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ABSTRACT

In type 1 diabetes, insulin secretion is lost due to the autoimmune destruction

of pancreatic beta cells, and life-long insulin therapy is needed to regulate blood

glucose levels. Insulin therapy is currently implemented using either multiple daily

injections with an insulin pen or continuous subcutaneous insulin infusion with an

insulin pump. However, due to variabilities in insulin requirements, accurate insulin

dosing is a challenging task for people with type 1 diabetes. As a result, most pa-

tients do not achieve their glycemic goals. Non-optimal glucose control results in

acute and long-term complications that reduce life quality, and increase the risk of

mortality.

In recent years, technological advances in glucose monitoring systems, insulin

pumps, and insulin pens paved the way towards the development of new algorithms

that facilitate type 1 diabetes management. In particular, two emerging technologies

are helping to ease patients’ burden: closed-loop insulin delivery systems for insulin

pump users, and insulin decision support systems for multiple daily injections users.

Closed-loop insulin delivery systems, are devices that use glucose levels from a

continuous glucose monitoring system to vary insulin infusions in an insulin pump in

order to regulate glucose levels. Existing closed-loop systems still depend on the user

input to deliver the meal-accompanying insulin boluses. However, patients, mostly

adolescents, might fail to announce consumed meals which may degrade the overall

performance of these systems. In the first part of this thesis, we present a novel

algorithm that detects when a meal is consumed without it being announced to the
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system. This is a model-based algorithm employing state estimation and hypothesis

testing techniques. To validate this algorithm, We conduct a 9-hour randomized

crossover clinical trial in 11 adolescents with a known history of missing to announce

their meals. We show that, in this study, closed-loop insulin delivery augmented with

a meal detection algorithm is efficacious compared to standard closed-loop insulin

delivery.

People with type 1 diabetes are closely followed by health care professionals to

regularly adjust their insulin doses to achieve their glycemic targets. This process

is subjective, error-prone, and time-consuming. Decision support systems are a new

concept where historical patient’s data is analyzed by an algorithm to provide in-

dividualized insulin dosing recommendations. In the second part of this thesis, we

present a novel algorithm that recommends individualized insulin adjustment for pa-

tients using multiple daily injections therapy. Daily glucose, insulin and meal data

are fitted using a Bayesian approach to estimate patient-specific model parameters

and drive a recursive control law. To validate this algorithm, we conduct an 11-day

parallel randomized clinical trial in 21 adolescents in a diabetes camp. We show that

the use of this algorithm is safe and results in similar glycemic outcomes compared

to participants using insulin adjustments from an expert physician.

vi



ABRÉGÉ

Dans le diabète de type 1, la sécrétion d’insuline est perdue en raison de la

destruction auto-immune des cellules bêta pancréatiques. Une insulinothérapie à vie

s’impose alors pour régulariser les niveaux de la glycémie. L’insulinothérapie est

realisée en utilisant soit des injections quotidiennes multiples avec un stylo à insu-

line ou une perfusion d’insuline sous-cutanée continue avec une pompe à insuline.

Cependant, en raison des variations des besoins en insuline, un dosage précis de

l’insuline est une tâche difficile pour les personnes atteintes de diabète de type 1.

En conséquence, la plupart des patients n’atteignent pas leurs objectifs glycémiques.

Un contrôle glycémique non optimal entrâıne des complications aiguës et chroniques

qui réduisent la qualité de vie et augmentent le risque de mortalité.

Ces dernières années, les progrès technologiques dans les systèmes de mesure

du glucose, les pompes à insuline et les stylos à insuline ont ouvert la voie au

développement de nouveaux algorithmes qui facilitent la gestion du diabète de type

1. En particulier, deux technologies émergentes contribuent à alléger le fardeau des

patients: les systèmes d’administration d’insuline en boucle fermée pour les utilisa-

teurs de pompes à insuline et les systèmes d’aide à la décision en matière d’insuline

pour les utilisateurs d’injections quotidiennes multiples.

Les systèmes d’administration d’insuline en boucle fermée sont des dispositifs

qui utilisent le taux de glucose d’un système de mesure continue du glucose pour

varier les perfusions d’insuline dans une pompe à insuline afin de réguler le niveau
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de glucose. Les systèmes en boucle fermée existants dépendent toujours de la contri-

bution de l’utilisateur pour administrer les bolus d’insuline accompagnant les repas.

Cependant, les patients, principalement des adolescents, pourraient ne pas annon-

cer les repas consommés, ce qui pourrait dégrader les performances globales de ces

systèmes. Dans la première partie de cette thèse, nous présentons un nouvel algo-

rithme qui détecte quand un repas est consommé sans qu’il soit annoncé au système.

Il s’agit d’un algorithme basé sur un modèle utilisant des techniques d’estimation

d’état et de test d’hypothèse. Pour valider cet algorithme, nous menons un essai clin-

ique randomisé croisé de 9 heures sur 11 adolescents avec un historique connu d’oubli

d’indication de leurs repas. Nous montrons que, dans cette étude, l’administration

d’insuline en boucle fermée avec un algorithme de détection de repas est efficace par

rapport à l’administration d’insuline en boucle fermée standard.

Les personnes atteintes du diabète de type 1 sont suivies de près par les profes-

sionnels de la santé pour ajuster régulièrement leurs doses d’insuline afin d’atteindre

leurs objectifs glycémiques. Ce processus est subjectif, sujet aux erreurs et prend du

temps. Les systèmes d’aide à la décision sont un nouveau concept où les données

historiques du patient sont analysées par un algorithme pour fournir des recomman-

dations de dosage d’insuline individualisées. Dans la deuxième partie de cette thèse,

nous présentons un nouvel algorithme qui recommande des ajustements d’insuline

individualisées pour les patients utilisant une thérapie à plusieurs injections quotidi-

ennes. Les données quotidiennes sur le glucose, l’insuline et les repas sont ajustées en

utilisant une approche bayésienne pour estimer les paramètres du modèle spécifique

au patient et piloter une loi de contrôle récursive. Pour valider cet algorithme, nous
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menons un essai clinique randomisé parallèle de 11 jours sur 21 adolescents dans un

camp de jour dédié aux jeunes diabétiques. Nous montrons que l’utilisation de cet

algorithme est sûre et entrâıne des résultats glycémiques similaires par rapport aux

participants utilisant des ajustements d’insuline d’un médecin expert.
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CHAPTER 1

Introduction

1.1 Rationale

Type 1 diabetes is a chronic disease caused by the autoimmune destruction

of the beta cells in the pancreas. The beta cells are responsible for the secretion

of the hormone insulin, a necessary hormone for blood glucose levels regulation in

the body. Patients with type 1 diabetes are treated with lifelong exogenous insulin

therapy, in which exogenous insulin is administered to keep blood glucose levels in

normal ranges.

Insulin therapy is currently implemented using either multiple daily injections

with an insulin pen or continuous subcutaneous (under the skin) infusion with an

insulin pump. However, insulin dosing is a complex optimization problem where

several factors must be taken into account, in particular, physiological factors (sensi-

tivity to insulin, stress, illness, etc.), and behavioral factors (eating habits, physical

activities, etc.). As a result, most patients with type 1 diabetes, and especially chil-

dren and adolescents, do not reach their glycemic targets. Technological advances in

the treatment of diabetes, including glucose monitoring systems, insulin pumps, and

insulin pens, have helped to ease the burden of diabetes management by automating

certain aspects of insulin dosing.
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In continuous subcutaneous insulin infusion therapy, insulin infusion is manually

programmed in the insulin infusion pump. Recently, closed-loop insulin delivery

systems that utilize real-time feedback of glucose levels to alter the insulin delivery

in an insulin pump and achieve the target glucose level have emerged. Yet, once

insulin is delivered subcutaneously, it takes up to 100 minutes to reach its maximum

glucose-lowering effects. This delay is a limiting factor for achieving efficacious fully

closed-loop control after meal consumption. Therefore, the current generation of

closed-loop systems requires patients to announce consumed meals in order to deliver

a matching insulin dose (a feed-forward approach). However, studies have shown that

patients, especially adolescents, tend to forget to announce their meals. Currently,

there is little understanding of the safety and effectiveness of closed-loop insulin

delivery in regulating glucose after an unannounced meal. We hypothesize that

a meal detection algorithm that detects when a patient consumes a meal without

delivering an insulin bolus may improve glucose levels control.

In multiple daily injections therapy, one or two doses of long-acting insulin are

injected every day and doses of rapid-acting insulin are injected with each meal.

However, insulin requirements vary between patients and vary over time for each pa-

tient. Consequently, patients are advised by health care professionals to periodically

adjust their insulin doses to achieve desired glycemic goals. With the advent of glu-

cose monitoring systems, decision support systems that facilitate and optimize these

decisions have become possible. Decision support systems are new to the field of

diabetes and little is known about the safety and effectiveness of algorithmic recom-

mendations. We hypothesize that a decision support algorithm that adjusts insulin
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doses for patients using multiple daily injections may reduce the burden and improve

the qualify of life of these patients.

1.2 Aims

This thesis aims to develop advanced insulin dosing algorithms for type 1 dia-

betes patients resulting in improved glycemic outcomes. Specifically, we aim to:

i. Investigate the safety and efficacy of controlling glucose levels during closed-

loop insulin delivery after an unannounced meal.

ii. Investigate the safety and efficacy of a decision support tool for patients using

multiple daily injections therapy.

Both the safety and efficacy of the developed algorithms are assessed by ob-

serving glucose metrics following a clinical study involving type 1 diabetes subjects.

Safety is assessed by the absence of serious adverse events related to the algorithm.

Efficacy is assessed by the ability of the algorithm to normalize glucose levels com-

pared to a baseline. Thus, this thesis has both analytical and experimental develop-

ments, resulting in the following intermediate objectives:

� Develop an algorithm that detects when a patient consumes a meal without de-

livering an insulin bolus using recent glucose, insulin, and meal data. Following

detection, the algorithm should improve glucose levels control.

� Design and conduct a clinical trial to evaluate the meal detection algorithm in

type 1 diabetes.

� Develop an algorithm that adjust insulin doses for patients using multiple daily

injections using previous day glucose, insulin, and meal data.
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� Design and conduct a clinical trial to evaluate the insulin doses adjustment

algorithm in type 1 diabetes.

1.3 Outline

This is a manuscript-based thesis composed of an introduction (Chapter 1), a

background (Chapter 2), the thesis body including five manuscripts (Chapters 3, 4, 5,

6, and 7), and a conclusion (Chapter 8). Each manuscript-based chapter includes in

addition to the manuscript a preface section with a brief summary, and the authors’

contributions to the manuscript.

In Chapter 1, we expose the aims and the outline of the thesis. In Chapter

2, we introduce type 1 diabetes, its complications, and its current treatments. We

then review the challenges of current treatments and discuss the role of emerging

technological advances in overcoming these challenges. In Chapter 8, we conclude

by summarizing the author original contributions, discussing the main findings, and

recommending future work. These chapters are written by the author (Anas El

Fathi) and critically reviewed by the author’s supervisors Dr. Benoit Boulet, and

Dr. Ahmad Haidar.

In Chapter 3, we present a review of post-meal regulation of glucose levels for

closed-loop insulin delivery systems. First, we discuss how meals can be regarded as

a disturbance to the closed-loop insulin delivery system. Second, we review differ-

ent models from the literature describing carbohydrates absorption from consumed

meals. Third, we review common control algorithms employed in closed-loop insulin

delivery. Finally, we discuss meal detection techniques and learning algorithms that

may enhance the prediction capabilities of closed-loop insulin delivery. Throughout
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this chapter, we demonstrate concepts through simulations and discuss significant

results from clinical trials.

In Chapter 4, we present a novel unannounced meal detection algorithm for

closed-loop insulin delivery systems. This algorithm employs a linear Kalman fil-

ter and a maximum likelihood approach to estimate patients’ state from previously

measured glucose, delivered insulin and consumed meals. We then derive a test

statistic formula using the patient’s state to distinguish when an unannounced meal

is consumed. We also describe a control strategy following meal detection to safely

regulate glucose levels. In this chapter, we perform simulation studies to validate

this algorithm.

In Chapter 5, we present the results of a 9-hour crossover randomized controlled

trial that evaluates the efficacy of the unannounced meal detection algorithm. In this

study, we recruited 11 adolescents with a history of missing to announce a consumed

meal. We compared three interventions: closed-loop insulin delivery augmented with

a meal detection algorithm, closed-loop insulin delivery, and conventional insulin

pump therapy. At lunchtime, participants consumed a meal without the matching

insulin bolus. We then evaluate glucose control in each intervention by measuring

the 4-hour incremental glucose area under the curve after the lunch meal.

In Chapter 6, we present a day-to-day insulin dosing optimization algorithm for

patients using multiple daily injections. This algorithm uses a maximum-a-posteriori

method to estimate the parameters of a novel model describing the effects of con-

sumed meals and injected insulin on glucose levels. We then combine parameter

estimates, their confidence intervals, and the goodness of model-fit to generate new
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insulin doses recommendations. In this chapter, we investigate the ability of the pro-

posed model to explain real-world glucose data, using a clinical dataset of 150-day

of glucose, insulin, and meal data. We also perform a 60-day simulation study to

demonstrate the feasibility of this algorithm.

In Chapter 7, we present the results of an 11-day parallel randomized controlled

trial where we evaluated day-to-day insulin doses adjustment from our algorithm. In

this study, we recruited 21 participants in a diabetes camp. One group followed daily

adjustments from the algorithm, and the other group followed daily adjustments from

physicians. We compared glycemic outcomes between the two groups in the last week

of the intervention. We also show the results of the acceptance rate of algorithmic

adjustments from physicians who reviewed the algorithm recommendations. We then

provide an analysis of the agreement between the algorithm and physicians on insulin

doses recommendations.

A summary of publications included in this thesis, and other publications related

to this work, is provided in Appendix A. This thesis includes results from two clinical

trials approved by the McGill University Health Centre research ethics board. The

authorization letters are included in Appendix B.
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CHAPTER 2

Background

Recent technological advances in type 1 diabetes treatment contributed to the

development of smarter and safer insulin dosing algorithms. In this chapter, we

provide an overview of type 1 diabetes disease and its medical complications. Then,

we present the current treatments and challenges of type 1 diabetes. Finally, we

discuss emergent technologies for improving type 1 diabetes treatment.

2.1 Type 1 Diabetes

Type 1 diabetes is a classification of diabetes mellitus. Diabetes mellitus is

a complex metabolic disorder characterized by an elevated glucose level (hyper-

glycemia) caused when the pancreas is unable to secrete insulin (type 1 diabetes), or

when the body is resistant to the insulin it produces (type 2 diabetes) [1, 2]. Type 1

diabetes represents 5-10% of diabetes cases worldwide. As of 2017, an estimated 42.5

million adults (age 20-79 years), and 1.1 million children and adolescents (age 0-19

years) have type 1 diabetes, these incidences are increasing worldwide [3]. The cause

of type 1 diabetes is still not well understood but it is attributed to interactions of

genetic and environmental factors [4]. As per today, there is no immediate prospect

of a cure [5].
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Figure 2–1: Depiction of feedback of blood glucose by actions of the pancreas and
liver in a nondiabetic individual.
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In nondiabetic individuals, blood glucose levels are tightly regulated by hor-

mones secreted by the pancreas through a physiological feedback loop (Figure 2–1).

In the pancreas, insulin is produced by the beta cells and glucagon is produced by

the alpha cells. When glucose levels are high, insulin is released, which stimulates

glucose uptake by tissue cells and the conversion of glucose to glycogen in the liver,

lowering glucose levels. When glucose levels are low, glucagon is released, stimulating

the breakdown of glycogen into glucose in the liver, increasing glucose levels [6].

In people with type 1 diabetes, the pancreatic beta-cells are destroyed by the

autoimmune system. The loss of insulin secretion causes a break in the physiological

feedback loop in Figure 2–1. Without insulin, glucose is no longer transported to or

used by cells causing dangerously elevated glucose levels.

Following guidelines from the World Health Organisation, the American Dia-

betes Association, and Diabetes Canada, the diagnostic criteria for diabetes mellitus

can be summarized in Table 2–1 [2, 7, 8]. After confirming the diabetes condition,

type 1 diabetes is identified by the presence of autoimmune markers, including an-

tibodies to the islet cell and insulin auto-antibodies [9]. Type 1 diabetes is also

characterized by very low C-peptide levels. Most type 1 diabetes cases are diagnosed

at a young age (less than 25) but can occur at any age [10].
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Table 2–1: Criteria for the diagnosis of diabetes, either one suffices.

A fasting plasma glucose level of 7.0 mmol/L, where fasting is de-
fined as no caloric intake for at least 8 h.

Oral glucose tolerance test: The 2-hours plasma glucose after inges-
tion of 75g oral glucose load above 11.0 mmol/L.

Hemoglobin A1C marker (HbA1c), a marker reflecting average
plasma glucose over the previous 2–3 months, above 6.5 %.

At any time of the day, without regard to the interval since the last
meal, plasma glucose is above 11.1 mmol/L.

2.2 Complications of Type 1 Diabetes

Before the discovery of insulin and its therapeutic potential by Sir Frederick

Grant Banting and John James Rickard Macleod in the early 1920s, type 1 diabetes

was a fatal condition. Nowadays, type 1 diabetes is treated with a life-long exogenous

insulin delivery to the body. Despite current insulin therapy, type 1 diabetes is still

associated with significantly decreased life expectancy due to acute and long-term

complications [11, 12].

2.2.1 Acute Complications of Type 1 Diabetes

The most common acute complication of type 1 diabetes is hypoglycemia (haz-

ardous low glucose levels). People with type 1 diabetes are more susceptible to suffer

from hypoglycemia because of (i) the risk of over-delivery of insulin, (ii) the lack of

the beta cells is accompanied by impaired ability to regulate the hormone glucagon,

causing insufficient glucagon release during hypoglycemia [13].

Typically, hypoglycemia is defined by plasma glucose levels below 3.9 mmol/L,

and its severity is defined by clinical manifestations [14]:
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� Mild and moderate hypoglycemia is characterized by (i) autonomic symptoms:

trembling, palpitations, sweating, anxiety, hunger and nausea (ii) neurogly-

copenic symptoms: difficulty concentrating, confusion, weakness, drowsiness,

vision changes, difficulty speaking, headache, and dizziness. The patient can

self-treat this condition by the administration of carbohydrates.

� Severe hypoglycemia leads to coma or seizure and necessitates the assistance

of other individuals. Plasma glucose level is typically less than 2.8 mmol/L.

Mild hypoglycemia episodes are frequent with type 1 diabetes patients, with a

self-reported incidence rate of around 2-3 episodes per patient per week [15]. Most of

these episodes are under-reported or unrecognized due to some patients suffering from

impaired awareness of hypoglycemia. Data has shown a higher rate of biochemical

hypoglycemia events (capillary blood glucose less than 3.5 mmol/l) in patients with

hypoglycemia unawareness by up to 1.6-fold [15].

The incidence of severe hypoglycemia is around 1-2 episodes per patient per

year [15, 16, 17] and is affected by risk factors such as increased duration of diabetes

and impaired awareness of hypoglycemia. The risk of sever hypoglycemia causes

significant anxiety for patients with type 1 diabetes and their families.

Insufficient insulin may lead to life-threatening diabetic ketoacidosis. Diabetic

ketoacidosis occurs when impaired glucose utilization forces the cells to produce

glucose from fatty acids yielding acidic ketone bodies as a by-product. The resulting
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ketonaemia1 causes blurred vision, tiredness, and requires complex management and

hospitalization. At least one diabetic ketoacidosis events per year are reported in

5-10% of type 1 diabetes patients [18, 19].

2.2.2 Long-term Complications of Type 1 Diabetes

Of the many complex complications of diabetes, the main problem haunting

type 1 diabetes patients is vascular long-term complications, which are directly cor-

related with increased morbidity and mortality rate. Complications usually start to

develop years or decades after diabetes onset. These are microvascular complica-

tions: nephropathy (renal failure), retinopathy (blindness) and neuropathy (nerve

damage), macrovascular complications consisting of cardiovascular (heart) diseases,

and comorbid conditions: automimmune thyroid disease and coeliac disease [20].

The Diabetes Control and Complications Trial (DCCT, 1982-1993) established

the relationship between sustained hyperglycemia and microvascular complications

[21]. Subsequent observational studies by the Epidemiology of Diabetes Interventions

Complications Study Research Group (EDIC, since 1994) have shown the long-lasting

effects of better glycemic control, measured by HbA1c2 levels, in reducing the rates

of development and progression of microvascular and macrovascular complications

[22, 23, 24] (Table 2–2).

1 Ketonaemia refers to the presence of an abnormally high concentration of ketone
bodies in the blood.

2 HbA1c or Hemoglobin A1C is a marker reflecting average plasma glucose over
the previous 2–3 months
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Table 2–2: Summary of the DCCT and EDIC study.

DCCT This was a parallel controlled clinical trial in 1441 subjects comparing in-

tensive therapy, aimed at achieving glucose levels close to the nondiabetic

range, with standard care at the time, only aimed at maintaining safe glucose

levels (conventional therapy). The DCCT lasted for a mean of 6.5 years and

demonstrated that strict glycemic control, with intensive therapy resulting

on a median HbA1c of 7%, prevents up to 70% of microvascular complica-

tions (particularly retinopathy), compared to conventional therapy (HbA1c

of 9%). The major adverse effect was a 3-fold increase of hypoglycemia in

the intensive therapy group, underlying the fact that HbA1c goals should be

tailored to the individual. Following DCCT, intensive therapy with the goal

of achieving near-normal glycemia became the new standard of care [25].

EDIC The EDIC is a long-term follow-up to the DCCT. After the end of the DCCT,

all participants in DCCT switched to intensive therapy. EDIC demonstrated

that a period of intensive glycemic control reduced the subsequent risk of

a cardiovascular event by 42% and severe cardiovascular events by 57%.

Subgroup analysis demonstrated that the differences in the mean HbA1c

levels at the end of DCCT (7.4% vs. 9.1%) explained the majority of the

treatment effect of intensive therapy.
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2.3 Treatments of Type 1 Diabetes

Type 1 diabetes is a chronic disease requiring life-long insulin replacement ther-

apy. Insulin therapy is currently implemented using either multiple daily injections

via an insulin pen or continuous subcutaneous (under the skin) insulin infusion via

an insulin pump. Intensive insulin therapy aiming at an HbA1c level as low as pos-

sible while avoiding hypoglycemia has the benefit of reducing the risk of acute and

long-term complications [26, 27]. Self-management through self-monitoring of glu-

cose levels, meal planning, meal macronutrient counting, and attention to physical

activity are essential to achieving target levels of HbA1c [28].

In the following, we will detail (i) the forms of insulin analogs3 used for treat-

ment, (ii) the two principal modes of insulin administration (multiple daily injections

and continuous subcutaneous insulin infusion), and (iii) glucose monitoring systems.

2.3.1 Insulin Analogs

Intensive treatment with insulin therapy imitates the physiological release of

insulin as seen in non-diabetic people by following a basal-bolus insulin regimen

[29]. Basal insulin mimics the relatively small but constant release of insulin which

metabolizes the glucose stored in cells during fasting and regulates the production

of hepatic glucose. Basal insulin requirements are affected by sleep cycle, physical

activity, psychological stress, and growth hormones [30, 31, 32]. Bolus insulin is

administered to mimic the response of endogenous insulin in the healthy pancreas to

3 Analog insulin is a laboratory-grown genetically altered form of insulin to achieve
the desired drug pharmacokinetics and/or pharmacodynamics.
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food intake. This response occurs in a transient and rapid first phase secretion and

then in a more prolonged second phase release [33, 34].

The basal-bolus regimen motivated the development of different insulin analogs

characterized by different pharmacokinetics and pharmacodynamics properties. These

properties determine, respectively, how insulin is absorbed into the blood circulation

and how insulin in the circulation affects the body [35]. Two types of insulin analogs

are of interest:

Rapid-acting insulin is a type of insulin that works over a narrow and predictable

range of time. It has an onset time of 10-20 minutes after delivery, a peak-

action time of 1-2 hours and a duration of action of 3-5 hours. Recently, a new

faster-acting insulin is available on the market with an onset time of 4 minutes

and a peak action time of 0.5-1.5 hours [36].

Long-acting insulin is a type of insulin that works over a large and predictable

range of time without any peaks. It has on onset time of 1.5 hours and a

duration time of over 24 hours.

2.3.2 Multiple Daily Injection

Worldwide, most patients with type 1 diabetes use multiple daily injection ther-

apy. In this therapy, one or two long-acting insulin doses are injected daily for basal

insulin, and an insulin bolus of rapid-acting insulin dose is injected with every meal,

for a total of 3-4 insulin bolus injections per day, figure 2–2.

Insulin basal dose is usually related to the patient total requirement of insulin.

Insulin bolus doses are mostly determined based on the meal carbohydrate content

and the patient’s carbohydrate ratios which specify how many grams of carbohydrate
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Figure 2–2: Simplified graph of multiple daily injection regimen.

are metabolized by each unit of insulin (gram per unit). Patients are required to

measure their blood glucose before delivering an insulin bolus to adjust the amount

of the bolus based on the current glucose level. The higher the glucose level from a

target (usually 7 mmol/L), the more insulin is delivered. Some patients use a fixed

dose of rapid-acting insulin at mealtimes, however, they follow a strict diet where

they consume the same amount of carbohydrates in each meal.

In multiple daily injection therapy, insulin is usually delivered using insulin pens.

Insulin pens were introduced in the 80s as a convenient way to deliver insulin instead

of syringes. They comprise of a fine replaceable needle and a fillable insulin cartridge

[37]. Recently, a new generation of smart insulin pens that can automatically log

injected doses and provide Bluetooth communication with smartphones has emerged.

2.3.3 Continuous Subcutaneous Insulin Infusion

Historically, continuous subcutaneous insulin infusion therapy precedes multiple

daily injection therapy, as the first pumps date to the 70’s [38], however, due to its
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Figure 2–3: Simplified graph of continuous subcutaneous insulin infusion regimen.

cost, it took more than 20 years for insulin pump therapy to become widely used [39].

Insulin pumps are body-worn devices that can deliver insulin to the subcutaneous

tissue. Connected to the pump is an infusion set, consisting of a small plastic tube

and a soft cannula that is inserted under the patient’s skin. Some pumps, referred to

as patch pump, directly attach to the user’s skin and comprise of a very short cannula

embedded inside the pump. The pump’s insulin reservoir is filled with rapid-acting

insulin analogs.

The user can program a desired infusion rate of insulin (basal insulin) or delivers

insulin boluses when needed. Patients can program up to six different basal rates

to match varying insulin needs during the day, figure 2–3 [40, 41, 31]. Furthermore,

most insulin pumps include other features:
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� Automatic tracking of previously delivered insulin and estimation of the amount

of insulin-on-board4 . This calculation is affected by the programmed insulin

action duration in the pump.

� An insulin bolus calculator to compute the insulin bolus dose using the meal

carbohydrate content and/or current glucose level. This calculation is affected

by the programmed carbohydrate ratios, the insulin sensitivity factor5 and the

programmed glucose target in the pump.

� An option to program temporary infusion rates when needed. For example,

before or after a physical activity.

Compared to multiple daily injections therapy, continuous subcutaneous insulin

infusion therapy provides more flexibility to patients to control their insulin delivery.

However, it also add physical burden (carrying a pump) and an increased potential

risk of ketoacidosis in the event of pump malfunction with interrupted insulin delivery

[42]. Not all randomized controlled trials showed a clear advantage in reducing

HbA1c levels by using a pump compared to injections. Nevertheless, meta-analysis

of randomized clinical trails comparing pump therapy and multiple daily injections

show a significant decrease in HbA1c (-0.55% in adults and -0.24% in children) in

favour of pump therapy users [43, 44]. Also, a greater reduction in HbA1c was

4 insulin-on-board (units) refers to the insulin that was subcutaneously delivered
but not completely absorbed into blood circulation.

5 Insulin sensitivity factor (mmol/L/units) is a number describing how much glu-
cose is utilized by one unit of insulin.
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observed when patients with poor glycemic control switched from multiple daily

injections to pump therapy [42].

2.3.4 Glucose Monitoring Systems

Frequent glucose self-monitoring has been associated with decreased HbA1c and

acute complications [45, 46]. Multiple devices exist for glucose monitoring, notably:

blood glucose meters, continuous glucose monitoring systems, and flash glucose mon-

itoring systems.

A blood glucose meter is a portable handheld device used to measure the cap-

illary blood glucose. This device provides a reliable blood glucose concentration by

analyzing a drop of blood obtained by pricking the finger using a lancet. Conse-

quently, patients only use it when necessary: before consuming meals or when they

are at risk of hypoglycemia.

The first commercial glucose monitoring system was introduced in 1999 by

Medtronic (Medtronic, Northridge, California) [47]. These are small devices worn

typically on the abdomen and contains a hair-sized wire that continuously monitors

glucose levels in the interstitial fluid underneath the skin. These sensors are affected

by measurement noise, delays due to diffusion processes, and time-varying systematic

under/overestimation due to calibration and sensor drift [48]. Yet, they have shown

greater accuracy in recent years, with a mean relative absolute difference (MARD)

compared to laboratory standard is between 8% to 14% [49, 50, 51]. Most of these

systems are now approved for non-adjunctive use without capillary blood glucose

measurements.
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The majority of glucose monitoring systems provide continuous glucose readings

at one- to five-minute intervals via Bluetooth (CGMs). Glucose readings can be

displayed and stored in either specialized handheld devices, smartphones or insulin

pumps. Most CGMs have a lifespan of one week and need to be calibrated using

blood glucose meter (usually twice a day). Recently, the new Dexcom G6 (Dexcom

Inc., San Diego, California) does not require calibration (factory-calibrated) and has

a lifespan of 10 days.

As opposed to CGMs, flash glucose monitoring systems (FGMs) does not trans-

mit glucose readings, but glucose levels are retrieved on-demand when the sensor

is scanned. There is only one flash glucose monitor manufactured at the moment:

the Freestyle Libre (Abbott Laboratories, Abbott Park, Illinois). The Freestyle li-

bre is factory-calibrated and has a 2-week sensor life. Recent studies have shown

satisfactory accuracy with overall MARD of 11% to 14% [52, 53].

Randomized clinical trials have shown that, when compared to only using blood

glucose meters, the use of glucose monitoring systems (CGMs or FGMs) is associated

with an improvement in HbA1c, reduction in mild to moderate hypoglycemia, and

reduced glucose variability [54, 55, 56, 57]. Nowadays, glucose monitoring systems

became a must for better diabetes care [58].

2.4 Challenges of Type 1 Diabetes

Current intensive insulin therapy aims to reduce the risk of long-term compli-

cations associated with hyperglycemia [21]. Higher HbA1c levels are still the gold

standard for assessing the risk of vascular diabetes complications [25]. A target of
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HbA1c levels of below 7.0% is recommended for adults, while a target HbA1c lev-

els of below 7.5% is recommended for pediatrics [59, 60, 21]. Other HbA1c targets

can be set for special conditions, such as pregnancy and people with hypoglycemia

unawareness.

Glucose monitoring systems are essential to guide patients and health care

providers when optimizing glycemic control. Clinically meaningful outcomes de-

rived from glucose monitoring data have been suggested as useful tools to describe

overall glycemic control [61]. Common measures include:

Time-in-range Percentage of glucose readings in the range of 3.9–10.0 mmol/L per

unit of time.

Hypoglycemia Percentage of glucose readings under 3.9 mmol/L per unit of time.

Hypoglycemia can be categorized to at least 2 levels, mainly, level 1 when

glucose readings are in the range 3.0–3.9 mmol/L, and level 2 when glucose

readings are below 3.0 mmol/L.

Hyperglycemia Percentage of glucose readings above 10.0 mmol/L per unit of

time. Hyperglycemia can also be categorized to multiple levels.

Mean glucose Average glucose reading in mmol/L per unit of time.

Sensor-based measures have been shown to strongly correlate with HbA1c, mainly,

mean glucose, time in hyperglycemia, and time-in-range [62, 63, 64]. Other glucose

sensor measures that are independent of HbA1c, such as glucose variability, may be

associated with diabetes complications, but limited evidence is found in the litera-

ture [65]. An association of sensor-based measures with long-term complications is
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yet to be shown in a controlled study. However, retrospective analysis of DCCT in-

dicates that a decrease in time-in-range is associated with an increase in retinopathy

risk [66]. Furthermore, the use of continuous glucose monitoring during pregnancy

has been shown to be associated with reduced maternal and neonatal complications,

mainly the risk of macrosomia [67].

Despite advances in insulin analogs, insulin pumps and glucose monitoring sys-

tems, achieving glycemic targets is a complex and endeavoring task. Recent results

from the type 1 diabetes exchange clinic registry showed that in a cohort of 12, 705

participants in 81 American pediatric and adult endocrinology centers, only 17%

of youths achieved the HbA1c goal of <7.5% and only 21% of adults achieved the

HbA1c goal of <7% [68]. This can be attributed to multiple factors:

Carbohydrates counting Meal-accompanying boluses are necessary to metabolize

digested carbohydrates from meals. However, providing an adequate insulin

bolus relies on the ability of patients to accurately estimate the carbohydrate

content of their meals, correct the insulin dose depending on the current glu-

cose level (an extra correction bolus is provided when glucose levels are high,

similarly, the insulin bolus might be reduced because of low glucose levels), and

take into account the insulin-on-board. Mathematically, a meal-bolus U can

be computed by:

U =
MCHO

kCR
+ max

(
G−Gt

kISF
− UIOB, 0

)
(2.1)
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where MCHO is the amount of carbohydrates in the consumed meal, kCR is

the carbohydrate ratio, Gt is the glucose target, kISF is the insulin sensitivity

factor, and UIOB is the insulin-on-board.

Even though (2.1) may seem simple, patients are prone to make carbohydrate

counting errors with an estimated 20% error on average [69]. It is common to

underestimate or neglect insulin-on-board. It is difficult to choose an adequate

glucose target and an insulin sensitivity factor. Furthermore, other macronu-

trients, such as protein and fat, can affect the meal absorption and requires an

insulin dose adjustment (Section 3.2.2).

