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INTRODUCTION

The contents of this thesis is divided into two independent
parts. Both parts contain some new results about inverse limits of

finite p-groups. These inverse limit groups are called pro-p-groups.

In Chapter 1, a pro-p-group is constructed, that satisfies
the second axiom of countability, and contains isomorphic copies of
all other pro-p-groups, satisfying this axiom (see theorem 1.28).
Leading up to this construction, the author investigates the functorial
properties of the wreath product of two permutation groups (Chapter 1,
§2), and then gives a new proof for an important theorem (theorem 1.24),
due to Marc Krasner and Léo Kaloujnine, concerning the embedding of
certain groups K in a multiple wreath product of quotients of con-

secutive terms from a chain of subgroups of K.

Chapter 2 deals with the significance of theorem 1.28, for
field theory. It is well-known that the Galois group of a Galois
extension of fields, is a profinite group, i.e. an inverse limit of
finite groups, and one may ask oneself, which profinite groups and,
in particular, which pro-p-groups may occur as the Galois groups of
field extensions of certain types of fields. In Chapter 2, the author
concerns himself with this problem. Theorem 2.5 may be considered as

the main result of the Chapter.
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Apart from “he well-known, elementary properties of the Wreath
product, all the results of Part I are due to the joint efforts of
Professor W. Kuyk and the author of this thesis, (unless otherwise
indicated in the text). Part I contains a detailed exposition of
the research announcement that appeared, under joint authorship, in

the Comptes Rendus [5].

In Part II of this thesis, the author develops a method, that
enables him to determine the cohomological dimension of certain pro-p-
groups, defined by a finite number of generators and relatiomns, in
the sense of [18], Chapter I, §4.2 and 4.3. He shows that the deri-
vations 5%7.’ defined by Lyndon (originally by Fox), on the discrete
free group 1L(n), on n generators X;,..., X, (see [151), can be
extended to the magnus algebra A(n)}, in which L{n) is imbedded.

The author uses these extended derivations to obtain information about
the cohomology'of pro-p-groups of finite type, defined by a single
relation, in a manner that is similar to the way that Lyndon described
the cohomology of discrete groups, defined by a single relation

{(loc cit). The main results of Chapter 3 are theorems 3.13, 3.18,
3.23 and 3.25. The statement of parts (a) and (b} of theorem 3.11

are not due to the author, but can be found in [20]. The proof of

theorem 3.11, and all other theorems of Part II, are due to the author,

Although he has not solved his main problem, suggested to him

by Professor W. Kuyk, namely that of determining whether a pro-p-group



has cohomological dimension 2, if it can be defined by a single non-
trivial relation which is not a p-th power, the author believes that

further development of his methods may eventually lead to a complete

solution of this problem,



PART 1



Chapter I : Propertias of the Wreath Product and

an_Embedding Theorem for Pro-p-grcuﬁ.

1. Permtation Groups.

One finds in [6] a definition of the Wreath product of two
permitation groups. For the purpose of investigating the functorial
properties of the wreath product; we proceed with the following defini-

tions.

Definition 1.1:

The category ' has as its objects all triples (G,S,a), where

G As & group, S a non-empty set and a: GXS — S a mapping, such that

a(g;+g,s8) = a(g;,a(g,.8)), a(l,s) = s
for all €)+87 €EG, 8 €5, the identity element of G beihg'denoted by 1.
To simplify the notation, we shall often write (G,S) instead of (G,S,a),
and g(s) instead of a(g,s), (g€G, s8€S). The morphisms in the category
C)O', are pairs of maps (a,0'): (Gl,Sl)—e(Gz,Sz) » where 0:Gy —»G,
denotes a homomorphism of groups and a'sS; —»S) a mapping of sets,
satisfying the following compatibility condition:

a'(a(gy)(s3)) = g1(a*(s5))
for all g1 €Gy, 5,€5; . Suppose (a,a'): (G458,) ——>(Gz,32) and
(BsB?): (Gp,5) —>(G3,54) are morphisms in “P'. Define their
composition (B,B8°) ° (a,a?) = (Bea,ateB?).



We proceed to verify that (Bea,a'oB') is again a morphism
in G,
'a'[ﬁ"{ﬁ((x(sl))(%)}:[ = gt [:a(gl)(ﬂ‘(sﬁ)_] = gl(a’(ﬂ'(BB))}
for all gq€Gy, 84€83. It ie clear that 6t forms a category.

Definition 1.2:

A permutatlon group (G,S,a} is an object from &7*, satisfying

the additional condition that, for every g¢G, the mapping: & alg,s)
is a bijection of S onto itself. The class of all permutation groups,
with morphisms defined as in definition 1.1, constitutesa subcategory 579

of O,

Definition 1.3:

As an example of a permutation group, we may consider the so-

called regular representation (G,G,m), (to be denoted, henceforth, by
{GyG))s of & group G. The action m:GXG —>G 1is the group operation.

Definition 1.4:
A permutation group (G,S) is said to be transitive if the nap

Vig: G —> 8, defined by the formula ns(g) = g(s), is surjective, for

every s€ S.

Remark 1.5:
By way of an example of an isomorphism in the category 6)? s WO
shall prove that if a finite set S is of same cardinality as a group G,

and (G,S) is a transitive permtation group, then (G,S) is isomorphic



to the regular representation (G,G). For each s€S, the map Tigs G—> 8,
of definition 1.4, is surjective, hence bijective. Let 88, To nach
8€ 5, there corresponds a unique ©(8)€G, such that ©(3)(s,) = s.

The map © 38 -—» G, thus defined, has the property that
e(lG(g)(s)) = g.(0(s8)), for all g€ G, sc S; bocause
S(15(e)(8))(s, ) = g(s) = g((©(8))(s,)) = (g.0(s))(8,)),

(1 = the identity map on G). Thus, (150)2 (GyG) ~> (G,8) is &
morphism. One has eoe"1= 13 = the ldentity element on S, and

-1 - -
& (15(g1)(g2)) = o l(gl.gz) = g 0" Ngp)) for all g€1s BpEG, because
ole, ("M, (s) = (gy- (00" Ue,))(s,) = (8,-8,)(s,) =olo=Hg,.z,))(s.).
It follows that (lu,e'l): (GyS) —> (G4G) 1s a morphism. The equalities
(16:6)0(16,6'1) = (]'G’]'S) and (1699-1)0(1696) = (thls) imply that
(G,8) 1s isomorphic to (G,G).

Definition 1.6

A permtation group (G,S) is faithful if g = identity, whenever
g(s) = s for all sé€8.

2. The Permutation Wreath Product and Abstract Wreath Product.

Notation: If X and Y are sets, XY denotes the set of all mappings from
Y into X. If X is a group, then XY denotes the group defined on the

Y
set X', by the formla (Y;.Y,)(y) =¥,(y).4,(y) for al1 ye1.
The identity element of a given group, (all groups will be written

mltiplicatively), will usually be denoted by the symbol 1, (even in

those cases where different groups are involved).



Dei_’inition 1,7¢

Let (A,8) and (B,T) be two objects from GP*. Define their

Wreath product (A,S)1(B,T) to be the object (A?TB‘,SXT) of 6P,
where A'ITB denotes the group defined on the set BX AT, by the

formula:

b (b3 Y1) (050 ) = (o) by 12470, (by,0,€ B,y pealy,
‘Vlz being defined as the map: T —»>A, given by W?_z(t) = lf/l(}::z('l;)),
for all t€T. Wo have ¢(®') = (P)P' gor a1 b, bre B, Yer?, wua
A,’ZTB may also be described as the semi-direct product of AT and By
sorresponding to the anti-~-homomorphism u:B —»Aut(‘r), definpd by the
formla u(b)(kf/) = kyb s for all LfleAT, becB. The action of A'LTB
on SXT 1s given by the formula:

(6s9)(syt) = (§(t)(8),b(t)), (bEB,{Peal),
If one denotes by I EAT the map defined by the formula I(t) = 1, =

the identity element of A, for all t€T, then (1;,I)(sst) = (s,t),
for all 8¢S, tcT. Also,

[(bls‘ﬂ)(bzalf)zﬂ(sat) = (‘fl(bz(t))(Yz(t)(s));bl(bz(t))) = (bls‘{)l)(‘[/z(t)(ﬂ)ebz(t));
so that (A,8)](B,T) 1is indeed an object of 60',

Farthermore, if (A,S) and (B,T) are permutation groups, then
(4,8)1(B,T) 1s again a permutation group. To verify this statement,
we suppose that

(Ly(tl)(sl)sb(tl)) = (Lf'(tz)(sz))b(tz))Q (be B,WEAT, slaazess t]_’tz el).



Then t, = t, and &; = s,. Glven (s,t), (s*,t*')€SXT, there exists
b€B, such that b(t) = t*, and there exists a €A, such that a(s} = s*.

let. {3T-—>A be any mapping with the property that Y(t) = a. Then
(b.‘y)(fs,t) = (Y(t)(s),b(t)) = (a(s),b(t)) = (5',t*),
end the verification is complete.

Definition 1.8:
If (A,S) and (B,T) are two permatation groups, then the wreath

reduct, or permutation wreath product of (A,S) and (B,T), is defined
o be (A’S)Z(B,T)'

Associated to (A,S)7(B,T), there exists a canonical split exact

sequence of groups:
18" KB -E>B1,

where k(l{)} = (1,‘{’), p(b,‘f’) = b, for all bEB,\f’EAT.

Theorem 1.9

(a) The wreath product can be considered as a functor 73 9%y GO, 60¢,
associative upto natural isomorphism;

(b) PLP C P

(c) (4,8)U(B,T) is transitive whenever (A;S) and (B,T) are both transi-
tive permutation groups, and is faithful, whenever (A,3) and (B,T) are
both faithful permutation groups.

Proof:

We have already proved (b).



Proof of (a):
Let @ = (@,a'): (A,S)—>(A',S*), B = (B,B*): (B,T)—> (B?,T*)
be two morphisms in °'. Define
(W(0sB) W' (0sB)) ¢ (A,8)1(B,T) —> (A*,81)7(B*,T),
by the formulas:
W(@,B)(byy) = (B(b)yaoYoB?), W(w,B)(s*5t!) = (af(s*),B*(t?))
for all be B, YeAl, srcst, tre,
We proceed to verify that W(a,B) is homomorphism of groups:
WD) (oo, o) = (8(0p)B(by) (a2, o80);
[H(E,B) (b 1] - [HGE ) (o f)] = (B(b1)-BlB) (o o 80)P(2) aunyopr)).
Now,
(an(;2.0,)08)(e") = algy2(80(£)).alyp(8%(5)))
= () (b,(B (£ &l 5(8*(£+))).
On the other hand,
[oo 90872 (aop,me)CE0) = iy (8 (BC0R)(£4)))). 8 (£0))).
Since (ByB8*): (B,T) —>(B',T') is a morphism,
B*(B(b,)(£4)) = by(B*(£4))

and it follows that W(a,B) is a homomorphism. We proceed to verify
the compatibility condition that would make (W(a,B),W'(a,B)) a mor-
phisn in the category 9°!
W (@ B) (W(@, B) (b,Y) (8 521)) = W (@, B)((B(b)saoopt)(s’,t'))

= W (@, B) [ (a(y(B* (£2)))(5*),B(b)(t*)]

= (rf a(p(B*(t*)))(*)3,8(B(b)(¢*)))

= (Y(B*(t*))(ar(s')),b(B* (t?))).



On the other hand,
(b ) (W (s B (8*5t)) = (byy)(ar(5°),8° (1)) = (Y(B*(*)) (e (s*)),b(B*(t"))).
It follows that (W(a,B),W'(x,B)) is a morphism.
Let oy = (op,0): (A',9') —>(A??,S'') and

B = (BysBy): (B',T) —> (B ,1'*) be two morphisms in P’
Wo proieed to show that W(d,,B,)oW(q,B) = W(Gyoa ,B0B):
W(0, »By ) (W(2, B) ) (bsy) = W(y 58, )(B(b),copop?)

= (B (B(0))10q000}iBE8E) = W(Ro EyByoB) (b, )
for all (b,Y)e A'LTB. It follows from these calculations that the
wreath product is a functor.

We shall now prove that the wreath product is assocliative
upto natural isomorphism. Iet
Py: BXAT —> B and pp: BXAT—>AT

be the two set-theoretlical projections. There is a group structure
defined on C X(BXAT)', (A,S), (B,T) and (C,U) being thres arbitrary
objects of 9, and, by definition, [(A,5)1(B,T)[1(C,U) consists of
this group, together with its action on (SXT)XU. On the other
hand, (A,S)] [(B.T)?,(C,U)] consists of a group structure on the
set (GIXBU)XATXU, and the action of this group on S X (TXU).
Define  ):cX(BXAT)! —(C XBY) XA™Y, by the formla
Yes) = ((esy DoY)y whore YEBXATY, and ¢y €8, y, €ATXY are
defined by \{/l(u) = Pl(l}/(u)), \flz(t,u) = pz((f‘(u))(t) for all ueU
and £t€T. Suppose c'€C, Y€ (BX AT)U. Then (c,lf’)(c',lf') = (co',"f??)').



Define (yi(u) = p(y*(u)), (t):'a(t,u) = pz(&{l’(u))(t) for all ue U
and t€T. One has
(Ces¥) ), 45 (Cot st ) un) = T IRTAG UM
’T1/ 212 el s%) ((cs‘ﬁ_)o(c a({)]_),\fjg ~‘~/J2)
= (e ygipn) b’ ,v)i)%)

NOW’ Y((c,l{/) (et Yf)) = ((cc'y(kf HU')J.) ((f) ({} )2)’ where
(k|/ Y Jad=py(flctu).yr (u)) = py(f(ctu)). P (y* (), and

G ) (tam) = py(plera).yr (w)(E)) = p2<y<c°u>)”1(‘f’ (t).pz(y'(u))(t)
- pz(L!)(c'u))(pl(\'/'(u))(t)) Py (@))(4) mommaee )

One has y(c,lf/) <Yets (t’ ) = ((ce' 1 - lf)') Htlz(c"(fll) (’4/ ).
We note that the first elements of the pairs )/((c.‘f) (c',tf/')) and
)((c,lf) )’(c' ,YJ') are the same.
P )t = 8 D ) )

= {03 ) ()50 () pa(tsm)

= Pz(lf/(c'(u)))(yi(u)(t))-pz(lf/'(u))(t)

| = Pp(ye (w))) Ry (P ())(£)) . Byl (u) ) ().
Comparison with (1), gives:
Y((esP)(o'sp")) = y(ect 4 ),
so that X is a homomorphism of groups. We now proceed to verify
that, by defining y'(s,(tyu)) = ((s,t),u) for all s¢S, teT and
ué¢lU, we obtaln a morphism
(Yoy"): [(A8)1(B,D)L(C,0) —> (A,8) [(B,1) (C,U)]

in the category ¢J0';



V(o) (85 (8:m)) = ((esh) o) (s (tam)) = (Fpltam)(8)sCespy)tou))
= (p(p(w))(£)(8) 5 () (w)(t),e(u))
= (Pz(kf(u))(t)(s),(pl(‘f’(u))(t),c(u)))-

(n the other hand,

(e, ((s5t)5u) = (P)(sst)se(n)) = ((py (P(u))sppp(w)))(8st)se(n))
= ((ByY))(£) ()52 (P))(8))sew)),

which proves that (Y,Y*) is a morphism in the category 5.,

The mapﬁings Y and  Y* are invertible. Indeed, if

((c,%),\f’z) e(Ccx Bp)XATKU, then there exists a unique Y)E(BX PO LR

such that lfll(u) = pl(l*)(u)), k‘/z(t,u) = pz(ly(u))(t)), for all wGéU

and t ¢T; so that the formla X-l((c,(‘/l),%) = (c,?)) defines the

inverse X'l of Y.

