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Abstract  Aquatic and semi-aquatic mammals, while resting at the water surface or ashore, breathe with a low frequency (f) by 

comparison to terrestrial mammals of the same body size, the difference increasing the larger the species. Among various inter-

pretations, it was suggested that the low-f breathing is a consequence of the end-inspiratory breath-holding pattern adopted by 

aquatic mammals to favour buoyancy at the water surface, and evolved to be part of the genetic makeup. If this interpretation was 

correct it could be expected that, differently from f, the heart rate (HR, beats/min) of aquatic and semi-aquatic mammals at rest 

would not need to differ from that of terrestrial mammals and that their HR-f ratio would be higher than in terrestrial species. Lite-

rature data for HR (beats/min) in mammals at rest were gathered for 56 terrestrial and 27 aquatic species. In aquatic mammals the 

allometric curve (HR=191·M-0.18; M= body mass, kg) did not differ from that of terrestrial species (HR=212·M-0.22) and their 

HR-f ratio (on average 32±5) was much higher than in terrestrial species (5±1) (P<0.0001). The comparison of these HR allome-

tric curves to those for f previously published indicated that the HR-f ratio was body size-independent in terrestrial species while 

it increased significantly with M in aquatic species. The similarity in HR and differences in f between aquatic and terrestrial 

mammals agree with the possibility that the low f of aquatic and semi-aquatic mammals may have evolved for a non-respiratory 

function, namely the regulation of buoyancy at the water surface [Current Zoology  61 (4): 569–577, 2015]. 
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In mammals, resting breathing frequency (f) de-
creases with increasing species’ body mass (M) ap-
proximately as M-0.25 (Guyton, 1947; Stahl, 1967). A 
similar allometric pattern has been reported for other 
time-related physiological variables, including heart rate 
(Mortola and Lanthier, 2004). Hence, at rest f and HR 
change with body size approximately in parallel, with 
HR about 4 times higher than f. With respect to f, 
aquatic species are known to deviate substantially from 
the general mammalian allometric pattern. Resting f of 
manatees, dolphins and a few species of seals varies 
between 1 and 7 breaths/min (Scholander and Irving, 
1941; Andersen, 1966; Spencer et al., 1967; Gallivan, 
1980; Andrews et al., 2000; Le Boeuf et al., 2000; Mann 
and Smuts, 1999), which is much lower than the f of 
terrestrial species of similar M. Indeed, the allometric 
curve constructed from 29 species of aquatic and 
semi-aquatic mammals spanning several orders of mag-
nitude in body M was M-0.42, drastically different from 
that of terrestrial species (M-0.25; Mortola and Limoges, 
2006). The difference from terrestrial species is small or 
absent for smaller mammals (about 10 Kg or less), 
while it becomes progressively more apparent in me-

dium-size and larger mammals. 
It is possible that the difference in f between aquatic 

and terrestrial species reflects aspects of adaptation of 
the control of breathing relevant to the diving and breath- 
holding necessities of life in water (Tenney and Boggs, 
1986; Bartlett, 1988) or as a response to the hydrostatic 
pressure (Andrews et al., 2000). However, it is unclear 
why these adaptations should apply only to aquatic 
mammals of medium or large size. Recently, Mortola 
and Limoges (2006) proposed that the slower f was re-
lated to a non-respiratory function of the lungs, a con-
sequence of the breath-holding breathing pattern char-
acteristic of aquatic species to maintain elevated lung 
volume to improve buoyancy. In fact, the buoyancy of 
mammals in water results from a variety of factors in-
cluding their body fats and blubber, the air in the lungs 
and the air trapped in the hairs of the skin. This latter 
loses relevance with increased body size, because of the 
decrease in surface-mass ratio. As a consequence, 
keeping lung volume elevated to improve buoyancy 
may be important for larger mammals; at the same time, 
the increase in mean lung volume decreases f through 
the Hering-Breuer reflex (Widdicombe, 1961; Milsom, 



570 Current Zoology Vol. 61  No. 4 

 

1990). Hence, based on this interpretation the control of 
buoyancy, a non-respiratory function, would be respon-
sible for the low-f breathing of aquatic mammals.  

