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Abstract

The way that we as society consume and enjoy music has changed. Almost ubiquitous
internet connectivity, web-based technologies, and portability of media players nowadays
enable us to access very large repositories of music from almost anywhere, at any time.
However, since the amount of information in these repositories is huge and we only know
a small part of it, finding the proper music to fit into our listening situation can be daunt-
ing. Automated music recommendation systems help people to find music based on their
past music preferences, in acoustic features of the music they have enjoyed, and in addi-
tional sources of information such as music metadata or popularity. However, the value
we assign to music seems to be also dependent on our demographic characteristics, lis-
tening behaviour, and context, and so we hypothesise that these characteristics—which in
the context of this dissertation we call user-centric features—should be considered when
creating music recommendation systems.

In this dissertation we investigate the impact of using user-centric features in the perfor-
mance of music recommendation models. We begin with a summary of previous research
on music preference and listening behaviour, as well as with a review of music listening
information databases. We then examine the main approaches for automated recommen-
dation and how these have been applied in the music domain. Next, we describe the
collection and characteristics of a large dataset of music listening histories, and we for-
malise a set of listening behavioural features that characterise people’s listening traits. We
then evaluate the performance a series of music recommendation models using combina-
tions of user-centric features. Finally, we conclude with a discussion about the dataset, on
user-centric features, and on performance improvement and the music recommendation

industry.
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Résumé

La fagon dont nous, en tant que société, consommons et apprécions la musique a changé.
La quasi omniprésence d"une connexion d’internet, des technologies basées sur le web, et
la portabilité des lecteurs de musique nous permet désormais d’accéder a de tres larges
répertoires musicaux depuis a peu pres partout et a n'importe quel moment. Cependant,
la quantité d’information dans ces répertoires est énorme et dans la mesure ott I'on n’en
connait qu'une petite partie, trouver la musique s’adaptant a notre situation d’écoute peut
devenir décourageant. Les systémes de recommandation automatiques aident les gens a
trouver de la musique en se basant sur leurs préférences musicales passées, sur des de-
scripteurs acoustiques de la musique qu’ils ont appréciée, et sur des sources d'information
supplémentaires comme les métadonnées ou la popularité. Cependant, I'importance que
I'on attribue a la musique semble aussi dépendre des caractéristiques démographiques,
de notre comportement d’écoute, et du contexte d’écoute. Ainsi, nous faisons ’hypothese
que ces caractéristiques—appelées descripteurs utilisateur-centré dans cette dissertation—
doivent étre pris en compte lors de la création de systeme de recommandation musical.
Dans cette dissertation, nous étudions 1'impact del'utilisation de descripteurs utilisateur-

centré sur la performance des modéles de recommandation musicale. Nous commengons
par un résumé des travaux de recherches antérieurs concernant la préférence musicale
et le comportement d’écoute, mais également une revue de littérature des bases de don-
nées d’'informations reliées a 1'écoute musicale. Ainsi, nous examinons les principales
approches de recommandation automatique et comment elles ont été appliquées au do-
maine musical. Ensuite, nous décrivons la collection et les caractéristiques d’un grand en-
semble de données sur I'histoire de I'écoute musicale, et nous formalisons un ensemble de

descripteurs du comportement d’écoute caractérisant les traits d’écoutes d'une personne.
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Nous évaluons ensuite les performances d'une série de modéles de recommandation util-
isant une combinaison de descripteurs utilisateur-centré. Enfin, nous concluons par une
discussion concernant I’ensemble de données, sur les descripteurs utilisateur-centré, et

sur la 'amélioration de la performance et sur I'industrie de la recommandation musicale.
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Chapter 1

Introduction

The life of people is unbearable when there are no choices. A few options give people a
sense of liberation, and when there are more of them, people feel empowered. However,
when the number of choices gets bigger, some people may start becoming disoriented.
With too many of them people become saturated, overloaded. At this point, too many
options debilitate instead of liberate, and this is one of the paradoxes of choice (Schwartz
2004).

During the past few decades, we have seen a dramatic increase in the number of goods
and amount of global information that people can access instantly with the press of a
button. Movies, music, food, books, travel, articles, news, social media feeds, and almost
everything people can imagine can be browsed and accessed effortlessly. However, many
people may know they want something, but they may not be aware of what it is, or how

to access it.
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In this dissertation, we present our research about the automated recommendation of
music. In particular, we investigate about the use of user-centric features to create better

models of recommendation.

1.1 Motivation

The way in which people consume and enjoy music during the last century has changed
drastically, and is still changing rapidly. Throughout the twentieth century people were
exposed to a number of different mediums designed to encode the sound waves of music.
These formats allowed people to play back musical performances at will, whenever and
wherever they want. As a result, people no longer needed to go to specialised venues
to listen to the musical artists they like, and thus the performers were actually separated
from their audience. This change in music consumption also enabled people to consume
music in a similar way in which they consume any product. People could go to a record
store and buy music in a similar fashion that they shop for other goods.

The music industry in general, and the sound recording industry in particular, grew
rapidly during the first 50 years of the twentieth century, and the number of record labels,
artists, and releases exploded during the sixties (Wikstrom 2013). The large increase in
releases meant that people had to be guided to find the artists, releases, and songs they
may be interested in. The guidance came in the form of specialised record store owners or

clerks, and radio DJs. The former tried to sell music the stock they had in their brick-and-
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mortar stores to shop-goers, and the latter searched for music and played it back on their
radio programs, acting as music taste-makers of their audience (Razlogova 2013).

The deregulation of media ownership in the United States that started in the seventies
and that led to the Telecommunications Act law in 1996, eliminated limits on the num-
ber of radio stations a single entity could own (Williams and Roberts 2002). In contrast to
previous decades, this change allowed media firms to merge and to own a large amount
of smaller entities, which ended with an industry controlled by radio “giants” instead of
a larger number of independent, local radio broadcasters. Closely tied to the media in-
dustry, the recording industry and its market turned into an oligopoly. The number of
releases increased, but the music business began to be controlled by a few large corpora-
tions that started to distribute the releases through chain stores, and that also owned and
controlled the radio and the music they broadcast. This replaced the freedom DJs used to
have with a more limited pool of tracks. In parallel, the development of digital recording
in the seventies, its popularisation towards end consumers during the eighties, and the
invention and mass popularization of compressed audio formats in the nineties enabled
deeper changes in music consumption. People no longer needed to actually buy a physical
object that carried the music, the music instead came digitised in small files. Moreover, the
global adoption of the Internet during the late nineties and at the turn of the millennium
finally changed the paradigm of music consumption. People began storing large music
collections on small portable devices and also started sharing audio files through peer-to-
peer networks. People began losing their drive or impetus to pay for enjoying music, they

just wanted access to all the music available, for free. This drastic change in consumption
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marked the collapse of the old music industry, but it was also the beginning of the new
music industry (Wikstrém 2013).

Cleverly, media technology companies started to design new ways of distributing mu-
sic. They saw an opportunity in people’s behavioural change in regard to music consump-
tion, and took advantage of the compressed music file formats and the miniaturisation and
portability of media players. As a result, Apple released the iTunes Store in 2003 after mak-
ing deals with all the major record labels. Their solution to music distribution came in the
form of a large online store made up of individual songs that came from the majority of the
catalogue of the major labels. From the beginning of the iTunes Store, the music business
saw this new model of music distribution as a saviour of their industry. In fact, it was a
big success and sold more than 25 billion songs during its first 10 years (Apple Inc. 2013).

In parallel, Rhapsody and Pandora started in 1999 and 2000, respectively, as online
streaming music services. Instead of selling music files, these services allowed people
to have web-based access to collections of songs, enabling them to listen to pre-made or
self-made music channels, in what can be seen as the evolution of the old radio model
into a customisable online radio. Although streaming services had a slow beginning, the
number of paid subscribers to music subscription services have increased constantly, and
nowadays the revenues from music streaming exhibit the largest increase in the music
industry, with a 45 percent increase average during the past five years. Revenues from
music downloads and physical sales, on the other hand, have had a steady decrease (IFPI
2016). The large and constant increase in revenues from streaming has interested many

new media technology companies. As a result, during the past few years a large num-
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ber of services for media delivery and consumption have appeared in the entertainment
landscape.

Digital music streaming services such as Spotify, Pandora, Deezer, Tidal, Google Play
Music, and video sharing websites such as YouTube and Vimeo nowadays provide real-
time access to millions of songs. In these massive repositories, however, searching and
selecting the best music to match our listening context or mood can be a difficult task
due to the large amount of music available, and our inability to process all the available
information. Music streaming companies offer their customers with alternative ways of
exploring the musical items they have in their databases. For example, listeners can search
directly for specific artists, albums, or songs; browse the whole catalog of a specific musical
artist; check for the most popular artists or songs at a specific moment; and let the system
create recommendations for them. Different ways of interaction and information filtering
provided by these services aim to help people to find the best music to accompany their
everyday life, while at the same time keeping them using their system and paying for the
services provided by these companies.

Automated music streaming systems offer people ways to discover and enjoy music
within large repositories of music. Using different information filtering methods based
on people’s previous musical preferences and ratings, human-entered information about
songs, and analysis of songs” acoustic features, music recommendation systems generate
user-customised recommendations and playlists. However, user-centric music listening
features, such as people’s demographic characteristics, their music listening behaviour

traits, and their listening context, have not yet been extensively incorporated in traditional
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music recommendation systems. Also, the value of music in our everyday life seems to
depend on the context in which we hear music, and so we hypothesise that extracting,
analysing, and exploiting user-centric features may improve the performance of auto-

mated music recommendation systems.

1.2 Research aims and dissertation outline

The research goals of this dissertation are threefold. First, we want to understand how
people make use of music and what are the relevant factors that affect their music prefer-
ence in everyday life. Second, we want to know how general automated recommendation
is formalised, what are the main techniques, and how these can be implemented. Third,
we want to evaluate if the use of user-centric features can improve the performance of a
music recommendation model.

This dissertation is structured in four major parts: (i) an overview of studies concern-
ing the use of music in everyday life and on all major databases of music-related data,
(ii) a comprehensive summary about the recommendation problem and its formalisation,
(iii) the creation of a very large dataset of music listening histories, (iv) the modelling of
people’s listening behaviour by a set of user-centric features and the creation and evalua-
tion of recommendation models learned from the listening data in combination with the
additional user-centric information.

We devote Chapter 2 of the dissertation to a literature review about the uses of music

in everyday life and on research findings of user-centric studies. We also review all freely
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available large music metadatabases, detailing the information they convey and reviewing
the research findings using these databases. In these two sections, we summarised the
insights found and how these discoveries may inform the development of context-aware
music recommendation systems.

In Chapter 3, we provide a review of the techniques developed in the past two decades
for developing and implementing automated recommendation systems. Although most
techniques are domain-agnostic, we will provide insights into how those techniques are
tailored to the domain of music, considering the specific characteristics of music listening
consumption.

In Chapter 4 we describe the assemblage of the Music Listening Histories Dataset
(MLHD). This dataset is made of a large amount of music listening histories collected from
Last.fm—one of the largest and persistent freely accessible repositories of music listening
logs. Over a two-year period we collected 27 billion logs from more than half-a-million
listeners. The size of this dataset allowed us to perform studies of listening behaviour for
different demographic groups.

In Chapter 5, we elaborate on the creation of novel listener profiles for users within the
MLHD dataset. This user information is extracted from self-declared demographics data
and a set of custom-built profiling features characterizing the music listening behaviour
of users. The longevity of the collected listening histories allows their aggregation into
basic forms of listening context. We also use the dataset and the listeners’ profiling fea-
tures in the creation of models for musical artist recommendation learned from the past

preferences of listeners on music items. We end the chapter by using several combinations
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of people’s demographic, profiling, and contextual features, and evaluate their impact in
the performance improvement of a user-centric music recommendation model.

Finally, in Chapter 6 we reflect on the MLHD dataset, the set of user-centric features we
designed, performance improvement and optimisation, and on music recommendation

and the music industry in general.

1.3 Research contributions

Contributions of this dissertation are threefold. Firstly, we collected a dataset of music lis-
tening histories that is two orders of magnitude larger than previously available datasets.
A dataset of this size can be used to perform offline studies of people’s listening behaviour
in isolation, or as a supplement to other big datasets of music-related information. Sec-
ondly, we formalised and developed a set of features to describe and to model aspects
of people’s music listening behaviour. We also visualised how much these features were
correlated to demographic characteristics of listeners. Thirdly, we evaluated if the use of
listeners” demographic, profiling, and contextual features improved the accuracy of a mu-
sic recommendation model, and we also evaluated what combination of features achieved
the best performance.

We hope the insights from this dissertation will inform the implementation of future
automated music recommendation systems using people’s demographic characteristics,

and their listening profile and context in order to create better recommendations.



Chapter 2

Human-music listening interaction

The act of listening to music is always situated in a particular and precise context. Though
being silent, still, and completely focused on music can be seen as the ideal listening sit-
uation, people are usually doing other activities when hearing music and many times
choose specific music to drive or accompany these activities. DeNora (1999) extrapolated
on this idea and suggested that people make use of music “as a technology of the self”
to regulate individual emotional states and drive social agency. The functions of music in
everyday life were studied by Sloboda, O'Neill, and Ivaldi (2001). They found that peo-
ple consciously use music to modify the perception of everyday non-musical activities.
Finally, Sloboda, Lamont, and Greasley (2009) proposed that some people develop exper-
tise in choosing the proper music to achieve specific psychological outcomes for particular
moments. However, they recognised that it is still unclear what music does to people at

different times, and why they choose a particular type of music while being in a particu-
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lar mood or engaged in a specific activity. As a counterpart, Brian Whitman, co-founder
and CTO of the “music intelligence” company The Echo Nest, and now Principal Scientist
at Spotify, acknowledged that none of the music recommendation systems thus far have
looked enough at the listener context (Whitman 2013).

In Section 2.1 of this chapter we will introduce how new technologies have changed the
way in which people experience music in modern everyday life. We will also review the
interactions between music, listener, and context, and the research findings about the dif-
ferent ways in which people make use of music. In Section 2.2 we will present an overview
of the research methods and outcomes of studies about music preference and listening be-
haviour. The music listening factors that previous research on music preference has found
relevant in the context of music preference are presented in Section 2.3. These factors
should provide some guidance on understanding how we listen and make use of music in
our everyday lives, and therefore may be helpful for the design of better automated music
recommendation systems. Music recommendations generated by these systems should
be able to help people to find what they want to listen to for specific moments, matching
their music listening to their everyday activities.

Finally, in Section 2.4 we will describe the characteristics and technology needed to
collect and analyse large amounts of data, in Section 2.5 we will present a review of sources
of big music data, and in Section 2.6 we will provide a comprehensive summary of all

available big music listening databases.
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2.1 Music in everyday life

Music left the spaces devoted exclusively to music enjoyment a long time ago and entered
our daily life, surrounding and accompanying us wherever we go. These days, it is possi-
ble to listen to music by means of headphones or loudspeakers in just about any setting.
Moreover, fast technological changes in the last two decades have led to changes in the
availability and diversity of music at one’s disposal as well as in the ways in which we
enjoy, use, and “consume” music. In particular, the digital revolution and the miniatur-
ization and portability of new music playback equipment have made music ubiquitous
in everyday life. People now can listen to practically any music at any time by means of
carrying their own music collections in portable devices or by accessing massive online
repositories of music.

The thoughts about experiencing music in everyday life posed by Kone¢ni (1982, p.

499) more than 30 years ago seem valid, contemporary, and omnipresent:

“... one of the most important ... changes in music appreciation is the fact that
music is nowadays so frequently enjoyed in a great variety of social contexts
... active listening to music has become fully embedded in the stream of daily
life ... People listen to music while working, talking, eating, engaging in sexual
intercourse ... What music does to people at different times, why they choose
to listen to it so much, and why they choose a particular type of music while
engages in a particular activity—all of these are important and unanswered

questions.”
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Konetni (1982) emphasised that listeners are stimulated not only by the arousal po-
tential of the music but also by their immediate environment. As a result, they sum up
the arousal from the music and from the listening context where the music is experienced.
People within environments with high levels of arousal choose low-arousal music to mod-
erate the excess of arousal of the listening context, and vice versa. Although this model
can be seen as a continuous interaction between music and the listening context. However,
it does not account for the fact that people sometimes want to polarise or perpetuate, in-
stead of moderate, their levels of arousal when choosing music. For example, polarisation
approaches can be observed in situations such as dancing with friends at parties, or when
singing or listening to soft music at a child’s bedtime.

Based on Kone¢ni’s model, North and Hargreaves developed a series of experiments
in order to try to understand people’s preferences and choices of music in everyday life. In
North and Hargreaves (1996), they asked a group of young people to rate the likeness of a
set of verbal descriptions with a set of everyday life listening situations. They found that
the preferences of listeners varied with the listening environment, but this pattern did
not follow strictly a pattern of arousal moderation. It seemed that this group of people
sometimes chose music to perpetuate a state. Later on, they asked people to choose music
for accompanying physical exercise, for relaxation, and also for listening to music after
those activities (North and Hargreaves 2000). They found that individuals engaged in
activities usually wanted to maintain their levels of arousal, but following the activity, they
wanted to change those levels. As a result, they hypothesised that the musical preferences

of people depended upon their goals, and what they called arousal-based goals.
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North and Hargreaves also studied other characteristics that may influence people’s
perception of and preference for music. They noted that people change the preferences
for music pieces they express depending upon who else is listening to, or has expressed
liking for, the same music pieces. The authors called this characteristic compliance ef-
fects (North and Hargreaves 2008). Moreover, they also used the concept of prestige for
denoting the change in the expressed preferences of listeners for music that they are not
particularly familiar with, but that they think belong to a particular social group, as in the
case of most academic music (North and Hargreaves 2007). These two characteristics are
consistent with the thoughts of Bourdieu (1984), who studied the aesthetic preferences and
taste of people for cultural objects and found that these are rooted in the social structure.
That is, in people’s education and in the social classes that they are part of.

Hargreaves, MacDonald, and Miell (2005) developed a conceptual model designed to
explain the interactions between music, listener, and listening situation. They named their
model the reciprocal response model. In this model, the effects between the three factors
are bi-directional and any of the factors affect the other two in a reciprocal feedback fash-
ion. Hence, music and listener are not the only factors in the interaction between music
and listener; the context of listening is a third variable that influences, and is influenced
by, the two others.

The reciprocal response model establishes that the relationship between music and
listening context refers to the idea that some music genres and styles fit better for cer-
tain places or activities. The relationship between listening situation and listener refers

to the existence of different individual uses of music to achieve particular goals for spe-
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cific contexts. Finally, the relationship between listener and music establishes the constant
evolution and change in individual preferences and taste. Consequently, music is experi-
enced by listeners within specific listening contexts or situations that modulate people’s
perception about it.

People use music in different ways and so understanding these uses has also been
a topic of research. Sloboda, Lamont, and Greasley (2009) identified an array of differ-
ent recurring functions when people choose music for accompanying activities with non-
musical goals. They found that music is used as distraction to reduce boredom, or as a
means of energizing and maintaining task attention and arousal. Itis also used as entrain-
ment when performing repetitive tasks that may need synchronizing one’s movements
with rhythmic pulses in the music, or as a meaning enhancer to activities, by adding an
external value and changing our perception of them. However, when the activities people
perform are related to focused music listening, Sloboda, Lamont, and Greasley alluded
to other different uses. These were reminiscence, or the reminding oneself of past events;
mood management, or using music to modulate our emotions; and using music as a con-

tirmation of social identity, when we use it to carry messages to others about ourselves.

2.2 Music listening studies

Investigating how people listen to music and how they make use of music in everyday life
can be done through a number of means. Previous research, especially coming from the

music psychology field, usually implemented user-driven studies. In this type of studies all
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the data collection comes directly from asking, interviewing, or observing people. An al-
ternative method is the data-driven approach, where large amounts of data collected from
people’s digital traces is used to try to understand how people listen to and use music.
These two approaches are complementary. While user-driven studies are designed to col-
lect data about specific research questions, they are expensive to run, their coverage is lim-
ited, and subjects must agree to participate in the study. As a result, the population sample
is usually biased, especially towards freshmen psychology undergraduate students from
a specific university, and so studies carried out with these methods may not reflect the ev-
eryday listening practices of a broad population. On the other hand, data-driven studies
make use of big datasets of music listening or music preference logs to analyse a much
larger population with lower costs of implementation, with data point that usually cover
longer periods of time. Typically, however, data-driven studies are based on datasets that
were not necessarily designed to answer a specific set of research questions. As a result, in
these type of studies researchers have to find a way of filtering, parsing, and aggregating
the data in order to try to to answer their research questions.

In the next two subsections we will provide a review of some user-driven and data-

driven studies on music listening behaviour in terms of their methods and results.

2.2.1 User-driven studies

A great portion of data and evidence in relation to the uses of music in everyday life comes
from music psychology research using qualitative ethnographic methods. We will now

review previous studies and findings about people’s use of music using these methods.
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Free questionnaires and interviews The logic and motivation behind music listening be-
haviours are too complex to be captured with simple questionnaires. As a result, re-
searchers have used free questionnaires and interviews to make listeners freely talk
about how they make use of music in their everyday life. North and Hargreaves
(1996) wanted to understand the interaction and influence between the listening sit-
uation on reported musical preferences. By means of questionnaires, their study
found that participants” reported musical preference varied between the proposed
listening situations. Their research only considered undergraduate students of the
same university, and so their conclusions may be biased towards only understanding
the preferences of a particular group of people, with probably similar taste, experi-
ences, and exposure to music. Later on, DeNora (2000) interviewed a group of 52
women from the United States and United Kingdom aged 18 to 77 about their uses
and choices of music in everyday contexts. The interviewees described how they
use music for different goals, stating that the choice of music depended upon the
requirements of the activity they were doing, as well as in how they recall using the
same music in the past. With the goal of understanding people’s music preferences
and listening behaviour throughout the day, but focused on what those people per-
ceived as important in shaping their music preferences, Greasley and Lamont (2006)
interviewed 23 British young adults and adults in their own homes. They found that
listeners were consciously aware about their use of music as a mood regulation agent,
and also that people’s preferences can not be simply categorised in terms of musical

genres. Chamorro-Premuzic and Furnham (2007) conducted a questionnaire-based
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study on 341 people to understand the correlation between individual traits and spe-
cific uses of music in everyday life. They found that differences in cognitive ability
and personality traits influence how people make use of music in everyday life. Their

study, however, was limited to undergraduate students from the US and UK.

Surveys This method has been extensively used to study large but limited populations
about how they make use of music in their everyday lives. North, Hargreaves, and
O’NEeill (2000) surveyed a few thousand British adolescents about the reasons why
they listened to music. The authors found that music was of central importance for
adolescents. It helped them to fulfil their emotional and cognitive needs as well as
to project an image of themselves to other people. Haake (2006) surveyed the use
and effects of music in working environments, particularly offices, and found that
self-selected music was perceived as enhancing personal well-being as well as work
performance. However, their study did not provide any insights about people’s per-
ception on music that they listened but did not choose, which is a common listening
situation in shared working spaces. Surveys were also used to understand how peo-
ple use music while driving (Dibben and Williamson 2007) and to understand how
chronic pain sufferers use music as pain management (Mitchell et al. 2007). Find-
ings of these studies show that music is used by people in those contexts and con-
ditions with different function goals, such as distraction, energisation, and meaning

enhancement.
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Simulated environments Studying how people select and use music in everyday life situ-
ation requires ecological validity (i.e., a real-life situational context). However, some
studies have been carried out in laboratories and simulated environments, where it
is easier to isolate the factors to measure, and where the many variables of every day
life contexts can be controlled. For example, North and Hargreaves (2000) designed
an experimental setting to try to understanding how people make use of music in
order to maintain, or change, a state of arousal. They exposed listeners in a sound-
proof laboratory to specially composed music and sounds while they were doing
exercising and relaxing activities. They found that listeners tended to prefer music
to achieve arousal-based goals, and that musical preferences vary with the listening
situation and activity. This type of study has also been used to test the effects of
different musical features in people’s perception on music. For example, Beh and
Hirst (1999) and Brodsky (2001) studied the relation of the amplitude levels of music
and the effects of musical tempi, respectively, with the performance and behaviour
of people while driving. Participants were studied using simulated conditions since
the task at hand may be dangerous. The results showed that there is a correlation
between the intensity of music and the vigilance performance and also between the
tempo of background music and the participants” perceived speed. Their results,
however, require further investigation since those studies did not replicate real-life
driving conditions and may affect participants’ responses. Also, the population of

the study was again biased towards university undergraduate students.
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Mass observation Studies based on the anonymous observation of people’s behaviour in
real-life contexts have been also used to understand their reaction to music. This
technique was used by DeNora (2000) to investigate entrainment in relation to music
and exercise by means of observing weekly aerobic sessions over a one-year lapse.
She also analysed people’s behaviour in music therapy sessions, karaoke evenings,
and by studying the use of music in the retail sector. Cunningham, Reeves, and
Britland (2003) observed people’s behaviour in public spaces, such as music shops
and the music section of libraries, to understand how people searched and browsed
for music in real-life environments. After the observations, the authors approached
people using interviews and focus groups in order to complement and provide con-

textual information to their study.

Experience sampling method (ESM) ESM has been used in music listening research to
study what people are actually experiencing in terms of music throughout the whole
day at different levels of granularity. When participating in an ESM experiment,
people are asked to stop at non pre-specified times of the day, over several days,
and are required to take notes right away about their listening context and experi-
ence. By using this approach, participants provide information while they are in a
specific listening setting, overcoming the problem of recalling experiences retrospec-
tively. Therefore, ESM allows researchers to collect details about music listening in
the many possible contexts in which people experience it. Sloboda, O’Neill, and

Ivaldi (2001) used ESM to address how people’s moods change as a consequence of
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hearing music. They found that when personal choice over the music was involved,
people were more positive, alert, and focused in the present. Although they noticed
people were highly exposed to music during their daily life, just a few episodes in-
volved listening to music exclusively. In other words, music tended to be used as an
accompaniment to other activities. North, Hargreaves, and Hargreaves (2004) also
employed ESM to collect data about with whom participants were listened to mu-
sic, what they were listening to, and where they were listening, using forced-choice
response. This study was much larger in scope and population size than the one by
Sloboda, O’Neill, and Ivaldi, but their results were similar in regard to the attitude
of the participants toward music heard in everyday life. In other words, music was
rarely the participant’s main focus, it was used as means to achieve other goals. In
addition, it was found that the value assigned to music depended upon the listen-
ing situation and the social context. Greasley and Lamont (2011) also designed an
ESM study in order to study the engagement with music in everyday life, but they
designed the ESM study with forced-choice as well open-ended responses and per-
formed post-study interviews in order to collect qualitative data. They corroborated
previous findings on musical preferences and uses of music but also realised some
of the flaws of using ESM, such as not accounting for intra-individual factors which
may affect the way in which people respond to and use music, and the lack of ac-
counting for participants’ previous experiences with music due to the short sampling

period.
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In contrast to user-driven studies, data-driven studies can take advantage of a stream
of data that is constantly generated and submitted by listeners to databases or web based
services. In the next sections, we will provide details about this kind of study, review
previous research that takes this approach, and summarize insights gained from previous

research on factors affecting preferences in music listening.

2.2.2 Data-driven studies

Data-driven methods require the analysis of large amounts of user data. Some of the
general terms used to denote this methodology and related techniques are lifelogging, life
tracking, quantified self, and personal informatics (Baur 2011). In the case of music, data
can be gathered by collecting the interactions between listeners and online digital music
services, for example. Processes of filtering, selection, aggregation, and abstraction of
the data are subsequently required to test hypotheses or infer conclusions about people’s
listening history, behaviour, or their use of music in everyday life settings.

Advantages of using usage log data are: (i) the scale, because it is not a limiting factor
as in user-driven studies; (ii) statistical power to infer conclusions, due to their large sam-
ple size; (iii) wide demographic and geographic representation, because they can collect
worldwide data from a large sample of the population by means of web-based environ-
ments; (iv) ability measure people’s preferences over extended time of the study, since lis-
tening data can be collected over long periods; and finally, (v) improved ecological validity
since the data can be collected without directly interfering with users (Rijke 2012). This

last advantage is questionable, since generally only computer-savvy listeners are reached
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with these studies, but this trend is changing rapidly. Common downsides of data-driven
music studies are the fact that generally the data only represent a part of the daily experi-
ences of people with music, and the sample size can be large enough to infer conclusions
that work at a big scale, but not necessarily on a smaller scale. As a result, conclusions
using these methods need to be carefully drawn.

Gathering music listening logs can be achieved by collecting data from several social
media and online music services. Baur (2011) categorised two types of collecting systems:
local collectors, which record music logs within their own framework (e.g., Apple’s iTunes
and iPod); and global collectors, which collect and aggregate music log data from several
sources. Not every service that gathers listening logs allows for public access to those logs,
but a few of them allow the free use of the data for academic research or non-commercial
use. Currently, music services that offer their data are Last.fm,' Libre.fm,> and Listen-
Brainz.®> The latter is a spin-off of the MetaBrainz Foundation with the goal of offering
public and permanent store for listeners’ listening data. The service allows listeners to
upload data dumps of listening histories from Last.fm into its database, and makes the
data available under a CCO license, which means its is in the public domain.

Music listening log data have been used in many data-driven studies for studying peo-
ple’s listening behaviour and music preference. Shin et al. (2009) studied the use of raw
user-context information to improve the performance of a music recommendation model.

In order to achieve this, they collected usage log data from a music streaming service and

1. The Last.fm service is available at http://www.last.fm
2. The community-driven music service Libre.fm is available at https://libre.fm/
3. The ListenBrainz project is available at https://listenbrainz.org/
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inferred a temporal listening context from the logs. Although they reported a recommen-
dation accuracy increase when using the contextual data it is not clear how they extracted
raw context since the music logs did not provide specific information about the time zone
where they were generated.

Baltrunas and Amatriain (2009) collected and analysed the listening histories of about
three hundred listeners, and tried to infer commonalities in patterns of musical consump-
tion. By aggregating the listening data into several different daily and weekly segments,
and inferring the implicit preferences of listeners from their ranking artists and track, the
authors were able to improve the accuracy of a music recommendation model by three
percent.

Park and Kahng (2010) analysed the temporal dynamics of one-year usage log data
from several thousands of Korean users of a large online digital music service. They stud-
ied the temporal periodicities of listening behaviour in terms of exposure to music and
preference for music genres. Although they found statistically significant hourly and daily
differences in listening events, they did not find significant trends on the preference for
music genres.

Using four-year data for about 500 users of a music streaming service, Herrera, Resa,
and Sordo (2010) modelled the listeners” genre and artist preferences during different
times of the day and days of the week. The authors only analysed the interactions be-
tween listeners and their top listened artists and musical genres per user. Even with this
small subset, they found that only a small percentage of the listeners tended to prefer

certain artists and genres at specific moments of the day and at certain days of the week.
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Baur, Biittgen, and Butz (2012) studied the temporal characteristics and user’s person-
ality traits of 310 users of a music streaming service by means of performing principal
components analysis on music listening logs spanning up to six years. They searched for
correlations between demographic, behavioural, seasonal, and temporal dimensions be-
tween listeners in the dataset and the music items they experienced. The authors found
a set of 13 components that explained 75 percent of the variance in the music preference
data. In particular, their analysis showed the impact of seasons and the interest of listeners
in variety when choosing music. It is not clear how they were able to isolate seasons since
the data they collected did not provide this information. Also, there is no mathematical
formulation for how they correlate the variability in music listening events and one of the
components of their analysis.

Teixeira (2012) analysed the listening history of 4K users of an online digital music
service living in a single time zone. The author tried to characterise their music listening
sessions by analysing the musical genres they listened to with respect to time and session.
However, he was not able to validate any rules because of the large variability in people’s
listening preferences.

As we have seen above, user-driven and data-driven techniques for studying people’s
use of music and listening behaviour in everyday life provide different ways of approach-
ing the research. While some user-driven studies are designed to collect quantitative data
to test specific questions and hypotheses, others are more qualitative in design, and so
they collect free, open responses to fully capture the richness and complexity of responses

to music in everyday life. Data-driven studies, on the other hand, usually gather data from
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large databases of music listening logs for which users have already agreed to the possi-
bility of sharing their behavioural data. Then, statistical and machine learning techniques
are trained with the collected data in order to perform classification or prediction tasks.
In the next subsection we will provide an overview of the research findings in some of the

music listening factors that affect people’s music preferences in everyday life.

2.3 Music listening factors

How people make use of music their everyday lives is a complex topic. Each person uses
music in a different way, but a single person can also use it differently on a daily basis, be-
cause the same piece of music can have a different meaning for different people, and this
meaning can depend upon the activities and the context the listener is in. Therefore, cre-
ating a single model to describe every interaction is incredibly difficult, if not impossible.
However, previous findings in the literature may be helpful to understand the relation
between how people choose and use music in their everyday life experiences, and the
different listening factors that impact their choices. Now we will describe some of these

tindings in relation to personal, social, demographic, and temporal dimensions.