To prove part (c), let us suppose that (A,S) and (B,T) are
transitive permutation groups. Given Sy» 326 S, t, tzéz'l‘, there
exists B€ B, such that B(tl) = t,. Since (A,S) is transitive,-
there exists Y€ A, such that ¢(t,)(s3) = s,. Thus,

(BsY)(z1,5t9) = (P(t1)(8y)st,) = (85t5).

- This proves that (A,S)(B,T) 1s transitive.

Now, suppose that (A,S) and (B,T) are two faithful permutation
groups, and suppose that (B,ky)(s,t) = (s,t), for all (s,t)€SXT.
Since B is faithful, B = 1. If we suppose that (f’(t.l) # 1, for some
t, €T, then there oxists an s €S, such that \{)(tl)(s) # 8, whence

(Bs{)(sst7) = ({(ty)(8)st)) # (8yt7), which is a contradietion.
It follows that (A,S)1(B,T) is faithful.
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Definition 1.20:

The abstract wreath product AlB of two groups A and B, is the

group A7.BB; belonging to the permatation wreath product (A,A)L(B,B}.

It is a semi-direct product of AB and By and one has & canonlcal
split-exact sequence:

1~ AB K5 g P op 53,
One may alsc define A)B!as the quotient of the free product AB%B, ok
tained by identifying the words w.p.b.v and u.b.y°.v (beB,yesB,
' l{)b(x) = Y(bx), u, veABaleB). Subject to these identifications, every
word can be reduced to the form b.y, and it now becomes clear that

the two definitions are the same (upto natural isomorphism).

To each homomorphism of groups a: A —A', we make correspond a
homomorphism o, : AJB —>A'?B’, by the formula (x.*(b,(}’) = (b,ao l{«').
The abstract wreath product A7?B is thus seen to be functorial in A.
It is not functorial in B, and we have to be content with the limited
result, contained in Proposition 1.21, below. The abstract wreath
product is not associative. Indeed if a,b and ¢ are the respective
cardinalities of groups A, B, C, then (A7B)1C has the cardinal num-

c
ber c.(b. b)c = cbca.bc, whereas A7(B1C) is of cardinality cbCaC® .,

Proposition 1.21:
Suppose B: B —> B' 1s a monomorphism of groups. Then

(a) thers exists a mapping of sets P: B*-—» B, such that



{8,£)+ (B,B) —>(B*,B*) 1s a morphism in f;

(b} if ar A—>A* 1is any homomorphism of groups, then there exists
& homomorphism (¢ AlB —>A'?B?; and a homomorphism b3 AB-»-«}(M )B‘,
such that the following dlagram commutes:

B

LU
l—=>4A" > AB; ~—» B —1

fo, e b

1”9*(9.' —?A'ZB' L TR}

(¢} if o is a monomorphism, (.) may be chosen to be a monomorphism.

Proof's

(a) Choose a system b b } ~of right coset representatives for B(B) in Bt,
i.e. = U sl , B(B).b' M a(a).b' = Oyfor g# )+ Define
Tes

a mapping of sets ?: B' —» B, by mtting
F(b') = (b whenever b-¢a(5) and b* = B(b, bl
b if b* = B(b).

Then (B,f): (ByB) —>(B',B') 1is a morphism in the catggory e,

Indeed, F(B(b)(b*)) = P (B(b).b*) =ib.b, if b = B(by); if not, then
there exist b! and by, such that b® = B(by).bt and B(b).bt = B(bby )bt ,
so that P(B(b).b') =bb). Now, b{B(b')) =1bby 4f b* = B(b,) . If, on
the other hand, b*¢B(B) and b* = B(b;).b) , then b(F(b')) = bby. Thus,
1t 1s seen that L (B(b)(b')) = b(F(b')), for all bEB, b*EB', and,
therefore, (B,F): (B,B) —>(B',B') 1s a morphism in ‘P,

(b) Define 6(Y) =acyeP; Then &(§y.Y,) = 5(%).8(%). Define
Lby§) = (e(b),S(lf))). The diagram certainly commutes.
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bz bZ
(lbyb, i 25,0 = (Bby)B(b,)s [SCYy2).5(Pp0)),  and
(bysfy)-Pbas ) = (B(o1).B(b,)s [5(%)3("2).8 (VIR
One has
b2 b2
5 )" = alfy “(B(b* 1)) = alfy (by.p(b*))).
One the other hand,
Gy P2 () = ) (625" = alpy (8t b)),
The compatibility condition for the morphism of part {(a), gives
b
P, )bt = byf(b), so that 526" = (5§20,
+ for all b,€B, b*€B’. Hence @ is a homomorphism of groups.
(c) Ilet e be defined as above. Suppose that (o(b,q)) = 1. Then
B(b) = 1 and b = 1. Furthermore, 1 = S(lf’) = a.o(f’oﬁ . Since F
is surjective and o injective, l{J(b') = 1, for all PEB, and this com-
pletes the proof.

« Embedding Theorems.

Theorem 1.22 (Krasner and Kaloujnine)

It 1—-A —-j-> G —> B —1 is an exact sequence of groups and
homomorphisms, then there exists a monomorphism
(Aslh (G’G) —_— (A»A)'L(B’B)

in the category [19 of permitation groups; A: G—> AlB is a mono-

- morphism of groups, and the following diagram, with exact rows, commtest

1—>A —dsG DBl
2
1B %,07B £ 5B 1
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Here m: A —>AP is defined in such a way, that for some system of

representatj.ves T: Be==s G, one has
JLa)(b)) =  T(d-1).3(a).T(b) , (a€A, bEB).
Proof:
Without loss in generality, we may ldentify G with the set BXA,
multiplication being defined by means of a normalized 2-cocycle
fs BXB —> A and a mapping v: B — Aut(A), according to the for-
mila:
(bysay )(bysay) = (bybyy£(bysby).v(by) ey )eay)s (b sbyEBy ay,8,€A);
(see, for instance,[67] ,th. 15.1.1). One has:
v(y)(v(x)(a)) = £(x3) L. v(xy)(a) . £(xs¥) —=mmmmmmm ~(4)
£(xy,2) . v(2)(£(x,5)) = £(x,y2).£(y,2) (11)
(xsy,2€B; a€A). A: G — AlB s now defined, by writing
Mbysaq) = (by,£(by ,=)ev(-)(ay)).
(We recall that AlB is a group defined on the set B )(AB.) The expres-

ston f(bys~)ev(~)(a,) denotes the mapping: b —>£(by;b).v(b)(ay).
We now proceed to verify that A satisfies the conditions of the

theorem. Let by by, b, €B, ay, a,€4; then A(bl,al).}\(bz,az) = (bybos))s

where:
Y(b) = £(by4bb).¥(byb)(a) )+ £(bysb) ¥(b)(ay)
= £(b) sb,b) . £(bsb) . v(b)(v(b,)(a, )).¥(b)(a,), (by (1))

£(bybsb)-v(b)(£(by ,b,)) o v{(b)(¥(by) (s )) o w(b)(az),  (by (14).

One has

)\( (blbal) . (staz) )

Mgy, £(by 5by).v(by)(ay).8,)

(bl'bz,f(blbz,-).v(f-){f(bl,bz) -v(b,)(ay) .az}) .
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It follows that
A(by589).A(by0a,) = A((bysaq).(bysa,)),

and A is a homomorphism of groups.

Suppose )‘(bl’al) = 1. Then by =1 and f£(b1yx).v(x)(ay) =1,
for all x€B. It follows that (bl,al) is the identity element
(1,1) of G.

Vo define I: AXB-—AXB to be the identity map. We have
identified G with the get BX A, and the regular representation (G,G)
is obtained by letting G act on AXB, according to the formula:
(bysay)(ayb) = (£(bysb).v(b)(ay).a,sb;b), (b, by €B, a, bal(:A).
We proceed to verify that the pair (A,I) satifies the compatibility
condition:
I(A(bys87)(asb)) = (by,f(by,=).v(~)eay)(asb) = (£(by,b).v(b).ay.a,b1b)

= (by,a;)(I(a,sb)).

The fact that (A,I) is a monomorphism in the category P s follows from
the following more general statement: if (B,B') is a morphism in oo ’
B a monomorphism of groups and B' an epimorphism of sets, then (B,B')
is a monomorphism in %), (Proof: the equality (S,B')O(q‘_,a_’l) = (B,B')O(az,a;)
implies Boay = Boa, and afep' = aéaa', whence a, = a, and “i = c,é.)

It now only remains to verify the commtativity of the diagram
contained in the statement of the theorem. Without loss in generality,
we may suppose T(b) = (by1), 3(u(a)(b)) = (1,9(b)(a)) = (b,1)"1(1,a)(b,1),

j(a) = (1,a) and n(bya) =b for all a€A and bEB (15.1 of [6]). Now,
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k(u(a)) = (1yu(a)) and A(3(a)) = M1,a) = (1,£(1,-)v(-)(a))

= (1,v(-)(a)) = (1,{a));
so that the square on the left commutes. One also has
p(A(bsa)) = p(b,£(bs=).v(~)(a)) = b = n(b,a),

and this completes the proof.

Definition 1.23:

A generalized Schreier extension is a sequence of groups:

GnC Gn_lc:...CGlCeo = G
such that G441 is normal in Gy, for i = 0,..,n~1, and no subgroup pf
Gy, 1s normal in G, except the trivial subgioup (1).

Theorem 1.24: (Marc Krasner and Iéo Kaloujnine)

Suppose K, CK, 1 C ...CK3CK, = K 1is a generalized Schreier
extension. Then K can be embedded in the repeated wreath product
(Kn_l/xn)l((%.g/%_l)?,(...((Kl/xz)?,(chxl))...)).
lemma 1,25 (the case n = 2):

If K,C KICK0= K 1is a generalized Schreier extension, then
there exists a monomorphism A: K —-—>(K1/K2)2(K ° /Kl)’ such that the
following diagram commates:

Ky (K1) UKo )

l

Kofky = Ko/ Ky
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Proof of the lemma:

Pat B = Kok and Fy = Kyjg,. Lot {: Kg—> Ky1Fp be the em-
bedding of theorem 1.22, obtained from the canonical exact sequence:
1—-—>K1 > Ko »F—>1

and let p,: K1F,—> F{LF, be the homomorphism induced by the
canonical projection p: Kj-—s> Fl’ ae explained in Prdposition 1.21.
We shall prove that the composition A= p*OC glves the desired mono-~
morphism.

Since the kernel of p*o{: K,—> FqLF, 1is normal in K,, it
suffices to prove that it is contained in Ky. We identify K, with
the set F XKy, the multiplication being given by a normalized
2-cocycle f£: F2—>K) and a mapping v: F, —> Aut(K)), satisfying the
usual conditions ((1) and (1i) in the proof of th. 1.22). Ky is
identified with the subgroup {(1,g): gex]_} of K,. Suppose g,€ K,
and 1 = p,({(go)) = Px(bs}{) = (bypoy), where bEF, , g, = (bya),
l}’(;) = f(byx).v(x)(a) for all x€F,. Then b = 1, f(b,x) = 1 an&
p(v(x)(a)) = 1 for all x€F . The equality b = 1 implies 8oEKy,
so that, according to the above identification, g, and a are the
same. Choosing x = 1, one obtains p(a) = 1, whence it follows that
8oEK3; and the proof is completed by verifying that the following
diagram of groups and homomorphisms, the rows of which are exact,

is commtative: (see proposition 1.2l and theorem 1.22)

1—>K) —>K—>F —>1

| L

1—> K30 —» Ky UF o—>F —>1

R
1—F —FRlFp —Fe—1
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Proof of theorem 1.24:

If n = 1, theorem 1.22 gives the result, and if n = 2, then
the result follows from lemma 1.25. We may, therefore, suppose that
n>2, Pat K=K, and, for j>0, define inductively K} and K:’,‘“

by the formulas Kj = Kj 1HKJ and Kj = m .Kj.x. Then
xckK

Ka/K5 C¥1/x3 CE/Ky

is a generalized Schreier extensicn. Indeed, if p: K—> K/K; denotes
" the canonical projection, and HCKZ/K‘;‘ is a normal subgroup in K/KJ,
then p(x).h.p(x"1) €H  for all x€K and h€H. If yeK, isa
representative of h ,i.e p(y) = h, then m’lep'l(li) CKp, so that
yE x‘lxzx for all x€K. Thus, y¢€ ﬂ x sz KZ’ (note that K2 = Kz),
for all y with p(y)€H, and, hence, ;(ix(l).

Applying lemma 1.25, we obtain an embedding

ky: K/K—> (K1/x2 ) K/K3 ) = F)F
' Ra/x3 ¢ (K:./K °

By induction, we will define embeddings

ky: K/KX 44l Fiz(Fipﬂ:L("'(FllFO’))“') (1 =1,..,n).
So, suppose that kj,..,k; ; have been defined (2€1<n). One has
K41 CKY and K3 CKS. We shall show that |

] ¥* »*
Kiv1/ K;_lc Ky/ Kf...lc K/%31
is a generalized Schreier extension. Iet P: K —> K/K.L_l denote the
canonical projection. Suppose HC Ki+1/l(;,_1 is a normal subgroup of

"K/K{,;. Then, p(x).h.p(x1)EH, for all x€K and h¢H. There exists



—— - -‘.1 k—1
y€K, such that h = p(y); xyx"tep (H)Cl‘iﬁﬂiﬂ = Ky -

Therefore, y& [ ) x'lKj'._._lx = K;.é-i-l' h=p(y) =1, and H = (1).
xckK

Applying lemma 1.25, we cbtain an embedding
by K/t —-}(q/xfﬂ \)z ik 1) T (Kf/Ki_’_l)?,(K/KI)-
S/, \F/K

From the monomorphisms: Kf/x;&f_) Ki /Ki-l-l » (induced by the inclusion
K} CK,), and

ki-l‘ K/K’{ —— Fi-l’l(Fi-Z’L (o ..((Fl’LFo))o L XY )) [
(induction hypothesis), we obtain a monomorphism

£3s (s UK/ — Fy1(Fy 12 (FRE)).LD),
(see proposition 1.21). Finally, define k, = Giof;. If 1 =n, then the
gen, Schreier extension abore, becomes (l)CK,'fCK,

byt K —>K,;L(K/Kn) L KU, (e (FIF )LL)

= Fn’Z(Fn-lll,( so e (Fleo)). .o )):
and k;, can be taken as the embedding mentioned in the statement of

the theorem.