Physiological Factors Insulin sensitivity differs between patients and may be af-

fected by other hormones, such as somatotropin (growth hormone), cortisol

and adrenaline. As a result, physiological factors such as weight, illness, stress,

menstrual cycle and puberty have a direct effect on insulin sensitivity.

In practice, women with type 1 diabetes, might use different insulin dosage

during their menstrual cycle phase [70]. Adolescents in puberty and sometimes

adults might increase their insulin dosage during the last hours of the nights

because of the dawn phenomenon: a decrease in insulin seneitivity due to the

release of growth hormones overnight, causing a sudden increase in glucose

levels [71].

Physical Activity Exercise is recommended for type 1 diabetes patients [72]. It

helps in lowering daily insulin dose, improving physical fitness and reducing

cardiovascular risks [73]. Nevertheless, a large number of individuals with type

1 diabetes are inactive mainly because of fear of exercise-induced hypoglycemia
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[74]. Glucose management during and following exercise depends on multiple

factors: type of exercise (aerobic, anaerobic, mixed), intensity of exercise, and

duration of exercise. During aerobic exercise glucose, levels fall in most pa-

tients. To decrease the risk of hypoglycemia, it is recommended to reduce

insulin administration before exercise (reductions in basal or bolus insulin, or

both), or ingest carbohydrates before the exercise, or both [75]. During anaer-

obic exercise, glucose levels might increase as a result of the production of

glucose from stored glycogen. Both forms of exercise can cause delayed-onset

hypoglycemia in the following night because of the increase in insulin sensitivity

following physical activity [76, 77].

Treatment related factors Glucose control can also be affected by inherent prob-

lems caused by the insulin treatment itself. In continuous subcutaneous insulin

infusion therapy, infusion set problems causing insufficient or no insulin deliv-

ery are common [78]. Insulin time-to-peak absorption can also vary depending

on the age of the infusion site, where the older the site the quicker insulin

is absorbed [79]. In multiple daily injections, patients will tend to only cor-

rect for high glucose levels around meal times, giving them less control during

night time and fasting conditions. In all insulin therapies, patients, mainly

adolescents, are susceptible to forget or intentionally omit delivering meal-

accompanying insulin bolus.

2.5 Emergent Technologies for Type 1 Diabetes

With recent technological advances, new control algorithms have emerged to

facilitate and automate the management of type 1 diabetes. Micro-management of
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daily insulin delivery can be improved by the use of closed-loop systems that combine

sensor glucose in real-time with continuous insulin delivery. Macro-management of

long-term glucose control can be improved by decision support systems that guide

patients in adjusting their insulin dosage.

2.5.1 Closed-loop Insulin Delivery

Closed-loop insulin delivery systems, also called artificial pancreas systems, are

devices that exploit glucose feedback from a continuous glucose monitoring system

to vary insulin infusions in an insulin pump in order to regulate glucose levels. The

concept of closed-insulin delivery was first introduced in the 60s; at the time, both

insulin infusion and glucose measurements were performed intravenously [80].

In recent years, a significant progress was made in subcutaneous insulin pumps

and interstitial glucose measurements technology, resulting in commercially available

systems: MiniMed 670G (Medtronic plc, Northridge, California) received approval

worldwide [81]; Diabeloop (Diabeloop SA, Grenoble, France) received approval in

Europe [82]; Control-IQ (Tandem Diabetes Care, San Diego, California) received

approval in the United States [83]; CamAPS FX (Camdiab Ltd, Cambridge, United

Kingdom) a mobile application received approval in Europe [84]. Other closed-loop

insulin delivery systems were developed for research purposed [85, 86, 87] or by

patients as do-it-yourself systems [88]. Most of these systems are hybrid, meaning

that the user is required to enter the amount of carbohydrate in each meal in order

to receive a matching insulin bolus.

Different variations exist in closed-loop systems, including: (i) Different control

algorithms: proportional-integral-derivative controllers, model predictive controllers,
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and controllers based on fuzzy logic [89]. (ii) Different combination of drugs in

addition to insulin, such as systems combining insulin and glucagon [90, 91, 92],

insulin and pramlintide [93], or insulin and other adjunctive medications [94]. (iii)

The degree of automation, systems that require full carbohydrates counting (the

majority), systems only requiring meal categorization [95, 96], or fully closed-loop

systems [97, 98]. A detailed literature review is provided in Chapter 3.

Today, closed-loop insulin delivery is the most promising insulin therapy as it has

been proven to reduce time spent in hypoglycemia (<3.9 mmol/L) by -1.7% (95%CI,

-3.18 to -0.21) and to increase time-in-target (3.9 —10.0 mmol/L)6 by 10.6% (95%CI,

4.28 to 16.87) compared to sensor augmented pump therapy 7 [100]. Yet, closed-

loop systems remains new, and up-to-date diabetes education is warranted for new

patients [101].

2.5.2 Insulin Decision Support System

Insulin decision support systems refer to a class of software that provides indi-

vidualized insulin dosage recommendations. These systems can be targeted to health

care professionals or directly to patients. For health care professionals, decision sup-

port systems take the form of remote monitoring systems that record patient daily

6 With the raise of continuous glucose monitoring systems usage, it became more
practical to assess good glycemic control with the percentage of time glucose levels
are within 3.9 mmol/L and 10.0 mmol/L, also called time-in-target. Time-in-target
correlates strongly with HbA1c levels [99].

7 Sensor augmented pump therapy refers to the usage of an insulin pump and a
glucose sensor. The user can adjust their insulin delivery manually in the pump
using feedback from the glucose sensor.
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1. A user can calculate 
an insulin dose 

recommendation

3. Injected dosed are 
automatically upload to 

the cloud.

4. New parameter 
changes can be received 

from the cloud.

2. A user should inject 
the recommended dose

Figure 2–4: An example of an insulin decision support system that can be used by
a patient. The system can be used to calculate insulin doses, doses are uploaded on
the cloud and analysed by an algorithm, new parameter changes can be sent to the
patient.

data, analyze trends, and in some cases provide therapeutic advice. For patients,

decision support systems are mainly advanced bolus calculators that adapt to the

user and suggest personalized insulin doses adjustment 2–4.

Insulin doses adjustments can be achieved by regularly adapting therapy param-

eters used to calculate insulin doses. Multiple rules exist in literature to estimate and

adjust these therapy parameters [102, 103, 104, 105]. Therapy parameters contain,

but not limited to:

Carbohydrate ratio which is a ratio that specifies how many grams of carbohy-

drates are metabolized by each unit of insulin (gram per unit). This ratio

can be employed by patients under insulin pump or multiple daily injection

therapy.
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Pump programmed basal rate which is the infusion rate of insulin delivered by

a pump in insulin pump therapy. Multiple basal rates can be programmed

during the day.

Insulin basal dose which is number specifying the basal dose amount in multiple

daily injections therapy.

Insulin sensitivity factor which is a number describing how much glucose is uti-

lized by one unit of insulin. This factor can be employed by patients under

insulin pump or multiple daily injection therapy.

The idea for insulin decision-making systems date back to the early 1980s when

pocket computers began to emerge [106, 107, 108, 109]. However, serious clinical

trials targeting type 1 diabetic patients have only started in the last decade. In the

following, we summarize recent clinical trials investigating insulin dosing decision

systems regardless of the insulin therapy (insulin pump, multiple daily injections, or

closed-loop insulin delivery).

Palerm et al. [110] conducted one of the first clinical trials investigating the fea-

sibility of automatic carbohydrate ratios adjustment. Over a 2 to 4 day period,

sparse blood glucose levels were collected from 11 participants. Starting with

their usual carbohydrate ratio, physicians made recommendations to normal-

ize glucose levels after meals. A mathematical performance measure was then

derived for use in a run-to-run algorithm [111], such that the decisions of the

algorithm will match the decisions of the physician.

Charpentier et al. [112] conducted a 6-month randomized parallel trial in 180

adults using either insulin pumps or multiple daily injections to evaluate the
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efficacy of their mobile application Diabeo. Diabeo includes a bolus calculator,

automatic algorithms for the adjustment of carbohydrate ratio and basal insulin

dose, or pump programmed basal rates, and data transmission to medical staff

computers. They showed that (i) using Diabeo with quarterly physicians follow-

up visits reduced HbA1c by -0.5% compared to only quarterly follow-up visits;

(ii) using Diabeo with short teleconsultations every 2 weeks reduced HbA1c by

-0.7% compared to only quarterly physician’s follow-up visits. Their study was

limited to participants with a baseline HbA1c ≥ 8% (non-optimal control).

Bergenstal et al. [113] conducted a prospective 16-week study in adults with type

1 or type 2 diabetes using multiple daily injections to evaluate the efficacy of

weekly insulin adjustments using their software DIGS. In the type 1 diabetes

cohort (n=20), 14 participants completed the study. They showed that the

adjustments made by their software were safe, and there was a trend in de-

creasing HbA1c from 8.9% at baseline to 8.3% at week 16. Their study was

limited to participants with a baseline HbA1c ≥ 7.4%.

Kirwan et al. [114] conducted a 9-month randomized parallel trial in 72 adults

using either insulin pumps or multiple daily injections to evaluate the efficacy

of their mobile application (Glucose Buddy). Glucose buddy does not provide

automatic insulin adjustments but transmits the patient’s logs to a certified

diabetes educator who made weekly insulin adjustments. Only 53 participants

completed the study. They showed a decrease of −1.1% in HbA1c levels in the

group using their application compared to the control group.
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Reddy et al. [115] conducted a 6-week prospective study in 10 adults using mul-

tiple daily injections to evaluate the feasibility of their mobile application

ABC4D. ABC4D is a bolus calculator that accounts for exercise and alcohol,

and adapt parameters weekly. The algorithm is based on case-based reasoning,

an artificial intelligence technique that solves newly encountered problems by

applying the solutions learned from solving past similar problems [116]. They

have shown the feasibility of their algorithm, and they observed a trend in

decreasing post-meal hypoglycemia in the final week compared with week 1.

Messori et al. [117] conducted a 1-month prospective study in 18 adults using

closed-loop insulin delivery to evaluate the efficacy of daily adjustments in car-

bohydrate ratios and nocturnal basal insulin. Their algorithm used a run-to-

run update rule [118]. They showed a 9.7% improvement in night (00:00–08:00)

time-in-target in the last week of closed-loop insulin delivery with daily adap-

tation compared to a baseline one-week closed-loop insulin delivery. They also

observed a trend in improving overall time-in-target. This study was limited

by a possible bias since it was an extension of a previous 1-month closed-loop

only study.

Dassau et al. [119] conducted a 27-hour randomized crossover trial in 37 adults

using closed-loop insulin delivery to evaluate the efficacy of a one-time algorith-

mic adjustment of pump programmed basal rates and insulin to carbohydrate

ratios. They showed no difference in glucose outcomes between the two inter-

ventions (closed-loop insulin delivery before and after parameters adjustment).
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Wang et al. [120] conducted an 8 × 3-hour prospective study in 10 adults using

closed-loop insulin delivery to evaluate the feasibility of a learning-type closed-

loop algorithm. Their algorithm employed an iterative learning control strategy

to update the set-point in the cost function of the model predictive control algo-

rithm [121]. Their strategy was feasible with an improvement in the percentage

of time-in-target.

Dassau et al. [122] conducted a 12-week prospective study in 29 adults using

closed-loop insulin delivery to evaluate their adaptive closed-loop insulin sys-

tem. pump programmed basal rates were adjusted weekly and carbohydrate

ratios were adjusted every 4 weeks. A decrease in HbA1c was observed com-

pared to a baseline insulin pump period, but this study was not designed to

measure the effect of insulin adaptations.

Breton et al. [123] conducted a 48-hour randomized crossover trial in 24 adults

using either insulin pumps or multiple daily injections to evaluate the efficacy

of their software DSS. DSS consisted of a combination of automated insulin

titration (pump programmed basal rates, or basal dose), bolus calculation,

and carbohydrate treatment advice before exercise. They showed that the

use of their system reduced glucose variability from 36% to 33%, and reduced

exposure to hypoglucemia from 3.8% to 1.8%.

Nimri et al. [124] conducted a study to evaluate the safety of insulin adjustments

made by their software Advisor Pro. The Advisor Pro provides recommenda-

tions for insulin pump users, including recommendation in pump programmed
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basal rates, carbohydrate ratios, and insulin sensitivity factors. Recommenda-

tions from their software for 3-week glucose and insulin data of 15 patients were

compared with recommendations from 26 physicians. They showed that the

algorithm recommendations did not differ significantly from the advice given

by the physicians.

Chatzakis et al. [125] conducted a 12-month randomized parallel study in 80 chil-

dren and adolescents using either insulin pumps or multiple daily injections to

evaluate the efficacy of their mobile application Euglyca. Euglyca is a bolus

calculator that contains a food database and account for both carbohydrates

and lipids content. Physicians adjusted Euglyca parameters for participant in

the experimental group each 3 months. They showed a significant decrease in

HbA1c values and increase in percentages of time-in-target in the experimental

group compared to the control group.

It is yet to be shown that an automatic decision support system can improve

glycemic control without (or with minimal) physicians interventions. However, in

studies where physicians made regular insulin adjustments using electronically logged

and transmitted data, a reduction in HbA1c was observed [112, 114, 125]. Despite

multiple daily injection users making up more than half of the type 1 population only

a handful of studies included patients using multiple daily injections [112, 113, 114,

123, 125]. This large population is unlikely to use closed-loop systems but will still

need advice and support to achieve their glycemic targets. Decision support systems

remains a fairly new technology, and active research is on-going in this field.
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2.6 Summary

Type 1 diabetes is a chronic disease treated with intensive insulin therapy aimed

at normal glucose levels. Insulin therapy is implemented using either multiple daily

injections with an insulin pen or continuous subcutaneous insulin infusion with an

insulin pump. Good glycemic control assessed with HbA1c levels is essential to

reduce the risk of acute and long-term complications. However, most patients do

not reach their glycemic targets and are confronted with impaired quality of life

and psychosocial health. Two emerging technologies are particularly helping to ease

patients’ burden: closed-loop insulin delivery systems, and insulin decision support

systems.

33



CHAPTER 3

The Artificial Pancreas and Meal Control: An

overview of postprandial glucose regulation in

type 1 diabetes

3.1 Preface

The artificial pancreas, an insulin closed-loop delivery system that automatically

regulates glucose levels, is the most promising therapy for type 1 diabetes treatments.

The artificial pancreas may be regarded as a feedback system where a sensor measures

glucose levels, under-skin delivered insulin is the actuator, and meals are external

disturbances.

Feedback control after meal consumption is challenging because of the fast rate

of glucose appearance from meals compared to the slow effects of under-skin deliv-

ered insulin. Hybrid designs with a feedforward component, requiring patients to

announce upcoming meals, is an approach that trades off the patient convenience

and the controller efficiency on post-meal regulation.

Model predictive controllers are at the forefront of current research, incorporat-

ing meal information, insulin constraints, and model dynamics. By incorporating

model dynamics, and mainly the slow absorption of insulin, the model predictive

controller can indirectly adapt its gain to avoid future hypoglycemia. Meal detection
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may mitigate the risks of meal announcement omission, while learning algorithms

may optimize the prediction capabilities of the artificial pancreas. In this tutorial,

those concepts are reviewed with a focus on clinical implications.

3.1.1 Authors Contributions to the Manuscript

The author (Anas El Fathi) was the primary responsible for reviewing the lit-

erature and writing the manuscript. Véronique Gingras reviewed Section 3.2 Chal-

lenges of Postprandial Glucose Control. Mohamed Raef Smaoui reviewed Section

3.7.2 Machine Learning Algorithms for Postprandial Glucose Control and assisted

in generating simulation results. Ahmad Haidar and Benoit Boulet provided edito-

rial input in writing the manuscript, and provided overall supervision. All authors

critically reviewed the manuscript.
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In healthy individuals, plasma glucose concentration is tightly regulated by the

action of the hormones secreted by the endocrine pancreas, principally, insulin and

glucagon. Insulin is secreted by the pancreatic beta cells to signal organs to absorb

glucose, and glucagon is secreted by the pancreatic alpha cells to signal the liver to

produce glucose [1]. In type 1 diabetes, insulin secretion is lost due to the autoim-

mune destruction of the beta cells [2]. Type 1 diabetes accounts for 5-15% of the

366 million people with diabetes worldwide [3].

Type 1 diabetes is currently treated with life-long insulin-replacement therapy

implemented using multiple daily injections or continuous subcutaneous (under the

skin tissue) insulin infusion via a portable pump. Tight glucose control is critical for

health, as a sustained elevation of glucose levels (hyperglycemia) leads to long-term

complications such as heart diseases, blindness, kidney failure, and lower-extremity
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amputations [4, 5]. How well the body is able to control glucose is assessed using

glycated hemoglobin (HbA1c) levels, a biomarker correlated with the mean blood

glucose level over a period of three months. A target of HbA1c below 7.0% is rec-

ommended for most patients with type 1 diabetes [6].

Despite advances in insulin analogs, insulin pumps, and continuous glucose sen-

sors, most patients do not achieve acceptable glucose targets [7, 8]. A study by

the Epidemiology of Diabetes Interventions and Complications reported an average

HbA1c of 8.1% in 1,349 patients [7]. HbA1c higher than 7.0% is associated with

a significant increase in the risk of complications [6]. For instance, an increase of

only 10% in HbA1c (for example 8% to 8.8% ) is associated with a 40% increase in

the progression rate of diabetic retinopathy (damage to the retina) [9]. Despite the

clinical efforts to control HbA1c levels, only around 27% of patients achieve HbA1c

levels less than 7% [10].

Advances in continuous glucose sensors have motivated the research towards

closed-loop insulin delivery systems, termed the artificial pancreas, to automatically

regulate glucose levels in patients with type 1 diabetes [11]. In the artificial pancreas,

the pump insulin infusion rate is repeatedly altered based on a control algorithm that

relies on continuous glucose sensor readings Figure 3–1. Thus, the novelty of this

approach resides in the real-time feedback of glucose levels to close the loop and

establish hemostasis.

Effective closed-loop glucose control is challenged by inter- and intra-patient

variability in insulin sensitivity and insulin absorption, exercise, slow absorption
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Figure 3–1: Artificial Pancreas System. A sensor measures glucose levels and trans-
mits them to a handheld controller, which runs a control algorithm. An insulin pump
delivers insulin subcutaneously. The communication is wireless. In another config-
uration, the algorithm may also reside in the pump. Reprinted by permission from
Macmillan Publishers Ltd: [Nature Reviews Endocrinology] [11]. Copyright 2011.
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of subcutaneously-infused insulin, and meals. Advanced closed-loop systems main-

tain glucose levels in the target range for 70-75% of the time, and the remaining

time spent outside the target range is mostly due to postprandial (post-meal) hy-

perglycemia [12]. The purpose of this paper is to introduce the specific challenges,

models, and control techniques surrounding closed-loop glucose regulation following

meal ingestion.

3.2 Challenges of Postprandial Glucose Control

3.2.1 Postprandial glucose control in healthy individuals

In healthy individuals, there is little variation in plasma glucose concentrations,

with fasting glucose ranging between 3.9 and 6.1 mmol/L [13], and postprandial

glucose not exceeding 10 mmol/L [14]. Postprandial glucose control is ensured by

the action of insulin secreted by the pancreas and the inhibition of glucagon secretion,

and the resulting metabolic effects on the liver and peripheral tissues.

Plasma glucose concentration typically rises within 10 minutes following food

ingestion [14]. A peak in plasma glucose concentration is observed around 60 minutes

after the start of the meal and the increase rate depends on meal composition (carbo-

hydrates type and quantity as well as other nutrients intake) and timing of the meal

[14]. Other factors are also known to affect insulin sensitivity and glucose absorption

in individuals such as gastric emptying, physical activity, physical or emotional stress,

and growth and hormonal fluctuations (puberty, pregnancy, menopause, menstrual

cycle) [15]. Plasma glucose concentrations are expected to return to the preprandial

(pre-meal) level within 2 to 3 hours, although the carbohydrate and other nutrient

absorption can continue for up to 5 to 6 hours postprandial [14].
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3.2.2 Postprandial Glucose Control in Type 1 Diabetes

Postprandial glucose control has a major impact on the risk of long-term com-

plications [16]. Intensive insulin therapy aims for a 2 hours postprandial glucose

level between 5 and 10 mmol/L in most patients [6]. The main determinant of this

postprandial glucose rise is the carbohydrate content of the ingested meal [17, 18].

Therefore, before each instance of food intake, patients need to estimate the carbo-

hydrate content of the meal (carbohydrate counting), and self-administer an insulin

bolus (dose) proportional to the carbohydrate content. Yet, carbohydrate counting

is a challenging task for patients, with an estimated average error of 20% [19]. Al-

though the meal insulin bolus is based on the amount of carbohydrate, postprandial

glucose concentrations are influenced by the type of carbohydrate (glycemic index of

the food consumed) [20, 21]. In addition, meals rich in lipids and protein may be ab-

sorbed 60% slower than low-fat meals [22], which results in a prolonged postprandial

hyperglycemia [23, 24, 25, 26].

The considerable intra- and inter-individual variability in the metabolic effect

of subcutaneous insulin infusion in patients with type 1 diabetes further complicates

matters [27, 28]. For the same body weight and age, insulin sensitivity can vary by

up to 6-fold between individuals. Across the daytime, a significant range of insulin

sensitivity in-between meals also exists, with an increasing sensitivity from breakfast

to lunch [28]. In addition, within the same individual but across days, it is estimated

that there is a 31% variability in insulin sensitivity overnight and 17% variability

during the day [29].
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Adolescence is a period of many changes, including physiological and psycho-

logical changes. It is also a difficult period for glucose control with a low adherence

to diabetes self-treatment plan [30]. The National Paediatric Diabetes Audit for

England and Wales reported that more than 80% of young people were above the

recommended HbA1c level for adolescents (above 7.5% [31]) [32]. The non-adherence

to the standard insulin therapy includes omission [33, 34, 35] or underestimation [36]

of insulin boluses for meals and snacks. Statistics shows that more than 65% of youth

using insulin pump therapy miss at least one meal bolus per week [34].The reasons

for insulin bolus omission remain largely unknown, but adolescents are reported to

be unaware of missed boluses [34], and it is hypothesized that boluses are simply

forgotten. Moreover, several studies have shown a tendency in female adolescents

to skip or reduce insulin doses for weight control purposes [37, 38]. These observa-

tions suggest that the efficacy and safety of closed-loop control systems relying on

patient inputs may be compromised with insulin bolus omissions in youth patients

[39, 40]. An artificial pancreas design minimizing the need of user interaction with

the closed-loop controller may especially benefit the young diabetes patients.

The major challenge to control postprandial glucose concentrations is the delay

in rapid-acting insulin absorption compared with meal glucose absorption [41, 42].

Subcutaneously injected insulin is absorbed into the blood under the skin through

the capillary membrane. The absorption rate of insulin molecules is related to the

molecular size of insulin complexes [43]. Current rapid-acting insulin analogs have an

onset (start of effect) between 10 and 15 minutes, with a peak action between 30 and

90 minutes [44]. However, after meal consumption, the rate of glucose appearance
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is much faster than insulin absorption, leading to a rapid increase in postprandial

glucose levels. This mismatch between the peak absorption of externally injected

insulin and the ingested carbohydrates make it difficult to ensure tight closed-loop

control of plasma glucose concentrations (for details, see Sidebar: The Relative Effect

of Time-to-peak of Insulin Action and Time-to-peak of Meal Absorption) [45].

3.3 System Dynamics for Postprandial Glucose Control

Plasma glucose concentration is balanced by the rate of glucose entering the

blood circulation and the rate of glucose removal from the blood. The glucose en-

tering the blood circulation is a result of the absorption of digested carbohydrate

from meals, and the endogenous glucose production. For type 1 diabetes, glucose

elimination from the blood into skeletal muscle and body fat is driven by external

insulin injections. Insulin also decreases the endogenous glucose production, which

reduces the rate of glucose entering the blood.

This balancing mechanism is usually described by the interaction of four sub-

systems (Figure 3–2). Starting from the subcutaneous injection of insulin, which is

the system input to regulate plasma glucose concentration, up to the measurement

of interstitial glucose concentration, which is the observable variable, the subsystems

are the insulin absorption kinetics, plasma glucose kinetics, and interstitial subcu-

taneous glucose kinetics. The fourth subsystem, glucose meal absorption kinetics,

describes the dynamics of glucose appearance from the digested carbohydrates. With

this representation, consumed meals are regarded as disturbance signals to the glu-

coregulatory system of the artificial pancreas users.
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Figure 3–2: A block diagram representing the four subsystems that govern the gluco-regulatory system.
Insulin is infused subcutaneously, and is absorbed slowly to the plasma. After a meal consumption, glucose is
absorbed from the gut into the plasma. Both insulin absorption and meal glucose appearance affect plasma
glucose levels. The measured interstitial glucose concentration is a delayed and noisy signal compared to the
plasma glucose concentration.
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Several mathematical models describing the glucoregulatory system of an arti-

ficial pancreas user have been proposed in the literature [41, 46, 47, 48, 49]. In this

section, a representative control-relevant model, based on a compartmental approach,

is presented.

3.3.1 Insulin absorption kinetics

After subcutaneous delivery, insulin is slowly absorbed following a two-compartment

model


dQi1 (t)

dt

dQi (t)

dt

 =

−
1

τi
0

1

τi
− 1

τi


Qi1(t)

Qi(t)

+

1

0

Ui(t) (3.1)

where Qi1 (t) and Qi (t) (units) are the insulin masses in the first and second

compartment, the second compartment being the plasma space, Ui (t) (unit/min) is

the external insulin infusion rate and τi is the time constant characterizing the peak

response time of the insulin absorption, which depends on the insulin analog type.

Following an impulse response (such as the administration of an insulin bolus), and

τi equals the time-to-peak of the insulin plasma concentration.

The plasma insulin concentration (insulinemia) Ip (t) (munits/L) is obtained

form Qi (t) as

Ip (t) =
Ki

τi
Qi (t) (3.2)

where Ki =
106

(wKMCR)
( 10−3 min/L) is a gain inversely proportional to the

metabolic clearance rate KMCR (mL/kg/min) and the patient weight w (kg) [41]. In
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the Laplace domain, the plasma insulin concentration Ip (t) (munits/L) is expressed

as

Ip (s) =
Ki

(1 + τis)
2Ui (s) (3.3)

When the insulin is injected as a bolus, the input function Ui (t) takes the

form of a Dirac input Ui (t) = UiBolus
δ (t) . This is equivalent to updating the first

compartment by the bolus quantity

Qi1

(
0+
)

= lim
s→∞

s
τi

1 + τis
UiBolus

= UiBolus
(3.4)

3.3.2 Plasma glucose kinetics

Bergman’s minimal model assumes that plasma glucose concentration G (t)

(mmol/L) changes are proportional to both the remote insulin (the delayed insulin

effects) x (t) (1/min) and the rate of meal-glucose appearance Um (t) [50]. The min-

imal model dynamics are represented as [46]

d

dt
G (t) = − (p1 + x (t))G (t) + PEGP +

1

V
Um (t)

d

dt
x (t) = −p2x (t) + p3Ip (t)

(3.5)

where Um (t) (µ mol/kg/min) is the rate of glucose appearance from ingested

meal, V (mL/kg) is the glucose distribution volume, PEGP (mmol/L/min) describes

the rate of endogenous production of glucose, p1 (1/min) describes glucose effective-

ness (the ability of glucose to promote its own disposal), p2 (1/min) is a time constant

characterising the delay of plasma insulin effect on plasma glucose (deactivation rate
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of insulin effects), and p3 (1/min2 per munits/L) is a parameter representing the

activation rate of insulin effects.

A linearized form of Bergman’s minimal model may be derived by assuming that

the dynamics of remote insulin are faster than glucose dynamics ( x (t) arrives at the

equilibrium point faster than G (t) , x (t) ∼ 0 )

d

dt
G (t) = −p1G (t)− Si

τi
Qi (t) + PEGP +

1

V
Um (t) (3.6)

where Qi (t) (units) is the insulin mass in plasma, Si ∼
G0KiP3

P2

(mmol/L per

units) is a positive identifiable insulin sensitivity factor (the amount of glucose level

drop (mmol/L) caused by one unit of insulin), and G0 (mmol/L) is an equilibrium

point for glucose concentration. It has been suggested that this linear model (with

p1 = 0 ) may be used to asses long-term glucose dynamics in type 1 diabetes [51].

In the Laplace domain, transfer function between the insulin mass in the plasma

Qi (s) and the glucose concentration in the plasma G (s) is expressed as

G (s)

Qi (s)
= −Si

τi

1

s+ p1

(3.7)

3.3.3 Interstitial Subcutaneous Glucose Kinetics

The Interstitial glucose concentration (where measurements are done) Gs (t)

(mmol/L) is obtained from the plasma glucose concentration G (t) by a simple dif-

fusion model [52]

d

dt
Gs (t) = ksen (G (t)−Gs (t)) (3.8)
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where ksen (1/min) is the transfer-rate constant.

3.4 Meal-Related Glucose Absorption Dynamics

Identification of the kinetics of glucose appearance after meal ingestion (the dis-

turbance dynamics) may improve the design of the control algorithm for the artificial

pancreas. After food intake, the carbohydrates contained in the chyme (partially di-

gested food in the stomach) are broken into single sugar components in the small

intestine. From the small intestine, glucose is integrated to the blood circulation

where it is absorbed by the rest of the organs. The profile of glucose appearance in

the circulation can be described using non-parametric functions (estimated experi-

mentally using isotope-tracer techniques [52]) [22, 47] or using parametric mathemat-

ical models [53, 54, 55]. In this section, different mathematical models to describe

meal-glucose appearance are discussed.

3.4.1 Lehmann and Deutsch Meal-glucose Model

Gastric emptying Gemp (t) (µ mol/kg/min) is the rate of expelling the chyme

from the stomach to the gut. This process has been described as a piecewise-linear

function by Lehmann and Deutsch [54]

Gemp (t) =
KBioDm

T − Tdes + Tasc
2



t

Tasc
, t ≤ Tasc

1 , Tasc ≤ t ≤ T − Tdes

(T − t)
Tdes

, T − Tdes < t

0 , T < t

(3.9)
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where Dm (µ mol/kg) represents the total amount of ingested glucose, KBio is

the carbohydrates bioavailability in the meal, and Tasc , Tdes and T (min) are the

durations of ascending and descending rates, and total duration of gastric emptying,

respectively.

Following the gastric emptying from the stomach to the gut, the glucose mass

in the gut can be obtained as [47, 53, 54]

d

dt
Qm (t) = − 1

τm
Qm (t) +Gemp (t) (3.10)

where Qm (t) (µ mol/kg) is the glucose mass in the gut compartment, and τm

(min) is a time constant characterizing the appearance of glucose in the blood circu-

lation from the gut. Moreover, the glucose gut absorption rate in the plasma Um (t)

(µ mol/kg/min) is expressed as

Um (t) =
1

τm
Qm (t) (3.11)

This model have been validated on a set of 24 subject [56] and have been used

in simulation and control algorithms [57, 58].

3.4.2 Two-compartmental Model for Meal-related Glucose Appearance

Meal-glucose absorption from the stomach to the gut and then to the blood

circulation may be described in a two-compartment model, with identical fractional

transfer rate [55]. Such a models have been popular in type 1 diabetes patient control

and simulation [52, 51, 59, 60]
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dQm1 (t)

dt

dQm (t)

dt

 =

−
1

τm
0

1

τm
− 1

τm


Qm1 (t)

Qm (t)

+

KBio

0

Dm (t) (3.12)

where Dm (t) (µ mol/kg/min) is the rate of glucose ingestion, Qm1 and Qm (µ

mol/kg) are the glucose masses in first and second gut compartments, τm (min) is the

time to peak of the appearance of glucose from the gut following an impulse input

(instantaneous meal). In the Laplace domain, the glucose mass Qm (t) (µ mol/kg)

is expressed as

Qm (s) =
KBioτm

(1 + τms)
2Dm (s) (3.13)

In general, meals are assumed to be ingested instantly. In this case, Dm (t) is a

Dirac impulse occurring at mealtime whose area is given by Dm = 106 QCHO

(wMCHO)
,

where QCHO (g) is the quantity of carbohydrates ingested, MCHO = 180.156 (g/mol)

the molar mass of glucose, and w (kg) is the patient weight. Using the initial value

theorem, the quantity of glucose in the first compartment following the meal is

obtained as

Qm1

(
0+
)

= lim
s→∞

s
KBioτm
1 + τms

Dm = KBioDm (3.14)

3.4.3 Three-compartmental Model with Nonlinear Gastric Emptying Rate

In addition to having a single compartment describing meal-glucose appearance

from the gut, this model represents the gastric emptying from the stomach by a two

compartments biphasic process of solid and liquid phase [47]
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d

dt
Qsto1 (t) =−KgriQsto1 (t) +KBioDm (t)

d

dt
Qsto2 (t) =−Kemp (Qsto)Qsto2 (t) +KgriQsto1 (t)

d

dt
Qm (t) =− 1

τm
Qm (t) +Kemp (Qsto)Qsto2 (t)

(3.15)

where Qsto1 and Qsto2 ( µ mol/kg) are the amounts of glucose in the stomach

(solid and liquid phase, respectively), Qsto = Qsto1 + Qsto2 is the total amount of

glucose in the stomach, Kgri (1/min) is the rate of chyme grinding in the stomach,

and Kemp (Qsto) (1/min) is the rate of gastric emptying which depends on the amount

of glucose in the stomach ( Qsto ) in a nonlinear fashion

(3.16)Kemp (Qsto) = kmin +
kmax − kmin

2
{tanh (α (Qsto − aQstoFull

))

− tanh (β (Qsto − bQstoFull
)) + 2}

where kmax , kmin are the maximum and minimum rates of gastric emptying,

QstoFull
is the total amount of ingested glucose that makes the stomach full, and α ,

β , a and b are tuning parameters.

This rate is maximal (equals kmax ) when the stomach is close to empty (Qsto ∼ 0

), or when the glucose quantity in the stomach is maximal ( QstoFull
), otherwise this

rate is decreasing to the minimal value kmin . This model is used in an Food and

Drug Administration (FDA)-accepted type 1 diabetes patients simulator [47, 61].