Personality Music plays an incredibly large role in many aspects of people’s social lives.
It can influence how people feel about themselves, about others, and even about
certain situations. The relation of people’s personality and music preference has
been mainly studied by means of user-driven studies. By means of open interviews,

DeNora (2000) found that people use music as a way to organise their internal and
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surrounding social worlds. In other words, people know what music they have to
listen to in determined contexts in order to obtain certain goals. Later on, DeNora

(2001) suggested that in this sense, people behave as their own disc jockey.

In terms of the relation between personality traits and listening styles, and by means
of doing latent factor analysis in a large sample of undergraduate students, Rentfrow
and Gosling (2003) found that there were correlations between music preferences,
personality dimensions, self-views, and cognitive abilities of the group of people
under study. Based on, and expanding on, those findings, Chamorro-Premuzic and
Furnham (2007) compared IQ scores of listeners with their listening strategies, and
also found correlations between young people’s personality traits and their music
using habits. North and Hargreaves (2008) found that the two main approaches
used by people when choosing music, in terms of their personality are: (i) people
compensate for aspects of their personality when choosing specific music pieces, and
(ii) people opt for certain music to reflect and exacerbate aspects of their personality.
Their finding suggests that people are consciously or unconsciously using music to
signal something to others about their personality and to alter how others perceive

them.

Social context How the social context modulates people’s preference on music has been
widely investigated. By means of a series of user-driven studies, Kemp (1996) and
North and Hargreaves (1996) found that people use music to achieve particular goals

that depend upon the activities they are doing and the context where they are im-
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mersed. Musical preferences are thus associated with the listening environment of
the musical experience. Furthermore, North, Hargreaves, and Hargreaves (2004)
found that a listener’s affinity for music depends upon who the listener is with,
where the listeners are, and whether they have chosen to hear the music or not. Ex-
panding on this, Rana and North (2007) used ESM to study the daily life experiences
of Pakistani listeners, and found that the greatest number of listening episodes oc-
curred in the presence of other people. These studies also showed that music is
usually experienced during the course of other activities, generally as background
to those activities. DeNora (2000), however, inferred from her series of interviews
that people use music to continually reconstruct the aims and goals of their activi-
ties, instead of only using it as background. In other words, people use music as a

“process” rather than as an “object.”

Gender Baur (2011) found that there are no statistically significant differences in how
males and females act in terms of their musical preferences and behaviour. How-
ever, in terms of the types of music people choose to listen to, by means of gathering
listener histories only for Dutch users from a music streaming service, Berkers (2010)
found that males and females had the same preferred artists (Coldplay and Radio-
head), both listened primarily to male artists, and both had a similar range of genres
they listened to. However, when he examined beyond people’s top preferred artists,
he found that young females listened more often to “softer,” and more mainstream

music genres, they listened to more female artists, and they listened to a wider range



2 Human-music listening interaction 28

of genres than males. Similar trends were observed by North and Hargreaves (2008),
who also found that femamles, in general, prefer “softer” musical styles (e.g., main-
stream pop and R&B) and males prefer “harder” and more aggressive styles (e.g.,
rock and rap). Findings by Millar (2008) went further. By means of questionnaires to
an Australian population of young people, they studied gender differences in artist
preferences and concluded that there was a strong gender bias in the majority of
males towards listening mainly to male musicians. In terms of the functions that
people assign to music, North, Hargreaves, and O’Neill (2000) found that young fe-
males and males use music differently. While females use it as a way of fulfilling
their emotional needs (i.e., as mood optimisation), young males use music to cause

an impression on other people (i.e., as impression management).

Age Research findings about the relation of age and music have established that younger
people change their musical taste radically and regularly (Hargreaves, Comber, and
Colley 1995), but they settle for a more general open listening style and stabilise their
music preferences in their late adolescence or early adulthood (Sease and McDonald
2009). Furthermore, North and Hargreaves (2002) found that while this moment in
life marks a critical period in the determination and settlement of music tastes, Baur
(2011) established that older listeners listen to a more diverse variety of music genres

and styles.

Time of the day, weekdays and weekends, and seasons People seem to be highly exposed

to music in everyday life. Using ESM, Sloboda, O’Neill, and Ivaldi (2001) as well as
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North, Hargreaves, and Hargreaves (2004) found that, on a daily basis, people expe-
rienced more music listening events in the evenings in comparison to the morning,
or throughout the day. On a weekly basis, they found that people had more music
listening events during weekends than on weekdays. Overall, they both found that

the chance of being exposed to music during the day was about 40 percent.

By means of a data-centric approach of analysing music listening logs collected from
an online digital music service, Herrera, Resa, and Sordo (2010) found that within
people’s daily exposure to music, some listeners preferred certain artists and gen-
res for specific moments of the day, and at certain days of the week. Park and Kahng
(2010) also analysed music log data and concluded that listeners preferred some gen-
res in particular seasons. Moreover, they established a peak in the number of listen-
ing events in the afternoon of weekdays. However, using a similar approach Biittgen
(2010) found a much larger number of listening experiences in the early evening. Fi-
nally, correlations between seasons and certain characteristics of listeners and music

were found by Baur, Biittgen, and Butz (2012).

Reviewing previous research findings above, there were similarities but also differ-
ences in the insights can be inferred from analysing the listening factors and music pref-
erences. The differences in their observations seem to imply that the correlations and the
trends may depend upon the chosen method of analysis, the population sample, and the
dataset at hand. In fact, the data size of the population samples of previously mentioned

studies varied largely, and the demographic coverage of some of them was biased towards
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specific groups of people of very particular milieus (e.g., a classic example of user-driven
studies is surveying only undergraduate students of a single institution, where being part
of the experiment is sometimes a course requirement).

In Table 2.1 we summarise all previous studies in terms of: (i) authors and year of pub-
lication, (ii) the approach they used for collecting, processing, and analysing the data (i.e.,
user-driven or data-driven studies), (iii) the size of their dataset in number of orders of
magnitude (i.e., “1” means 10-99, “2” means 100-999, “3” means 1000—9999, etc.) of the
population sample, (iv) the demographic coverage of the participants in the study in terms
of country, and (v) the use, or not, of user-centric features—such as demographics, pro-
tiling, and contextual characteristics of the population sample—in the study of people’s
listening behaviour and music preference in everyday life.

On the one hand, the table shows that a large number of user-driven research were
carried out during the last decade. The data size of these studies was relatively small, in
general. Mostly all research was carried out in the UK, with a few exceptions (e.g., Rana
and North (2007) evaluated previous research findings on anglophone populations, on
listeners from Pakistan). The table does not show, however, that most of these studies were
conducted in similar populations of listeners, usually undergraduate students in their late
adolescence or early adulthood. In terms of user-centric characteristics (i.e., demographic,
profiling, and contextual features), many user-driven studies correlated people’s music
preferences and their listening context, but their limited demographic coverage makes it
difficult to extrapolate their results to a larger population. Also, just a few of these studies

tried to correlate listeners’ personality traits and music preference.
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On the other hand, Table 2.1 also shows data-driven studies on people’s use of music
and music preference. Since data-driven approaches use a different method of data collec-
tion, we can see that the magnitude of datasets is larger, in general. Also, the more recent
data-driven studies have expanded their geographic reach by collecting and analysing
data of listeners from more countries, for example Schedl and Hauger (2015) and Schedl
et al. (2015). Also, it can be seen that data-driven studies have started to shift the research
towards studying the correlations of people’s demographic and profiling characteristics
in regard to their music preference, for example in the studies by Baur (2011) and Baur,
Biittgen, and Butz (2012).

Finally, it is interesting to observe that none of the previous research used listeners’
demographic, profiling, and contextual features all at the same time to study music pref-
erence. Since studying all these features at the same time can be difficult due to the ex-
pected large amount of interactions between them, we think that the best possible way of
carrying out this research is by using a very large dataset of music listening interactions.
Consequently, this is the precise, specific spot where we want to establish our research:
we aim to collect a large amount of music listening histories from a wide-reaching group
of listeners, gathering or inferring their demographic, profiling, and contextual features,

in order to evaluate if we can use these signals in the task of music recommendation.

2.3.1 Application of listening factors into music recommendation systems

We hypothesised that some of the previous findings on people’s characteristics and music

preference may be incorporated in the design of recommendation engines in order to help
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these systems to generate recommendations tailored to the specific features, habits, and
contexts of listeners.

First, as has been reviewed, listeners with different personalities use music in different
ways, and so in designing and implementing novel recommendation engines, it seems
reasonable to profile and typify the listeners according to their music listening behaviour,
and fine-tune the recommendations to fulfil the specific needs and uses of each person.

Second, as music is usually chosen for accompanying a specific activity, it would be
sensible to know what activity a listener is doing, is planning to do, or what are the specific
moments in which those activities are frequently done. Thus, recommendations provided
by systems might be used to distract listeners from their boring tasks, or for energizing
and focusing people on their tasks, or for adjusting the meaning of specific activities or
listening context by adding the significance of music.

Third, as it seems that listeners change their listening behaviour and the music they
listen to while in the company with other people, music recommendation systems should
learn from these patterns in order to suggest music items that go along with these con-
texts. For example, a simple approach may consider asking listeners if they are using
headphones. If so, a recommendation system may provide more serendipitous recom-
mendations (i.e., recommendations that are surprisingly interesting that the user was not
expecting) since listeners seem to be more adventurous while they are on their own.

Fourth, serendipity and coverage of music recommendation systems should be depen-
dent upon the age of users. In other words, as previous studies found that older listeners

are more inclined to diverse music than youth, a recommendation engine should pro-
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vide more serendipitous recommendations for this group. Music recommendations for
teenagers, on the other hand, should stick to what they like.

Fifth, music suggestions provided to listeners by music recommender systems should
consider their past listening behaviour. As suggested by previous studies, people have
specific temporal listening patterns that may be exploited to generate better, more sensible
recommendations.

In the previous section we found that there is a lack of large-scale studies about people’s
use of music in everyday life using their demographic, profiling, and contextual features at
the same time (see Table 2.1). We also made clear that that is precise place where we want
to establish our research: to perform a data-centric study of music listening behaviour and
preference considering a large number of people and a set user-centric features. In Section
2.4 we will describe the characteristics and technology needed to collect and analyse large
amounts of data and in Section 2.5 we will present a review of sources of music data.
We will finalise this chapter in Section 2.6 by presenting a comprehensive summary of all

already available big music listening databases.

2.4 Big Music Data

The turn of the millennium also marked a turning point for the music industry. Recorded
music sales declined abruptly due to the rise of peer-to-peer networks and online piracy.
However, the number of yearly released albums continued growing steadily (Frankel and

Gervais 2014). In this new music economy, the digital music consumption landscape has
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kept changing and growing in previously unseen manners. Perceptual-based audio com-
pression algorithms and pervasive mobile Internet access allow listeners ubiquitous music
listening. Listeners are currently witnessing the birth of new channels for listening to mu-
sic, and experiencing it in new ways. People adapt their listening behaviour to these new
mediums but they also influence them. For example, people are no longer interested in
owning physical copies of recorded music or music files, they seem to be more than happy
with just accessing services that provide the ability to listen to the music they want, when-
ever and wherever they like (Wikstrom 2013).

Music streaming services nowadays centralise the access to a large part of the global
music catalogue. These systems allow people to find and discover music by means of
searching for the names of songs, albums, or artists; by browsing for categorical descrip-
tors such as genre or mood; or by automatically generating recommendations or playlists
that people may listen to and, perhaps, like. The recommendations generated by these
systems are usually adaptive to what listeners have enjoyed, and so music services as well
as listeners are learning about how to interact with each other. Since all listening interac-
tions can get stored, large amounts of music listening-related data are readily available for
music listening behavioural analysis.

In the next subsections we will describe the main characteristics of big data, summaris-
ing the main evolving technologies associated with the processing and analysis of large
amounts of information, and we will provide a comprehensive list of publicly-available

databases of music listening information.
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2.4.1 Big data characteristics

Big data is a trending concept about which many lines have been written in the media
and the music industry, as well as in academia. Its conceptual meaning, however, has
been loosely defined, and largely depends upon the field that defines it. On the one hand,
computer scientists are mainly interested in the array of technologies and algorithms to
gather, store, and analyse large amounts of data, and so they tend to focus their work
in these areas. On the other hand, humanists focus their research on the insights and
social implications that can be extracted from social data by analysing people’s digital
traces (Boyd and Crawford 2012). These simultaneous approaches are both essential in the
discussion about big data because they provide different angles and points of view about
this moving-target concept. As a result, many questions regarding big data can be raised
and attempted to be answered: What technologies are and will be needed for dealing
with ever-expanding data repositories? What kind of statistical approaches and machine
learning algorithms will be needed to process and perform fast computational analyses on
large datasets? What kind of insights can be obtained from observing the online behaviour
of people? Do these insights reflect people’s actions and are hence generalizable to real-
life?

Laney (2001) postulated three properties that would characterise data management for
the new millennium, and for which new technical approaches, formalisms, and technolo-
gies ought to be developed: volume, velocity, and variety. Since then, these defining features

are known as the “3 Vs,” and are commonplace across literature on big data.
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The volume axis refers to the idea of collecting, dealing, and processing ever-growing
volumes of data. The size of big data repositories currently ranges from several terabytes
to petabytes of data but, as the pace of growth of data is nowadays exponential (Hilbert
and Loépez 2011), the amount of data that will be processed and analysed in the near future
may be as large as a few orders of magnitude bigger.

Velocity implies the ability of dealing with data that has to be collected, updated, pro-
cessed, and analysed in real time, or near real time. Insights from the data, and decisions
coming from these insights, may be needed on a daily basis, and so it is relevant to deal
with the data rapidly.

Variety is a characteristic of big data that refers to having to deal not only with struc-
tured data—the type of data defined in database tables—but with semi-structured as well
as non-structured data, such as social, mobile, video, audio data, or the combination of all
of those. This characteristic makes big data management problematic, since all data fields
can not be defined in advance, and the data structure and management should be able to
deal with the many forms by which the data can be manifested.

Value has been lately mentioned as the fourth V. It refers to the potential insights that
can be extracted from the data, thus transforming them into value. This value can then be
used by organisations to inform their decision making (Manyika et al. 2011).

There is a general agreement in that the aforementioned properties describe inherent
characteristics of big data, but there is still no formal definition for it. De Mauro, Greco,

and Grimaldi (2014) studied the most recurrent keywords related to big data within ab-
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stracts of industry articles and scholarly articles from different disciplines, and found that
four different topics typically interact: information, technology, methods, and impact.

At the present time, vast amounts of data of various nature are constantly collected
and processed. Researchers from academia, private companies, and governmental organ-
isations then use statistical methods and machine learning techniques in order to obtain
insights from the data, thus converting raw data into information. For example, environ-
mental data is collected by governmental agencies to predict future weather. Social data
is collected by social media companies to tailor advertisement to users of their systems.
Data about customer browsing or buying behaviour is used by online retailers to improve
the sales of goods. Music listening or movie watching behavioural data is analysed by
media streaming services to improve the satisfaction of users about their systems, to cus-
tomise their exposure to advertisement (The Echo Nest 2013) and, ultimately, to increase

the retention of users in the services (Gomez-Uribe and Hunt 2015).

2.4.2 Technology

Technology plays an essential role in collecting, processing, and extracting insights from
big data. Since the velocity of growth and the volume of data is larger every day, single
workstations are no longer capable of processing massive datasets in a reasonable amount
of time. This is a problem if real-time decision making is needed.

Moore (1965) foresaw that the increase of the density of components in integrated cir-
cuits would double every two years, thus doubling the computing speed and the over-

all processing power and performance of computer systems. Although true for decades,
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Moore’s law is nowadays no longer valid, since physical limits have been reached in terms
of scaling the density and performance of CPU design (Sheu et al. 2015).

In response to the plateau in the clock speed of CPUs, a number of approaches based
on the idea of aggregating individual computer power have been developed in order to
obtain the high performance needed to process big data repositories. High Performance
Computing (HPC) systems are clusters of single computers known as nodes. Each node
has multiple processors and each processor has multiple cores. Fast and reliable network
connections between nodes are needed to allow rapid intercommunication between nodes.
On top of these systems, a number of technologies have been developed in order to deal
with parallel and distributed processing of large amounts of data. The most commonly
used technologies are the Message Passing Interface (MPI), Hadoop, and Spark.

MPT (1991) is a standardised communication protocol for passing messages—the MPI
basic level of abstraction—to parallel processes on HPC systems. MPI is structured as a
library with an application programming interface (API). The MPI API has a series of op-
erations to explicitly send and receive messages from specific or all nodes. MPI systems
use distributed memory, meaning that MPI parallel threads do not share memory. There-
fore, if a thread needs data from another thread, the data transfer between them has to be
explicitly coded, and the data is transferred through the network. MPI is not fault toler-
ant, meaning the user has to explicitly take care of handling possible errors in any of the
nodes.

A more recent technology for parallel computing is Apache Hadoop (2007). It is an

open source implementation of Google’s MapReduce (Dean and Ghemawat 2008) dis-
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tributed computational model, running on the Hadoop Distributed File System (HDFS)
(Shvachko et al. 2010). Unlike MPI, Hadoop provides automated means for scaling pro-
cesses across nodes and a tolerance system for dealing with failures in any of the parallel
processes. Hadoop is a technology of higher level than MPI, meaning that a user can
specify the computational process needed in terms of custom-written map and reduce
functions—to parallelise processes and aggregate their results respectively—and the sys-
tem will scale the processes to the cluster size. In other words, Hadoop itself will handle
the parallelism, scheduling the computations across the cluster and balancing the process-
ing load across nodes without human intervention. Fault tolerance, the ability of a system
to deal with failures, is implemented in Hadoop by means of automatically splitting data
files into blocks, replicating them by a user-defined factor (typically a factor of three), and
finally shuffling and distributing them across nodes. This fault tolerance procedure en-
sures that if a process in a node fails, the master node will trigger the processing of the
replicated version of the same block in another node. Because of its fault tolerant capabil-
ities and its scalability, Hadoop was a step forward for the processing of large datasets in
comparison with MPL. However, it is not efficient for routines that reuse a portion of data
across multiple operations, such as iterative jobs or interactive analytics applications. The
former case is usually used in machine learning algorithms, where a function is applied
repeatedly to the same dataset in order to iteratively optimise a parameter. In cases like
this, Hadoop reloads data from disk for each iteration. As a result, the performance of
the system is diminished. In interactive analytics tasks, several queries are performed on

the same dataset interactively by a user. In this case, Hadoop treats every query as a new
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MapReduce job, reading all data from disk every time, which also slows the performance
of the system.

Apache Spark (Zaharia et al. 2010) is a cluster-based computing framework developed
to overcome the drawbacks of Hadoop for applications that reuse a working set of data.
It has scalability and fault tolerance characteristics that are similar to Hadoop’s, but it
is based on a core abstraction named Resilient Distributed Dataset (RDD). An RDD is a
read-only collection of objects which can be partitioned and distributed through nodes of
a cluster. If by any reason a partition is lost, it can be reconstructed from the rest of the
dataset. RDDs can be cached in memory across machines in order to reuse them for mul-
tiple distributed parallel operations, therefore speeding up calculations. It is also possible
to use an interpreter to work interactively with the RDDs and perform parallel operations
on a cluster. Although Spark runs on HDEFS, it can also run on other file systems, allowing
Spark to be deployed in pre-existing HPC frameworks, which is not possible with Hadoop.

In order to obtain useful insights from big datasets, the data have to be processed ac-
cordingly in order to be able to cope with their unique characteristics of volume, velocity,
and variety. However, traditional analytical methods and techniques for recognising pat-
terns from datasets have to be adapted in order to deal with the intrinsic characteristics of
big data. As seen previously, processing large volumes of data, one of the characteristics
of big data, has been mainly addressed by the development of computational tools that
allow for efficient data parallelisation. Modern data mining algorithms take advantage of
this parallel processing by means of splitting large datasets into several threads, the results

of which are later combined into a single machine for the analysis.
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The technologies used in big data are agnostic to the specific type of information that
is being processed and analysed. Therefore, these techniques can be applied to complex
manifestations with many sources of information, such as music. In the next section, we
will provide a review of the different types of music information, as well as different repos-
itories and databases that offer this information. Data in these sources represent different
aspects of music and music listening behaviour, and so we will examine them in order to
decide which ones can provide data for studying how to improve a music recommenda-

tion model by means of user-centric features.

2.5 Music data sources

There are several sources of music-related information currently available. Some of them
are commercial services that provide paid access to their data, and others are crowdsource-
based services that allow free access to data protected with Creative Commons licenses or
is in the public domain. These repositories provide information that represents different
aspects of music, such as music metadata, acoustic features, lyrics, music reviews, social
tags, non-audio representations, and music listening histories. We will now describe the

different types of musical data and related metadatabases.

Music metadata Metadata is structured information that identifies, describes, locates, re-
lates, and expresses different layers of data about an information resource (Dublin
Core Metadata Initiative 2016). The National Information Standards Organization

(2004) declared three basic types of metadata: descriptive, for purposes such as
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identification and discovery; structural, for expressing relations among resources;
and administrative, for managing resources. In the music context, descriptive meta-
data commonly provides information about recordings, such as the song title and
length, the artist name, and the release name. This information is usually stored
in an MP3 ID3 tag or in chunks of the audio file especially designed to represent
this information. However, music metadata can also provide structural information
about attributes not necessarily linked to an actual recorded piece of music, such as
a song’s track number within an album or a playlist, linking song names to video
clips, or artists to their biographies, for example. As a results, music metadata adds
value to the musical object because it helps to mediate and enhance the experience
of listeners with music and artists, allowing them to browse, explore, sort, collect,

use, and finally enjoy music.

A few music metadatabases provide commercial metadata of musical artists, re-
leases, and songs to digital music services. Rovi Music* and Gracenote® are among
the databases with the longest history. Allmusic® uses Rovi data, but it adds re-
views and creates free personalised recommendations to registered users. Quan-
tone’ offers paid programmatic access to extended metadata and additional informa-

tion on artists, albums, and tracks. Data licenses for all these databases are restricted.

4. Rovi acquire the company Tivo, and now it can be accessed via Tivo’s Web site at https://business.
tivo.com/products/music-metadata.html

5. The Gracenote Rhythm metadata service website is available at http://www.gracenote.com/music

6. The online music guide service AllMusic is available at http://www.allmusic.com

7. Quantone provides semantic music metadata for media companies. Its website is available at http:
//quantonemusic.com/



2 Human-music listening interaction 44

On the other hand, there are a few user-built, open-data, music metadatabases that
provide less restricted access to music metadata. Most data in these databases is in
the public domain, which means that there are no restrictions in its use. FreeDB®
is a database of CD track-listings from user-contributed data, originally based on
the Compact Disc Database (CDDB). MusicMoz’ is a user-contributed database that
stores music-related factual data and Internet links. Discogslo is alarge, user-populat-
ed database of discographies and music releases from physical sources. It provides
high-quality data that is ensured by a strict input form mechanism and a large com-
munity of users. MusicBrainz! is a large, community-based, user-contributed meta-
database that stores descriptive, structural, and administrative metadata for any kind
of music release. Its high-quality database is constantly developed and enriched by
an open community of users that negotiate periodically and consistently, with strict
standards and routines, about the orientations, developments, style guidelines, and
mostly everything on MusicBrainz (Hemerly 2011). Music metadata can be obtained
from these music metadatabases by means of online browsing or by accessing them

programmatically through their APIs.

Acoustic features Music acoustic features are numerical representations of the audio sig-
nal that characterise some aspects of the signal. Features are computed from the

time or frequency representations of the audio signals, and describe their spectral,

8. The FreeDB database of compact disk track listings is available at http://www.freedb.org/
9. The MusicMoz directoryof community-curated information about music is available at http://www.
musicmoz.org/
10. The Discogs database and marketplace are available at http://www.discogs.com/
11. The MusicBrainz music database is available at http://www.musicbrainz.org/
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rhythmic, tonal, or other low-level or high-level characteristics. Comprehensive re-
views and thorough description of audio features can be found in Tzanetakis (2002)
and McKay (2010). Algorithms for calculating these feature-numbers have been
developed by many music research groups throughout the years, many of which
have been part of the Music Information Retrieval Evaluation eXchange (MIREX),"?
which is an annual evaluation contest with the goal of comparing state-of-the-art
algorithms relevant to music information retrieval tasks using same datasets and

evaluation procedures (Downie 2008).

Acoustic features can be computed by using open-source software frameworks, stand-
alone applications, or libraries such as Marsyas' by Tzanetakis and Cook (2000), the
CLAM music annotator by Amatriain et al. (2005), jAudio’* by McKay (2010), Aubio
by Brossier (2006), the MIRToolbox by Lartillot, Toiviainen, and Eerola (2008), and
the VAMP plugins.” The latter ones are used within host sound editor applications
such as Sonic Visualiser or Audacity. The Spotify music streaming service also now
encapsulated The Echo Nest API and provides a publicly accessible interface'® that
allows the extraction of a collection of proprietary audio features based on the work

by Jehan (2005).

12. The MIREX competition website is available at http://www.music-ir.org/mirex/wiki/MIREX_HOME

13. The Marsyas software framework for audio processing is available at http://marsyas.info/

14. The jAudio program for audio feature extraction is available at http://jaudio.sourceforge.net/

15. The VAMP audio analysis plugin system is available at http://vamp-plugins.org/download.html

16. Some components of The Echo Nest API are now available as part of the Spotify Web API available at
https://developer.spotify.com/web-api/get-audio-features/
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A few databases also provide open and public access to sets of already-computed
acoustic features from a large dataset of songs. The Million Song Dataset (MSD)
(Bertin-Mahieux et al. 2011) provides metadata and a set of acoustic features for
about one million songs, computed using the already mentioned custom features
developed by Jehan. His approach relies on segmenting the audio signal where per-
ceptual onsets occur instead of segmenting the signal using a fixed-length window.

Then, a set of acoustic features is computed for each segment between onsets.

Whereas the MSD corpus was a centralised database of a fixed size, AcousticBrainz!”
is a crowd-sourced distributed initiative that relies on contributions from a large
number of users performing feature analysis in their own music collections(Porter
et al. 2015). It provides a small application that can be downloaded for free and per-
forms the metadata validation, features analysis, and feature delivery to the database.
AcousticBrainz’ feature analysis computation is accomplished by the Essentia'® au-
dio analysis library (Bogdanov et al. 2013), which computes a comprehensive set of

features with fixed-window size.

Since AcousticBrainz was conceived as a crowd source project, it is ever-expanding,
and less biased than the MSD dataset of acoustic features. However, it is perhaps
more prone to errors, due to possible discrepancies in people’s music collections due
to duplicated and different versions of music files (i.e., AcousticBrainz stores every

acoustic feature analysis submitted by its users, and so it is not uncommon to find

17. The AcousticBrainz API, datasets, and data are available at https://acousticbrainz.org/
18. The Essentia library for audio analysis and audio-based music information retrieval is available at
http://essentia.upf.edu/
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in its database songs that have a set of feature values totally different, for the same

songs).

Lyrics Songs usually comprise a set of words complementing and reinforcing the music,
and so the act of listening to a song involves being exposed to the text as well as the
music, as a single message. Therefore, song lyrics are an important component in
the appreciation of musical pieces that has received little attention in music research
in comparison to audio analysis, for example. Moreover, lyrics are contained within
the audio signal but extracting text directly from music recordings is still a hard task.
Hence, many websites offer access to human transcriptions of lyrics. Some of these
sites allow public access to user-contributed lyrics and others are paid services that
permit programmatic querying for industry-approved lyrics. Examples of the for-
mer are Musixmatch' and AZLyrics.?® Lyricfind,?' ChartLyrics,” and MusicStory®

are examples of the latter.

Music reviews Publicly available reviews of music items such as albums, songs, video-
clips, concerts, or artists carry information about how people perceive these music
items. Since music enjoyment has a social component, and people’s perception on
music items seems to be mediated by the context of listening, music reviews can be a

rich source of cultural information about how listeners assimilate and perceive mu-

19. The Musixmatch website and database are available at https://www.musixmatch.com/

20. AZLyrics is available at http://www.azlyrics.com/

21. The lyrics licensing company LyricFinding is available at http://www.lyricfind.com/

22. ChartLyrics is a community-driven database of lyrics. Its website and APl are available athttp://www.
chartlyrics.com/

23. MusicStory is a metadata provider that also supplies lyrics via an APl available athttp://developers.
music-story.com/developers/lyric
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sical items. The Internet is the place where the largest amount of these music items
are currently released and it is also the place where most people write and share
their impressions about music. Moreover, music reviews do not only deliver peo-
ple’s opinions about music, but also a large amount of information concerning the
background and context of the music items. There are many websites that provide
music reviews but just a few of them offer programmatic ways of accessing their
information. Among these websites, the largest ones are All Music Guide, Rolling-

Stone,?* Pitchfork, > Metacritic,® Rateyourmusic,” and Stereogum.?®

Music social tags Social tags are free keywords assigned by listeners to specific music
items. These labels express the independent thoughts of listeners on music, and so
they convey a large amount of human-generated contextual knowledge in the form
of descriptive text that goes beyond standard music metadata. As tag fields do not
have restricted categories, they capture the free appreciation of people on music. As
a result, common tags of music items can express music genre, emotion, decade, in-
strumentation, or any word capturing some aspect of people’s perception of music.
The aggregated collection of tags is known as a folksonomy. A few music services
allow users to tag music items within their own ecosystem, or through other music

applications that submit and retrieve the tags from their databases. Currently, the

24. The American magazine focused in popular culture and music RollingStone is available at http://
www.rollingstone.com

25. The American online magazine Pitchfork is available at http://www.pitchfork.com

26. Metacritic aggregates reviews of music and media in general. Its website and database are available at
http://www.metacritic.com/music

27. The online collaborative metadatabase of music and media is available athttp: //rateyourmusic. com/

28. The online publication Stereogum is available through its website at http://www.stereogum. com
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largest of these services offering APIs to digitally retrieve the labels are Last.fm and
MusicBrainz, though the former has a much larger amount of music items tagged.
However, Lamere (2008) pointed out that one drawback of social tagging is that
usually only popular items get tagged. Therefore, in order to avoid this popular-
ity problem, the collection of music-related metadata using free text labels has also
been done using music “games with a purpose.” Mandel and Ellis (2008) developed
MajorMiner, a game that collected music tags by means of single-player free tagging
of 30-second music clips. Agreement with previous tags provided points, and tag
trend-setters received extra bonus points. In The Listen Game, Turnbull et al. (2007)
asked users to choose the best and worst from a fixed set of music tags for 30-seconds
music clips. Kim, Schmidt, and Emelle (2008) required people to express the mood
carried by musical pieces in a two-dimensional grid of arousal and valence of their
game Moodswings. Finally, Law and Von Ahn (2009) developed an online game to
collect tags for music and sound clips named TagATune that was collaborative in
nature. Two participants were asked to tag a track but they did not know if it was
the same. By the end of the tagging process, the users expressed if they were actu-
ally listening to the same tune or not. Participants received points if their guess was
correct. The approach by Law and Von Ahn incremented people’s retention in the
game, receiving a larger number of tags and incrementing the number of verified

tags. Eventually, Law et al. (2009) assembled a dataset with all data collected with



2 Human-music listening interaction 50

the game and made it available as the MagnaTagATune Dataset.” This set was made

public and was used for an audio tag classification task at MIREX 2008.

Non-audio representations A large number of websites provide music in many non-audio
representations. These renditions can be visual representations of music scores, Mu-
sical Instrument Digital Interface (MIDI) files, or transcriptions of music encoded
into symbolic music formats. These symbolic music representations encode music
symbols within a file that attempts to preserve the relationships between the ele-
ments of the score.

Visual representations of music scores are provided as downloadable PDF files by

t30 31

websites such as the International Music Score Library Project™ or Music Scores.
Moreover, images of original scores are hosted by international virtual libraries and
can be inspected using image viewing platforms. Examples of these libraries are
the Digital Image Archive of Medieval Music®® and e-codices.*® The Cantus Ultimus

project®*

also delivers symbolic music information aligned to zones in the score im-
age. The Musiclibs® project is a document image search system that allows search-

ing within collections of digitised music documents located in different institutions

across the world using a single interface. Musiclibs works by aggregating Interna-

29. The MagnaTagATune Dataset website provides access to the dataset, audio clips, audio features, and
similarity data at http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset

30. The Petrucci Music Library is available at http://imslp.org

31. http://www.music-scores.com/

32. The Digital Image Archive of Medieval Music website is available at http://www.diamm.ac.uk/

33. The e-codices website provides access to all the digitised manuscripts in their database by means of a
virtual library available at http://www.e-codices.unifr.ch/en

34. The Cantus Ultimus project is available at http://cantus.simssa.ca/

35. The Musiclibs image search system is available at https://musiclibs.net
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tional Image Interoperability Framework (IIIF) manifests® served by international
libraries. By means of these manifests the images are served directly from the orig-
inating organisation’s repositories. Musiclibs does not cache or display images di-

rectly.

