam'e ,"
• expr expr

2
, .' 1

, '

, denotes the usuai s"ubrange not~tion. The sUbtype comprises the points "expr " and "éxpr
2

" r, , l

, Md all other values of .. enumTypeName:' IYl~g between these two pO~rl:ts. Between-ness!s
.deflned' by the. 'textual ordernÎg of the le~ical tokens used in d~flning the original ,
enumeration type' . The type expression

1 •

DaysOrwee1çMon "

. "
depicts a subtype of the type DaysOfWeek. . .

enumeration
~

The type VOID, to b~ discussed in Section 3.5..2, is the only buift-in

_ype.: It behaves as' if it had been deflned by the ~ecla~~tion

'J •

,
VOID TYPE = { vpid } ;

/

.
" Sorne other enumer~tion types may be pre-d~ftned ln a' standard library.

rea]& may pave to be-implicitly pedare'd. They wiÙ be treated ~ enumeration
case. ',. ' , ' , .

';

,8.4.2 Prpduct Types
, "

"

Ifltegers and
types in any

In set theory, a èartesian Product of two se.ts 's and T, denoted S x T, Is' the set of aIl
o'rdered pairs (s,t) 8UC~ that ''SES an,d tET.~ This concept of à product extend~ t~ an

a.rbitrary number of dimênsions so tJlat, in generaI, S1 x S2{ X .. r X S = the set of al) n-, ' \ n ")
tuples (xl' x

2
, .o, X) SUCQ that X ES1, X

2
ES

2
, .'" X ES .

n. è l "nn, J.

, "

'/

, ' , ,"

' .

, '.

,
') "

'~

, "
3-7

1 • ~

\ '\ , .

• t,

'0

,
1

, ,
,1
1 :.

\ # ~

L

• •

(

,
v.

"

...

M embodies the concept of a Cartesian Pr~duct simply:

productType ::= 'T' id t,:" formalTypeExpr 1 "," "n"
. _ t\ ~.

Examples of prod uct types are'

Complex . TYPE == [real Real, imag : Real n ,
Card T~E == [SUlt : CardSuît, face. CardFac~ B. ' 'l'

The flrst deOnition not only deflnes a 2-dirriensiona:1 sp~ (Rea! x Real) named

Complex but also denotes a simple algebra on this space . This alge bra takes the place of

field selection in other languages. Impltcltly deflned is a functlOn from the type Complex

onto Real named "real" which projects a pomt in Complex space onto Its fi.rst axis

Simllarly, "imag" is the projection outo the second axis

Literais for produèt types are expressed as a comma-separated hst of literais whtch

éo~respond to the component types of the product. A literai for the type Cardface could be

"(Jack, Hearts)" (The parentheses, though not techmcalry required, are often present in
order to parse prop~rly; .. jack, Hearts" IS acceptable)

A' product type 18 not described by an enumeratlQn of its values, lts values are

implicîtly garnered from the underlymg constltuen t sets. Any lîst of enumerated values

must be simple ln ~hat they :Ire I-tuples or atomic. Scalars plrmlt a I-space; products

allow multi-space.

In several languages, elements of simple types are viewed as values butelements of
product types are viewed as obJects. They are both values to M Rather than an object

- 1

wlth several components manageable at . l, M treats an instance of a product type as a

single value but with some obvious propertie Even scalars have properties (For mstance,

1 ;s less than 2.) An Implementation of the anguage may have to use obJects to represent
values, but forcing a programmer to view the world ln sueh a manner 15 elllgmatic.

Note that there lB no re:;!triction on the constituent types of a product type.

I~ Sand T are sets, th en any subset of S X T is termed a relation on S· x T. If, in this
subset, each member of S appears exactly 6n<:e as the Orst eomponent of an ordered pair ,
then the relation is terrtled ~ function. (T,he discussion of maps in this thesis is .restricted to

<
./

" ,

3-8

, .

9~

'.

,O----------7a----------------------------------~----~------------

, "

funetions only,) If (s,t) belongs to a funetlon F, say, then t is'denoted by F[s] and F is said

ta map s ta t. The set S 15 termed the source; T is termed the target.

"S -+ T" denotes 'te set of ail subsets of S x T whlCh are functions, The cardinality

of this set, denoted Is -+ TI, is ITIISI A particular Instance of the map could be denoted by

enumerating the constItuent ordered pairs' { (SI' t 1), (S2' t
2

), . " (sn' tn) }.

A map, then, slmply expresses a relationship between ~ets By way of example,

consider the two sets

Month = { Jan, Feb: '" Jun, "Dec}, and

Count = { 28,29, 30,31 }.

There are 4 12 ditferent pOSSible maps (functlons) ln Month --+ Count. One of these, the m~
, { (Jan, 31),'(Feb, 29), (Mar, 31), (Apr, 30), (May, 31), (Jun, 30);

(Jul, 31), (A'ug, 31), (Sep, 3.0), (Oct, 31), (Nov, 30), (Dec, 31) },

specifies the number of days in each month of the year 1984
,

Maps occur frequently In programming. Sorne Vlew an arras, say "array (Integer

range 1..5) of Colour", as a map from a set of subscripts, here Integer, into a set

corresponding to the a.rray element type, here Colour. A program itself, even, may be

viewed as a map from an Input set mto an Output set; the set of al! (mput, output) paIrs

expresses precisely the meanmg of the program. An enumeratlOn of ail vahd pairs is

genêrally not feaslble and other notatIOns for a map must be round Instead, one may

provide an algor~thm for calculatmg the output from ~ glven mput ThIS is the basls or--
computer programming and of problem solving in general.

In M, a map is deftned Vla parametenzatlon

mapType = u[" formalTypeExpr l "," "Jn formalTypeExpr

,
Where a mathematician would specify a map as "Month -- Count", the alternative notation

:'[Month J Count'" IS used in M; this n~tatlon should be familiar to Algol 68 programmera,

This map type comprises the 412 functlons from Month .into Count

3-g

!, -----______ ~._r

»

,;

(

The syntax for a map literaI Collows in' Ada's Cootsteps and uses tbe notation

instead of the usual ordered pair enumeration.

The only opera~lon allowed for a map Is selection. The normal functional notation is

maintained though alternate syntactlc forms, dlscussed ln Section 34.4, are allowed

The source or target of any map lS unrestricted Hlgher-order functlOns are provlded

by aUowing the source or target to be a map type ltself

M's map may be conceptuahzed as an array, there IS no reQUlrement for an array type

constructor per se A parametenzed construct may be se en as creatmg an array of

constructs. a parameterized lU teger creates an array of in tegers, a parametenzed procedure

creates an array of procedures, each one tuned to lts respective parameter. These entltlcs

are constant arrays, though, like Instances of product types, they are sim ply values, not

objects with components.

9 . ../ . ../ Expressions

This sectIon exemplifies the syntax of M expressions, shows the types of vanous expressions,

and exhibits the preferred style of M programs. The power of the various forms of

expression is made apparent.

.
Expressions III Mare slmilar to expreSSIOns in most other programmmg languages

They are built up from the scalar elements of the type sets III a type safe manner; the

. arguments ta the maps are of the correct type SImple expressions are \ '.

3 -- of type Digit

-- of type rr Boolean, DIgit TI

.- of type [Boolean, Boolean] Boolean: say

More complex expressIOns are con~tructed by supplying arguments to a map and possibly

usi'ng the result as the source to a further map.

Selection from a map (termed a function cali or array mdexing III otter languages)

may be expressed using the normal fUllctional notation or dot notatIon For Illstance, "f[x]"

is equivalent to "x r". ,Other forms are also alloweq since the underscore character serves a

special purpose in M by supporting an extensible syntax Underscores actually denote the

, ,

,3 - 10

»

(

1
\

\
\

\

p

expected form of selectlon expression by mdicating parameter positlOns. This allows a

natural form of expression The identifier "_ +:''' denotes, a map with two parameters, a cali
-\

will take the mflx form "x + y" Simllarly, "abs_" will take a prefix form, "_1" a postfix

form, and "loop_until.J)ool'\ a matchtlx farm 1 Further examples follow

• Form ExpressIOn FunctlOnal Equivalent

matchtlx If false then 3 eise 1 ft ICthen_else_fl[false,3., 4)

prefix' NOT true NOT_[true] t@.

posttlx' x _ ~[x)

dot ob).field field [obJ]

intlx 3 * (2 + 8) _*_[3, _+_[2,8))

functlOnal. SIN[z] SIN[z]

The use of synonym declarations IS expected to be l'lsed wlsely and liberaIly. For
')

instance, ev en the "sImple" expressIOn

1 ----.
2.0 * 3 141Sg26 * 10 0

might better be expressed by the followmg llst of expressIOns (an exprUst)·

(PI

radius

Real = 3 141SgZ6,

Real == 10.0; \

dlameter : Real = 20* radIUs,

penmeter . Real = pl *'dlameter,

penmeter
":1':' ,:.

.. '

This mirrors the style of an Algol 68 closed clause. The compound expression IS a better

documented, more understandable version of the mtent to ~xpress the penmeter of a clrcle

with a radius of 10.0 units Both expressions are of type Real; the exprLlst takes its type

from the type of the Il!lal expression

The style of expressIOn shown above uses synonym declarations to ald in
comprehenSIOn and mamtainabllity and IS the preferred style in M AlI !iues other than the

last sim ply deflne names which are to denote values and subexpressiqns used withlll the

1 ILeclerc 84] has Implemented such a scheme for the language L. While othçr languages Implement
an extensible syntax by generatlng grammar rules on the Hy, hls scheme slmply adds (scoped) lexical
keywords Also see [Goguen &; Meseguer 83); they deHne a more general m.xfix notatlOn.

3 - 11

,

\

- , ... ,. ... ,- --~ .. ~_ .. "'---~ -~ - ~ ---

ove raIl expressfon. These detlnitions aid in understandmg but also allow names to be used

in aU plM:es where a corn mon subexpression is round. "

Aside: The term smgle assignment, often applied to this style of expression, IS

not indicative of the true semantlcs of the construct sin ce 'no variables or

assignments are involved. In M, the' style is supported solcly with sY.Q.gnym

declarations. Nevertheless, the style is expressive and easily understood. LISP

would bè enhanced tremendously, whlie remainmg pure, If it allowed detlnitlOns

of thls sort

9.4.5 Map Expressions

Maps play an important roIe in programming la~guages - Palrwlse enumeration of the

elements in maps is the simpIest form of detlnition but thls enumeratlon is tedious and" at

times, impossible Map IitùaIs, therefore, take two forms (1) palrwise enumeratlon, and (2)

parameterized expressions. The pairwise enumeratlon uses Ada-hke palring notation and is

used more often for maps with small domams.

{ l =9 l, 2 ~ 2, 3 9 0, 4 9 l, 59 2, 690 }

• M permlts parametenzation of any expressIOn wlth the syntactlc form allowed by the

grammar rules

parameterizedExpr ::=.''['' id ":" formalTypeExpr "," 'T'expr
1

Therefore, the following three expressions denote the same map.

(1) [i. Integer 1 6 J (1 mod 3)

(2) { 1 ~ (1 mod 3),2 =9 (2 mod 3), .. , 69 (6 mod 3) }

(3) { 1 ~ 1, 2 =9 2, ~ .. , 6 9 0 .}

Most languages allow a form of parametenzed expression but they usually re.strict thlS

parameterization soleIy to procedures or functioos.

The "perimeter" expression shown previously was specifie for a circle of radIUs 10.0

units It could be made more general through the use of parameteflzation The M
expression would be.

3 - 12

[radius: Real]
(pi . Real - 3.141Sg26;

dlameter Real = 20 * radius,
penmeter . Real = pl * dlameter;
penmeter

Tjlis expression descnbes the perimeter for' a circle of any size Due to Its mflnitude, lt

could not possibly be expressed as a list of "radius ~ perimeter" pairs The type of this
expression IS garnered from the types of the formaI parameters and the type of the

parametenzed expression. Here, the type would be "[Real] Real" The names of the formaI

parameters and any subtype information is immaterial to the type

A typical map declaration mlght be

_noc' [Boole an , Boolean] Booleân =

where the ell1p~s must be replaeed by an expressIOn whose type is "[Boolean, Boolean]

Boolean". Sueh an expression Will elther be a map aggregate (WhiCh lS quite possible in this

case) or by a parameterized expression su ch as

[1' Boolean, r: Boolean] (not (1 or r))

The full declaration would then be

_noc [Boole an , Boolean) Boolean =
[1 Boolean, r. Boolean] (not (1 or r)),

yet this form 15 verbose. The following version is allowed in its place.

_nor':'" : [1' Boolean, r: Boolean] Boolean == [.] (not (l or r)),

The parameter names on the left-hand slde of the qualiftedExpr do not retlect on the type
but may add sorne semantic in~ent. The ,,[...]n syntax on the nght-hand side of "-,,

mherits the parameter list from the left-hand side.

3 - 13

,

..

9.4. () Discriminated Union Type8
~

If Sand T are sets, then the union of S and T, denoted SUT, is the set of all elements m S

o or T (or both) Programmmg languages orten include a sîm'll'&roconcept M's syntax lS

unionType ~:= typeName "U"
1

Since! the values for each type are disjoint, the programmmg language union IS te,[med

a di8crimmated um'on: l
' an element III t~e discnminated union of Sand T ca'n be traced 'to

exactly one of these component sets. A discriminated union is partltlOned into its

component sets. ThIs ~ata struct!lrmg techmque closely parallelslj the condltional or case

control structure of stan~ard languages.

