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ABSTRACT

Modern humans are unique in the vast geographic range we inhabit.

However, how, why, and under what conditions humans and our hominin

ancestors successfully dispersed and settled throughout the world is still

poorly understood, and presents one of the biggest challenges to understand-

ing our evolutionary history. Increasingly sophisticated hominin cognition

is assumed to play an important role in major dispersal events but it is

unclear what that role is. This dissertation uses a series of agent-based

models to explore the close relationship between cognitive complexity, the

spatial heterogeneity of the landscape, and dispersal potential and velocity.

Since dispersal is the global scale product of local scale mobility, the first

agent-based model evaluates the role of cognitive complexity in the foraging

related mobility of small foraging groups. As a proxy for cognition, model

foraging groups, or agents, possess a variable accuracy of assessing the

quality of their local environment as they decide where to move to maximize

resources. The model results show that the spatial heterogeneity of the

resource landscape exerts a selective pressure such that lower cognition is

adaptive in low heterogeneity landscapes, and higher cognition is adaptive

in high heterogeneity landscapes. In the models, cognition preferentially

directs movement towards known resources, and indirectly inhibits dispersal

outwards into unknown landscapes. This suggests that increased cognition

could have inhibited hominin dispersal, and that the dispersal events that

did occur likely came from low heterogeneity environments. The second

section of this dissertation evaluates the robustness of these findings in two

new models by extending how foraging groups acquire knowledge of their

environment before making mobility decisions. The first varies the size of
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the agent’s resource assessment area, and the second allows agents to learn

about the resource landscape through social interactions instead of direct

observation. In each case, low levels of environmental knowledge are advan-

tageous, particularly in low heterogeneity environments. This adds further

support to the hypothesis that hominin dispersals likely originated from a

low heterogeneity environment, as this would have favoured the evolution of

the low cognition hominins that had the highest dispersal potential. The fi-

nal section of the dissertation combines the model of cognitive dispersal with

the wave of advance model. The model quantifies the impact of cognition

on dispersal velocity and wave pattern. The results show that the greater

the level of cognitive complexity, the slower the wave of advance. Increased

heterogeneity of the environment further decreases wave velocity when

cognition is involved in mobility. Random movement, i.e. non-cognitive

mobility, provides the highest velocity across almost all landscapes. This

suggests that previous research has either overestimated the importance of

cognition in facilitating dispersal events, or has grossly underestimated the

rate of population growth and per generation dispersal distance of hominin

populations. A large body of archaeological and palaeoanthropological

research is focused on the assumed advantages of cognitive sophistication for

dispersal. However, the results of this dissertation suggest that the spatial

characteristics of the environment played an important inhibitory role in

the natural selection of hominin cognition and dispersal potential, and in

reducing dispersal velocity. Surprisingly, hominin dispersal events may have

originated from low spatial heterogeneity environments since these land-

scapes preferentially gave an advantage to populations with lower cognitive

complexity.
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ABRÉGÉ

Les humains modernes sont uniques de par la diversité écologique et la

vaste étendue de nos habitats. L’histoire de la dispersion des nos ancêtres

hominidés et ses raisons et mécanismes sont peu compris et présentent l’un

des principaux mystères de l’évolution humaine. On suppose souvent que

l’accroissement des capacités cognitives des hominidés y est pour quelque

chose, mais son rôle n’est pas clairement identifié. Cette thèse utilise la

modélisation basée agent pour explorer l’interaction entre la complexité

cognitive, l’hétérogénéité spatiale des environnements et la dispersion

des hominidés. Étant donné que la dispersion globale est le produit de

processus locaux de mobilité, le premier modèle présenté évalue le rôle

de la complexité cognitive dans la mobilité reliée à la subsistance pour

de petits groupes d’agents. Les agents de ce premier modèle varient dans

leur capacité à évaluer la qualité de leur environnement immédiat, ce qui

a une influence sur leurs décisions reliées à la mobilité et à la subsistance.

Les résultats de ce modèle démontrent que l’hétérogénéité spatiale des

environnements crée une pression sélective sur la capacité cognitive. Les

environnements plus homogènes favorisent une complexité cognitive réduite,

tandis que les environnements plus hétérogènes favorisent une plus grande

complexité cognitive. De plus, une complexité cognitive accrue favorise

les mouvements des agents vers des ressources déjà connues et tend à

ralentir la dispersion des groupes vers de nouveaux environnements. Ce

résultat suggère que l’accroissement de la complexité cognitive des hominidés

pourrait ne pas avoir favorisé la dispersion de l’espèce et que cette dispersion

aurait pu être favorisée par des périodes de stabilité environnementale.

Les deux modèles suivants évaluent la solidité de ces premiers résultats
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en donnant aux agents plus de connaissances de leur environnement. Un

des deux modèles varie l’étendue de la zone dans laquelle l’agent a accès

à de l’information pouvant affecter ses décisions de mobilité. L’autre

donne aux agents la capacité d’acquérir de l’information d’autres agents

plutôt que par observation directe. Dans chacun des cas, les agents sont

avantagés quand ils ont accès à une quantité d’informations plus limitée

sur leur environnement, surtout dans les environnements plutôt homogènes.

Ces seconds résultats renforcent l’hypothèse que les grands épisodes de

dispersion des hominidés auraient eu leur origine dans des environnements

relativement homogènes qui favorisent l’évolution d’une complexité cognitive

limitée, créant ainsi un fort potentiel pour la dispersion spatiale. Un

dernier modèle combine ces modèles de complexité cognitive variable

et de mobilité locale avec un modèle de diffusion démique. Ceci permet

de quantifier l’influence de la complexité cognitive sur la vitesse et la

distribution des vague de dispersion. Le modèle démontre qu’il y a une

relation inverse entre la complexité cognitive et la vitesse des vagues de

dispersion. L’hétérogénéité environnementale réduit encore plus la vitesse

de ces vagues. Le mouvement aléatoire, qui n’est donc pas guidé par un

l’appareil cognitif de l’agent, produit les vagues de dispersion les plus

rapides dans la plupart des types environnement. Ensemble, ces résultats

suggèrent que les approches existantes surestiment l’importance de la

complexité cognitives comme outils permettant la dispersion des hominidés,

ou qu’elles sous-estiment fortement les taux de croissance des populations

hominidés et leur distance de mouvement intergénérationnel pendant les

grands épisodes de dispersion. Or, la complexité cognitive de nos ancêtre

occupe un rôle important dans la pensée archéologique et anthropologique

sur les causes et le mécanismes de la dispersion des hominidés. Par contre,
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les résultats des modèles présentés ici suggèrent que l’environnement a pu

avoir un rôle modérateur sur l’accroissement de la complexité cognitive

humaine et sur le potentiel de dispersion de l’espèce. Contre les attentes,

ils suggèrent aussi que les grands épisodes de dispersion auraient eu leur

origine dans les environnements homogènes qui favorisaient l’évolution de

population à complexité cognitive limitée.
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PREFACE

My interest in patterns of movement in archaeology began when I

started taking Geographic Information Science courses during my under-

graduate degree. Over time I realised that the spatial-temporal distribution

of the archaeological record is as much an artefact of human behaviour as

lithics, fauna, ceramics, and architecture. As an object of study, the space

and time between things presents an interpretive challenge that I try to

tackle with innovative methodological approaches. I greatly expanded my

repertoire with a M.Sc. in GIS and Spatial Analysis from University College

London. My supervisor, Dr. Mark Lake taught my first course in agent-

based modelling and threw me in the deep end of programming with Java,

C, bash, GRASS, and R all at the same time. I was well into the models of

this dissertation before I realised how instrumental Dr. Lake’s hungry rabbit

training model was in my thinking of hominin dispersal.

I entered McGill’s Ph.D. program intending to use agent-based mod-

elling to study diffusion and dispersal but for a slightly different purpose.

My original question asked if it was possible to use models to distinguish

between people, cultural traits, and trade goods moving around in the past.

I identified migration, demic diffusion, cultural diffusion, trade, and inde-

pendent innovation as different mechanisms used to interpret changes in the

spatial and temporal patterning of the static archaeological record. I system-

atically identified the variety of models used to describe these mechanisms

(e.g. wave of advance and GIS models) and the factors archaeologists use to

determine which mechanism was responsible (e.g. rate and extent of change,

single vs. multi-trait complexes).

x



I selected the spread of farming through Europe as a test case, as it is

a well documented case study where there is some debate about the relative

importance of demic diffusion (i.e. population replacement) versus cultural

diffusion (i.e. acculturation). Within a month of my proposal defence I had

working computational models of demic and cultural diffusion, as well as a

model using imported GIS layers of European topography. At this point a

colleague sent me a paper by Lemmen et al. (2011), who used a simulation

to evaluate the relative roles of demic and cultural diffusion in the spread

of farming through Europe. The study was very well done and came to

the same conclusion that even my preliminary models were suggesting:

since the vector of cultural diffusion is still the movement of people, it may

not be possible to differentiate between cultural and demic diffusion from

the resulting spatial and temporal pattern in the archaeological record.

Lemmen et al.’s (2011) study had already answered my research question

in approximately the same way I had intended to, and in some ways, more

thoroughly than I had planned.

A few months later, Dr. Ariane Burke ask if I would create a model

of anatomically modern human dispersal into Iberia using global climate

simulation data calibrated to the palaeoenvironmental context. This

dissertation is the product of that investigation. In developing this model

I quickly discovered the fundamental limitation of the wave of advance

model, namely that the rate and pattern of the wave is unaffected by the

underlying environmental landscape. Further, the random walk did not seem

like a reasonable mechanism for mobility given the importance ascribed

to complex cognition and human-environment interaction. I borrowed the

concept of foresight, which Julian Z. Xue and Dr. Andre Costopoulos were
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developing (in the same room), adapted it for a spatial context, and set

about incorporating cognition into a general model of human dispersal.
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CHAPTER 1
Introduction

1.1 Research question and approach

Modern humans are unique in the vast geographic range we inhabit.

However, how, why, and under what conditions humans and our hominin an-

cestors successfully dispersed and settled throughout the world is still poorly

understood, and presents one of the biggest challenges to understanding our

evolutionary history.

Our geographic expansion beyond Africa began approximately 1.8

million years ago, surprisingly early in our evolutionary history. Subsequent

major dispersal events occurred approximately 130, 60 and 10 thousand

years ago. Each dispersal represents a fundamental shift in human history,

as our ancestors diversified and adapted to new habitats (Gamble et al.,

2004; Banks et al., 2008; Bar-Yosef and Belmaker, 2011). It is assumed

that both environmental change and increasing cognitive sophistication

played important roles in facilitating dispersal events, but the specific

mechanisms of their interaction and how they generate dispersal is still

under debate (Bar-Yosef and Belfer-Cohen, 2013). This is perhaps because

comparatively little attention has been paid to the local scale drivers of

mobility that enable dispersal events, and particularly to the long term

climate conditions that shaped the evolution of mobility behaviour.

In investigating the factors influencing dispersal I formed two specific

questions: how do the characteristics of the environment influence the

natural selection of cognitive complexity, and what is the relationship

between cognitive complexity and dispersal? These questions arose as I
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realised that dispersal is not necessarily a fundamental human characteristic,

akin to a drive, for example, but rather the product of individual decisions

made about daily movement. Research into the evolution of dispersal

mechanisms should therefore focus on the cognitive development that

enables mobility behaviour. Understanding the selective pressures for

mobility will help answer if this behavioural pattern would increase or

decrease the dispersal potential of populations. Finally, what effect will

cognition have on the velocity and pattern of dispersal waves across different

types of landscapes?

Before I come to these specific questions and how they developed,

it is worth defining dispersal and asking why it is important that we

study it. Dispersal, also known as demic diffusion, occurs as a population

increases in size and expands their geographic range in relatively small

steps per generation. This distinguishes it from migration or colonisation,

where a group intentionally moves a long distance within a generation, not

necessarily with population increase (Ammerman and Cavalli-Sforza, 1971),

and cultural diffusion where cultural traits spread between groups without

significant displacement of people (Lemmen et al., 2011). Explaining the

broad scale patterns of human movement is a key goal of archaeological

research as it gives context to the spatial and temporal distribution of the

archaeological record.

Major dispersal events are often assumed to be triggered by a change

in the biological and cultural evolution of the dispersing population, and

are therefore looked at as turning points in evolutionary history. Dispersal

also tends to result in a wider range of environments being occupied, or at

least new challenges to adapt to, and thus contributes to our understanding

of hominin creativity and adaptability. Finally, dispersal speaks to our
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romantic ideas of exploration and voyages into the unknown (Semple and

Ratzel, 1968), although this bears little resemblance to how the process of

dispersal generally occurred.

Dispersal events are a common topic in archaeology and palaeoan-

thropology and as such, the data is extensive and the overall spatial and

temporal pattern is fairly clear. However, the narratives describing how and

why each dispersal occurred are highly debated and are frequently invali-

dated as even earlier sites are located, and the chronologies of key sites are

refined with more accurate dating methods. For example, a beach in Happis-

burgh, UK, marked by hominin footprints recently pushed back the date of

the earliest occupation of Northern Europe by 350 000 years (Ashton et al.,

2014). Rather than focus on the reconstruction of a particular dispersal

event, this dissertation sees dispersals as expressions of general mechanisms

underlying human-environment interaction.

1.2 Dispersal mechanisms

Population growth is an important requirement for dispersal, since

geographic expansions also require large increases in total population to

maintain a viable population density (Mellars, 2006b). A complete list

of factors influencing dispersal must include a mechanism for population

growth, as well as explaining why humans moved from one location in favour

of another.

Dispersal mechanisms may either make the current location worse,

providing a push outwards, or improve the attractiveness of another

location, pulling towards somewhere new. The source of the mechanism may

be from external (i.e. environmental) or internal processes of change (i.e.

behavioural) (Table 1–1).
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Change Push Pull
Environmental Niche degradation Niche expansion
Behavioural Population growth Niche broadening*

Table 1–1. Typology of dispersal mechanisms. *after Shea and Sisk (2010)

Environmental change may either reduce the suitability of the current

location or expand the geographic range of the currently occupied ecological

niche. Behavioural changes expand the geographic extent of potential habi-

tat by redefining the ecological niche to include a new range of exploitable

resources (e.g. with new tool technology) or by improving tolerance to

previously marginal environments (e.g. with clothing or social networks).

1.3 Cognition in dispersal

Increases in cognitive complexity, through increases in brain size (Aiello

and Dunbar, 1993) or inferred reorganizations of the brain (Klein, 2003), are

often implicitly or explicitly implicated in these behavioural changes. The

development of tools with complex lithic reduction sequences is an explicit

example. Haidle (2010) argues that complex tool forms require a capacity

for forethought not seen outside of the hominin lineage (also see Belfer-

Cohen and Goren-Inbar, 1994). Shea and Sisk (2010) links this increased

capacity, and the development of bow and arrow technology in particular,

to an increase in the range of environments that are inhabitable and the

probability of survival in others. Implicit examples include the hypotheses

that symbolism enabled human dispersal by expanding social networks over

larger areas (Gamble, 1998), and by giving modern humans an adaptive

advantage over Neanderthals (Mellars, 2004).

These studies are a part of the broader focus on the evolution of a

modern the level of cognitive complexity. Borrowing from cognitive science,

in particular the concepts of working memory and executive functioning,
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they evaluate when the impact of modern cognition is first reflected in the

archaeological record (Coolidge and Wynn, 2005; Wynn and Coolidge,

2010).

Some of the hypotheses purporting to explain the dispersal success

of anatomically modern humans (e.g., language and the bow and arrow)

can sound like special-pleading as Homo erectus sensu lato had dispersed

through the same landscape much earlier with a smaller brain, simpler

technology, and perhaps without language capability (Coqueugniot et al.,

2004). This highlights a significant disciplinary divide between those

studying the dispersals of H. sapiens versus H. erectus s.l., and emphasises

that the approach to studying hominin dispersal has been somewhat post-

hoc.

Instead of looking for justifications in the observable archaeological

record, this dissertation takes a more bottom-up approach to dispersal.

Several assumptions guided the models developed here. The primary one

was that dispersal is an emergent phenomenon resulting from individual,

or group, movements aggregating over time. The identification of dispersal

mechanisms should not stem from the characterisation of the dispersal

pattern at the broad scale, but the factors driving individual or group

movement at the local scale. Previous computational dispersal models

generally assume that individual decision making would have a negligible

effect over long time scales and that mobility should approximate a random

process (Mithen and Reed, 2002; Hazelwood and Steele, 2004; Hughes et al.,

2007). In other words, this assumes that there was no systemic behavioural

bias influencing local scale mobility decisions.

So what drives the mobility patterns of individuals or small groups?

Resource acquisition, particularly food and water, seems to be the most
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plausible and plays a major role in mobility decisions. This mechanism also

has the advantage of being relatively easy to model.

Subsistence resource related mobility makes an explicit connection

to the other major branch of dispersal research, palaeoenvironmental

reconstruction. Palaeoenvironmental research uses a combination of marine

and lacustrine cores, ecological preferences of other identified flora and

fauna, and global climate simulations to determine the changing ecological

conditions of various regions (Kingston, 2007; Bar-Yosef and Belfer-Cohen,

2013; Palombo, 2013; Potts, 2013). As I discuss in chapter 4, this branch

forms a passive narrative of dispersal, in which humans don’t select locations

for occupation, but rather diffuse into them when environmental change

opens them up.

The language of these studies may characterise a region as closed if

it is assumed that hominins could not survive there in significant numbers

(e.g. deserts, high altitude, or tundra). Later, doors could open when cli-

mate conditions became more permissive (Bar-Yosef and Belfer-Cohen,

2013). The search for key dispersal corridors is a common theme in this

research (Goren-Inbar et al., 2000; Petraglia and Alsharekh, 2003; Rohling

et al., 2013), perhaps because of the long-term research program into the

ice-free corridor model of New World colonization. In the Old World, coast-

lines and river valleys are more commonly hypothesised as corridors (e.g.,

Davison et al., 2006; Rohling et al., 2013). In another approach, Banks et al.

(2008) models the characteristics of a human eco-cultural niche. However,

each of these approaches divides up the environment into a simplistic bi-

nary classification system of open or closed. In contrast, the few published

computational dispersal models use a landscape with more gradations to
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the environment, typically representing carrying capacity (e.g., Steele et al.,

1998; Hughes et al., 2007).

The variety of dispersal mechanisms, both behavioural and environ-

mental, calls out for a way to test the implications of each. We need a

framework for investigating the sphere of hominin-environment interaction

and how it changes over time, and the emergence of dispersal patterning

from that interaction. How does the environmental pattern interact with

natural selection to create, indirectly, a dispersible population?

In the first and third chapters, I describe published modelling ap-

proaches that have attempted to evaluate different dispersal mechanisms

in some detail. As I point out, most archaeological dispersal models have

relied on only one model, the wave of advance. The dispersal mechanism

of this model is a combination of population growth and even spread in

all directions, sometimes modelled as small, randomly directed movements

known as a random walk. In other words, the model assumes that human

cognition will have no impact on the velocity, direction, or pattern of the

dispersal.

In evaluating the relationship between cognitive complexity and

dispersal, this dissertation employs a much less specific model of cognitive

complexity than is discussed above. However, it is an abstraction that

is tied to the cognitive abilities to develop and remember an accurate

representation of the surrounding landscape, and to strategize and plan

complex actions based on that mental model (Belfer-Cohen and Hovers,

2010; Davidson, 2010; Wynn and Coolidge, 2010).

1.4 Dissertation outline

Chapter 2 introduces the concept of spatial foresight, an accuracy at

which foraging groups identify suitable habitat within their local area. As
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a proxy for cognitive complexity, foresight is the imperfect ability to make

mobility decisions to locate the best resources in a landscape. As foresight

concentrates mobility towards resources, the inverse is effectively an index

for the dispersal potential, or dispersibility, of the population.

The chapter describes an agent-based model where a population of

agents, representing foraging groups, evolve towards an optimal accuracy

level. The spatial heterogeneity of the environment exerts a strong selective

pressure on this optimal level of foresight such that low accuracy evolves

in low heterogeneity landscapes, and an intermediate accuracy evolves in

high heterogeneity landscapes. This has several implications for hominin

dispersal. First, it re-directs the focus of dispersal mechanisms to behaviour

at the local scale and sees dispersal itself as an emergent phenomenon.

Second, it suggests hominin dispersal research should look towards the

long-term environmental trends that resulted in high dispersibility, rather

than just at the moment the dispersal occurred. Finally, the model predicts

that a period of low spatial heterogeneity would be needed to evolve the

dispersibility needed to expand into Eurasia.

A version of this chapter is published in the Journal of Human Evo-

lution (Wren et al., 2014), and is featured as a Research Highlight in

Nature (Callaway, 2014).

Chapter 3 expands the way agents acquire information about their

environment in two distinct ways, one individual and one social. In each

case, the trait evolves towards a value that optimizes the fitness of the pop-

ulation. In model one, agents can evolve increased or decreased assessment

radius, the amount of the landscape that is visible to them when they make

their foraging-biased mobility decisions (I changed the term spatial foresight

to foraging-biased mobility as it was a more descriptive term). In model
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two, agents randomly select another agent from the population, receive

information about the location and value of their resources, and then make

a mobility decision based on that information. Agents can either evolve an

increased or decreased probability of copying, which also determines the

amount of environmental knowledge available to them. In both models,

knowing little (but more than nothing) about the environment is the most

adaptive, especially for low heterogeneity landscapes.

In chapter 4, I incorporate foraging-biased mobility into the most

commonly used dispersal model in archaeology, Fisher’s (1937) wave

of advance. This effectively quantifies the impact of cognition on the

two aspects of human dispersal events that are directly measurable with

archaeological data, rate and pattern. The model suggests that the level of

cognitive complexity, through the proxy of resource assessment accuracy,

the slower the dispersal wave’s velocity and the more sinuous the wave

front. The other variables in the equation, population growth rate and

inter-generational movement distance, must be increased considerably

to account for the discrepancy in modelled and archaeological observed

dispersal velocity. The spatial heterogeneity of the environment did have

a small impact on wave velocity, but not as much as dispersal corridors or

increasing gradients.
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CHAPTER 2
The role of spatial foresight in models of hominin dispersal

Wren, C. D., Xue, J. Z., Costopoulos, A., Burke, A., 2014. The role

of spatial foresight in models of hominin dispersal. Journal of Human

Evolution

2.1 Abstract

Increasingly sophisticated hominin cognition is assumed to play an

important role in major dispersal events but it is unclear what that role is.

We present an agent-based model showing that there is a close relationship

between level of foresight, environmental heterogeneity, and population

dispersibility. We explore the dynamics between these three factors and

discuss how they may affect the capacity of a hominin population to

disperse. Generally, we find that high levels of environmental heterogeneity

select for increased foresight and that high levels of foresight tend to

reduce dispersibility. This suggests that cognitively complex hominins in

heterogeneous environments have low dispersibility relative to cognitively

less complex organisms in more homogeneous environments. The model

predicts that the environments leading up to major episodes of dispersal,

such as the initial hominin dispersal into Eurasia, were likely relatively low

in spatial heterogeneity and that the dispersing hominins had relatively low

foresight.

2.2 Introduction

The relationship between increasing cognitive complexity of hominins

and their ability to adapt to complex and heterogeneous environments has

been a focus of palaeoanthropological research in general (Dunbar, 1998;
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Potts, 2002; Grove et al., 2012), and, more specifically, in the study of

the initial hominin dispersal into Eurasia (Kingston, 2007; Bar-Yosef and

Belfer-Cohen, 2013; Palombo, 2013). The issue has also been central to

debates concerning the replacement of Neanderthals by anatomically modern

humans (Müller et al., 2011; Barton and Riel-Salvatore, 2012; Stewart and

Stringer, 2012). Increasingly detailed palaeoenvironmental reconstructions

and better chronological control of both environmental and human fossil

data are helping to identify where and when particular regions were suitable

for dispersing populations (for a recent review see Palombo, 2013). Kingston

(2007) has argued that increases in the quantity and quality of data alone

are not likely to help us gain a detailed understanding of hominin adaptive

landscapes and of the emergence of global scale evolutionary phenomena.

Modelling of dynamic hominin-environment interactions at spatial and

temporal scales relevant for both hominin behaviour and evolution can

help us make sense of this increasingly abundant and detailed information.

Specifically, we have yet to fully investigate the factors that would push or

pull hominins into unknown but potentially suitable regions. The explicit

connection between mobility decisions made by hominins at the local

scale, enabled by increased cognitive complexity, and the emergent pattern

of dispersal and replacement at the global scale, has not been explored.

Modelling and simulation allow us to study the ways in which global long-

term scale phenomena, such as dispersal, emerge from local short-term scale

phenomena, such as daily mobility decisions related to foraging.

We seek to address three specific questions in this study. First, how

does advanced cognition help hominins navigate and exploit resource

landscapes? Second, what effect does environmental heterogeneity have

on the natural selection of increased cognition in hominins? Third, how
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is the dispersibility of a population linked to their cognitive ability? We

develop an agent-based model to evaluate the relationship between cognitive

complexity, environmental heterogeneity, and hominin dispersal. An agent-

based model is a computational simulation of autonomous ‘agents’ that

allows us to study the broader scale effects of a large number of local scale

individual actions. Agents, which may represent individuals or groups,

are programmed to have simple traits and behaviours that may change

over time in response to their interaction with the social and physical

environment (Rouse and Weeks, 2011). We argue that global scale patterns

of dispersal emerge from local scale foraging-based mobility decisions rather

than some innate or vitalist drive to explore. Specifically, the model tests

the effect of foresight on patterns of mobility through heterogeneous resource

landscapes. We define foresight as the ability of agents to deliberately

and accurately assess and select a preferred environment. The model tests

whether this ability could result in increased fitness, whether there is

selection for maximum or perfect foresight, and how this selection is affected

by environmental heterogeneity. We also discuss how various levels of

foresight affect the net directional mobility, or dispersibility, of a population

with that ability.

In previous work, we have shown that in some specific types of rapidly

changing environments, intermediate rather than maximum levels of fore-

sight are optimal (Xue et al., 2011). In that paper, which used reconstructed

temperatures from the Vostok ice core for the last 400 000 years as a proxy

for environmental change, but did not deal with a spatial environment, the

model found that agents who tracked environmental change too closely

during periods of slow change were at a disadvantage during rapid reversals.

Agents who were slightly worse at evaluating and tracking the environment
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were fitter in the long-term and were less adversely affected by climate

reversals (Xue et al., 2011). The current paper explores the role of fore-

sight in a spatially complex, or heterogeneous, resource landscape using an

agent-based model and demonstrates that intermediate rather than perfect

foresight is also optimal in a spatial context. If we assume that high levels of

foresight have an associated energetic cost, from increased demands on cog-

nition, our results suggests that the cost would only be paid when specific

environments require it.

Palaeoenvironmental reconstructions tell us where and when the doors

to dispersal were open and hominin fossils and artefacts provide ‘road-signs’

telling us where and when hominins arrived (Bar-Yosef and Belfer-Cohen,

2013). In this research, we explore how increased cognitive capacity in the

form of spatial foresight could have enabled or inhibited hominins from

dispersing. Over the course of human evolution, resource availability could

have functioned as a powerful but variable ‘pull’ mechanism, shaping disper-

sal patterns into novel environments, but its impact will have been mitigated

by the level of foresight (cognitive ability) that hominins had developed.

In short, high levels of environmental heterogeneity might have selected for

increased foresight and high levels of foresight might have effectively reduced

dispersibility. This suggests that cognitively complex hominins in heteroge-

neous environments might have had low dispersibility relative to cognitively

less complex organisms in more homogeneous environments. Taking this one

step further, the model predicts that the environments leading up to major

episodes of dispersal, such as the initial hominin dispersal into Eurasia,

were likely relatively low in spatial heterogeneity and that the dispersing

hominins had relatively low foresight.
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2.3 Modelling dispersal

In order to study the role of foresight as hominin populations move

through landscapes, we must understand how populations disperse through

space. Population dispersal is an enigmatic phenomenon. Despite the fact

that population dispersal is responsible for broad-scale spatial patterning

in the archaeological record, there is little direct evidence of how it occurs.

The instances of human populations dispersing into unoccupied territory

within recorded history are essentially zero, and documented instances of

populations moving into sparsely or variably occupied territory are very

few (Kelly, 2003). We are left trying to predict the types of behavioural

patterns that would result in dispersal, and then characterizing the spatial

patterns this would create in the archaeological and genetic records.

The prevalent strategies for modelling dispersal discussed below rely on

different assumptions about the importance of demographics, environment,

social networks, and especially the importance and scale of environmental

knowledge. We discuss approaches from archaeology when available, and

introduce useful approaches from other disciplines, particularly ecology,

where needed. A brief survey of the main approaches to modelling mobility,

environments, and agents and their application to hominin dispersals will

help set the stage for the description of our model.

2.3.1 Wave of advance

Ammerman and Cavalli-Sforza (1971) introduced the wave of advance

approach in their study of the spread of Neolithic agriculture across Europe.

It has since been applied to the Middle to Upper Palaeolithic transition

(Bocquet-Appel and Demars, 2000; Davies, 2001; Mellars, 2006a), and the

colonization of the New World (Steele et al., 1998; Hamilton and Buchanan,

2007). These studies estimate how fast populations can grow and spread,
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and how early we could expect the wave to arrive in a given location.

Several studies based on Fisher’s (1937) wave of advance equation (Ammer-

man and Cavalli-Sforza, 1973) or Reaction-Diffusion models (Steele, 2009)

focused on the parameter values for the following equations:

∂n

∂t
= αn

(
1− n

K

)
+D∇2n (2.1)

and

v = 2
√
Dα (2.2)

where K is carrying capacity, α is intrinsic maximum population

growth, D is a diffusion distance constant, n denotes population size at

a given time, t, and spatial location, and v is wave speed (Steele, 2009).

Equation 2.1 consists of two terms, the first a logistic population growth,

and the second a diffusion of that population evenly into the surrounding

two-dimensional space. Steele et al. (1998) used values obtained from

ethnographic and archaeological literature. These were applied to the

Palaeoindian colonization of North American by looking at both the

speed of the colonizing wave front and the spatial distribution of resulting

populations assuming different rates of population growth, α, and inter-

generational movement distance, D.

Wave of advance models generally assume that population growth

fills the landscape to carrying capacity and that the movement from dense

population centres is random in direction. Neither assumption is necessarily

warranted (Meltzer, 2003; Rockman, 2003). For example, Hayden (1972)

discusses the self-regulation of human populations well below carrying

capacity via a variety of social mechanisms. Moreover, it is unlikely that

mobility decisions were made by agents who were blind to the resource

potential of the surrounding landscape. Hazelwood and Steele (2004)
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correctly acknowledge that this is a necessary assumption as a first step to

examining dispersal, however, it is unclear how this assumption affects the

modeled dispersal pattern.

2.3.2 Least-cost path modelling

Anderson and Gillam (2000) first used least-cost path (LCP) modelling

to determine likely routes for the colonization of the New World. In this

approach, a series of environmental variables in the form of gridded cell

values, usually including topographic slope, are compiled to reflect the

energetic cost of traversing a landscape. A Geographic Information System

(GIS) is then used to compute the least-cost path from known start and

destination points. The calculation of the ‘friction’ surface determines how

the multiple environmental variables affect mobility. More typically, only a

digital elevation model is used to derive first slope and then the caloric cost

of climbing that slope. This approach generally assumes a complete prior

knowledge of the environment and that mobility was consciously directed

towards minimizing the total cost of the path, rather than minimizing the

cost of each step. Since, in a dispersal context the landscape is not known

in advance, Field et al. (2007), in their study of colonization routes into

Southern Asia, developed an innovative ‘wandering’ method of computing

least-cost paths in 60 km steps. Unlike Anderson and Gillam (2000), this

method did not require that final destinations were known in advance, only

that incremental destinations in sequential 60 km searches would be selected

by the colonizing population.

A path that minimizes the energetic cost of walking through a land-

scape may be a good estimation of the routing of individuals on small time

scales (for a trade network for example), but it is unclear if successive gen-

erations would determine their movements in the same way. A steep hill
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would not be a deterrent over the course of generations if a quality resource

was at the top. Field et al. (2007) argued that the high cost areas would be

accessed for resources, but would not be major channels of movement. While

a good way to locate these preferred channels of movement, the model’s as-

sumption that energetic cost of movement is the primary factor in mobility

decisions seems untenable over the inter-generational residential moves being

modeled in hominin dispersal contexts.

2.3.3 Representing the environment

The field of ecology has been modelling dispersal processes much

longer than archaeology and has developed a much greater variety of

models and model assumptions (Johnson and Gaines, 1990). The resource

patch is central to ecological theory and influences modelling frameworks.

The patch is a homogeneous resource area, usually a food source, with

none of that resource occurring in the inter-patch space. Patch-based

analytical models focus on the effects of inter-patch distances, patch size,

edge hardness, and clustering (e.g., Zollner and Lima, 1999) on dispersal.

In a rare archaeological example, Grove (2013) explored the relationship

between inter-patch distance and the natural selection of spatial memory.

Patches are useful for mathematical models due to their simplicity, but

introduce somewhat artificial boundaries between some environmental zones.

A gradual transition in abundance is not well represented by a patch edge,

nor is degree of habitat quality. For example, patch distribution models may

not be adequate if we assume hominins are interested in several resources in

different proportions.

An alternative approach is to model heterogeneous landscapes of

habitat suitability or quality, either as continuous variation, or discretely on

a fine scale, usually on a grid. This has the advantage of more realistically
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representing many types of resource landscapes, while still being relatively

simple to represent mathematically (Blackwell, 2007). For example, Mitchell

and Powell (2004) represent a continuous heterogeneous resource landscape

with a grid of cells varying in value from 0 to 1, and Holland et al. (2009)

generate simulated continuous landscapes with varying degrees of spatial

autocorrelation or clustering.

Archaeological wave of advance and LCP models represent environ-

ments as continuous variation (i.e., as carrying capacity and energetic

cost, respectively), but derive their values from palaeoenvironmental or

topographical variables, rather than generated environments with specific

properties. In a simulation study of the evolution of cultural learning in

hominins, Lake (2001) generated continuously varying landscapes of net

energetic harvesting return ranging from -100 to +100 using a fractal algo-

rithm. Using this method, he produced multiple landscapes for each of three

different levels of environmental heterogeneity.

2.3.4 Cellular automata and agent-based models

Cellular automata models consist of a grid of cells which change state,

from empty to colonized for example, based on the condition of their

neighbouring cells (Mithen and Reed, 2002). As in wave of advance models,

archaeological cellular automata models have focused on calculating the

earliest arrival dates in a given location. Mithen and Reed (2002), and

the related Nikitas and Nikita (2005) and Hughes et al. (2007), used a

probabilistic cellular automata to model the dispersal of Homo erectus

throughout the Old World using constant probabilities for movement,

colonization (fission), and extinction. These models assumed mobility

decisions were made irrespective of the environment, although this was a

programming choice and not a limitation of the approach per se.
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There have been a number of archaeological ABMs published since the

1970s (see reviews in Aldenderfer, 1981, 1991; Costopoulos and Lake, 2010),

including several that model hunter-gatherer foraging patterns (e.g., Mithen,

1990). Comparatively few have dealt with dispersal explicitly. Lake (2000)

simulated the first colonization of a small island of the coast of Britain

using a custom-made ABM. This required a detailed palaeoenvironmental

reconstruction to model the distribution of a hypothesized key food resource,

hazelnuts. Simulations were run using several hypothesized origin points,

and the distribution of simulated lithic assemblages resulting from model

runs were compared with the known archaeological record. In a paper

demonstrating the potential of ABMs for studying migration, Young (2002)

developed a variety of simple models to show how random walks, biased

migration, mobility speeds, population growth rates, and inter-group

competition could result in complex patterning. He argued that basic

models of foragers looking for food could result in large scale population

dispersals without invoking “extraordinary circumstances or motivation”

(Young, 2002: 157). Of particular relevance to the current study is Young’s

model of biased migrations. In this model, agents randomly selected a

neighbouring location, and tested if that location offered an improvement. If

it did, they were only allowed to move with a specified probability.

