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INTRODUCTION 

The contents of this thesis is divided into two independent 

parts. Both parts contain sorne new resul ts about invers e limi ts of 

fiuite p-groups. These inverse limi t groups are called pro-p-groups. 

In Chapter l, a pro-p-group is constructed, that satisfies 

the second axiom of countability, and contains isomorphic copies of 

aH other pro-p-groups, satisfying this axiom (see theorem 1. 28) . 

Leading up to this construction, the author investigates the functorial 

properties of the wreath product of two permutation groups (Chapter l, 

§2), and then gives a. new proof for an important theorem (theorem 1.24), 

due to Marc Krasne~ and Léo Kaloujnine, concerning the embedding of 

certain groups K in a multiple wreath product of quotients of con­

secutive terms from a chain of subgroups of K. 

Chapter 2 deals with the significance of theorem 1.28, for 

field theory. It is well-known that the Galois group of a Galois 

extension of fields, is a pro fini te group, 1.. e. an inverse limi t of 

finite groupsl and one may ask oneself, which profinite groups and, 

in particular, which pro-p-groups may occur as the Galois groups of 

field extensions of certain types of fields. In Chapter 2, the author 

concerns himself with this problem. Theorem 2.5 may be considered as 

the main result of the Chapter. 
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Apart from ':he well-known, elementary properties of the Wreath 

product, aU the results of Part 1 are due to the joint efforts of 

Professor W. Kuyk and the author of this thesis, (unless otherwise 

indicated in the text). Part 1 contains a deta.il.ed exposition of 

the research announcement that appeared, under joint authorship, in 

the Comptes Rendus [5]. 

In Part II of this thesis, the author develops a method, that 

enables him to determine the cohomological dimension of certain pro-p-

groups, defined by a finite number of generators and relations, in 

the sense of [18], Chapter l, §4.2 and 4.3. He shows that the deri­

vations ~, defined by Lyndon (originally by Fox), on the discrete 
aX. 

J. 

free group L(n), on n generators xl"'" xn (see [15J), can be 

extended to the magnus a1gebra A(n), in which Len) is imbedded. 

The author uses these extended derivations to obtain information about 

the cohomology of pro-p-groups of finite type, defined by a single 

relation, in a manner that is similar to the way that Lyndon described 

the cohomology of discrete groups, defined by a single relation 

(loc ci t). The main resul1:.s of Chapter 3 are theorems 3.13) 3.18, 

3.23 and 3.25. The statement of parts Ca) and Cb) of theorem 3.11 

are not due to the author, but can be found in [20J. The proof of 

theorem 3.11, and aIl other theorems of Part II, are due to the author. 

A1though he has not solved his main problem, suggested to him 

by Professor W. Kuyk, namely that of determining whether a pro-p-group 
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has cohomological dimension 2 j if it can be defined by a single nOD­

trivial relation which i5 not a p-th power~ the author believe5 that 

further development of his methods may eventually lead to a complete 

solution of this problem. 



PART l 
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Chapter l ~ Propertias of the Wreath Product and 

an Embedding TheoNm for Pro-p-groups. 

L Permuta.tion Groups .. 

One finds in C6J a definition of the Wreath product of two 

permutation groups~ For the purpose of investigating the fŒnctorial 

properties ot the wreath product, we proceed with the following de fini., 

tion8~ 

Definition 1.1: 

The category- CP' bas as ita objects aU triples (G,S,a), where 

G 18 a group~ S a non-empty set and a= G X S ~ S a mappingt sucb. that 

a(g1. g2,8) = a(gl,a(g2,8», a(l,s) = s 

tOI' all gl,g2 €G, s ES, the identity element of G being denoted by 1. 

TC) simpl1fy the notation, we shall often write (G,S) instaad of (G,S,a), 

and g(a) instead ot a(g,s)" (g€ G, sES). The morphisms in the category 

C)'J t
, are pairs ot maps (a,a'): (~,Sl) ~ (G2,S2) , where al~ ---'7-G2 

denotes a hOlllomorphism of groups and a' :S2 ~Sl .. mapping ot sets, 

satistying the tollowing compatibility condition: 

a'(a(gl)(s2» = gl(a'(s2» 

tor~llgléGl' s2 ES2. Suppose (a,a'): (Gl,Sl)~(G2,S2) and 

(a,a'): (G2,S2) ~(G3,S3) are mor}ilisms in CP'. Detine their 

composition (a,a'> 0 (a,a') = (a .... a,a· o a'). 
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We proceed to verify that (Boa,a'o at ) i8 again a Dlorphism 

in qJt: 

O:f[13"{a(a(gl»)(s3>}] = a'[a(glHa'(s3»] = gl(a t <a'(s)) 
for aU glEG1t 8) E-S:l " It ie c1ear that ôfJ t formas category. 

Definition 1.2: 

A permutation group (G,S,a) is an object trom GfJt, sat1stying 

the addition&! condition that, for every g E G, the mapping: s ~ a(g,s) 

la a bijeotion of S Qnto itselt. The c1ass of aIl permutation groups, 

with mort:h1sms defined as in definition 1.1, consti tutes a subca.tegory G(J 
ot op' .. 

Defin1tion 1.J: 

As an example of a permutation group, we May consider the so .. 

called regular representation (G,G,m), (to he denoted, henoeforth, b:r 

(G,G», of a group G. The action m:GX G ~G ia the group operation. 

Definition 1.4: 

A permutation gronp (G,S) 1s said to be transitive if the map 

ns: G ~ S, defined b:r the formula ns(g) = g(s), ia surjective, for 
every sE S. 

Remark 1.5t 

By vay of an example of an isomorphism in the category 6'f>, we 

shall prove that if a tinite set S ls of same cardinal1tyas a group G, 

and (G,S) is a. transitive permutation group, then (G,S) is isomor}ilic 
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to the regular representation (G,G). For eacll sES, the map TrSf G-?S, 

of def1nltion 1.4, ls surjective, hence bijectiv&~ Let 8 0 E S. Toeaoh 

sES, there corresponds a unique e(s)E.G, such that e(8)(80) =: s. 

The map e:S ~~ G, thus defined, has the property that 

e(lG(g)(s» = g .. (6(s», for all g E G, s E S~ because 

e(~(g)(s»(so) = g(s) = g«e(s»(so» = (g.e(s»(so»' 

(~ :: the identlty ma.p on G).. Thus, (~,e): (G,G) ~ (G,S) ise 
-1 morphisme One has e Q e = lS = the identi ty element onS t and 

e-l(~(gl)(g2» = e-1(gl.g2) = g1(e-1(g2» for al! gl' g2~G, ba~ase 
e(gl(e-1(g2»)(so) = (glo(e(e-1(g2»)(so) = (glog2)(so) =e(e-1(gleg2»(SO)' 

It follows that (~,e-l): (G,S) --. (G,G) i8 a morphisme The equalities 

<la,e)o(l(pe-1 ) = (!a'ls) and (lu,e-1)o(lG,e) =- (lG,lS) imply that 

(G,S) ls isomorphlc to (G,G). 

Definition 1.6: 

A permutation group (G,S) i8 faithful. if g :::: identity, whenever 

g(s) :::: s for a11 sES. 

2. The Permutation W'reath Product and Abstract Wreath Pr~. 

y 
Notation; If X and Y are sets, X denotes the set of all mappings frODl 

y 
y into X. If 1 ls a group, then X denotes the group defined on the 

y 
set X , by the formula (tt'l'f2)(Y) = lfl1(Y).lf'2(Y) for aU y€ Y. 

The i~.entitY' element of a given group, (aU groups will be written 

IIl\Ùtipl1vatlvely), will usually be denoted by the symbol 1, (aven in 

those cases where different groups are involved). 
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De:f'1n1tion 1,1= 

Let (A.,S) and (B,T) he twa objects trom Gp'. Derine the1r 

Wreatb product (A,S)'l,(B,T) to be the object (A1rB,SXT) of "P'; 

where A 1rB denotes the group defined on the!!!.i B)( AT" by the 

formula; 

(b1 ,'r1 )(b2'V'2) = (bl·b2,r~2·r2)' (bl ,b2 E.B, 'f'l, r2EAT), 

f~2 being detinad as the map: T ~A, given by t'~2(t) = fl(b2(t», 

for aU tE T. We have lf1(bb
t

) = (f)b
l 

for aU b, b' e. B, rEAT, and 

AlTB may alBo be described as the semi-direct product of AT and B, 

corresponding to the anti .. homomorphi8lll u:B ~.Aut(A.T), defined by the 

formula u(bHr> = rb
, for aU Lf'EAT, bEB. The action ofAtT3 

on S X T i8 given bi' the formula: 

(b,ljl)(s,t) = (f(t)(s),b(t», (bE.B,~EAT). 

If one denotes by l E AT the map defined by the formula I( t) ::1 lA = 
the 1dant1ty element of A, for aU tET, then (la,I)(s,t) = (8,t), 

for aU 8 E S, te: T. Also, 

[(bl,tfl)(b2'~2Ü (s,t) :: (fl (b2(t) Hf2(t)(s» ,bl (b2(t») = (bl'tyl )(lf'2(t)(s) ~b~(t» t 

80 that (A,Sn(B,T) 1s indeed an object of G{J'. 

Furthermore, if (A,S) and (B,T) are permutation groups, then 

(A,Sn(B,T) 1s again a parmu~tion group. To verify th1s statement, 

we suppose that 

(Y'(~)(sl),b('t:i» = (lf'(t2)(s2),b(t2», (bE B,tt'EAT, sl,s2 ES , ~,t2f.T). 
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Then t 1 = t 2 and sl = s2. Given (s,t), (s' ,t') es x T, there exista 

b E B, such that b(t) = t', and there existe a EA, such that a(8) CI: s'. 

Let f IT~A be any mapping with the property that lfl(t) = &. Then 

(b,o/)(s,t) = (~(t)(s),b(t» = (a(s),b(t» ::: (s',t'), 

and the verification ia complete. 

Definition 1.S, 

If (A,S) and (B,T) are two permutation groups, then the wreath 

product, or J)8l'D11ltation wreath product of (A,S) and (B,T), is defined 

to be (A,S)Z(B,T). 

Associated to (A,Sn(B,T), there exista a canonical split exact 

sequence ot groupa: 

T k P l.~Â ~ A7.rB ---=---:> B --;'101, 
T 

where k(lf) :: (l,~), p(b,~) = b, for aU b t B, l(l EA • 

Theorem 1.9. 

(a.) The wref ... th product can be consid.ered as a functor %' r.>' X C;P' ~G'fJt t 

associative upto natural isomorphism: 

(c) (A,s)l(B,T) is transitive Whenever (ApS) and (B,T) are both transi­

tive permutation groupa, and i8 taithful, whenever (A,S) and (B,T) are 

both taithful permutation groups. 

~: 

We have already' proved (b). 



- 6 -

PrOO! ot (a): 

let a = (0.,0.' h (A,S) --). (A' ,S'), P = ~P,fl'): (B,T) ~ (B' ,T') 

be two morphisms in cr'. Define 

(W(a,'B'),W' (a,l» : (A,S)Z(lr~T) ~ (A' ,S' n(B' ,T'), 

bl" the formulas: 

W(a,'ij')(b,o/) = (l3(b),a°l('°P'), W'{Ci,'ij'Hs',t') = (a.'(s'),p'(t'» 

for all bEB,o/EAT, s'ES', t'ET'. 

We proceed to verity that W{a,P) i8 homomorphi8111 o~ groups: 
_ b

2 
b

2 
W(a,~(blb2,rl f2) = (P(b1)p{b2),ao(rl ·r2)~p·); 

[W{a,'ij')(b1'o/l)] • [w(a,iHb2'o/2)] = (P(b1).fl(b2) ,(0. 0 flo~' )fl{b2) • (aor2° p, ». 
Now, 

b b 
(ao(~12.f2)oP')(t') = a(f12(p'{t'».a(f2(fl'(t8 ») 

= a(fl (b2( 13' (t'»» ~ «(tf 2(P' (t'»). 

On the other hand, 

[(a ° lf 1° P' )P(b2) • (a 0 tp 2ofl' >J( t') = a('fl (13' (fl(b2)( t'»» .a{f2(fl' (t'»). 

Binee (fl,S'): (B,T) ~ (B' ,T') is a mor}hl.slIl, 

P'(fl(b2)(t'» = b2(fl'(t'» 

and 1t tollon that W(a,'ij') 1s a homomor]il1sm. We proceed to verity 

the cOlllpatibility condition that would make (wtCi,a),W'{a,'ij'» a mor­

}i1iSlil in the category cr! 
W'(a,'lf)(W{a,P)(b,tp)(s' ,t'» = W'(a,'ij')«fl(b) ,a 0'f °13' )(a' ,t'» 

= w' (a,i) [(a(o/(fl' (t' » )(a') ,fl(b)( t' ~ 

= (at { a(f(fl' (t'» )(s')1 ,13' (fl(b)(t'») 

= (~(fl'(t'»(a'(s'»,b(fl'(t'»). 
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On the other hand, 

(b,~)(w·(â,ë)(s·,tt» = (b,~)(a'(st),~'(t'» = (r(~·(t'»(a.(s'»,b(a.(t·»). 
It follows that (W(a,i),w'(~,~» i8 a morphisme 

Let al = (al,ai>: (A' ,S·) ---;)0 (A" ,S") and 

II = (1:31,~i>: (B' ,T') ~ (B~' ,T") be two morphisme' in GfJ.' 
We prol,ead to show that W('ëIl.,~)oW(a:,i) = W(ëi:t0a ,~oi): 
W<à].,61)(W(a,i»(b,ljI) = W(~,ilHa(b),aofoa') 

= (al (a(b»,~oa°fo~tai) = wr~o a'~lol)(b,r) 

for all (b,o/)E A~/. It tollows from these calculations that the 

wreath product is a .f'tmctor. 

We shall now proye that the wreath product 1s associative 

upto natural iSO!Ilorphism. Ist 

PJ.: BXAT ~ Bl and P2: BXAT----+AT 

be the two set-theoretical projections. There is a group structure 

defined on ex (B XAT)U, (A,S), (B,T) and (C,U) being three arbitrary 

objects of CP', and, by detinition, [<A,S)L<B',T~1(C,U) consists of 

thi. group, together with its action on (S XT)XU. On the other 

hand, (A,Sn ]JB,T)1(C,U)] consists of a group struoture on the 

set (C:XBU) X ATXU , and the action of this group on S X (TXU). 

Def1ne (ZCX(BXAT)U ~ (C XBU) XATXU , by the formula 

t(c,~) == «c,tpl)'~2)' where fé(B XAT)U, and fl EBU, ~2.EATXU are 

defined by fl(u) = PJ.(o/(u», r2(t,u) = P2<l('(u»(t) for al1 UEU 

TUc' 
and tE. T. SUppose c'E C, ljl' E (BX A ). Then (c'!PHc' 'f') = (co' 'r -r'). 
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Define o/i{u) = P:l.(~·(u», ~i(t,u) = P2(~'(u»(t) for aU uE U 

and tE T. One has , 
«C'o/l),~)«o"~i),~) :; «C'~1)·(c·,~i),r2(C·'~i) Jfi) 

= «cc',wc:uJ') w(c',rl).wt ) 
Il fl '12 T2 

c. c' 
Nov, y«c,~).(ct,~» = «cc-,(r .~t)l),(r .~')2)' Where 

c· 
(~ .lf'1~u)=PJ.(Lf'(c'u).ty·(u» = PJ.('f(c'u».P].(<j"(u», and 

c' PI. (r' (u» 
(~ "r')2(t,u) = P2(r(c'u).o/'(u»(t» = P2(r(c'u» (t).P2(f'(u»(t) 

:; P2(~( c'u» (PJ. (r' (u» (t». P2(~' (u» (t) --------(1) 

One has y(c,r).~(c·'r) = «cc·,~·.tpi)'o/2(c','I'i).r2). 
we note that the tiret elements of the paira r«c,r).(c·,r'» and 

t(c,~).Y(c"r') are the aame. 

(f~c' ,ri) .~i)(t,u) :: r~c' ,ri)(t,u) .~2(t,u) 
= ~2('Pi(u)(t),c'(u»·o/i(t,u) 

= P2(r(c'(u»)(~i (u)(t».P2(f (u»(t) 

= P2(lf'(c' (u»)(p]. (~. (u) )(t) ).P2(~' (u) )(t). 