Discrimlllated unioAs have been used to supply polymorphism-the abiiity to descnbe
\

routmes which are applicable across types-and to provlde a vanant record faclhty. Thelr

necessity is lessened by a more abstract view of type III M NevertheJess, theL are

particularly useful as a basis for recurslve data structures The following example lllustrates

. such a type: 2

Operator . TYPE =s { +, -, *, ;. },
Expr TYPE =s FORWARD;

BlllaryExpr TYPE = [left· Expr, op Operator, nght: Expr TI;
Expr TYPE =s Integer U BmaryE~pr;

x . Expr == (l, +, (2, *, 3)),

The infinitude of values denoted by the types BinaryExpr and Expr is an Implementation

problem but, not something about WhlCh the programmer need worry Importantly,

references or pointers are not required in order to express a recursive data structure

The only operation allowed on a discrimmated unIOn type is the deUnion operation

whose syntax Is given by the follmpng rules:

unionExpr ::= parameterizedExpr 1 UV"

deUn'ÏonExpr = ti'nionExpr u[" expr "l"

l Di8criminatcd union Is the term used by [HoMe 72J. Algol 68 calls this a united mode. CLU uses
the.term oneof

2 The keyword "FORWARD" Is intended to have the same semantlcs as Pascal's forward

3 - 14

-

i

,.'

Each parameterizedExpr must have a singl~ parameter and this parameter must correspond

to one of the possible type alternatives in the unionType. The unionExpr must caver the

;lllionType III that for each alternative III the unlonType there must be a corresponding

alternative III tbe unlOnExpr This operation mlfrors the lagease construyt of CLU and the

eonformlty clause of Algol 68.

For the uni'onType "Expr" deflned above, the code

([1' Integer] exprl \J lb: BlllaryExpr'] expr2) [x]

expresses one partlcular deUllIon expression Here, there are two alterllatives corresponding

to the possible type of x The alternative used will correspond to the actual type of x
during execu tlOn If thls type IS "In teger", then the value expressed is

([i' Integer] exprl) [x]

which IS a normal selectlOn expressIOn

)

3.5 Non-Fup,ctional Type Features

Prevlous sectIOns dealt wlth types in a functional world Th.e world, however, does not

seem to be totallY functional; a concept of slate does exist Programming languages,

therefore, supply variables in an attempt to capture thIS state

The next sections dISCUSS the primitives supplled by M for non-functlonal

p'rogramming, Variables 111 M capture state information whlle procedures permit executlon

wlthin a state. The ope~atlons whlch manipulate this state are intentlOnally more exphcit

in M than in other languages.' Importantly, both var!ables a.nd procedures are brought into

the type structure of the language

9.5.1 VarIables

[Hehner 82] notes that the concept of a reference is weIl understood ou tside the

- programming arena. A lIt/e, say "Chairman", may }je associated with a parti,cular person,

this title may be transferred to another person at sorne point ln time. The tltle "Chairman"

never changes bût ~ather the person to whom it refers. In this respect, the tltle (or name)

"Chairman" lS a variable reference On the other hand, a person's name is wlth them

forever; 6ne's name cannot be transferred to refer to another. The name of each person is

not variable, it is a synonym for the actual person.

3 - 15
\

0,

, -- ____ ___ ... _r l·

'"

(.

L

A variable is somewbat like a reference-bence tbe Algol 68 terrn REF-in that It

relates a name with a value; i e., a name refers to a value At any given pomt ID tlrne, that
1 •

name refers to exactly one entlty but is free to refer to other entltles at dlfferent points in

time.

The concept of a varIable in M lS very much hke that of CLU'

"[CLU) varIables are names used III prograrns to 'denote' partlcular

obJects at executlon tlme. Unllke varIables ln many corn mon

prograrnmmg languages, whlch are contamers for values, CLU

variables are slmply names that the programmer uses to refer to

obJects As such, It is possIble for two vanables to denote (or

'share') the same. obJect CLU variables are much hke those in

LISP, and are simllar to pOlllter variables III other languages"

Unllke M, however,

CLU variables are 'not' obJects; they cannot be denoted by

other variabl~s or referred to by objects Thus, variables declared

wlthm one routine cannot be accessed or modIfled by any other

routme"

1

In M, variables are allowed to be grouped together and manlpulated as a group; they can be

denoted by other varIables, they can be referred to by obJects M's variables subsume the

concept of pointers inherent in many.languages In short, a variable c~n be treated hke any

other value in the language since variables are typed-variables are encorp'orated mto the

type scheme For example, a type uV AR Integcr" eXlsts An entl~y of thls tYIle IS a hteral

of the type-"VAR Integer", it may refer only to an Integer, It may be referred to by a "VAR

:VAR In teger"

Two operations are bUllt m for varIables The flrst,' the normal asslgnment operator

":=", is an infix operator takmg a varIable on the left-hand slde and a value on" the nght . .
Th.e second, the postfix operator "~,, (called the deVAR operator), when applied to a

variable, Ylelds the current referent of the variable. These operators, though bUllt-Ul, look

very mueh like 1

1 The expression "PROC VOID" 1s explalned in the next section.

3 - 16

" . ,

• RN? r

!

~- ~-----------------

' .. ~' ,-.-->._-.~------------------

r .,.

(

_:= _: ! v AR In teger, In teger 1 PROG YOrD ' .. ,

., [VAR Integer 1 Integer = ..
"

They work hancl·ln-hand, When a vanable IS assigned to thrbugh. the assignment operator,
'" \ ' a.Il deY AR operations will Yleld the value found on the right of the assignment opetator

until such time as a new assi~nment is made

The indivldual elements of the type "VAR Integer" are not enum~ràt<:d in the normal

sense sinee then enumeration IS spread across several declarations ' The expressIOn "new

y AR Integer" creates a new integer variable and the ,vanable so created may be na:m-~d by

the normal declaratlon rules This declaration, strictly Spe~ing, would have to take on th~

rollow~ng form:

'x : V AR In ttger = new VAR Integer;

The syntax is relaxed somewhat for th~ case by replacing the' qualiftedExpr simply by the

type oC the variable itselr and allowing an addltibnal mit.ialization phrase, The eode t

x VAR Integ~~ = new VAR Integer; .

x '-'5!

May a.lso be expressed as

x: VAR Integet := 5!
,\

,..

This sùgaring ls allowed only for va.riable decÎaratlons Note that, unlike Algol' 68 which

<Irops a "REF" from a variable declaration in a similar sugared 'form, M does not drop the

"VAR", " ..
One important distinction bet~een variables in M"'and variables in other languag~~ is

best illustrated by the following comparison. The' code expresseej below shows slmila"r
declaratlons oC-an instance of a Complex type,

!

-.

1 The'"!" operator 18 ~xplalned in t.he next section.

3 - 17

. ,

-,

, "

. , - .-.-~---------"-- _ u ~ • ------__________ .. __ ----~- r
...

tt.

1 _

..

(.

...

"

,
1

'.

• r s ,

' .

. ..
. ~ ,

pascàl;
.,

~,

,.
. ,

. rypE Com.PléX • ___ RECÔRi> r.e: Real; lm: Real END;. "
"

, VAR x:t Complex, . , '0

M · . '

.. Complex' TYPE ',E [r~: Real, lm: ~eal];
" 100 t"?

x: VAR Complex,

'.
':J.li lpaScfl.l, "x"; ,".x.re"., and "x.im" are a'l variables. Each of these may be asslgned
Individually .. In M, howeVet,':·x~.r i=< 3.5",wo.uld be illegal sinee "x-J" i5 nofa VAR, "x.f

~. . "-

~ := 3.5" would be illeg;Ll Binee "f" lB)lot a field of :'x" (but is a field of ';x-") The vanabihty

, .

, ' ,

of a.. reference IS restncted solely to that" reftrence and IS not distrlbuted to the referenced

components sinee this would tr~at variables as object~ather than' as refèrenc~s to values.

Nàertheless, If vanable components are required su eh li type ean be deseribed. Note
"

the followlng variation on the previous <:omplex type

, "
Complex: TYPE . Ure. vÀR Real, im'"YAR Re'al TI;

, .'
x: Comp.lex ==' .:.; .

.
--~"x re-" and "x.lm'" are now légal . ~. . .' .. .,

• ,... i t t ..

The initial\Zation of "x" was purposely .avOlded here AgaIn: the separation: of creation from

declaration ~réates a certain syntoo::tic verb~sity in the declaratlon of a ~compound entity p
~ 0 " j

wlth variable components. Strictly speaking, glven the types
~ ~ , '

Product: TY~E == [·x: VAR Integer, y: VAR Il~al]; .

Array', TYPE = [In~;gero 9J VAR Int~ger;
,

·t~e following deeiarations would tie necessary.

, ' ,
p: Product == (new 'VAR Integer" new VAR Real);' "

a: Arra:x- '= {o~-new VAR Integer, ., g~ne}V VAR I~teger};
1

Where, an instan'ce is declared for a composite type whose components are al! variables, the

shortened declara.tion "id . typeExpr").S alÎowed in plaée ,of the full; the "new VAR
expressions are' made imphclt. The previous, dec,laratlons ~an be shortened to

.,
~

, 1

) z

p: ~roduct;
a: Array;

1 •

"

, .

l ' ~ f

3 - 18

.;

"
:

(1

. ,

. ,

r

~--- ----------~--~------------------------.. ------------...... --

".

. "

1
l
t
1 ; i'"

\.

•

"

1

!t$l

~ ~ i

A product tY'Pe declaration lB aIso allowed to bave an initialization clause fot Its vana,ble

components. This Initialization will occur for the cortes~ing' components ~_:~n
instance is deflned. For example, given the type de,claration

prodt'Jct Type == [X' VAR Integer := l', y: VAR Rea,l := lO!D:

, .
the declaration , • i. .:. ,

. ' .
pl: Product == (ne* VAR II1teger ;'-.:. 1!, n~w. V A.R Rea} :. , 1.0D; "

, , "1 • ~ ,

may be replaced by the declaration
• , 0

! ..

pl: Product; -

No sueh initialization Is allowed for a map type with variable!!. Assignment ta' each
, 9 ~ '. ~.

component must be on an individu'al basis, Le., "a[O) := 1!; ,a[l] :, . 2!; ... ". Un the next.

chapter, it will be ~hown hOw such an entity may be !!Ssigned to en' masse, i.e" .~ :=.{o";
1, 1 ~ 2, , .. }! .. ~) 0 , --.

9.5 E Procedures

A procedure (PROC) lS an expr~sslOn syntacticaUy enclosed between "«" 'and ''''>>>''
brac~ts. The brackets delay the elaboration of the contained expression until sorne lâter

ri " •
point in ti~!(; f\n explicit use of the postfix dePROCing opera~dr 'T' forces the exec~ti0n of

the PROC, Ù; replaces the call mechanism of sorne eurren t languages •

A procedure is mtended to be exécuted wîthm a state, the state being represented by
0;;> - "

the eurrent references of aU varIables, Execution of a procedùre Ylelds the valut:; of the

contained expressiori, this value is usually -depoodent upon the state It 'may be, tho'Ùg~
that 'only . the state IS to be ,ll-ffected, that no value is express~~' by the elaboration of 'the'

procedure. Here, as in Algol 68, M allow::? an expression to returfl 'a VOiD. result
.. l ur

Two examples of prpcedures follow:
, <

(1) «3» 1 ..:~.

(2) «y. Integer == x~ * 2; write[y]f » '
\,

'.

Here, the ftrst ;examPle and the Integer expression .~ .. ~re very simill:LJ' Execfin"~.,thhr
PRoè a.lway~ yields the Int~ge~ "a". PROCs are only -int~restin~ ~hen there a7 vari,a~l.e~ .

.
3 - 19

. \ ' ' .

,1

o
... \

" - -,. ,--_____ t_I .. ~_.M~t

(

,

(-
1
1

,
"

f {

t

1
f • j

\
i
;

(~-}

1·" .-~
\

L-·

)

present. The second example will output the value "x~ * 2"; é~actly w,hat thla value 18 will
,-,.

depend upon the state of "x" at the time the procedure is executèd:

4;'
It ls important that the distinction between procedures in M and procedures in other

languages be made clear.' Most corn mon languagel'l ptovide ~ procedure construct in order

to

(a) name an expression/statement,

(b) parameterize aD eacpression/stateD>~nt,
1 (c) creaté a sc~pe for local definitioDs, and

(d) defer binding of variables to values.

In M, these features are independent. In particular, one can parameterize a procedure .in

, order to achieve the procedure .concepts, of other languages but this la not the real mtent of

PROCs. Simply, they are to delay executlon (Le" binding' of variables to values) until a

later more specifie time. M's dePROCing operator IS made explicit to assure that the

programmer has the correct time frame in mind.

The effect of a procedure, as illustrated by the next example, should be noted
carefully.l

z : VAR String '= "abc "!;

-- "818z," c0ncatenate~ two Strings

Twice: StrÎitg == (z~ && z");

-- The value of Twice is known now.

Double: PROC String == « z" && z" »
-~ The value of Double is also know now but the value

Double! will depend upon when Double ls depROCed .