Symbolic representations of music using the MIDI protocol encode, at the very least,
the timing, pitch, length, and velocity of notes. The MIDI protocol has been the dig-
ital music instruments industry standard for the past 30 years and so it is widely
used in the context of music production. Its standardised data, and the fact that
provides a large amount of musical information in a small file size, has facilitated
a large number of websites devoted to sharing music in MIDI format, enabled by a
large community of people creating these files. However, since international copy-
right law restricts the ability to make copies of musical works for a fixed amount of
time before going into the public domain, many MIDI files of recent creations are
offered as paid files. Creations that are already in the public domain can be free or
licensed, depending on if the MIDI rendition is protected by a performer’s perfor-
mance copyright. Hit Trax,*” Classical Archives,® and MIDI World* are among the

largest free and pay websites.

36. The IIIF documentation for manifests is available at http://iiif.io/api/presentation/2.1/
#manifest

37. The Hit Trax website with MIDI-based karaoke backing tracks is available at http://www.
hittraxmidi.com/

38. The Classical Archives website of MIDI files is available at http://www.classicalarchives.com/

39. The MIDI world website and data is available at http://www.midiworld. com/
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Music listening histories Music listening histories are records of music listening events.
These records are typically expressed as a series of logs indicating at least the time
and date of the listening event, the music items that were played back, and the iden-
tification of the user account associated with the media player application. Earlier in
this chapter, we detailed a number of applications that collect local and global data
of music listening logs (see Section 2.2.2 in particular). However, only some of those
applications offer their music listening data for public analysis and research. As one
of the main focuses of this dissertation is to perform a large-scale data-driven study
about music listening behaviour, in the next section we will provide an extensive

review of music listening databases.

2.6 Big music listening databases

We are interested in evaluating the impact of using demographic and profiling features, as
well as contextual information, on the performance of a music recommendation model. A
few publicly available datasets for music listening research provide information relating

a large number of people and music items. We will now review those datasets.

Yahoo! Music Dataset Yahoo! released in 2011 a dataset of user ratings collected through
its Music Radio service.* In the KDD-Cup’11, Yahoo! challenged the music infor-
matics research community to identify users’ listening tastes by assigning the task of

predicting users’ rating on musical items in the test data of the dataset (Dror, Koenig-

40. The Yahoo! Music dataset with user ratings of musical tracks, albums, artists and genres is available
athttp://webscope.sandbox.yahoo.com/catalog.php?datatype=c
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stein, and Koren 2011). The original version of the dataset had more than 262M rat-
ings from 1M users, on 625K musical items including: tracks, albums, artists, and
genres. These items were linked into a 4-level hierarchical structure. Each user in
each dataset had at least 20 ratings on music items. In order to protect the privacy of
users, their user names as well as musical items’ identity were relabelled. Also, the
dataset did not provide any demographic information about the listeners. Yahoo!
released the dataset in a couple of versions with similar characteristics but with dif-
ferent sizes. In order to learn, apply, and generalise insights from the data, Yahoo!
released each version of the dataset into splits of training, validation, and test sub-
sets. While the validation and test subsets had four and six of each set of user ratings,

the training subset had all the rest of ratings per user.

The results of the Yahoo!-KDD competition reinforced some of the findings already
posed by Koren (2009a, 2009b) and Toscher and Jahrer (2009) in the domain of movie
recommendation: the modelling of temporal changes in users” behaviour and items’
popularity, and the blending of multiple techniques of collaborative filtering enable
a large improvement in performance of a recommendation model.#! Wisely, Dror
et al. (2011) concluded their account of the results of the competition with an open
question about “...whether small improvements in RMSE terms can have a signif-

icant impact on the quality perceived by real user.”

41. These findings were part of the methods used by the winner team of the Netflix prize. Details about
this competition will be given in Subsection 3.2.4.
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Echo Nest Taste Profile subset The Echo Nest introduced in 2011 the Taste Profile sub-
set, a dataset of user playcounts tailored to user-centric music recommendation re-
search (McFee et al. 2012).*> The dataset consisted roughly on 48M music listening
logs of undisclosed origin, gathered from listening histories of 1.2M users on 380K
songs, and formatted as triplets <userID, songID, count>. Unlike the Yahoo! Mu-
sic Dataset, the Taste Profile dataset provided playcounts instead of ratings, and so
it represents implicit instead of explicit preference. The song IDs in the subset were
based on Echo Nest identifiers and so they matched complementary datasets in the
MSD. This linkage allowed researchers to link artists” biographical information, song
lyrics, audio content analysis, online artist popularity measures, album covers, artist
tour dates, song and artist tags, artist and song similarity metrics, and 30-seconds
audio snippets for most songs (Bertin-Mahieux et al. 2011). The dataset did not pro-

vide timestamps of the music logs or demographic information about the listeners.

The associated Million Song Dataset Challenge* was simultaneously released with
the Taste Profile subset with the goal of predicting the songs that a user will listen
to. Participants were encouraged to use all additional available data, and song con-
tent analysis data by means of shared music item identifiers with the MSD (Bertin-
Mahieux et al. 2011). Recommendation algorithms were evaluated by recalling posi-
tively associated items for each user, in the form of evaluating the predicted ranking

of songs (McFee et al. 2012). There is no official publication about the results and

42. The Echo Nest’s Million Song Dataset Taste Profile subset is the official user dataset of the Million Song
Dataset. It is available athttp://labrosa.ee.columbia.edu/millionsong/tasteprofile
43. The “Million Song Dataset” Challenge is available at http://www.kaggle.com/c/msdchallenge
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insights obtained from the Million Song Dataset Challenge, but the winner submis-
sion outperformed all other submissions by using an approach based on a single
algorithm that computed similarities between users’ playcounts, without using any

of the other sources of data (Aiolli 2012).

Last.fm Dataset-360K Celma (2010) introduced a dataset featuring artist playcounts for
360K unique users of the Last.fm music service.** The dataset contained MusicBrainz
identifiers for artists and their playcount number per user. Each user was also char-

acterised by the demographic features: gender, age, country, and registration date.

Last.fm Dataset-1K Celma (2010) also introduced a dataset of full listening histories of
almost 1K users.* These listening histories included user, timestamp, MusicBrainz
identifiers for artists and songs, as well as names of artists and songs. Users were
characterised by the self-declared demographic features gender, age, country, and

registration date.

HetRec2011-last.fm-2k Cantador, Brusilovsky, and Kuflik (2011) presented a dataset®
with Last.fm data about listening counts for the 50 most listened artists of 2K users,
accounting for a total of 18K artists. The dataset also included bi-directional friend
relations and time-stamped artist’s tags assignments per user. The dataset did not

provide demographic information about users.

44. The Lastfm Dataset - 360K wusers is available at http://www.dtic.upf.edu/~ocelma/
MusicRecommendationDataset/lastfm-360K.html

45. The Last.fm Dataset with full listening histories from 1K users is available at http://www.dtic.upf.
edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

46. The dataset HetRec2011 is available at http://files.grouplens.org/datasets/hetrec2011/
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EMI 1 Million Interview Dataset EMI (2012) promised a dataset of 1M interviews about
people’s music appreciation, behaviour, and attitudes.*” Available data in the set
had ratings of users on EMI artists and tracks after a controlled listening test; a set
of free words that people used to describe the artists and tracks, and demographic,
personal; and music listening behavioural information about users. However, only

partial information has been available so far, and no results or insights have been

published.*

MusicMicro 11.11-09.12 Schedl (2013) introduced a dataset of listening logs extracted
from Twitter tweets, designed for studying spatial and temporal relations to music
listening.* The dataset comprised 600K music-related logs, generated from 137K
users on 20K unique artists. Tweets in the dataset originated from 21K different
cities in 180 different countries. The dataset consisted of tweets with any of the tags
#nowplaying, #np, or #itunes, that explicitly had precise location data. Schedl only
provided tweets whose artist or song name could be linked to MusicBrainz and ex-
cluded all logs with the sub-string “radio” in order to suppress logs submitted by
radio stations. Therefore, each entry in the dataset provided time-stamped temporal

and spatial data (i.e., longitude, latitude, country, and city), as well as custom-built

47. General information about the EMI 1 Million Interview Dataset is available at http:
//musicdatascience.com/emi-million-interview-dataset/

48. A small subset of the EMI EMI 1 Million Interview Dataset was released at the EMI Music Data Science
Hackathon in 2012. The subset is available at https://www.kaggle.com/c/MusicHackathon/data

49. The MusicMicro corpus of music listening behaviour inferred from microblog data is available at http:
//www.cp.jku.at/datasets/musicmicro/
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user, artist, and track identifiers. The dataset did not provide links to other music

metadatabases.

Million Musical Tweets Dataset (MMTD) Hauger et al. (2013) introduced a dataset of
listening histories inferred from Twitter posts.”® The authors collected micro-blog
posts using any of the keywords #nowplaying, #np, #thisismyjam, #musicmonday, or
#itunes during the lapse of 17 months. The dataset comprised a total of 1M geolo-
calised logs from 215K different users. Each entry in the dataset provided custom-
made user identifiers as well as temporal (i.e., date, time, time zone), spatial (i.e., lon-
gitude, latitude, continent, country, and city), and contextual information (i.e., coun-
try’s demographic information) per log. Most artists were linked to MusicBrainz and
a proportion of tracks were resolved to 7digital®’ and Amazon® identifiers. There
were a large number of listeners in the dataset with only one or two logs, and so this
implied that, in many cases, the dataset provided single listening events instead of
listening histories. However, the data could be aggregated in order to infer listen-
ing patterns from the whole population, or part of it. For example, Hauger et al.
found statistically significant data to prove that listeners from different countries lis-
ten to different genres. They also found no significant differences in listening habits
(at least in genre preference) among days of the week, but found differences among

three hour-of-day groups.

50. The MMTD corpus of music microblogging behaviour is available at http://www.cp.jku.at/
datasets/MMTD/

51. The 7Digital music listening platform and API are available at https://www.7digital.com

52. The Amazon online retailer store is available at https://www.amazon. com
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#nowplaying Music Dataset Zangerle etal. (2014) introduced a dataset of music listening
logs gathered from Twitter.”® The dataset comprised almost 50M tfweets with any of
the tags #nowplaying, #listento, or #listeningto. It included data for 4.2M users,
1.3M tracks, and 144K artists. Each entry in the dataset was time-stamped according
to the time the log was sent, and provided a user identifier, log source, artist and
track name, and artist and track identifier. The dataset only provided logs for which
Zangerle et al. were able to link artist and song names to entries in the MusicBrainz
database. The distribution of listening events per user is long-tailed, with a mean of
11 logs per user, a median of one, and a large standard deviation. Hence, although
the dataset is large, the number of logs per user is small for a large number of users.
The dataset also had a number of broadcast systems as source of the tweets (more
than one third of the logs of the top 10 sources), which probably corresponds to radio
stations constantly sending tweets with their broadcasting programming, and does

not correspond to actual music listening behaviour at the user level.

Among all the datasets reviewed, the only one that provides all the data we want—full
music listening histories and listeners” demographic data—is the Last.fm Dataset-1K by
Celma (2010). However, for the type of large-scale analysis we want to perform, the size
of the dataset is very small. Therefore, we decided to collect our own dataset.

Since in this dissertation we aim to evaluate if the use of user-centric features can be

used as signals to help a music recommendation system to improve its performance, in

53. The #nowplaying dataset consisting in information about people’s music listening behaviour gathered
from Twitter, is available at http://dbis-nowplaying.uibk.ac.at/
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the next chapter we will examine the formalisation of the recommendation problem, we
will review the main approaches for recommendation in general, and will describe some
metrics for evaluating the performance of these systems. The process of data collection,
tiltering, and aggregation, as well as the characteristics of the dataset will be explained in

detail in Chapter 4.
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Chapter 3

Recommendation systems

People often make choices about items in everyday life without having enough knowl-
edge about all of the available options. As such, they commonly seek out word-of-mouth
recommendations from trusted friends and colleagues or by searching for printed or on-
line reviews of items. Lately, however, people are also exposed to automated recommen-
dation systems. These systems try to help people to find what they are looking for or to
discover items they still have not yet encountered, or are not aware of. Recommendation
systems are used extensively in people’s everyday life. Google recommends related topics
and websites when people use its search engine, YouTube suggests videos based on peo-
ple’s recent browsing history. Songs are suggested by online digital music services when
people want to listen to music casually, or when they are exercising, partying, cooking, or

working.
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Online music streaming services have extended their catalogues quite substantially in
recent years, and so recommendation systems are used as a powerful and necessary tool to
filter and find relevant content (Schafer, Konstan, and Riedl 2001). People now can access
content that otherwise would not be available on the shelves of large stores. The increase
in product variety and the ability to let users to easily search for what they want, have
led to an increase in these services” revenues (Brynjolfsson, Hu, and Smith 2003). One
crucial step to make this happen, is to provide users with good recommendation systems,
otherwise it becomes difficult for people to find relevant items.

Music listening habits and consumption behaviour have changed rapidly in recent
years, particularly since the inception of ubiquitous music streaming services with embed-
ded recommendation systems. Listeners now seem to not need to own personal music col-
lections any more, and the number and availability of songs appear to have de-emphasised
their single value (Celma Herrada 2008). Some authors also argue that people are no
longer engaged in the act of music listening (Bick 2016), but instead are mesmerised by an
infinite stream of unchosen music items, similar to a social media feed. However, it seems
that the streaming services’ method of providing access to large repositories of music has
been the saviour of the music industry, at least from an economic point of view. In fact,
according to the yearly report on emerging digital platforms led by Arbitron Inc. and Edi-
son Research (2015), more than three quarters of residents of the United States aged 12 and
over had heard about Pandora, a digital music streaming service with automated playlist
generation. The report also showed that one in three people had used Pandora during the

last month, and one in four during the past week. The researchers also found that nine
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out of ten people between 12 and 24 years old had used YouTube to watch music videos or
listen to music, and eight of ten did that during the last week. Because of these high levels
of use of digital music services, companies such as Spotify, iHeart Radio, Amazon Music,
and many others have appeared in the digital music landscape. The increasing number
of music streaming services and the constant rise in listeners’ awareness and use of their
music recommendation capabilities (Arbitron Inc. and Edison Research 2011, 2012) seem
to indicate people’s attraction and involvement with these systems in order to satisfy their
musical needs.

The functionality of general recommendation systems relies mainly on features of the
items being searched, on characteristics of the users, and on the seeking behaviour of the
community of users as a whole. In this chapter we formalise the problematic of automated
recommendation in general, and we provide an overview of the main approaches. We
also overview the metrics used to evaluate the performance of general recommendation
systems, and the experimental settings used to perform those evaluations. We finalise the

chapter by discussing the unique nature of music consumption.

3.1 Recommendation problem formalization

The core idea of automated recommendation systems is to estimate the preference of users
for items that they have not yet experienced. Hence, a common recommendation frame-
work typically allows people to choose from a set of options that they might like based

on their predicted liking, or rating value (Adomavicius and Tuzhilin 2005). In the case
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of automatic music recommendation, it is worth considering that recommendations of
experienced items at the correct time and situation could be useful as well.

Early formulations of the recommendation problem can be traced to the mid "90s when,
due to the growth and spread of the Internet, large amounts of data became available
for individual, governmental, and industrial consumption and processing. This inspired
many researchers to investigate the filtering of information in large data repositories of
different domains.

Tapestry, one of the earliest information filtering systems, was developed by D. Gold-
berg et al. (1992) with the goal of discriminating between wanted and unwanted mes-
sages in people’s email inboxes. A few previous endeavours (Pollock 1988; Lutz, Kleist-
Retzow, and Hoernig 1990) were also based on the content of emails, but Tapestry incor-
porated users” annotations of the incoming documents, aggregated them, and used them
collaboratively—in the sense that each rating improved the performance of the overall
system (K. Goldberg et al. 2001)—during the filtering process. Resnick et al. (1994) imple-
mented “GroupLens,” a system for helping people to find news of interest among a large
online stream of articles. Their framework was based on the idea that the single rating
value of a user on an article represented all of that item’s dimensions relevant to that par-
ticular user. Afterwards, they computed the correlation between the given ratings by all
users so that they could filter and recommend news to all users.

Later on, Hill et al. (1995) developed an information filtering system for recommending
movies. Their system was based on what the authors called a virtual community: “a group

of people who share characteristics and interact in essence of effect only.” This concept
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was based on the idea that people did not actually interact, but the system treated them
as if they would have been interacting. As a result, their movie recommendation system
allowed people with no previous knowledge about films they have not watched to benefit
from the knowledge of other people, without needing to interact directly.

Shardanand and Maes (1995) presented a generic framework for social information
filtering with the goal of making personalised recommendations for any type of items
based on similarities between the interests of users of the system. The authors instanti-
ated their approach in “Ringo,” the first personalised music recommendation system. In
their recommendation framework, Shardanand and Maes computed similarities between
the users’ expressed willingness to listen to a seed set of music artists, and used these user
profiles” similarities and dissimilarities to recommend, or not recommend, artists and al-
bums to people that shared similar interests. The system allowed new users to be added to
its database, and also allowed users to add new musical artists, and so recommendations
were dynamically generated, considering the ever-increasing set of items and users of the
system. Shardanand and Maes evaluated different filtering schemes and metrics to eval-
uate the results, but found only small differences between them. However, Shardanand
(1994) performed previously a qualitative study and found that users perceived the system

as more competent and useful over time.

3.1.1 Recommendation entities

Since the early formulations of the recommendation problem, the two fundamental enti-

ties in the recommendation process have been users and items. These two main entities are
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commonly related to each other in a two-dimensional matrix, where numbers in the cells
indicate the degree of preference, liking, or rating, by a user for an item. The main goal
of recommendation frameworks, expressed in its simplest form, is to predict the rating
value that a given user will assign to a not-yet-experienced item. The matrix that collects
all rating values is known as the rating matrix or utility matrix, alluding to the idea that
each user-item pair value in the matrix expresses the degree of preference that the user
has assigned to the item (Leskovec, Rajaraman, and Ullman 2014).

The rating matrix can be populated using data gathered from different sources. For
example, data about the interest, the degree of liking, or the perceptual value that users
assign to items can be collected explicitly by using some kind of interface in the recom-
mendation system. Moreover, meaningful data for learning about users and the users’
preferences on items can be collected non-intrusively, by recording typed queries, pur-
chased items, or the time of active session (Pazzani and Billsus 2007).

On the one hand, if the data regarding a user’s interest in a specific item is specifi-
cally declared, it is called explicit data (Hu, Koren, and Volinsky 2008). For example, e-
commerce sites and online media distributors usually integrate an interface that allows
users to provide feedback or preference for items within a fixed predetermined scale, by
means of giving thumbs up or down for loved or hated items, or by open text fields in
which users can enter a set of items that they love. These interactions help users to con-
struct a representation of their interests (Adomavicius and Tuzhilin 2005). Afterwards,
online services can use this information to populate the utility matrix, and may start offer-

ing recommendations based on those explicit preferences. Although explicit feedback is
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easy to interpret—for example, assigning a higher rating value to a song usually implies
a higher user-item preference—people can use these rating mechanisms in different ways
and so the meaning of the ratings might differ from user to user.

On the other hand, information extracted non-explicitly from the behaviour of users
within a system can indirectly indicate users” opinion on items (Oard and Kim 1998). This
implicit feedback can be used to estimate the degree of preference of a user for an item, even
if there was no explicit interaction. Oard and Kim classified various implicit interactions
into three different categories: examination (e.g., purchase of an item, repetition of ex-
position to an item, or duration of the exposition), retention (e.g., saving an item or its
link for future access), and reference (e.g., reposting or sharing of items). These three cat-
egories of behavioural interaction are usually found in e-commerce and media delivery
sites, where purchase and browsing histories, search patterns, and media playback fre-
quencies are stored and analysed in order to gain insights about the preferences of users
(Hu, Koren, and Volinsky 2008). Implicit feedback is valuable because it provides large
amounts of data in regard to the interaction of users with items. However, this data is
also inherently noisy due to the uncertainty about interpreting users” interactions with
the system (Pazzani and Billsus 2007).

In comparison to implicit feedback, explicit feedback generally provides data of higher
quality for learning about the preferences of users. However, people tend to provide ex-
plicit feedback on only a small set of the items they interact with, and so the amount
of explicit data gathered is usually much smaller than implicit data. In addition, Hill

etal. (1995) and Amatriain, Pujol, and Oliver (2009) found that users provide inconsistent
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ratings as their opinions change over time, and so explicit feedback also incorporates a de-
gree of noise. This phenomenon, described as a “magic barrier” in recommender systems
by Herlocker et al. (2004) and Bellogin, Said, and Vries (2014), refers to the natural ceiling
in the accuracy of predictions due to the variability in people’s ratings and feedback.
Since the goal of recommendation systems is to predict the value users would assign to
items they still have not experienced, recommendation algorithms try to estimate values
of the empty cells in the rating matrix. However, users usually have experienced or have
expressed their preference on only a small subset of all items in a dataset, and so most
cells of the rating matrix are usually empty. This phenomenon is known as data sparsity
and is a common problematic characteristic in recommendation systems (K. Goldberg et
al. 2001). Data sparsity indicates that the overall amount of expressed preferences of users
on items is only a tiny portion of all the possible interactions. Additionally, it also shows
that the amount of known information about each user and item may be different. For
example, the number of items users have rated or expressed preference about can be very
different, and so generating recommendations based on computing similarities between
users’ ratings may be misleading. Also, while some users could have experienced only a
subset of the most popular items, other users might have explored the less common ones.
In order to alleviate the sparsity problem, Herlocker et al. (1999) proposed to insert global
average rating values for empty cells in the rating matrix and Sarwar et al. (2000) suggested
to represent the rating matrix by means of latent factors, obtaining a low-dimensional rep-

resentation of the original user-item matrix. Variations of these two methods were incor-
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porated afterwards in new approaches for expressing the rating matrix and overcoming
data sparsity.

Automated recommendation systems aim to suggest items that users do not know
about and which they may like. Hence, recommender systems may benefit from the
many items people do not know about yet, and automatically finding and suggesting
the less popular and unexplored items for them to review. Therefore, recommendation
systems can play a fundamental role in this regard, since they can help users to explore

less-favoured and unknown items.

3.1.2 The long tail

Before online browsing, physical space constraints implied that mortar-and-brick busi-
nesses had to choose which items they were going to offer to people. As a result, com-
panies only had the possibility to store small subsets of all available items in their ware-
houses, displaying even smaller subsets of these items on their shelves. This characteristic
of having limited offerings implies that people are exposed only to a small set of items,
usually only to the most popular ones. Therefore, the total amount of items would be
scattered across many physical places, making the act of searching for less-known specific
items tedious, if at all possible.

However, the model of having limited offerings and providing access to just the most
popular items has changed since the inception of online browsing and delivery of items.
It is no longer necessary to display items in physical shelves or store them in huge ware-

houses, and so companies now aggregate catalogues from many sources and offer them
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through full online inventories. Hence, while previously people were usually exposed just
to the most popular items while browsing online, these days people are offered a much
larger, and more diverse set of items.

To describe this phenomenon, Anderson (2004) coined the concept of the long tail. Since
access to a much larger number of items is possible, many less-popular items are now
available for the general audience. As a result, the total amount of interactions between
people and less-popular items may be equivalent to the amount of interactions with the
most popular items. Consequently, the total consumption of all less-popular materials
can meet or exceed that of popular materials. This makes the long tail of items not only a
space for exploration and discovery, but also financially rewarding. In Anderson’s words,
“popularity no longer has a monopoly on profitability.” The downside of having a much
larger offer, however, is that people are overloaded by the large amount of information
and the many options that they have to process, and so they may feel debilitated instead
of liberated (Schwartz 2004).

From a statistical point of view, a probability distribution exhibits a long tail if it fol-
lows a power law. In this type of distribution a small portion of the higher-probability
population is followed by a much larger portion of the population with a much smaller
probability. Fig.3.1 depicts a ranking of popularity where a thin vertical line divides the
distribution of items into two zones. While the most popular items—those with the high-
est frequency of occurrences and the ones that are constantly accessed and sell the most—
are in the head, the long tail includes a large number of items with a much smaller popu-

larity. However, many of the items in the long tail may be of interest for users, and so new
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Popularity

Head

The Long Tail
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Fig. 3.1: Ranking of popularity of a set of items exhibiting a long tail distribution.
The number of interactions with the most popular items in the head zone is similar
to the number of interactions with the less popular items in the long tail.

[tems

business models that rely on selling fewer copies of larger number of items have appeared
since the inception of the online economy (Anderson 2008).

Celma (2010) and Lamere and Celma (2011) suggested that among the many items
in the long tail, modern recommendation systems should find and propose only novel
and relevant items, otherwise users might find the recommended items non-interesting,
obvious, or simply driven by popularity. However, Ter Bogt et al. (2011) found that novelty
is a characteristic that only some users want, typically those considered highly involved

in music.
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Itis reasonable to think that suggestions generated by a recommendation system should
consider features such as novelty and relevance. But it also makes sense to follow Ter Bogt
et al’s finding and hypothesise that automated means of being exposed to less popular
items are needed, but people are different and do not necessarily want to be exposed only
to new items all the time. They may have different proclivity for novelty, relevance, or
other features.

Incorporating profiling features within a customizable recommendation engine may
help to create suggestions tailored to specific characteristics of listeners, such as how much
they want to explore the long tail of items, or how similar is the music they want to listen
to what everyone else is listening to. However, this is not straightforward when it comes
to traditional approaches for recommendation. The next section describes the main ap-
proaches for making recommendations. These approaches are based on characteristics of

the items, of the users, or a combination of both.

3.2 Recommendation approaches

Recommendation systems are information filtering agents designed to diminish informa-
tion overload (Good et al. 1999). They operate under the premise of predicting which
items a user will find worthwhile among a large set of items.

The design and implementation of automated recommender systems generally falls
into two different categories based on how recommendation are made: content-based (CB)

approaches and collaborative filtering-based (CF) recommendation. A third method, hybrid
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recommendation, is based on a combination of the two previous approaches (Balabanovi¢
and Shoham 1997; Adomavicius and Tuzhilin 2005).

CB approaches examine properties and features of the items to calculate their similar-
ities, creating recommendations based on the degree of similarity between these features.
Lang (1995), Pazzani, Muramatsu, and Billsus (1996), and Chen and Sycara (1998) devel-
oped early recommender systems for the filtering of web pages and online news based on
word frequencies and topics within the documents.

Instead of focusing on characteristics of the items, CF methods focus on behavioural
relationships between users and items. These systems compute correlations or similarities
between the interactions of users and items, and predict what items users may like based
on those values. The earliest implementations of CF-based systems were put into effect for
tiltering out emails (D. Goldberg et al. 1992), online news and articles (Resnick et al. 1994),
and for the recommendation of music artists and albums (Shardanand and Maes 1995).

Finally, hybrid approaches combine CB and CF in order to improve the overall perfor-
mance of the system (Burke 2002). For example, Balabanovi¢ and Shoham (1997) devel-
oped an early hybrid recommender based on word frequency as well as ratings given by
users, that estimated the topics of webpages to recommend new webpages. In another ex-
ample of the hybrid approach, Basu, Hirsh, and Cohen (1998) used editorial information
about movies, such as metadata of the films and user-submitted tags, as well as a user’s
ratings on the movies, to improve the performance of a movie recommendation system.

The criteria, rationale, and an implementation overview of CB and CF-based recom-

menders are detailed in Sections 3.2.1 and 3.2.2, respectively. The techniques used for
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hybrid recommendation are based on combinations of CB and CF methods, hence are
covered in those subsections. The specific ways in which CF approaches are implemented
are detailed in Section 3.2.3 for neighbourhood-based approaches, and in Section 3.2.4 for
model-based approaches. Matrix Factorization, the most extensively used technique for

CF is detailed in Section 3.2.5.

3.2.1 Content-based recommenders

Content-based (CB) recommendation systems are based on information describing some
inner characteristics of the set of items in their database (Basu, Hirsh, and Cohen 1998).
By means of finding regularities among items” attributes, and using a sample of the user’s
preferences on these characteristics, CB information filtering systems estimate which items
users may like, and suggest a subset of them to the user.

Many of the earliest information filtering systems used the CB approach for making
recommendations. For example, Fischer and Stevens (1991) and Sheth (1994) created fil-
tering systems for recommending online news based on the estimated topic of streams
of articles. A similar approach was taken by Pazzani, Muramatsu, and Billsus (1996) for
filtering websites. Recent commercial recommendation systems also rely on content for
suggesting items. For example, the music streaming service Pandora® automatically cre-
ates playlists of songs by computing which songs in their database are similar to a given

song provided by the user.

54. The Pandora Radio music streaming service is available at http://www.pandora.com
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Instead of analysing the behavioural characteristics of users, or the interaction between
users and items, CB recommendation systems rely primarily on describing items in the
system by using a set of predefined features. This allow them to build a profile for each
item based on attributes of its content. The process of characterizing the items is per-
formed automatically by means of using automatic feature extraction, or manually by hav-
ing a set of domain experts annotate the characteristics of the set of items. However, as
the characteristics of items are domain-specific, it is not possible to generalise the set of
features to extract. For example, the following are sets of common features that may be

used to profile items in different domains:

¢ For movies, users may want to pay attention to editorial metadata such as director,

main actors, genre, studio, and year of production.

¢ For books, people can consider other books by the same writer, books of the same
genre, or other publications by the same publisher. Also, they may pay attention to

the book summary or main topics.

* For music, people may pay attention to other pieces by performers, composers, or
writers they like. Other characteristics that people may pay attention are genre, in-
strumentation, tempo, or decade of production or release. Musically well informed

listeners may also search for producers or labels.

Making recommendations by using a CB approach is achieved by finding those items

that share similar characteristics with a given item. Similarity of items can be decomposed
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in two main processes. The first process examines and determines the domain-specific
features that describe the items in a dataset. The second process estimates the similarity
between items in a set by measuring their distance in the feature space according to a
given metric. The next two subsections review the characteristics of audio features for

describing musical signals, and some of metrics to measure similarity in feature spaces.

Audio features for describing musical signals

There is not a single, unique way to describe a piece of music. Depending on the charac-
teristics of the song that we want to pay attention to, different aspects of the audio can be
relevant. For example, two songs can share similar harmonic content, but can differ greatly
in tempo, rhythmic characteristics, or melody. By applying digital signal processing tech-
niques to the audio signal of music tracks, we can perform calculations on its physical
quantities as they evolve over time, and use that information to characterise some intrin-
sic attributes of the songs.

Features extracted from audio signals are known as signal-based, audio-based, or con-
tent-based (Schedl et al. 2012). Depending on the level of abstraction about the musical
content, these features can be low-level, mid-level, or high-level representations of the au-
dio information. Low-level features are calculated straightforwardly by computing sys-
tems because they are quantified directly from the audio signal. However, most low-level
features do not convey a direct musical meaning to listeners, or are only loosely correlated
(Gouyon et al. 2008). Mid- and high-level features typically require the aggregation of

low-level data into higher-level representations, but in contrast to low-level features, these
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characterisations often approximate perceived musical attributes such as the genre, mood,
or instrumentation of a song. However, in order to capture those musical attributes, com-
plex models may be necessary in order to estimate these higher-level descriptions of the
audio signal (Van den Oord, Dieleman, and Schrauwen 2013).

Audio feature extraction was defined by Tzanetakis and Cook (2002) as the process
of computing a compact numerical representation that is used to characterise a segment
of audio. Numerical values for the audio features are calculated using digital signal pro-
cessing techniques. In these techniques, an audio signal is digitised and converted into
a standard audio file format with a fixed sample rate. Then, the signal is divided into
frames, short segments of audio, where it is assumed that the feature values will remain
stationary. A window function is applied to each of these frames in order to minimise the
discontinuities at the beginning and end of each frame. Adjacent windows usually over-
lap in order to obtain smoother analyses. Numerical values for all wanted audio features
are computed for each windowed audio segment. Finally, an aggregation of these time-
varying values is performed to create a summary for each feature. By using the derivatives
instead of the instantaneous values it is also possible to account for the temporal evolution,
or degree of change, of the feature values.

The various representations of the audio signal are used to extract features that allow
the attributes of the signal to be characterised from different perspectives. For example,
the temporal representation of the audio frames is used to extract so-called temporal fea-
tures, such as amplitude and energy of samples within each frame, zero-crossing rate,

temporal centroid, auto-correlation coefficients, and pitch features among others. On the
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other hand, the spectral representation of the audio signal is used to compute so-called
spectral features, such as the spectrum energy, and mean, spread, centroid, flatness, kurto-
sis, skewness, spectral slope, and roll-off of the spectrum frequency distribution. Cepstral
teatures, such as Mel-Frequency cepstrum coefficients (MFCC), are low-level characterisa-
tions of the audio signal derived from a transformed version of the spectrum that capture
some timbral aspects of music (Gouyon et al. 2008). Rhythmic content features, such as
the beat histogram of an audio signal, are extracted from a combination of the previous
representations with the goal of representing the rhythmic structure of music (Tzanetakis
and Cook 2002).

