
On a class of estimators of the location parameter 

based on a weighted sum of the observations 

by 

Louis-Paul Rivest 



0 

c 

On a class of estimators of the location parameter 

based on a weighted sum of the observations 

Louis-Paul Rivest 

A thesis submitted to the Faculty of Graduate Studies and Research in 

partial fulfillment of the requirements for the degree of Doctor of 

Philosophy. 

Department of Mathematics 

McGill University 

Montreal July 1978 



0 

ii 

On a class of estimators of the location parameter 

based on a weighted sum of the observations 

by 

Louis-Paul Rivest 

ABSTRACT 

The asymptotic properties of a new class of estimators of the 

location parameter are investigated. Each estimator is based on a 

weighted sum of the observations. An observation is weighted according 

to its magnitude (as for an M estimator) and according to its rank (as 

for an L estimator). 

These estimators induce a new class of location parameters which is 

studied as a set of functionals defined from a space of distribution 

functions into R. 

Finally,a new ordering of distribution functions is introduced. 

Some basic properties are derived using a generalized· concept of unimodality. 
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On a class of estimators of the location parameter 

based on a weighted sum of the observations 

by 

Louis-Paul Rivest 

RESUME 

Dans cette these on etudie une nouvelle classe d'estimateurs 

du parametre de location. Chaque estimateur est base sur une somme 

ponderee des observations. La ponderation de chaque observation depend 

de 1'ordre de grandeur de cette observation (comme pour un M estimateur) 

et de son rang (comme pour un L estimateur). 

Ces estimateurs definissent une nouvelle classe de caracteristiques 

de location. On etudie les differentes proprietes de ces caracteristiques 

en les considerant comme des fonctionnelles definies d'un ensemble de 

fonctions de distribution dans R. 

Finalement, on presente une nouvelle relation d'ordre pour les 

fonctions de distribution. On prouve certaines proprietes fondamentales 

de cette relation en utilisant un concept d'unimodalite generalise. 
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Chapter I 

Estimation of the location parameter, 

an historical survey 

In this thesis, the following problem is investigated: let 

x
1

, x2 , ••• ,Xn be a random sample from a distribution F. Suppose 

F(x) = G(x-8 ) , the parameter 8 is to be estimated. 
X X 

Section I.l The mean : statistical and intuitive content 

Long before there was any statistical concern on this subject, the 

mean was cotllmonly used. Even now, despite the "a la mode" emphasis on 

robustness, it still retains its supremacy among all measures of location. 

As a consequence, the location parameter and its estimator, the mean, 

have usually been singled out. This is exemplified by the early robust 

methods implemented to decrease the influence of extreme observations by 

rejection of outliers. In this approach, one computes the "mean" without 

taking the outliers into consideration. 

For the non statistician, the mean is the location parameter. In 

day to day life, there are many examples of this identification, for 

instance, the final standing of a student is obtained by averaging his 

marks, the average production of goals by a hockey player is a measure of 

his ability. 

One may tentatively explain such a popularity using the following 

arguments: the mean is an easily computable statistic and it has an 

intuitive content which. is lacking to its modern challengers; it measures 

the average performance of the observed random phenomenon. The mean 
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carries intuitive meaning while most "robust" estimators do not. 

The statistical model which legitimates this approach is well known: 

assume that G is the standard normal distribution~ then the mean is the 

minimum variance unbiased estimator. 

Section I.2 Early methods 

This section is taken out of a paper by Stigler (1973) about the 

history of robust estimation. 

Before the end of the last century, statistics was not a science in its 

own right. The problem of estimating location was left to the experimenter. 

In 1763~ James Short (an English astronomer) had estimated the sun's 

parallax using the average of 3 means (the standard one and 2 trimmed 

versions). 

In 1852, Benjamin Pierce (a mathematician astronomer) introduced a 

test to find outliers. He estimated the location using the mean of the 

restricted sample. 

The method of least squares was introduced by Gauss and Legendre at 

the beginning of the nineteenth century. By the end of that century, 

weighted least squares estimates were commonly used. The weight of each 

observation depended upon the experimenter's estimate of the probable 

error. 

The median and other simple functionsof order statistics were intro-

duced by Laplace and Gauss in the 1810's. 

0 
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Section !.3 M~dern ~orametr1c estimation 

Traditionally, the estimation of the location parameter has been 

linked to the estimation of the scale parameter. The problem investigated 

was the following: x
1

, x2, ••• ,Xn is a random sample from a distribution F, 

where F(x) = G((x-e )/cr ) in which G is known, e and cr , the location 
X X X X 

and scale parameter respectively are to be estimated. 

The actual approach is however different. Nowadays, when estimating 

location one assumes that the scale is known. If, however, it is not 

known, and if it is needed for the estimation, one uses a simple estimator, 

such as, for example, the interquartile range. 

The results discussed in the later part of this section concern only 

the location problem, they really are special cases of the location-scale 

results originally found. 

Assume that cr =1 , that G is known and has an absolutely continuous 
X 

density. The maximum likelihood method, foreshadowed by Gauss (and much 

lately by Edgeworth), estimates e using the value of e maximizing: 
X 

where g is the density of G. e is a solution of: 
X 

(1.1) 

where ~(x) =- g'(x)/g(x) • 

This approach requires the use of numerical analysis techniques to 

solve (Ll). 
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In order to find suitable and easily computable estimators, Lloyd 

(1952) used the least squares method in the following way: 

Let X(l) < X(2) < •• < X(n) be the order statistics from the random 

sample under consideration. 

Let U(k) = X(k)- ex. Note that the U(k)'s are the order statistics 

from a random sample with known distribution G • One computes 

Cov (U(k)' U(~)) = vkt k,t=1,2, ••. ,n. 

Let ~be the vector of the ak's, V be the nxn matrix of the vk1 's and 

!()be the vector of the X(i)'s. 

E(~( )-~) = ~ ex where= is an nxl vector of l's and 

Cov (!( )-a) = V • 

~ 

The least squares estimator of e , e is the one minimizing: 
X X 

(~( ) - a - e e) 'V-l (X )- a - e e) 
-( 

Using the Gauss-Markov theorem, this estimator is the best linear 

unbiased estimator of e • One computes: 
X 

e,. ( 'v-1 !)-1 e' v-1 ( ) x=! !()-~ 

and 

" -1 -1 V(e ) = (!' V !) . 
X 

Much time has been spent computing numerically the v1k's and ak's 

for well known distributions. 

Jung (1958) and Bennett (1952) have studied the asymptotic 
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approximation of this estimator which had been introduced by Daniel! (1920). 
A 

They estimatede using the L estimator e 
X X 

"" 1 n 
ex= n i~l J(i/(n+l)) x(i) 

where J(t) is a function defined in [0~1]. 

If J satisfies 

J(G(x)) = (d~- g' (x)/g(x))/f:~(g'(y)) 2 (g(y))-ldy, 

... 
they showed that e is an efficient estimator. 

X 

Estimators based on ranks were introduced by Hodges and Lehmann 

(1963)~ we shall not here consider such estimators. 

Section 1.4 Huber's contribution and the actual context 

Tukey (1960) initiated the modern preoccupation on robustness. 

Tukey posed the following questinn: "In parametric estimation~ the 

underlying distribution is assumed a priori to be G let say~ then 
0 

using the statistical theory an optimal estimator for e can be found; 
X 

are the optimality properties preserved if G , the true underlying dis-

tribution, differs from G ?" 
. 0 

The answer to this question is no: for example~ the mean of a 

random sample from a contaminated normal behaves very poorly. 

Huber (1964) made the first important contribution to the theory of 

robust estimation of a location parameter. First he defined the M 

estimator of a location parameter in the following way: 
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let p be a given convex function having derivative ~ • Then the 

M estimator of a is obtained by minimizing 
X 

hence, e is a solution of 
X 

n 
z: ~(X -e) = o . i=l i 

2 If p(x)=x , the M estimator is the leastsquares estimator. This estimator 

is the analogue of the maximum likelihood estimator, instead of maximizing 

the likelihood function, one is maximizing 

n -p(X-a) 
i!h e i . 

Huber then investigated the following problem: if G is unknown but 

lies in a given "neighborhood" of a known distribution G , say; 
0 

under certain regularity conditions he found a minimax estimator for a 
X 

i.e. an estimator minimizing, in this neighborhood of G , the maximum of 
0 

the "error". In the asymptotic theory of the minimax estimation, the 

variance is used to measure the error. The minimax M estimator is based 

upon 

(= 
k x~x0 

~(x) = 
so<x> 

xo<x~xl g0(x) 

k x1<x 

where x0 and x1 are the end points of the interval {x: lg'(x)/g(x)l<k} • 

Once this work was completed, the following questions arose: "How 

can order statistics be used in robust estimation?", "Are there L 



-7-

estimators asymptotic'llly analogous to the minimax M estimator?" "What 

0 is the asymptotic relation between M and L estimators?" 

Some of these questions were answered by Jaeckel (1971). Jaeckel 

found a minimax L estimator for symmetric g0 , if: 

0 

I [~-dx 

0 

x<-M 

M<x , 

the L estimator based on J is minimax for the given neighborhood of G0 • 

Note that this L estimator is a trimmed version of the efficient L 

estimator for G0 found by Bennett (1952) and Jung (1958). 

Besides these questions, the Princeton Robustness study (1972) high-

lights the fact that minimax M estimators are satisfactory if the con-

tamination of the known distribution was small. In a highly contaminated 

situation these estimators break down. 

To cope with this difficulty highly robust M estimators were intro-

duced. 

The content of this thesis lies in the continuation of these results. 

Some pending problems will be discussed in the second chapter: the 

asymptotic relation between M and L estimators, the L counter part of 

highly robust M estimator will be investigated and a formal theory of the 

highly robust M estimator will be developed. 

c 
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Chapter II 

Asymptotic properties of a new estimator 

of the location parameter 

Section II.l Two known estimators of the location parameter 

The problem under investigation is the following: 

Let G be a distribution function and 

G
8 

= {G(x-e) : e £ R} • 

A random variable X~ having distribution F in G
8 

is sampled and we wish 

to estimate e such that 
X 

F(x) = G(x-e ) 
X 

Let x1, ••• ,Xn be a random sample of X and X(l)'···,X(n) the corres­

ponding ordered sample. 

Definition II.l Estimator based on linear combination of ordered statistics 

or L estimator 

Let J(t) be an integrable function on [0,1] such that /~ J(t)dt = 1 • 

Then 

is an L estimator. 

Definition II.2 Huber's M estimator 

Let ~(x) be an increasing function such that ~(x) is positive 

(negative) for largepositive (negative) values of x. The M estimator T 
n 

is defined as a solution of 
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Definition II.3 

Let F(x) be a distribution function and define 

-1 F (t) = inf {x : F(x) ~ t} 

Theorem II.l 

If (i) J(t) is a bounded variation function in [0,1] and J(t) = 0 

t4 [o,l-o] where 1/2>o>O, 

(ii) F-1 (t) and J(t) are not discontinuous together. 

the estimator 

is such that 

where (i) L(X) is the distribution of X 

(ii) 1J = I~ J(t) F-l(t)dt 

(iii) cl = I~ [A(t) ] 2dt - [/~A(t)dt] 2 

and d A(t) = J(t) d F-1 (t) • 

Proof: See Huber (1969) page 129. 

Theorem II.2 (Huber (1969) p. 67) 

"" If A(~) = /_""w(x-~)dF(x) is such that 

(i) A(~0> = o 

(ii) A(~) is continuous monotone in a neighborhood of ~O , 

(iii) 
(lQ 2 
/_m(w(x-~)) dF(x)is finite and continuous at ~O , 

A 

the estimator T solution of: 
n 
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is such that 

1) where 2 
C1 = 1 

2) if furthermore A is differentiable at ~O and if 

A' (E;
0

) e:: (-oo,O) 

L(n
112 

(Tn-E;0))n + !N(O,o
2

) where o
2 = o~/(A'(E;0>> 2 

Section II.2 Introduction of Gaussian processes 

This section contains a survey of known results about Gaussian 

processes which will be used in section II.4. 

Lemma II.l 

If U is a random variable with a U [O,l] distribution, F-1(u) 

is a random variable having distribution F • 

Proof: Clear 

Therefore if X is a random variable having distribution F, X and 

F-l(U) , where U is U [0,1] , are identically distributed. Hence an 

ordered sample from X, X(l)'••·•X(n) , can be written as 

-1 -1 
F (U(l)), ••• ,F (U(n)) where U(l)'···,U(n) is an ordered sample from U • 

Let U(n)(t) be a stochastic process defined in the following way: 

u(n)(t} = u 
(i) 

i 
t = n+l i=O,l, ••• ,n+l 

u<n){t) =the linear interpolation between the points 

( i ) d {i+l ) 
n+l , u(i) an n+l ' u(i+l) ( i i+l) 

t e: n+l ' n+l i=O,l, ••• ,n 
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where U(O) = 1 , U(n+l) = 1 

Definition 11.4 Gaussian process 

A stochastic process with continuous path Z(t) is Gaussian if all the 

vectors (Z(t
1
), .•• ,Z(tm)} where m is finite and tie[O,l] are normally 

distributed. The distribution of such a process is specified by E{Z(t}) 

for all t e[O,l] and cov (Z(t),Z(s}) for s and t in the unit square. 

A Gaussian process satisfying: 

(i} E(Z(t}) = 0 t E:[O,l] , 

(ii) Cov (Z(t),Z(s)} = min (s,t)-st 

for s and t in [0,1] is called a Brownian Bridge. 

Definition II.S Weak convergence of a sequence of stochastic processes 

Let {Y(n)(t)}:=l be a sequence of processes taking values in C[O,l], 

the space of continuous functions in [0,-1] with the sup norm, Y(n) (t) is 

said to converge weakly to Y(t} if for any continuous functional q 

defined on C[O,l]: 

L(q(Y(n) (.))) n L(q(Y(.))} • 
+eo 

Theorem II.3 

that: 

The sequence of processes {Z(n)(t)}co previously defined is such 
n=l 

Z(n)(t) Z(t) weakly, n+co 

where Z(t) is the Brownian Bridge. 

Proof: Huber (1969) p. 115. 
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Theorem II.4 

Given e:>O , there exist M in R , n in N such that 
£ £ 

n > n 
£ 

1 
+ sup n /2lu i I <M 

i=l, ••• ,n (i) - n+l e: 

except on a set of probability e: • 

The proof of this theorem is an easy consequence of theorem II.3. 

B'jek and Sid'k (1967) p. 174-184 and Billingsley (1968) p. 102-108 

provide some explanations on this topic. 

Lenuna II.2 

Let G(t) be a bounded variation function in [0,1] then !~ Z(t)dG(t) 

is distributed 2 N(O,s ) , where 

2 1 2 1 2 
s = 10 [G(t)l dt- [!0 G(t)dt] 

Proof: see Miller (1964) p. 103-104. 

Section 11.3 L-M estimator ofthe location parameter 

Definition II.6 L-M estimator of the l~~ation parameter 

Let: (i) J(t) be a positive bounded variation function defined on 

[0,1] such that !~ J(t) dt > 0 , 

(ii) ~(x) be an increasing left continuous function which is 

positive (negative) for large positive (negative) 

values of x • 

" The L-M estimator T based on J and ~ is defined as a 
n 
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solution of: 

(2.0) 

Remarks 

(i) 
A 

T is defined only if there exists i £{1,2, ••• ,n} 
n 

such that 

(ii) Since ~ is not assumed to be continuous nor strictly increasing 

equation (2.<:& may not have one and only one solution. In those 

cases define: 

T * = inf {6 
n 

and T =aT*+ (1-a) T ** where a£[0,1]. n n n 

Note that since ~ is left continuous, the LHS of (2.0) is right 

continuous and 

(iii) If J(t) = 1 for all t£[0,1], L-M estimators reduce to M estimators, 

{iv) lf ~(x) = X X£R 

and, in this case L-M estimators are asymptotically equivalent to L 

estimators. 

Define: 
1 -1 

~> = ! 0 J(t)~(F (t)-x)dt. 
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The next two lenunas will provide some clues about·the behaviour of X • 

. Lenuna I I. 3 

If there exists R satisfying 

(i) A.(x) is defined for all x in R (eventually A.(x) = ± ~> 

(ii) A.(x) is decreasing, positive (negative) for large 

negative (positive) values of x • 

This lemma is a straightforward generalization of Huber's (1969) 

lemma p. 64. 

Lenuna II.4 

If b > a in R satisfy: 

A.(x) is finite in [a,b], continuous in (a,b). 