Whether or not the heart rate (HR) of aquatic species 
differs systematically from that of terrestrial species is 
not known. If optimization of the coupling between 
respiratory and cardiovascular gas convection required a 
close matching between cardiac and respiratory rates, it 
is conceivable that HR of aquatic species may deviate 
from that of terrestrial species approximately in the 
same way as f does, maintaining the typical HR-f ratio 
of ~4. Alternatively, if the low-f breathing pattern evo-
lved for a non-respiratory function such as the control 
of buoyancy, HR of aquatic species may be similar to 
that of terrestrial mammals of similar size; in which 
case, the resting HR-f ratios of aquatic species may 
reach unusually high values. The aim of the present 
study, therefore, was to use published data to construct 
the allometric curves of HR for aquatic and terrestrial 
mammals and compare them to the corresponding cur-
ves of f.  

1  Materials and Methods 

All HR values, for both terrestrial and aquatic species, 

were gathered from the literature (Tables 1 and 2). Most 
data included in the analysis were collected on con-
scious animals in resting conditions; those data col-
lected on animals under sedation are indicated in the 
Tables. Owing to the scope of the study, preference was 
given to HR data collected in medium-size and larger 
species because differences in f between terrestrial and 
aquatic mammals begin to be apparent at M > 5–10 kg 
(Mortola and Limoges, 2006). Data were excluded if 
they originated from animals under anaesthesia, in hi-
bernation or torpor; in addition, Monotremes and Mar-
supials were excluded because of their characteristically 
low body temperature and metabolic rate (Dawson, 
1989; Brice, 2009). In case of multiple values or ranges 
of values, means were calculated. When there was more 
than one source of data for a particular species, averages 
were obtained. Body mass (M), if not reported, was 
obtained from standard bibliographic references for that 
sex and age (e.g., Silva and Downing, 1995). 

Values are presented as means ± 1 SEM. Exponents 
(b) and intercept (a) of the allometric equation relating 
HR (beats/min) to M (kg) were derived from a least-    
squares regression analysis of the log-transformed 
equation Y = a·Mb. Critical values of the correlation 

 
Table 1  Resting heart rate in terrestrial mammals 

Common and scientific names M (kg) HR (bpm) references and notes 

Artiodactyla 

Alpine ibex Capra ibex 92 70 Signer et al., 2011. 

Asian buffalo Bubalus bubalis * 810 36.4 Lacuata and Libo, 1983. 

Bighorn sheep Ovis canadensis * 98 63 
Johnston et al., 1980; MacArthur et al., 1979, 1982;  
Harlow et al., 1987; Weisenberger et al., 1996. 

Camel (Camelus) a * 545 49 Rezakhani and Szabuniewicz, 1977. 

Cattle Bos taurus * 520 59 Ishikawa et al., 1990; Merck, 2012. 

Dik-dik antelope Rhynchotragus kirkii * 4.8 114 Kamau and Maloiy, 1982. 

Domestic goat Capra aegagrus hircus * 24.5 75 Merck, 2012. 

Gaur Bos gaurus 520 53.5 Thomas et al., 1996. 

Gemsbuck Oryx gazella 120 47 Wassenaar, 1993 [sedated]. 

Giraffe Giraffa camelopardalis * 525 160 Wassenaar, 1993 [sedated]. 

Mountain gazelle Gazella gazella 21.5 105 Furley, 1986 [immobilized]. 

Mule deer Odocoileus hemionus * 72 57.7 Weisenberger et al., 1996. 

Muskox Ovibos moschatus * 265 57.5 Glover and Haigh, 1984. 

Pig Sus domesticus * 308 95 Merck, 2012. 

Roe deer Capreolus capreolus 20.7 104 Santamarina et al., 2001. 

Sheep Ovis aries * 53.3 96 Reefmann et al., 2009; Merck, 2012. 

Wild water buffalo Bubalus arnee 810 49.5 Ishikawa et al., 1990. 

Yak Bos grunniens * 465 53 Singh et al., 1989; Krishnan et al., 2009 . 