Most of the modelling frameworks discussed above have the drawback

of not being able to represent evolutionary processes, such as the evolution

of foresight, and dispersal through space simultaneously. However, agent-

based models are particularly useful for studying the evolution of traits

while modelling the underlying environment. The growth of computational

power and the maturation of languages and packages specific for ABM (e.g.,

Netlogo (Wilensky, 1999) or Repast (North et al., 2007)) means that ABMs
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can look at the relationship of both processes (evolution and dispersal)

within a single framework. It is for this reason that we develop an ABM to

look at the relationship between spatial environmental heterogeneity, the

evolution of foresight, and the dispersibility of hominin populations.

2.3.5 Role of environmental knowledge in dispersal models

In an early review of dispersal models in population ecology, Johnson

and Gaines (1990) identified a series of key ‘push’ or ‘pull’ factors affecting

dispersal rates and patterns. Some of the factors are incorporated into

models used in archaeology such as population growth in wave of advance

models and minimizing cost of movement in least-cost path models. Other

factors, such as the probability of surviving a dispersal episode are highly

relevant to hominin dispersal, but are extremely difficult to estimate from

archaeological data since failed attempts are less likely to be archaeologically

visible. Johnson and Gaines (1990) also propose a number of instructive

general conclusions about environmental variability. Temporal variability

tends to increase dispersal since the local environment will likely become

worse. A spatially heterogeneous environment tends to reduce dispersal

since any new location is likely worse.

Random directional movement, often from a ‘push’ such as population

growth, is the most widely used approach in archaeology. However, Conradt

et al. (2003) argued that random movement is costly in terms of survival

due to its high probability of failure. Still, forays or reconnaissance trips

before movement can increase success by informing dispersers of potential

risks and locating resources. Such trips are commonly noted in ethnographic

accounts of foraging, including the daisy pattern of daily return trips in the

classic forager model or logistical information gathering trips in the collector

model (Binford, 1980). The volume edited by Whallon and colleagues (2011)
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contains numerous examples of information sharing within and between

groups, and of the importance of this information for success and survival.

This pattern of exploratory migration has also been noted in contemporary

ethnographic examples such as the classic study of Mexican migrants from

Tzintzuntzan (Kemper, 1977).

The degree of environmental knowledge underlying mobility decisions

in wave of advance and least-cost path models represent two ends of a

spectrum. The former assumes random movement with no knowledge of

the environment and the latter assumes directed movement with global

knowledge. Models can vary along an information continuum from random

walks (no information) to local information (spatially limited information)

to agents with complex cognitive models or ideal-free distribution models

(global knowledge)(Lima and Zollner, 1996). Agent-based models may

be designed to fall anywhere along this informational continuum, but are

particularly suited to local information. For example, Lake (2000) coded

agents to learn about resource distributions from individual observations at

the local-scale, and additionally to construct a broader collective memory by

sharing that information with other agents.

2.4 Modelling spatial foresight in a variable environment

Our ABM approach is informed by results obtained from the above

studies and includes an explicitly defined representation of space and

resource abundance as continuous variables, and the use of information

at a local scale when making mobility decisions. The model uses directed

movement, or spatial foresight, but with a variable probability of accuracy.

This is similar to the approach of Young (2002) discussed above (see

Cellular automata and agent-based models). However, we make foresight

a heritable trait varying from 0 to 100% accuracy, within a population
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of constant size. We then examine how the heterogeneity of the resource

environment affects the selective pressure for increased or decreased spatial

foresight and its implications for dispersal.

Spatial foresight as a mobility mechanism requires two basic assump-

tions. The first assumption is that hominin groups were able to evaluate

the resource potential of their local, or neighbouring, environment. The

second is the model’s ‘pull’, that hominin groups made mobility decisions to

improve upon the currently available resources, at least some proportion of

the time. The first assumption is not onerous; hominins were certainly able

to assess resource abundance or quality in surrounding habitats. However,

the scale at which a landscape is expected to be assessed is relevant. Our

model is designed to operate on a spatial grid, where a move to a new grid

cell represents a residential move, and the scale may therefore be adapted to

a reasonable distance. A small group of hominins could easily be expected

to utilize a 5 to 10 km radius, or catchment, and assess the resource po-

tential of a slightly larger radius (Vita-Finzi and Higgs, 1970; Kelly, 1995).

Binford (2001) collated foraging radius measurements for a large number

of ethnographic examples to derive an average 8.28 km radius for foragers.

He found the average distance between residential camps ranged between

approximately 25 km for plant foragers and 43 km for terrestrial animal

collectors. For the sake of generality, we have chosen not to parameterize our

model to a specific distance. However, it would be consistent with a 10 to 20

km grid cell and a 30 to 60 km local assessment area. In the current study,

we are more concerned with the effect of environment heterogeneity than a

specific spatial scale (see Model resource landscapes and results, below).

The proportion of mobility decisions that may be attributed to our

second assumption, that resources acted as a ‘pull’ during mobility decisions
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(rather than any number of other factors) is difficult to determine from

archaeological evidence, but we will explore this question with our model

in the next section. For simplicity, our agents are programmed to make

mobility decisions based upon resource abundance some proportion of the

time, and that other mobility decisions are made without reference to the

resource distribution.

2.4.1 Model outline

Our ABM, constructed using the Netlogo toolkit (Wilensky, 1999),

begins with a population of five hundred agents distributed near one corner

of a gridded resource landscape (see Model resource landscapes and results,

below). Agents have one attribute, foresight, which is the probability that

they will correctly assess the environment of their local (9-cell) landscape.

Agents begin each run with perfect foresight, although the result is robust

to changes in the initial condition. During each time step, the following

schedule of events occurs:

1. Each agent differentially reproduces based on the abundance of

resources available on its local cell (see Reproduction, below). There is

no accumulation of resources.

(a) Offspring inherit their parent’s foresight value with a slight

mutation.

(b) A random empty neighbouring cell is chosen for each offspring

agent.

(c) If all neighbouring cells are occupied, the offspring agent is

removed.

(d) For every placed offspring, one random agent is removed.

2. Each agent’s inherited foresight determines the probability of correctly

predicting the highest resource cell of a 9-cell neighbourhood.
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(a) If correct, and the highest resource cell is unoccupied, the agent

moves to that cell (i.e., the agent has accurately moved to the

best available cell).

(b) If incorrect, the agent moves to a random neighbouring cell as

long as it is unoccupied (i.e., the agent has mistakenly moved to a

suboptimal cell, possibly one worse than the starting point).

(c) In either case, if the selected cell is occupied, the agent stays.

The mean foresight and mean resource values of the agents are logged

with the environmental heterogeneity value at the end of each run. Mean

foresight represents the culmination of the evolutionary trend of the agent

population. Mean resource value represents the agent population’s collective

ability to maximize the currently available resources, effectively their

final level of adaptive success. Since the summed cell values of all gridded

resource landscapes are equal, mean success measures the permissiveness of

each level of heterogeneity.

2.4.2 Reproduction

Agents represent small groups rather than individual hominins. As

such, reproduction occurs by asexual fission with a probability determined

by the current success of the group. The ratio of the resource abundance

of the cell the agent occupies, s, and the resource abundance of the most

successful of all agents, max(s), is multiplied by a base reproduction

rate, r held constant at 0.1, to determine their individual probability of

reproduction (Equation 2.3). Mutation of foresight occurs as a uniform

random value with a specified maximum size, held constant at 0.01, to

increase or lower the value.

s

max(s)
· r (2.3)
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The constant population size allows us to measure the effect of natural

selection in the absence of demographic stochasticity. For the evolution of a

trait to occur we need only to implement either differential reproduction or

removal of agents. We chose to randomly ‘kill’ agents after successful repro-

ductions, rather than removing those with the lowest resource abundance, to

avoid doubling the fitness advantage of the resource landscape.

This process is a simplification of the population growth and fission

dynamics of hunter-gatherers under the constraint of carrying capacity in

either static or dispersal conditions. We assume simply that more abundant

resources lead to a higher rate of population growth and group fission, but

that a large number of groups in a small area reduces group fission.

2.5 Model resource landscapes and results

2.5.1 Cone

Our simulated environment is represented by a 100 x 100 cell grid

of environmental resource values ranging from 0 to 100, where 100 is

considered the highest resource value. Before experimenting with complex

resource landscapes, we first consider a smooth sided resource cone or bull’s

eye where resource abundance decreases evenly away from a high centre

area.

When the model is run, the high foresight agents cluster around the

central area as they all try to maximize the resources available to them, and

thus maximize their rate of reproduction. However, on this simple, relatively

homogeneous resource landscape, foresight is strongly selected against and

rapidly declines to very low levels (median of 14%, Figure 2–1).

2.5.2 Heterogeneous environments

We generated 1100 continuously varying gridded resource landscapes

using a stochastic fractal algorithm in the r.surf.fractal module of GRASS
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Figure 2–1. Natural selection of decreased foresight on simple resource cone.
a) Resource landscape where shades of grey represent percent abundance of
resources and white is the most abundant. b) Change in mean foresight over
time from an initially perfect foresight (value of 1). Grey lines represent 10
runs with identical parameters, the black line is the median of those runs.

GIS (GRASS Development Team, 2012). The algorithm generates natural

looking continuous landscapes with increasing environmental heterogeneity

specified as increasing fractal dimension, ranging between 2 and 3 (n.b.

Since fractal dimensions of 2 and 3 cannot be used in the algorithm, we

used 2.001 and 2.999 as our least and most heterogeneous landscapes,

respectively). We scaled the cell values produced from 0 to 100 for input

into the model, such that every value was approximately equal in frequency

and the sum of all cells in a landscape was equal irrespective of the degree

of heterogeneity. We generated 100 different landscapes for each of the 0.1

increment increases in fractal dimension (Figure 2–2).

After 50 000 time steps of the ABM, a duration our experimental runs

determined to be generally sufficient to stabilise at a relatively constant

value, we took the mean foresight and resource values of all agents to

represent the effect and result of natural selection for each of the 1100
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Figure 2–2. Example gridded resource landscapes used in the model. Rows
illustrate the differences between three stochastically generated landscapes
with the same environmental heterogeneity, while columns represent dif-
ferent degrees of heterogeneity. Note that similar cell values are spatially
clustered in large patches when heterogeneity is low, and more in smaller,
more distributed patches when heterogeneity is high.
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heterogeneous landscapes (Figure 2–3). For less heterogeneous environments,

mean foresight decreases to very low levels (median 24%), replicating our

prior observation on the cone. As the degree of heterogeneity increases, the

mean foresight level of the population increases to very high levels (median

85%).

Mean success was highest for less heterogeneous environments (median

95%), and only slightly lower success (median 88%) for the most heteroge-

neous environments (Figure 2–4). Since mean fitness is also increased due

to differential reproduction, we ran a series of control runs where agents

had no spatial foresight ability to differentiate the effect of foresight from

reproduction. Mean success of the control runs was lower than those of

foresight for all environments.

2.6 Discussion

2.6.1 Dynamics of foresight in heterogeneous environments

As the model progresses on the cone-shaped resource landscape,

the highest foresight agents move to the centre where there is less space

available to reproduce due to crowding. Since more space is available to

lower foresighted agents around the edges of the cluster, they are more

often successful in placing offspring, even though their reproduction rate is

lower. In effect, a new resource of available reproductive space is generated

and becomes a more important factor than resource value of the cell in the

natural selection of foresight. Natural selection is not driven by who is able

to acquire the best resources, but by who can reproduce most successfully.

This mechanism, that reproductive space is selected over resource value, is

replicated on the less heterogeneous landscapes where resource clusters are

relatively wide but decrease in value towards the edges.
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Figure 2–3. The ability to correctly predict the local environment, foresight,
is selected against in less heterogeneous landscapes. Grey lines represent
runs on 10 different generated landscapes, the black line is the median of
those runs. a) Low heterogeneity (2.001). b) Medium heterogeneity (2.5).
c) High heterogeneity (2.9). d) Each box plot represents the mean foresight
value of 500 agents at the end of runs on 100 different simulated landscapes.
Dark horizontal lines represent the median, horizontal edges of the boxes
represent the 25th and 75th percentiles, top and bottommost horizontal
lines represent 1.5 times the inter-quartile distance. Small circles represent
outliers.
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runs where agents have no spatial foresight.
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As the degree of environmental heterogeneity increases, the clusters

of agents become smaller and more dispersed and the availability of re-

productive space increases overall. Further, foresight inaccuracies are less

well tolerated as they more quickly move an agent onto a low resource cell,

because of the steeper resource gradients. As a result, the selective pressure

against the high foresight agents is mitigated and the mean foresight of the

population increases significantly. These results demonstrate that the level

of foresight is density-dependent (Hixon and Johnson, 2009) as a function

of the degree of clustering of the resources (the level of heterogeneity),

because the summed resource abundance was equal for all landscapes in this

experiment.

The inverse relationship between success and heterogeneity is due

to the decreased clustering of similar resource values in heterogeneous

environments. In a highly heterogeneous environment, if an agent makes a

few errors and moves a short distance away from a high resource value, its

new environment will likely be a much lower resource location. On a less

heterogeneous landscape, mistakes are better tolerated as resource values

diminish much less quickly with distance.

Heterogeneity is inversely correlated to success even after the level

of foresight has been naturally selected for an environment. Interestingly

though, for all heterogeneity levels, the agents are generally more successful

than in the control runs despite a widely differing level of foresight of the

population (Figure 2–4). This suggests that a local environmental aware-

ness, what we have called foresight, is a remarkably successful behaviour

assuming it is sufficiently adapted to the characteristics of the resource

landscape.

31



2.6.2 Effect of foresight on dispersal

While these dynamics explain the natural selection of foresight in

different environmental patterns, they do not fully explain the relationship

of foresight to dispersal. High foresight causes agents to ‘hill-climb’ to

the nearest local optimum, a location on the resource landscape where all

surrounding cells are lower in value. It also causes them to become stuck on

local optima, because they can accurately predict that their entire accessible

neighbourhood is worse than their current location and therefore do not

move again. Lower foresight allows agents the potential to random-walk

into a novel, and potentially higher, resource area. Agents with very low

foresight may not realize they have reached a peak and may walk off the

peak, resulting in lower resource abundance. This trade-off is well known

elsewhere as a part of evolutionary optimization to adaptive or fitness

landscapes (Wright, 1932; Fogel, 1994).

Natural selection of intermediate levels of foresight result in a stochastic

hill-climbing behaviour that allows agents to strike an appropriate balance

between exploration (‘mistakes’) and resource maximization (hill-climbing).

If agents did not make mistakes in assessing the local resources, they would

become fixed on the first local optimum they encountered even if was

relatively low in resource abundance. Other possible stochastic strategies,

like randomly choosing from the subset of better neighbouring cells also

exist but were not chosen in this model for simplicity. Choosing from the

best of the unoccupied cells would perhaps have been slightly more realistic

for a rational agent. However, this would have increased computational time

and would have crowded resource peaks even more tightly.

As noted in the introduction of this paper, dispersal should be seen as

an emergent phenomenon arising from local scale mobility decisions. The
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model demonstrates that lower foresight, resulting from natural selection

within a less heterogeneous resource landscape, will increase the probability

of exploratory behaviour at the local scale, and therefore higher population

dispersibility at the global scale. The inverse is also true, higher foresight,

resulting from a highly heterogeneous resource landscape, reduces the

probability that agents will explore beyond the immediate resource cluster;

that is, the more ‘sticky’ the peaks of the resource landscape become. The

model therefore predicts that less heterogeneous environments would radiate

populations outwards, while more highly heterogeneous landscapes would,

over time, capture those populations and adapt them into higher foresight

populations. However, this poses an interesting question for future research

since increased cognitive complexity, in the form of highly accurate foresight

in foraging at least, reduces the dispersibility of the population.

2.7 Conclusion

Archaeology and palaeoanthropology continue to search for mecha-

nisms that can connect the increased cognitive complexity of our genus

to our success in colonizing complex novel environments. Behavioural

flexibility (Potts, 2002), improved technology (Mellars, 2004, 2006b), lan-

guage (Wynn and Coolidge, 2010), extended social networks (Gamble et al.,

2004; Grove et al., 2012), and increased home range (Antón et al., 2002) are

just a few of the many hypotheses suggested to account for this success.

Palaeoenvironmental reconstructions and hominin fossil and artefact

distributions alone cannot provide a complete picture of the complex

dynamics of hominin-environment interaction. Dispersal models, such as

the model presented in this paper, provide a complementary approach for

exploring hominin interactions with reconstructed environments. These

models explore the potential mechanisms behind dispersal and begin to
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evaluate not just when and where, but how or why hominins might have

decided to leave one environment in favour of an unknown and potentially

risky environment.

The approach taken here illustrates the potential of agent-based

modelling for connecting local scale cognitive decisions with observed

global scale patterns to test hypotheses about dispersal. Rather than

assuming that landscapes would become occupied when available, we

model a population making deliberate decisions about foraging potential

at the local scale, to varying degrees of accuracy, and we evaluate the

impact of foresight on population dispersibility, i.e., whether it favours or

inhibits global scale population dispersal. The model suggests that there

is an intimate relationship between population dispersibility, foresight,

and environmental heterogeneity. Under most conditions, dispersibility

depends on a certain level of inaccuracy in mobility decisions based on

resource abundance, or the presence of decision making mechanisms not

based on resource abundance. This level of inaccuracy varies strongly with

environmental heterogeneity, suggesting that we should look to the periods

leading up to major dispersal events, not just during the dispersal, to see

how the spatial patterning of the environment could have naturally selected

hominin populations to have high or low dispersibility. The model predicts

that environments with relatively low heterogeneity are required to naturally

select a population with the characteristics necessary, i.e., low foresight, to

disperse into unknown environments.

The next step in our research agenda is to look at the strength of

the effect of foresight by quantifying dispersal rates of populations with

varying levels of foresight, and with population growth, and compare this

to expected rates of dispersal in other published dispersal models. This
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will allow us to explore how expected hominin arrival times in different

regions would be altered by a population with foresight. Our future work

will help us to clarify the apparent contradiction found by this paper, that

environmental heterogeneity favours increased cognitive complexity but not

dispersibility.
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CHAPTER 3
Environmental knowledge inhibits hominin dispersal

3.1 Overview and context within thesis

In any computational model, there are a multitude of programming

choices made for the sake of simplicity or expediency. This leaves many

additional questions regarding what the model would do if other choices had

been made. In particular, three aspects of the model presented in chapter

2 are worth revisiting to evaluate the robustness of the findings. Chapter 3

extends the model to attempt to address these questions:

• What if agents could see farther?

• What if agents could share information?

• What if the population could grow?

In chapter one, agents could only evaluate the resource potential of

their immediate neighbourhood. The site catchment inspired this choice

and the model design roughly replicated the behaviour of a hunter-gatherer

group discovering better resources during its daily foraging tasks near camp.

A reviewer asked what would happen if the agents had a larger assessment

neighbourhood. Although I suspected it would not be beneficial, the first

model of chapter two evaluates this question by holding foresight constant,

and making the neighbourhood size or perceptual range a heritable trait. If

it provides a fitness advantage, then a larger perceptual range should evolve

over the course of a model run.

Lake (2000, 2001) presented an ABM in which agents, as individuals,

would spend a day foraging before returning to camp to share information

about the landscape with their group. As a dispersal model, this provided a
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way for a colonizing hunter-gatherer group to build up a collective memory

of their new landscape over time and use it to forage more efficiently. Due to

hardware limitations, Lake’s model runs had only four agents. The results of

chapter one suggest that a crowded landscape could add an interesting new

dynamic to the hypothesised advantage of information sharing and collective

memory.

As noted in the introduction, population growth is the one indisputable

dispersal mechanism. The model needs to reflect this, rather than fix

population size to an arbitrary number, to evaluate its effect on the natural

selection of cognition and dispersibility. As will be noted in the following

chapter, this didn’t exactly go as planned, but results in a confirmation of

the selective effect of crowding.

Overall, the models suggest that environmental knowledge inhibits dis-

persal by directing movement towards known resources instead of outwards

into unknown territory. The same movement towards resources reduces

available reproductive space around resource clusters (i.e. increases crowd-

ing) and results in the natural selection of lower levels of environmental

knowledge. Smaller assessment neighbourhoods and low levels of cultural

transmission of environmental knowledge result. Increased population size

crowds the landscape even more and intensifies the selective effect against

environmental knowledge.
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3.2 Introduction

Under what behavioural strategies and environmental conditions will

dispersing hominins fail to locate and colonize a desirable, resource rich,

but unoccupied region? This question is fundamental to understanding

hominin dispersal as it explicitly connects the local-scale mobility decisions

of hominin foraging groups to the two broad-scale research avenues of the

palaeoanthropological literature: palaeoenvironmental reconstruction (e.g.

Palombo, 2013, and the references therein), and the location and timing of

hominin fossils and artefacts (Bar-Yosef and Belfer-Cohen, 2013).

Using the baseline model for this study, Wren et al. (2014) showed

that the connection between foraging related mobility decisions and the

emergent pattern of a dispersing (or non-dispersing) population is not

necessarily intuitive. Cognitively sophisticated agents accurately read

the resource potential of the landscape at a local scale, but demonstrated

lower dispersibility than agents that selected patches at random. Natural

selection of heritable resource assessment accuracy, referred to as spatial

foresight, resulted in very low levels of accuracy and high dispersibility for

environments with relatively low heterogeneity. The more heterogeneous

the environment, the more spatial foresight was advantageous, while also

lowering group dispersibility. This reminds us that dispersal is an emergent

phenomenon that, under the proper conditions, may result from local scale

mobility decisions.

This paper builds on the findings of Wren et al. (2014) by extending

how groups acquire knowledge of their environment before making mobility

decisions. The first model varies the size of the agent’s resource assessment

area, giving them access to more of the environment before deciding where

to move, and perhaps letting them see beyond some of the local scale

38



landscape variability. The second model allows agents to learn about the

resource landscape through social interactions instead of direct observation.

This could allow them to make use of extensive social networks to acquire

environmental knowledge, and to thereby capitalise on the success of the

population as a whole. Each model allows the agent’s level of environmental

knowledge to vary, and then evaluates how the resource distribution affects

the natural selection of environmental knowledge. By extension, this

allows us to evaluate what impact environmental knowledge has on the

dispersibility of the population.

Our previous work also demonstrated that since dispersibility is

relatively low in many environments (Wren et al., 2014) , some type of push,

a factor which decreases the attractiveness of the current location (Anthony,

1990), may be needed for dispersal to take place. Three principal push

factors have been identified in the palaeoanthropological and dispersal

ecology literature. The most often cited is population growth causing

diminishing returns within a local area and making movement into a

new area more advantageous (e.g. Ammerman and Cavalli-Sforza, 1971;

Steele et al., 1998; Mellars, 2006b). We therefore add a small degree of

population growth to the previous two models to evaluate its effect on

mobility strategies. Two other possible pushes are temporal environmental

change, such as a latitudinal shift of a resource distribution, and local

resource depletion, but will not be addressed here (Rockman, 2003).

The current paper only considers the natural selection of the level of

environmental knowledge and its effect on dispersibility. Later work will

consider other model results, such as the quantification of dispersal rates

under different conditions.
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3.3 Models

In each of the following two models the resource environment consists of

a 100 by 100 cell grid with each cell containing a fixed resource abundance

or habitat quality ranging from 0 to 100%. We generated resource land-

scapes with different degrees of heterogeneity using a fractal algorithm and

varying the fractal dimension from 2.001 to 2.999 in 0.2 increments (GRASS

Development Team, 2012). Due to the stochastic nature of the module,

30 landscapes of each heterogeneity level were generated to make a total

‘run set’ of 180 landscapes. We scaled the cell values of each landscape to

have an approximately equal cell count of each resource value and the same

summed resource abundance.

A population of agents, each representing a hominin foraging group,

begins each run clustered in one corner to simulate entry into the novel

territory. Reproduction occurs as asexual fission at a fixed base probability,

rb, adjusted by the ratio of the cell’s resources, s, to the maximum resource

value of all agents (Equation 3.1). A change in their trait value, which

determines the level of environmental knowledge they have access to, occurs

by increase or decrease of the trait value in the offspring at a specified

probability, mr, by size, ms. This is a slight departure from the baseline

model of Wren et al. (2014), for which mutation occurred in every offspring

with a uniform random ms up to a specified maximum size. The new

method decreases the amount of random drift of the trait value by having

mutations occur less often, but with a larger effect if the mutation increases

fitness.

ra =
s

max(s)
· rb (3.1)
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Each of the models runs three times. First with population size, n,

held constant and a full run set of 180 landscapes, second with different

population sizes on a subset of low heterogeneity landscapes, and finally

with a variable population function which allows for population growth

and a full run set (Table 3–1). In all models, the probability of removal, or

death, of an agent is equal for all agents, irrespective of their resource value.

Natural selection by the environment is therefore only counted once, during

reproduction, rather than being counted at birth and death.

The models only vary in how agents access environmental knowledge.

In each case the optimal trait value is naturally selected as the run pro-

gresses. Small mutations in trait value lead to a reproductive advantage or

disadvantage for the agents, and over time the optimal level of environmen-

tal knowledge evolves. In effect, the model lets natural selection act as an

optimizer, refining the level of environmental knowledge until it provides

the most optimal solution for the population. This is similar to evolution-

ary optimization algorithms, which let a system make small changes to an

algorithm until it finds the best solution.

3.4 Model 1: Assessment Radius

3.4.1 Introduction

The baseline model constrained the radius over which agents assessed

the resource potential of their landscape to an 8-cell neighbourhood (Wren

et al., 2014). A common assumption is that increasing this radius to include

a larger assessment area would provide more detailed information about

the overall landscape and would therefore provide an adaptive advantage to

foraging groups. This hypothesis was suggested by an anonymous reviewer

of the baseline model and by several others who saw preliminary model

results in conference presentations.
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Var. Description Assessment radius Cult. transmission
Const.
Pop.

Var.
Init.
Pop.

Pop.
Growth

Const.
Pop.

Var.
Init.
Pop.

Pop.
Growth

N Initial population size 500 100,
1000,
2000

500 500 100,
1000,
2000

500

rb Base reproductive
rate

0.1 0.1 0.1 0.1 0.1 0.1

d Removal probability 0 0 0.06 0 0 0.06
mr Mutation probability 0.001 0.001 0.001 0.001 0.001 0.001
ms Mutation size 0.5

(cells)
0.5
(cells)

0.5
(cells)

0.1 0.1 0.1

f Assessment accuracy
0.25 0.25 0.25 n/a n/a n/a
0.75 0.75 0.75 n/a n/a n/a

Env Range of hetero-
geneities in run-set

All 2.001
only

All All 2.001
only

All

Steps Number of time steps
for each run

100 000

Table 3–1. Parameters used to initialize model runs.

The first model tests whether increasing the assessment radius would

improve the ability of agents to navigate through a complex resource

surface, and if this would impact the foraging success or dispersibility of

the population. An increased visual range increases the overall amount

of environmental knowledge that an individual group has access to when

making mobility decisions. It seems intuitive that groups would be less likely

to be stuck on local resource optima, places where all surrounding cells are

lower in value, if they were able to evaluate a greater number of cells before

moving (Figure 3–1).

Lima and Zollner (1996) review ecological models of perceptual range,

an equivalent concept to what this article refers to as assessment radius.

They suggest that increased perceptual range could increase dispersal since

search time and risk of mortality would be reduced, but that empirical data

is lacking (see also Zollner and Lima, 1999).
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Figure 3–1. Increasing the assessment range when making foraging deci-
sions may allow agents to escape local optima and locate higher peaks. Dot
represents an agent and peak height represents resource abundance.

Binford (2001) notes that the distance between residential moves of

hunter-gatherer groups varied depending on the resource base and the

subsistence strategy. This suggests that the distribution of resources is an

important factor in the optimal radius being taken into account by humans

when making mobility decisions. In an ethnographic study of the Yup’ik

Eskimo, Funk (2011) describes the high level of landscape detail known,

particularly by men, over a wide area. However, of particular relevance is

her observation that knowledge of subsistence resources (i.e., seasonality and

variations in abundance or quality) was restricted to their immediate area

of use, although the precise range of that area was not given (Funk, 2011, p.

48).

3.4.2 Model Description

Model 1 evaluates the natural selection of assessment radius by making

radius a heritable trait subject to small random increases or decreases.

Since the baseline model demonstrated that foraging accuracy varies with

environmental heterogeneity, the model holds foraging accuracy constant.

The model runs through all 600 landscapes twice, once with low foraging
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accuracy (f = 0.25) and once with high foraging accuracy (f = 0.75).

The model output includes the median assessment radius and cell value

of all surviving agents at the end of each run (See Table 3–1 for model

parameters). At each time step of the run, each agent follows this schedule:

1. At probability, ra, produce an offspring (Eq. 3.1).

(a) Offspring inherit their parent’s assessment radius trait value, fr.

(b) At probability, mr, offspring’s trait value will increase or decrease

by ms.

(c) Offspring choose a random unoccupied neighbouring cell.

(d) If all neighbouring cells are occupied, offspring is removed.

(e) Fixed pop. only: if offspring is successfully placed, one random

agent is removed.

2. At probability, f , correctly predict the highest resource cell within

their inherited radius fr .

(a) If correct, attempt to move one cell directly towards the selected

cell.

(b) If incorrect, attempt to move to a random neighbouring cell.

(c) In either case, stay if another agents blocks the move.

3. Variable pop. only: be removed with probability, d.

3.4.3 Results

The model shows that there is strong selection to keep assessment ra-

dius at low levels in all landscapes (Figure 3–2). Evolved median assessment

radius ranged between 0.5 and 1.2 for high foraging accuracy runs and be-

tween 1.5 and 2.2 with a higher variance for low accuracy runs. Assessment

radius increased slightly with environmental heterogeneity. Agents with

an assessment radius below 1 would only be able to assess the currently

occupied cell which would result in no movement except on foraging errors,
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(b) Variable population size

Figure 3–2. Natural selection favours low assessment radius (the radius over
which groups assess the resource potential of the landscape) across all types
of environments, and with fixed or variable population sizes. Each box plot
represents the assessment radius value of agents at the end of runs on 100
different simulated surfaces. Bottom, middle, and top of boxes represent the
25th, median, and 75th percentiles respectively, vertical whiskers extend to
1.5 times the inter-quartile distance. Dots represent outliers. Shaded hor-
izontal bands represent the radii of: a 9-cell Moore neighbourhood (M), a
5-cell von Neumann (vN), and only the current cell (O) .

essentially equivalent to a random walk. A radius between 1 and 1.41 repre-

sents a 5-cell von Neumann neighbourhood, while a radius between 1.42 and

2 represents the 9-cell Moore neighbourhood used in (Wren et al., 2014).

Repeating model 1 with a variable population function resulted

in lower median radii as with fixed populations, and reduced variance

between the various surfaces of the same heterogeneity (Figure 3–2b). In

these runs the population went through an initial period of flux and then

stabilized between 50 and 3000 agents with a median around 2000. This

generally larger population size smoothed some of the stochasticity of the

smaller fixed population runs resulting in reduced variance and a lower

median, with almost all high radius outliers belonging to runs with low

population (Figure 3–3).
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Figure 3–3. Assessment radius was not significantly affected by the final
population size as nearly all runs were below 2. However, higher foraging
accuracy results in increased crowding, more variable final population, and
slightly reduces assessment radius.

To evaluate a hypothesis that the population growth function simply

increases crowding, or population density, we re-ran the model with different

initial population sizes and the same landscape dimensions (Figure 3–4).

As expected, increasing the fixed population size decreases the value, and

variance, of assessment radius.

3.4.4 Mechanisms of selection

The strong selection against increased assessment radius is a counter-

intuitive result. It seems logical that ever increasing spatial range would

improve the ability of groups to find quality resource patches. However,

several factors diminish the potential advantage of increased assessment ra-

dius. First, if a distant patch is selected, especially one with only marginally

increased resource abundance, the intermediate cells the group must pass

through to reach that patch may be of lower quality. This poses a significant

risk that may not overcome the potential resource advantage of the distant

patch.
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Figure 3–4. As the landscape remains the same size, increasing the fixed
population size increases crowding. As a result, natural selection further
decreases assessment radius.
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Second, the model suggests that considering the optimality of a group

acting in isolation may not be a good approach. Rather, a crowded resource

landscape in which competition and reproductive advantages are measured

against neighbouring groups gives a better picture. In other words, the

fitness of foraging strategies is strongly affected by the density of the

population. Note that our crowded landscape does not necessarily suggest

a high total population. Rather, under basic assumptions of population

growth and mobility, carrying capacity would be quickly reached, whatever

that capacity might be, and available quality habitat would become a rare

commodity.

Given a crowded and competitive landscape, it should no longer be

surprising that increased assessment radius provides little advantage. In

the baseline model, the mechanism driving the natural selection of low

foraging accuracy was the limited availability of reproductive space in the

center of clusters. This caused the evolutionary trajectory to be driven

by the agents around the fringes of clusters where reproductive space was

more readily available (Figure 3–5). In the assessment radius model, the

most advantageous strategy is to keep assessment radius to the immediately

accessible surroundings (8-cell neighbourhood), or even to stop moving

entirely. For higher radii, the probability that a distantly selected patch will

be available when the group arrives even a couple of time steps later is too

low to provide any advantage. Similarly, there is little likelihood that the

intermediate patches will be available to pass through. This is supported by

Figure 3–3 where assessment radius is inversely related to final population

size and high foraging accuracy, which both increase crowding. For agents

with low foraging accuracy, a greater proportion of mobility is random,

reducing the degree of crowding. Less crowding means less chance of having
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intermediate cells be occupied, and an advantage to groups with a slightly

larger radius.

Unlike the baseline model, the heterogeneity of the environment does

not greatly affect the natural selection of assessment radius. While crowding

is reduced on a highly heterogeneous surface, the spatial autocorrelation

of resources is also reduced such that resource clusters are relatively small

and peaks are close together. Given this spatial distribution, increasing

assessment radius beyond the inter-peak distance provides no advantage.

This aspect is somewhat speculative, and likely needs a new type of resource

surface to interrogate it further.

We attempted to model population growth to simulate a push factor

for dispersal by setting the base reproductive probability slightly higher

than the removal probability (i.e., br > d). However, since probability of

reproduction is a product of available resources, the population grew until

only cells with the adjusted reproductive probability below the removal

probability were left (Eq. 3.1). On average, this caused the population to

grow to a higher population size than the fixed runs, but then to stabilise.

Higher population within the same bounded space resulted in more crowding

and slightly increased selection against assessment radius but this did not

change the underlying mechanism. To evaluate this result, we increased

the fixed population size and as predicted, the selection against assessment

radius was increased.

3.5 Model 2: Information Sharing

3.5.1 Introduction

Cultural transmission is a significant way through which humans

acquire knowledge of their environment (Mithen, 1990; Whallon et al., 2011;

Rockman, 2003). Fitzhugh et al. (2011) and others have suggested that
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Figure 3–5. Example spatial frequency distribution of successfully placed
offspring on a cone shaped landscape where lighter shades represent higher
frequency. Note the crowded center area which has the most abundant re-
sources, has a relatively low frequency of offspring agents.
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acquiring and disseminating information through social networks would

be an essential component of the colonization of novel landscapes as it

could increase the speed of landscape learning (Veth et al., 2011; Rockman

and Steele, 2003). The second model changes the source of environmental

knowledge from direct observation of the environment to indirect socially

acquired information. Instead of examining the resource abundance of the

local landscape, groups examine the success of other groups. In effect, the

unit of comparison remains the resource abundance of each cell, however,

which cells are observable has shifted from a spatially local neighbourhood

to any currently occupied cell.

Cultural transmission is an immensely complex process and involves at

least four distinct phases: acquisition, circulation, storage, and use (Whallon

et al., 2011; Lake, 2001). For example, decisions about how much informa-

tion and what level of detail to circulate to other groups can be strategic

and political. Larger regions and rare environmental changes may be more

costly to maintain information about, compared to the low cost involved

in the individual monitoring of a local landscape (Fitzhugh et al., 2011).

This suggests that socially acquired information may be complimentary to

individual observation as a source of information outside the local area.