Proof: Take XE(a,b) , since ~ is increasing 

j~(F-1 (t)-x)j ~ max {j~(F-1 (t)-a)j , j~(F-1 (t)-b)l} 

< j~(F-1 (t)-a)l + j~(F~1 (t)-b)l • 

So that: 

1 I -1 I ! 0J(t) ~(F (t)-x) dt < co , 

and 

I A (x) I < co • 
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To prove the continuity take· x0 in (a,b) , for any x in [a,b]: 

Since 

/~J(t>lw<F-1 (t)-x0)- w(F-1 (t)-x)l dt • 

lwCF-1(t)-x0)- lJI(F-1(t)-x)l < 

and -1 lJI(F (t)-x0) is continuous a.e.dt as an increasing function of t 

lim jA(x)- A(x0>1 • 0, 
X-+ XQ 

using the Lebesgue monotone convergence theorem. 

This ends the proof. 

Now on the asymptotic normality of these estimators will be proved. 

One has investigated many ways to find conditions as mild as possible 

for this asymptotic normality to hold. 

For M estimators, Huber (1964), using the Lindeberg Levy condition 

has obtained what one might call the best possible result for this 

restricted area. 

For L estimators satisfying: J(t) = 0 t ~ [o, 1~] for a o E(O, 1/2), 

Huber (1969) has again obtained the best possible result using the weak 

convergence of the Z(n)(t)'s, defined in section 11.2, to the Brownian 

bridge. 

Several attempts have been made in order to prove the asymptotic 

normality of general L estimators. 
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Jung (1958) proved the result under very restrictive conditions on 

J • Recent authors have focussed their attention mainly in two directions. 

First, they were looking for a sum 

variables such that: 

s 
n 

of independent random 

lim n11 2 eT - S ) = 0 in probability, n-+w n n 

where T is the L estimator. Then the asymptotic normality of n112 S n n 

is a consequence of the Lindeberg Levy condition for the Central Limit 

theorem. Chernoff Gastwirth and Johns (1967) gave such a proof under 

too many regularity conditions. Stigler (1969) (1974) using Hajek (1968) 

projection method provided a very elegant proof under reasonable 

assumptions. 

The second method uses the weak convergence of the Z(n)(t)'s 

towards Z(t). Shorack (1969) (1972) proved the result under conditions 

more restrictive than those of Stigler (1974). Furthermore applic-

ation of Shorack's (1972) results to this problem requires very stringent 

assumptions on J , the weight function. 

A new method will be introduced now. First Huber's result for L 

estimators with J(t) = 0 t t [6,1-d] will be generalized to L-M 

estimators having the same property. Then, using this result it will be 
A 

shown that T has the same asymptotic behaviour as a sum S of 
n n 

independent random variables. 
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The following two lemmas will be used in the next two sections: 

Letmna I I. 5 

If (i) }
00 

{k is an R-sequence converging to t 0 , n n=l 

(ii) 

(iii) 1 
there exists o(l)e(O, /2) such that 

J(t) = O,t < o(l) 

or (i v) lim lt liJ (F-1(t)-x) = 0 for any x in a neighborhood of t 0 , 
t+O 

(v) 1 there exists o(2)e(O, /2) such that 

J(t) - o, t > l-o<2>, 
t;-: -1 

or (vi) E1Y v~-t liJ (F (t)-x) = 0 for any x in a neighborhood of ~O , 

then lim n1/2 (/.(k ) - >. (k )) = 0 • n n n n + eo 

Proof: Without loss of generality, assume ~0=0 • The convergence of k 
n 

implies:for any e > 0, there exists n
0 

= n0(e} satisfying: 

Pick o in the following way: 

a) (iii) holds take o = 0(1} 

b) (iv} holds and -1 
eo take o ""' 0 flW liJ (F (t)-e} > -

c) (iv) holds and -1 take o in (0, 1/2) lim liJ (F (t)-e} • - CO ' t+o 

small enough such that: 1/J(F -l ( t)+e) < 0 for t < o • 

Let: J(l)(t)- f:(t) te[a,ll 

elsewhere 

and A.(l)(x) , A.(l}(x) be the corresponding A. and A function with J 
n n 

replaced by J(l) • We first prove: 
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(2.1) 
1 

lfm n / 2 (A(l)(k) - A(l)(k )) = 0 • 
n n n n 

If o=O take o1=0 , if o>O take o1 in (O,o) • 

For t in [&1 ,1] there exists M
0 

in R such that 

~(F-l(t)-E) > MO • 

If M0 is positive, ~(F-1 (t) - kn) is increasing positive for n>n0 . 

-1 If M0 is negative then ~(F (t) - kn) can be written as the difference 

of two positive increasing functions in [F-1 (o
1

)-E , ~) : 

~(x) = ~1 (x)- ~2 (x) 

-1 where ~2 (x) = -M
0

, xe:[F ( &
1
)- e: , ~) • Note that if ~ fulfills assumption 

(iv), ~land ~2 fulfill the same assumption. 

Since J(l) is a bounded variation function there exist 

increasing functions J~l) and J~l) such that for te:[o
1

,1] : 

J(l)(t) = J~l)(t)- J~l)(t) • 

Note that: 

two 

where 
. (1) (1) 

co=m1n {Jl (ol) , J2 (ol) ' 0} Hence it can be assumed that 

and J~2 ) are positive increasing. 

Therefore it will suffice to prove (2.1) under the following 

assumptions: 

d) 

e) 

J(l)(t) is positive increasing in [o
1

,1] , 

-1 
~(x) is positive increasing in [F (o1) - e:, ~ ) • 

If o=O,take n1=n0 if o>O there exists n1>n0 such that 

2 
nl > o-o 

1 
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c For n>n1, consider: 

A(l)(k) = ! 1J(l)(t) ~ (F-1(t)-k) dt 
n o n 

i 
n n (1) 1 

,:: i~ [no]+l i£1 J (t) ~ (F- (t)-kn) dt 
n 

using assumptions d) and e). 

The E in the previous expression is less or equal than: 

<.! ~ J(l)(_!_) ,,, (F-1(_!_) - k) 
- n i=[no]+1 n+l o/ n+l n 

In order to prove: 

(2.2) lim sup n 
1

/ 2 (>. (l) (k ) - >. (1) (k ) ) < 0 , 
n n n n 

one must show: 
1 

lim n /Z 11 J(l) (t) ~ (F-1(t)-k ) dt = 0 • 
n 1- 1 . n 

n 

u· (V) holds, that is obvious. Suppose (vi) holds and that t is small 

enough such that: 

c 
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Choose n2>n1 in N such that for 

t > 1 - _!_ , 11-t tP (F-1(t)+e:) < e: . 
. n2 

Let M
1 

=sup J(l)(t) , for n > n 2 
te: [ <\, 1] 

1 
< /2 M /1 _1_ dt 
- n 1 e: 1 

1 -- 11-t 
n 

Therefore (2.2) holds. To prove (2.1) it will suffice to prove: 

For n > n2, consider: 

i+l 

> nfl f n J (l) (t) tP (F-1(t) - k ) dt 
- i•[no]+l 1 n 

n 

using assumptions ~ and e) , 

1 n;l J(l) ( i ) ,, (F-1( i ) k ) 
~ n i~[no]+l n+l 'I' . n+l - n 

Using assumption (v) or (vi), it is easily seen that: 
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lim 1 J ( n ) ,11 (F-1(-E_) _ k ) $ 0 
n -:;h n+l "' n+l n 

and (2.1) is true. 

The lemma is true under assumption a) or b), suppose c) holds: let 

J( 2) (t) ... J(t) - .J(l) (t) • 

Let A(Z) and A(2) be the corresponding expression for A and A when J 
n n 

is replaced by J(2) • Pick o
2 

in (o,l), using an argument similar to the 

preceeding one, it will suffice to show that: 

1 
lim n 12 (A(2)(k)- A (2) (k )) • 0 
n n n n 

(2. 3) 

under the following conditions: 

f) 

g) 

J( 2) is a negative increasing bounded function in [0, o
2

] , 

-I 
1jl is a negative increasing function in (- ~ , F (o 2)+E) • 

Pick n
3 

> n2 in N such that 

For n > n
3 

consider: 

i 

(2.4) < i~~]+l ~~-1 J(2)(t) 1jl (F-l(t) - kn) dt • 

n 

Using assumptions f) and g) and the fact that the product of two 

increasing negative functions is a positive decreasing function, (2.4) is 

less. or equal to: 
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To prove: 

one uses an argument similar to the one used in the proof of (2.2} with 

assumption (iv). Therefore: 

1 
lim sup n 12 (A(Z}(k) - A(2}(k }) < 0 • 

n · n n n 

To end the proof, for n>n3 , consider: 

A (2) (k ) = /J J(2) (t} 1/1 (F-l(t) - k ) dt 
n 0 . n 

i 

~ i[~_I:1°] 1 n J(2) (t} 1/1 (F-l(t} - k ) dt 
i-1 n 
n 

using assumptions f) and g), 

Using assumption (iv), it is easily seen that: 

Hence (2.3} holds and the lemma is proved. 

1 2 -1 
. Note that 10 1/1 (F (t}~~). dt < oo in a neighborhood of i;

0 
is a sufficient 

condition for assumptions (iv} and (vi} to hold. 
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Lemma 11.6 

ii) A is continuous monotone near ~O , 

-
112 n i 

iii) the asymptotic distribution of n i~1 {J (n+1) 111 (X (i) -kn) -

"" 00 A(k ')} is continuous where {k } 
1 

= {k (g)} 
1 

, is defined by: 
n n n= n n= 

1 
n /Z A(k ) = g , 

n 

1/2 
then 1im P{n A(T ) > g} = 

n n 

Proof: Using the assumption on A , 

for n big enough: 

1/2 
{n A (T ) > g} = {T < k } • n - n - n 

" Using the definition of T , one o~tains: n 

and if £ > 0 : 

. n i 
{Tn :5 kn} c {i~1 J(n+1) 1jl (X(i) - kn)< e:} or: 

_1/2 n i 
{n i~1 (J (n+1) 1jl (X (i) - kn) - A (kn)) < -g } 

" c {T < k } and n- n 

~ {T :5 k } so that if the asymptotic n n · 
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1/2 n i 
distribution of n- i~l (J (n+l) lJ! (X(i) - kn) - A(kn)) is continuous 

the result is true. 

Note that for any € > 0 and for any n big enough: 

1 . 
, . - /2 n 

{n i~l (J (i/(n + 1)) lJ! (X(i) - kn) - A (kn)) < - g} 

1/2 c {n A (T ) :!: g} c 
n 

Section II.4 Asymptotic normality of L-M estimators with 

J(t) = 0, t f [o,l-o], where o€(0, J> . 
In this section, we assume J(t) = O,t~[o,l-o] • Note that for 

t€[o,l-o]: 

and 

Hence the conclusion of lemma II.4 holds and A is continuous. 

Definition II. 7 

Dealing with asymptotic properties of estimators, the following 
. CO 

symbols will be used. A sequence of random variables {X } 
1 

is said to be 
n n= 

a) 

b) 

0 (1) if 
p 

0 (1) if 
p 

lim X = 0 in probability , 
n n 



c 

-25-

lim sup lx I is bounded in probability. 
n n 

Theorem II.S 

If i) ~ (F-1 (t) - x) is continuous at ; 0 a.e.dt where A (;0) = 0 , 

ii) ~ (F-1 (t) - ~0) and J(t) are not discontinuous together~ 

iii) A is strictly decreasing near ; 0 , 

A 

then the L-M estimator T defined as a solution of: 
n 

is such that: 

1) L(n
1

/ 2 A (Tn)) ~m N(O,cri) 

where cri ... !~ [A(t) ]2 dt - [!~ A(t)dt] 2 and d(A(t)) = J(t)d ~ (F-
1 (t) - ;

0
), 

2) if furthermore A is differentiable at t 0 , and A'(~0) e (-m , 0): 

1!2 2 2 ?12 
L(n (Tn-~0)) n +m N (O,cr ) where a = 2 • 

[H(;o>l 

The following lemma is needed: 

Lenma II. 7 

If (i) 

(ii) 

(iii) 

-1 
J(t) and ~ (F (t)) are not discontinuous together, 

~(F-1 (t)-x) is continuous at 0 a.e. dt, 

m 
{kn}n•l is an R sequence such that 

lim k = 0 , 
n n 

then, hn(x(·)) = n-l/2i~l J (n!l> [W(F-l(n!l+n_l/2 x(n!l))- kn) 
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and h (x(·)} = !~ x(t) J (t) d tfJ (F-1(t)) 

are such that: 

h (x(•)) - h(x(·)) goes to 0 uniformly on the set S 
n 

of functions satisfying: 

i) 

ii) 

supljxjj 
s 

< "" where 11 x 11 = sup I x ( t) I 
te [0, 1] 

sup q (x ( • ) ) -+- 0 if a -+- 0 
S a 

where qa (x(·)) = suj lx(t)- x(s)l 
It-s <a 

1 c+o' Proof: Take o' in .(O,o) such that F- is continuous at o0 = ~ and 

l-c0 ·and: 

-1 . 
tfJ (F (c0) - x) -1 tfJ (F (1-c ) - x) 

0 

are continuous at 0 • Since F is a distribution function, sup I lxl I < "" 
s 

and lim kn = 0 , there exist M0 and n0 in N such that: 
n 

. 1 
n > n0 -+ F-1 (t+n- 12 x(t}) - kn e [-M0 ,M

0
] 

for all t in [ o ~ 1-o'] and for all x( •) e: S • Using an argument similar 

to the one at the beginning of lemma 11.5, we may assume: 

a) J(t) is a positive increasing bounded function in [et 1-c'] , 

b) tfJ(x) is a positive increasing function ln [-M
0

,M
0

] • 

Define: G(t) = tfJ (F-l (t)) 

G (t) = tfJ(F-l(t)- k). 
n n 

For any e>O, there exists a1 = a1 (e) , a
1

>0 such that: 
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sup qa (x ( • )) < "€ if a
1 

2: a 
s 

m -1 1-o 
I ~~0 J(tj+l) (G(tj+l)- G(tj))- !0 ° J(t) d G(t)l < € 

0 2 

satisfying: 

This is possible since J and G are not discontinuous together. Let: 

m = m(E) , m E N and choose: 

such that F-l is continuous at tj and ~ is continuous at F-1 (tj) for all 

jE{l,2, ••• ,m} and: 

m-1 
E (J(t ) - J(t.)) (G(tj+·l) - G(tJ.)) < £ j=O j+l J 

Note that almost all t's in [0,1] satisfy the continuity condition using 

assumption ii), hence such a choice of t.'s is feasible. 
J 

Using E , m, a0 and the fixed tj's we will prove the lemma. 
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Consider: 

where: 

E 
i 

n 
Elj 

n 
E2j 

= 

= 

= 

I J(tj > 

i J(tj) 
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{Gn <n!l + yj) 
i 

- G (n+l)} n 

i - 1/2 i i n 
{Gn(n+l + n x (n+l)) - G (n+l + yj)} n 

i = I {J(n+l) - J(tj)} {G 
n 

_1/2 
[n X (tj)] 

n+l , note [x] = entire value of x • 

The sign of y~ is function of x(tj) only, therefore assume 

n yj > 0 • For j = m-1 , one should have: 

E E i • at <- < t 
1 m-1 - n+l - m 

since the three lost terms are bounded, we may omit them. 

Consider: 

i 
Gn (n+l) -

i n 
tj+l ~ n+l < tj+l + yj 

i n 
t <--<t +y j - n+l j j 

for n > n1 
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n using assumptionsa), b), and the fact that Yj ~ 0 • N~, 

n -
112 

l!m J(tj) Yj n = x(tj) J(tj) and 

using the continuity assumptions on the tj's. Bounding similarly 

-
112 n n Elj from below, one obtains: there exists n2 = n2(e:,m,t1 ,t2 , ••. ,tm) 

n2 > n1 inN such that: 

for all j e: {1,2, ••• ,m} • 

Consider E~j , since 

by the choice of ao . G being increasing: 
n 

Gn(n!l + n-1/2 x <n!l)} ~ Gn <n!l + n-1/2 (x(tj) + e:}) 

1/2 
i+[ (n+l) n- (x(tj )+e:}+l]) 

.::; G 
n (- n+l 

n 1 112 Let E;j = n+l [(n+l)n- (x(tj} + e:} + 1] and note: 

rn > n 
"j - y j . 