Carnivora 

Badger Taxidea taxus 8.5 115 Harlow, 1981. 
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Continued Table 1 

Common and scientific names M (kg) HR (bpm) references and notes 

Black bear Ursus americanus * 76.6 66 Folk, 1967. 

Cat domestic Felis catus 4 113 Gompf  and Tilley LP, 1979; Merck, 2012. 

Dog Canis familiaris * 18.1 104 Matsunaga et al., 2001; Merck, 2012. 

European polecat Mustela putorius * 1 282 Tumanov and Sorina, 1999. 

Fennec Vulpes zerda 1 133 Noll-Banholzer, 1979. 

Lion Panthera leo * 165 115 Wassenaar, 1993 [sedated]. 

Meerkat Suricata suricatta 5 190 Wassenaar, 1993 [sedated]. 

Mink Mustela vison 1 261 Gilbert and Gofton, 1982. 

Siberian tiger Panthera tigris altaica 220 82 Wassenaar, 1993 [sedated]. 

Sloth bear Melursus ursinus 90 56 Wassenaar, 1993 [sedated]. 

Steppe polecat Mustela eversmanii * 1.5 257 Tumanov and Sorina, 1999. 

Syrian brown bear Ursus arctos syriacus 250 70 Wassenaar, 1993 [sedated]. 

Chiroptera 

Gould’s long-eared bat Nyctophilus gouldi 0.009 530 b Currie et al., 2014 . 

Lagomorpha 

European rabbit Oryctolagus cuniculus 3.05 244 Akita et al., 2002; Merck, 2012. 

Perissodactyla 

Donkey Equus africanus asinus * 178 42 Yousef and Dill, 1969. 

Horse, Equus caballus * 592 37.9 Evans et al., 1976; Merck, 2012. 

Zebra (Equus) a * 109 145 Wassenaar, 1993 [sedated]. 

Primata 

Baboon (Papio) a 10 130 Morishima and Gale, 1972. 

Bonnet macaque Macaca radiata * 5 170 Reite and Short, 1986. 

Capuchin monkey Cebus albifrons 1 165 Winget et al., 1968. 

Chimpanzee (Pan) a 50.2 114 Wassenaar, 1993 [sedated]. 

Cotton top tamarin Saguinus oedipus 0.32 220 Hampton, 1973. 

Crab-eating macaque Macaca fascicularis 5 179 Toback et al., 1978. 

Human Homo sapiens 72 69.3 Mortola and Lanthier, 2004 (for references). 

Orangutan Pongo borneo 100 110 Wassenaar, 1993 [sedated]. 

Patas monkey Erythrocebus patas 6 165 Wassenaar, 1993 [sedated]. 

Pigtail macaque Macaca nemestrina 6 174 Reite and Short, 1980. 

Rhesus macaque Macaca mulatta 3.58 137 Fuller et al., 1996 – Malinow et al., 1974. 

Saddleback tamarin Saguinus fuscicollis 0.31 190 Hampton, 1973. 

Talapoin monkey (Miopithecus) a 1.04 233 Wassenaar, 1993 [sedated]. 

Proboscidea 

African elephant Loxodonta africana * 3437 32.5 Geddes LA, 2002 c; Merck, 2012. 

Indian elephant, Elephas maximus indicus * 5000 35.5 Yathiraj et al., 1992. 

Rodentia 

Brown rat Rattus norvegicus * 0.27 319 Mortola and Lanthier, 2004 (for references); Merck, 2012. 

Guinea pig Cavia porcellus * 0.62 252 Akita et al., 2001; Merck, 2012. 

Hoary marmot Marmota caligata 5.5 92 Folk et al., 2008. 

House mouse Mus musculus * 0.025 552 Gehrmann et al., 2000; Tankersley et al., 2002. 

Syrian hamster Mesocricetus auratus * 0.12 407 Refinetti and Menaker, 1993; Merck, 2012. 

When species name was not available from the original source, only the genus is indicated. M, body mass, kg. HR, heart rate, beats per min. a the 
author did not specify the species name. b 10°C ambient temperature. c the author did not specify which species of the Loxodonta genus; from body 
mass and other information it was probably Loxodonta africana. *, species with data for both HR and breathing frequency (Fig. 2). 
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Table 2  Resting heart rate in aquatic mammals 

Common and scientific names M (kg) HR (bpm) references 

Artiodactyla 

Hippopotamus Hippopotamus amphibious * 1770 95 Elsner, 1966. 