Comparlson with (1), glves: 

t«c,r).(c"~'» = y(cc,,~c' .~'), 
so that y la a homomorphlsm of groups. We now proceed to verity 

that, by defining Y'(a,(t,u» = «s,t),u) for aU sES, teT and 

u é U, W8 obtain a morphlslIl 

(f, Y'): [<A.,Sn(B,TB2(C,u) ~ (A,s)l [(B,Tn (C,U)] 

in the category 6}0': 
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t(c,o/)(s,(t,u» = «C'~)'~2)(s,(t,U» = <f2(t,U)(s),(e,rl)(t pu» 

= (P2(f(u) )(t)(s) '(fl (u)(t),c(u» 

= (P2(f(u»( t)(s) ,(Pl (r(u»( t),e(u»)" 

On the other hand, 

(o,o/)«s,t),u) = <r(u)(s,t),e(u» = «Pl (r(U»,P2(f(u»)(s,t),c(u» 

= «P2(~(u»(t)(s)'P1(~(u»(t»,e(u», 
whioh proves. that (Y'b') ls a morphism in the catego17 ~J •• 

The mappings 'f and Y' are invertible. Indeedt if 

«Ctrl),f2)E{CXB~)XATXU, then there exists a unique fE(BXAT)U, 

weh that fl{u) = PJ.(r(u», f2(t,u) = P2(tp(u»(t», for all uéU 

and t ET; so that the formula 0'-1«e'lf'1),r2) = (e,~) derines the 

-1 y inverse r of .. 

To prove part (e), let us suppose that (A,S) and (B,T) are 

transitive permutation groups. Given sl' s2E S, tl' t 2 E. T, thera 

exists J:)EB-, suoh that J:)(tl ) = t 2• Sinee (A,S) ls transitive,-

T 
there exists tpE A , sueb that !f(tl)(sl) = s2" Thus, 

(J:),o/)(sl,t1 ) = (r(~)(sl),t2) -= (s2,t2)· 

Thls proves that (A,S)l(B,T) is transitive. 

Now, suppose that (A,S) and (B,'t) are two faithful permntation 

groups, and suppose that (J:),r)(s,t) = (s,t), for a11 (s,t) ES X T. 

Sinee B is faithful, a = 1. If we suppose that !f(~)" 1, for soma 

~ E Tt then there exista an- SES, sueh that \f'(~)(s):/: s, whenca 

<a,r)(s,tl) =(~(~)(s),~) ; (s,~), which is a oontradiction. 

It follows that (A,S)t(B,T) is faithful. 
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Definition 1.20: 

The abstract wreath product A~B of two groups Â and B" 1s the 

group A\B~ belonging to the permutation wreath product (A,A)1,(B,B) .. 

It is a sem-direct product of AB and B, and one has a. canoniC8J. 

spli t-exact sequence: 

1--AB ~ A'lB ~B --'1' 1. 

One mal" a190 define A1B3 as the quotient of the frae product AB*a,. ob­

t&ined by identify1ng the words u.f.b.v and llob.'f'b. v (b E:B;lf'EAB• 
b B 
~ (x) :: ~(bx), u, v€k*"B). Subject to those identifications, ever,y 

word can be reduced to the lom b.lfJ, and it now becomes cleu that 

the two definitions are the sarna (upto natural isomorphism). 

To each homomorphism of groups o.: A -+A.' li we make corraspond a 

homomorph1sm 0.-*' A~B ~A'?B, by the formula a*(b,'!J):: (b,a. o 'f). 
The abstract wreath product A"lB ia thus seen to be functorial in A. 

It la not functorial in BII and we have to be cont.ent with the l1m1ted 

resu1t, contained in Proposition 1.21, beloy. The abstract wreath 

product 1s not associative. Indeed 1f atb and c are the respective 

cardinalities of groups A, Bt Ct then (ALBnC has the eardinal num.­

ber c.(b.ab)c = cbcabc• whereas Al(BiC) ia of cardinality chCachc • 

Proposition 1.2l: 

Suppose a: B ~ Bt is a monomor}i1ism of groups. Then 

(a) ther-a exists a mapping 01 sets pt B' ---+ B, such that 
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(t:l,P): (B,B) --? (BI ,B') 1a Il morphism in "P; 
(b) if a.l A --'Jo. A f ls AnY' homomorphism or groups, than thel"a existe 

h ....l..i lB A''lB' d h """1 ('! ,B._........1(A .. )B· .. a OIllomOl",t4A sm f: A -+ t.. t an a omomor.t"'& sm 0" A '-7" , 

auCh that the following diagram commutes: 

(c) if a. 18 a monomorphi8111, f may be chosen to be a monomorphisme 

Proof: 

(a) Choose a system lb; 1· of right CORet representat1ves for a(B) in S'. 
. ns' 
i.e. B' = U f3(B)bj , f3(B).b' n a(B).b~ • th,for (f:(: <).1. Def'1ne 

~s ~ ul j 

9. mapping of seta f= B' ~B. by p,ttting 

p(b t ) = fbl whenever bl$a(B) and b' == a(b1)bJ-

lb if' b' = l3(b). 

Than (f3,r>: (B,B) ~ (B' ,B') i8 9. morrhiSll in the cat,gory 6fJ. 
Indeed, . f (l3(b)(b'» = f (f3(b).b') =.~.b.b2 if b' = f3(b2): if Dot, then 

there exist bi- and bl' such that b' = f3(b1 ).b; and f3(b).b' = a(bb1).bJ. " 

80 that f(f3(b).bt) = b~. Nov, b(r(b'» = bb2 if' b' = P(b2). Ir!fl on 

the other band, b' f I3(S) and b' = P(bl).b;' ,then b(r(b'» = bbr ThU8, 

1t 1s seen th9.t r(l3(b)(b'» = b(f(b'», for aU bEB, b'EB', and, 

therefore, (I3'F): (B,B) ~ (B' ,B') Is 9. morlil1sm in '}0. 

(b) Define ber) = a o tp°f; Then b{o/r lf/2) = ~(rl).b(r2). De fine 

P(b'f) = (l3(b),b<r»· The diagram certa~ commutes. 
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One has 
b b 

~(~12)(b') = (t(~12(F(b'») = 0.(0/1 (b2.r(b t »). 
One the other hand, 

f3(b ) 
(6 (rl» 2 (b') = b(o/l)(f3(b2).b') = a(fl(f<a(b2}"b'»). 

The compat1b11ity condition for the morph1sm of part (a), gives 

r(I3(b2) .. b' = b 2.r(b'), so that b(~~2)(b') = (&(~'l»I3(b2)(b')' 
for aU b2 E BII b' E B'. Bence r la a homomorphism of groups. 

(c) Let f> be detined as above. Suppose that f (h ,0/) = 1. Then 

fS(b) = 1 and b = 1.. Furthermore, l = h <r> = (l0 lf' 0 f .. Sinoe F 
18 surject1va and a. inject1ve, o/(~) = l, for aU })E. B, and. th1s com­

pletes the proot .. 

J: EMbedding Theorem8. 

Theorem 1.22 (Krasner and Kaloujn1ne) 

If 1~A-4G~B-l 1s an exaot sequence of' groups and 

homomorphisms, 'then there exista a monomorph1sm 

(À ,1): (G,G) ~ (.l,A)l(B,B) 

in the category cr of' permutation groups; À i G ~ A1B la a mono­

morphism ot groups, and the f'ollowing diagramll with exact rows, commutest 

l~A.-4G ~B~l 

/-t Àt Il 
l~AB...l4A'lB ~B~l 



- 13 -

B Here f-: A ~A . i8 defined in such a waYt that for some system of 

representatives 't': B---o+ a, one has 

jy«a)(b» = .1:(b-l ).j(a).'t'(b) t (aE At béB). 

~: 

Without 10ss in generality,we may ident1:f'y G with the!2i B XA, 

multiplication being defined by Means of a normal1zed 2-coc,yCle 

r: B X B ---+ A and a mapping v; B ---,';100 Aut(A) t according to the for-

mule.: 

(bl,~)(b2,a2) = (blb2,f(bl,b2)·v(b2)(al)·a.2)' (b1 ,b2EB, 8 1 ,82E:A); 

(see, for instance,[9] ,th. 15.1.1). One has: 

v(y)(v(x)(a» = f(x,y)-l.v(xy)(a).f(x,y) ----------(1) 

f(xy,z).v(z)(f(x,y» = f(x,yz).f(y,Z)-M.-----------(ii) 

(x,y,ZEB:. aEA). À: G -:>A'lB i8 nowdefined, bywriting 

À(bl,al) = (b1 ,f(b1 ,-)·v(-)(al»· 

(We recall!. that A.~B 1a a group defined on the set B X AB. ) The expres-

sion f(bl,-).v(-)(al ) denotes the mapping: b~f(bl,b).v(b)(al)' 

·We now proceed to verify that À sat1sries the conditions of the 

theorem. Let b, bl , b2 EB, al' &2 EA; then À(bl '&I).À(b2 '&2) = (bl b2,'t), 
wherel 

1(b) = t(bl ,b2b).V(b2b)(al)·f(b2,b).v(b)(a2) 

= f(bl,b2b).t(b2,b).v(b)(v(b2)(al».v(b)(a2)' (by (1» 

= t(bl b2,b). v{b )(f(b1 ,b2». v(b)( V(b2)(al»' v(b )(a2), (by (1i). 

One bas 

À«b1 ,al)·(b2,a2» = À('1b2,f(b1 ,b2)·v(b2)(al)·a2) 

= (blb2,f(blb2,-)·v(-)[f(bl,b2)·V(b2)(~)·a2})· 
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It iollow8 that 

À(bl ,al )·tX(b2'&2) = ).«bl ,a1 )·(b2,a2», 
and À 1s a homomorphism of groups. 

Suppose À(bl'&l) = 1. Then bl = l and f(bl,X).v(x)(al) = l, 
for a11 xE B. It rollows that (bl'al) 18 the ident1tyelement 

(1,1) of G. 

vle derine 1: AX B ~AX B to be the identity map. We ha.ve 

identified G with the .!.!i B X A. and the regular representation (G,G) 

1s obtained by letting G act on A X B, according to the formula: 

we prooeed to verit.Y that the pair (À,I) satifies the compatibility 

condition: 

I(À(bl,al)(a,b» = (bl,t(bl,-).v(-).al)(a,b) = (t(bl,b).v(b).aloa,blb) 

= (bl,al)(I(a,b». 

The tact that (,\ ,1) is a monomorphism in the category cp , tollows trom 

the following more general statement: 1f (13,/3') is a lIlorph1sm in cp , 
13 a monomorJ;il1sm of groups and 13' an epimorphism of sets, then (13,13') 

• • 1s a monomorJ;ilism in ur. (Proof: the equality (13,13' )o(al.'~ = (13.13' )o(~,~) 

imp11es l3o~ = 13 0
0.2 and <ti° 13 ' = «2°13', whence ~ = 0:2 and aJ. = ai.) 

It now ORly remains to verity the commutat1vity of the diagraa 

conta1ned in the statement of the theorem. Without 10ss in generality, 

we May suppose ~(b) = (b,l), j~a)(b» = (l,v(b)(a» = (b,l)-l(l,a)(b,l), 

j(a) = (l,a) andn(b,a) =b for a11 aEA and bE.B (1,5.1 ot [6]). Now, 
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k~(a» = (lt-<a» and t\(j(a» = À(l,a) = (l,f(l;-)v(-)(a» 

= (l,v(-Ha» = (l,r'a»; 

80 that thesquare on the 1eft commutes. One also bas 

p(À(b,a» = p(b,f(b,-).v(-)(a» = b = n(b,a), 

and this completos the proof. 

Definition 1.23: 

A genera1ized SChreier extension ia a sequence of groupa: 

Gn C Gn_1C ••• CG1CGo = G 

such that Gi+l 1s normal in G1, for 1 = O, •• ,n-l, and no subgroup pf 

Gn 1s normal in G, except the trivial. subgroup (1). 

Theonm 1.24: (Hare Krasner and Uo Kaloujnine) 

Suppose Kn CKn.l C ••• Cltl Cio = K 18 a general1zed Schre1er 

extension. Then K can be embedded in the repeated wreath_product 

(~-1/Kn)G«'n-2/'n_l)l( ••• «K1/K2)2(Ko/K1»···»· 
LeDllll& 1.25 (the case n = 2): 

If K2C '1 Clo= K is a generallœd Schreier extension, then 

there exists a monolllorphism. À: K ~(K1/K2)~(Ko/K1)' snch that the 

following diagram commutes: 
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Proof of the lemma: 

fut Fo = KO/Kl and F1 = Kl/K2. Let t: Ko~ K11Fo be the em­

bedding of theorem 1.22, obtained from the canonical exact sequence: 

l~K~ Ko--'/» '0-)0-1 

and let p*: KitF o~ Fl~F 0 be the homomorph1sm induoed by the 

eanon1cal projection p: Kl ~ F1' ae explained in Proposition 1.2l. 

We shall prove that the composition À = P,lf0 e gtves the desired mono­

morphisme 

Since the kerne1 of P* o.f,: Ko~ F i1, Fois normal in Ko' i t 

suftices to prove that it is contained in '2" We identity Ko with 

the set FoXK1' the multiplication being glven by a normalized 

2-coeyc1e t: F~ ~ Kl and a mapping v: Fo ~ Aut(Kl), satisfying the 

usua1 conditions «t) and (il) in the proof of th. 1.22). Kl la 

identtfted with the subgroup {(l,g): g E K1} ot Ko. Suppose goE Ko 

and l = p~(e(go» = p*(b,o/) = (b,paf), where bE.Fo ' go = (b,a), 

tp(,x) = t(b,x).v(x)(a) for al1 x éFo• Then b = l, t(b,x) = 1 and 

p(v(x){a» = 1 tor all!xEFo• The equality b = I1mplies goE:Kl' 

so that, according to the aboVe identiticàtion, go and a are the 

aame. Choosing x = l, one obtains p(a) = 1, whence it follows that 

go E K2 ; and the proof is cOllpletad by verifying that the following 

dlagram of groups and homomorphisme, the rows of which are exact, 

le commutative: (see proposition 1.21 and theorem 1.22) 

1~K1~Ko )oFo~l 

! L Il 
F 

l~Klo~K~'o~Fo~l 

!Fo !~ Il 
l~Fl ~FJ.~Fo~Fo~1 
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Proof of theorem 1.24: 

If n = 1, theorem 1.22 gives the resu1t, and if n = 2, then 

the rasu1t rollows trom lemma 1.25. VIe may, theref'ore, suppose that 

n > 2. Pa.t K: = Ko ,and, f!)r j:> 0, define inductively Kj and Kr 
by the formulas Kj = Kj_lnKj and Kj = n x-l.Kj.x. Then 

xEK 

is a generalized Schreier extensic;n. Indeed, if' p: K~ K/K~ denotas 

the canonical projection, and HCK2/K~ is a normal subgroup in KI Kr, 
then p(x).h.p(x-l )EH for allxE:K and hEH. If' yfK2 isa 

representative of' h ,i.e pey) = h, then xyx-1 E;P-l(H) CK2' so that 

y f X-1K2x for aU xE K. Thus, yé n x-lKtt = K~" (note that K~ = (2), 
xEK 

for a11 y with pey) EH, and, hence, H = (1). 

Applying lemma 1.25, we obtain an embedding 

k1: KIKi ) (K1/Ki )G (KIKi) = F ~F 
K2/K; KI/Ki l 0 

By induction, we will def'ine embeddinga 

kil K/Kt+l -+ 'it(F:t...tl( ••• (FiLFo» ••. ) (i = l, •• ,n). 

So, suppose that kl''''~_l have been defined (2~i~n). One bas 

• }{- *" *" G.+l CKi and Ki+lCKi • We shal1 show that 

• * C 1 ~ Ki+l/G:+l C Ki/Kf+l K 1<1+1 

ls a generalized Schreier extension. !st th K -+ K/KÏ+1 denota the 

canonical projection. Suppose 11' C Ki+l/K1+1 is a normal subgroup of' 

~K/~+l. Then, p(x).h.p(X-l)E 11', for a11 xE K and hElf. There exists 

-' -_ .. ,_.- ..... ~ -.. -.... ., .. ~ ._ .. -" - .~ -'.~ ....... ~ -~ .. ,~ ... ,.-' .. ,,~ .... 



-18-

-( ) -1 -1(-) ~. , y E K, such that h = P y; :x;y.x: E: P H C K1+1Ki+l = K1+1 • 

The rei'ore, yé. n x-1KJ.+IX = Ki+l' h = pey) = l, and if = (1). 
xEK 

Appl.ying lemma 1.25, we obtain an embedding 

ei , K/Itt"..1 -(~/Kt+l )l(K'.~+l) = (KtJK1+1)'l,(K/Kj). 