Musical features of higher level can be computed by means of the aggregation of fea-
tures of lower level extracted from the audio signal. For example, note onset detection
and intra-note segmentation are features that describe the starting point, attack, sustain,
and release of musical notes. These points can be calculated from the temporal variations
of single or multiple low-level features, such as changes in the audio signal’s energy and
pitch (Gouyon et al. 2008). Describing high-level musical concepts such as timbre, har-
mony, melody, rhythm, genre, or instrumentation, requires the design, implementation,
and evaluation of even more complex models.

The Music Information Retrieval Evaluation eXchange (MIREX)* is an annual evalu-

ation campaign where algorithms relevant to music information retrieval tasks are com-

pared by using same datasets and evaluation procedures (Downie 2008). The tasks of the

55. The Music Information Retrieval Evaluation eXchange (MIREX) webpage is available at http://www.
music-ir.org/mirex/wiki/MIREX_HOME
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competition are defined on a yearly basis and the outcome of the contest is a ranking of
the submissions per task. In the 2016 competition, those that received the largest amount
of submissions were: onset detection, singing voice separation, audio melody extraction,
audio chord estimation, audio beat tracking, and structure segmentation (Downie and
IMIRSEL 2016). The larger amount of submissions in these tasks can be a signal as to the
current research interests of the music information retrieval community. The MIREX eval-
uation campaign is a key point of reference when looking for the current state-of-the-art
research in musical features extraction. The systems and algorithms presented in MIREX
can be used by researchers and developers to implement sophisticated music recommen-
dation systems and models based on audio feature extraction and aggregation.

Features to describe the musical content from audio signals have been used since early
music recommendation systems. For example, Welsh et al. (2000) developed a system
aimed to help people navigate similar-sounding songs. Their approach was based on the
automatic extraction of more than 1,000 audio features per track that described temporal,
spectral, rhythmic, and higher-level characteristics such as genre of tracks in their system’s
database. A user then provided a seed song, the set of features was computed for the track
if they were not already computed, and the system retrieved and suggested the nearest
neighbour tracks in the feature space. Welsh et al., however, did not provide any measure
of the effectiveness of their system due to the “subjective nature of similarity.”

Similarly, Tzanetakis, Essl, and Cook (2001) developed a set of features for representing
texture and instrumentation of audio signals, and a set of algorithms for automatic genre

classification. Their features aimed to represent the “musical surface” of audio: timbre,
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texture, instrumentation, and rhythm. By using dimensionality reduction techniques the
authors mapped songs into a lower dimensional space, aiming to have songs of the same
genre close to one another in the resultant feature space. Tzanetakis, Essl, and Cook also
developed a graphical user interface to browse and interact with the set of songs, songs
collections, or audio signals in general. The interface aimed to allow users to navigate these
sound objects, which were clustered by similarity in the space. They did not provide any
evaluation of their system or interfaces.

There are some conceptual caveats in estimating similarity using a CB approach. First,
Slaney, Weinberger, and White (2008) pointed out that the very concept of similarity in mu-
sic is an “ill-posed problem:” it is likely that two people may disagree about the degree of
similarity between two songs, and so the ground-truth information extracted from their
direct observation is not conclusive. Van den Oord, Dieleman, and Schrauwen (2013) elab-
orated on this idea, and stated that there is also a semantic gap between low-level features
describing a set of musical items and what users recognise as something perceptually rele-
vant. They noted that most metrics for measuring perceptual similarity are defined based
on prior, expert knowledge in the domain of the items to be recommended, but they are
not optimal for the task of music recommendation because of the semantic gap. As a re-
sult, Van den Oord, Dieleman, and Schrauwen investigated an approach that did not use
a set of predefined features to estimate similarity, but instead a model learnt a set of latent
factors from the audio signal and used these to estimate song and artist similarity.

Despite the previously mentioned caveats, automatic approaches for audio signal clas-

sification similar to the aforementioned have been implemented in commercial audio recog-
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nition and music recommendation systems such as Mufin.”® Alternatively, manually driven
descriptions of tracks have been used in the recommendation systems of commercial mu-
sic streaming services such as Pandora. Pandora’s documentation states that “music an-
alysts with a four-year degree in music theory, composition or performance” manually
annotate up to 450 features for characterizing each song using “precisely defined termi-
nology,” as part of the so-called Music Genome Project,” patented by Glaser et al. (2006).
However, beyond the general information in the patent itself there is no publicly available
description about the features themselves, the feature extraction process, or the metrics
used by Pandora and the Music Genome Project (Turnbull 2008).

Automated feature extraction has the greatest impact on the scalability of a recommen-
dation system because it allows for faster, inexpensive, and more consistent annotations
than manually characterised items (Brandenburg et al. 2009). On the contrary, annotations
made by human experts allow for the extraction of more reliable and higher-level features
(Tingle, Kim, and Turnbull 2010). As a result, while companies that rely on automatic ap-
proaches for feature extraction are able to annotate and manage huge datasets of items,
institutions and services that use annotations made by experts usually have smaller but
more detailed datasets. For example, Pandora has a song corpus one order of magnitude
smaller than other music streaming services (Sydell 2014), but according to marketing
research by Arbitron Inc. and Edison Research (2015), it has been the music streaming

service leader in the United States for several years.

56. The audio identification and music recommendation company Mufin is available at http://www.
mufin.com
57. An overview of the Music Genome Project is available at http://www.pandora. com/about/mgp
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Once the set of domain-specific features that characterise a set of musical items has
been designed and implemented, the remaining question is how to calculate the distance
between these items’ projections into the multi-dimensional feature space. The next sub-
section provides a review of similarity metrics that allow us to estimate this distance.
Mathematical formalizations, implementation details, and examples of use about some

of these similarity measures are given in Section 3.2.3.

Similarity measures

Similarity functions aim to estimate the likeness of items in a given multi-dimensional
space, yielding numerical, real-valued metrics based on different approaches. The chosen
method can greatly impact the resulting similarity measure, and so it is important to con-
sider the characteristics of the data as well as the characteristics of the features describing
the data when choosing a specific approach.

The most straightforward methods estimate the similarity of items by calculating pair-
wise distances along all dimensions of the feature space. Euclidean distance simply mea-
sures the straight distance between two items in the multi-dimensional space to yield a
similarity metric. Manhattan distance also computes the distance between two points in
space, but it aggregates the distances along the grid lines of the axes to estimate the simi-
larity of items. As a result of this rectilinear approach, it is also known as taxicab distance.
These two distance-based metrics assume that the features have similar scale, and so they
have similar perceptual relevance; and also that the features are relatively independent

and so the distance can be summed up along the axes.
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Instead of using distances between points to calculate their similarity, the cosine sim-
ilarity metric calculates the cosine of the angle that two feature vectors form in space to
estimate their similarity. As a result, similar items will have similarity values close to 0,
and dissimilar ones will have values close to £1, depending upon the angle between them.

The Jaccard distance estimates the similarity, or difference, of items as a set problem.
This metric functions by computing a numerical value using the intersection and union of
sets of items. Therefore, it is well-tailored for cases with categorical variables, or for cases
in which the items are described by a subset of all features.

Finally, Mahalanobis distance calculates the similarity between points by computing
the distance between a point and the centre of mass of a given set of points. This estimation
of distance is estimated in terms of the number of standard deviations between them. As
a result, it yields a value predicting if the point belongs or not to cluster of points which
is unit-less and scale-invariant.

As described in previous sections, CB recommenders operate by first defining a set of
teatures to describe intrinsic characteristics of items, and then defining a metric to measure
the similarity of these items according to the chosen features. As a result, these systems
consider items that are in the head of the popularity ranking of the probability distribution
curve in the same way as items at the very end of the long tail. In this sense, recommen-
dations made by CB systems are not biased by pre-existing preferences of users, or their
perception about items, as well as being less mediated by marketing campaigns or media
exposure of a chosen group of items. This characteristic of CB recommendation allows

people to explore a whole dataset of available items much more deeply, because the rec-
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ommendation process is not biased by previous preferences. However, it is also possible
to make many non-interesting or non-relevant recommendations by means of measuring
the similarity of tracks based on a set of low-level or high-level features. Recommending
music is more than just paying attention to acoustic properties of the audio signal. A series
of methods relying on a different approach were developed in order to find more relevant
items. We now proceed to describe CF recommendation, an approach to recommendation

that is agnostic to the actual content or metadata of items.

3.2.2 Collaborative filtering recommendation

A different approach to create recommendations is collaborative filtering (CF), term coined
by D. Goldberg et al. (1992). The fundamental assumption of this recommendation method
is based on the idea that if two individuals assign similar ratings to a set of items—or be-
have similarly with them—those people share similar tastes and therefore may rate or act
on other items similarly. Therefore, CF recommendations base their approach on usage
by aggregating the preferences on items of a large amount of users and recognizing the
commonalities or similarities between users on the basis of their choices. Finally, CF rec-
ommendation approaches generate suggestions based on inter-user comparison. Since
these systems do not need especially hand-crafted features to describe the set of items,
they have the advantage of being agnostic to the domain of the items.

Slaney (2011) pointed out that CF outperform CB systems at the large scale of the In-
ternet in many item domains because they take into account people’s perceived similarity

of items. Previously, Slaney and White (2007) designed an experiment in which a large
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number of users had to judged the similarity between a set of playlists. The playlists were
generated by: (i) CB similarity using state-of-the-art acoustic feature extraction algorithms,
(ii) explicit ratings of a large amount of listeners on songs, and (iii) a random playlist gen-
erator that was used as a baseline. The authors found that listeners preferred the playlists
based on usage much more than the ones based on content. Consequently, CF is currently
the dominant and most successful framework for recommending media items and items
in general (Shi, Larson, and Hanjalic 2014), driving the recommendation frameworks of
major media delivery companies such as Amazon (Linden, Smith, and York 2003), Netflix
(Gomez-Uribe and Hunt 2015), and Spotify (Johnson 2014).

However, CF systems suffer from some issues. For example, since these systems rely on
usage data, they can only generate recommendations for those users and items for which
the system has enough information. This problematic issue was described by Maltz and
Ehrlich (1995) as the cold start problem of CF systems. New users usually start with an
empty profile, and so it is not possible to find other users with a similar set of preferences
to generate good recommendations. Similarly, new items that have not been experienced
by anyone will be unlikely to be recommended by the system. Therefore, during the cold
start period a recommendation system will not be able to effectively filter and suggest
items to users.

The cold start effect is particularly important in the domain of media and music. Celma
(2010) pointed out that the consumption of music items follow a power-law distribution,
therefore the largest proportion of the least popular items is experienced by listeners much

less than the smallest proportion of the more popular music items. As a result, generating
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recommendations for the less-preferred music entities has a much smaller probability. In
other words, the more popular items will be suggested more frequently by CF recommen-
dation systems than the less popular items, and this phenomenon will be reinforced over
and over, as a feedback loop.

CF-based recommendation can be implemented by means of different conceptual ap-
proaches. While all these methods aim to find a set of like-minded users given a seed user,
or a set of similarly consumed items according to a seed item, the estimation of similarity
between the users or items is achieved by different means. The primary methods used to
compute this similitude are: (i) computing the correlation of users’ previous preferences
on items, and (ii) learning a model based on these preferences, model which is used af-
terwards to estimate future preferences. These two strategies are commonly denominated
neighbourhood or memory-based, and model-based approaches. These processes are de-

tailed in the next sections.

3.2.3 Neighbourhood approaches

Neighbourhood-based recommendation is based on the idea that people rely on like-
minded people or sources to evaluate the recommendation value of an item. This concept
is colloquially known as recommendation by word-of-mouth (Ricci, Rokach, and Shapira
2015). People recognise as good recommendations those suggestions made by others who
they believe to have similar interests. Therefore, neighbourhood-based recommendation
systems aim to find a subset of entities—users or, alternatively, items—with similar be-

haviour within the pool of entities of the dataset. The interactions of all users on items
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are stored in a database of events. These interactions are aggregated and mapped onto a
two-dimensional space that allows to perform faster calculations. The similarity between
users or items is computed by comparing the rating patterns of users or items, which is
then used to find the nearest neighbours. Hence, neighbourhood-based methods gener-
ate predictions on not-yet experienced user-items interactions based on past preferences
(Herlocker et al. 1999).

User-based neighbourhood systems try to predict the preference of a target user on an
item, given the rating of similar users—those with similar rating patterns—on thatitem. In
other words, the rating 7,; of user v on item ¢ can be predicted given a set of k like-minded
similar users and all ratings that the k users have given to the item i.>® The interaction
between user u and item ¢ is notated as the item pair (u, ), and all interaction pairs are
stored in a set IC, hence K = {(u, ) | r; is known}. The estimated rating 7,; is computed
as the average rating given to ¢ by the subset of neighbours, usually weighted by their
degree of similarity with the user u, and considering any bias in their ratings.

In contrast to user-based techniques, item-based neighbourhood recommendation sys-
tems try to predict the rating of users on items using previous ratings given by users to
similar items (i.e., those items with similar rating patterns). In this technique, a set of k
similar items is used to predict a rating 7,; of user v on item ¢, given the ratings that u has
given to the k items. The estimated rating 7,; is computed as the weighted average of the

ratings given by u to the £ items.

58. A note on notation. Throughout this chapter we use the same notation used by Koren (2008), where
letters u and v represent users, and ¢ and j are used to represent items. A rating indicating the preference
of user v on item 4 is written as ;. If rating r,,; is predicted, instead of actually rated, it is written as 7.
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As computing the similarity between users or items is a key component in neigh-
bourhood approaches—all predictions are based on the similarity between entities in the
system—the computation of a suitable similarity metric is a crucial component in building
a neighbourhood-based recommendation system. Similarity functions combine the set of
ratings of users on items into a single value that represents the similarity between entities,
users or items. This value can be also interpreted as the degree of influence or weight
when calculating the predicted rating of one entity on another.

There are several different methods for estimating similarity, but Pearson correlation,
Cosine Vector similarity, and Jaccard similarity are the ones more commonly used in recom-
mendation systems (Leskovec, Rajaraman, and Ullman 2014; Ricci, Rokach, and Shapira
2015). We provide details about the computation of these three similarity metrics in the

following subsections.

Cosine vector similarity

Also known as Cosine distance, this metric computes the similarity between two entities i
and j by calculating the cosine of the angle that the two vectors #; and #; form (Salton and
McGill 1983). The smaller the angle the vectors form, the more similar the two entities are.

For example, two different music tracks i and j can be characterised by a set of features
representing some of their musical attributes. Numerical values for these features are
stored in vectors ; and ;. Each of these vectors can be visualised as a segment that
connects the origin of the multi-dimensional feature space to a specific point in this space.

Cosine vector similarity calculates the angle these two vectors form. If the two items are
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similar, the angle their vectors form will be small. Cosine vector similarity is formalised

as the dot product of the vectors divided by the product of their norms:
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In recommendation settings, Cosine vector distance is used to compute the similarity
between users u and v, given a set of items Z,, that has been rated in common by the
users. Hence, Cosine vector-based similarity between users u and v is formally written as

follows:
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where Z,, and Z, correspond to the items that users v and v have respectively rated, and
7., corresponds to the set of all items that users v and v have rated in common.
Measuring the similarity between users u and v with Cosine vector distance has the
drawback of not considering the variances of the ratings of each user. As a result, the esti-
mated similarity between users that use different scales to rate items may be misleading,
because their personal biases are not considered in the calculation. In order to account for
probable biases in ratings given by users, a different similarity metric is commonly used

in recommendation settings. This metric is the Pearson correlation.
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Pearson correlation

Pearson’s correlation coefficient is used in recommendation settings to measure the simi-
larity between users or items that incorporates the mean of the rating values as part of its
computation. By incorporating this value, it normalises the values of the vectors to their
arithmetic mean (Resnick et al. 1994). Thus, the Pearson correlation-based similarity be-
tween users v and v, where i € Z,,, corresponds to all items that have been rated by both

users, and 7, and 7, are average ratings of co-rated items by users v and v, is formalised

as follows:
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Pearson correlation is similar to Cosine similarity. However, instead of having a fix ori-
gin, the origin is translated to the arithmetic mean of the vectors (Egghe and Leydesdorft
2009). Consequently, this translation allows to obtain correlation-based similarity values
within the range +1, while Cosine vector-based similarity varies only from zero to one.

Although the two aforementioned are the most used similarity metrics in the con-
text of recommender systems (Leskovec, Rajaraman, and Ullman 2014; Ricci, Rokach, and
Shapira 2015), there is also another metric known as the Jaccard similarity index, which is

based on the idea of set similarity.
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Jaccard similarity

Jaccard similarity is a metric based on the presence or absence of a set of attributes instead
of the actual value of those attributes. Jaccard similarity measures how close two sets are,
resulting in higher values when the sets are similar to each other. In recommendation
settings, this metric can be interpreted as a measure of the similarity of the set of items
experienced by users, but not considering the actual preference values on those items.

Jaccard similarity is formalised as follows:

: ANB
simys(A, B) = ﬁ (3.4)

where A and B can be any set of elements, such as the sets of rated items by users or the

presence or absence of categorical item features.

Synthetic example of similarity measures

In order to exemplify similarities and differences between the three aforementioned simi-
larity metrics, we now present an example of their behaviour in a small synthetic dataset.
In this dataset a set of users U = {uy,us, ..., us} expressed their opinions about a set of
items I = {iy, s, ..., 410} in the form of preference ratings in a 1-to-5 scale.

Table 3.1 shows the synthetic utility matrix with the rating values for all interactions
between users and items. Most users have expressed their preference for i; and 75, however

just a few have expressed preference for iy, i3, i3, ig, OF is. In fact, all users of this synthetic
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dataset have expressed preference only for some of the items. For example, users us, us,
uy, and us have expressed preference for just half of the items.

The sparsity of the expressed preferences in Table 3.1 is common in rating matrices,
but actual rating matrices have a much larger sparsity than the one shown in this synthetic
example.

Table 3.1: Synthetic example of rating matrix. A set of users U have expressed
their preferences on a set of items /. Only a portion of the items have been rated.
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We now assess user similarity with the three previously described metrics. The three
sets of similarity values are presented in Table 3.2. It can be seen that, according to the
Cosine vector similarity metric (see Table 3.2a), the most similar pairs of users are (uy, us),
(ug,uy), and (u4, us), with a value of .99 each. On the other hand, the most dissimilar pairs
of usersare (uy, us), (us, us), and (u1, us), with values of .79, .81, and .82 respectively. On the
other hand, user similarity computed with Pearson correlation (see Table 3.2b) estimates
that the most similar pairs are (us, us), (u2, u4), and (uy, us). It can be noticed that the user-
pair (u4, us) is the only pair that is ranked among the highest correlated pairs computed
with the two metrics. Also, (uy,us) and (us, us) are among the less similar pair of users
estimated by the two metrics. Contrarily, the similarity computed for the pair (us, u4) dif-

fers greatly between the two methods. While Cosine vector estimates a high similarity for
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Table 3.2: Assessment of user similarity in synthetic dataset using (a) Cosine vec-
tor, (b) Pearson correlation, and (c) Jaccard similarity metrics. Most similar pairs
for each metric are highlighted in bold.

COSINE
user U1 U2 us Us
uz 0.99
us 0.98 0.92
Us 0.82 0.98 0.99
Us 0.79 0.98 0.81 0.99
(a) Cosine similarity
PEARSON
user uq U2 us Usg
U2 0.93
us 0.52 0.20
us -0.39 0.96 -0.51
Us -0.06 1.00 -0.30 0.94
(b) Pearson correlation
JACCARD
user uq U2 us Usg
uy 0.33
us 0.33 0.25
ug 0.50 0.25 0.25
us 0.71 0.25 0.43 0.43

(c) Jaccard similarity

that user-pair, Pearson correlation returns a negative value of similarity. This is explained
by the fact that the Cosine vector does not account for the mean or variances of the user’s
ratings, which in the case of users u3 and u, are dissimilar. Pearson accounts for these dif-
terences and returns a different similarity value. The Jaccard similarity metric (see Table
3.2¢c) estimates that the pairs of users (u;, us) and (uy, u4) are the most similar ones. On the

contrary, user-pairs (uq, us), (ug, u4), (u2, us), and (us, uq), are the most different. Moreover,
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these results differ from what was computed using Cosine vector and Pearson correlation
due to the fact that Jaccard similarity does not consider the actual rating, but only the set
of items for which there was preference, or interaction, between users.

It is worth mentioning that neighbourhood approaches can be used not only to esti-
mate similarities between users (given item agreement), but also to estimate similarities
between items (based on users’ ratings). User-user and item-item similarity estimation
drive commercial user-based and item-based CF recommendation systems such as Ama-
zon’s “Customers Who Bought This Item Also Bought” and Amazon’s “Frequently Bought
Together” items, respectively (Linden, Smith, and York 2003).

Choosing a specific measure for computing similarity can greatly impact the estimated
value of similarity. Pearson correlation can estimate a high similarity between users or
items even if they have dissimilar rating values, or a low similarity even with similar val-
ues. On the other hand, Cosine vector similarity can estimate that two vectors with same
orientation but different magnitude are more similar than a pair of vectors with same mag-
nitude but slightly different angle. Allin all, different metrics lead to different estimations
of similarity, and so choosing a specific one has a significant impact in neighbourhood-
based recommendation. There is no consensus in which one is the best similarity metric,
but most CF recommendation systems implement some of the aforementioned similarity
metrics, Cosine vector and Pearson correlation in particular (Leskovec, Rajaraman, and
Ullman 2014; Ricci, Rokach, and Shapira 2015).

One big disadvantage of using any of the aforementioned neighbourhood approaches

for estimating similarities between users or items (and therefore for CF recommendation
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systems) is the need of initial rating data, otherwise the system will not know anything
about a user and so it will be difficult to find like-minded people. Similarly, it would be
difficult to recommend a new item entered into the database, because there have not been
previous interaction with it. Also, as the number of users and items increase, neighbour-
hood approaches suffer computational complexity since they have to estimate correlations
between all pairs. Due to these shortcomings, the recommendation systems discussed so
tfar have been abandoned since the late "90s and superseded by newer techniques based

on learning models from the data.

3.2.4 Model-based approaches

A set of techniques for creating recommendations not based on finding the closest neigh-
bours to users or items were developed later. These techniques aimed to improve the
performance of recommendation systems by creating more accurate suggestions while
diminishing the computational training time, thus allowing for manipulation of larger
datasets (Koren and Bell 2015). This series of techniques were called model-based recom-
mendation methods by Breese, Heckerman, and Kadie (1998).

Model-based recommendation systems assume that CF recommendation can be viewed
as a task of estimating the rating values of users on items not yet experienced. Therefore,
these systems learn a statistical model from the users’ preferences, expressed as rating val-
ues in the utility matrix. The model is used afterwards to estimate the rating values that

users would assign to items not yet experienced.
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Using statistical and machine learning techniques, different approaches have been used
to design model-based recommendation systems. Cluster models and Bayesian network
models were proposed and formalised by Breese, Heckerman, and Kadie (1998), linear re-
gression was used by Sarwar et al. (2001) to learn models for predicting new ratings from
past user ratings. Hofmann (2003) formalised a probabilistic approach for extracting latent
classes from the data. Finally, Shani, Heckerman, and Brafman (2005) had the hypothesis
that the recommendation problem may be seen as a sequence of events that can be mod-
elled by implementing Markov decision processes in the context of a CF recommendation
system.

A review and description of the aforementioned as well as other model-based rec-
ommendation techniques was made by Adomavicius and Tuzhilin (2005). The authors
surveyed what they called the “state-of-the-art” in recommendation systems in the year
2005, defining a set of improvements that the next generation of recommendation systems
should address in order to improve their recommendations. However, the next big push
in the development of new systems and approaches for recommendation came from the

movie rental company Netflix.

The Netflix Prize

In the year 2006, the DVD rental company Netflix challenged the research community to
develop a system capable of improving the accuracy of Cinematch, their own proprietary
recommendation system. The company offered a prize of one million dollar for the winner

(Bennett and Lanning 2007).
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Based on computing Pearson’s correlation of users and movies, Cinematch determined
a list of similar movies and predicted the rating a user would give to those items after
watching them, on a scale from 1 to 5. In order to win the Netflix prize, a participating
recommendation system should reduce by 10 percent the error that Cinematch computed
between the actual subscriber movie rating and the prediction the participating system
estimated for it. Participants were required to document and publish their approaches
and findings publicly, thus encouraging researchers to benefit from the research of the
other participants.

To enable the contest, Netflix released a dataset containing roughly 100 million time-
stamped ratings from 500K anonymous subscribers, on nearly 18K movie titles. The data
reflected the distribution of all ratings (in a discrete scale) received by Netflix during a 7-
year period. The whole dataset was divided into subsets for training, validation, and test-
ing (96, 1.3, and 2.7 percent of the whole dataset respectively). However, research groups
participating in the challenge only had access to the training and validation datasets. The
testing dataset was used by Netflix for the evaluation of the submitted algorithms. The
dataset, which was orders of magnitude larger than previously available datasets, pro-
vided the research community with the possibility to play with a very large dataset of
user-item interactions. Exposing research groups to the actual demands of commercial
recommendation systems could potentially lead to the development of new approaches
to make better predictions, the development of new techniques to process the data, the

discovery of trends and new insights from the data.
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During the first year of the contest, more than 20K teams were registered for the com-
petition and more than two thousand actually submitted their predictions. An online
leaderboard managed by Netflix registered all submissions, their results, and links to
their webpages and publications.” However, after the first year none of the submissions
achieved the improvement in accuracy required to win the prize; the leading research
groups reached a plateau at about 7 percent of accuracy improvement.

Since there was no winner, the competition went on for another year and a half. Due to
the requirement for the research groups to publicly document their procedure and report
all findings, some of the participating teams started to discuss and share code, coding
ideas, and insights from the patterns found in the data. Furthermore, some of these teams
started to work together in order to combine and blend their implementations to achieve
the required increase in accuracy.

Finally, two teams submitted their predictions and achieved an improvement of 10.06
percent each by the due date in July 2009. Despite they achieved the same result, the win-
ner team submitted their solution 20 minutes before the second-place team. The Grand
prize went to the team named “BellKor’s Pragmatic Chaos,” which was a combination of
the teams “BellKor” and “Big Chaos”(Koren 2009b), teams that were in top of the leader-
board ranking in previous years.

One of the big insights that the Netflix competition provided was that no single unique

recommendation algorithm could achieve the desired improvement in accuracy. As a re-

59. The leaderboard of teams, their marks, and link to their publications is still available at http://
netflixprize.com/leaderboard.html
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sult, teams had to join forces—their algorithms, methods, and insights learned from the
data—in order to reach the mark. Therefore, after three years of work, the aforementioned
two teams beat the challenge by combining several teams’ ideas and algorithms into more
complex models that made possible to improve the accuracy of their predictions. The
“BellKor’s Pragmatic Chaos” team developed and implemented hundreds of models to
represent the data that Netflix released. Then, they used an iterative process of optimiza-
tion by which the algorithm with the lowest contribution to increase the overall accuracy
of the system was removed in each iteration. In the end, 18 predictors were used to achieve
the goal of obtaining the 10 percent accuracy improvement (Toscher and Jahrer 2009).
The Netflix prize competition demonstrated that model-based approaches achieved
a better performance and are more scalable for large datasets than nearest neighbour-
based techniques (Koren, Bell, and Volinsky 2009). The winning model-based approaches
used in the competition were based on finding a set of latent factors that explained the
ratings of items by users. In particular, the latent factor technique that achieved the best
performance in terms of accuracy and scalability for the data of the competition was matrix
factorization. In the next subsection, we review and describe how matrix factorization is
used to approximate the rating matrix. This process is driven by finding a set of factors
inferred from the rating patterns that characterise some intrinsic, to-be-revealed aspects
of users and items, which can then be used to estimate the ratings of users in items not yet

experienced.
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3.2.5 Matrix factorization

While previously described neighbourhood-based methods for recommendation are intu-
itive and their results easy to interpret, matrix factorization techniques allow to discover
underlying latent factors between the interaction of users and items. Matrix factoriza-
tion is a mathematical technique for reducing the dimensionality of a matrix. Any matrix
can be approximated by finding two or more matrices that, when multiplied, reconstruct
closely the original matrix. Therefore, the goal in matrix factorization is to compute a set
of lower-dimensional matrices that approximate the original rating matrix.

In the context of recommendation, the rows of the estimated low dimensional matrices
can be interpreted as a set of latent factors that determine partially the reaction of users to
items. Then, the values of these latent factors are used to predict the preference of users
on those items not yet rated. That is, the estimated latent factors can be visualised as the
items’ features that cause people’s preference on them (Koren, Bell, and Volinsky 2009).

Since each user typically only interacts with a very small subset of items from the com-
plete available collection, the utility matrix is very sparse (in numerical analysis, a sparse
matrix is a matrix in which most of the elements are zero, null, or have an empty value. By
contrast, if most of the elements are nonzero, then the matrix is considered dense). This
tendency creates problems for neighbourhood-based approaches because it leads to poor
estimations of similarity. With matrix factorization, the sparsity of rating matrices is ad-
dressed by projecting users and items into a reduced latent factor space that captures the

most salient features of the dataset (Ricci, Rokach, and Shapira 2015).
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Formally, all user-item interactions in the rating matrix can be modelled as inner prod-
ucts in a joint latent feature space with dimensionality f. Each item i is associated with
a vector g; € Rf, and each user with a vector p, € IRf. For each item i, values in g, rep-
resent to which extent the item possesses those latent characteristics. On the other hand,
for each user u, values of p, embody how much the user pays attention to those latent
features. The dot product of the arrays accounts for the interaction between each user’s
interests on each item’s characteristics. This product approximates the rating r;; of user u

on item 7, and leads to the estimated rating:

Pij = q;" P, (3.5)

Yehuda Koren, who led “BellKor’s Pragmatic Chaos,” the team that won the Netflix
Prize competition, stated conceptually the matrix factorization approach for recommenda-
tion and also detailed its implementation in a number of publications (Koren 2008, 2009a;
Koren, Bell, and Volinsky 2009; Koren and Bell 2015). In these publications, Koren ex-
plained that the preferences expressed by users for items can be biased due to the tendency
of users to use the preference scale differently. This might lead to some users rating items
in a more extreme way than others, or having some items that are rated higher than others.
Thus, biases on users’ item ratings should be taken into account and removed when doing
the estimation of the latent factor values.

In the process of normalisation, input values are transposed to a common scale by

removing the overall matrix mean, as well as row and column means. In other words, the
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mean of users and items, respectively. After the normalisation process, a model based on
latent factors tries to learn the factor vectors r,; by means of minimizing the square error
from the set of known ratings.

The process of minimizing the error can be formalised as follows, with K being the set
of (u, ) pairs for which r,; is known:

min Z (’rui - qiTpu)Z (36)

q,p
(u,i)ex

Moreover, in order to minimise the risk of overfitting the training data, a regulariza-
tion parameter is used to control the magnitudes of the learned factors (Bell and Koren
2007). This regularization parameter is called the lambda value, and is chosen by compar-
ing the prediction error between the training and testing datasets. The higher the value of
lambda, the more is the regularization applied. What constitutes an appropriate lambda
value is dependant on the size, characteristics, and sparsity of the underlying data. A
sensible value for lambda should be the one computing a similar error value for the two
sets. Hence, this regularization parameter is data-dependant and can not be chosen in ad-
vance, it should be tuned using out-of-sample test data. The final expression for learning

the factor vectors considering the regularization is therefore expressed as:

min Y (1w — g/ ) + Mg, + Ip.]*) (3.7)

q,p
(u,i)eX
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To find the best values for p and g that minimise the error in those entries where r,; is
non blank, learning optimization algorithms such as gradient descent or alternating least
squares are usually implemented. In stochastic gradient descent, matrices are initialised
with a set of values and the difference between all predicted ratings and actual ratings
is calculated, in what is known as prediction error. Then, the values of the matrix are
modified by a small amount, searching for the change of direction that makes the predic-
tion error smaller. This process is repeated iteratively, most of the time converging to a
minimum value (Funk 2006).

On the contrary, instead of optimizing values of factors for users and items at the same
time, the alternating least squares approach rotates between fixing one set of values and
then the other. Once the values for a set of features are fixed, their counterparts are min-
imised by solving a least-squares problem, and vice-versa. This iterative process is re-
peated until converging when no significant improvement is achieved (Bell, Koren, and
Volinsky 2007).

As these optimization processes are stochastic, the final values are not always the same,
however they usually tend to be close. A common approach that avoids predicting merely
one possible set of values is to run the process several times and use the mean value of all

computed latent factor values as the resultant ones.
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3.3 Recommendation system evaluation

Evaluation of recommendation system properties is complex. On the one hand, the sys-
tems can have different goals and so some of the properties that describe them can be
more, or less, linked to those goals. Therefore, the metrics to use when evaluating recom-
mendation systems should be the ones that are linked to the properties related to those
goals. Otherwise, there is potential for an inaccurate measurement of tasks. On the other
hand, there is a lack of standardization of evaluation metrics, and so it is common that
researchers introduce new metrics when evaluating their systems, which makes it hard to
compare results among systems. In spite of that, we will now present the most standard
evaluation metrics for recommendation system, consolidated from a number of studies (K.
Goldberg et al. 2001; Herlocker et al. 2004; Su and Khoshgoftaar 2009; Celma 2010; Shani
and Gunawardana 2011; Lii et al. 2012). Broadly speaking, there are two sets of metrics:

accuracy metrics and usefulness metrics.