... Twice ... '. valu'e-.is "abc abc ";

... Double! ... -- value ls "abc abc ";

1 . ' In general, though no tneans ot, eX..PLe,.sslng operator precedence has currently bèen deftned, postfix
operators are 88Bumed to have the nlghestprecedence, !ollowed by prefix, lollowed by lnfix. Inllx and
i>06tnx are lett-assoclative; prefix ls rlght-assoclatlve. The buUt-ln posttlX' operator "!" ls given special

" status and has the lowest precedente oC aIl. The exr>resslon "x := x-!,; ls-pat;Sed as .. ~:= (x-»!".

3 - 20'

.'

l
--_l~: .'--___ .- r

,(

" '

..

z :=r "xyZ l,t"
1< •

, "

"

. ,
" ,

_," Twice .~.'-- value is "abc abc ";
"'~~ ~ <

... Double! ... -- value is "xyz Xy2 ";
".

'"\ . ~ ""' , \ ;,

\

, "

\

"

;rhe fOllowing procedu're declaration shows how an exprList can yield a PROC result.
'\ : '\ 1>, '; " .

random : ,PROC Real = ... , , ",

(seed : VAR Re'al '7" 0.2753168!;
,

<<Ii seed := flxI";" see~ ~» \.

The example also serves ta illustrate the notion of storage in M. '!Seed" will exist when trre

declaration of·"random" is elabol'ated and will be initialized at that .time. This initialization
1> ~ ",

is independen t of any cali to "random" . The value persists between separate invocations.

This simulates' the ldea of an 'own vanl;l.ble. The Vi~ibility of "se éd " is both defined by and
" . ,\

restricted to the exprLiSt ltself, .

3.6 i>a:rameterization ,-
.... ,

Previous sections have dealt with parameterizatiQn'by'djscussing maps. The expa:qslon of
thé parameterization subject matter here signifies its import in programming.

, ',;, J , .\ . '.

In M, a reliance on the concept of type-completeness ensures that pararriHeriz~tion
~Iid sefection are universally apphcable: an~ name can be a parameter, Il- parametet: can be
of any'typ~, and an argument can be constructed.that can be bound to ~any parametet.

Since parameteflzation is the funda:rne~tal to@l ln ahy programming language for provlding
, • ~ ... <-

changeable parts in a program, It IS important not to place any constraints on the forms'of
.' '

parameters and arguments If wè want to !.Ise the same.program for many dlfferent values
l ' ,

. .of x, We can do so by making x a patà.met~r.~ Type-oompleteness guapl.ntee~ that thls can
aIWa.ys be done, no'matter how x happens to be used in the ~t'ogram , .

Sinc'e M has brought 'variables, procodures, maps, and types mto its tYl:ie struceure, it

is important to discus::;. their relat\On~h-iP to'parameterization: During this discussion, sorne.
\,. ,~ ...

seemingly ~atural programming concepts are sho'wn to be unorthogonal. Somè of the
subtleties Inherent in th~ languag~ are made explicit here. . ,~'

o •

" 1

.. '
DO . , . _. _ ~_ ... _---:-~---1- . ,

l.

.' . .. 1 ~,

"

"

" ")

8.6,1 Types

,
In many languages, one orten needs to cI:.eate separate .routines in order to process objects of ,

's

dilferent types even' when the algorithms are identical. This increases complex'ïty while

degrading the clarity, modifiability, and reliability of the entire system. M does not suffer~

this degradation.

, .
The definition of type-completeness implies t~at If w.e can glve a name to a type, then

we must be able to make that name a parameter. Type declal'ations eXlst III most

languages yet type parameters do not. Newer languages, such as CLU, Alphard, and Ada,

have attempted to remedy this omission but they do not approach type parameters from a

type-complet~ness viewpoint Thêse languages ~iew type parameters as a compile-tlme

feature, this bemg especiallY obvious III Ada's generic types. The concept of parameterized

types ~hould not be a special construct ID the language but should come abou t naturally by

using type-completeness as a design decislon In M, type parameters are not grafted onto

the language as an afterthought.

Sorne languages provide bUllt-ID parameterized types. fascal, for IDstance~ knows of

the 'concept of arra~ and allows a programmer to define arrays with any compoI)ent type.

Sets and flles are aIso parameterized. The syntax, though, hides this parameterizatlon, type

para~eters. are identifiers preceded by the symbol of [Steensgaard-Madsen 81] noted this

technique and used it to provide parametérized types

Other languages provldè parameterized types explicitly Alphard, for instance, CLU

with its pa,rameterized clusters, and Mary ([Holager 78]) with lts statically parametenzed

modes [Tennent 77] describes a Pascal-ltke language with class parameters and

parameteri:lifd ,classes 'Ada, Red, and '1;'artan simulate parameterized types via a generte

facility. (In their favour, it must b~ noted that this r~triction was forced by the Steelman

([DoD 78]) reqUlrernents.) SIMULA's class hlerarchy provides an equivalent facility.

Euclid's parameterized types are somewhat limited and serve ta proviae variant recorçs;

tbey cannot be parameterized by types.

No new construct is needed to impi-ement parameterized types since parameterizatlon

is univers:tlIy applicable in .M. The follawing eXàmples iIlustra.te both type parameters and

p:arameterized types.

, .

3 - 22

. " . _._.-_. -~-- --'-' --~----

.,

o

•

<.

..

\

\
Ex ample: One-dimensional array type

IdimArray: [size: Integer, component: TYPE] TYPE = [.:,.l
([Integer] VAR component);

1 size

x. IdimArray[10, Integer];

y: IdimArray [2b, IdimArray[5, Reall ll;

Examp{e: A "generic" ltst type

List, ft: TYPE] TYPE == FORWARD;

EmptyLÎst. TYPE == { ml },

.' If

NonEmptyList: [t' TYPE] TYPE == [. j [car: t, cdr: List[tJ D;
List: It· TYPE] TYPE)=!: [. 1 (EmptyList U NonEmptyList[t]);

IntList. TYPE == LlSt[Integer],

This aIl said, however, It seems that type parameters normaIlY only parameterize other

types; the synta,x might very weIl be ditIerent. Normal values can parametenze types but

they sim ply serve to deflne, directIy or indlrectly, ,restncted types (subtypes).. Type

par8:meters WIll not normally be required for the usual parameterized entities, where the

type of an entity is important, it can be garnered by other means !
Chapter 4 ful"ther-illustrates parameterized types.

9.6.2 Maps ..

Most languages allow array parameters but not ail of these allow function parameters. To

M, these are both maps (Le., parametenzed values) which, being declarable entltles, must

also be able to be passed as parameters under the concept of type-eompleteness. A

functional programming style 18 well supported sinee higher-order functions ean be defined

and can be passed. For example, the declaratlon

integrate' [rune: [Real] Real, low: Real, high' Real] Real == ...
• 0

takes a fun'ction para.meter over whicb Integration will take place.

3 - 23

..

,

\

f' ,

'-

--""'----------._---"--'

(

, . . '

8.6.8 Variables

Parameterizéd variables can simulate array objects and rererence-returning functions. A

variable parameter simulates pass-by-reference parameter passing sein&n ti0s.

8.6.4 Procedures

A PROC in M is normally used to affect or to query one's environmen't and 'must be

explicitly dePROCed to be executed within thlS environment Tak'ing advantage of this

explicitness and of the type-completeness of M, one can deftne primitive control structures ..

(Control structures are not buIlt into the language itself.)

if~then_fi .

[cFpdition: Boolean, black. P'ROC VOID 1 PROC VOID == [.. 1
({ true ~ block, false" ~ « void » } [condition J); .

while_do_od :

[condition PROC Boolean, block: PROC VOID 1 PROC VOID . [..]

if condition' then «block', whi!~ condition 'lo block od!» fi,)

lf (x~ =1= 128) then « x := x~ ** 2 » fi'

while «x~ =1= 128» do « x .= x~ ** 2 » ft!
,

"" Though "if_then_fi" takes a simple boolean condition, the condition for "while_do_od" is a

procedur:p.' ThiS emphasizes the distinction between the two control structures. The
. "while" c ndltion must be execut~ repeatedly over differing states,in order to ·terminate.

1 . \ .

3.7 Static Typing Restrictions

Though, ideally, types were to be first class citizens of M, sorne restrictIons are necessary to \

ensure ~tatic typing. Speclflcally, a varIable type is Dot allowed It is nqt statically obvious,

for instance, whether the followmg declaration of "z" IS legal.

X' VAR TYPE := Real!;

if condition then «x := Integèr»'O!;

z: X- := 31; ..

...
3 - 24

t

- .- - ----------

i .
• 1

'1
!

L

(

A dynamically typed language would allow the declaration of "z" and wou Id determine its

legaIity a! run-time. ...,

Since al! types are established at compile time, ail type expressions must be statlc

One of these type expresslon,s may be a selection expœSSlon on a parameterizêd type; the

actual arguments In the selection must be compile-tlmè knowable. In general, no type

expression may involve deVARing or dePROCmg! either dlrectly or mdlrectly.

3.8 Overloading

• Recent languages al!ow overloadlrlg-identlfymg many dlStlllct entltles by the same name.

[Brender &, Nassi 81] note that

... (the overloadmg) facility cpntributes to both abstractIOn and

namespace managemen t AbstractIOn is aided because the same

procedure name can be used for conceptually equlvalent operatIOns

on dltreren t types of data For examplc, SQRT can be used for the

square root oper..atlOn for the vanous precisions of fioatmg-pomt

types Name managemen t 18 alded because fewer names are

needed, and nammg conven tions can be simpllfied or avolded " ~

Overloadmg enhances the ablhty to wnte understandable (1 e, readable) programs, where

the semantic distmctlon between two entltles 18 mlllimal, so should be the syntactic

distinction (The typical anthmetlc operator8 are prime targets for overloadmg) Forcing

ditrerent names for "conceptually equivalent operations" can be dlstractmg, the prohferatlon

of max and mm functions III FORTRAN 18 one such e'xample

~ Overloadmg 18 orte~ allowed for both subprogram Identlfiers and enumeratlon 'hterals1

but not for variables, constants, or types. To truly overload one another, two subprograms

must be distingu18hable in sorne respect other than their name In Ada, thlS distInction IS
- .

based on the paramèter and result type profiles of the indl~id ual en titles. In con trast, Algol

68 and Red look only at the parameter types. One entlty hides another If they are not

dis~inguishable by their profile Two subprograms declared in the same scope mU8t have

dissirndar profiles

1 In Ada, ~umeratlon l1terals are aetually treated as parameterless funet,lons.

3 - 25

Il r

-------------- -« •• -

\
When names are overloaded, sorne m'ethod of overload resolution IS requlred to

disambiguate or determine the entlty intended Whlle each entlty IS uniquely determmed by

a type = name pau, always qualifymg each name would be distractmg Resolution

techniques, based on the visibility rules of the language and on 1 the type mformatlon •

associated with each vIsIble, entlty, 'must mfer the t~pe of the entlty from the)lUrroundmg

context. 1

Each use of an overloaded IdentIfier must be unambiguous In statically typed

languages, if ,an amblguity doe~ eXlst" it must be detected at compile time Several

techniques eXlst for overload resolution in Ada. Arguments abound on the number of passes

of the parse tree required, the type of passes (bottom-up vs top-down), and efflclency m

time and storage for each resolution techlllque 1 ELl allows sorne overload resolutlOn to take

placé at run-iime though It takes only paràmeter types mto accoupt

Special' rules sometimes help to enforce "conceptually equivalent operatlolls"

Overloading of operators IS allowed, but sm ce they are generally parsed as prefix or lIIfix

operations, any new deftnition must adhere to these parser-related restnctlOns In Ada, the

equahty, operator is allowed to be overloaded but to return only Il: Boolean type, the

inequahty operator may'not be overloaded and IS always the negatlon of the correspondmg

equality operator

Overloading is inherent ln the genencs of Red: al! instantlatlons are impltclt and the

name of the instantiation takes the name of the generic unit These mdlvidual

instantiations are "conceptually eqUlvalent" Though indivldual mst~ntlatlons jn Ada are

not reqUlred to have the same name, common practlce may be similar to Red 's pohcy

Due to the concept of literais m M, the usual sense of overloading literaIs IS made

somewhat more eomplex. Since ail Identlflers are literaIs for sorne type, ail IdentifJers

(includmg th ose whieh name variables) shoul? be allowed to be overloaded Functlons are

oVf:rloadable in many languages but arrays are not No 8ueh disparity eXlsts in 10 since

they, are treated siml~ In fact, in M, there are no restnctions on wha.t may be

overloaded '

One further point must be made. [Dijkstra 76, p. Q6] states his preference for using

dot notation over 'funetional notation In his Vlew, arrayX.lowBound 18 better than

/owBo1lnd(arrayX) since

"unless we mtroduce dlfferent sets of names for these functions

1 See [Ada Ratlonale, 79], [Persch et al SOJ, [Cormack 8lb], [Baker 82]).

3 - 26

• 1

1

\

(

deftned on boolean arrays and integer arrays respectlvely (wtlic1

woulç be awkward) we are forced ta introduce functions of an

argument that may be of more than pne type, something 1 would

hke to avoid as long as pOSSible."

This does not solve the problem of name resolutlOn but rather treats It m an Inverse

fashion The overloadmg still eXists Furthermore, m M, the dilference 18 me~elY syntactic

3.9 Summary of Type Features

In M, a normal enumeratlOn type defimtlon mechallism IS provided along wlth generator8 to

ereate product, Union, and map types ThiS shares a common ground wlth several

languages ApplicatIon of· the prmclple of type-completeness, though, allows types,

variables, and procedures in M to be typed, and also permlts parameterizatlOn to be applied

orthogonally Parameterized types become natural, control structures need not be bmlt-in;

expressions are more powethtl.