~1+1/Ki+! \K1/K[+l 

From the monomorphisms: Kt/K1+~ K:t./Ki+l ' (induced b1' the inclusion 
~ 

KiCKi ), and 

ki_l' K/Kl ~ F1_11(F1_2(,( .. ·.«FI1Fo»···», 

(induction hypothesis), we obtain a monomor}il1sm 

ei' (~/Ki+l)è(K/Kt)~ Fil(Fi_11( ••• (FltFo»··»' 
(see proposition 1.21). ~,define ki = et oei " If' i = n, then the 

gèrl. Schreier extension aboJTe, becomes (l)CIÇ"CK; 

~: K .en) 'n1,(K/Kn) e~ ~ ~~(Fn_ll.( ... (Fll,Fo»."» 

= FnLCrn_1IC ••• (FlîFo»···»; 

and kn can be taken as the embedding mantioned in the statement of' 

the tbeorem. 

Theorem 1.26: 

Suppose {G11iE~ ls a (countab1e) f'am1ly of f1nite p-groups, 

Gi 18 of' order plDt, Mt Efj, 1Dt+1~~' and, for j ~i, 

fi,j: Gj ~ Gi is an epimorphism, such that F 1,j 0 ~,k = fi,k' 
whenever k ~ j ~ 1. Then, for every 1 é ~, there exista a monomorphism 

(mi) 
Ài' G1~ Cp = fpL(Cp1( ••• (CplCp» ••• ~, 

V 
Mi times 
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where Cp = ~/p~ , the cycl1c group ot order p. 

Denote by ~l: c~r+1)~ c~r) the eanonical projection: 

(b,o/) ~ b, and, tor Dl >r, define ~ = n:_lo:n::~o .. o~l. If 

m= r, n~ will denote the 1dentity map. The monomorphisms ~i can 

be defined in such a wa.y that for every- pair (i,j) of positive 

integers, with j ~i, the following diagram commutes: 

Gj 
Àj ) C(mj) 

p 

Fi,jl l~ 
Gi )Ii 

> C(mi) 
p 

'. 

~: 

Every t1nite p.group G a~ts a de composition series 

(1) = G/tCG~_1 ••• C:G~ = G, 

GI normal in G, and G1/G1+{Cp' for 1 = 0, ••• ,n-l (se., tor instance, 

[21], Chap. IX, Cor. to th. l ); 

G~_1 C ••• C Gi C G ~ = G 

is a generalize4 Schreier extension, and it follo.s, by theorem 1.24, 
(n) 

that G can be e~bedded into Cp • 

The monomorphiSBs Ài will now be defined inductively. For i = l, 
we define "1 to be any embedding of G1, into c~·1). We make the induo­

tion hypothesi& that Àj: Gj ~ C~mj) has been defined for j = l, •• ,i, 

in sueb a way that the inequalitie& l~h < j ~i imply oommutativity 

of the diag~am.: 
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À 
Gj 

j c(mj) 
;1 p 

rj,h l n~ 
~ \ 

) c(lIlh) 
p 

If ml+1 = mi' then fi.i+l: Gi+l ~ Gi 18 an isomorphisme Putting 

Âi+l =. r"~iori:i+lt one obtains a cOIilMlltative diagram: (p(b) = (b,l» 

G Ài+l C(lIi+l) 
1+1 )0 p 

P1.i t1 l n~+l 
Gi - r C(1I1) Xi p 

and the induction proC8ss can continue. It now suffices to suppose 

lIi+1>1I1' and to de fine À1+1 in such a way tbat the above diagr8Jll 

CClmmuteS. Let 

be a de composition series for Gi' Hj normal Bl..!!, Bj/Hj+l'Z'Cp ' for 

aU j = 0, •• ,IIi-l, ([2l] ,Cor. to th. 1 of Chap. n). Put Kj =,6 i~1+1 (Hj ) , 

(j = 0, •• ,111) ,then Kj/Kj+l ~Cp' (j = O, ••• ,lIt~l) and Kj is normal in 

Ko = K = G1+1 • By{l] , § 6, th. ? , the sequence 

'm1 C ~ -1 C • • • C KI C Ko = K = G1+1 

can be ext8nded to a de composition series 

Cl) = 'm1+1C~+1-lC ••• C:~C ••• CKICKo = K 

Il 
kel' F1,i+l 
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(Kj+l normal in Kjt for j = O,~.,m1+1-1). 
From nov on, we shall use the saMa notation as in theorem 1.24, 

(lIlt+l = n) .. 

Claims for j = O, •• ,IIlt' Kr = Kj = Kj. 

~: By definition, K: = Ko" Suppose K; = Kj for soma j (0 ~j<11lt); 

then K;+1 = K;nKj+l = Kj+1 and Kj+l = n,x-1K~1X = rh:-1Kj+1X = Kj+l' 
xeK x~K 

because Kj+l la normal in K. This induotion argument proves the chiBl. 

Thus" Çi = Kmi' and fi,i+l:Gi +1 -+ Gi induces an isomor}ilism 

6"; K/~----;.. m = Gi " For j = . 1, •••• ,lIi+l-~' let Pj' K/~+j~K/~i+j .. 1 

denote the oanon1cal projeotion. There exist eptmorpnism8 uh 

(h = l' •• '!Ili,+1-Mt)' and isomorphisme Sj (j = O, ••• 'lIlt+l-lIlt-l.), 

such that, for avery j the follow1ng diagram oommutes: 
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• 
• 

• 

1 Uj+2 

• • 
• • 
• • 

> H +---------l 

(One may, for instance, define ul = ~ 0 Pl,Et, = cr; Uj = Pj and Bj_l= 1 

for j :: 2, •• ,D11+1-1li). 
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Let v~ = Ài" Gi ~C~~). By induction on h ;:: 0, ••• ,mi+rom1t we 

shall define monomorphisme Vmi+h suCh that eaCh diagram, 

commutes (O~h~~+l-Blt-l). For h = 0, vint+h has already been 

defined. Suppose that vmi' ••• 'V~+j have been defined (0 ~ j~ lIlt+1-Blt) , 

and satisfy the above oondition of oOlllllll1tativity of the diagram. 

WB have shown, in the proof of theorem 1.24, that 

K' )fc- / ~ mi+j+1/x.:i+jSK~+j /X:
1
+j+1 C K ~+j+l 

is a general1~d Schreier extension, and that one obtains trom it a 

monomorphism 

(see also 1elllJll& 1.25). From the monOlllor}il1sms: !Çi+j /~+j+1~~i+j /KDlj,+j+1 
Il- . = Cp' (induced by the inolusion ~+j C~+j ) and 

* (lBt+j) 
vDlt+j 0 e j , K/~+j -~ Cp , weobtain a monolllorphism 

"* (mi+j+l) 
e~+j: (Çi+j /Çi+j+I)~(K/~+j ) ) Cp 

mi+j+1 , 
suCh that TT

D1t
+j 0 lD1t+j = Vmi+j 0 6 j 0 TTj (See Proposition 1.21 -

the last equa1ity corresponds to the equal1ty TT' o'f = POTT in the 

statement of Proposition 1.21. the canonical projeotion TTj is indicated 
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in the diagram below.) Finally, plt v = Il' 0 .e to 
lIlt+j+1 tD1t+j l11i+j 

obtain a oommutative diagraœ: 

K/~+j+1 = 

~+j+l 
1T Dl].+j 

(The' centre square 1s oommutative" by virtue of lemlll& 1.25). The 

induotion proces8 on j, oan continue. we now define ~+l = v
Mt

+
l

• 

The proof 18 oomplete, aince the follow1ng diagram 1a commutat1ve: 



, 

À - v: 1+1 - M1+1 

u 
~1+1"~ 

K/K* 
1Df+l-1 

\ u"'1+r"'1-1 

• 
• 
• 

Definition 1.27: 
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• 
• 
• 

~+1 
1T 

lD1, 

, rrD1t+1 
~ 

Relative to the maps ~ (m >r), defined in the statemant of 

theorem 1.26, the groups c~n) (n = 1,2, ••• ) torm a projective sys­

tem. Its inverse limit will, henceforth, be denoted by W = lim C(n) • 
. ~ p 



t 

Theorem 1.28: 

Every pro-p...group Pt satis:f'ying the second axiom of countabilltY'f 
cam be continuously embeddad in the pro .. p..gl"oup lit = ~ C~n) .. 
.f.!:22!: 

P admits Il eountable neighborhood base tVl~iEI of the identity 1, 
consisting of open, compaot and normal subgrattps Vi oi P ([18] Chap~ l § 1) .. 
We MaY, :furtharmol"e, assume that V1CVj , whenever 1>3 .. (If not, replace 

each Vl by- Vi" = n Vj ). Denote by Tf J,! t plv! ~ plv j the canonical , l~j~i 
bomomorPlism. We shall now prO'V8 the well-known tact that P ls 1so .. 

morIhic to ~. plv!; (here_ the inverse 1imit 1s ,taken relative to 

the maps Trj,l). For each lE~, let TTi : p~ P/V1 denote the canonical 
projection, and let f" P -+ ~ plv'! 'he the canonica1 continuons 

homomorfh1sm obtained trom the maps Tf1' by 1nvoking the unlversal proper­
ty of the functor ~; (note that Trj,ion1 = 1tj' whenever i >j). Suppose 
tbat p = (PJ.,P2,' ••• ) represents an element 0t: ~ plv! (P:i. € plvi , 

1Tj ,i(Pi) = Pj). For each lE~, let qi den ote a representative in P of 
Pi. Binee P l,s compact «(18], Chap. IS1) and the sets qi Vi CP satlsty 
the rinite intersection property, one bas cp f: n qlVi. It ls clear 

iE~. 

that r(x) = p, whenever xE Dx~ Vi- Thus f ls surjective, and, to prove 
=. 

that it ls an lsomorIilism, it surfi'ces to show that n qiVi consists 
1E~ 

of exactly one element; but this 1s immediate, becausEl 

(loc cit). We ma:r, therefore,identity P witb 1im p/vi • 
+-

~}Note that the f1rst and second axioms or countabil1ty are equivalent, for profinite groups. 



Suppose p/vi ia or order pMi. fol" aU tE!~ According to 

'theorem lw26, there exists,. for each iE~, a monomorphism Ài such 

that the following diagram. commutes whenever 1 ;::j= 

P!Vi. ~ c~"'i.) 

tnj
'1 l n~ 

~ plv j _~--+ ~mj) 

Binee them.verse system {c~mi), rei } 18 cofinal to the in .. 
. j i,j€~, i)j 

verse system {c~r}, n;} . , we may identify W with l1m c(mi) • 
r,sEI-, r~8 ~ P 

The resu1t now tollows trom the tact that lim is a laft exact functor trom r-
the ca.tegory of inverse systems of' tinite pro-p..groups to the category 

of pro-p..groups. To be more explicit~ we wrlte À(Pl,P2' ••• ') = (À1(Pl),À2(P2)' •• ) 

1 \ (mi) 
for aU Pi E P V~.. Then 1\ J P --+ ~ Cp ls a well-detined continuous 

homomorphism, and 1s injective, because each Ài, is injective. 

Proposition 1.221 

Hl ( ~n) ,~/p~) and Hl(W,~/p!) are vector spaces of dimension n and ~o 

respecti~ely, over the tield ~/p~ (nE~).. The groups c~n) and W = e,c~n) 

both have inf1n1te cohamo10g1cal dimension. 

l!:22!1 
The f1rst statement is trivla~ true tor n = 1. Suppose itholda 

for a given positive integer n. We shall prove it to be true tOI" n+l. 

The dimension of Hl ( c~n) ,1JP~) over !/p~ can be charater1zed as the 
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cardinality of any (and every) minimal system of ge~erators l~i,·'O 'YnJ 
for the group c~n) ([lB] ,Chap. I, cor. to prop. 25). Suppose that n 

generates Cp" One has, as before, a canonical split exact sequence: 

(n) ~+l 
]. -~ (:/p~)Cp ~ c~n+].) ( ) c~n) -+ l 

~ 
We make a formal distinotion bet.en C and Z/pZ, in the sense that the 

. p = = 
former 1s written multiplicat1vely, and the latter additively; 

C(n) ( ) 
(Z/pZ) p is the additive group of mappinga tram Cp

n into Z/pZ, and = = = =( ) 
the gràup operation in c~n+1), (defined on the set c~n)x( ~ /P!)cp

n 
), 

It tollows trom (18], Chap. I, prop. 25, that one can find a !/p~ - base 

b1, •• ,hn for Hl(c~n),~/p~) = Hom(C~n),!lp=), suoh that 

b i (r.) = ç 0 if 1 :/: j 

j Ll if 1 = j 

Define a mapping 'fi c~n) ~ 'j/PI ' by pttting 

W( t) = {o 1f t ,. 1 
1 ll, if t = 1. 

- (n+l) 
.Define a hOlIIomor}il1sm [,1 Cp ~ Z/pZ by the formula = = (n) 

E(b,.r' = t~c~n)lf'( t), fo" alll b E q,n), If E (I/pl) Cp • 

We prooeed to show that {~lo~+l, ••• ,bnon:+1 , l'J 15 a l1nearly inde-

pendent set of e1ements of H1(c~n+1) ,~/pi). Suppose ,a1 Ej/pi (i = l, •• ,n+l) 

and ~ a b o~+l + a +1 ï = 0 ---------(X) 
1=1 1 1 n n 

Then 0 = ~ a1bl(~+1(k(f») + &n+1!(k(r» = an+1 " 
. 1=1 
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From') (X), one now obtains 
n n+1 n ( o = ~ ai($1<Tr~' <rn(aj»» = E a101(~j) = a j t for j = l,_.,n. i=1. 1=1 

It follows that the elements b1on:+1 , ••• ,bno~+l, 'l are linearly in­

depandent over'!!./p'!A. In order to prove that dim.(a1(C~n+l) ,~/p~) = 
n+l, it now suffices to show that the subgroup H of C~n+l), generated 

by {fn( Ol)' ••• 'Pn(tn),k<r~, ooblcides with c~n+l) ([18], Chap l, cor. 
to prop. 25). Clearly fn(C~n»CH. For each bEc~n)J one has 

k(o/>(ln (b> = (1,0/). (b ,1> = (1,r'>' f.:inee (1,!f'> EH. 
One lmmediately verifies that each rE(!/p!)Cp can be written in 

the fOrll 

-1 . r =b~c(n)o/(b)lf 
P (n) dn) ( ) Thus, >k{(~,!/p!)CP )CH~ Since the groups k«~/P!)-P ) and(:>n(Cp

n ) 
generate c~n+l), wa mal" now conclude th~t H = c~n+l), and the induction 
argument is complete. 

Denoting bl" (~lr: ~(c~n) ,!/P!.) ---?Hl(C~n+l) ,!/P!) and P: : H1(C~n+l) ,!/p!) _....,.,.Hl(C~n) ,!/P!) the homomorPlisms induced by 

~+land rn ' respectively, one has r: c«l)*' =1. Thus, (~+1r is 
a monomorIhism, mapping the base, deecribed above, of Hl(c~n) ,!./p~), 
onto the tiret n base vectors ot H1(C~n+l)'i/p~). It tollows that 

the direct limit ~(W,!/P!) of the direct system {H1(c~n) '!/P:)t(~)J m>n' 
where (~r = (n:_if ... (~~7f , is a vector space ot dimension ${o 

overZ/pZ. = = 
The last two statements: cd (C(n» = CO and mp' (W) = ()?, present p p 
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no d1ffieülties. The group ll/P'!:. <:an be embedded in c~n), because 

the maps (-'Dl are monomorphisms, and can also ba embedd.ed in W, bl" 

theorem 1.28. One, theref'oI"et has 

00 = cd ('!JpZ) ~ cd (C(n» 
p = = p p 

and 

00 = cdp(!/p~) ~ oclp(W) . 

( [18J, Chap. I, prop. 14). 
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Chapter II: Applications to Field. The ory. 

Definition 2.1: 

Suppose (G,S) 1s a permutation group, (det1n1tion 1.2), and 

K a field. Co~sider S as a set of indete~tes over the field K. 

If the field L of invariants, with respect to the K-automorphisms 
O",eî K 

defined on K(S) by the elements of G, ia p1re13 transcendantal,tt 

then K is said to have the propertl p(G,S). 

Example: 

Let T be any finite set of n e1ements J and Sn the ~YJIDI8tr1c 

group of aU permutations of T. Then every field K has the proper­

ty P(Sn,T), because the field L of invariants ls generated over K 

by the n symmatric fUnctions in the elamants of T. 

The property p(G,S), defined above, darives its iaportance 

from its relation to the so-called inverse problem of Galois the ory. 