3.4.4 Two-compartmental Model with Double Time-to-peak of Meal-
glucose

Since different foods have different absorption profiles depending of their con-

tent (protein and fat) and complexity (glycemic index), a model has been proposed
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[62] that allows double peaks in meal-glucose absorption profile. High glycemic in-

dex food produces a fast increase in the plasma glucose with a high peak, whereas

low glycemic index food produces a slow and sustained increase of glucose con-

centration (which may continue beyond 8 hours) [22]. This model uses the same

two-compartmental model described above and assumes that ingested meals Dm (t)

are Dirac delta functions

Dm (t) =
106QCHO

wMCHO

δ (t) (3.17)

Um1 (t) = pm
KbioDm

τm

t

τm
e
−
t

τm (3.18)

Um2 (t) =


(1− pm)

KbioDm

τm

t− d
τm

e
−
t− d
τm , t > d

0 , otherwise

(3.19)

where Um1 and Um2 ( µ mol/kg/min) are the rate of glucose appearances from

the first and second absorption channels, d (min) is a delay associated with the

second absorption channel, and pm is the portion of carbohydrate absorbed through

the first channel. The total rate of glucose absorption is then expressed as the sum

of the glucose appearing from the two channels

Um (t) = Um1 (t) + Um2 (t) (3.20)

51



3.5 Controller Configurations for Postprandial Glucose Control

Closed-loop glucose controllers provide insulin delivery (control actions) based

on glucose sensor values. Meal consumption induce an increase of plasma glucose

concentrations (the controlled quantity) moving the insulin-glucose system from its

steady-state. In this respect, meals are considered as external disturbances to the

glucoregulatory system for an artificial pancreas user. Yet, the information about

the meal carbohydrates may be observed by the patient and provided to the main

controller. The fact that meals are measured disturbances opens the door for three

possible configurations for controlling postprandial glucose concentrations, either i)

no meal information is provided to the controller (Feedback-only) ii) the complete

meal information is provided to the controller (Feedforward-feedback), or iii) only

partial meal information is provided to the controller (Partial-feedforward-feedback)

(Figure 3–3).
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Figure 3–3: A block diagram representing control design strategies for the artificial pancreas. The feedback-
only controller uses the offset between the measured glucose concentration and the target glucose to generate
the subcutaneous insulin command while ignoring any information about the consumed meal (disturbance).
Feedforward-feedback controller requires the complete information about the consumed meal (carbohydrate
counting). This information is given to the controller to compute an insulin bolus to achieve tight postprandial
glucose control. Partial-feedforward-feedback only requires qualitative information about the consumed meal
(for example, only the size of the meal is provided) in order to deliver the meal-accompanying insulin bolus.
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3.5.1 Feedback-only Control

Automated closed-loop control ultimately aims to relieve the patient from the

burden of carbohydrate counting. Early artificial pancreas studies attempted to

control postprandial glucose concentrations by relying solely on the glucose sensor

readings (disturbance rejection by feedback control) [63, 64]. However, feedback-only

control of postprandial glucose concentrations suffers from two major hindrances:

� Early postprandial hyperglycemia due to i) the rate of meal glucose appearance

in the blood (the disturbance dynamics) which is faster than the absorption

of subcutaneously-infused insulin (the actuator dynamics) and ii) the delay in

glucose sensing in the interstitial fluid (around 15 min [65, 66]). In other words,

even though a feedback controller is capable of taking corrective actions, no

insulin dosing is effectively made until a deviation is observed on the controlled

variable, which makes the control sluggish because of the slow dynamics of

infused insulin.

� Late postprandial hypoglycemia (undesirable low glucose levels): Due to the

fast increase in postprandial glucose, the closed-loop system needs to react

aggressively by infusing a significant amount of insulin in the two hours after

the meal ingestion, to prevent glucose concentrations from further increasing.

However, due to the slow absorption of insulin delivery, this insulin contin-

ues to be absorbed and act beyond meal absorption, which may lead to late

postprandial hypoglycemia. (insulin stacking [63]).
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The two risks, early postprandial hyperglycemia and late postprandial hypo-

glycemia, are interconnected. Delivering insulin aggressively to prevent early post-

prandial hyperglycemia increases the risk of late postprandial hypoglycemia [63].

Conversely, delivering insulin in a conservative manner in the early postprandial

period to reduce the risk of late postprandial hypoglycemia results in early hyper-

glycemia. This trade-off is caused by the fact that insulin-only artificial pancreas

systems are positive systems where the input (insulin) and the systems states can

only attain positive values [45]. This trade-off between hyperglycemia and hypo-

glycemia is the major barrier to adequately control postprandial glucose concentra-

tions using a closed-loop system without feedforward control. Because hypoglycemia

is a more critical issue, feedback-only control systems typically focus on eliminating

hypoglycemia at the expense of hyperglycemia.

The early feedback-only algorithms tested in clinical trials showed sustained hy-

perglycemic levels after meal consumption and some episodes of induced postprandial

hypoglycemia [64, 67]. The postprandial hypoglycemia was mainly triggered by the

insulin stacking effect caused by either not considering the delay in subcutaneous

insulin delivery [64], or by inaccurate modeling of the insulin subcutaneous kinetics

(mainly the time-to-peak of insulin [67]). A recent pilot, non-controlled, inpatient

clinical trial of a feedback-only algorithm based on multiple model predictive control

has been conducted with more promising results [68], but further clinical trials are

warranted for this approach.
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Different approaches can be investigated to improve feedback-only postpran-

dial glucose control. First, glucagon may be infused in the late postprandial pe-

riod (in a closed-loop manner) to reduce hyperglycemia while safely avoiding hy-

poglycemia [69]. However, feedback-only dual-hormone systems require delivering

excessive amount of glucagon to counteract high late postprandial plasma insulin

concentrations [67, 70]. Second, a better control of postprandial glucose concentra-

tions may be achievable with faster insulin analogs than the ones currently on the

market (Figure 3–4). Third, other hormone analogs, such as Pramlintide and GLP-1,

may be used to delay gastric emptying [71, 72] (that is, alter disturbance dynamics)

to achieve better postprandial glycemic control by a feedback-only approach.
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Figure 3–4 (preceding page): Simulation of postprandial glucose with feedback-only
control using hypothetical insulin analogs with varying insulin time-to-peak plasma
concentrations τi. Four 12-hour experiments with varying τi values were conducted
on a virtual patient [62] given a breakfast meal at 8 am with a 45g carbohydrate
content and no insulin bolus. The control algorithm used in all experiments is a
model predictive controller. The controller’s aggressiveness was fixed for each τi
value with an objective of simultaneously avoiding hypoglycemia and minimizing
postprandial glucose levels. The meal information was not provided to the controller
in all experiments. Postprandial glucose responses in (a) demonstrate that closed-
loop systems using insulin analogs with low τi values achieves better postprandial
control and less hyperglycemia. Faster insulin analogs have the potential to remove
the burden of carbohydrate counting while achieving acceptable glucose control. In
(b), the controller’s insulin infusions are plotted for each τi experiment.
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3.5.2 Feedforward-feedback Control

A feedforward controller is constructed to profit from anticipated or measured

disturbances to control the process. When the disturbance dynamics are available

and accurate, the feedforward control takes corrective action based on the disturbance

before it affects the process. Ideally, feedforward would compensate perfectly the

measured disturbance dynamics [73].

With current therapy, patients with type 1 diabetes calculate their meal in-

sulin bolus as the carbohydrate content of the meals multiplied by the insulin-to-

carbohydrate ratio (a ratio in (g/unit) that specifies how many grams of carbohydrate

are covered by one unit of insulin, this ratio is typically different for breakfast, lunch,

and dinner) [74]. Meal boluses are then adjusted based on i) the preprandial glucose

concentrations (additional correction bolus in case of preprandial hyperglycemia)

and ii) previously-infused insulin (insulin-on-board is subtracted from the correction

bolus) [75]. Moreover, the timing of meal boluses may be adjusted for specific meals

(for example, boluses are often delivered 15 min prior to high glycemic index meals)

[76]. The most common feedforward-feedback control configuration of artificial pan-

creas systems (referred to as hybrid systems) adopts a similar approach: the patient

calculates the carbohydrate content of the meal and provides this information to the

artificial pancreas prior to meal ingestion; the artificial pancreas then computes the

insulin bolus based on i) the carbohydrate content, ii) preprandial glucose concen-

trations, and iii) insulin-on-board.

For a linear time-invariant glucose model, the feedforward controller may be

designed to cancel the effect of the disturbance Dm (s) such that the overall transfer
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function between the plasma glucose concentration Qg (s) and the meal disturbance

is null [77]. With an insulin input Ui (s) = Cff (s)Dm (s) , where Cff (s) is the

feedforward controller transfer function, the transfer function yields

G (s)

Dm (s)
= Gg (s)

(
Cff (s)

−Si
(1 + τis)

2 +
1

V

KBio

(1 + τms)
2

)
= 0 (3.21)

or,

Cff (s) =
KBio

SiV

(1 + τis)
2

(1 + τms)
2 (3.22)

where Si is the insulin sensitivity as defined before, KBio is the carbohydrates

bioavailability, V is a volume distribution, τi and τm are time constant characterising

the delay of insulin and meal effects to plasma glucose concentrations, and Gg (s) is

the transfer function from plasma insulin concentration to plasma glucose concen-

tration ( Gg (s) =
1

(s+ p1)
for the model presented in section System Dynamics for

Postprandial Glucose Control ). Because of the input constraints (insulin infusion

rate cannot be negative) and the slow dynamics of the insulin absorption ( τi ),

this controller cannot be realized. Analyses of this straightforward model-based con-

troller have been conducted for different meal sizes and shapes, but it has not been

assessed clinically [78]. In practice, the feedforward controller is reduced to a simple

gain multiplicator, a similar strategy to the open-loop insulin-to-carbohydrate ratio.

An illustration of feedback-only performance compared to feedforward-feedback is

presented in figure 3–5.
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Figure 3–5 (preceding page): Simulation of postprandial glucose control with
feedback-only vs feedforward-feedback control. In order to demonstrate and com-
pare the performance of both control strategies, two simple in-silico experiments are
conducted on a virtual patient [62] given a breakfast meal at 9 am with a 45g car-
bohydrate content. A model-predictive controller was used in both experiments. In
the feedback-only control experiment (a), the meal information was not provided
to the controller. In the feedforward-feedback control experiment (b), a bolus was
calculated according to the patient’s meal insulin-to-carbohydrate ratio. Although
postprandial hypoglycemia has been avoided in both experiments, the increase in glu-
cose level is much higher with the feedback-only controller, leading to hyperglycemia.
With current insulin analogs, feedforward-feedback controllers are more effective in
maintaining tighter glucose control.
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Recent clinical trials assessing a closed-loop glucose controller based on the

feedforward-feedback design have shown good results increasing the time in nor-

moglycemia after meal consumption compared to conventional therapy [79, 80, 81,

82, 83]. Despite its success, the need of an estimate of the disturbance, which means

patients not forgetting to announce the meal to the artificial pancreas and to ac-

curately count the carbohydrate contents of the meal, remains a limitation of this

strategy.

3.5.3 Partial-feedforward-feedback Control

The idea of the partial-feedforward-feedback strategy is based on keeping the

meal bolus advantage while relieving the burden of carbohydrate counting. Instead

of inputting the exact amount of carbohydrates contained in the meal, an indication

of meal size is provided. This strategy provides two advantages; first, the control

algorithm is informed that a meal will be eaten soon, which may trigger a change

in controller aggressiveness to better handle the expected fast increase in glucose

concentration. Second, the quantity of the soon-to-be-ingested carbohydrates may

be estimated. Using learning algorithms or by applying empirical standards, a partial

insulin bolus may be computed and provided by the control algorithm [84].

The most common approach is to provide a qualitative indication of the size of

the ingested meal (regular, large, etc.) to compute an insulin bolus. Both a three-

scale and four-scale meal size have been clinically investigated [85, 86]. The amount

of the partial insulin bolus may be either computed based on patient body weight

[87] or based on the insulin-to-carbohydrate ratio [85, 88]. This design has shown
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comparable results with the complete feedforward-feedback approaches and better

results compared to feedback-only approaches [64, 84, 85, 87].

Carbohydrate counting is prone to human errors, and this uncertainty does not

give the full feedforward strategy a significant advantage over the partial feedfor-

ward one. However, partial feedforward approaches still bear the risk of a patient

misjudging the meal size or simply forgetting to announce it.

3.6 Postprandial Glucose Control

MPC and PID controllers are the two most common controllers tested in ran-

domized controlled trials [89], and their comparative merits have been debated in

the literature [90, 90].In this section, MPC (adaptive and non-adaptive) and PID

controllers for postprandial glucose control are discussed.

A large body of literature based on simulation studies also exist but is out of the

scope of this article. Controllers tested in only simulations include H∞ -controllers

[91], sliding mode controllers [92], neural network controllers [93], LPV controllers

[94, 95], robust controllers [96], among others [97, 89].

3.6.1 Meal Control with PID

Proportional-integral-derivative (PID) controllers were among the first algo-

rithms to be tested for the closed-loop control of plasma glucose concentrations [98].

The insulin command Ui is computed from the error in glucose concentration between

the measured and reference glucose concentration eG (t) as

Ui (t) = Ui0 (t) +KP eG (t) +KI

∫
eG (t) dt+KD

deG (t)

dt
(3.23)
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where Ui0 (t) is the basal inulin (insulin needs for maintaining glucose equilibrium

under fasting conditions) rate specific to the individual, eG (t) is the error between

the measured and reference glucose concentration, and Kp , KD , and Ki are the

PID gains.

In response to a carbohydrate meal disturbance, most of the control action

and aggressiveness comes from the proportional gain KP . The derivative gain KD

reacts to fast postprandial glucose increase and reduces postprandial hypoglycemia

by adding damping to the glucose response. The integral gain Ki is needed to ensure

that the target glucose is achieved in steady state [63, 99].

Because of the excessively slow dynamics of the insulin command, simple PID

controllers have often induced insulin stacking, which increases the risk of hypo-

glycemia. Negative insulin feedback, based on an estimation of plasma insulin con-

centration Ip (t) , have been proposed to reduce the aggressiveness of the controller

when insulin-on-board is high, thus reducing postprandial hypoglycemia periods

[100]. Clinical studies have shown the merit of such an approach on hypoglycemia

risk, yet, an overall increase of the mean glucose, especially postprandial, was ob-

served [101, 102]

Ui (t) = Ui0 (t) + (1− γ)

(
KP eG (t) +KI

∫
eG (t) dt+KD

deG (t)

dt

)
− γIp (t) (3.24)

where γ is a tuned constant, typically equal to 0.5.
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3.6.2 Meal Control with MPC

Model predictive control (MPC) has been the most popular approach to control

plasma glucose concentrations [89]. This controller provides the control action mini-

mizing an objective function, constrained to a model describing the process evolution.

The minimization of the objective function ensures the tracking of desired glucose

concentrations expressed as a set-point or a zone [103, 104]. Other constraints on the

control action (insulin delivery rate) which expresses physical limitations and reflect

required performance (mainly avoiding hypoglycemia) [105]are usually added to the

minimization problem. Finally, the use of a process model permits the incorpora-

tion of disturbance modeling and patient specific parameters, which is particularly

effective for the postprandial glucose control [106].

Different implementations of MPC exists depending on the choice of the model

and the objective function [57, 59, 103, 107, 108]. Since the glucoregulatory system

may be regarded as an interaction of four subsystems, the following describes the

state-space dynamics

d

dt
X (t) =



Ag Agq 012 012

021 Aq Aiq Amq

021 022 Ai 022

021 022 022 Am


X (t) +



011

021

Bi

021


Ui (t) +



011

021

021

Bm


Dm (t) (3.25)

66



where Ui is the control action (insulin injection rate), Dm is the disturbance

(ingested meal), 0nm is a zero matrix of size n×m and Bi , Bm Ag , Aqg , Aq, Aiq , Amq

, Ai and Am denote matrices characterizing the process dynamics. Those matrices are

deduced from a linear model derived from the glucoregulatory system of an artificial

pancreas user presented previously, and a two-compartmental model of meal-glucose

absorption as X (t) =

[
Gs (t) G (t) PEGP (t) Qi (t) Qi1 (t) Qm (t) Qm1 (t)

]ᵀ
,

Ag = [−ksen] , Aqg = [ksen] , Aq =

−p1 1

0 0

 , Aiq =

−
Si
τi

0

0 0

 , Amq =


1

V τm
0

0 0



, Ai =

−
1

τi

1

τi

0 − 1

τi

 , Am =

−
1

τm

1

τm

0 − 1

τm

 , Bi =

0

1

 and Bm =

 0

KBio


The controlled quantity Y (t) (plasma glucose concentration) and the measured

quantity Z (t) (interstitial glucose concentration) are obtained from X (t) by

Y (t) = CX (t) (3.26)

Z (t) = CZX (t) (3.27)

where C =

[
0 1 0 0 0 0 0

]
and CZ =

[
1 0 0 0 0 0 0

]
The objective function penalizes the deviation of model-predicted plasma glu-

cose concentration Y (t) from the targeted plasma glucose concentration Yr (t) (with

emphasis on the terminal time to ensure stability [109]), and the incremental insulin
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dose δUi (t) = Ui (t)− Ui0 (t)

(3.28)Jt (δUi (t))

=
T−1∑
k=0

(
Γy‖

Y (t+ k)− Yr (t+ k)

Yr (t+ k)
‖2+Γu‖

δUi (t+ k)

Ui0 (t+ k)
‖2

)
+Γᵀ

y‖
Y (t+ T )− Yr (t+ T )

Yr (t+ T )
‖2

where t is the current discrete time Γy , Γᵀ
y and Γu are unitless weighting param-

eters, and T is the time horizon (4 to 5 hours). The optimization problem is solved

subject to the model dynamics, the insulin delivery rate limit UiLimit
, and the limit

on the incremental insulin delivery δUiLimit

X (t+ 1) =AdX (t) +B∗
d

i Ui (t) +B∗
d

mDm (t)

Y (t) =CX (t)

0 ≤ Ui (t+ k) ≤ UiLimit
k = 0 . . . T − 1

|δUi (t+ k) | ≤ δUiLimit
k = 0 . . . T − 1

(3.29)

where Ad , B∗
d

i , and B∗
d

m are obtained by discretizing the system dynamics

above. At the end of each optimization cycle, only the first control action δUi (t) is

inputted to the process.

Variants of the objective function may penalize asymmetrically positive and neg-

ative variation of the plasma glucose from the reference value, in order to emphasis

postprandial hypoglycemia protection [105]. Other forms of the cost function penal-

ize differently the incremental insulin command based on the real-time estimate of

insulin-on-board, in order to avoid insulin stacking [110, 111]. In the MPC setup,

an accurate model is necessary to ensure optimal dosing; underestimating insulin

time-to-peak value can lead to late hypoglycemia because model inaccuracy can lead

to insulin overdosing [110].
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At every control cycle (5 to 10 min), when a meal information is available, the

meal input is provided to the controller in the form of a Dirac delta depending on

the carbohydrate content Dm (µ mol/kg). This addition is equivalent to adding Dm

to the first meal compartment Qm1 (t)

Qm1 (t) = Qm1 (t) +KBioDmBolus
(3.30)

Similarly, when a mealtime insulin bolus UiBolus
(units) is delivered to the patient

(in a feedforward manner), this information is added as a Dirac delta input to Ui (t).

This action is equivalent to increasing the first subcutaneous insulin compartment

Qi1 (t)

Qi1 (t) = Qi1 (t) + UiBolus
(3.31)

The new updated state (that is, with meal and bolus information) is used as the

initial condition for the MPC optimization problem. By doing so, the controller will

consider future glucose and insulin appearances from the meal and bolus, respectively.

The MPC algorithm requires the availability of an internal state of the process

X (t) . This internal state may be estimated by incorporating glucose measurement

Z (t) . The state vector is updated using a state estimation technique, such as Kalman

filtering, before the next optimization problem is solved. Assume i) a process noise

W (t) of zero-mean multivariate Gaussian type with covariance matrix Q (t) and ii)

a measurement noise V (t) to be a zero-mean Gaussian white noise with covariance
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R (t) , the statespace equations can be rewritten as

X (t) =AdX (t− 1) +B∗
d

i Ui (t− 1) +B∗
d

mDm (t− 1) +W (t)

Z (t) =CzX (t) + V (t)

(3.32)

The corrected state estimation is obtained by

X (t|t− 1) =AdX (t− 1|t− 1) +B∗
d

i Ui (t− 1) +B∗
d

mDm (t− 1)

X (t|t) =X (t− 1|t− 1) +K (t) (Z (t)− Z (t|t− 1))

(3.33)

where X (t|t− 1) is the state prediction based on the model, X (t− 1|t− 1) is

the state of the system in the previous instant, Z (t|t− 1) is the predicted measure-

ment, and K (t) is the Kalman gain. The Kalman gain depends on the choice of

Q (t) and R (t) , and can be computed using the standard Kalman filtering equations

[112]

P (t|t− 1) =AP (t− 1|t− 1)Aᵀ +Q (t)

K (t) =P (t|t− 1)Cᵀ
Z (CZP (t|t− 1)Cᵀ

Z +R (t))−1
(3.34)

where P (t|t− 1) is the predicted covariance matrix based on the model, and

P (t− 1|t− 1) is the covariance matrix from the previous instant. The estimate

covariance matrix P (t|t) provides an indication of the accuracy of the state estimate.

It is obtained from the previous cycle by

P (t|t) = P (t|t− 1)−K (t)CZP (t|t− 1) (3.35)

When a patient ingests a meal, the diagonal elements corresponding to the meal

absorption states in the covariance matrix Q (t) (column 4, row 4 in the state-space
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dynamics above) may be increased to indicate uncertainty in the carbohydrate con-

tent of the meal. This allows the Kalman filter to improve the estimate of the car-

bohydrate content using future glucose measurements. Similarly, the process noise

characteristics Q (t) may be adjusted in the postprandial period to emphasize uncer-

tainty in the meal absorption profile.

3.6.3 Adaptive Control Applications for Postprandial Glucose

Efficient postprandial glucose control may be improved by the knowledge of meal

absorption dynamics (how the disturbance affects the model) and insulin sensitivity

(how the controller actions reject the disturbances). Yet, on the one side, meals may

be absorbed in different patterns depending on their content and complexity (food

glycemic index, fat, and protein) [76]. On the other side, type 1 diabetes patients

display a high variability on insulin sensitivity between patients [27, 113, 114]). An

adaptive controller may be capable of taking into account these variabilities and

providing better performances globally [115].

Interacting multiple model (IMM) filter was used as an indirect adaptive strat-

egy to take into account meal and insulin variabilities [116, 117]. This strategy

estimates the filter state using several competing models, run in parallel, and differ

in their parameters (different rates of subcutaneous insulin absorption τi and rates

of carbohydrate absorption profile τm ). At each instant, every model is assigned

a probability, and the filter state is estimated by mixing the model states based on

their models’ corresponding probabilities. Mathematically, IMM is characterized by

the followings three steps:
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� The interaction step: The state vector X0j (k − 1|k − 1) characterizing the

model j is mixed with the state vectors of each model Xi (k − 1|k − 1) ( i is

the index of the model)

X0j (k − 1|k − 1) =
1∑

i pjiµi (k − 1)

∑
i

pijXi (k − 1|k − 1)µi (k − 1) (3.36)

where µi (k − 1) is the probability of model i matching the true patient dy-

namics, and (pij)ij is a Markov transition probability matrix which indicate

the probability of the model i transiting to model j.

� The filtering step: For each model, the glucose measurement is incorporated

into the state with the use of a filtering technique (such as Kalman filter). This

provides a filtered state Xj (k|k) for each model. At the same time, the mixing

probability is updated for each model as

µj (k) =
1

c
Λj (k)

∑
i

pjiµi (k − 1) (3.37)

where Λj (k) is a likelihood function that characterizes the effort provided by

the filter to improve (innovate) the predicted state vector based on the used

model [117] and c is a normalizing factor.

� The combination step: The state vector describing best the patient model

is a combination of all the state vectors weighted by their respective mixing

probabilities

X (k|k) =
∑
i

Xi (k|k)µi (k) (3.38)

This filter has been developed [118] and evaluated in a three-month clinical trial

[81].
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Adaptive generalized predictive controller strategy have also been proposed and

evaluated in a series of clinical trials [84, 86, 87]. Another similar adaptive predictive

controller is proposed and tested in feasibility clinical experiments [108, 119, 120].

In these controllers, the process takes the generic form of an autoregressive moving

average model with exogenous inputs (ARMAX), which is a function of past plasma

glucose values, insulin observations, and an exogenous input (representing other pro-

cess noise and disturbances)[121, 122]. For the glucoregulatory system this model is

represented as

Y (t) =
n∑
k=1

αkY (t− k) +
m∑
k=0

βkUi (t− d− k) +

p∑
k=0

γkW (t− k) (3.39)

where αk , βk , γk are system parameters (with γ0 = 1 ), d is characterising the

insulin delay action, Y (t) are the history of plasma glucose concentrations, Ui (t) are

the history insulin infusion rates, and W (t) are a sequence of independent zero-mean

Gaussian variables. The model parameters are estimated with the Recursive Least

Square method [123] by introducing the following model regressor form

Y (t) = ψᵀ (t) θ (t) +W (t) (3.40)

where the regressor is

ψ (t) = [Y (t− 1) . . . Y (t− n)Ui (t− d) . . . Ui (t− d−m)W (t− 1) . . .W (t− p)]ᵀ
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, and the parameter vector is θ (t) = [α1 . . . αnβ0 . . . βmγ1 . . . γp]
ᵀ . The estimated

parameter vector θ (t) is computed recursively by

θ (t) = θ (t− 1) +
P (t− 1)ψ (t)

λ+ ψᵀ (t)P (t− 1)ψ (t)
(Y (t)− ψᵀ (t) θ (t− 1)) (3.41)

P (t) =
1

λ

(
P (t− 1)− P (t− 1)ψ (t)ψᵀ (t)P (t− 1)

λ+ ψᵀ (t)P (t− 1)ψ (t)

)
(3.42)

where P (t) is a covariance matrix of the parameter vector, and λ is the forget-

ting factor. The online parameter vector estimation is combined with a generalized

predictive control (GPC) algorithm (indirect adaptive control strategy) [124].

3.7 Other Perspectives for Postprandial Glucose Control

Beside closed-loop algorithms, other techniques were proposed to control post-

prandial glucose concentrations.

3.7.1 Meal Detection and Meal Size Estimation

Meal time detection and a meal size estimation algorithm may potentially im-

prove the performance of the closed-loop controller at mealtime. In the case of a

feedforward-based design, this algorithm may be used to detect an unannounced

or underestimated meal, as commonly experienced by adolescents [33, 34, 35, 36].

For feedback-only design, meal detection adds a means to adjust internal gains for

tighter postprandial glycemic control. Several groups developed algorithms for meal

detection and meal size estimation [125, 126, 127]. These algorithms may be divided

into data-driven and data-model-driven algorithms.

Early meal detection algorithms only used real-time glucose measurement to de-

tect abrupt changes, interpreted as meal responses. The first and second derivatives
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of the glucose signal may be estimated either by numerically filtering data or by a

white noise driven Kalman filter [127, 128]. Using those values heuristic rules have

been proposed to detect unannounced meals [129] within 30-60 minutes after meal

ingestion. A Finite Impulse Response filter may be used to estimate the meal size by

deconvoluting glucose measurements [129]. This strategy is prone to measurement

error and patient variability. Yet, a voting scheme combining different meal detec-

tion algorithms may be utilized to increase its robustness and to reduce the risk of

false positives [127].

The second category uses both a pre-defined meal digestion model and filtered

glucose measurement for meal evaluation. A meal detection method based on a mul-

tiple probabilistic model of meals has been developed and tested in inpatient clinical

trial with multiple large unannounced meals [68, 130]. This algorithm increases the

probability of a meal by matching the glucose profile with possible shapes of glucose

excursion after meal consumption [131]. Recent approaches consider meal detection

as a fault detection problem in a statistical signal processing framework [132, 133].

The null hypothesis “meal is consumed but not announced” is evaluated by either a

parameter-invariant approach [133] or by testing the optimality of Kalman filter (the

innovation sequence is not a white noise) [132]. This hypothesis testing approach

showed a high success rate and small false alarm rate compared to other approaches;

however, it is only tested on simulation [132]. Unscented Kalman Filtering technique
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(a powerful tool for state estimation of nonlinear systems [134]) has also been re-

cently used to estimate the rate of ingested glucose Dm (t) as part of an augmented

state X∗ (t) =

 X (t)

Dm (t)

 [135].

3.7.2 Machine Learning Algorithms for Postprandial Glucose Control

The increase in plasma glucose concentrations after a meal is highly variable

between individuals and can vary within the same individual consuming the same

meal at different times. Understanding the various factors contributing to this ob-

served inter and intra-variability in dietary responses is desirable in algorithms that

aim to predict accurate postprandial glucose responses. Machine learning approaches

promise to provide improved, individualized predictions.

A comprehensive database of postprandial studies, called DISRUPT, has been

produced in order to provide insights into the physiological factors that influence

postprandial glucose responses [136]. The database includes postprandial measure-

ments of insulin and glucose in addition to subject attributes of age, gender, geno-

type, menopausal status, body mass index, blood pressure, and a fasting biochemical

profile for recorded glucose. The database allows for the analysis of the postprandial

glucose responses using conventional statistical techniques to facilitate the develop-

ment of accurate predictive algorithms.

A prediction algorithm based on machine learning methods was developed to

predict postprandial glucose readings of elderly patients [137]. A learning component

used data to relate patient meals with observed glucose readings before and after
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meal consumption. The prediction model of the machine-learning algorithm relied

on linear regression methods. Although the algorithm’s prediction error value was

lower than 20% in 73% of all tests performed on healthy subjects, additional tests in

diabetes patients are necessary to assess the prediction performance of the system

under greater variability.

Algorithms predicting postprandial glucose concentrations need to model the

effect of different kinds of foods on glucose concentrations. Rice and potatoes, for

example, produce high responses on average compared to the low responses produced

by dark chocolate [138]. In addition to modeling this meal variability and compo-

sition, algorithms need to include physiological information to provide improved,

personalized predictions. A machine learning algorithm has been proposed to in-

tegrate blood parameters, dietary habits, anthropometric measurements, physical

activity, and gut microbiota to accurately predict the postprandial glucose concen-

trations [139]. The algorithm was trained in a cohort of 800 individuals with type

2 diabetes by using leave-one-out cross-validation, and validated against an inde-

pendent cohort of 100 volunteers. By analyzing real-life complex meals that were

consumed at different times during the day and in varying proximity to previous

meals, physical activity, and sleep, the algorithm integrated the multi-dimensional

clinical and microbiome patient data to accurately predict the personalized post-

prandial glucose responses using stochastic gradient boosting regression. Moreover,

the algorithm was used to construct personalized dietary interventions that induced

a lower postprandial glucose concentrations.
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Machine learning algorithms adopting data-driven approaches to infer the major

factors that are predictive of postprandial glucose may outperform current model-

based predictions [140]. “Big Data” strategies may be important to model the com-

plex individual response patterns of diabetes patients and support personalized diets

into the clinical decision-making scheme to improve glucose control.

3.8 Future Work

With current insulin analogs (Aspart, Lyspro, Glulisine), artificial pancreas sys-

tems cannot prevent postprandial hyperglycemia, whether feedforward or feedback

control configuration is used. This postprandial hyperglycemia is the main reason

that patients using an artificial pancreas still spend approximately 8 hours per day

(on average) in hyperglycemia [12]. More advanced controllers alone will unlikely

resolve this issue, but the combination of non-insulin drugs and advanced controllers

might.

Pramlintide is a hormone that delays gastric emptying (modifying the distur-

bance dynamics). It can be co-delivered with insulin in a closed-loop manner (multi-

input control) in order to better control glucose concentrations. Pramlintide has

been studied when delivered at meals time (in an open-loop manner) in addition to

insulin-alone closed-loop delivery [72, 141, 142, 143], but has not been assessed when

delivered in closed-loop manner. SGLT2i is a class of medications that increases the

kidney filtering rate of high glucose concentrations (modifying systems dynamics),

and that may be combined with advanced controllers to develop efficient feedback-

only controllers that remove the burden of carbohydrate counting from the patients.
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Combining SGLT2i with closed-loop systems remains an uncharted territory. Other

non-insulin drugs than pramlintide and SGLT2i also exist [144].

During long-term use of the artificial pancreas, patients’ insulin needs will change

with time (over weeks or months).A sub-optimal insulin-to-carbohydrate ratio is

equivalent to misestimating the carbohydrate content of the ingested meals, and

may degrade glucose control, although closed-loop systems might be less affected by

this than open-loop therapy [145, 145]. Filtering algorithms that estimate optimized

insulin-to-carbohydrate ratios (using data over several days) during closed-loop op-

eration would likely improve glucose control. Limited work has been done in this

area [87, 146].

3.9 Conclusion

The artificial pancreas is a closed-loop system for glucose regulation intended

for type 1 diabetes. Meal consumption is a major disturbance of the glucoregulatory

system. A feedback-only approach based on the interstitial glucose measurement is

a challenging task, mainly because of the long delays in insulin absorption. Com-

bining the feedback controller with minimal feedforward disturbance information is

an approach that trades off the patient convenience and the controller efficiency on

postprandial regulation.

Model predictive controllers represent the forefront of current research. Incor-

porating meal information, bolus information, input constraints, and the model dy-

namics permit to bypass the insulin slow absorption in order to prevent postprandial

late hypoglycemia. Meal detection may mitigate the risks of insulin bolus omission
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while learning algorithms may optimize the prediction capabilities of the artificial

pancreas.

3.10 Sidebar: The Relative Effect of Time-to-peak of Insulin Action and
Time-to-peak of Meal Absorption

Assuming a first-order glucoregulatory model, the change in glucose concentra-

tions can be represented in the Laplace domain as follows

sδQg (s) = PEGP (s)− Si
τi
Qibasal (s) + Um (s)− Si

τi
Qibolus (s) (3.43)

where Qg is the glucose mass in the plasma, PEGP is the rate of endogenous

glucose production, Um is the rate of glucose appearance in the plasma due meal

ingestion, Qibasal and Qibolus are the appearance of insulin in the plasma from basal

and bolus delivery, respectively, and Si and τi are constant representing the insulin

sensitivity and time-to-peak of insulin action, respectively [52, 51].