Theorem 1.26:

Suppose {Gi}iEN is a (countable) family of finite p-groups,
Gy is of order pmi my €Ny my4q >my, and, for >,

Gy —Gy 1 i th =
2513 3 4 1s an epimorphism, such that Pi.,‘] é,k pi,k’
whenever k >3 >1. Then, for every 1€N, there exists a monomorphism

hyr 84— g™ = 8 UG (G ),
VT
my times
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vhere Cp = g/pé s the cyelie group of order p.

Denote by f@“ 1: Cg”l)-———a' C;r) the canonical projection:
(bsY) —>b, and, for m >r, define 11? 2 Tlg.loﬁ:%o..on?l, If
m= r, n? will denote the identity map. The monomorphisms )‘i can
be defined in such a way that for every pair (i,)) of positive
integers, with j>1i, the following diagram commtes:

Yy

GJ-—-—————-—-)-C

ml fﬂﬁi

(my)

oy %
Proof:
Every finite p-group G admits a decomposition serles
(1) = GCGY 4 «esCGYL =G,
G{ normal in G, and G;-/Gi-pfcp’ for 1 = 0y.u.yn=1 (ses, for instance,
f21], Chap. IX, Cor. to th. 1 );
Gp1Ce..CG CE) = G
is a generalized Schreier extension, and it follows, by theorem 1.2k,
that G can be embedded into an).

The monomorphisms /\1 will now be defined inductively. For 1 = 1,
we define /\1 to be any embedding of Gj into Cg‘]-). We make the induc~
tion hypothesis that /\3: GJ——:’CS“J) has been defined for J = 1,..,1,
in such a way that the inequalities 1<h(j<1i imply commutativity

of the diagram:
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Iftm = m., then : G —» @, 4s an isomorphism. Putting
i+l 4 1,141 i+l i
Ai-i»l = P‘)i"ﬁ;i-i-l’ one obtains a commutative diagram: (()(b) = (b,1))

+ ( )
A my.4

P n i+l
my

Gy —5— cfm)

and the induction process can continue. It now suffices to suppose

mi +l>ni’ and to define ;\14-1 in such a my that. the above diagram
commtes. Iet

1= Hnj.CHmiglCuoC.Ho =H= Gi

be a decomposition series for Gy, H;j normal in H, H‘J/Hj +1’.%’ Cp, for
(j = 0,..,m1) » then Kj/Kj"lE’cp’ (J = 0’ooo’mi“'1) and KJ is normal in
Ko =K = Gyq9. By(1], §6, th. 7, the sequence
KmiCKmi_lC--.CK]_CKO =K =G4
can be extended to a decomposition series
(1) - Kmi.’.lCKmi-’.l_lCot.C%CQQ-CKIC.KO = K

I
ker (b, 341



~ 21 =

(Kj‘.'l normal in Kj, for j = oyun’mi_’_l*l),

From now on, we shall use the same notation as in theorem 1.24,
(myyy = 0)-
Claims for j = 0,..,mi,* K) = K} = Ky.

Proof: By definition, K, = K,. Suppose x; =K 3 for some J (0<3<my);

v X — ro -
then Kj"‘l = KJ()K:H_]’ = Kj“'l and Kj+1 = Q{x’le,ﬂx = Q{I lKj_._lx = K#l’

because Kj-i-l is normal in K. This induction arg@ent proves the claim.
Thus, K:i = Kmi’ and @1,1_0_13614_1-——)(}1 induces an isomorphism

0‘:‘ K[K;i-—-—e- H=Gy. For J = lyaceesmyq-myy lot py K/K,’;i.,.j-*x/lg:iﬂ_l

denote the canonical projection. There exist epimorphisms vy,

(h = 1y0esmy4q~my), and isomorphisms ©; (3 = 0yu0eymyyqy-my-1),

such that, for every J the following diagram commutes:



S -my =1
K/RS — 38 > K
1+1
My 431, u"“5.+1""‘:1
s
( G, Ll =1 *
/K B 0 s el A
Kmi'l"lnl / mi‘!'l“l
P u
My 43 <03 -1 my 43 -1~
Pysz Y42
:
¥ *
K/ Kmi+j+1 = K/ Kmi+j+l
Pyl Y3 ?1,1-*1
4 4
¥ S &
K/Kmiﬂ b K/Kmi +3
Pj ug
1
Pz u2
A
¥ ‘
K/Kp 41 K/Kyy41
151 b |
} !
1(/1(1’;i o > H <«

(One may, for instance, define uy = ¢ 0,8 =0; uy = py and 63_1= 1

for j = 2,.-.,11114.1-1111)-



Lot vmi = Ai‘ Ginmac;mi). By induction on h = Ogeaeymyyq-my, wo
shall define monomorphlisms Ving+h such that each diagram:

* v, o+ (m1+h+l)
x/ Km1+h+l mythtl . cp

ny+h+l

uh"’l "”’1"'1‘

v (my+h)

commtes {(0<h< m1+1"m1'1)' For h = 0, v; . has already been

defined. Suppose that vmi""’vﬂi*'d have been defined (0< j< m1+1-m1),
and satisfy the above condition of commtativity of the dilagram.

We have shown, in the proof of theorem 1.24, that

[] X *
g 341 KL-#J% fay+d / quﬂc K/ k31

15 a generaliged Schreier extension, snd that one obtains from it a

monomorphism -
6“1*3‘ K/K;):i.'.y.l—‘*"""' (K:j."'d /Kl;i-{-j-N)Z(K/x:i.’.J )s

(see also lemma 1.25). From the monomorphisms: lg;;:._ 3 /Kl:l1+.1*1_>xmi+ 3 /Km1+j+1

= Cps (induced by the inclusion K:f._:) mei,‘,:) ) and

vm_l_’_:j o 63 : K/K:i-bj i C;mfj), we obtain a monomorphism

' * (m1+.1+1)
61‘1"'3: (K:’:gj / %i+j+l)?'(x/ K;f;) ) "‘—"'cp

my+J+l - .
such that ﬂm1+ 3 ° gmi 3 vm1+30 ©y0 My (See Proposition 1.21 -
the last equality corresponds to the equality nto) = Bew in the

statement of Proposition 1.21; the canonical projection “j is indicated
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1n the diagram below.) Finally, put v, . = Ung+s® Zmi’r 3

obtain a commutative diagram:

iy +3+1 §
(“mm/x;mﬂ ) (K/K:wﬂ )
¢ *
Kmi+.'j+l/ K:; 4+ 3+ Iglli'l'j / K;i +3HL,
foss I ' G
+ . 1
O g = g — o (K ay/i g DU/ ymrd | lmt3tt)
my+3+1
k k " "y +3
Y 6"1 ¥ \L (ma)
e oo et * N n
K/ By +3 <_.___—%—'> K/Kgiq-; == K[y, a3’ 5 %o A
A

v

my+J

(The centre square is commtative, by virtue of lemma 1.25). The

induction process on J, can continue. We now define /\1+1 = vm1+1.

The proof is complete, since the following diagram is commtative:



‘.25-*

)\ =
Gi+1 =K 1+l M+l > cf:ni'i'l)
m,
u ' "mr-l 1
T *
v
K/K Mgt | ot
+1-1 p
m, ,o~1
i+l
Uiy gy omy -1 "y g2
y i+l
?1,14»1 . | AL
my+2 !
uz "ni-l-l
r v /
¥ my+1 (my+1)
K/K ol -~
/ my+1 cp
+1
""‘1
vy ny
\ \
G, =H > Cf)mi) <€

Definition 1.27:

Relative to the maps r¢ (m>r), defined in the statement of

theorem 1.26, the groups an) (n = 1,2,...) form a projective 5y8=

tem. Its inverse limit will, henceforth, be denoted by W = 1im c¢(n),
W=1in C



Theorem 1.28: . :

Every Pro-p-group P, satisfying the second axiom of countabil:lty’f
cam be continuously embedded in the pro=pegroup W = 1+1g cg“) .

Eroof:

P admits a countable neighborhosd base { "ﬁieg of the identity 1,
consisting of open, compact and normal subgroups V; of P ([18] Chap., I 31).
We may, furthermore, assume that ViCVJ, whenever 1> j. (If not, replace
each Vy by vi--_. 1D wj). Denote by Tyt 1"/\1‘;‘_~-->,P/\.'d the canonical

: sJst
homomorphism. We shall now prove the well-known fact that p 1s iso-
morphic to 6111 P/Vi; (here, the inverse limit is taken relative to
the maps "J,i)' For each 1 ¢ g, let. s P—s P/Vi ‘denote the canonical
Projection, and let fs P—1in P/V; be the canonical continuous
homomorphism obtained from the maps 1y, by invoking the universal proper~
ty of the functor l(i_m; (note that Ty Ty =W 4 whenever i >j). ~ Suppose
that p = (PysPpsess) represents an element of Lim P/V, (py€ P/,
"j,i(Pi) = pd). For each ieN, let q4 denote a representative in P of
P;. Since P i_s‘ compact ({18], Chap. If1) and the sets q3Vy CP satisfy
the finite intersection property, one has ¢+ :(QN q3Vi. It is clear

that F (x) = p, whenever xc quivi. Thus Fis surjective, and, to prove
=.

that it is an isomorphism, it suffices to show that ﬂ q3Vy consists
ieN

of exactly one element; but this is immedlate, because ﬂ vy = (1),
ien
(loc cit). We may, therefore,identify P with Um P/v;. =

#)Note that the first and saecond axioms of countability are equivalent,
for profinite groups.



Suppose P/V; is of order p'L, for all i€ N. According to
- theorem 1.26, there exists, for each 1€N, a monomorphism /\1 such
that the following diagram commutes whenever i 2 ki

A
/Yy s clms)

WK n:’;
B/Vy _"ld_._; cg":i)

(mi) my

Since ﬁ.heiriverse system {Cp ’ ﬂ"‘j

} 1s cofinal to the in-
1,3€N, 133

verse system {Cé,r> ’ ‘n‘§ }r,ség;, s » we may lidentify W with 1(_1_9 CI(Jmi) .

The result naw follows from the fact that H is a left exact functor from

the category of inverse systems of finite pro-p-groups to the category

of pro-p-’-gronps.‘ To be more explicit, we write )(pl,pz,...,) = (/\1(131) A2(Pp)see)
for all p, €P/V,., Then A1 P—>ln cg“i) is a well-defined contimious

homomorphism, and is injective, because each )‘i is injective,

Proposition 1.29:

Hl(cgn) :._Z_/Pé) and nl(w,g/pg) ‘are vector spaces of dimension n and X,
respectﬁely, over the field g/p__g (neg), The groups CI(Jn) and W =14_ix_x_x Cg‘)
both have infinite cohomologlcal dimension.

Proofs
 The first statement is trivially true for n = 1. Suppose it holds
for a glven positive integer n. We shall prove it to be true for n+l.

The dimension of Hl(an)aypg) over %/pZ can be charaterized as the



cardinality of any (and every) minimal system of generators 2}1,.. ’Xn}
for the group an) {[18] ,Chep. I, cor. to prop. 25). Suppose that o

generates Cp. One has, as before, a canonical split exact sequence:

( ) (n+l) ﬂ:;l +1

1l (Z/pZ) p -——--—-)» Cp C(n) —

(b

We make a formal distinction between Cp and Z/pZ, in the sense that the

former is written multiplicatively, and the latter additively;

(n)
(Z/ pz) is the additive group of mappings from C(n) into Z/pz and

(n+l1)

(n)
the group operation in Cp s (defined on the set c(n)X( 2 /pZ)cP )y

is given by the formla:
P2 (n) o{r)
(blalyl)(bz,(f}z) = (ble’(l)l + ’Jz) (bl’bzecp ’ k{jly l|l/2 é(glpé) )
It follows from [18], Chap. I, prop. 25, that one can find a 2/pZ - base
bysessd, for chc;“),g/p_g) = Hom(c;“),g/pg), such that

gi%)z {o Ar1#)

1 ifi=)

Define a mapping (s cgn)_+ Z/vZ 5 by patting

- 0 ift#1
) = {1 if ¢ =1,
- (n+l)
Define a homomorphism £ C —-——a-Z/ PZ by the formula (n)
Z(b, (t) , for wbec‘“), ez/op)P .
(bs§) = tec( n) o e Y€ a/r

We proceed to show that {510 ,...,Snong*l, '5'} is a linearly inde-~
pendent. got of elements of nl(cgn-i-l) ,g/pg), Suppoe‘ai € §/P§ (1 = 1,..,n%1)

n -
and ialai Siong"‘l +8 1 E=0 mummeeaee (x)

Then O ’151 3, 5, (@) + & E(P)) = &y
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From:(X), one now obtains
0= 8 a (5 ('I'ln.'.l(()n(X))) = 318.1 i(X) = &J s+ for J = 1,..,1’1.
i=1

It follows that the elements 51°T§+ ,...,Snofr:"'l, £ are linearly in-

dependent overZ/pZ. In order to prove that dim.(Hl(Cl(,_’m'l) »2/pZ) =

nt+l, it now suffices to show that the subgroup H of cl()n‘*'l)’ generated

by ‘{(On( b/l)""’()n( Xn) ,k(t??}, calncides with C'l()nﬂ) ([181 Chap I, cor.

to prop. 25). Clearly ()n(C'gn))C H. For each bécr()n), one has
K(P)R) = (1) (0s1) = (1,FP), whones (1,§°) €.

One immediately verifies that each l{/é(glpg)cg‘) can be written in

the form

' LIJ c(n )LV(b )?’

Thus, . k((:. z/pz)°P JCH. Since the groups k((Z/pZ)cp ) and (an(c(") )
generate Cl(,n"'l) » we may now conclude that H = C(n+1) s and the induction
argument is complete.

Denoting by (r*1f": #l(c(™),z/pz) —> (™), 2/pg) and
s nl(c(“*‘l) 2/p2) — nl(c(“) Z/pZ) the homomorphisms induced by
11'""' and (Jn s respectively, one has 0(1'(24'1) = 1. Thus, (11:"13‘ is
a monomorphism, mapping the base, described above, of H (C(n),Z/pZ).
onto the first n base vectors of Hl(C(n"'l) Z/p2). It follows that
the direct limit Hl(W,Z/ pz) of the direct system {Hl(c(n),z/pz) (Tﬁ)} non’
where (n'“j* = (11m l) .es fﬂﬂ) s 18 a vector space of dimension X
overg/p__g.

The last two statemegtsx °dp(cl()n) ) =00 and odl'»)(w) =00, present
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no difficulties. The group Z/pZ can be embedded in Cg‘), because
the maps Cn are monomorphiﬁins, and can alsc be embedded in W, by
theorem 1.28.2 One, therefore, has

00 = o (2/pF) < ed(cl®)
and a

0= od (2/02) < cd (W)
([18], Chap. I, prop. 14).
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Chapter II: Applications to Field Theory.

Definition 2.1:

Suppose {G,S) is a permutation group, {definition 1.2), and
K a field. Corsider S as a set of indeterminates over the field K.
If the field L of invariants, with respect to the K-automorphisms
defined on K(S) by the elements of G, is purely transeendanta],;ver K

then K is said to have the property PSG,S}.

Example s

Iet T be any finite set of n elements, and S, the symetric
group of ail permtations of T. Then every field K has the proper-
ty P(S,,T), bacause the field L of invariants is generated over K
by the n symmetric functions in the elements of 'I‘l.