This latter problem consists of asldng for which pairs (K,G), K a 

field. and G a finite (or profinite) group, there exists a Galois 

extension of K, with Galois group G. To make the relationahip be­

tween the inverse probleM of Galois theory and tha property P(G,S) 

more explicit, lat us assuma that G and S are both f'inite and that 

ul''''Un are algebraically inde pendent elements of K(S), such tbat 
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K(ul' •• '~) la the field of aIl those elements ofK(S), (defined 

above), that are left f1xed by aU the K-automorphisme ot K(S), 

induced hl" the elements ot G. Suppose now that 

tex) = n(x-s) ="J!l + al(uI' •• 'Un) + ••• + Bn(ul''''Un)E K(Ul''''Un)[X] 
sES 

(x ls an indeterminate, ai(ul, •• ,~)EK(ul' •• tUn) for aIl i = l, •• ,n).' 

It ls possible, tor a large chss ot pairs (K,G), to obtain a 

Galois extension M ot K, with Galois group G, by a process ot 

"special1zation ot the parameters' uI' •• '~"' outlined below. 

In particular, if K is an hilbertian field and G Any t1nite group, 

then lt ls possible to "spec1al1r.e" the uI' •• t~, by finding a 

tam1ly ui, •• ,~ ot elements in K, baving the f'ollowing propertles: 

• • • (i) ai(ul, •• ,nn) is well-detined for each i = l, •• ,n: 

(ii) the polynomial tl(x)E K[x], obtained bl" replacing ui bl" ui 
(1 = lu. ,n) in the above expression for t(x), is irraducibl.e; 

(~ the splitting field M of tl(x) is a Galois extension ot K, 

with Galois group G. 

Conversely', W. Kliyk has proved that tor K infinite, every iinite 

Galois extension of K, can be obta~d by suQh a special1zation 

procas8, (see his paper: On a theorem ot E. Noether, Proc~ of 

Kon. Nederl. Ak. van WetensChàppen - series A,67,no.I). For more 

deuils on this subject and for a proot of the following th., see [13J. 

Theorem 2.2 (Hilbert and E. Noether) = 

If K is an hilbertlan field, wi.th the propertl" p(G,S), and 
1 

Gand. S are finite, then there exists a Galois en. MIK, with group G. 
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Theoram 2. Ja (W. Kuyk) 

Let L be a finite Galois extension of an'hilbertian field··l('t with 
group A. Suppose that K bas the property P(G,G), (G,G) being the 

regular representation of some t'inite group G (defin1tion 1.). 

Then K admits a Galois extension Mt with Galois group G1At and M 

is the splitting field of a polynomial g, having the property that 

the restriction of the K-automorphisms in G1A to the roots of g, 

det'ines a permutation group isomorphie to (G,G)Z(A,A). 

~: 

Let fX1' •• 'xn~ he a f'amily of 1ndeterminates over K, n the 

cardina11ty of G, and let (G,fxl' •• tXn1) he a (transitive and faith·~· 
ful) permutation group isolllorphie to (G,G), (see 1.), 1.4, 1.5 and 

1.6). ay hypothesis, K(~, •• ,xn) admits a subf1eld K(ul'~.'Un) , 

with ul'" ,un algebraically inde pendent over K, sueh that G may he 

identified with the Galois group of the Galois extension 

K(XI, •• ,Xn)\K(~' •• 'Un); i.e. the qalois group ot the polynomial n . 
teX) = n (x .. Xj.) EI(ul' •• 'Un)[x] 

i=1 

(x ia an indeterminate). Note that the number oiui's squals n, by 
the invariance of' the transcendental degree ot an extension, ([2J 
Chap. V,§ 5, th.,). I.et[wl,,,,wa1 he a normal. base ot LIK Ca:; the 
eardinality ot A - [2] Chap. V,§10, det.). Adjoin a tamUy 

t = {tj 1J ~1 i-1 ot indeterm1nà.tes ta L. Each one of , ~. , •• ,al - , •• ,n 
the elements «t,.4,aa of A admits a canon1cal extension to L(t), 



determined by the formulas~ I\(l);: Dk«() and Btt(tj,i) = tj,i (-teL) 
(i = l, •• ,n; j=l, •• ,a.; k = 1, •• ,a). The correspondance 

flk"rl' Pk de!'ines an iSOIIlorphism of the Ga.lois groups of LI K and 
L{t}\K(t) ([Z]Chap .. V,§lO, th •. l). Derine 

a 
v'k i ::: E t j ia. (Wj ) = ~(Vl'1) ..... _-_ .... (y), ,. j=l .--K , 

where ~ 1a taken to he the identity element ot A, (i = l, •• ,n; j = l, •• ,a; 
a 

k= l, •• ,a). Dafine v'k::: {vk l' .... ,vk n 1 and v =: UVk. , , ) k=l 
~: The elements vk,i are algebraically inde pendant over L and 

L(v) = Let). 

~: The determina'nt 1~(W'j) 1 1a nonzero, because wl, •• ,lI'a con­

at1tute a normal base for Llx ([2J Chap~ V §lO Prop.l). There~ore. 
the equat10ns (Y) can he solved for tk,i , whenoe tk,iEL(v), tor 

k = l, •• ,a and i= 1, .. ,nt i.e. L(t)CL(v). By the da finition ot the. 
set v:, the opposite inclusion 18 vaUd too, and L(t) = L(v).. The alge-
bra1c independence over L ot the set v, nCiW follows 1mmed1a tely trom 
the invariance of the transcendental degree ([2J Chap. V, §s th.), and 

th1s completes the proo! of the c1aim. 

Since the elements of v are algebra1cally' inde pendent over L, 

and, 'therefore, owr K, one ean de!1ne a K-1somorphism 

'r', K(ul'." ,~) -0+ K(vI,l' ••• ,vI,n)" by JUtting t:"(u1 ) = VI,i' for 
aU 1 = 1, •• ,ne Extend the domain and range of 'C to the rings 

K(ul'''''Un > [X] and K(vl ,l,."""V1 ,n)[X} respectively, by Pltting 
t'eX) = X. Also extend the domain and range of the automorphisms l'k' 
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to the ring L(-t)[X] , by p,ltting ~k(X) = X. De fine 
a 

h::: n ~(t(t(X») E K(t)[x] 
k=1 

and denote by ~ = {~,l' ••• '~,nJ (k = l, •• ,a) the roots of 
a 

~('t'(f'(X») in some algebraio closure of' L(t). Put z = U ~. 
k=l 

We shall prove that the splitting field ~(z) of h ia a Galois exten-

sion of K( t), wi. th Galois group G ZAo First, the Galois groups of the 

extensions K(Xi ••• ,xn>\K(Ul, •• ,un) and K(~)IK(Vk) are 1somorphic 

(k = 1, •• ,a), because K(xl' •• 'xn) 1s the splitting field of' 

f(X)EK(u1, •• ,un)[xJ, whereas K(~) 1e the splitting field of its 1so-

1Il0rJi1io image ~('t'(t(X»)E Ptc('C(K(uI' •• ,11n) = K(vk). The next step 

is to prove that L(~)IL(vk) 1s a Galois extension, whose Galois 

group is a1so isomorphic ta G. Acoording ta [2 J ,Chap. V, § 10, th.l, 

it suftioes to prove that K{vk) = K(Zk)nL(vk). So, let M = It(~)n L{Vk). 

L(~) IK(~) and L(Vk> \ K(Vk) both have Galois group5 isomorphic to A 

(100 oit), since ztc and vk are families of algebraically inde pendent 

elements over K; (the elements ot zk are algebraically inde pendent 

over Kt because K(Zk)\K(Vk) la an algebraic extension and because ot 

the invariance of' the transcendental degree of the extension K(~)IK -

see [2] ,Chap.V, § 5, th.):' i oonsequently K(~)n L = K and K(vk>n:t = K). 

L(~> 

/~ 
L(vk) K(Zk) 

~/ 
·H 

1 
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By [2] Chap.V§ 10, th.l, L(vk)\M has Galois group A. Thus 

[L(Vk)sM] = a. But, [L(Vk):K(vk)] = a and K(vk)CM. It f'ollows 

that K(vk) = M.. 50, we oonolude that the Galois group of' L(~)\L(Vk) 
is isomorphio to G, (k = l, •• ,a). 

Repeated application of' lellIlD8. 2.4, stated at the end of this 

pro of , allows us to oonolude that L(z> {L(V) la a Galols extension, 

with Galois group isamorphio to Ga. For the oonvenienoe of the reader, 

WB inolude the f'ollowing diagl"aDl of field extensions, with Galois groups 

as indicated: 

In the caloulation of' the 1ndioated Galois groups, one makes repeated 

use of' the f'act that if' W\V ls a finite Ga~oiS extension, and Y a 

f'amily of indeterminates, then W(Y)\ Vey) ia a Galois extension with 

Galois group isomorphio to the Galois group of' W\V ([2J Chap.V,5l0~ th.l). 
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(Note that V(y)n U= V'' whenevel" U,' 1s an algebraic extension of V.) 

In particulal", this argument, in conjunction with lemma 2.4 below, al-

1àws~usto conclude that L(z) lL(Vl., •• ,vk_1,ztc,Vk+1' •• 'Va ) bas 

G~lois group Ga- 1 (a product of a-1 copies of G). 

We now proceed to show that the elements of z are conjugate 

to one anothel" oval" K(t). Sin ce L(z) 1s the splitting field of h, 

L(Z)\K(t) 1s normal ([2J Chap.V §6,cor. of Prop. 9). By §6, Frop. 7 

(loc cit), every K(t)-automorphism Pk on L(t), can be extended to 

a K(t)-automorphism ot L(z). Note that the set Pk(Vj ) 15 of the 

fom vh. Suppose that ~ 18 a K(t)-automorphism of L(z), that ex­

tends ~; then each element of the set ~(Zj) 18 algebraic oval" L(vh ). 

On the other hand, none of the elements ot Pic(Zj) are algebraic 

oval" L( ve ) t for e:/: h, becaus8 the f1elds L( vl) , ••• , L( va) are 

algebra1cally disjoint over L ([2J Chap. V § 5, Frop. 4, Prop. 9 

and its corollar188). It tollows that ~(Zj) =~. We see from 

th.i.s that the sets zl' •• tZa are impr1mit1vity domains ([6J) for 

a collection C ot l(t}-automorphisms of L(z), that permute the 

family of sets {~, .. tZar tl"ansitively. The K~isomorph18m 

't: K(U1, .. tl1n)~K(V1) admits an extension 't'f: K(:Xl, •• ,:xn)--f"K(~) 

([2] abap.V,§4, cor. to th. 1). Each set Zj = [Zj,lt ••• 'Zj,n3 1s 

permuted trans1tivel.y by a collection Cj = {pj o't'~o-o't!-~(pj)-1, ûEG = 

the Galois group of K(X1, •• ,xn)!K(Ul' •• 'Un)] (p; extends Pj) of 

K(t)-automorphisms on L(zj). Given two arbitrar,y elements of z, 
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it ls possible to compose an element of C, with a K(t)-a.utomorph1sm 
a 

of L(z), that extends sOlIle element of U Cj ([2J Chap. V, §6 Prop. 7), 
j=l 

to obtain a K(t)-automor}:hlsm, mapping the one element of Z onto the 

other. Thus, the elements of z are conjugate to one another (and h 18 

irreduclble ovar K(t». All the elements of z are dlstinct; in fà.ct 

theyare algebraical.ly inde pendent ovar L, becausa L( z) i8 an algebraic 

extension of L( v), which ls of transcendental degree n. a ovar L ( [2 ] 

Chap.Vg5, th.3). Thus, h ls a separable polynomial and L(z)IK(t) is 

a Galois extension, with Galois group H, say. 

Wa now show that (1)CGa-1CGaCH is a generalized Schreier 

extension (definition 1.23), corresponding (in the sense of the funda­

mental theorem of Galois theory ([2J Chap.V §lO, th.3», to the field 

extensions; L( z) ~L(vl' •• ,vk_l ztc,vk+l t •• ,va):> L(t) .:>K(t). By the 

fUndamental theorem of Galois theory (loc cit), it suff1ces to prove 

that the only' extension N of L(vl, •• ,vktl'~,vk+l, •• ,va)' such that:NCL(z) 

and N\K(t) 1s normal, 1a L(z) itself; (in terms of the groups, th1s 

would then Mean that (1) is the only subgroup of Ga-l, that 15 norm.altn 

H). Since aIl the e1ements of z are conjugate to one another over K(t), 

any normal extension of K( t), containing one of them, must oontain them 

aU, whence N~ = L( z) • 

By the embedding theorem 1.24, H can he embedded in (Ga/Ga-1)Z(H/Ga ) 

= GZA. But, [L(z):K(t)] = ana = the cardinal1ty of GZA. Thus, the 

oardinallty of H equals that of GZA, and H~G'lA. 

It follows from the lrreducibl11ty theorem of Hilbert (see [13J), 
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that there e~ist e1ements ft;,i: j = 1, •• ,a: i = l, •• ,n] in K, haVing the 

property that subatitution_of tj,i for tj,i,(j = 1, •• ,a; i = l, ••. ,n), 

in the coefficients of the polynomial b, yields a polynomial g ~ K[X], 

with Galois group isomorphic to GZA; i.e. by adjo1n1ng to K the set z' 

of aU the roots of g, one obtains a Galois extension M of K, with Galois 

group Ht ~ H. Since the permu.tation groups (H' ,z·) and (Htz) are isomor­

pMe, lt now only remains to prove that (R,z) is isomorphic to (G,G)l(A,A) 

= (G2A,GXA). In doing so, we shall also give an explicit isomorphism 

H~GrA. From the existence of such an isomorphism, proved above, and 

the fact that the canonical exact sequence 1-;. Ga ~ GlA -7A ~ l splits, 

lie deduce that eacb K(t)-auto. Pte of L(t), C9.n;_be'e~nded to a K(t)­

auto. Ok of L(z), in sueh a manne%' that: 

èi1.a:j = Ok~ Pt °t3j = t3k~ Cli·Clj = <ic 
One can define an action ot A on {l, •• ,a], in such a way that the per-

mutation groups (A,fl, •• ,a), (A,{V1' •• 'V~), (A,[Zl, •• ,~3) and (A,A) 

are all iaomorphic, and one May index the elements of'zWinsuch a way that: 

O1(V j ) = t3i (vj ) = V«t(j); Qk(Zj,h) = Z~(j),h 
~i = l, •• ,a; j = l, •• ,a; k = l, •• ,a; h = l, •• ,n). 

(In the second and third of the above permutation groups, the action 

is derived fram the fact that the sets VJ., •• ,va and ~, •• ,za are imprimi .. 

tivity domains, w.r.t. [~, •• ,a:a~). Detine a mapping t.: GtA -.,. H, by 

p:ltting t:(~,<t') = a:.c.tp for a11 ~EGa. (We shall write the elements ,,<p of 

Ga as mappings trom the set [l, •• ,a]1nto G, and we identif'y GA fdth Ga). 

Ga may he considered to act on z according to the formula o/(Zj,i) = Zj,f(j)(i)' 

(see the proof of lemma. 2.4). G .. acting on!lt.'.,~J ~~ch,a. wa~that 

': (~,tl, •• :,~J) l'V (G,G). One then has (a:t'f'1°ëi'2 0 f2)(Zj,i) = 
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= (alo~1~02)(Zj'~2(j)(i» = al(rl(Z~(j),r2(j)(i» = 0i(Z~(j)'~1(~(j»(V'2(j)(i» 
= Z(~.a2)(j)'(o/~·~2)(j)(i) • 

Theae calculations show that 

f; H--'i" G7.A 

is a homomorphism. of groups, therefore an isomorphisM, (by comÎ>arison 
of oardinalities). These calculations aIse show that the alements of H 
set on the roota Zj,i of h, !n,the 1tsame mannar" as UZA acts on GXA; 
(aee definition 1.7). Ta ba IIlore precise, it 1s possible to define 

bijective mappings 

é,': G X A -?t- Z 

ffl [1, •• ,njX{l, •• ,a}-+ GXA, 

as well as a group isomorf.hl_ r. in snch a way tha.t one obtains 

isomorphisms ot permutation groups 
(~,[,) (f,r t ) • (R,z) ~ ) (G,G)I(A,A) = (GZA,G XA) -;:: (G, [l1'u ,n} )l(A, [l,OH! ,a» .. 

This completes the praot of the theorem (modulo the following lemme). 

Lemma 2.4, 

Suppose Yl' •• 'Yn ' 21.., .... ,". ara ilXieterminates over a field K, let 
Gand H he groups of orders n and. m respectivel.y, operating regularly 

on the sets y = {Y1' •• 'yn'and z = [~' •• 'Zm} respectlvely, (l.e. (G,y) 
and (H,z) are transitive permutation groups, isomorphic to (G,G) and. 