In the cultural transmission model, we assume that the current level

of success is always assessable, rather than having groups choose whether

or not to share their information. Additionally, each group may assess

any other group in the population rather than just the neighbouring ones.

This is more simplified than the complex connectivity depicted in Fitzhugh

et al. (2011, Fig. 4.2) in that information can percolate to any point in the

network. Interestingly, the usefulness of information decreases with distance
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Learning mechanism Individual
or
group

Description

Individual learning I No cultural transmission (null
hypothesis)

Unbiased random I Copy random target
Independent decisions I Copy random strategy, freq. inde-

pendent
Success/Prestige bias I Choose random target and copy if

better
Conformity G Majority preferentially copied
Copy successful individuals G Variant of conformity
Copy successful behaviours G Variant of conformity
Anti-conformity G Traits of intermediate frequency

preferred
Frequency trimming Hybrid Ignore most or least popular, then

copy random
Table 3–2. Mechanisms of cultural transmission. Adapted and expanded
from Mesoudi and Lycett (2009).

in the model, although this occurs not as an explicitly programmed part of

the model but as an emergent phenomenon.

A significant branch of cultural evolutionary theory is focused on

modelling the mechanisms of cultural transmission. This work originated

with Boyd and Richerson (1985) and was later expanded and thoroughly

tested by others (McElreath et al., 2005; Mesoudi and O Brien, 2008;

Mesoudi and O’Brien, 2008; Mesoudi and Lycett, 2009; Mesoudi, 2008;

Henrich and McElreath, 2003). Mechanisms vary based on whether the

whole group or one individual is chosen to model and whether or not

the “copier” can assess the success of the “copied” (Table 3–2). These

mechanisms are compared to each other and to independent learners, to see

what trait frequency curve would be expected and which mechanism fares

best on different adaptive landscapes.
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Mesoudi (2008) found that individual learning performed best on a

unimodal fitness landscape, but that strategies of social learning (e.g. suc-

cess bias), especially when the whole population is known (e.g. conformity),

performed best on multi-modal landscapes. This is because social learning

allowed individuals to jump from a low local optima to the global optima

(or a higher local optima) (Mesoudi and O Brien, 2008, p.8). In the adap-

tive landscape of cultural traits, such as dimensions, shape, and colour of

projectile points, many or all individuals may occupy the same trait space

and there is no penalty for being similar to others. Frequency-dependent

trimming is a slight variation where the most popular trait is preferentially

avoided (see Mesoudi and Lycett, 2009).

When the adaptive landscape is also a physical landscape, it puts

significant additional constraints on trait selection. While our model

could have made all social information available (e.g. conformity), if every

group learned about the same, already occupied, location is obviously a

maladaptive strategy. Therefore, our model uses a spatial equivalent of

success bias by allowing a group to acquire information about one randomly

selected group at a time. This models the chance acquisition of a piece of

information, and naturally selects the probability at which it is adaptive to

act upon it by moving towards that location.

Like the baseline model, this model assumes movement is random with

respect to the resource distribution when groups are not learning through

cultural transmission. This allowed us to isolate the effects of cultural

transmission from individual foraging bias, and is also a reasonable assump-

tion. Among other reasons, Whallon (2006) notes that some proportion

of mobility is focused on maintaining social networks to provide a flow of

information about resources to protect against times of scarcity, perhaps
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becoming more important at broader spatial scales or when the environment

is less predictable. While still resource related, this movement would appear

unrelated to the resource distribution.

3.5.2 Model Description

Model 2 evaluates the natural selection of cultural transmission of

resource information using a simple form of mobility behaviour, which is

based on the observed success of other groups. Like foraging bias, a balance

between the frequency of movements based on cultural transmission and

other movements is necessary to avoid becoming stuck on local optima.

Therefore, each agent has one heritable trait, c, which is the probability that

they will assess (copy) another agent and move towards that agent if it has

more resources. We recorded the mean copy probability and cell value for all

surviving agents at the end of each run of the 180 landscape run set. Then

with the heterogeneity held constant at 2.001, the model ran with fixed

populations of 100, 1000, and 2000, and with a variable population function

(See Table 3–1 for model parameters). At each time step of each run, each

agent follows this schedule:

1. At probability, ra, produce an offspring (Eq. 3.1).

(a) Offspring inherit their parent’s copy probability trait value, c.

(b) At probability, mr, offspring’s trait value will increase or decrease

by ms.

(c) Offspring choose a random unoccupied neighbouring cell.

(d) If all neighbouring cells are occupied, offspring is removed.

(e) Fixed pop. only: if offspring is successfully placed, one random

agent is removed.

2. At probability, c, select a random target agent and compare resources.

(a) If target has more, attempt to move one cell towards them.
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Figure 3–6. a) Evolved copy probability is strongly correlated with environ-
mental heterogeneity. Each box plot represents the median copy probability
of all agents at the end of runs on 30 different simulated landscapes. b) In-
verse relationship between population size N and copy probability c, further
emphasizing the role of crowding. Constant and variable population sizes for
env = 2.001 are shown.

(b) If target has less or another agent blocks the movement, the agent

stays.

3. Variable pop. only: be removed with probability, d.

3.5.3 Results

Model 2 shows that the heterogeneity of the environment strongly af-

fects the evolution of copy probability, although with relatively high variance

between surfaces of the same heterogeneity. For the lowest heterogeneity

environments, the median copy probability is 25%, with the other 75% of

movements being of random direction. For the highest heterogeneity, the

median copy probability is higher but still relatively low at 40% (Figure 3–

6). Allowing the population size to change generally increased population

size, to around 3000-3500, and lowered median copy probability by about

10% for each environment. The fixed population runs of different population

sizes illustrated the same pattern of increased population, i.e. increased

crowding, decreasing the evolved copy probability (Figure 3–6b).
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Figure 3–7. a) Mean success is inversely correlated with environmental het-
erogeneity. Each box plot represents the foraging accuracy of all agents at
the end of runs on 30 different simulated surfaces. b) The inverse relation-
ship between population size and success is not surprising since available
resources does not increase with population.

As with model 1 and the baseline model, the success of the population

is inversely correlated with heterogeneity, although relatively high overall.

This suggests that the evolved copy probability, in combination with

resource related reproduction rates, is highly successful across a wide variety

of environments, but that surfaces with relatively low heterogeneity are

the most permissive. The variable population function generally resulted

in increased population. This predictably decreased success overall since a

larger population was competing over the same resources, forcing a greater

proportion of the population onto low resource cells (Figure 3–7a).

3.5.4 Mechanisms of selection

The mechanism behind the natural selection of copy probability is the

same as the baseline model. The availability of reproductive space around

an agent is more important than their current resource value. The fitness of

a trait is determined by its ability to have offspring, which is not necessarily

related to acquiring resources. Considered from another perspective, the

effective reproductive probability, or fitness, is determined by a combination
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(a) c = 0.75 (b) c = 0.25

Figure 3–8. Spatial distribution of cumulative probability of successfully
placing an offspring on a cone shaped resource landscape where lighter
shades represent higher probability. The crowded center area has the most
abundant resources, but has lower probability of offspring agents a) with
high copy probability versus b) low copy probability. The near plateau of
probability occurs when copy probability reaches an approximately optimal
level. n.b. These example runs held copy probability constant.

of adjusted reproductive rate and the probability of finding an unoccupied

neighbouring cell. The adjusted reproductive rate is dependent only on the

home cell, whereas finding an unoccupied cell is dependent on the degree of

crowding (Figure 3–8).

Given this understanding of crowding, the agent that consistently

has available reproductive space is the fittest. Agents with below average

copy probability will be near the edge of the population cluster and less

crowded and will thus drive the copy probability of the population down

by reproducing more frequently. As with assessment radius, agents below a

certain copy probability threshold are also maladaptive as they approximate

a random walk. The copy probability of the population stabilises when the

effective reproductive probability is relatively constant over space, although

57



this occurs at different levels depending on the spatial heterogeneity of the

environment (Figure 3–8b).

The effect of cultural transmission as a mobility strategy is that

the population always clusters together. This is best explained from the

perspective of the mean direction of mobility from one agent to all other

agents. The mean direction of every agent, whether on the outside of the

cluster or in the center, will be towards the cluster’s center (Figure 3–9).

Since non-copying random movements have no mean directionality, any

copying will result in increased clustering. This will keep the population in

one large cluster, rather than dispersing across the peaks of the resource

landscape. Lower copy probabilities increase the proportion of movement

away from the center resulting in a more diffuse cluster.

A variety of other programming choices could change the way informa-

tion is shared within the model. Agents could have access to information

about the whole population or all agents in a certain radius, allowing the

most successful agent instead of a random agent to be copied. However,

the net result would be approximately the same no matter the form of

cultural transmission modelled (except perhaps frequency-dependent trim-

ming (Mesoudi and Lycett, 2009)), namely one large cluster of agents would

form and stick closely together.

In this sense, dispersibility is inversely related to copy probability,

and dispersal is generally unlikely to occur for a population that bases

its mobility on culturally acquired environmental knowledge. Lower copy

probabilities result in a higher amount of time in exploratory random walks,

and these lower rates are naturally selected by lower heterogeneities. Like

the baseline model, less heterogeneous landscapes could radiate populations

outwards to a certain extent. However, given the tight grouping behaviour
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Figure 3–9. Illustration of the clustering effect of cultural transmission. Im-
age produced by asking each agent to face towards the mean of all other
agents’ locations.
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driven by copying, the dispersibility of even low copy probability agents

would be much lower than low individual foraging bias agents in the baseline

model. This is suggested by the relatively high number of low success outlier

runs, especially on low heterogeneity surfaces. In these cases, the starting

corner of the map formed a low resource local optimum from which the

population of agents never escaped.

3.6 Discussion

The model dynamics illustrate a seemingly general pattern that it is

better to know less, but more than nothing, about a resource landscape.

This is a counter-intuitive result as it runs contrary to the hypothesis that

increased cognitive complexity, at least in the form of foraging accuracy or

cultural transmission, gave hominins a unique ability to disperse rapidly

into novel landscapes. The literature discussing the mechanisms of dispersal

assume that increased cognitive capacity was necessary for, or at least

enabled, hominin dispersal (Dunbar, 1998; Müller et al., 2011; Barton and

Riel-Salvatore, 2012; Grove et al., 2012; Stewart and Stringer, 2012; Bar-

Yosef and Belfer-Cohen, 2013). Another common claim is that acquisition of

information about the environment, whether through individual learning or

cultural transmission, would have been crucial for dispersal (Rockman and

Steele, 2003).

In contrast, our results demonstrate that natural selection of foraging

related mobility strategies tends to reduce dispersibility, since these traits

(e.g. foraging accuracy, assessment radius, and cultural transmission) are

adaptive to some degree and thus bias agents to move towards valued

resource patches. The antithesis to foraging based mobility decisions, and

the only way to maximize the likelihood of dispersal, is to move randomly

with respect to the environment (i.e. a random walk) or to purposefully
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explore regions away from populated areas by venturing blindly into the

unknown. This agrees with Barton et al. (2004), who find that in colonizing

a novel landscape the lack of knowledge of the landscape would increase

dispersal since no location, including the currently occupied place, would

be particularly well known. However, this is a highly risky and likely

maladaptive strategy, and certainly does not employ hominins’ impressive

cognitive capacity.

The models presented here also demonstrate that the optimal foraging

strategies within a crowded landscape are different from a single group

on a landscape since foraging and mobility traits are necessarily density-

dependent at multiple spatial scales (Ray and Hastings, 1996). Natural

selection favours traits that enable successful reproduction, which are

traits that provide reproductive space as well as sufficient resources. In

low heterogeneity landscapes with a single large smooth resource patch,

the degree and selective effect of crowding is very strong. This reduces the

probability of accurate foraging and the probability of cultural transmission

and makes dispersal more likely. The degree of crowding decreases at higher

levels of environmental heterogeneity, dramatically changing the selective

pressure on traits, and making dispersal less likely.

Highly heterogeneous landscapes typically decrease dispersal of plants

and animals since neighbouring locations are likely lower in resources (John-

son and Gaines, 1990). Since crowding is reduced in heterogeneous land-

scapes, and this favours foraging accuracy and cultural transmission,

dispersal is reduced via a very different mechanism, but with the same

effect. The inverse relationship between heterogeneity and dispersibility from

the baseline model is therefore a robust result as the pattern is repeated

under several different mobility strategies. This further strengthens our
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hypothesis that low heterogeneity resource distributions should characterise

the period leading up to major dispersal events (Wren et al., 2014).

Our experiments with population growth as a stimulus for dispersal

resulted in some unexpected conclusions. Since the model landscape was

bounded, population size tended to follow a logistic curve where a period

of relatively rapid growth was followed by stability at a higher level. This

is not the constant population pressure we were looking for and this will

be addressed with a new model in a future article. However, the results do

show a strong effect of population size on the natural selection of traits since

increased population size is linked to crowding.

Assessment radius in particular was low for all environments when

the population was large, but increased assessment radius did evolve in

some of the smaller populations. This suggests that a small colonizing

population could benefit from increased assessment radius, bringing to mind

the rapid colonization of the Americas, which is assumed to involve a small

population. It also adds the requirement of a small population size to the

leap-frog (Anthony, 1990; Anderson and Gillam, 2000; Fiedel and Anthony,

2003) and saltation models (Gamble et al., 2004) of colonization where large

patches of inhospitable territory are quickly skipped over. Gamble et al.

(2004) claims that H. sapiens were “released from social proximity” by

establishing extended social networks and were therefore uniquely able to

assess large radii to find suitable habitat while maintaining contact with a

parent group.

This pattern is also the solution to ‘Reid’s paradox’ in ecology where

the mean distance of dispersal multiplied by the generation length was

insufficient to explain the observed rate of post-glacial tree dispersal.

Rather, rare but long distance dispersals (e.g. carried by a storm or animal)
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were a necessary component of the explanatory model (Clark, 1998).

Future models could be extended to test these hypotheses using a ‘Lévy

flight’ model (Viswanathan et al., 1996; Raichlen et al., 2013), which

makes walking time a fat-tailed distribution that allows for occasional long

duration moves (also see Edwards et al., 2007).

3.6.1 Note on memory

One component seemingly missing from the above models is the ability

to remember the location of resources. Information could be acquired

through either individual learning, cultural transmission, or both, and

then compiled into a mental map of the landscape. This was the objective

of MAGICAL, an agent-based model of a foraging driven Mesolithic

colonization of the island of Islay in Southern Scotland, although due

to limitations of computer hardware the published runs of MAGICAL

contained only four agents per run (Lake, 2000, 2001).

However, the combination of results from models one and two suggests

that this would not increase the dispersibility of the population. The

more information is shared, the more populations are alike in their chosen

destinations and the more crowded they become. Further, the more distant

the chosen destination, the less likely the intermediate territory will be

favourable or available. While mobility strategies like increased foraging

accuracy, greater assessment radius, cultural transmission, and memory

seem like they would be highly adaptive, their use in a crowded landscape is

greatly constrained.

3.6.2 Note on resource landscapes

This article has only explored one dimension of landscapes, namely the

spatial distribution or heterogeneity of resources assuming actual differences

in the heterogeneity of the physical environment. The ABM approach could
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also enable a new approach to understanding and modeling other hypotheses

of hominin-environment interaction. For example, within the same bio-

geographic landscape, a generalist’s perception of that landscape would look

less heterogeneous (since resources have different distributions) and have

lower peaks than that of a specialist. Potts’s (1998) variability selection

hypothesis implies that hominins would experience less heterogeneity as

well but with higher peaks than a generalist. A shift in technology enabling

more efficient extraction of energy, could also be represented spatially by

increasing the height of peaks without a change in heterogeneity.

This way of representing resource distributions is relevant to dispersal

since we have already demonstrated that the spatial distribution of resources

affects both the fitness and dispersibility of populations. Changes in

technology have already been suggested to increase dispersal (Mellars, 2004,

2006b), and our results suggest a new way to evaluate that hypothesis.

These ideas will be explored further in future work.

3.7 Conclusion and next steps

The selective pressure to reduce environmental knowledge, particu-

larly in low heterogeneity environments, is a surprising result. However, it

does present a number of explicitly testable predictions stemming from the

selective pressures of the resource landscape. First, high heterogeneity envi-

ronments increase the selective pressure for complex cognition. Second, since

dispersibility is higher in low heterogeneity environments, high heterogeneity

environments should have greater population sizes. If these two hypotheses

were true, we should expect the evolution of cognitively complex hominins

to occur preferentially in spatially heterogeneous environments. Similar

claims have been made by Winder et al. (2013) and for temporal heterogene-

ity by Potts (1998, 2002). Third, major dispersal episodes should emanate
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from, and be preceded by a period with, low spatial heterogeneity. In fact,

we should expect that dispersal corridors should be relatively low hetero-

geneity as well, although this has yet to be explicitly modelled. Fourth,

cultural transmission as a source of information decreases dispersibility.

Thus, archaeological indicators of social network strength, such as presence

of exotic materials, should be low during dispersal episodes (although social

networks could be useful for other purposes, c.f. Fitzhugh et al., 2011).

The model presented here is highly abstract and it is easy to imagine

any number of factors that could confound the model’s dynamics, particu-

larly the rigid way a crowded landscape inhibits reproduction. However, we

are not attempting to recreate the entirety of past mobility patterns and nor

should we try to do so. Rather, the goal is to identify each element in the

hypotheses and interpretations of others, and make how they are thought

to interact explicit in a computer model. Some assumptions may be overly

restrictive in the models and may need to be relaxed in future models and

some implementations will function better than others will. For example,

our population pressure function merely increased the stable population

size. Since population pressure is thought to be a critical aspect of dispersal

itself, rather than the evolution of a population’s dispersibility, this needs to

be revised. We will tackle this question in a future article and finally have a

quantification of the rate of dispersal under different conditions which will

be comparable to the archaeological record.
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CHAPTER 4
Putting (hominin) thought into hominin dispersal models

Wren, C. D., Costopoulos, A., submitted. Putting (hominin) thought

into hominin dispersal. Journal of Human Evolution

4.1 Overview and context within thesis

As described in previous chapters, Fisher’s (1937) equation predicts a

wave of advance of an organism from the dynamics of population growth

and random movement. Its first appearance as a human dispersal model was

by Ammerman and Cavalli-Sforza (1971), who adopted the equation as a

mathematical model to describe the advance of early farming into Europe.

Others applied the model to several other case studies to show that the

same model of random movement creating a wave of advance is consistent

with the archaeological appearance of early humans in different locales.

A basic tenet of modelling is to determine whether the model elements

are necessary and sufficient to explain the phenomenon (Epstein, 1999). The

model elements are necessary if removing one of them results in a different

outcome, and they are sufficient if together they generate the important

dynamics of the phenomenon in question. By assuming human cognition

would have a negligible effect on mobility patterns, the wave of advance

model may be insufficient, even if it is consistent with the archaeological

record at a coarse scale. In this article, I incorporate human decision making

into a replication of the wave of advance model to evaluate its effect on the

expected dispersal velocity in different environments.

In some ways, this chapter would have made a better first step than the

model in chapter 2. It certainly would have been a smaller departure from
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the established modelling approach and thus the conclusions more easily

understood and accepted. However, I needed to go through the evolutionary

models to develop my understanding of foraging biased mobility, and why

the random movement of the other published dispersal models had left me

unconvinced. The natural selection of dispersibility through low levels of

environmental knowledge is an important backdrop to the following study.

The previous models suggest that it is logical to assume that cognition

inhibits dispersal velocity, and the following model provides a quantification

of this.

4.2 Abstract

Wave of advance dispersal models (Ammerman and Cavalli-Sforza,

1971; Steele et al., 1998; Fort et al., 2004; Silva and Steele, 2012) depict

humans and other hominins as passive agents spreading randomly across

palaeo-landscapes. This seems to contradict both our assumptions about

the importance of hominin cognition in dispersal, and the characteristics of

palaeoenvironments in channelling movement. We use an abstract agent-

based model to add a simple form of cognitive complexity to the wave of

advance, by enabling hominins to direct movements towards resource rich

parts of the landscape. Although in a few specific cases cognition increases

the dispersal velocity slightly, overall the model suggests that increases in

cognition would have decreased dispersal velocity significantly.

Keywords: Dispersal; Wave of advance; Environmental heterogeneity;

Simulation; Agent-based modelling; Hominin cognition

4.3 Introduction

Two main types of narratives emerge from the study of human and

other hominin dispersals. One sees humans as active agents adapting
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to novel environments, the other sees them as passive agents diffusing

according to environmental constraints.

The active narrative suggests that dispersals were successful due to the

increased cognitive abilities of early humans (Bar-Yosef and Belfer-Cohen,

2001). Bigger and more complex brains facilitated technological innovations

that increased adaptation to, and helped shape, the environment (Gaudzin-

ski, 2004; Mellars, 2006b; Shea and Sisk, 2010; Banks et al., 2013; d’Errico

and Banks, 2013), extended social networks as a source of information and

a buffer against risk (Aiello and Dunbar, 1993), as well as developing other

social traits such as cooperation (Bar-Yosef and Belfer-Cohen, 2013). This

increased brain power is assumed to be connected to the increasingly rapid

dispersal rates observed in the archaeological record, although the specific

mechanism is much debated. The actual impact of increased cognitive

capacity on hominin dispersal rate has never been explicitly tested through

modelling and simulation until this study.

The passive narrative depicts human populations expanding when

resources were present and spreading to new regions when ecological

conditions permitted. Rather than consciously selecting preferred habitats,

humans diffused or expanded as climatic changes increased the boundaries

of their ecological niche (e.g., Drake et al., 2013; Pearson, 2013; Rohling

et al., 2013). This narrative sees hominin dispersal as a biogeographic

phenomenon, albeit with behavioural innovations indirectly contributing to

the changing range boundaries (Roebroeks, 2006). The dichotomy between

the two narratives is partially a product of their respective analytical scales,

as the passive narrative is typical of palaeoenvironmental studies which

focus on broad spatial and temporal scales, rather than the local scale

behaviour of individuals.
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Computational models of human dispersals are largely based on the

passive narrative. The standard dispersal model is a wave of advance,

based on Fisher’s (1937) equation, in which population growth radiates

out from an origin like ripples on a pond. As movement is assumed to

be random in direction, environmental characteristics do not affect the

velocity or direction of the wave’s travel, except when an environment is

completely uninhabitable. This contradicts a common assumption of the

passive narrative, that hominins disperse more rapidly through resource

rich locales (Pearson, 2013). Wave of advance models seem to be at odds

with aspects of both narratives since they contradict hypotheses that

connect increased cognition with dispersal success, and palaeoenvironmental

conditions with dispersal patterns and timing.

Active cognition may be added to Fisher’s wave of advance model

by assuming that cognition would direct movement towards resource rich

locales. An increasingly complex brain would result in a more accurate

understanding of the resource landscape, and thus bias movement with

increasing accuracy. In this article, we use an agent-based model with a

variety of simulated resource landscapes to explore how increasing cognitive

complexity in this way could affect the relative dispersal velocity of a

population of hominins.

The results show that increased cognition will actually slow down

dispersal rate in most environments. This has important implications for the

general understanding of dispersal mechanisms and suggests that estimates

of population growth rate, diffusivity, and the importance of cognition in

dispersal research should be reconsidered.
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Wave of advance model

The standard dispersal model is a partial differential equation known

by a number of names: reaction-diffusion, Fisher, Fisher–Kolmogorov,

Fisher–KPP (Kolmogorov-Petrovsky-Piskounov), or Fisher–Skellam. The

equation describes a travelling wave, or ‘wave of advance’, where a popula-

tion is simultaneously increasing and spreading into new territory. There are

two terms to equation 4.1, the first is population growth, often logistic, and

the second is an even diffusion of that population into surrounding space

(i.e., the cumulative effect of individual random dispersal directions).

∂n

∂t
= αn

(
1− n

K

)
+D∇2n (4.1)

where K is local carrying capacity, α is intrinsic maximum population

growth, D is a diffusion constant which determines the dispersal distance

per generation, ∇ is the mechanism of even outward spreading from a local

density, and n denotes population size at a given time, t, and place (Steele,

2009).

Logistic population growth up to a local carrying capacity, K, is a

reasonable assumption although the growth rate, α, will be revisited later.

The appropriateness of the second term is the primary subject of this

article, particularly the assumption that a dispersing group or individual will

move randomly, which appears even given sufficient time, with respect to the

social and environmental landscape. This is a logical first approximation,

but given our understanding of hunter-gatherer decision making and

movement, we will revisit this assumption here.

Many of the foundational papers on dispersal models in biology and

ecology (e.g., Fisher, 1937; Levin et al., 2003; Kolmogorofl et al., 1989), and

even some archaeological applications of the model (Hazelwood and Steele,
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2004), acknowledge that the assumption of random directionality is an over

simplification. Some justify this by assuming that it is approximately true

at broad spatial and temporal scales, or by arguing that randomness is the

simplest assumption in the absence of empirical evidence suggesting a more

specific mechanism. A few articles have discussed the effect of a directional

bias along rivers (Davison et al., 2006), away from population densities (Lika

and Hallam, 1999), or towards suitable habitat (Bowler and Benton, 2005).

Rowell (2009) examined the impact of rational local searching behaviour

(i.e., for greater resource availability) and found that it could limit the speed

and extent of an organism’s spread. He derived a new partial differential

equation to describe the resource gradient climbing behaviour resulting from

rational decision making (Eq. 4.2).

∂n

∂t
= −k∇ · (n∇S) + n(rS − μ) (4.2)

where S is landscape of resource availability (i.e., resource abundance value

affected by local population density n), k is a constant which controls

sensitivity to variations in resource availability, r affects the population

growth rate, and μ is a density-independent per capita mortality.

Archaeological applications

The most direct material evidence of hominin dispersals are the

earliest dated occupations at increasing distances from an assumed origin.

Ammerman and Cavalli-Sforza (1971) used regression on a date versus

distance plot to estimate the velocity of the spread of farming into Europe

shortly after Clark (1965) published a compilation of early Neolithic

radiocarbon dates.

An important prediction of the Fisher equation is that wave velocity

is proportional to population growth rate and dispersal distance (Eq. 4.3).
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Ammerman and Cavalli-Sforza (1971) used this and the Fisher equation as

a model to explain the process of Neolithic diffusion, namely as a ‘demic’

wave of population growth and spread (also see Ammerman and Cavalli-

Sforza, 1973, 1984). Since reasonable estimates for diffusivity and population

growth rate (derived from ethnographic literature) were compatible with the

archaeologically observed velocity, they accepted the ‘demic’, or population,

wave-of-advance as a reasonable model of Europe’s Neolithisation.

v = 2
√
Dα (4.3)

This work has been extensively cited in the literature of the spread of

farming into Europe (e.g., Fedotov et al., 2008; Fort et al., 2012; Isern and

Fort, 2012; Bocquet-Appel et al., 2012; Lemmen et al., 2011; Rowley-Conwy,

2011; Pinhasi et al., 2005). The Fisher equation has also been applied to

several other case studies including, the Palaeoindian colonization of the

New World (Steele et al., 1998; Hazelwood and Steele, 2004; Hamilton and

Buchanan, 2007), the reoccupation of northern Europe by modern humans

after the last-glacial maximum (Fort et al., 2004), the initial colonization

of the western Pacific (Fort, 2003), the spread of farming through southern

Africa (Silva and Steele, 2012), and the spread of anatomically modern

humans globally (Young and Bettinger, 1995).

Interestingly, almost no attempt has been made to test alternative

models such as ‘leapfrogging’, ‘migration streams’, or ‘Markov models’

suggested in a frequently cited article by Anthony (1990). Only a few papers

have expanded or adjusted the Fisher equation, to account for a pre-existing

Mesolithic population for example (Isern and Fort, 2012), and these tend not

to be widely cited. One exception is Davison et al. (2006), who modified the

equation to increase the per generation dispersal distance, D, along rivers
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Case study v (km/ year) D (km2/
generation)

α (%) Citation

Erectus
Eurasia

0.01-0.02 n/a n/a Hughes
et al.
(2007)*

AMH Eu-
rope

0.4-0.5 n/a n/a Mellars
(2006a)

Europe
Post-LGM

0.7-1.4 1 400- 3 900 1.7-2.7 Fort et al.
(2004)

New World 3-10 900 0.3-3 Steele et al.
(1998)

New World 5-8 n/a n/a Hamilton
and
Buchanan
(2007)

Neolithic
Europe

0.6-1.3 1 400- 3 900 2.9-3.5 Pinhasi
et al. (2005)

Western
Pacific

8 3 600- 300
000

2.9-3.5 Fort (2003)

Table 4–1. Variations in published parameters for (4.3), compiled from
Steele (2009). *Estimated from straight line distances and provided table of
arrival dates.

and coastlines in their model of Neolithic dispersal up the Rhine–Danube

and along sea coasts. Another is James Steele, who has published several

papers exploring different versions and expansions of the Fisher model,

including variations in the demographic and mobility constants, multiple

populations, and spatial and temporal heterogeneity (Hazelwood and Steele,

2004; Steele, 2009; Silva and Steele, 2012).

The velocity of the wave front is an attractive tool for archaeologists

because it provides a concrete comparison to the archaeological record,

and thus a way to empirically validate the model. However, the range

of ethnographic and archaeological examples which are used to estimate

diffusivity, D, and population growth rate, α, as well as the uncertainty in

dating, provides significant wiggle room in the comparison of the model’s

prediction to the velocity calculated from the distribution and timing of
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archaeological sites. This range can be seen in Steele (2009), where he

collated estimates for these parameters and for wave velocity, v, from papers

published on a variety of case studies (Table 4–1). Given this uncertainty,

a substantial change in the dispersal model could still produce a velocity in

line with the predictions from archaeological record.

In STEPPINGOUT, Mithen and Reed (2002) used a cellular automata

model and global climate simulation data to construct a complex grid of

triangular cells representing the Old World palaeoenvironment. STEPPIN-

GOUT modelled hominin population movement as a constant probability

of colonizing neighbouring grid cells with the environment influencing a

variable probability of extinction (see Nikitas and Nikita, 2005; Hughes

et al., 2007, for related approaches). This is similar to Fisher models’ use of

a reconstructed map of variable carrying capacity to limit population growth

in certain locations, or movement if K = 0. In either case, the selection of

which cell to occupy occurs randomly and without reference to the environ-

ment. The only exceptions are models that bias movement along coastal or

river routes, by increasing either the probability of colonization (Mithen and

Reed, 2002; Hughes et al., 2007) or the dispersal distance (Davison et al.,

2006).

Contrary to these approaches, this study assumes that mobility deci-

sions, that is the choice of where the group will move their residential base,

are not made randomly with respect to the environmental landscape (Lake,

2000, 2001; Grove, 2009). This approach re-frames dispersal as an emergent

phenomenon, rather than the goal of a population, and emphasises that the

direction of dispersers will likely not be random at the local scale.

Fisher-based models tend to strive towards realism (Costopoulos, in

press) by using maps of coast lines, rivers, mountain ranges, and adjusted
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sea levels, as well as detailed palaeoenvironmental reconstructions, and

demographic and mobility rates taken from ethnographic and archaeological

case studies (Mithen and Reed, 2002; Steele et al., 1998). Their goal

is to test the correlation of the models with arrival dates taken from

archaeological sites; what Premo (2010) calls emulation or hypothesis

testing.

Here we use an abstract heuristic model to explore the role of cognition

in dispersal, and in hominin-environment interactions more generally. The

goal is to understand the mechanisms of dispersal in more depth, rather

than to make specific predictions about the arrival of hominins in any given

locale (Premo, 2010; Costopoulos and Lake, 2010; Lake, 2013).

4.4 Modelling cognition-based dispersal

The mathematical basis of the Fisher dispersal models (i.e., with partial

differential equations), has some significant limitations particularly in rep-

resenting complex environments and variability in modelled individuals or

their behavioural responses (Romanowska, 2013). Agent-based modelling,

while somewhat less simple, is a useful tool for representing the same dis-

persal process but with additional elements which are difficult to represent

mathematically. An agent-based model (ABM) is a dynamic computational

simulation of autonomous agents that allows us to study the broader scale

effects of a large number of local scale individual actions. Agents, which

in our case represent foraging hunter-gatherer groups, are programmed

with simple traits and behaviours that may change over time in response

to their interaction with the social and physical environment (Conolly and

Lake, 2006; Rouse and Weeks, 2011). In this article, we present an ABM of

how hunter-gatherers acquire information about the resource environment
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and make mobility decisions based on that information (Code available at

openabm.org).

ABM replication of Fisher’s model

We first implement an ABM version of the classic wave of advance

model using the Netlogo toolkit (Wilensky, 1999). This model establishes a

baseline that we will use to evaluate the dispersal velocity of our cognition-

based dispersal models. The model environment consists of a 100 by 100

cell landscape where cell values represent carrying capacity. For simplicity,

cell values in each simulated landscape range from 1 to 100. This relatively

small range may still over estimate potential population density during

dispersals (data from Kelly 1995 cited in Steele et al., 1998).

Each run begins with one agent, which represents a hunter-gatherer

group occupying a cell, in the center of the landscape. During each time

step, each agent first increases its size, n, logistically towards the carrying

capacity of its cell (i.e., the first term of eq. 2.1). Second, each individual in

each agent (i.e., each agent repeats n times) moves their residential camp to

a randomly selected cell in their 8-cell neighbourhood. Individuals will either

add 1 to the n of another agent or create a new agent with n = 1 depending

on whether or not the selected cell is already occupied. This simulates ∇2

in the second term of eq. 2.1. The diffusivity constant, D, is represented by

the cell size and we did not correct for the increased distance of diagonal

movements.

During each time step, each agent repeats the following n times:

1. Pop. growth: Increase n by one if random(0 to 1) < 1− n
K

2. Movement: Select a random neighbouring cell

(a) If cell is occupied, n+ 1 for the occupying agent

(b) If unoccupied, create a new agent with n = 1
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The model creates the classic travelling wave of population dispersal

from the initial population center. This article uses the baseline velocity

from this ABM replication of the wave of advance model to determine how

cognition may accelerate or inhibit dispersal. ABM wave velocity is defined

as the number of time steps it takes for the first agent to reach the edge

of the landscape divided by the 50 cell distance. We do not parameterize

diffusivity and population growth rate explicitly (i.e., by inputting values

from Table 4–1). Instead, we hold these values constant and compare the

relative differences in velocity with and without cognition.

Foraging bias model

The foraging bias model replaces the random cell selection, i.e., random

dispersal direction, with an individual agent’s choice. We assume that

movement will be towards the cell with the highest resource abundance

within the surrounding 8-cell neighbourhood (Lake, 2001, 2000). Wren et al.

(2014) established that perfect accuracy in choosing the highest resource

cell decreased evolutionary fitness and mobility. Instead, an intermediate

foraging accuracy was more adaptive, that is only choosing the best cell

some of the time, with the heterogeneity of the resource landscape playing a

role in the natural selection of the optimal level.

Since a dispersal wave occurs over a relatively short period of time,

we chose not to include the evolution of foraging accuracy in this model.

Instead, we test the effect of a range of fixed foraging accuracy rates (i.e.,

0%, 25%, 50%, 75%, and 99.9%) which could have evolved over a longer

period of time in the source population. At each time step, each agent’s

population grows as in the baseline model, but then at the fixed rate each

individual (i.e. each agent repeats n times) has a probability of moving

to the highest resource cell in its local neighbourhood, or to a random
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neighbouring cell otherwise. In the Fisher model, population cannot exceed

carrying capacity but in foraging biased movement it could. To correct this,

we stop movements to cells already at carrying capacity.

During each time step, each agent repeats the following n times:

1. Pop. growth: Increase n by one if random(0 to 1) < 1− n
K

2. Movement: If random(0 to 1) < foraging accuracy, select best neigh-

bouring cell, otherwise select a random cell

(a) If cell is occupied and n < K, n+ 1 for the occupying agent

(b) If unoccupied, create a new agent with n = 1

4.5 Carrying capacity landscapes

In the Fisher model, wave velocity is unaffected by the spatial distribu-

tion of the carrying capacity landscape (Eq. 4.3). However, Rowell’s (2009)

results suggest that this may not be the case for non-random dispersal

strategies. Given the emphasis on the characteristics of palaeoenvironments

in discussions of hominin dispersal, we simulate several different types of

resource landscapes to evaluate their impact on wave velocity. To establish a

baseline, we first use a homogeneous resource landscape where all cell values

equal 100. We run the model 30 times to account for stochasticity in the

model.