The property P(G,S), defined above, derives its importance
from its relation to the so-acalled. inverse p roblem of Galols theory.
This latter problem consists of asking for which pairs (K,G), K a
field and G a finite (or profinite) group, there exists a Galols
extension of K, with Galois group G. To makegthe relationship be-
tween the inverse problem of Galois theory and the property P(G,S)
more explicit, let us assume that G and S are both finlte and that

Ujseest, are algebraically independent elements of K(S), such that
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I((ul,..,un) is the field of all those elements of K(S), (defined
above), that are left fixed by all the Ke-automorphisms of K(S),

induced by the elements of G. Suppose now that

£(x) = Ds(x-s) = 2 4 ag(ugseesuy) + oon + ap(ugse. )€ K(ul,..,un)[x_'}.
s

(x is an indeterminate, ai(nl,..,un)EK(ul,..,un) for all 1 = 1,..4n).:
It is possible, for a large class of pairs (K,G), to obtain a
Galoils oextension M of K, with Galoié group G, by a process of
"specialization of the parameters’ ul,..,un", autliﬁéd below.
In ,particular, if K vis an hilbertian field and G any finite group,
then 1t 1s possible to “specialive® the ujs..su,, by finding a
family ui,.. ,u.;x of elements in K, having the following properties:
(1) ‘1(“:;,“'!“;1) is well-defined for each i = Lyeegn;
(11) the polynomial f;(x)€ K[x], obtained by replacing u, by uy

(L = 1,,.yn) in the above expression for f(x), is irreducible;
(114) the splitting field M of £1(x) is a Galois extension of K,

with Ga.loié group G.

Conversely, W. Kuyk has proved that fc;r K infinite, every finite
Galols extension of K, can be obtained by such a speclalization

process, (see his paper: On a theorem of E. Noether, Proc. of

Kon.Nederl.Ak. van WStenscildppen - series A,67,n0.1l). For more
detalls on this subject and for a proof of the following th., see [13].
Theorem 2.2 (Hilbert and E. Noether): |

If K is an hilbertian field, wfil.th ‘the property P(G,S), and
G and S are finite, then there exists a Galois ext. M|K, with group G.
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Theorem 2.3: (W. Kuyk)

Iet L be a finite Galols extension of an-hilbertlan fisld Ky with
group A. Suppose that K has the property P(G,G), (G,G) being the
regular representation of some finite group G (definition 1.3).

Then K admits a Galois extension M, with Galois group GlA, and‘M
is the splitting field of a polynomial g, having the property that
the restriction of the K-autolorphisms in GlA to the roots of g,
defines a permitation group laomorphic to (G,G)7(A,4).

Proof:

Let {xi,..,xh} be a family of indeterminates over K, n the
cardinality of G, and let (G,{zi,..,xn}) be a (transitive and faith..
ful) permtation group isomorphic fo (G,G), (see 1.3, 1.4, 1.5 and
1.6). By hypothesis, K(xi...,zh) admits a subfield K(ul,..,un) ’
with U)sessdy algebraically independent over K, such that G may be
identified with the Galois group of the Galois extension
K(xi,..,x )lK(ul,.-.u ): i.e. the Galois group of the polynomial

£$(X) = F‘I (X - xi)é-'.l((ul,..,un)[x]

(X is an indeterminate). Note that the number offui's equals n, by
the invariance of the transcendental degree of an extension, ([2]
Chap. V, § 5, th.3). Letfwy,e. 9w} be a normal base of L|K (a = the
cardinality of A - [2] Chap. V, 810, def.3). Adjoin s family

t = {t oi}J=l,..,a; 1=1,..,n of indeterminates to L. Each one of
the elements 01”"“& of A admits a canonical extension to L(t),
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determined by the formlas: §(f) = o (€) and Bty 4) = ty4 (fen)
(L = 1y.uan; J=1,..58; k = ly.45a). The éorrespondance '
a.k«-»ﬁk defines an isomorphism of the Galois groups of Li K and
L(t)lK(t) ([2]chap.V, §10, th.1). Define
a

Vieyd = Jfltj,i“k(“:g) = Belvy ) wommnn ~(X),

where %, is taken to be the identity element of A, (i = Lyeesny 3= Ly..,8;
a

k= 1,..,a8). Define v, = {Vk,l"f’vk,n} and v = k':_)lvk.
Claim: The elements vk,i are algebraically independsnt over L and
L(v) = L(t). '
Proof: The de‘bém:\naht’ [ak(wj)l is nongzero, because WsesaW, cOn-
stitute a normal base for LIK ([2] Chap. ¥ §10 Prop.13). Therefore,
the equations {Y)} can be solved for tk,i » whence tk’ié'L(v), for
k=1lysepa and 1= 1,..,n; i.e. L(t)CL(v). By the definition of the
set v, the opposite inclusion is valid too, and L(t) = L(v). The alge-
braic independence over L of the set Vs now follows immediately from
the invariance of the transcendental degree {[2] Chap.V, §5 th.3), and
this compleotes the proof of the eclaim.

Since the elements of v are algebralcally independent over L,
and, therefore, over K, one can define a K~1somorphism
’C"' K(ul,oo,%) Rt K(vl’lgnuo'vl’n)g by pltting ’t(ui) = vl’i, for
all i = 1,..yn. Extend the domain and range of T to the rings
K(uyseepu, ) [X] and K(vl,l""’vl,n)fx‘] respectively, by putting
T(X) = X. Also extend the domain and range of the automorphisms By
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to the ring L(£)(X] , by putting 8, (X) = X. Define
a
b= [ B U(£(X))) e K(t)[X]
k=1
and denote by 2z, = {zk,l"”’zk,n} (k = 14..4a) the roots of

a
B (T(£(X))) in some algebraic closure of L(t). Put z = U %

We shall prove that the splitting field I(z) of h is a G"all(::jl..s exten-
sion of K(t), with Galois group GIA. First, the Galois groups cf the
extensions K(xl,..,xn)lK(ul,..,un) and K(zk)lx(vk) are isomorphic

(k = 15..58), because K(x3,..4%,) is the splitting field of
£(X)EK(uyseom )[X], whereas K(z) is the splitting field of its iso-
morphic image Bk('U(f(x)))E B(T(K(uyyeepmy) = K(vk). The next step
is to prove that L(zk)|L(vk) is a Galois extension, whose Galois
group is also isomorphic to G. According to [2] ,Chap.V, §10, th.1,
it suffices to prove that K(vy) = K(z)L(v). So, let M = K(z ) L(v).
L(zk) !K(zk) and L(vk)ll{(vk) both have Galois groupsisomorphic to A
{loc cit), since 7, and vi. are families of algebraically independent
elements over K; (the elements of %) are algebralcally independent
over K, because K(z,) lK(vk) is an algebralc extension and because of

the invariance of the transcendental degree of the extension K(zk)|l( -

see [2],Chap.V, §5, th.3); eonsequently K( )L =K and K(v )L = K).

K(vk)

L(z.)
L(z)
////// \\Qi L(V;;// \\\ex(zk)
L(w.) K(zy) \ /
N "Ny
| I

K(vk)
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By [2] Chap.V§10, th.2, L(v)|M has Galois group A. Thus
[L(vk)sn'] = a, But, [L(v):K(w )] = a and K(v}JCM. It follows
that K(vi) = M. So, we conclude that the Galois group of L(z.)|L(w)
is isomorphic to G, (k = ]._,..,a).

Repeated application of lemme 2.4, stat_ed at the end of this

proof, allows us to conclude that L(z) [I(v) 1is a Galols extension,

with Galois group isomorphic to G%. For the convenience of the reader,

we include the followling diagram of field extensions, with Galois groups

as indicated:
L(z)
A a=-)
K(z) \r\ L(vl""vk-l’zk’vk'ﬂ."”va)
! L(z,) aﬁ\ lG
A L(v) = L(t)
K(z) G / ‘A ‘A
I(v,)
G b /K(v) K(t)
A
K(vk)

I

In the caloulation of the indicated Galois groups, one makes repeated

use of the fact that if W‘V is a finite Galols extension, and Y a

family of indeterminates, then W(Y)\V(Y) 48 a Galols extension with
Galois group isomorphic to the Galois group of W\V ([2] Chap.V',glo, th.1).
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(Note that V(Y)NU = V, whenever U'is an algebraic extension of v.)
In particular, this argument, in conjunction with lemms 2.4 below, al-
lows us to conclude that L(z) lL(vl,..,vk_l,zk,vk_,_l,..,v } has
Galois group G* a=l (a product of a-l coples of G).

We now proceed to show that the elements of z are conjugate
to one another over K(t). Since L(z) is the splitting field of h,
L(z){K(t) is normal ([2] Chap.V §6,cor. of Prop. 9). By &6, Prop. 7
(loc cit), every K(t)-automorphism By on L(t), can be extended to
a K(t)-automorphism of L(z).. ‘Note that the set Bk(";)) is bof the .
form v,. Suppose that B;t is a K(t)-automorphism of L(z), that ex-
tends By; then each element of thé set 51':( 53) is algebraic over L(vh).
On the other hand, none of the elei:ents of Bl'c( z J) are glgebraic
over L(ve )s for {# h, because f;ha fields L(vy)seessL(v,) are
algebraically disjoint over L ([2) Cl.m’p. V§5, Prop. 4, Prop. 9
and its corollaries). It follows that B]'((zj) = . We see from
this that the sets 2),..,2; are imprimitivity domains ([6]) for
a collection C of K(t)-automorphisms of L(z), that permute the
family of sets {z.l,..,z f tranéitive}x. The KQisomorphism

Ts K(uyyeepuy) —>K(vy) admits an extension T's K(%j,..y%,) —»K(z;)

([2] Chap.V,§4, cor. to th. 1). Each set zy = {zd’l,...,zd,n} is

permted transitively by a collection Cj = iﬂ:‘l "’t,"oa‘o'c"]s( 53 )'I:GEG =
the Galols group of K(xj,.. ,xn)ll((ul,..,un)} (33 extends BJ) of
K(t)=-automorphisms on L(z!). Given two arbitrary elements of z,



it is possible to compose an element of C, with a K(t)-automorphism

of 1(z), that extends some element of La) 03 ([2] chap. V, §6 Prop. 7),
to obtain a K(t)-automorphism, mapping th% one element of z onto the
other. Thﬁs, the elements of z are conjugate to one another (and h is
irreducible over K(t)). All the elements of z are distinct; in fact
they are algebraically independent over L, because L(z) is an algebraic
extension of L(v), which is of transcendental degree n.a over L ([2]
Chap.V §5, th.3). Thus, h is a separable polynomial and L(z)IK(t) is

a Galois extension, with Galois group H, say.

We now show that (1)CG2~1CG®CH 1is a generalized Schreier
extension (definition 1.23), corresponding (in the semse of the funda-
mental theorem of Galois theory ([2] Chap.V §10, th.3)), to the field
eitensions: L(z):)L(vl,..,vk_lzk,vk+l,..,vh):)IKt):)K(t). By the
fundamental theorem of Galois theory (loc cit), it suffices to prove
that the only extension N of L(vl""kal’zk’vk+l""va)’ suth that NCL(z)
and. N|K(t) is normal, is L(z) itself; (in terms of the groups, this
would then mean that (1) is the only subgraﬁp of G*<1, that is normal in
H). Since all the elements of gz are conjugate to one another over K(t),
any normal extension of K(t), containing one of them, mist contain them
all, whence N:= L(z).

By the embedding theorem 1.24, H can be embedded in (G2/G%~1)](H/G®)
= G{A. But, [L(2):K(t)] = an® = the cardinality of GJA. Thus, the
cardinality of H equals that of GJA, and HZGIA.

It follows from the irreducibility theorem of Hilbert (see [13]),



-39 -

that there exist elements {t) ;¢ J=1,..,ai 1 =1,.,n} in K, having the
property that substitution of t..'lai for tj,i’(j = lyeaspat; 4 = 1y00ayn),
in the coefficients of the polynomial h, ylelds a polynomial g€ K[X],
with Galois group isomorphic to G/A; i.e. by adjoining to K tim set z*
of all the roots of g, one obtains a Galois extension M of K, with Galois
group H'~H. Since the permutation groups (H*,z') and (H,z) are isomor~
phie, it now only remains to prove that (H,z) is isomorphic to (G,G)L(4,A)
= (G?A,GXA). In doing so, we shall also give an explicit isomorphism
H2GfA. From the existence of such an isomorphism, proved above, and
the fact that the canonical exact sequence 1— G*—>GlA—A->1 splits,
we deduce that each K(t)-auto. B of L(t), conibe extended to a K(t)-
auto. 0y of L(z), in such a manner that:
‘31-&3 = g By-By = Bee= 04004 = o
One can define an action of A on {1,..,&}, in such a way that the per-
mutation groups (A,{l,..,a}), (A,{vl,..,vgﬁ), (A,{zl,..,za}) and (A,A)
are all isomorphic, and one may index the elements of zbv ,:Insuch a way that:
Oylvy) = Bylvy) =vg,(5) 3 Gilzyp) = %04 (3)5h
(1=1,0008i J=1,.008i k = L,.05a; h = 1,..,n). |
(In the second and third of the above permtation groups, the action
is derived from the fact that the sets ViseesV, and Z)s++9%, are imprimi.
tivity domains, w.r.t. {a:l,..,a’a;). Define a mapping £: GJA —» H, by
mtting &(aq.f) = Ek'q} for all (f)GGa. (We shall write the elements ([J of
G? as mappings from the set { l,..,a} into G, and we identify G with G*).

G2 -

may be conslidered to act on z according to the formula ‘V( zj,i) zj,?)( )’
(see the proof of lemma 2.4), G,.actihg‘o'n.{l,.‘. ,n} _:).n‘s:uch;_'a”way:_t.hat
(q,{l,~-,n§) = (G,G). One then has (70109/1°52°(f2)(z3’i) =
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= @r¥1) ey 4 aygy) = % W1(za,(5),p,(9)(1)) = 51‘@(3),t()1<a2<s)><%<a>(1n

" M0} (9, @240 ()
These caleulations show that

£: H—> GlA
is a homomorphism of groups, therefore an isomorphism, (by comparison
of cardinalities), These caleculations also show that the elements of H
aet on the roots 23,5 °f h, in the "same manner™ as G1A acts on GXA,
{see definition 1.7). To be more precise, it is possible to define
bljective mappings

' GXA —> 2

2 {1,;.,n}x{1,..,a ~> GXA,
as well as a group isomorphism F’ s in such a way that one obtains
isomorphisms of permuitation groups

(£,¢") ¢

p*) .
(Hy2) ——> (4,G)2(A,A) = (G2A,G X A) Pj (G.{lw,n})z<A.{1...,a3}.

- —

This completes the proof of the theorem {module the following lemme).