(H,B) respactively). Suppose that the rfelds of invariants, relative 

to the X-automorphisms induced on X(y) and X(z) by G and H, are 
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K(v]., ... ,vn) and K(W!,u 'Wm) respectively.. Suppose, furthermoref! 

that the set [vlt ... ,vrJV~l, ... ,wl11J la algebraically inde pendent 

over K.. Then K(y,z) 1 K(v,w) t (whe1'$ v=:[ vl'''' ,V.J and w = [Vl'H ,~)" 

la a Galois extension, with Galois group lsomorphic to G X H~ 

Proo!: -
!st t(x) and g(x) denote minimal" ~lynOmials of' the respective 

extensions K(y) IK(V) and K(é) \K(V) , "vith respective sets ot roots 

y and z, (x ia an indete~te). K(y,z) lK(v,v)is a Galois exten ... 

sion, beca.use it is the spl1tting field 01' the separable polynomial 

tex) .g(x). Let X denote its Gal01sgroup. Every automorPdsm in 

1 transforms the set 7 into itself', because the elements 01' y are 

roota of' the polynomial tex) , vith coefficients in le v) C K( v , v) * 

The sante applies to the set z. Sinee the set yUz ia algebraical­

ly independent over K, the hOlllomorphism ÀI X~ GXH, which i8 

well-cletined by the formula )...(~) = (~IK(Y),~lK(z», ia surjec­

tiV8~ It ia o~viously injective, whence the result. 

Tbeorem 2.5: 

r.et K be an hilbertian field, vith property p(Z/pZ,Z/pZ). Then 
= = = = 

there exists a Galois extension E 01' K, with Galois group W, (see 

definition 1.27). To ever" pro-p-group G, satisfy1ng the second axiom 
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of countabil1ty, thera corras'Ç>Onds a Galois extension Ml L, where 

t 1a soma algebraic p-extansion ot Kf such that G is the Galois 

group of' M IL. In particular. G 1a the Galois group ota. Galois 

extension Mll L:t.. where L:J.. 18 soma subfield of the field of' aIl 

algebra10 numbars~ 

~: 

By theoreDJ, 2 .. 2, K admits a Galois extension L*, with Galois 

group Cp:::!. pp~_ By repeated application of' theorem 2.3, K. admits 

Galois extensions ~, vith Galois groups c~n). (n = 1,2, ••• ), 

and, theref'ore, 1t also admits a Galois extension E = ~ ~, 
vith Galois group W = ~ c~n) ; (C~n) and W are defined in the 

statement of theorem 1.26 and def'1n1tion 1.27). 

The second statement of' the theorem. f'ollows f'rom the funda­

mental theorem of Galois theo17 «(2J Olap. V, appendice II, th'~l), 

and f'rom. the embedding the ore 1.28 .. 

Finally, Masuda Me proved that every field Ft oontaining the 

:p-th roots of' uni ty, P:f the characteristic of' ~, has the proper­

ty' P(!/P!,!/P!), ([10], [16J). The last statement of' the theorem 

follows from this, and from the fact that the algebraic nuMber 

fields are hilbert1an ([l)J). 
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Chapter III. 

Derivations of pro-p-groups and 

Applications to Cohomology The~. 

Preliminaries; the mappings d and -()­
ÔX. 

1 

Let 1'(n) be the free pro-p-group on il generators xl"'" Xu 

The completed group a,lgebra Z [[Fen)]] 
':Ip 

of F(n) is isomorphic to 

the magnus algebra A(n) of formaI power series (not necessarily (~om .. 

mutative) in n indeterminates Tl"'" Tn , with coefficients in Z :rp 

(see [14]). This algebra is endowed with. the topology of convergence 

of the coefficients. By means of the identifications x. :: 1 + T. 
J. 1. 

(i = l, ... , n), F(n) can be considered as a compac.t, totally discon-

nected multiplicative subgroup of A(n) ([14J and [18J). 

We sha11 define continuous maps d: A (n) -+ A (n) n and _L: A (n) -)0 A (n) ax. 
l 

for i = 1, ... , n. They are not derivations in the sense of [2] Chapter IV, 

but can be considered as extensions of the maps in [15]~ denoted by the 

sarne syrnbols, and defined on the dense subgroup L (n) of F (n)., gener-

ated algebraically by xl"'" xn ' Let M be t.he fl'ee monoid consisting 

of 1 and aIl products of the form T. ••• T. • and write the elements 
Il lk 

a of A(n) as follows a = L 
m€M 

a m m (a E Z ), where the p-adic m .p 

integer al will be referred to as the constant terrn of a. The product 

is a compact Z -algebra and a free A(n)-module~ generated by 
p 

the canonical base El = (1, 0, ... , 0), ... , En = (0, ... , 0, 1). We 
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w:r.ite da:: L a dm and ~a :: ï a ~m (i::: l, ..• J n), where,. 
mE:M nt oX i mEM m xi 

for every m E M of the fOrIn T 
il 

am 
and -. are defilled ax.. 

1 

by the following formulas: 

{ 

T .••• 
am 1 1 
(lx. ;: 

l. o 

if i:: i k (we shaH agl'ee that 

am and dm:: 0 $ -- - 0 if JIl::: 1. aXa 
~ 

Proposition 3.1: 

The mappings cl: A(n) .~. ACn)n and ..}-: A(n) -+ A(n), defined 
(lX. 

l. 

above, are continuous and satisfy the following ident.ities: 

(1) d(a + b) ::: da + db 

(2) 

(3) 

(4) 

(5) 

d(ab) ::: (da)b. ... adb 
.1. 

(b
1 

denotes the constant term of b) 

If a. E. A(n) i5 invertible, then its constant term al i5 inverti-

hIe in Z 
=p 

-1 -1-1 (and vice versa); we have d(a ):: -a al da. 

db = fi ab L-. 1 aXa 
1= 1 

dx. 
~ 

and the elements dx . 
l 

are linearly independent 

over A(n). 

m 

L 
k=l 

X. = 1 and {il"'" i m} 
10 

e e' 
k-l k 

X. d(x.) 
1k_l 1k 

where -1 
e. = il, d(x. ) 

1 1 

{i, ... , n} (compare with eq. (2) §3 of [15]) 
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(6) 

(7) 
ê) 

In (1) ~ (2), (3) and (5) the letter cl may be replaced by --:. - • 
Ç/X. 

Proof: 

Continuity of the maps d and _Cl_ is obvious. The first ax. 
1 

formula is an immediate consequence of the definition of d. 

In order to prove (2), we write a ::: 

an.d 

I am m, 
mEM 

a b v m u 

L 
m€.M 

b m 
ID 

~ 

n Denote by p.: A(n) -+ ACn) i-th ca.nonical proj ection (i::: l, ••• , n) 
1 

and, for every m E M, put 

fO if ID :: 1 or ru ::: T. ... T. and i k + i 1 1 1 

Ô 
k 

m,i 
:: 

L 1 if m ::: T. ... T. and i ::: i k J' 1 lk 

Then p. (da) ::: L a 15 . ln. For 1:f u E: M, m E M,o. ::: 15 . and. 
1. In m , 1 mu, 1 U 1 J. 

Piem • du) :: 0u,i mu :: Pi(d(mu)), so that 

L am bl Ô • m + L L 
mEM m,l ~M LI .. v<: mu=v,ur 

a b m u ô . V 
U,l 

= PiCd(a)b1 + ad(b)) for ail i = 1, •.. , n. 

The formula (2) fol10ws. 

One may verify (3) by making use of (2), or by writing 

a formai power series. 

-1 
a as 
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n 
\' dm One has dx. = T. 8. and L. -- T. 8.:;:; dm. Formulas (4) and 

l l 1 i=ldX i l l 

(5) are now irnrnediately verified. Let us point out, once and for aIl, 

that every element of F(n) has constant term 1. This fact, together 

with (2), irnrnediately gives (5). To prove (7) one may use (4). 

2. Derivations and their composites. 

Definition 3.2: 

Let H be a closed subgroup of Fen) and B a (left) topological 

F(n)-module. A derivation of H into B is a continuous mapping ô: H + B, 

with the property that ô(fg) = o(f) + fô(g) , for aIl f,g E H. 

Definition 3.3: 

Every continuous mapping d: A(n) + A(n), satisfying identities (1) 

and (2) of Proposition 3.1, will be called a derivation. 

Remarks: 

(i) The restriction of a derivation to a closed subgroup H of 

F(n) is a derivation of H into A(n) (A(n) will always be considered 

to be endowed with its canonical structure of F(n)-module, defined by 

left multiplication). 

(ii) The set S of derivations from a closed subgroup H of 

F(n), into A(n), form a right module with respect to the operations 

defined below: 

) (ô l + ô2)(h) :;:; ôlCh) + ô2(h) 

(ô1'f)(h) = ôl(h)'f for aIl fE F(n), 
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61, 62 E S, h E H. Similarly, the set of aIl derivations: A(n) + A(n) 

form a right F(n)-module. 

(iii) The mappings __ d __ defined in §l, are derivations, and so 
dX. 

1 

is the mapping 6: A(n) + A(n) , defined by the formula 6(a) = a - al = I 
l~meM 

for aIl a E A(n) (see Proposition 3.1). Direct calculation, (or 

formula (6) of Proposition 3.1) shows that 6 is a derivation. It will 

be called the inner derivation. 

(iv) The mapping d: A(n) + A(n)n defined in §l, induces, by 

restriction to F(n), a derivation of F(n) into A(n)n (the product 

A(n)n is a (left) F(n)-module, with respect to left multiplication by 

elements of F(n)). 

Definition 3.4: 

Every derivation of a closed subgroup H of F(n) into A(n) , 

will be called a special derivation of H into A(n), if the constant 

term of each one of its images, is zero. 

Lernrna 3.5: 

Suppose 61: A(n) + A(n) is a derivation and 02 a special 

derivation of a closed subgroup H into A(n). Then 61
0 62 is a 

derivation of H into A(n). 

Proof: 

61(6 2(UV») = 6l (02(u) + u0 2(v) 

= (6 1 0 62) (u) + 61 (u) (02 (v)) 1 + U· (01 0 02) (v) 

= (6 1
0 02) (u) + U· (6 1 0 62) (v). 

a m 
m 
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Definition 3.6: 

The natural augmentation E: A(n) + Z maps every formal power 
=p 

series a onto. its constant term ai' 

Remarks 3.7: 

(i) E is a continuous Z -module homomorphism, extending the 
=p 

natural augmentation of the group algebra Z [F(n)], of the group 
=p 

Fen) over the ring Z, the algebra Z [F(n)] being dense in A(n) 
=p =p 

([14]). 

(ii) Put a 
t. = E 0 -- (i = l, •.. , n). 

1 ax. For every a,b € F(n) 

and 

and 

À €: Z , one has 
:p 

1 

'C i (a.) = aL' To prove this, one writes 
1 

power series. 

a and b as formal 

(iii) If a ELen) = the free discrete and dense subgroup of 

Fen) generated algebraically by xl"'" xn ' then ti(a) is the 

exponent ([15] §lO, p.66) of xi in the word a. 
c 

More generally, 

if cl" .. , cm are p-adic integers, then t.ex. l 
1 1 1 

(for definition of p~adic exponents in a pro-p-group, 

Definition 3.8: 

c 
x.

m
) = L 

1 .. m 1=1 
r 

see [14]). 

c 
r 

The algebra D is defined to be the free associative algebra 

over a a Z , on the generators -~-, ..• , -,,- • 
=p aXa aX 

1 n 
The algebra D is graded 

by declaring the ho~ogeneous component of degree one to consist of aIl 
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linear combinations of the generators. The homogeneous component 

of degree k, of the algebra D is denotedby Dk' Each element 

of D can be considered as an endomorphism of the additive structure 

of A(n), by interpreting multiplication in D, as composition of 

endomorphisms. 

Remark 3.9: 

For every sequence of integers (il"'" i k), contained in 

{l, ... , n}, and every a E A(n), one has 

) (a) = am 

where m = T. ... T. (and am is the coefficient of m in the 
11 lk 

formaI series expansion of a). 

Notations 3.10: 

Let MX denote the free magma on X = {Xl"'" xnl. (see [19]). 

MX consists of non-associative words in xl"'" xn' The length of 

a word u EMX will be denoted by ~(u). The 1engt~.of an associative 

word m E M = the free monoid on {Tl' .•. , Tn}, will a1so be denoted 

by t(m). A mapping ~: MX ~ F(n) is unique1y defined by the equa1ities 

Hx.) = X. 
1 1 

~(u.v) = (~(u), ~(v)) 

(i = 1, •.. , n) 

-1 -1 = ~(u)·~(v)·~(u) ~(v) 

Define inductive1y F = FI = F(n), Fi+l = (F., F), for every positive 
1 
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integer i. ((F., F) denotes the smallest closed normal subgroup, 
1 

of F containing aIl the commuta tors (s, t), s € F., t E F) . Put 
1 

F~ = {t € F(n): tm = 0, whenever 1 < ~(m) < i} and define 
00 

gr. F = F./F.+1, gr F = L gr. F. The abelian group gr F is 
1 1 1 i=1 1 

endowed with the structure of a Lie algebra over Z, in the usual 
=p 

manner (see below). Finally, let 1 = ker ~ = the ideal in A(n) 

generated by Tl"'" Tn 

Theorem 3.11: 

(a) 

(b) 

Wi th the above notations', one has 

F. = F ~ = F n (1 + Ii) 
1 1 

for every positive integer i. 

gr F is a free Lie a1gebra over Z J on the canonical images of 
=p 

(c) The restriction to Fk, of every element of Dk' i5 a derivation 

into A(n), and 

groups. 

~ 0 ôk: Fk -+ Z =p 
is a homomorphism of 

(d) Let (il"'" i k) be a sequence of integers from the set {l, ... , n}. 

Put 

d l, ... ,k 
a . a = e: 0 -", - 0 ••• 0 -,,-- 0 <p: Mx -+ Z 

aX. aX. =p 
11 lk 

Suppose t = q's € MX ; q,s and t being words of lengths j(~l), 

h(~l) and k = j + h, respectively. Then 

a (t) = a . (q) d. (s) - a (q) a (s) . l, ... ,k l, ... ,J J+l, ... ,k h+l, ... ,k l, ... ,h 
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Proof: 

Let LX UtlIlote the free Lie algebra on X = {xl"'" xn}' 

over Z 
=p 

(see [19J). gr F is a Lie algebra over Z , with respect 
=p 

to the bracket operation, which is well-defined on the hornogeneous 

cornponents of gr F, by taking for [x,y] (x E grh F, y E grk F) the 

class of the cornrnutator (x', yI), of two representatives x', y' E F 

of x and y respectively. The bracket operation is then extended 

to the whole of gr F, by linearity (see [~4J or [19J). By the uni-

versaI property of LX' (loc cid, the rnapping p 0 <p: X -+ gr F, where 

p is the canonical rnapping F -+ gr F, induces a rnorphisrn v: LX -+ gr F 

of Lie algebras. We proceed to prove that v is surjective. Later, 

we shall see that v is an isornorphisrn. k Denote by MX the subset 

of MX' consisting of aIl words of 1ength k. We sha11 show, by 

induction on k, that the conjugates of the e1ernents of <p( L) M~), 
j~k 

generate algebraically a dense subgroup of Fk' For k = 1, the 

1 statement is true, because MX generates algebraicaUy a dense sub-

group L(n) of F. Suppose that the staternent is true for a given 

positive integer k. Denote by Hk+l thesubgroup of F, generated 

a1gebraically by the conjugates of aU e1ements from <p ( U Mi). 
j~k+l 

By repeated application of the identities 

(y,z) = (z,y)-l 

and (xY, (y,z)).(yZ, (z,x)).(zx, (x,y)) = 1, 

every e1ernent of <p(M~), for j ~ 2, be10ngs to the subgroup of F, 
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generated a1gebraically by aU elements of the form 

It follows that 1\+1 C Fk+1' By the induction 

hypothesis, the subgroup Hk of Fk~ generated a1gebraica11y by the 

conjugates of aU elements from <p( U M~), is dense in Fk; and the 
j~k 

group Sk+1' generated a1gebraica11y by the conjugates of aIl e1ements 

of the set 

is dense in Fk+l' by virtue of the continuity of the map: F x F -+ F, 
-1 -1 (t,s) -+ ts t 5 ,and the equa1ity Fk+1 :: (F, Fk). Let us denote 

by yX the conjugate x- 1 yx of an e1ement y. In every group, one 

has the identities: 

(xy, z) 

(x,y) 

-1 x = (y,z) . (x,z) 

-1 :: (y,x) 

-1 x (x , y) :: (y,x) 

-1 -1 -1 
z) :: (x-l~ z)y x . (y,z)x . (xjz). 