In the postprandial period, the contributions of endogenous glucose production

and basal insulin are small in comparison to meal-related glucose appearance and

insulin boluses contributions. Therefore, glucose concentrations can be approximated

by

sδQg (s) = Um (s)− Si
τi
Qibolus (s) (3.44)

By using a two-compartmental model of subcutaneous insulin delivery and glu-

cose absorption rate, glucose concentrations can be approximated by

sδQg (s) =
Km

(1 + τms)
2QCHOδ (s)− Si

(1 + τis)
2Ubδ (s) (3.45)
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where Km = 103 KBio

(wMCHO)
(KBio is carbohydrates bioavailability in the meal,

w is the patient weight and MCHO is glucose molar mass), QCHOis the quantity of

consumed carbohydrates and Ub is the insulin bolus. A transformation in the time

domain results in

δQg (t) = UbSi

(1 +
t

τi

)
e
−
t

τi − 1

−QCHOKm

(1 +
t

τm

)
e
−
t

τm − 1

 (3.46)

This approximate model compares well to the Hovorka’s model [52] (Figure 3–6),

but benefits from allowing analytical analysis. For the postprandial glucose levels to

come back to the preprandial levels (limt→∞ δQg (t) = 0), a sufficient and necessary

condition for the bolus amount is

Ub =
QCHOKm

Si
(3.47)

With this matching bolus, the maximum glucose excursion can be calculated as

δQgmax = KmQCHO

(
1

α
− α− 2 ln (α

)
e
−
α + 1

α− 1
lnα

(3.48)

where α =
τm
τi

is the ratio between the time-to-peak of meal absorption and

time-to-peak of insulin absorption. This equation suggests that the ratio α between

the times-to-peaks of meal and insulin absorptions determines postprandial glucose

excursions. Moreover, the size of the meal (carbohydrate content) modulate this

effect.
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Figure 3–6: Comparison of postprandial glucose peak between the Hovorka’s model
and the proposed simplified model. A virtual patient with weight 45 kg (an adoles-
cent) is receiving a constant basal insulin to keep its glucose level at 5.5 mmol/L. At
time 0 the virtual patient ingests 60g of carbohydrates and delivers a bolus of 6.0U
of insulin. The two plot superpose the Hovorka’s model response and the simplified
model response. This graph shows that immediately after meal consumption the
simplified model compares well to the complete Hovorka’s model. In addition, this
comparison shows that the simplified model may be used to estimate the maximum
peak of glucose after meal ingestion.
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This result indicates that faster insulins or drugs that slows gastric emptying

(for example, pramlintide) would improve glucose control. Figure 3–7 plots post-

prandial glucose peaks against the ratio αbetween the times-to-peaks of meal and

insulin absorptions, for different meal sizes.
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Figure 3–7: A plot of the maximum glucose peak after ingestion of different carbohy-
drate quantities as a function of the ratio between time-to-peak of meal absorption τm
and time-to-peak of insulin absorption τi. This graph shows that, for instance, follow-

ing a 60g meal the maximum peak of glucose is 5.4 mmol/L for a ratio α =
τm
τi

= 0.8.

Increasing the ratio to 0.9 (by slowing the meal digestion or by providing a faster
acting insulin) may result on decreasing the postprandial glucose peak by 46% to 2.5
mmol/L.
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CHAPTER 4

An Unannounced Meal Detection Module for

Artificial Pancreas Control Systems

4.1 Preface

In this chapter, a novel unannounced meal detection module for artificial pan-

creas systems is presented. This is a model-based detection algorithm utilizing a

linear Kalman filter and maximum likelihood approach for patients’ state and param-

eter estimation. A test statistic is derived to distinguish when a meal is consumed.

This module was integrated into an artificial pancreas system then evaluated using

simulations. Clinical data from four participants was used to show proof of concept.

4.1.1 Authors Contributions to the Manuscript

The author (Anas El Fathi) was the primary responsible for the development

of the methods, interpretation of the results, and witting the manuscript. Ahmad

Haidar and Benoit Boulet supervised the theoretical development. Laurent Legault

supervised the conduct of the clinical study from which the data was obtained. Emilie

Palisaitis coordinated the clinical study from which the data was obtained. Ahmad

Haidar and Benoit Boulet provided editorial input in writing the manuscript, and

provided overall supervision. All authors critically reviewed the manuscript.
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4.2 Abstract

The emergence of real-time glucose sensors has prompted the development of

closed-loop insulin delivery systems for type 1 diabetes patients, termed the artifi-

cial pancreas. The existing closed-loop systems rely on the user’s input to provide

meal insulin boluses. However, patients, particularly adolescents, sometimes forget

to announce consumed meals to the system. The performance of closed-loop systems

after an unannounced meal may be improved with the addition of a meal detection

module to the closed-loop system. We have developed a novel meal detection al-

gorithm that detects unannounced meals using glucose measurements and insulin

data. The model-based detection algorithm continually estimates an internal pa-

tient state using a linear Kalman filter. A generalized likelihood ratio test (GLRT)
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statistic is computed to evaluate the consistency of the Kalman filter under the null

hypothesis that all consumed meals have been announced. A threshold criterion

is applied on the GLRT to distinguish if the observed glucose increase is due to

an unannounced meal. Simulation results, based on nonlinear time-varying virtual

patients and noisy glucose measurements, show a sensitivity of 93.23% and a false

positive rate of 4.17%. We present clinical results from 11 adolescents who under-

went a three-way randomized trial comparing (i) conventional pump therapy (OL),

(ii) closed-loop insulin delivery (CL), and (iii) closed-loop insulin delivery with our

meal detection algorithm (CL+MD) in controlling post-meal glucose levels after a

meal without a bolus. Compared to OL, CL+MD decreased incremental area under

the curve from the start of lunch to 240 minutes post-lunch from 24.1±9.5 h.mmol/L

to 15.4±8.0 h.mmol/L (p=0.03). The CL alone did not change incremental area un-

der the curve (19.6±10.4 h.mmol/L) compared to CSII (p=0.19). The CL+MD

reduced time spent above 10 mmol/L after the missed bolus by -21.6%[-39.4 – -3.8]

compared to OL (58±26.6% vs. 79.6±27.5%, p=0.02). The mean meal detection

time was 41.8±16 minutes after meal consumption.

4.3 Introduction

In healthy individuals, glucose concentration is tightly regulated by the action

of hormones secreted by the pancreas, primarily insulin. In Type 1 diabetes (T1D),

insulin secretion is lost due to the autoimmune destruction of the pancreatic beta

cells [1]. T1D is currently treated with life-long external insulin therapy. Sustained

elevation of glucose levels (hyperglycemia) leads to long-term complications such
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as heart disease, blindness, kidney failure, and lower-extremity amputations. Fur-

thermore, low glucose levels (hypoglycemia) may lead to anxiety, nausea, confusion,

blurred vision, and difficulty in speaking [2].

The emergence of real-time glucose sensors has prompted the development of

closed-loop (CL) insulin delivery systems for T1D patients, termed the artificial

pancreas (AP) [3]. In the AP, a control algorithm adjusts the insulin infusion rate

based on glucose sensor readings [4]. The existing closed-loop systems rely on the

user’s prompt to provide meal insulin bolus. Yet, there is little understanding of the

safety and efficacy of closed-loop delivery in controlling glucose levels after a missed

meal bolus [5].

In conventional insulin therapy, a primary factor for poor glucose control in

adolescents is the omission of insulin bolus at mealtimes. It has been observed that

65% of adolescents missed one or more mealtime bolus per week [6], which was as-

sociated with a significantly higher HbA1c (a biomarker correlated with mean blood

glucose) compared to adolescents that missed less than one bolus per week (8.8%

and 8.0% respectively) [7]. Another study observed that over a third of adolescents

missed more than 15% of their required boluses [8]. Similarly to conventional insulin

therapy, the performance of CL insulin delivery may also be affected after a missed

bolus. The addition of a meal detection module which will detect an unannounced

meal and signal the infusion of more insulin may improve the performance of the AP.

In the AP system when an unannounced meal is consumed, the closed-loop feed-

back mechanism reacts to glucose level changes by altering the pump’s insulin basal
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rate. Generally, a significant amount of insulin is needed to cover the glucose in-

crease from meals, up to 20% of the patient total daily insulin dose in some cases [9].

As a result, without delivering an insulin bolus, the AP is unable of providing the

needed amount of insulin in a short period of time. Thus, hyperglycemic events with

unwanted high glucose levels become unavoidable [10]. Furthermore, if the feedback

reacts aggressively by infusing a large amount of insulin in an attempt to prevent

glucose from further increasing, then late post-meal hypoglycemia will occur due to

the slow absorption of insulin delivery (since the delivered insulin continues to act be-

yond meal absorption) [11]. A distinct strategy is needed to mitigate hyperglycemia

and hypoglycemia after a missed bolus.

Several methods have been reported in the literature for mealtime detection and

meal size estimation. Without loss of generality, these methods may be divided into

data-based and model-based algorithms.

The data-based algorithms rely on only real-time glucose measurement to detect

abrupt changes, interpreted as meal responses. For instance, Lee et al. proposed an

algorithm based on the first and second derivatives of the glucose signal and heuris-

tic rules to detect unannounced meals within 30-60 minutes after meal ingestion

[12]. Dassau et al. designed a four-way voting meal detection algorithm consisting

of four different ways to compute the glucose rate of change to reduce the risk of

false positives [13]. Samadi et al. proposed a fuzzy system which estimates the size

of the meal using a qualitative representation of the filtered glucose sensor signal

[14]. Still, data-based strategies do not consider delivered insulin and known meals
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while model-based algorithms use meal and insulin absorption models alongside glu-

cose measurements. Cameron et al. introduced a meal detection method based on

multiple probabilistic meal models. This algorithm was tested in a clinical setting

with unannounced meals [10]. Turksoy et al. employed an Unscented Kalman Filter

(UKF) to estimate the rate of ingested glucose as part of a nonlinear model, the

proposed algorithm was evaluated with clinical data [15]. Ramkissoon et al. pro-

posed a method based on a cross-covariance criterion comparing a disturbance term

estimated with a UKF and measured glucose [16]. Xie et al proposed a variable state

dimension approach where a Kalman filter (KF) switches its operation between two

models to detect meals and estimate their sizes [17]. Weimer et al. used a physio-

logical parameter-invariant detector based on the confidence level of the occurrence

of a meal [18].

In this paper, we describe a novel adaptive model-based meal detection algo-

rithm. First, parameters of a linear glucoregulatory model are adapted to the ob-

served glucose measurements. Second, the consistency of a KF is used to assess if the

measurements are well explained by the model and known system inputs. Finally, a

statistical hypothesis test decides if the observed glucose measurements are due to the

patient consuming an unannounced meal to the system. Simulation and preliminary

clinical results are presented to verify the efficacy and safety of the algorithm.

4.4 Methods

4.4.1 Kalman Filter and Consistency

A standard linear KF is represented by the following
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Xn|n−1 =AXn−1 +BUn−1

Pn|n−1 =APn−1A
T +Q

Sn =CPn|n−1C
T +R

Kn =Pn|n−1C
TS−1

n

Xn =Xn|n−1 +Kn

(
zn − CXn|n−1

)
Pn =Pn|n−1 −KnCPn|n−1

(4.1)

where (A,B,C) is a set of state matrix, input matrix, and output matrix, X is

the state estimate with covariance matrix P , Q and R are process and measurement

noises covariance matrices, and Kn is the Kalman gain.

The innovation νn is defined as the difference between the measurement yn and

the predicted measurement form the model CXn|n−1

νn = zn − CXn|n−1 (4.2)

It follows that Sn is the covariance of the innovation νn .

A KF is said to be consistent when the probability distribution function of the

true state Xn is Gaussian with mean Xn and covariance Pn [19]. Consequently, KF is

consistent when the innovation sequence {ν1, . . . , νn} is independent and identically

distributed (i.i.d.) and follows a zero-mean Gaussian distribution with covariance

Sn [19]. The consistency of a KF follows from the hypothesis that the process and

measurement noises are i.i.d. zero-mean Gaussian with known covariance matrices
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Q, and R. A change in the process noise, for instance, an external disturbance, may

cause the KF to become inconsistent.

4.4.2 A Consistent KF for the Glucoregulatory System

An unannounced meal for the AP system may be considered as an external

disturbance to the system. Under ideal conditions (linear system and Gaussian dis-

tributions), this causes the KF to become inconsistent; however, since the glucoreg-

ulatory system of a T1D patient using an AP is nonlinear and time-varying, a linear

KF may not be the best choice. In fact, other nonlinear filters such as UKF have

been used in the literature [15, 16]. Nevertheless, it is possible to roughly describe

the dynamics of the glucoregulatory system by a linear time-invariant model [20].

Such a model can be built by linearizing the Bergman model [21]. The internal state

of such a dynamical system may be represented by the quantities:

� The amount of subcutaneous insulin delivered,

� The concentration of plasma insulin,

� The amount of digested meals,

� The rate of glucose appearance from meals,

� The glucose plasma concentration,

� The interstitial glucose concentration.

The model parameters should reflect the T1D patients inter and intra-variability

to provide accurate state estimation. This can be achieved by adapting some of these

model parameters.
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Let Xn−N be a known state at time n − N . A sequence of state propagations

Xn = {Xn−N , . . . , Xn−1} can be deterministically obtained by using a model with pa-

rameters pn state matrices (Apn , Bpn , Cpn) and known insulin infusions and consumed

meals Un = {Un−N , . . . , Un−1} A maximum likelihood estimator of the set of param-

eters pn describing best the last N glucose measurements Zn = {zn−N+1, . . . , zn} is

obtained by

pn ∈ arg maxP (Zn|Xn, Un, pn) (4.3)

In general, an informed a priori distribution P (pn) of the set of parameters pn

may be obtained from specific characteristics of the patient and common knowledge,

for instance, their total daily dose can infer about the patient sensitivity to insulin.

The maximum a posteriori estimator of pn is obtained by

pn ∈ arg maxP (Zn|Xn, Un, pn)P (pn) (4.4)

Assuming that the measurements are mutually conditionally independent when

conditioned on their corresponding state and input, we have

P (Zn|Xn, Un, pn) ∼
n∏

k=n−N+1

P (zk|Xk−1, Uk−1, pn) (4.5)

Assuming a zero-mean Gaussian measurement noise with constant covariance r2

, we can write for k ∈ [n−N, n]

P (zk|Xk−1, Uk−1, pn) ∼ exp
−1

2r2
(zk − Cpn (ApnXk−1 +BpnUk−1))2 (4.6)
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Maximum a posteriori estimation is employed to adjust the patient parameters.

Then a KF routine on the glucose data using the state Xn−N the measurements Zn

and inputs Un is run. By adjusting the patient parameters to fit the most recent

observed glucose trend, the KF filter innovation (and the innovation covariance) is

decreased unless it is hard to justify the glucose trend with the known system inputs

and outputs. Large innovation values suggest the presence of external disturbances

to the system, or that the measured glucose from the sensor is faulty, hence, it is not

enough to rely solely on the innovation to flag the presence of unannounced meal.

4.4.3 Meal Detection and Size Estimation

A KF routine is run from time n − N to n using the set of parameters pn ,

glucose measurements Zn insulin infusions and consumed meals Un and the patient

state Xn−N ( Xn−N can either be the initial state or a previously estimated state).

The meal input channel in the process covariance matrix Q is chosen to assume small

uncertainties on the inputted meals. This means any other unknown external meal

input to the T1D patient will cause the KF to be inconsistent. A hypothesis test is

constructed to determine if the inconsistency of the KF is due to an external meal.

We consider the two hypotheses ( M is the meal detection window size):

� H0 : No unannounced meal was consumed in the last M iterations (KF is

consistent).

� H1 : A meal of size m was consumed without informing the system at time

p ∈ [n−M,n] (KF is inconsistent).

According to the Neyman–Pearson lemma [22], the likelihood-ratio between the

null and the alternative hypothesis is the uniformly most powerful test for testing
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a simple hypothesis. However, for a complex hypothesis depending on unknown

parameters θ (in this case θ = (p,m) the time and size of the unannounced meal)

a generalized likelihood ratio test (GLRT) can be used [23]. If Θ is the parameter

space of θ , the two hypotheses shall satisfy: H0 : θ ∈ Θ0 , H1 : θ ∈ Θ1 , Θ0∪Θ1 = Θ,

and Θ0 ∩Θ1 = ∅

We define Θ by the discrete set

Θ = {(p,m) |p ∈ [n−M,n] ,m ∈ [mmin,mmin + ∆m, . . . ,mmax]}

where mmin , mmax are the smallest and largest detectable unannounced meal, and

∆m is the minimum detectable difference in unannounced meals. With those defini-

tions Θ0 = ∅ and Θ1 = Θ .

The GLRT statistic, denoted by Λ , is written as [23]

Λ =
maxP (Vθ|H0)

maxθ∈Θ P (Vθ|H1)
(4.7)

where Vθ is a random variable with a probability distribution function depending

on θ . In this case, Vθ is a random variable representing the process of KF innovations

{νn−M , . . . , νn} .

Under the null hypothesis (KF is consistent), we can write

P (Vθ|H0) =
n∏

k=n−M

1√
2πSk

exp

(
− ν2

k

2Sk

)
(4.8)

Similarly to [24], we show that under the alternative hypothesis P (Vθ|H1) is

stated for θ = (p,m) as [Appendix 4.8.1]
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P (Vθ|H1) =

p∏
k=n−M

1√
2πSk

exp

(
− ν2

k

2Sk

) n∏
k=p+1

1√
2πSk

exp

(
−
(
νk − uθk

)2

2Sk

)
(4.9)

and

uθk = C

(
k−1∏
r=p+1

A (I −KrC)

)
BUm, k ∈ [p+ 1, n] (4.10)

where Um is a column vector with zeros and the value m in the meal input

channel, and I is the identity matrix.

We define θ∗ = (p∗,m∗) ∈ argmaxP
(
Vθ=(p,m)|H1

)
to be the most probable time

and size of the hypothetical unannounced meal. Since the sampling distribution of

Λ is non-trivial, we derive another test statistic from Λ as λ =
∑n

k=p∗+1

uθ
∗

k

Sk
vk, and

show that under the null hypothesis λ follows a zero-mean Gaussian distribution with

covariance
∑n

p∗+1

uθ
∗2

k

Sk
[Appendix 4.8.2]. Thus, a meal with parameters θ∗ is flagged

when λ is smaller than a criterion threshold η satisfying P (λ ≤ η|H0) < α = 0.05 .

4.4.4 Insulin Bolusing Strategy

When a meal is detected, a meal size m∗ and time p∗ can be deduced as

θ∗ = (p∗,m∗) ∈ argmaxP
(
Vθ=(p,m)|H1

)
. With this information we run another

KF routine, but this time with the new information about the meal m∗ . A new

state is obtained that contains a better estimation of the patient state. We call

m the estimation of the remaining non-digested meal in the new patient state, for

patient safety m is capped to 20g. An insulin bolus u is computed proportional to

the remaining meal, patient carbohydrate ratio CR , glucose level G , glucose target
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Gtarget , patient-specific correction factor CF and the remaining insulin-on-board (

IOB ).

u =
m

CR
+
G−Gtarget

CF
− IOB (4.11)

Other safety rules were implemented to limit the risk of overdosing insulin. For

example, the meal detection algorithm is inactive for 3 hours after any bolused meal.

4.5 Simulation Validation

We conducted a simulation experiment in the purpose of:

� Computing the sensitivity of the meal detection algorithm, that is the number

of detected unannounced meals over the total number of unannounced meals.

� Computing the false alarm rate, that is the number of times the algorithm

detects a meal when there was none.

� Evaluating the effects of introducing a meal detection algorithm alongside a

traditional closed-loop insulin dosing algorithm on overall glycemic control.

4.5.1 Simulation Setup

The glucoregulatory system of T1D patients is nonlinear and time-varying. To

simulate patients’ intra- and inter-variability a simulation model presented by Wil-

inska et al. with time-varying parameters is implemented [25]. To account for vari-

ability between patients, model parameters are randomly sampled from a prior dis-

tribution. Moreover, the intra-individual variability is accounted for by making some
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parameters oscillate periodically (with random frequencies and phases) (TABLE 4–

1). The simulation is augmented with a correlated noise in glucose measurements

(coefficient of variation 7% and correlation of 80%).

A simulation experiment, referred to as “CL + MD” , using 512 virtual patients

randomly sampled from the distribution in (TABLE I) is conducted. The meal

detection algorithm is implemented alongside a closed-loop using a model predictive

controller (MPC). The simulation experiment (Fig. 4–1) consists of a 13 hours

simulation where a virtual patient consumes a breakfast of 40g carbohydrates (CHO)

at 7 am, and a lunch at noon consisting of either a 40g, 60g or 80g CHO.

The morning breakfast is entered into the dosing algorithm and a meal-accompanying

bolus is given at breakfast. The lunch is given to the virtual patient but not an-

nounced to the insulin dosing algorithm. Since we are interested in analyzing the

effects of the unannounced meal and any given bolus by the meal detection algo-

rithm, no meal is consumed after the lunch meal. A rescue CHO of 15g is given to

the virtual patient when the plasma glucose is below 2.7 mmol/L.
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Figure 4–1: A sample simulation, the meal detection algorithm detects an announced
meal and provides a bolus of 2U. Due to the model’s variability, glucose levels often
increase or decrease without an apparent reason, which makes it challenging for the
meal detection algorithm.

124



Table 4–1: Hovorka’s model parameters used to sample virtual patients [25]

Parameter description Intra- variability Inter- vari-
ability

BW Patient Weight BW ∼ U (65, 95) Stationary

EGP0 Endogenous glucose
production ( µ mol / (kg
min))

log (EGP0) ∼ N (log (17.0) , 0.2) Oscillatory

F01 Noninsulin-dependent
glucose flux ( µ mol / (kg
min))

log (F01) ∼ N (log (11.0) , 0.1) Oscillatory

k12 Transfer rate from non-
accessible (1/min)

log (k12) ∼ N (log (0.05) , 0.4) Oscillatory

ka1 Activation rate (1/min) log (ka1) ∼ N (log (0.0035) , 0.4) Oscillatory

ka2 Activation rate (1/min) log (ka2) ∼ N (log (0.055) , 0.4) Oscillatory

ka3 Activation rate (1/min) log (ka3) ∼ N (log (0.025) , 0.4) Oscillatory

St Insulin sensitivity of glu-
cose transport (L / (min
mU))

log (St) ∼ N (log (18.5e−4) , 0.4) Oscillatory

Sd Insulin sensitivity of glu-
cose disposal (L / (min mU))

log (Sd) ∼ N (log (5.1e−4) , 0.4) Oscillatory

Se Insulin sensitivity of sup-
pression of EGP (L / mU)

log (Se) ∼ N (log (190e−4) , 0.4) Oscillatory

ka Insulin absorption rate
(1/min)

log (ka) ∼ N (log (0.018) , 0.3) Oscillatory

ke Insulin elimination rate
(1/min)

log (ke) ∼ N (log (0.12) , 0.2) Oscillatory

τm Time-to-maximum of
CHO absorption (min)

log

(
1

τm

)
∼ N

(
log

(
1

40

)
, 0.2

)
Meal Spe-
cific

Vi Insulin distribution vol-
ume (mL/kg)

log (Vi) ∼ N (log (120) , 0.1) Stationary

Vg Glucose distribution vol-
ume (mL/kg).

log (Vg) ∼ N (log (150) , 0.1) Stationary
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4.5.2 Sensitivity and False Alarm

1536 simulations (3 meal sizes x 512 virtual patients) where the lunch meal is not

announced to the dosing algorithm were conducted. A true positive (TP) is counted

when the meal detection algorithm successfully flags a meal within 120 minutes of

the lunch meal. If no meal is flagged within 120 minutes, we judge that any detection

will not help reducing hyperglycemia and a false negative (FN) is then counted.

The sensitivity (the ratio of TP over the total number of unannounced meals) of

the algorithm for all meals combined (40g, 60g, and 80g) is 93.23 % . Other statistics

can be found in TABLE 4–2. Since the detection algorithm is driven by glucose

increase, it is expected to observe that the sensitivity of the algorithm decreases

with the meal size (the smallest sensitivity being for 40g meals). For unannounced

moderate meals of 60g CHO, they are detected 96.29% of the times. In average, the

algorithm detects a meal after a jump of glucose values above a threshold of 2.6±1.2

mmol/L, and the detection time of the unannounced meal is around 40 minutes.

Those values appear to be reasonable to ascertain the meal effects from the glucose

increases. Similar values for detection time were observed in other studies [15-18].

A false positive (FP) is when meal detection is made in absence of an unan-

nounced meal. In the 19968 hours of simulation (13 hours x 1536 simulations), we

encountered 64 FP. The majority of FP were flagged after a 40g meal (34 out of 64

false positives) and are mostly due to the late detection of the unannounced meal

(after the 120 min threshold), due to small glucose increase. Fig. 4–2 shows a case

where an FP detection occurred after a late glucose increase. The delivered bolus

was safe and did not cause a hypoglycemia.
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Figure 4–2: Simulation example where an FP occurred. A meal is flagged at 15:30
after 3.5 hours of having the lunch meal. The algorithm provides a bolus of 1.8U
and no hypoglycemia is observed for the next 4.5 hours.
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Table 4–2: Performance metrics of the meal detection algorithm

Sensitivity TP / (TP + FN) 93.23 %

Meal CHO = 40g 84.77 %

Meal CHO = 60g 96.29 %

Meal CHO = 80g 98.63 %

Number of false positives 64 (4.17 % of 1563)

Meal CHO = 40g 34 (6.64 % of 512)

Meal CHO = 60g 16 (3.13 % of 512)

Meal CHO = 80g 14 (2.73 % of 512)

Detection time 40 [30 - 50] min

Meal CHO = 40g 50 [40 - 60] min

Meal CHO = 60g 40 [30 - 50] min

Meal CHO = 80g 30 [30 - 40] min

Glucose increase at detection time 2.6± 1.2 mmol/L

Meal CHO = 40g 2.4± 1.5 mmol/L

Meal CHO = 60g 2.7± 1.1 mmol/L

Meal CHO = 80g 2.8± 1.0 mmol/L

Glucose increase 10 min before detection time 1.4± 1.0 mmol/L

Meal CHO = 40g 1.5± 1.3 mmol/L

Meal CHO = 60g 1.4± 0.9 mmol/L

Meal CHO = 80g 1.2± 0.7 mmol/L

4.5.3 Effects on Glycemic Control

Since a classification algorithm is susceptible to flag an FP, it is important to

assess the impact of such an event. Also, we need to investigate the benefits, on

glucose control, of adding a meal detection algorithm to a closed-loop system. Two
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other simulation experiments were thus conducted to answer these two questions.

Both experiments had the same structure and same virtual patients as the CL+MD

experiment: 1536 simulations (3 meal sizes x 512 virtual patients) were conducted,

where a virtual patient uses a closed-loop algorithm and consumes two meals, a

breakfast meal and a lunch meal. However, in both experiments, the closed-loop

algorithm only consisted of an MPC without a meal detection algorithm.

The first experiment, referred to as “CL + B” , simulates the scenario where

the lunch was announced and bolused. The second experiment, referred to as “CL”

, simulates the scenario where the lunch was not announced, and the MPC only

reacted to the change in glucose levels. The two experiments serve to set base values

of expected time spent in hypoglycemia and time spent in hyperglycemia as defined

in [26].

Fig. 4–3 shows a significant improvement in time spent in hyperglycemia from

34.9% to 30.4% when a meal detection algorithm is added to the closed-loop algo-

rithm, which validates the efficacy of the proposed meal detection algorithm. TABLE

4–3 compares in more details the incremental area under the curve (AUC) in the three

experiments for different meals. In average, the AUC is improved by 19% from CL

to CL+MD (baseline is CL+B).

Table 4–3: Incremental AUC for different meals in all experiments

AUC (h mmol/L) CL + B CL + MD CL

CHO = 40g 8.8± 4.7 12.1± 4.4 13.7± 4.9

CHO = 60g 11.7± 5.3 17.0± 5.0 19.3± 5.4

CHO = 80g 14.1± 6.0 21.7± 5.9 24.4± 6.4
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Figure 4–3: Percentage time (8 hours after the lunch meal) spent in hypoglycemia
and hyperglycemia for the experiments (n=1536). CL+B: No meal detection and the
lunch was announced and bolused. CL+MD: A meal detection algorithm is used,
and the lunch was not announced. CL: No meal detection and the lunch was not
announced. P value was computed using paired t-test.
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The meal detection algorithm (CL+MD) is safe since no increase in hypo-

glycemia was observed (Fig. 4–3) compared to when the exact bolus was delivered

(CL + B). To further investigate the safety of the meal detection algorithm when an

FP is flagged, and an unnecessary bolus is delivered, we compared the time spent

in hypoglycemia between simulations where an FP was flagged (n=64), and simu-

lations where there was no FP (n=1472). The time spent in hypoglycemia when

an FP is flagged (1.1 ± 0.35% ) has been found non-significantly (P=0.38) different

from the time spent in hypoglycemia (0.76 ± 0.08% ) when there was no FP. This

suggests that there is no apparent correlation between detecting an FP and causing

a hypoglycemia with the developed algorithm.

The safety of the algorithm after an FP results from how we calculate the deliv-

ered insulin bolus after a meal is flagged. In fact, the size of the insulin bolus is mainly

driven by the term that brings glucose levels back to the target (
(G−Gtarget)

CF
−IOB

), since the term that covers the detected consumed meal
m

CR
is capped to a small

CHO value (20g in this case). This dosing strategy was found to be the best com-

promise between: not inducing additional hypoglycemia events and decreasing the

time spent in hyperglycemia.

4.6 Clinical Validation

4.6.1 Experiment Description

In this section, we will present preliminary results from an ongoing clinical

study that assesses the safety and efficacy of closed-loop insulin delivery with and

without a meal detection module and conventional pump therapy after a missed

bolus in adolescents with T1D. The study consisted of three randomized inpatient
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Figure 4–4: Clinical data showing the meal detection algorithm performance. An
unannounced meal of 60g was consumed at 13:00. The meal was detected at 13:40,
and a bolus of 0.9U was delivered.

interventions. Each patient consumed a breakfast with an insulin bolus. Then, a 60

g lunch was given to the patients without a bolus. Depending on the intervention,

insulin doses were based on either a closed-loop algorithm, a closed-loop algorithm

with a meal detection module, or the patients’ conventional pump therapy. The

interventions ended 6 hours after lunch. Fig. 4–4 shows data from an intervention

where the meal detection algorithm has been used.

4.6.2 Preliminary Results

For patients’ safety, if their glucose levels were sustained above 18 mmol/L, a

correction bolus was delivered. When this happens, we assume that glucose levels

would have stayed constant until the end of the intervention. Fig. 4–5 shows the
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Figure 4–5: Incremental glucose after consuming a meal without bolus for four pa-
tients using conventional pump therapy, closed-loop or closed-loop with a meal detec-
tion. The diamonds indicate when a correction bolus was delivered either for safety
reasons or automatically by the meal detection algorithm.

incremental AUC of four patients who completed all interventions. We observe a

trend showing that the meal detection algorithm may reduce the incremental AUC

after a missed bolus. In fact, AUC was decreased by 39% with the meal detection

algorithm compared to 16% without meal detection (baseline is conventional insulin

therapy).

To further investigate the meal detection algorithm, we used 108 hours (4 pa-

tients x 3 visits x 9 hours) of clinical data to run the meal detection algorithm offline.

All the 12 unannounced meals were detected successfully, and no FP was flagged.

The time of meal detection is 35 [30 - 40] minutes. Glucose increase at meal detection

time is 2.89± 1.72 mmol/L and glucose increase 10 minutes before meal detection is

0.45± 0.73 mmol/L.
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4.7 Conclusion

We have developed an algorithm which automatically detects unannounced

meals consumed by T1D patients using glucose measurements and insulin data. The

meal detection algorithm is integrated with an AP and tested in both simulation

and a clinical study. Results demonstrate the potential of such an algorithm to im-

prove post-meal glycemic control in the AP. Results of the ongoing clinical study

should provide final conclusions about the safety and efficacy of a meal detection

algorithm. Moreover, further testing in real life situations, such as successive meals,

is warranted.

4.8 Appendix

4.8.1 Alternate Hypothesis Likelihood

When a meal of size m is consumed at time p , the hypothetical correct state

predictions X∗ of the KF (different from the KF state X ) would be X∗p+1|p =

Xp+1|p +BUm . Thus,

X∗p+2|p+1 =AX∗p+1 +BUp+1

=A
(
X∗p+1|p +Kp+1

(
zp+1 − CX∗p+1|p

))
+BUp+1

=A (I −Kp+1C)X∗p+1|p + AKp+1zp+1 +BUp+1

=A (I −Kp+1C)
(
Xp+1|p +BUm

)
+ AKp+1zp+1 +BUp+1

=A
(
Xp+1|p +Kp+1

(
zp+1 − CXp+1|p

))
+BUp+1 + A (I −Kp+1C)BUm

=Xp+2|p+1 + A (I −Kp+1C)BUm

(4.12)
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By recursion we obtain, for k ∈ [p+ 1, n] ,

X∗k|k−1 = Xk|k−1 + C

(
k−1∏
r=p+1

A (I −KrC)

)
BUm (4.13)

It follows that the true innovation ν∗k satisfy for k ∈ [p+ 1, n]

ν∗k = yk − CX∗k|k−1 = νk − C
(∏k−1

r=p+1A (I −KrC)
)
BUm

Since ν∗k follows a zero-mean Gaussian distribution with covariance Sk νk will

follow a Gaussian distribution with the same covariance and either a zero-mean if

k ∈ [n−M, p] or a mean of u
θ=(p,m)
k = C

(∏k−1
r=p+1A (I −KrC)

)
BUm if k ∈ [p+ 1, n]

.