3.3.1 Accuracy metrics

Accuracy metrics measure how well a recommender system can predict an exact rating or
preference value for a specific item, or how close a predicted ranking of items for a specific
user is to the user’s true ranking of preferences. Depending on the recommender goals,

accuracy metrics can be used to measure prediction, classification, or ranking.
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Predictive accuracy metrics are used when we want to predict the rating, or preference,
a user would give to an item. This metric is computed by comparing the predicted

rating on an item with the actual value a user has expressed about it.

Root mean squared error (RMSE) is the most commonly used metric for evaluating

accuracy of predicted ratings. RMSE is formalised as:

1
RMSE = |— Y (Fu —ru)’ (3.8)
‘IC’ (ui)ex

where K is the given test set of all user-item interaction pairs (u, @), 7, is the predicted
rating calculated by the recommender, and r,; is the rating value actually given by

the user on the item.

Mean absolute error (MAE) is an alternative to RMSE that penalises large errors to
a lesser degree:

1
MAE = — Y |fui — 1uil (3.9)

‘ | (ui)ex
Derived from these metrics, researchers have developed several related metrics, such
as Average RMSE, Average MAE, Normalised RMSE, and Normalised MAE. These
alternative metrics aim to compensate for errors coming from datasets with an un-

balanced distribution of items, or for ranking scales that are not fully used.

Predictive accuracy metrics have benefits such as easy implementation and compu-

tation, and are also conceptually easy to understand. These advantages make them
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a commonly used set of metrics to compare the predictive accuracy between recom-

mender systems.

Classification accuracy metrics measure the frequency with which a recommendation
system makes good decisions about “whether an item is good or not”. These met-
rics are usually used for tasks of finding relevant items, where the recommendation
engine does not try to predict the user’s preference or rating on items, but to recom-
mend items to users that they may use or like. In this case, the possible outcomes
of the recommendation belong to two classes: relevant or irrelevant items. These

classes are organised into the following categories:

True positive (TP) for recommended items the user is interested in.
False positive (FP) for recommended items the user is not interested in.
True negative (TN) for not recommended items the user is not interested in.

False negative (FN) for not recommended items the user is interested in.

Based on these four possible outcomes, two commonly used classification metrics

are defined: precision and recall.

Precision measures the fraction of relevant retrieved items over all the recommended
ones. It represents the probability that a selected item is relevant. Precision is

formalised as:

TP
Precision = ——— N
recision = PP (3.10)
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Recall measures the fraction of relevant instances that are retrieved. It represents

the probability that a relevant item will be selected. It is formalised as:

TP
Recall = m—m (311)

If the user does not need a full list of potentially relevant items, for example when
using the recommendation system to find a good item, precision alone at a single
search length or a single recall level can be appropriate. However, if the task implies

finding all good items, recall becomes important.

Precision and recall are inversely related and depend upon the length of the result
list returned to the user. If a higher recall is allowed, it is likely that precision will
be lower. If recall is low, the precision is usually high. Because of this trade-off, it
is common to use a single metric to express both precision and recall with a single
number. This metric is known as the F-score. F-score combines precision and recall
into a single value. Their respective importance is weighted by adjusting a /3 factor.
A value of 1 for 3 implies same weight for both precision and recall, in what is known

as F; score or F-measure. The F-score is formalised as:

1+ %) - (Precision - Recall)
(% - (Precision + Recall)

JOR (3.12)

All in all, precision, recall, and F-score are well tailored to binary retrieval contexts,

where recommended items can be categorised as relevant or irrelevant, but their
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ranking is not important. If the ranking of the retrieved relevant items is important,

rank accuracy metrics can be used.

Rank accuracy metrics are used when we want to measure how much an ordered list of
items given by a recommender matches how a user would have ordered the same
list. Hence, these ranked-based metrics are not usually used to just find relevant
items because they can be over-sensitive for this task. There are several approaches
for evaluating a ranked list of recommendations, but basically they are based on the
correlation of lists of items or in their utility. While the former approach compares
a ranked list of recommendations with a reference ranking, the latter measures the
utility of the predicted list, assuming that top positions in the list are more relevant

for the user than the ones in the bottom of the list.

So far, we have reviewed evaluation metrics only based on intrinsic properties of the
recommendation system. However, system-centric evaluation has some limitations. First,
users usually do not rate all items in the recommendation system database, and so the ob-
servations that a system-centric approach can evaluate is a narrow, probably biased, subset
of the total number of items. Second, the perceived quality of the recommendations cannot
be measured because system-centric evaluation does not pay attention to user satisfaction
or to the perceived quality of the recommendation (Adomavicius and Tuzhilin 2005). In
short, automated recommendation systems can be evaluated not only by accuracy metrics,

but also by their usefulness.
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Beyond accuracy: Usefulness

Current recommendation systems should also satisfy users in terms of the appropriate-
ness and perceived quality of the recommendation. The user’s perception is multidimen-
sional by nature, and so several measures have been proposed in the literature to describe
and evaluate recommender system properties from a user-centred point of view (Her-
locker et al. 2004; Celma and Herrera 2008; Shani and Gunawardana 2011; Knijnenburg

et al. 2012). These properties, and pertinent metrics if any, are explained below.

Coverage is a measure of the domain of items for which the system can generate predic-
tions or recommendations. The most common metrics for coverage are the ratio of
items for which predictions can be generated and the total number of items, and the
ratio of items for which predictions can be generated and the total number of items
in which a user may have interest. Coverage is usually linked with accuracy in order

to not raise coverage by making dummy predictions for every item.

Novelty and serendipity are properties for generating useful and meaningful recommen-
dations. Even if recommendations are accurate and have high coverage, they can be
bogus if the user expects some surprise and freshness. While serendipity refers to the
quality of finding surprisingly interesting items that the user might not have other-
wise discovered, novelty refers to the discovery of new items. Hence, serendipitous

recommendations are by definition novel; the opposite is not necessarily true.

As observed by Herlocker et al. (2004), developing metrics for novelty and serendip-

ity is still an open problem, but they should look at how well the recommendation
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system makes the user aware of previously unknown items. Furthermore, serendip-
ity metrics should also consider how the interests of users change over time. How-
ever, it seems that novelty and serendipity are user-specific parameters. Y. C. Zhang
et al. (2012) performed a user-centric evaluation of a music recommendation frame-
work with a series of algorithms that improved its diversity and novelty with a trade-
off in accuracy. The authors found that the majority of people favoured greater ac-
curacy, however some people accepted a loss of accuracy as a trade-off for greater

serendipity.

Diversity is a recommendation property that assumes users want to explore the range
of items instead of only being recommended with similar, accurate ones. Although
diversity has a trade-off with accuracy, people value obtaining more diverse recom-

mendations.

Confidence and trust are complementary properties related to credibility. While confi-
dence can be seen as how sure the system is about the recommendation it provides
to the user, trust refers to how much the user relies in the system’s recommendation.
Hence, trust is built upon the interaction between system and user. While a common
metric for confidence is the probability that the predicted value is indeed true, there
is no clear metric for measuring trust. As a consequence, trust is usually measured
by asking people in user studies, or derived from user behaviour in online experi-
ments. Reporting confidence scores may also be beneficial to enhance the user’s trust

in the recommender (Herlocker, Konstan, and Riedl 2000).
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Learning rate is an important property of recommender systems because the recommen-
dation quality depends upon the quantity of data. For example, if there is not much
initial rating data we may have a “cold-start” problem. Also, if there is not much data
in the form of implicit or explicit preferences provided by users, the system may not
be able to provide any useful recommendations. Although there is usually a lack
of evaluation of this property, the amount of data needed to provide meaningful

recommendations might be seen as a logic metric.

Utility is the value that the user, or system, gains from the recommendation. Utility can
be considered more significant than just measuring the accuracy, coverage, or other
properties of the recommendation, but it can be harder to measure. In e-commerce
contexts, utility is usually linked to the revenues provided by the recommendation
engine, and so online retail websites try to improve their revenues by testing new
or variants of their recommendation algorithms on some users, and analyse their

purchase behaviour.

3.3.2 Experimental settings

Typically, there are three main experimental settings to test and compare general recom-
mendation systems, regardless of their domain (Herlocker et al. 2004; Shani and Gunawar-

dana 2011; Lii et al. 2012).

Offline experiments This approach is typically used when there is pre-collected data of

user preferences. It assumes that future behaviour of users will be similar to user be-
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haviour when the data was gathered. An offline experiment requires no interaction
with real users and so itis usually easy and fast to implement, permitting comparison
of several algorithms at low cost. The main downsides of this approach are: it only
provides results for a specific set of predictive accuracy metrics, does not measure
the user behaviour change over time, and cannot express the overall user satisfac-
tion and experience. In spite of these limitations, offline experiments have been the
most used experimental settings for the evaluation of recommendation algorithms

and systems.

User studies In this approach, subjects are instructed to perform a set of tasks while in-
teracting with a recommender system. Behavioural features are collected over time,
and qualitative questions are asked before, during, and after the task is completed.
These qualitative questions usually help to understand quantitative data and data
not directly observable, such as interface enjoyment, or overall user perception about
the system. Limitations of user studies are their cost and possible biases in the sam-

ple of the population.

Online evaluations These tests measure the behavioural change of real users when using
recommendation systems. This is accomplished by redirecting a portion of the traffic
of users to different recommendation engines, and recording the users interaction
with the different systems. In a sense, this setting provides the strongest evidence

of the true value that the user perceives from the system. Typical factors to take into
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account when implementing online experiments are to obtain a properly sampled

population of users and to isolate the variables that are going to be tested.

Recommendation evaluation is a multi-dimensional problem, with many features that
are measured in parallel. Hence, the ultimate validation is performed in real-life, when the
systems have been deployed, enough interaction data has been collected, and people have
integrated them in their behaviour. Then, the perceived quality of the recommendations
may be evaluated indirectly by measuring how much people use the systems over time,
by quantifying the length of listening sessions or, ultimately, by looking at the increase or

decrease of global number of users of the system (Gomez-Uribe and Hunt 2015).

3.4 Music consumption uniqueness

Although the same recommendation frameworks are typically used for recommending
books, movies, restaurants, or electronic products, music and music consumption are in-
herently different than other types of media and consumer goods. The large variability
in users’ tastes in music and their music consumption behaviour present challenges that
are different from other domains. As a result, it may be beneficial to consider the special
nature of music when building automated music recommendation systems in order to
provide a better, more enjoyable experience.

We now present a compilation of the features of music consumption that have been
stressed as distinctive in comparison with other domains in studies by DeNora (2000),

North, Hargreaves, and Hargreaves (2004), Casey et al. (2008), Jones and Pu (2008), Park
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and Kahng (2010), Celma (2010), Baur (2011), Lamere and Celma (2011), Song, Dixon, and

Pearce (2012), B. Zhang et al. (2013), and Margulis (2014).

Huge item space Music is nowadays easily available in massive repositories. Compared
to other domains, the space of recommended musicitems is fairly large. For example,
typical online music stores and digital music services currently offer 30 million titles
to choose from. Also, advances in technology such as storage format, Internet access,
and device portability have resulted in changes in the abundance, ubiquity, and in
the way people interact with music. Modern portable devices allow people to access
million of songs wherever they go. These devices also make it possible to listen to

music in many diverse listening contexts in a person’s day-to-day life.

Item formats Music these days is accessible in a wide range of formats and varieties. In
addition to classic physical formats, non-physical digital delivery of music is a com-
mon format for buying music. However, music is also enjoyed by streaming it from
online repositories. Video-sharing websites such as YouTube provide access to a
large variety of music item types, such as songs, full albums, concerts, remixes, doc-

umentaries, or video-clips.

Low cost per item The perceived cost per song in music streaming services is negligible.
This implies that music listening has very small financial commitment compared to
other entertainment-related commodities. Although this characteristic allows peo-
ple to access music easily and painlessly, it also poses a challenge in the sense that

music is nowadays so easy to acquire, that it is seen as a commodity. Most listeners
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are unlikely to spend much money choosing specific music items, they just stream

songs, but do not “treasure” them.

High reuse per item Unlike the consumption of movies, books, or games, people listen
to recorded music more than once, in different moments and contexts. People enjoy

listening to music repeatedly and continuously.

Consumed in sequences People enjoy listening to sequences of songs, often getting as
much enjoyment from the song transitions as from the songs themselves. Hence,
listening to music is not a process of enjoying isolated music items one after another,
the whole listening session is important. It is also common that if a song does not
tit the listener’s mood, the person may skip songs until the proper one fits what the

listener wants to achieve.

Highly contextual usage As listeners have different preferences for music based upon
their context and activities, the listening context seems to influence the value of the
music item and of the musical experience to the individual listener. For example,
a playlist for physical training is likely to be different than a playlist created by the

same person for relaxing or having dinner.

Low attentional demand Unlike watching videos or reading a book, listening to music
does not require one’s full attention. Also, people are commonly engaged in other

activities while listening to music. Many times the focus of attention is not on the
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music, but instead it is used as a background to other activities, or to reconstruct the

aims of those activities.

Low consumption time People interact with music in a different way than they do with
other types of media, such as books or movies. One reason for this is because music
items such as songs or albums usually have a shorter consumption duration. For
example, a new song can be heard in matter of minutes, whereas a movie may be
watched in a couple of hours, and a book may be read in a few days. For music
recommendation, this feature implies that a shorter validation process is needed to
determine the quality of the recommendation. In other words, listeners can more
quickly and easily determine if a recommended song is enjoyable, in comparison to

recommendations from other domains

Portability In combination with music streaming services, smartphones can be used as
music media players anywhere, anytime, without the need of any other device, and
so music can be consumed anywhere. This is different to video streaming, for exam-

ple, which requires special conditions of light and screen size, at the least.

In this chapter we reviewed how the recommendation problem is formalised, the dif-
ferent approaches for implementing automated recommendation systems, and summarised
the metrics and the experimental settings for the evaluation of these systems. In the next
chapter we will provide details about the creation of a large dataset of music listening
histories with the ultimate goal of evaluating if user-centric features extracted from these

listening histories can improve the accuracy of a music artist recommendation model. We
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will describe the criteria for the data collection, preprocessing, and aggregation. Then we
will summarise the characteristics of the dataset as well as the demographic features of
listeners, and we will finalise the chapter by presenting how we were able to time-align
the music listening histories from more than half-a-million listeners from more than 200

different countries.
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Chapter 4

Music listening histories dataset

Music listening profiles are sources of behavioural information that can be used for un-
derstanding when and where people listen to music. We are interested in evaluating the
impact of using demographic and profiling features, as well as contextual information, for
a large number of people, on the prediction accuracy of a music artist recommendation
model. A few publicly available datasets for music listening research provide information
relating people and music items. Dror et al. (2011) presented a dataset of 1M people’s
aggregated ratings on music items. McFee et al. (2012) introduced a dataset of song play-
counts of 1M listeners. Neither of these two datasets, however, provided timestamps of
the music logs or demographic information about the listeners. Celma (2010) provided
a dataset of playcounts with listeners” demographic data for 360K listeners and a set of
listening histories with full time-stamped logs; however this dataset only included logs

for 1K listeners. Cantador, Brusilovsky, and Kuflik (2011) presented another small dataset
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with song playcounts for 2K listeners. Finally, the Electric and Musical Industries (EMI)
group promised a dataset of 1M interviews about people’s music appreciation, behaviour,
and attitudes (EMI 2012), but only partial information was made available.

None of the aforementioned datasets simultaneously provided full music listening his-
tories as well as demographic data for a large amount of listeners. This means it is not pos-
sible to extract all of the user-centric features that we are interested in, and so we decided
to collect our own dataset made with music listening histories from the Last.fm music
service.

In this chapter we will describe the creation of a large dataset (N=594K) of full music
listening histories. Section 4.1 presents the criteria for the collection, the data acquisi-
tion, the cleaning, and the integration of the data. Section 4.2 provides insights about
the demographic characteristics of users in the dataset. Section 4.3 presents the different
approaches we investigated for performing a temporal alighment of the music listening

histories in order to compare them directly.

4.1 Dataset collection

Last.fm is an online digital music service that has been available since October 2002. The
company has been working uninterruptedly since then and has more 70 million registered
users from 240 different countries.®® It was originally conceived as a web-based radio sta-

tion that provided listeners with the possibility to skip songs or love’ them. Immediately

60. Data retrieved using the Last.fm API on April 21, 2014
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after their launch, Last.fm started integrating listening data from Audioscrobbler, a small
company that tracked music listening logs by means of a background process application
that runs in various media players. The two companies eventually merged and Last.fm
incorporated the tracking of music listening logs as a core part of their service.

Last.fm stands out from most online digital music services because it not only gathers
listening logs from the interaction of Last.fm users and the Last.fm online music service,
but also from the interaction between people and a wide range of music and media players
by means of the scrobbler application programming interface (API) service. The scrobbler
service automatically submits a log to the listener’s profile in the Last.fm database for
each track played back in the user’s listening device, what was defined by Last.fm as “to
scrobble.” Since this service can be accessed by means of an AP]I, third-party media players
and online services do not necessarily need to install any software application in order to
track listening logs. As a result, the scrobbler service has been incorporated in more than
than 600 digital music services, browsers, media players, and devices, such as Google
Android, iOS, Firefox, Google Chrome, Spotify, Pandora, Rdio, iTunes, Amazon Cloud,
Squeezebox, and many others.®!

Last.fm offers free access to the listening data they collect as well as other informa-
tion such as music metadata, biographies, pictures, charts, tags, as well as ranking data

1.62

by country, by means of a well-documented APL°* At the moment of registration, every

61. Partial list of scrobblers available at http://build.last.fm/category/Scrobblers
62. Last.fm API and Web services available at http://www.last.fm/api
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user must accept the Last.fm Terms of Use® and the Last.fm Privacy Policy.** Among
other things, these terms establish that the listening habit data of listeners will be avail-
able to other Last.fm users and to third parties via their API for commercial and/or non-
commercial purposes. As a result, the information we will gather is contemplated on
Article 2.2 of the Canadian Tri-council policy statement on Ethical conduct for research
involving humans (CIHR, NSERC, and SSHRC 2014) and “is considered to be publicly
available information and therefore does not need ethics review.”® Since in the context of
this research we do not plan to create a commercial product, and Last.fm gives us access to
a large amount of interactions between listeners and wide array of digital music services,
we decided to use the data they have collected for years.

Now, we will describe the criteria and acquisition methods that we used to collect the

music listening histories for our dataset.

4.1.1 Data criteria and acquisition

Listening histories are a timeline of listening events that may reflect aspects of when people
consume music, and what music they enjoy or do not enjoy. Analysing them in a linear
fashion is interesting because we can observe them as a series of listening events over time.
However, the aggregation of these listening histories by collapsing them into periods of
time can provide extra layers of information. As people usually follow periodic cycles, the

analysis of these listening cycles can be used to infer their listening patterns.

63. Last.fm Terms of Use available at http://www.last.fm/legal/terms
64. Last.fm Privacy Policy available at http://www.last.fm/legal/privacy
65. Response received via email from the McGill University Research Ethics Board Associate Director.
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In order to obtain even data across aggregated periods of time—but also to reduce bias
due to the novelty effect and allow for long-term conclusions—we followed the approach
by Baur, Biittgen, and Butz (2012) and searched only for listeners with a minimum of two
years of activity since they scrobbled for the first time. Also, we only searched for listeners
with an arbitrary minimum of 10 scrobbles per day in order to ensure they have been
actively submitting music logs. With these restrictions we got rid of having listeners in our
dataset that registered for a service, tried it, and never used it again. The two constraints
forced all listeners in our dataset to have a minimum of 7,300 (i.e., 365 x 2 x 10) music
logs submitted to the Last.fm database.

Data acquisition was performed by means of using 16 computers with different IP ad-
dresses calling the Last.fm API24 hours a day, during a period of two years. This approach
allowed us to comply with the Last.fm API Terms of Service and their Legal Terms and
Policies,®® and collect the data reliably. Although not necessary, we also notified Last.fm
via email on two occasions, telling them that we were doing this data collection.

Most interactions with the Last.fm web services require knowing listeners” usernames
in advance, and so to obtain a large number we periodically sampled the “Recently Active
Users” Last.fm webpage,®” storing the usernames that changed in the list once every 10
minutes, and removing any duplicate usernames that we already collected. Fig. 4.1 shows

the number of unique usernames collected per day from Last.fm using this method.

66. Last.fm Legal Terms and Policies available at http://www.last.fm/legal
67. Deprecated URL, only available through WayBack Machine at https://web.archive.org/web/
20150228043645/http://www.last.fm/community/users/active
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Fig. 4.1: Number of unique usernames collected from the Last.fm’s “Recently Ac-
tive Users” webpage.

After a few days of data collection we got a stable increase of five thousand new user-
names per day. However, we realised that many of them were users that just registered
into the system, and so they did not have a large listening history. Most problematic, since
Last.fm did not provide any information about how users were chosen to be displayed in
this page, we were worried about possible bias in the sampled population.

In order to have a larger and diversified population sample, we used the usernames
that we were obtaining from the initial collection stage as seed names that we used as ar-
guments to the user.getFriends() API call. This method returned a list of each user’s
chosen friends on Last.fm database. Again, we checked for any duplicated usernames

and deleted them. In parallel, we also used the user.getNeighbours() API call,®® which

68. Currently deprecated Last.fm API endpoint, only available through the Internet Archive Wayback
Machine at https://web.archive.org/web/20151023082634/http://www.last.fm/api/show/user.
getNeighbours
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returned a list of a user’s “neighbours” on Last.fm. How these neighbours were calcu-
lated was not defined in the documentation but it was probably linked to computing
correlations between music listening histories. We performed these processes iteratively
and retrieved 600K different usernames in a single day. However, the rise in usernames
plateaued at this number and there was no substantial increase by repeating the oper-
ation throughout the course of more days. We hypothesised that, since we were collect-
ing only explicitly declared friends and implicitly computed neighbours—which probably
have similar listening profiles—we were likely sampling a biased small subset of users.

In order to overcome this issue, we tried to get lists of Last.fm usernames from previ-
ous research using Last.fm, and directly from Last.fm via email, but we did not get any re-
sponse. However, thanks to a suggestion by a music recommendation systems researcher,
Eugenio Tacchini, we found an undocumented method that allowed us to not need ac-
tual usernames for calling the Last.fm Web services. Instead, we created API calls pass-
ing Last.fm’s internal identifiers—hereafter denominated LFIDs—as arguments of the re-
quest, as an alternative to actual usernames. Since LFIDs increase sequentially, this ap-
proach permitted us to rapidly estimate the total number of registered users in Last.fm.®
Afterwards, we fetched usernames from the total number of users in Last.fm by randomly
choosing LFIDs.

Since our goal was to collect full listening histories, we fetched people’s listening logs

by using the Last.fm’s API method user.getRecentTracks (). This method only returns

69. More than 70 million users by April 21, 2014. This number of users account for the total number of
registered users, not the total number of actually active users.
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the most recent 200 tracks that the requested username has scrobbled. Therefore, the num-
ber of queries needed to collect a full music listening history depended upon the total num-
ber of music logs submitted per user. Hence, we had to collect each music listening history
in groups of 200 music logs.”’ To implement the collection of the full listening histories, we
ended up creating a call to the Last.fm API extracting the total number of scrobbles, then
we computed the total number of paginations needed, and then we collected the data, in
groups of 200 music listening logs.

Last.fm API Terms of Service establish a limit of five calls per second per originating IP
address. Above this limit, the API key and the originating IP address are banned from the
system, according to their documentation. As we wanted to extract large amounts of data,
we tested this cap in the number of calls per second, and found that different methods had
different limits. For example, we did not find any cap in the user.getInfo () method, but
we found a limit of about one call per second in the case of user.getRecentTracks ().

Since the shortest music listening histories involved 7,300 music logs, this implied that
the minimum time required to get one full history was about 37 seconds. However, since
the amount of music listening logs was much higher, we spend an average of four minutes

per user collecting their data.

70. We achieved this by paginating iteratively throughout a full music listening history from its music log
1 to 200, then from 201 to 400, etc.
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4.1.2 Data cleaning, sanitisation, and organisation

In order to ensure that the retrieved listening data was consistent with the information pro-
vided by the Last.fm API, after each full listening history was retrieved we verified that the
total number of logs was similar to the expected number of logs. We organised each of the
listening logs in quadruples with the form of <timestamp, artist-MBID, album-MBID,
track-MBID>. The timestamp was a global coordinated universal time (UTC) stamp en-
coded as an Unix time stamp, and MBID stands for “MusicBrainz identifier.””* MBIDs are
36-character universally unique identifiers (UUID) that are permanently assigned to each
entity within the MusicBrainz database to ensure a reliable and unambiguous form of
identification. These IDs are assigned each time a new music entity is entered in the Mu-
sicBrainz system. Last.fm exposes these identifiers as public identifiers of music entities
in their database. All data per user was stored within a single file, with the logs sorted
sequentially by their timestamp. The first line of the file also had all previously extracted
metadata for each user: the username, LFID, the playcount of the total number of scrob-
bles, the registration time, and the number of days since the first scrobble was submitted.
Also, we stored the user status (i.e., their Last.fm status: user, subscriber, staff, or alumni)
and the optional, self-declared demographic characteristics: age, country, and gender.
Once we started acquiring the data and aggregating and plotting it in different ways,
we noticed that some of the users’ listening histories had strange frequency distributions.

After close inspection, we realised that there were two issues in some of the listening his-

71. Information about MusicBrainz identifiers (MBID) and how they are used for disambiguation of music
entities is available at https://musicbrainz.org/doc/MusicBrainz_Identifier
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tories: (i) there were listeners with many duplicated music logs (i.e., same timestamp and
MBID); and (ii) some people had scrobbles that were too close in time (i.e., less than 30
seconds apart, which is the minimum that Last.fm requires to consider a played track as
a valid scrobble). We hypothesised that these issues were artefacts produced by the inter-
action of the Last.fm servers and some scrobblers.”” As a result, we decided to perform
a cleaning process before storing the data, and so we filtered out all logs with the same
MBID and timestamp. We also filtered out all scrobbles that were less than 30 seconds
apart in time, which is the minimum play back time required by Last.fm to store a music
log. Finally, we calculated the number of scrobbles without duplicates for each listener,
and also the number of scrobbles that were not too close in time. In addition to store the
total playcount per user, we also stored those values.

In Figure 4.2, we show an example of data cleaning on one weekly aggregated music
listening history for a user. The blue line shows the aggregated number of music logs
per hour of the week. In Figure 4.2a we show that the frequency of listening logs was
much higher in Sunday morning and in a few other moments during the week. After close
inspection of this listener’s data, we found that there was a high number of duplicated logs
in the user’s listening history in those specific moments. After filtering out duplicated logs
and logs that were too close together, the per-hour weekly aggregated listening history

frequencies are much smoother, as can be seen in Figure 4.2b.

72. This issue has been noticed many times (e.g., https://github.com/clementine-player/clementine/
issues/2672, http://www.last.fm/group/Last.fm+for+Spotify/forum/1249115/_ /2266823, https:
//www.reddit.com/r/lastfm/comments/3hfigz/how_do_i_delete_doublescrobbles/, all accessed 13
September, 2016), but Last.fm has not provided an official explanation.
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Fig.4.2: Data cleaning example. Both plots show the total number of logs per hour
of the day within a week, aggregated throughout the user’s full listening history.
In Figure 4.2a, we show a large peak on Sunday and a few other peaks during the
week. After filtering out duplicated logs and logs that were too close together, the
per-hour weekly aggregated listening history frequencies are much smoother, as
can be seen in Figure 4.2b.

All in all, the average percentage of duplicated scrobbles removed for each user was
eight percent, and one percent for scrobbles that were less than 30 seconds apart. There
were also some other extra issues in the data collection, such as listening histories with
the same LFID but two versions of their username, or listeners with strange timestamps in
their listening history, but these were less common in the dataset and so we did not filter
their logs or listening histories.

It is worth mentioning that not all music listening logs had a full set of data consist-
ing of the timestamp of the scrobble and MBIDs for recordings (i.e., tracks), releases (i.e.,
albums), and artists—these three entities hereafter denominated “music entities.” When

Last.fm receives a music log update request from any of the scrobblers in the form of a
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track.updateNowPlaying () call to its API, this call carries textual information about the
music entities as well as track number, duration, and MBID, but only if these identifiers
were known beforehand by the scrobbler. In other words, most of the time the media
players just text metadata about the track they are playing back. With this information,
the scrobbler creates a query and the Last.fm web service searches its database, return-
ing the closest match. However, sometimes the metadata provided by the scrobbler is not
enough to produce a full match for track, album, and artist. As a result, the music listening
log returned by the API sometimes has only partial information.

The percentage of combinations of MBIDs in all the music logs of our dataset is shown

in Figure 4.3.
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Fig. 4.3: Percentage of music logs with combination of MBIDs. 0 stands for no
presence of the corresponding MBID in the scrobble and 1 for its existence. For

example, 101 stands for a music log with artist and recording MBID, but no release
MBID.
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It can be seen that about 58 percent of all music logs in the dataset have full data (i.e.,
MBIDs for the three music entities), and 93 percent of the logs have, at least, the artist
MBID. On the other hand, about six percent of the logs only have the timestamp. The
smallest three percentages correspond to scrobbles with a combination of release and
recording MBIDs, but without artist MBID (i.e., combinations 001, 010, and 011), with
less than one percent each. Depending on the task to be achieved, different sets of logs
were used afterwards for the computation of behavioural features. For example, when
estimating how mainstream was a listener’s listening history in relation to artists, we used
93 percent of the logs. Further details about these values will be provided in Subsection
5.1.2.

To facilitate data exploration, we also extracted from the UTC timestamps a series of
features that aggregated the number of scrobbles of each listening history into several time
spans. These low-dimensional representations of the music listening histories allowed us
to easily create plots and visually inspect them to get insights or detect anomalies from

single listener or groups of them. These features were:

Hourly activity: number of scrobbles per hour of the day.

Hourly activity (by week hour): number of scrobbles per hour of the week.

Weekly activity: number of scrobbles per day of the week.

Monthly activity: number of scrobbles per month.

Yearly activity: number of scrobbles per day of the year.
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* Weekday activity: number of scrobbles from weekdays.
e Saturday activity: number of scrobbles on Saturdays.
* Sunday activity: number of scrobbles on Sundays.

All in all, we ended up with three sources of data: (i) metadata for each user, (ii) sani-
tised full music listening histories, and (iii) low-dimensional feature vectors describing the
full listening histories. We now describe how the data was organised and stored in order

to access and process it in a straightforward fashion.

4.1.3 Data integration and storage

The full listening histories were stored locally in the computers during the collection and
then sent on a daily basis to a repository on a high-performance computing (HPC) centre”
and also to a centralised backup computer at a different location. We centralised all meta-
data fetched from Last.fm and the features aggregated from the listening histories into one
computer running a Solr search server instance (Shahi 2015). Having the large amount of
raw listening histories data in an HPC cluster allowed us to perform faster calculations in
the whole dataset when compared to using desktop computers or single servers, due to
their large parallelisation capabilities. On the other hand, having a local instance version
of the metadata and low-dimensional features aggregated from the data facilitated the

exploration of single and small subsets of music listening histories.

73. We used the ComputeCanada’s Sharcnet cluster, available at https://www.sharcnet.ca/
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In order to process our data in the HPC cluster, we opted for using a data parallelism
approach. By using this method, the same tasks are executed on different sets of data or
using different parameters. Also, all tasks are independent from each other but share the
same network and filesystem. However, the network communication is usually the bottle-
neck to obtaining a high performance. In order to overcome this problem and improve the
I/O performance and the manageability of the data in the HPC cluster, we organised the
uncompressed data in chunks of 2GB and we compressed it. Since the HPC resources are
queue-based, this file size allowed us to create processing requests in almost every clus-
ter without having to wait too long for their processing because 2GB is a small standard
memory size.

For storing the results, such as new features extracted from the data, we used the HDF5
hierarchical data format. This format was designed to store and organise large amounts
of data into a hierarchical model that allows concurrent parallel read and write operations
(Folk, Cheng, and Yates 1999). HDF5 also allows the design of data models with custom
data types, allowing to create complex file structures that facilitated the data formatting
for further processing. Since it was the default protocol in ComputeCanada when we
organised and stored the data of our dataset, we used the message-passing interface (MPI)

74

map-reduce approach to perform all data processing.” MPI allowed us to perform all

kinds of parallel data processes in order to filter the data, analyse it, and extract features

74. MPI Standard available at http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
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from it.” In the next section we will provide an overview of the characteristics of the

dataset, as well as of some of the demographic characteristics of the listeners in the dataset.