C1ear1y (xi' 5) E Hk+1' for aIl 

use of the first and third identities, one obtains: 

aU u ~ L(n), 5 € <p ( U M~). Since the conjugates 
hk 

By repeated 

Cu,s) € Hk+1 for 

of <p( U M~) 
hk 

generate Hk a1gebraica11y, the four above identities then give: 

Sk+1 C Hk+1 ; 50 that ~+1 C Hk+1, and Hk+1 is dense in Fk+l' The 
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induction argument is now co~plete. 

If one endows Fk/Fk+l with its quotient topologYJ then the 

canonical image p(~(M~)) of the set $(M~): generates a dense sub-
. k 

group of the abelian group Fk/Fk+l" We proceed to show that p(CP(MX)) 

generates the Z -module Fk/Fk 1 ; (multiplication of elements of 
=p + . 

Fk/Fk+l by p-adic integers, is inducedby taking p-adic powers in 

Fk - [1.4]). If M~:: {zl''''' Zq} (M~ is fini te), then one can 

define a continuous mapping w: z~ + Fk/Fk+l' by putting 

q 
w(al , ••• , aq):: L a. p(cp(z.)). Since the subgroup ~(zq) of ~(zq) 

j=l J J =p 

is already dense in Fk/Fk+l' the compact continuous image w(~~), 

of the compact set ~~, must coincide with Fk/Fk+l' Denote by L~ 

the homogeneous componellt of degree k, of the graded free Lie algebra 

k Clearly, v(LX) :: 

follows that v(LX) :: gr F. 

50 that 1t 

Havillg proved that v: LX + gr F 1.s surjective, the proof of 

parts (a) and (b) of the theorem proceeds in exactly the same way as 

the proof of theorems 6.1 and 6.2. of [19] Chapter IV, for the case 

of a dis crete free group. 

To show that {F!} is a filtration, one has to p~ove that 
1 

(F!, F~) C F~+. for aU positive integers 
1 J 1 J 

i and j. 

h E F! . One has 
J 

gh = 1 + (g-l) + (h-1) + (g-l) (h-1) 

hg :: 1 + (g-l) + (h-l) + (h-l) (g-l) 

Let 
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00 

= [1 + (g-l) + Ch-I) + (g-l) (h-I)J·[ L 
k=o 

(_I)k{(g_l) + (h-I) + (h-I)(g-I 

(g,h) = 1 + (g-l)(h-l) Ch-I) Cg-I) + terms of degree ~ i + j + l. ••• (X) • 

(The degree of a term a ln of the formaI power series expansion 
m 

L 
mE'M 

a III of an element 
In 

a of A(n), is defined to be the Iength of ml. 
00 

The formula eX) shows that is a filtration. Let gr' F = L F~/F~+l 
i=l 

be the corresponding Lie a1gebra ([19J). Denote by AssX the free 

associative ~p-algebra on X = {xl"'" xn}. AssX is a graded Lie 

a1gebra (the elements of X· are of degree one), with [x,yJ = xy - yx 

for aU a (T) = al' a. (T) = L am m. 
o J ~(m)=j 

x,y E: AssX • For every a € A, put 

The element a can be written as a formaI power series 

(JO 

a = L 
j=o 

a. (T) 
J 

We now define a morphism n: gr t F + Ass
X 

of Lie algebras, ·as follows. 

For every ~ E gr~ F, one chooses a representative g = 1 + gk(T) -1- gk+l (T) + • 
k in F~, and one puts n(s) = g~(x) E AssX ; (i.e. one replaces Ti by 

Xi in the expression for ~(T)). Clearly n is a weIl defined morphism 

on the homogeneou~ components (see eX)), and, by linearity, one 

obtains a morphism n of graded Lie algebras. Obviously, n is injective. 

Formula (X) can be used to prove (by induction on k) that 
. t 

Fk C Fk for aU positive integers k, whence one obtains a morphism 
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y: gr F + gr' F of graded Lie algebras. One now puts 

II = n 0 y 0 v: LX + gr F + gr' F + AssX • 

For every x. E X, one has ll(X.) = X., and for u,v E. MX' one has 
111 

ll(uv) = uv - vu (see eX»). It follows that II is the canonical 

morphism of graded Lie algebras (universal property of LX)' obtained 

from the canonical injection· X ~ AssX' By theorem 4.2 of [19J, 

Chapter V, II is injective. Thus, v: LX + gr F is both injective and 

surjective, which proves part (b). It also follows that y: gr F + gr' F 

is injective. We proceed to prove, by induction on k, that 

for aIl positive integers k. For k = 1, there is nothing to prove. 

For k > 1, one has Fk C F~ C F~_l' and the induction hypothesis 

F~_l = Fk_1) implies F~ C Fk_l • Since the kernel of 

Yk-l = ylCFk_l/Fk): Fk_/Fk + Fl:_1/F~ is zero, one has F~C Fk and F~ = Pk' 

This completes the proof of the first equality of part Ca). Clearly, 

n i, 
F (1 + 1 ) CF .• 

1 
Let 

F'.' = {y -
J. 

~ y m E. F ~: :3 k € N such tha t y = 
m~M m 1 = m 

o whenever JI, Cm) > k} . 

Then F'.' CF n (1 + Ii) and F'.' is dense in 
1 1 

so that F fl(l + Ii) is compact and closed. 

and the proof of part Ca) is complete. 

, 
F. • Now, 1 is compact, 

1 

Consequently, F~ C F n Cl + Ii) 
1 

Tt is clear that d é) 
Ce: 0 -,,-- () ••• 0 -" -) Ca) = a where 

eX. aX. m 
11 lk 0 
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m = T. • T. ... T . E: M and a = L a m (for aIl a E A(n)). 
0 11 1 2 lk mEM m 

Thus, e:o d!.IF2 = 0, e: 0 _d_o_d_ 1 F3 = 0, etc. 
dX. dX. 

1 11 1 2 

From lemma 3.5 , one concludes that 0klFk is a derivation from Fk 

into A(n), for aIl ok E Dk and aIl k = 1, 2, ..•• It follows 

trivially from this that e: 0 ok: Fk -+- ~p is a homomorphism of abeUan 

groups. 

Let al and a2 be two words of M, uniquelydetermined by 

the conditions a l 'a2 = Til'" T
ik 

' ~(al) = j and ~(a2) = h •. 

Similarly, let bl and b
2 

be two words of M, uniquely determined 

by the conditions b2·b l = Til'" T
ik 

' ~(bl) = j and ~(b2) = h. 

, ()E. 1 To prove (d), we note that Ijl (q) E F., Ijl s Fh' so that the formula 
J 

ex) becomes: 

Ijl(t) = (Ijl(q), Ijl(s)) 

= 1 + (Ijl(q)-l) (Ijl(s)-l) (Ijl (s) -1) (tP (q) -1) + terms of degree ~ j + h + 1. 

It follows that for m = T. T. 
11 lk 

Ijl (t)m = (Ijl (q) -1) (Ijl (s) -1) - (Ijl (s) -1) (Ijl (q) -l)b 
al a2 b2 1 

Makinguseof the fact that 

Ijl(t)m = dl, ... ,k (t), 

Ijl(q)a = dl J' (q), etc., 
1 ' ... , 
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one obtains 

d (t) = d • (q) d. (s) - d (q) d (s) • 1, ••. ,k l , •.• ,J J + 1, •.. , k h+ l, ..• , k 1, ..• ,h 

This completes the proof of the theorem. 

Examples 3.12: 

In the definition of the symbols a 1, ... ,k (3.11 (d)), we 

take i - j j - fol' every j and we put x = xl' y = x2, Z = x3 ' One 

then has: 

(iii) dl ,1,2(y(yx)) = 0, d2,2,1(x(xy)) = 0, d1,1,2ex(xy)) = 1 ; 

(iv) ôU12ex(x(xy))) = 1, dl112 ey(x(yx))) = 0, dU12 (Y(Y(xy))) = 0 

(v) d2ll2(xex(xy))) = O,ô 2ll2 (y(x(yx))) = 1, d2112Cy(y(xy))) = 0 

3. Applications to the cohomology of pro-p-groups. 

Let G be a pro-p-group, defined by a finite number of 

generators and relations, in the sense that H1(G, ~/p~) and 

2 H (G, ~/p~) are both finite dimensional vector spaces over ~/p Z 

(see [18]). If the dimension of Hl(G, ~/p~) over ;/p~, is n, 
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then G may be identified with sorne quotient F(n)/R of Fen) ; 

(F(n) = the free pro-p-group on n generators xl' ••• , xn)· Further-

more, if the dimension of H2(G, ~/p ~) over ~/p ~ is m ?J:. 1, then 

one can find elements rI"'" r m E F (n), such that R is the smallest 

closed normal subgroup of F(n), containing rI"'" rmo The elements 

l'l'o,., r m are caUed defining relations, or simply relations,. of G. 

The completed group algebra Z [[G]] :.: lim Z [G/U] (U runs 
=p Û =p 

through the fil ter of open normal subgroups of G), will always be 

denoted by A (see [14]). By virtue of the identification 

A(n) = Z [[F(n)]], (loc cit) the natural projection: F(n) -+ G can 
=p 

be extended to a continuous epimorphism n: A(n) -+ A of compact Z -=p 
algebraso The group G acts continuously on R/(R,R) by inner auto-

morphisms, and. the ring Z 
=p 

acts continuously on R/(R,R) by taking 

p-adic powers (loc cit) 0 It follows (theorem 2.2.6 of [14]), that 

these actions can be extended in such a way that R/(R,R) becomes a 

A-module. (One may also use a direct argument: the action of G can 

obviously be extended to Z[G], which is dense in Z [[G]]). = =p 
The epi-

morphism n: A(n) -+ A induces a continuous epimorphism nn: A(n)n -+ An 

of the product algebras. The formula À(À 1,o •• , Àn) = (ÀÀ 1, ••• , ÀÀn) 

(À,À. € A) endows An with the structure of a (left) A-module. Define 
1 

n éla éla 6: A(n) -+ A(n) by the formula 6(a) :.: ( ax- ,'0.' é)x ). 
1 n 

Theorem 3.13: 

Suppose that the elements are 

linearly independent over A ; then 
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(i) 
n n the map 'TT .0 f1: A(n) -)- A induces a continuous monontorphism 

1l: R/(R,R) -)- 1I.
n of A-modules (6 is defined. immediately above)j 

(H) RI CR, R) is a free A-module on the (~anonical images of rI' ... Il rm 

(iii) G has cohomological dimension 2. 

Proof: 

We first show that li: RI CR, R) + An is well defined.. Let 

-1 -1 -1 
tl' t

2 
E. R. Then 6((t

1
, t

2
)) :: L.\(t

1 
t 2 t], t 2 ):: (1 - t

1 
tz t 1 )L\t1 + 

-1 -1 n + tICI - t 2 t 1 t 2 )6t2 ' 50 that 'TT CL.\((t1, t 2))) = O. For every 

n -1 n[ 1 fE F(n) , one has 'JT (6(f(tl~ t 2)f )) = 'TT (1 - f(t I , t 2)f- )L\f + fbCCt l , t 2)): 

:: o. One has 

whence it can be seen that n 11 
TI oL.\: R+A is a homomorphism of groups. 

It 1s continuous and is zero on the dense subgroup of (R,R), generated 

algebraically by the conjugates of the commutators Ctl , tZ) Ct l , t 2 E R). 

It follO\'ls that 'JTnCL\((RsR))) :: 0, and II i5 indeed ft well defined con-

tinuous homomorphism of abelian groups. We now proceed to prove that 1.1 

i5 compatible with the A-module structures of R/{R,R) and An. Suppose 

g E Gand s: G -> F(n) i5 a continuous system of representatives 

([1.8] Chapter 1. Proposition 1). For every tER, we sha.ll denote by 

[tJ it~ canonical image in R/CR}R). We denote by 

*: AX(R/(R,R)) -> R/(R,R) 

the action of ft on R/(RJR). One has 
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g * Ct] = [s(g) t S(g)-I J 

and p(g * Ct]) :: nn({).(s(g)t s(g)-I)) 

:: 8
n[(1 - s(g)t 9(g)-I){).(S(g)) + s(g)At] 

:: g 1rn(L~t) :: g lJ ([t]) for al! tER, g E G. 

Thus,"Il is compat:1ble with the action of G on R/(R,R) (defined by 

irmer automorphisms); it is compatible "lith the induced action of the 

group algebra ~[G] on R/(R)R); and, finally, by virtue of Z[G] 

being dense in A , J.l is a continuous A··module homomorphism. 

The group 

el -1 
t = fI r. fI . 

11 

is dense in R. 

Ro' consisting of aIl elements of the form 

e2 -1 ek 1 
f 2 !'i

2 
f 2 ... f k l'i

k 
f-k ' ({il'"'' ik}C {l, ... , m}) 

One has 

n 'JT(f.) e. 11' (81". ) ••• (Y) • 
J J Ij 

One sees from this that 'JTn(L\(Ro)) is contained in t'h.e A-module, 

generated in An by the elements Since A is 

n fi compact., the A-module L. generated by 'JT (ilr1) •.•• , 'ff (àrm), is compact 

in An J and must, therefore) contain the c10sure ·l (L~R) of nn (ARo) 

( 'JTn 0 {). is continuo1.ls). The equa tion (y) shows tha t 

:: 
Lo' generated by 

n n 
1r (àrl ), .•. , 'JT (àr ). 

. fi 
Z[G]-module 

dense in ~p[G], which, in' turn. is dense in Z [.[G]] 
p 

50 that L is dense in L, It follows tt.at 'JTll({).R) 
0 

'JTn (l~R ) .. the 
o 

Now, Z[G] is 
:: 

:: Il [see 14] , 

= L. So, the 

range of is the à-module L generated by n II 
'Il 'IT (t1TJ.)"'" 'Il (àr ). , 

ln 
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If these elements are linearly independent over II. , then one 

ca.n define a mapping $: L 4 R/(R,R), such that $ {) \1 !: 1. Indeed. 

let 

~.: Z [G) .D(61.'.) + R/(R,R) 
1 ~"!P l 

be defined by the formu.la 

n. 
$. ( L n. g. 'lTn(t~r.)) = [n s(g.) r. J S(g.)-l] ... CZ) 
lj J J 1 j J l J 

Ci = l, ..• , ln; n. E Z , g. E G). Since s is continuous, each !fi. 
J =P J 1 

is uniformly continuous, and can be extended to 47.: Aonn(L\r.) 4 RfCR,R). 
_ l l 

Wc may take I/J ta be the mapping induced by 4>1)'" t 4> ; (nn(L\r
1
), ••• , 1T

n (L\r ) n m 

being linearly independent av el' l\). Note that <Pl j' •• , 4>m and 1/1 are 
-] , 1 

independent of the choice of s. Indeed, if u:.: f. . f. E R, (f., f. E. F (n) ) , 
J J J J 

then 

-J. n. -no l 
f i. r.J J' - E := U l t\ r. (f.) (R .. R) 

J l J 

50 that one may replace s(g.)) in the formula. (Z), above, by any 
J 

element lying in the same coset (mod R). Formulas CY) and (Z) show 

that 
k 

tP(\.l([t])) = 1jJ ( L 1r (f j) e. 1l(L~r. )] 
J J .• 

j=l J 

k e. 
s(11'(f.))-·1] :::: [ rr sCn(f.)) r. J 

j =1 J 1- J 
J 

k e. 1 :::[D J --1 f.r. fJ._"'~ 
j =1 J lj 

[t] 
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(\\le made use, here, of the preceding remark, concerl1ing independence 

with respect to the choice of representatives). Thus "'('Ill is the 

identity ma.p on the canonic.al image of R in RI (R,R); 
0 

and this 

canon.ical image is dense in RI (R,R) . Thus, t/J 0 II = 1 and \.1 is 

indeed injective. It a1so follows that RI (R,R) is a free A-module 

on the canonieal images [r1] •••. , [rm] of rI"'" r m respectively. 

It now only remains to prove part (iii) of the theorelil. We may 

use directly a result of Brmner ((3] eorollary 5.3), which states 

that cd G ~ 2 if R/(R,R) is free on [1"1]' ...• [rm]; (In our case, 

we assumed H2(G. ~/p ~) t 0). Or else, one may use the following free 

resolution of Z : 
=p 

II 
+ 0 + 0 + R/(R,R) -+-

n Ct € 
fi. + JI. -+- Z 

=p 

n 
Here, a(A 1.···, Àn) = I 

i=1 
À. 1T (T.) 

1 l 
and is the natl.1ral augmentation 

(that extends the natural augmentation of the group algebra 

see [14]). 

a(lJ[w]) ;: ~ aw 
L 1T[( -a -) T.] 