An Important distmctlon 15 made between an:ays, funetlons, and procedures III M but

this distinction is not corn mon to other languages Functlons are ordmary maps, arrays are 1
functions whose target IS a vanable type (1 e., a parametenzed vanable), procedures are not

maps at ail though they are often parameterized

Other factors should be noted Fir~t, a clean spltt IS made between the creatzon and

the ;iwming of entitles' nammg provldes a synonym for an (already eXIstmg) entlty Second,

the functlonal and non-functional aspects of M are~ ~als? split The non-functlèn~ world IS

intentlonally made more expliclt Thlrd. smce aU Identiffers have a type, overloading has

been generalized '"

This c~a:Pter has laid tb,e groundwork for a language whose type system, with fewer

primitives, surpasses the power of a language such M Pll.'lcal The next chaptcr bUllds on

this foundation and a more abstract Vlew of type ta support still greater expreSSIveness

3 - 27
p

i
, , ..

..
Polymorphism

4.1 Introduction

ParameterizatlOn allows one to widen an expressIOn to coyer many simllar cases. We wzden

the expression "1 * 2" to "[l' Integer] (1 * 2)" to descnbe not Just the doubhng of a

partlcular mteger value, but the doubling of any mteger Parametenzatlon Impltes

generalization.

Most languages allow one to generalize and to descnbe the set of values for whlch the

generalized expressIOn holds In programmmg languages, this set of values lS descnbed via a

formai parameter list, the type of each formaI parameter restncts the set of allowable actuai

values If one's vlew of type'ls narrow, then parametenzatlOn IS Iess general By wldening

one's view of type, one can wlden the parametenzatlon thereby mcre;Œing the

generalIzation (

The next sectIOn dlscusses a Vlew of types III current languages and pom ts out how

thls VlC~ is particularly limltmg Polymorphzsm l
IS then defined· and a more general vlew of,

type lS dlscussed Next, the type compatibility rules in Mare stated; III essence, the actual

view of type' III a language is defined by such rules Finally, examples of polymorphlc code

. are glven

4.2 Type RestrictivenesB'

Strong lyping specifies that in any context ln which an entlty is used, the type of that en~ity

must agree ;wltoh the type expected In particular, the types of actuai parameters mùst

agree wlth the types of the corresponding formai parameters A narrow view of type

ensures a narrow role for parametenzation

1 See [MIner 78] Cor a the ory of type polymorphlsm,

4 - 1

..

1

O~e oft-quoted criticism of Pascal ls apropos. Pascal's restrlctive arra,y type is a,

result of two reqlllremen ts

1 Ali types must be determinab'le at compile type

2 The d,menslOns are part of an array type

Slllee the dimensIOns of an array are part of its type, the dimensions of an actua! a'rray

parame ter must agree wlth the dimensions of the correspond mg formai array parame ter.

ThiS, III Itself does Ilot pose a problem Indeed, If one must make the dimenSIons of an

array part of the type. so be lt, "an array of 10 Integers" €an be a type Bowevcr, one

should then provlcle a mechamsm to express "an array of Integers" -(whele the slze IS not

Important) and "an array" (where the component type is not Important elther)

Overspeclflcation defeats the puqiose of parametcflzatlon

In Pascal, however, such a type abstractIon mechanlsm lS not present. If one in tends

to wnte a "sum" routIne ta sum an array, one must proYlde a scparatc mstance of the

routIne for each size array.' ThIS, unfortunately, m~.es the language excesslvely

cumbersome for programs that perform slmllar manIpulatIons on a large number of dlfferent

s'Ize arrays It IS impOSSible ta wrlte a general array malllpÎllatlOn procedure In Pascal.

StandardizatlOn efforts have made an attempt ta solve thls partlcular problem; several

dialects have applIed "fixes" (See [Kldman 78] for various proposais)

Pascal has been critlclzed for ItS lack of dynamlc arrays but thlS IS a symptom of a

more general problem that most languages mcur the mabll1ty ta abstract the propertles of

an entlty ID whlch one IS mterested, the essential propertie5 reqUlred should c\etermme the

type reqUired The deSIgn of M has been motlvated by the need - to express such type
abstractw7lS One must be careful not to confuse thls concept of type abstracfwn with the

more corn mon notion of an abstracf ,data type

We WlSh to be able to wnte routines that can handle rnany clifferent types if, in fact,

these types have cornmon properties. Though one may view "a IIst of In tegers" as being

ditferen t from "a lIst of Rcals", say, there are operatIons whlch can be performed on "lists"

themselves and upon which the types of the components have no beanng A polymorphie
routllle (polymorph meaning approxlmately "many forms") IS a routmc that can operate on

an argument which can be one of "many types" .It can subsume many Instances of routllles

coded for dJfferent types Usually these "many types" have a cerAm set of propertles in

comI?on and the polymorphie routme IS allowed to use thcse propcrtles ln Its deflnitlotr-

Expressing thls set of properties is the focus of the subsequent sectIons III thlS chapter

/

4-2

'.

---.... .,.~---_ ~ ~---,

i

t
, \

1

(

L'

4.3 Generalized Hierarchy
, .

The diagram below depicts the (nearly) hierarchicaf nature of objeçts in a Vehicle world.

Vehicle

/1~
landVehicle waterVehicle' airVehicle

/\~./~~
Cars Trucks Amphlbians Sallboats Jets

Several impprtant aspects must be mentlOned The lowest level of this hierarchy comp'tses

the actual entities in the Vehlcle world, the sets at thlS level are disjoint. The levels above

the bottom level denote abstractions III this world. Amphlbians, bemg able to travel on

both land and water, belong to two of the abstractIOns expresseç! on the middle level.

These midùlf level .abstra.ctlOns are not dlSJomt. The top level here comprises ail vehicles, It

is the most ,abstract entity in the VehlCle world

It is orten con ven lent ta treat entltles as belongmg to one of these abstractions.

Therê may be a smgle process requlred to register a Vehicle, for instance, mdependent of the

actual vehicle type. The action of bailing out a waterVehlcle could be descnbed without

referring speclflcally to reference to Amphlblans or Sailboats

One cannot construct a landVehlcle per se how does one assemble the parts of such

an entity? One can, however, construct a Car, Truck, or Amphibian and this entity, once

constructed, ('an be referred to as a landVehlcle

The Vehicle world diagrarhed above, ev en assuming that no other specifie types of

vehicles really do exist, is by no means complete. Other abstractions can be inserted into

the hierarchy' motorizedVehlcle: for example, or wheeledVehicle.

4-3

li al

i
~
1·

•

(

"
..,,,. pt "'~.... ., l

... _~ .. -0: ~ A_ "'" , '

Abstractions, and·a related hierarchy; ar~ 'often described in a natural language by

nou~s and adjé'ctives. A noun is "a word that is the Dli~e of a subJect of discour;e"; l 'an'
" .

adjective, is "a.ward standing for the name of an attnbute which being added to the narne

of a thi~g describes the thing more fully and deftlllt,ely ", 2 In expresslllg a partICuJar class

of entities, the preciseness of the deseriptloIl (o~,. lacK' thereof) can be 'tallored by. an

appropriate choice of nOl,ln and qualifying adjectiv.es.

To' expand on this eoncep,t, .the follow!ng notation is introduced: ~

A,B, C, ... denote specifie sets of objects

a, b, C, ':., denote properties of objects

. ,

denotes a speciflc set "T" wbose elements' have the prqpe-rtlès

"a" .. "b", and "CU

u . u,v

, "-
denôtes aIt elemen ts in 'the universe ,with, propertles .. u" and

"v"; the set 50 formed encompasses al! specifie sets whose

elem'~nts haveyopèftieS which mclude' ,both "u" and "v";

consequentl~ "U" denotes the universe pf objects' and

. comprISes aIl specifie sets

The following sets are posited:

A a,b,c
B

b,c,d
C !

a,c,d,e
. '

, >

•
Notice that tbese sets have properties in common. The set Ub 'coffipr(ses'both A b' and'

I!i ! l ,e.. '. a, ,e
Bb d' A hierarcflic relation~hip exists as depicted by tqe diagram:

,c, .

A
a,b,c

B
b,c,d

/'

."
"

, ,
,',

, ,

1 •

.. ;

Other propertieS are also shared, li.dding l:Jà,;' U c,d'. anô U c' ,t~e hiera~chi~ relationsh~p ~an'

\..'

1 Webster's Dictlonary "

2 Oxford Engllsh Dlctionary . ; !,
j •

4-4
. .

,1 ,._. ,---' .. - ___ --.1"--____ -

"

. ,

" .

,/

,
, ,

.. \'J;

1 l' S ~f

/,

'.

'.

.

é

\

.....

;.,
\.

~.

"

, ~

"

..
"

!

" !

. , ,
','

" ,
~ .

~ .

1 •

'.

be drawn as shown below.
not draw.ri ... '

<?thér'abst~~ction~ dO'exist 'U, Ub' even the e,~,Pty Ul>.e) but are
-:~ ~ . ., .' .)~

~
~

,

..,
' .

1 . , . 'Q . ,

'-
\

. 1

" ,~
,C d "

a.,e, ,e
A '.'~

• à,b.c ~b;C:d . , , , j ,
'~

\ ,!,A solid artow "T .. U \ If imp1ies that the °speCifl~ set T is contained in the abstract

J,

~

..

'.
, se:t U '. ~ similar relationship ,of containment between asstrlltct sets is: depic't<;d by the
d~hed arrow. ~ .

':

.Just as ln the real world, objects are classlfied via their prop~rt,lC~ In to ..a"gen~.ralized
'hierar~bical structure, 'so, ~~y be Vhe types in a type system Wh Ile. in 'naturaI languages
properties Of an object. are desèribeq via adjectives, 'in programmlllg languages these

propertH:s are deflned by the eirst"ence of a,' cèrtain alg~bra. This type ~bstraètlOn fac1lity

a1l0ws e'ach en'tity to belong to' m~ÎlY {a,~stract) types. Depic~ed 'belbw lS a portion 'of 'a' tyP~
wo'rld. ~ ~

.. .~' . . UffiIcc,pred
• t. • ,\

. .. . ". " . . . , '.
Booleàns:

, and.or.not.=.sucG.pre"?

., .

.~

Reals " . +.-, • .f,<.=.

Integers' , +,-,*./.< ,=,succ,pred, \; 1 • < -
.j ~ 1 ~ ï 1~·.,.' . .

, .

.. 1

• 'fi ~ if. ;

In this type world, ~he abstraction "u" would correspond"to "any type"
, , '

Âgaiit', 'notide that

tbe two type abstractions here overlap: both !!omprise th.e Intè'gèrs.

. "
An important distinction jb~tween this' general.zed 'hierarchy ànd the ~pe hie-rarchy . .

allowed by a l!1onguage such as Smà.lltallè must be noted, In Stnalltalk, the hierarchy is built
~

. top-down. Each of its liiubclasses is' a r.e~nernen t of a sin~le superclaSs: These superclà.sses
(re~ "abstractions") cannot 'overlap. The previously diagramed Vehlcle world cannot truly

4-5

- ,,'

..
,\ '

... ~ .

•

,,'

..

;:

,. ,

-= ,

, ,-

. '.

"

'.
exist in Smalltaik since Amp!libians cannot be an instance' ç>f both a larrdVehlCie and a

waterVehicle.

'SmaJÏtalk's type hièrarchy, buHt top-down through a process of spetwlization, is , ,

structured aS~ a tree Each Dode in thlS tree must be named. A gen"'erahzed hierarchy J buift , . ,
bottom-up tlYrough generali,za/Jon, allows an expression to denote a node 'and permlts

f1exibilit·y A~Y possible type abstraction can be expres~d An exp.te~slOJl. param~teflîed by
such a type abstraction can l)e much more g"eneral. Pararneterized types III M, though, da , , ,

provlde a }lierarchlcal.structurè re~embimg a top!down structuring technique,' ,
., .

4.4 Type Abstraction
, . . .

~ Qverloading' and polyrnorphism are related Ideas in M Overioading 'Qafl bé'ufied at the levei .

..

of a specific type to state, what,;:re "concep'~ual!y eqUlvalent operations": ~l)èse' operations
deflne the cornmon properties. Taking adval)tage of this knowiedge,' one ',clfn tllén define a

type abstraction. A polymorphlc. routme-;-ofl'e with a pa:ramet~r whos~. type lS an
.abstractIOn-then deflnes a "higher order opùation" which lS mdependent of any àctual type.