Lomma 2,43

Suppose Fyoees¥yi zl,...,zm are indeterminates over a fleld K, Lot
G and H be groups of orders n and m respectively, operating regularly
on the sets y = {yl,..,yn% and z = {zl,..,zm} respectively, (i.e. (G,y)
and (H,2) are transitive permitation groups, isomorphic to (G,G) and
(H,H) respectively). Suppose that the fields of invariants, relative
to the K-automorphisms induced on K(y) and X(z) by G and H, are



K(vl,..,vn) and K(wyy««sw,} respectively. Suppose furthermore,
that the set {vl’”’vngué'l’”’“m} is algebraically independeht
over K. Then K(y,z)lx(v,w), (where v = {vl,..,v,é and w = i"l’”"ﬁﬁ)’
18 & Galols extensiong with Galois group isomorphic to GX H.
K(ys2) .
K(y} \GX H K( 2}

G‘ K(vyw) !H
K(V)’ \ > K(w)

~L 7

let £(x) and g(x) denote minimal polynbmia‘ls of the respective
extensions K(y)lK(v) and K(z) ‘K(w), with respective sots of roots
y and 2y (x is an mdeteminate) K(y,z)‘K(v,w) is a Galois extene
alon, because it is the splitting field of the separable polynomial
f£(x).g(x). Let X denote its Galois graup. Every automorphism in
X transforms the set y into itself, because the eleﬁents of y are
roots of the polynomial f£(x), with coe'fficienﬁs in K(v)CK(vyw).
The same applies to the set gz. Si'mee the set yUz 1s algebralcal~
1y independent over K, the homomorphism At X—> GXH, which is
welledefined by the formula A(&) = (& ,K(y),é lK(z)‘), is surjec-
tive. It is obviousl& injective, whence the result.

Theorem 2.5:
Let K be an hilbertian field, with property P(Z/pZ,Z/pZ). Then
there exists a Galols extension E of K, with Galois group W, (see

definition 1.27). To every pro-p-group G, satisfying the second axiom
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of countability, there corresvonds a Galois oxtension M]L, where
5 is some algebraic p-extension of K, such that G is tha Galois
group of M|L. In particular, G is the Galois group of a Galois

sxtension Mlll'.l. » where Ip is some subfield of the field of all
algebralc numbers. |

Proof:

By theorem z.z,' K admits a Galois extension L', with Galois
group Cp'zélpg. By repeated application of theorem 2.3, K.admits
Galois extensions K , with Galois groups C(n) (n = 15290ue)s
and, therefore, it also admits a Galo:l.s extenslon E = 11m Kn’
with Galois group W = Um c\M) ; (c(“) and W are defined in the
statement of theorem 1.26 and definition 1. 27). |

- The second statement of the theorem follows from the funda~
mental theorem of Galois theory ([2] Qmap.v, appendice II, thil),
and from. the ambéddin’g theorsm 1. 28.

Finally, Masuda has proved tha.t svery field F, containing the
p-th roots of unity, p # the characteristic of Ky has the proper-
ty P(2/p2,2/p2), ([10} [26)). The last statement of the theorem
foild_;s from this, and from the fact_*t_;haﬁ the aigebraic number
~ fields are hilbertian ([13]).
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Chapter IIT

Derivations of pro-p-groups and

Applications to Cohomology Theory

. - g 3 3
1. Preliminaries; the mappings d and axi

Let Hn) be the free pro-p-group on 0 generators Xiseees X
The completed group algebra Ep[[F(n)l] of F(n)} is isomorphic to
the magnus algebra A(n) of formal power series (not necessarily com-
mutative} in n indeterminates Tl,..., Tn’ with coefficients in g
(see [14]). This algebra is endowed with the topology of convergence
of the coefficients. By means of the identifications Xs = 1+ Ti
(i=1,..., n), F(n) can be considered as a compact, totally discon-
nected multiplicative subgroup of. A(m} ({141 and [18]).

We shall define continuous maps d: A{n) - A(n)n and 537-: A(n) » A(n)
for i =1,..., n. They are not derivations in the sense of [Zjlchapter 1v,

but can be considered as extensions of the maps in [15], denoted by the

same symbols, and defined on the dense subgroup L(n) of F(n), gener-

ated algebraically by Xpseens X Let M be the free monoid consisting
of 1 and all products of the form Ti . Ti » and write the elements

1 k
a of A(n) as follows a = mEM a m &mlé ép)’ where the p-adic

integer a; will be referred to as the constant term of a. The product

A(n)n is a compact Zp-algebra and a free A(n)-module, generated by

the canonical base €y = (L, 0,..., 0),..., e, = 0,..., 0, 1). We
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‘ da am .
write da = z a dm and — = Z a — (i =1,.
meM ™ 9y mem ™ 3%
for every m& M of the form T. ... T, , dn and om are defined
34 1y axi

.., B}, where,

by the following formulas:

dm = m Ei
k
T, .. T, if 1= ik (we shall agree that T. = f)
m )t k-1 *o
ax,
* 0 if 144,

and dm = 0, %$-= G dif m= 1,
i

Proposition 3.1:

“The mappings d: A{n) -» A(n)n and 5§~A: A{n) ~ A(n), defined
i
above, are continuous and satisfy the following identities:

{1) d(a + b} = da + db

(2) d(ab) = [da)b + adb (bl denotes the constant term of b)

(3 If a €A(n) is invertible, then its constant term ay is inverti-

ble in ZP (and vice versa); we have d(anl) = a7t ail da,

n
4) z 52—- Xs and the elements clx,.L are linearly independent

over A(n).

e e m e e e.
(5) d(x.l... x.™ = ) x, L., x, k-1 d(xik) » where e, = #], d(xfl) = xL
4 m k=1 N -1 K 1 1
x; = 1 and {il,..., im} {i,..., n} (compare with eq. (2) §3 of [15])
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0

, 3b

63 3 o T by
i=1 i *

(7} In (1), (2), (3) and (5) the letter & may be replaced by 33— .
i
Proof:
Continuity of the maps d and §%~' is obvious. The first
i
formula is an immediate consequence of the definition of d.
In order to prove (2}, we write a = z a m, b = X bm !

meEM meM
andd

ab= ) a b om+ ) ) a b v .
mem ™ 1 veM mu=v,uf1 " "

Denote by p;t A(n)n+ A(m) i-th canonical projection (i = 1,..., n}

and, for every m& M, put

S’O if m=1 or m=T, ... T, and i ¥ 3
5 - 1 k
m,i 'l
1 if m=T T. and 1 =1
iy 1 k

Then p, (da) = ¥ a Gm,i m. For 13 ueM meEM, Gmu,i = Su,i and
pi(mv'du) = éu,i mu = pi(d(mu)), so that

p.(d(ab)) = ¥ a b, 8§ . m+ } y a b 6 . v

t meM Lomd veM  mu=v,ufl mou .l

H

pi(d(a)b1 + ad(b)) for all i = 1,..., n.

The formula (2) follows,
One may verify (3) by making use of (2), or by writing a’1 as

a formal power series.
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One has dx, = T, ¢, and ) M ¢ e, = dm. Formulas (4) and
i 171 i:laxi 171

(5) are now immediately verified. Let us point out, once and for all,

that every element of F(n) has constant term 1. This fact, together

with (2), immediately gives (5). To prove (7) one may use (4).

2. Derivations and their composites.

Definition 3.2:

Let H be a closed subgroup of F(n} and B a (left) topological

F(n) -module. A derivation of H into B is a continuous mapping §: H -+ B,

with the property that §(fg) = 6(f) + £6(g), for all f,g € H.

Definition 3.3:

Every continuous mapping d: A(n) + A(n), satisfying identities (1)

and (2) of Proposition 3.1, will be called a derivation.

Remarks:

(i) The restriction of a derivation to a closed subgroup H of
F(n) is a derivation of H into A(n) (A(n) will always be considered
to be endowed with its canonical structure of F(n)-module, defined by

left multiplication).

(ii) The set S of derivations from a closed subgroup H of
F(n), into A(n), form a right module with respect to the operations
defined below:
(61 + 62)(h) = Gl(h) + Gz(h)

(Gl'f) (h) = Gl(h)'f for all f & F(n),
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61, 62 €S, h € H. Similarly, the set of all derivations: A(n) > A(n)

form a right F(n)-module,

3

is the mapping 6: A(n) » A(n), defined by the formula &6(a) = a - a; =

(iii) The mappings _%T' defined in §1, are derivations, and so
1

for all a € A(n) (see Proposition 3.1). Direct calculation, (or
formula {6) of Proposition 3.1) shows that & is a derivation. It will

be called the inner derivation.

(iv) The mapping d: A(n) » A(m)" defined in §1, induces, by
restriction to F(n), a derivationiof F(n) into A(n)n (the product
A(n)n is a (left) F(n)-module, with respect to left multiplication by

elements of F(n)).

Definition 3.4:

Every derivation of a closed subgroup H of F(n) into A(n),

will be called a special derivation of H into A(n), if the constant

term of each one of its images, is zero.

Lemma 3,5:

Suppose 61: A(n) » A(n) is a derivation and 62 a special

derivation of a closed subgroup H into A(n). Then 510 62 is a
derivation of H into A(n).

Proof:

Gl(dz(uv)) = Sl(sz(u) + usz[v))

(610 8,) (W) + 6;(w) (8,(v))y + u-(8;,°6,)(V)

(610 62)(u) + u-(61° 62)(v).
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Definition 3.6:

The natural augmentation g: A(n) » gp maps every formal power

series a onto. its constant term aj.

Remarks 3.7:

(i) e 1is a continuous gp-module homomorphism, eXténding the

natural augmentation of the gfoup algebra gp[F(n)], of the group
F(n) over the ring Zp, the algebra gp[F(n)] being dense in A(n)
([141). |

(ii) Put 'i. = go (i= 1;..., n). For every a,b € F(n)

1 . 0X.,
i ‘ ‘
and A € zp, one has ri(a.b) = Ti(a +.b) = Ti(a) + Ti(b); Ti(xa) = Ari(a)
and .(a) = ap . To prove this, one writes a and b  as formal v

~ power series,

(iii) If a € L(ﬁ) = the free discrete and dense subgrdup_of

F(n) generated algebraically By Xqseees xn,vthen ri(a) is the

exponént (L15] §10, p.66) of X, in the word 2. Mprecgenerally,

. : L. : 1 m

if ¢y,..., ¢ ‘are p-adic integers, then 'Ti(xil . xim) = izi c
‘ “Tr

T

(for definition of p-adic exponents in a pro-p-group; see [14]).

Definition 3.8:

Theialgebra D is defined to be the free associative algébra

over gp’ on the generators 5%—-,..., 5%— . The algebra D is graded
' i n

by declaring the homogeneous component of degree one to consist of all
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linear combinations of the generators. The homogeneous component
of degree k, of the algebra D is denoted by Dk' Each element
of D can be considered as an endomorphism of the additive structure
of A(n), by‘interpreting multiplicdtion in D, as composition of

endomorphisms.

Remark 3.9:
For every sequence of integers (il,..., ik), contained in

{1,..., n}, and every a & A(n), one has

9 . 9 _
G: o o, 0.0 axi )(a) =2,
1 k

where m =T, ... T, (and a_ is the coefficient of m in the
i, i m
formal series expansion of a).

Notations 3.10:

Let MX\ denote the free magma on X = {xl,..., xn}. (see [19]).
Mx consists of non-associative words in Xysenes Xou The length of
a word u € Mx will be denoted by 2(u). The length of an associative
word m € M = the free monoid on {Tl,..., Tn}, will also be denoted

by 4(m). A mapping ¢: Mx'+ F(n) is uniquely defined by the.equalities
o(x;) = x4 i=1,..., m)
d(uv) = (6w, $(v)) = $(W -4 o™ 47T .

Define inductively F = F1 = F(n), Fi+1 = (Fi’ F), for every positive
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integer 1i. ((Fi’ F) denote; the smallest closed normal subgroub,
of F .containing all the commutators (s,t), s e’Fi, t €F). Put
F; = {t € F(n): t = 0, whenever 1 < 2(m) < i} and define‘

gry F = Fi/Fi+1’ gr F = izl gry F. The abelian group .gr F is
endowed with the structure of a Lie algebra over Z , in the usual
manner (see below). Finally, let I = ker € = the ideal in A(n)

generated by T T

preeey Tooe
Theorem 3.11:

With the above notations, one has

]

(a) F, = F, = F(1+ 1Y) for every positive integer i.

(b) gr F is a free Lie algebra over Zp’ on the canonical images of

Xl,..., Xn.

(¢c) The restriction to Fk’ of every element of Dk’ is a derivation

Gk of Fk into A(n), an§ go Sk: Fk - gp is a homomorphism of

groups.

(d) Let (il,..., ik) be a sequence of integers from the set {1,..., n}.

Put

= o O 9 .
%1, ...,k T E° ox oreco gy o0 My > gp

1 x

Suppose t = q*s € MX ; 4, and t being words of lengths j(31),

h(z1) and k = j + h, respectively. Then

B, k8 =0y 5@ By k(8 = k@ By n(e)
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Proof:
Let Lx denote the free Lie algebra on X = {xl,..., xn},

over gp (see [19]1). gr F is a Lie algebra over Ep’ with respect

to the bracket operation, which is well-~defined on the homogeneous

compohents of gr F, by taking for [x,y] (x ¢ 8Ty F, ye 8Ty F) the

class of the commutator (x', y'), of two representatives x', y'€ F

of x and y respectively, The bracket operation is then extended

to the whole of gr F, by linearity (see [14] or [19]). By the uni-

versal property of LX’ (loc cit), the mapping po¢: X » gr F, where

p 1is the canonical mapping F - gr F, induces a morphism v: LX + gr F

of Lie algebras. We proceed to prove that v 1is surjective. Later,

we shall see that v is an isomorphism. Denote by Mk

X
of MX’ consisting of all words of length k. We shall show, by

the subset

induction on k, that the conjugates of the elements of ¢( L,’ Mj),
generate algebraically a dense subgroup of Fk. For k = l,Jiﬁe
statement is true, because Mi generates algebraically a dense sub-
group L(n) of F. Suppose that the statement is true for a given
positive integer k. Denote by Hk+1 the subgroup of F, generated
algebraically by the conjugates of all elements from ¢ ( L_) Mi).

jek+l
By repeated application of the identities

(v,2) = (z,y) 7
and «, r,2)). %, (2,9).(z5, x,y) =1,

every element of ¢(M%), for j > 2, belongs to the subgroup of F,
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generated algebraically by all elements of the form (s,t), s & ¢(M§),

te ¢ (Mi_l) . It follows that Hk+1C: Fi 41+ By the induction

hypothesis, the subgroup Hk of Fk’ generated algebraically by the

conjugates of all elements from ¢( U Mi), is dense in F, ; and the

jzk
group §L+l’ generated algebraically by the conjugates of all elements

k

of the set

Sk+1 = {(u,v): u € L(n), v €.Hk}
is dense in Fk+1’ by virtue of the continuity of the map: F x F » F,

1

(t,s) » ts t~ s-l, and the equality F, , = (F, F ). Let us denote

by yx the conjugate x"1 yx of an element y. In every group, one

has the identities:

-1
v,2)* . (x,2)

~
X
<
-
(S
[
1}

x,y) = (y,x) "1

y,x)*

-1 -1 -1 |
-1
=, 0 Yyt .