We then wanted to evaluate the effect of a dispersal corridor on

a travelling wave, whether a coast line (Mithen and Reed, 2002; Field

et al., 2007), river (Davison et al., 2006), or other geographic bottleneck.

Using GRASS GIS (GRASS Development Team, 2012), we generate a

homogeneous horizontal corridor (cell value of 100) that decreases gradually

in value to the north and south. Since this may be an unrealistically

uniform environment, we create a noisy corridor by adding a small degree of

random variability (±5%) to the smooth corridor. The final landscape is a
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gradient that begins with a cell value of 1 and increases gradually up to 100.

The model runs 30 times on each of these landscapes, varying the random

seed each time, to account for model stochasticity.

Next, the model runs once on each of a set of 150 continuously varying

landscapes representing different environmental heterogeneities. Following

Wren et al. (2014), GRASS generates these using a random fractal algo-

rithm, r.surf.fractal. We chose five degrees of heterogeneity (from lowest,

by fractal dimension: 2.001, 2.25, 2.5, 2.75, and 2.999) and generated 30

landscapes for each, for a total set of 150 landscapes. GRASS scales the

cell values of each landscape such that each cell value is equal in frequency

and the summed carrying capacity of all cells on the landscape is equal (see

figure 4–4 for example landscapes).

4.6 Results

The velocity of the foraging-biased dispersal wave is strongly affected

by foraging accuracy and, for non-random movement, by the spatial

patterning of the resource landscape. The baseline behaviour of the Fisher

model, the median from 0% foraging accuracy on the homogeneous plain,

is represented as 1.0 on the y-axis of figure 4–1. This plot summarizes the

relative velocities over the 150 landscapes of varying heterogeneity and

illustrates that increased foraging accuracy, which represents increased

cognition, substantially decreases wave velocity. Indeed, this suggests that

the random dispersal in a Fisher wave is probably over-estimating the wave

velocity of a cognitively advanced human population.

Sub-dividing these results by environmental heterogeneity shows that

wave velocity is further decreased by increased heterogeneity of the resource

landscape (Figure 4–2). With intermediate to high accuracy, wave velocity

is faster than baseline when travelling up a gradient (median 106–110%).
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Figure 4–1. Foraging accuracy decreases wave velocity across heterogeneous
landscapes such that the fastest velocities come from random mobility. Each
box plot represents the wave velocity for 30 different runs. Dark horizontal
lines represent the median, horizontal box edges represent the 25th and 75th
percentiles, top and bottom most horizontal lines represent 1.5 times the
inter-quartile distance. Small circles represent outliers.
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Figure 4–2. Increased resource heterogeneity (panels from left to right)
decreases wave velocity. Also note the decreased variance in velocity for
increased heterogeneity.

At the highest accuracy velocity is slightly faster along a smooth corridor

(102%), but this reduces to only 30% of baseline in the noisy corridor

(Figure 4–3).

There is a high degree of wave velocity variance on the low heterogene-

ity landscapes, including some landscapes where foraging biased dispersal

exceeds random dispersal velocity. These landscapes often have only one

large resource patch which gradually decreases away from a central point.

The position of this patch relative to the starting cell can result in a gra-

dient leading towards the map edge. In these instances, an intermediate

foraging accuracy can increase velocity over random dispersal. The ran-

domized placement of this patch leads to the high degree of variance. While

equation 4.3 suggests that the value and spatial distribution of the resource

landscape is not a factor in wave velocity, these results show that it becomes

important when cognition is involved in dispersal.
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Figure 4–3. Wave velocity across simulated plains, gradients, and corri-
dors. Velocity only exceeds the baseline (1.0) on the gradient when foraging
accuracy relatively high.

So far we have reported the wave velocity for each model run by divid-

ing the time taken to reach the map edge by that distance. However, wave

velocity varies spatially according to resource gradients at the local scale.

Foraging bias increases wave velocity as the front moves towards the center

of resource patches (i.e., up local gradients), and slows considerably when

moving away from resource patches (i.e., down local gradients). This effect

is highest when the heterogeneity is low and resource patches are large. On

these landscapes, the wave does not appear as an evenly expanding radius

like in a Fisher wave, but as an uneven front which becomes more sinuous

and asymmetrical with increasing foraging bias (Figure 4–4 & 4–5).

Our results also show that velocity decreases in heterogeneous land-

scapes even with random dispersal, contrary to eq. 4.3 (Figure 4–6). The

mathematical models assume continuous and fractional population values, n,
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Figure 4–4. Wave front sinuosity increases with increased foraging accuracy
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Figure 4–6. Wave velocity decreases with environmental heterogeneity even
with random dispersal when carrying capacity has a very low value.

which means that a single individual can disperse fractions of itself to sur-

rounding cells. This cannot occur when individuals are discrete, such as in

an ABM. This distinction becomes important whenever there are cells with

very low carrying capacity. Since low carrying capacity and low population

density are often the default assumptions for the initial human dispersals,

this suggests that we should not discount the range or distribution of car-

rying capacity in the determination of wave velocity, even in non-cognitive

dispersals. To confirm this result, we increased the carrying capacity range

from 1 - 100, to 101 - 200 and re-ran the model. As expected, wave velocity

was the same for all landscapes in the latter case (not shown).

4.7 Discussion

This article investigates the relationship between the importance

ascribed to hominin cognition in major dispersal events and Fisher equation-

based dispersal models that assume mobility occurred without reference
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to the environment. Here we present a model where human agents acquire

information about their environment, to varying degrees of accuracy based

on their level of cognition, and then make mobility decisions based on

resource abundance. The results of the agent-based model shows that

cognition-based mobility significantly alters the velocity and pattern of

waves of advance. Overall, the greater the role of cognition in mobility, the

slower the wave of advance (as much as an 80% reduction of non-cognitive

wave velocity).

The spatial distribution of the resource landscape plays an important

role in wave velocity in the foraging bias model. At the local scale, foraging

biased mobility can result in a faster wave than random mobility when

there is a smooth gradient of increasing resources to follow, and slower than

random when the resource gradient declines. On heterogeneous landscapes,

or even in a slightly noisy corridor, wave velocity decreases significantly with

increased cognition. The model’s complex resource landscapes are difficult

to represent mathematically, but these ABM results generally correspond

with Rowell (2009) who found that a mobility strategy based on maximizing

available resources resulted in a wave front velocity that varied considerably

on the local scale according to the slope of the resource gradient.

Since these results suggest that cognition should generally have an

inhibiting effect on wave velocity, this suggests that population growth, α, or

inter-generational mobility distance, D, need to be much higher to account

for the wave velocity observed in the archaeological record. It is beyond the

scope of this paper to determine appropriately higher values for α and D,

or a cognition-based version of eq. 4.3 (although see Rowell, 2009, Eq. 8),

but the results clearly show that the role of cognition on mobility decisions

cannot be discounted in dispersal models.
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Gradients, corridors, and low heterogeneity resource landscapes,

i.e., large resource patches, with intermediate-high foraging accuracy

generated the most sinuous and asymmetrical waves of advance. However,

asymmetrical wave fronts were relatively uncommon in the suite of model

runs conducted. Davison et al. (2006) suggests that the archaeological

record of the Neolithic expansion into Europe was asymmetrical. It is

currently unclear if this reflects a difference in the mobility decision making

process of the population from earlier hominin populations (agriculturalist

versus hunter-gatherer, or difference in cognition), or merely a more detailed

archaeological record.

The conclusion that cognition inhibits dispersal is unexpected given

the frequent assumption that cognitive advances are causally related

to major dispersal events. Indeed, the trend of encephalization (Grove,

2012), as well as increases in cultural complexity and other proxies for

cognition (McBrearty and Brooks, 2000), is clear, as is the increasing

geographic scale and velocity of dispersal events (Steele, 2009; Bar-Yosef and

Belfer-Cohen, 2013). Computational models are an important method for

testing the narrative explanations of dispersal events’ causes and constraints,

although this article has shown that the frequently used Fisher equation is

insufficient. We need to continue borrowing, adapting, and developing new

models to test the various ways in which the complex cognition of hominins

may have enhanced or inhibited dispersal. For example, this article has not

accounted for pre-existing populations in later dispersal events. In future

work we plan to adapt the multiple-population Lokta-Volterra model (Young

and Bettinger, 1992; Steele, 2009) to include cognition-based mobility.
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CHAPTER 5
Conclusion

5.1 Summary of findings

It is unnecessary to assume humans have an inherent drive to explore

or that humans are unaware of their environment to explain patterns of

dispersal. However, the mechanisms connecting increases in cognitive

complexity with dispersal, are not necessarily intuitive.

This dissertation uses an agent-based modelling approach to incorporate

cognition into a model of human dispersal. The goal is to evaluate the

assumed causal relationship between increases in hominin cognitive complex-

ity, palaeoenvironmental change, and increasingly geographically expansive

and rapid waves of dispersing human populations.

Published computational models of human dispersal generally assume

that the movement of individuals and groups occurs without reference to

the resource landscape, modelled as a random walk. To incorporate human

cognition, this dissertation assumes that human mobility is biased towards

foraging-related mobility decisions made by individuals or groups. Foraging-

biased mobility involves assessing the surrounding landscape for resource

potential and making mobility decisions that maximize available resources.

If this resource assessment has perfect accuracy (referred to as spatial

foresight in chapter 2), then mobility ceases when agents encounter local

optima. An imperfect assessment accuracy allows agents to effectively search

out better resources on the landscape by spending some proportion of their

time exploring. With the assumption that increased cognitive complexity

would increase assessment accuracy, this dissertation explores the natural
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selection of cognitive complexity, the resulting dispersal potential of the

population, and the spatial and temporal pattern of a cognitive wave of

advance.

Chapter 2 presents a model where agents make decisions about foraging

potential at the local scale to varying degrees of assessment accuracy. Their

accuracy is a heritable trait and is subject to natural selection over the

course of each model run. When accuracy is high, agents crowd around

the resource clusters and reduce reproductive space. Agents with slightly

lower accuracy have more reproductive space and are more adaptive as a

result. Through this mechanism, natural selection favours less accurate

agents, as long as they are still able to maintain sufficient proximity to

resources. When the heterogeneity of the environment increases, crowding

is reduced and natural selection favours a higher accuracy level. The

dispersal potential, or dispersibility, of the population is inversely related

to assessment accuracy as it is only through non-resource related mobility

decisions (modelled here as random walking) that agents disperse away from

resource clusters.

These results suggest that natural selection requires a long dura-

tion of low environmental heterogeneity to evolve a population with high

dispersibility, and that this occurs through the natural selection of rela-

tively low cognitive complexity. High environmental heterogeneity favours

increased cognitive complexity, but low dispersibility.

Chapter 3 extends the way agents acquire environmental knowledge

of their environment in two distinct ways, one individual and one social.

In both cases natural selection favours decreased levels of environmental

knowledge, particularly in low heterogeneity environments. Detailed envi-

ronmental knowledge being shared or acquired from a larger area, results
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in agents choosing similar locations and increasing crowding. As in the

previous chapter, agents with less environmental knowledge move away from

resource clusters and into areas with more space available for reproduc-

tion. These results suggest a different role for the cultural transmission of

environmental knowledge. Rather than being a requirement for successful

dispersal (Gamble et al., 2004), cultural transmission strengthens the bond

to particular locations and significantly reduces dispersibility as a result.

Finally, chapter 4 combines the model of cognitive dispersal and the

classic wave of advance model. While the previous chapters focus on the

evolution of dispersibility, this chapter quantifies the impact of cognition

on dispersal velocity and the wave pattern. The model suggests that the

greater the level of cognitive complexity, i.e. the more accurate the resource

assessment, the slower the wave of advance. The spatial heterogeneity of the

environment also decreases wave velocity to a lesser degree when cognition

is involved in mobility. Random movement, i.e. non-cognitive mobility,

provides the highest velocity across all landscapes except an increasing

gradient.

This model suggests that a cognitively complex human disperses much

slower than a less cognitively complex human, all other things being equal.

However, the archaeological record tells us that dispersal velocity increased

as humans became more cognitively complex. Estimates for the variables

of Fisher’s (1937) equation, inter-generational movement distance and

population growth rate, are too low to account for the decreased velocity

of cognitive dispersal. Many hypotheses about the cognitive advantage of

humans suggest technology and social networks increased the survivability

of novel environments. This is compatible, and even complementary, to the
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results presented here, as this could increase the population growth rate and

movement distances significantly.

5.2 Next steps

Agent-based modelling offers a rigorous method for evaluating the

mechanisms connecting human cognition and local scale mobility to disper-

sal events. However, resource assessment accuracy and cultural transmission

are only two of many proxies for cognition. In future work, I plan to eval-

uate other hypotheses connecting increased cognition to dispersal, such

as increasing survivability of novel environments or redefining the human

ecological niche with technology.

While this dissertation focused on spatial environmental heterogeneity,

I also plan to investigate the impact of temporal variability on hominin dis-

persal. How did shifts in the mean, range, or variability of key resources (i.e.

climate change) affect the pattern of dispersal and subsequent settlement?

The goal will be to identify the selective pressures affecting the human

capacity to adapt to different modes of temporal change. For example, to

what extent do humans learn to avoid highly variable locations that are

unpredictable and risky (Fitzhugh, 2001), as opposed to adapting their

behaviour to make a variable environment more survivable by altering their

resource base, technology, mobility, or social organization (Potts, 1998, 2002,

2013; Stewart and Stringer, 2012)?

The models in this dissertation are kept purposefully abstract. However,

I also plan to investigate specific dispersal and settlement patterns in the

archaeological record. A future applied model will make use of fine scale

reconstructed climate simulation data for the Iberian peninsula during the

last glacial period (approximately 60 to 19 thousand years ago). The goal

is to evaluate how the Iberian glacial refugium could have impacted the
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evolution of dispersibility, and then to evaluate what effect this had on the

recolonization of northern Europe in the post-glacial period.
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APPENDIX A
Agent-based model code

The following sections contain the computer code, written in the

Netlogo programming language (Wilensky, 1999), for the agent-based

models described in each chapter. This language is designed to be relatively

readable without any prior knowledge of programming. To further clarify,

I have added comments to the code to explain the key parts of the models.

Finally, download links precede the code in each section.

A.1 Code for chapter 2

Download link: http://www.openabm.org/model/3846/

1 ex t en s i on s [ g i s ]
2
3 breed [ agents agent ]
4
5 g l o b a l s
6 [
7 e l eva t i on−datase t
8 s t ab l e ?
9 nummap
10 ]
11
12 agents−own
13 [
14 a f o r e s i g h t
15 ]
16
17 patches−own
18 [
19 e l e v a t i o n
20 ]
21
22 ;###########################
23
24 to setup
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25 ; random−seed 1
26 ca
27 s e t nummap 0
28 i f f i r s t fmap = ”2”
29 [
30 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
31 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
32 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
33 s e t nummap read−from−s t r i n g fmap
34 ]
35 i f fmap = ”cone”
36 [
37 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
38 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
39 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
40 ]
41 g i s : apply−r a s t e r e l eva t i on−datase t e l e v a t i o n
42 d i sp lay−e l e v a t i o n
43
44 create−agents N
45 [
46 s e t shape ” square ”
47 s e t s i z e 1
48 setxy max−pxcor − round ( abs ( random−normal 0 10) ) max

−pycor − round ( abs ( random−normal 0 10) )
49 whi l e [ e l e v a t i o n < 0 OR count agents−here > 1 ] [

se txy max−pxcor − round ( abs ( random−normal 0 10) )
max−pycor − round ( abs ( random−normal 0 10) ) ]

50 s e t a f o r e s i g h t f o r e s i g h t
51 co lo r−grad i en t a f o r e s i g h t
52 ]
53 r e s e t−t i c k s
54 end
55
56 to go
57 f i t−h i l l −w−evo
58
59 ; p l o t map
60 i f one−o f [ hidden ? ] o f agents = TRUE [ d i sp lay−

e l e v a t i o n ]
61
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62 t i c k
63 end
64
65 to f i t−h i l l −w−evo
66 l e t numbabies 0
67 ask agents
68 [
69 ; Reproduction
70 l e t maxf i t max [ e l e v a t i o n ] o f agents
71 l e t b i r th−ad jus t ( e l e v a t i o n / maxf it ) ∗ bir th−r a t e
72 i f ( random−f l o a t 1 < bir th−ad jus t ) [
73 hatch 1 [
74 s e t a f o r e s i g h t a f o r e s i g h t + mutation−s i z e −

random−f l o a t ( mutation−s i z e ∗ 2) ; mutation
75 i f a f o r e s i g h t > 1 [ s e t a f o r e s i g h t 1 ]
76 i f a f o r e s i g h t < 0 [ s e t a f o r e s i g h t 0 ]
77 co lo r−grad i en t a f o r e s i g h t
78
79 ; random drop hatching
80 l e t p patch 0 0
81 s e t p one−o f ne ighbors with [ not any? agents−

here = TRUE]
82 i f e l s e (p != nobody ) [
83 move−to p
84 ask one−o f agents [ d i e ]
85 ] [ ; e l s e p=nobody
86 d i e
87 ]
88 ] ; c l o s e hatch
89 ] ; c l o s e b i r t h r a t e
90
91 ; Mobi l i ty
92 i f e l s e ( random−f l o a t 1 < a f o r e s i g h t )
93 [ ; h i l l −cl imb i f f o r e s i g h t c o r r e c t
94 l e t p max−one−o f ne ighbors [ e l e v a t i o n ]
95 i f e l e v a t i o n < [ e l e v a t i o n ] o f p
96 [
97 i f not any? agents−on p [ move−to p ]
98 ]
99 ]
100 [ ; e l s e random movement i f f o r e s i g h t wrong
101 l e t p one−o f ne ighbors ; with [ pco l o r != 99 ]
102 i f not any? agents−on p [ move−to p ]
103 ]
104 ] ; c l o s e ask agents
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105 end
106
107 to d i sp lay−e l e v a t i o n
108 l e t min−e l e v a t i o n g i s :minimum−o f e l eva t i on−datase t
109 l e t max−e l e v a t i o n g i s :maximum−o f e l eva t i on−datase t
110 ask patches
111 [ ;
112 s e t pco l o r 99 ; in case some c e l l s are i n a c c e s s i b l e (

e . g . water )
113 i f ( e l e v a t i o n > 0) [ s e t pco l o r s ca l e−c o l o r b lack

e l e v a t i o n min−e l e v a t i o n max−e l e v a t i o n ]
114 ]
115 ask agents [ s e t hidden ? f a l s e ]
116 end
117
118 to co lo r−grad i en t [ number ]
119 i f e l s e ( number <= 0 . 5 ) [ s e t c o l o r red + ( number ∗

9 .99 ) ] [ s e t c o l o r 114 − ( number ∗ 9 . 99 ) ]
120 end
121 @#$#@#$#@
122 GRAPHICS−WINDOW
123 304
124 10
125 814
126 541
127 −1
128 −1
129 5 .0
130 1
131 10
132 1
133 1
134 1
135 0
136 0
137 0
138 1
139 0
140 99
141 0
142 99
143 1
144 1
145 1
146 t i c k s
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147 1000 .0
148
149 BUTTON
150 15
151 9
152 78
153 42
154 setup
155 setup
156 NIL
157 1
158 T
159 OBSERVER
160 NIL
161 S
162 NIL
163 NIL
164 1
165
166 BUTTON
167 15
168 41
169 78
170 74
171 go
172 i f e l s e t i c k s != 50000 [ go ] [ s top ]\n ; go\n
173 T
174 1
175 T
176 OBSERVER
177 NIL
178 G
179 NIL
180 NIL
181 1
182
183 BUTTON
184 15
185 74
186 78
187 107
188 step
189 go
190 NIL
191 1
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192 T
193 OBSERVER
194 NIL
195 NIL
196 NIL
197 NIL
198 1
199
200 SLIDER
201 82
202 92
203 254
204 125
205 N
206 N
207 0
208 1000
209 500
210 100
211 1
212 NIL
213 HORIZONTAL
214
215 CHOOSER
216 82
217 10
218 221
219 55
220 fmap
221 fmap
222 ”2 .001” ”2 .10” ”2 .20” ”2 .30” ”2 .40” ”2 .50” ”2 .60” ”2 .70”

”2 .80” ”2 .90” ”2 .999” ” cone”
223 5
224
225 SLIDER
226 82
227 125
228 254
229 158
230 f o r e s i g h t
231 f o r e s i g h t
232 0
233 1
234 1
235 .05
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236 1
237 NIL
238 HORIZONTAL
239
240 PLOT
241 12
242 357
243 253
244 477
245 AvgFitness
246 t i c k s
247 AvgFitness
248 0 .0
249 10 .0
250 50 .0
251 55 .0
252 t rue
253 f a l s e
254 ”” ””
255 PENS
256 ” d e f au l t ” 1 . 0 0 −16777216 true ”” ” p l o t mean [ e l e v a t i o n ]

o f agents ”
257 ” b iased ” 1 .0 0 −13345367 true ”” ” ; i f (mode = \”

i n f o s h a r e \” AND count agents with [ s t r a t e gy = \”
b iased \” ] > 0) [ p l o t mean [ e l e v a t i o n ] o f agents with
[ s t r a t e gy = \” b iased \ ” ] ] ”

258 ” unbiased ” 1 .0 0 −2674135 t rue ”” ” ; i f (mode = \”
i n f o s h a r e \” AND count agents with [ s t r a t e gy = \”
unbiased \” ] > 0) [ p l o t mean [ e l e v a t i o n ] o f agents
with [ s t r a t e gy = \” unbiased \ ” ] ] ”

259
260 SLIDER
261 82
262 55
263 220
264 88
265 run#
266 run#
267 1
268 100
269 1
270 1
271 1
272 NIL
273 HORIZONTAL
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274
275 SLIDER
276 82
277 191
278 253
279 224
280 bi r th−r a t e
281 bi r th−r a t e
282 0
283 . 5
284 0 .1
285 . 1
286 1
287 NIL
288 HORIZONTAL
289
290 PLOT
291 12
292 226
293 253
294 357
295 AvgForesight
296 NIL
297 NIL
298 0 .0
299 10 .0
300 0 .0
301 1 .0
302 t rue
303 f a l s e
304 ”” ””
305 PENS
306 ” d e f au l t ” 1 . 0 2 −13345367 true ”” ” ; ask n−o f 10 agents [

p lotxy t i c k s a f o r e s i g h t ] ”
307 ”Dist ” 100 .0 0 −16777216 t rue ”” ” plotxy t i c k s mean [

a f o r e s i g h t ] o f agents ”
308
309 MONITOR
310 252
311 226
312 302
313 271
314 AvgForesight
315 mean [ a f o r e s i g h t ] o f agents
316 2
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317 1
318 11
319
320 SLIDER
321 82
322 158
323 254
324 191
325 mutation−s i z e
326 mutation−s i z e
327 0
328 . 1
329 0 .01
330 0 .001
331 1
332 NIL
333 HORIZONTAL
334
335 BUTTON
336 220
337 55
338 275
339 88
340 rand
341 s e t run# random 100 + 1
342 NIL
343 1
344 T
345 OBSERVER
346 NIL
347 NIL
348 NIL
349 NIL
350 1
351
352 @#$#@#$#@
353 ## WHAT IS IT?
354
355 Agent−based model eva lua t ing the natura l s e l e c t i o n o f

f o r e s i g h t , the accuracy at which agents are ab le to
a s s e s s t h e i r environment , under d i f f e r e n t degree s o f
environmental h e t e r og ene i t y .

356
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357 The model i s des igned to connect a mechanism o f l o c a l
s c a l e mobi l i ty , namely fo rag ing , with the g l oba l
s c a l e phenomenon o f populat ion d i s p e r s a l .

358
359 ## HOW IT WORKS
360
361 Agents are a s s i gned the i n i t i a l ” f o r e s i g h t ” parameter to

t h e i r i n d i v i dua l ” a f o r e s i g h t ” t r a i t . This va lue
c on t r o l s the p r obab i l i t y o f e i t h e r moving randomly to
one o f t h e i r 9− c e l l ne ighbours (” a mistake ”) , or

choos ing the ne ighbour ing c e l l with the h i ghe s t va lue
. This va lue i s mutated s l i g h t l y e i t h e r up or down
with each s u c c e s s f u l reproduct ion , con t ro l ed by the ”
b i r th−r a t e ” parameter . Agents on high valued c e l l s
reprouced more f r e qu en t l y . This a l l ows the populat ion
to f i nd an optimal va lue f o r the f o r e s i g h t parameter

.
362
363 ## HOW TO USE IT
364
365 Maps are not generated by NetLogo . Download my map s e t

from ( i n c l ud e s a bash s c r i p t f o r gene ra t ing your own
with GRASS GIS) : https : // d l . dropboxusercontent . com/u
/1360468/ s u r f a c e s . z ip

366
367 Unzip the su r f eq f o l d e r i n t o the same f o l d e r as t h i s

nlogo f i l e .
368
369 Choose a he t e r og ene i t y va lue from the ”fmap” l i s t

running from 2.001 ( l e a s t heterogeneous ) to 2 .999 (
most heterogenous ) . C l i ck rand to choose 1 o f the 100
randomly generated s u r f a c e s at the s e l e c t e d

he t e r og ene i t y l e v e l . Opt iona l ly a l s o ad jus t the base
b i r th−rate , mutation−s i z e , and i n i t i a l f o r e s i g h t
parameters . Then c l i c k ” setup ” . Assuming everyth ing
works , run with the ”Go” button .

370
371 See the BehaviourSpace d i a l o g f o r the run s e t s used in

the a r t i c l e .
372
373 ## THINGS TO NOTICE
374
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375 The high r e s ou r c e c l u s t e r s get crowded from high
f o r e s i g h t agents which reduces the ra t e o f s u c c e s s f u l
r ep roduc t i on s . As a r e su l t , high l e v e l s o f f o r e s i g h t
are maladaptive due to reduc ing the a v a i l a b l e

r ep roduc t i v e space and the mean f o r e s i g h t o f the
populat ion f a l l s to r e l a t i v e l y low l e v e l s .

376
377 As he t e r og ene i t y i s inc reased , the number o f c l u s t e r s

i n c r e a s e s whi l e the s i z e o f them dec r ea s e s . This
d i s p e r s e s the populat ion ac r o s s the landscape which
reduces the crowding , and favour s h igher f o r e s i g h t .

378
379 Success remains r e l a t i v e l y high f o r a l l runs .
380
381 ## THINGS TO TRY
382
383 Playing with the parameters f o r b i r th−r a t e and mutation−

s i z e a l t e r s the f i n a l va lue s and var i ance o f the runs
but not the o v e r a l l r e s u l t . Higher b i r th−r a t e

reduces the number o f moves an i nd i v i dua l agent has
time f o r be f o r e being r ep l a c ed . Lower mutation−s i z e
reduces the s t o c h a s t i c i t y o f the mean , but r e qu i r e s a
much longe r run time be f o r e the mean f o r e s i g h t va lue
s t a b i l i z e s .

384
385 ## EXTENDING THE MODEL
386
387 Try import ing d i f f e r e n t types o f su r f a c e s , or even a

landscape you ’ re i n t e r e s t e d in c l a s s i f i e d by i t s
presumed hab i ta t qua l i t y .

388
389 Introduce populat ion growth , i n c r e a s e the range o f the

eva luated neighbourhood , or work out a way to share
in fo rmat ion between agents . Does i n c r ea s ed
in fo rmat ion about the environment i n c r e a s e su c c e s s or
f o r e s i g h t ?

390
391 ## CREDITS AND REFERENCES
392
393 This model was des igned f o r a paper submitted to the

Journal o f Human Evolution , submitted f o r pub l i c a t i on
in 2013 .

394 @#$#@#$#@
395 de f au l t
396 t rue
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397 0
398 Polygon −7500403 t rue t rue 150 5 40 250 150 205 260 250
399
400 a i r p l an e
401 t rue
402 0
403 Polygon −7500403 t rue t rue 150 0 135 15 120 60 120 105

15 165 15 195 120 180 135 240 105 270 120 285 150 270
180 285 210 270 165 240 180 180 285 195 285 165 180

105 180 60 165 15
404
405 arrow
406 true
407 0
408 Polygon −7500403 t rue t rue 150 0 0 150 105 150 105 293

195 293 195 150 300 150
409
410 box
411 f a l s e
412 0
413 Polygon −7500403 t rue t rue 150 285 285 225 285 75 150

135
414 Polygon −7500403 t rue t rue 150 135 15 75 150 15 285 75
415 Polygon −7500403 t rue t rue 15 75 15 225 150 285 150 135
416 Line −16777216 f a l s e 150 285 150 135
417 Line −16777216 f a l s e 150 135 15 75
418 Line −16777216 f a l s e 150 135 285 75
419
420 bug
421 t rue
422 0
423 C i r c l e −7500403 t rue t rue 96 182 108
424 C i r c l e −7500403 t rue t rue 110 127 80
425 C i r c l e −7500403 t rue t rue 110 75 80
426 Line −7500403 t rue 150 100 80 30
427 Line −7500403 t rue 150 100 220 30
428
429 bu t t e r f l y
430 t rue
431 0
432 Polygon −7500403 t rue t rue 150 165 209 199 225 225 225

255 195 270 165 255 150 240
433 Polygon −7500403 t rue t rue 150 165 89 198 75 225 75 255

105 270 135 255 150 240
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434 Polygon −7500403 t rue t rue 139 148 100 105 55 90 25 90
10 105 10 135 25 180 40 195 85 194 139 163

435 Polygon −7500403 t rue t rue 162 150 200 105 245 90 275 90
290 105 290 135 275 180 260 195 215 195 162 165

436 Polygon −16777216 t rue f a l s e 150 255 135 225 120 150 135
120 150 105 165 120 180 150 165 225

437 C i r c l e −16777216 true f a l s e 135 90 30
438 Line −16777216 f a l s e 150 105 195 60
439 Line −16777216 f a l s e 150 105 105 60
440
441 car
442 f a l s e
443 0
444 Polygon −7500403 t rue t rue 300 180 279 164 261 144 240

135 226 132 213 106 203 84 185 63 159 50 135 50 75 60
0 150 0 165 0 225 300 225 300 180

445 C i r c l e −16777216 true f a l s e 180 180 90
446 C i r c l e −16777216 true f a l s e 30 180 90
447 Polygon −16777216 t rue f a l s e 162 80 132 78 134 135 209

135 194 105 189 96 180 89
448 C i r c l e −7500403 t rue t rue 47 195 58
449 C i r c l e −7500403 t rue t rue 195 195 58
450
451 c i r c l e
452 f a l s e
453 0
454 C i r c l e −7500403 t rue t rue 0 0 300
455
456 c i r c l e 2
457 f a l s e
458 0
459 C i r c l e −7500403 t rue t rue 0 0 300
460 C i r c l e −16777216 true f a l s e 30 30 240
461
462 cow
463 f a l s e
464 0
465 Polygon −7500403 t rue t rue 200 193 197 249 179 249 177

196 166 187 140 189 93 191 78 179 72 211 49 209 48
181 37 149 25 120 25 89 45 72 103 84 179 75 198 76
252 64 272 81 293 103 285 121 255 121 242 118 224 167

466 Polygon −7500403 t rue t rue 73 210 86 251 62 249 48 208
467 Polygon −7500403 t rue t rue 25 114 16 195 9 204 23 213 25

200 39 123
468
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469 cy l i nd e r
470 f a l s e
471 0
472 C i r c l e −7500403 t rue t rue 0 0 300
473
474 dot
475 f a l s e
476 0
477 C i r c l e −7500403 t rue t rue 90 90 120
478
479 f a c e happy
480 f a l s e
481 0
482 C i r c l e −7500403 t rue t rue 8 8 285
483 C i r c l e −16777216 true f a l s e 60 75 60
484 C i r c l e −16777216 true f a l s e 180 75 60
485 Polygon −16777216 t rue f a l s e 150 255 90 239 62 213 47

191 67 179 90 203 109 218 150 225 192 218 210 203 227
181 251 194 236 217 212 240

486
487 f a c e neu t ra l
488 f a l s e
489 0
490 C i r c l e −7500403 t rue t rue 8 7 285
491 C i r c l e −16777216 true f a l s e 60 75 60
492 C i r c l e −16777216 true f a l s e 180 75 60
493 Rectangle −16777216 true f a l s e 60 195 240 225
494
495 f a c e sad
496 f a l s e
497 0
498 C i r c l e −7500403 t rue t rue 8 8 285
499 C i r c l e −16777216 true f a l s e 60 75 60
500 C i r c l e −16777216 true f a l s e 180 75 60
501 Polygon −16777216 t rue f a l s e 150 168 90 184 62 210 47

232 67 244 90 220 109 205 150 198 192 205 210 220 227
242 251 229 236 206 212 183

502
503 f i s h
504 f a l s e
505 0
506 Polygon −1 t rue f a l s e 44 131 21 87 15 86 0 120 15 150 0

180 13 214 20 212 45 166
507 Polygon −1 t rue f a l s e 135 195 119 235 95 218 76 210 46

204 60 165
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508 Polygon −1 t rue f a l s e 75 45 83 77 71 103 86 114 166 78
135 60

509 Polygon −7500403 t rue t rue 30 136 151 77 226 81 280 119
292 146 292 160 287 170 270 195 195 210 151 212 30
166

510 C i r c l e −16777216 true f a l s e 215 106 30
511
512 f l a g
513 f a l s e
514 0
515 Rectangle −7500403 t rue t rue 60 15 75 300
516 Polygon −7500403 t rue t rue 90 150 270 90 90 30
517 Line −7500403 t rue 75 135 90 135
518 Line −7500403 t rue 75 45 90 45
519
520 f l owe r
521 f a l s e
522 0
523 Polygon −10899396 t rue f a l s e 135 120 165 165 180 210 180

240 150 300 165 300 195 240 195 195 165 135
524 C i r c l e −7500403 t rue t rue 85 132 38
525 C i r c l e −7500403 t rue t rue 130 147 38
526 C i r c l e −7500403 t rue t rue 192 85 38
527 C i r c l e −7500403 t rue t rue 85 40 38
528 C i r c l e −7500403 t rue t rue 177 40 38
529 C i r c l e −7500403 t rue t rue 177 132 38
530 C i r c l e −7500403 t rue t rue 70 85 38
531 C i r c l e −7500403 t rue t rue 130 25 38
532 C i r c l e −7500403 t rue t rue 96 51 108
533 C i r c l e −16777216 true f a l s e 113 68 74
534 Polygon −10899396 t rue f a l s e 189 233 219 188 249 173 279

188 234 218
535 Polygon −10899396 t rue f a l s e 180 255 150 210 105 210 75

240 135 240
536
537 house
538 f a l s e
539 0
540 Rectangle −7500403 t rue t rue 45 120 255 285
541 Rectangle −16777216 true f a l s e 120 210 180 285
542 Polygon −7500403 t rue t rue 15 120 150 15 285 120
543 Line −16777216 f a l s e 30 120 270 120
544
545 l e a f
546 f a l s e
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547 0
548 Polygon −7500403 t rue t rue 150 210 135 195 120 210 60

210 30 195 60 180 60 165 15 135 30 120 15 105 40 104
45 90 60 90 90 105 105 120 120 120 105 60 120 60 135
30 150 15 165 30 180 60 195 60 180 120 195 120 210
105 240 90 255 90 263 104 285 105 270 120 285 135 240
165 240 180 270 195 240 210 180 210 165 195

549 Polygon −7500403 t rue t rue 135 195 135 240 120 255 105
255 105 285 135 285 165 240 165 195

550
551 l i n e
552 t rue
553 0
554 Line −7500403 t rue 150 0 150 300
555
556 l i n e h a l f
557 t rue
558 0
559 Line −7500403 t rue 150 0 150 150
560
561 pentagon
562 f a l s e
563 0
564 Polygon −7500403 t rue t rue 150 15 15 120 60 285 240 285