1=1 Xi l 
for aU w ER. 

Z [G] -
=p 

By formula (6) of Propos i tion 3.1, one has Ct 0 II ::: O. We proceed to 

prove that ker 0. CL. Let us denote by l the kernel of E and let 
n 

13: A(n)n -+- 1 be the A(n)-homomol'phism, given by /3(a1,···, an);: r 
i=1 

By formula (6) of Proposition. .:L 1 J tt, is invertible, and 

( aa ~ 'J -a- , ... 1 ax . 
Xl n 

a. T .• 
l 1 
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1r ( Cl (kel' lr) ) C 1r ( l!L.) for aIl i:: l, ... , n. 
ax. ax. 

1 1 

The elements of the form 

m 
c:: L 

j=l 

(To prove this, let V be an open normal subgroup of F(n), xV: F(n) 4 F(n)/V 

the canonical projection and qV: A(n) 4 ~p[F(n)/V] its canonical 

extension to . A(n). There exists a commutative diagram of continuous 

epimorphisms: 

'If 
A(n) ----..).)0 A' 

lqV 
Z [F(n)/V] ~Z [G/7r(V)] 
=p . 1fV =p '. 

Suppose now that c Eker 1r. Then 1TV(QV(C)) = O. By a we11-known 

fact about group rings, (see, for instance [4], §2) qV(c) is of the 

form qV[ L f.(t.-1)], \'lhere fi EF(n) and 
i 1 1 

t. :: r ~ . v ., where 
III 

1 
r. f. Rand v. € Y, then 

l 1 

t. E R·V. 
1 

If one writes 

t. - 1= (r~-1)v. + v. 
1 111 

It follows that c - L f.(r~-I)v. E ker qy. Now, the idea1s {ker qy} 
.11 1 
1 

constitute a fundrunental system of neighborhoods of 0 éA(n) [14], 

and this proves that the elements of the form c, are dense in ker 11'). 

One has 

1. 
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(mod ker 7f) 

a m 
- ax. ( fil 

1 J= 
(mod ker 'IT) • 

aD aR a Thus 7f ( -"1- ) C 7f -"1 -. Since the maps "1 
aX. aX. aX. 

are contilluouS and R 
111 

is compact, the set 7f ( ~) is closed and ax. 
TI( a(ker n) aR 

ax. )Cn( ax.)· 
1 1 J. 

One has a commutative diagram 

Suppose that = n(a.) (i = 1, ... , n) 
l 

and a(À) = O. 

Then s(al ,··· , a ) E: ker 7f and a (i=l, ... , n) • ai E ax. (ker TI) n 
1 

By the above claim, obtains aR so that one n(a.)E n( -a-l, 
1 x. 

1 

n n 
À = n (al"'" an) E n (~(R)) = L = ll(R/(R,R)). 

It follows from this discussion that the given complex is exact. The 

maps are continuous (left) A-module homomorphisms. It now only remains 

to state that the cohomology groups {HnCG, ~/p ~)} are the cohomology 

groups of the complex obtained by applying the functor Hom t (-, Z/p Z=) con = 
to this resolution. (This remains true if ~/p ~ is replaced by any 

p-primary dis crete G-module - see [3J or [lAJ Chapter V. In [3J, one 
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finds the following definition of a pseudo-compact ring: a :ring A 

is pseudo-compact if it is a eomplete Hansdorff topologieal ring, 

which admits a system of open neighborhoods of 0, eonsisting of two-

sided ideals l, for which AIl is an Artin ring. ln particu1ar, the 

comp1eted group a1gebra A ~ ~p[[G]] .is pseudo-compact. A complete 

Hansdorff topologica1 A-module M is said to be pseudo-compact, if 

it has a system of open neighborhoods of 0, consisting of submodules N,. 

for which MIN has finite length. 

Let VA be the category of discrete p-primary G-modules, CA = 

the category of pseudo-compact A-modules (A = Z [[G]]) and {ExtqG} 
=p 

H cont 
the right derived functors of ornA : CA x VA -)- Vz In [3], lemma. 4.1, 

=p 
Brumer points out that 

for a11. pro-p-groups li and a 11 A E CD A) Ob 
q because both H (G, -) 

and 
G . 

Extqli,(Z , -} are d.gntderived functors of Arvv-? A = HomGCZ , A). 
~ ~ 

Finally, it has to be said that the A-module k 
A is a free object of 

CA (for a11 positive integers k), 50 that our computation of the 

cohomology groups Hq(G, ~/p ~), from the above resolution, is justified). 

Corollary 3.14: 

Suppose that G is a pro-p-group, 
ar 

(i.e. m = 1). If TI( é)X~ ) t 0 and 
1 

defined by a single relation 
ar

1 
TIC é)x.) is not a divisor 

1 

of zero on the right in fi. , for sorne i = l, ..• , n, then cd G = 2. 



- 66 -

Proof: 

The set consisting of the single 

is linear1y dependent iff the equations 

imp1y >.:: O. 

Proposition 3.15: 

Let G be a pro-p-group of finite type (i.e. 1 
H (G, yP ~) is 

finite). If an e1ement x of G is of infinite order, then 1 - x 

is not a zero divisor in A 

Proof: 

:: Z [[G]]. 
=p 

Let F be the filter of open normal subgroups of G. For each 

UE: F, denote by qu the order of the group GlU, and by 

the canonica1 projection. Suppose that a(l-x) :: 0, a € A = Z [[G]]. 
P 

For every U E F, put 

in the group algebra 

qu- 1 
YU :: l + x + .•• + x One has 

Z [GlU]. 
=p 

Applying [4], Proposition 6, to this 

group algebra, we conclude that PU(a) is divisible on the right by 

PU(yU); i.e. there exist Vu E ker PU and Su E ~ such that Vu = a - Su YU' 

Since (0):: (/ ker PU' it only remains to prove that YU tends to 0, 
UEF 

according to the filter F. Since x is not of finite order in G, 

the set of positive integers {qU}UéF is unbounded from above, which 

means that tends to zero according to the fil ter F; i. e. lim qu = 0 
U -+ 1 
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in the p-adic topology. Since G is the continuous image of sorne 

free pro-p-group F(n), and A is the continuous image of A(n), 

we need only to prove that for Xl Ë F(n) and qu -+ 0 in Z, one has 
=p 

lim 
U -+ 1 

q -1 
(1 + x' + ... + (x 1) U ) = O. 

(Applying the canonical proj ection TI: A(n) -~ A to this equali ty and 

choosing Xl 50 that n(X l ) = x, one obtains the desired result). If 

x' t 0, then there exists sorne i = 1, ... , n, such that ax
l + 0 

ax. 
1 

a qu qu- I ax' 
( (x') ) = [l + x' + ... + (x') ] ax. ax. 

1 1 

q 
N (x ') U ow, tends to 1, according to the filter F, 50 that 

qu- l ax' . a 
[1 + x' + ... + (x') ] -~-- tends to zero, -~-- : A(n) -+ A(n) being 

aX. aX. 
1 1 

continuous. Since A(n) contains no zero divisors, wemay conclude that 

lim 
U -+ 1 

"'. 

q -1 
[1 + x' + ... + (x') U ] = O. 

This completes the proof of the proposition. 

Definition 3.16: 

Let G be a pro-p-group defined by a finite number of generators 

xl' ..• , x and a n 

if, for some i = 

single 

l, ... , 

relation r. 

n, n( ~) 
ax. 

1 

We shall calI r a simple relation 

is a product of elements of the 

form 
~, 

1 - g (g EG) and invertible elements of A. 
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Theorem 3.17: 

Let G be a pro-p-group defined by a finite number of generators 

Xl"'" xn and a single nontrivial simple relation r, (definition 3.16) 

Then cd G = 2 or 00. 

Proof: 

By corollary 3.14 and Proposition 3.15, cd G = 2 if G contains 

no elements of finite order. If G contains an element of finite order, 

then it contains a finite cyc1ic-subgroup H. Since cd H = 00 and 

cd G ~ cd H ([18] Proposition 14, [21] Chapter VIII, §4), one has 

cd G = 00 for the case where G contains an element of finite order. 

Theorem 3.18: 

Let G be a pro-p-group defined by a finite number of generators 

Xl"'" xn and a single relation r of the form 

the following properties: 

-1 r = ux. VX. w with 
1 l 

Ci) u, v and w are independent of X., i.e. belong to the 
1 

closed subgroup of F(n) generated by the remaining generators 

(ii) no power of uw belongs to the closed normal subgroup R 

of F(n), generated by ramI its conjugates. 

Under these conditions, cd(G) = 2. 

Proof: 

n( ~) = ax. 
1 

n[u(l-x. v x~l)] 
. 1 1 
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50 that r is a simple relation. Since 'rr(uw) is of infini te order 

in G, TI( ~) is not a divisor of zero on the right, in A :: Z [[G]]. 
Clx. =p 

1 

The result follows by corollary 3.14. 

Remarks 3.19: 

It may happen that a given relation r is not simple (defi-

nition 3.16), but that it "becomes simple" when one changes the 

minimal system of generators of G. To be more precise: suppose 

that Hl(G, ~/p~) is of dimension n over ~/p~, TI: F(n) + G 

is an epimorphism with kernel R, R being the smallest normal sub-

group of F(n), containing r; suppose, furthermore, that YI"'" Yn 

generate a dense subgroup of G; then one can define an epimorphism 

v': F(n) + G, by putting TI'(x i ) = Yi (i = 1, ... , n) ([18]: 

Chapter l, Proposition 5). The kernel of TI' is again the closed 

normal subgroup of F(n) generated by a single relation r' ([18]: 

Corollary of Proposition 27, Chapter 1), which may be simple, even 

when r is not simple. In particular, if G is a Demuskin group, 

of finite type, and p f 2, then 'G may be considered as being 

defined by a relation of the form xi (Xl' x2) (x3' x4) •.• (xn_l ' xn) 

([20], Theorem 3.1). 

Cl Such a relation is obviously simple (apply -,:>-). For the 
aX2 

case p = 2, and further classification of Demuskin groups, see [11] 
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and [12]. It is already knowIl that the Demuskin groups are of 

cohomological dimension 2. The following lemma plays an important 

role in connection with suitable choices of minimal systems of 

generators. 

Lemma 3.20: 

Given a pro-p-group G, defi.ned by a finite number of generators 

Xl"'" xn ' and a single relation r; one may assume, without 1055 

in genera1ity, that the generators xl"'" xn have been chosen 

in such a way that r is of the form 

Proof: 

r = xq • t , n t ~ (F(n), F(n)) and q E. pZ. 
=p 

Redefining ~ (see remarks 3.19), or replacing xl"'" xn 

by X~"'" x~ , amountsto the same thing, provided that xi, ... , x~ 

generate algebraica1ly a dense subgroup of F = F(n). It is stated, 

in [20], that r E FP.(F,F) (observe that ~ induces an isomorphism: 

~*: F/FP(F,F) ~ G/GP(G,G)). Denoting by v the usual p-adic valuation 

on Z, and permuting the x., if necessary, one may assume that 
=p 1 

a 
T. = e: 0 --

1 ax. 
1 

as before 
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Ci :; l, ••. , n). The canonical image of an element y E F in the 

Z -module F / (F ,Fl, wi 11 be denoted. by' . y. =p 

Claim: 

y = 

Proof: 

n 
L d. x. 

i::l 1 1 
(d. E Z ) 

1 P for aIl i=l, •.• ,n. 

Seeing that the functions Ti are continuous, we may restrict 
ourse1ves, without 10S5 in generality, to the case where y ~ L(n) = 
the dense subgroup of F (n)', gEmerated a1gebraically by x!"'" xn' 

remark), and 
n 
\~ 

Y = l.. 
i=l 

( .L 
1.=1 

J 

Tl.'(Y):; l e. 
L:l J 

J 

(e. :; '±1) (preceding 
J. 

e.) x. , whence the resu1t. J l. 

Put c. = T.Cr) (i = 1, ••• , n). One can find e1ements l. l. 

Put b .. = 1, for 1, l. . i=l, ... ,n and b .. = 0, whenever l.,J i+j+i-l. 
Denote the canonica1 projection: ~p + ~/p ~ bye. 

(1 ~ i, j ~ n). Then the matrices 

1 0 0 

(b .. ) = b2 1 1 l.J , 
o b 3 ,2 

0 0 (d .. ) = 1J 
1 

1 

o 1 0 

b n,n-1 1 

Let d.. = e (b .. ) 1J l.J 

1 0 0 

d2 1 1 0 , 
0 d3 2 1 , 

0 
1 

o 
1 

d n,n-l 
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are invertible, and one can find in F such that 

x -i -

n 

L 
j=l 

b .. x~ 
1,J J 

in F/(F,F), and such that the canonical images 

of xi, ... , x~ in the (~/p ~)-vector space F/FP.(F,F), generate 

that vector space. By [18J, Proposition 25, {xi""t x~} is a 

canonical system of generators for F. According to the above claim, 

r 
n 

= L 
i=l 

n 
= L 

i=l 

,n 
= L 

i=l 

n 
= L 

i=l 

c. x. 
1 1 

n 
L 

j=l 

c. -, x. 
1 1 

-, 
c. X. 

1 1 

-, = c x n n 

-c 

b. -, c. . x. 
1 l',j J 

n 
+ L c. b .. 1 . -, x

i
_

1 i=2 1 1,1-

n 
~ -, 
l.. C1'_ 1 x. 1 

i=2 1-

It follows that r(x') n E. (F ,F). Since r E FP. (F ,F), one has 
n 

cEp Z , and this completes the proof of the lemma. 
n =p 

Examples 3.21: 

Let G be a pro-p-group, defined by the generators xl"'" xn ' 

and a single relation r. Then r is simple (definition 3.16), if 

it is a product of the form 

r = xq . (x., x.)c. v 
n 1 J 

n t j f i,c,qE Z , c,j pZ, v E (F,F), v €F(xl ,···, x. l' x.+1, ... ,x ) = 
=p ~ =p J- J n 
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the closed subgroup of F(n), generated by xI""J xj_l' x j +l , •• ·, xn . 

(Proof: al' = xq [1 + (0 ) " x., x. 
oX. n 1 J 

J 
+ ••• + 

N t th t th l 1 + ( ) + + ( ) c-l o e a e e ement 0 X., x. . • . x., X. is invertible 
l J Jo J 

in A(n), because its constant. term c is not an element of pZ) . 
=p 

is also simple, if it is of the form -1 -1 -1 
l' xl x2 x3 xl x2 x

3 

-1 -1 -1 -1 etc .; and cd(G) ~ 2, (see theorem 3.18) . or x x2 x4 x3 x4 x
2 x3 xl , 

1 

These results are superceded. by an unpublished resu1t of Labute; 

arrived at by different methods, according to which cd G ~ 2 if r 

is of the form r = xq·t t EO (F,F), and the canonica1 image of t in 
n ' 

the free Z -module gr2 F = (F,F)/(F,(F,F)) is. not divisible by p. 
=p 

Concerning pro-p-groups G, defined by relations r, lying 
ut 

closer to the g.:petifll\of p-th powers pP than these relations, (in the 

sense that r E PP'Pk for k > 2 - see theorem 3.11), almost nothing 

seems to be known. It, therefore, seems to be desirable to investigate 

pro-p-groups G, defined by relations of the fo1'm x.~:u, where u is 

a "multiple commutator" in the generators x • 
n 

The relations rI = xi (Xl' (xl' x2)) and 1'2 = xi (Xl' (xl' (xl' x2))) 

are both simple. Indeed, 

and 

ar2 _ +1 
xq

l 
[1 aX

2 
-
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In both cases, it seems to be difficult to determine the order of 

the canonicalimage of xl in the group G. defined by the relation 
1 

r. (i = l, 2). If it is of infinite order in G., then cd(G.) ~ 2, 
111 

by Corollary 3.14 and Proposition 3.15. At least, we can say that 

ed(Gl ) ~ 2 or 00 and ed(G2) ~ 2 or 00 (Theorem 3.17). In both 

eases, if q = 0, then cd(G1) ~ 2 and cd(GZ) ~ 2. (rI E F3, r Z E F4 , 
k ~rO . 

whereas xl (k E ~), and its eonjugates, aIl lie outside F3' there-

fore outside the closed normal subgroups generated by rI and r Z 

respeetive1y). 