4.2 Dataset demographics

The Music Listening Histories Dataset (MLHD) currently consists of more than 27 billion
music logs taken from the listening histories of 594K people that have linked their digital
music players to Last.fm. In this massive repository, we counted more than 555K different
artists, 900K albums, and seven million tracks. Table 4.1 summarises the number of logs

and the number of unique listeners and music entities in the dataset.

Table 4.1: Music listening histories dataset summary. The table shows the number
of stored music logs, unique listeners, artists, albums, and tracks.

[tems No.
Logs 27MM
Listeners 594K
Artists 555K
Albums 900K
Tracks 7M

The distribution of the average number of daily submitted music logs per listener is
shown in Figure 4.4. Axes in the plot are in log scale. The curve exhibits a close to power
law characteristic. As expected, due to the constraints we set for collecting listeners’ listen-
ing histories, the minimum daily number of music logs per user was ten. Listeners with

an average of eleven logs were the largest group, with about 30K listeners. Since Last.fm

75. Github repository with MPI scripts for data processing and feature extraction can be found at https:
//github.com/vigliensoni/MLHD/tree/master/scripts/MPI
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Fig. 4.4: Distribution of the average number of daily scrobbles per listener.

only collects logs with a minimum duration of 30 seconds, the theoretical maximum num-
ber of logs per day is 2,880 (i.e., the maximum achievable number of logs per hour is 120).
However, the maximum number of average scrobbles per day was about 1,000, achieved
by one user. Although this maximum is very unlikely—not a single person can play back
1,000 tracks on a daily basis for two years, at least—we did not filter listeners with very

high number of average logs because there were just a few of them.

4.2.1 Characterizing listeners in the dataset

Now we will describe the nature of the users in the dataset according to their self-declared
date of birth, gender, and country. This information is asked upon registration. The user’s
age is updated automatically by the system, and gender and country can be updated by
the user at any time. Last.fm also assigns their users with a “user type” according to their

involvement with the service: subscribers are those that paid a monthly installment to
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Last.fm for getting unlimited streaming tracks and no ads, users are people without any
special privileges in the “freemium” pricing strategy; staff, moderator, and alumni are
statuses for people that are currently working for Last.fm, or that worked previously for

the service.

Age

In terms of age, 71 percent of the listeners in the dataset declared their age. Among them,
the mean age was 25.4 years old, the median was 24, and the mode (the most common age)
was 22. In Figure 4.5 we show the age distribution of users in the MLHD at the moment

their listening histories were collected.
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Fig. 4.5: Percentage of listeners in the MLHD by their absolute age.

We can verify in the plot that the population of listeners from the dataset is indeed
biased towards people in their twenties. Also, the larger proportion of people had a self-

declared age within the range [15, 54] years old. In fact, 98 percent of the users belong to
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thatage group. There was a small group of people that declared more than 100 years old or
less than 5 years old within the remaining two percent. These users probably correspond
to people that were consciously lying about their self-declared age and perhaps about their
self-declared persona within Last.fm.

Although people may lie about some of their demographic characteristics such as age
or gender, previous studies about online identity found that about 20 percent of the users
lie about some of their personal characteristics. However, if they provide deceiving in-
formation, the magnitude of the deception is usually small, at about 1.5 percent for the
demographic feature of age (Counts and Stecher 2009; Hancock, Toma, and Ellison 2007).

In spite of the small magnitude of the deceiving information found, and since the
group of listeners in the dataset probably lying only accounted for two percent of all data,
we decided to filter them out from all the analyses we carried afterwards, and only in-
cluded listeners within the [15, 54] age range. We show the general age distribution of

listeners within the [15, 54] range in Figure 4.6.
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Fig. 4.6: Age distribution of MLHD listeners within the [15, 54] years old range.
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By considering only listeners from within the [15, 54] years old range the mean age
changed slightly to 24.9 years old, but the median and mode remained the same at 24 and
22 years old, respectively.

We wanted to compare if groups of listeners exhibit different trends or patterns of
listening, and so we decided to split the age range into four age groups of 10 years each.
Splitting of the data would allow us to compare listeners by groups of age, instead of by

individual ages. The distribution of users per age group is shown in Figure 4.7.
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Fig. 4.7: Percentage of listeners in four age groups.

It can be seen that most users in the dataset correspond to young people, with a self-
declared age within the [15, 24] age bracket. These users accounted for more than half of
the total population in the dataset. If adding these users to the ones in the second bracket,
the percentage rises up to about 93 percent. On the other hand, the eldest group only
accounted for about only one percent of the total number of music listening histories we
collected. This skew in the distribution indicates a bias in Last.fm users, and therefore in

our dataset, towards young adults.
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Gender and user type

In terms of gender, about 82 percent of the people in the dataset declared a gender at
the moment of their registration with Last.fm or afterwards. In Figure 4.8 we show the

self-declared gender distribution among these users.

@ Undeclared B Man B Woman
’
0 25 50 75 100

Fig. 4.8: Percentage of listeners’ self-declared gender.

It can be seen in the plot that for each user self-declared as woman there are about 2.5
users self-declared as men, which leads to a bias towards male listeners in our dataset.
If the MLHD is representative enough of the Last.fm registered users, this implies that
Last.fm has more male than female users.

The variability of age within each self-declared gender is shown in Figure 4.9. As the
three groups had different number of people, we randomly sampled the same amount
of users from the three sets in order to have balanced groups. Since the total number
of listeners without any gender declared was slightly more than 100K, we sampled 100K

listeners from each group.
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Fig. 4.9: Age variability of balanced groups of listeners (N = 100K) per self-

declared gender. Boxplots show median, first and third quartile (“hinges”), and
95% CI of median (“notches”).

The number of users within each group was randomly sampled without replacement
in order to obtain balanced groups of listeners. The mean of the Not declared (i = 25.67)
and Male (1. = 25.60) groups did not differ greatly (p=.400), perhaps indicating that the first
group may have a large proportion of male users. On the other hand, users self-declared as
Female (1 =22.99) had a different lower mean age than the Male group (p < .001). In other
words, users in our dataset self-declared as Female are younger than the ones declared as
Male.

In total, 98 percent of the total number of registered people were users and the extra
two percent were subscribers. The total number of current and former employees was 85
people, which is marginal in comparison with the dataset total number of people. We cre-
ated balanced groups of users and subscribers (N = 7.5K) in order to evaluate if there were
differences in their age means. In Figure 4.10 we show the variability of age of listeners

per user type within the Last.fm database.
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Fig. 4.10: Age variability of balanced groups of listeners per user type. Boxplot
shows median, first and third quartile, and 95% CI of median.

The average age of subscribers (1 = 30.80) and users (i = 24.9) within the dataset dif-
fered significantly (p < .001), possibly meaning that only older people are willing to pay
for ad-free access to the Last.fm service whereas young people, on the other hand, prefer

to be exposed to ads instead of paying for using the system.

Country

In terms of location, 82 percent of users in our dataset self-reported a country. These users
belong to 239 self-declared different countries or territories as defined in the ISO 3166-1
International Standard for country codes.”” Among these territories, 19 countries had at
least one percent of the total amount of listeners in the dataset. These “top countries” com-

bined accounted for more than 85 percent of the total number of listeners in the dataset.

76. The ISO 3166 International Standard for country codes is available at http://www.iso.org/iso/
country_codes.htm
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In Figure 4.11 we show the percentage of users in the dataset per each one of these top

countries.
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Fig. 4.11: Percentage of users for countries with more than one percent of the total
number of people in the dataset.

The figure shows that users self-registered as inhabitants of the United States are the
largest group of people in our dataset, double of the second country (Poland) with 20
percent of the total number of people. It can be also noted that the only countries within
these top countries that are not part of North America or Europe are Brazil, Australia, and
Japan. However, some countries showed a large representation in the dataset despite of
their absolute percentage. For example, Poland had 10 percent of all users in the dataset,
but also has about 10 percent of the population of the United States. Hence, the population
of Poland is proportionally more represented in the dataset than the population of the

United States.
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In order to assess the size of each country’s population to determine how countries are
represented in the dataset, we divided the percentage of users in the dataset per country
per its actual population.”” This metric gave us a better description about how different
countries’ populations were represented in our dataset. In Figure 4.12 we show how this

normalised value affected the ranking of the top countries.
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Country

Normalised dataset representation of listeners

Fig. 4.12: Normalised representation of users per top countries in the dataset.
These values were retrieved by considering the percentage of users in the dataset
and the total population per country.

We can see in the figure that, when considering the proportional size of its population,

the United States had a much smaller representation in the dataset. On the other hand,

77. Population data for the year 2012 taken from the World Bank Open Data repository, available at http:
//data.worldbank.org/indicator/SP.POP.TOTL
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Finland, Sweden, and Poland were the most highly ranked countries, with the largest rep-
resentation of their population in the dataset.

To visualise this data at a global scale, we created a map of the world that represented
the relative number of user per country in our dataset normalised by the corresponding
number of inhabitants in each country. The colour palette of the plot was based on vig-
intiles (20 quantiles) of the data, with red indicating the highest vigintile, and blue the
lowest one. If our dataset has similar distinctive qualities in comparison with the overall

Last.fm data, this map can be interpreted as the Last.fm market penetration by country.

In Figure 4.13 we show this map.
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Last.fm penetration per country vigintiles
Fig. 4.13: Relative number of listeners per country, normalised by the correspond-
ing number of inhabitants in each country. Red and blue colours indicate highest
and lowest vigintile, respectively.
By looking at the higher vigintiles—red and orange colours—we can see that listeners
from most zones were represented in our dataset. Moreover, while Northern European

and Australasian countries had the largest proportion of listeners submitting music logs

to Last.fm, the United States was no longer the first ranked country. Also, some countries
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in South America showed similar penetration levels to some Mediterranean countries in
Europe. Greenland also exhibits a high percentage of listeners, but several isolated zones
with a small number of inhabitants show a similar trend. This behaviour may be due to
a portion of users providing untruthful information about their countries.”® People from
Africa, South Asia, and Far East Asia were not extensively represented in our dataset,
perhaps due to the use of their own digital music services, such as Xiami”” and QQ Music®
in China; Gaana®! and Saavn® in India; and Symfy % and Spinlet* in Africa.

Finally, we also wanted to verify if there was any trend in the age variability of users
of the dataset per their self-declared country. In Figure 4.14 we show the age distribution

of listeners from the top countries.
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Fig. 4.14: Age variability for users of the top countries.

78. For example, the Polynesian island nation of Tuvalu is the country with the highest proportion of
listeners.

79. The Xiami Music streaming service is available at http://www.xiami.com/

80. The QQ Music streaming and download service is available at http://y.qq.com/

81. The Gaana Music streaming service is available at http://gaana.com/

82. The Saavn music streaming service is available at http://www.saavn.com/

83. The Symfy Africa music streaming service is available at https://www.simfyafrica.com

84. The Spinlet music download and streaming service is available at https://spinlet.com/
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The figure shows the top countries ranked by their mean age in decreasing order. In
order to compare their means with the same number of listeners, we used balanced groups
of listeners per country (N = 4.5K).

Pair-wise mean age comparison did not show significant differences between listeners
from the top countries. However, there were some differences for countries ranked first
and last. For example, people in our dataset from Brazil are younger on average (. = 22.6)
than all other countries (p < .001), except for Poland, Russia, and Ukraine. On the other
hand, users from Japan are older on average (; = 29.0) than users from all the other top
countries (p < .001), except for Spain and France. The mean age of people from countries
in the middle of the ranking, such as Canada, showed significant differences only with
those countries ranked at the top or bottom places of the ranking. These trends may be
explained by hypothesising that people from Japan, countries in Western Europe, and the
United States have been exposed to Internet services for a longer time than people from
Eastern Europe and Latin countries, and so the mean age of listeners in our dataset from
these countries is higher.

In this dissertation we were interested in evaluating how the demographic information
provided by users, as well as their listening context may be used as relevant sources of
information for creating recommendations tailored to their specific profile and situation.
The demographic information can be extracted directly from the information provided
by users, but the extraction of listening contexts needs preprocessing and aggregation of
the data. In the next section we will present the processes that allowed us to extract basic

forms of listening contexts from the dataset of users music listening histories.
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4.3 Temporal alignment of music listening histories

Golder and Macy (2011) found a series of trends that related the diurnal and seasonal
mood of people from different cultures and their activities and season. The authors im-
plemented a data-centric study by which they analysed a large amount of time-stamped
Twitter microblogs and correlated the affect expressed by people in these text messages
with their daily context and activities. Using a similar data-centric approach, we wanted
to extract forms of people’s listening context from their digital traces in digital music ser-
vices, and evaluate if these can be used to improve the performance of a music recommen-
dation model. We already described how we collected the data, and now we will explain
some of the processes that we performed in order to extract basic forms of context.
Last.fm collects music logs using the Unix time stamp format for all scrobbles submit-
ted by listeners. The number this time stamp carries corresponds to the amount of seconds
that have passed since January 1st, 1970 at UTC, no matter where the log was generated.
Therefore, all music logs within the Last.fm database have the same temporal point of
reference. Beyond the timestamp and the MBID for the three music entities, the logs do
not store any additional geographical information such as city, country, or the time zone
where they were generated. Moreover, UNIX time stamps do not change with seasons,
and so variations in local national time for countries following daylight saving time are
also not stored. Although Last.fm’s users can self-declare a country upon registration,

many countries span their territory into more than one time zone. Therefore, this data can
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be misleading when trying to determine the true time zone location where the log was
submitted.

For the sake of our research, the lack of information about where the logs were actually
generated was a problem. We wanted to find trends in people’s daily, weekly, and monthly
music listening behaviour, and so we needed to aggregate their music listening histories
over time. However, the aggregated listening patterns from people in different time zones
was shifted depending on where they were. As a result, it would be misleading to directly
compare their patterns.

Previous research with similar data by Baur, Biittgen, and Butz (2012) stated that the
timestamps were adjusted to the listener’s time zone. However, their research did not
provide any information about their method for shifting the timestamps according to the
listeners” time zones. The sample size of their dataset was also a few orders of magnitude
smaller (N = 310), and so it is possible they hand-picked listeners within the same time
zone. This method of selecting users from the same specific self-declared time zone has
been used a few times in the literature (Berkers 2010; Biittgen 2010; Park and Kahng 2010).
However, since we wanted to perform a study at the global level, this method would not
work for us.

In the next subsection we will describe the approaches we developed to normalise the
listeners’ time zones, and provide the details and results of experiments we carried out to

determine the best time zone normalisation approach.
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4.3.1 Time zone normalisation

In order to compare aggregated music listening patterns, we had to find a method for shift-
ing them in time, as if all listeners were in the same time zone. To design and compare
a few approaches, we relied on two assumptions: (i) in general, listeners share an over-
all music listening pattern during the day that resembles a normal distribution of music
listening logs; and (ii) listeners sleep during the night time and submit fewer music logs.

For testing the former assumption, we designed a time zone shift implementation
based on finding the time lag to obtain maximum cross correlation with a sample pop-
ulation of listeners located in time zone 0. For testing the latter, we based our approach on
finding and comparing the local minima of weekly aggregated listening patterns. In order
to test if the performance of the raw approaches may be improved, we also formulated a
few variants of these two implementations, adding up to a total of six approaches for time

zone identification.

Time zone 0 cross correlation

Our first approach relied on the idea that listeners, in general, share a similar listening
pattern profile. The time zone 0 cross correlation (TZ0_XCORR) approach calculated the
lag value k& which returned the maximum correlation between z[t + k] and y[t] given a
cross correlation function ccf(x, y). The k value was the estimation of how many hours of
difference there were between any two listeners. We chose the hourly aggregated listening

profiles for listeners with self-declared country in time zone GMT +0 as a fixed time series
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for control. As a means to get this listening data, we selected from the dataset all listeners
that declared the be in the UK. We expected that the size of this population (N = 42K users)
could be large enough to minimise the effects of people that lied about their self-declared
country, or that submitted music logs while travelling across time zones. For all users
in this subset, we aggregated their listening histories into hourly per-day series, and we
normalised the frequencies of logs within the range [0, 1].

Boxplots are a summarised visual representation of batches of data. The central, hor-
izontal line within each boxplot shows the median. The first and third quartiles (i.e., the
25th and 75th percentiles) are shown by lower and upper hinges. The extremes show
about 99 percent of the total amount of the data distribution. Finally, the notches sur-
rounding the median show a measure of the significance of the differences between the
populations. If the notches do not overlap, the medians are significantly different at 95
percent confidence level (McGill, Tukey, and Larsen 1978).

The boxplots in Figure 4.15 show median and quartiles of users” hourly aggregated
profiles. The curve in red shows the mean of the normalised number of scrobbles per hour
for all listeners from the UK in the dataset. It can be seen that the notches surrounding the
medians in each of the boxplots do not overlap. This is an indication that those medians
are significantly different at 95 percent confidence level. This trend points out that UK
listeners in the dataset, in average, followed a daily trend per hour when submitting music
logs to the Last.fm service. The majority of the music logs events happened around noon
and between [-3, +5] hours around the mid day. The least amount of scrobbles happened

+1 hour before and after midnight.
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Fig. 4.15: Normalised per-day hourly aggregated number of scrobbles for UK
users (N = 42K). Red curve shows the normalised number of scrobbles mean per

hour.

0

A
-
1

4 5

6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Hour

23

It is worth mentioning that the slope of the increase in music logs is highest at dawn

and diminishes between 7 and 8 o’clock in the morning, achieving the maximum number

of music logs at noon. A similar but inverse curve can be seen in the afternoon, with

a slope change at about 5 o’clock in the evening. These changes in the submission rate

slope may indicate changes in listening behaviour due to commuting to and from work.

The higher number of scrobbles around the mid day may be an indication of listeners

submitting more logs when their day has started.

We also hypothesised that the cross correlation could be improved by considering

hourly submissions by week instead of by day. A longer, weekly time series could incorpo-

rate trends such as changes within days of the week, or between weekdays and weekend.

Keeping these changes in the time series instead of aggregating them may help the com-

putation of the cross correlation between a control time series and each listener’s series.
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Therefore, we performed a similar process to the daily aggregation, but we instead com-
puted weekly hourly aggregated listening means for all UK listeners in the dataset.

In Figure 4.16 we show the normalised average of scrobbles per hour of the day over a
week for all listeners in the dataset from the UK. The boxplots show median and quartile
values per hour and the red curve displays the mean. Similar to the previous aggregation
by day, notches around most medians in the boxplot did not overlap, except at midnight.
This trend may imply that the weekly hourly medians were significantly different. Also,
the maximum number of scrobbles was reached consistently at noon for all days of the
week. This maximum number was similar from Monday to Thursday, but it decreased
slightly on Friday. The smallest maximum number of submitted logs happened on Week-

ends, Saturday in particular.
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Fig. 4.16: Normalised per-week hourly aggregated number of scrobbles for UK
listeners (N = 42K). The red curve shows the normalised average number of scrob-
bles per hour over a week. The boxplots show median and quartiles per hour. We
used this time series as the control time series for the TZ0xCORR time zone nor-
malisation approach.
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These findings are contrary to what was previously reported by North, Hargreaves,
and Hargreaves (2004): people’s exposure to music is greatest in the evening, particularly
between 10 p.m. and 11 p.m., and on weekends. Furthermore, Sloboda, O’Neill, and Ivaldi
(2001) found that people were not exposed to music at all while they were working, but
mostly when they were at home. However, both studies were of a much smaller scale in
terms of number of participants and the length of the period of music listening histories
covered. Furthermore, those studies were developed more than a decade ago and music
consumption behaviour has since changed to a very great extent. Music is nowadays con-
sumed ubiquitously by means of portable devices accessing music streams through the
Internet, and listeners seem to be willing to pay, or be exposed to ads, for accessing these
services (Wikstrom 2013). This behavioural change implies that people now can listen to
music in any place with an Internet connection.

We decided that the behavioural changes observed in the weekly aggregation pre-
served more information than the daily aggregation series. As a result, we decided to
use the weekly time series as the control time series to estimate world users time zones us-
ing the TZ0xCORR approach. Hence, we computed the lag in the number of hours needed
to obtain the highest correlation between each user’s aggregated music listening history
and the TZ0 users control time series.

In Figure 4.17 we show the estimated distribution of the overall listeners” time zones.
We can see a peak in the estimated time zone from where people was scrobbling at time
zone GMT +0, with about 17 percent of the dataset users. Although just a few countries

belong to that time zone, there are many countries in the Central European time zone
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Fig. 4.17: Distribution of the time zones for all users of the dataset (N = 594K),
estimated with cross correlation between their hourly weekly aggregated music
listening histories and the average music listening histories from users in time
zone 0.
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that may have been merged because of their time shift in the Summer time due to the ob-
servance of the daylight saving time, which represents roughly half of the year. Another
possibility for the large peak has to do with the actual correlation process: listening histo-
ries from people in close time zones got correlated without any lag due to individual shifts
in their everyday life schedule. The figure also shows that the TZ0xCORR approach esti-
mated that many users were at 1 GMT and that there were many people spread between

[-6,-3] GMT and [+6, +11] GMT.
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All in all, a large proportion of the listeners were estimated to be within time zones
corresponding to Western Europe, but also spread out throughout the different time zones
in America. The dataset did not seem to have many listeners from Asia. Finally, the shape
of the people’s estimated time zone seems to follow the distribution of users per country
we showed on Figure 4.11, where the majority of listeners in the dataset did self-report to

be in the US and Western Europe.

Local minima approach

Based on the assumption that there is a smaller likelihood of people scrobbling at night
compared to during the day, we developed a different method to estimate the time zone
of users of the dataset. In this approach, we searched for the local minima indexes in
the weekly aggregated listening profiles. These minimum values provided a metric about
when people actually submitted fewer music logs, probably because they were sleeping.
Since we also expected that listeners changed their behaviour slightly on weekends—being
different than on weekdays—we focused our analysis in extracting the local minima in
weekdays only.

We implemented this approach by using the “Wavelet Methods for Time Series Anal-
ysis” (WMTSA) R package.® Starting from a time series, the wavCWTPeaks peak detection
method of the package returns a matrix with the local maxima or minima indexes and

their values. We retrieved the minima indexes from the weekly aggregated listening pro-

85. Wavelet Methods for Time Series Analysis (WMTSA) R package available at http://CRAN.R-project.
org/package=wmtsa
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tiles, and normalised these indexes to the range [-12, 11] in order to have them within the
range of a day. Then, we averaged and rounded these normalised minima indexes to an in-
teger value. This final number was assumed to correspond to the estimated time zone for
each listener. Averaging and rounding the multi local minima points allowed us to over-
come the following problems: (i) minima that were not retrieved, because the effectively
retrieved points were used for the final estimation; and (ii) false positive minima, because
these values were averaged with the true positives, and so their effect was minimised.

After implementing this approach, we realised that the local minima indexes of listen-
ing profiles with “flat zones” (i.e., valleys in a listening profile with no substantial change
for a period of time) were usually at the beginning rather than at the middle or the end
of the “flat zones.” In order to address this issue, we implemented a variant of the local
minima approach that computed the local minima for the original time series of the week-
days, as well as its reversed version. The indexes obtained with this backward version
were reversed again, and averaged with those retrieved by the forward version. We ex-
pected that this method would be able to estimate the index at the middle for each one of
the “flat zones.” The variant that calculated the time zone based on only the forward time
series was named forward local minima (FF_LM). The approach that calculated the time
zone based on the forward and backward time series was named forward-backward local
minima (FB_LM).

In Figure 4.18 we show a weekly aggregated listening profile. Red dots show the found
minima during weekdays, blue dots show the minima indexes using the reversed version

of the time series, and green dots show the average of the forward and backward versions.
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Fig. 4.18: Local minima approach and variants. Red dots indicate the daily min-
ima indexes during weekdays, blue dots indicate the daily minima of the reversed
time series, and green dots the average of the forward and backward time series
minima indexes. The FF_LM time zone estimation variant was based on the inte-
ger average of red minima indexes within a day. The FB_LM variant was based
on the integer average of green minima indexes.

The FF_LM time zone estimation is based on the integer average of red minima indexes

within a day. FB_LM is based on the integer average of green minima indexes.

4.3.2 Seasonal decomposition

In addition to the previous experimental factors for testing the best approach to iden-
tify time zones, we also employed time series decomposition to isolate the cyclic seasonal
data from any trend and noise in the weekly aggregated music listening profiles. In other

words, we also evaluated if removing the noise and trends of the profiles would improve
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the performance of any of the previously detailed approaches for time zone normalisation.
As a result, we ended up with raw and seasonal variants for each of the approaches, ei-
ther based on the time-zone-0 (TZ0) cross correlation, or local minima (LM). All in all, we
evaluated these two different main approaches and their variants. In Table 4.2 we show a

summary of the different approaches and variants, as well as an brief description of each

method.
Table 4.2: Summary of methods for time-zone normalisation.
Method Explanation
TZOxCORR Cross-correlation with TZ0 music listening histories
FF_LM Forward-only local minima of people’s music listening histories
FB_LM Forward-backward local minima of people’s music listening histories
SEAS_TZOxCORR  Cross-correlation with TZ0 music listening histories, seasonally decomposed
SEAS_FF_LM Forward-only local minima of people’s music listening histories (seas. decomposed)
SEAS_FB_LM Forward-backward local minima of people’s music listening histories (seas. decomposed)

4.3.3 Experimental comparison

We designed an experiment with the purpose of comparing the performance of all the ap-
proaches and their variants in identifying the time zones where weekly aggregated music
listening patterns were generated. To accomplish our goal, we designed an experiment in
which we created a ground truth of time zones by randomly selecting a subset of listen-
ing histories from the dataset, aggregating their data into a week, and manually labelling
each one of these profiles in a time zone within the range [-12, 11]. We followed Cochran
(1977) and estimated that a sample size of 384 listening histories would give us 95 percent

confidence interval at 5 percent error.
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To annotate the time zone for each listening profile, we visually inspected the time
series and carefully paid attention to the assumptions already described: (i) listeners, in
general, submit fewer music logs at night; (ii) people, in general, share a common pattern
of music listening. We also assumed that people’s behavioural patterns of listening change
on weekends and so we only paid attention to weekday cycles. We named this subset the
control dataset.

Although we expected that labelling listeners’ time zones would be straightforward,
we realised that their annotation was difficult. Most people in the control dataset had
cyclic patters but some had slight changes in their weekly profiles. As a result, choosing
one specific time zone was not obvious. Furthermore, a few listeners did not have a clear
cyclic pattern at all. In order to exemplify some this variability, in Figure 4.19 we show
the weekly aggregated listening profile of six listeners supposedly to be in different time
zones. While it seems easy to estimate the time zone of listeners in the upper row, the
annotation is problematic for the ones in the bottom row.

After we created the control dataset, we proceeded to compute the time zones with
the six aforementioned approaches. In order to evaluate the different approaches, and
given the limited “ground truth” data, we used a bootstrapping technique. This technique
makes use of re-sampling for computing an estimator such as the confidence interval or
standard error when analysing small datasets with sparse prior information or unclear
distributions (Henderson 2005). As a result, we took random samples with replacement
from the original population of listening profiles, creating 1,000 random populations of

384 listening profiles each.
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Fig. 4.19: Weekly aggregated music listening profiles of six listeners in our con-
trol dataset. While the time zones for the profiles in the upper row was easily
estimated by visual inspection, the estimation for the lower row profiles was prob-
lematic.

We wanted to calculate the performance of each method not only by measuring the
percentage of perfect matches between the estimated time zones and to the ones in the
control dataset, but also by how close those were to each other. In other words, an error
in the estimation of £1 hour should be less important than a larger difference. Hence, we
quantified the performance of each approach by computing their time difference in hours.
For example, if both the computed and the manually labelled weekly listening profile had
the same time zone, their time difference was zero, but if the computed profile was shifted
by two hours to the left, their time difference was -2 hours.

In Figure 4.20 we show the performance of the six approaches in identifying time zones
of listening profiles. Bars and colours indicate the time differences in hours, ranging from

[-12, 11], where a zero-hour difference is orange. 95 percent CI error bars show upper
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and lower limits for 1,000 bootstrap samples replicated from the original sample of 384

listening histories using bootstrap at « = 0.05.
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Fig. 4.20: Performance of six approaches in identifying time zones of listening
profiles. The plot shows percentage and 95% CI error bars for each possible time

difference between the manually labelled control dataset and the computed time
zones for 1,000 bootstrap samples taken from 384 listening histories.

It can be seen in the figure that the largest percentage of correctly computed time zones
(i.e., time difference was zero) was achieved by TZ0xCORR and SEAS_TZ0xCORR, show-
ing significant differences with the other approaches. However, when analysing the per-
formance of all methods with a tolerance of £1 hour, the FB_LM and FF_LM approaches—
methods based on the assumption that people scrobble less frequently at night—had a
much better performance. In fact, these methods appropriately computed the time zones,
with a one-hour window tolerance, for 75 and 70 percent of the dataset respectively.

There was no significant difference between models for aligning local minima. Hence,

the forward-backward approach we implemented to overcome the estimation of minima
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of listeners with “flat zones” was not effective. The seasonally decomposed versions of the
local minima approaches had a poorer performance than their raw counterpart, implying
that there was information in the full data that was lost when we decomposed the time
series. This data may be helpful for determining the time series of the weekly time series
and so it should not be discarded. Overall, the best approach was based on finding the
local minima of weekly aggregated listening profiles, which was based on the assumption
that people share hours of sleep at night. This approach recognised correctly 75 percent
of the time zones with +1 hour of tolerance.

Some drawbacks may be raised concerning our experimental design and analysis. First,
the time zone of listeners can be not fixed, especially when considering long listening his-
tories. People may travel for vacations or work while still being submitting music logs,
or they may move to a different time zone indefinitely. Although the aggregation of long
listening histories minimises the former issue, it can not cope with the latter. Also, this
approach may also be biased against workers who work a night shift. It would be inter-
esting to investigate the actual percentage of people migrating to different time zones and
working a night shift, and see if this point could have an effect in our analysis.

Second, in spite of the fact that individual schedule variation (e.g., morning people as
opposed to night people) could possibly exceed small differences in time zones, the ap-
proaches we designed for identifying time zones in people’s listening profiles can still be
used to know the shift of these cyclic listening patterns in time, allowing straightforward
comparison between them. As a consequence, having the listening histories aligned in

time permits to easy comparison of listening patterns because the shift between them will
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be minimised. This may be helpful, for example, to profile listeners by the proportion of
listening logs they submit during a day or a week. This may provide a degree of infor-
mation about people’s listening habits, data that could be used as a signal that may be
used by music recommendation services to tailor their recommendations to the specific
situation of the listener.

In this chapter we described the creation of the MLHD, a very large dataset of full mu-
sic listening histories. We presented the criteria for the data collection, acquisition, clean-
ing, and the integration of the data. We then provided insights about the demographic
characteristics of users in the dataset, and we investigated about different approaches for
performing a temporal alignment of the music listening histories that will allow us to com-
pare them directly.

In the next chapter we will formalise a set of features to describe some of the aspects
of the music listening behaviour of listeners in the MLHD, and we will show different
patterns of these features that can be found at the country, age, and gender level. We
will finalise the next chapter by evaluating whether the demographic, profiling, as well as
contextual features extracted from the music listening histories can improve the accuracy

of a series of music artist recommendation models.
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Chapter 5

Listener-aware recommendation

The modelling of users for multimedia information retrieval systems has been a research
topic since the first International Symposium on Music Information Retrieval (ISMIR) in
2000. In that meeting, Chai and Vercoe (2000) observed that to create modern, more effi-
cient, and personalised music information retrieval systems, the modelling of users would
be necessary because many features of multimedia content delivery are perceptual and
user-dependent. As a result, they proposed a language capable of expressing different
types of user information that also allowed the interoperability between music informa-
tion retrieval systems to share these user profiles.

Sixteen years after the first ISMIR meeting, the landscape of music consumption has
changed enormously and the idea of sharing user models and profiles now seems quite
naive. The rise and fall of peer-to-peer networking led to the reinvention of the music in-

dustry: the paradigmatic music product was no longer a full album in a physical format,
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but individual music files available in online digital music stores. Thanks to the miniatur-
isation of portable media players and also to almost ubiquitous Internet access, a change
of paradigm in music consumption has happened again, and people seem to not want to
pay for individual tracks. Instead, they are willing to pay for services that allow them to
access, search, and discover music items—artists, albums, or tracks—within large reposi-
tories (Wikstrom 2013).

On-demand digital music streaming services are currently the fastest growing sector
of the global music industry (IFPI 2015) and in 2015, the digital revenues that these sys-
tems generate overtook the income from physical music goods for the first time in mu-
sic industry history (IFPI 2016). The on-demand music streaming landscape these days
seems to be a lucrative battlefield, and one on which many companies want to compete.
However, most of the profits from the streaming model of business do not rely on the
number of subscribers to these systems, providing the best experience to access music,
or on finding the best next song that a listener would like to hear. Since the majority of
the listeners” accounts in music streaming services use the “free” or “freemium” business
model—advertisement-supported basic streaming services—a large share of the income of
music and media streaming companies comes from targeting ads more precisely at listen-
ers (Rutter 2016). All in all, people are no longer passive observers but direct participants
in the battlefield that is the digital media and music streaming landscape. In fact, the
traded goods in this business are individual profiles and psycographic traits (i.e, interests,
lifestyle, personality, values) which are extracted from correlating their listening habits

with their sociographic characteristics (Prey 2016). As a result, listeners are the source of
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information, but they also are the final target for all the commercials these companies are
making money from.