Using once more assumptions a) and b), 
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c 

= 

t + < i < + ~n j+l .. yjn- n+l tj+l j 

+ < i < + rn 
tj Yjn - n+l tj "'j 

n n 
112 Since (n+l) (~j- Y.) behaves asymptotically as n £and using the 

J 1 
- /2 n continuity properties of the tj's, n E2j is asymptotically bounded by 

_1/2 n 
The same way one can find a lower asymptotic bound for n E2j and: 

n 
Consider EJj , using a) and b): 

i ' i 
:£ (J(t.+l) - J(t.)) {E (G ( +l + 6 ) - G (n+. 1))} 

J J 1 nn · n n 

1 -
1

/2 where en - n+l [ (n+l) n . llx ll+l] . 

Hence: 

n 

EJj :£(J(tj+l) - J(tj)) 

c 1/2 
Therefore n t;j is asymptotically bounded by: 
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using an argument similar to the preceeding one. · Bounding the same way 

n E3j from below, 

1 
limnsup I n- /Z EnJj I < ( ( ) ( ) ) ( ( ) G ( ) ) 11 11 J tj+l - J tj G tj+l - tj X • 

Hence: 

is asymptotically bounded by O(e). 

Consider: 

t 
= ~~~~ {Jt~+l {J(t)x(t) - J(tj) X (tj)) d G(t)}l 

t 

~ ~~~ {!t~+l J(t)lx(t) - x(tj)ld G(t) 
J 

t 

+ lx(tj)l !t~+l(J(t)- J{tj))d G{t)} 

1-6 . 
.s qo. (x{ •)) f 0 °J{t) d G{t) + £. llxll 

0 0 2 

= O(e:) • 

Hence for any e:0 > 0 , we can find N e:N such that: 
e:o 

n > N -+sup lh {x{·)) - h{x(·))j < e:0 • 
e:o · s n 

The lemma is proved. 

This is a generalization of the lemma used by Huber (1969) to prove 

theorem II.l • 
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Proof of theorem 11.5 Without loss of generality, assume s0=0 • Using 

Lemma 11.6, n /2 A d ) will have the same asymptotic distribution as n 

_1/2 n i 
(2.5) n 1: (J(n+l) 1/J (X(i) - k ) -A (k )) i=l n n 

1/2 
where n A (kn) = g , g fixed in R provided the asymptotic distribution 

of (2.5) is continuous. 

Using lemma 11.5 under assumptions iii) and v), lemma 11.1 and the 

definition of the processes {Z(n)(t)} , one obtains that (2.5) has the 

same asymptotic distribution as: 

As shown by Rivest (1976) p. 26-27, given e: > 0 there exist a. ' M ' £ £ 

S = {x(·) e:C [0,1] 
£ 

11 x 11 < M q (x( ·)) < £ for all a. ~ a. } 
£ Cl £ 

Now, using lemma 11.7, 

(h (Z(n)(·))- h (Z(n)(·)) is o (1) 
n p 

Hence h (Z(n)(·)) and h(Z(n)(•)) have the same asymptotic distribution 
n 

and using theorem 11.3 

L(h(Z(n)(•))) L(h(Z(•))) • n (lO 

Therefore the asymptotic distribution of h (Z(n)(·)) is the one of: 
n 
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!~ J(t) Z(t) d 1jJ (F-1 (t)) 

which, according to lemma II.2, is: 

Hence the asymptotic distribution of (2.5) is continuous and the first 

part of the theorem is proved. 

Since A is differentiable and T is consistent, 
n 

hence: 

A (T). A(O) + T >.'(0) + 0 (T) n n n 

1 . 
n /l>.'(O)T 

n 

1 in probability as n ~ ~ • 

1/2 A 

Since n ).(Tn) converges weakly to a N(O,a2) the last statement implies: 
A'(O) 

1 
L(n 12T ) 

n 

Note that the result of this theorem is still valid if the assumption 

J(t) = 0 tt[o,l-o] is replaced by ljJ(x) is a bounded function of x or 

F-l(t) is a bounded function of t • 

Corollary II.l 

Let {T *} be a sequence of statistics satisfying: 
n 

for all e: > 0 there exist MO = M0(e) and n0 = n0 (E,M0) 

in N such that: 

1 
n > n0 ~ P {n 12

1 T: -e 0 I > M0} .$ e: • 

Then assuming: 
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i) 
-1 .. 

~(F. (t)-x) is continuous at e
0 

a.e.dt, 

ii) 
-1 

~(F (t)-e
0

) and J(t) are not discontinuous together, 

iii) A is strictly decreasing near e
0 

, 

Note that e0 is not assumed to satisfy: 

Proof: Without loss of generality assume e
0 

= 0 . 

Consider for a fixed c > 0 , 

for n > no this is less or equal to: 

_1/2 
Using lemma 11.5, if IT~I < n MO there exists nl=nl(c,Ml) 'nl >no 

in N such that 

1/2 
n > n1 ~ n IA{Tn*)- A {T*)j < c n n , 

so that for n > n
1 

1/ 
P { n 

2
1 A eT*) - A eT*) I > d < e and n n n 
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Define: 
11 n 1 i - 112 i 

( ( ) ) - · 2 ~ J ( i ) { ,1, (F- (- + ( ) ) 
hn x • = n i;;1 n+l "' n+l n x n+1 

k (y (·)))- 1/J (F-1 (_!_) - k (y (.)))} ~ 
n n n+1 n n 

h (x( ·)) = f~ J(t) x(t} d tP (F-1 (t)) 

where y (·) £ C c C [0,1] and k is a functional defined on C [0~11 • 
n n n 

Note that the conclusion of lemma II.7 is true with k as a functional 
n 

provided k (y (·)} converges uniformly to 0 as n goes to~ • n n 

To end the proof it suffices to show that h (Z(n)(·)} and h(Z(n)(·)) 
n 

have the same behaviour as n ~ ~ (with k (y (·)) = T*). 
n n n 

We want to find N0 = N0 (£) e N such that 

As in theorem II.S, we can find M2=M2 (E) ~ a
0

=a0 (e:) n2=n2(£,M2) , 

n2>n1 such that the set 

satisfies: 

S = {x(·) E C [0,1] 
E: 

For a fixed m > n2 and n > n1 , 

I A I -1/2 } T~ .< n MO 
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( ) _1/2 ( ) 
For z m (·) e S and lr*l < n M

0 
, note that k (Z n (•)) = T* converges 

e n n n 

uniformly to 0 as n ~~hence using lemma II.6 there exists n3 = n3(e,Se,M1) 

inN such that n > n
3 

implies suplh(Z(m)(·))- h (Z(m)(•))l < e. 
S n 

e 
Therefore for any fixed m > n2 and for n > n3 

this implies for n > n3 : 

And the corollary is proved. 

Section 11.5 Asymptotic behaviour of L-M estimators • 

Suppose A(t0) = 0 and define: 

where: . 

=- if b > a • 

Lemma II.8 

1 2 -1 
If 10 w (F (t)-x) dt is finite in v

0 
= {~ I~ - ~0 1 < e} where 
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~ > 0, 4H(x) is a well defined increasing function satisfying: 

i) AH (t0) = 0 

ii) 1~ ~~(F-l(t) - x) dt, AH and A are continuous at ~O • 

Proof: Let M • sup jJ(t)j , note that M is finite since J is a bounded 
tE(O,l] 

variation function. 

Consider: 

(2.6) 

s 1~ M{I~<F....;1 (t)-t;0JI + l~<o>IJ dt • 

using (2.6). Hence ~His a well defined increasing function and: 

11 -1 I 11 -1 I The fact that 10 ~(F (t)-~0±e) dt < oo implies 1
0 

~H(F (t)-~0±e) dt < oo 

and, using lemma II.4, A and AH are continuous at ~O • 

(2.6) and the assumption on ~imply: 

We want to prove: 
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Note that: 

The RHS is an integrable functio~hence, using domininated convergence, 

one obtains the continuity of: 

Theorem II.6 

If i) $ is left continuous and J(t) and $(F-1 (t}-~0 ) are not 

discontinuous together, 

ii) $(F-1 (t)-x) is continuous at ~O a.e. dt , 

iii) 1~ $2(F-1(t)-x) dt < m in a neighborhood of t 0 , 

iv) A is monotone at ~O , 

v) 

vi) 

i\'(t;;) = d:A(~) 
d~ 

There exist 

exists and is negative at ;
0 

, 

€ > 0 , M0 inN such that IJ(t)- J(s)I<M0 1t-sl 

fors, tin [0,€] or s,t in [1-E,l], 

vii) There exist M1,M2 in N such that F is differentiable in 

{x€R:Ixi>M1} and f(x) = d!~x) < M2 if lxl > M1 • 

Then the estimator Tn , a solution of 
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is such that: 

where 2 2 
C1 = C1 

1 
1 

and 

Note that ~ is left continuous implies: 

b J d~ = ~(b) - ~(a) • 
a 

Assumptions (vi) and (vii) may be replaced by J(t) = 0~ t t [&~ 1-o] 

for a certain oe(o, 112) • 

Lemma II.9 

Under the assumptions of theorem II.6, for any n>O 

where {kn(g)}:=l is an R sequence satisfying 

1/2 
n A (k (g) ) = g for g e R , n e N • n 
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. 1 2 -1 
Proof: Without loss of generality, assume ~0=0 and !

0 
$ (F (t)±€)dt <m • 

Let g be a fixed real number and k = k (g). The fact that X is decreas­n n 

ing implies: 

limk =0. 
n n 

We will first prove: 

is o (1) • 
p 

Using lemma 11.5 under assumptions (iv) and (vi) and lemma 11.1, it 

suffices to prove: 

(2. 7) 

is o (1) • 
p 

Using theorem 11.4, given n > 0 , there exist M3 = M
3

(n) and 

n0 = n0 (M3 , n) in N such that: 

(2 8) I i u I < M -1/2 f f • max n+l - (i) 3n or n > n0 except on a set o 
idl, 2, ••• n} 

probability at most n/3 . 

Consider: 

X' (0) = lim X(k )/k 
n n n 
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_1/2 
= lim n g 

n k 
n 

hence for any M
4 

> g/A. 1 (0) there exists n
1 

= n
1 

(M4), n
1 

> n
0 

, such that 

(2.9) 

-1 
Let JP

1
{x) = !p(x)- lji(F (e)+ e) , note that replacing JP by w

1 
in 

(2.7) does not change the value of the expression and: 

implies: 

1 2 -1 1
0 

JP
1 

(F (t) - ~) dt < ~ in this same neighborhood. 

'hence we may suppose: ljl(x) is negative increasing in 

-1 . 
( - oo , F (e) + e] • 

We want to prove: 

is o (1) • 
p 

. -1 
n F (U(i)) - k i 

ilil {f -1 i n (J (-) - J (F (x))) d!p (x)} 
F (n+l) - kn n+l 

The strategy of the proof is the following: given n > 0 , we first 

find 
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except on a set of probability at most ~ for 

1/2 n 
n- 1~ ( ... )1 <I except on a set of probability at most n/3 

n-[n<S2]+1 

for n > N1 • 

Once 61 and 62 are given using an argument similar to the one used 

in section I I. 4: 

so that there exists N2 > N1 such that: 

n probability at most 3 . 

Choose 61 = o1 (n) in the following way: 

1 . 
let M5 = M0{2M4 M2 + M3} and take o1 € (0, /2) satisfying: 

e: F(-2M1) 
• o1 < max {2 , 2 9 M1} • 

-1 1 
note thattllmo F (t) = - oo implies that o1 e: (O, /2) satisfying this 

condition exists, 
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o
1 

is a continuity point of ~(F-1 (t)) • 

1 If o1 = 0 , there is nothing to prove•, if o1 e:: (0, /2) we prove that 

there exists N1 e:: N such that: 

_112 [no
1

] 
In i~l ( ••• )1 < n/3 for N > N1 except on a set of 

probability n/3 • 

Using (2. 8) and (2. 9), there exists n2 = n2 (e;, o
1 

, n , g) , n
2 

> n
1 

such that 

3 for n > n2 and i e:: {1,2, ••• ,[2 o1 n]} 

and 

except on a set of probability at most n/3 • So that 

max{F(F-
1

(U(i)) - kn) , F(F-l(n!l> - kn)} < e:: and using assumption (vi) 
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(2.10) sup !J(F(x))- J(n!1>1 

sup !Flx) - i/(n+1) I 

Now, -1 -1 -1 1 -1 i 
max {F (U(i)) - kn , F (U(i)) , F (n+l) - kn , F (n+1)} 

so, using the fact that F is differentiable in 

{lxl > M1} (assumption vii) , 

F(F-1(_!_) - k ) - _!_ = k f (win) n+1 n n+1 n 

where a . and wi < - M1 so that: 
~n n 

1/2 
Therefore n- (2.10) is less or equal than: 

c 
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:::S MO {M
3 

+ 2 M
4 

M
2

} 
n 

112 M Therefore n (2.10) is less than 5 for n > n2 except on a set of 
n 

probability at most n/3 • 

Hence 

< 

using the assumption on w and the way o
1 

was chosen. 

Using lemma 11.5 under assumptions(iv) and (v): there exists 

n
3 

> n2 such that 

or -1 [nol] ·•·(F-1(_!_) 
-n i~l v n+l ~ E) < n 

6M5 

To end the proof of this first part, it suffices to show: 

is o (1) • 
p 
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elsewhere 

11 (w*(F-l(t))) 2 dt < ~ the weak law of large numbers 
0 

yields: 

It is sufficient to show: 

(2.11) 

Choose e1 e: (O,o /2) such that 

using (2.8) there exists n4 = n4 (M
3 

, n) , n4 > n3 such that for each 

n > n
4 

and i satisfying: 

except on this same set of probability at most n/3 • 

For n > n
4 

, (2.11) reduces to: 
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Now since ~ is negative in (- ~ , F-1(t)+e) the last expression is bounded 

by: 

.!: n/24MS 

so, there exists n
5 

> n
4 

such that 

and the first part of the proof is completed. 

Using a symmetric argument, o
2 

= o2(n) a continuity point of 

~(F-1 (t)) , satisfying: 

1/2 n 
n- li~-[no ]+l( ••• )j < n/3 except on a set of probability 

2 
at most n/3 is easily found. 

To prove (2.7), it suffices to show: 

-
1 12

1
n-[no ] I 

n ig[no2]+l ( ••• ) is o (1) or 
1 p 
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where J 1 (t) ={ 1 ' 

0 ' elsewhere 

Note that J 
1 

and J 
2 

fulfil! requirements of section II..4 so that 

For any x( •) e:: C[O,l] (the set of continuous functions on [0,1]), one 

easily shows: 

Therefore there exists n5 , n5 

except on a set of probability 

of the lennna. 

1 
/Z.n-[no J I 

> n4 such that n li~[no2]+l( ••• ) < n/3 
1 

at most n/3 and this ends the first part 

In order to prove the result we now need to show: 
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Lemma 11.8 insures us that ~H fulfills assumptions (iv) and (vi) of 

lemma 11.5 hence: 

will reach the same limit as n ~ ~. It suffices to show: 

for all n > 0 in order to end the proof of this lemma. That last con-

vergence is an easy consequence of the following condition: 

Let V(x) be the variance of x • 

Since: 

the sum.under consideration is a sum of i.i.d. random variables· with null 

expectation. 2 Therefore E[( ••• ) ] =V ( ••• ) and it suffices to show: 

The last variance is equal to 
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Since lim k = 0 for n big enough, lk I < £ hence 
n n . n 

and: 

The last function is integrable so that applying dominated convergence: 

and the lemma is .proved. 

Proof of theorem 11.6: 

"" "" Let g eR and {kn}n=l = {kn(g)}n=l be an R sequence such that: 

1/2 
l.(k ) = n g • n 

Now, using lemma 11.6, 

_1/2 n i 
lim P{n i~l (J(n+l) ~(X(i) 

n 

. . 1 

lim P{n 12 A (T ) > g} 
n n 

- k ) - /.(k )) < -g} = n n 

provided the asymptotic distribution of the former is continuous. By 

lemma 11.9, the desired limit is equal to: 
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Assumption iii) and lemma II.B imply 

hence applying the Central Limit Theorem, 

Using an argument similar to the one at the end of theorem 11.5: 

1 
L{n 12 <1: - E; }) 

n 0 
2 

---+- N{O, a ) • 
n-+co 

Lemma 11.9 has stronger implications than asymptotic normality. 