Carnivora 

Antarctic fur seal Arctocephalus gazelle * 100 71 Salwicka and Stonehouse, 2000. 

Australian fur seal Arctocephalus pusillus d. * 24 99 Deacon and Arnould, 2009 [9-month old]. 

California sea lion Zalophus californianus * 28 108 
Ponganis et al., 1991. 
Williams et al., 1991. 

European mink Mustela rutreola * 0.7 222 Tumanov and Sorina, 1999. 

Harbor seal Phoca vitulina * 26 155 
Greaves  et al., 2004, 2005. 
 

Harp seal Pagophilus groenlandicus * 48 106 Lyamin et al., 1989. 

Hooded seal Cystophora cristata * 250 45 Kvadsheim et al., 2010. 

Northern elephant seal Mirounga angustirostris * 1038 72 Bartholomew, 1954; Le Boeuf et al., 2000. 

Polar bear Ursus maritimus * 230 50 Ørtsland et al., 1977; Folk et al., 2008. 

Sea otter Enhydra lutris * 11 139 Galantsev and Maminov, 1979. 

Southern elephant seal Mirounga leonine * 1973 53 Salwicka and Stonehouse, 2000. 

Steller sea lion Eumetopias jubatus 800 86 Hindle et al., 2010. 

Weddel seal Leptonychotes weddellii * 362 48 
Kooyman and Campbell, 1972; Zapol et al., 1979; Kooy-
man GL, 1985; Salwicka and Stonehouse, 2000; Fuse et al., 
2012 

Walrus Odobenus rosmarus * 227 90 Lyamin et al., 2013. 

Cetacea 

Beluga whale Delphinapterus leucas * 597 55 Galantsev et al., 1991; Lyamin et al., 2011. 

Bottlenose dolphin Tursiops truncates * 158 97 
Galantsev et al., 1983; Williams et al., 1993; Noren et al., 
2012. 

California gray whale Eschrichtius robustus 5552 28 Ponganis and Kooyman, 1999. 

Humpback whale Megaptera novaeangliae 30000 33 Wassenaar, 1993. 

Killer whale Orcinus orca * 2883 60 Spencer et al., 1967. 

Monotremata 

Platypus Ornithorhyncus anatinus 1.6 145 Evans et al., 1994. 

Rodentia 

Beaver Castor Canadensis * 22 136 Gilbert and Gofton, 1982; McKean, 1982. 

Muskrat Ondatra zibethicus 1.3 225 Gilbert and Gofton, 1982. 

Nutria Myocastor coypus 8 140 McKean, 1982. 

Sirenia 

Amazonian manatee Trichecus inunguis * 120 35 Gallivan et al., 1986. 

Dugong Dugong dugon * 501 75 Lanyon et al., 2010. 

West Indian manatee Trichechus manatus * 350 34 Galantsev and Mukhametov, 1984. 

When species name was not available from the original source, only the genus is indicated. M, body mass, kg. HR, heart rate, beats per min. *, 
species with data for both HR and breathing frequency (Fig. 2). 

 

coefficients r, differences between slopes or between 
sets of data were considered statistically significant at P 
< 0.05. 

2  Results 

Fig. 1 (top panel) presents the M(kg)-HR(beats/min) 
data points for all terrestrial (open red circles, n = 56) 
and aquatic (filled blue circles, n = 27) species. The 
data for the two groups overlapped extensively. The 

respective allometric equations were HR=191·M-0.18 
(aquatic, r = 0.81) and HR=212·M-0.22 (terrestrial, r = 
0.90); these relationships did not differ significantly 
either in slope or intercept. Similarly, the HR allometric 
curves constructed with only the permanently aquatic 
species (Sirenia and Cetacea) or with only the semi-    
aquatic species would not be significantly different from 
the function of the terrestrial species. For comparison 
purposes the bottom panel shows the previously pub-
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lished allometric curves of breathing frequency (f, 
breaths/min) for terrestrial and aquatic mammals (Mor-
tola and Limoges, 2006). In the case of f, the allometric 
function of aquatic species differed visibly and signifi-
cantly from the corresponding function of terrestrial 
species.  