285 120
565
566 person
567 f a l s e
568 0
569 C i r c l e −7500403 t rue t rue 110 5 80
570 Polygon −7500403 t rue t rue 105 90 120 195 90 285 105 300

135 300 150 225 165 300 195 300 210 285 180 195 195
90

571 Rectangle −7500403 t rue t rue 127 79 172 94
572 Polygon −7500403 t rue t rue 195 90 240 150 225 180 165

105
573 Polygon −7500403 t rue t rue 105 90 60 150 75 180 135 105
574
575 p lant
576 f a l s e
577 0
578 Rectangle −7500403 t rue t rue 135 90 165 300
579 Polygon −7500403 t rue t rue 135 255 90 210 45 195 75 255

135 285

123



580 Polygon −7500403 t rue t rue 165 255 210 210 255 195 225
255 165 285

581 Polygon −7500403 t rue t rue 135 180 90 135 45 120 75 180
135 210

582 Polygon −7500403 t rue t rue 165 180 165 210 225 180 255
120 210 135

583 Polygon −7500403 t rue t rue 135 105 90 60 45 45 75 105
135 135

584 Polygon −7500403 t rue t rue 165 105 165 135 225 105 255
45 210 60

585 Polygon −7500403 t rue t rue 135 90 120 45 150 15 180 45
165 90

586
587 sheep
588 f a l s e
589 0
590 Rectangle −7500403 t rue t rue 151 225 180 285
591 Rectangle −7500403 t rue t rue 47 225 75 285
592 Rectangle −7500403 t rue t rue 15 75 210 225
593 C i r c l e −7500403 t rue t rue 135 75 150
594 C i r c l e −16777216 true f a l s e 165 76 116
595
596 square
597 f a l s e
598 0
599 Rectangle −7500403 t rue t rue 30 30 270 270
600
601 square 2
602 f a l s e
603 0
604 Rectangle −7500403 t rue t rue 30 30 270 270
605 Rectangle −16777216 true f a l s e 60 60 240 240
606
607 s t a r
608 f a l s e
609 0
610 Polygon −7500403 t rue t rue 151 1 185 108 298 108 207 175

242 282 151 216 59 282 94 175 3 108 116 108
611
612 t a r g e t
613 f a l s e
614 0
615 C i r c l e −7500403 t rue t rue 0 0 300
616 C i r c l e −16777216 true f a l s e 30 30 240
617 C i r c l e −7500403 t rue t rue 60 60 180
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618 C i r c l e −16777216 true f a l s e 90 90 120
619 C i r c l e −7500403 t rue t rue 120 120 60
620
621 t r e e
622 f a l s e
623 0
624 C i r c l e −7500403 t rue t rue 118 3 94
625 Rectangle −6459832 t rue f a l s e 120 195 180 300
626 C i r c l e −7500403 t rue t rue 65 21 108
627 C i r c l e −7500403 t rue t rue 116 41 127
628 C i r c l e −7500403 t rue t rue 45 90 120
629 C i r c l e −7500403 t rue t rue 104 74 152
630
631 t r i a n g l e
632 f a l s e
633 0
634 Polygon −7500403 t rue t rue 150 30 15 255 285 255
635
636 t r i a n g l e 2
637 f a l s e
638 0
639 Polygon −7500403 t rue t rue 150 30 15 255 285 255
640 Polygon −16777216 true f a l s e 151 99 225 223 75 224
641
642 truck
643 f a l s e
644 0
645 Rectangle −7500403 t rue t rue 4 45 195 187
646 Polygon −7500403 t rue t rue 296 193 296 150 259 134 244

104 208 104 207 194
647 Rectangle −1 t rue f a l s e 195 60 195 105
648 Polygon −16777216 true f a l s e 238 112 252 141 219 141 218

112
649 C i r c l e −16777216 true f a l s e 234 174 42
650 Rectangle −7500403 t rue t rue 181 185 214 194
651 C i r c l e −16777216 true f a l s e 144 174 42
652 C i r c l e −16777216 true f a l s e 24 174 42
653 C i r c l e −7500403 f a l s e t rue 24 174 42
654 C i r c l e −7500403 f a l s e t rue 144 174 42
655 C i r c l e −7500403 f a l s e t rue 234 174 42
656
657 t u r t l e
658 t rue
659 0
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660 Polygon −10899396 t rue f a l s e 215 204 240 233 246 254 228
266 215 252 193 210

661 Polygon −10899396 t rue f a l s e 195 90 225 75 245 75 260 89
269 108 261 124 240 105 225 105 210 105

662 Polygon −10899396 t rue f a l s e 105 90 75 75 55 75 40 89 31
108 39 124 60 105 75 105 90 105

663 Polygon −10899396 t rue f a l s e 132 85 134 64 107 51 108 17
150 2 192 18 192 52 169 65 172 87

664 Polygon −10899396 t rue f a l s e 85 204 60 233 54 254 72 266
85 252 107 210

665 Polygon −7500403 t rue t rue 119 75 179 75 209 101 224 135
220 225 175 261 128 261 81 224 74 135 88 99

666
667 wheel
668 f a l s e
669 0
670 C i r c l e −7500403 t rue t rue 3 3 294
671 C i r c l e −16777216 true f a l s e 30 30 240
672 Line −7500403 t rue 150 285 150 15
673 Line −7500403 t rue 15 150 285 150
674 C i r c l e −7500403 t rue t rue 120 120 60
675 Line −7500403 t rue 216 40 79 269
676 Line −7500403 t rue 40 84 269 221
677 Line −7500403 t rue 40 216 269 79
678 Line −7500403 t rue 84 40 221 269
679
680 x
681 f a l s e
682 0
683 Polygon −7500403 t rue t rue 270 75 225 30 30 225 75 270
684 Polygon −7500403 t rue t rue 30 75 75 30 270 225 225 270
685
686 @#$#@#$#@
687 NetLogo 5 .0
688 @#$#@#$#@
689 @#$#@#$#@
690 @#$#@#$#@
691 <experiments>
692 <experiment name=”Evo” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
693 <setup>setup</setup>
694 <go>go</go>
695 <t imeLimit s t ep s=”50000”/>
696 <metric>nummap</metric>
697 <metric>mean [ e l e v a t i o n ] o f agents</metric>
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698 <metric>mean [ a f o r e s i g h t ] o f agents</metric>
699 <enumeratedValueSet v a r i a b l e=”N”>
700 <value va lue=”500”/>
701 </enumeratedValueSet>
702 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
703 <value va lue=”1”/>
704 </enumeratedValueSet>
705 <enumeratedValueSet v a r i a b l e=”fmap”>
706 <value va lue=”&quot ;2 .001& quot ;”/>
707 <value va lue=”&quot ;2 .10& quot ;”/>
708 <value va lue=”&quot ;2 .20& quot ;”/>
709 <value va lue=”&quot ;2 .30& quot ;”/>
710 <value va lue=”&quot ;2 .40& quot ;”/>
711 <value va lue=”&quot ;2 .50& quot ;”/>
712 <value va lue=”&quot ;2 .60& quot ;”/>
713 <value va lue=”&quot ;2 .70& quot ;”/>
714 <value va lue=”&quot ;2 .80& quot ;”/>
715 <value va lue=”&quot ;2 .90& quot ;”/>
716 <value va lue=”&quot ;2 .999& quot ;”/>
717 </enumeratedValueSet>
718 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
719 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
720 <value va lue=”0.01”/>
721 </enumeratedValueSet>
722 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
723 <value va lue=”0.1”/>
724 </enumeratedValueSet>
725 </experiment>
726 <experiment name=”Evo − c on t r o l ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
727 <setup>setup</setup>
728 <go>go</go>
729 <t imeLimit s t ep s=”50000”/>
730 <metric>nummap</metric>
731 <metric>mean [ e l e v a t i o n ] o f agents</metric>
732 <metric>mean [ a f o r e s i g h t ] o f agents</metric>
733 <enumeratedValueSet v a r i a b l e=”N”>
734 <value va lue=”500”/>
735 </enumeratedValueSet>
736 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
737 <value va lue=”1”/>
738 </enumeratedValueSet>
739 <enumeratedValueSet v a r i a b l e=”fmap”>
740 <value va lue=”&quot ;2 .001& quot ;”/>
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741 <value va lue=”&quot ;2 .10& quot ;”/>
742 <value va lue=”&quot ;2 .20& quot ;”/>
743 <value va lue=”&quot ;2 .30& quot ;”/>
744 <value va lue=”&quot ;2 .40& quot ;”/>
745 <value va lue=”&quot ;2 .50& quot ;”/>
746 <value va lue=”&quot ;2 .60& quot ;”/>
747 <value va lue=”&quot ;2 .70& quot ;”/>
748 <value va lue=”&quot ;2 .80& quot ;”/>
749 <value va lue=”&quot ;2 .90& quot ;”/>
750 <value va lue=”&quot ;2 .999& quot ;”/>
751 </enumeratedValueSet>
752 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
753 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
754 <value va lue=”0.01”/>
755 </enumeratedValueSet>
756 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
757 <value va lue=”0.1”/>
758 </enumeratedValueSet>
759 </experiment>
760 <experiment name=”Evo − f s p l o t ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
761 <setup>setup</setup>
762 <go>go</go>
763 < f i n a l>export−p lo t ”AvgForesight ” (word ”evo/ f s p l o t /

f ” nummap ” ” run# ” . csv ”)</ f i n a l>
764 <t imeLimit s t ep s=”50000”/>
765 <metric>nummap</metric>
766 <metric>mean [ e l e v a t i o n ] o f agents</metric>
767 <metric>mean [ a f o r e s i g h t ] o f agents</metric>
768 <enumeratedValueSet v a r i a b l e=”N”>
769 <value va lue=”500”/>
770 </enumeratedValueSet>
771 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
772 <value va lue=”1”/>
773 </enumeratedValueSet>
774 <enumeratedValueSet v a r i a b l e=”fmap”>
775 <value va lue=”&quot ;2 .001& quot ;”/>
776 <value va lue=”&quot ;2 .10& quot ;”/>
777 <value va lue=”&quot ;2 .20& quot ;”/>
778 <value va lue=”&quot ;2 .30& quot ;”/>
779 <value va lue=”&quot ;2 .40& quot ;”/>
780 <value va lue=”&quot ;2 .50& quot ;”/>
781 <value va lue=”&quot ;2 .60& quot ;”/>
782 <value va lue=”&quot ;2 .70& quot ;”/>
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783 <value va lue=”&quot ;2 .80& quot ;”/>
784 <value va lue=”&quot ;2 .90& quot ;”/>
785 <value va lue=”&quot ;2 .999& quot ;”/>
786 </enumeratedValueSet>
787 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”10”

l a s t =”100”/>
788 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
789 <value va lue=”0.01”/>
790 </enumeratedValueSet>
791 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
792 <value va lue=”0.1”/>
793 </enumeratedValueSet>
794 </experiment>
795 <experiment name=”Evo − f s p l o t − cone” r e p e t i t i o n s

=”10” runMetr icsEveryStep=” f a l s e ”>
796 <setup>setup</setup>
797 <go>go</go>
798 < f i n a l>export−p lo t ”AvgForesight ” (word ”evo/ f s p l o t /

cone ” behaviorspace−run−number ” . csv ”)</ f i n a l>
799 <t imeLimit s t ep s=”50000”/>
800 <metric>mean [ e l e v a t i o n ] o f agents</metric>
801 <metric>mean [ a f o r e s i g h t ] o f agents</metric>
802 <enumeratedValueSet v a r i a b l e=”N”>
803 <value va lue=”500”/>
804 </enumeratedValueSet>
805 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
806 <value va lue=”1”/>
807 </enumeratedValueSet>
808 <enumeratedValueSet v a r i a b l e=”fmap”>
809 <value va lue=”&quot ; cone&quot ;”/>
810 </enumeratedValueSet>
811 <enumeratedValueSet v a r i a b l e=”run#”>
812 <value va lue=”1”/>
813 </enumeratedValueSet>
814 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
815 <value va lue=”0.01”/>
816 </enumeratedValueSet>
817 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
818 <value va lue=”0.1”/>
819 </enumeratedValueSet>
820 </experiment>
821 </experiments>
822 @#$#@#$#@
823 @#$#@#$#@
824 de f au l t
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825 0 .0
826 −0.2 0 1 .0 0 . 0
827 0 .0 1 1 .0 0 . 0
828 0 .2 0 1 .0 0 . 0
829 l i n k d i r e c t i o n
830 t rue
831 0
832 Line −7500403 t rue 150 150 90 180
833 Line −7500403 t rue 150 150 210 180
834
835 @#$#@#$#@
836 0
837 @#$#@#$#@

A.2 Code for chapter 3

Download link: http://www.openabm.org/model/4176/

1 ex t en s i on s [ g i s ]
2
3 breed [ agents agent ]
4
5 g l o b a l s
6 [
7 e l eva t i on−datase t
8 max−e l e v
9 nummap
10 ]
11
12 agents−own
13 [
14 t r a i t
15 pop
16 a f o r e s i g h t
17 acopyrate
18 f s d i s t
19 ]
20
21 patches−own
22 [
23 e l e v a t i o n
24 cu r r en t e l e v
25 timestamp
26 o c c f r e q
27 cum−e f f i t
28 ]
29
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30 ; SETUP CODE ################################
31
32 to setup
33 ; random−seed 1
34 ca
35 s e t nummap 0
36 i f f i r s t fmap = ”2”
37 [
38 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
39 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
40 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
41 s e t nummap read−from−s t r i n g fmap
42 ]
43 i f fmap = ”cone”
44 [
45 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
46 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
47 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
48 ]
49 g i s : apply−r a s t e r e l eva t i on−datase t e l e v a t i o n
50 d i sp lay−e l e v a t i o n
51 s e t max−e l e v g i s :maximum−o f e l eva t i on−datase t
52
53 create−agents N
54 [
55 i f e l s e c o l o n i z e ? = TRUE [ ; begin with agents

d i s t r i b u t e d around one corner
56 setxy max−pxcor − round ( abs ( random−normal 0 10) )

max−pycor − round ( abs ( random−normal 0 10) )
57 whi l e [ e l e v a t i o n < 0 OR count agents−here > 1 ] [
58 setxy max−pxcor − round ( abs ( random−normal 0 10) )

max−pycor − round ( abs ( random−normal 0 10) )
59 ]
60 ]
61 [ ; e l s e random placement
62 setxy round random−xcor round random−ycor
63 whi l e [ e l e v a t i o n <= 0 OR count agents−here > 1 ] [

se txy round random−xcor round random−ycor ]
64 ]
65
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66 i f e l s e randTrait ? = f a l s e ; s e t a l l t r a i t va lue s to
same value , as s p e c i f i e d by i n t e r f a c e s l i d e r

67 [
68 i f mode = ” i n f o ” [ s e t acopyrate copyrate co lo r−

grad i en t acopyrate ]
69 i f mode = ” rad iu s ” [ s e t f s d i s t 1 co lo r−grad i en t (

f s d i s t / 2 ) ]
70 ]
71 [ ; e l s e randTrait ? = true , a s s i gn random t r a i t va lue
72 i f mode = ” i n f o ” [ s e t acopyrate random−f l o a t 1

co lo r−grad i en t acopyrate ]
73 i f mode = ” rad iu s ” [
74 s e t f s d i s t 1 + plus−or−minus mutation−s i z e
75 i f f s d i s t < 0 [ s e t f s d i s t 0 ]
76 co lo r−grad i en t ( f s d i s t / 2 )
77 ]
78 ] ; c l o s e randTrait ?
79
80 s e t a f o r e s i g h t f o r e s i g h t ; I r e t a i n the o r i g i n a l

term f o r r e s ou r c e assessment accuracy , f o r e s i g h t ,
with in the model code

81 ] ; c l o s e agents
82
83 ; ; ; f o r quant i f y i ng r ep roduc t i v e p o t e n t i a l ( cumulat ive

r ep roduc t i v e f i t n e s s ) more comments in go code
84 ; ask patches [ s e t timestamp 0 s e t o c c f r e q 0 s e t

cu r r en t e l e v e l e v a t i on ]
85 ask patches [ s e t cum−e f f i t 0 ]
86 r e s e t−t i c k s
87 end
88
89 ; GO CODE ###################################
90
91 to go
92 i f (mode = ” i n f o ”) ; s e t run type to in fo rmat ion

shar ing
93 [
94 go−i n f o
95 ]
96 i f (mode = ” rad iu s ”) ; s e t run type to assessment

rad iu s
97 [
98 go−r ad iu s
99 ]
100
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101 i f not any? agents [ stop ]
102
103 t i c k
104 end
105
106 to go−r ad iu s
107 l e t maxf i t max [ e l e v a t i o n ] o f agents + 1 ; add i t i on

p r o t e c t s aga in s t crash by div zero
108 l e t maxdist max [ f s d i s t ] o f agents + 0.001
109 ask agents
110 [
111 l e t b i r th−ad jus t ( e l e v a t i o n / maxf it ) ∗ bir th−r a t e

; d i f f e r e n t i a l reproduct ion , d e c r ea s e s
p r obab i l i t y o f r eproduct ion f o r agents with low
r e s ou r c e s

112 i f ( random−f l o a t 1 < bir th−ad jus t ) [
113 hatch 1 [
114 i f ( random−f l o a t 1 < mutation−r a t e ) [ ; at the

s p e c i f i e d rate , change parent ’ s t r a i t va lue
by mutation−s i z e , o the rw i se i n h e r e i t

parent ’ s va lue
115 s e t f s d i s t f s d i s t + plus−or−minus mutation−

s i z e
116 i f f s d i s t < 0 [ s e t f s d i s t 0 ]
117 co lo r−grad i en t ( f s d i s t / maxdist )
118 ] ; c l o s e mutation−r a t e
119
120 ; ; ; ; ; ; ; ; drop o f f s p r i n g on any empy

ne ighbour ing c e l l , or d i e i f a l l are f u l l
121 l e t p one−o f ne ighbors with [ not any? agents

−here = TRUE]
122 i f e l s e (p != nobody ) [
123 move−to p
124 i f death−r a t e = 0 [ ask one−o f agents [ d i e

] ] ; i f popu lat ion s i z e i s f i x e d
125 ] [ ; e l s e p=nobody
126 d i e
127 ]
128
129 ] ; c l o s e hatch
130 ] ; c l o s e b i r th−ad jus t
131
132 ; ; ; ; ; ; ; ; ; mob i l i ty
133 i f e l s e ( random−f l o a t 1 < a f o r e s i g h t )
134 [ ; h i l l −cl imb i f f o r e s i g h t c o r r e c t
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135 l e t p max−one−o f patches in−r ad iu s f s d i s t [
e l e v a t i o n ] ; choose bes t c e l l with in assessment
rad iu s

136 i f (p != patch−here )
137 [
138 f a c e p
139 i f not any? agents−on patch−ahead 1 [ move−to

patch−ahead 1 ] ; move towards i t i f the r e i s
an empty c e l l

140 ]
141
142 ]
143 [ ; e l s e random movement i f f o r e s i g h t wrong (

inac cu ra t e assessment )
144 l e t p one−o f ne ighbors
145 i f not any? agents−on p [ move−to p ]
146 ]
147
148 i f death−r a t e > 0 [ ; f o r v a r i a b l e populat ion s i z e ,

k i l l o f random agents at s p e c i f i e d p r obab i l i t y
149 i f ( random−f l o a t 1 < death−r a t e ) [ d i e ]
150 ] ; c l o s e death
151 ] ; c l o s e ask agents
152
153 ; ; ; ; Commented out code below used f o r quant i f y i ng the

cumulat ive e f f e c t i v e f i t n e s s ( r ep roduc t i v e
a v a i l a b i l i t y ) o f c e l l s dur ing a run .

154 ; ; ; ; Too compuatat iona l ly expens ive to l eave running
a l l the time

155 ; l e t e f f i t 0
156 ; ask patches
157 ; [
158 ; i f timestamp = 0 AND any? agents−here = TRUE [ s e t

timestamp t i c k s ]
159 ; i f timestamp > 0 AND any? agents−here = TRUE [ s e t

o c c f r e q o c c f r e q + count agents−here ]
160 ; l e t b a s e f i t ( e l e v a t i o n / maxf it ∗ bir th−r a t e )
161 ; i f e l s e ( count agents−on ne ighbors < 8) [ s e t e f f i t

b a s e f i t ] [ s e t e f f i t 0 ]
162 ; s e t cum−e f f i t cum−e f f i t + e f f i t
163 ; ]
164
165 i f t i c k s mod 100 = 0 AND count agents > 2 [ ; p l o t t i n g
166 l e t f sd i s t med median [ f s d i s t ] o f agents
167 set−current−p lo t ”Tra i t ”
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168 set−current−plot−pen ”Median”
169 plotxy t i c k s f sd i s t med
170 ]
171 end
172
173 to go−i n f o ; go code f o r in fo rmat ion shar ing model ,

comments from above g en e r a l l y apply
174 l e t maxf i t max [ e l e v a t i o n ] o f agents + 1 ; add i t i on

p r o t e c t s aga in s t crash by div zero
175 ask agents
176 [
177 l e t b i r th−ad jus t ( e l e v a t i o n / maxf it ) ∗ bir th−r a t e
178 i f ( random−f l o a t 1 < bir th−ad jus t ) [
179 hatch 1 [
180 i f ( random−f l o a t 1 < mutation−r a t e ) [
181 s e t acopyrate acopyrate + plus−or−minus

mutation−s i z e ; mutation
182 i f acopyrate > 1 [ s e t acopyrate 1 ]
183 i f acopyrate < 0 [ s e t acopyrate 0 ]
184 co lo r−grad i en t acopyrate
185 ] ; c l o s e mutation−r a t e
186
187 ; random drop hatching
188 l e t p one−o f ne ighbors with [ not any? agents−

here = TRUE]
189 i f e l s e (p != nobody ) [
190 move−to p
191 i f death−r a t e = 0 [ ask one−o f agents [ d i e ] ]
192 ] [ ; e l s e p=nobody
193 d i e
194 ]
195 ] ; c l o s e hatch
196 ] ; c l o s e b i r t had j u s t
197
198 ;Movement
199 i f e l s e random−f l o a t 1 < acopyrate [ ; i n h e r i t e d

p r obab i l i t y o f copying another agent vs
exp l o r a t i on

200 l e t a one−o f other agents ; randomly pick a t a r g e t
agent from populat ion

201 i f ( a != nobody AND [ e l e v a t i o n ] o f a > e l e v a t i o n )
[ ; i f ta rget ’ s r e s ou r c e va lue i s h igher than
the agent ’ s , then try to move

202 f a c e a
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203 i f not any? agents−on patch−ahead 1 [move−to
patch−ahead 1 ] ; s t ep towards i f the r e i s an
empty c e l l

204 ]
205 ]
206 [ ; e l s e : move randomly i f chose not to copy / copy

e r r o r
207 l e t p one−o f ne ighbors
208 i f not any? agents−on p [move−to p ]
209 ] ; c l o s e acopyrate
210
211 i f death−r a t e > 0 [
212 i f ( random−f l o a t 1 < death−r a t e )
213 [
214 d i e
215 ]
216 ] ; c l o s e death
217 ] ; c l o s e ask agents
218 i f not any? agents [ stop ]
219
220 ; l e t e f f i t 0
221 ; ask patches
222 ; [
223 ; i f timestamp = 0 [ i f any? agents−here = TRUE [ s e t

timestamp t i c k s ] ]
224 ; i f timestamp > 0 AND any? agents−here = TRUE [ s e t

o c c f r e q o c c f r e q + count agents−here ]
225 ; l e t b a s e f i t ( e l e v a t i o n / maxf it ∗ bir th−r a t e )
226 ; i f e l s e ( count agents−on ne ighbors < 8) [ s e t e f f i t

b a s e f i t ] [ s e t e f f i t 0 ]
227 ; s e t cum−e f f i t cum−e f f i t + e f f i t
228 ; ]
229
230
231 i f t i c k s mod 100 = 0 [
232 ; i f p lo t s−on? = TRUE [
233 l e t cp med median [ acopyrate ] o f agents
234 set−current−p lo t ”Tra i t ”
235 set−current−plot−pen ”Median”
236 plotxy t i c k s cp med
237 ]
238 end
239
240
241 ;DISPLAY MODULES ##################################
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242
243 to d i sp lay−t i c k s ; mapping the pattern o f i n i t i a l

occupation , not used in a r t i c l e
244 ask agents [ s e t hidden ? t rue ]
245 ask patches
246 [
247 i f ( timestamp > 0)
248 [
249 s e t pco l o r s ca l e−c o l o r red timestamp 0 t i c k s
250 ]
251 ]
252 end
253
254 to d i sp lay−o c c f r e q ; mapping the cumulat ive occupat ion

h i s t o r y o f each c e l l , not used in a r t i c l e
255 l e t max−o c c f r e q max [ o c c f r e q ] o f patches
256 ask agents [ s e t hidden ? t rue ]
257 ask patches
258 [
259 i f ( o c c f r e q > 0)
260 [
261 s e t pco l o r s ca l e−c o l o r red o c c f r e q 0 max−o c c f r e q
262 ]
263 ]
264 end
265
266 to d i sp lay−e l e v a t i o n ; d i sp l ay landscape code borrowed

from GIS code example , e l e v a t i o n r ep r e s en t s the
r e s ou r c e va lue

267 l e t min−e l e v a t i o n g i s :minimum−o f e l eva t i on−datase t
268 l e t max−e l e v a t i o n g i s :maximum−o f e l eva t i on−datase t
269
270 ask patches
271 [ ;
272 s e t pco l o r 99
273 i f ( e l e v a t i o n > 0) [ s e t pco l o r s ca l e−c o l o r b lack

e l e v a t i o n min−e l e v a t i o n max−e l e v a t i o n ]
274 ]
275 ask agents [ s e t hidden ? f a l s e ]
276 end
277
278
279 to d i sp lay−e f f i t
280 ; i n i t s e t cum−e f f i t 0 in setup
281 ; add cum−e f f i t to patches−own
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282 ; add to maptype chooser
283 ; add d i sp l ay to go
284 ; l e t e f f i t 0
285 ; l e t maxf it max [ e l e v a t i o n ] o f agents + 1
286 l e t max−cum−e f f i t max [ cum−e f f i t ] o f patches
287 ask agents [ s e t hidden ? t rue ]
288 ask patches
289 [
290 ; l e t b a s e f i t ( e l e v a t i o n / maxf it )
291 ; i f e l s e ( count agents−on ne ighbors < 8) [ s e t e f f i t

b a s e f i t ] [ s e t e f f i t 0 ]
292 ; s e t cum−e f f i t cum−e f f i t + e f f i t
293 s e t pco l o r s ca l e−c o l o r green cum−e f f i t 0 max−cum−

e f f i t
294 ]
295 end
296
297 ;HELPER MODULES ####################################
298
299 to export−map [ f o l d e r ] ; t h i s s e c t i o n i s a b i t s loppy .

Exports a r a s t e r o f the cumulat ive occupat ion h i s to ry
, a proxy f o r the a r c h a e o l o g i c a l r ecord . Not used in
a r t i c l e .

300 ;∗∗ Create r a s t e r datase t
301 l e t o c c r a s t e r g i s : c reate−r a s t e r world−width world−

he ight g i s : world−enve lope
302 ;∗∗ Trans fe r agent ’ s t r a i t va lue o f each net l ogo patch

to the o c c r a s t e r l a y e r
303 s e t o c c r a s t e r g i s : patch−datase t o c c f r e q
304
305 ;∗∗ At l a s t s t o r e the data in f i l e
306 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /” nummap

” ” run# ” f ” round ( f o r e s i g h t ∗ 100) ” . asc ”)
307 ; i f e l s e (mode = ” i n f o s h a r e ”)
308 ; [
309 ; g i s : s to re−datase t o c c r a s t e r (word f o l d e r remove ” f ”

fmap ” ” run# ” c r ” round ( copyrate ∗ 100) ” f ”
round ( f o r e s i g h t ∗ 100) ” . asc ”)

310 ; g i s : s to re−datase t o c c r a s t e r (word ” i n f o s h a r e /
o c c r a s t e r /uh/” remove ” f ” fmap ” ” run# ” c r ” round (
copyrate ∗ 100) ” . asc ”)

311 ; g i s : s to re−datase t o c c r a s t e r (word ” i n f o s h a r e /
o c c r a s t e r /br /” remove ” f ” fmap ” ” run# ” c r ” round (
copyrate ∗ 100) ” . asc ”)

312 ; ]
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313 ; [ ; e l s e
314 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /”

remove ” f ” fmap ” ” run# ” f ” round ( f o r e s i g h t ∗
100) ” . asc ”)

315 ; g i s : s to re−datase t o c c r a s t e r (word f o l d e r ”/” fmap ”
” run# ”m ” mutation−s i z e ” . asc ”)

316 g i s : s to re−datase t o c c r a s t e r (word f o l d e r ”/” fmap ”
” run# ” br ” b i r th−r a t e ” . asc ”)

317 ; ]
318 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /” fmap ”

f ” round ( f o r e s i g h t ∗ 100) ” . asc ”)
319 ; ( word ” o c c r a s t e r /” fmap ”/” c o l o n i z e ? ”/” ” f ” round (

f o r e s i g h t ∗ 100) ” . png ”)
320 end
321
322 to s c r e en sho t s ; export s e r i e s o f images dur ing a run
323 i f t i c k s mod 10 = 0
324 [
325 export−view (word ” s c r e en sho t s /” fmap ”/ t i c k s /img”

round ( t i c k s / 10) ” . png ”)
326 ]
327 end
328
329 to co lo r−grad i en t [ number ] ; agent co lour−scheme , c r e a t e s

a bi−po la r co l ou r g rad i en t from dark red through
white through dark blue

330 ; i f e l s e ( number < 0 . 5 ) [ s e t c o l o r [255 ( number ∗ 255)
( number ∗ 255) ] ] [ s e t c o l o r [ ( number ∗ 255) (

number ∗ 255) 2 5 5 ] ]
331 i f e l s e ( number <= 0 . 5 ) [ s e t c o l o r red + ( number ∗

9 .99 ) ] [ s e t c o l o r 114 − ( number ∗ 9 . 99 ) ]
332 end
333
334 to−r epo r t plus−or−minus [ va lue ] ; used in t r a i t

mutation to randomly i n c r e a s e or dec r ea s e the
mutation−s i z e

335 ; randomly r epo r t s e i t h e r +value or −value
336 r epo r t va lue ∗ ( ( ( random 2) ∗ 2) − 1)
337 ; exp lanat ion o f ” ( ( ( random 2) ∗ 2) − 1) ”
338 ; Operation : Y ie ld s :
339 ; random 2 −> 0 or 1
340 ; ∗ 2 −> 0 ∗ 2 = 0 or 1 ∗ 2 = 2
341 ; − 1 −> 0 − 1 = −1 or 2 − 1 = 1
342 ; thus , r e tu rn s −1 or +1
343 end
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344 @#$#@#$#@
345 GRAPHICS−WINDOW
346 304
347 10
348 814
349 541
350 −1
351 −1
352 5 .0
353 1
354 10
355 1
356 1
357 1
358 0
359 0
360 0
361 1
362 0
363 99
364 0
365 99
366 1
367 1
368 1
369 t i c k s
370 1000 .0
371
372 BUTTON
373 15
374 9
375 78
376 42
377 setup
378 setup
379 NIL
380 1
381 T
382 OBSERVER
383 NIL
384 S
385 NIL
386 NIL
387 1
388
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389 BUTTON
390 15
391 41
392 78
393 74
394 go
395 ; i f e l s e t i c k s != 50000 [ go ] [ s top ]\ n i f e l s e t i c k s !=

100000 [ go ] [ s top ]\n ; go\n
396 T
397 1
398 T
399 OBSERVER
400 NIL
401 G
402 NIL
403 NIL
404 1
405
406 BUTTON
407 15
408 74
409 78
410 107
411 step
412 go
413 NIL
414 1
415 T
416 OBSERVER
417 NIL
418 NIL
419 NIL
420 NIL
421 1
422
423 SLIDER
424 118
425 180
426 290
427 213
428 N
429 N
430 0
431 2000
432 500
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433 100
434 1
435 NIL
436 HORIZONTAL
437
438 CHOOSER
439 118
440 12
441 281
442 57
443 mode
444 mode
445 ” i n f o ” ” rad iu s ”
446 0
447
448 CHOOSER
449 118
450 57
451 256
452 102
453 fmap
454 fmap
455 ”2 .001” ”2 .05” ”2 .10” ”2 .15” ”2 .20” ”2 .25” ”2 .30” ”2 .35”

”2 .40” ”2 .45” ”2 .50” ”2 .55” ”2 .60” ”2 .65” ”2 .70”
”2 .75” ”2 .80” ”2 .85” ”2 .90” ”2 .95” ”2 .99” ” cone”

456 0
457
458 SLIDER
459 118
460 213
461 290
462 246
463 f o r e s i g h t
464 f o r e s i g h t
465 0
466 1
467 1
468 .05
469 1
470 NIL
471 HORIZONTAL
472
473 CHOOSER
474 118
475 135
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476 256
477 180
478 maptype
479 maptype
480 ” f i t n e s s ” ” t i c k s ” ” o c c f r e q ” ” e f f i t ”
481 0
482
483 SLIDER
484 118
485 102
486 256
487 135
488 run#
489 run#
490 1
491 100
492 1
493 1
494 1
495 NIL
496 HORIZONTAL
497
498 SLIDER
499 814
500 10
501 984
502 43
503 bi r th−r a t e
504 bi r th−r a t e
505 0
506 1
507 0 .1
508 0 .1
509 1
510 NIL
511 HORIZONTAL
512
513 SLIDER
514 814
515 43
516 984
517 76
518 death−r a t e
519 death−r a t e
520 0

143



521 bi r th−r a t e
522 0 .06
523 0 .01
524 1
525 NIL
526 HORIZONTAL
527
528 SWITCH
529 15
530 140
531 105
532 173
533 c o l o n i z e ?
534 c o l o n i z e ?
535 0
536 1
537 −1000
538
539 SLIDER
540 118
541 246
542 290
543 279
544 copyrate
545 copyrate
546 0
547 1
548 0
549 0 .05
550 1
551 NIL
552 HORIZONTAL
553
554 PLOT
555 3
556 509
557 244
558 629
559 Pop
560 t i c k s
561 Pop
562 0 .0
563 10 .0
564 0 .0
565 10 .0
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566 t rue
567 f a l s e
568 ”” ” ; ask agents [ measure−t o ta l−d i s t anc e ] ”
569 PENS
570 ”Defau l t ” 1 . 0 0 −16777216 true ”” ” i f p lo t s−on? = TRUE [

plotxy t i c k s count agents ] ”
571
572 MONITOR
573 244
574 509
575 294
576 554
577 Pop
578 count agents
579 0
580 1
581 11
582
583 PLOT
584 3
585 378
586 245
587 509
588 Tra i t
589 t i c k s
590 Tra i t
591 0 .0
592 100000.0
593 0 .0
594 1 .0
595 t rue
596 f a l s e
597 ”” ””
598 PENS
599 ”Median” 100 .0 0 −16777216 t rue ”” ” ; p lotxy t i c k s mean [

acopyrate ] o f agents ”
600
601 MONITOR
602 245
603 378
604 295
605 423
606 MedC
607 median [ acopyrate ] o f agents
608 2
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609 1
610 11
611
612 SLIDER
613 118
614 279
615 290
616 312
617 mutation−s i z e
618 mutation−s i z e
619 0 .01
620 . 5
621 0 .1
622 0 .01
623 1
624 NIL
625 HORIZONTAL
626
627 BUTTON
628 250
629 103
630 305
631 136
632 rand
633 s e t run# random 100 + 1
634 NIL
635 1
636 T
637 OBSERVER
638 NIL
639 NIL
640 NIL
641 NIL
642 1
643
644 PLOT
645 304
646 541
647 504
648 691
649 E f f e c t i v e f i t n e s s
650 NIL
651 NIL
652 0 .0
653 100 .0
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654 0 .0
655 1 .0
656 t rue
657 f a l s e
658 ”” ””
659 PENS
660 ” d e f au l t ” 1 . 0 0 −16777216 true ”” ” c l ea r−p lo t \ n i f p lo t s−

on? = TRUE [\ n l e t env 0\ nwhi le [ env <= 100 AND t i c k s
> 0 ] [ \ n s e t env env + 1\n l e t patch−env patch−s e t
patches with [ e l e v a t i o n = env ]\n i f any? patch−env [
p lotxy env mean [ cum−e f f i t ] o f patch−env ]\n ]\n ] ”

661
662 SWITCH
663 15
664 206
665 105
666 239
667 randTrait ?
668 randTrait ?
669 0
670 1
671 −1000
672
673 SLIDER
674 118
675 311
676 290
677 344
678 mutation−r a t e
679 mutation−r a t e
680 0
681 . 1
682 0 .0010
683 .001
684 1
685 NIL
686 HORIZONTAL
687
688 SWITCH
689 15
690 239
691 105
692 272
693 p lo t s−on?
694 p lo t s−on?
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695 1
696 1
697 −1000
698
699 MONITOR
700 245
701 423
702 295
703 468
704 MedR
705 median [ f s d i s t ] o f agents
706 2
707 1
708 11
709
710 @#$#@#$#@
711 ## WHAT IS IT?
712
713 Agent−based model extending an e a r l i e r model found here :

http : //www. openabm . org /model /3846/
714
715 The models are des igned to connect a mechanism o f l o c a l

s c a l e mobi l i ty , namely fo rag ing , with the g l oba l
s c a l e phenomenon o f populat ion d i s p e r s a l . This model
adds to the a b i l i t y o f agents to acqu i r e in fo rmat ion
about t h e i r environment , one i nd i v i dua l and one
s o c i a l .