Theorem 11.7 

" Under the assumptions of theorem 11.6, the L-M estimator T based on 
n 

~ and J satisfies: 

for any 
1 

e > o : lim P{n 12 1! - E;
0 

+ {A'{E;0))-1s I > e} = o 
n n n 

where: 

Proof: Assume without loss of generality ~O = 0 , take € > 0 and define: 

CO 

where {k (g)} 1 has been defined in lemma 1!.9 • 
n n= 

1. 
/2 " Since n A(T ) is asymptotically normal, there exist M=M(e) and 

n 
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So that: 

1 
P{n 12 ji.(T ) + S I > e} 

n n 

Choose m in N such that e > 3/m and consider: 

1 
P{n 12 1x<i ) + s I n n 

1 A 

> e and n 12 ji.(T >I <M} 
n 

1/2 
e-n i.(T )}} 

n 

. 1 1 
+ P{j/m ~ n 12 i.(Tn) < (j+l)/m and n 12sn > e - (j+l)/m} • 

Using lemma 11.9 and lemma 11.6, for each j in {-mM, -mM+l, ••• ,mM} , 

there exists: 

(2.12) 
1 

P{n 12 1s - S (j/m)j > h < e/4mM. and n n m 

. (2.13) 
1/2 1/ 

{n S (j/m) < -j/m} c {n 2 i.d ) ~ j/m}c n n 

1 
{n 12s (j/m) < - (j-1)/m} 

n 

for n > nj • 
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Take n > nj and consider: 

1/2 n 1/2 
P {j/m :s n J..(T ) < (j+l)/m and n S > E - (j+l)/m} , 

n n 

by (2.12)~ this is less or equal than: 

1/2 1/ 
e: + P{{j/m :S n J..(i )} n {n 2s (j/m) > e:- (j+2)/m}} , 
4~ n n 

using (2.13) and the fact that E > 3/m, the last expression is less or 

equal than:"" 

1 
P{{n 12s (j/m) 

n < -
1 

(j-1) /m} n {n 12s (j /m) > - (j-1) /m}} 
n 

+ e/4~ 

= €/4~ . 

Now, take n > nj+l' and consider: 

1/2 1/2 
P{j/m s n J..(T ) < (j+l)/m and n S < - e: - j/m} 

n n 

s; P{{n
1

12 J..(i) < (j+1)/m}ll {n
112s ((j+1)/m)<- e:- (j-1)/m}} 

n n 

+ e:/4~ by (2.12) 

1/2 A 1/2 s P{{n J..(T ) < (j+l)/m} n {n J..(T ) ~ (j+l)/m}} + e:/4~ 
n n 

= e:/4~ • 

Hence for n > max nj 

je:{-mM, -mM+l, ••• ,mM} 

1 
P{n 12 1J..(T ) + S I > e} S e: and n n 
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1 
n /Z(A(T ) + S ) is o (1) . 

n n p 

Using an argument similar to the one at the end of theorem 11.5 ends the 

proof. 

The next lemma provides an expression of A'(~0) as a function of 

·"' = dw(x) J d F-1 
o/ dx , an • 

Lemma II.lO 

Assuming w(x) is an absolutely continuous function having derivative 

w'(x) = dw such that 
dx 

w' (x) = h(x) g(x) a.e.dx 

where: 

a) 
-1 h(F (t)-x) is a positive bounded continuous function of x 

at ~; 0 a.e. dt 

b) there exist e > 0, and a partition 

0 < t
1 

< s 1 < ••• < sn
0 

< 1 of [O,l] such that 

i) g is decreasing in (- oo, F-l(t
1

) + e] and g is increasing in 

- £ , ·"" ) and: 

ii) -1 -1 g is uniformly continuous in A= [F (t1),F (s )] -no 
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iii) F has a bounded variation derivative 

then: 

Proof: Without loosing generality, assume: ~O = 0 • 

that: 

Since J is a bounded variation function, there exists M0 in R such 

J(t) < MO t E [0,1] • 

A(~) - A(O) = f~ J(t) ~(F-l(t) - ~) - ~(F-l(t)) dt 
E ~ 

= - 11 r1 J(t) ~' (F-l(t) - F;u) du dt • 
0 0 

Let M1 = sup h (x) and cons id er: 
XER 

(2.14) f !1 J(t) ~t (F-l(t) -~u) du dt, 
[0, t 1 l U [s ,1] 0 no 

for lt.:l < €/2 and t E [O,t11 , 

if t e: [s ,1] no 
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the assumption on h and the dominated convergence theorem imply that (2.14) 

goes to: 

f ' -i [O,tl] U [s ,1] J{t} lP {F {t}} dt 
no 

as ~ goes to 0 • 

Consider: 

{2.15} 1 -1 -1 fAIO J(t} h {F {t) - ~u} g (F (t} - ~u} du dt • 

Since g is uniformly continuous in A , g is bounded in A and using 

dominated convergence, as ~ goes to 0 (2.15) tends to: 

!A J(t} w'{F-1{t)) dt. 

Using Tonelli theorem: 

s 
= 11 !' i J(t} w1(F-l(t) - ~u) dt du • 

0 ti 

We want to show: 

1 ~ s 
lim 10 ft J(t) tjJ

1 (F-l(t)- ~u) dt du = f i J(t) w'(F-l(t)) dt • 
~ +0 i ti 

Integrating by part the inner integral of: 

u.'(F-l(t))) 1 
~ f(F- {t)) dt du 

f{F-l (t)) 

leads to: 



-57-

f[t 
8 

](w(F-l(t)- ~u)- W(F-1(t)))dJ(t)f(F-l(t))} du • 
i' i . 

-1 Using the uniform continuity of w and the fact that J(t) f(F (t)) is a 

bounded variation function in [ti,si] , the last expression goes to 0 as 

~ + 0 and A '(O) = -f~J(t)w' (F-l(t)) dt • 

Remark: If w(x) is differentiable so is WH(x) , W~(x) = J(F(x+~0)) w'(x) • 

-1 1/JH(x) fulfills the assumptions of lemma II.lO provided J(F(F (t) - x + ~0)) 

is continuous at .;0 a.e.dt; one easily checks that the last condition is veri­

fied if F is continuous. Note that the continuity of F implies: 

F(F-1(t)) = t,so that under this additional assumption, 

In the last part of this section, theorem II.7 will be used to prove 

various results about the asymptotic behaviour of quantiles and L-M 

estimators. 

First, in corollary 11.2 a partial generalization of theorem 11.7 

is proved. 
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Corollary II.2 

Let J(t) be a bounded variation function in [0,1] (note that J(t) is 

not assumed to be positive) and take ~(x) = x , if the assumptions of 

theorem II.6 hold with J(t) and ~(x) then the estimator: 

satisfies: 

where: 

A 

T = 
n 

1 

~O = !~ J(t) dF-l(t)//~ J(t) dt 

-1 
1 F (t) - t;o 

~H(y) = !~ J(F(x+t;0)) dx- !
0 

1
0 

J(F(x+t;0)) dx dt • 

Note that this corollary implies: 

1 
L (n 

12
(Tn-f;O)) n + ~ N(O,V(~H(x1-~0))/(/~ J(t)d(t))

2
). 

Proof: Let: if J(t) > 0 

elsewhere 

Note that Jj(t) ,2: 0 and Jj(t) and ~(x) fulfill the assumptions of 

theorem II.6. 

Using lemma II.9, with k (g) = 0 
n 
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~(x) = x and A(x) = f~ Jj(t) F-1(t) dt- x /~ Jj(t) dtfor any e > 0 , 

j = 1,2, where: 

and ~jH corresponds to ~H with J(t) and ~O replaced by Jj(t) and ~j • 

order to prove the result, one needs to show: 

Consider: 

hence: 

. and 

Using a similar argument with ~ZH proves (2.16) • 

In 
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Corollary II.3 Joint asymptotic distribution of L-M estimators. 

~ k 
Let {Tjn}j=l be a sequence of L-M estimators based on Jj and wj and 

estimating ~j , j=1,2, ••. ,n. Assuming each pair Jj,Wj fulfills the 

assumptions of theorem 11.6 , 

A T 's where T is the vector of _n jn 

f; is the vector of ~.'s ' J 

0 is a kXl vector of O's , 

; is the kxk matrix of a 's 
rs 

Cov 
WrH(Xl-E;r) WsH(Xl-,s) 

) a = ( A' (~ ) A'(' ) rs r r s s 

Proof: This is a straightforward consequence of theorem II.7 • 

Using the last corollary, one can find the distribution of the difference 

between 2 L-M estimators, so that one can prove the following: 

Corollary II.4 

" ... 
Let Tln , T2n be two L-M estimators based on J 1 and w1 , J 2 and w2 

respectively, assuming: 

i) J, and $j fulfil! the assumptions of theorem II.6 j = 1,2 , J . 

· ii) T1n and T2n are estimating the same parameter 'o , 
1 
/2(" " ) ( ) then n Tln - T2n is op 1 if and only if 
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· A:i_ (~0 ) = Az (1;
0

) (where Aj corresponds to A with J and Jl1 replaced 

Such a rela,tion between L and M estimators has been conjectured and 

proved under very restrictive conditions by Jaeckel (1971) in his 

theorem 2. 

Hence if w1 and w2 satisfy the assumptions of lemma 11.10 and if F is 

continuous, then: 

' A (/; ) 
1 0 

' ' = A (t ) = A (t ) 
lH 0 2H 0 

' = A (t ) 
2 0 

so that the assumption Ai(t0) = A2(~0 ) is fulfilled. 

Corollary 11.5 Application of theorem 11.7 to quantiles 

Suppose F, the distribution of the random sample, has a positive 

-1 . -1 th 
derivative, f(F (a)) at F (a) • Then the a quantile X[an]+l can be 

seen as an M estimator based on: 

so that: 

ljl (x) 
a -{ a 

-(1-a) 

X> 0 

X .$ 0 

1/2 -1 1 -1 
n (X[an]+l- F (a) - ([#Xi>F- (a)] - n(l-a))/f(F (a))) is 0 {1) 

p 
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where [#Xi>a] =number of Xi's bigger than a. 

Proof: Consider: 

lJ!a (x) = { a 

- (1-a), 

X > 0 

x'$..0 

The M estimator T corresponding to lJI is a solution of: 
n a 

h(e) 

Note that 

So that if e E [X[an] , X[an]+l) , 

h(e) = an - [an] ~ 0 

and if 

h(e) = an - [an] - 1 < 0 

Therefore if anr[an] ' 

sup {e : h(e) ~ O} = inf {e: h(a) s O} = x[an]+1 

and X[na]+l = Tn , the M estimator corresponding to lJ!a(x) • 

0 
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Consider: 

A(x) 

-1 for x in a neighborhood of F (a) , F is monotone increasing and: 

-1 
F (F(x)) = x . therefore: 

A(x) = - (l-a) F(x) + a(l-F(x)) 

= a -F(x) 

Applying theorem 11.7 (note that since~ is bounded the regularity 
a 

assumptions on F are not needed) 

0 (1) • 
p 

Since: 

1/2 -1 
n (X[na]+l - F (a) 

the theorem is proved. 

One easily computes: 

th and applying theorem 11.6 to the a · quanti1e: 

1/2 . -1 
L (n (X[an]+1 - F (a))) 2 -1 + N(O, a(l-a) /f (F (a))) . n oo 

Once more one computes: 
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if a > B • Hence applying corollary II.3, with 0< a1 < a 2 < ••• <ak < 1 , 

yields the following classical result: 

n-+ ~ ~ 
L (X - t ) Nk (~ , t> _a -a 

where ~a is the kxl vector of the X[ain]+l's ' 

Remark: 

-1 
~a is the kxl vector of the F (ai)'s , 

0 is a kxl vector of O's , 

is the kxk matrix of a '·s where 
rs 

a = (1 - a ) a /f(F-1 (a )) • f(F-1 (a )) for r :::: rs x s r s 

In theorem II.7, writing 

y:i:elds 

Note that 

IJIH(x-~0) . 

I~ J(t) ~'(F-1 (t)-~0) dt 
I C (F,p) (x) 

s . 

is Hampel's influence curve (see Hampel (1974)) • For the L estimator, 

this result has been proved by Stigler (1974). 



0 

-65-

Section II.6 Step estimators 

This section is motivated by practical problems. The first one is 

the computational aspect involved in finding L-M estimates. To solve the 

equation 

directly may be time consuming. Using the asymptotic linearity as 

described in theorem II.7 should lead to very good approximation of that 

equation's solution. 

During recent years, a great deal of interest has been given to 

M estimators based on non monotone ~ • For example, Hampel's M estimator 

based on: 

l/l(x) = - ~(-x) = X 0 ~ x <a 

a a~ X < b 

e-x b ~ X < 
c-b a c 

0 C ~ X 

has shown a highly robust behavior in the Princeton robustness study 

(Andrews et al. 1972). So that, it should be of some interest to relax 

the increasingness assumption on ~ and the positiveness assumption on J • 

Definition II.8 The step version of an L-M estimator. 

Let T be an L-M estimator based on~ and J , the jth step estimator 
n 

A (j) ,_ A 

T of T based on T* is defined as: 
n n n 

" (j) T = 
n 

r (j-1) + 
n 

,. (j-1) 
T ) 

n 
" (j-1) 
T ) 

n 
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where T = T* satisfies n n 

Remarks 

1 . 
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1) Note that T (j) is in fact the jth approximation of the solution 
n 

of 

using the well known Newton-Raphson method starting at 

A (0) " T = T* • n n 

A (j) " 2) If !Ji(x) x then T = T j e: R • 
n n 

3) Note that once the observations have been ordered to compute 

" (j) 
T does not require more work than to compute a step version of an 

n 

M estimator. 

The next theorem will provide some clues about the asymptotic 

behaviour of these step-estimators. 

Theorem I I. 8 

Let i) 
no 

{!Jij}j=l be a sequence of left continuous increasing 

functions and 

where aje:R, j = 1,2, ••• ,n0 • 

ii) J 1 (t) and J 2 (t) be two positive bounded variation 
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functions and J(t) = J 1(t)- J 2 (t} , 

iii) {T~}:=l be a sequence of statistics satisfying 

1 
n '2 <i~- eo) is Op(l) for a 60£R • 

Assuming each triplet (~j , Jk, e
0

) j=l, ••• ,n0 k=l,2 satisfies the 

conditions of theorem 11.6 and A.{j,k)H(x) is differentiable at e
0 

then: 

i) 

ii} if furthermore~' exists, A.'{e
0

) ~ 0 and: 

then: 
A 

~ (x(i) - T~) - .x<e0) - e0 + 

1/J' {X(i) - T~) 

where: 

A.(x) = !~ J(t) 1/J (F-
1 (t) - x) dt 

Let A.(j ,k) {x) , ~(j ,k)H (x) and A.(j ,k)H (x) be the A. , 1/JH and A.H 

functions corresponding to 1/Jj and Jk • 
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Note that e
0 

is not assumed to be a solution of A(x) = 0 . 

Proof: Without loss of generality assume e0 = 0 . 

Note that: 
2 no 

= k~l j~l aj ~(j,k)H (x) 

2 no 
and AH(x) = k~l j~l aj A(j,k)H (x) 

Therefore it suffices to prove i) under the assumptions: 

a) ~ is an increasing left continuous function in R , 

b) J(t) is a positive increasing bounded function in [0,1] . 

Using assumption iii), for any e > 0, there exist M1 = M1 (e) and 

n1 = n1(e,M1) such that: 

except on a set of probability at most £ • Therefore 

ILl, the first half of lemma 

_1/2 n i n {i~l J (n+l) 

I I. 9 is true and: 

A 

- A(T*) ~ (X(i) - T*) n n 

is o (1) as n + w • 
p 

Hence, to end the proof of i) it suffices to show 

(2.17) 

Using the differentiability of AH at 0 

- ~ 

using corollary 

H (X(i) - T~) 
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A I (O)T* 
H n 

-+ 1 in prob. 

--+1 

that: n > n
2 

implies 

and 

1/2 
< n M 

1 
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as n + oo • 

except on a set of probability € and 

€ Let o1 = ZM and consider, for n>n2 
2 

. 1 [nol] 
- /2 A A 

n i~l {wH(X(i)-T~) - AH(T~) - wH(X(i))} 

except on a set of probability at most E • Using the fact that 

e:: o1- 2M and the way M1 and M2 were chosen, for n>n
2 

the last expression is 
2 

less or equal than: 
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0 
except on a set of probability E • 

One proves the same way, for n>n2 : 

except on this same set of probability at most g • 

So that for n>n2 , (2.17) is less or.equal than: 

except on a set of probability at most E • 

By an argument similar to the one in the second half of lemma 11.9 

with 
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By corollary II.l and by an argument similar to the one used at the 

end of the first half of lemma !!.9: 

Therefore (2.17) is bounded by 0(&) except on a set of probability at 

most e: for big n • 

Using a similar argument, it is shown that (2.17) is bigger than 

0(-e:) except on a set of probability at most e: for large n andi) 

is proved. 

To prove ii), first note that 

" 1/Z A.(T~)-A.(O) 
n { A.'(O) 

using part (i) and the fact that A.'(O) exists and is non zero. 