, • • 1 .,

kIl ~rray of Integers lS orderable preclsely tlecause lts component, type-,lS ordered and "

the type Integer lS ordered preclsely because th~ relation "< [Integer, Integerl Boolean"
exists. !n fact, any type T, say, lS ord~red If the relatibn ," < [T, Tf Boolean" exi~ts, any . "
array -of these Ts would th en be orderable .---

Such an ordered type abstractIOn wouid be !ll1rrored by the expreSSIOn

?T 1 < . [T, "Tl Boolean
~

and is read "any type T such that '< [T" Tl BooI~an' e~ists". {"?T" is termed an ·ab.str.act
identifier)' Integers and Reais wouid fall ip this category;. indeed ma.ny typ.es: are ord'~a~le.
The use of such expressions, is restncted to formaI parameter lists and their ~ema.:utic& must
be dlscussed after thè rules for type compatibllity lare stated. However, the further,

,examples prqpded ln this section should ;~ffice to suppolrt a propel"intuitive feeli~g yo; type
'abstraction. l ' ~

.\

-, ..

l

t
t
i

-
.....:;; ... '--------~ .;. rra. l"

, ,

f
'\'

t
1
1

!
t , ,,-,

\ ,

1
1
l'

1
1
! ,

,
1

, ,
1

o ,

f

--

(l,

Cl

Example 1: Printable Type

?t l string if y [t] Stnng

Sinee only Strings, say, ean be ~rItten out, the ablhty to "stringify" -a value

(Le, the existence of a map "stringlfy" from one type tç> the type StrIng) makes

that value' printable

-
Example 2 Summable Type .

?t 1 + [t, t] t, addltiveldentity: t
\

Note that two "propertles" are required Assuming the normal concept of

Integers ~ith "+" deftned, the type Integer would then be summable if the

declaration

additiveldentity Integer == 0;

eXlSted.

Example 9: Iterable Type

?t 1 ftrst : ,t,
last ~: t,

suce: [t] t,

< : [t, t] Boolean

One can normally iberate over the Integers but n~l'"'~ver the neal~. The ftrst

two properties here ,may be viewed as parameterless functions; they mlrror

Ada's built-in attributes

The designers of Euclid mtended that the knowledge of how to e~!Jmerate
the e1ements of sorne data type should generally be associated with the type

(module) rather than wlth each loop that needs such an enumeration. In M,
this iterator facility can be replaced by a typl'! abstractiCllL

1
,4 - 7

, '-- -----._---------_ .. _---------

• <1

4.4.1 Type Oompatibility
~

..
. ,

Though other languages have the noUons of "a.ssignabIUty" and "type equivalence", the . ~

• question of whether a given expreSSIon IS tYP6 correct III M requces to .. askmg "Is the

expression 'typeExpr == expr' legal?" Type compatibility, then, must be esta"bhshed for

each .quahfie,dExpr "Asslgnment" is treated like any other operation- It lS à map selection.

Ali selection operatIons, though, are defined In terms of a synonym declaratlons ~o that for

the declaration uf Ip pT] rT '. ", "f(x]" is legal If and only If "pT == x" is legal "Type , ,

eqUlvalence"" IS a too stro~g a term Ideally. the type of an argument (Ta) shOl,lld be

,compatible wlth the type of a formaI (Tf) owhen the algebra deftned on Ta suppor~s at, ~east

the algebr~,of Tf

Only.three forms of type expressions are vahd formai types (though an extensIon will

he mentioned later)'

formalTypeExpr

::= name
~

::= name ,,[n. expr u,""]"
1

:.= "[" formalTypeExpr "," "ln formalTypeExpr
1

(Form 1)

(Form 2)

(Form 3)

The fi'rst form corresponds to any named type, the name pmpoints a partlcular type value.

An argument IS cOl11patible If It IS an mstance of this same type En urrPeratlOn , product,

and unIon types must be named to be used sincp anonymous typ'es are not allowable formaI
parameter types. For example, "p. {a, b, c}'u cannot be a formaI pararnet;r 'though If: the

definition "T TYPE = {a, b, c}" eXlsts, "p TU can be ThIS simple restnction allows a

type matchlllg scheme WhlCh wîll seem' natural to prograffi:mers famlhar wlth other

languages It 18 Important to note that different type names ln M do, nQt necessanly .,
Il

deter~ine different types Many n%.mes can be synonyms for the same type th~ugh this

should not be a preferred programmmg style

~e second form signifies an lDstante of a parametenzed type An argument lS

compa.tible If its type 'is a member of the same °parametenzed type and If the par~meters

supplied to the parametenzed type at 'the declaration of the argument express the same

value, Le., are synonyms for the parameters to this formaI parametenzed type

The thlrd fofm is a map, type An argumen t lS compatible If it Itself is a map wlth

the same number of parameters as the formal and each of these parameters match the

corresponding formai parameter. In addItion, the result type of .the argument must match

the result type of the formaI This allows maps to be passable without restnctîng the

4-8

r .".

..

, 6'

'.

(.

<.

........... matching scheme to name eqUlvalence.

\
\
1

Example' Form 1 ..
Colour TYPE == { pmk, magenta, red };

Color TYPE == { pink, magenta, red };

isPrimaty . [x: Colour] Boolean == .
\

... IsPnmary [Colour==mÇl.genta] -- legal

... IsPrimary[Color ==magenta] .. -- Illegal

Example: Form 2

IdimArray '[size Integer, component TYPE] TYPE == ..

prlntArray (ldlmArray(S, IntegerJ] PRoe VOID ==

xl. IdlmArray[lO, Integerj ::::=' ':.

x2: IdimArra~[20, Integer) == ..
: x3. IdimArray[lO, Real] ==

printArray(Xl]! -- legal
" A

pri?tArraY(X2]' -- Illegal, 20 is not il- synonym of 10

printArray(xl]! -i iIIegal, Real is not a synonyIp of Integer

Example. Form S

integrate. [fuIle' [Real] Real, low '~eal, hlgh Real] Real ==

\

,

.. integrate(sin, 0.0, 10.0] -- legal (~ummg a normal mterpretatlon of ~sin")

-,' ... integrate[_+-, .1, .2] -- illegal, _+_ has wrong number of parameters

~ \
Though type abstraction "expresslOns". as alluded to ear!)e.;, do not really eXIst, such

abstractions are expressible th:rough a dllferent means (but surprismgly simllar syntax)

An "abstractld" IS a leXical entlty' slmilar to an ordmary Identifier but has an lllitiai

"?"-"?t", for inst,ance The "baseId" correspond mg to an "abstractld" Is the abstractld

striPped Of,lt\leading "1". In the defillltion of a formaf parameter. an abstractld may take

the place of a type name Or of an argument to a p,arametem;ed type The Intent of such a

substItution 15 best reall~ed by example5 Tbe following parameter declàratlons parallel the4' ,
4 - g'
~

J

• .1

\
\

... ,

t

. '

\

'.

J~V •

,tbree forms noted above but abstractIds have been introduced.
~

pl' 'It,

p2' List [?componentj;

p3 I?target] 'Isource,

, .

Abstractlds mmlmlze the lmpbrtance of the actual type. An argument correspond lOg to the . ,
par;tmeter "pl", for lllstance, can be of any type, the abstractld "'lU" acting m'uch hke a

(property-Iess) type ab~tractlon. 1 The parameter "p2" 113 matched by a "LISt" of any type, a

List of Integers ("Llstllnt~gerl") perhaps or a LIst of Realt> ("Llst[Real)"). the actual

" component type IS of httle Importance The parameter "p3" IS matched by a map wlth one

parameter; agam. the source and target of the map 18 Immatenal

TYpe conslstency throughout a parameter Iist can be effected by an appropnate use of

base Ids and abstractIds Though a paral'fleter. of type "'It", say, will be. matched by an

argument of any type, any further use of the correspond mg baseld "t" wlthm the parameter

list must alsa be bound to the same type Note the followmg declaratlon

map [pl i?t] t] t == ,

The parameter "pl" here wou Id be matched by an entlty whose type 15 "[Integer] Int~ger",

but not one whose type IS "[Integer] Rea]" SIllce the mdlvldual "t"s 'must be consistent .

Furthermore, If the argument were of type U[Integer] Integer", th en the result of. such a map

selection will aJso be "Integer". The deftnltlon of "map", however. knows nothing about "t"

other than that It 15 a type The type of the argumen t IS IOconsequen tlal to the deflllltion
of u map"

Normally, an abstractId is used where a type expression 18 reqUired It wou Id then be
•

of type TYPE and each use ?f the correspondtng baseId must trea~ed as a TYPE In a

selection expressIOn to a parametenzed type (see the prevlous declaratlOn ?f "p2"), the

abstractId may take the place of somethtng other than a type expressIOn (thou'gh not in the

case of "p2"). Parameters of a parametenzed type can be- of- any -type, the usage of the

abstractId (and related baseIds) must be conslStent'wnh the correspondtng déclaration of
-------the parametèr for whIeh It stands--lIrî1îe expressIOn "ldimArray!?slze, ?componentTypej",

"slzè" is an Integer (as determined by the declaratlon of "ldlmArray" above) and can ont y

be uséd as such, slmilarly, "component" can only be used as a TYPE Smce type Iden'tlHers

cannot be overloaded. "ldimArray" IS unlquely deHned and the types of both "slze" and

1 A parallel exlsts in the ELl mode MANY" (also solely a Cormal type) [Wegbrelt 74J terms this 'a •
relltracted unlo'n

4 - 10

!
i
\
f'

•

(

\

't

"component" are made ObVIOUS.

The next examples further illustrate the'use of an abstràCtld.
, '

Example A bstractld/ BaseId Conslstency

-:<_: [x' ?someType, y. someType] Boolean ==

-- legal. someType bound to Integer ... 1 < 1

... 1 < 1.5 -- illegal, someType bound' to Integer but second aigument is Real

Example,: Abstract Instance of a Parameterlzed Type

List [t TYPE] TYPE =

printEaeh: [List[IntegerJ] PROC VOID == ...
writeEaeh: [List[?tJJ PROC VOID ,=

intList: List[Integer] == .. ,
realList: List[Real] = .. ;

. prin tEaeh [in tList]! -- legal

printEach[reaIList]! -- ilIegal sinee Real does not match Integer

writeEach[mtList]! -- legal,

writeEach[reaIList]! -- legal

We assumed earher, hawever, that the type abstraction expression

?t 1 < . [t, t] t

•
was ta encompass al! types deftned with the ordering relation .. <". How lS such a type

matched? Haw do we check that the type of an argument is compatible? Certamly an

Integer argument would seem ta be legal but how do we know that "<" lS actually deflned

for Integers? After aU, unhke CLU, there is no "abstract data type" for Integers where we

ean loeate such a de~nitlon. The answers to these questions are dealt with next.

4 - 11

" .

,---r------.... -,

r'

t
\

---------_ _-~-~--....._ _-_ ""''' ... ,,~--------~_._" - . -"--_.-,-_. -,

(

·c ~,
~.~.fJ Use-Site Binding,

NormaIly, ail identifiera not bouna locally withln an expression or to the i<,arameters of that

expression, need to be bound to entities more globally declared at a deflnltlOn site M also

allows parameters to be use-s,le bound-bound to an Identifier at the site of the use of the

corresponding parametenzed entity Sorne languages terrn chiS cal/ostie bound 1 ThiS 18 not,

dynamlc bindmg, rather, the identifier is still statlcally bound but m the enVlfonment of the

User.

The example below shows the syntax and semantlc effect of such a use-site bmdmg.,

Expliclt parameters m a formaI parameter hst are separated from t.he Imphclt parameters

by a"," symboI; the implicit ones, bound III the environment of the user, lie to the'r1ght of

the symboI

=

,

1 In M. SU~Plylng parameters to a procedure solely blnds the parameters wltbout executing the
procedure Slnce. In other languages. the term cali denotes both the blndlng and the executlon, the
term call'6ite 15 avoided when descrtbl~g M; the term uu-slte ls substltuted. J

. '

4 - 12

\

___ • _____ • .." """".r'_ f

\

r

(

II>

Example. Use-SIte Bmdmg

-- Definition Site

negate' [x ?t 1--- . [t, t] t, addltiveIdentity: t] t:;:;: [...] .

(addltlveldentity - x), .

-- The value assoclated with "x" will be passed expl!cltly

from the use site

...

-- T'here must exist an en tity named "_ - _" at the use SI te whose type

is "[t, t] t" where "t" lS the type of the argument assoclated

wlth "x", an entity named "additiveldentity" must also exist

at the use SIte whose type IS "t"

-- Use SIte

-- The type lnteger wIll normally be global ta all use SItes SInce

-- It Will probably be pre-deftned Assume that the normal "properties"

-- are detlned Simllarly assume that Real eXIsts

-- In order for the up-comIng use of '''negate'' to be legal, If a declaration

-- of "additlveldentlty" IS not deflned or IS not visible from here,

-- then it must be explIcltly declared. Assume one does Dot eXlst

addltiveldentlty Integer == 0,

negate[-1 J

-- legal, the addItive Identlty for Integers ls known here

. negate[1 0 1 .

-- Illegal, no definition of "addltiveldentlty [Real, Real] Real" IS vIsIble

..

As stated prevlously, ln checkmg the type compatlbllity of a cali to "negate", the ty,pe

correspond mg ta the abstractld "?t" ls bound to the type of the related argument In the

llrst use, this type lS Integer The imphclt parameters "_ - _" and "addltlveldentlty" must

~hen have the types" [In teger, Integer] In teger" and "Integer", these defillltlOns do, mdeed,

exist

4 - 13 .

. ,

.,

.:.'