We deduce that

P (Vθ|H1) =

p∏
k=n−M

1√
2πSk

exp

(
− ν2

k

2Sk

) n∏
k=p+1

1√
2πSk

exp

(
−
(
νk − uθk

)2

2Sk

)
(4.14)

4.8.2 A Simple Test Statistic

For θ∗ = (p∗,m∗) ∈ argmaxP (Vθ|H1) we have

log Λ = logP (Vθ|H0)− logP (Vθ|H1)

=− 1

2

n∑
k=n−M

ν2
k

Sk
+

1

2

p∗∑
k=n−M

ν2
k

Sk
+

1

2

n∑
k=p∗+1

(
νk − uθ

∗

k

)2

Sk

=
1

2

n∑
k=p∗+1

uθ
∗2

k

Sk
−

n∑
k=p∗+1

uθ
∗

k

Sk
vk

(4.15)
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Hence,
∑n

k=p∗+1

uθ
∗

k

Sk
vk =

1

2

∑n
k=p∗+1

uθ
∗2

k

Sk
− log Λ , is a test statistic. Under the

null hypothesis, the innovation sequence {νp∗+1, . . . , νn} is i.i.d. and follows a zero-

mean Gaussian distribution with covariance {Sk∗+1, . . . , Sn} . Thus, the test statistic

λ =
∑n

k=p∗+1

uθ
∗

k

Sk
vk follows a zero-mean Gaussian with covariance

∑n
k∗+1

uθ
∗2

k

Sk
.
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CHAPTER 5

A Meal Detection Algorithm for the Artificial

Pancreas: A Randomized Controlled Clinical

Trial in Adolescents with Type 1 Diabetes

5.1 Preface

In this chapter, clinical results from a randomized controlled trial in adolescents

with type 1 diabetes are presented to validate the efficacy of the meal detection

algorithm presented in chapter 4. In this study, we recruited 11 adolescents with a

history of missing to announce a consumed meal. We compared three interventions:

closed-loop insulin delivery augmented with a meal detection algorithm, closed-loop

insulin delivery, and conventional insulin pump therapy.

5.1.1 Authors Contributions to the Manuscript

The author (Anas El Fathi) was the primary responsible for the development of

the methods and interpretation and reporting of the results. Emilie Palisaitis wrote

the manuscript and coordinated the clinical study. Laurent Legault and Julia E.

von Oettingen supervised the conduct of the clinical trial. Ahmad Haidar provided

editorial input in writing the manuscript, and provided overall supervision. All

authors critically reviewed the manuscript.
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5.2 Abstract

Background: Adolescents with type 1 diabetes occasionally forget to bolus at

mealtime. We have developed a meal detection algorithm for the artificial pancreas

that detects unannounced meals and then delivers an insulin bolus.

Methods: We conducted a randomized crossover trial in 11 adolescents on

pump therapy aged 12–18 years with HbA1c≥ 7.5% who have reported missing ≥ 1

bolus in the past 6 months. We compared (i) conventional pump therapy (CSII), (ii)

our artificial pancreas (AP), and (iii) our artificial pancreas with a meal detection

algorithm (AP+MDA) in controlling postprandial glucose levels after a meal without
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a bolus. Participants underwent three 9-hour interventions at our research facility

or at-home. Each intervention included breakfast with a carbohydrate-matched bo-

lus and lunch without a bolus. During the AP+MDA interventions, the algorithm

detects the meal and delivers a bolus.

Results: The median meal detection time by the MDA was 40 [40 – 57.5]

minutes after meal consumption. Compared to CSII, AP+MDA decreased incre-

mental area under the curve (iAUC) from the start of lunch to 4 hours post-lunch

from 24.1±9.5 h.mmol/L to 15.4±8.0 h.mmol/L (p=0.03). iAUC did not differ be-

tween AP+MDA and AP (19.6±10.4 h.mmol/L, p=0.21) or between AP and CSII

(p=0.33). The AP+MDA reduced time spent above 10 mmol/L (58.0±26.6% ) com-

pared to CSII (79.6±27.5% , p=0.02) and AP alone (74.2±20.6% , p=0.047). Time

above 10 mmol/L did not differ between CSII and AP alone (p=0.52).

Conclusions: The artificial pancreas with a meal detection algorithm improved

glycemic control after an unannounced meal in adolescents with type 1 diabetes.

Free-living studies are needed to evaluate the efficacy of this meal detection algorithm

in real-world settings.

5.3 Introduction

Type 1 diabetes, caused by the autoimmune destruction of the pancreas’ beta

cells, is treated with lifelong insulin-replacement therapy by multiple daily injec-

tions or continuous subcutaneous insulin infusion (CSII). A target of glycosylated

haemoglobin (HbA1c) less than 7.5% is recommended for adolescents with type 1

diabetes by the American Diabetes Association [1]. However, despite advances in in-

sulin analogs, insulin pumps, and continuous glucose monitoring systems, achieving
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ideal glycemic targets is complex and difficult, and only 17% of youth achieve the

HbA1c goal [2].

Puberty is a particularly challenging period in the management of glycemic

control. As reported in the T1D Exchange registry, the average HbA1c of adolescents

aged 15 to 18 year old is around 9.3% [2]. A significant factor for poor glucose control

in adolescents is the omission of insulin boluses at mealtimes. In Burdick et al. [3],

patient pump data indicated that 65% of adolescents missed one or more mealtime

bolus per week, which was associated with a significantly higher HbA1c compared to

adolescents that missed less than one bolus per week (8.8% and 8.0% respectively).

Similarly, Olinder et al. [4] observed that over a third of adolescents missed more

than 15% of bolus doses. O’Connell et al. [5] showed that the omission of prandial

boluses in just one day in a two-week period was associated with an increased HbA1c

by 0.8%.

Although artificial pancreas systems have demonstrated improved time in target

compared to conventional pump therapy [6], current commercial systems and most

systems in development still require user input to alert the system of a meal [7, 8,

9]. In AP systems without meal announcements, the algorithm compensates by in-

creasing basal delivery [10]. However, this generally leads to inevitable postprandial

hyperglycemia since the algorithm cannot provide sufficient insulin to cover the car-

bohydrates ingested by only increasing basal insulin [11]. Aggressive postprandial

insulin delivery may also lead to late postprandial hypoglycemia [9, 12].

The performance of the artificial pancreas after missed boluses may be improved

if the system is augmented with a meal detection algorithm. We have developed a
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meal detection algorithm which automatically detects a meal with no announcement

and delivers a partial insulin bolus. This study allowed for the assessment of the

safety and efficacy of the artificial pancreas with and without our meal detection al-

gorithm compared to conventional pump therapy in regulating postprandial glycemia

in a clinical trial with adolescents. This study is registered with ClinicalTrials.gov,

number NCT02909829.

5.4 Methods

5.4.1 Study Design

We performed a randomized, three-way, cross-over trial to compare the efficacy

of our artificial pancreas with a meal detection algorithm (AP+MDA), artificial pan-

creas alone (AP), and conventional pump therapy (CSII) in controlling postprandial

glucose levels after a meal without a bolus. Adolescents underwent three 9-hour

interventions, with their order randomized, at our research facility or at home. Each

intervention included breakfast accompanied by a carbohydrate-matched bolus and

lunch without a bolus.

5.4.2 Participants

From January 2018 to October 2019, adolescents with type 1 diabetes were

recruited from the Montreal Children’s Hospital. Inclusion criteria were age between

12 and 18 years old, use of an insulin pump for at least 3 months, with a diagnosis

of type 1 diabetes for at least one year, HbA1c between 7.5% and 12% , and self-

reported or documented history of at least one missed bolus for meals during the

previous 6 months.
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5.4.3 Randomization

A block balanced randomization with a block size of six was used to determine

the order of the interventions. Randomization was disclosed after the admission visit.

Participants and investigators were not blinded to the allocation. Participants were

blinded to insulin infusions and sensor glucose data during intervention visits.

5.4.4 Intervention Procedures

Participants chose between two intervention times and locations: from 08h00

to 17h00 or from 09h00 to 18h00 at the research facility or at home. Participants

installed a glucose sensor (Dexcom G5®, Dexcom, San Diego, USA) 24–48 hours

before each intervention. The glucose sensor was calibrated at the start of each inter-

vention using capillary glucose. Participants’ at-home pumps were used. Breakfast

(40-50g of carbohydrates) was served at the start of the intervention, and lunch (55-

65g of carbohydrates) was served 4 hours after the start of the intervention. Meals

were self-selected and standardized between visits of each participant but were dif-

ferent between participants.

5.4.5 Insulin Delivery

During the CSII intervention, participants’ usual basal rates were delivered, and

the breakfast boluses were calculated using the pump’s bolus calculator. During the

AP and AP+MDA interventions, every 10 minutes, glucose sensor readings were

manually entered into a laptop, which ran our dosing algorithm that calculated new

basal insulin delivery. Study personnel delivered basal insulin manually by program-

ming new temporary basal rates every 10 min and manually entering boluses through
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the pump. During the AP+MDA intervention, the algorithm will detect the unan-

nounced meal and compute a recommended bolus based on (i) the current glucose

level and (ii) the estimated remaining carbohydrate-on-board (up to a maximum of

25g) [13].

During the AP+MDA interventions, false positives and false negatives were

recorded. False positives were defined as a detected meal by the algorithm if there

was no meal in the last 90 minutes. False negatives were defined as a meal that was

consumed without being detected in the next 90 minutes.

5.4.6 Hypoglycemia and Hyperglycemia

Hypoglycemia was treated with 16g of oral carbohydrates if sensor glucose was

below 3.3 mmol/L and associated with symptoms, or below 3.0 mmol/L irrespective

of symptoms. If glucose levels were not above 3.9 mmol/L 15 minutes after treat-

ment, another 16g of oral carbohydrates were given. A hyperglycemia event was

defined when glucose reached 17mmol/L or was above 15mmol/L for 90 minutes.

Hyperglycemia events were corrected with an insulin bolus calculated using the par-

ticipants pump bolus calculator in the CSII intervention or the artificial pancreas

bolus calculator in the AP and AP+MDA intervention. Ketones were checked for

safety if blood glucose was above 20 mmol/L.

5.4.7 Statistical Analysis

The primary endpoint was the incremental area under the curve (iAUC) of

the postprandial (0h–4h) glucose excursions after lunch. The study was powered

to detect a minimum difference between the interventions of 2.6 h.mmol/L in the

primary endpoint (equivalent to an average difference of 0.65 mmol/L for four hours).
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We calculated that 12 participants would provide 80% power to detect differences

between the interventions. We intended to do pairwise comparisons between the

two AP interventions and the CSII interventions, and therefore did a power analysis

using the sample size formula for the paired t-test with 5% significance level.

If an insulin correction bolus was delivered based on the hyperglycemia criteria,

the glucose data was analysed as if the glucose would have stayed at the last glucose

value before the correction bolus. We performed the following pairwise comparisons:

(i) AP with CSII, (ii) AP+MDA with CSII, and (III) AP+MDA with AP, on an

intention-to-treat basis. We used the two-sample t-test for outcomes with normally

distributed data, and the Wilcoxon rank-sum test for outcomes with non-normally

distributed data. For normally distributed outcomes, we reported means and stan-

dard deviations, and for non-normally distributed outcomes we reported medians

and interquartile ranges. Normality was assessed using the Shapiro-Wilk test. We

performed McNemar test to compare rates of hypoglycemia and hyperglycemia. We

report nominal p values for all outcomes, and we did not do adjustment for multiple

comparisons.

5.5 Results

5.5.1 Demographics

13 adolescents were admitted to the study. One dropped out after the admission

visit due to lack of time to participate. Another participant dropped out after the

AP and AP+MDA interventions and before the CSII intervention. Their data were

excluded from analysis because they received a hypoglycemia overtreatment before
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lunch during the AP intervention, which made their post-lunch data unrepresenta-

tive. Eleven participants were included in the analysis. Their mean baseline age

was 14.9±1.3, HbA1c 8.3±0.6% , duration of diabetes 8.2±3.3 years, BMI 22.5±3.7

kg/m2, daily insulin dose 0.9±0.2 U/kg, and 91% (10) female.

5.5.2 Glycemic Outcomes

As shown in Figure 5–1 and Table 5–1, the AP+MDA decreased the mean in-

cremental area under the curve (iAUC) from the start of lunch to 4 hours post-lunch

compared to CSII (AP+MDA: 15.4±8.0 h.mmol/L vs. CSII: 24.1±9.5 h.mmol/L,

p=0.03). This improvement was not observed between AP (19.6±10.4 h.mmol/L)

and CSII (p=0.33), nor between AP+MDA and AP alone (p=0.21). During the 4

hours post-lunch, the AP+MDA increased the time in target (3.9-10 mmol/L) com-

pared to CSII by 20.46% (AP+MDA: 40.9±27.9% vs. CSII: 20.5±27.5% , p=0.03).

There was no difference in time in target between AP (25.0±19.7% ) and CSII

(p=0.61), nor between AP+MDA and AP alone (p=0.07) (Table 5–1).

The AP+MDA reduced time spent above 10 mmol/L after lunch compared

to CSII by 21.6% (AP+MDA: 58.0±26.6% vs CSII: 79.6±27.5% , p=0.02) and

compared to AP alone by 16.3% (AP+MDA: 58.0±26.6% vs. AP: 74.2±20.6% ,

p=0.047). Mean sensor glucose was lowered with AP+MDA (11.0±2.3 mmol/L)

compared to CSII (14.0±2.6 mmol/L, p=0.01) and AP alone (12.8±3.1 mmol/L,

p=0.01). Sensor glucose five hours after lunch was lower in AP+MDA (8.0±3.8

mmol/L) compared to CSII (13.7±3.8 mmol/L, p<0.01) and AP alone (11.6±5.3

mmol/L, p=0.01) (Table 5–1).
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Figure 5–1: Incremental sensor glucose from the start lunch without a bolus (time=0 minutes) to 4-hours
post-lunch (time=240 minutes) between all three interventions (n=11).
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Table 5–1: Comparisons of conventional pump therapy (CSII), artificial pancreas (AP), and artificial pancreas
with the meal detection algorithm (AP+MDA).

CSII
AP vs CSII
(95%CI), p

value
AP

AP+MDA vs
AP (95%CI),

p value
AP+MDA

AP+MDA vs
CSII (95%CI),

p value

Time spent at glucose levels (%)

3·9–10·0 mmol/L 20.5 (27.5)
4.6 (-14.5 to

23.6), p=0.61
25.0 (19.7)

15.9 (-1.7 to
33.5), p=0.07

40.9 (27.9)
20.5 (1.9 to

39.0), p=0.03

3·9–7·8 mmol/L 8.0 (14.3)
2.7 (-6.1 to

11.4), p=0.51
10.6 (11.8)

5.7 (-3.1 to
14.5), p=0.18

16.3 (15.1) 8.3 (1.0 to 15.6),
p=0.03

< 3·9 mmol/L .0 [.0-.0] 0.8 (-0.9 to 2.4),
p=0.34 .0 [.0-.0] 0.4 (-2.8 to 3.6),

p=0.8 .0 [.0-.0] 1.1 (-1.4 to 3.7),
p=0.34

> 7·8 mmol/L 92.1 (14.3)
-3.4 (-11.6 to
4.8), p=0.38

88.6 (13.6)
-6.1 (-13.4 to
1.3), p=0.1

82.6 (14.5)
-9.5 (-16.9 to
-2.1), p=0.02

> 10·0 mmol/L 79.6 (27.5)
-5.3 (-23.1 to
12.5), p=0.52

74.2 (20.6)
-16.3 (-32.3 to
-0.2), p=0.047

58.0 (26.6)
-21.6 (-39.4 to
-3.8), p=0.02

> 13·9 mmol/L 59.1 (30.7)
-23.1 (-55.6 to
9.4), p=0.14

36.0 (35.5)
-16.3 (-36.7 to
4.1), p=0.11

19.7 (23.1)
-39.4 (-64.9 to
-13.9), p=0.01

> 16·7 mmol/L 37.5
[4.2-55.2]

-18.9 (-53.1 to
15.2), p=0.25

.0 [.0-9.4]
-8.7 (-23.8 to
6.3), p=0.22

.0 [.0-.0]
-27.7 (-54.7 to

-0.6), p=0.046

Mean glucose
(mmol/L) 14.0 (2.6) -1.2 (-3.9 to 1.5),

p=0.35 12.8 (3.1)
-1.8 (-3.0 to

-0.6), p=0.01
11.0 (2.3)

-3.9 (-5.0 to
-0.9), p=0.01

Coefficient of variation
(mmol/L) 21.7 (5.6) 1.8 (-4.9 to 8.5),

p=0.57 23.5 (7.9) 0.2 (-6.4 to 6.7),
p=0.96 23.7 (7.1) 1.9 (-3.1 to 7.0),

p=0.41

Continued on next page
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Table 5–1 – Continued from previous page

CSII
AP vs CSII
(95%CI), p

value
AP

AP+MDA vs
AP (95%CI),

p value
AP+MDA

AP+MDA vs
CSII (95%CI),

p value

Total Basal Insulin (U) 4.2 (1.0) 3.3 (2.7 to 4.0),
p<0.01 7.6 (1.5)

-2.2 (-3.5 to
-0.9), p<0.01

5.4 (1.6) 1.1 (-0.1 to 2.3),
p=0.07

Total Insulin (U) 4.2 (1.0) 3.3 (2.7 to 4.0),
p<0.01 7.6 (1.5) 1.0 (-0.1 to 2.2),

p=0.09 8.6 (1.8) 4.4 (3.1 to 5.6),
p<0.01

2-hour iAUC1
(h.mmol/L) 10.0 (4.1) -0.5 (-4.5 to 3.5),

p=0.8 9.5 (3.7) -1.1 (-3.6 to 1.4),
p=0.35 8.4 (3.5) -1.6 (-4.8 to 1.7),

p=0.31

2-hour incremental
glucose increase
(mmol/L)

7.7 (3.0) -0.7 (-3.6 to 2.2),
p=0.6 7.1 [5.1-8.8] -1.2 (-3.6 to 0.1),

p=0.1 5.9 [3.4-6.7]
-1.83 (-5.1 to
0.3), p=0.08

4-hour iAUC 1

(h.mmol/L) 24.1 (9.5)
-4.5 (-14.3 to
5.4), p=0.33

19.6 (10.4)
-4.2 (-11.2 to
2.8), p=0.21

15.4 (8.0)
-8.7 (-16.1 to
-1.3), p=0.03

4-hour incremental
glucose increase
(mmol/L)

6.3 (3.2) -3.0 (-6.5 to 0.4),
p=0.08 3.2 (5.1) -1.3 (-4.7 to 2.1),

p=0.42 1.9 (3.1)
-4.3 (-7.1 to

-1.6), p=0.01

Sensor glucose value at
5 hours post-lunch 13.7 (3.8) -2.2 (-5.8 to 1.4),

p=0.21 11.6 (5.3)
-3.6 (-6.2 to

-0.9), p=0.01
8.0 (3.8)

-5.7 (-9.0 to
-2.5), p<0.01

Participants with a
hyperglycemia event 2 5/11 NA, p=1 4/11 NA, p=0.25 1/11 NA, p=0.13

Participants with a
hypoglycemia event 3 0/11 NA, p=1 1/11 NA, p=1 0/11 NA, NA

Outcomes are mean (SD) or median (IQR). Paired differences are mean and 95% confidence interval. Outcomes are from the start of lunch to 240
minutes post-lunch, unless otherwise specified. A p value of less than or equal 0.05 is regarded as significant. NA: Not applicable.
1 iAUC: incremental area under the curve.
2 Hyperglycemia event: hyperglycemia requiring insulin correction as per the protocol.
3 Hypoglycemia event: hypoglycemia requiring carbohydrate treatment.
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5.5.3 Meal Detection

The median meal detection time was 40 [40 — 57.5] minutes after consumption

of the meal, and there were no false positives or false negatives.

As seen in Figure 5–2, the incremental glucose was -0.15 mmol/L [-0.5 – 0.1]

from mealtime to 20 minutes before detection, 1.5 mmol/L [0.9 – 1.8] from mealtime

to 10 minutes before detection (p<0.01), and 2.6 mmol/L [2.4 – 4.8] at meal detection

(p < 0.01). The rate of change of glucose was 6 mmol/L/h [5 – 6.5] 20 minutes before

detection, 7.9 [6.6 – 11.1] mmol/L/h 10 minutes before detection (p=0.02), and 10.1

[7.3 – 12.5] mmol/L/h at meal detection (p=0.6).
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Figure 5–2: Incremental glucose levels 20 minutes before, 10 minutes before, and
at meal detection (n=11). Data indicated as a boxplot (minimum, first quartile,
median, third quartile, and maximum). min: minutes.
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5.5.4 Insulin Delivery

The amount of basal insulin delivered in the AP arm (7.6±1.5 units) was greater

than CSII (4.2±1.0 units, p<0.01) and AP+MDA (5.4±1.6 units, p<0.01). CSII and

AP+MDA basal insulin delivery did not differ (p=0.07) (Figure 5–3, Table 5–1).

Total insulin delivery was the largest in the AP+MDA arm, delivering 4.4 units [3.1

– 5.6] more insulin than CSII (p<0.01) and 1.0 unit [-0.1 – 2.2] more than AP alone

(p=0.09) (Table 5–1).

In the AP+MDA arm, the median delivered bolus at the time of meal detection

was 3.2 [2.1 – 4.4] units. The total amount of insulin delivered by the artificial

pancreas after meal detection to 5 hours post-lunch was 4.4 [3.3 – 5.2] units.
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Figure 5–3: Glucose and insulin profiles the start lunch without a bolus (time=0 minutes) to 4-hours post-
lunch (time=240 minutes) between all three interventions (n=11). Solid red lines and its shaded area: median
sensor glucose profiles and interquartile range. Solid blue line and its shaded area: median basal insulin
delivery and interquartile range. Red dot: hypoglycemia events. Blue triangle: insulin boluses are indicated
as a boxplot (minimum, first quartile, median, third quartile, and maximum) of the time of the meal detection
and insulin bolus delivery.
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5.5.5 Hypoglycemia and Hyperglycemia Events

The median [IQR] time in hypoglycemia (<3.9mmol/L) was 0% [0 — 0] in all

three arms. There were no hypoglycemia events in AP+MDA or CSII arms, and 1

hypoglycemia event in the AP arm (Table 5–1). There were 5 hyperglycemia events

requiring correction boluses in the CSII arm, 4 events in the AP arm, and 1 event

in the AP+MDA arm (Table 5–1). In the CSII arm, hyperglycemia events occurred

at 1.5h, 1.66h, 2.0h, 2.33h, and 3.0h post meal. In the AP arm, hyperglycemia

events occurred at 1.0h, 1.33h, 2.0h, and 3.0h post meal. In the AP+MDA arm, the

hyperglycemia event occurred at 1.5h post meal. There were no high ketone levels.

5.6 Discussion

This study presents a randomized cross-over clinical trial evaluating the efficacy

of three systems at handling a meal without a bolus in adolescents. Eleven par-

ticipants underwent three 9-hour interventions with their insulin infusion controlled

by (i) conventional pump therapy, (ii) the artificial pancreas alone, and (iii) the ar-

tificial pancreas with a meal detection algorithm. Breakfast was consumed with a

carbohydrate-matched insulin bolus, while lunch was consumed without announce-

ment to the systems. Compared to CSII, the artificial pancreas with a meal detection

algorithm improved glycemic control after a missed bolus meal in adolescents.

Meal detection systems must be designed to detect and deliver insulin quickly

after a meal to decrease postprandial hyperglycemia, but not overdeliver insulin

to cause hypoglycemia. We aimed to test a meal detection algorithm that could

detect meals without announcement and deliver boluses to better control glycemia

postprandially.
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The rate of glucose appearance in the blood from a meal is determined by the

rate at which glucose is emptied from the stomach and absorbed in the intestine, the

amount of extraction by the splanchnic tissues, followed by how much glucose enters

the circulation [14]. A study by Pennant et al. [14] showed that in people with type 1

diabetes that did not receive prandial insulin boluses, the glucose appearance of 25%

of a mixed meal glucose dose was 31.7±3.5 minutes, and 50% of the dose appeared

after 54.1±4.7 minutes. Our meal detection algorithm detected the presence of a

meal in between these times, after 40 [40 – 57.5] minutes.

Postprandial over-delivery of insulin may cause late hypoglycemia [15]. To avoid

this postprandial hypoglycemia, the meal detection algorithm’s bolus was mainly

based on the sensor glucose value at the detection time. This bolus only represented,

on average, 40% of the participant’s usual bolus that would have been delivered at

the start of the meal if it was announced. Furthermore, after detecting the meal and

delivering the bolus, the basal delivery in the AP+MDA intervention became less

aggressive in case of any false positives and to avoid hypoglycemia (Figure 5–3).

Delivering boluses before meals or at mealtime improves postprandial glycemia

compared to postprandial boluses [15, 16]. Nevertheless, adolescents with type 1

diabetes often forget to deliver their insulin boluses on time, or even at all [4]. There

are currently no recommendations regarding postprandial insulin bolusing (>30 min)

(for example, if a person with type 1 diabetes only remembers to bolus >30 minutes

after carbohydrate consumption). In our AP+MDA arm, the amount of additional

insulin delivered by the artificial pancreas after meal detection to 5 hours post-lunch

was 4.4 [3.3 – 5.2] units, which represents 53.9 [35.1 – 66.8] % of the bolus that would
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have been delivered at mealtime. This artificial pancreas with the meal detection

algorithm brought sensor values to 7.3 [5.7 – 8.2] mmol/L 5-hours post-meal. There-

fore, at 45 minutes post-meal, we believe delivering approximately 60% of the full

bolus that one would have received at mealtime may be a safe recommendation for

bringing glucose back into the target range without inducing hypoglycemia.

Our artificial pancreas system makes basal insulin changes every 10 minutes. As

seen by Figure 5–2, 20 minutes before meal detection, the incremental glucose was

-0.15 mmol/L [-0.5 -– 0.1]. Ten minutes before detection, the incremental glucose

from the meal was still only 1.5 mmol/L [0.9 — 1.8], and there was still no meal was

flagged. Incremental glucose levels jump to 2.6 mmol/L [2.4 — 4.8] 10 minutes later,

when the meal was detected. Therefore, if our meal detection algorithm evaluated

sensor values every 5 minutes, it is possible that meal detection and its corresponding

bolus could occur 5 minutes sooner. Further investigation is needed to determine if

this is possible and/or has any clinical significance.

The benefits of AP alone over CSII were not apparent in the study. Participants

received significantly more insulin in the AP and AP+MDA interventions compared

to the CSII intervention (Table 5–1). However, the significant increase in basal

insulin in the AP arm was still not sufficient to improve time in hyperglycemia (>10

mmol/L), 4-hour incremental area under the curve, or time in target (between 3.9

and 10 mmol/L) (Table 5–1, Figure 3). The average time from the start of meal

to hyperglycemia events were between 1.8 and 2 hours in the AP and CSII arms,

demonstrating how the artificial pancreas was not able to delay time to hyperglycemia

compared to CSII following the 55-65g meal. However, glucose values did return to
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target range by the end of the AP intervention (median sensor value at 5 hours post-

lunch: 9.0 [8.0 -– 15.9] mmol/L), as opposed to the CSII intervention (12.1 [11.3 —

17.2] mmol/L).

Similar results regarding the handling of unannounced meals by the artificial

pancreas were observed in Elleri et al.’s study [17] comparing the artificial pancreas

and conventional pump therapy after a 55g meal without a bolus. In their study,

although basal insulin delivery significantly increased after the meal without a bolus

with the artificial pancreas, there was no difference in time in target between interven-

tions, and postprandial hyperglycemia still was not avoided (18). This demonstrates

the limitation of artificial pancreas’ basal increase in response to a missed meal bo-

lus. The improved glycemic outcomes observed in the AP+MDA arm may have been

attributed to the insulin that was delivered sooner as a bolus.

Other studies illustrate the superiority of the artificial pancreas over conven-

tional pump therapy in handling snacks without a bolus [18, 19] or meals with

partial boluses [17, 18]. This suggests that the artificial pancreas’s basal insulin

delivery increase may be sufficient to control glycemia following a small amount of

unannounced carbohydrates, but its success alone has not been shown in handling a

full meal.

Other meal detection algorithms have been tested in simulations and/or using

clinical data sets, achieving similar meal detection times as in this trial [20, 21, 22,

23, 24, 25, 26]. Two other meal detection algorithms have been used in clinical trials

evaluating fully automated systems with no meal announcement [11, 27]. Cameron
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et al. conducted a 30-hour inpatient trial with 10 participants, followed by a 54-

hour hotel study with 15 participants [11]. This study demonstrated early feasibility

for a fully automated system in a type 1 diabetes population with a low-HbA1c,

however, it lacked randomization or a comparator arm. Dovc et al. [27] conducted a

27-h inpatient randomized crossover trial with 20 participants, comparing their fully

closed-loop system with standard and faster insulin aspart. They reported a median

detection time of 38.4 [32.7 — 55.8] minutes in the standard arm and 30.1 [26.9 —

54.6] minutes in the faster arm. Their fully closed-loop system demonstrated safety

but did not achieve the recommended (70% ) time in target. Both studies were not

specifically designed to evaluate the efficacy of the meal detection algorithm.

Our study has several limitations. Firstly, the study was not conducted in a

free-living setting. It is unknown how the algorithm would work in response to non-

standardized mealtimes and exercise, for example. Secondly, the duration of the

study (9 hours) was short. Thirdly, we used manual control to operate the artificial

pancreas systems, but this was unlikely to have affected the glycemic outcomes, as

insulin delivery would have been equivalent if we used an automated system. Finally,

the sample size (11 participants) was small. The strengths include its three-armed

randomized controlled experimental design and that the study was performed in a

population that misses boluses often [4] and during lunch time at school, where they

typically find it difficult to keep focused to remember to bolus [28].

In conclusion, we tested a novel meal detection algorithm for the artificial pan-

creas in a randomized clinical trial in adolescents. The algorithm successfully de-

tected unannounced meals and delivered boluses, leading to a decreased incremental
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area under the curve 0 to 4 hours after the unannounced meal, decreased time in

hyperglycemia, without increasing hypoglycemia, compared to conventional pump

therapy. Longer and larger outpatient free-living clinical trials are warranted to

evaluate the external validity and efficacy of the meal detection algorithm.
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CHAPTER 6

Day-To-Day Insulin Doses Optimization for

People with Type 1 Diabetes on Multiple Daily

Injections Therapy

6.1 Preface

Frequent insulin doses adjustment is key to achieving good glycemic control. In

this chapter, new insulin doses optimization for patients with type 1 diabetes using

multiple daily injections is presented. A new model-based run-to-run control law is

proposed to daily adapt insulin basal dose and carbohydrate ratios. Using a model, a

Bayesian approach is employed to estimate therapy parameters fitting daily records

of glucose, insulin, and meal. The goodness of model-fit and confidence in parameter

estimates are used to drive the run-to-run control law. Simulation results are shown

to demonstrate the algorithm efficacy. Clinical data is used to evaluate the proposed

model and the estimation technique.

6.1.1 Authors Contributions to the Manuscript

The author Anas El Fathi was the primary responsible for the development

of the methods, interpretation of the results, and writing the manuscript. Ahmad

Haidar, Robert E. Kearney, and Benoit Boulet supervised the theoretical devel-

opment. Emilie Palisaitis coordinated the clinical study from which the data was
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obtained. Ahmad Haidar provided editorial input in writing the manuscript, and

provided overall supervision. All authors critically reviewed the manuscript.
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6.2 Abstract

Goal: Multiple daily injections (MDI) therapy is the most common treatment

for type 1 diabetes (T1D). It includes (i) basal insulin doses, often once daily, to

keep glucose levels constant during fasting conditions and (ii) bolus insulin doses

with meals to metabolize their carbohydrates. Optimal insulin dosing is critical to

achieving satisfactory glycemia but is challenging due to inter- and intra-individual

variability. Here, we present a novel iterative algorithm that optimizes insulin doses

using previous-day glucose, insulin, and meal data. Methods: Our algorithm uses

a maximum-a-posteriori method to estimate the parameters of a model describing

the effects of meals and basal-bolus insulin doses on glucose levels. Then, it uses

these parameter estimates, their confidence intervals, and the goodness of fit to

generate new dose recommendations. We assessed our algorithm in three ways.

First, a clinical data set of 150 days (15 participants) was used to evaluate the
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proposed model and the parameter estimation method. Second, a 60-day simulation

was performed to demonstrate the efficacy of the algorithm. Third, a sample 6-day

clinical experiment is presented and discussed. Results: The model fitted the clinical

data well with a root-mean-square-error of 1.75 mmol/L. Simulation results showed

an improvement in the time spent in target (3.9—10 mmol/L) from 64% to 77% and

a decrease in the time spent in hypoglycemia (<3.9 mmol/L) from 8.1% to 3.8%.

The clinical experiment demonstrated the feasibility of the algorithm. Conclusion:

Our algorithm has the potential to improve glycemic control in people with T1D

using MDI. Significance: This work is a step forward towards a decision support

system that improves their quality of life.

Index Terms— Type 1 diabetes, automatic adaptation, Bayesian inference,

multiple daily injections, decision support system, insulin, glucose.

6.3 Introduction

Insulin is a hormone that is secreted by the pancreas to regulate blood glucose

levels, and is absent in people with type 1 diabetes (T1D) due to the autoimmune

destruction of the pancreatic beta cells [1]. T1D is treated with a lifelong inten-

sive insulin-replacement therapy using multiple daily injections (MDI) or continuous

subcutaneous insulin infusion via a portable pump. Intensive insulin therapy is key

to reducing long-term micro- and macrovascular complications caused by sustained

high glucose levels (hyperglycemia). However, most people with T1D do not achieve

acceptable glucose targets, as tight glycemic control is challenging due to fear of low

glucose levels (hypoglycemia) [2, 3].
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MDI therapy consists of a basal-bolus insulin regimen that aims to mimic insulin

secretion patterns in healthy individuals [4, 3]. Basal insulin aims to maintain glucose

levels constant during fasting and overnight, accounting for about 50% of daily insulin

requirements. Basal insulin is delivered in 1-2 doses/day of long- or intermediate-

acting insulin; these insulins are characterized by a slow, often peak-less, absorption

with a duration effect up to 24 hours [5]. Basal insulin requirements may change

depending on a person’s sleep cycle, physical activities, psychological stress, and

growth hormones [6, 7, 8].