The main research question of this dissertation is about the degree of impact of using
demographic, profiling, and contextual features from listeners in improving the perfor-
mance of automated music recommendation systems. However, these features may also
be used to profile and model a user’s traits for potentially musically-unrelated purposes,
such as the aforementioned ad customisation. Since the customised promotion of prod-
ucts and services is driving the music industry business, while not directly discussed, the
research presented in this dissertation may have applications beyond automatic music
recommendation.

In Section 5.1 we will describe a set of listening behavioural features that we devel-
oped to characterise and profile listeners. We will formalise them and show how they
can be used to find patterns at the country and age-group levels. In conjunction with
self-declared demographic features and basic forms of listening context extracted from
aggregated listening patterns, in Section 5.2 we will evaluate if the use of these signals

improve the accuracy of a recommendation model.

5.1 User-centric features

Traditional automated music recommendation systems embedded in most music stream-
ing services still typically rely on the accuracy of statistical models learned only from the

past preferences of users on music items. However, Lee and Price (2016) and Fuller et
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al. (2016) found that there are different types of listeners in terms of how they consume
music, and so it seems reasonable to think that each type of listener needs a different type
of recommendation. Therefore, additional sources of data such as the demographic at-
tributes of listeners, and their listening behaviour and context, may encode information
about people and their listening habits and preferences that can be used to improve the
performance of a music recommendation model.

Now we will discuss the impact of using demographic and profiling characteristics—
which in the context of this dissertation have been referred to as user-side or user-centric
features—in improving the accuracy of a music recommendation model. User-centric fea-
tures were extracted from listeners’ self-declared demographic data and a set of custom-
built profiling features characterizing their music listening behaviour. Models based on
latent factors and all combinations of user-side features were learnt by using data from the
Music Listening Histories Dataset (MLHD) described in Chapter 4. Finally, music listen-
ing histories were aggregated into different time spans to evaluate if the accuracy of the

models changed in different periods of listening.

5.1.1 Music listening behavioural features design

We hypothesised that by better understanding the listening behaviour of people, we will
be able to more accurately model a user’s needs. Hence, the recommendation of music
items can be tailored to each listener, and the prediction accuracy will likely improve.

A set of five computational features tailored to characterise listening behaviours were

described in The Echo Nest (2013), and presented as part of The Echo Nest Taste Profile API
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project.®® These features were developed to identify the listening characteristics that best
described a listener, allowing music streaming services to recognise “high-value” users
(i.e., the highly engaged listeners of a music service) and groups of users with similar pat-
terns of music listening behaviour. According to The Echo Nest, the ultimate goal of these
profiling features was to identify “psychographic characteristics” of the high-value users
to monetise this group of listeners via “targeted advertising.” The set of features that The
Echo Nest designed to describe listeners were adventurousness (i.e., how open the listener
is to music outside their “musical comfort zone”), diversity (i.e., how varied the listener’s
preferred styles and genres are), freshness (i.e., the listener’s preference for new and re-
cent artists versus older music), locality (i.e., describes the spread, worldwide, of where
the listener’s preferred artists come from), and mainstreamness (i.e, the listener’s affinity
for well-known artists versus obscure artists). Although The Echo Nest provided detailed
documentation about how they calculated their custom-designed acoustic features based
on the work by Jehan (2005), they did not provide any implementation details about how
they calculated their listening profile features. The Echo Nest’s Million Song Dataset Taste
Profile subset supplied listening information for a large amount of listeners, but only in
the form of playcounts without any temporal information. Finally, The Echo Nest API¥

was taken down shortly after Spotify acquired The Echo Nest, and so there is no way of

correlating a song’s feature values with a listener’s behavioural features using their API

86. Deprecated after Spotify acquired The Echo Nest, but available through Internet Archive’s Way-
back Machine at https://web.archive.org/web/20150707212616/http://developer.echonest.com/
docs/v4/tasteprofile.html

87. The Echo Nest API is not available any more. However, the APl documentation can still be ac-
cessed at https://web.archive.org/web/20160407081912/http://developer.echonest.com/docs/v4/
index.html#overview
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The obscurantism about how they calculated these listening behavioural characteristics
may be an indication of the high value of this information.

In order to evaluate if music listening behavioural characteristics can be used to im-
prove the performance of a music recommendation model beyond plain collaborative fil-
tering (CF), Schedl and Hauger (2015) proposed another set of custom-designed features
that attempted to describe aspects of music listening behaviours in relation to music artists.
Although the authors computed continuous values for their listening-centric user features,
they grouped the listeners into categorical levels according to their feature values, perhaps
losing some information in this process. Then, they compared the performance of sin-
gle and combined recommendation algorithms by varying the number of recommended
artists between one and 1,000. As a result, they evaluated different recommendation ap-
proaches only in regard to the set of more popular artists with listeners grouped in fixed
listening categories. Some of the features proposed by the authors considered only the
number of playcounts, but did not consider the ranking of the music items within the
overall ranking or within each listener’s ranking. Therefore, biases in the distribution of
items could be amplified during the feature computation. The authors planned to inte-
grate their listening behaviour features as user-centric features directly into recommenda-
tion algorithms based on matrix factorisation, however there are no publications with this
implementation so far.

Now we will describe our efforts attempting to represent some characteristics of music
listening behaviours. Attending to the conceptual design and implementation details of

listening behavioural features on previous studies, we used continuous feature values to
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express the precise value of a certain listening behaviour characteristic in relation to a mu-
sic item, and we considered the position of the music items within each listener’s ranking
as well as the overall ranking . Finally, we integrated these feature values directly into
a recommendation model based on matrix factorisation (see Subsection 3.2.5) in order to
predict the preference values on all available items.

We restricted ourselves to designing four novel features to describe listener behaviours:
exploratoryness, mainstreamness, genderedness, and fringeness. Values for these features were
computed for the three types of music items in the dataset: tracks, albums, and artists.
Therefore, each listener’s listening was described by a vector of 12 values. In the following
sections we will describe the goals behind each of these features, give details about their

implementation, visualise data patterns, and provide some analysis of the results.

Exploratoryness

To represent how much a listener explores different music instead of listening to the same
music repeatedly we developed the exploratoryness feature.

For each user z’s listening history, let L be the number of submitted music logs, Sj, be
all submitted music items of type k, where k={tracks, albums, artists}, s, ; be the number
of music logs for the given music item key k at ranking i. The ranking was the ordered
set of music items, from the most highly listened to the less frequently listened item. This
information was computed directly from the music items frequencies within each listening
history for each listener. We computed the exploratoryness e, for listener = on a given

music item of type k as:
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err = 1— 1 Z S]“ (5.1)

Exploratoryness returns a normalised value, with values closer to zero for users listen-
ing to the same music item again and again, and values closer to one for users with more

exploratory listening behaviour.

Mainstreamness

With the goal of expressing how similar a listener’s listening history is to what everyone
else listened to, we developed the mainstreamness feature. It analyses a listener’s ranking of
music items, and compares it with the overall ranking of artists, albums, or tracks, looking
for the position of co-occurrences.

For each user 2’s listening history, let NV be the number of logs of the music item ranked
tirst in the overall ranking, L be the number of submitted music logs, S, be all submitted
music items of type k, where k={tracks, albums, artists}, s ; be the number of music logs
for the given music item key £ at ranking i, and o;; be the number of music logs in the
overall ranking of music item type % ranked at position i. We defined the mainstreamness

teature m, , for listener x on a given music item of type £ as:

1
= 3 su0n 5.2
mx,k NL - Sk’, Ok, ( )

Listening histories of people with a music item’s ranking similar to the overall ranking

receive mainstreamness values closer to one. Listeners’” mainstreamness whose ranking
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differs more from the overall ranking receive values closer to zero. As mainstreamness
depends upon the overall ranking of music items we computed the overall ranking from
all music logs in MLHD for the three music entities in the dataset. In Table 5.1 we show
the first 20 artists and their total number of logs in the ranking of artists.

Table 5.1: 20 top-ranked artists in the MLHD dataset. The “Total logs” column
refers to the total number of logs, in millions, for the particular artist in the dataset.

Ranking Artist Name Total logs (M)
1 The Beatles 149.3
2 Radiohead 139.7
3 Muse 100.0
4 Coldplay 91.8
S5 Pink Floyd 86.4
6 Metallica 79.2
7 Red Hot Chili Peppers 77.0
8 Linkin Park 74.7
9 Arctic Monkeys /1.7
10 System of a Down 63.1

11 Lady Gaga 62.5
12 Nirvana 59.9
13 Placebo 56.9
14 Nine Inch Nails 56.0
15 The Killers 55.6
16 Foo Fighters 54.1
17 Daft Punk 52.4
18 Britney Spears 50.1
19 Green Day 49.9
20 Iron Maiden 49.5

As expected, the first places of the ranking were populated with highly known music

artists. However, although there were a number of artists that are considered “classic”
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(e.g., The Beatles or Pink Floyd), several classic music artists were missing in the top 20
positions of the ranking (e.g., Rolling Stones or Michael Jackson). Moreover, it is peculiar
that all the highly listened artists in the dataset are usually referred to as Pop or Rock
artists. There is no representation of other popular genres among young people, such as
Electronic or Hip-hop. These characteristics of the dataset may indicate that there is a bias
in the listeners that are represented in the MLHD dataset. Since the population sample
of the dataset is big, we suspect that there is a bias of towards Pop and Rock artists in
the Last.fm users. However, we believe that every music streaming service has a specific
bias. The Soundcloud music service, for example, is known for being a niche place for
Electronic and Hip-hop artists and listeners.

In Table 5.2 we show the ranking for the 20 most popular albums in the MLHD dataset.
If the ranking of artists was clearly dominated by very popular artists, the ranking of al-
bums showed a different arrangement. A number of apparently not-so-popular albums
occupied the first places of the ranking. This characteristic of the ranking of albums in the
dataset indicates that the ranking of artists is obviously ranked by the aggregated num-
ber of submitted logs for all the releases by an artist. Therefore, music artists with a long
and consistent trajectory of good releases reach the first places of the ranking. On the
other hand, artists with a shorter trajectory or with a few popular releases do not reach
the ranking of artists but some of their releases are heavily listened. As a results, they get
into the first places of the ranking of albums (e.g., Bon Iver or Paramore).

It is also interesting to notice that the album “xx” by the artist “The xx” appears twice

in the top 20 ranking. By reviewing this issue closely, we found out that this release ap-
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Table 5.2: 20 top-ranked albums in the MLHD dataset. The “Total logs” column
refers to the total number of logs, in millions, for the particular albums in the

dataset.

Ranking
1

0w N O~ A W N

11
12
13
14
15
16

17
18

19
20

Album Name

Favourite Worst Nightmare

Absolution

For Emma, Forever Ago

XX

Black Holes and Revelations

In Rainbows

Oracular Spectacular

Hybrid Theory
Toxicity
OK Computer
Fleet Foxes

A Rush of Blood to the Head

High Violet
RIOT!
Room on Fire
Silent Alarm
Only by the Night

In the Aeroplane Over the Sea

Tourist History

XX

Artist Name
Arctic Monkeys
Muse
Bon Iver

The xx
Muse

Radiohead
MGMT
Linkin Park
System of a Down

Radiohead
Fleet Foxes

Coldplay
The National
Paramore
The Strokes
Bloc Party

Kings of Leon
Neutral Milk Hotel

Two Door Cinema Club

The xx

Total logs (M)
18.1
16.2
16.0

15.3
15.2

14.9
13.6
11.8
11.8

10.4
10.1

10.0
10.0
9.8
9.8
9.6

9.4
9.0

9.0
8.9

peared at least twice in our dataset, with two different MusicBrainz identifiers (MBIDs)

that were not linked to each other. We reported this issue to Last.fm and MusicBrainz. We

did not receive a response from Last.fm, but MusicBrainz replied that some items in their

database have different MBIDs because of processes of merging and splitting. For exam-

ple, if by any reason a user merges the entity Bob Marley with the entity Bob Marley and

the Wailers—and this merge is accepted by the MusicBrainz community—the new entity

Bob Marley will be reachable by three different MBIDs: the one from the original Bob Mar-
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ley, the one from Bob Marley and the Wailers, and also from the newly created from the
merging process.®® This behaviour occurs because MusicBrainz do not delete the previous
entities, nor their MBIDs, from their database. MusicBrainz manages to return the latest
MBID when someone queries the API with an entity’s former MBID by means of redi-
rection tables® (e.g., MusicBrainz redirects the MBID used by Last.fm for Britney Spears
(2£4£5d416-7102-4110-97fd-£5c365d6bb26) to the latest one on the MusicBrainz database
(45a663b5-b1cb-4a91-bff6-2bef7bbfdd76)).
Redirections are not directly available from the MusicBrainz API, but they can be accessed
by downloading and using a local copy of the MusicBrainz database.” Last.fm, on other
hand, does not work with redirections and so they seem to store versions of the same mu-
sic entity using different MBIDs, and also does not store newly created MBIDs for merged
entities. All in all, if the number of logs of the release “xx” by the band “The xx” is aggre-
gated, it becomes the most listened album in the dataset.

In Table 5.3 we show the ranking for the 20 most popular tracks in the MLHD dataset.
The ranking exhibits a similar behaviour to the ranking of albums, with only a small num-

ber of “classic” tracks in the first places of the ranking.

88. In fact this happened once but the merge was reverted since it was clearly a mistake (https://
chatlogs.metabrainz.org/brainzbot/metabrainz/2015-12-04/7msg=3422608&page=1)

89. Documentation about the MusicBrainz schema and how redirect tables work is available at https:
//wiki.musicbrainz.org/MusicBrainz_Database/Schema#Schema

90. Documentation about how to download and set up a local instance of the MusicBrainz database is
available at https://musicbrainz.org/doc/MusicBrainz_Database/Download
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Table 5.3: 20 top-ranked tracks in the MLHD dataset. The “Total logs” column
refers to the total number of logs, in millions, for the particular tracks in the

dataset.

Ranking
1

o N O~ O b W N

11
12
13
14
15
16

17
18

19
20

Genderedness

Track Name
Crystalised
Intro
All'l Need

Heart Skipped a Beat
Time Is Running Out

Paper Planes
Rolling in the Deep
Californication
15 Step

Skinny Love
Reckoner

Hysteria
Supermassive Black Hole
Feel Good Inc.

Hurt
Paparazzi

Someone Like You
Faust Arp

Rebellion (Lies)

The Pretender

Artist Name
The xx
The xx

Radiohead

The xx
Muse

M.ILA.
Adele
Red Hot Chili Peppers
Radiohead

Bon lver
Radiohead

Muse
Muse
Gorillaz
Johnny Cash
Lady Gaga
Adele
Radiohead
Arcade Fire

Foo Fighters

Total logs (M)
3.4
3.1
2.7

2.5
2.4

2.3
2.2
2.2
2.2

2.2
2.1

2.1
2.1
2.0
2.0
2.0

2.0
2.0

2.0
1.9

With the aim of expressing how close a listener’s listening history is to what females or

males are listening to, we developed the genderedness feature. The genderedness feature

computation basically relies on mainstreamness, but instead of computing just one overall

ranking from all listeners, it uses two rankings: one made with music logs from listeners
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self-declared as female, and another one made with music logs from listeners self-declared
as male.

For each user 2’s listening history and music item of type k, let m, i ;. be the main-
streamness computed with the male ranking, m, 1. femaie be the mainstreamness calculated
with the female ranking. We defined the feature genderedness g, ;. for listener x on a given

music item of type k as:
Gz .k = My kmale — Ma k, female (53)

Fringeness

We developed the fringeness feature with the objective of expressing how much a user
listened to rare music items. In other words, those items for which the Last.fm database
did not have an MBID (see Figure 4.3 for summary of the percentage of music logs with
and without MBIDs for the different music items).

For each user 2’s listening history, let Sj, be all submitted music items of type k, where
k={tracks, albums, artists}, £}, be the number of music logs of type k without IDs in the
Last.fm database.

We defined the feature fringeness f, ; for listener x on a given music item of type £ as:

F,

x
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5.1.2 Profiling listeners

To illustrate how the features we developed can be used to profile listeners, we calculated
the exploratoryness, mainstreamness, genderedness, and fringeness for all users in the
MLHD dataset, for each one of the music entities. As we saw in Subsection 4.1.2, not all
music logs within each listening history had a full set of MBIDs, and so we ended up using
the total number of logs that had a MBID for the specific music entity at hand. In total,
we used 93 percent of logs of the dataset when computing profiling features in relation to
artists, 64 percent with albums, and 78 percent with tracks.

In Figure 5.1 we show a boxplot summary of the calculated mainstreamness values by
age, computed for all listeners in our dataset with self-declared age within [15, 54] years
old. We can see in the figure that younger people tend to have higher levels of mainstream-
ness, disregarding if the music item is an artist, album, or track. Since mainstreamness is
based on comparing rankings of music items, this characteristic indicates that younger
people tend to listen more to music items that are ranked higher in the overall ranking of
music items. On the other hand, older people listen to music that is experienced less fre-
quently, in general. The mainstreamness feature value of all three music items diminishes
steadily with age and tends to plateau when people get older. The three plots in the fig-
ure also display an uneven change in the distributions of the computed mainstreamness
for the population of listeners in their forties and fifties, as well as for 15-year-old listen-
ers. The larger variability in these populations may be explained due to the much smaller

number of music listening histories from listeners within those age ranges.



5 Listener-aware recommendation 177

8 0.125- ﬁﬁﬁﬁ
€
go.wo Kﬁﬁﬁﬁ
é ﬁﬁﬂﬁ#*g
+ 0075+ ﬁﬁﬁﬁgﬁﬁ
2 #*#ﬁ—gﬂ#ﬁ y
0.050+ g"‘# ﬂ_#
ﬁ%ﬁk@ﬁé2&&2%&%@@&&&%ﬁ%&%@bh&b&&%b&b@éééé
ge
(a) Artist mainstreamness by age
0.01254 ;m
#ﬁ
%0.0100- ﬁ#ggg
.go.ows- #ﬁ#g##ﬁ
£ #*ﬂ###
23 0.0050 1 ﬁ"##
< # = ﬁ#
R

151617 18192021 222324 252627282930 31323334 353637 38394041424344 454647 484950515253 54
Age

(b) Album mainstreamness by age

0.0016

il
*ﬁ##ﬁmmmmm ﬁ

0.0008 -

Track mainstreamness

0.0004 =+ T T T T T T T T T T T T T
15161718192021222324252627282930313233343536373839404142434445464748495051525354

Age

(c) Track mainstreamness by age

Fig. 5.1: Boxplots showing summary of the calculated artist, album, and track
mainstreamness values by listeners’ age, computed for all users in MLHD with a
self-declared age within [15, 54] years old.

We have to note that, since mainstreamness is defined based on the ranking of the

music items in the whole dataset, the distribution of mainstreamness across age could be
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affected by the fact that the dataset is dominated by younger users. However, the main-
streamness feature tries to express the degree of similarity of a listener’s history to what
everyone else listened to, and so this behaviour is expected, particularly if the dataset pop-
ulation is biased towards a specific group.

The computed exploratoryness feature by age of listeners for artists, albums, and tracks
is shown in Figure 5.2. The boxplots show that there is an increase in the exploratory-
ness of listeners for all music items while in their late teens and early twenties. This rise
tends to plateau for young adults at about 30 years old. The variability in the medians
increase for older people since the number of music listening histories is much smaller
than for younger people, except for 15-year-old listeners. Although the absolute values of
exploratoryness are different for each music item, the shape of the increase in the popu-
lation curves per age are similar, implying that the relation between exploratoryness and
age is the same. This characteristic seems to indicate that younger people tend to listen to
the same music more repeatedly compared with older people. On the other hand, older
listeners in the MLHD, listened to artists, albums, and tracks in a more diverse fashion,
exploring more items.

We also verified if the exploratoryness of listeners varied by their country and age. In
Figure 5.3 we show exploratoryness by age for listeners from the five countries with the
largest population in the dataset, for the three music items. Ribbon bands show 95 percent
confidence interval bars. The curves of exploratoryness show a similar trend in terms of
age to the previous figure. However, if we analyse them by country, we can observe that

while people from the US and UK have similar levels of exploratoryness across all ages
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Fig. 5.2: Boxplots summaries of the artist, album, and track exploratoryness by
listeners’ age, computed for all users in the MLHD with a self-declared age within
[15, 54] years old.

for the three music items, young users from DE (Germany) in their late teens and early

twenties are less exploratory. However, Germans in their thirties and onwards reach a
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Fig. 5.3: Exploratoryness mean for artist, album, and track entities in relation to
the age of listeners from the five countries with the largest number of listeners in
the dataset. Ribbon bands show 95 percent CI bars.

similar level of exploratoryness as that of anglophones. Listeners from PL (Poland) and
BR (Brazil) are consistently less exploratory than people from the previously mentioned

countries, but especially youths and young adults.
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In order to visualise if there were any trends in terms of exploratoryness and self-
declared gender and age, in Figure 5.4 we show exploratoryness means and 95 percent

confidence interval bands for all music items.
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Fig. 5.4: Exploratoryness mean by age and gender of listeners. Ribbon bands show
95 percent CI bars.
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The curves show that, in general, young female and male listeners had similar levels
of exploratoryness, in particular for artists (Fig. 5.4a) and albums (Fig. 5.4b). However,
young adult and adult males become more exploratory than females in regard to those
music items. Males exhibit a higher exploratoryness for track throughout all age groups
(Fig. 5.4¢).

We also computed fringeness in relation to the self-declared gender and age of listeners.
As we can see in Figure 5.5, listeners exhibited some differences in terms of fringeness,
particularly in relation to their self-declared gender. Overall, users within our dataset self-
declared as male listened more than female to fringe music items—those items that were
not part of the Last.fm database at the moment of the data collection. Artist fringeness
(Fig. 5.5a) and track fringeness (Fig. 5.5¢) was consistently larger for males across all ages,
except for the youngest listeners. Instead, listeners of both genders had similar means for
album fringeness, especially in their late twenties and early thirties (Fig. 5.5b).

We also found differences in regard to artist fringeness by countries. In Figure 5.6 we
show boxplots of the artist fringeness for listeners from the top 19 countries—those coun-
tries whose number of listeners was at least one percent of the total number of listener in
the dataset. Three countries exhibited significant differences in terms of artist fringeness.
These countries were JP (Japan), RU (Russia), and UA (Ukraine). We hypothesised that
this trend may be due to (i) people in those countries simply listen more to artists that are
not in the Last.fm database, or (ii) they use their own alphabet (e.g., Cyrillic and Katakana)
in the metadata on their digital music devices. Therefore, when they submit a music log

with those characters there is no probability of finding a match in the Last.fm database.
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Fig. 5.5: Fringeness mean by age and gender of listeners. Ribbon bands show 95
percent CI bars.

Unlike MusicBrainz, which is designed to support multiple languages,’ the Last.fm API

only supports English.

91. MusicBrainz internationalization and multiple language support documentations is available at
https://musicbrainz.org/doc/Internationalization
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Fig. 5.6: Boxplot summary of artist fringeness by age and country of listeners.
Only Japan (JP), Russia (RU), and Ukraine (UA) exhibit a significant difference.

In regard to fringeness and age, instead of comparing one specific age number with the
next, or the previous one, we also compared age groups (e.g., youth versus older listeners).
Therefore, in order to make a proper comparison that does not violate the assumption of
homogeneity of variance, we grouped listeners into four groups: 15-24, 25-34, 35-44, and
45-54, and we balanced the number of samples within each of those groups. We calculated
the number of listeners for each age within the age range [15, 54] and observed that the
minimum value was 211 for the 54-year-old listeners. In order to obtain balanced groups,
we decided to draw a random sample of 200 people from each age and we created five
10year groups. As a result, we ended up with 2K listeners in each of the age groups.

We performed a similar feature computation to the one that we did before but instead
of using the whole population, we used the balanced groups. Visualizing summaries with
population groups of the same size would allow us to know if the trends we found from
previous analyses were similar. Although we quantified these characteristics of listeners

in relation to artists, albums, and tracks, and their interaction with listeners” age group, the
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interaction with artists seemed the largest. Therefore, instead of showing all interactions,
we will henceforth only show the summary of the profiling features related to artists and
the age group of listeners, since that interaction was significant and had a larger effect size.
In Figure 5.7 we show boxplot summaries for artist mainstreamness, exploratoryness, and
fringeness by age groups.

In terms of artist mainstreamness, we can see in Figure 5.7a that, since the notches of the
boxplots did not overlap, the feature medians differ. This means that while younger peo-
ple listened more to the same artists that everyone was listening to, older people tended
to listen to less common performers. This effect could be generated by the actual listening
behaviour of older people that listened less to highly ranked artists, or because they lis-
tened to artists from other eras that were lower in the ranking, or because there were fewer
older people in the original dataset and so the artists they listened to were ranked lower
in the overall ranking. The largest median difference was between the first age group (i.e.,
15 to 24 years old) and the second one (i.e., 25 to 34). For older listeners, the differences
between their age groups medians were still significant, but they tended to be smaller.

In Figure 5.7b we see a boxplot summary of artist exploratoryness. It shows that while
listeners of the first group tended to listen over and over to the same artists, more than
people from the other groups, listeners from the older age groups tended to explore more
artists. The rise in artist exploratoryness gradually decreased, and the medians for the
third (i.e., 35 to 44 years old) and fourth group (i.e., 45 to 54) were closer than between the

other age groups.
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Fig. 5.7: Summary of the calculated artist mainstreamness, exploratoryness and
fringeness values by age groups for a random group of listeners from the MLHD.
Each age group size was balanced (N = 2K).

The artist fringeness summary by age group is shown in the boxplot summary in Fig-

ure 5.7c. We can see that listeners in the older age groups tended to listen more to per-
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formers that were not part of the Last.fm database than listeners in the younger groups.
This characteristic may be explained by hypothesising that the older groups of listeners
listened to artists from a different, past era, and these artists might be underrepresented
within Last.fm. Allin all, the differences in artist fringeness medians between age groups
were significant, but their effect size were smaller than in the case of exploratoryness and
mainstreamness.

Finally, we wanted to compare artist genderedness between age groups. This feature
was designed to express how close is a listener’s ranking of artists to the ranking of artists
of listeners self-declared as females and, similarly, to the ranking of those ones declared
as males. For this comparison we needed balanced groups in terms of age as well as self-
declared gender. Therefore, we sampled groups with equal number of listeners of same
self-declared gender and age. Since in the dataset there were only 20 listeners self-declared
as female of 54 years old, we ended up with eight groups (i.e., four 10-year age groups for
each gender) of 200 listeners each.

In Figure 5.8 we show artist genderedness means and 95 percent confidence interval
bars for each age group. While male listeners tended to listen more to music that was
ranked higher in the male ranking throughout all age groups, their preference for artists
within the male ranking diminished with age. Females, on the contrary, listened more
to artists ranked higher in the female ranking when they were young, but young adult
and adult females eventually ended up listening to more artists ranked higher in the male

ranking. Overall, male and female listeners had opposite trends of genderedness means
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between the age groups, but these means tended to not be significantly different in the

oldest group.
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Fig. 5.8: Artist genderedness by age group and self-declared gender for balanced
groups of listeners (N = 200) of the MLHD. The dots indicate the mean and error
bars show 95 percent confidence interval bars.

All in all, the user-centric listening features we designed seem to carry some relevant
information about how listeners part of the MLHD listen to music. Since exploratoryness
and mainstreamness showed the greatest differences across the different age groups we
focused our efforts in using these two profiling characteristics.

In the next section we will describe how we compared the performance of music artists
recommendation models by using several combinations of the listeners” demographic,

profiling, and contextual features.
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5.2 Experiment implementation

Our goal is to evaluate if demographics, behavioural profiles, and the use of observations
from different contexts improve the accuracy of a recommendation model. Our sources
of data involve a matrix of user preferences on artists obtained from implicit feedback
derived from the users” music listening histories, a set of three categorical demographic
teatures for each user: age, country, and gender, and a set of two continuous-valued features
for describing listening behaviour: exploratoryness and mainstreamness. Preference matri-
ces were generated by considering full-week music listening history data, as well as data
coming from music logs submitted on weekdays and weekends only.

We followed a similar approach to Koren, Bell, and Volinsky (2009), in which a matrix
of implicit feedback values expressing user preference for items is modelled by finding
two lower-dimensional matrices of rank f, X,,.; and Y,,. s, whose product approximates
the original preference matrix. The goal of this approach is to find the set of values in X
and Y that minimise the RMSE error between the original and the reconstructed matrixes.
However, this conventional approach of matrix factorisation for evaluating the accuracy of
recommendation models using latent factors does not allow the researcher to incorporate
additional features, such as the set of user-centric features we extracted and designed.

In order to incorporate latent factors as well as user-centric features into one single rec-
ommendation model, we used the Factorization Machines method for matrix factorisation
and singular-value decomposition (Rendle 2010). In this approach, interactions between

the latent factors as well as the additional features are computed within a single frame-
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work, with a computational complexity that is linear to the number of extra features. Since
the amount of interactions between side data features and latent factors can be large, a low
computational complexity allows faster model learning speed.

We randomly sampled full music listening histories from 10 percent of all listeners
in the MLHD in order to perform a series of experiments with different combinations of
model parameters and user-side features in a timely fashion. We assumed that a ran-
dom subset of listeners of this size would have similar statistical properties to the original
dataset. We then aggregated the subset of listening histories by creating <user, artist,
playcounts> triples. We transformed the number of playcounts in each triple into a 1-5
Likert scale value by means of calculating the complementary cumulative distribution of
artists per listener (Celma 2010). Hence, artists in each distribution quintile were assigned
with a preference value according to how much each user listened to them.

All in all, we ended up with a subset that had more than 60M ratings taken from the
listening histories from 59K listeners. The total number of artists included in these listen-
ing histories was about 432K artists. We observed that the rating matrix was very sparse,
exhibiting a density of observations of about 0.24 percent (density of observations is the
inverse measure of sparsity). In order to provide the reader with an idea of the size and
characteristics of this subset, the Netflix Prize training dataset had 100M observations,
taken from 480K users on 18K movies, with a density of 1.2 percent. The smaller density
of observations in our subset implies that there were more rating interactions that had to

be determined.
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When performing matrix factorisation with a set of explicit or implicit preferences, the
item ratings expressed by users, or inferred from their actions on the items, are mapped to
a latent factor space of dimensionality f, in such a way that their interactions are approx-
imated as the inner product in this space (Koren, Bell, and Volinsky 2009). As a result,
columns in the two resultant low-dimensional matrices correspond to f unknown latent
factors that may describe some aspects of the expressed preferences in the original rating
matrix. These factors are features that have to be determined by the analyst but, for the
sake of giving a few domain-specific examples, they could be the perceived music genre
of an artist, the perceived valence of the artist’s music, and the overall musical complexity.
Values in the columns of the first matrix represent how much a listener is interested in
those specific characteristics and values in the columns of the second matrix indicate how
much each artist exhibits those particular features.

For the sake of visualising if a latent factor model using matrix factorisation may learn
something from the rating data in our subset, we estimated the latent factor values learned
from the implicit ratings in the subset. In order to facilitate the visual inspection by trans-
ferring those values to a two-dimensional plot, we computed matrix decomposition with
only two latent factors. In Figure 5.9 we show the two-latent factor decomposition of the
subset rating matrix. A few selected popular artists are placed in the plot according to
their corresponding learnt factor values.

We can see in the figure that there seems to be some inner organisation within the
quadrants. In the first quadrant (i.e., both factors are positive) all artists are female, with a

few exceptions. The second quadrant (i.e., the first factor is positive and the second is neg-



5 Listener-aware recommendation 192

2 ..
David_Bowie
; The_Rolli t
LCD_Soundsystem e_Rolling_Stones
. ° o e C _ Madonna
1 - Thq_gu(r% eatles Aretha_Franklin
° The_Clash
Joy_Division
o 3 Daft_Punk .
BeastidVigsDavis . olly_Parton
e Sl JGASats -,-
KuafhwefBoltrane . . ) * Bri egrdHouston
o\l . . Bob Marle%?y“e Minogue Lady" Efgt;m .&*
5 OutKast . Christina_Aguilere
=0 - Run_D.M.C. D O
o : Spice_Girls Rihanna
o *Steve_Reich
MoSH8odra .
0 Dr.Dre ¢ .
Autechre Black_Sabbath .
o Metallica |
Atom Hearl%)eadfCanfDance Ozzy_Osbourne
-1 - Clan_Of_Xymox Iron_Maiden
2.
-2 -1 0 1 2

Factor 1

Fig. 5.9: Latent factor decomposition of the subset rating matrix. Only two factors
were used for this representation. Selected artists are placed in the plot according
to the learnt factors. Artists in the plot seem to be clustered by quadrant.

ative) groups all the artists than can be considered dark and heavy, such as Black Sabbath
or Iron Maiden. Quadrant three clusters the artists that are more minimal or “cerebral,”
such as Autechre, Atom Heart, or Dean Can Dance. Interestingly, this quadrant groups
very close together the musicians Steve Reich, Moondog, and Sun Ra. These three artists
are very different, but the three of them mostly compose instrumental music with exper-

imental traces. It is also possible that listeners perceive something in common between
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these three artists that transcends genre. Finally, quadrant four congregates artists that
can be considered classics, such as David Bowie, The Beatles, and Miles Davis.