•

(

Though previous discussIon treated

?t 1--- [t, t] t, additlveIdentity: t

as a type expressIOn (a type abstractIOn), such an expression is really only a IDcomplete

portIOn of a paranfeter IIst The deftnltlOn of "negate" doeS' not have one parame ter whose

type lB expressed by a type abstractIon expreSSIOn Rather, It has three parameters-one

exp}iclt and two Impllcit Never'theless, the actual concept of type abstraction 1S proVided

through an appropnate use of use-sIte bmdmg and abstl act.Ic!s Use;slte blDd1l1g IS mtended

as a scheme whereby type mformatIOn (operatIons, attnbutes) can be passee! unphcltly

Note that type compatlbllity IS mdependcnt of whether a, argument IS expl1cltly passed or

use-s"e bound : ~'_)

,.j..{ B AdjectIVe Syntax

Semantically, nelther abstraetIds nor use-site blnding is essentlal.

sum [Component TYPE,

array [Integer l 10] Component,

+ [Component. Component) Component,

additiveldentlty Component

1 Component =

~ne could slmply saI

to declate the summation routine If parameters were allowed to depend upon prevlous type

The following use of "sum" would be typieal

realArray [Integer 1 101 Real ==
sum[Real. realArray, _ + _, 00]

The only use of the type parameter "Component" IS to ensure th at other parameters involve

the same type Type information is statle, though, and a ty pe parameter ean dehver no

extra lllfbrmation at runtlme To lessen the verhoslty of the deflnltion and !-Ise of sucL_

maps, type mformation may be captured Implicltly In place of the precedmg declaratlon,

the fOllowing is allowed:

sum [array [Integer
1

ID] ?Component.

+ . [Component, Component] Component.

addltlveldentity Component

] Component == -
4 - 14

,-.

f .

1

and then the form

sum[anArray, +, additiveldentity]

would tYPlfy eaçh use The last two formai parameters of "sum", however, are actually

intended to express propertles of the type of Drst parameter Agam, lU order to capture thlS

"type" mformation Impllcltly, the declaratlon could be changed to allow use-site bmdmg,

The above example wou Id be declareel as

sum [array [Integer
1

10] ?C'omponent 1

+ [Component, Component] Component:

addltivelden tity C'omponent

1 Componen t =

(note the "1") so that each use cou Id th en be slmplifled to the form

sum [anArray]

whlch IS certamly a mOl'e abstract [orm; It rctams the sem an tics of the original'even though

sorne arguments are lmpllclt

In M, the declaratlon of "sum" mai be slmphfled further through the use of

adjectives The relevant syntax IS

adjective = Id " .. abstractld "1" propertles

propert les = Id !ormalTypeExpr l ". "

!ormalTypeExpr -

.= adJectweName abstraGtld

ThIS adjective syntax mlrrors that of abstract type expressions e1iscussed ln Section 4"4

Adjectives have no type, they are not values, they simply proyide syntactlc Sllgar
J.

An ad)ectweName may be used ln descnbing il formai parameter; the propertles

associated wlth the adjective are substltuted as Impllclt parametcrs Glven the followmg

adJectives,

•

(

(

, \

tt t d~ S @U

Iterable :: ?t 1 ftrst : t, last . t,

_ <_ : ft, tJ Boolean, suce: [t] t ;

Summable . ?t 1-+- . [t, t] Integer, additlveldenUty : t ,

the declaration

sum [array: [?Index] ?Component 1

flrst .. Index, last Index,

_ <_ [Index, Index] Boolean, SUCC : [Index] Index,

_ + _ [Çomponent, Component] Component,

additivelden tlty Component

1 Componen t ==

may be replaced by
\

c

sum . [array [Iterable ?Ind-ex] Summable 1Component 1. Component =
The impliclt pa.rameters of each adjective are made implicIt parameters of the map "sum'·.

The advan~age of the adjectIve syntax 15 that it allows a programmer ta envIsion the

intended, type abstractIOn_ The required operations can be viewed as propertles of a type

rather than parameters of an expression

4.5 Polymorphie Expressions

When types, procedures, vanables, and values can be passed both Imphcitly and expllcltly,

the expressIOns we wnte can be far more general. General array mampulatlOn, for mstance,

becomes possible The next example sums the elements of an' array Notice that the size of . ,

the array IS not Important AIl that matters 15 that we can Iterate over Its elements and

that these elements are able ta be summ-ed

•

4 - 16

7 ,

(

L

.
•

sum: [array: [Iterable ?s] Summable ?t] t = 1 .. ·.]
(result" VAR t .= additiveldentity!,

);

index: VAR s := ftrst'.

while « l~dex < last » do

« result '= result" + arraY[ltldex-J!;

mdex = suêclindex"l'

»
od!;

result-

The power of polymorphism can be seen by the faet that many language-supphed

opera.tions can be vlewed as polymorphie expressIons The type "VAR Integer", (or

instance, lS not defined through a' VAR type genera.tor Rather, It 18 an Instance of the

variab~e type famlly deflned by the parame'tenzed type

·VAR_.lcomponent TYPE) TYPE =

The extensible syntax allows declaratlons to take on the natural notation "x VAR Integer",

say, out this ts eQUIvalent to "x' VAR-llntegerl". Compatib,lhty with a formil-l parameter

whose type li> "VAR_I . expr ln is determined by the parametenzed type rule (see SectIon
" 4.4 1, Form 3)

An algebra eXISts for VARs mdependellt of any aetual component type' ThIS algebra

includes the operations

-' - [vanable' VAR n, value' tl PROC VOID ==
[variable VAR?tl t == .

These are provided dlrectly by the language and cannot be exphcltly deftned However. the

abstractions of asslgnmen t and deV ARlllg eXlst across ail variables regardless of component

type. Other rnaps lnvolvmg variables may be user-deftned.

swap [left: VAR ?t, right VAR t 1 PROC VOID == [.. 1
« tempo t = lert -,

'"Ieft = right-',

right .= tempt

»;

4 - 17

._--------_.~- •.

•

'. '
. The ~ollowmg deftnitlons or .. _:~ _" allow "ass~,gnment" t~ ,be de~ned on en~ties:\th~t

aI"e not vanables themselves but which contain variables; an ar'ray of variables can be
. "

assigned to en masse , .
.= ' [t'a.rget: [15] VAR "?t, source' Is] VAR t 1 PR;0C von~ = [.)

(li: s] (ta.r~et[iJ := source[i]")) .

, .,
-- copies 1 arra.y (of vanables)·to.another

_ = _ . [target [?s] V AR ?t, sou ree' [5] t] P~OC VOID = 1.
([1. s) (target[ij = source[i))).

-: ~oples an array of constants to an array of vanables

1
J, '

Tbe rollowmg declarations descnbe the (bUilt-m) parametenzed type PROC and the

dePROCing operator.

PROe_11) [compo~ent TYPE) TYPE = ...
IroutmeText· PROG?t] t == .

The f~llowing examples IlIustrate how actual routines ean be written in M which

other languages must bmld,.m

Example: tLthen_else-fi expression
..

ICthen_else_fl [coDdjtJOn Boolean, Then ?t, Else t] = 1 .]

({ true ~ Then, false ~ Else} [condhlOll]);'

This 15 Dot, bUilt into M It can be user-deftned The prevlous definitioH of'

iCtben_tl can be rewntteD.

Example: Ordenng Relatton

,
Ir one metbod of ordermg is detlnéd~ say via" _ <..,...", other ordering~ may be

declared simp-ly

_> _} lien: ?t.' right: t 1-<-. [t, t] Boolean] = [..]
(not (lert < rîght»);

, Q

4 - 18

"

" /

"""-- .

----________________ ~ t

,
!

...... - ____ --,....------_______ _ __ ... 'q .. '"'-;;j'}îJlê ... ~ .. ~

Il
\

r

) ,

.,

, .. '"

"

1

,"

" If ~j f

, .
Exampie: Alg~168 operations ',' f l.fI

':
" "",

, ' r

, '

! '1

Algot 6s'é M+!=" can be detlned by'

_+,=~: [V'ariable' VAR'n, incremient: t]'l>ROC VOn;> == [."J "
(variable '= variable- + increment),

~ i
1 . ,

Others, such as' ";- =", may be similarly detlned~
"

.
\, >,' Thé next't~o examples IIlustrate the polymorphism mherent III para~erized types .

Examp/e: List L-ength

" ,
(See deftnitions in SectIon 36 1) ,

, ~
length' [list List[?tll Integer E'[., J

C' [e EmptyLlSt! 0

" \1 [n, NonEmptyList[tll (1 + length [n.cdrJ)

, l

"

, .

"

) [Iistl; ~ () ,
~ ,

" 1
J'

. '

, . ;-

•

;

.
, 1

;1

, '

"

.' ;

" ,r

• 1

----__ ~ __ ----~ __ -- t

'.

"

1
-' .

Ex,amp.le: Polymorphie Staek

, Stack. [Component: TYPE! TYPE = [...]
[

],

store: [IITteger 1 100! VAR Componen t,

, lst . VAR In teger 0 100 := Dl

"

push' [stack. Stack[?t], element: tJ PROC VOID . [.J

top
..;

«
stack lst + = l!;

stack.store [stack.lst·l .= elemen tl

»;

[stack: Stack[?tJj PROC t == [... J

«

»,

element. t == stack.storefstack lst·r, .
stack.lst -:= 1!,

element

[stack Stack[?tll t ==1. 1 (stacksto{e[lstT),

empty: [stack: Stack[?t]l Boolean == J .] (stack.i~t· = 0);

4.6 Overload Resolution 'and Type Àbstractions

.

'.
Il

"

~._-

. Overloadmg lS partlally subsumed by an adherence to the princlple of type-completeness

and the use of paran:eterized types For,Jnstance, "push' [?t, Stack[t]] PROC VOID"

subsumes the two inst:ances of "push [Int, Stack[Intll PROC VOID" and "push. [Real,

Stack[Realll PROC VOID" Where generics in Ada and Red' create copies and perhaps
, ,

'.overloaded iden tlflers, the polymorphlsm in M main tains a smgle abstraction Though
, ~

iristantia~lOn is Itself contrary to the concept of pOlymorphism, the impliclt mstan tiation of

Red better appr0ximates this concept than thè explicit instantiation of Ada
~ ,

,
Unfortunately, polymorphic entltles can also exacerbate the problem of overload

resolution. Note the following ex~mple.

4 - 20

--_. j

...

FemaIe: TYPE == .
Male' TYPE == .

Person: [t TYPE] TYPE == .

Mary. Person[female] =
t·1

John ·Persan[Male] == \K.~

isTaIented [p Person[?t]] Boolean ="
isTaIented [p Person[Malel] Boolean =

IsTa:lented[Mary)

.. unambiguous, can <?nly match Ist deflnltlOD of IsTalented

v

isTalen ted !Joh n]

-- amblguous, matches both defillltlOns

, ---

,;.'\ Here, it ,1S natural to presume that the detlnltlon of "isTalented" whose formai p.aramet.er is
'\, ; u p : Persan/Male]" is a reflnement of the one whose formai parameter lS u p Person[?t)" We

would like the more specific defillitlOn to take precedence.

if two definitSns both match.a 'given use th en we know that each detlnition has the
o 1

same number of expliclt parameters and that the correspondmg explIcit paratneter types are

related, i e., they either are the same type ~ar one type 1S an abstraction of the" other-one

en compasses the other. "AnY type", slglllfled by use of an abstractId, encot:Opasses aIl

types; a parameterized type encompasses aIl of its mst~nces, a formai map type
,) ,~

en compasses aIl map types with compatible parameters and result A pnoflty of types

exists: the more abstract type-the one that encomp3S;"'es-ls said to have lower PrIontl than

the other. o

'<ilI

Overload resolution in M must allow for the precedence rule deflned by the following

algorithm:

Given two matchmg deflnitions, flnd an explicit parameter positIon

where on~ type has priority over the other (If no su ch position

exists then the situation "15 am biguous) Let dl sigmfy the

deftnition whose parameter type has priority, df2 will be the other

If at aU expl!clt parameter pOSitions, the priorIty of the type of dl's
parame te! lS greater than or equal to that of df2's, then the

deftnition dl has precedence. Otherwise, the situation lS

amb~guous (

4 - 21

/

(

______________ .-1

»

1

,

Such a precedence scheme glves the defInition "isTalented - [p Person[Male] Boolean"

precedence for the use "ISTalentedpohn]" User-deflned ".=" can be defIned on a speclfIc
" type and will have precedence ov'er the bUl!t-m detI'llltlOn. If the declaratlons

f lx ?5. y Integer~ Integer =
f lx In teger, y ?t; ln teger =

both match a partlcular tise ("fil, 21", say) then neIther decJaration has precedence; the ftrst

has pnorIty for the parameter "x" whlle the second has prlOnty for the parameter "y"
Jo

The rule prevents arbltratlon between two deHmtions such as

f lx ?t 1 Pl'

f Ix.?t 1 Pl

,p j t = n
, t = ..

(The p's are mtended to be propertles of tbe type "t") 'If a particular use of f is
l ,

amblguous. nelther defIllitlOn wIll be glven precedence even though the ftrst seems more

specifIc (ID that we know more about the type "t") It olS not apparent whether or not this

sort of collision will occu r n at urally

4.7 Type Abstraction in Other Languages

Other languages J.' support the notion of a type
termmo!ogy. uv, abstraction though thlS lS not their

~ . ,
ln CLU. the cluster mechanlSm lS used to Implement a new data type and serves to

collect a set of obJects and a set of pnmltlve operations together that \\> III dellne thls data

type The cluster may be parametenzed Type parameters are allowed and a tL'here clause

serves to constram the permisslble actual types The followmg header descnbes a routlDe

which wIll a.ccept an array of elements sa long as the elements arE' orderable,

prpctype .(array'Tl) returns T

where T has LT proctype (T, T) returns boolean

CLU's ln fonn allows abbrevlatlons akm to th~ adjective syntax ID M The prevlous routine

header could also be declared as follows

4 - 22

1 \ - -- -~

~

~--------_ .. _. !