From the allometry of HR and f, the scaling pattern 
of the HR-f ratio for terrestrial species was HR/f = 
4·M0.031; the 0.031 exponent, being close to zero, indi-
cated that the HR/f ratio of 4 was size-independent. In 
contrast, the function for aquatic species was HR/f = 
5.8·M0.24; in this case, the 0.24 exponent was signifi-
cantly higher than zero and indicated that HR was dis-
proportionately higher than f , the greater the species’ M. 
Individual values of HR/f were computed for those spe-
cies where there were data for both HR and f (Fig. 2); 
the HR/f of aquatic species averaged 32.2 ±5.5 (n = 21), 
significantly higher (P < 0.001) than in terrestrial spe-
cies with HR/f of 5.0 ± 0.8 (n = 27).   

3  Discussion 

Most of the extensive literature on cardiovascular 
adaptation to aquatic life has focused on the response to 
diving and breath-holding. Here, the primary aim of the 
current study was HR in resting conditions for the pur-
pose of comparison between aquatic and terrestrial spe-
cies. The results were unequivocal in showing overlap 
between the two allometric curves. The inter-specific 
pattern of HR, therefore, was in sharp contrast to that of 
the rate of breathing f (Fig. 1).  

Aquatic mammals comprise a heterogeneous group 
of species with enormous taxonomic diversity and a 
large range in body masses, functionally and morpho-
logically adapted to permanent or intermittent life in 
water, with webbed feet, blubber or water-repellent 
pelts and the possibility of sealing nostrils and ears in 
the water. Some are excellent breath-holders and divers. 
The current analysis included 27 aquatic and 56 terres- 

 

 
 

Fig. 1  Top panel, allometric relationships (with 95% Confidence Intervals) of heart rate in aquatic (filled blue circles, n = 
27) and terrestrial species (open red circles, n = 56) 
For comparison purposes, the corresponding previously published allometric relationships of breathing frequency are shown in the bottom panel 
(from Mortola and Limoges, 2006). 
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Fig. 2  Ratio between resting heart rate (beats/min) and 
breathing frequency (breaths/min) (HR/f) in aquatic and 
terrestrial species 
Symbols are individual species (n = 27 and 21 in terrestrial and 
aquatic, respectively). Columns indicate group average, bars are 1 
SEM. Aquatic species had significantly higher HR/f than terrestrial 
species (P < 0.001). 

 
trial species of, respectively, 6 and 8 mammalian orders, 
spanning in M from 9 g to 30 tons. Restriction to only 
permanently aquatic species or to only semi-aquatic 
species would not modify the conclusion that HR is 
indistinguishable from that of terrestrial species. This 
differs from what previously observed with respect to f . 
In fact, the scaling exponent of f was consistently lower 
in aquatic than in terrestrial species for the whole group 
and for the various subgroups of aquatic and semi-   
aquatic species individually considered (Mortola and 
Limoges, 2006). 
3.1  Buoyancy and the Hering-Breuer reflex 

In mammals, buoyancy is increased by the air 
trapped in the hairs of the coat, the body fat and blubber 
and the air volume in the lungs; of these, only the latter 
can be varied and used to regulate buoyancy, not unlike 
the swim bladder of fish. Fur coats, in first approxima-
tion, are proportional to the body surface area; hence, 
their role in promoting flotation decreases with increas-
ing body mass. Furthermore, many large aquatic mam-
mals (Cetacea, Sirenia, Pinnipeds) have minimal or no 
fur coat, to decrease the drag. The density of body fat is 
lower than that of water and approximately the same 
among species (Fidanza et al., 1953). The human body 
has ~14% fat and an air-free density of 1.07 g/ml (Wil-
more and Behnke, 1969). In aquatic mammals, the 
blubber raises the proportion of body fat up to 30% 
(Lockyer, 1991), which lowers the air-free body density 
to around unity. This means that a lung air volume of 
just a few percentages of body mass can bring the whole 
body to neutral buoyancy. Hence, closure of the upper 
airways at end inspiration or before end-expiration, by 