Since these are latent factors learned from the model, it is up to the knowledge of the
researcher to come up with a set of specific words or concepts to interpret the quadrants,
or to assign names to the names of the axes of this representation. Also, we decomposed
the matrix of preferences by using only two factors. A much better model (i.e., a set of
lower-dimensional matrixes that, when multiplied, approximate the original matrix with
lesser error) may be achieved by using a larger number of latent factors. For example, if
using three latent factors, a third factor, orthogonal to the plane of factors one and two,
may separate Kraftwerk and John Coltrane. They lie right next to each other in the two-
dimensional representation but they may be far away if more dimensions are factored in.

In order to learn the best set of parameters of the recommendation model, we per-
formed a grid search on the A regularization parameter as well as the f number of latent
factors without user-side data, just using plain matrix factorisation for the matrix of pref-
erences of users on artists. Finding a good A value helps to avoid overfitting the observed
data by penalizing the magnitudes of the learned parameters. Finding the best f number
of factors helps to obtain a better recommendation accuracy while also providing a set of
to-be-interpreted latent factors.

We followed the dimensionality numbers of latent factors tested by Koren, Bell, and

Volinsky (2009) and Dror, Koenigstein, and Koren (2011), and we used the Graphlab Cre-
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ate framework®? to perform a grid search of f factors in the range [50, 200], and A regular-
ization values in the range [1 x 107°,1 x 1078]. We used the Adaptive Stochastic Gradient
Descent optimization algorithm (Duchi, Hazan, and Singer 2011) and set the maximum
number of iterations at 50. This number of iterations was chosen because there was no
substantial improvement in the model beyond this number. The best combination of pa-

rameters was achieved for A\=1 x 1077 and f=50 latent factors.

5.2.1 Demographic and profiling features

After the subset was created, we split it into two disjoint sets: training (90 percent) and
testing (10 percent) datasets. With the best set of hyper-parameters of the model already
estimated, we evaluated the recommendation accuracy in the testing dataset of models
learned from the training data for all combinations of user-side demographic and profiling
tfeatures. Since we had five user-side features (i.e., age, gender, country, exploratoryness,
and mainstreamness) there were 32 (i.e., 2°) different combinations.

Learning a model using an optimization algorithm can sometimes cause the results
to converge into local minima instead of the global minimum, and so we repeated the
process of learning and testing the accuracy of the learned models 10 times for each user-
side feature combination. Using this procedure, we also wanted to compare and evaluate if
results in model error were similar throughout several trials. The experiment baseline was

established as the approach in which plain matrix factorisation was used to estimate the

92. The Graphlab-Create machine learning library for Python is available at https://pypi.python.org/
pypi/GraphLab-Create
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recommendation accuracy of the learned models by just using the matrix of preferences
of listeners on artists, without any user-side feature combination. By using this approach,
we will able to compare if the use of any feature combination resulted in a decrease in
RMSE error, thus indicating an increase in the accuracy of the model.

Figure 5.10 summarises the results of all trials for all feature combinations. It shows all
combination means, ranked in decreasing order, with 95 percent CI error bars generated
from a bootstrap sample of 100 replications of the original sample. Feature combinations
are labelled according to the first letter of the word they represented. For example, user
preference data with age, gender, and exploratoryness is labelled u.a.g.¢; user data with
no user-side feature combinations is just labelled u.

It can be seen that u, the baseline without user-side features, achieved an average RMSE
value of .931 and exhibited a small variability, indicating that models in this setup were
stable across all trials. All feature combinations to the right of the u show a smaller RMSE
error, thus providing evidence for an increase in the learned accuracies of those models.

Several feature combinations achieved better accuracy than the baseline. In particular,
those combinations using just one of the demographic features: country (u.c), age (u.a),
or gender (u.g) achieved improvements of about seven, eight, and nine percent, respec-
tively. Also, the combinations of only demographic features (u.4.g.c) and all demographic
and profiling features (u.a.g.c.e.m) improved the baseline model by almost eight percent.
However, the feature combination that achieved the best result was all demographic fea-
tures together, plus the listener profiling feature of exploratoryness (u.a.g.c.e), exhibiting

an improvement of about 12 percent above the baseline. The small variability in the model
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error of this combination throughout all trials suggests that models based on this user-side
feature combination were quite stable. On the other hand, the combination of profiling
features (u.m.e) achieved the worst performance, with a 29 percent increase in error and
a large variability in the estimated model error throughout trials. The variability in the
results with these features suggests that the data topology using only profiling features is
complex, probably making the iterative process of optimization converge into non-optimal

local minima in the data.

5.2.2 Listening preferences in the contexts of entire week, weekdays only, and

weekends only

We hypothesised that if people listen to music differently during the weekdays than on
weekends, we could create more accurate models by using data from only the weekdays
or weekends, respectively. To test this hypothesis, we performed the same experimental
approach that we carried out with the full-week dataset. However, this time we created
two additional preference matrices of listeners for artists. The first additional matrix was
made by using only music logs submitted during weekdays, and the second matrix was
made by using only weekend music logs. Therefore, two extra sub-datasets were created
using the original full-week dataset: weekday and weekend datasets. We then followed the
same procedure described before: we split the data into training and testing datasets, we
learned models from the training dataset across all 32 combinations of user-side features,
and evaluated the accuracy of those models in the testing dataset. The number of obser-

vations, listeners, and density for each one the datasets are shown in Table 5.4.
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Table 5.4: Number of observations, listeners, artists, and density for each context-
based preference matrix.

Dataset ~ Observations Listeners Artists Density

Full-week 61M 59K 432K 0.237%
Weekdays 54M 59K 419K  0.216%
Weekends 35M 59K 379K  0.154%

As expected, the number of observations decreased in the datasets with partial data
in relation to the full-week dataset. The number of listeners remained constant, which
implies that most listeners in the dataset submitted music logs during weekdays as well
as on weekends. Interestingly, the total number of artists for which there were submitted
music logs on weekdays and weekends decreased between three and 12 percent in relation
to the full-week data, which implies that many artists in the dataset were only listened
during one of the two weekly periods. However, since there are many artists that have been
listened to just a few times (i.e., they lie in the long tail), this behaviour is expected. The
model accuracies obtained using music log data from the three aforementioned contexts
are summarised in Figure 5.11.

Many of the models made with weekly split listening data achieved better performance
than those using full-week data. For example, models learned with weekday as well as
weekend data using feature combinations u.a.e, u.g.c, and u.c.m achieved improvements
in accuracy of about seven percent in comparison to the model created with full-week
data. They also showed smaller variability meaning more stability in model estimation.

However, while the best RMSE value was obtained using the user-side feature combination
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Fig. 5.11: Root mean square error means and 95 percent CI bars for learnt models
with weekday, weekend, and full-week data. Only those feature combinations
with a better RMSE value than the baseline for full-week data are shown.

u.a.g.c.e with full-week data, the same feature combination achieved worse performances
by using listening data from weekdays and weekends only.

We have evaluated the impact of listeners” demographic and profiling features as well
as basic forms of listening context, namely weekday and weekend versus full-week listen-
ing, on recommendation accuracy. We described our requirements for a dataset of music

listening histories, explaining why none of the available datasets met our needs and how
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we ended up collecting our own data. We then formalised a set of listening behaviour
profiling features that account for how much people explore music (exploratoryness), and
how much they tend to listen to the same music as everyone else (mainstreamness). We
also explained how we split our dataset of listening histories into weekdays and weekend
listening histories to evaluate if having data from different sets of listening histories im-
proved the accuracy of recommendation. Finally, we described how we set experiments
that evaluated all combinations of user-side data features across different listening con-
texts. We found that the feature combination that achieved the smallest error was all
demographic features together plus listener’s exploratoryness, obtaining 12 percent im-
provement over the baseline of not using any user-side feature data. Although for some
feature combinations the use of split listening data improved the recommendation, the
best combination of features did benefit from having full-week data. The lack of improve-
ment in recommendation accuracy by means of using split-week data does not support
previous research that found significant difference in listening behaviour between work-
days and weekends using Twitter-based music listening data (Schedl 2013). The authors,
however, used an approach based on the correlation of Last.fm tags assigned to artists per
weekdays and weekends.

The results, in particular the many low RMSE values for several feature combinations
using split listening data, seem to indicate that these error values are close to the limit in
the minimum achievable error. This characteristic has already been described in the litera-
ture as a “magic barrier” in recommender systems design (Herlocker et al. 2004; Bellogin,

Said, and Vries 2014), referring to the upper bound in rating prediction accuracy due to
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inconsistencies in user’s ratings. However, since we are mapping the number of submitted
music listening logs into ratings, we do not see how these inconsistencies can explain this
barrier. In other words, our approach of using implicit, instead of explicit, feedback does
not leave much space for user inconsistency. Along these lines, it would be interesting to
perform a narrower grid search in order to investigate if we are actually hitting a wall in
accuracy, or if there is a better set of model parameters that allows us to create more stable
models and better performances throughout many trials. Finally, although these results
show an improvement in the accuracy of a recommendation model based on listeners’ past
listening histories, a user-centred study may be carried out in order to measure people’s
actual satisfaction with the learned model.

In this chapter we described a set of features we developed to describe aspects of peo-
ple’s music listening behaviour. We also correlated these characteristics with listeners’
self-declared demographic features and found some patterns that support and also that
contradict previous findings using user-driven studies. We finalised this chapter by eval-
uating the performance improvement of a music recommendation model by using the set

of user-centric features.
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Chapter 6

Conclusion

The main motivation for doing this research was to evaluate if the performance of a music
recommendation model could be improved by using user-centric features—demographic,
behavioural, and contextual characteristics of the listener. In order to perform this evalu-
ation, we surveyed previous research on music preference and listening behaviour using
ethnographic methods (i.e., user-driven approaches), and we also reviewed the research
and outcome of studies based on the analysis of large amounts of data collected from user
interaction with music services (i.e., data-driven approaches). The results of those studies
showed that the number of interactions between listeners, their characteristics (i.e., their
demographic, profiling, and contextual features), and their music preference seems to be
quite large. Hence, we decided to carry out a data-centric study because we estimated that

a very large dataset may provide enough data to address the curse of dimensionality of
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the highly dimensional space of music preference, thus enabling the investigation of the
large number of interactions.

Subsequently, we reviewed currently available datasets of music listening preference
data, and found that no single dataset contained both the listeners” demographic data and
alarge amount of non-aggregated listening logs for a large number of listeners. As a result,
we decided to collect our own dataset, the Music Listening Histories Dataset (MLHD),
which we design to address the specific characteristics and variables that we wanted to
evaluate.

We then reviewed how the general recommendation problem is formalised, how the
main techniques have been established by researchers in the literature, and how they have
been implemented on current, commercial recommendation applications. We also ex-
amined some of the common metrics that are used to evaluate the performance of these
systems. Later, we described why we chose the specific source of data for our dataset and
how we collected and preprocessed the data. We also provided details about the demo-
graphic characteristics of listeners within the dataset, and about the different methods we
compared in order to overcome the problem of having music listening histories misaligned
in time. We continued the dissertation by describing the rationale behind a set of custom
teatures designed to profile listeners by some of their listening characteristics.

Finally, we designed and implemented an experiment where we compared the perfor-
mance of several recommendation models learned from past listeners’ implicit preferences

for artists, extracted from music logs in the MLHD.
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Now we will present some thoughts and conclusions in regard to the MLHD dataset, to
the set of user-centric features we designed and implemented, in regard to the concept of
optimisation and performance improvement, and on music recommendation and the mu-
sic industry. We will finalise this chapter by suggesting some future avenues for research

based on the findings from this dissertation.

6.1 About the MLHD dataset

The full music listening histories compiled in the MLHD dataset offer a large amount of in-
formation. On top of having a very fine time granularity—providing second-accurate data
about the music item played back in a media player by a specific user—their aggregation
into different spans of time provide clues about the characteristics of listeners’ listening
behaviour and their listening trends over time. However, from the data within each of the
logs, it is not possible to know if the listener was actually listening to a track, or if anyone
was paying attention to the music. Other methods of collecting listening data, such as ex-
perience sampling method (ESM), may provide more accurate information in this regard,
however they are much less granular (they usually collect, at the most, a few logs per day).
Therefore, inferring trends and making conclusions about listening behaviour using the
MLHD dataset should take into account this degree of uncertainty.

Another advantage of the MLHD dataset for doing listening behavioural research is
that it is based on MusicBrainz identifiers (MBID). MBIDs ensure unique, universal iden-

tifiers linked to the MusicBrainz core music entities (i.e., artist, release, recording, work,
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label, and release-group), which are used by all services of the MetaBrainz Foundation
ecosystem (i.e., MusicBrainz, AcousticBrainz, ListenBrainz, and CritiqueBrainz). MBIDs
are also used by other services that provide additional data accessible through these IDs
(e.g., Last.fm provides folksonomy tags for artists, albums, and tracks, and DBPedia links
Wikipedia open music data to MusicBrainz by means of MBIDs). Therefore, each music
log within a music listening history can be linked individually to resources from these
other repositories, thus allowing the aggregation of data of different characteristics into
a larger dataset. Such aggregations may be used, for example, to study the patterns or
correlations of temporal aggregations of music listening histories with acoustic features
collected from AcousticBrainz.

Each music log within the MLHD has a UNIX time stamp regardless of the geograph-
ical location or zone where it was generated. This means that all logs have the same fixed
point of reference. We designed an experiment that compared a few approaches for nor-
malising these listening histories in time, and found the best approach among these op-
tions.

The MLHD may still be expanded by collecting more listening data. This is a good
idea in the eventual case that Last.fm stops providing this data or a full shutdown of the
service. The data collected may be added to the ListenBrainz project, which is an initiative
of the MetaBrainz Foundation with the goal of allowing listeners to preserve their existing
music listening histories in the Last.fm.

Although we aimed to collect data from a large group of listeners of varied demographics—

thus helping to overcome biases from previous user-driven and data-driven research—the
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listening data we collected is also biased towards late adolescent and early adult listeners.
We think, however, that this bias is different from most user-driven studies. As we saw
in Chapter 2, many of the sampled populations in those studies were first- or second-
year undergraduate students for whom participating in the study was a requisite part of
a course. In our case, however, we think that this age bias is due to the higher proclivity
of this age group towards music listening mediated by portable devices and computers.
Since this group will be older in a few years from now, and younger generations are al-
ready born into a digital era, we suppose that this trend may be different in a few years,
and the large skew towards listeners in their early twenties may be less significant. In any
case, the MLHD has a much larger amount of data than any of the studies summarised
in Fig. 2.1, and that any of the datasets reviewed in Section 2.6, and so it allows for the
undertaking of studies with balanced populations of listeners of each age. Therefore, the
MLHD is valuable even with the overall age distribution bias we already mentioned.

In terms of gender, the percentage of listeners self-declared as male was more than dou-
ble that of females. Since the data from the dataset does not come only from the Last.fm
service, but from a large number of media players, it is not possible to say that the Last.fm
service is biased towards male listeners. However, the data Last.fm collects—or at least the
part represented in the MLHD—is biased towards male listeners. However, the dataset is
large enough to enable analyses with gender-balanced groups of listeners.

The world coverage by country in the MLHD is also biased. The dataset has listen-
ing data for listeners from 237 different countries, but only 19 countries have at least one

percent of the total number of listening logs. There are large geographical zones that are
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underrepresented, such as Africa, China, and India. Again, since the number of music
listening histories is large, it is possible to create balanced group of listening histories for
listeners from 53 countries.

Allin all, the biases in the demographic characteristics of listeners in the MLHD imply
that insights extracted from the dataset must consider these biases, and so the conclusions
should be worded carefully.

We also acknowledge that one limitation of doing a data-centric study using data col-
lected from listening interactions with media players and music streaming services is that
it is hard to know if the listeners actually chose the music item they were exposed to, or
it was a shuffle engine or the recommendation engine of a music streaming service that
suggested the music item. As a result, it is hard to say if a specific music log actually
reflected a listener’s music preference, or if it registered what was recommended by ser-
vice’s recommendation or shuffle algorithm. However, Wikstrém (2013) pointed out that
ubiquitous access to music services with recommendation algorithms is how the majority
of people are actually experiencing music in the new music economy. Hence, the study of
music preference nowadays cannot separate self-chosen music from algorithmically gen-
erated playlists and suggestions. These two approaches are happening at the same time,
and so both have to be considered in order to get insights about listening behaviours and
music preferences.

In terms of possible uses of the dataset, data aggregations extracted from the MLHD
have already been used in combination with other sources of data. In particular, Oramas,

Ostuni, and Vigliensoni (2016) used it as part of the datasets for “Sound and music rec-
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ommendation with knowledge graphs.”®

In these datasets, a subset of music listening
histories from the MLHD were aggregated into playcounts and used in combination with
additional song data collected from Songfacts.com to enable the study of hybrid music

recommendation models using additional user-provided factual information describing

songs and artists (Oramas et al. 2016).

6.2 On user-centric features

In this research we have shown how the technique of Factorization Machines proposed
by Rendle (2010) can be used within the context of music recommendation. This tech-
nique extends plain matrix factorization by enabling the use of additional features from
the user- or the item-side within a single framework. We took advantage of this charac-
teristic and successfully used it in a task of learning lower-dimensional matrices from a
matrix of listeners” implicit artist preferences, and a set of demographic, profiling, and
contextual features extracted from the listeners” provided and aggregated data.

A large number of the users within our dataset provided demographic information in
the form of age, gender, and country. We found that using any of these characteristics in
isolation consistently improved the accuracy of a recommendation model, outperforming
a baseline defined by only using listeners’ past implicit preferences without any additional
user-centric data. We also designed and computed a set of features to profile listeners by

their listening behaviour, and ended up using two of these within our models of recom-

93. The Sound and music recommendation with knowledge graphs datasets are available at http://
repositori.upf.edu/handle/10230/274957show=full
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mendation: exploratoryness and mainstreamness. Using these features in isolation did
not improve the recommendation accuracy of the models. However, when using them
in combination with the demographic features, the accuracy of the models improved. In
particular, the best and most stable model was achieved by using the features of age, gen-
der, country, and exploratoryness. This combination exhibited an improvement in perfor-
mance of 12 percent above the baseline.

These results show that there seems to be some information encoded within these fea-
tures, and in their interactions, that helps the optimisation algorithm to learn an accurate
model from the data. When this model is evaluated in unseen data, it is able to replicate
the implicit preferences with a smaller error, hence with a better performance.

We conclude that there are substantial differences in the demographic backgrounds of
listeners that affect their music preferences, at least according to the implicit preferences
extracted from listeners of the MLHD and the additional demographic information they
provided. Exploratoryness, the profiling feature that gave a boost in the performance of
the recommendation model, also indicates that some people are more inclined than others
to listen over and over to the same music items. The Factorization Machines algorithm
seems to take advantage of this information and converges to a better and more stable
model.

In terms of context, we only tried a simple approach to different listening situations
in which we used music listening histories data in regard to the weekdays, weekends,
and full-week. However, even with this candid approach we did not obtain a consistent

improvement in the accuracy of the models. On the contrary, many of the feature com-
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bination models were less stable, showing varying levels of accuracy for different time
periods. The increase in variability of the models’ error may have occurred because of the
increase in the sparsity of the data, especially in the case of weekends-only data, which
had about 30 percent fewer music logs than the full-week data.

It is important to note that we only estimated models from the listeners” implicit prefer-
ences for artists, but not for albums or tracks. The reason for this decision was mainly
to start with a problem of a lower complexity than predicting preferences on albums or
tracks. Since the number of artists in the dataset is one order of magnitude smaller than
the number of tracks, the density of observations of the matrix of preferences on artists
is one order of magnitude larger than the one for tracks. The number of albums, on the
other hand, is almost double the number of artists. Therefore, learning accurate and stable
models for predicting preference on tracks or albums may need even more data, or to
be addressed in a different way. We suggest that this may be one of the reasons why
commercial music recommendation systems usually suggest, for a given recommended

artist, a set of songs or albums ranked by popularity.

6.3 On performance improvement and optimisation

We have seen that the performance of a music recommendation model of artists can be
improved by incorporating a set of user-centric features in the model framework. How-
ever, we cannot know if this improvement will be actually perceived, or how it will be

perceived, by users of the music service.
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From the perspective of the service, they use data from the listeners themselves, and
from all available interactions between listeners and artists, to create an artist recommen-
dation model. This model is designed to predict the degree of preference of users of the
system, as a whole, on yet-unknown artists. A successful model will reduce the error of
the predictions—improving the accuracy and performance—but averaged throughout all
listeners. Hence, some of the listeners may be greatly satisfied, but others may be not.

Some listeners have more market value than others for music streaming services (The
Echo Nest 2013). Therefore, in terms of economical optimisation, when developing a com-
mercial music recommendation system it may be beneficial to consider the value of each
listener within the recommendation framework. This characteristic would allow for the
creation of recommendation models that would satisfy a service’s existing clients. Thus,
it would prevent their abandonment of the service as well as satisfying a service’s novel
users, thus building new clientele. It may be also useful to reduce the noise from the large
amount of users that rarely interact with a given music service.

From the point of view of the listeners, they provide the music streaming services
with constant feedback about their music preferences by several means: assigning thumbs
up/down to specific music items, starring items for favouriting them, listening to full
tracks instead of skipping them, sharing them with other listeners directly or through
posting them in social media, or by simply creating playlists, among others. Although
music streaming services use these signals to know if listeners actually like or dislike a
given music item, the overall metrics used by media streaming services to gauge the de-

gree of satisfaction of users in relation to the service usually reduce all the implicit and
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explicit feedback given by users to three metrics: (i) the rate of users’ subscription cancel-
lation , (ii) the acquisition rate of new users, and (iii) the rate at which former users rejoin
(Gomez-Uribe and Hunt 2015). In this sense, streaming services do not really take into
account individual preferences or the degree of satisfaction of individual users, but they
see their total audience as whole. For the streaming services, a 12 percent model accuracy
improvement may imply better indicators in all or some of their three main metrics, but
this improvement may not be equally perceived by all listeners.

In this dissertation we have investigated about the use of listeners” demographic, profil-
ing, and contextual signals to optimise a model for artist recommendation, thus reducing
the error of the model and increasing its accuracy. We have seen that the most commonly
implemented and successful approach for recommendation is collaborative filtering (CF).
However, CF-based recommendation approaches are biased toward recommending the
more popular items. Since these systems will recommend popular items, listeners will be
exposed and listen to these popular items. Then, CF systems will learn from listeners’ past
preferences that they have been listening more to these popular items than to less popular
ones, and so will end up recommending them again, and again. As a result, it may be
pertinent to ask ourselves what is actually being optimised, how we are optimising it, and
for whom we are actually optimising for.

In terms of “the what,” researchers in recommendation are actually trying to come up
with a mathematical model that approximates, as much as possible, a matrix of prefer-
ences of users on items. To achieve this, they use iterative methods that converge to a

solution or create heuristic strategies to approximate a solution. However, when using
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iterative methods, the approaches and the models are actually agnostic to the items actu-
ally being recommended. We think it may be important to incorporate domain-specific
signals into the optimisation process, or into the heuristic strategies, since these signals
can provide extra information about the listeners or the music items that may improve the
recommendation.

When using past music listening histories for creating recommendation models, we are
actually analysing past behaviour in order to try to predict future behaviour. Although
this may seem true for some people, it may not be true for the population as a whole. Also,
this approach of using past preferences to predict future ones is based on the idea that the
most habitual and consistent behaviours are more predictive than the infrequent ones.
However, people change over time and sometimes they may like to be exposed to events
or items that may have been triggered by unexpected situations or actions. As a result,
in regard to “how” we are trying to optimise the data, we think that this approach may
bias the predictions towards certain results and items based mostly on the most frequent
behaviours.

For whom we are optimising? Not for all listeners as a whole, and certainly not for
the musicians. The music industry has changed in many ways since its downfall and
comeback but the payout rates to musicians are smaller than before (Ball 2015). In fact,
according to IFPI (2016), payments to artists are proportionally minuscule in comparison
to the massive increase in consumption in music streaming services. Also, not every artist,
album, or track has been listened by people in these services. The music streaming service

Spotity released information acknowledging that 20 percent of the total number of songs
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in their database never have been streamed (Planas Rego 2013). Hence, since CF-based
systems are inherently biased towards the most popular music items, the recommendation
system will end up favouring the small set of the most popular items. Therefore, it seems
that music services are actually optimising for the most popular musicians.

We already discussed that the individual listener is not the final target of the optimi-
sation. The final target of the optimisation seems to be the overall set of users of a system,
but as a whole. In this sense, the recommendation itself is at the core of these systems
but it is not the most important feature, at least at the user level. Finally, as there seems
to be many media streaming services, but in fact we live in an era of oligopoly. With the
market dominated by just a few participants, listeners only have a handful of services to
try and compare. Therefore, it is possible that people end up naturalising the recommen-
dations provided by a few services, and the way these are provided, perhaps adopting

and incorporating them as if they were the “right ones.”

6.4 On music recommendation and the music industry

As reviewed in Chapter 2, general recommendation systems are usually based on infor-
mation describing inner characteristics of the items (i.e., content-based recommendation),
on the correlation of people’s past preferences on items (i.e., collaborative filtering), or a
combination of these methods. These approaches have been implemented and tested in
the music domain with varying degrees of success since the origin of automated recom-

mendation. Here are three suggestions that come from good practices from other domains
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that may provide better and more enjoyable recommendations, thus helping to improve
the current state of music recommendation systems.

First, instead of just providing a single musical item, or song, it would be worth pre-
senting the user with clear, alternative paths of recommendation based on different ap-
proaches. By these means, the service would allow listeners to be in charge of choosing
the recommendation path they want to take in order to create their own listening session,
or to fulfil their mood or enhance an activity. This approach would be similar to the many
routes of discovering goods that Amazon provides to its users. This technique also has
the additional advantage of providing the service with means of tracking over time the
individual listeners” recommendation chosen paths, thus making it possible to evaluate
the different recommendation approaches.

Second, user profiles should be augmented. As basic CF-based recommendation sys-
tems rely only on previous preferences, many music streaming services only ask for a
couple of preferred artists upon user’s registration, and then they start learning from the
listeners” implicit and explicit preferences over time. However, a much stronger listener
description based on demographic, contextual, and behavioural data, may help to im-
prove the recommendation from the beginning, even without previous implicit or explicit
preference data.

Third, an effort to make more persuasive music recommendation systems should be
encouraged. Most current systems just work as a “black box,” where the listener does
not know what kind of process or method was used to create a recommendation. Ross

(2008) pointed out that listeners want to be recommended, but also some of them may
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want to know why a specific song or artist was recommended. Therefore, listeners may
benefit of music services with a more transparent automated recommendation and playlist
creation system. Some listeners may also benefit of access to complete metadata about the
recommended artists or songs.

The aforementioned best practices from other domains may be implemented in music
recommendation systems in order to provide recommendations that may be perceived as
more meaningful. However, the individual listener’s perception about music recommen-
dation still seems to not be very important for music streaming services. In fact, since
most listeners have freemium accounts on commercial music streaming services, one of
the biggest efforts by these companies is to try to find what types of ads listeners are more
likely to respond to (Prey 2016).

Finally, some thoughts about the music industry as a whole in regard to music stream-
ing services and their recommendation systems. It is commonly heard nowadays that rev-
enues coming from digital music distribution finally overtook those from physical copies,
that music streaming is the fastest growing sector of the industry (IFPI 2015), that rev-
enues from streaming are steeply increasing the overall income of the business, and that
these companies are saving the music industry (IFPI2016). The irony, however, is that the
music business is not merely growing by selling music, but by monetising the everyday
digital traces of billions of listeners. The profit in music streaming services comes from
listeners in their premium paid option, as well as from the many users in the freemium
tier that these services monetise. Since the number of listeners in the latter option is much

larger than in the former, the growth of these services depends largely on listeners in the
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freemium tier (Mulligan 2013). Hence, music streaming services are trying to understand
the psychographic characteristics, music listening behaviour, and the musical character-
istics of the listeners in the freemium version. This estimation would allow the music
services to predict the specific future value of each listener and to monetise this group
via targeted advertising (The Echo Nest 2013). As a result, an increasing part the growth
and healthiness of the music industry is based on accurate advertisement targeting for
listeners.

Since music has previously been a major force with a strong drive for social change, it is
particularly unsettling to realise how the music industry and the large media corporations
are now using their whole music catalogue as a background for mapping connections
between people and advertisements. It remains to be seen how the music, the musicians,
and the audience might manage to reverse this situation in order to give the music the

place it has had for the last century.

6.5 Future work

In this dissertation we have investigated the use of user-centric features for the perfor-
mance improvement of an artist music recommendation model. Although our approach
created a substantial improvement in accuracy, there are many potential research paths
that may be followed in order to try different techniques to improve the performance even

more, or in a different way. We will now itemise and describe each of these research paths.
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User-centric features The listening profiling features we designed are static features. How-
ever, as people’s listening behaviour and music preference seem to change over time,
the set of user-centric features may be dynamic, incorporating this variation over

time.

For example, exploratoryness may change depending upon the activities we are do-
ing, or who we are with. Hence, more specific recommendations may benefit of
knowing the user’s desire to explore music for specific moments. On the other hand,
since mainstreamness depends upon the overall ranking of music items and indi-
vidual rankings, these rankings should be also dynamic, in order to compute the

time-varying correlation between them.

Moreover, in order to better characterise individuals, we should constantly keep in-
vestigating and designing new listening behavioural features. For example, a feature
such as togetherness may be useful to identify the extent that listeners belonging to

the same geographical zone listen to the same music entities.

Recommendation A next iteration of the project may evaluate the performance of using
user-centric features with other music items such as albums and tracks. However,
since the data is even more sparse than for recommending artists, this may be a
harder problem. This issue may be solved by collecting more data and making use

of another map reduce technique on a larger cluster.

Since all the music listening histories are now properly aligned in time, it would

be worth evaluating different temporal contexts, such as different times of the day.
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However, instead of computing and comparing the performance of separated mod-
els (i.e., one per context), it would be ideal to have all information within a single
framework. This would allow for all data to be entered and processed in a single

model, thus avoiding training models from data with different sparsity.

Technology and techniques In order to process an even larger dataset, this project may
benefit from porting the dataset and all computations into Spark, and from using the
MLIib machine learning library (Meng et al. 2016). This technology was not available
in ComputeCanada’s high-performance computing resources at the time of the data
processing and analysis presented in this dissertation. Faster calculations on even
larger datasets may be implemented by using these technologies in scalable cloud

computing services.

When we analysed the performance improvement of an artist recommendation model,
we created a subset with a random 10 percent of listeners from the whole dataset,
and then we split this subset into training and testing datasets. We used these two
subsets in order to learn and evaluate models with different combinations of user-
centric features. For each feature combination we repeated the training and evalua-
tion processes 10 times in order to assess how stable the trained models performed
on a novel set of data. However, in order to evaluate the topology of the data for the
whole dataset, a k-fold cross-validation process may be implemented. For example,
a two-step 10-fold cross-validation may iterate over subsets of 10 percent of listen-

ers, and within each of these subsets, another 10-fold cross-validation process would
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evaluate the accuracy of the models in the testing subsets. As a result, the computa-
tional time of this approach would be roughly 10 times longer than the time we took
for the original experiment. The big advantage of doing this is that we would be us-
ing the entirety of the data at hand in order to learn and evaluate recommendation

models.

We followed previous research on the Netflix dataset and performed a grid search
over a large number of latent factors. However, a better approach may be to start
doing a broad grid search for the hyper-parameters optimisation, and then to per-
form a much narrower one in zones exhibiting a better accuracy until finding the
sweet-spot. An alternative approach would be to use a random search for finding
the best set of hyper-parameters, which has been reported to be more efficient than

performing a grid or manual search (Bergstra and Bengio 2012).

MLHD Dataset We will study how to make the MLHD openly available to the music re-
search community, considering the Terms of Service of Last.fm and the Last.fm API.
This path of research should result in a full dataset with anonymised usernames,
released for non-commercial, academic research. Ideally, all the MusicBrainz iden-
tifiers in the dataset should be linked to the latest redirected identifiers in the Mu-
sicBrainz database in order to have the most up-to-date identifiers. A dataset of lis-
tening histories with the size and scope of the MLHD does not have any precedents
in the study of listening behaviour and music preference, and should be of great

interest to the music research community.
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