Bolus insulin refers to rapid-acting insulin doses given at mealtimes to metab-

olize meal-related glucose appearance in the blood. Insulin boluses are determined

based on the carbohydrate ratios which specifies how many grams of carbohydrate

are metabolized by each unit of insulin. Carbohydrate ratios change depending on

the time of the day, individual’s insulin sensitivity, their eating habits, and their diet

[8]. People with T1D often use 3-4 carbohydrate ratios per day (i.e., one ratio per

main meal).

The basal insulin dose and carbohydrate ratios, collectively referred to as the

MDI therapy parameters, are specific to each individual and are periodically adjusted

to improve overall glycemic control. Advances in glucose monitoring systems have

made it possible for people with T1D and health care professionals to view daily

glucose levels and adjust the MDI therapy parameters. However, this process is

subjective, error-prone, and time-consuming. Moreover, in addition to glucose levels,

one must consider insulin doses, type and amount of meals, and activity levels when
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adjusting the MDI therapy parameters. The aim of this work is to develop a safe,

automatic way to adjust MDI therapy parameters.

Run-to-run (R2R) algorithms are a class of algorithms that exploits the repeti-

tive nature of a process and adjust a control signal iteratively at the end of each run

to achieve a certain objective [9]. The R2R framework is well suited to our prob-

lem since incremental changes in MDI therapy parameters can be made based on

daily observation of glucose profiles. This approach has been proposed for automatic

daily adjustment of insulin doses, although most of the research has been focused

on insulin pump users [10, 11, 12]. R2R framework was first clinically evaluated

by Palerm et al. [13]. In their trial, the R2R gain was tuned to match clinically

determined insulin boluses in 11 adult participants. This algorithm was expanded

to adjust basal insulin for pump users [14], and was utilized in other clinical trials

involving closed-loop insulin delivery systems (artificial pancreas) [15, 16]. Herrero

et al. augmented the R2R framework with case-based reasoning, an artificial intel-

ligence technique that solves newly encountered problems by applying the solutions

learned from solving previous similar situations [17]. Their algorithm was evaluated

in a 6-week study in 10 adults using MDI therapy. The system was safe and a trend

in decreasing post-meal hypoglycemia was observed [18]. The same algorithm was

also extended for basal insulin adjustments [19]. Another technique was developed

by Patek et al. [20] relying on estimating glucose fluxes from individual glucose data,

then retrospectively simulating the glucose trace under different insulin treatment

profiles to select the optimal profile. This algorithm was incorporated in an insulin

advisory system and was evaluated in a randomized clinical study [21]. In their
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study, glucose variability was reduced in 24 adults using insulin pump or MDI; other

glycemic outcomes were unchanged.

This paper proposes a new R2R approach for adjusting MDI therapy parameters.

This approach uses a model that relates MDI therapy parameters to daily records

of glucose, insulin, and meals. MDI therapy parameters are estimated in addition

to other individual-specific physiological parameters using a Bayesian framework

adopting the Markov Chain Monte Carlo method. The goodness of fit and confidence

in parameter estimates are used to drive the R2R control law. This algorithm was

utilized in an 11-day clinical study that investigated the non-inferiority of day-to-day

automatic adjustments of MDI therapy parameter compared to day-to-day physician

adjustments (identifier: NCT03764280 at clinicaltrials.gov). Clinical data from this

study is used to assess the ability of the model to fit real-life glucose patterns. In

addition, we provide simulation results comparing our R2R update rule to a baseline

R2R update rule. Finally, we present a 6-day fit and insulin doses adjustment in one

of the participants of the clinical study.

6.4 Methods

In this section, we present our MDI therapy optimization algorithm. First, we

present the R2R update rule. Second, we present the model used for parameter

estimation. Third, we present the parameter estimation method. Finally, we present

the approach used to validate the MDI therapy optimization algorithm.

6.4.1 Summary of Day-to-Day Optimization Algorithm

In MDI therapy, insulin doses are determined by the therapy parameters: daily

basal dose B (U) and carbohydrate ratios CR (g/U). Let Xd be a therapy parameter
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used on day d. Let X̂d be a random variable describing the unknown optimal ther-

apy parameter on day d, and P
(
X̂d|Dd

)
be the probability density function of X̂d

conditioned on the observed data Dd. The data set, Dd = {Y1:N , U1:N} , is observed

each day and consists of measured glucose levels Y1:N = {y1, . . . , yN} and inputs

U1:N = {U1, . . . , UN} comprising the insulin basal dose Uba, the insulin boluses Ubo,

and the meals Um. Every day, a new MDI therapy parameter (Xd+1) is determined

as:

Xd+1 = Xd + φ
(
η
(
E
[
X̂d

]
−Xd

))
(6.1)

where E
[
X̂d

]
is the expected value of X̂d , η is a coefficient between 0 and 1,

and φ (.) is a function defined as:

φ (x) =



0 |x|< δxmin

x

|x|
δxmax |x|≥ δxmax

x otherwise

(6.2)

where δxmin and δxmax are the minimum and maximum changes allowed for

parameter x, respectively.

The coefficient η can be regarded as a learning rate of the update rule in (1).

This coefficient depends on (i) the reliability of the MDI therapy parameter estimates

and (ii) the quality of the data Dd. The greater the confidence in the estimate, the

larger the value of η should be. When η = 1, the new therapy parameter in day
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d+ 1 is set to E
[
X̂d

]
. When η = 0, the therapy parameter is kept unchanged. The

details of how η s calculated are described in Section 6.4.4.1.

6.4.2 Glucoregulatory Model for People on MDI Therapy

To find P
(
X̂d|Dd

)
using a maximum-a-posteriori method, we use a model that

relates the MDI therapy parameters to interstitial glucose measurements ( Gm) This

model (Fig. 1) is a modified minimal model with three inputs: consumed meals (

Um), insulin bolus doses ( Ubo), and insulin basal dose ( Uba) [22]. All model inputs

are considered Dirac functions. A full description of model symbols is presented in

TABLE 6–1.

Table 6–1: Model inputs and parameters

Symbol Description Unit

Uba Insulin basal dose Units (U)

Ubo Insulin bolus dose Units (U)

Um Amount of carbohydrates in consumed meal g

Gm Sensor glucose mmol/L

B Optimal basal insulin dose Units (U)

CR Optimal carbohydrate ratio g/U

Sbai Basal insulin sensitivity mmol/L/U

τi Time-to-peak of insulin action min

Km Carbohydrate sensitivity mmol/L/g

τm Time-to-peak of carbohydrate absorption min

τmax Duration effect of insulin basal dose min

τs Transfer-rate constant between plasma and interstitial glucose. min
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Figure 6–1: Block diagram representing the glucoregulatory system of a person with T1D using MDI therapy
and a glucose sensor. Parameters are defined in TABLE 6–1.
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6.4.2.1 Meals effect on Glucose

The rate of meal glucose appearance Ra (t) (mmol/L/min) in the blood after an

ingested meal Um is described by the two-compartment model [23]:

Ra (t) = Km
Um
τ 2
m

te
−
t

τm (6.3)

6.4.2.2 Bolus Insulin Dose Effect on Glucose

The rate of insulin appearance in the blood Ibop (t) (U/min) after an insulin bolus

dose Ubo is described by the two-compartment model:

Ibop (t) =
Ubo
τ 2
i

te
−
t

τi (6.4)

At mealtimes, people with T1D deliver an insulin bolus dose proportional to

the carbohydrates in the meal. The changes in post-meal plasma glucose levels are

determined by the combined action of the insulin bolus and meal glucose as follows:

dGp (t)

dt
= −Sboi Ibop (t) +Ra (t) (6.5)

where Sboi (mmol/L/U) is the bolus insulin sensitivity. The solution of (5) is:

Gp (t) = Gp (0)− Sboi

1− e
−
t

τi − t

τi
e
−
t

τi

Ubo +Km

1− e
−
t

τm − t

τm
e
−
t

τm

Um

(6.6)

The optimal carbohydrate ratio (i.e., CR) is the ratio that leads to glucose levels

eventually returning to their pre-meal glucose values. That is, limt→∞Gp (t) = G (0)
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, after a bolus Ubo =
Umeal
CR

is taken. In 6.6, the unique carbohydrate ratio that

satisfies this condition is:

CR =
Sboi
Km

(6.7)

6.4.2.3 Basal Insulin Dose Effect on Glucose

Long-acting insulin doses result in a slow, sustained release of insulin into the

blood circulation [24]. Models describing the pharmacokinetics of long-acting insulins

exist in the literature [25, 26]. However, rather than modelling the pharmacokinetics

of long-acting insulin, we modelled the effect of the quantity Uba − B on glucose

changes, where Uba is the injected basal insulin dose, and B is the unknown optimal

basal dose that would maintain glucose level constant during fasting conditions [27].

Delivering insulin more than the optimal dose would lead to continuously decreasing

glucose level, while delivering a dose below the optimal dose would lead to contin-

uously increasing glucose levels. This motivates the following simple model for the

basal pathway:

dGp (t)

dt
= −Sbai

(
Ibap (t)− Ip0 (t)

)
(6.8)

where Ibap (t) (U/min) is the rate of insulin appearance into the blood circulation

due to basal dose Uba, Ip0 (t) (U/min) is the rate of insulin appearance into the blood

that is needed to keep glucose levels steady and which results from the optimal basal

dose B. The rate of insulin appearance
(
Ibap (t)

)
into the blood circulation due to
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a long-acting insulin dose Uba can be described by the following trapezoid equation

[24]:

Ibap (t) =



1−
(
t

τ i
+ 1

)
e
−
t

τi

 Uba
τmax

t < τmax(1 +
t− τmax

τi

)
e
−
t− τmax

τi −
(
t

τ i
+ 1

)
e
−
t

τi

 Uba
τmax

t ≥ τmax

(6.9)

The value of the time constant τi in (9) is assumed to be equal to the time

constant in (4). In fact, both rapid- and long-acting insulin take approximately the

same time to achieve maximum effect, with the difference that rapid-acting insulin

action peaks at this time, while long-acting insulin plateaus after this time for a

duration τmax [24]. The duration τmaxis set to be one day, i.e., τmax = 1440 min.

Equation (9) assumes that basal doses are always separated by the same time τmax

. Ip0 (t) can be determined from (9) by replacing Uba by B.

The solution of (8) for t < τmax is:

Gp (t) = Gp (0)− Sbai (Uba −B)

t− 2τi
τmax

+
t+ 2τi
τmax

e
−
t

τi

 (6.10)

Equation (10) demonstrates that glucose levels will remain constant after a basal

dose Uba if it is equal to B, that is, the basal dose is optimal. Equation (10) also shows

that an extra 1 unit of the long-acting insulin ( Uba −B = 1U) will decrease glucose

level by Sbai mmol/L after the insulin dose is completely absorbed at t = τmax � τi.
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6.4.2.4 Glucose Sensor Model

Glucose monitoring systems measure interstitial glucose concentrations Gi (t)

(mmol/L), which can be related to plasma glucose concentrations Gp (t) through a

diffusion model [28]:

d

dt
Gi (t) = − 1

τs
Gi (t) +

1

τs
Gp (t) (6.11)

Since it is not possible to estimate τs without directly measuring plasma glucose,

we fix this value to τs = 10 min [29]. The measured glucose is subjected to a sensor

noise ε (t). The noise is assumed to be additive and non-white, as follows:

Gm (t) = Gi (t) + ε (t) = Gi (t) + h (t) ∗ e (t) (6.12)

where e (t) is a white noise with zero mean and variance σ2, and “∗” denotes the

convolution operator. The process h (t) is approximated in discrete time (t = k∆t)

as a zero-mean, autoregressive model of order one [30]:

εk+1 = αεk + ek; 0 ≤ α < 1 (6.13)

6.4.3 Parameters Estimation

6.4.3.1 Model Parameters and Initial Conditions

The transfer function model linking the inputs Uba, Ubo, and Um to the interstitial

glucose concentration is given by:

181



Gi (s) =
1

τss+ 1

1

s

 KmUm

(τms+ 1)2 −
CRKmUbo

(τis+ 1)2 −
Sbai

Uba −B
τmax

s (τis+ 1)2

 (6.14)

Parameters τs = 10 and τmax = 1440 are assumed to be constant, parameters B,

Sbai , τi and Km are estimated daily, and parameters CR and τm are estimated for each

main meal. The sensor noise is modeled by α and σ, both parameters are estimated

daily. In the following, we use p to denote the vector of parameter estimates. Initial

conditions are estimated for the first day. For subsequent days, the last state of the

previous day is used as initial conditions.

6.4.3.2 Maximum-a-posteriori Estimation

Using daily observed data Dd = {Y1:N , U1:N}, we can estimate the vector of

parameter estimates p (which includes the desired MDI therapy parameters). We

use a statistical approach and assume that p is a random vector with probability

distribution functions (PDF) denoted by P (p). At the end of each day, the posterior

(or updated) PDF of the parameters p given data Dd (denoted by P (p|Y1:N , U1:N))

is related by Bayes’ rule to the likelihood function P (Y1:N |U1:N , p) and the prior

probability distribution P (p). The maximum a posteriori (MAP) estimate of p

(denoted by p∗) is the value for which P (p|Y1:N , U1:N) attains its maximum

p∗ = arg max
p

P (p|Y1:N , U1:N) ⇔ p∗ = arg max
p

P (Y1:N |U1:N , p)P (p) (6.15)
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The prior distributions P (p) aid with finding the best posterior estimates, but

also mitigate against non-identifiability and makes it unlikely to attain non-physiological

parameter estimates. However, in practice, non-physiological estimates may still be

attained if the data is pushing strongly for non-physiologic values. Therefore, con-

straints were incorporated in (15) to ensure that p∗ attains physiologically-plausible

values. Hence, p∗ is obtained by solving the optimization problem (see Appendix

6.8.1):

p∗ = arg min
p∈S

J (p) +Q (p) , (6.16)

J (p) =
1

2σ2
‖Rα

(
Y1:N − Ŷ1:N

)
‖2+N log σ − 1

2
log
(
1− α2

)
(6.17)

Q (p) =
1

2
‖W−1 (p− p0) ‖2+tr (logW ) (6.18)

where S is the domain of physiologically-plausible parameter values defined by

the set of constraints in TABLE 6–2, Rα is the inverse of the upper Cholesky decom-

position of the noise covariance matrix (see Appendix 6.8.1), Ŷ1:N = {ŷ1, . . . , ŷN} is

the glucose predictions obtained by solving (14), p is derived from p by replacing

log-normally distributed parameters by their logarithms, W is the upper Cholesky

decomposition of the covariance matrix of the prior distribution of p, and p0 is the

mean of the prior distribution of p. The mean and the covariance (diagonal) ma-

trix of p can be derived from the prior distributions in TABLE 6–2. The mean of

the prior distributions of MDI therapy parameters is set to the values used in the

previous day.
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Constraints on CR and Sbai were derived from the formulas given by Walsh

et al. for optimal carbohydrate ratio and basal insulin [8]. Constraints and prior

distributions for τi and τm are derived from the literature [31, 32]. Constraints are

applied to the bolus insulin sensitivity Sboi = KmCR to make it smaller than the

basal insulin sensitivity Sbai [33]. This enforces that insulin sensitivity decreases at

high plasma insulin concentrations following insulin boluses, as endogenous glucose

production is suppressed.

An analytical solution for the optimization problem (16) can be obtained by

differentiating the inverse Laplace function of (14). However, this is overly complex

due to the nonlinear dependency of the temporal solution ( Y1:N) on p and due to the

constraints in (16). In gradient descent optimization, gradients (and Hessians) are

approximated locally and are employed to iteratively converge towards a solution of

the optimization problem. Yet, for non-convex problems, convergence is usually slow

and a global optimum is not guaranteed [34]. Monte-Carlo Markov Chain (MCMC)

sampling is a method where samples are drawn following a proposal distribution, then

discarded while favoring samples closer to the optimum solution. MCMC has been

used in the literature to solve similar problems [35, 36], yet, convergence is attained

only after exploring most of the space of possible parameter values which comes with

an undesirable computational time. We employed a method alternating between both

gradient descent optimization and MCMC sampling. First, a Metropolis-Hasting

routine explores the parameters space and constructs a sample pool around the

current best solution. This is done to enable jumps in the parameters space unrelated

to the gradient descent. Second, the sampling is halted, and multiple gradient descent
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Table 6–2: Prior distributions of model parameters p. N (µ, σ2) denotes the normal
distribution with mean µ and variance σ2. N log(µlog, σlog2) denotes the log-normal
distribution where µlog and σlog2 are means and variance of the logarithmic values of
the parameter.

Parameter de-
scription

Distribution Constraints

B Optimal insulin
basal dose

B ∼ N
(
Uba, (0.1Uba)

2) Uba is the basal
insulin used in a day.

B ∈
[0.25, 0.75]TDD.

CR Optimal car-
bohydrate ratio

CR ∼ N
(
CR0, (0.2CR0)2) . CR0 is the

carbohydrate ratio used for a meal
CR ∈ [2, 50] ;

Sbai Insulin sensi-
tivity

Sbai ∼ N log

(
log

(
110

TDD

)
, 0.005

)
Sbai ∈ [0.8, 1.3]

110

TDD
∩ [0.9, 2.5]KmCR

τi Time-to-peak
of insulin action

τi ∼ N log (log (70) , 0.01) τi ∈ [45, 105]

Km Carbohydrate
sensitivity

Km ∼ N log

(
log

(
15

w

)
, 0.03

)
, where

w is the weight.

Km ∈ [0.5, 2.0]
15

w

τm Time-to-peak
of carbohydrate
absorption

τm ∼ N log (log (40) , 0.02) τm ∈ [15, 65]

σ noise standard
deviation

σ ∼ N log (−1, 0.05) log (σ) ∈ [−3, 1]

α noise autocorre-
lation

α ∼ N (0.8, 0.05) α ∈ [0.45, 0.95]

optimization are carried on starting from randomly selected samples from the sample

pool. This is done to benefit from the local convexity of (16) in some regions of the

parameters space. Robustness assessment of this algorithm showed its reproducibility

in different runs and with different sampling realizations; the coefficient of variation

in parameter estimates from the same dataset was 0.01% between runs (data not
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shown). A summary description of the optimization method is presented in Appendix

6.8.1.

After convergence, we achieve the solution of (16) and a pool of samples around

this solution. The pool of samples is used to approximate the expectation and the

uncertainty of the MAP estimate p∗. Since MDI therapy parameters Xd are a subset

of the estimated parameters p, we also obtain E
[
X̂d

]
.

6.4.4 Day-to-Day Optimization Algorithm

6.4.4.1 Run-to-run Learning Rate

Recall that, from (1), an MDI therapy parameter in day d + 1 is obtained

using the mean sample E
[
X̂d

]
(retrieved from the model fitting procedure) and the

coefficient η. The coefficient η can be regarded as the learning rate of the update rule

in 6.1, and it describes our confidence in the parameter estimates. The confidence

in the parameter estimates is explained by:

i The coefficient of variation (CV ) of the MDI therapy parameter estimate (X̂d)

expressed as:

CV =

√
E
[(
X̂d − E

[
X̂d

])2
]

E
[
X̂d

] (6.19)

ii The local mean absolute error (MAE) of the difference between the observed

glucose levels and the predicted glucose resulting from the fit:

MAE =
1

L

M+L−1∑
k=M

|yk − ŷk| (6.20)
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where L is a time window, and M is a time characterizing the therapy param-

eter Xd. For instance, errors in glucose predictions after a meal are used to

compute a local MAE for the carbohydrate ratio used for the meal.

The coefficient η combines CV and MAE as:

η =
1

1 +
MAE

MAEhalf

· 1

1 +
CV

CVhalf

(6.21)

where MAEhalf and CVhalf are tuning parameters. These values set the aggres-

siveness of the algorithm. We use MAEhalf = 1.5 mmol/L for all therapy parameters,

CVhalf = 0.03 for basal insulin, and CVhalf = 0.05 for carbohydrate ratios. These

parameters were tuned using preliminary clinical testing in diabetes camp settings.

As a final step, the new recommendations (Xd+1) are subjected to other safety

rules to prevent the algorithm from making unsafe recommendations. For example, if

one had hypoglycemia after the lunch meal, a rule prevents recommending a smaller

carbohydrate ratio (i.e., more insulin) for the lunch meal.

6.4.4.2 Accounting for Day-to-day Variability

Our method naturally accounts for inter-day variability. Even though the model

structure is fixed, the method fits each day separately, which can result in different

therapy parameters each day, accommodating inter-day variability. Therapy param-

eters update can be made every several days using running averages of the parameter

estimates [37]. The number of days over which the averages are taken is denoted as

Pd.
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6.4.5 Method Validation

The insulin dose optimization algorithm is composed of two steps: a parameters

estimation step and a dose recommendation step. The parameter estimation step was

evaluated using clinical data to validate (i) the ability of the model to fit complex real

data, and (ii) the physiological plausibility of the estimated parameters. The dosing

recommendation step was evaluated using 30-day simulations on 100 virtual patients

(VP) and compared to a baseline R2R algorithm. Furthermore, data from a 6-day

clinical experiment in adolescent patients was used to demonstrate the feasibility of

our algorithm.

6.4.5.1 Baseline R2R Algorithm

Results from the R2R algorithm proposed by Toffanin et al [38] have been re-

produced for comparison purposes. This algorithm was designed for a closed-loop

system implemented with insulin pumps. We modified the algorithm to be suited

for MDI therapy by assuming one basal dose and three carbohydrate ratios. The

algorithm gains were kept the same as the ones published. This R2R algorithm only

uses glucose information and the time of the insulin boluses.

6.4.5.2 Simulation Environment

A simulation environment was used for algorithm assessment. This simulation

environment implemented VP based on Hovorka’s model [39]. Model parameters

were sampled from a prior log-normal distribution with a mean taken from Wilin-

ska et al. and between-parameter correlations from healthy individual data [40, 39].

Day-to-day glucose variability was implemented by making parameters oscillate pe-

riodically, with a random frequency and phase for each day as described in [39], and
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by adding daily random glucose and insulin fluxes representing unexplained changes

in plasma glucose and plasma insulin [36]. Variability in meal absorption was imple-

mented by modeling slow and fast carbohydrate absorption rates, and by varying the

time-to-peak of carbohydrate absorption for each meal [36]. The simulation includes

noise in glucose measurements with a coefficient of variation of 7% and a correlation

of 80% [30]. Random carbohydrate counting errors with a coefficient of variation of

20% were included.

Each VP possessed unique optimal basal dose and carbohydrate ratio. The

optimal basal dose was computed from the differential equations by assuming that it

will keep glucose levels constant during fasting conditions. The optimal carbohydrate

ratio was determined as the value which results in 8-hour post-meal glucose levels

returning to pre-meal values.

This simulation environment was validated by reproducing similar glucose out-

comes from a clinical experiment (see Appendix 6.8.2). An open-access version

is available at https://github.com/McGillDiabetesLab/artificial-pancreas-simulator

under MIT license.

6.4.5.3 Clinical Data

Clinical data of 150 days (10 days × 15 participant) was used for validation.

The data was collected from 15 adolescents, including 8 females, in a diabetes camp:

age 12.5 (SD, 3.7), TDD 0.8 U/Kg (SD, 0.3), and HbA1c 8.7% (SD, 1.9). Each par-

ticipant wore a Freestyle Libre glucose sensor (Abbott Diabetes Care). The Freestyle

Libre is a glucose monitoring system that provides a value of interstitial glucose ev-

ery 15 min. Participants had three main meals every day, whose content changed
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between days and between participants. Physical activities were common through-

out the camp, and snacks were permitted and not accompanied by insulin boluses.

Treated hypoglycemia events and the amount of carbohydrates used for hypoglycemia

treatments were recorded. The clinical data was characterized by a mean glucose

level of 11.2 mmol/L (SD, 3.1) and a coefficient of variation of 38% (SD, 12). The

trial was registered at clinicaltrials.gov with identifier NCT03764280.

6.4.5.4 Model Fit Assessment

The goodness of the model fit was assessed by analysis of residuals. Weighted

residuals (WR) are defined at each time k as the ratio between the residuals and

estimated noise standard deviation:

WRk =
yk − ŷk
σ

(6.22)

The proportion of variance explained (PVE) is defined by comparing the sum

of squared residuals to the data variance:

PV E = 1−
∑N

k=1 (yk − ŷk)2∑N
k=1 (yk − ȳ)2

; ȳ =
1

N

∑N
k=1 yk (6.23)

Root-mean-squared-error (RMSE) is defined as:

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2 (6.24)

Runs test were performed to ascertain the randomness of residuals. Results are

reported as median and interquartile range (IQR) or mean and standard deviation

(SD).
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Figure 6–2: Median and interquartile range of weighted residuals of the model fit to
clinical data consisting of 150 days (10 days x 15 participants).

6.5 Results

6.5.1 Assessment of Parameter Estimates using Clinical Data

A fit was performed to the 150 days of clinical data in 15 individuals using MDI

therapy, and model parameters were estimated. The data consisted of measured

glucose, delivered insulin doses, ingested meals (only main meals, snacks were not

provided to the algorithm), and hypoglycemia treatments. Parameters for each day

were estimated separately; however, data set of each individual (10 days) was fitted

consecutively, such as the last state of the previous day is used as an initial condition

for the following day.

Fig. 6–3 shows the median and interquartile range of the weighted residuals.

Overall, the obtained residuals confirm that the proposed model provides enough
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flexibility to accommodate complex real-life glucose patterns. All residuals passed

the Runs test for randomness. The bias in the weighted residuals was -0.06 (IQR,

-0.15–0.06), and the corresponding RMSE was 1.75 mmol/L (SD, 0.8). During the

night, the RMSE was 1.26 mmol/L (SD, 0.94), while during the day, it was 1.9

mmol/L (SD, 0.85). The PVE was 77.3% (IQR, 64.6–87.7). The weighted residuals

increased at mealtimes (8:00, 12:00, and 18:00). This might be caused by two rea-

sons. First, the algorithm assumed that the meals were eaten instantaneously, while,

in reality, participants spent time collecting and eating their meals, occasionally mul-

tiple times, while participating in various activities. Second, participants had snacks

after meals, which were not entered into the algorithm.
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Figure 6–3: MAP estimate performed on clinical data consisting of 150 days (10 days × 15 participants).
Parameters for each participant are represented by the blue horizontal box plots. Basal insulin is presented as
a percentage of the patients’ TDD. Insulin sensitivity (Si) and carbohydrate sensitivity (Km) are normalized
by multiplying by patients’ TDD and weight, respectively.
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Fig. 6–2 shows the parameter estimates for the 15 participants over 10 days.

Each participant’s parameters are presented as a boxplot showing intra-individual

variability between days. Coefficient of variation of all estimated parameters (n

= 1492) was 4.5% (IQR, 2.8–7.0); the maximum coefficient of variation was 63%.

Parameter estimates were all physiologically plausible. The average estimated car-

bohydrate ratio was 10.8 g/U (IQR, 6.8–15.2). Breakfast carbohydrate ratio was

9.1 g/U (IQR, 6.3–13.9) with a coefficient of variation between days of 37 % (IQR,

28–44). Lunch carbohydrate ratio was 10.5 g/U (IQR, 7.0–14.9), with a coefficient

of variation between days of 53 % (IQR, 44–69). Dinner carbohydrate ratio was

12.7 g/U (IQR, 6.9–17.6) with a coefficient of variation between days of 53 % (IQR,

42–55). The observed variations in estimated carbohydrate ratios between days can

be explained by differences in fat and protein contents between meals [41], as well as

differences in physical activities and snacks after the meals [42]. Basal insulin repre-

sented 35% (IQR, 27–43) of total daily insulin dose. In absolute value, basal insulin

was 11.0 U (IQR, 7.5–18.0). Insulin sensitivity was 4.4 mmol/L/U (SD, 2.5) with

a coefficient of variation between days of 28% (IQR, 23–31). In order to evaluate

the effect of the hard constraints on the parameter estimates, we re-fit the clinical

data without constraints, and 97.2% of the parameter estimates were within the

constraints (data not shown).

6.5.2 Simulation of Day-to-Day Insulin Doses Optimization

100 VP were created using the simulation environment described in section

6.4.5.2. Each VP consumed three main meals per day. Meals had random amounts

of carbohydrates and were consumed at random times, inside pre-set intervals. For
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instance, lunch was consumed between 11:30 and 13:00, and the amount was between

60 g and 100 g of carbohydrates. Up to two snacks (afternoon and bedtime) were

consumed randomly, and their information was not provided to the algorithm. The

total amount of carbohydrates consumed during a day was restricted to be between

140 g and 280 g. Only the main meals were accompanied by insulin boluses. The

bolus doses were computed using the premeal glucose level and the carbohydrates

that were counted by the VP (values were different from the true values because of

the random carbohydrate counting errors). Patients had one insulin basal dose at

the start of each day (7:00). Outside mealtimes, a correction bolus was delivered if

glucose values stayed above 18 mmol/L for more than one hour. VP had one insulin

basal dose at the start of each day (7:00). They consumed carbohydrate treatment

(values were random around 16g) when blood glucose went below 2.8 mmol/L or

when sensor glucose stayed below 3.9 mmol/L for more than 60 min. Sensor glucose

values were sampled every 15 minutes.

The initial MDI therapy parameters in day 1 were selected to differ by 25–75%

from the optimal MDI therapy parameters and such as the resulting TDD is no

more than 25% of their usual TDD. This simulates the common situations with

suboptimal parameters where insulin boluses are replaced by basal insulin, and vice-

versa. Each day, the algorithm provided new therapy parameters that were applied

in the following day.

Fig. 6–4 shows the changes in glycemic outcomes (daytime, nighttime, and

overall) for 100 VP over 60 days between (i) adjustments with our algorithm every

5 days (Pd = 5) ; (ii) daily adjustments with our algorithm (Pd = 1) ; (iii) daily
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adjustments with the baseline R2R algorithm; (iv) no adjustment. The same VP

underwent the four arms, and, for each VP, daily variabilities and meals were the

same between arms. Glycemic outcomes (time in target (3.9–10 mmol/L) and time in

hypoglycemia (<3.9 mmol/L)) were computed over the last 10 days of the simulation.
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Figure 6–4: Time in target and time in hypoglycemia for 100 VP in 60-day simulations of daily therapy
parameters adjustments using our algorithm, baseline run-to-run algorithm, or no adjustments. Data point
represent mean values for 100 VP. Error bars represent the 95% confidence interval, where the length of each
bar is (n=100) multiplied by the standard deviation.
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Figure 6–5: Daily percentage error in therapy parameters. Errors are calculated as a percentage difference
from optimal parameter. Hard line represents the median values, and patch represents the 25%-75% percentile
of parameter errors.
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Compared to no adjustments, the overall glycemic outcomes in the last 10 days

of the 60-day experiment were improved with our algorithm of Pd = 5 (time in target

increased from 64.2% (SD, 13.8) to 77.0% (SD, 8.8, p<0.01); time in hypoglycemia

decreased from 8.1% (SD, 5.0) to 3.8% (SD, 1.7, p<0.01)). This performance was

also superior compared to the same algorithm with daily (Pd = 1) adjustments (time

in target 74.8% (SD, 9,3, p<0.01); time in hypoglycemia 4.7% (SD, 1.8, p<0.01)),

and compared to the baseline R2R (Pd = 1) (time in target 75.0% (SD, 8.2, p<0.01);

time in hypoglycemia 4.9% (SD, 2.4, p<0.01)). The additional improvement with

our algorithm of Pd = 5 compared to Pd = 1 towards the end of the simulations

is likely driven by that when the algorithm of Pd = 1 converges closer to the true

parameters it starts reacting to noise (day-to-day variability).

With Pd = 1 our method achieved significantly lower nocturnal hypoglycemia

compared to the baseline R2R method (5.4% (SD, 3.1) vs 8.1% (SD, 4.7), p<0.01)).

Even though both methods eventually converged to comparable overall time in target,

our method converged much faster. This is advantageous in situations where insulin

sensitivity changes rapidly such as during pregnancy or starting/stopping regular

exercise.

Fig. 6–5 Shows the daily errors in the MDI therapy parameters estimates, de-

fined as 100
(Xd −Xopt)

Xopt
, where Xopt is the optimal therapy parameter and Xd is

the daily parameter. Positive and negative errors, indicating overestimation and un-

derestimation, respectively, of each MDI therapy parameter are grouped together for

better visualization of convergence. Our algorithm was able to reduce the initial error

created in day 1 for the four therapy parameters., while the baseline R2R algorithm
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maintained large errors even after 60 days. Furthermore, with our algorithm, we

observe that both lunch and dinner carbohydrate ratios converged to values smaller

than the theoretical optimal value. This is justified since the VP consumed snacks

in the afternoon and bedtime. Our algorithm successfully adjusted for the extra

carbohydrates by decreasing the carbohydrate ratios.

6.5.3 Clinical Experiment with Day-to-Day Insulin Doses Optimization
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Figure 6–6: (a) Model fit of glucose sensor data for a sample patient. The black circles are sensor measure-
ments. The red solid line represents the model fit. (b) Daily therapy parameters recommendations from the
algorithm. The suggested recommendations were applied each day. CR stands for carbohydrate ratio.
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Fig. 6–6 shows an example of a 6-day optimization on one of the participants in

the clinical experiment. Analysis of day-to-day recommendations can be used to con-

ceptually validate the algorithm’s behavior. Overall, the algorithm recommendations

were logical from day to day:

� Day 1 : A hypoglycemia event occurred after lunch causing the algorithm to

suggest an increase in carbohydrate ratios (decreasing insulin boluses). At

night, a pronounced hypoglycemia event is observed, causing the algorithm to

recommend a decrease in basal insulin.

� Day 2 : Even though there was an increase in carbohydrate ratios compared to

day 1, two post-meal hypoglycemia were still observed after lunch and dinner.

The algorithm recommended a further increase in lunch carbohydrate ratio.

There was no change in basal insulin dose. Overall day 2 was characterized by

an increased time spent in glucose target range.

� Day 3 : Despite delivering less insulin than previous days, there were multi-

ple hypoglycemia events (afternoon and during night) and a pronounced hy-

perglycemia in the middle of the day. The hyperglycemia was caused by an

over-treatment of hypoglycemia, and the following hypoglycemia might have

been caused by an over-correction of hyperglycemia. Based on day 3 data, the

algorithm recommended further decrease in insulin doses.