raising mean lung volume offers an economical means 
of regulating buoyancy. Aquatic mammals of medium 
or large size while resting at the water surface (mana-
tees, orca, dolphins) or on land (seals, sea lions) venti-
late the lungs at low rates and, between breaths, main-
tain lung inflation above the passive volume of the res-
piratory system (Scholander, 1940; Spencer et al., 1967; 
Olsen et al., 1968; Kooyman et al., 1973; Gallivan et al., 
1986; Castellini et al., 1986; Mortola and Lanthier, 
1989). Whenever lung volume is above its resting state, 
the sustained increased activity of the pulmonary stretch 
receptors delays the onset of the next inspiration via the 
Hering-Bruer reflex, a vagal response widely demon-
strated in all mammals (Widdicombe, 1961; Milsom, 
1990), including the Harbor seal (Angell-James et al., 
1981). In conclusion, it seems probable that the low f of 
aquatic species is a side effect of a breathing pattern 
meant to control lung volume as a buoyancy mechanism. 
This breathing pattern was considered to be partly a 
product of the expression of genetic traits (because it 
persisted out of water and was manifested in the new-
borns prior to their first diving experience), and partly a 
reflex response because it was accentuated by water 
immersion (Mortola and Limoges, 2006). 
3.2  HR-f ratio  

In terrestrial mammals, the HF-f ratio is approxi-
mately 4 throughout the range of body sizes. At first 
sight, such constancy could indicate that the HR-f ratio 
has some important role in preserving the coupling of 
the cardio-respiratory functions for gas convection. Al-
ternatively, the inter-specific stability of the HR-f ratio 
could be a consequence of the scaling patterns of pul-

monary ventilation EV and cardiac output ( Q ) and of 

their respective stroke (SV) and tidal volumes (VT). In 

fact, EV and Q  share the same inter-species scaling of 

about M0.75 while SV and VT are both proportional to 
M1 (Peters, 1983), probably because a pump is more 
efficient when the volume delivered at each stroke is 

proportional to its size. It follows that both HR (= Q /SV) 

and f ( EV /VT) scale inter-specifically approximately as 

M(0.75-1)=M-0.25. Hence, the constancy of the HR-f ratio 
among terrestrial species may not have a physiological 
meaning in itself; rather, it could be the consequence of 
the similar allometric relationships of minute output and 
stroke volume of the cardiovascular and respiratory 

systems. This should mean that, as long as Q and EV  

remain tied together for the purpose of gas convection 
and exchange, the HR-f ratio has room to vary. The 
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mammalian respiratory system, unlike the cardiovascu-
lar system, has often evolved as a compromise between 
gas exchange duties and non-respiratory functions, like 
water balance, thermoregulation and sound production. 
In aquatic mammals the role of the lungs for buoyancy 
is probably a fundamental non-respiratory function, 
which requires a low-f breathing pattern. Despite the 
low f, because tidal volume/M is about three times the 
average terrestrial value (Mortola and Seguin, 2009) 
and because between breaths mean lung volume is 
maintained elevated, the values of alveolar ventilation 
and partial pressure of CO2 in aquatic species are close 
to those of the terrestrial species (Mortola and Seguin, 
2009). Hence, the fact that some aquatic species, by 
using the lungs as a buoyancy mechanism, keep the 
resting HR-f ratio several times higher than terrestrial 
species does not in any way compromise gas exchange. 

In conclusion, a compilation of published data for 
many mammals indicates that there is no difference in 
HR between terrestrial and aquatic or semi-aquatic spe-
cies. This similarity is in sharp contrast to what had 
emerged previously from analysis of f, because aquatic 
mammals of medium or large size when resting at the 
water surface or ashore breathe more slowly than ter-
restrial species of comparable body size. It follows that 
the resting HR-f ratio of aquatic mammals can be much 
higher than in terrestrial species. The current results are 
compatible with the interpretation that the low resting f 
of aquatic species is the outcome of selection for a 
non-respiratory function of the lungs, that is, the use of 
lung volume to control buoyancy.  
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