716
717 ## HOW IT WORKS
718
719 See the e a r l i e r model f o r the ba s i c d e s c r i p t i o n . There

are two va r i a t i o n s o f the model here , ” rad iu s ” and ”
i n f o ” . In ” rad iu s ” , an agent t r a i t f s d i s t , determines
the rad iu s o f the r e s ou r c e assessment neighbourhood .
They choose the h i ghe s t r e s ou r c e c e l l out o f the se

patches at p r obab i l i t y ” f o r e s i g h t ” , and move one step
towards i t i f empty , or move randomly otherw i s e . The
median t r a i t va lue evo lv e s over time through natura l
s e l e c t i o n by the d i s t r i b u t i o n o f the s p a t i a l

r e s ou r c e environment .
720
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721 In ” i n f o ” , an agent t r a i t copyrate , determines the
p r obab i l i t y o f copying in fo rmat ion about r e s ou r c e s
from another random agent , or moving randomly
otherwi se . When copying , agents move one s tep towards
another agent i f they occupy a h igher r e s ou r c e c e l l .
Again , the t r a i t va lue evo lv e s over the course o f a

run .
722
723 ## HOW TO USE IT
724
725 Maps are not generated by NetLogo . Download the map s e t

as we l l which ( i n c l ud e s a bash s c r i p t f o r gene ra t ing
your own with GRASS GIS) . Unzip the su r f e q f o l d e r
i n to the same f o l d e r as t h i s n logo f i l e .

726
727 Choose a he t e r og ene i t y va lue from the ”fmap” l i s t

running from 2.001 ( l e a s t heterogeneous ) to 2 .999 (
most heterogenous ) . C l i ck rand to choose 1 o f the 100
randomly generated s u r f a c e s at the s e l e c t e d

he t e r og ene i t y l e v e l . Opt iona l ly a l s o ad jus t other
i n i t i a l parameters . Setup and Go to run .

728
729 See the BehaviourSpace d i a l o g f o r the run s e t s used in

the d i s s e r t a t i o n .
730
731 ## THINGS TO NOTICE
732
733 Resource assessment rad iu s and copyrate evo lve to

r e l a t i v e l y low l e v e l s , e s p e c i a l l y f o r low
he t e r og ene i t y landscapes .

734
735 ## CREDITS AND REFERENCES
736
737 Col in D. Wren wrote t h i s model as a part o f h i s PhD

d i s s e r t a t i o n at McGill Un ive r s i ty .
738 @#$#@#$#@
739 de f au l t
740 t rue
741 0
742 Polygon −7500403 t rue t rue 150 5 40 250 150 205 260 250
743
744 a i r p l an e
745 t rue
746 0

149



747 Polygon −7500403 t rue t rue 150 0 135 15 120 60 120 105
15 165 15 195 120 180 135 240 105 270 120 285 150 270
180 285 210 270 165 240 180 180 285 195 285 165 180

105 180 60 165 15
748
749 arrow
750 true
751 0
752 Polygon −7500403 t rue t rue 150 0 0 150 105 150 105 293

195 293 195 150 300 150
753
754 box
755 f a l s e
756 0
757 Polygon −7500403 t rue t rue 150 285 285 225 285 75 150

135
758 Polygon −7500403 t rue t rue 150 135 15 75 150 15 285 75
759 Polygon −7500403 t rue t rue 15 75 15 225 150 285 150 135
760 Line −16777216 f a l s e 150 285 150 135
761 Line −16777216 f a l s e 150 135 15 75
762 Line −16777216 f a l s e 150 135 285 75
763
764 bug
765 t rue
766 0
767 C i r c l e −7500403 t rue t rue 96 182 108
768 C i r c l e −7500403 t rue t rue 110 127 80
769 C i r c l e −7500403 t rue t rue 110 75 80
770 Line −7500403 t rue 150 100 80 30
771 Line −7500403 t rue 150 100 220 30
772
773 bu t t e r f l y
774 t rue
775 0
776 Polygon −7500403 t rue t rue 150 165 209 199 225 225 225

255 195 270 165 255 150 240
777 Polygon −7500403 t rue t rue 150 165 89 198 75 225 75 255

105 270 135 255 150 240
778 Polygon −7500403 t rue t rue 139 148 100 105 55 90 25 90

10 105 10 135 25 180 40 195 85 194 139 163
779 Polygon −7500403 t rue t rue 162 150 200 105 245 90 275 90

290 105 290 135 275 180 260 195 215 195 162 165
780 Polygon −16777216 true f a l s e 150 255 135 225 120 150 135

120 150 105 165 120 180 150 165 225
781 C i r c l e −16777216 true f a l s e 135 90 30
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782 Line −16777216 f a l s e 150 105 195 60
783 Line −16777216 f a l s e 150 105 105 60
784
785 car
786 f a l s e
787 0
788 Polygon −7500403 t rue t rue 300 180 279 164 261 144 240

135 226 132 213 106 203 84 185 63 159 50 135 50 75 60
0 150 0 165 0 225 300 225 300 180

789 C i r c l e −16777216 true f a l s e 180 180 90
790 C i r c l e −16777216 true f a l s e 30 180 90
791 Polygon −16777216 t rue f a l s e 162 80 132 78 134 135 209

135 194 105 189 96 180 89
792 C i r c l e −7500403 t rue t rue 47 195 58
793 C i r c l e −7500403 t rue t rue 195 195 58
794
795 c i r c l e
796 f a l s e
797 0
798 C i r c l e −7500403 t rue t rue 0 0 300
799
800 c i r c l e 2
801 f a l s e
802 0
803 C i r c l e −7500403 t rue t rue 0 0 300
804 C i r c l e −16777216 true f a l s e 30 30 240
805
806 cow
807 f a l s e
808 0
809 Polygon −7500403 t rue t rue 200 193 197 249 179 249 177

196 166 187 140 189 93 191 78 179 72 211 49 209 48
181 37 149 25 120 25 89 45 72 103 84 179 75 198 76
252 64 272 81 293 103 285 121 255 121 242 118 224 167

810 Polygon −7500403 t rue t rue 73 210 86 251 62 249 48 208
811 Polygon −7500403 t rue t rue 25 114 16 195 9 204 23 213 25

200 39 123
812
813 cy l i nd e r
814 f a l s e
815 0
816 C i r c l e −7500403 t rue t rue 0 0 300
817
818 dot
819 f a l s e
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820 0
821 C i r c l e −7500403 t rue t rue 90 90 120
822
823 f a c e happy
824 f a l s e
825 0
826 C i r c l e −7500403 t rue t rue 8 8 285
827 C i r c l e −16777216 true f a l s e 60 75 60
828 C i r c l e −16777216 true f a l s e 180 75 60
829 Polygon −16777216 t rue f a l s e 150 255 90 239 62 213 47

191 67 179 90 203 109 218 150 225 192 218 210 203 227
181 251 194 236 217 212 240

830
831 f a c e neu t ra l
832 f a l s e
833 0
834 C i r c l e −7500403 t rue t rue 8 7 285
835 C i r c l e −16777216 true f a l s e 60 75 60
836 C i r c l e −16777216 true f a l s e 180 75 60
837 Rectangle −16777216 true f a l s e 60 195 240 225
838
839 f a c e sad
840 f a l s e
841 0
842 C i r c l e −7500403 t rue t rue 8 8 285
843 C i r c l e −16777216 true f a l s e 60 75 60
844 C i r c l e −16777216 true f a l s e 180 75 60
845 Polygon −16777216 t rue f a l s e 150 168 90 184 62 210 47

232 67 244 90 220 109 205 150 198 192 205 210 220 227
242 251 229 236 206 212 183

846
847 f i s h
848 f a l s e
849 0
850 Polygon −1 t rue f a l s e 44 131 21 87 15 86 0 120 15 150 0

180 13 214 20 212 45 166
851 Polygon −1 t rue f a l s e 135 195 119 235 95 218 76 210 46

204 60 165
852 Polygon −1 t rue f a l s e 75 45 83 77 71 103 86 114 166 78

135 60
853 Polygon −7500403 t rue t rue 30 136 151 77 226 81 280 119

292 146 292 160 287 170 270 195 195 210 151 212 30
166

854 C i r c l e −16777216 true f a l s e 215 106 30
855

152



856 f l a g
857 f a l s e
858 0
859 Rectangle −7500403 t rue t rue 60 15 75 300
860 Polygon −7500403 t rue t rue 90 150 270 90 90 30
861 Line −7500403 t rue 75 135 90 135
862 Line −7500403 t rue 75 45 90 45
863
864 f l owe r
865 f a l s e
866 0
867 Polygon −10899396 t rue f a l s e 135 120 165 165 180 210 180

240 150 300 165 300 195 240 195 195 165 135
868 C i r c l e −7500403 t rue t rue 85 132 38
869 C i r c l e −7500403 t rue t rue 130 147 38
870 C i r c l e −7500403 t rue t rue 192 85 38
871 C i r c l e −7500403 t rue t rue 85 40 38
872 C i r c l e −7500403 t rue t rue 177 40 38
873 C i r c l e −7500403 t rue t rue 177 132 38
874 C i r c l e −7500403 t rue t rue 70 85 38
875 C i r c l e −7500403 t rue t rue 130 25 38
876 C i r c l e −7500403 t rue t rue 96 51 108
877 C i r c l e −16777216 true f a l s e 113 68 74
878 Polygon −10899396 t rue f a l s e 189 233 219 188 249 173 279

188 234 218
879 Polygon −10899396 t rue f a l s e 180 255 150 210 105 210 75

240 135 240
880
881 house
882 f a l s e
883 0
884 Rectangle −7500403 t rue t rue 45 120 255 285
885 Rectangle −16777216 true f a l s e 120 210 180 285
886 Polygon −7500403 t rue t rue 15 120 150 15 285 120
887 Line −16777216 f a l s e 30 120 270 120
888
889 l e a f
890 f a l s e
891 0
892 Polygon −7500403 t rue t rue 150 210 135 195 120 210 60

210 30 195 60 180 60 165 15 135 30 120 15 105 40 104
45 90 60 90 90 105 105 120 120 120 105 60 120 60 135
30 150 15 165 30 180 60 195 60 180 120 195 120 210
105 240 90 255 90 263 104 285 105 270 120 285 135 240
165 240 180 270 195 240 210 180 210 165 195
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893 Polygon −7500403 t rue t rue 135 195 135 240 120 255 105
255 105 285 135 285 165 240 165 195

894
895 l i n e
896 t rue
897 0
898 Line −7500403 t rue 150 0 150 300
899
900 l i n e h a l f
901 t rue
902 0
903 Line −7500403 t rue 150 0 150 150
904
905 pentagon
906 f a l s e
907 0
908 Polygon −7500403 t rue t rue 150 15 15 120 60 285 240 285

285 120
909
910 person
911 f a l s e
912 0
913 C i r c l e −7500403 t rue t rue 110 5 80
914 Polygon −7500403 t rue t rue 105 90 120 195 90 285 105 300

135 300 150 225 165 300 195 300 210 285 180 195 195
90

915 Rectangle −7500403 t rue t rue 127 79 172 94
916 Polygon −7500403 t rue t rue 195 90 240 150 225 180 165

105
917 Polygon −7500403 t rue t rue 105 90 60 150 75 180 135 105
918
919 p lant
920 f a l s e
921 0
922 Rectangle −7500403 t rue t rue 135 90 165 300
923 Polygon −7500403 t rue t rue 135 255 90 210 45 195 75 255

135 285
924 Polygon −7500403 t rue t rue 165 255 210 210 255 195 225

255 165 285
925 Polygon −7500403 t rue t rue 135 180 90 135 45 120 75 180

135 210
926 Polygon −7500403 t rue t rue 165 180 165 210 225 180 255

120 210 135
927 Polygon −7500403 t rue t rue 135 105 90 60 45 45 75 105

135 135
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928 Polygon −7500403 t rue t rue 165 105 165 135 225 105 255
45 210 60

929 Polygon −7500403 t rue t rue 135 90 120 45 150 15 180 45
165 90

930
931 sheep
932 f a l s e
933 0
934 Rectangle −7500403 t rue t rue 151 225 180 285
935 Rectangle −7500403 t rue t rue 47 225 75 285
936 Rectangle −7500403 t rue t rue 15 75 210 225
937 C i r c l e −7500403 t rue t rue 135 75 150
938 C i r c l e −16777216 true f a l s e 165 76 116
939
940 square
941 f a l s e
942 0
943 Rectangle −7500403 t rue t rue 30 30 270 270
944
945 square 2
946 f a l s e
947 0
948 Rectangle −7500403 t rue t rue 30 30 270 270
949 Rectangle −16777216 true f a l s e 60 60 240 240
950
951 s t a r
952 f a l s e
953 0
954 Polygon −7500403 t rue t rue 151 1 185 108 298 108 207 175

242 282 151 216 59 282 94 175 3 108 116 108
955
956 t a r g e t
957 f a l s e
958 0
959 C i r c l e −7500403 t rue t rue 0 0 300
960 C i r c l e −16777216 true f a l s e 30 30 240
961 C i r c l e −7500403 t rue t rue 60 60 180
962 C i r c l e −16777216 true f a l s e 90 90 120
963 C i r c l e −7500403 t rue t rue 120 120 60
964
965 t r e e
966 f a l s e
967 0
968 C i r c l e −7500403 t rue t rue 118 3 94
969 Rectangle −6459832 t rue f a l s e 120 195 180 300
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970 C i r c l e −7500403 t rue t rue 65 21 108
971 C i r c l e −7500403 t rue t rue 116 41 127
972 C i r c l e −7500403 t rue t rue 45 90 120
973 C i r c l e −7500403 t rue t rue 104 74 152
974
975 t r i a n g l e
976 f a l s e
977 0
978 Polygon −7500403 t rue t rue 150 30 15 255 285 255
979
980 t r i a n g l e 2
981 f a l s e
982 0
983 Polygon −7500403 t rue t rue 150 30 15 255 285 255
984 Polygon −16777216 t rue f a l s e 151 99 225 223 75 224
985
986 truck
987 f a l s e
988 0
989 Rectangle −7500403 t rue t rue 4 45 195 187
990 Polygon −7500403 t rue t rue 296 193 296 150 259 134 244

104 208 104 207 194
991 Rectangle −1 t rue f a l s e 195 60 195 105
992 Polygon −16777216 true f a l s e 238 112 252 141 219 141 218

112
993 C i r c l e −16777216 true f a l s e 234 174 42
994 Rectangle −7500403 t rue t rue 181 185 214 194
995 C i r c l e −16777216 true f a l s e 144 174 42
996 C i r c l e −16777216 true f a l s e 24 174 42
997 C i r c l e −7500403 f a l s e t rue 24 174 42
998 C i r c l e −7500403 f a l s e t rue 144 174 42
999 C i r c l e −7500403 f a l s e t rue 234 174 42
1000
1001 t u r t l e
1002 t rue
1003 0
1004 Polygon −10899396 t rue f a l s e 215 204 240 233 246 254 228

266 215 252 193 210
1005 Polygon −10899396 t rue f a l s e 195 90 225 75 245 75 260 89

269 108 261 124 240 105 225 105 210 105
1006 Polygon −10899396 t rue f a l s e 105 90 75 75 55 75 40 89 31

108 39 124 60 105 75 105 90 105
1007 Polygon −10899396 t rue f a l s e 132 85 134 64 107 51 108 17

150 2 192 18 192 52 169 65 172 87
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1008 Polygon −10899396 t rue f a l s e 85 204 60 233 54 254 72 266
85 252 107 210

1009 Polygon −7500403 t rue t rue 119 75 179 75 209 101 224 135
220 225 175 261 128 261 81 224 74 135 88 99

1010
1011 wheel
1012 f a l s e
1013 0
1014 C i r c l e −7500403 t rue t rue 3 3 294
1015 C i r c l e −16777216 true f a l s e 30 30 240
1016 Line −7500403 t rue 150 285 150 15
1017 Line −7500403 t rue 15 150 285 150
1018 C i r c l e −7500403 t rue t rue 120 120 60
1019 Line −7500403 t rue 216 40 79 269
1020 Line −7500403 t rue 40 84 269 221
1021 Line −7500403 t rue 40 216 269 79
1022 Line −7500403 t rue 84 40 221 269
1023
1024 x
1025 f a l s e
1026 0
1027 Polygon −7500403 t rue t rue 270 75 225 30 30 225 75 270
1028 Polygon −7500403 t rue t rue 30 75 75 30 270 225 225 270
1029
1030 @#$#@#$#@
1031 NetLogo 5 . 0 . 3
1032 @#$#@#$#@
1033 @#$#@#$#@
1034 @#$#@#$#@
1035 <experiments>
1036 <experiment name=”i n f o fp ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1037 <setup>setup</setup>
1038 <go>go</go>
1039 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s / fp ” fmap ” ” run# ” . csv ”)
1040 d i sp lay−e l e v a t i o n
1041 export−view (word ” i n f o s h a r e / s c r e en sho t s / fp ” fmap ” ”

run# ” . png ”)</ f i n a l>
1042 <t imeLimit s t ep s=”100000”/>
1043 <metric>nummap</metric>
1044 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1045 <metric>mean [ acopyrate ] o f agents</metric>
1046 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . csv ”)

</metric>
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1047 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . png ”)
</metric>

1048 <enumeratedValueSet v a r i a b l e=”random−seed”>
1049 <value va lue=”1”/>
1050 </enumeratedValueSet>
1051 <enumeratedValueSet v a r i a b l e=”N”>
1052 <value va lue=”500”/>
1053 </enumeratedValueSet>
1054 <enumeratedValueSet v a r i a b l e=”maptype”>
1055 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1056 </enumeratedValueSet>
1057 <enumeratedValueSet v a r i a b l e=”mode”>
1058 <value va lue=”&quot ; i n f o&quot ;”/>
1059 </enumeratedValueSet>
1060 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1061 <enumeratedValueSet v a r i a b l e=”fmap”>
1062 <value va lue=”&quot ;2 .001& quot ;”/>
1063 <value va lue=”&quot ;2 .99& quot ;”/>
1064 <value va lue=”&quot ;2 .20& quot ;”/>
1065 <value va lue=”&quot ;2 .40& quot ;”/>
1066 <value va lue=”&quot ;2 .60& quot ;”/>
1067 <value va lue=”&quot ;2 .80& quot ;”/>
1068 </enumeratedValueSet>
1069 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1070 <value va lue=”true”/>
1071 </enumeratedValueSet>
1072 <enumeratedValueSet v a r i a b l e=”copyrate”>
1073 <value va lue=”0”/>
1074 </enumeratedValueSet>
1075 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1076 <value va lue=”0.1”/>
1077 </enumeratedValueSet>
1078 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1079 <value va lue=”0”/>
1080 </enumeratedValueSet>
1081 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1082 <value va lue=”0.1”/>
1083 </enumeratedValueSet>
1084 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1085 <value va lue=”0.0010”/>
1086 </enumeratedValueSet>
1087 </experiment>
1088 <experiment name=”i n f o pp” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
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1089 <setup>setup</setup>
1090 <go>go</go>
1091 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s /pp” fmap ” ” run# ” . csv ”)
1092 d i sp lay−e l e v a t i o n
1093 export−view (word ” i n f o s h a r e / s c r e en sho t s /pp” fmap ” ”

run# ” . png ”)</ f i n a l>
1094 <t imeLimit s t ep s=”100000”/>
1095 <ex i tCondi t ion>count agents &l t ;= 10</ ex i tCondi t ion>
1096 <metric>nummap</metric>
1097 <metric>count agents</metric>
1098 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1099 <metric>mean [ acopyrate ] o f agents</metric>
1100 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . csv ”)

</metric>
1101 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . png ”)

</metric>
1102 <enumeratedValueSet v a r i a b l e=”random−seed”>
1103 <value va lue=”1”/>
1104 </enumeratedValueSet>
1105 <enumeratedValueSet v a r i a b l e=”N”>
1106 <value va lue=”500”/>
1107 </enumeratedValueSet>
1108 <enumeratedValueSet v a r i a b l e=”maptype”>
1109 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1110 </enumeratedValueSet>
1111 <enumeratedValueSet v a r i a b l e=”mode”>
1112 <value va lue=”&quot ; i n f o&quot ;”/>
1113 </enumeratedValueSet>
1114 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1115 <enumeratedValueSet v a r i a b l e=”fmap”>
1116 <value va lue=”&quot ;2 .001& quot ;”/>
1117 <value va lue=”&quot ;2 .99& quot ;”/>
1118 <value va lue=”&quot ;2 .20& quot ;”/>
1119 <value va lue=”&quot ;2 .40& quot ;”/>
1120 <value va lue=”&quot ;2 .60& quot ;”/>
1121 <value va lue=”&quot ;2 .80& quot ;”/>
1122 </enumeratedValueSet>
1123 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1124 <value va lue=”true”/>
1125 </enumeratedValueSet>
1126 <enumeratedValueSet v a r i a b l e=”copyrate”>
1127 <value va lue=”0”/>
1128 </enumeratedValueSet>
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1129 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1130 <value va lue=”0.1”/>
1131 </enumeratedValueSet>
1132 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1133 <value va lue=”0.06”/>
1134 </enumeratedValueSet>
1135 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1136 <value va lue=”0.1”/>
1137 </enumeratedValueSet>
1138 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1139 <value va lue=”0.0010”/>
1140 </enumeratedValueSet>
1141 </experiment>
1142 <experiment name=”i n f o fp &gt ; N” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1143 <setup>setup</setup>
1144 <go>go</go>
1145 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s / f i x ed ” fmap ” ” run# ” ” N ” . csv ”)</
f i n a l>

1146 <t imeLimit s t ep s=”100000”/>
1147 <metric>nummap</metric>
1148 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1149 <metric>mean [ acopyrate ] o f agents</metric>
1150 <enumeratedValueSet v a r i a b l e=”random−seed”>
1151 <value va lue=”1”/>
1152 </enumeratedValueSet>
1153 <enumeratedValueSet v a r i a b l e=”N”>
1154 <value va lue=”200”/>
1155 <value va lue=”1000”/>
1156 <value va lue=”2000”/>
1157 </enumeratedValueSet>
1158 <enumeratedValueSet v a r i a b l e=”maptype”>
1159 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1160 </enumeratedValueSet>
1161 <enumeratedValueSet v a r i a b l e=”mode”>
1162 <value va lue=”&quot ; i n f o&quot ;”/>
1163 </enumeratedValueSet>
1164 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”10”

l a s t =”100”/>
1165 <enumeratedValueSet v a r i a b l e=”fmap”>
1166 <value va lue=”&quot ;2 .001& quot ;”/>
1167 </enumeratedValueSet>
1168 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1169 <value va lue=”0.2”/>
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1170 </enumeratedValueSet>
1171 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1172 <value va lue=”0”/>
1173 </enumeratedValueSet>
1174 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1175 <value va lue=”true”/>
1176 </enumeratedValueSet>
1177 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1178 <value va lue=”0.05”/>
1179 </enumeratedValueSet>
1180 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1181 <value va lue=”0.01”/>
1182 </enumeratedValueSet>
1183 <enumeratedValueSet v a r i a b l e=”copyrate”>
1184 <value va lue=”0”/>
1185 </enumeratedValueSet>
1186 </experiment>
1187 <experiment name=”rad iu s pp” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1188 <setup>setup</setup>
1189 <go>go</go>
1190 < f i n a l>export−p lo t ”Tra i t ” (word ” f s d i s t / s c r e en sho t s

/pp” fmap ” ” run# ” ” f o r e s i g h t ” . csv ”)
1191 d i sp lay−e l e v a t i o n
1192 export−view (word ” f s d i s t / s c r e en sho t s /pp” fmap ” ” run#

” ” f o r e s i g h t ” . png ”)</ f i n a l>
1193 <t imeLimit s t ep s=”100000”/>
1194 <metric>nummap</metric>
1195 <metric>count agents</metric>
1196 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1197 <metric>mean [ f s d i s t ] o f agents</metric>
1198 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” ”

f o r e s i g h t ” . csv ”)</metric>
1199 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” ”

f o r e s i g h t ” . png ”)</metric>
1200 <enumeratedValueSet v a r i a b l e=”random−seed”>
1201 <value va lue=”1”/>
1202 </enumeratedValueSet>
1203 <enumeratedValueSet v a r i a b l e=”N”>
1204 <value va lue=”500”/>
1205 </enumeratedValueSet>
1206 <enumeratedValueSet v a r i a b l e=”maptype”>
1207 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1208 </enumeratedValueSet>
1209 <enumeratedValueSet v a r i a b l e=”mode”>
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1210 <value va lue=”&quot ; r ad iu s&quot ;”/>
1211 </enumeratedValueSet>
1212 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1213 <enumeratedValueSet v a r i a b l e=”fmap”>
1214 <value va lue=”&quot ;2 .001& quot ;”/>
1215 <value va lue=”&quot ;2 .99& quot ;”/>
1216 <value va lue=”&quot ;2 .20& quot ;”/>
1217 <value va lue=”&quot ;2 .40& quot ;”/>
1218 <value va lue=”&quot ;2 .60& quot ;”/>
1219 <value va lue=”&quot ;2 .80& quot ;”/>
1220 </enumeratedValueSet>
1221 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1222 <value va lue=”0.25”/>
1223 <value va lue=”0.75”/>
1224 </enumeratedValueSet>
1225 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1226 <value va lue=”0.1”/>
1227 </enumeratedValueSet>
1228 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1229 <value va lue=”0.06”/>
1230 </enumeratedValueSet>
1231 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1232 <value va lue=”0.5”/>
1233 </enumeratedValueSet>
1234 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1235 <value va lue=”0.0010”/>
1236 </enumeratedValueSet>
1237 </experiment>
1238 <experiment name=”rad iu s fp ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1239 <setup>setup</setup>
1240 <go>go</go>
1241 < f i n a l>export−p lo t ”Tra i t ” (word ” f s d i s t / s c r e en sho t s

/ fp ” fmap ” ” run# ” ” f o r e s i g h t ” . csv ”)
1242 d i sp lay−e l e v a t i o n
1243 export−view (word ” f s d i s t / s c r e en sho t s / fp ” fmap ” ” run#

” ” f o r e s i g h t ” . png ”)</ f i n a l>
1244 <t imeLimit s t ep s=”100000”/>
1245 <metric>nummap</metric>
1246 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1247 <metric>mean [ f s d i s t ] o f agents</metric>
1248 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” ”

f o r e s i g h t ” . csv ”)</metric>
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1249 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” ”
f o r e s i g h t ” . png ”)</metric>

1250 <enumeratedValueSet v a r i a b l e=”random−seed”>
1251 <value va lue=”1”/>
1252 </enumeratedValueSet>
1253 <enumeratedValueSet v a r i a b l e=”N”>
1254 <value va lue=”500”/>
1255 </enumeratedValueSet>
1256 <enumeratedValueSet v a r i a b l e=”maptype”>
1257 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1258 </enumeratedValueSet>
1259 <enumeratedValueSet v a r i a b l e=”mode”>
1260 <value va lue=”&quot ; r ad iu s&quot ;”/>
1261 </enumeratedValueSet>
1262 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1263 <enumeratedValueSet v a r i a b l e=”fmap”>
1264 <value va lue=”&quot ;2 .001& quot ;”/>
1265 <value va lue=”&quot ;2 .99& quot ;”/>
1266 <value va lue=”&quot ;2 .20& quot ;”/>
1267 <value va lue=”&quot ;2 .40& quot ;”/>
1268 <value va lue=”&quot ;2 .60& quot ;”/>
1269 <value va lue=”&quot ;2 .80& quot ;”/>
1270 </enumeratedValueSet>
1271 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1272 <value va lue=”0.25”/>
1273 <value va lue=”0.75”/>
1274 </enumeratedValueSet>
1275 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1276 <value va lue=”0.1”/>
1277 </enumeratedValueSet>
1278 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1279 <value va lue=”0”/>
1280 </enumeratedValueSet>
1281 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1282 <value va lue=”0.5”/>
1283 </enumeratedValueSet>
1284 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1285 <value va lue=”0.0010”/>
1286 </enumeratedValueSet>
1287 </experiment>
1288 <experiment name=”rad iu s fp &gt ; N” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1289 <setup>setup</setup>
1290 <go>go</go>
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1291 < f i n a l>export−p lo t ”Tra i t ” (word ” f s d i s t / s c r e en sho t s
/ fp ” fmap ” ” run# ” ” f o r e s i g h t ” ” N ” . csv ”)</
f i n a l>

1292 <t imeLimit s t ep s=”100000”/>
1293 <metric>nummap</metric>
1294 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1295 <metric>mean [ f s d i s t ] o f agents</metric>
1296 <enumeratedValueSet v a r i a b l e=”random−seed”>
1297 <value va lue=”1”/>
1298 </enumeratedValueSet>
1299 <enumeratedValueSet v a r i a b l e=”N”>
1300 <value va lue=”100”/>
1301 <value va lue=”1000”/>
1302 <value va lue=”2000”/>
1303 </enumeratedValueSet>
1304 <enumeratedValueSet v a r i a b l e=”maptype”>
1305 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1306 </enumeratedValueSet>
1307 <enumeratedValueSet v a r i a b l e=”mode”>
1308 <value va lue=”&quot ; r ad iu s&quot ;”/>
1309 </enumeratedValueSet>
1310 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”10”

l a s t =”100”/>
1311 <enumeratedValueSet v a r i a b l e=”fmap”>
1312 <value va lue=”&quot ;2 .001& quot ;”/>
1313 </enumeratedValueSet>
1314 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1315 <value va lue=”0.25”/>
1316 </enumeratedValueSet>
1317 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1318 <value va lue=”0.5”/>
1319 </enumeratedValueSet>
1320 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1321 <value va lue=”0.0010”/>
1322 </enumeratedValueSet>
1323 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1324 <value va lue=”0.5”/>
1325 </enumeratedValueSet>
1326 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1327 <value va lue=”0”/>
1328 </enumeratedValueSet>
1329 </experiment>
1330 </experiments>
1331 @#$#@#$#@
1332 @#$#@#$#@
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1333 d e f au l t
1334 0 .0
1335 −0.2 0 1 .0 0 . 0
1336 0 .0 1 1 .0 0 . 0
1337 0 .2 0 1 .0 0 . 0
1338 l i n k d i r e c t i o n
1339 t rue
1340 0
1341 Line −7500403 t rue 150 150 90 180
1342 Line −7500403 t rue 150 150 210 180
1343
1344 @#$#@#$#@
1345 0
1346 @#$#@#$#@

A.3 Code for chapter 4

Download link: http://www.openabm.org/model/4178/

1 ex t en s i on s [ g i s p r o f i l e r ]
2
3 breed [ agents agent ]
4
5 g l o b a l s
6 [
7 e l eva t i on−datase t
8 max−e l e v
9 nummap
10 speed
11 e x i t s
12 to ta l−e x i t s
13 to ta l−ex i t−t r a i t
14 ex i t−f i r s t −t i c k
15 ex i t−maxpop−t i c k
16 p op l i s t
17 ]
18
19 agents−own
20 [
21 t r a i t
22 pop
23 a f o r e s i g h t
24 acopyrate
25 f s d i s t
26 ]
27
28 patches−own
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29 [
30 e l e v a t i o n
31 cu r r en t e l e v
32 timestamp
33 o c c f r e q
34 cum−e f f i t
35 ]
36
37 ;SETUP CODE ###################################
38
39 to setup
40 ; random−seed 1
41 ca
42 s e t nummap 0
43 i f f i r s t fmap = ”2”
44 [
45 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
46 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
47 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
48 s e t nummap read−from−s t r i n g fmap
49 ]
50 i f fmap = ”cone”
51 [
52 i f run# > 9 [ s e t run# 1 ]
53 g i s : load−coord inate−system (word ” su r f e q / s u r f . p r j ”)
54 s e t e l eva t i on−datase t g i s : load−datase t (word ” su r f e q

/” fmap ”/” run# ” . asc ”)
55 g i s : set−world−enve lope ( g i s : envelope−o f e l eva t i on−

datase t )
56 ]
57 g i s : apply−r a s t e r e l eva t i on−datase t e l e v a t i o n
58
59 ; Test o f the hypothes i s that c e l l s with very smal l

va lue s were a f f e c t i n g wave v e l o c i t y
60 ; ask patches [ s e t e l e v a t i o n e l e v a t i o n + 100 ]
61
62 d i sp lay−e l e v a t i o n
63 s e t max−e l e v g i s :maximum−o f e l eva t i on−datase t
64
65 create−agents N
66 [
67 s e t shape ” square ”

166



68 i f e l s e c o l o n i z e ? = TRUE [ ; un l i k e the prev ious
models , t h i s p l a c e s agents in a clump at the
cent e r o f the map

69 l e t midpx round (max−pxcor / 2)
70 l e t midpy round (max−pycor / 2)
71 setxy midpx midpy
72 ]
73 [ ; e l s e random placement , not used in a r t i c l e
74 setxy round random−xcor round random−ycor
75 whi l e [ e l e v a t i o n <= 0 OR count agents−here > 1 ] [

se txy round random−xcor round random−ycor ]
76 ]
77 i f N = 1 [ setxy 50 50 ] ; runs in a r t i c l e always

s t a r t with one agent at the map cente r (N = 1)
78 i f e l s e randTrait ? = f a l s e ; a s s i gn t r a i t va lue from

i n t e r f a c e s l i d e r
79 [
80 i f mode = ” f o r e s i g h t ” [ s e t a f o r e s i g h t a f o r e s i g h t

co lo r−grad i en t a f o r e s i g h t ]
81 i f mode = ” i n f o ” OR mode = ” infowave ” [ s e t

acopyrate copyrate co lo r−grad i en t acopyrate s e t
shape ” d e f au l t ” ]

82 i f mode = ” rad iu s ” [ s e t f s d i s t 1 co lo r−grad i en t (
f s d i s t / 2 ) ]

83 ]
84 [ ; e l s e randTrait ?
85 i f mode = ” f o r e s i g h t ” [ s e t a f o r e s i g h t random−f l o a t

1 co lo r−grad i en t a f o r e s i g h t ]
86 i f mode = ” i n f o ” OR mode = ” infowave ” [ s e t

acopyrate random−f l o a t 1 co lo r−grad i en t
acopyrate ]