By an argument similar to the one used at the end of theorem II.S 

1
/2 A.(T*)-A.(O) 

n n 
(--:A.-'::''~( 0-:):---

Now consider 

To prove that the last expression is o (1) it suffices to show: 
p 
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Using the preceding argument: 

behaviour, and using part (i): 

So that writing 

1 
n / 2{A(T*) - A(O)} 

n 

ends the proof. 

Corollary II.6 

Under the assumptions pf theorem II. 8, assuming A (e
0

)=0 then 

1 
n /Z(T(j)_e ) is 0 (1) j {1 2 } n 0 p e: ' , •• • 

0 
Proof: Assume without loss of generality e

0
=0 • 
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Using theorem 11.8 

therefore ('r(l) -e ) is o (1) • 
n 0 p . 

The corollary is proved by iterating this result. 

Note that if F is assumed to be symmetric about e0 , if an odd 

~(x) and a J(t) symmetric about 1/2 are chosen, then A(e0) = 0 • 

So that if T~ is any statistic converging to a0 (the median or the 

o-trimmed mean or a symmetrically weighted sum of selected quantiles) 

the result of corollary II.6 holds. 

The next corollary is dealing with the asymmetric case: 

Corollary II. 7 

Assuming A' (x) and A' ' (x) exist 
k in a subset of R containing {ej}j=O where 

ej is the jth approximation of the solution of A.(x)=O using the Newton 

Raphson method starting at e
0 

. 

Assuming each triplet (~,J,ej) , (~' ,J,ej) fulfil the assumptions of 

theorem 11.8 for jE{O,l, ••• ,k-1} 

0 (1) 
p 

Proof: Without loss of generality, assume e
0

=0 ', using theorem 11.8: 
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Using the Central Limit theorem: 

) is o (1) • 
p 

Note that e
1 

the first approximation of the root of A(x) = 0 using 

the Newton Raphson method starting at 0 is: 

Note that 

-A__{Ql 
I'lQ) . 

- A'(x) =A (l)(x) = ! 1 J(t) w'(F-l(t)-x) dt: 
0 

usingtheorem II.S's part {i) with (J,w') 

Now using the fact that A''(x) exists, 

by an argument similar to the one used at the-end of theorem II.5 • 

So that, since 

1 
n 12 (T*) is 0 (1), and 

n p 
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n 
1

/2 ('>. .. ' (i~*) - }.. 1 (0)) is 0 (1) , one obtains . n . p 

Iterating this result proves the theorem. 

In the second part of this section, an extension of the L-M estimator 

will be presented. In recent literature there is a great deal of interest 

in M estimators based on non-increasing w (Andrews et al. (1972), Collins 

(1976) (1977)) so that it makes sense to drop the increasingness assumpt-

ion on w and the positiveness assumption on J in order to obtain analogous 

L-M estimators. 

To give a formal definition of those extended L-M estimators 

presents a problem since the equation: 

no longer has a unique solution. Furthermore this formal definition 

should lead to easily computable estimates. The following is suggested: 

Definition I I. 9 Extended L-M estimator 

Let i) J(t) be a bounded variation function in [0,1] , 

ii) w(x) be a left continuous function. 

The extended L-M estimator T based on w and J, 
n 

Nth step estimator obtained when solving 

is defined as the 

,.. 
using the Newton Raphson method starting at a given statistic T* 

n 
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Remarks: 

k: 

n 

1) If the extended L-M estimator is defined as T=1im T (k) , for each 
n k n 

11 (k) 1 n WH(Xi-6k-1) 2 (T~ · -a ~ 
n k + n 1~1 A' (ek_

1
) -

A(ek_1) nA(ek-l) . 
A' (6 )-n (k l)) J.S 0 (1) 
· k-1 .E J(i/(n+l))w'Cx -T - ) P 

1=l (i) n 

by corollary II. 7. ·: To conclude T is consistent, the last convergence 
n 

should be uniform ink, this is not obvious (cf Co1lins (1976)) • 

2) 
.... 

If W(x) = X , T = 
n 

n i 
provided i~l J(n+l) ; 0 

Corollary II, 8 

1 

Suppose w, J and T* fulfil the assumptions of theorem 11.8, the 
n 

.... 
extended L-M estimator T satisfies: 

n 

is o (1) , 
p 

ii) if furthermore wand J satisfy the assumptions of corollary II.7 

for k=N and if l;
0 

is the solution obtained when solving A (x)=O using the 

Newton Raphson method starting at e
0 

after N iterations, 

is 0 (1) 
p 

Proof: These results are easy consequences of theorem 11.8 and corollary 

1!.6 and 1!. 7, 

Note that the results of corollary 11.3, 11.4, 11.6 and 11.7 are 

also true for extended L-M estimators in the symmetric case. 
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Section II.7 Asymptotically efficient and minimax estimators. 

In this section it will be shown that, in a parametric context, 

certain L-M estimators have desirable asymptotic properties. 

"' Excluding superefficiency, see Huber (1969), an estimator T of a 
n 

location parameter ~0 has asymptotically minimum variance for a distribution 

F (with density f) if: 

where I(f) is the Fisher information for the location parameter: 

I(f) 

Such an estimator is said to be efficient. The next theorem will provide 

a characterization of efficient L-M estimators. 

Theorem II.9 

Let F be a distribution with a twice. differentiable density such that 

" 

n+±ClO 
lim f'(x)=O and suppose that the L-M (or extended L-M) estimator T based 

n 

on ~ and J has asymptotic variance: 

V(l/IH(X-~0)) 

CO 2 
[!_co~~(x-t0 )f(x)dx] 

then Tn is an efficient estimator for ~O , the location parameter of F if 

and only if: 

~H (x) = a<jl (x) where <j> (x) 

Proof: Without loss of generality, assume ~O = 0 • 
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Since E(~H(x)) = 0 , 

Consider: 

under the condition: 

lim f(x)~H(x) = 0 • 
x+±oo 

Using the Cauchy-Schwarz inequality: 

0<> 2 (X) 2 0<> 2 
[/_00~(x)f(x) ~H(x) dx] ~ !_

00 
~(x) f(x) dx • 1_

00 
~H(x) f(x) dx 

with equality if and only if: 

~H(x) = a~(x) where aeR • 

2 . 1 
So that a ~ I(f) 

with equality if and only if: 

Note that lim f'(x) = 0 implies: 
x-+±:oo 



0 lim <fl(x) f (x) = 0 
:x+±oo 

and the theorem is proved. 
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1) Let x1 ~ ... ,xn be a random sample from a distribution F(x)=~(x-~0 ) 

where 
1 2 

X -1 - /2 y 
~ (x) = f ( 2'1T) e dy • -oo 

We want to find an efficient L-M estimator of ~O based on w and: 

J(u) = u(l-u) ue[O,l] 

so that taking 

w(x) 

A 

WH(x) = <fl(x) = x and the L-M estimator Tn based on W and J is efficient. 

Note that using corollary II.4 

1 
n 12 (T -X) is o (1) • 

n p 

2) x1, ... ,Xn is a random sample from a distribution F(x)=G(x-~0 ) 

where: 
G(x) = xeR 

l+e-x 

is the logistic distribution 

d 
q,(x) = - dx ~n g(x) 

d = -- in dx 

-x e 
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So that an efficient L-M estimator for ~O with: 

J(t) = 1 must have w(x) 

This is the maximum likelihood estimator. Now if $(x) = x ~ J(t) must 

satisfy: 

Differentiating both sides we have 

= J( 1 ) so that 
l+e-x 

if J(t) = t(l-t) and $(x) = x~we have the efficient L estimator. 

If J(u) 2 
= { u ; u<l/2 

(1-u) , u ~ 1/2 

for x > 0 

differentiating: 

$' (x) 

-x so that if $'(x) = e for x > 0 

or. $(x) ={ lx- e-x 

e -1 

X ~ 0 

X < 0 

the L-M estimator based on J and $ is efficient. 
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Definition 11.10 Strong unimodality 

A distribution F is said to be strongly unimodal if its density f 

exists and satisfies: log f(x) is a convex function within some open 

interval (a,b) such that- (lQ.s:a < b :S (lQ 

and /b f (x) dx = 1 • 
a 

Note that strongly unimodal distributions are distributions having 

a monotone likelihood ratio for the location parameter. 

Let G0 be a given strongly unimodal distribution and let: 

G = {G : G = (1-e) G + eH where H is an absolutely 
0 

continuous distribution function} where e is fixed in (0,1) • 

Given that the Xi's distribution F(x) can be written Gx(x-~0 ) where 

GxeG , we want to find an estimator for ~O which is minimax for the 

family G , i.e. an estimator which minimizes 

2 max o (G) 
Ge:G 

2 
where o (G) is the asymptotic variance of the estimator if the Xi's dis-

tribution is G(x-~0 ) • 

The next theorem due to Huber (1969) provides a minirnax M estimator. 

Theorem II .10 

The maximum likelihood estimator for the distribution: 
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(1-e:) so (x ) eK(x-x0) X ,:5 x0 0 

f 0 (x) = (1-e:) go (x) xo.!: X ,:5 XI 

(1-e) so (xi) 
-K(x-x ) e I x1 ,.!: X 

where ·s 0 
is the density of G

0 

•x 0 and xi are the end points of 

{x 
go<x> 

< K} 
go(x) 

•K satisfies: 

(I-e:) 
g(xo) g(xi) xl 

s(x) dx) 1 ( K + K + f = 
xo 

is minimax for the family G . 

The next theorem will provide some minimax L-M estimators. 

Theorem II.11 

When G0 and H are symmetric 

with respect to 0 , any efficient L-M estimator for F0 satisfying: 

i) ljJ (x) = x,xe:R , 

or ii) J(t) is symmetric with respect to 1/2 , decreasing in [1/2, 1], 

null in [F0 (x1),I] and ljJ'(x) is an even function decreasing in [O,~)~ 

is minimax for the family G. 

() 

Proof: Without loss of generality assume ; 0 , the estimated parameter, 

is 0 • Under condition i), the estimator under consideration is the 

efficient L estimator for F
0 

and the result is proved in Jaecke1 (1971) 

theorem 3. 
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Under condition ii), 

2/~(f~ J(G(x)) 1/1' (x) dx)
2 

dG(y) 

(2/i J(t)t/1' (G-l(t))dt) 2 

/2 

using the symmetry assumptions. 

For xE[O,x1] , 

G(x) = (1-E) G
0

(x) +E H(x) 

Therefore using the fact that J is decreasing in [1/2,1], 

J(G(x)) 1/1' (x) ~ J(F0 (x))t/l'(x) xe[O,x1 ] 

and using the fact that 1/1' is decreasing in [0,=] , 

hence: 

now since: 

!~ J(F0(x))t/l'(x) dx is increasing in [O,x1 ] , constant y > x
1 

, 
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c 

and the result is proved. 

c 
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Chapter Ill 

A formal theory of L-M location parameters 

In this chapter, the location parameter will be studied as a functional 

defined from a set of distribution functions F into R. 

Section III.l Bickel-Lehmann location parameters 

Definition III.l 

Let X and Y be random variables distributed according to FX and F¥ 

respectively, then 

i) X is stochastically greater than Y ++ Fy(x) > FX(x) xeR , 

notation X> Y s., 

ii) x-b Y = a X + b s. ++ FX (a) = FY(x) xt:R , a > 0 , 

iii) Y = - X s. 

Definition 111.2 Bickel-Lehmann location parameter 

A functional p defined from a set of distributions F (if X is a 

random variable distributed according to F, p(X) or p(F) will be used to 

denote the image of F by p) into R is said to be a Bickel-Lehmann location 

parameter (BLLP) if: 

1) X,Ye:F such that X >Ys.-+ p(X) 2: p(Y) 

ii) X, Yc.P . such that X =-Y s-.-+ p (X) = -p (Y) 

iii) X,Ye:F such that Y = aX+b s-+ p(Y) = ap(X) + b 

where ae:R+ , be:R • 

As pointed out in Lehmann and Bicke1's (1975) theorem 1: 

(3.1) If F is symmetric with respect to e and p is a BLLP, p(F) = e . 



c 

0 

-86-

(3.2) If P{X£[a,b)} = 1 and V is a BLLP, b ~ ~(X) ~ a • 

Definition III.3 L-M location parameter 

Let i) J(t) be a positive bounded variation function defined on 

[0,1] • 

ii) w(x) be an increasing differentiable function defined in 

R 

The L-M location parameter based on J and w for the distribution F, v(F) 

is defined as the solution of: 

r~ J(t) ~(F-1 (t) - e) dt = o . 

In this section we will find what conditions must J and ~ fulfill 

in order for V to be a BLLP. 

For convenience, p is a BLLP on F will really mean p is a BLLP on 

the subset of F in which it is defined. 

One easily checks that p(X) = E(X) is a BLLP on any set F of 

distributions having finite first moment. According to the last statement 

we say v is BLLP on any set F . 

Define: F (x) = F(x) 
a a ' 

F(-)(x) = 1-F(-x)- lim [F(-x)- F(y)] • 
y+-x 

y<-x 

Note that if X has distribution F, oX has distribution F and -X has 
a 

distribution F(-) • 
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Theorem III.l 

Let ~J be an L-M location parameter based on J 0 and W which is a 
0 

BLLP on any set of distributions. 

Assuming: 

i) J 0 (t) > n for te:[l/2 - n , 1/2] for some n > 0 , 

ii) there exists an absolutely continuous, symmetric with respect to 0 

distribution F
0 

having a density with compact support f 0 which is 

non null in {x : 0 < F0(x) < 1} satisfying: 

for any bounded variation function J(t) defined on [O,l], for any 

a > 0 , xe:R , 

d 11

0 
J(t) w(a F-1(t) - a ) dt 

de: xe: e:a 

= ~~ J(t) d w(o F-1 (t) -a ) dt 
de: xe: e:o 

and the last expression is a continuous function for e: in [0,1/2] 

where: 

F = (l-e:) Fo + e:ox X£ 

0 = 1 
X [x,"") 

a = ~J(F (y/cr)) . e:a X£ 

w(x) = sgn(x) lxla a > 0 • 

Note since f 0 has compact support ~J(Fxe:(~))is always defined where ~J is 

the L-M location parameter based on w and J • 
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Lemma III.1 

Let K(t) be an absolutely continuous distribution defined on [0,1] 

which is symmetric with respect to 1/2 , let P be a set of distributions 

and 

P = {K(F(x)) FeP} 
K 

if ~· is a BLLP on PK , then 

~K(F) = ~(K(F)) is a BLLP on P . 

Proof: If X is a random variable distributed according to FX , then ~ 

is a random variable distributed according to K(FX). 

i) X> Y S++ Fy(x) > FX(x) 

since K is non decreasing.hence 

XK > YK s. so that: 

ii) Y = - X s. ~ Fy(x} = 1 - Fx(-x) a.e. 

~ K(Fy(x)) = K(l-Fy(-x)} a.e. 

= 1 - K(F (-x)) a.e. y 

since K is absolutely continuous symmetric with respect to 1/2 . 

Therefore: 
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iii) Y = ax + b s. a > 0 beR 

x-b 
+-+ F (x) = F (-) 

Y X a 

+-+ K(Fy(x)) = K(F (x-b)) and 
X a 

This ends the proof. 

Note that if the distributions in F are absolutely continuous, the 

absolute continuity of K may be removed and the result is still valid. 

Proof of theorem III.l 

Consider: 

i) if t < (1-e:) F
0

(x) 

ii) if (1-e:) F0 (x) < t < (1-e:) F
0

(x) + e 

-1 
F (t) = X 

X£ 

iii) if (1-e:) F
0

(x) + e: ~ t 

So that 1im
0 

F-1 (t) = F-
0

1 (t) hence: 
£ -"" X£ 

since /01 J(t) lji(F-l(t) 
X£. 

a ) dt is a continuous function of e: , 
£ 
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and e0 = 1JJ(F0) = 0 if lJJ is a BLLP, by (3.1). 