� Day 4 to 6 : There were fewer hypoglycemia events but there was hyperglycemia

after lunch and dinner. The algorithm slowly increased insulin doses after lunch

and dinner by decreasing their carbohydrate ratios. Because of the decreasing
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trend of glucose levels during the nights, the algorithm did not increase the

basal insulin dose, even if they spent most of the night in hyperglycemia.

6.6 Discussion

People with T1D live with life-long burden of making important decisions about

their daily insulin doses. Therefore, an effective decision support system could con-

tribute to improving their quality of life. The proposed algorithm is a step forward

towards developing a decision support system for people with T1D using MDI ther-

apy.

Our approach utilizes an R2R update rule, yet, it stands out by that it combines

glucose data with insulin and meal data via a model to guide the run-to-run algo-

rithm. The model is characterized by (i) the separation of the basal and bolus insulin

effects on glucose and (ii) the different sensitivities of insulin boluses for each meal.

This provides a way to model (i) different carbohydrate ratios depending on the time

of the meal [43], and (ii) variations in insulin sensitivity depending on the state of

fasting or postprandial [33]. Our results showed that this model fit real-world data

with different carbohydrate ratios while estimating insulin sensitivity for the basal

insulin.

Through the model structure, the basal insulin dose ensures stable glucose during

fasting conditions (Equation (10)) while the optimal carbohydrate ratios ensure that

glucose levels return to their premeal values after 4-5 hours (Equation (6)). This

model structure imposes the application of known guidelines for adjusting insulin

doses [8]. For example, when glucose levels are high throughout the night but stable,

equation (6) will impose a change in the dinner bolus dose by changing the optimal
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carbohydrate ratio estimate instead of changing the basal dose (note that equation

(10) imposes a change in basal insulin if glucose levels are increasing, not if they

are high). Even though it is possible to correct high glucose levels by increasing the

basal dose, the risk of hypoglycemia will increase for nights where glucose is stable

but at normal levels.

In an ideal system-identification experiment, parameters should be identified us-

ing uncorrelated inputs. In our case, this can be achieved by exciting only one model

channel at a time (meal, bolus, or basal channels) (Fig. 6–1). Since this is rarely the

case in real life, we applied the following measures to cope with this identifiability

problem: (i) the use of prior distributions to regulate parameter estimates, and (ii)

the use of parameter sensitivities in the update rules of the MDI therapy parameters.

The convergence of the algorithm in simulation validates the efficacy of these mea-

sures. We also choose to employ truncated prior distributions to guaranty that the

posterior distribution is bounded, yet, these constraints were chosen large enough to

let the data drive the parameter estimates. This is supported by the ability to fit

real-world data.

Since we aimed to use insulin, meal, and glucose data in our method, as op-

posed to only glucose data, we needed to rely on a model. However, due to the

complexity of the parameter estimation method, we used a simplified model to make

implementation feasible. To assess the appropriateness of our model, we fit it with

clinical data of multiple days in different individuals. The model was able to fit the

data well while estimating physiologically plausible parameters with good precision.

Moreover, if on a specific day the model’s goodness of fit is poor (indicator of model
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under-parametrization or unknown events, such as physical activities or non-recorded

meals), or if we observe high uncertainty in the parameters’ estimate (indicator of

model over-parametrization), we prevent the algorithm from recommending large

therapy changes (equation (22)), making our method robust to model inaccuracy.

Effectively, the use of an adaptive R2R gain (learning rate) is key in the proposed

algorithm.

Our simulations were designed to challenge our model-based algorithm by (i)

providing wrong inputs to the model, mainly not entering the two daily snacks and

simulating carbohydrate counting errors, (ii) simulating random glucose, meal, and

insulin fluxes that our model is unable to explain [36]. These challenges led to an

increased coefficient of variation of the parameter estimates and worsening of the

model fit. Despite these challenging simulations, we observed an improvement in the

time spent in target and the time spent in hypoglycemia. Regardless, this simulation

environment does not consider all perturbations and variabilities which precludes the

generalization of these results.

In the baseline R2R, each therapy parameter is updated to optimize a specific

aggregate glycemic outcome (e.g., time spent in hypoglycemia after lunch, or aver-

age nocturnal glucose level [38]). However, each parameter is updated independently

and the method does not consider the correlations between the effects of changing

the basal insulin dose and the carbohydrate ratios, which can prevent converge to

the true parameters in situations where errors in both the basal insulin dose and

the carbohydrate ratios are positive (Fig. 6–5). This may explain the persist noc-

turnal hypoglycemia with the baseline R2R (Fig. 6–4). Our method, on the other
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hand, changes all therapy parameters simultaneously and considers the correlations

between their effects. This is possible since we use model fitting to estimate all pa-

rameters simultaneously using all available data (e.g., an increase in the basal insulin

parameter estimate due to nocturnal hyperglycemia will also be reflected in daytime

model predictions, which would in turn affect the estimate of daytime carbohydrate

ratios). This may explain the convergence of our parameters (Fig. 6–5).

In simulation, day-to-day variability due to unusual days of sickness, high stress,

or large carbohydrate counting errors may result in small oscillations in the MDI

therapy parameters recommendations. This issue was handled by averaging recom-

mendations from multiple days. In simulations, we choose Pd = 5, but in real-life

this value should be at least 7 days to consider differences between the 7 days of the

week.

In principle, our algorithm can be used to optimize therapy parameters for pump

users. However, the identifiability issue becomes more apparent in the estimation

process of pump therapy parameters compared to MDI therapy parameters. This

is because pump users adjust multiple basal insulin values during the day with the

aim of accommodating diurnal insulin sensitivity changes. This is a limiting factor,

from an estimation problem point of view [44], since multiple model parameters

would affect the same part of the day (for example, lunch carbohydrate ratio and

afternoon basal rate). For closed-loop insulin delivery systems (artificial pancreas

systems) where insulin delivery is automatically adjusted around usual basal rates,

adjusting only one average basal rate (implemented throughout the day) might solve

this identifiability issue [45].
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6.7 Conclusion

We presented a novel algorithm that adjusts MDI therapy parameters for people

with T1D. Our approach consists of using previous day’s glucose levels, injected

insulin, and consumed meals to estimate the MDI therapy parameters from a model.

The estimated MDI therapy parameters, their confidence interval, and the goodness

of model fit are used to generate new recommendations for the next day. The model

fitted well clinical data from 15 participants with physiologically plausible model

parameters. Simulation results show the effectiveness of the algorithm in improving

glucose control. A sample 6-day clinical experiment demonstrated the feasibility of

the algorithm.

6.8 Appendix

6.8.1 Maximum a Posteriori Probability

For a set of N observations Y1:N and system inputs U1:N , we aim to derive the

maximum a posteriori probability function P (p|Y1:N , U1:N),where p is the vector of

system parameters.

We assume that Y1:N = {y1, . . . , yn} results from U1:N = {u1, . . . , un} and the

initial condition y0 as:

yk = fp (y0, u1:k) + εk = ŷk + εk (6.25)

where ŷk is a deterministic prediction of yk based on the model function fp (.),

and εk is a zero mean autoregressive noise governed by the parameters α and σ such

as εk+1 = αεk + ek and ek ∼ N (0, σ2) .

207



Using the chain rule, we have:

P (Y1:N |y0, U1:N , p) = P (y1|y0, U1, p)
N∏
k=2

P (yk|Y1:k−1, y0, U1:k, p)

= P (y1 + ε1|y0, U1, p)
N∏
k=2

P (yk + εk|Y1:k−1, U1:k, p)

= P (ε1|p)
N∏
k=2

P (εk|εk−1, p)

= P (ε1:N |p)

(6.26)

where ε1:N is a vector formed by εk . Since ek is zero mean, we have ε1:N ∼

N (0,Σ). Using E [εk+rεk] =
σ2

1− α2
α|r|, it can de shown that Σ = σ2

(
RT
αRα

)−1
,

with Rα defined as

Rα =



√
1− α2 0 · · · · · · 0

−α 1
. . .

...

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 −α 1



(6.27)

Finally, P (p|Y1:N , U1:N) follows from the Bayes rule:
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P (p|Y1:N , U1:N) ∝ P (Y1:N |y0, U1:N , p)P (p)

∝ P (ε1:N |p)P (p)

(6.28)

where P (p) is the prior probability distribution of p.

6.8.2 Simulation Environment Validation

We validated our simulator by comparing its outcomes with the outcomes of a

clinical trial in 81 individuals on multiple daily injections therapy [46]. In the trial,

2-week glycemic outcomes were reported from a FreeStyle glucose sensor. In this

validation, the errors in basal rates and carbohydrate counting were identical to the

ones used in section 6.5.2.
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Table 6–3: Glycemic outcomes of simulations and real data

Real data (n=81) Simulated data
(n=100)

P value

Time in 3.9–10.0 mmol/L (% ) 65.42 (11.67) 64.64 (13.73) 0.51

Time <3.9 mmol/L (% ) 7.75 (5.67) 8.00 (5.10) 0.65

Time >10.0 mmol/L (% ) 26.67 (12.50) 27.35 (15.82) 0.58

Mean of glucose (mmol/L) 8.20 (1.10) 8.16 (1.42) 0.71

SD of glucose (mmol/L) 3.10 (0.58) 3.11 (0.74) 0.93

1 Results are mean (SD). SD stands for standard deviation.

6.8.3 Algorithm Description

210



Table 6–4: Parameter estimation algorithm

1 Let NT be the t o t a l number o f samples , N be the number o f samples in each
i t e r a t i o n , T (< 1) be the th inn ing c o e f f i c i e n t , and B be the number o f burn=
in samples .

2 Let p be a vec to r parameter ( a sample ) , pi i s an element o f p , J (p) a co s t
func t i on to minimize , and p∗ = argminJ(p) .

3 Let S be the samples pool i n i t i a l i z e d with one i n i t i a l sample p .
4 Set pˆ*=p .
5 While number o f samples < NT

6 . . Enter Metropol i s=Hasting routine
7 . . . . Randomly generate m i n i t i a l samples around p∗ .
8 . . . . For each i n i t i a l sample pm ( p a r a l l e l loop )
9 . . . . . . For i t e r a t o r l e s s than B + N/m/T

10 . . . . . . . . For xi in the sample pm
11 . . . . . . . . . . xi = xi+ a random walk .
12 . . . . . . . . . . Create a new sample pNew

m with changed xi
13 . . . . . . . . . . Compute the acceptance r a t i o α = J(pNew

m )/J(pm)
14 . . . . . . . . . . I f β drawn from the standard uniform d i s t r i b u t i o n i s ≥ logα
15 . . . . . . . . . . . . save new sample pNew

m .
16 . . . . . . Discard the burn=in samples (B) .
17 . . . . Combine the m cha ins .
18 . . . . Down=sample us ing the th inn ing c o e f f i c i e n t (T) .
19 . . . . Add new samples (N) to S
20 . . . . In S , d i s ca rd samples with a co s t f a r from the minimal co s t .
21 . . Set pˆ* to the sample with minimum cos t in S .
22 . . Enter Gradient Descent routine
23 . . . . While convergence c r i t e r i a are not a t ta ined
24 . . . . . . Uniformly choose m sample from S .
25 . . . . . . For each sample pm ( p a r a l l e l loop )
26 . . . . . . . . Run grad i en t descent s t a r t i n g from pm .
27 . . . . . . . . Save sample pNew

m and co s t r e s u l t i n g from grad i en t descent .
28 . . . . . . I f in the new m samples , we achieved a b e t t e r co s t va lue than p∗

29 . . . . . . . . Set new optimum p∗ = pNew
m .

30 . . . . . . . . I f p∗ did not change or co s t func t i on stopped dec r ea s ing
31 . . . . . . . . . . Convergence c r i t e r i o n i s met .
32 Return p∗
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CHAPTER 7

A Pilot Non-Inferiority Randomized

Controlled Trial to Assess Automatic

Adjustments of Insulin Doses in Adolescents

with Type 1 Diabetes on Multiple Daily

Injection Therapy

7.1 Preface

In this chapter, a clinical trial employing the algorithm in chapter 6 is presented.

In this 11-day parallel randomized study in 21 adolescents with type 1 diabetes, we

aimed to demonstrate the non-inferiority of algorithmic adjustments of insulin doses

to adjustments made by a physician. This study was conducted in a diabetes camp,

where one group was following daily recommendations from our algorithm and the

other group was following daily recommendations from the camp physicians.

7.1.1 Authors Contributions to the Manuscript

The author Anas El Fathi was the primary responsible for the development

of the methods, interpretation of the results, and writing the manuscript. Laurent

Legault, Julia E. von Oettingen, and Preetha Krishnamoorthy supervised the clinical
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trial. Emilie Palisaitis coordinated the clinical trial. Ahmad Haidar provided edito-

rial input in writing the manuscript, and provided overall supervision. All authors

critically reviewed the manuscript.
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7.2 Abstract

Background: Multiple daily injections (MDI) therapy for type 1 diabetes in-

volves basal and bolus insulin doses. Non-optimal insulin doses contribute to the lack

of satisfactory glycemic control. We aimed to evaluate the feasibility of an algorithm

that optimizes daily basal and bolus doses using glucose monitoring systems for MDI

therapy users.
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Methods: We performed a pilot, non-inferiority, randomized, parallel study

at a diabetes camp comparing basal-bolus insulin dose adjustments made by camp

physicians (PA) and a learning algorithm (LA), in children and adolescents on MDI

therapy. Participants wore a glucose sensor and underwent 11 days of daily dose

adjustments in either arm. Algorithm adjustments were reviewed and approved by

a physician. The last 7 days were examined for outcomes.

Results: 21 youths (age 13.3 (SD, 3.7) years; 13 females; HbA1c 8.6% (SD,

1.8)) were randomized to either group (LA (n=10) or PA (n=11)). The algorithm

made 293 adjustments with a 92% acceptance rate from the camp physicians. In the

last 7 days, the time in target glucose (3.9–10 mmol/L) in LA (39.5% , SD, 20.7) was

similar to PA (38.4% , SD, 15.6) (p = 0.89). The number of hypoglycemic events per

day in LA (0.3, IQR, [0.1–0.6]) was similar to PA (0.2, IQR, [0.0–0.4]) (p = 0.42).

There was no incidence of severe hypoglycemia nor ketoacidosis.

Conclusions: In this pilot study, glycemic outcomes in the LA group were

similar to the PA group. This algorithm has the potential to facilitate MDI therapy,

and longer and larger studies are warranted.

Keywords: Decision support system, Multiple daily injections, Treatment ad-

justments, Learning algorithm.

7.3 Introduction

In type 1 diabetes (T1D), insulin is lost due to the autoimmune destruction of the

pancreatic beta cells [1]. T1D is treated with lifelong insulin-replacement therapy

using multiple daily injections (MDI) or continuous subcutaneous insulin infusion

via a portable pump. Intensive insulin therapy aiming at tight glucose control is key
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to reducing the risk of micro- and macrovascular complications caused by sustained

hyperglycemia [2, 3]. However, only a minority of T1D individuals achieve acceptable

glucose targets, due to fear of hypoglycemia [4].

Worldwide, MDI therapy remains the most common intensive insulin therapy

for T1D. In MDI therapy, different insulin formulations are used, each characterized

by a specific profile of action, aiming to mimic insulin secretion patterns in non-

diabetic individuals [2, 5] . Usually, one or two long-acting insulin doses are injected

daily to replace the basal secretion of insulin by a healthy pancreas, and one bolus

of rapid-acting insulin dose is injected with each meal to control metabolic impact

of meal-carbohydrates. Bolus insulin injections are mostly determined based on

carbohydrate ratios (gram per unit) which specify how many grams of carbohydrate

are handled by each unit of insulin. Insulin treatment titration in MDI therapy can

be achieved by adjusting both the basal insulin dose and carbohydrate ratios.

Daily glucose profiles, insulin doses, consumed meals, and activity levels can

be analyzed by patients or health care professionals to make adjustments to the

basal insulin dose and carbohydrate ratios. However, this process is sporadic, time-

consuming, error-prone, and subjective. A decision support system that automates

this process can help achieve a more rapid treatment intensification, reduce errors,

and optimize physicians and patients time.

Several groups have proposed decision support systems for individuals with type

1 diabetes [6, 7, 8, 9], but few were targeted for MDI therapy users. Breton et al.

[10] conducted a randomized study in 16 pump- and 8 MDI-treated adults with T1D

to evaluate an insulin advisory system comprising of an insulin titration scheme that
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recommends changes in basal doses, a smarter bolus calculator, and an exercise ad-

visor. In this 48-hour study, they showed that the use of the system reduced glucose

variability compared to participants’ usual care, but other glycemic outcomes were

similar. Reddy et al. [11] conducted a 6-week, non-randomized study where 10 adults

on MDI therapy used an advanced bolus calculator that integrated a learning algo-

rithm to recommend meal boluses. A trend in decreasing post-meal hypoglycemia

events was observed.

We have developed a learning algorithm that adjusts the basal insulin dose and

carbohydrate ratios for MDI therapy, based on previous day’s glucose, insulin, and

meal data. In this paper, we present a randomized non-inferiority pilot study in a

diabetes camp comparing glucose outcomes following insulin dose adjustments via

either our learning algorithm (LA) or the camp physicians (PA).

7.4 Research Design and Methods

7.4.1 Study Design and Participants

This was an open-label, randomized, two-way, parallel study investigating the

non-inferiority of automatic insulin adjustments made by a learning algorithm com-

pared to insulin adjustments made by a physician. Both algorithm and physician

adjustments were made daily. We recruited children and adolescents with type 1 dia-

betes using MDI therapy attending Camp Carowanis (Quebec, Canada), a camp for

youth with T1D. Participants attended one of three 12-day camp sessions. Eligible

participants were males and females, 8 to 21 years old, HbA1c ≤ 11% , and who had

been diagnosed with type 1 diabetes for 1 year or longer. Participant HbA1c level

was measured on the first day of each camp session by a finger stick glycosylated
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hemoglobin test (A1cNow System, PTS Diagnostics, Whitestown, USA). Partici-

pants who required injections of isophane insulin (NPH) or any intermediate-acting

insulin were excluded. A full list of exclusion criteria is included in the protocol

(online supplementary material).

The protocol conformed to the standards set by the Declaration of Helsinki and

was approved by the Research Ethics Board at McGill University Health Center.

The study was registered at clinicaltrials.gov under the identifier: NCT03764280.

Study participants aged 18 years or older, and parents or guardians of participants

aged 17 years or younger gave written informed consent; written assent was obtained

from minors.

7.4.2 Randomization and Masking

Participants were randomly assigned (1:1) to either intervention. Randomiza-

tion was done in blocks of four using sealed envelopes which were opened by the

participants once enrolled in the study. Participants, investigators, and camp staff

were not masked to the allocation assignments.

7.4.3 Study Procedures

During each camp session (12 days), participants underwent their usual MDI

therapy consisting of a long-acting insulin injection (at bedtime or in the morning)

and three rapid-acting insulin injections at meals time (breakfast, lunch, and dinner).

Each day, participants’ insulin basal and bolus doses were evaluated by either a camp

physician or by our algorithm. The insulin doses were either not changed, increased,

or decreased. Daily evaluations, instead of less frequently, were imposed by the camp

protocol.
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At the first day of the camp, participants in both groups wore a Freestyle Libre

glucose sensor (Abbott Diabetes Care, Witney, UK) for the duration of the camp. At

mealtimes, the sensor reader was used to retrieve the glucose measurements over the

last 8 hours, and data were downloaded every morning to be used by the algorithm

and the camp physicians.

During the camp, mealtimes were standardized, but participants were free to

choose their meal size and content. The camp included breakfast at 8:00 AM, lunch at

12:30 PM, dinner at 5:30 PM, a bedtime snack at 8:00 PM, and two optional snacks at

10:30 AM and 2:30 PM. If participants choose to have snacks, these snacks were given

everyday irrespective of glucose levels. The mean amount of daily carbohydrates in

consumed snacks was the same in both groups (32-36g). At main meals (breakfast,

lunch, and dinner), participants that used carbohydrate ratios had their insulin bolus

dose calculated based on the amounts of carbohydrates in their meal (calculated

by the camp nutritionist), and participants that used a fixed-dose insulin regimen

selected a meal with pre-specified carbohydrate content. The insulin bolus doses

were also adjusted with positive or negative corrections based on mealtime glucose

levels (from the Freestyle sensor). Morning, afternoon, and bedtime snacks were not

accompanied by insulin boluses. Participants had morning and afternoon activities.

Glucose level (from the Freestyle sensor) was checked at each meal and snack,

and we followed the camp’s hypoglycemia and hyperglycemia protocols. The camp’s

hyperglycemia protocol was to verify ketone levels if blood glucose was more than

14.9 mmol/L. A correction bolus was given through a syringe if ketone levels were

more than 1.0 mmol/L. The camp’s hypoglycemia protocol was to give carbohydrates
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(starting at 15g, and up to 45g) when campers felt hypoglycemic or glucose was below

4.4 mmol/L, and to treat again if glucose levels did not rise above 4.4 mmol/L after

15 min.

For the participants in the LA group, the algorithm was initialized using par-

ticipant’s average total daily dose over the previous three days, weight, and most

recent therapy parameters. The therapy parameters consisted of the insulin basal

dose and three carbohydrate ratios (for participants following a fixed dose regimen,

an equivalent carbohydrate ratio value, based on the carbohydrate content of their

predefined meal, was used internally by the algorithm). These parameters were cut

by around 20% by the camp physicians, at the first day of the camp, before being

used in our algorithm. Every morning, sensor data from the Freestyle Libre reader

and previous day’s meals, hypoglycemia treatments, and insulin data were used to

run the algorithm. The algorithm generated a printable report with suggested insulin

therapy recommendations (online supplementary material, Figure S4-S5). Reports

were reviewed and approved by a physician before being implemented.

For the participants in the PA group, at-home therapy parameters were cut by

around 20% by the camp physicians for the first day of the camp. For the subsequent

days, we provided physicians with a report containing glucose sensor data, meals,

and insulin information (online supplementary material, Figure S3). The attending

camp physician made daily insulin recommendations based on this report.

Six physicians participated in reviewing the algorithm recommendations for the

participants in the LA group and providing insulin recommendations for the partici-

pants in the PA group; one physician each week. Since recommendations were made
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daily before the breakfast data became available, and both the algorithm and the

physicians needed to see the effects of the last recommendation before making the

next recommendation, the breakfast carbohydrate ratios were only evaluated once

every 2 days instead of daily.

7.4.4 Automatic Adjustments of Insulin Doses

Our learning algorithm is based on a run-to-run update rule where therapy pa-

rameters (the basal dose and the three carbohydrate ratios) are updated based on

their previous values and observations made during the previous day [12]. Observa-

tions consist of previous glucose, insulin, hypoglycemia treatments, and meal data.

Our algorithm uses a glucoregulatory mathematical model to estimate the optimal

values of the therapy parameters that would have resulted in optimal control in a

specific day. The recommendation for the following day is a mixture of these optimal

values and the values estimated from previous days using the run-to-run update rule.

The weights of the parameters estimated in each day depends on the ability of the

model to explain its data. The algorithm was implemented in MATLAB R2017b

(MathWorks) and runs on a laptop.

7.4.5 Study Outcomes

The primary outcome was the percentage of time spent in the glucose target

range (3.9–10 mmol/L) during the last 7 days of the study. Secondary outcomes

included time spent below the target range, time spent above the target range, total

insulin delivery, standard deviation of glucose, coefficient of variance of glucose, and

the number of participants experiencing hypoglycemic events. Study outcomes were
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also calculated for the day (07h00 to 23h00) and night periods (23h00 to 07h00).

Study outcomes were calculated using sensor readings from the Freestyle Libre.

7.4.6 Statistical Analysis

The statistical analysis was calculated for the percentage of time spent in target

in the last 7 days of the study. We conclude non-inferiority if the lower limit of the

95% CI for the treatments difference (LA – PA) was more than the non-inferiority

threshold. We used a standard deviation of 10% and aimed to provide 80% power

at the 5% significance level. We consequently calculated that 36 participants (18 in

each group) are required if the non-inferiority threshold is -2 hours/day (-8.3% ) and

62 participants (31 in each group) are required if the non-inferiority threshold is -1.5

hours/day (-6.4% ). Therefore, we aimed to recruit between 36 and 62.

Analyses were performed on an intention-to-treat basis, in which we included

data from all participants. We used the two-sample t-test for outcomes with normally

distributed data, and the Wilcoxon rank-sum test for outcomes with non-normally

distributed data. For normally distributed outcomes, we reported means and stan-

dard deviations, and for non-normally distributed outcomes we reported medians

and interquartile ranges. Normality was assessed using the Shapiro-Wilk test. 95%

confidence interval is reported when relevant. We report nominal p values for all

outcomes, and we did not do adjustment for multiple comparisons.

7.5 Results

From July 2nd to August 10th, 2018, we recruited 21 campers and camp coun-

selors, of which 10 were randomized to the LA group and 11 to the PA group. Table
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Table 7–1: Baseline characteristics for study participants.

LA group (n=10) PA group (n=11)

Female 4 (40%) 9 (82%)

Age (years) 12.3 [8.7–14.8] 12.4 [11.2–16.4]

Weight (kg) 53 [30–64] 52 [41–67]

BMI (kg/m2) 20.3 [18.5–24.7] 22.1 [17.6–25.4]

BMI z-score 0.91 [0.05–1.38] 0.33 [-0.41–0.98]

Duration of diabetes (years) 2 [1–7] 5 [1–6.8]

Total daily insulin (unit) 27 [21–41] 37 [29–46]

Daily insulin per weight (unit/kg) 0.64 [0.53–0.89] 0.71 [0.63–0.84]

HbA1c (%) 7.8 [6.9–8.6] 7.9 [7.1–10.5]

Participants using fixed dose 3 (30%) 3 (27.3%)

1 shows the baseline characteristics of the 21 participants. There was no differ-

ence in demographics between participants in both groups. During the camp, fewer

than expected campers were using multiple daily injections. Since fewer than the

target number of participants were enrolled, results from this study are considered

exploratory and the study is considered pilot.

7.5.1 Primary and Secondary End Points

Figure 7–1 shows the average glucose profiles in the last 7 days for both groups.

Table 7–2 reports the study endpoints. The time spent in glucose target range (3.9–10

mmol/L) in the last 7 days in the LA group was similar to the PA group (39.5%

(SD, 20.7) vs 38.4% (SD, 15.6); p=0.89), with a mean difference of 1.1% (95% CI,

-15.6–17.8). The non-inferiority of the algorithm recommendations compared to the
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physician recommendations within a threshold of 2 hours/day in the time spent in

the target range was not significant (p=0.13), though, since fewer than the target

number of participants were enrolled, this non-inferiority analysis is exploratory.

The time spent in hypoglycemia (¡ 3.9 mmol/L) in the last 7 days in the LA group

was similar to the PA group (4.0% (IQR, 3.2–4.3) vs 2.4% (IQR, 1.2–5.8); p=0.7).

Primary and secondary comparisons were consistent when analyzing daytime only

(7:00–23:00) and nighttime only (23:00–7:00) data (Table 2). Primary and secondary

comparisons were also unchanged when analyzing 11-day data as opposed of 7-day

data.

Table 7–2 details secondary endpoints of the study. Mainly, the time spent in

hypoglycemia (<3.9 mmol/L) in the last 7 days in the LA group was similar to the

PA group (4.0% (IQR, 3.2–4.3) vs 2.4% (IQR, 1.2–5.8); p=0.7). These results were

consistent when analyzing daytime only (7:00–23:00) and nighttime only (23:00–7:00)

data (Table 7–2). Figure 7–1 shows the average profile of glucose in the last 7 days

for both LA group and PA group.
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Table 7–2: Comparison of outcomes in participants adjusted by the learning algorithm (LA) and by a
physician (PA). Values are averaged for 7 days for each participant.

LA group
(n=10)

PA group
(n=11)

Difference
(LA–PA)

p value

Non-inferiority primary outcome

Percentage of time 3.9–10.0 mmol/L (%) 39.5 (20.7) 38.4 (15.6) 1.1 (-15.6, 17.8) 0.13

Day and night outcomes (24 hours)

Percentage of time < 3.9 mmol/L (%) 4.0 [3.2–4.3] 2.4 [1.2–5.8] 0.6 (-2.0, 2.9) 0.70

Percentage of time > 10.0 mmol/L (%) 56.8 (21.1) 57.7 (18.5) -0.9 (-19.0, 17.1) 0.91

Mean sensor glucose (mmol/L) 11.9 (2.3) 11.7 (2.7) 0.1 (-2.2, 2.4) 0.92

CV of sensor glucose (%) 41.6 (7.34) 40.9 (5.7) 0.7 (-5.3, 6.6) 0.82

Total insulin (U) 35.0 (21.3) 47.1 (23.3) -12.0 (-32.5, 8.4) 0.23

Basal insulin (U) 12.6 (8.4) 18.2 (11.1) -5.6 (-14.7, 3.5) 0.21

Bolus insulin (U) 22.4 (13.6) 28.9 (13.3) -6.5 (-18.7, 5.8) 0.29

Total meals (g) 255.8 (62.9) 246.1 (53.5) 9.7 (-43.5, 62.8) 0.71

Hypoglycemia events (#/day) 0.3 [0.1–0.6] 0.2 [0.0–0.4] 0.1 (-0.1, 0.3) 0.42

Day outcomes (16 hours) (7:00-23:00)

Percentage of time 3.9–10.0 mmol/L (%) 32.0 (19.5) 37.5 (23.0) -5.5 (-25.1, 14.1) 0.56

Percentage of time < 3.9 mmol/L (%) 1.2 [0.0–2.9] 0.0 [0.0–1.2] 0.2 (0.0, 2.9) 0.18

Percentage of time > 10.0 mmol/L (%) 65.1 (23.3) 61.9 (23.2) 3.2 (-18.1, 24.4) 0.76

Mean sensor glucose (mmol/L) 12.9 (3.0) 12.3 (2.7) 0.6 (-2.0, 3.2) 0.61

CV of sensor glucose (%) 35.7 (8.15) 32.6 (6.6) 3.1 (-3.6, 9.9) 0.34

Hypoglycemia events (#/day) 0.0 [0.0–0.1] 0.0 [0.0–0.0] 0.0 (0.0, 0.1) 0.54

Night outcomes (8 hours) (23:00-7:00)

Percentage of time 3.9–10.0 mmol/L (%) 42.3 (24.1) 40.2 (20.6) 2.1 (-18.3, 22.5) 0.83

Percentage of time < 3.9 mmol/L (%) 5.4 [0.5–7.6] 7.1 [1.9–12.5] -1.9 (-8.7, 4.4) 0.50

Percentage of time > 10.0 mmol/L (%) 52.2 (23.8) 50.8 (28.1) 1.5 (-22.4, 25.4) 0.90

Mean sensor glucose (mmol/L) 10.9 (2.5) 10.3 (3.2) 0.5 (-2.1, 3.1) 0.69

CV of sensor glucose (%) 40.4 (10.5) 38.1 (8.9) 2.3 (-6.6, 11.2) 0.59

Hypoglycemia events (#/day) 0.0 [0.0–0.0] 0.0 [0.0–0.1] 0.0 (0.0, 0.0) 1.00

Values reported as mean and standard deviation or as median and interquartile range.
Values reported as mean or median with 95% confidence interval.
p value is for non-inferiority with a threshold of -8.3%. We report p value for superiority for other outcomes.
CV stands for coefficient of variation.
Only treated hypoglycemia events are counted.
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Figure 7–1: Comparison of sensor glucose in the last 7 days between the learning algorithm (LA) group and
the physician adjusted (PA) group.
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Similar and large variability between days could be observed in the two groups

(Online supplement material, Figure 7–4): between-day variability (reported as a

coefficient of variation) in time in target form day 5 to 11 in the LA group was

43.0% (IQR, 31.5–58.2) and in the PA group was 51.1% (IQR, 40.6–65.6; p=0.39).

No episodes of severe hypoglycemia or hyperglycemia with diabetic ketoacidosis

occurred in either group. One adverse event occurred in the PA group but was

unrelated to the study: a volleyball net fell on one of the participants.

7.5.2 Comparison Between Days (2-to-4) and Days (9-to-11)

Table 7–3 shows the comparison of outcomes between days 2-to-4 and days 9-to-

11 in both groups. Four participants (two in the PA group and two in the LA group)

were excluded from this analysis because of lack of glucose data points in days (2-to-

4). Neither the LA group (n=8) nor the PA group (n=9) showed an improvement

in the time in target between the start and the end days; however, the number of

treated hypoglycemic events per day was decreased in both groups; by -1.0 (95% CI,

-1.3– -0.5 ) (p=0.02) in the LA group and by -0.7 (95% CI, -1.0)– -0.2 ) (p=0.03) in

the PA group.
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Table 7–3: Comparison between days 3-to-5 and days 9-to-11 for both learning algorithm (LA) group
and physician adjusted (PA) group.

LA group (n=8) PA group (n=9)

Days
(3-4-5)

Days
(9-10-11)

p
value

Days
(3-4-5)

Days
(9-10-11)

p
value

Time 3.9–10.0 mmol/L (%) 50.6 (20.6) 41.0 (21.6) 0.09 45.1 (17.3) 34.2 (19.2) 0.24

Time < 3.9 mmol/L (%) 7.4 (9.3) 4.9 (3.6) 0.50 12.1 (12.4) 3.9 (4.0) 0.14

Time > 10.0 mmol/L (%) 42.0 (22.2) 54.1 (19.9) 0.16 42.8 (22.5) 61.9 (22.5) 0.15

Total insulin (U/day) 32.4 (20.0) 34.9 (20.6) 0.20 48.2 (21.2) 52.9 (24.9) 0.24

Total meals (g/day) 244.4 (68.5) 273.5 (80.3) 0.07 242.8 (46.2) 250.4 (61.8) 0.46

Mean sensor glucose (mmol/L) 9.9 (2.2) 12.0 (2.5) 0.05 9.8 (3.0) 12.4 (3.3) 0.12

CV of sensor glucose (%) 43.2 (11.3) 42.9 (10.7) 0.95 48.0 (12.2) 39.6 (6.8) 0.11

Hypoglycemia events(3) (#/day) 1.2 [0.5–1.7] 0.2 [0.0–0.5] 0.02 0.7 [0.3–0.8] 0.0 [0.0–0.1] 0.03

Values reported as mean and standard deviation or as median and interquartile range.
CV stands for coefficient of variation.
Only treated hypoglycemia events are counted.
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Table 7–4: Parameter changes from day 1 to 11 in the algorithm group (LA) and the physician adjusted
group (PA).