87 i f mode = ” rad iu s ” [
88 s e t f s d i s t 1 + plus−or−minus mutation−s i z e
89 i f f s d i s t < 0 [ s e t f s d i s t 0 ]
90 co lo r−grad i en t ( f s d i s t / 2 )
91 ]
92 ] ; c l o s e randTrait ?
93 s e t a f o r e s i g h t f o r e s i g h t
94 s e t pop 1 ; group s i z e v a r i a b l e o f each agent , beg ins

with 1
95 ] ; c l o s e agents
96
97 ; ask patches [ s e t timestamp 0 s e t o c c f r e q 0 s e t

cu r r en t e l e v e l e v a t i on ]
98 ask patches [ s e t cum−e f f i t 0 ]
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99 r e s e t−t i c k s
100 end
101
102 ;GO CODE ####################################
103
104 to go
105 i f (mode = ” fswave ”) [ go−fswave ]
106 i f (mode = ” infowave ”) [ go−infowave ]
107
108 i f not any? agents [ stop ]
109
110
111 ; ; ; ; mapping d i f f e r e n t va r i ab l e s , not used in a r t i c l e
112 ; i f maptype = ” t i c k s ” [ d i sp lay−t i c k s ]
113 ; i f maptype = ” f i t n e s s ” [ i f one−o f [ hidden ? ] o f agents

= TRUE [ d i sp lay−e l e v a t i o n ] ]
114 ; i f maptype = ” oc c f r e q ” [ d i sp lay−o c c f r e q ]
115 ; i f maptype = ” e f f i t ” [ d i sp lay−e f f i t ]
116
117 t i c k
118 end
119
120 to go−fswave
121 ask agents
122 [
123 repeat pop
124 [
125 reproduce ; submodule below
126 move−fswave ; submodule below
127 ]
128
129 i f pop = 0 [ d i e ]
130 s e t c o l o r s ca l e−c o l o r green pop 0 110 ; mis se s j u s t

born agents ( c r ea ted i n s i d e t h i s loop )
131 ]
132 ex i t−count ; submodule below
133 end
134
135 to go−in fowave ; wave o f advance by in fo rmat ion shar ing

agents , removed from f i n a l v e r s i on o f a r t i c l e
136 ask agents
137 [
138 repeat pop
139 [
140 reproduce ; submodule below
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141 ]
142 ]
143
144 ; ; ; ; c r e a t e a l i s t o f a l l i n d i v i d u a l s o f a l l agents
145 s e t p o p l i s t ( l i s t )
146 ask agents [ s e t p o p l i s t lput s e l f p o p l i s t ]
147 fo r each p op l i s t [
148 ask ?1 [ r epeat ( pop − 1) [ s e t p o p l i s t lput s e l f

p o p l i s t ] ]
149 ]
150
151 ask agents
152 [
153 repeat pop
154 [
155 move−in fowave ; submodule below
156 die−by−rate−wave ; submodule below
157 ]
158 i f pop = 0 [ d i e ]
159 s e t c o l o r s ca l e−c o l o r green pop 0 100
160 ]
161 ex i t−count
162 end
163
164 to reproduce ; each i nd i v i dua l in the group ( agent ) has

b i r th−r a t e prob o f i n c r e a s i n g sub j e c t to cur r ent pop
dens

165 i f ( random−f l o a t 1 < (1 − ( pop / e l e v a t i o n ) ) ) ; AND
random−f l o a t 1 < bir th−r a t e ) ; decomment l a s t s e c t i o n
i f b i r th−r a t e not 100%

166 [
167 s e t pop pop + 1
168 ]
169 end
170
171 to move−fswave ; each i o f pop moves to new c e l l s ub j e c t

to l o c a l pop dens
172 l e t p patch 1 1 ; c r e a t e temporary va r i a b l e f o r ho ld ing

a patch
173 i f e l s e random−f l o a t 1 < f o r e s i g h t [ s e t p max−one−o f

ne ighbors [ e l e v a t i o n ] ] [ s e t p one−o f ne ighbors ] ;
s e l e c t s bes t or random patch based on f o r e s i g h t
p r obab i l i t y
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174 i f e l s e any? agents−on p ; i f occupied move i nd i v i dua l
to that c e l l by i n c r e a s i n g t a r g e t pop and
dec r ea s i ng o r i g i n pop

175 [
176 i f sum [ pop ] o f agents−on p < [ e l e v a t i o n ] o f p [ ;

have to l im i t because f o r e s i g h t e d movement can
exceed ca r ry ing cacpac i ty

177 ask agents−on p [ s e t pop pop + 1 ]
178 s e t pop pop − 1
179 ]
180 ]
181 [ ; e l s e no agents−on p , move by c r e a t i n g new agent on

ta r g e t and dec r ea s i ng o r i g i n pop
182 hatch 1 [move−to p s e t pop 1 s e t c o l o r b lack ]
183 s e t pop pop − 1
184 ]
185 end
186
187 to move−infowave
188 l e t a one−o f p o p l i s t
189 whi l e [ i s−agent ? a = f a l s e ] [ s e t a one−o f p o p l i s t ]
190 l e t p one−o f ne ighbors
191 l e t move? t rue
192 i f e l s e random−f l o a t 1 < copyrate
193 [
194 i f e l s e [ e l e v a t i o n ] o f a > e l e v a t i o n [ f a c e a ] [ s e t

move? f a l s e ] ; b ia sed copying
195 ]
196 [ ; e l s e non−copy
197 f a c e p
198 ] ; f a c e a i s unbiased copying , except that i t s

weighted by pop s i z e
199 i f move? = true [ ; ad jus ted to stop movement in case a

i s worse
200 s e t p patch−ahead 1
201 i f e l s e any? agents−on p
202 [
203 i f sum [ pop ] o f agents−on p < [ e l e v a t i o n ] o f p [ ;

have to l im i t because f o r e s i g h t e d movement can
exceed ca r ry ing cacpac i ty

204 ask agents−on p [ s e t pop pop + 1 ]
205 s e t pop pop − 1
206 ]
207 ]
208 [ ; e l s e no agents−on p = 100% of moving
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209 hatch 1 [move−to p s e t pop 1 ]
210 s e t pop pop − 1
211 ]
212 ]
213 end
214
215 to die−by−rate−wave ; not used in a r t i c l e , j u s t adds

no i s e
216 i f death−r a t e > 0 [
217 i f ( random−f l o a t 1 < death−r a t e )
218 [
219 s e t pop pop − 1
220 i f pop = 0 [ d i e ]
221 ]
222 ] ; c l o s e death
223 end
224
225 to ex i t−count
226 ask agents with [ xcor = 0 OR xcor = 99 OR ycor = 0 OR

ycor = 99 ] ; any agents on the ou t s i d e edge o f the
map

227 [
228 d i e !−wave ; submodule below
229 ]
230 end
231
232 to d i e !−wave ; r ecord t i c k o f f i r s t agent to reach map

edge and output a s c r e en sho t
233 ; s e t e x i t s e x i t s + pop
234 ; s e t t o ta l−e x i t s t o ta l−e x i t s + pop
235 ; s e t t o ta l−ex i t−t r a i t t o ta l−ex i t−t r a i t + acopyrate ∗

pop
236 i f e l s e fmap = ”cone” [
237 i f ex i t−f i r s t −t i c k = 0 AND behaviorspace−run−number

> 0 [ s e t ex i t−f i r s t −t i c k t i c k s export−view (word
” e x i t / s c r e en sho t s /waves/” f o r e s i g h t ” ” fmap ” ”
run# ” ” behaviorspace−run−number ” . png ”) ]

238 i f ex i t−f i r s t −t i c k = 0 [ s e t ex i t−f i r s t −t i c k t i c k s
export−view (word ” e x i t / s c r e en sho t s /waves/”
f o r e s i g h t ” ” fmap ” ” run# ” ” behaviorspace−run
−number ” . png ”) ]

239 ; i f ex i t−f i r s t −t i c k = 0 AND behaviorspace−run−number
> 0 [ s e t ex i t−f i r s t −t i c k t i c k s export−view (word
” e x i t / s c r e en sho t s /wavescd/” copyrate ” ” fmap ”

” run# ” ” behaviorspace−run−number ” . png ”) ]
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240 ] [ ; e l s e
241 i f ex i t−f i r s t −t i c k = 0 [ s e t ex i t−f i r s t −t i c k t i c k s

export−view (word ” e x i t / s c r e en sho t s /waves/”
f o r e s i g h t ” ” fmap ” ” run# ” . png ”) ]

242 ; i f ex i t−f i r s t −t i c k = 0 [ s e t ex i t−f i r s t −t i c k t i c k s
export−view (word ” e x i t / s c r e en sho t s /wavescd/”
copyrate ” ” fmap ” ” run# ” . png ”) ]

243 ]
244 d i e ; not r e a l l y needed s i n c e runs end with the f i r s t

e x i t
245 end
246
247 to patch−c a l c s [ maxf it ] ; not used in a r t i c l e
248 l e t e f f i t 0
249 ask patches
250 [
251 i f timestamp = 0 [ i f any? agents−here = TRUE [ s e t

timestamp t i c k s ] ]
252 i f timestamp > 0 AND any? agents−here = TRUE [ s e t

o c c f r e q o c c f r e q + count agents−here ]
253 l e t b a s e f i t ( e l e v a t i o n / maxf it ∗ bir th−r a t e )
254 i f e l s e ( count agents−on ne ighbors < 8) [ s e t e f f i t

b a s e f i t ] [ s e t e f f i t 0 ]
255 s e t cum−e f f i t cum−e f f i t + e f f i t
256 ]
257 end
258
259 to d i sp lay−t i c k s
260 ask agents [ s e t hidden ? t rue ]
261 ask patches
262 [
263 i f ( timestamp > 0)
264 [
265 s e t pco l o r s ca l e−c o l o r red timestamp 0 t i c k s
266 ]
267 ]
268 end
269
270 to d i sp lay−o c c f r e q
271 l e t max−o c c f r e q max [ o c c f r e q ] o f patches
272 ask agents [ s e t hidden ? t rue ]
273 ask patches
274 [
275 i f ( o c c f r e q > 0)
276 [
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277 s e t pco l o r s ca l e−c o l o r red o c c f r e q 0 max−o c c f r e q
278 ]
279 ]
280 end
281
282 to d i sp lay−e l e v a t i o n
283 ; This i s the p r e f e r r e d way o f copying va lue s from a

r a s t e r datase t
284 ; i n to a patch va r i a b l e : in one step , us ing g i s : apply−

r a s t e r .
285 ; g i s : apply−r a s t e r e l eva t i on−datase t e l e v a t i o n
286 ; Now, j u s t to make sure i t worked , we ’ l l c o l o r each

patch by i t s
287 ; e l e v a t i o n value .
288 l e t min−e l e v a t i o n g i s :minimum−o f e l eva t i on−datase t
289 l e t max−e l e v a t i o n g i s :maximum−o f e l eva t i on−datase t
290 ; l e t min−e l e v a t i o n min [ e l e v a t i o n ] o f patches
291 ; l e t max−e l e v a t i o n max [ e l e v a t i o n ] o f patches
292
293 ask patches
294 [ ;
295 s e t pco l o r 99
296 i f ( e l e v a t i o n > 0) [ s e t pco l o r s ca l e−c o l o r b lack

e l e v a t i o n min−e l e v a t i o n max−e l e v a t i o n ]
297 ]
298 ask agents [ s e t hidden ? f a l s e ]
299 end
300
301 to export−map [ f o l d e r ]
302 ; ask patches
303 ; [
304 ; i f any? agents−here
305 ; [
306 ; s e t agent−t r a i t [ t r a i t ] o f one−o f agents−here
307 ; ]
308 ; ]
309
310 ;∗∗ Create r a s t e r datase t
311 l e t o c c r a s t e r g i s : c reate−r a s t e r world−width world−

he ight g i s : world−enve lope
312 ;∗∗ Trans fe r agent ’ s t r a i t va lue o f each net l ogo patch

to the o c c r a s t e r l a y e r
313 s e t o c c r a s t e r g i s : patch−datase t o c c f r e q
314
315 ;∗∗ At l a s t s t o r e the data in f i l e
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316 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /” nummap
” ” run# ” f ” round ( f o r e s i g h t ∗ 100) ” . asc ”)

317 ; i f e l s e (mode = ” i n f o s h a r e ”)
318 ; [
319 ; g i s : s to re−datase t o c c r a s t e r (word f o l d e r remove ”

f ” fmap ” ” run# ” c r ” round ( copyrate ∗ 100) ” f ”
round ( f o r e s i g h t ∗ 100) ” . asc ”)

320 ; g i s : s to re−datase t o c c r a s t e r (word ” i n f o s h a r e /
o c c r a s t e r /uh/” remove ” f ” fmap ” ” run# ” c r ” round
( copyrate ∗ 100) ” . asc ”)

321 ; g i s : s to re−datase t o c c r a s t e r (word ” i n f o s h a r e /
o c c r a s t e r /br /” remove ” f ” fmap ” ” run# ” c r ” round
( copyrate ∗ 100) ” . asc ”)

322 ; ]
323 ; [ ; e l s e
324 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /” remove

” f ” fmap ” ” run# ” f ” round ( f o r e s i g h t ∗ 100) ” .
asc ”)

325 ; g i s : s to re−datase t o c c r a s t e r (word f o l d e r ”/” fmap ” ”
run# ”m ” mutation−s i z e ” . asc ”)

326 g i s : s to re−datase t o c c r a s t e r (word f o l d e r ”/” fmap ” ”
run# ” br ” b i r th−r a t e ” . asc ”)

327 ; ]
328 ; g i s : s to re−datase t o c c r a s t e r (word ” o c c r a s t e r /” fmap

” f ” round ( f o r e s i g h t ∗ 100) ” . asc ”)
329 ; ( word ” o c c r a s t e r /” fmap ”/” c o l o n i z e ? ”/” ” f ” round (

f o r e s i g h t ∗ 100) ” . png ”)
330 end
331
332
333 to co lo r−grad i en t [ number ]
334 ; i f e l s e ( number < 0 . 5 ) [ s e t c o l o r [255 ( number ∗ 255)

( number ∗ 255) ] ] [ s e t c o l o r [ ( number ∗ 255) (
number ∗ 255) 2 5 5 ] ]

335 i f e l s e ( number <= 0 . 5 ) [ s e t c o l o r red + ( number ∗
9 .99 ) ] [ s e t c o l o r 114 − ( number ∗ 9 . 99 ) ]

336 end
337
338 to−r epo r t plus−or−minus [ va lue ]
339 ; randomly r epo r t s e i t h e r +value or −value
340 r epo r t va lue ∗ ( ( ( random 2) ∗ 2) − 1)
341 ; exp lanat ion o f ” ( ( ( random 2) ∗ 2) − 1) ”
342 ; Operation : Y ie ld s :
343 ; random 2 −> 0 or 1
344 ; ∗ 2 −> 0 ∗ 2 = 0 or 1 ∗ 2 = 2
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345 ; − 1 −> 0 − 1 = −1 or 2 − 1 = 1
346 ; thus , r e tu rn s −1 or +1
347 end
348
349 to d i sp lay−e f f i t
350 ; i n i t s e t cum−e f f i t 0 in setup
351 ; add cum−e f f i t to patches−own
352 ; add to maptype chooser
353 ; add d i sp l ay to go
354 ; l e t e f f i t 0
355 ; l e t maxf it max [ e l e v a t i o n ] o f agents + 1
356 l e t max−cum−e f f i t max [ cum−e f f i t ] o f patches
357 ask agents [ s e t hidden ? t rue ]
358 ask patches
359 [
360 ; l e t b a s e f i t ( e l e v a t i o n / maxf it )
361 ; i f e l s e ( count agents−on ne ighbors < 8) [ s e t e f f i t

b a s e f i t ] [ s e t e f f i t 0 ]
362 ; s e t cum−e f f i t cum−e f f i t + e f f i t
363 s e t pco l o r s ca l e−c o l o r green cum−e f f i t 0 max−cum−

e f f i t
364 ]
365 end
366 @#$#@#$#@
367 GRAPHICS−WINDOW
368 304
369 10
370 814
371 541
372 −1
373 −1
374 5 .0
375 1
376 10
377 1
378 1
379 1
380 0
381 0
382 0
383 1
384 0
385 99
386 0
387 99
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388 1
389 1
390 1
391 t i c k s
392 1000 .0
393
394 BUTTON
395 15
396 9
397 78
398 42
399 setup
400 setup
401 NIL
402 1
403 T
404 OBSERVER
405 NIL
406 S
407 NIL
408 NIL
409 1
410
411 BUTTON
412 15
413 41
414 78
415 74
416 go
417 ; i f e l s e t i c k s != 50000 [ go ] [ s top ]\n ; i f e l s e t i c k s != 499

[ go ] [ s top ]\ n i f e l s e ex i t−f i r s t −t i c k = 0 [ go ] [ s top ]\n ;
go\n

418 T
419 1
420 T
421 OBSERVER
422 NIL
423 G
424 NIL
425 NIL
426 1
427
428 BUTTON
429 15
430 74
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431 78
432 107
433 step
434 go
435 NIL
436 1
437 T
438 OBSERVER
439 NIL
440 NIL
441 NIL
442 NIL
443 1
444
445 SLIDER
446 118
447 180
448 290
449 213
450 N
451 N
452 0
453 2000
454 1
455 100
456 1
457 NIL
458 HORIZONTAL
459
460 CHOOSER
461 118
462 12
463 281
464 57
465 mode
466 mode
467 ” fswave ” ” infowave ”
468 0
469
470 CHOOSER
471 118
472 57
473 256
474 102
475 fmap
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476 fmap
477 ”2 .001” ”2 .20” ”2 .25” ”2 .40” ”2 .50” ”2 .60” ”2 .75” ”2 .80”

”2 .999” ” cone” ” i 0 ” ” i10 ” ” i20 ” ” i40 ” ” i60 ” ” i80 ” ”
i100 ”

478 9
479
480 SLIDER
481 118
482 213
483 290
484 246
485 f o r e s i g h t
486 f o r e s i g h t
487 0
488 1
489 0
490 .05
491 1
492 NIL
493 HORIZONTAL
494
495 CHOOSER
496 118
497 135
498 256
499 180
500 maptype
501 maptype
502 ” f i t n e s s ” ” t i c k s ” ” o c c f r e q ” ” e f f i t ”
503 0
504
505 SLIDER
506 118
507 102
508 256
509 135
510 run#
511 run#
512 1
513 100
514 9
515 1
516 1
517 NIL
518 HORIZONTAL
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519
520 SLIDER
521 814
522 10
523 984
524 43
525 bi r th−r a t e
526 bi r th−r a t e
527 0
528 1
529 1
530 0 .1
531 1
532 NIL
533 HORIZONTAL
534
535 SLIDER
536 814
537 43
538 984
539 76
540 death−r a t e
541 death−r a t e
542 0
543 bi r th−r a t e
544 0 .25
545 0 .01
546 1
547 NIL
548 HORIZONTAL
549
550 SWITCH
551 15
552 140
553 105
554 173
555 c o l o n i z e ?
556 c o l o n i z e ?
557 0
558 1
559 −1000
560
561 SLIDER
562 118
563 246

179



564 290
565 279
566 copyrate
567 copyrate
568 0
569 1
570 0
571 0 .05
572 1
573 NIL
574 HORIZONTAL
575
576 PLOT
577 3
578 509
579 244
580 629
581 Pop
582 t i c k s
583 Pop
584 0 .0
585 10 .0
586 0 .0
587 10 .0
588 t rue
589 f a l s e
590 ”” ” ; ask agents [ measure−t o ta l−d i s t anc e ] ”
591 PENS
592 ”Defau l t ” 1 . 0 0 −16777216 true ”” ” ; p lotxy t i c k s count

agents ”
593 ”pen−1” 1 .0 0 −7500403 t rue ”” ” ; p lotxy t i c k s sum [ pop ]

o f agents ”
594
595 PLOT
596 3
597 378
598 245
599 509
600 Tra i t
601 t i c k s
602 Tra i t
603 0 .0
604 1 .0
605 0 .0
606 1 .0

180



607 t rue
608 f a l s e
609 ”” ””
610 PENS
611 ”Median” 100 .0 0 −16777216 t rue ”” ” ; p lotxy t i c k s mean [

acopyrate ] o f agents ”
612
613 MONITOR
614 245
615 378
616 295
617 423
618 MedC
619 median [ acopyrate ] o f agents
620 2
621 1
622 11
623
624 SLIDER
625 118
626 279
627 290
628 312
629 mutation−s i z e
630 mutation−s i z e
631 0
632 . 5
633 0
634 0 .01
635 1
636 NIL
637 HORIZONTAL
638
639 BUTTON
640 250
641 103
642 305
643 136
644 rand
645 s e t run# random 100 + 1
646 NIL
647 1
648 T
649 OBSERVER
650 NIL
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651 NIL
652 NIL
653 NIL
654 1
655
656 PLOT
657 304
658 541
659 504
660 691
661 E f f e c t i v e f i t n e s s
662 NIL
663 NIL
664 0 .0
665 100 .0
666 0 .0
667 1 .0
668 t rue
669 f a l s e
670 ”” ””
671 PENS
672 ” d e f au l t ” 1 . 0 0 −16777216 true ”” ” c l ea r−p lo t \ n i f p lo t s−

on? = TRUE [\ n l e t env 0\ nwhi le [ env <= 100 AND t i c k s
> 0 ] [ \ n s e t env env + 1\n l e t patch−env patch−s e t
patches with [ e l e v a t i o n = env ]\n i f any? patch−env [
p lotxy env mean [ cum−e f f i t ] o f patch−env ]\n ]\n ] ”

673
674 SWITCH
675 15
676 206
677 105
678 239
679 randTrait ?
680 randTrait ?
681 1
682 1
683 −1000
684
685 SLIDER
686 118
687 311
688 290
689 344
690 mutation−r a t e
691 mutation−r a t e
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692 0
693 . 1
694 0
695 .001
696 1
697 NIL
698 HORIZONTAL
699
700 SWITCH
701 15
702 239
703 105
704 272
705 p lo t s−on?
706 p lo t s−on?
707 1
708 1
709 −1000
710
711 MONITOR
712 245
713 423
714 295
715 468
716 MedR
717 median [ f s d i s t ] o f agents
718 2
719 1
720 11
721
722 PLOT
723 504
724 541
725 704
726 691
727 D i sp e r s a l
728 Ticks
729 D i spe r s a l r a t e
730 0 .0
731 100 .0
732 0 .0
733 0 .01
734 t rue
735 f a l s e
736 ”” ””
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737 PENS
738 ” d e f au l t ” 100 .0 0 −16777216 true ”” ” ; p lotxy t i c k s e x i t s

”
739
740 BUTTON
741 831
742 154
743 906
744 187
745 p r o f i l e r
746 ; setup ; ; s e t up the model\ n p r o f i l e r :

s t a r t ; ; s t a r t p r o f i l i n g \nrepeat 10 [ go ]
; ; run something you want to measure\ n p r o f i l e r :

s top ; ; s top p r o f i l i n g \ npr int p r o f i l e r :
r epo r t ; ; view the r e s u l t s \n ; p r i n t p r o f i l e r :
e x c lu s i v e−time \”patch−c a l c s \”\ n p r o f i l e r : r e s e t

; ; c l e a r the data
747 NIL
748 1
749 T
750 OBSERVER
751 NIL
752 NIL
753 NIL
754 NIL
755 1
756
757 PLOT
758 705
759 541
760 905
761 691
762 Wave
763 X ax i s
764 Pop
765 0 .0
766 100 .0
767 0 .0
768 100 .0
769 t rue
770 f a l s e
771 ”” ””
772 PENS
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773 ” d e f au l t ” 1 . 0 0 −16777216 true ”” ” i f waveplot−on? =
true [\ nc lear−p lo t \ n l e t i 1\ nwhi le [ i <= max−pxcor ] \
n [\n plotxy i sum [ pop ] o f agents−on patch i 50 \n
s e t i i + 1\n ]\n ] ”

774
775 SLIDER
776 814
777 76
778 984
779 109
780 move−r a t e
781 move−r a t e
782 0
783 1
784 1
785 . 1
786 1
787 NIL
788 HORIZONTAL
789
790 SWITCH
791 912
792 541
793 1051
794 574
795 waveplot−on?
796 waveplot−on?
797 1
798 1
799 −1000
800
801 MONITOR
802 244
803 509
804 301
805 554
806 Pop
807 count agents
808 0
809 1
810 11
811
812 MONITOR
813 244
814 553
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815 301
816 598
817 Pop
818 sum [ pop ] o f agents
819 0
820 1
821 11
822
823 @#$#@#$#@
824 ## WHAT IS IT?
825
826 Agent−based model that measures the v e l o c i t y o f a F i sher

(1937) wave o f advance enhanced by hominin cogn i t i on
. A r e l a t e d e a r l i e r model may be found here : http : //
www. openabm . org /model /3846/

827
828 Our proxy f o r c ogn i t i on i s the accuracy at which agents

a s s e s s t h e i r r e s ou r c e environment .
829
830 ## HOW IT WORKS
831
832 There are two va r i a t i o n s o f the model , ” fswave ” and ”

infowave ” . In each , agents have t h e i r own populat ion
o f i n d i v i d u a l s and e f f e c t i v e l y the model runs on
these sub−agents . Sub−agents reproduce and move to
s e l e c t e d ne ighbour ing c e l l s . In fswave , sub−agents
move to the h i ghe s t r e s ou r c e c e l l in t h e i r
neighbourhood at p r obab i l i t y ” f o r e s i g h t ” , or randomly
otherw i s e .

833
834 In ” infowave ” , sub−agents copy r e s ou r c e in fo rmat ion from

another random sub−agent , or move randomly otherw i s e
accord ing to p r obab i l i t y copyrate . When copying ,

agents move one c e l l towards the t a r g e t sub−agent i f
they occupy a h igher r e s ou r c e c e l l .

835
836 ## HOW TO USE IT
837
838 Maps are not generated by NetLogo . Download the map s e t

as we l l which ( i n c l ud e s a bash s c r i p t f o r gene ra t ing
your own with GRASS GIS) . Unzip the su r f e q f o l d e r
i n to the same f o l d e r as t h i s n logo f i l e .

839
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840 Choose a he t e r og ene i t y va lue from the ”fmap” l i s t
running from 2.001 ( l e a s t heterogeneous ) to 2 .999 (
most heterogenous ) . C l i ck rand to choose 1 o f the 100
randomly generated s u r f a c e s at the s e l e c t e d

he t e r ogene i t y l e v e l . A l t e rna t i v e l y , choose ” cone” and
run# 1−8 f o r p la in s , c o r r i d o r s , g rad i ent s , and

patches o f r e s ou r c e s . Opt iona l ly a l s o ad jus t other
i n i t i a l parameters . Setup and Go to run .

841
842 See the BehaviourSpace d i a l o g f o r the run s e t s used in

the a r t i c l e .
843
844 Ve loc i ty may be c a l c u l a t ed us ing ex i t−f i r s t −t i c k / 50 .
845
846 ## THINGS TO NOTICE
847
848 Wave v e l o c i t y g en e r a l l y de c r ea s e s with in c r ea s ed ”

f o r e s i g h t ” , r e s ou r c e assessment accuracy , or with
in c r e a s ed ” copyrate ” , p r obab i l i t y o f copying
environmental r e s ou r c e knowledge . The f a s t e s t
v e l o c i t y occurs as a random walk .

849
850 ## CREDITS AND REFERENCES
851
852 Col in D. Wren wrote t h i s model as a part o f h i s PhD

d i s s e r t a t i o n at McGill Un ive r s i ty . An a r t i c l e
stemming from the ” fswave ” model was submitted to a
s p e c i a l i s s u e o f the Journal o f Human Evolut ion under
the t i t l e , Putt ing ( hominin ) thought in to hominin

d i s p e r s a l .
853 @#$#@#$#@
854 de f au l t
855 t rue
856 0
857 Polygon −7500403 t rue t rue 150 5 40 250 150 205 260 250
858
859 a i r p l an e
860 t rue
861 0
862 Polygon −7500403 t rue t rue 150 0 135 15 120 60 120 105

15 165 15 195 120 180 135 240 105 270 120 285 150 270
180 285 210 270 165 240 180 180 285 195 285 165 180

105 180 60 165 15
863
864 arrow
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865 t rue
866 0
867 Polygon −7500403 t rue t rue 150 0 0 150 105 150 105 293

195 293 195 150 300 150
868
869 box
870 f a l s e
871 0
872 Polygon −7500403 t rue t rue 150 285 285 225 285 75 150

135
873 Polygon −7500403 t rue t rue 150 135 15 75 150 15 285 75
874 Polygon −7500403 t rue t rue 15 75 15 225 150 285 150 135
875 Line −16777216 f a l s e 150 285 150 135
876 Line −16777216 f a l s e 150 135 15 75
877 Line −16777216 f a l s e 150 135 285 75
878
879 bug
880 t rue
881 0
882 C i r c l e −7500403 t rue t rue 96 182 108
883 C i r c l e −7500403 t rue t rue 110 127 80
884 C i r c l e −7500403 t rue t rue 110 75 80
885 Line −7500403 t rue 150 100 80 30
886 Line −7500403 t rue 150 100 220 30
887
888 bu t t e r f l y
889 t rue
890 0
891 Polygon −7500403 t rue t rue 150 165 209 199 225 225 225

255 195 270 165 255 150 240
892 Polygon −7500403 t rue t rue 150 165 89 198 75 225 75 255

105 270 135 255 150 240
893 Polygon −7500403 t rue t rue 139 148 100 105 55 90 25 90

10 105 10 135 25 180 40 195 85 194 139 163
894 Polygon −7500403 t rue t rue 162 150 200 105 245 90 275 90

290 105 290 135 275 180 260 195 215 195 162 165
895 Polygon −16777216 true f a l s e 150 255 135 225 120 150 135

120 150 105 165 120 180 150 165 225
896 C i r c l e −16777216 true f a l s e 135 90 30
897 Line −16777216 f a l s e 150 105 195 60
898 Line −16777216 f a l s e 150 105 105 60
899
900 car
901 f a l s e
902 0
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903 Polygon −7500403 t rue t rue 300 180 279 164 261 144 240
135 226 132 213 106 203 84 185 63 159 50 135 50 75 60
0 150 0 165 0 225 300 225 300 180

904 C i r c l e −16777216 true f a l s e 180 180 90
905 C i r c l e −16777216 true f a l s e 30 180 90
906 Polygon −16777216 t rue f a l s e 162 80 132 78 134 135 209

135 194 105 189 96 180 89
907 C i r c l e −7500403 t rue t rue 47 195 58
908 C i r c l e −7500403 t rue t rue 195 195 58
909
910 c i r c l e
911 f a l s e
912 0
913 C i r c l e −7500403 t rue t rue 0 0 300
914
915 c i r c l e 2
916 f a l s e
917 0
918 C i r c l e −7500403 t rue t rue 0 0 300
919 C i r c l e −16777216 true f a l s e 30 30 240
920
921 cow
922 f a l s e
923 0
924 Polygon −7500403 t rue t rue 200 193 197 249 179 249 177

196 166 187 140 189 93 191 78 179 72 211 49 209 48
181 37 149 25 120 25 89 45 72 103 84 179 75 198 76
252 64 272 81 293 103 285 121 255 121 242 118 224 167

925 Polygon −7500403 t rue t rue 73 210 86 251 62 249 48 208
926 Polygon −7500403 t rue t rue 25 114 16 195 9 204 23 213 25

200 39 123
927
928 cy l i nd e r
929 f a l s e
930 0
931 C i r c l e −7500403 t rue t rue 0 0 300
932
933 dot
934 f a l s e
935 0
936 C i r c l e −7500403 t rue t rue 90 90 120
937
938 f a c e happy
939 f a l s e
940 0
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941 C i r c l e −7500403 t rue t rue 8 8 285
942 C i r c l e −16777216 true f a l s e 60 75 60
943 C i r c l e −16777216 true f a l s e 180 75 60
944 Polygon −16777216 t rue f a l s e 150 255 90 239 62 213 47

191 67 179 90 203 109 218 150 225 192 218 210 203 227
181 251 194 236 217 212 240

945
946 f a c e neu t ra l
947 f a l s e
948 0
949 C i r c l e −7500403 t rue t rue 8 7 285
950 C i r c l e −16777216 true f a l s e 60 75 60
951 C i r c l e −16777216 true f a l s e 180 75 60
952 Rectangle −16777216 true f a l s e 60 195 240 225
953
954 f a c e sad
955 f a l s e
956 0
957 C i r c l e −7500403 t rue t rue 8 8 285
958 C i r c l e −16777216 true f a l s e 60 75 60
959 C i r c l e −16777216 true f a l s e 180 75 60
960 Polygon −16777216 t rue f a l s e 150 168 90 184 62 210 47

232 67 244 90 220 109 205 150 198 192 205 210 220 227
242 251 229 236 206 212 183

961
962 f i s h
963 f a l s e
964 0
965 Polygon −1 t rue f a l s e 44 131 21 87 15 86 0 120 15 150 0

180 13 214 20 212 45 166
966 Polygon −1 t rue f a l s e 135 195 119 235 95 218 76 210 46

204 60 165
967 Polygon −1 t rue f a l s e 75 45 83 77 71 103 86 114 166 78

135 60
968 Polygon −7500403 t rue t rue 30 136 151 77 226 81 280 119

292 146 292 160 287 170 270 195 195 210 151 212 30
166

969 C i r c l e −16777216 true f a l s e 215 106 30
970
971 f l a g
972 f a l s e
973 0
974 Rectangle −7500403 t rue t rue 60 15 75 300
975 Polygon −7500403 t rue t rue 90 150 270 90 90 30
976 Line −7500403 t rue 75 135 90 135
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977 Line −7500403 t rue 75 45 90 45
978
979 f l owe r
980 f a l s e
981 0
982 Polygon −10899396 t rue f a l s e 135 120 165 165 180 210 180

240 150 300 165 300 195 240 195 195 165 135
983 C i r c l e −7500403 t rue t rue 85 132 38
984 C i r c l e −7500403 t rue t rue 130 147 38
985 C i r c l e −7500403 t rue t rue 192 85 38
986 C i r c l e −7500403 t rue t rue 85 40 38
987 C i r c l e −7500403 t rue t rue 177 40 38
988 C i r c l e −7500403 t rue t rue 177 132 38
989 C i r c l e −7500403 t rue t rue 70 85 38
990 C i r c l e −7500403 t rue t rue 130 25 38
991 C i r c l e −7500403 t rue t rue 96 51 108
992 C i r c l e −16777216 true f a l s e 113 68 74
993 Polygon −10899396 t rue f a l s e 189 233 219 188 249 173 279

188 234 218
994 Polygon −10899396 t rue f a l s e 180 255 150 210 105 210 75

240 135 240
995
996 house
997 f a l s e
998 0
999 Rectangle −7500403 t rue t rue 45 120 255 285
1000 Rectangle −16777216 true f a l s e 120 210 180 285
1001 Polygon −7500403 t rue t rue 15 120 150 15 285 120
1002 Line −16777216 f a l s e 30 120 270 120
1003
1004 l e a f
1005 f a l s e
1006 0
1007 Polygon −7500403 t rue t rue 150 210 135 195 120 210 60

210 30 195 60 180 60 165 15 135 30 120 15 105 40 104
45 90 60 90 90 105 105 120 120 120 105 60 120 60 135
30 150 15 165 30 180 60 195 60 180 120 195 120 210
105 240 90 255 90 263 104 285 105 270 120 285 135 240
165 240 180 270 195 240 210 180 210 165 195

1008 Polygon −7500403 t rue t rue 135 195 135 240 120 255 105
255 105 285 135 285 165 240 165 195

1009
1010 l i n e
1011 t rue
1012 0
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1013 Line −7500403 t rue 150 0 150 300
1014
1015 l i n e h a l f
1016 t rue
1017 0
1018 Line −7500403 t rue 150 0 150 150
1019
1020 pentagon
1021 f a l s e
1022 0
1023 Polygon −7500403 t rue t rue 150 15 15 120 60 285 240 285

285 120
1024
1025 person
1026 f a l s e
1027 0
1028 C i r c l e −7500403 t rue t rue 110 5 80
1029 Polygon −7500403 t rue t rue 105 90 120 195 90 285 105 300

135 300 150 225 165 300 195 300 210 285 180 195 195
90

1030 Rectangle −7500403 t rue t rue 127 79 172 94
1031 Polygon −7500403 t rue t rue 195 90 240 150 225 180 165

105
1032 Polygon −7500403 t rue t rue 105 90 60 150 75 180 135 105
1033
1034 p lant
1035 f a l s e
1036 0
1037 Rectangle −7500403 t rue t rue 135 90 165 300
1038 Polygon −7500403 t rue t rue 135 255 90 210 45 195 75 255