—~
»
L
<
-
1

-
N
~—

1

Clearly (x., s) &€ H ., for all s & ¢( W M]). By repeated
b k+1 33k X

use of the first and third identities, one obtains: (u,s) G:Hk+1 for

all u €L(n), se ¢( U Mi). Since the conjugates of ¢( () Mi)
jsk jzk
generate Hk algebraically, the four above identities then give:

Sk+1C: H ., ; so that Sk+1<: H,,» and H . is dense in Fipp+ The
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induction argument is now complete.

If one endows Fk/Fk+1 with its quotient topology, then the
canonical image p(¢(M§)) of the set ¢(M§),.generates a dense sub-
group of the abelian group Fk/Fk+1' We proceed to show that Ap(¢(M§))
generates the gp-mggglg_ Fk/Fk+L ; (multiplication of elements of
‘Fk/Fk+1 by p-adic integers, is induced by taking p-adic powers in

k

‘ k
B~ [14D). I1f My = {z55.00, zq} (My

define a continuous mapping y: Zg > Fk/Fk+1’ by putting

is finite), then one can

q
P8540, 2 ) = 2 a, p(¢(z,)). Since the subgroup ¢(Zq) of w(Zq)
1 q j=1 J J = =p
is already dense in Fk/Fk+1’ the compact continuous image w(gg),

of the compact set 23, must coincide with Fk/Fk+l‘ Denote by L§

g

the homogeneous component of degree k, of the graded free Lie algebra

L Clearly, v(Li)

X* = gr. F. It

follows that wv(L

q ky _
¢(§p) 50 that v(Lx) = Fk/F

k+1 k

13

X) gr F.

Having proved that v: Lx + gr F is surjective, the proof of
parts (a) and (b) of the theorem proceeds in exactly the same way as
the proof of theorems 6.1 and 6.2 of [19] Chapter IV, for the case
of a discrete free group.

To show that {Fi} is a filtration, one has to prove that
(Fi, F;)(:fFi+j for all positive integers i and j. Let g€ Fi,
h €F:}. One has

[}

gh 1+ (g-1) + (h-1) + (g-1) (h-1)

hg

1+ (g-1) + (h-1) + (h-1) (g-1)
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(g,h) = gh(hg) ™
= {1+ (g~1) + (h-1) + (g-1) (h-1)1-[ (—l)k{(g—l) + (h-1) + (h-1)(g-1
k=0
(g,h) = 1 + (g-1)(h-1) - (h-1)(g-1) + terms of degree > i + j + 1 ...(X).

(The degree of a term a m of the formal power series expansion

Z a m of an element a of A(n), is defined to be the length of m).
meM

The formula (X) shows that {F{} is a filtration. Let gr' F= | Fi/F;+1'
S i=1

be the corresponding Lie algebra ([19]). Denote by Assx the free .

associative gp-algebra on X = {xl,..., xn}. Assx is a graded Lie _

algebra (the elements of X are of degree one), with [x,y] = xy - yx

for all x,y € Assy . For every a €A, put a (T) = a, a.(T) = ) a_m.
X o 175 s

: 2 (m)=j

The element a can be written as a formal power series

as
]
"~ 8§

a. (T)
o J

j
We now define a morphism n: gr' F » Assx of Lie algebras, as follows.
For every & éfgri F, one chooses a representative g = 1 + Ek(T) + §k+1(T).+ .
in FL , and one puts n(g) = ék(x) éﬁAss§ ; (i.e. onme replaces T, by
X; in the expression for Ek(T)). Clearly n is a well defined morphism

on the homogeneous components gri F  (see (X)), and, by linearity, one

obtains a morphism n of graded Lie algebras. Obviously, n is injective.

Formula (X) can be used to prove (by induction on k) that

Fk C:Fé for all positive integers Xk, whence one obtains a morphism
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vy: gr F » gr* F of graded Lie algebras. One now puts

B =noyovi Lx + gr F > gr' F » Assx .

For every X; & X, one has u(xi) = Xi" and for u,vE MX, one has

p(uv) = uv - vu (see (X)). It foilows that u is the canonical
morphism of graded Lie algebras (universal property of LX), obtained
from the canonical injection. X = Assx. By theorem 4.2 of [19],

Chapter V, u is iﬁjective. Thus, v: Lx > gr F iS both injective and
surjective, which proves part (b). It also follows that +: gr F » gr' F
is injective. We proceed to prove, by induction on k, that Fﬁ = Fk

for all positive’intégers k . For k = 1, there is nothing to prove. . .
For k > 1, one has Fk C:FL C:Fé-l’ and the induction hypothesis

' . . . ' . e
Fk~1 = Fk;l’ implies Fk.C: Fk-l . Since the kerne} of

it

' . T ] T . 1 i__,
Vo1 y(Fk_lle). Fk_l/Fk > Fk-l/Fk is zero, one has Fk(;Fk and Fk = Pk.

This completes the proof of the first equality of part (a). Clearly,

Fn(1+Ii)CF;. Let

Fg = {y = EM y, m € F;: Ik €N such that y =0 whenever L(m) > k} .
. s =

Then F; CEN( + 1Y and Fz is dense in F; . Now, I is compact,
so that F /(1 + Il) is compact and closed. Consequently, Fé(ll’f\(l + Il)

and the proof of part (a) is complete.

. 3 3 -
It is clear that (eo axi 0uis 0 e ) (a) = a where

1 1x °
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mo=T, T, ..T €M and a= ) a m (for all a€ A(n)).
1 2 Ik ' © meM ) '

] F3’=_0, etc.
From lemma 3.5 , one concludes that GkiFk is a derivation from ‘Fk
into A(n), for all & Eka and all k=1, 2,... . It follows
trivially from this that eo Sk: Fk =+ Z_is a homomorphism of aBelian

groups.

Let 2, “and a, be two words of M, uniquely'detérmined by
the conditions a;ra, = Til v Tik , l(al) = j and 2(a2) = h.'.'
Similarly, let b1 and b2 be two words of M, uniquély determined

by the conditions bz-b1 T. ... T, , E(bl) = j and z(bz) = h.

1 *x
To prove (d), we note that ¢(q) € F:'i’ ¢(s) € F}'1 , S0 that the formula
(X) becomes: -

¢(t) = (¢(q), ¢(s))

1+ (¢(q)-1) (¢(5)-1)‘- (6(s)-1) (¢(q)-1) + terms of degree > j + h + 1.

It follows that for m =T, ... T,
: iy iy

$(0),, (&(q)-l)al (-1, - GE)-Dy G@-D,

JONTIOHETIONIONS

Making use of the fact that

TONER NN ORN

3.

¢(q)al = 81,...,j (q),_etcf,
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one obtains

0,k ® =y 5@ By kS By k@ 3y )

e« ey

This completes the proof of the theorem.

Examples 3.12:

In the definition of the symbols 31 K (3.11 (d)), we
$eey
take ij = j for every j and we put x = Xqs ¥ F Xy Z = Xgu One

then has:

(i) 31’2(XY) = al(x) 82(Y) - BZ(X) 31(Y) =1-0=1 H

i

(11) 8y 5 5x(yz)) = 3;(x) 3, ;(yz) - 0 =1

(iii) 8y 5 ,(y(yx)) =0, 3, 5 ;(x(xy)) = 0, 3 4 H(x(xy)) =13

(V) 9,47, (x(x(xy))) = 1, 8541,y (x(yx))) = 0, 3,4,,(yly(xy)}) =0 ;

(V) 8,79 (x(x(xy))) = 0,8,,,,(y(x(yx))) =1, 3,,,,(y(y(xy))) = 0 ;

(Vi). 82212(Y(Y(XY))) 8212(YCXY)) - 3221(Y(XY)) =1- BZI(XY) - BZI(XY) =3,

3. Applications to the cohomology of pro-p-groups.

Let € be a pro-p-group, defined by a finite number of
generators and relations, in the sense that Hl(G, Z/p Z) and
HZ(G, Z/p Z) are both finite dimensional vector spaces over Z/p Z

(see [18]1). 1If the dimension of Hl(G, Z/p Z) over Z/p Z, is m,
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then G may be identified with some quotient F(n)/R of F(n);

(F(n) = the free pro-p-group on n generétors Xysenns xu). Further-
more, if the dimension of HZ(G, g/p E) over Z/p Z is m3z 1, then
one can find elements Tiseens ro € F(n), such that R is the smallest
closed normal subgroup of F(n), containing Tyseees T oo The elements
Tiseee, T

m are called defining relations, or simply relations, of G.

The completed group algebra EP[EGJ] = lim gp[G/U] (U runs
through the filter of open normal subgroups of G), will always be
denoted by A (see [14]). By virtue of the identification
A(n) = Ep[[F(n)]], (loc cit) the natural projection: F(n) + G can
be extended to a continuous epimorphism w: A(n) + A of compact EP-
algebras. The group. G acts continuously on R/(R,R) by inner auto-
morphisms, and the ring gp acts continuously on R/(R,R) by taking
p-adic powers (loc cit). It follows (theorem 2.2.6 of [14]), that
these actions can be extended in such a way that R/(R,R) becomes a
A-module. (Oné may also use a direct argument: the action of G can
obviously be extended to E[G], which is dense in gp[[G]]). The epi-
morphism w: A(n) - A induces a continuous epimorphism s A(n)n s A"
of the product algebras. The formula A(Al,..., An) = (AAl,..., AAn)
(A,Ai € A) endows A" with the structure of a (left) A-module. Define

A: A(n) A(n)n by the formula A(a) = ( %%— seesy %%— ).
1

n

Theorem 3.13:

Suppose that the elements nn(Arl),..., nn(Arm) of A" are

linearly independent over A ; then
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(i) the map o A A(n} - A" induces a continuous monomorphism

u: R/(R,R) - A" of A-modules {4 is defined immediately above};
(ii) R/(R,R} is a free A-module on the canonical images of Typeees Tpos

{iii) 6 has cohomological dimension 2.

Proof:

We first show that u: R/(R,R) - A" is well defined. Let

-1 -1, 4 -1
Loty E (-t t1)AL 4

i, t, €R. Then A((t;, t,)) = A(t; t, ¢ Lt

2 1

. , -1 -1 n , -
+ t](l - t2 t1 t2 )Atz , 50 that 1 (A((tl, tz))) = 0. For every

£€ F(n), one has =" (A(£(t,, tz)f‘l)) = "0 - £t tz)f“lef +EA((E], )0

= 0. One has ' (A(t;"t,)) = w (At)) + w(t; A t,) = a(at)) + u(AL,),
whence it can be seen that =0 4: R~ A" is a homomorphism of groups.

It is continuous and is zero on the dense subgroup of (R,R), generated
algebraically by the conjugates of the commutators (tl, tz) (tl, tZGZ R}.
It follows that wn(A((R,R))) = 0, and u is indeed a well defined con-
tinuous homomorphism of abelian groups. We now proceed to prove that u
is compatible with the A-module structures of R/(R,R) and A", Suppose
g€ G and s: G- F(n} is a continuous system of representatives

([18] Chapter I, Proposition 1). For every t € R, we shall denote by

[t] its canonical image in R/{R,R). We denote by
*: AX(R/(R,R)) » R/(R,R)

the action of A on R/(R,R}). One has
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g« [t] = [s(g) ts(@ ]

and plg * [t = ot st si@ ™)

i

AT - (@)t s(g) Hats(g) + s(g)at]

it

g n (At = g u([t]) for all t€ R, g€ G.

Thug, p  is compatible with the action of G on R/(R,R) {defined by
inner automorphisms); it is compatible with the induced action of the
group algebra Z[G] on R/(R,R}; and, finally, by virtue of 216}
being dense in A , p is a continuous A-module homomorphism.

The group Ro’ consisting of all elements of the form

k fwl

e
. £ § K ? ({il,..., ik}C: {1,..., m})

k T3
is dense in R. One has
it k n
" (Aq = z n{£.) e. v (ar, ) ... ()
- i’ 7 i,
] 3
One sees from this that n“(a{Ro)) is contained in the A-module,
generated in A" by the elements nn{Arl),..., nn(Arm). Since A is
compact, the A-module L, generated by nn(Arl),..., ﬁn(Arm), is compact
in An, and must, therefore, contain the closure wn(AR) of nn(ARO)
{(n"o A is continuous). The equation (Y) shows that nn(ARo) = the

%[G]-module Lo, generated by vn(Arl},..., nn(Arm). Now, Z[G} is

1

dense in gp[G], which, in turn, is dense in ZP[LG}] L [see 1417,

s0 that L0 is dense in L, It follows that nn(AR) L. So, the

range of yu is the A-module L, generated by ﬂn(Ar]),..., ﬂn(Arm).
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If these elements are linearly independent over A , then one
can define a mapping ¢: L » R/(R,R), such that ¢oyp = 1. Indeed,

let

630 2,060 v (ary) > R/R,R)

be defined by the formula

i 38 .
#3018 o)) = {?;T ste) r? s(g) 7. @

"

(i ..., m nJ. & gp’ gj & G). Since s is continuous, each qzi

is vniformly continuous, and can be extended to 7171: A'nn(Ari) + R/(R,R).

We may take ¢ to be the mappiﬁg induced by ¢1, veey q»n; {nn(Arl) yeves wn{Arm)
being linearly independent over A ). Note that (bl,. .oy ¢m and ¢ are
independent of the choice of s. Indeed, if wu = fgl £} ER, (£, f; EFm)),
then

n. ~11.
el e e gl gty Tyt
B R ¢ I S S T

it

0. n.
-1 [] 3 t -1, -1
£, 0 £t v (!
§ T E U T ED D

. nlj ~-nj -1
f}.u r,tur, (fj} & (R,R) ;

i

so that one may replace s(gj), in the formula (Z)}, above, by any
element lying in the same coset (mod R). Formulas (Y} and (ZY show

that

i

k
. n
) £‘§1 1r(itj) ey (Arij)}
&

. 'j _ -1
I s(n(fj)) rij s(ﬂ(fj)) 1

pu(ltl))

14

.

]
k
L
J:

. ej ~1-
= [ }:{ £ rij £1 = [t (t €R)
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{we made use, here, of the preceding vemark, concerning independence
with respect to the choice of representatives). Thus Yoy is the
identity map on the canonical image of R0 in R/(R,R); and thi;

canonical image 1is dense im R/(R,R). Thus, e p =1 and u is
indeed injective. It also follows that R/(R,R) is a free A-module

on the canonical images [rl],..., [rm] of ry,..., T respectively.