LA group (n=10) PA group (n=11)

Basal
Dose

Break-
fast
CR

Lunch
CR

Dinner
CR

Basal
Dose

Break-
fast
CR

Lunch
CR

Dinner
CR

Mean baseline values at day 1 15.0U 11.8 g/U 14.0 g/U 14.8 g/U 20.4U 10.6 g/U 12.0 g/U 12.0 g/U

Mean change -13% 8% 25% 3% 15% 5% -12% -7%

Minimum change -46% -10% -36% -28% -44% -60% -58% -69%

Maximum change 20% 58% 200% 50% 200% 114% 67% 88%

Proportion of participants
who had their

parameters increased 10% 30% 60% 50% 45% 45% 18% 27%

Proportion of participants
who had their

parameters decreased 60% 20% 30% 40% 45% 36% 82% 64%

Mean of change in partici-
pants who had their

parameters increased 20% 33% 53% 21% 55% 35% 48% 55%

Mean of change in partici-
pants who had their

parameters decreased -25% -9% -22% -17% -21% -29% -25% -35%

Proportion of participants
with changes ≥ |10%| 50% 30% 80% 70% 64% 55% 100% 73%

Proportion of participants
with changes ≥ |20%| 40% 20% 40% 20% 36% 36% 64% 73%

Proportion of participants
with changes ≥ |30%| 30% 10% 40% 10% 18% 36% 27% 64%

Proportion of participants
with changes ≥ |40%| 10% 10% 20% 10% 18% 18% 18% 45%
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Table 7–5: Glycemic outcomes before and after daily changes in basal doses and carbohydrate ratios.

Before The day after Before The day after

Days where basal dose increased LA group (n=13) PA group (n=26)

Basal dose (U) 19.0 [4.8–22.0] 21.0 [5.8–24.3] 16.5 [9.0–19.0] 18.0 [10.0–20.0]

Night mean sensor glucose (mmol/L) 12.3 [10.4–14.7] 8.6 [6.4–11.7] 13.2 [11.6–17.0] 11.6 [8.1–16.0]

Night hypoglycemia events (no.) 0 1 0 2

Days where basal dose decreased LA group (n=26) PA group (n=19)

Basal dose (U) 12.5 [9.0–26.0] 11.5 [8.0–22.0] 20.0 [17.3–24.3] 17.0 [15.3–20.3]

Night mean sensor glucose (mmol/L) 7.2 [4.2–8.5] 8.0 [6.4–12.3] 4.6 [3.7–6.6] 7.6 [6.2–10.2]

Night hypoglycemia events (no.) 7 4 5 2

Days where carbohydrate ratios increased LA group (n=55) PA group (n=40)

Carbohydrate ratio (g/U) 14.0 [10.0–18.0] 17.0 [12.0–21.8] 6.2 [5.0–10.5] 7.3 [6.0–11.5]

2-hour iAUC (h.mmol/L) 0.3 [0.0–3.9] 1.9 [0.1–4.8] 1.5 [0.0–4.0] 1.7 [0.4–4.3]

Hypoglycemia events 1 to 4 hours after meal (no.) 17 9 11 8

Days where carbohydrate ratios decreased LA group (n=54) PA group (n=59)

Carbohydrate ratio (g/U) 15.0 [10.9–20.0] 14.0 [9.4–17.0] 10.0 [7.5–15.7] 8.2 [6.7–13.4]

2-hour iAUC (h.mmol/L) 1.2 [0.1–3.3] 1.0 [0.2–2.3] 4.6 [0.7–7.0] 1.9 [0.0–7.6]

Hypoglycemia events 1 to 4 hours after meal (no.) 2 5 1 7
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7.5.3 Analysis of Algorithm’s and Physicians’ recommendations

The physicians evaluated 328 therapy parameters (insulin basal dose or carbo-

hydrate ratios), of which they made 162 (49.4% ) changes (increase or decrease). The

algorithm evaluated 292 therapy parameters, of which it made 181 (62.0% ) changes.

Figure 7–2 shows daily parameter changes for all participants over the duration of

the study.

Figure 7–3 shows the mean of the relative daily changes in each therapy param-

eters.

In both groups, most changes were applied in the initial days and there was a

trend toward less parameter changes by the end of the study.

Table 7–4 provides a summary of parameter changes from day 1 to day 11. There

was a large variability between participants in the adjustments. The magnitude of

overall adjustments made by the algorithm and physicians were comparable, yet, they

differed slightly from one therapy parameter to another. Table 7–5 reports glycemic

outcomes before and after daily changes in the basal doses and the carbohydrate

ratios. Daily changes made by the algorithm and physicians were justified and had

immediate effects on glycemic outcomes.

Out of the 292 algorithm decisions (no change, increase, or decrease), the camp

physicians approved 268 (91.8% ) decisions and overrode 24 (8.2% ). Out of those

24 overridden decisions, 6 were overridden in the same direction as the algorithm

recommendations but with different magnitudes, 14 were reverted to their original

values before the algorithm recommendations, 3 were changed when the algorithm

did not make a change recommendation, and 1 was changed in the opposite direction
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of the algorithm recommendation. Table 7–6 shows a summary of the acceptance

rate of algorithm recommendations per physician.
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Figure 7–2: Therapy parameter (basal dose and carbohydrate ratios) changes compared to their initial val-
ues. Each color represents a different participant. For participants with fixed dose, we use the equivalent
carbohydrate ratio using the size of their meals. CR stands for carbohydrate ratio.
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Figure 7–3: Relative daily changes in therapy parameters. For participants with fixed dose, we use the
equivalent carbohydrate ratio using the size of their meals. CR stands for carbohydrate ratio.
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Table 7–6: Physician acceptance rate of algorithm recommendation in the learning
algorithm (LA) group.

Physician 1 2 3 4 5 6 Overall

Number of
adjustments
made by
algorithm

24 35 55 90 36 52 292

Approved
adjustments by
physician

21
(87.5%)

28
(80.0%)

54
(98.2%)

86
(95.6%)

34
(94.4%)

45
(86.5%)

268
91.8%

7.5.4 Retrospective Analysis of Algorithm Agreement with Physicians

In this analysis, we run the algorithm retrospectively on the participants in the

PA group. In total, we compared 328 recommendations (no change, increase, or de-

crease) made by physicians to what the learning algorithm would have recommended

given similar data. We counted a recommendation agreement when a similar trend

in the recommendations (no change, increase, or decrease) was observed between the

algorithm and the physician. Disagreement is counted when opposite recommen-

dations (increase vs decrease or vice-versa) were taken. A partial agreement was

counted when either the algorithm or the physician recommends a change while the

other did not.

Table 7–7 shows the agreement results. Most recommendations made by the

algorithm were on agreement (54.3% ) or partially in agreement (43.3% ) with the

physicians.
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Table 7–7: Agreement between physicians and learning algorithm recommendations.

Agreement
Disagree-

ment
Partial

agreement

Basal insulin (U) (n=96) 57.3% (55) 2.1% (2) 40.7% (39)

Breakfast carbohydrate ratio (g/U) (n=38) 57.9% (22) 0.0% (0) 42.1% (16)

Lunch carbohydrate ratio (g/U) (n=99) 52.5% (52) 2.0% (2) 45.5% (45)

Dinner carbohydrate ratio (g/U) (n=95) 51.6% (49) 4.2% (4) 44.2% (42)

All recommendations (n=328) 54.3% (178) 2.4% (8) 43.3% (142)

7.6 Conclusions

We evaluated a learning algorithm that automatically adjusts basal-bolus insulin

doses for MDI therapy in children and adolescent with T1D in a diabetes camp. We

aimed to show that daily insulin adjustments from our algorithm are non-inferior to

insulin adjustments made by physicians. Glycemic outcomes were similar, but the

recruitment target was not met and thus the study did not have enough statistical

power to confirm the non-inferiority within a 2-hour margin. Nevertheless, a trend

was observed. This study is a step forward toward larger and longer studies.

Intensive insulin therapy combined with glucose self-monitoring are key to im-

proving glucose control [13, 14], but adherence to the therapy is a challenging and

burdensome task, especially for adolescents [15]. Decision support systems might im-

prove this by processing large datasets of glucose, insulin, and meals, then prompting

patients with frequent insulin doses adjustments [6, 11]. Even if these systems may

not be more proficient than an expert endocrinologist, demonstrating non-inferiority

to physicians is important since algorithmic adjustments can be done more frequently
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than physician adjustments in routine clinic visits, allowing a more rapid treatment

intensification which may prove to be associated with better glucose outcomes and

long-term studies.

Overall acceptance of our algorithm recommendations was high but differed be-

tween physicians (from 80% to 98.2% ). Disagreement between physicians in insulin

adjustments is common, which was recently demonstrated by Nimri et al. with physi-

cians adjusting insulin pump therapy parameters [6]. In that multi-center study with

26 physicians, complete disagreement in adjustments in basal rates, carbohydrate ra-

tios, or insulin sensitivity factors was around 10% . When run retrospectively, our

results show that our algorithm rarely disagreed with the physician adjustments,

with a disagreement rate of 2.7% in average.

Daily changes made by the algorithm and physicians had positive effects on

glycemic outcomes of the following day. For example, in days where participants

had a high night glucose, basal dose was increased, resulting in lower night glucose.

However, the overall glycemic outcomes (e.g. time in range) was not improved from

the start to the end of the study in both groups. This might be attributed to the

large day-to-day variability in insulin needs caused by changes in physical activity,

food, and weather, all of which can have a significant impact on glycemic control

[16, 17, 18]. Nonetheless, both the algorithm and physicians reduced the number of

hypoglycemia events, which were high at baseline likely due to a mismatch between

insulin doses and the intense levels of physical activity at camp. It is yet to be

seen how the algorithm performs with individuals with high baseline A1c in longer

outpatient studies.
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The learning algorithm runs daily, however, all previous days are implicitly

included in the algorithm recommendations. Each day, the algorithm combines the

last 24-hour data with the most recent therapy parameters (which were learned from

previous days) to generate recommendations for the next day. The following day,

the new therapy parameters embodies the information of all previous days and are

updated based on the new 24-hour data. This iterative process ensures that lessons

from previous days are carried to future recommendations.

Even though the learning algorithm was tested in camp settings, it is designed

to work in unrestricted real-world settings. At the camp, the meals were given

approximately at the same time every day, but the algorithm can accommodate

variable daily eating schedule because it uses a mathematical model that accounts

for all meals and insulin doses irrespective of their time. Similarly, at the camp,

carbohydrates counting was performed by the camp nutritionist, but carbohydrate

counting errors are common in real-life. The ability of the algorithm to mitigate

carbohydrate counting errors depends on their nature. If the errors are consistently

underestimated or overestimated, the algorithm will learn matched carbohydrate

ratios. However, if the errors are large and random, this will jeopardize the ability

of the algorithm to learn the optimal carbohydrate ratios.

One particularity of our study is the use of flash glucose monitoring systems

instead of continuous glucose monitoring systems. Flash glucose monitoring systems

are cheaper, and factory-calibrated. Recent literature showed good user acceptance,

satisfactory accuracy (mean absolute relative difference between 11% to 14% ), and

clinical benefits [19, 20]. Even though the sensor was only flashed at mealtimes,
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collected glucose data points over the last 8 hours were enough to generate insulin

recommendations.

Our study has several limitations that preclude the generalization of our results.

First, this was a short study of 11 days in a setting with large day-to-day variability.

Second, every day, the same physician approved the algorithm recommendation in

the LA group and made recommendations in the PA group. Third, the camp setting

is a controlled environment under which participants were closely observed by camp

staff. Fourth, we excluded patients using intermediate-acting insulin (NPH). Fifth,

this study only enrolled 21 participants, which was under the targeted sample size.

Sixth, we performed daily updates of insulin basal dose and carbohydrate ratios,

as required by the camp protocol, but daily updates are unjustified outside camp

settings. Our next 3-months outpatient study will implement weekly adjustments by

averaging the daily recommendations (clinicaltrials.gov identifier NCT04123054).

Our result suggests that the use of our learning algorithm to make daily ad-

justments of MDI therapy parameter may be safe and non-inferior to a physician.

Longer and larger studies are warranted.
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Figure 7–4: Percentage time in target in the learning algorithm group and the physi-
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7.8 Supplementary Material

7.8.1 Additional Figures for Results
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learning algorithm (LA) and physician adjusted (PA) groups.

249



7.8.2 Physicians Report

Figure 7–6 is an example of report for physicians. “Current” refers to the

dose/ratios used on this day. “Recommended” refers to the physician recommen-

dation for the following day based on this day data. In the graph, the blue circle

represents the basal dose, the blue triangles represent the prandial bolus, and the

red triangles represent the carbohydrate amount of the meal.
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Figure 7–6: Example of physicians report.

7.8.3 Algorithm Report 1

Figure 7–7 is an example of the algorithm report. “Current” refers to the

dose/ratios used on this day. “Recommended” refers to the algorithm recommenda-

tion for the following day based on this day data. “Used” refers to the physician’s

approved values. In the graph, the blue circle represents the basal dose, the blue tri-

angles represent the prandial bolus, and the red triangles represent the carbohydrate

amount of the meal.
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Figure 7–7: Example of algorithm report.

7.8.4 Algorithm Report 2

Figure 7–8 is an example of the algorithm report where the algorithm recom-

mendation was overridden. “Current” refers to the dose/ratios used on this day.

“Recommended” refers to the algorithm recommendation for the following day based

on this day data. “Used” refers to the physician’s approved values. In the graph, the

blue circle represents the basal dose, the blue triangles represent the prandial bolus,

and the red triangles represent the carbohydrate amount of the meal.

In this example, the algorithm recommended no change in the basal dose (4 u)

but the physician changed this value to 5 u. Another physician may have opted to

agree with the algorithm.
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Figure 7–8: Example of algorithm report with override.
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CHAPTER 8

Conclusion and Future Work

In this thesis, modeling, parameter estimation, and control techniques have been

exploited to develop advanced insulin dosing algorithms for improving glycemic con-

trol in people with type 1 diabetes. Specifically, we aimed to: (i) improve the safety

and efficacy of closed-loop insulin delivery after a missed meal-accompanying insulin

bolus; (ii) automate insulin doses’ adjustments by daily adapting carbohydrate ra-

tios and basal doses for patients using multiple daily injections. In this chapter,

we summarize and discuss the main findings of this thesis, then we conclude by

recommendations for future work.

8.1 Summary of Original Contributions

Here, we outline the original contributions of this thesis and their significance.

A list of publications included in this thesis, or related to the work towards this

thesis, is included in Appendix A.

� We developed a novel probabilistic method to detect unannounced meals from

recently measured glucose, delivered insulin and consumed meals. The method
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combines state estimation and a generalized likelihood test to express the prob-

ability of unannounced meals. We have shown a relatively fast detection time,

with high sensitivity, and a low false-positive rate.

� We conducted a 9-hour crossover randomized controlled trial in 11 adolescents

to assess the efficacy of closed-loop insulin delivery augmented by a meal detec-

tion algorithm compared to closed-loop insulin delivery only, and usual care,

after an unannounced meal. We have shown that the use of a meal detection

algorithm improves the performance of closed-loop insulin delivery systems. To

our knowledge, this is the first clinical study to show the benefits of adding a

meal detection algorithm to a closed-loop insulin delivery system.

� We proposed a novel glucoregulatory model, inspired by the Bergman minimal

model, for patients using multiple daily injections. We have shown that this

model can explain a 150-day of real-world data by estimating optimal basal

doses and optimal carbohydrate ratios for each day.

� We developed a novel method for insulin doses adjustment using daily glucose,

insulin, and meal data. This method combines estimated parameters of a pro-

posed glucoregulatory model with a run-to-run update rule. The algorithm

is characterized by an adaptive learning rate based on confidence about esti-

mated parameters. We have shown that, in a simulation study, this algorithm

outperforms classical run-to-run algorithms.

� We conducted an 11-day parallel randomized controlled trial in 21 children and

adolescents using multiple daily injections to assess the non-inferiority of algo-

rithmic insulin adjustments to adjustments made by physicians. In this study
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conducted in a diabetes camp, we have shown similar glycemic outcomes in

participants using the algorithm’s recommendations compared to participants

using the physicians’ recommendations. This algorithm has the potential to

improve glycemic control in type 1 diabetes patients using multiple daily in-

jections.

Since both algorithms are titrating insulin doses and are intended for medical

use by people with type 1 diabetes, they are considered Software as a Medical Device.

Software as a Medical Device is regulated by the Food and Drugs Act authorities

(Health Canada in Canada, Food and Drug Administration in the United States, the

European Medicines Agency in Europe). The experimental results presented in this

thesis can serve as the first step towards future approval by authorities.

8.2 Discussion of Findings

8.2.1 Meal Detection for Closed-Loop Insulin Delivery

Thanks to advances in glucose monitoring systems and insulin pumps, closed-

loop insulin delivery is becoming the new standard for continuous subcutaneous

insulin infusion therapy. Yet, these systems are still considered hybrid since meal-

related boluses are delivered manually upon user request. A step towards achieving a

fully automatic system will require the incorporation of a meal detection algorithm.

Ideally, a closed-loop insulin delivery system should react to the mismatch be-

tween actual glucose and the target glucose without user intervention. However, as

discussed in Chapter 3, safe and efficacious control in a fully closed-loop mode is

unlikely to be compatible with the current system delays associated with the sub-

cutaneous route. Because of the delay between insulin delivery and the maximum
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glucose-lowering effect of insulin (around 100min) [126], and since any delivered in-

sulin can not be removed (system with positive-only inputs [127]), most closed-loop

systems implement mechanisms to become more conservative the more insulin is de-

livered. For PID-based controllers, this can be implemented through negative feed-

back of insulin-on-board [128]. For MPC-based controllers, this can be implemented

by weighting the insulin control action with insulin-on-board [129]. Consequently,

when a meal is consumed without an insulin bolus, current systems will not react

aggressively enough to eliminate the risk of hyperglycemia. Simulation results in

Chapter 4 showed that both the risk of early hyperglycemia and late hypoglycemia

is increased after a missed meal-accompanying insulin bolus.

We theorized that the control strategy needed in the case of a missed insulin

bolus is distinct from the nominal control strategy. As a result, a switching approach

based on a probabilistic rule that detects when an unannounced meal is consumed was

developed. The proposed probabilistic approach had the advantage of designing the

detection threshold to minimize the probability of making false positives. However, in

Chapter 4, we argued that due to glucose variability, all switching strategies are prone

to false positives (situations where a hypothetical meal is detected while no meal is

consumed in reality). Consequently, our control strategy following the meal detection

was rather conservative, and mainly driven by the glucose levels at the detection time,

rather than the estimated meal size. We have also shown that, in simulations, after

a false positive, the closed-loop controller is able to avoid hypoglycemia by insulin

suspension.
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Typically, using glucose levels only might be misleading to detect meals without

boluses because, for instance, a long suspension of insulin can cause glucose levels to

increase even without a consumed meal. Our algorithm employs a glucoregulatory

model that implicitly considers interactions between previously delivered insulin,

consumed meals, and observed glucose levels. Using simulations, we showed a sensi-

tivity between 93% and 98%, depending on the carbohydrates in the consumed meal,

and we observed a detection time of 40 min (IQR, [30 – 50]). Yet, since the meal

detection algorithm still relies on the availability of glucose measurements, missing

or unreliable measurements may result in algorithm malfunction. Although, since

it is intended to run with a closed-loop system, the same safety rules applicable to

a closed-loop system (Healthy communication with the sensor, filtering of readings

dropouts, . . . ) can be applied.

Different statistical measures can be used to evaluate the performance of a de-

tection algorithm (binary classification test). The specificity measure of a detection

algorithm is the ratio of true negatives compared to all negative detections (false

positives + true negatives). In our context, a false positive is defined by an instance

where the algorithm did not flag an announced meal when an unannounced meal is

consumed. A true negative is defined by any instance where the algorithm did not

flag an announced meal when either all consumed meals were announced or there was

no consumed meal. Since the frequency of unannounced meals is relatively low, the

specificity is inherently biased toward the high end. In the simulations conducted in

Chapter 4, we reported the count of false positives instead of the specificity to avoid
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this problem. Other measures that do not take the true negative rate into account,

such as F-score, could have been used instead.

In Chapter 5, we compared the efficacy of closed-loop insulin delivery augmented

with a meal detection module after a missed meal-accompanying insulin bolus with

standard closed-loop insulin delivery and with open-loop insulin delivery (continuous

subcutaneous insulin infusion without real-time glucose monitoring). This was a

randomized crossover clinical trial in 11 adolescent patients. We have shown that

closed-loop (with or without meal detection module) was able to bring back glucose

levels to normal levels after 5 hours of the missed bolus. However, closed-loop insulin

delivery only was not able to reduce the risk of hyperglycemia (measured by the 4-

hour incremental area under the curve after the missed bolus) compared to open-loop

insulin delivery, while closed-loop insulin delivery with the meal detection module

did. These results support the efficacy of a switched control strategy using the meal

detection module.

In the clinical experiment, all unannounced meals were detected and the time

of meal detection was similar to simulation results: 40 min (IQR, [40 – 57.5]). Still,

this clinical experiment was limited to relatively large 60g-meals, which might have

facilitated meal detection. It should be noted that adding a meal detection algorithm

to current closed-loop systems does not guarantee a fully closed-loop insulin delivery

system. Recent clinical studies incorporating a meal detection approach with a fully

closed-loop insulin delivery system lacked a comparative arm, or did not achieve

satisfying glycemic outcomes [98, 97]. However, the addition of a meal detection
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algorithm does improve the efficacy and safety of current systems. Therefore, larger

and longer clinical studies are warranted.

8.2.2 Insulin Doses Adjustment for Multiple Daily Injections

Multiple daily injections therapy remains the most common treatment for type

1 diabetes. Long-term management of this therapy requires continuous adaptation

of insulin dosages. This can be accomplished by continuously evaluating the efficacy

of previously delivered insulin doses in achieving glycemic targets. Currently, this

optimization is conducted by physicians and patients, and it remains subjective,

error-prone, and time-consuming. With advances in glucose monitoring systems and

novel connected insulin pens, research is under steady progress to develop insulin

decision support systems to automate this process.

Most current research in decision support systems is based on the run-to-run

approach where a control signal is adjusted iteratively at the end of each run to

achieve a certain objective [130]. Generally, the objective of the previously proposed

run-to-run algorithms is to optimize a specific glycemic outcome (e.g., time spent in

hypoglycemia after lunch, or average nocturnal glucose level [118]). This results in

each parameter being updated independently ignoring correlations between param-

eters. In Chapter 6, we proposed a unique approach where the run-to-run update

rule is combined with a glucoregulatory model. Using the model, we predict the

optimal values of the therapy parameters that would have resulted in optimal con-

trol on a specific day. By fitting our model to all available data, optimal values are

simultaneously estimated.
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The proposed model structure is based on a Bergman minimal model [131],

however, it was modified to incorporate clinical knowledge required in insulin therapy

titration. First, it is known that different carbohydrate ratios are needed for different

times of the day [132]. It is also known that the insulin sensitivity following meals can

be different between meals and even different from night insulin sensitivity [133]. This

motivated the separation between the insulin bolus and the insulin basal channels in

this model. Second, it is known that the optimal basal insulin dose should ensure a

stable glucose levels during fasting conditions and a change in this dose is reflected by

a new equilibrium glucose level [134]. This was enforced in the model by neglecting

glucose effectiveness in promoting its disposal [134]. Finally, it is known that the

optimal carbohydrate ratios should ensure that glucose levels return to their pre-

meal values after 4-5 hours. This was enforced in the model by matching the glucose

absorption from the meal model to the bolus insulin absorption model. In Chapter

6, we have shown that this model can explain real-world data of multiple days in

different individuals.

Each day, the recommendations for the following day are a mixture of the pre-

dicted optimal values and the values estimated from the previous days using the

run-to-run update rule. This iterative process ensures that previous days’ data are

carried to future recommendations. In addition, in each day, the run-to-run gain

(learning rate) is adapted using the quality of the data: if on a specific day the

model’s goodness of fit is poor (indicator of model under-parametrization or unknown

events, such as physical activities or non-recorded meals), or if we observe high un-

certainty in the parameters’ estimate (indicator of model over-parametrization), we
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prevent the algorithm from relying on its predictions, making our method robust to

model inaccuracy.

In Chapter 7, we evaluated this algorithm in a clinical randomized parallel study

comparing adjustments made by our algorithm to adjustments made by physicians

in adolescents with type 1 diabetes. Even though we did not achieve significant non-

inferiority at the desired threshold since fewer than the target number of participants

were enrolled, there was no difference in the glycemic outcomes between patients in

the two groups. Furthermore, a positive trend in improving glycemic outcomes could

be observed when analyzing the immediate effects of parameter changes suggesting

that our experiment might have been limited by the large variability between days

in the camp settings.

Algorithm recommendations were generally accepted by physicians, and recom-

mendations were different between participants suggesting treatment personalization.

The overall magnitude of adjustments made by the algorithm and physicians were

comparable. We also showed that when we re-run our algorithm on participants’

data from the physician adjusted group, the algorithm proposed recommendations

in alignment with the physicians’ recommendation. Our result suggests that the

use of this algorithm to make daily adjustments of insulin doses for patients using

multiple daily injections is safe.

8.3 Limitations

The generalization of the above findings is limited to the experiments where the

algorithms were validated.
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� The meal detection algorithm classification performance was evaluated in a

13-hour simulation experiment with one missed meal, and with a carbohy-

drate content between (40g – 80g). The detection rate was not validated for

small meals (less than 40g), consecutive missed meals, and meals with different

macro-nutrient content (different fat and protein compositions).

� The meal detection algorithm was tuned to keep the rate of false positives

around 5%, and such as the control strategy following a false positive does not

result in increased hypoglycemia risk. Other criteria based on other statistical

measures were not investigated.

� The clinical trial where the meal detection algorithm was evaluated was super-

vised by our clinical team and was conducted in a hospital setting. The trial

was of short duration (9 hours) with a small number of participants (11). A

standardized meal of around 60g of carbohydrates was used in all visits.

� The insulin dosing algorithm for people using multiple daily injections is a

model-based algorithm that requires glucose, insulin, and meal data. Other

algorithms may only rely on glucose data. Also, we used a simplified model to

make implementation feasible, the effects of different models were not investi-

gated.

� The ability of the insulin dosing algorithm to improve glycemic outcomes was

only shown in a simulation experiment that is limited in its variabilities.

� The clinical trial where the insulin dosing algorithm was evaluated was super-

vised by our clinical team and was conducted in a camp setting. The trial was

of short duration (11 days) with a small number of participants (21). In this
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trial, we performed daily updates of insulin basal dose and carbohydrate ra-

tios, as required by the camp protocol, but daily updates are unjustified outside

camp settings.

8.4 Future Work

In light of the present work, several recommendations can be formulated for

future work.

8.4.1 Hypoglycemia Treatments Detection

Previous records of hypoglycemia can unveil patterns that may help to improve

glycemic control. However, not all patients record their hypoglycemia events since (i)

these are frequent events for type 1 diabetes patients, (ii) there is no clear immediate

benefit of recording these events (the possible benefit is only seen when patterns of

hypoglycemia events can be observed from multiple days), (iii) there is no automatic

way to record these events.

In Chapter 4, we presented an unannounced meal detection algorithm. This

algorithm can be adapted to serve as a hypoglycemia treatment detection algorithm.

Automatic hypoglycemia detection can become a basis for another algorithm that

detects dangerous patterns in glucose data. In figure 8–1, we show a one-week real-

world data where possible hypoglycemia events can be detected.

8.4.2 Longer and Larger Clinical Studies

The large day-to-day variabilities observed in glucose data suggests that bi-

weekly or weekly insulin adjustments are better suited for people with type 1 dia-

betes, rather than daily adjustments.
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Figure 8–1: Example of one week data in a real-life settings. Possible hypoglycemia events are highlighted
with violet ellipses.
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A six-month randomized parallel trial in 180 patients with type 1 diabetes to

evaluate the efficacy of the Diabeo mobile application, a bolus calculator with insulin

adaptations, showed an improvement in HbA1c [112]. Yet, because of physicians’

quarterly follow-up, or bi-weekly teleconsultations, the efficacy of automatic insulin

adjustments alone could not be assessed. Similarly, a 6-month randomized parallel

trial in 181 patients with type 2 diabetes to evaluate the d-Nav Insulin Guidance

System, a handheld device that is used to automatically individualize the treatment

(not necessarily insulin doses), showed improvement in HbA1c [135].

In Chapter 6, we argued that our method can account for day-to-day variability

by averaging recommendations over several days. The positive results in Chapter

7 motivated the integration of our method in a new bolus calculator that provides

weekly insulin adjustments branded the “iBolus”. We are conducting a 3-month

parallel randomized trial in 84 adults using multiple daily injections to investigate

the superiority of algorithmic adjustments compared to patients’ usual therapy (clin-

icaltrials.gov identifier NCT04123054).

In Figure 8–1, we show a one-week data from this study. In Table 8–1, we show

an example of how weekly insulin adjustments can be generated using our algorithm.

Each day, the optimal therapy parameters (basal dose and carbohydrate ratios) for

this day are estimated. Each week, a new recommendation in all therapy parameters

is provided based on the individual days.
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Table 8–1: Results of weekly insulin adjustments from the one-week data in Figure
8–1. CR stands for carbohydrate ratio. U stands for insulin units.

Basal
Dose (U)

Breakfast
CR

(g/U)

Lunch
CR

(g/U)

Dinner
CR

(g/U)

Bedtime
CR

(g/U)

Used parameters 16 4 7 4 20

Day 1 17.7 4.7 5.3 5

Day 2 15.2 4.3 5.8 4.3

Day 3 16 4.9 6.6

Day 4 17.2 5 7.7 4 15.5

Day 5 19.1 4.7 7.7 15

Day 6 16 5 5.7 4.3

Day 7 16.6 5 6

Recommendations 17 4.5 6.5 4.5 17
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8.4.3 Adaptive Bolus Calculator

We have developed an automatic dose adjustments algorithm for multiple daily

insulin. This algorithm can be used as basis for an adaptive bolus calculator that

learns from patients data. A complete adaptive bolus calculator may include other

functionalities:

� Fat and protein content in meals significantly affects glucose excursions after

meals [136]. General recommendation on insulin dosing following a meal with

fat/protein is available in the literature [137]. However, it is possible to learn

individualized recommendations resulting in better control. Developing such

an algorithm will require: (i) Developing a model of glucose including the

effects of fat and protein. (ii) Developing an adaptive control algorithm, this

algorithm may incorporate machine learning concepts to learn patient-specific

glucose trends. (iii) Clinical evaluation of the algorithm.

� Physical activities are an important challenge for type 1 diabetes patients be-

cause of the risk of hypoglycemia after physical activities. Even though exer-

cise is recommended, patients must carefully manage their glucose when they

exercise. General recommendation on insulin dosing before exercise exist [75].

However, it is again possible to learn individualized recommendations resulting

in better control [123].

8.4.4 Fully Closed-loop Systems

The ultimate goal of type 1 diabetes treatments is to provide optimal control

of glucose without burdening patients. Currently, patients are required to count the

carbohydrates content in their meals and announce it to the system. In closed-loop
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insulin delivery, the main limitation of achieving fully automated control with the

current insulin pumps and glucose sensors is the mismatch between time-to-peak of

meal absorption and time-to-peak of subcutaneously delivered insulin. To overcome

this limitation, multiple approaches can be investigated:

Faster insulin absorption Faster insulin may enable both a reduction of hyper-

glycemia by faster reduction of glucose and reduction of hypoglycemia by faster

insulin clearance. Manufacturing of faster insulin analogs is an active area of

research [138, 36].

Slower carbohydrate digestion Adjunctive therapy in the form of other medi-

cations can achieve slower meal-related glucose absorption [93, 139, 140]. By

slowing glucose absorption from meals, the glucose peak after meal consump-

tion can be delayed, giving more time for insulin to reach its peak glucose-

lowering effects.

Glucagon responsiveness Glucagon is a hormone that triggers the liver to release

its glucose reserve. By delivering glucagon, it might be possible to tune the

closed-loop algorithm more aggressively (deliver more insulin) [87]. Also, if a

meal detection is utilized, a more aggressive control strategy can be used.

A fully-closed loop system might become feasible with the arrival of new drugs,

theoretical research in both modeling and control is warranted.

8.4.5 Adaptive Artificial Pancreas

Not all type 1 diabetes patients reach glycemic targets, partly due to the large

day-to-day variability in insulin needs. Although closed-loop insulin delivery provides

good glycemic control, these systems may need to adapt to long-term variations in
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insulin requirements. Furthermore, most closed-loop systems are initialized using the

open-loop therapy parameters (basal rates, carbohydrate ratios, insulin sensitivity

factors), improper initialization due to non-optimal parameters may degrade the

overall performance of closed-loop insulin delivery. Other specific parameter for

closed-loop insulin delivery can also be adapted, such as the controller gain [121].

Adjusting these parameters may improve the overall performance of theses sys-

tems while abrupt changes in glucose levels should be handled by the closed-loop

controller. Algorithms that adjust and optimize insulin dosing for closed-loop in-

sulin delivery exist but are yet to show a clear advantage in clinical trials [119, 122,

117]. Such an algorithm can be extended from the proposed insulin doses algorithm

for multiple daily injections therapy users [141].

8.4.6 Infusion-set Failure Detection

Infusion sets for pumps are usually required to be replaced every 2-3 days in

order to avoid skin and infusion problems [78]. However, little is known about the

true life expectancy of infusion sets, and few clinical studies investigated increasing

infusion sets survival [142]. A smart algorithm that analyzes glucose profiles and

detects the optimal time for infusion set may reduce the burden on patients using

an insulin pump (continuous subcutaneous insulin delivery, or closed-loop insulin

delivery) [143, 144, 145]. Such an algorithm can be extended from the proposed

unannounced meal detection algorithm.
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Authorization Letters to Conduct Research

We attach the authorization letters received from the McGill University Health

Center research ethics board to conduct the clinical trials presented in Chapters 5

and 7.
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