135 285
1039 Polygon −7500403 t rue t rue 165 255 210 210 255 195 225

255 165 285
1040 Polygon −7500403 t rue t rue 135 180 90 135 45 120 75 180

135 210
1041 Polygon −7500403 t rue t rue 165 180 165 210 225 180 255

120 210 135
1042 Polygon −7500403 t rue t rue 135 105 90 60 45 45 75 105

135 135
1043 Polygon −7500403 t rue t rue 165 105 165 135 225 105 255

45 210 60
1044 Polygon −7500403 t rue t rue 135 90 120 45 150 15 180 45

165 90
1045
1046 sheep
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1047 f a l s e
1048 0
1049 Rectangle −7500403 t rue t rue 151 225 180 285
1050 Rectangle −7500403 t rue t rue 47 225 75 285
1051 Rectangle −7500403 t rue t rue 15 75 210 225
1052 C i r c l e −7500403 t rue t rue 135 75 150
1053 C i r c l e −16777216 true f a l s e 165 76 116
1054
1055 square
1056 f a l s e
1057 0
1058 Rectangle −7500403 t rue t rue 30 30 270 270
1059
1060 square 2
1061 f a l s e
1062 0
1063 Rectangle −7500403 t rue t rue 30 30 270 270
1064 Rectangle −16777216 true f a l s e 60 60 240 240
1065
1066 s t a r
1067 f a l s e
1068 0
1069 Polygon −7500403 t rue t rue 151 1 185 108 298 108 207 175

242 282 151 216 59 282 94 175 3 108 116 108
1070
1071 t a r g e t
1072 f a l s e
1073 0
1074 C i r c l e −7500403 t rue t rue 0 0 300
1075 C i r c l e −16777216 true f a l s e 30 30 240
1076 C i r c l e −7500403 t rue t rue 60 60 180
1077 C i r c l e −16777216 true f a l s e 90 90 120
1078 C i r c l e −7500403 t rue t rue 120 120 60
1079
1080 t r e e
1081 f a l s e
1082 0
1083 C i r c l e −7500403 t rue t rue 118 3 94
1084 Rectangle −6459832 t rue f a l s e 120 195 180 300
1085 C i r c l e −7500403 t rue t rue 65 21 108
1086 C i r c l e −7500403 t rue t rue 116 41 127
1087 C i r c l e −7500403 t rue t rue 45 90 120
1088 C i r c l e −7500403 t rue t rue 104 74 152
1089
1090 t r i a n g l e
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1091 f a l s e
1092 0
1093 Polygon −7500403 t rue t rue 150 30 15 255 285 255
1094
1095 t r i a n g l e 2
1096 f a l s e
1097 0
1098 Polygon −7500403 t rue t rue 150 30 15 255 285 255
1099 Polygon −16777216 t rue f a l s e 151 99 225 223 75 224
1100
1101 truck
1102 f a l s e
1103 0
1104 Rectangle −7500403 t rue t rue 4 45 195 187
1105 Polygon −7500403 t rue t rue 296 193 296 150 259 134 244

104 208 104 207 194
1106 Rectangle −1 t rue f a l s e 195 60 195 105
1107 Polygon −16777216 t rue f a l s e 238 112 252 141 219 141 218

112
1108 C i r c l e −16777216 true f a l s e 234 174 42
1109 Rectangle −7500403 t rue t rue 181 185 214 194
1110 C i r c l e −16777216 true f a l s e 144 174 42
1111 C i r c l e −16777216 true f a l s e 24 174 42
1112 C i r c l e −7500403 f a l s e t rue 24 174 42
1113 C i r c l e −7500403 f a l s e t rue 144 174 42
1114 C i r c l e −7500403 f a l s e t rue 234 174 42
1115
1116 t u r t l e
1117 t rue
1118 0
1119 Polygon −10899396 t rue f a l s e 215 204 240 233 246 254 228

266 215 252 193 210
1120 Polygon −10899396 t rue f a l s e 195 90 225 75 245 75 260 89

269 108 261 124 240 105 225 105 210 105
1121 Polygon −10899396 t rue f a l s e 105 90 75 75 55 75 40 89 31

108 39 124 60 105 75 105 90 105
1122 Polygon −10899396 t rue f a l s e 132 85 134 64 107 51 108 17

150 2 192 18 192 52 169 65 172 87
1123 Polygon −10899396 t rue f a l s e 85 204 60 233 54 254 72 266

85 252 107 210
1124 Polygon −7500403 t rue t rue 119 75 179 75 209 101 224 135

220 225 175 261 128 261 81 224 74 135 88 99
1125
1126 wheel
1127 f a l s e
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1128 0
1129 C i r c l e −7500403 t rue t rue 3 3 294
1130 C i r c l e −16777216 true f a l s e 30 30 240
1131 Line −7500403 t rue 150 285 150 15
1132 Line −7500403 t rue 15 150 285 150
1133 C i r c l e −7500403 t rue t rue 120 120 60
1134 Line −7500403 t rue 216 40 79 269
1135 Line −7500403 t rue 40 84 269 221
1136 Line −7500403 t rue 40 216 269 79
1137 Line −7500403 t rue 84 40 221 269
1138
1139 x
1140 f a l s e
1141 0
1142 Polygon −7500403 t rue t rue 270 75 225 30 30 225 75 270
1143 Polygon −7500403 t rue t rue 30 75 75 30 270 225 225 270
1144
1145 @#$#@#$#@
1146 NetLogo 5 .0
1147 @#$#@#$#@
1148 @#$#@#$#@
1149 @#$#@#$#@
1150 <experiments>
1151 <experiment name=”i n f o fp ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1152 <setup>setup</setup>
1153 <go>go</go>
1154 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s / fp ” fmap ” ” run# ” . csv ”)
1155 d i sp lay−e l e v a t i o n
1156 export−view (word ” i n f o s h a r e / s c r e en sho t s / fp ” fmap ” ”

run# ” . png ”)
1157 d i sp lay−e f f i t
1158 export−view (word ” i n f o s h a r e / s c r e en sho t s / f p e f ” fmap ” ”

run# ” . png ”)</ f i n a l>
1159 <t imeLimit s t ep s=”100000”/>
1160 <metric>nummap</metric>
1161 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1162 <metric>mean [ acopyrate ] o f agents</metric>
1163 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . csv ”)

</metric>
1164 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . png ”)

</metric>
1165 <metric>(word ” s c r e en sho t s / f p e f ” fmap ” ” run# ” .

png ”)</metric>
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1166 <enumeratedValueSet v a r i a b l e=”random−seed”>
1167 <value va lue=”1”/>
1168 </enumeratedValueSet>
1169 <enumeratedValueSet v a r i a b l e=”N”>
1170 <value va lue=”500”/>
1171 </enumeratedValueSet>
1172 <enumeratedValueSet v a r i a b l e=”maptype”>
1173 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1174 </enumeratedValueSet>
1175 <enumeratedValueSet v a r i a b l e=”mode”>
1176 <value va lue=”&quot ; i n f o&quot ;”/>
1177 </enumeratedValueSet>
1178 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
1179 <enumeratedValueSet v a r i a b l e=”fmap”>
1180 <value va lue=”&quot ;2 .001& quot ;”/>
1181 <value va lue=”&quot ;2 .99& quot ;”/>
1182 <value va lue=”&quot ;2 .20& quot ;”/>
1183 <value va lue=”&quot ;2 .40& quot ;”/>
1184 <value va lue=”&quot ;2 .60& quot ;”/>
1185 <value va lue=”&quot ;2 .80& quot ;”/>
1186 </enumeratedValueSet>
1187 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1188 <value va lue=”true”/>
1189 </enumeratedValueSet>
1190 <enumeratedValueSet v a r i a b l e=”copyrate”>
1191 <value va lue=”0”/>
1192 </enumeratedValueSet>
1193 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1194 <value va lue=”0.1”/>
1195 </enumeratedValueSet>
1196 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1197 <value va lue=”0”/>
1198 </enumeratedValueSet>
1199 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1200 <value va lue=”0.1”/>
1201 </enumeratedValueSet>
1202 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1203 <value va lue=”0.0010”/>
1204 </enumeratedValueSet>
1205 </experiment>
1206 <experiment name=”i n f o fp c on t r o l ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1207 <setup>setup</setup>
1208 <go>go</go>

196



1209 <t imeLimit s t ep s=”100000”/>
1210 <metric>nummap</metric>
1211 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1212 <metric>mean [ acopyrate ] o f agents</metric>
1213 <enumeratedValueSet v a r i a b l e=”random−seed”>
1214 <value va lue=”1”/>
1215 </enumeratedValueSet>
1216 <enumeratedValueSet v a r i a b l e=”N”>
1217 <value va lue=”500”/>
1218 </enumeratedValueSet>
1219 <enumeratedValueSet v a r i a b l e=”maptype”>
1220 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1221 </enumeratedValueSet>
1222 <enumeratedValueSet v a r i a b l e=”mode”>
1223 <value va lue=”&quot ; i n f o&quot ;”/>
1224 </enumeratedValueSet>
1225 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
1226 <enumeratedValueSet v a r i a b l e=”fmap”>
1227 <value va lue=”&quot ;2 .001& quot ;”/>
1228 <value va lue=”&quot ;2 .99& quot ;”/>
1229 <value va lue=”&quot ;2 .20& quot ;”/>
1230 <value va lue=”&quot ;2 .40& quot ;”/>
1231 <value va lue=”&quot ;2 .60& quot ;”/>
1232 <value va lue=”&quot ;2 .80& quot ;”/>
1233 </enumeratedValueSet>
1234 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1235 <value va lue=”0.2”/>
1236 </enumeratedValueSet>
1237 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1238 <value va lue=”0”/>
1239 </enumeratedValueSet>
1240 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1241 <value va lue=”true”/>
1242 </enumeratedValueSet>
1243 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1244 <value va lue=”0.05”/>
1245 </enumeratedValueSet>
1246 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1247 <value va lue=”0”/>
1248 </enumeratedValueSet>
1249 <enumeratedValueSet v a r i a b l e=”copyrate”>
1250 <value va lue=”0”/>
1251 </enumeratedValueSet>
1252 </experiment>
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1253 <experiment name=”i n f o pp” r e p e t i t i o n s =”1”
runMetr icsEveryStep=” f a l s e ”>

1254 <setup>setup</setup>
1255 <go>go</go>
1256 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s /pp” fmap ” ” run# ” . csv ”)
1257 d i sp lay−e l e v a t i o n
1258 export−view (word ” i n f o s h a r e / s c r e en sho t s /pp” fmap ” ”

run# ” . png ”)
1259 d i sp lay−e f f i t
1260 export−view (word ” i n f o s h a r e / s c r e en sho t s / pp e f ” fmap ” ”

run# ” . png ”)</ f i n a l>
1261 <t imeLimit s t ep s=”100000”/>
1262 <ex i tCondi t ion>count agents &l t ;= 10</ ex i tCondi t ion>
1263 <metric>nummap</metric>
1264 <metric>count agents</metric>
1265 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1266 <metric>mean [ acopyrate ] o f agents</metric>
1267 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . csv ”)

</metric>
1268 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . png ”)

</metric>
1269 <metric>(word ” s c r e en sho t s / pp e f ” fmap ” ” run# ” .

png ”)</metric>
1270 <enumeratedValueSet v a r i a b l e=”random−seed”>
1271 <value va lue=”1”/>
1272 </enumeratedValueSet>
1273 <enumeratedValueSet v a r i a b l e=”N”>
1274 <value va lue=”500”/>
1275 </enumeratedValueSet>
1276 <enumeratedValueSet v a r i a b l e=”maptype”>
1277 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1278 </enumeratedValueSet>
1279 <enumeratedValueSet v a r i a b l e=”mode”>
1280 <value va lue=”&quot ; i n f o&quot ;”/>
1281 </enumeratedValueSet>
1282 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
1283 <enumeratedValueSet v a r i a b l e=”fmap”>
1284 <value va lue=”&quot ;2 .001& quot ;”/>
1285 <value va lue=”&quot ;2 .99& quot ;”/>
1286 <value va lue=”&quot ;2 .20& quot ;”/>
1287 <value va lue=”&quot ;2 .40& quot ;”/>
1288 <value va lue=”&quot ;2 .60& quot ;”/>
1289 <value va lue=”&quot ;2 .80& quot ;”/>
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1290 </enumeratedValueSet>
1291 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1292 <value va lue=”true”/>
1293 </enumeratedValueSet>
1294 <enumeratedValueSet v a r i a b l e=”copyrate”>
1295 <value va lue=”0”/>
1296 </enumeratedValueSet>
1297 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1298 <value va lue=”0.1”/>
1299 </enumeratedValueSet>
1300 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1301 <value va lue=”0.06”/>
1302 </enumeratedValueSet>
1303 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1304 <value va lue=”0.1”/>
1305 </enumeratedValueSet>
1306 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1307 <value va lue=”0.0010”/>
1308 </enumeratedValueSet>
1309 </experiment>
1310 <experiment name=”i n f o fp &gt ; N” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1311 <setup>setup</setup>
1312 <go>go</go>
1313 < f i n a l>export−p lo t ”Tra i t ” (word ” i n f o s h a r e /

s c r e en sho t s / f i x ed ” fmap ” ” run# ” ” N ” . csv ”)</
f i n a l>

1314 <t imeLimit s t ep s=”100000”/>
1315 <metric>nummap</metric>
1316 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1317 <metric>mean [ acopyrate ] o f agents</metric>
1318 <enumeratedValueSet v a r i a b l e=”random−seed”>
1319 <value va lue=”1”/>
1320 </enumeratedValueSet>
1321 <enumeratedValueSet v a r i a b l e=”N”>
1322 <value va lue=”200”/>
1323 <value va lue=”1000”/>
1324 <value va lue=”2000”/>
1325 </enumeratedValueSet>
1326 <enumeratedValueSet v a r i a b l e=”maptype”>
1327 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1328 </enumeratedValueSet>
1329 <enumeratedValueSet v a r i a b l e=”mode”>
1330 <value va lue=”&quot ; i n f o&quot ;”/>
1331 </enumeratedValueSet>
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1332 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”10”
l a s t =”100”/>

1333 <enumeratedValueSet v a r i a b l e=”fmap”>
1334 <value va lue=”&quot ;2 .001& quot ;”/>
1335 </enumeratedValueSet>
1336 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1337 <value va lue=”0.2”/>
1338 </enumeratedValueSet>
1339 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1340 <value va lue=”0”/>
1341 </enumeratedValueSet>
1342 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1343 <value va lue=”true”/>
1344 </enumeratedValueSet>
1345 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1346 <value va lue=”0.05”/>
1347 </enumeratedValueSet>
1348 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1349 <value va lue=”0.01”/>
1350 </enumeratedValueSet>
1351 <enumeratedValueSet v a r i a b l e=”copyrate”>
1352 <value va lue=”0”/>
1353 </enumeratedValueSet>
1354 </experiment>
1355 <experiment name=”rad iu s pp” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1356 <setup>setup</setup>
1357 <go>go</go>
1358 < f i n a l>export−p lo t ” Fore s i ght Distance ” (word ”

f s d i s t / s c r e en sho t s /pp” fmap ” ” run# ” ”
f o r e s i g h t ” . csv ”)

1359 d i sp lay−e l e v a t i o n
1360 export−view (word ” f s d i s t / s c r e en sho t s /pp” fmap ” ” run#

” . png ”)
1361 d i sp lay−e f f i t
1362 export−view (word ” f s d i s t / s c r e en sho t s / pp e f ” fmap ” ”

run# ” . png ”)</ f i n a l>
1363 <t imeLimit s t ep s=”100000”/>
1364 <metric>nummap</metric>
1365 <metric>count agents</metric>
1366 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1367 <metric>mean [ acopyrate ] o f agents</metric>
1368 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . csv ”)

</metric>
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1369 <metric>(word ” s c r e en sho t s /pp” fmap ” ” run# ” . png ”)
</metric>

1370 <metric>(word ” s c r e en sho t s / pp e f ” fmap ” ” run# ” .
png ”)</metric>

1371 <enumeratedValueSet v a r i a b l e=”random−seed”>
1372 <value va lue=”1”/>
1373 </enumeratedValueSet>
1374 <enumeratedValueSet v a r i a b l e=”N”>
1375 <value va lue=”500”/>
1376 </enumeratedValueSet>
1377 <enumeratedValueSet v a r i a b l e=”maptype”>
1378 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1379 </enumeratedValueSet>
1380 <enumeratedValueSet v a r i a b l e=”mode”>
1381 <value va lue=”&quot ; r ad iu s&quot ;”/>
1382 </enumeratedValueSet>
1383 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
1384 <enumeratedValueSet v a r i a b l e=”fmap”>
1385 <value va lue=”&quot ;2 .001& quot ;”/>
1386 <value va lue=”&quot ;2 .99& quot ;”/>
1387 <value va lue=”&quot ;2 .20& quot ;”/>
1388 <value va lue=”&quot ;2 .40& quot ;”/>
1389 <value va lue=”&quot ;2 .60& quot ;”/>
1390 <value va lue=”&quot ;2 .80& quot ;”/>
1391 </enumeratedValueSet>
1392 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1393 <value va lue=”0.25”/>
1394 <value va lue=”0.75”/>
1395 </enumeratedValueSet>
1396 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1397 <value va lue=”0.1”/>
1398 </enumeratedValueSet>
1399 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1400 <value va lue=”0.07”/>
1401 </enumeratedValueSet>
1402 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1403 <value va lue=”0.5”/>
1404 </enumeratedValueSet>
1405 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1406 <value va lue=”0.0010”/>
1407 </enumeratedValueSet>
1408 </experiment>
1409 <experiment name=”rad iu s fp ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
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1410 <setup>setup</setup>
1411 <go>go</go>
1412 < f i n a l>export−p lo t ” Fore s i ght Distance ” (word ”

f s d i s t / s c r e en sho t s / fp ” fmap ” ” run# ” ”
f o r e s i g h t ” . csv ”)

1413 d i sp lay−e l e v a t i o n
1414 export−view (word ” f s d i s t / s c r e en sho t s / fp ” fmap ” ” run#

” . png ”)
1415 d i sp lay−e f f i t
1416 export−view (word ” f s d i s t / s c r e en sho t s / f p e f ” fmap ” ”

run# ” . png ”)</ f i n a l>
1417 <t imeLimit s t ep s=”100000”/>
1418 <metric>nummap</metric>
1419 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1420 <metric>mean [ acopyrate ] o f agents</metric>
1421 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . csv ”)

</metric>
1422 <metric>(word ” s c r e en sho t s / fp ” fmap ” ” run# ” . png ”)

</metric>
1423 <metric>(word ” s c r e en sho t s / f p e f ” fmap ” ” run# ” .

png ”)</metric>
1424 <enumeratedValueSet v a r i a b l e=”random−seed”>
1425 <value va lue=”1”/>
1426 </enumeratedValueSet>
1427 <enumeratedValueSet v a r i a b l e=”N”>
1428 <value va lue=”500”/>
1429 </enumeratedValueSet>
1430 <enumeratedValueSet v a r i a b l e=”maptype”>
1431 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1432 </enumeratedValueSet>
1433 <enumeratedValueSet v a r i a b l e=”mode”>
1434 <value va lue=”&quot ; r ad iu s&quot ;”/>
1435 </enumeratedValueSet>
1436 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”100”/>
1437 <enumeratedValueSet v a r i a b l e=”fmap”>
1438 <value va lue=”&quot ;2 .001& quot ;”/>
1439 <value va lue=”&quot ;2 .99& quot ;”/>
1440 <value va lue=”&quot ;2 .20& quot ;”/>
1441 <value va lue=”&quot ;2 .40& quot ;”/>
1442 <value va lue=”&quot ;2 .60& quot ;”/>
1443 <value va lue=”&quot ;2 .80& quot ;”/>
1444 </enumeratedValueSet>
1445 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1446 <value va lue=”0.25”/>
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1447 <value va lue=”0.75”/>
1448 </enumeratedValueSet>
1449 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1450 <value va lue=”0.1”/>
1451 </enumeratedValueSet>
1452 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1453 <value va lue=”0”/>
1454 </enumeratedValueSet>
1455 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1456 <value va lue=”0.5”/>
1457 </enumeratedValueSet>
1458 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1459 <value va lue=”0.0010”/>
1460 </enumeratedValueSet>
1461 </experiment>
1462 <experiment name=”rad iu s fp &gt ; N” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1463 <setup>setup</setup>
1464 <go>go</go>
1465 < f i n a l>export−p lo t ” Fore s i ght Distance ” (word ”

f s d i s t / s c r e en sho t s / fp ” fmap ” ” run# ” ”
f o r e s i g h t ” ” N ” . csv ”)</ f i n a l>

1466 <t imeLimit s t ep s=”100000”/>
1467 <metric>nummap</metric>
1468 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1469 <metric>mean [ acopyrate ] o f agents</metric>
1470 <enumeratedValueSet v a r i a b l e=”random−seed”>
1471 <value va lue=”1”/>
1472 </enumeratedValueSet>
1473 <enumeratedValueSet v a r i a b l e=”N”>
1474 <value va lue=”100”/>
1475 <value va lue=”1000”/>
1476 <value va lue=”2000”/>
1477 </enumeratedValueSet>
1478 <enumeratedValueSet v a r i a b l e=”maptype”>
1479 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1480 </enumeratedValueSet>
1481 <enumeratedValueSet v a r i a b l e=”mode”>
1482 <value va lue=”&quot ; r ad iu s&quot ;”/>
1483 </enumeratedValueSet>
1484 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”10”

l a s t =”100”/>
1485 <enumeratedValueSet v a r i a b l e=”fmap”>
1486 <value va lue=”&quot ;2 .001& quot ;”/>
1487 </enumeratedValueSet>
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1488 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1489 <value va lue=”0.25”/>
1490 </enumeratedValueSet>
1491 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1492 <value va lue=”0.5”/>
1493 </enumeratedValueSet>
1494 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1495 <value va lue=”0.0010”/>
1496 </enumeratedValueSet>
1497 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1498 <value va lue=”0.5”/>
1499 </enumeratedValueSet>
1500 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1501 <value va lue=”0”/>
1502 </enumeratedValueSet>
1503 </experiment>
1504 <experiment name=”ex i t i n f o ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1505 <setup>setup</setup>
1506 <go>go</go>
1507 < f i n a l>export−p l o t ” D i spe r s a l ” (word ” e x i t /

s c r e en sho t s / i n f o /” copyrate ” ” fmap ” ” run# ” .
csv ”)</ f i n a l>

1508 <t imeLimit s t ep s=”1000”/>
1509 <ex i tCondi t ion>count agents &l t ;= 10</ ex i tCondi t ion>
1510 <metric>nummap</metric>
1511 <metric>count agents</metric>
1512 <metric>mean [ e l e v a t i o n ] o f agents</metric>
1513 <metric>mean [ acopyrate ] o f agents</metric>
1514 <metric>ex i t s </metric>
1515 <metric>t o ta l−e x i t s / t i ck s </metric>
1516 <metric>(word ” s c r e en sho t s / i n f o /” copyrate ” ” fmap

” ” run# ” . csv ”)</metric>
1517 <enumeratedValueSet v a r i a b l e=”random−seed”>
1518 <value va lue=”1”/>
1519 </enumeratedValueSet>
1520 <enumeratedValueSet v a r i a b l e=”N”>
1521 <value va lue=”500”/>
1522 </enumeratedValueSet>
1523 <enumeratedValueSet v a r i a b l e=”maptype”>
1524 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1525 </enumeratedValueSet>
1526 <enumeratedValueSet v a r i a b l e=”mode”>
1527 <value va lue=”&quot ; i n f o&quot ;”/>
1528 </enumeratedValueSet>
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1529 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”
l a s t =”30”/>

1530 <enumeratedValueSet v a r i a b l e=”fmap”>
1531 <value va lue=”&quot ;2 .001& quot ;”/>
1532 <value va lue=”&quot ;2 .999& quot ;”/>
1533 <value va lue=”&quot ;2 .20& quot ;”/>
1534 <value va lue=”&quot ;2 .40& quot ;”/>
1535 <value va lue=”&quot ;2 .60& quot ;”/>
1536 <value va lue=”&quot ;2 .80& quot ;”/>
1537 </enumeratedValueSet>
1538 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1539 <value va lue=”true”/>
1540 </enumeratedValueSet>
1541 <enumeratedValueSet v a r i a b l e=”copyrate”>
1542 <value va lue=”0”/>
1543 <value va lue=”0.25”/>
1544 <value va lue=”0.5”/>
1545 </enumeratedValueSet>
1546 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1547 <value va lue=”1”/>
1548 </enumeratedValueSet>
1549 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1550 <value va lue=”0.75”/>
1551 </enumeratedValueSet>
1552 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1553 <value va lue=”0.1”/>
1554 </enumeratedValueSet>
1555 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1556 <value va lue=”0”/>
1557 </enumeratedValueSet>
1558 </experiment>
1559 <experiment name=”ex i t f swaves ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1560 <setup>setup</setup>
1561 <go>go</go>
1562 <t imeLimit s t ep s=”499”/>
1563 <ex i tCondi t ion>ex i t−f i r s t −t i c k &gt ; 0</ex i tCondi t ion

>
1564 <metric>nummap</metric>
1565 <metric>count agents</metric>
1566 <metric>sum [ pop ] o f agents</metric>
1567 <metric>ex i t−f i r s t −t i ck</metric>
1568 <metric>(word ” s c r e en sho t s /waves/” f o r e s i g h t ” ”

fmap ” ” run# ” . png ”)</metric>
1569 <enumeratedValueSet v a r i a b l e=”random−seed”>
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1570 <value va lue=”1”/>
1571 </enumeratedValueSet>
1572 <enumeratedValueSet v a r i a b l e=”N”>
1573 <value va lue=”1”/>
1574 </enumeratedValueSet>
1575 <enumeratedValueSet v a r i a b l e=”mode”>
1576 <value va lue=”&quot ; fswave&quot ;”/>
1577 </enumeratedValueSet>
1578 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1579 <enumeratedValueSet v a r i a b l e=”fmap”>
1580 <value va lue=”&quot ;2 .001& quot ;”/>
1581 <value va lue=”&quot ;2 .999& quot ;”/>
1582 <value va lue=”&quot ;2 .25& quot ;”/>
1583 <value va lue=”&quot ;2 .50& quot ;”/>
1584 <value va lue=”&quot ;2 .75& quot ;”/>
1585 </enumeratedValueSet>
1586 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1587 <value va lue=”0”/>
1588 <value va lue=”0.25”/>
1589 <value va lue=”0.5”/>
1590 <value va lue=”0.75”/>
1591 <value va lue=”0.99”/>
1592 </enumeratedValueSet>
1593 </experiment>
1594 <experiment name=”ex i t f swaves − p l a i n s and c o r r i d o r s ”

r e p e t i t i o n s =”30” runMetr icsEveryStep=” f a l s e ”>
1595 <setup>setup</setup>
1596 <go>go</go>
1597 <t imeLimit s t ep s=”499”/>
1598 <ex i tCondi t ion>ex i t−f i r s t −t i c k &gt ; 0</ex i tCondi t ion

>
1599 <metric>nummap</metric>
1600 <metric>count agents</metric>
1601 <metric>sum [ pop ] o f agents</metric>
1602 <metric>ex i t−f i r s t −t i ck</metric>
1603 <metric>(word ” s c r e en sho t s /waves/” f o r e s i g h t ” ”

fmap ” ” run# ” ” behaviorspace−run−number ” . png
”)</metric>

1604 <enumeratedValueSet v a r i a b l e=”N”>
1605 <value va lue=”1”/>
1606 </enumeratedValueSet>
1607 <enumeratedValueSet v a r i a b l e=”mode”>
1608 <value va lue=”&quot ; fswave&quot ;”/>
1609 </enumeratedValueSet>
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1610 <enumeratedValueSet v a r i a b l e=”run#”>
1611 <value va lue=”3”/>
1612 <value va lue=”7”/>
1613 <value va lue=”8”/>
1614 <value va lue=”9”/>
1615 </enumeratedValueSet>
1616 <enumeratedValueSet v a r i a b l e=”fmap”>
1617 <value va lue=”&quot ; cone&quot ;”/>
1618 </enumeratedValueSet>
1619 <enumeratedValueSet v a r i a b l e=” f o r e s i g h t ”>
1620 <value va lue=”0”/>
1621 <value va lue=”0.25”/>
1622 <value va lue=”0.5”/>
1623 <value va lue=”0.75”/>
1624 <value va lue=”0.99”/>
1625 </enumeratedValueSet>
1626 </experiment>
1627 <experiment name=”ex i t in fowaves ” r e p e t i t i o n s =”1”

runMetr icsEveryStep=” f a l s e ”>
1628 <setup>setup</setup>
1629 <go>go</go>
1630 < f i n a l>export−p l o t ” D i spe r s a l ” (word ” e x i t /

s c r e en sho t s /wavesc /” copyrate ” ” fmap ” ” run#
” . csv ”)</ f i n a l>

1631 <t imeLimit s t ep s=”499”/>
1632 <ex i tCondi t ion>count agents &gt ;= 9500</

ex i tCondi t ion>
1633 <metric>nummap</metric>
1634 <metric>count agents</metric>
1635 <metric>sum [ pop ] o f agents</metric>
1636 <metric>ex i t−f i r s t −t i ck</metric>
1637 <metric>ex i t−maxpop−t i ck</metric>
1638 <metric>t o ta l−ex i t s </metric>
1639 <metric>t o ta l−e x i t s / t i ck s </metric>
1640 <metric>(word ” s c r e en sho t s /wavesc /” copyrate ” ”

fmap ” ” run# ” . csv ”)</metric>
1641 <metric>(word ” s c r e en sho t s /wavesc /” copyrate ” ”

fmap ” ” run# ” . png ”)</metric>
1642 <enumeratedValueSet v a r i a b l e=”random−seed”>
1643 <value va lue=”1”/>
1644 </enumeratedValueSet>
1645 <enumeratedValueSet v a r i a b l e=”N”>
1646 <value va lue=”1”/>
1647 </enumeratedValueSet>
1648 <enumeratedValueSet v a r i a b l e=”maptype”>
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1649 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1650 </enumeratedValueSet>
1651 <enumeratedValueSet v a r i a b l e=”mode”>
1652 <value va lue=”&quot ; infowave&quot ;”/>
1653 </enumeratedValueSet>
1654 <steppedValueSet v a r i a b l e=”run#” f i r s t =”1” step=”1”

l a s t =”30”/>
1655 <enumeratedValueSet v a r i a b l e=”fmap”>
1656 <value va lue=”&quot ;2 .001& quot ;”/>
1657 <value va lue=”&quot ;2 .999& quot ;”/>
1658 <value va lue=”&quot ;2 .25& quot ;”/>
1659 <value va lue=”&quot ;2 .50& quot ;”/>
1660 <value va lue=”&quot ;2 .75& quot ;”/>
1661 </enumeratedValueSet>
1662 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1663 <value va lue=”true”/>
1664 </enumeratedValueSet>
1665 <enumeratedValueSet v a r i a b l e=”copyrate”>
1666 <value va lue=”0”/>
1667 <value va lue=”0.25”/>
1668 <value va lue=”0.5”/>
1669 <value va lue=”0.75”/>
1670 <value va lue=”0.99”/>
1671 </enumeratedValueSet>
1672 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1673 <value va lue=”1”/>
1674 </enumeratedValueSet>
1675 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1676 <value va lue=”0”/>
1677 </enumeratedValueSet>
1678 <enumeratedValueSet v a r i a b l e=”move−r a t e”>
1679 <value va lue=”1”/>
1680 </enumeratedValueSet>
1681 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1682 <value va lue=”0”/>
1683 </enumeratedValueSet>
1684 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1685 <value va lue=”0”/>
1686 </enumeratedValueSet>
1687 </experiment>
1688 <experiment name=”ex i t in fowaves − p l a i n s and

c o r r i d o r s ” r e p e t i t i o n s =”30” runMetricsEveryStep=”
f a l s e ”>

1689 <setup>setup</setup>
1690 <go>go</go>
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1691 < f i n a l>export−p l o t ” D i spe r s a l ” (word ” e x i t /
s c r e en sho t s /wavescd/” copyrate ” ” fmap ” ” run#
” ” behaviorspace−run−number ” . csv ”)</ f i n a l>

1692 <t imeLimit s t ep s=”499”/>
1693 <ex i tCondi t ion>ex i t−f i r s t −t i c k &gt ; 0</ex i tCondi t ion

>
1694 <metric>nummap</metric>
1695 <metric>count agents</metric>
1696 <metric>sum [ pop ] o f agents</metric>
1697 <metric>ex i t−f i r s t −t i ck</metric>
1698 <metric>ex i t−maxpop−t i ck</metric>
1699 <metric>t o ta l−ex i t s </metric>
1700 <metric>t o ta l−e x i t s / t i ck s </metric>
1701 <metric>(word ” s c r e en sho t s /wavescd/” copyrate ” ”

fmap ” ” run# ” ” behaviorspace−run−number ” . csv
”)</metric>

1702 <metric>(word ” s c r e en sho t s /wavescd/” copyrate ” ”
fmap ” ” run# ” ” behaviorspace−run−number ” . png
”)</metric>

1703 <enumeratedValueSet v a r i a b l e=”N”>
1704 <value va lue=”1”/>
1705 </enumeratedValueSet>
1706 <enumeratedValueSet v a r i a b l e=”maptype”>
1707 <value va lue=”&quot ; f i t n e s s&quot ;”/>
1708 </enumeratedValueSet>
1709 <enumeratedValueSet v a r i a b l e=”mode”>
1710 <value va lue=”&quot ; infowave&quot ;”/>
1711 </enumeratedValueSet>
1712 <enumeratedValueSet v a r i a b l e=”run#”>
1713 <value va lue=”7”/>
1714 <value va lue=”8”/>
1715 <value va lue=”9”/>
1716 <value va lue=”3”/>
1717 </enumeratedValueSet>
1718 <enumeratedValueSet v a r i a b l e=”fmap”>
1719 <value va lue=”&quot ; cone&quot ;”/>
1720 </enumeratedValueSet>
1721 <enumeratedValueSet v a r i a b l e=”c o l o n i z e ?”>
1722 <value va lue=”true”/>
1723 </enumeratedValueSet>
1724 <enumeratedValueSet v a r i a b l e=”copyrate”>
1725 <value va lue=”0”/>
1726 <value va lue=”0.25”/>
1727 <value va lue=”0.5”/>
1728 <value va lue=”0.75”/>
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1729 <value va lue=”0.99”/>
1730 </enumeratedValueSet>
1731 <enumeratedValueSet v a r i a b l e=”bi r th−r a t e”>
1732 <value va lue=”1”/>
1733 </enumeratedValueSet>
1734 <enumeratedValueSet v a r i a b l e=”death−r a t e”>
1735 <value va lue=”0.25”/>
1736 </enumeratedValueSet>
1737 <enumeratedValueSet v a r i a b l e=”move−r a t e”>
1738 <value va lue=”1”/>
1739 </enumeratedValueSet>
1740 <enumeratedValueSet v a r i a b l e=”mutation−s i z e ”>
1741 <value va lue=”0”/>
1742 </enumeratedValueSet>
1743 <enumeratedValueSet v a r i a b l e=”mutation−r a t e”>
1744 <value va lue=”0”/>
1745 </enumeratedValueSet>
1746 </experiment>
1747 </experiments>
1748 @#$#@#$#@
1749 @#$#@#$#@
1750 d e f au l t
1751 0 .0
1752 −0.2 0 1 .0 0 . 0
1753 0 .0 1 1 .0 0 . 0
1754 0 .2 0 1 .0 0 . 0
1755 l i n k d i r e c t i o n
1756 t rue
1757 0
1758 Line −7500403 t rue 150 150 90 180
1759 Line −7500403 t rue 150 150 210 180
1760
1761 @#$#@#$#@
1762 0
1763 @#$#@#$#@
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