It now only remains to prove part (iii) of the theorem. We may
use directly 2 result of Brumey ([3] corollary 5.3), which states

that ¢d G g if R/(R,R) is free on [rl],..., [rmJ; (In our case,

2
we assumed HZ(G, Z/p Z) # 0). Or else, one may use the following free

resolution of gp:
W og@ €
«ee.*0>0+R/R,R) » A" > A > 2

n
) = ) A; w(T;) and e is the natural augmentation

Herve, a(kl,..., A
i=1

0

(that extends the natural augmentation of the proup algebra gp[G] -

see [141),

n
atuivd) = 7§ wl( -§—¥~) 1,1 for all w €R.
i=1 i

By formula (6) of Proposition 3.1, one has weyn = 0. We proceed to

prove that ker o < L. Let us denote by I the kernel of ¢ and let
n

g: A.(n)n + I be the A{n)-homomorphism, given by B(al,..., an) = 2 a, Ti'
i=1

By formula (6) of Proposition 3.1, #. is invertible, and

-1 ~ Ja da .
B (a) = ( 3‘( 300y BX )~
1 n
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Claim: m( a(kel “) )(: ( . ‘fdr all i = 1,..},‘n;

Proof:

The elements of the form -
v e ‘bv"r Tl enr
c = Z Zak(rk—)k ‘ C € F), r, €R)

(To prove this let V be an open normal qubgroup of F(n), Xy : F(n) » F(n)/V
the canonical projection and Qy A(n) > Z [F(n)/V] its canonical
extension to "A(n). There ex1sts a commutatlve dlagram of contlnuous

epimorphisms:

;Z.p[Ij‘(n)./V] —-;;‘*/—* EPEG/F,(Y_) ]_ '

Suppose now that ¢ &€ker w. Then wV(qv(c)) = 0, ”Byié well-known

fact about group rings, (see, for in;taﬁce [41, s2). qV(c) is of the

form qv[ g fi(ti-l)], where fiEEF(p),and t. & RV, ;f one wfltes

t, = r!.v,, where r. € R and v. &€V, then t, - 1= (rfaljv. + v, - 1.
i i i i i i : i i i

It follows that c¢ - ; fi(r;—l)vi &€ ker qy- Now, the idea}s {ker‘qv}

constitute a fundamental system of neighborhoods of 0 &€ A(n) [14],
and this pfoves that the elements of the form c, are dense in ker u).

One has
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3¢ m ark
o D) a 5z elby) (mod ker =)
i jE1 K i
m e(b,)
= 5%—-( T ak(ri) ok ail) (mod ker n)
i j=1 k

Thus 7 ( %27‘) Cn ggf-. Since the maps 5%7' are continuous and R
1 1 1

X.

is compact, the set 7 ( %E— ) is closed and w( EL%EE—EL ) C w( %§~
i i i

One has a commutative diagram

B
AM? — 5 1

ln“ lm

l\n —'—'-&—*A

Suppose that A = (Al,..., An), Ai = n(ai) (i=1,...,n) and a(r) = 0.
d .
Then s(al,...,an)é_“kern and aié-a—;i—(ker ) (1*1,...,n).
By the above claim, one obtains n(ai)eE v[~%§~ ), so that
, . i

A = 'nn(al,..., a ) €1 (aR)) = L = u(R/(R,R)).

It follows from this discussion that the given complex is exact. The
maps are continuous (left) A-module homomorphisms. It now only remains
to state that the cohomology groups {Hn(G, g/p Z)} are the cohomology
groups of the complex obtained by applying the functor HomCont (~, g/p g)
to this resolution. (This remains true if %/p E is replaced by any

p-primary discrete G-module - see [3] or [14] Chapter V. In £3], one
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finds the following definition of a pseudo-compact ring: a ring A

is pseudo-compact if it is a complete Hansdorff topological ving,

which admits a system of open neighborhoods of 0, consisting of two-

sided ideals 1, for which A/I is an Artin ring. 1In particular, the

‘completed group algebra 4 = gp[[G}} .is pseudo-compact. A complete

Hansdorff topological pA-module M is said to be pseudo-compact, if

it has a system of open ﬁeighborhoods of 0, consisting of submodules N

3

for which M/N has finite length.
Let D, be the category of discrete p-primary G-modules, CA =
the category of pseudo-compact A-modules (A = gp[[G]]) and {Extg}

the right derived functors of HomKont: C, xD, >0, . In [3], lemma 4.1,

=p
Brumer points out that

Qe Ay = pyxed
HY(G,A) hxtG(gp, A

for all pro—p—groupé G and all A EZ(DA)Ob ; Dbecause botﬁ Hq(G, -}
and Extg(ép, -)  are right derived functors of ANV‘->AG = HomG(Ep’ A).
Finally, it has to be said that the A-module Ak is a free object of
CA (for all positive integers k), so that our computation of the

cohomology groups Hq(G, Z/p 1), from the above resolution, is justified).

Corollary 3.14:

Suppose that G is a pro-p-group, defined by a single relation
arl arl
Ty (i.e. m = 1), If q( 52;—) * 0 and q¢( 5;; ) is not a divisor

of zero on the right in A , for some i = l,..., n, then cd G = 2,
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Proof:
n "1 "1
The set consisting of the single element ¢ (Arl) = {n( SE—-)"'°’ m( v
: 1 n
T
is linearly dependent iff the equations )q( %}l') =0 (A=1,..., n; »e&n)
i

imply ) = 0.

Proposition 3.15:

Let G be a pro-p-group of finite type (i.e. Hl(G, Z/p 2) is

finite). If an element x of G is of infinite order, then 1 - x

is not a zero divisor in A = gp[[G]].

Proof:
Let F be the filter of open normal subgroups of G.

U&g F, denote by 4y the order of the group G/U, and by
: Z_[[G Z [[G/U = 2 _[G/U
Py: ZL061] > Z,[06/U1] = 2 [6/U]

the canonical projection. Suppose that a(l-x) = 0, ag ) =

Q-1
For every U & F, put Yy = L+x+ .00 +x v . One has Py

in the group algebra Zp[G/U]. Applying [4], Proposition 6,

For each

Zp[[G]]~

(2) (1-py(x)) = 0

to this

group algebra, we conclude that pU(a) is divisible on the right by

pU(yU); i.e. there exist Vu € ker Py and s, € A such that

U

Vv, = a - §

U v Yy

Since (0) = (fl ker Py» it only remains to prove that Yu tends to O,
ye

according to the filter F. Since x is not of finite order

in G,

the set of positive integers {qu}ueF is unbounded from above, which

means that q;; tends to zero according to the filter F; i.e.

lim q,, = 0
uUs1 U
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in the p-adic topology. Since G is the continuous image of some

free pro-p-group F(n), and A is the continuous image of A(n),

we need only to prove that for x' & F(n) and ay 0 in Zp’ one has
qU'l
im (1 + x' 4+ ...+ (x*) ) =0,
Uu-+1

(Applying the canonical projection m: A(n) -~ A to this equality and

choosing x' so that w(x') = x, one obtains the desired result). If

!
x' $ 0, then there exists some i = 1,..., n, such that X $0
. 8xi

q q;-1
) U, _ ' U . ox!
—-——axi ((x) ) =[1+x"+ ...+ (x") ] —-—axi

q
Now, (x') U tends to 1, according to the filter F, so that
, , -l axr 3 . ‘ .
[1+x'+ ...+ (x") ] 2= tends to zero, =— : A(n) - A(n) being

9X. o0X.
i i

continuous. Since A(n) contains no zero divisors, we may conclude that
e

qu'"l
lim [1 + x' + ... + (x") 1=o0.
U-»1

This completes the proof of the proposition.

Definition 3.16:

Let G be a pro-p-group defined by a finite number of generators

Xqsenes Xp and a single relation r. We shall call r a simple relation

if, for some i = 1,..., n, u( %%-) is a product of elements of the
‘ i
X1 . .
form 1 - g (g €G) and invertible elements of A.
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Theorem 3.17:

Let G be a pro-p-group defined by a finite number of generators

Xyseoes X and a single nontrivial simple relation r, (definition 3.16)

Then ¢cd G = 2 or w,

Proof:

By corollary 3.14 and Proposition 3.15, ¢d G = 2 if G contains
no elements of finite order. If G contains an element of finite order,
then it contains a finite cyclic-subgroup H., Since cd H = » and
c¢d G » cd H ([18] Proposition 14, [21] Chapter VIII, §4), one has

cd G = » for the case where G contains an element of finite order.

Theorem 3,18:

Let G be a pro-p-group defined by a finite number of generators
Kypoers X and a single relation r of the form r = uxi vx;1 w with

the following properties:

(i) u, v and w are independent of Xs5 i.e. belong to the

closed subgroup of F(n) generated by the remaining generators

Xpaeeos X4 g0 Xigraeens X3

(ii) no power of uw belongs to the closed normal subgroup R
of F(n), generated by r and its conjugates.

Under these conditions, cd(G) = 2.

Proof:

( %{: = n[u(l-xi v xll)] = 1(u - w-l) = g(uw - 1).."(w‘1)
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so that r is a simple relation. Since w(uw) is of infinite order

in G, w( %§~ ) is not a divisor of zero on the right, in A = gp[[G]].
i s

The result follows by corollary 3.14.

Remarks 3.19: -

It may happen that a given relation r is not simple (defi-
nition 3.16), but that it '*becomes simple" when one changes the
minimal system of generators of G. To be more precise: suppose
that Hl(G, g/p E) is of dimension n over g/p g, m: F(n) > G
is an epimorphism with kernel R, R being the smallest normal sub-
group of F(n), containing r; suppose, furthermore, that Yyseeer Yp
generate a dense subgroup of G; then one can define an epimorphism
n': F(n) » G, by putting ='(x,) =y, (i=1,..., n) ([18]:
Chapter I, Proposition 5). The kernel of «' is again the closed
normal subgroup of F(n) generated by a single relation r' ([18]:
Coroilary of Proposition 27, Chapter I), which may be simple, even
when r is not simple. In particular, if G is a Demuskin group,
of finite type, and p # 2, then "G may be considered as being

. . q
defined by a relation of the form Xy (xl, xz) (XS’ x4) eee (xn—l’ xn)

([20]1, Theorem 3.1).

Such a relation is obviously simple (apply 5%— }. For the

case p = 2, and further classification of Demuskin groups, see [11]
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and [12]. It is already known that the Demu¥kin groups are of
cohomological dimension 2. The following lemma plays an important

role in connection with suitable choices of minimal systems of

generators.

Lemma 3.20:
Given a pro-p-group G, defined by a finite number of generators
Xyseves Xo» and a single relation 7r; one may assume, without loss

in generality, that the generators Xpseees X have been chosen

in such a way that r is of the form
T = xg -t, te& (F(n), F(n)) and qe€p Z .

Proof:

Redefining = (see remarks 3.19), or replacing Xpseows X
by xi,..., x; , amounts to the same thing, provided that xi,..., xé

generate algebraically a dense subgroup of F = F(n). It is stated,
in [20], that r € Fp.(F,F) (observe that w induces an isomorphism:
Tyt F/FP(F,F) - G/Gp(G,G)). Denoting by v the usual p-adic valuation

on Zp’ and permuting the X5 if necessary, one may assume that

v(rl(r)) > ee. 2 V(Tn(r)), where T, TEO 3%;

,» as before
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(i =1,..., n). The canonical image of an element 'y'GZF in the

Z,-module F/(F,F), will be denoted by 'y..

Claim:
_ n - ) : < -
Yy = 121 di X, (diéi ZP) iff Ti(y} = di for all i =1,..., n.
Proof:

Seeing that the functions 5 are continuous, we may restrict

ourselves, without loss in generality, to the case where y € L(n) =

the dense subgroup of F(n), generated algebraically by Xyseoss X
1 K , :
If y=x" .. X; , then 7,(y) = -2 e (e, = #1) (preceding
1 k i.=1
n J
remark), and y = § ( ] e.) E; , whence the result.
i=1 iJ:l J

_ Put ci = Ti(r) (i=1,..., n). One can find elements

b2,1’ b3,2"“’ bn,n-l égp, such that

= -b

€1 2,1 %22 €2 % Py p Cxoeees Oy = b e

Put b, . =1, for i=1,..., n and b,

_ P PO
ii jc 0, whenever i % j 4 i - 1,

’

Denote the canonical projection: Zb +Z/pZ by 6. Let dij = e(bij)

(1 £ i, j £ n). Then the matrices

1 0 0 1 0 0
() = [by ;1 0 (::) ;0 =fdy ;1 0 <:::>
0 by, 1 0 dg , 1
1 1

O
O
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are invertible, and one can find xi,..., x; in F such that

n .
§£ = Y bi‘j i} in F/(F,F), and such that the canonical images
j=1 '

of 'xi,..., x; in the (g/p g)-vector space F/Fp.(F,F), generate
that vector space. By [18], Proposition 25, {xi,..,, x;} is a

canonical system of generators for F. According to the above claim,

n —
r= ) c, X,

ifp 21+ BI
n n
- X! R |
- izl ¢ X4 * iZZ €1 bi,i-l Xi-1
n . n
— - - bopul |
) izl €1 % Zz €i-1 %i-1
= c_ X
n n

It follows that r(x;‘) " ¢ (¢,F). Since r € FP,(F,F), one has

c,LED zp’ and this completes the proof of the lemma.

Examples 3.21:

Let G be a pro-p-group, defined by the generators Xysenes Xps
and a single relation r. Then r is simple (definition 3.16), if

it is a product of the form
e c,
T =X (xi, xj) v

ntj%icq€ Ep’ c ¢p ép’ vE (F,F), vEF(X,..., T
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the closed subgroup of F(n), generated by S ERRRY X

X5 10 Xippeoeer Xp oo
AT _ G celo i -1 -1

(Proof: 5;;-— X [1+ (xi, xj} + .. 4+ (xi, xj) 1 xi(l xj x; xj ).

Note that the element 1 + (%, xi) ot (xg, xj)c“l is invertible

in A(n), because its constant term ¢ is not an element of pr).

-1 -1 X-l

r is also simple, if it is of the form Xy Xy Xg X0 Xy" Xg

- . . < 3
or Xl Xz X 1 X3 X 4 X2 XS Xl , etc.; and Cd(G) s 2 s (see theorem 3. 18) .

These results are superceded by an unpublished result of Labute;
arrived at by different methods, according to which cd G < 2 if r
is of the form r = xg-t, t € (F,F), and the canonical image of t in

the free gp-module gr, F = (F,F)/(F,(F,F)) is not divisible by p.

Concerning pro-p-groups G, definedlby relations 7T, lying
closer to the g%eu;?;f p-th powers F? than these relations, (in the
sense that r € FP.Fk for k > 2 - see theorem 3.11), almost nothing
seems to be known. If, therefore, seems to be desirable to investigate
pro-p-groups G, defined by relations of the form xﬁ,u, where u is

a "multiple commutator' in the generators x X

l,a.., n’

. - q - q .
The relations T, RX (xl, (xl, xz)) and T, = Xg (xl, (xl, (xl, xz)))

are both simple., Indeed,

1 _ _q+l -1 -1 -1 -1
axz = X a - (xl, xz) X, (xl, x2) ) xl(l - xz x1 Xy )
and
EKZ = xq+1[1 - (xy, (x,, X)) x—l(x (x,, x ))_1] x.[1 - (x,, x.)) x—l(x X )_1]
X, | | R K T T O K 1 1 727 1 Y1 T2 ’
-1 -1
Xl(l - Xy XU X, ).
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In both cases, it seems to be difficult to determine the order of

the canonical image of Xy in the group Gi defined by the relation
T, (i =1, 2). If it is of infinite order in Gi’ then cd(Gi) < 2,

by Corollary 3.14 and Proposition 3.15. At least, we can say that
cd(Gl) <2 or o and cd(Gz) < 2 or <« (Theorem 3.17)1 In both
cases, if g = 0, then cd(Gl) < 2 and cd(GZ) < 2. (rl € FS’ T, é,F4,
whereas xt (Engg), and its coﬁjugates, all lie outside F‘, there-

fore outside the closed normal subgroups generated by T and r,

respectively).