Furthermore F-l is differentiable and: 
xe: 

t 
1 = -2 

(1-£) 

t < (1-e:) F0 (x) 

Using the differentiability assumption, for e: small enough 

1 < ) < d -1 ) - _5!_ e ) ,,,, (F-1 (t). - e ) dt = o 
/0 J t de: FXE:(t dE E: o/ XE E 

so that if e: goes to 0 , 

1~ J(t) 
t-ox(F~1 (t)) 

l/I'(F~1 (t)) dt 
-1 

_5!_e 
f 0 (F0 (t)) 

= dE E: 
1~ J(t) l/J'(F-1(t)) dt e:=O 0 

Note that: 



0 

c 

-91-

= (1-e:) F
0 

+ eo • -x 

Repeating the preceding argument with 

(-). 
w = ~J{[(l-e:)F0+e:o 1 'J =- e , 

E X € 

one obtains 

_5Le =/:m J(Fo (-)(y)) (Fo(-)(y)- o~-)(y)) IP'(y) dy 

de: £ t=O/:mJ(FO (-) (y)) lP' {y) dF~-) (y) 

m 
f _mJ (F O (y)) (F O (y) - 0 -x (y)) !p' (y) dy 

= 

Hence: 

== -

differentiating with respect to x: 

(3.3) J(F
0

(-x)) lP' (-x) = J(F
0

{x)) $' {x) • 

Note that the fact that f 0 has compact support implies that the 

preceding integrals are defined. 

Now consider: 
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= 

if y = -u in the second term, one obtains 

using (3.3) and the fact that 

(3.4) 

~~ J(F(y)) w'<Y> dy. 

Therefore if ~j is a BLLP: 

lim 
£ + 0 

lJJ((l-e:) F0+e:{\> 

e:: 

X !
0 

J(F0 (y)) w'(y) dy 
00 

!_
00 

J(F0 (y)) $'(y) dF
0

(y) 

Note that without loss of generality, one may suppose: 

Let: 

te::(l/2-n,l/2] 

Jl (1-t) te:(l/2,1] 
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Thus K1 is an absolutely continuous distribution on [0,1] having 

-1 non null density in [O,l].Hence K1 (t) is an absolutely continuous dis-

tribution function in [0,1]. 

For any set of distributions F , ~J is a BLLP in F -1 = 
Kl 

-1 0 
{K1 (F) : FeF} • USing lemma 111.1 , 

or 

l.lJ (F) 
,2 

-1 = ~J (K1 (F)) is a BLLP in F , ~J (F) is solution of: 
0 2 

and ~2 is an L-M location parameter based on 

J2(s) = 

-1 
Jo(K1 (s)) 

-1 
Jl(Kl (s)) 

and 1/J • 

Note that J 2 is a bounded variation function since 

J 1 { t) ~ m in { n , 

1/2 
1-2111 -n J0 (s) ds 

2 
l-ln } for tE [0,1] • 

Using (3.4): 



0 
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= e: 

repeating a similar argument with: 
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X fo J2(Fo(y)) w'(y) dy 
CO 

f_"'J2 (F0(y)) 1/J'(y) dF0 (y) 

[(1-e:) F
0
+e:o ] , one obtains: xa 

lim 
e: -+ 0 

JJJ {[(1-e:) F0+e:o 1 } 
2 X a 

Since J.lJ is a BLLP 
2 

e: = 

= 

~~aJ2(Fo<~> w'(y) dy 

f:"'J2 (F0 (;)) $'(y) dF0 (~) 

X aJ
0 

J
2

(F0(y)) $'(ay) dy 

/:
00 

J 2(F0(;)) w'(y) dF0(;) 

JJJ {[(1-e:) F0+e:o 1 } = aJJJ {(1-e:)F0+e:o } 
2 

xa 
2 

x 

and: 

X fo J2(Fo(y)) $'(y) dy 
= 1:

00 
J 2(F0 (y)) $ 1 (y)dF0 (y) 

differentiating with respect to x 

J
2

(F
0

(x)) $'(ax) 
= 

/:eo J2(F0(;)) $'(y) dFO(;) 

Therefore: 

X . 
1o J2(Fo(y)) w'(y) dy 

= 
w'{x) 
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and K1 is strictly increasing symmetric 

with respect to 1/2 so that 

For 

(3.5) is equivalent to: 

p(ax) - lji(O) = 
aljl' (ax) 

ljl(x) - lji(O) 
ljl' (x) 

For a fixed x , integrating with respect to o leads 

log (-ljl(ax) + lji(O)) = a log o+C where a > 0 

or ljl(ax) 

so that 

ljl(-a) 

repeating a similar argument with w=-o leads: 
' 

a ljl(a) m lji(O) + c2a for o > 0 , 

and ljl(x) = lji(O) +ksgn(x) lxla • 

Note that 1j1
1 (x) = ljl'(-x) so that (3.3) implies: 

or: J 0 (t) = J 0 (1-t) since F0 is absolutely continuous. 
i 
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+ r~ J 0(t) w(o) dt = o 

Using the symmetry properties the first integral is null so that: 

and $(0) = 0 • Thus the theorem is proved. 

This theorem is a generalization of Bickel and Lehmann's (1975) 

theorem 2. 

Theorem 111.2 

If w(x) = lxla sgn(x) a> 0 and J(t) = J(l-t) for all tin [0,1], 

the L-M location parameter ~ based on w and J defined on any set of 

distributions F is a BLLP. 

The proof of this theorem is an easy consequence of lemma III.l and 

of the following: 

Lemma III.2 

If w(x) = c lxla sgn(x)
7

a > 0 ~H(F) , the L-M location parameter 

based on $ and J(t) = 1 t£[0,1] and defined on any set of distributions 

is a BLLP • 

Proof: 

i) Let FX and FY e F 
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0 X e: R • 

Consider: 

~ inf {x : Fy(x) > t} 

So that: 

Consider: 

Therefore: 

which implies: 

1 -1 pH(X) ~ pH(Y) since !
0 

~ (F (t) - a) dt is a decreasing 

function of a . 

0 ii) if Y =-X s. then Fy(x) = 1-FX(-x) a.e. 
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~(Y) is a solution of: 

or 
OD 

/_
00 

w(x-9) d(l-FX(-x)) = 0 

since Fy(x) = 1-FX(-x) a.e. and w is a continuous function. 

This implies ~H(Y) = - ~H(X) because w is odd. 

iii) if Y = aX + b s. a > 0 b e R ~(Y) is solution of: 

or l oo •1• (x-9) dF (x-a) = 0 
- 00 ~ X b 

or 

or 

since w(ax) = w(a) w(x) if a > 0 ' 

This ends the proof. 

Remark: 1) The preceding theorem shows that there are two ways to 

compute an L-M location parameter for a distribution F: 

i) as the L-M location parameter based on J and $ for the distribution 

F • 

ii) as the M location parameter based on w for the distribution K(F) 

t where K(t) = 1
0 

J(s) ds • 
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2) Note that if J(t) = ~ tt[o,l-o] where 6e(O,l/2) , 

{ -1 -1 P ~e[F (d)JtF (1-o)]} = 1 where~ is a random variable having distrib-

ution K(F) • Using (3.2), 

Hence, 

p(F) -1 -1 = llH(K(F))£ [F (o) , F (1-o)] • 

3) Let 1/l{x) x, XBR ' 

J(t) = { 
l/(l-2o) te[o,l-o] 

0 elsewhere 

K{F) = 

0 

F(x) -o 
1-26 

1 

-1 
x < F {o) 

-1 -1 xg[F (o) , F (1-o)J 

is the a-trimmed version of F. 

The L-M location parameter based on 1/J and J is the &-trimmed mean. 

The corresponding M estimator is the mean of the a-trimmed distrib-

ut ion. 

Yet, note that even if estimating the a-trimmed mean from a random 

sample of a distribution F and estimating the mean from a random sample 

of a a-trimmed version of F , one estimates the same parameter, the two 

estimators have different asymptotic behaviour (assume F is symmetric): 

i) when estimating the trimmed mean of F : 
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2 
where cr

1 

ii) and when estimatin~ the mean of o-trimmed F: 

1 
L(n / 2 (~ - p(F)) 

Section III.2 Robustness 

In this section, two concepts of robustness are investigated. 

The first one, absolute robustness, is a property that a functional 

does or does not possess. Loosely speaking a functional p is robust if 

a small variation in F produces a small variation in p(F) • (See Hampel 

1971). 

The second one, relative robustness, is a tool to compare two 

functionals. Loosely speaking pl is more robust than Pz if given that 

a small variation in F produces a small variation in p2 (F) , the 

pertubation caused to p1 (F) will also be small. This concept has been 

first discussed by Bickel and Lehmann (1975). 

Definition III.4 

A functional p is said to be robust at F
0 

if p is continuous at F
0 

with respect to the Levy (or Prohorov) distance. 

A functional p is said to be robust in a set F if p is continuous at 
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every F0 in F . 

Throughout this section, the following characterization of the weak 

convergence will be used: 

Theorem Ill. 3 

CO 

Let d(•,•) denotes the L~vy distance and {F } 
1 

be a sequence of 
n n= 

distribution functions: 

lim d(F ,F) 
n n 

= 0 ++ F-l (t) 
n 

Proof: · Let first prove -+ 

By definition (see Chung (1974) p. 94): 

a.e. • 

d(F ,F) = inf {e : F (x-e) - £ ~ F(x) ~ F (x+e) + e for all xeR} • n n n 

-1 
Let t£(0,1) be a continuity point of F and choose o > 0 such that 

1 o < 2 min (t,l-t) • Using the assumption there exists n 0eN such that: 

n > n 0 -+ d(Fn,F) < o so that: 

F(x-o) - o .sF (x) ~ _F(x+o) + o • 
n 

-1 
Taking x=Fn (t) 

Hence: 

> F (F-l(t)) - o 
n n 

~ t-o since F is right continuous. 
n 

F-1 (t-O) = inf {x : F(x) > t-<Sl • 
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Using the symmetry of ;;he Levy dis!:ance Y'ields: 

Since -1 F is continuous at t: 

-1 
F is continuous a.e. being an increasing function, so that 

a.e. 

To prove the converse, the following criterion for weak convergence will 

be used (see Chung (1974) p. 87) 

(3.6) 

lim d(F ,F) = 0 ++ 
n 

n 

~eCK lim /R~(x) dFn(x) = /R~(x) dF(x) , 
n 

where CK is the set of continuous functions~th compact support. 

Let X be a random variable having distribution F , and T be a 
n n 

random variable having the U[O,l] distribution. Using lemma II.l, X and 
n 

F-1 (T) have the same distribution and: 
n 

Let ~eCk ·There exists MeN such that !~(x)l <M, xeR and 
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-1 tjJ (F ( t) ) a . e. 

so that the Lebesgue dominated convergence theorem may be used and: 

hence, 

proved. 

-1 
/[O,l]tjJ(F (t)) dt 

= 1 RtjJ(x) dF(x) , 

using the criterion (3.6), lim d(F ,F) = 0 and the theorem is 
n n 

In this section, robustness properties of L-M location parameters 

which are BLLP will be investigated, therefore assume: 

·J(t) = J(l-t) t£[0,1] 

·w(x) = c sgn x lxla + ce:R 

Theorem III. 5 

a > 0. 

An L-M location parameter is robust in any set F if and only if: 

(3.7) J(t) 0 te[5,1-o] where oe(O,l/2) • 

Proof: Suppose that there does not exist any o such that (3.7) is 

satisfied, let 

a = /1 1 J(t) dt , a > 0 ne:N • n 1- /n n 

Suppose 

tjJ(x) = sgn x lxla a > 0 , 

let: 
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X~ 0 

X < 0 

0 X < 0 

1 
1- /n 0 

1 
< x < (-1-) la 

a 
n 

1 
1 

(_!_) /a 
a 

n 

lim d(F ,F) = 0 and 
n n 

0 
1 0 < t :s 1 - -
n 

1 
(_!_) /a 1 - l < t < 1 
a n 

n 

p(F ) is solution of: 
n 

1~ J(t) ~(F~1 (t) - e) dt = o . 

Note that if Xn is a random variable having distribution Fn 

P(X e[O,(~)a]) = 1 so that: 
n a 

n 

the solution of the last equation is in [0, (a1 ) Cl] , therefore ~(-e) =-a Cl 

n 
and 
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Hence ~(F ) is solution of: 
n 

1 
a ((~) /a! - l)a - (1-a ) = 0 

n a e . n 

++ 

~(F ) n 

n 

1 1-a 1/ 
(~) la.!- 1 = (--n) a 
a e a 

n 

= 

= 

n 

1 
(~) la. 
a n 
1 1-a /a 

(--n) + 1 a n 

1 1 
[(1-a ) /a+ a /al-l 

n n 

As n + eo , a + 0 and 
n 

lim p(F ) = 1 • 
n n 

So that 1.1 is not robust at F • 

and 

CIO 
Conversely, let {F } be a sequence of distribution functions con-

n n=l 
verging weakly to F • 

Without loss of generality assume o is a continuity point of F • 

Using theorem III.4, F-1 (1-o) and F-1 (o) 
n n 
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0 
converge to F-1 (1-o) and F-1 (o) respectively, so that there exist M and 

n1 in N such that 

Using the remark at the end of section 111.1 , 

Therefore there exists a convergent subsequence, 

satisfying 

Consider 

There exists n
2 

> n
1 

such that for te[o,l-o] and n(k) > n2 

and using dominated convergence 

1 -1 
I 0 J(t) 1/I(Fn(k) (t) - ll(Fn(k))) dt converges to 

f~ J(t) 1/I(F-1(t) - Y) dt , 

and 

ll (F) == Y • 

Therefore all converging subsequences converge to }.I(F) • This implies: 

0 
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lim p(F ) = p(F) 
n 

n 

and the theorem is proved. 

Intuitively P1 is more robust than P2 if{P2 (Fn» converges to P2(F) 

implies{p1 (Fn»converges to P1 (F) • As exemplified in the next page 

{p(F )} may converge to p(F) fortuitously, take a in (0,1) and let: 
n . 

P(X = x) = 
n 

The dist:t:4.bution F n of ·x ... tends to: 
.·?.}).:·.,, 

F(x) • ( 

0 X < 0 

1 X ?! 0 

as n -+- oo • 

2 x = -n 

x = n • 

P (F ) , the M location parameter based on $(x) = sgn X lxla , is the a n 

solution of 

We want to solve the following equation: 

(3.8) 1/ a 1 l+a a 1 1-a 2 a (1-( n) - ( /n) . ) w(e) - (1-e/n) + ( /n) (1-e/n ) = 0 
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for a = 0 I the LHS equals: 

-1 + (1/n)l-a < 0 for n > 1 . 
for 9 = 2 

' 
the LHS is bigger or equal than: 

for n big enough. So that 

and as n ~ m , equation (3.8) becomes: 

1/J(9) - 1 = 0 • i.e. 

and lim ~ (F ) = 1 a n 
n 

while lim ~1 (Fn) = 0. 
n 

e = 1 , 

Hence {~~ (F )} does not converge top (F) while {~1 (F )} does. 
~ n a n 

Therefore a "naive" definition of relative robustness would lead to 

noncomparability for ~a and ~l when intuitively pa is more robust than 

~1 for a < 1 . 

The following approach is suggested. If one is able to find a 

reasonable condition, C(~) say, on a sequence {Fn}:=l of distribution 

functions such that: 

{F } fulfills C(p) implies {~(F )} converges. 
n n 
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Then define: ~l is more robust than ~2 if {Fn} fulfills C(~ 2 ) implies 

{Fn} fulfills C(~ 1) . 

If ~(X) = E(X) , such a condition is known: 

is uniformly integrable then 

{~(F )} converges. 
n 

(see Billingsley (1968) p. 32). 

Definition III.S Uniform integrability 

if the sequence {F } 
n 

A sequence {F } of distribution functions issaid to be uniformly 
n 

integrable if 

This is the same as: 

l.im 
M~ 

- ~(F (•,M)) + ~(F (~,M)) = 0 
--n n 

uniformly in n , where: 

F(x,M) X < 0 

0 ::; x :$. M 

X> M 

F(x,M) = 
( F(x) 

X :f -M 

F(-M) -M < X < 0 

1 X> 0 

This suggests the following: 
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Definition III.6 ~ uniform integrability 

A sequence {F }~ of distribution functions is said to be ~ uniform­
n n=l 

ly integrable if: 

i) 

ii) 

{F } converges weakly 
n 

lim p(F (•,M)) -~(F (•,M)) = 0 uniformly inn • 
M+~ n -n 

In the general case, the conditions on ll are too weak to prove {F } 
n 

is ll uniformly integrable implies {p(F )} converges. We shall therefore 
n 

restrict ourselves to the L-M case. 