'"

-- - ,----~--------------------

OrderableType =

{ T 1 T has LT' proctype (T, T) returns boolean }

proctype (arraYiT]) returns T where Tin OrderableType.

The declaratlons after the has "keyword must mention routIne types These routines.

however, are not use-site bound The cluster whlch Implernents the type T must exphcltly

supply each routme SIllJe It IS ImpossIble to determme a prIOrI ail the reQUJred operatIOns

for a "glven type. not ail of them can be grouped m the type's cluster Though a user can

deHne a fUDctlOn on a bUlIt-m type, thlS deftnltlon cannot be placed ln the appropnate

,cluste~ The cluster mechanlSm Hnds It especlally hard to place a map, say that 15 deftned

between typeô Use-sIte bmdmg allows a degree of ftexlbIllty not permlttèd ID a type cluster '.
approach smce any routine VISible at a use sIte can be used

In Ada. ar'l type abstractIon faclhty is mherent 'In Its~ gB-nenc type parameters

"Genepc type deflnitlons may be array. acce5S. or pnvate type

definltlons. or one of the forms Illcludmg a box (.. < > ") The

operatIOns avallable on values of a genenc formai type.are those

assoclated wlth the correspond mg genetlc trpe deftnltlon

These genetlc types are akm to bUllt-In type abstractIOns Table 1 deplcts the syn tartlc

form of vanous abstractions and how they are matched From the \'lew of type -abstraction

in M. an mteger type matches a dlscrete genenc type preclSely because the algepra 15 a

superset of the algebra supphed for dlscrete types ThiS relatlOnshlp 15 guaranteed ID Ada.

SlDce the language bUllt-lD the algebras

Table 1. Type AbstractIOns an Ada

SY!ntactlc Form
~

limlted pnvate

private

--;;:u:eess T

«»
range < >
digits < >
delta < >
array (S}' .) of T

Meanmg

any type

any type sueh tbat "'=" and "=" exist

any access type wlth base type T
any dlscrete type

any in teger ty pe

any Iloatlllg pomt ,type

any Ilxed pom t type

any array of the same dimenSions. lDdex types,

and component type

Parameter binding in Ada approximate~ that in M

"Genenc parameters are elaborated 10 sequence A genenc

parameter may only be referred to by another genenc parameter of

the same generlc part If It (the former parameter) IS a type and

appears first "

ThIS permlts geonenc su bprogram specifications to be dependent upon previously declared

generic formaI types Complex algebras whlch go beyond the "butlt-m" and whlch use more

than one type can be descnbed

Ada has a form ~f cali-site bmdmg If an argument correspopdmg to the genenc .

{Ormal parameter

wlth pro~edure SEND() 15 < >.

were deCaulted. M-hke semantlCs would be attamed.

In Red. a genenc type pa,rameter is used to stand for any arbitrary type and tne use

o("--NEEDS" serves to supply an type abstractIOn facihty An ordered type would be

t TYPE NEEDS < (t. t) = > Boolean

Red also defines thls m terms of cali-Site bllldmg As In Ada. a gener~c type parameter may

be used subsequently ln the deftllltlon of other genenc parameters

\
Unrortunately. smee Red's concept of overloadmg IS restncted, 50 15 Its genefic

faClhty.

GEN~RIC

t.mE
\

FUNC ovld(p. Boolean) => t;

END FUNC ovld.

.0

This deflnltlon seemingly stands Cor aU "ovld" funetlons which take one boolean parameter .•

Unfortun8:tely. the deflnitlon 15 illegal Binee tbese "ovJd" routines are md15tmguishable in

Red, the result is not taken mto acCOUIt.t.

of - 24

. • --------- .,

1

f

(

Other languages show similar constructs Alphard appends a bracketed hst <p l' Pt!'

H., Pn> to a formai type parameter to denote the ptopertles reqUired of an actual type

Similarly, IGnes & Gehani 77] provide a requtrt;" Pl' Pt!' --'. Pn c1au;:;e Both languages.
bowever. allow only primitive operations to be specified [Demers & Donahue SOb] descnbe

a type parame~er whlch uses a wlth clause to hst those operatIOns whlch must be provided

by the type A facllity delln"ed by [Jones &. Liskov 76J '. though designed ostenslbly for

~cess con trol. 18 a type abstraction faclhty

4.8 Summ.ary

The language M. through a bottom-up technique of generalizatlon supports a generalized

type hlerarchy. The type abstractIOns ln tbis hlerarchy encompass any specifie types whlch

share a common (sub)algebra. an en tity can logically belong to many types at once

The hlerarchlcal structure of types lS actually supported by a single type

abstra.ctio,n-"any type"-along wlth normal type matchlllg rules Use-site bmdmg permlts

type propertles to be passed Imphcltly 50 that true type abstractwn can be slmulated

The tlexibihty gamed by allowmg type abstractIOn m'akes polymorphie programmmg

possible, even wlthin a statica.lIy typed language. The parametenzatlOn bandwldtb is

wldened thereby allowmg greater expression generality

\

...

... - 25

(

1

CHAPTER 5

Summary

5.1 Synopsis

ThIS thesis commenced by descnbmg current concepts in type systems Type mformation. it

was noted. serves the program development phase weil by allowing a problem space to be

partltloned mto classes Propertles wlthm each class and between classes can then be

expressed In programmmg languages, types deftne classes. algebras provlde propertl~s.

Hierarchlcal structures wlthm type systems were then dlScussed Des~nblllg an alg~bra 15 D

made simpler If one can form abstract vlews of type If a hlerarchlcal structure eXlsts. an

algebra deftned on the hlgher end of the hlerarchy will hold for a greater c1ass of values and

Will be, thereby, more general Hierarchies are valuable type abstraction faclhties A

second form of type abstraction was noted III the concept of an abstract data type.

Although types must be represented. expllcitly on a. machme, an abstract data type ~lIows

one to divorce oneself from thls level of detall 50 as to vlew the ~ype ahstractly Type

enforcement was vlewed from two angles Flrst, type checklllg prevents a problem solution

from belllg descnbed m terms that are not meanmgful to the algebra Second, proper
l ,

encapsulatlon of an abstract da,ta type forces representatlon detalls ta be hldden

To explore further the deta.lls of eXlstlllg type systems and ta challenge thelT deSigns,

the language M was deftned The design of a type system was percelved as the backbone of

the total language deSign In M, orthogonahty was to be achleved by adhermg ta the

prlllciple of type-yompleteness, rehablhty by mamtainmg statlc typmg, and ftexlblhty by

permlttmg a less 1estTlctive vlew of type

Though the basiCS of M's type system, by drawmg on IHoare 72]'s Vlew, remain along

classlcal hnes, several devlatlOns were mtroduced Only one form of scalar type-the

enumeratlon type-is allowed Product types mlTror ordmary record types but treat fields as

contnbutmg to the algebra of the type rather than as bemg components of each Instance

ArraY!>\and funetlons are generalized to maps

5 - 1

-----___ l_.~ ~ r

f

1

f

A non-functlOnal state IS clearly separated from the functlonal world Variables are

deftned in terms of variable references rather than buckets Procedures are no longer

viewed as special functlons but rather as expressions to be elaborated at sorne later expliclt

point in timk

Smce ty e-completen~ is an underlymg tenet m I\1, ail expressIons are typed Even

type expression ve a type An orthogonal applicatIon of pararneterJzatlOn allows user

de6ned parametenzed types, higher-order functions, and control structures Maps further

subsume the concept of genencs. The' syntax, by permlttlllg a mIxture of functlonal

notations, allows expressions and con trol structu res to be stated n atu rally

,
Introduced was the concept of type abstractioTi where a type can be descnbed by a set

of propertles Two concepts support thls Idea abstract type Iden tlflers and cal!-site

bmdlllg 1 An abstract- type Identifier used as a formai type IS bound to the type of the

correspond mg argument Properties of thls type can then be garnered by Imphcit cali-site

bound pararrieters An adjectIVe syntax 15 provlded ta encourage the conceptualizàtion of

the intended abstractIOn Polymorphism IS supported by both parametenzed typ~s and

type abstractions
\,

5.2 Future Directions

The deSign of the language M, as presented III this thesls, IS not complete, sorne addressed

areas need further scrutlllY whlle other related fields need ta be explored

One concept not addressed \Vas that of an abstracl' data type Indeed, lt may seem

absurd to deSign a type syste~\'lthout such a facllity ln ~1. though. suell a facllity is

eonsidered to be an l7IfOrmatlOlI hldmg techDique-a technique Ilot so much tled to the

concept of type as It IS to mod1lles and VISlbtllty Sillce the malll COll cern was to add

ftexlbllity to the type system. the deSign tended to\Vards provldmg type abstractIOns rather

than abstracf data types

Nevertheless, abstract data types are Important and an appropnate encapsulatlOn

fa.cility should be provlded It IS hoped that addlllg controlled Vlslbllity to the components

of a product type will suffIce to support such a meehalllsrn ThIS approach would be slmllar

to that taken by Euchd whose modules are generallzed records

Also not dlscusscd was the tople of coerclOns A type C071t'erSIOT/ IS a map from one

type to another, a COerCI071 IS a conversIOn ~mplicltly supphed If a user were able to state

wblch convetslons should be supphed implicltly, then a faclllty to supply autmIlatic

coerclons couLd be meshed wlth overload resolution techniques Currently, every expression

5 - 2

•

•

•

(

1 2 j'

in M has exactly one type and the declsion not ta provlde coerclOns serves ta rein force thls

Idea Unltke other' languages, deVARtng and dePROCmg operations are expliclt ThIS

overcomes Algol 68's amhlgulty In "meekly coerCible" situatIOns l':(>\'crtheless, the

explIcltness may be dlstractIng Coerclons mlght be acldecl but shauld be unger programmer

control DeVARmg and dePROCmg ma be prime candidates

The decision not to supply a bUIIt-tn algebra for enumeratlOn types ma} be faulty

Enumeration types ln :to.1 lack thl:' propl:'rtlCs (predeflned operations, attnbutes) defined by

Ada and the programmer must necessarlly deflne a map lU ell~lIre that the type IS ordered

The pom! made was that no algcbra had ta be prImitive ln real use, though, sorne faclhty

15 reqUlred ta allow Cllumer.lted types to be "hnearly otderNI", perhaps "C1rcularly areJt'red",

or to rémalll "IlIlOrderl?d ", an} neccssar} Impl!clt algebra wOllld br suppiJrd Su ch a

mecllamsm provldrs the added beneflt of c;upplymg "concePtually equlyalrllt operatIons'
~

It IS unclear whether thc genrral!zed oHrloacllllg allowcd ln :\1 Will be beneftcml -'lut It

IS eQuallr unelear ho\\' to Justlfy any restflctlons. Llteral~ ln many languages are

overloadllble :\.1 V!CWS ail Identlflers as bel/lg lIteraIs of one type or another and, thererore,

overloadable Expefll'ncl' may show that ~ome rl'stflctlons are necessary but, for now, an

investigatIon of thls gClJerallzrd schrme may prove Interrstlllg

One deSIgn dcclslon that ma,}' be loosenf'd IS thal of the derpanct for statle tYPlIlg

M's type system does proYlde a hlgh degree of flexlblllty hut thls ma) still be too restrictive

Indeed. We already have a degrl?e of dynamlc t} plIlg 'pronded by union types \\e choose

from a hst of altrrnatJve types at run-thnr Subtypps are also a dynamlc proprrty

Support of the dynamlc approacll does not advocatr typc/esslless strong t) plllg mllst still

exist but ma} bl' dynamlcally supplled and ab lI1 ELl. ~hould only be necpssary wlH'n statlc

typmg IS IDSUfIlrlrnt. Harland and GunIl CHarland ~ GUlln 8-ta Harlund cl,: GUlln 8-lbj)

descrIbp a dynamlcally typed pol~ morplllc language and :\ possIble arclllteetllre Thelr

approadl IS fleXIble but lacks an rxplJclt meuns of e\IH{'s"lJl~ type abstraction PNhaps a

hybnd systrm, one that IIlcludcs hoth statlc and dynamlC type checKlI1g, IIla" be deslted III

order to achlcve the reqlllred mlx of efflclency. flHlblllty, and rell:"d))hty Thr r!~krer the

executlon, the more the system should he statlcal)y rhecked

Subtypes have not been adqressed properly Though the}' do not alfect the statle

propertles of a type system, they shauld be mcorporatéd smoothly wltilln the overall type

structure

5-3

5.3 Clo.ing Thoughts

\. In the process ,of researching and wrlting this thesis, two notions became apparent Fust,

deSign decislons can become mtertwmed. The actual number of concepts i!1 a language,

though best kept to a mInimUm, 18 less Important than the orthogonahty of these concepts.

When concepts do not mesh c1eanly, special rules are necessary, these rules become .
encum bran ces The use of the pnnclple of type-completeness reduces language size whlle

Increasmg orthogonahty

Second, Ideas on polymorphlsm have been around for sorne tlme \Vhy IS Il that a

language based on such prmclples IS not commonly avallable? Is It the pedantlc nature of

the software communlty, a natural laps(' between Idea and general acceptance, or lS It, as

[Holager 78) pomts out. that expenence \VIth polymorphlc techniques ha!':> shO\\ Il to be rar

less useful than antlclpated, Tlme Will tell Nevertheless, It 15 hoped that the ideas

presented III thls thesls make it apparent that a language embodying sueh principles

simplifies language deSign whlle mcreasing language expressiveness and faclhtatmg the

programmmg process

5 - ...