Definitions and notations 3.22:

A multiple commutator of type (n,k,m), (n,k,m EN), is a
mapping c: F(n)k + F(n), defined inductively, as follows: for m = 1,
¢ is a projection, i.e. of the form c(al,..., ak) = a, for all
aj € F(n); fpr m > 1, there exist h,q € E, such that h + q = m, and
there exist multiple commutators ¢ and <, of type (n,k,h) and
(n,k,q), respectively, such that c(a;,..., a,) = (v,2) (= yzy_1 z_l),
where y = cl(al,..., ak), z = cz(al,..., ak), for all a; & F(n),
i=1,..., k.

A multiple commutator of type (n,k,m), is also said tb be a

multiple commutator in k variables, of length m.

Suppose ¢ is a multiple commutator of type (n,k,m), (n 2>k > 2),
X = {xl,..., xk}, Mx the free magma on X, ¢: MX -+ F(n) the mapping
¢fined by the equalities: ¢(x;) = x; (i =1,..., K, o (ts) = (¢(t), 9(s)),

for all ¢t,s €.Mx. Suppose that there exists t € MX’ such that Xy
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occurs exactly one in the word t and 1 % clXpseees X)) = $(8);

then ¢ is said to be simple in the i-th variable.

Theorem 3.23:

Suppose that ¢ is a multiple commutator of type (n,m,q)
(nzm3z2, q3>2), simple in the first variable, and r = c(xl,..., xn).
Ther T 1is a simple relation, and it defines a pro-p-group of coho-

mological dimension g 2.

Proof:

We may assume that r % 1. There exist t,s & MX’ X = {xl,..., xn}),

such that
T = (6(t), ¢(s)) = ¢(t.s)

and X, occurs in either t or s, but not in both. If the length

q of ¢ is equal to two, r reduces to a commutator of the form
(x;, x;) or (x;5 x;), and %%—-: 1= x) xg xil or x;(1-x
1 :

The proof now goes by induction on the length of c. Suppose that

x-l x-l)
17 "17°°

for every multiple commutator ¢ of type (n,m,k), 2 5k < q,
Bcl(xl,..‘, xm)

is a product of invertible elements and ‘elements

axl
of the form 1 - g, where gh lies outside the group .Fk of
o
the filter {Fi} (notations 3.10) for each g and all. Hxé gp. If
Xg occurs in t, then
) -1, 3¢ (t
e T - e®ee) e W (1)
1 1
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and ¢(t) equals x;, or is of the form él(xl,..., x ), where c,
is scme shorter multiple commutator in m variables, simple in the
first variable. By the induction hypothesis, r is a simple relation.

If, on the other hand Xy oceurs in s, then

%ﬁ;-= o(t) (1 - ¢(s)e() T ()Y gﬁﬁflh - @

and simplicity of r follows, as before from the induction hypothesis,

By Theorem 3.11, ¢(t)h, ¢(s)h' and - their conjugates lie outside F

. 2(t-s)
for allo#%eigp (2(t) < 2(t+s) > 2(s)). Since r € F@(t-s)’ the closed
normal subgroup R of F(n), genérated by r, is contained in Fz(f-s)'
Thus, %%— is a product of invertible elements, and elements of the

form 1 - f, with fh¢ R for each f and all .h‘ke gp' The result

now follows from Proposition 3.15 and Corollary 3.14.

Lemma 3.24:

Suppose that c¢ is a multiple commutator in 2 variables (i.e.
simple in the first variabie
of type (n,2,9), n» 2, q » 2)qand 1 = c(x;, X,) § 1. Then
3c(x;, x,) o » -
—r is a product of invertible elements of A(n), and elements .
1 . ;

of the form 1 - f, each f being a conjugate of X, Oor X,".

Proof:

There exist t,s & Mx X ='{x1, xz}), such that

r = (¢(t), ¢(s)) = ¢(t:s)
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and X; occurs in either t or s but not in both. If X; occurs

in t, then ¢(s) = X, and equation (1) of the proof of the preceding
theorem applies. If X, occurs in s, then ¢(t) = X5 and equation
(2) of the proof of the preceding theorem applies. The proof can be

completed by an induction argument, as in the previous proof,

Theorem 3.25:

Let (cl,..., cm) be a sequence of multiple commutators in
two variables (i.e. c; is of the type (n,2,qi)), simple in the first
variable. Let r€& E(n), m » 2, and suppose that there exist sequences

(ul,.,., um) and (yl,..., m—l) of elements of F(n), with the
following properties:

1 = e (xgs Xp)

2 = cz(xz, yl) if-_m > 2

u,:pj(yj_z,y ) if 3<¢<j¢m

j j-1
u =T
for each j = 1,..., m, y; =u; or yy = xij Gf{xs,..., xn}, subject
to the condition that y, # X, , whenever k % j.

J
Then cd(F(n)/R) ¢ 2, R being the closed normal subgroup

generated by r.

Proof:

By virtue of theorem 3.23,we may restrict ourselves to the case

m > 2. We shall assume that F(n+m-1), the free group on Xyseoes Xpon 90
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contains F(n) as closed subgroup, in the obvious way. Define for

j=1,..., m-1:

X, if y. = x,
- 1. ] i,
Z. =
j 3 y ]
X . 1 . = U,
- o) Y5 J
Define:
o .=1
T

17 X1 S (X %)

cz(xz, zl) if m= 2

T
2 -1
X 42 cz(xz, zl) if m> 2,
If 3 ¢ j < m, then put:
r. = xl¢ (z Z: 1)
j ki TjtUi-27 Y-l

Put : T

cm(zm_z, zm_l) if m» 3.
Define a morphism a: F(ntm-1) - F(n), by putting

X. for i =1,

i vy I

a(xi) =
us o for i = ntl,..., ntm-1.

Note that u(zj) = yj for all j =1,..., m-1,

Let G = F(n)/R and denote by N the closed normal subgroup
of F(n+m-1), generated by Tyseees Tpo G' = F(n+m-1)/N,
m': A(ntm-1) > A' = Zp[[G']] the canonical extension of the projection

F(n+m-1) -+ G',
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Claim (1):

ﬂ'(zj) = n'(yj) for all j = 1,..., m-1,

Proof:

Either Yy = xi] or y; = ug. In the first case n'(zl) = n'(yl)

. , - I .
and in the second case, nﬁ(zl) = (xn+1) ™ (cl(xl, xz)) (since

w'(rl) = 1) = n'(ul) = n’(yl). If m > 2, then either Y, = xi2 or
Yy = Uy In the first case, n'(zz) = n'(yz] and, in the second case,

- t - ' 1 ' - - v L
n'(zz) = q (Xn+2) = (cz(xz, zl)) (since T (rz) = 1) = gz(w'(xz), b (zl))
= CZ("'(XZ)’ ﬂ'(y])) = n'(uz) = ﬂ'(yz). Now, let us assume the induction
hypothesis that n'(zj) = ﬂ'(yj) for j=1,..., k (2 ¢k <m-l).

Again, if Y1 = Xik+1’ then n'(zk+1) = w'(yk+1), SO wWe may suppose

that yp g % Wy and 2 = X s T () = T O u0) T T O By B
= ck+1(w'(zk_1), n'(zk)) = ck+1(ﬂ‘(yk_1), n'(yk)), by the induction
hypothesis. Thus, w'(z) 1) = n'(cp (¥ 15 ¥)) = w'(u 4) = 7' vy q)s

and the proof of claim (1) is completed.
Claim (2): . RCN.,

Proof:

If m =2, then 7'(x) = ﬂ’(uz) = n'(cz(xz, yl)) = w'(cz(xz, zl)),

by claim (1). Since w'(rz) = 1, we obtain «w'(x) = 1,

If m> 2, then ='(r) = n'(um) = w'(cm(ym_z, ym_l)) = n'(cm(zm_z, Zm—l))i
by claim (1); therefore ='(r) = n'(rm) = 1. It follows that ='(R) = (1)

and R C N, so that the proof of claim (2) is completeéd.
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Claim (3): y(N) = 1,

Proof:
It suffices to show that y(ri) =1 for all i=1,..., m.

m(a(r;))

i
it

v 1(alx,) ) ey s 6)) = wu) T wgup) = 1

If m

1t
n

2, v(r,) mlalcy(xy, 7)) = (e, (x,, alz))) = 'rr(cz(xz, Y1)

i

n(uz) =7(r) = 1. If 3 g j ¢ m-1, then y(rj)

1

y-1 . S
n(a(xn+j)) "(a(cj(zj-Z’ zj_l))) = ﬂ(uj) ﬂ(uj) = 1 ; Dbecause

alz. 1) = yj-l and a(zj_z) = yj_2 v If m oy 3, y(rm)

- male, (2 o 2o 1))

= w(um) = 1. This completes the proof of claim (3).

The morphism vy: F(n+m-1) - G now induces a morphism y: G' -+ G.
Claim (4): pod¢=1.

Proof:

Since w(xl),..., n(xn) generate a dense subgroup of G, it
suffices to show that w(¢(n(xi))) = n(xi) for i=1,..., n. One
has w(¢(n(xi))) = w(n'(xi)) = y(xi) = w(xi) for all i=1,..., n
and this completes the proof of claim (4).

N/(N,N) 1is endowed with the structure of a A'-module, obtained
from the action of G' on N/(N,N), by inner automorphisms. We know
that cd(G') ¢ 2, iff N/(N,N) is a free A'-module (see, for instance,

Brumer's article [3] Corollary 5.3 or the resolution constructed in

the proof of Theorem 3.13). Since, by claim (4), G is isomorphic to
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a closed subgroup of G', the proof of the theorem will be complete
if we can show that N/(N,N) is a free A'-module. Denoting the
action of A' on N/(N,N) by *, and the canonical images of

rl”}', r

n in N/(N,N) by [rlﬁ,..., [rm] respectively, we shall

m
suppose that T Aj*[rj] = 1, whence the m equations:

i=1
(oxy)
H —
)\1 i Bx] = {)
(ory) (r,)
Al ! X + Az ! 3 =0
2 X2
(3r) (3r,) (or,)
1 2 3
Ay ! A, n! + A ! — = )
1 azl 2 azl 3 821
(arz) (ars) (8r4)
MM St A gt = 0
- 2 - 2 2
ar or or
Apy T : n-2 AT (a n-1) + A 7! ; n 0.
n- “n-2 n- Zn-2 n “n-2
(or,)’
It, therefore, suffices to prove that the elements ' =
1
(3r,) (3r,) (dr )
' 2 ' 3 . m sy + -
L v 321 yeee, Moo= 5 of A', are not zero-divisors on
2 m-

the right, or, equivalently, that the elements w'(xz), n'(zl),..., ﬂ'(Zm_l)

of G' are not of finite order, (see Proposition 3.15, Theorem 3.13 and Lemma 3.2
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It suffices to show that their images w(n'(xz)), w(n'(zl)),..., w(ﬂ'(zm_l))

in G are of infinite order. One has w(n'(xi)) = n(x&) and
axL

€ 0 52—-| R=0 for all i=1,..., n, whereas g sil-) = k for all
i

k € Zp. It follows that n(xi) is of infinite order in G for all
i=1,..., n. One has w(n'(zj)) = y(zj) = n(yj), and, in view of
the remark contained in the preceding sentence, we suppose, without

loss in generality, that yj = uj. We now distinguish between the

following two cases (and we assume, without loss in generality, that =r % 1)

Case (i): there exists a k such that j < k ¢ m~1 and Y 5 X5 -
‘ k
Define a morphism B: F(n) - F(n) by putting

0y when xiqé {yj+l""’ ym} s
B(xi) =
1 when xie{yjﬂ""’ ym} .
Then B(uj) = uj, B(uk+l) = ... = B(um) =g(r) =1 (becau;ij
k
Sy Oops D = 15 BR) = (1), whence u; ¢ R, for all k{/é Z,s ™ (u5)

is of infinite order in G and n'(zj) is of infinite order in G'.

Case (ii): the inequality j < k < m-1 implies Y = u

K

Then Uyq = Ck+1[uk—1’ uk) and Upe1 C:Uk for j <k g m-1,
where Uk designates the closed, normal subgroup of F(n), generated
by Uy Now let m be a word of minimal length in the free monoid |

M on Tl"“’ T, such that, in the formal power series u, - 1 = (u.)
n 1#m M i
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20]
the coefficient (u.) # 0. Then (ug) $ 0 for all fﬁé Z_. On
J'm J'm =p
the other hand, for every f & F(n), (fuj £l uJTl)m = 0, (by direct

calculation, or theorem 3.11) so that the equality uj+1 = cj+1(uj_1, uj))

implies (uj+1)m = 0, and consequently, a = 0, for every a 6,Uj+1:> Um = R.
It follows that no power of uj lies in R, n(uj) is of infinite

order in G and n'(zj) is of infinite order in G'.
This completes the proof of the theorenm.

Example 3.26:

(i) Let n > 2. One may define multiple commutators Ciseers Cg

by the following identities:
¢,(a,b) = (a,b), c,(a,b) = (b, (b,a)), cz(a,b) = (a,b), ¢c,(a,b) = (a,b) = cg(a,b)
Define (yl,..., ys) = (ul, Uy, Xgz5 Uy, us). Then

up = e (xps xp) = (xgs xy)

uy = oy, up) = (a, (g X)) = (G, X)), (), X)s X))
ug = eglug, ) = ((x, %), (G, %), (Gxy, %), %,)))

uy = cgluy X5) = (((xgs X)), ((x, X5), %)), Xg)

ug = oglig, ug) = Grgs (0 %)s ((xps Xp), %)), xg))

Each of the elements ug (i =1,..., 5) defines a pro-p-group

of coh. dim. g 2.
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By theorem 3.25, one has cd(G) s 2 if G is defined by
the "relation" ((xl, xz), ((xl, xz), (xl, (xl, x2)))), or by the

"relation" (((x;, (x;, x,)), ((x;, (x5 X)), x,))).

sona! p o= x4 - 44
Every one of the '"relations T = Xg (xl, xz), T, = X4 (Xl’ (xl, xz)),

Ty = xg (xl, (xl, (Xl’ xz))), etc., defines a pro-p-group of cohomological

oT.
dimension g 2. Indeed, by lemma 3.24, 533- is a product of invertible
2
elements of A(3), and elements of the form 1 - f, each f being a
conjugate of x; or xil. If Ri is the closed normal subgroup of

F(3), generated by r,, (i=1,2,...), then eo 5%— | R, = 0. On
| . !
the other hand, ¢ 3?1;) = k, for all k & Zp . By corollary 3.14
1 =

and Proposition 3.15, cd(F(S)/Ri) £ 2, for all i=1, 2,...

Remarks 3.27:

In a recent letter to the author, Dr. J. Labute states that
the morphism u of theorem 3.13, is always injective, even when the
elements nn(Arl),..., nn(Arm) of An, are not linearly independent
over A . This would imply that cd(G) = 2 if, and only if,

nn(Arl),..., nn(Arm) are linearly independent over A .

I wish to take this opportunity to thank Dr. Labute for his
interest in my work, for his valuable comments on my letters, and

for his encouragement, during the preparation of Part II of this thesis.
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