Let ll be an L-M location parameter based on J and ~· If ll is robust, 

J(t) = 0 t£[o,l-o] for a given o£(0, 1/2) so that if M> max {jF-1 (o/2)1 , 

p(F (•,M)) = p(F ,M)= 0 for n big enough and every sequence 
n -n 

{F } converging weakly is ll uniformly integrable. 
n 

Theorem III.4 Let ~be an L-M location parameter based on J and ~ , if 

{Fn}:=l is a p.unifo.rmly integrable sequence converging to F then 

converges to p(F) • 

Proof: t Let K(t) =!
0 

J(s) ds • 

Notice that: 

K(F (• ,M)) = K(F) ( • ,M) and 

K(F(• ,M)) = :K(F) (• ,M) • 

Hence a sequence {F } is ll uniformly integrable if and only if n 
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{K(Fn)} is ~H uniformly integrable where ~H is the M location parameter 

based on ~ • Therefore it suffices to prove the theorem with ~ replaced 

This will be an easy consequence of the following result: 

{Fn} is PH uniformly integrable if and only if: 

(3.9) 

uniformly in n • 

Suppose {Fn} is ~H uniformly integrable, pH(Fn(•,M)) = en satisfies: 

(3.10) ~(9 ) F (M) • 
n n 

Using the ~H uniform integrability of {Fn} for any e > 0 there exists 

M
0

e:N such that: 

M > MO ..,.. I en I < e ne:N • 

There exists M1 = M1 (~) , M1 > M0 , such that: 

Hence (3.10) leads, for M > M1 , 

Using a similar argument with J.!H(!u(•,M)), the first half of statement 

(3.9) is proved. 
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To prove the converse, note that (3.9) is equivalent to: 

lim !jw(x-e)ld F (x) = Omrl£ormly inn for any 6 > 0. This 
M n 

{ lxi>Ml 

implies that for any continuity point M of F , M > 0 , 

lim /Rw(x-6) d Fn(x,M) = /Rw(x-e) d F(x,M) • 
n 

Hence, for such M , 

(3.11) lim llH(Fn.(•,M)) = llH(F(•,M)) . 
n 

Using Billingsley's (1968) theorem 5.3 : 

lim inf /{lxi>M}Iw(x)ld Fn(x) ~ /{jxi>M}Iw(x)ld F(x) 
n 

so that 

Now, 6=1JH(F(•,M)) satisfies: 

or, since a ~ 0 ' 

and lim llH(F(•,M)) = 0 • 
M 

Using that last result and (3.11), there exist M2=M2(E) and nE=nE(M2) in 

N such that: 
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n > n£ , M > M2 imply: 

And one concludes: 

lim ~H(F (•,M)) = 0 uniformly for neN • Using a similar 
M n 

argument with ~H(F(•,M)) proves statement (3.9). 

Note that statement (3.9) may be generalized to the L-M case: 

Corollary III.l 

{Fn}:=l is ~ uniformly integrable if and only if: 

uniformly in n • 

Proof: {Fn} is ~ uniformly integrable if and only if K(Fn) is ~H 

uniformly integrable, i.e. if and only if: 

uniformly for nEN • 

Let T be a random variable defined on [0,1] having distribution K , 

F-1 (T) has distribution K(F ) so that n n 
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and the corollary is proved. 

Theorem III.4 insures us that as far as L-M location parameters are 

concerned, the following definition is consistent. 

Definition III.7 

Let ~l and·~2 be two location parameters, ~lis said to be more 
~ 00 

robust than ~2 if {Fn}n=l is ~2 uniformly integrable implies {Fn}n=l 

is also ~l integrable. 

Note that if ~ is a robust L-M location parameter, ~ is more robust 

than any L-M location parameter using the remark after definition III.6 • 

Theorem 111.5 

Let ~l and ~2 be two L-M location parameters based on J 1 and ~l , 

J2 and ~2 respectively (note that ~i(x) = sgn x lxl
0
i, i = 1,2) • ~lis 

more robust than ~2 if a2 ~ a
1 

and if there exists£ in (0,
1
/2) such that: 

where K.(t) 
1 

Proof: 

Let {Fn} be a ~ 2 integrable sequence converging weakly to F and 

consider: 
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Since a
2 

> a1 the last expression is less than or equal to: 

Since 

there exists n such that: 
e: 

a.e., 

n > n + {t:F-1 (t) > jF-1 (1-e:/2)j} is an interval included in 
e: n 

(1-e:, 1] ", hence for n > n 
E 

< 

because K1(t) ,2: K2(t) tE[l-e:,l] and Jli 2 (F~1 (t)) is increasing. 

Using a similar argument for t near 0 , a number M in N can be 

found such that: 

ne:N 

so that {Fn} ~ 2 uniformly integrable implies {Fn} ~l uniformly integrable. 

To end this section, we will prove a partial converse of theorem 

I I I. 4 • 
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Theorem III. 6 
CO 

Let {Fn}n=l be a sequence of distribution functions converging 

weakly to F such that: 

F (0-) = lim F (x) = 0 for any nEN 
n n 

x-+0 

X< 0 

uniformly integrable. 

Proof: The sufficiency of the assumption "{F } is ll uniformly integrable" 
n 

is a consequence of theorem III.4 • We only need to show its necessity. 

Since F (0-) = 0 for any n 
n 

J J ( t) l/1 (F -l ( t) ) d t = 0 for all n in N and M > 0 
n 

and the following has to be proved: 

(3.12) 

for DEN • 

ll (F ) n -- lJ(F) implies n-+oo 

lim fJ(t) l/J(F-1 (t)) dt = 0 uniformly 
M n 

= lJ (F ) , e == lJ (F) , E be a fixed positive number and choose n 
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M
0 

in the following way: 

lim {t : F~'t) ~ M
0

} = {t F-1 (t) ~ M0 } 
n 

• I J(t) w(F-1(t) - e) dt ~ E and MO > e + E 

• x > M
0 

implies: 

1 ljl(x-8-e) 
w(x) 

> -
2 

Using dominated convergence: 

lim /J(t) y,(F-1 (t) - e ) dt = /J(t) w<F-1(t) - e) dt 
n n 

n 

Therefore there exists n1 = n1 (e,M), n1eN such that n > n1 implies 

I/J(t) y,(F-1 (t) - e > dt - /J(t) y,(F-1 Ct) - e) dtl < e n n 

and len- ej < e, 

so that for n > n1 and M > M0 , 

/J(t) w<F-1 Ct))dt < 2 /J(t) w<F-1 Ct> - e ) dt n n n 
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2 { !J(t) $(F-1 (t) - e) dt 

+ !J(t) $(F-1(t) - e) dt JJ(t) $(F-1(t) - e ) dtl 
n n 

:s 4 e: • 

For each n e:{l,2, ••• ,n1} , one can find Mn such that: 

-1 
M > M + !J(t) $(F (t)) dt < 4e: , 

n n 

and (3.12) is proved. 

Note that this theorem is a generalization of the second part of 

Billingsley's (1968) theorem 5.4, and theorem 111.4 is a generalization 

of its first part. 

Section 111.3 Influence Curve 

In this section the concept of influence as introduced by Hampel 

(1974) is discussed. 

Let x1 , x2, ••• ,xn be a set of observed values with empirical 

distribution F 
n The t-M estimate ~(F ) has been computed where ~ is 

n 

any t-M location parameter. An (n+l)th observation x is added. Let Fn+l 
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be the empirical distribution corresponding to x, x1 , x2, .•• ,xn 

"influence of x on J..1 (F )" can be defined as: n+l 

the 

For instance, if J..1 is the mean, the influence of x is equal to: 

-1 (n+l) (x-J..I(F ) ) , 
n 

if J..l is the a-trimmed mean, the influence of x is equal to: 

X S x([on]+l) 

[(n+l)(l-2o)]-l x- J..I(Fn) if x([on]+l) < x < x(n-[on]) 

x(n-[on]) < x 

The influence curve is the asymptotic counterpart of this notion; it 

is a function whose value at x is a measure of n times the "asymptotic 

influence" of x. This leads to the following formal definition: 

Definition 111.8 Influence Curve 

The influence curve of a functional J..l at a probability distribution 

F is defined as: 

IC (F,J..I) (x) = 

where o (y) = 
X 

lim
0 e: -+ 

J..1((1-e:)F+e:o ) - p(F) 
X 

E 

if y < X 

if X :$; y 

Note that the IC (influence curve) of a functional J..1 is nothing more than 

its first Gateaux or Fr~chet "derivative". Von Mises (1947) and Filippova 
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(1962) have introduced these notions in a probabilistic context. 

If P is the expectation, 

Ie (F, p) (x) = x - P (F) , 

if p is the ~-trimmed expectation, 

-1 F (o) - p(F) 

Ie (F,p) (x) = (1-2~)-1 x- p(F) F-l(o) < x ;S F-1(1-o) 

F-!(1-o) - p(F) F-l(l-o) < x 

These re are the limits of n t:imes the function defining the 

influence of the (n+l)th observation for the mean and the 6-trimmed mean 

respectively. 

More generally, if H is any distribution function, 

1im
0 

p((l-e:) F+e:H) - ll(F) =fie (F,ll) (x) dH(x) 
e: ~ e: 

e: • f .Ie (F, li) (x) dH (x) 

measures the influence of the contaminant €H on li (F) since: 

li ( (1-e:) F+e:H) ::: li (F) + e; f IC (F, ll) (x) dH(x) • 

Theorem rn. 7 re of M location parameters 

:\(x) 

If li is an M location parameter based on ~ assuming 

1 -1 = J0~(F (t) - x) dt has a strictly negative derivative at l!(F) , 

re (F,ll) (x) =- ~(x-l!(F))/:>.'(ll(F)) 
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at each point x - v(F) where w is continuous. 

Proof: Let 

and e be the solution of A (e) = 0 . Assume without loss of generality, 
e e 

x > ~(F) • Therefore: 

A (~(F)) > 0 and A (x) < 0 or 
E E 

e e[~(F),x] • 
£ 

So, assuming without loss of generality w(O) = 0 , 

and as £ goes to 0 , A(e ) goes to 0 • Since A has non null derivative 
£ 

at ~(F) , A-l is continuous at 0 and 

Now: 

or 

and as e ~ 0 , 

IC (F,~)(x) =- w(x-~(F))/A'(~(F)) 
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0 
assuming $ is continuous at x - p(F) • 

Remark 

This theorem contains a proof of the existence of the re and provides 

an algebraic expression for that re. The previous theorems on the Ie for an 

M location parameter (Andrews et al. (1972) p. 40~ Hampel (1974)~ Huber (1977) 

p. 14) do not prove the existence. 

The proof of the existence of the re for a general L-~1 location parameter 

is not straightforward. The beginning of theorem III.l contains a proof 

of the next result under very restrictive regularity conditions: 

Theorem rrr.8 IC for L-M location parameter 

Under certain regularity conditkns, the re of p , an L-M location 

parameter based on J and $ is equal to: 

-/~-p(F)J(F(y+p(F))) d$(y) 
re (F,p) (x) = A'(p(F)) + c 

where C is a constant such that 

I re (F,p) (x) dF(x) 0 • 

A formal proof of this theorem would require intricate analysis. 

Furthermore this result has merely an intuitive interest. 

Therefore it will not be proved here. 

Note that: 

0 
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where ~H and ; 0 has been defined in section II.5. So that using this new 

concept, theorem II.7 may be reformulated in the following way: 

Theorem Ill. 9 

Let x
1

,x2 , ••• ,Xn be a random sample from a distribution F , let 

F (x) 
-1 n 

I (x-X.) = (n+l) i~l n 1 

where I(x) = 
{: 

X < 0 

X ~ 0 

Then for any L-M location parameter ~ based on J and ~ satisfying 

the assumptions of Corollary II.8, 

1/2 
n (~(F ) - ~(F) 

n 
0 (1) • 

p 

1/2 A 

So that n (Tn - ; 0) = 1/2 
n (~(F ) - ~(F)) has the same 

n 

asymptotic behaviour as the sum of the influences of the Xi's on ll (F n) • 

This result has been proved in a different context under a lot of 

messy regularity conditions by Filippova (1962). In the location model, 

it has been conjectured by Huber (1972). It legitimates the use of the 

IC as a tool in applied robust estimation. Coming back to BLLP, 

Theorem Ill .10 

If ll is a BLLP then: 

IC (FaX+b , ll) (x) = a IC (Fx,ll)(x:b) 

and 
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IC (F -X'}!) (x) = -IC (FX, ll) (-x) 

= ll((l-£) FX(y-b) + £0 b (y-b)) - all(FX) - b 
a x- a 

a 

= a ll((l-£) FX + £ox-b) - all(FX) 

a 

dividing by £ and taking the limit as £ tends to 0 proves the first 

statement. 

To prove the second, consider: 

dividing by £ and taking the limit as £ goes to 0 ends the proof. 

Note that only properties ii) and iii) of a BLLPhavebeen used. 

The IC has been useful in the M location parameter context to build 

robust and highly robust estimators. Hampel((l974), (1973)). 

Huber's minimax M estimator is the prototype of robust M estimators 

while Hampel's three parts descending M estimator as defined at the 

beginning of section 1!.6 is the prototype of highly robust M estimators. 
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The L counterpart of Huber's estimator, the trimmed mean or in 

general a trimmed L estimator, has been investigated by Jaeckal (1971), 

Bickel and Lehmann (1975) and for simulation Andrews et al.(l972). Yet, 

the L counterpart of Hampel's proposal has never been considered. Figure 

I A) contains the IC of a three parts descending M estimator up to a 

constant. 

A similar graph would be obtained for the IC of the L estimator 

based on the following J: 

let 0 < t 0 < t 1 < t 2 < 112 , define for a > 0 

0 o ~ t < t 0 

1 
- /a t 

J(t) = J(l-t) 
to .s: < tl 

0 t1 ~ t < t2 

1 t2 < t <1/2 

This L estimator is the difference between a trimmed mean and a 

trimmed outer mean. Assuming F is symmetric with respect to 0 , the 

corresponding IC is: IC (F,~) (x} = - IC (F,~) (-x) = 

F-1(1-t
2

) 

F-1
(1-tf) 

F-1 (1-t
2

) 

-1 x xe[O,F (l-t2)] 

-1 -1 xe[F (l-t2),F (1-t1)] 

-1 -1 
- a (x-F (1-t )) 

1 
-1 -1 

xe[F (1-t1),F (l-t0)] 

-1 -1 -1 
- a (F (1-t )-F (1-t )) 0 1 

-1 xe: [F (l-t
0

) ,(X)] 

Figure I B) contains the graph of such a function. The IC obtained is a 

function of the underlying distribution. One should use this "adaptiveness" 
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A) The IC of the three parts descending M estimator. 

:re (x) 

B) The IC of the L analogue of the three parts descending M estimator. 

F{l-t.,) 

r·b-t.t)- F1•-U~F-{t-t~ 

Figure I 
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of the IC to build ''nice" estimators. 

The principle underlying the construction of the next estimators is 

the following: first choose a heavy tailed distribution then design the 

IC in such a way that the influence of the extreme observations is zero 

for this special distribution. 

The distribution used to build LM
1 

, LM2 , LM3 and LM4 , the L 

estimator based on J 1 , J 2 J 3 and J 4 is the Cauchy: 

1 te:[.S,.75] 

J1(t) Jl (1-t) 
1 

-
1
/2.1 te:[. 75, .9] = = /.36. 

0 t£[.9,1] 

1 te:[.5,.75] 

J2(t) = J2(1-t) = 1
/.43 -

1
/5.4 te:[.75,.95] 

0 te:[.95,1] 

1 tE [ . 5, • 7 5) 

0 t€:[.75,.9] 

- 1/3.3 t€[.9,.95] 

0 te:[.95,l] 

1 u:[.S, .9] 

-1 t£[.9,.95] 

0 t [.95,1] 

Note that seen as functionrus, these location parameters satisfy conditions 
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ii) and iii) of BLLP's definition while highly robust M estimators 

satisfy only condition ii); they are not scale invariant. 

Figure II contains, up to a constant, the graphs of LM4 's IC when the 

underlying distribution is normal and t with 3 degrees of freedom, 

Figure III contains a similar graph when the underlying distribution is 

Cauchy. 

(Since the distributions under consideration are symmetric, the IC 

are odd and IC (F,~) (x) has been graphed only for x ~ 0) . 

LM5 and LM6 , the L estimators based on J
5 

and J 6 have been built 

using the t distribution with 2 degrees of freedom, LM7 , the L estimator 

based on J 7 is using at with 4 degrees of freedom. 

1 te:[.5,.75] 

0 te:[.75,.8] 

-
1

/2.25 te:[ .8, .95] 

0 te:[.95,1] 

1 te:[.5,9] 

-1.9 t£[.9,.95] 

0 te:[.95,1] 

1 td .5,8) 

0 te:[.8,9] 

-
1 I .8 t£[.9,.95] 

0 td .95,1] 
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Figure IV contains, up to a constant, the graphs of :r115 ' s IC when the 

underlying distribution is normal, t with 3 degrees of freedom and 

Cauchy (IC(F,~) (x) has b~en graphed for x ~ 0) • 

The last part of this section contains a Monte-Carlo study of the 

previously defined estimators. Each estimator was simulated a thousand 

times from a sample of size 20 for ten sampling distributions. These 

sampling distributions were distributions of the following type of 

random variables: X/Y where X is distributed N(O,l) and Y, the contam-

inating random variable, is positive, distributed independently of X. 