î

_______________ . f

1

\

______ ~.r_--------------------------~--.~%d~f~tr .. ·'.'-c~·~ts--9

(

r

\

,
(

References

[Ada 83J

Reference Manual for thç Ada Programming Language. United Sta.tes Department of

Defense 1 g83.,0

[Ada Rationale 7g]

Ichbiah, J.D, et. aL "Ra~jonale for the DesIgn of the Ada Programming Language".

SIGPLAN Notices. v 14, n.6. June Ig7g.

[AlgoI6876]

Revised Report on the AJgorithmtc Language ALGOL 68. (ed. A van WlJngaarden et

801.), New York' Sprmger-Verlag HJ76

[Alphard 81]

ALPHARD Form and Content (ed. Mary Shaw) Sprmger-Verlag IgSl

IBaker 82)

Baker. T P. A One·Pa88 A/gorathm for Ouer/oad Resolutton ln Ada "ACM

Transactions on Programming Languages and Systems" v 4, nA, pp.601-614,

0ctober 1 g82

IBlrtwistle et al 74]
BirtwlStle. G,M. Dahl. O.-J., Myrhaug, B .. Nygaard. K. SIMULA BEGIN Lund:

Studentlitteratur. 1074.

IBrender 8l Nassl 81J

Brender. R.F .. Nassi. 1 R. "Wbat is Ada?", IEEE Computer. v.14, n.6, pp.11-24,

June 1981.

R- 1

•

{

[Brooks 151

Brooks, F.P., Jr. The Mythical Man-Month ~ddison-Wesley Publishing Company,

Inc. 1975.

[Buckle 77]

Buckle, N "Restricted D'<I.ta Types: SpeciOcâtion and Enforcement of Invana.nt

Propertles" In [LRDS 77]. pp;ns.76.

(/ \
[Carbonell 81] _/) \

Carbonell. J.G "Default Reasoning and Inheritance MechanlSms on Type Hierarchies"

SIGPLAN Notaces v.16, n.l. pp.107-109, January 1981

[Cormack 81a]
J

Cormack, G.V Separate Compa/ahon and New Language Features Ph.D thesis

UOlversity of Mallltoba 1981

'. [Cormack 81b]

Cormack, G V "An Algorithm for. the Selection of Overloaded Functions ln Ada"

SIGPLAN NotIces v 16, n.2, pp 48-52, February 1981 ,

[Demers et al 78]

Demers, A J, Donahue, JE" Skmner, G "Data Types as Values Polymorphlsm,

Type-checkmg, Encapsulatlon". Conference Record of the FI/th A nnual A CM

Symposium on Prmcip/es of Programmmg L.anguages pp 23-30. 1978

[Demer~ 8l. Donahue 7g1

Demers, A, Donahue. J Revtsed Report on Russell Report TR79-389 Computer

SCience Department, Cornell Untverslty 1979

[Demers 8l. Donahue 80aj

Demers, A.J, Donahue, J t .. 'Type-Completeness' as a Language Prmciple"

Conference Record of the Seventh A nnual A CM SymposIum 011 Prmclp/es of

. Programmmg Languages pp.234-244, 1980 ..

[Demers & Donahue 80b]

Demers, A.J, Donahue, JE. "Data Types, Parameters and

Conference Record of the Seventh Annual. ACM

Prôgra;"mmg Languages pp 12-23, 1 g~O.

R - 2

'.

Type Checking"

PrincIp/es 0/

•

(

[Dijkstra 76] .

Dijkstra. E W A Discipline of Pr:ogramming. Prentiee-Hall. Ine 1976.

[DoD 78]

U S Departmen t of Defense. Department of Defense Requirements lor H'gh Order
Computer Programming Languages, "Stee/man" V.S. Department of Defense. 1978

[FORTRAN 66]

Ans' Standard Fortran New York' Amencan NatIOnal Standards Institute H166.

[GoldOerg & Robson 83'1
Goldberg, A. Robson, D SmaJJta/k-80 The Language and Ils Implementation.

Addison-Wesley, 1983

[Goguen & Meseguer 831

Goguen, J, Meseguer, J "Programmmg with Parametenzed Abstract ObJects m

OBJ" Theory and Pract2ce of Soltware Tuhnology (ed D FerrarI, M BolognaUl,

J Goguen) New York North-Holland Publ1shmg Co pp 163-}93, 1983

[Gries &: Gehanl 77)

Gnes, P, Gehalll, N "Sorne Ideas on Data Types III High-Level Languages"

CommunicatIOns of the ACM v.20, n 6, pp 414-420, 1977

IHarla,nd &; Gunn 84a)

Harland, DM, Gunn HIE «Polymorphlc Programmmg 1 Another Language

Designed on Semantlc Pnnciples" Software-Prpctlce & Expenence. v 14, n.lO,

pp.Q73-Q97, October 1984

IHarland & Gunn 84bJ

Harland, D.~., Gunn H.I E "Polymorphie PrC?grammmg Il An Orthogonal Tagged

High Level Architecture Abstract Machme" Software-Pracllce & Experience v.14,

n.l1, pp 1021~1046. November 1984 ..

. ~

jHehner 82J

Hehner, E.C R. Programming Prin~lples and Practice. (p-artial draft) Umve,rsity of

Toron to 1 982

•
)

;

R- 3

•
"

"

. (

"

• "

[Hoare 12J

Hoare, C.A.R "Notes on Data Struc,turing" Structured Programmmg . London

Academic Press. 1972.

[Holager 78]

H<;>lager, P "Generic Mode F~cIlrtles in Mary" Constructmg Qualt'ty Software. (cd

P.G. Hibbard, S.A. Schuman)'North-Holland Publis'hlllg Company pp.1l7-133, 1978

(Jensen & Wirth 78J

Jensen, k, Wirth, N PASCAL: User Manual and Report New York Sprmger

Verlag, 1978

[Jones & Liskov 76J

Jones, A.K., LISkov, B.H. "An ~ccess Control Facllity for Programming Languages"

Carnegie-Mellon UnIversity Techmcal Report, May 1976

[Kidman 78]

Kld f!l an , B P UA Revfew of Proposais for Introducmg Dynamlc Arrays iuto Pascal"

Programmmg Language Systems (ed MC Newey, RB Stanton, G L. Wolfendale)

Canberra Australian NatIonal University Press pp 107-117, 1978 ,

[Lampson et al 77]

Lampson, B W, Horning, J.L., London, R.L , Mitchell, J.G, Popek, G.L "Report on

t~e Fr?gramming Language Euclid". SIGPLAN Nol,'ces, Y.12, n.2, February 1977

[Leclerc 84J

Leclerc, D Implementatton Cons,derations for the Language L Montreal' tvIcG1ll

University 1 gS4.

[LRDS 77]

"Proceedings of an ACM Conference on Language DeSIgn for Reliable Softwar.f.

SIGPLAN Notices v.12, n.2, March 1977

; [LlSkov et al 79J

Liskov, B., Atkinson, R, Bloom, T., Moss, E., Schaffert, C, Scheifler, 8., Snyder, A.
~

"CLU Reference Manual", Massachusetts Institute of Technology Laboratory for
Computer Science, October 1070 .

R - 4
.,

(

.. _~-----~--------
_______ ._t

(

[LISP 62]

McCarthy, J, Abrahams, P.W., Edwards, D.J, Hart, T P, Levin, M). LISP 15

Programmer's Manual. Cambridge. The MIT Press. 1962

[Mllner, 78]

Mllner, R. "A Theory of Tlype Polymorph~m m pro~ramming" Journal of

Computer and System SCiences v 17,. n 3, pp 348-375, 1 Q78

,
[Morris 73a]

--.l Morris, J H. "Protection ln Programming Languages" ,CommUniCatIOns 01 the A CM

v 16, n l, pp 15-21, 'Jal!uary 1973

[Morris 73b]

MorrIS, J.H "Types are Not Sets". ACM Symposium on Pr~nczples of ~rogrammang

Languages PP.126-124, October 1973

[Parnas 79]
~

Parnas, DpL "Desigiung Software for Ease of ExtenslOn and Contraction" IEEE
Trx on Software Enganeering v SE-5, n.2, PP.128-137\March lQ7Q

[Persch et al 80] l
Persch, G, Winterstelll, G, Dausmann, M, Drossopoulou, S "Overloadmg in

PreliminaryJAda" SIGPLAN Notices v 15, n.1l, pp 47-56, Novefbe~ 1980

[Red 77] 0 J
l}ed Language. Informai Language SpeCl.ficataon Intermetncs 1977

[Schwartz 78]

Schwartz, J T "Program Genesis and the DeSign of PrÇ>grammmg L-anguages".

Current Trends zn Programmang Methodology, volJV, Data Structunng. (ed. R.T.

Yeh) Prentice-Hall 1978

[Shaw et al 78]

Shaw, M., Hilllnger, P., Wulf, W.A. "TARTAN Language Deslgn for the Ironman

Requirement: Reference Ma.nual". Carnegie-MeIIon UniversiW Technical Report, June

1978.

o

R - 5
•

"

--_________________ f

•

" \
\
f

·1

i

1
1
i
f . i

\
1

'\
l'

, (

. , /
1

1 •

1-.

(

"

f'·

,.(l

[STARS 8;J] .
Department of Defense, USA. "Software Technology fÇ>r Adaptable, Reliable

~

Systems". SigSoft. v.S, n.2, AprillgS3.

[Steensgaard-Madsen 811 \
Steensgaard-Madsen, j'lA Statement-Onented Approach to Data AbstractIon"

o

ACM Transachons on Programmmg Languages. v.3, n.1, pp 1-10, January 1981

[Tennen t 77]
Tennent, R D. "On a New Approach to Representa.tlon Independent Data Classes".

, Acta Informataca v 8, pp 315-324, 1977

[Tennent 811

Tennent, R.D Princlples of Progr"ammmg Languages. Englewood Chffs: Prentiee- (

Ha.ll International, Ine. 1981.

[Types 81]

"Types" SIGPLAN Notices. v.16, n.l, PP.43-52, January 1981.
~ , (! 1)

[Wegbréit 74]

Wegbrelt, B. "The Treatment of Data Types in ELi"

v 17, n.5, pp.251-264, May 1974.

Communications of the. A CM.

"

, .

...
, .

OC

"
f!l'i

R- B

-,

Q-

..,

/)
1 op -- -............---. .

1
,

, . . '

...

'0

1

1

\ ,

• ,

!
1

f
1

'1
1
1
1

!

'-

"

-,-
i

\-

APPENDIXA

M Syntax

Ne'l den otes an optlonal x

X1Y denotes a (non-empty) lîst of x's separated by ~'s

/taltes denote a semantlc constraint, not a syntactic one

program . = exprLlst :.= expr 1 .. ,"

expr ::= decl

.:= qualifiedExpr

::= enumType

:!= productType

: = union:rype

:= id ":" quahftedExpr

::= jormalTypeExpr ":=" expr

"= ,,{" id "",,}" . ~
::= "[" [id "" 1 jormalTypeExpr "," "TI"

1

: = lypeName "U"
1

o

"::= parameteri:z;edExpr

::= name

7 "[" explicitParms ["1" imphcitParms J ".1" expr

:-= productExpr .. = expr ","
1

::= unionExpr .:= U[" id ~ " formalTypeExpr "l" expr "\1"
. 1

::= mapExpr ::= ,,{" expr "~" expr "," "}n
1

::= selectIOn .:= expr "[U expr u," U]"
1 ~"----

::= procedure .:= "«" exprList "»"

::= parenthesizedExpr ::= "(" exprLîst 'T'

expIicitParms ::= 1 id .. "j forma/TypeExpr ","
~ 1

implicitParms :.= id ":" formalTypeExpr ","
1

.adjective ::= id "::" abstractId '''1'' implicitParms

A-l

- ----------_ _------
,('. ~ ._~.+.---- ;

1
~

!
\ { ,

t

f
!
1

L

lormalTypeExpr ::= any "name", "parameterizedExpr", or "selection" yielding a

result of type TYPE

::= [adjectlVeName 1 abstractId

Both "id" and "name" are leXical Identlflers, "Id" sim ply depicts the deflnmg mstances An

"abstractId " , also a lexlca.l entlty, IS formed by prefixmg any Identifier wlth the character
"1"

A scope encloses each "exprLIst" and each "parameterizedExpr"

"

Syntactic sugar:

A nght-hand slde of a qualifledExpr can mhent the parameter list from the

lert-hand f;nde, the followmg two expressions are eQUIvalent

x' [tl, "tn 1 T == [pl' tl, ,pn tn 1 r
X 1 pl. tl, " , pn tn J T == [1 f

SpeCial forms of lexical Iden tlflers permit alternate selectIOn expressions' "_Id_",

"id_", and "_Id" define an "mfixld", a "prefixld", and a "postfixld " ,

"id1_idz_" _idn.1-idn " defines an identifier where "id
l

" and "id
n " refiect the

open mg and closmg Identifiers for a matchfix expressIOn while the other "id"s

.reflect separators Selection IS extended to

selection .. =

.,

'= expr mfixName expr

::= prefixName expr

.:= expr postfixName

openName expr separatorNarne closcName
l ,

A - 2

/

~-------_.-: l'