Definitions and notations 3.ZZ: 

A multiple eornrnutator of type (n,k,m), (n,k,m E ~), is a 

mapping e: F(n)k + F(n), defined induetive1y, as follows: for m = 1, 

e is a proj ection, i. e. of the form e (al' .•. , ak) = ai for aU 

a. E F(n); for m >- 1, there exist h,q E~, such that h + q = m, and 
J 

there exist multiple eommutators cl and e2 of type (n,k,h) and 

Cn,k,q), respeetively, sueh that e(a1, •.• , ak) = (y,z) (= yzy-1 z-l), 

i=l, ••• ,k. 

a. E FCn), 
1 

A multiple eornrnutator of type (n,k,m), is a1so said to be a 

multiple cornrnutator in k variables, of length m. 

Suppose e is a multiple eornrnutator of type (n,k,m), (n ~ k ~ 2), 

x = {Xl"'" xk}, MX the free magma on X,~: MX + F(n) the mapping 

œfined by the equalities: ~(xi) = xi (i = 1, .•. , k), ~(ts) = (~(t), ~(s)), 
for all Suppose that there exists t E MX' such that X. 

1 

"f., 
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occurs exactly one in the word t and 1. f c(xl ,··., xk) = <flet); 

then c is said to be simple in the i-th variable. 

Theorem 3.23: 

Suppose that. c is a multiple commutator of type (n,m,q) 

(n ~ m ~ 2, q ~ 2), simple in the first variable, and r = c(xI ,··., xn). 

theIl r is a simple relation, and it de fines a pro-p-group of coho-

mological dimension {- 2. 

Proof: 

We may assume that r f 1. There exist t,s E MX' (X = {Xl"'" Xn}) , 

such that 

r = (<fl(t), <fl(s)) = <fl(t.s) 

and xl occurs in either t or 5, but not in both. If the length 

q of c is equal to two, r reduces to a commutator of the form 

(xl' xi) (x. , xlL and âr 1 -1 -1 -1 or âX
1 

= - xl xi xl . or x. (1 - xl x. xl ). 1 1 . 1 

The proof now goes by induction on the length of c. Suppose that 

for every multiple con~utator of type (n,m,k), 2 E k < q, 

âC 1 (x I ,···, xml 
âX l 

is a product of invertible elements andelements 

of the form l - g, where gh lies outside the group Fk of 

the filter {F.} (notations 3. 10) for each g and aIl hJft~ Z . If 
1 . =p 

Xl occurs in t, then 

()r 
(1 - <fl(t)'<fl(s)'<fl(t)-l) ~ (1) âX l 

= âXl 
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and $(t) equa1s xl' or is of the form c1(xl , •. " Xml, where cl 

is seme shorter multiple commutator in m variables, simple in the 

first variable. By the induction hypothesis, r is a simple relation. 

If, on the other hand xl occurs in s~ then 

and simplicity of r follows, as be::ore from the induction hypothesis. 

By Theorem 3.11, Ht)h, Hs)h and·their conjugates lie outside F R,(t·s) 

for a110:j-hE ~p (R,Ct) <: R,(t.s) > R,(s)}. Since r E FR,(t.s)' the closed 

normal subgroup R of F(n), generated by r, is contained in FR,Ct.S), 

Thus, ~r is a product of invertible elements, and elements of the 
aX l h$ ~O form 1 - f, with f R for each f and aIl h E Z. The result 

=p 
now follows from Proposition 3.15 and Corollary 3.14. 

Lemma 3.24: 

Suppose that c is a multiple commutator in 2 variables (i.e. 
S;t'1ple ;., tIlt f;nt "~uicthle. 

~ 2, q ~ 2)~and r.= cCxl' x2) + 1. Then of type (n,2,q), n 

ac(x l , x2) 

aX l 
is a product of invertible elements of A(n), and elements 

of the wrm 1 - f, each f being a conjugateof 

Proof: 

There exist t,s E MX (X = (Xl' x2}), such that 

r ="C$(t), $(s)) = $(t~s) 
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and occurs in either t or s but not in both. occurs 

in t, then </>(s) = x2 and equation (1) of the proof of the preceding 

theorem applies. If xl occurs in s, then </>(t) = x2' and equation 

(2) of the proof of the preceding theorem applies. The proof can be 

completed by an induction argument, as in the previous proof. 

Theorem 3.25: 

Let (cl"'" cm) be a sequence of multiple commutators in 

two variables (i.e. c. is of the type (n,2,q.)), simple in the first 
1 1 

variable. Let rE F(n), n ~ 2, and suppose that there exist sequences 

(ul , •. ·, um) and (YI"'" Ym-l) of elements of F(n), with the 

following properties: 

u l = cl(xl , x2) 

u2 = c2(x2, YI) if m ~ 2 

u. = c j (Yj_2' y. 1) if 3 ~ j ~ m 
J J-

u = r m 

for each j = 1, ..• , m, y. = u. or y. = x. e {x3' •.• , x }, subject 
J J J 1j . n 

to the condition that Yk f x. , whenever k f j. 
1-

J 

Then cd(F(n)/R) ~ 2, R being the closed normal subgroup 

generated by r. 

Proof: 

By virtue of theorern 3.23, we may restrict ourselves to the case 

m ~ 2. We shall assume that F(n+m-l), the free group on Xl"'" xn+m_l ' 
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contains F(n) as closed subgroup, in the obvious way. Define for 

j :: 1, If .... m-l: 

r-
if y. :: X. 

lj J 1.. 
Z. :: J 

J 
xn+j 

if y. :: U. . 
J J 

Define: 

-1 c
1

(x11 x ) 1'1 ::: xn+1 2 

{"2(X2, zl) if m :: 2 
r Z 

:: 

-1 
xn+2 c2 (x2 , z1) if m > 2. 

If 3 ~ j < m, then put: 

Put r = c (z 2' z 1) if m ~ 3: m m m- m-

Define a morphism a: F(n+m-l) ~ F(n), by putting 

a ex.) 
1. 

:: {Xi 
u. 

1.-n 

for i=l, .•. ,n 

for i = n+l, ••. , n+m-l. 

Note that a(z.) :: y. for aIl j = 1, ... , m-l. 
J J 

Let G:: F(n)/R and denote by N the closed normal subgroup 

of F(n+m-l), generated by rI"'''' r m, G' :: F(n+m-l)/N, 

TI': A(n+m-l) ~ A' = Z [[G']] the canonical extension of the projection 
=p 

F(n+m-l) ~ G'. 
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Clairn (1): 

n'(z.) = n'(y.) for aIl j = Il'." rn-l. 
J J 

Proof: 

Either YI = XiI or Yl:: u1 " In the first case nl(zl) = nl(yl ) 

and in the second case, 'If 1 (zr) = n' (xn+1) :: n' (Cl (Xl' x2)) (since 

n'(r) :: 1) = n'(u ) :: n'(y). If rn > 2, then either Y2 = x. or 1 1 1 1 2 

YZ :: u2 ' In the first case, n'(z2) :: n l (Y2) and, in the second case, 

n'(zZ) :: n'(xn+2) = n l (c2 (x2, zl)) (since n'(r2) :: 1) :: c2 (n'(xZ)' nl(zl)) 

:;:: c2 (n' (x2), 'If' (YI)) :: n' (u2) = n' (yZ)' Now, let us assume the induction 

hypothesis that n' (z.) = n' (y.) for j:: l, ..• , k (2 ~ k < rn-l). 
J J 

Again, if :: X. ,then n'(zk+l) = 1r'(Yk+l)' 50 we rnay suppose 
1k+1 

that Yk+l:: uk+l and zk = xn+k+l ' 'If' (zk+l) :: n' (xn+k+1) :: n' (ck+1 (zk_l' zk) 

= ck+l(n'(zk_l)' n'(zk)) :: ck+l(n'(Yk_l)' n'(Yk))' by the induction 

hypothesis. Thus, n'(zk+l) :: n'(ck+l(Yk_l' Yk)) = n'(uk+l ) :: n'(Yk+l)' 

and the proof of clairn (1) is cornpleted. 

Clairn (2): ReN. 

Proof: 

If rn:: 2, then n'(r):: n'(uz) :: n'(c2 (x2, YI)) :: n'CcZ(x2, zl))' 

by clairn (1). Since n' (rZ) :: l, we obtain n'(r) :: 1. 

If rn > 2, then n'(r) = n'(urn) :: n'(crn(yrn_Z' Yrn- l )) :: n'(crn (zrn_2' zrn_l))l 

by clairn (1); therefore n'(r) :: n'(r ) :: 1. It foilows that n'CR) :: (1) rn 

and R eN, 50 that the proof of c1airn (2) is cornpletèd. 
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Claim (3): yeN) ::: 1 • 

Proof: 

It suffices to show that y(r i ) ::: 1 for aIl i 

y(r1) :: 1T(a(r1)) ::: 

If m ::: 2, y(r
Z

) = 

-1 
'rr (cl (Xl' x2)) 1T (0: (xn+ 1) ) :: 'rr(u ) l 

1T(a(c2(x2t z1) ) ::: 1T(c2(x2, a(zl))) 

If 3 ~ j ~ rn-l, then y(r.) 
J 

::: 

-1 

::: 

= nCa(x +,))-1 1T(aCc.(z. 2' z. 1))) 
n J J J- J-

-1 ::: lr(u.) 1T(U.) = 1 
J J 

l, .•. , m. 

1T(ul ) ::: 1. 

'rr (c2 (x2' YI)) 

because 

a(Zj_l) ::: Yj-l and a(zj_2)::: Yj - 2 · If m ~ 3, y(rm) ::: 1T(a(cm(zm_2' zm_l))) 

::: 1T(U ) :: 1. This completes the proof of claim (3). m 

The morphism y: F (n+m-l) "* G now induces a morphism I/J: G' -~ G. 

Claim (4): t/J 0 cl> ::: 1 . 

Proof: 

Since 1T(xl )) .•. ,1T(xn) generate a dense subgroup of G, it 

suffices to show that 1/J(cl>(1T(Xi ))) ::: 1T(xi ) for i::: l, ..• , n. One 

has 1/J(cl>(1T(X.))) ::: 1/J(1T I CX.)) :: y(x.) ::: .ex.) 
1 III 

for aU 

and this completes the proof of claim (4). 

N/(N,N) is endowed with the structure of a AI-module, obtained 

froID the action of G' on N/(N,N), by inner automorphisms. We know 

that Cd(GI) ~ 2, iff N/(N,N) is a free AI-module (see, for instance, 

Brumerls article [3] Corollary 5.3 or the resolution constructed in 

the proof of Theorem 3.13). Since, by claim (4), G is isomorphic to 
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a. closed subgroup of G', the pI"oof of the theorem will be complete 

if we can show that N/(N,N) is a free A'-module. Denoting the 

action of AI on N/CN,N) by *, and the canonical images of 

rI"'" r m in N/CN,N) by [rI]"'" [r ] m respectively, we shall 

m 
suppose that n À.*[r.] = l, whence the m equations: 

j=l J J 

À 1ft 
Carl) 

0 
l ax;- -

À 1f1 
(ar l ) 

À 1f1 
Car2) 

0 --+ --ax;- -1 axZ 2 

À 1f' 
(ar l ) 

1ft 
caT2) 

À 1f' 
(or3) 

0 ~+À2 --+ ---1 aZ l 3 aZ l 

À2 
1ft 

Car2) 
1ft 

(ar3) 
1f1 

(ar4) 
0 --+À az;- + À4 ---aZ 2 3 aZ 2 

(arm_2) Car 1) Car) 
À 1f' + À 1ft m- + À 1f1 m O. 
m-2 az 2 m-l az z m az-z-m- m- m-

It, therefore, suffices to prove that the elements 

~ , .. " of A', are no~ zero-divisors on 

the right, or, equivalently, that the elements 1f'(xZ)' 1f'(zl)"'" 1f'CZm_
1

) 

of G' are not of finite order, Csee Proposition 3.15, Theorem 3.13 and Lemma 3.2 
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It suffices to show that their images ~(n'(x2))' ~(n'(zl))'···' ~(n'(zm_l)) 

in G are of infinite order. One has ~(n'(x.)) 
1 

= n(x.) and 

ax~ 
E 0 __ a_ 1 R = 0 for aIl i = 1, ... , n , whereas aXe E( _1 ) = k aXe for all 

1 1 

k ~ Z. It follows that n(x.) is of infinite order in G for aIl 
=p 1 

i=l, ... ,n. One has ~(n'(z.)) = y(z.) = n(y.), and, in view of 
J J J 

the remark contained in the preceding sentence, we suppose, without 

10ss in generality, that y. = u .. We now distinguish between the 
J J 

following two cases (and we assume, without loss in generality, that r fI): 

Case (i) : there exists a k such that j < k ~ m-l and Yk = x. . 
1k 

Define a morphism f3 : F (n) -+ F (n) by putting 

=t 
wh<m xi f. {Yj+l"'" Ym} , 

13 (x. ) 1 
when x. !S:{yj +l ,···, Ym} . 1 

Then f3(u j ) = uj ' f3(uk+1) = ... = f3(um) = f3(r) = 1 (because 
k f:O 

ck+1(Yk-l' 1) = 1), f3(R) = (1), whence uj ~ R, for aIl k 6 ~p' n(uj ) 

is of infinite order in Gand nl(z.) is of infinite order in G'. 
J 

Case (ii): the inequality j < k ~ m-l implies Yk = uk . 

Then uk+l = ck+l (uk_l' uk) and Uk+l C. Uk for j ~ k .:::: rn-l, 

where Uk designates the closed, normal subgroup of F(n), generated 

by uk' Now let m be a word of minimal length in the free monoid 

M on Tl"'" Tn ' such that, in the formaI power series u. - 1 = L (u.) 
J lfm M J m 
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Then k 
(u.) f 0 

J m 
for aIl k~~ Z • 

=p 
On 

-1 -1 the other hand, for every f é F(n), (fu. f u.) = 0, (by direct 
J J m 

calculation, or theorem 3.11) 50 that the equality uj +l = cj+l(uj _l , uj )) 

implies (u.+ l ) = 0, and consequently, a = 0, for every 
J m m a 6Uj +l :> Um = R. 

It follows that no power of uj lies in R, n(u j ) is of infinite 

order in Gand n'(z.) is of infinite order in G'. 
J 

This completes the proof of the theorem. 

Example 3.26: 

(i) Let n > 2. One may define multiple commutators cl"'" Cs 

by the following identities: 

cl(a,b) = (a,b), c2(a,b) = (b,(b,a)), c3(a,b) = (a,b), c4 (a,b) = (a,b) = cS(a,b) 

Define (YI' .•. , yS) = (ul , u2' x3' u4 ' uS)· Then 

ul = cl (xl' x2) = (xl' x2) 

u2 = c2(x2, ul ) = (ul , (ul ' x2)) = ((xl' x2), ((xl' x2), x2)) 

u3 = c3 (ul , u2) = ((xl' x2), ((Xl' x2), ((xl' x2), x2))) 

u4 = c4 (u2, x3) = (((xl' x2), ((xl' x2), x2)), x3) 

Us = Cs (x3, u4) = (x3, (( (xl' x2), ((xl' x2), x2)), x3) ) 

Each of the elements u. (i = 1, ..• , 5) defines a pro-p-group 
1 

of coh. dim. ~ 2. 
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By theorem 3.25, one has cd(G) ~ 2 if G is defined by 

the "relation" ((xl' x2), ((xl' x2), (xl' (xl' x2)))), or by the 

"relation" (( (xl' (xl' x2)), ((xl' (xl' x2)), x2)))· 

Every one of the "relations" r 1 = xj (xl' x2), r 2 = xj (xl' (xl' x2)), 

r 3 = xj (xl' (xl' (xl' x2))), etc., defines a pro-p-group of cohomo1ogica1 

é)r. 
dimension ~ 2. 1 Indeed, by 1ernrna 3.24,;---- is a product of invertib1e 

oX
2 

e1ements of A(3), and e1ements of the form 1 - f, each f being a 

conjugate of xl or If R. 
1 

is the c10sed normal subgroup of 

F(3), generated by ri' (i = 1, 2, ... ), then 

k aX1 the other hand, e: ( ax) = k, for aU k E. Z 
1 =p 

and Proposition 3.15, cd(F(3)/R.) ~ 2, for a11 
1 

Remarks 3.27: 

e: 0 ~ 1 R. = O. On 
oX1 1 

By coro11ary 3.14 

i = 1, 2, .... 

In a recent 1etter to the author, Dr. J. Labute states that 

the morphism ~ of theorem 3.13, is a1ways injective, even when the 

e1ements n of A , are not 1inear1y independent 

over A. This wou1d imp1y that cd(G) = 2 if, and on1y if, 

n n 
TI (8r1), ..• , TI (8rm) are 1inear1y independent over A • 

l wish to take this opportunity to thank Dr. Labute for his 

interest in my work, for his va1uab1e cornrnents on my 1etters, and 

for his encouragement, during the preparation of Part II of this thesis. 
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