The distributions of Y and the corresponding sampling distributions are: 

Contaminating 

distribution 

a) degenerate Y=l a.e. 

b)~ 
c) Y = {c-l with 

1 with 

d) half normal 

2(Hy)-.5) 

e) uniform [0,1.] 

Remarks 

probability et 

probability 1-a 

Sampling 

distribution 

~(x) 

t with 3 d.f. 

a~(x/c) + (1-a) ~(x) 

Cauchy 

1 1
0 

~(xu) du 

1) The contaminated normal, c) was simulated for 2 values of c, 3 and 

10, and for 3 values of a , .05,.1 and .25. The sampling distribution 

for a given value of a and c is labelled et , eN • 

2) e) was added despite its artificial construction to provide a heavy 
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tailed distribution with an unpeaked center, see Andrews et al. (1972) 

p. 123. 

A variance reduction technique due to Dixon and Tukey (1968), 

Relles (1970) and apparently based on ideas of Fraser (1968) was used, 

see Andrews et al (1972). Here is a brief description: 

Let: x denote the 20 x 1 vector of normal deviates, 

y denote the 20 x 1 vector of contaminating deviates, and 

~ =(xi/yi) is the vector of the observations. 

T(z), the computed estimate, is location and scale invariant 

and T(-z) = T(z). Hence E(T(z)) = 0 and E(T2
(z)) has to be estimated. 

Let: 2 2 = (E xiy.) I (r.y.) 
l.. J. 

given y "' is distributed 2 -1 z N(O,(r.y.) ) 
J. 

2 19-l E(x. -
2 

s2 y. 2) 
J. J. 

2 is distributed 2 
given y sz x19/19 

Define, c(z) the configuration in the following way: 

c(z) = s:
1 

(z - ez) 
z 

where e is a 20 x 1 vector of l's . Note that given y , c(z) 

s; are independent. 

Thus: 

z and 
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E(T
2 (z)) ;::; E(E(T2 (z) iy,c(z))) 

~ ~ ~ ~ ~ 

and 

= 

= 

= 

using the independence property. To obtain the desired variances, we 

2 2 -1 sum T (c(z)) + (Ey.) . Table I contains 20 times the sampling 
- - l. 

variances of the LM estimates for the different sampling distributions. 

It also contains the corresponding variances for the 5%, 10%, and 25% 

trimmed means computed by Andrews et a1.(1972). 

The empirical results are disappointing. LMl, 1M2 and 1M3 are 

equal to 25%, the 25% trimmed mean, minus a trimmed outer mean divided 

by a normalizing constant. These estimates are totally outdone by 25% 

(except LMl for Normal/U). LM4 is the most successful; in gentle 

situation it stands around 5% and 10% but for highly contaminated cases, 

it breaks down rather surprisingly. LM5, LM6 and LM7 are even poorer 

than LMl to LM4. Furthermore LMl - LM7 are completely outdone by the 

Hampel estimates (for Hampel's estimate variances, see Andrews et al. 

(1972)). 

Two reasons are set forth to explain these results: 

0 
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Sampling distributions 

Estimates Normal t3 .05t3N .1;3N .25,3N .05,10N .l,lON .25,10N Cauchy Normal 
u 

LMl 1.48 1.89 1.58 1.68 2.09 1.60 1.82 3.47 5.43 6.48 

LM2 1.31 1. 70 1.40 1.50 1.89 1.42 1.55 2.22 8. 72 8.46 

LM3 1.25 1.65 1.34 1.44 1.84 1.36 1.51 2.28 12.05 11.81 

LM4 1.13 1.67 1.24 1.36 1.90 1.37 1.84 5.51 35.72 37.67 

5% 1.02 1.88 1.19 1.41 2.27 1.23 2.90 14.93 24 35.94 t 
I-' 
w 

10% 1.05 1.68 1.17 1.33 1.92 1.20 1.46 6. 71 7.3 13.60 VI 
I 

25% 1.20 1.59 1.29 1. 39 1. 79 1.29 1.47 2.18 3.1 6.62 

LM5 1.55 2.02 1.65 1. 76 2.18 1.85 2.70 6.73 56.15 33.94 

LM6 1.28 1.94 1.41 1.55 2.16 2.31 4.69 11.18 193.68 161.22 

LM7 1.69 2. 77 1.88 2.12 3.06 4.20 10.66 30.15 *** *** 

Table I 

20 times the variances of the estimates 
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1) The normalizing constants 

The IC of Hampel's estimates is equal to: 

cr(F)~(x/a(F))/E(~'(X/a(F))) 

where X has distribution F and cr(F)=(F-1 (3/4)-F-1 (1/4))/(~-l(3/4)-~-l(1/4)), 

E(~'(X/cr(F))) = {P(Ix/cr(F)IE[O,a])- P(IX/a(F)Ie[b,c])a/(c-b)} 

is the normalizing constant. Here are these constants for Hampe1's 

estimates considered by Andrews et al.(1972) in three sampling 

situations: 

a b c Normal t3 Cauchy 

2.5 4.5 9.5 .98 . 93 • 78 

2.2 3.7 5.9 .96 • 88 .72 

2.1 4. 8.2 .95 • 89 .76 

1.7 3.4 8.5 .89 . 84 .72 

1.2 3.5 8 .74 .76 .64 

For the LM's estimate, the IC is equal to: 

X ! 0 J(F(x)) 1 dx/!0 J(t) dt 

The normalizing constant is !~ J(t) dt. For the estimates in Table I 

these constants are: 

c 
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EstimAte constant 

~1 .36 

~2 .43 

~3 .47 

~4 .7 

5% .9 

10% .8 

25% .5 

~5 .37 

~6 .61 

~7 .42 

The normalizing constants for the L estimates are generally smaller 

than the ones for the M estimates in all sampling distributions. To 

robustify L estimates, the price paid on the normalizing constants is 

bigger than for the M case thereby increasing the effect of the influential 

observations on the estimates. 

2} Non normality 

To explain the discrepancy between the LM's variances and the 

trimmed variances, in vigorous situations, note that the influence 

theory is asymptotic. The weight functions of the ~ estimates are very 

discontinuous, this may decrease the rate of convergence to the asymptotic 

situation in highly contaminated cases. The fact that, in the Cauchy 

and Normal/U cases, the variances increase with the absolute value of the 

weight given to the extreme observations support this statement: 
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LMl gives weight -1.33 to x(18) 

LM2 " " - .43 to x(19) 

LM3 " 1.1 - .61 to x(l9) 

LM4 " " -1.44 to x(19) 

5% 11 11 1.11 to x(19) 

10% 11 " 1. 25 to x(18) 

25% 11 11 2 to x(18) 

LM5 " 11 -2.75 to x(19) 

LM6 11 11 -3.11 to x(19) 

LM7 11 11 -4.28 to x(19) 

Append~x I contains a listing of the computer program used in this 

section. 
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Chapter IV 

Two orderings of distributions 

In any estimation procedure, the performance of a certain estimator is 

mainly a function of the tails of the underlying distribution. In the 

location model the Princeton Simulation Study, Andrews etal. (1972), for 

finite samples and Bickel and Lehmann (1975), Rivest (1976) for infinite 

samples support this statement. Mosteller and Tukey (1977) have pointed out 

that for real data, the most important deviation from normality is the 

behaviour in the tails of the underlying distribution. 

In this chapter, two methods for the classification of distributions 

will be discussed. 

The first one has been introduced by van Zwet in 1964. van Zwet's 

ordering is based on F-1 , the inverse of the distribution function. 

The second ordering has never been defined as such. In this context, 

G is bigger than F, if G can be regarded as the distribution of XY where 

X and Y are independent random variables and X has distribution F. This 

method has been used at the end of Chapter III to generate distributions 

with tails bigger than the normal ones. 

Section IV.l a unimodality 

In this section, a generalization of Khintchine (1938)'s concept of 

unimodality introduced by Olshen and Savage (1970) is discussed. t-J'e will 

characterize the distributions of the following type of random variables: 

1 
U /ay 

0 
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wlwn· uo is a uro,l] random variable and y is any random variable dis­

tributed independently of u
0 

. 

Definition IV.l a Unimodality 

A distribution function F is said to be a unimodal (a > 0) if F has 

a well defined density f(x), except may be at a point a in R, satisfying 

f(x)/(x-a)a-l is decreasing x > a , 

f(x)/(a-x)a-l is increasing x < a. 

Remarks 

1) For a=l, this is analogous to standard unimodality as defined by 

Gnedenko and Kolmogorov (1954) p. 157. 

2) If F is a
0 

unimodal, F is a unimodal for any a .<: a.
0 

• 

3) Without loss of generality, assume that f is right continuous so 

a-1 
that f(x)/(x-a) is right continuous except maybe at a. 

Example 

Let: 

1 
f(x) = r(a) 

Qa. a-1 -Sa 
~ X e X > 0 , 

then F(x) = 1~ f(x) dx, the Gamma with parameter a and 8 , is a unimodal 

(taking a=O) . 

Theorem IV.l 

F is a. unimodal if and only if: 

M(x) = F(x) - (x-a) f(x)/a. 
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is n distribution function. 

Proof: Assume without loss of generality a 0 . 

Define for t < 0 

and for t > 0 

h f t f were 0 = (O,t] . 

Suppose first that f is a unimodal~ it suffices to prove 

--1 Vl(t) 
M(t) 

v
2

(t) 

t < 0 

t > 0 

By definition 

t )a )/( a-1 = lim f M(-x df(x a(-x) ) 
M -

Consider: 

integrating by parts leads: 

F(t) - F(-M) - tf(t)/a -Mf(-M)/a • 

In order to prove v1(t) = M(t) , t < 0 and v1 (-oo) 0 • one has to show: 
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{4.1) M1im M f(-M)/a = 0 . 
-+ 00 

Since f is a density, for any E > 0 , there exists M such that 
£ 

or: E > 

-M 
£ 

M> M£ implies !_M f(x) dx < E 

-M a-1 f E(-x) f(x) dx 

-M (-x)a-1 

a-1 0 Note that lim f(-M)/M = 0 (otherwise, f f(x)dx = oo) and (4.1) 
~-+ oo -oo 

is proved. The same way, it is shown that: 

(4.2) M
lim Mf(M) = 0 .. 

-+oo 

Consider for t > 0 

Integrating the RHS by parts leads: 

F(t) - F(e) - tf(t)/a +d(e)/a 

In order to prove v2(t) = M(t) , t > 0 and v2 (oo) = 1 , one has to show: 

(4.3) lim E f(t:) = 0 . 
E -+ 0 
£ > 0 

Since f is integrable, for any n > 0 , there exists EO such that £ 

in (0,£0) implies: 
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n > !~ f(x) dx 

Therefore (4.3) is proved. A simiiar argument would show that: 

(4.4) lim e:: f ( e::) = 0 • 

£ -+ 0 
£ < 0 

Note that since f is right continuous M(x) is right continuous except 

maybe at 0 , but (4.3) implies that M(x) is right continuous at 0 . 

Since (4.2) implies v2(oo) = 1 the first part is proved. To prove 

the converse note that if x > y > 0 

therefore if M(x) is increasing, so are v
2

(x) and v
1

(x) , hence 

a-1 · 
f(x)/(-x) increases in (-oo, 0) 

and f(x)/xa~l decreases in (O,oo) and f is a unimodal. 

Remark 

1) Gnedenko and Kolmogorov (1954) p.l57 proved the theorem for a=l • 

An alternate proof of theorem IV.l may be derived using their result and 

the fact that if X is a unimodal (X-a)a is unimodal. 
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Theorem IV.2 

The following statements are equivalent: 

i) F is a unimodal with respect to a, 

ii) let u
0 

be a random variable uniformly distributed in [0,1], there 

exists a random variable Y distributed independently of u
0 

such 

that: 

1 
a + u

0 
/a(Y-a) has distribution F , 

iii) jF-1 (t) - ala is convex in [Otl] . 

Proof: Assume without loss of generality a = 0 • 

To prove i) + ii) let Y be a random variable having distribution 

M(x) . For x > 0 

(4.5) 

1 1 
P(U

0 
/a Y ~ x) = M(O) + P(UO /a Y E (O,x]) • 

Note that M(O) = F(O) and consider: 

/

00 

F(a) (x/t) dM(t) 
0 

where F(a)(x) = X < 0 

XE[0,1]. 

X > 1 

Then (4.5) is equal to: 

= M(x) - M(O) + xf(x)/a 

F(x) - M(O) • 
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Similarly one shows that the result is true for x > 0 

To prove ii) -+ iii), for x > 0 

F(x) = F(O) + !~ F(a)(x/t) dG (t) , 

for a certain distribution G • Let t
0 

= x/2 ·, for any ~:: satisfying 

CO 

e-1 (F(x+e) - F(x)) = /f-l(F(a)((x+e)/t) - F(a)(x/t)) dG(t) . 
0 

Using the mean value theorem and the fact that f(a)(x) = d~ F(a)(x) 

is monotone in [0,1] for t > t 0 

which is a G integrable function. Applying dominated convergence: 

f(x) = a xa-l /a.> t-a dG(t) . 
X 

Therefore for x > 0 , 

(4.5) 

where t 1 

a-1 ax 
f(x) is increasing or: 

a(F-l(t))a-1 

f(F-l(t)) 
is increasing in (t1,1) 

-1 
inf {t : F (t) > 0} • Integrating the last expression we 
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obtain that: 

For x < 0 

F(x) = ! 0 (1-F(a) (~)) dG(t) , 
-eo t 

using a similar argument, one shows that: 

f(x) 

and 

-1 a-1 (4.6) - a(-F (t)) 

f(F-1 (t)) 

-1 a 
is increasing so that (-F (t)) is convex 

in (O,t
0

) where t
0 

= sup {t 
-1 

F ( t) < 0} • 

To prove iii) -+ i) , note that iii) implies that (4.5) and (4.6) hold so 

i) is true. 

Corollary IV.l 

F is a unimodal if and only if ~ the characteristic function of F 

satisfies: 

where v is any characteristic function. 

Proof: Without loss of generality assume a = 0 • Using theorem IV.2, 

1/ 
F is a unimodal if and only if u0 ay has distribution F, hence: 
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1 
itUO /ay 

= E(e ) 

1 
itU /ay 

E(E(e 
0 lu

0
)) 

where v is the characteristic function of Y . Hence: 

/1 
1 

4> ( t) = v(tu fa.) du ' 0 

let It I 1/a. 
ie du = a.ltl-a. a.-1 

dv V= u V 

Remark: 

Assume a = 0 , note that ~(t) is differentiable as a product of 

differentiable functions. Given ~(t) , v(t) can be found in the following 

way, if t > 0 , 

-a.+l d a "'(t) 
t dt t 'I' 

~(t) + t~'(t)/a. 

Using a similar argument for t < 0 , F is a unimodal if and only if 

v(t) = <f>(t) + t <f>'(t)/a. 

is a characteristic function. 

Note that this condition on <f>, the characteristic function, is 

similar to the condition on F as stated in theorem IV.l . 
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c In the last part of this section, distributions of 

will be characterized. 

Definition IV.2 a unimodality 

A distribution F is said to be a-unimodal (a> 0) if F has a well 

defined density f(x) except maybe at a point a in R satisfying: 

(x-a) a+l f (x) . . ( ) 1ncreases 1n a,oo 

a+l 
(a-x) f(x) decreases in (-oo,a) . 

Example 

Let 

F(x) = f~oo f(y) dy is 1- unimodal (taking a=O) . 

Theorem IV.3 

Let X be a random variable having an absolutely continuous 

- -1 distribution F, F is a unimodal if and only if the distribution of (X-a) 

is a unimodal. 

Proof: Assume a=O • 

c 
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(F(O) + 1 - F(x-
1

) X > 0 

(4. 7) P(X-l .$ x) = 

F(O) -1 
X< 0 • - F(x ) 

The density of 1/X is: 

Therefore, if x > 0 

is a decreasing function of x since F is a unimodal. For x < 0 , a 

similar argument proves that the distribution of X-l is a unimodal. The 

converse is proved the same way. 

Remark 

The assumption F is absolutely continuous implies that (X-a)-l f oa 

with probability 1 • 

Theorem IV.4 

Let F be an absolutely continuous distribution. The following 

statements are equivalent: 

i) F is a unimodal, 

ii) 
-1 M(x) = F(x) +a (x-a) f(x) is a distribution function, 

iii) If u0 is a U[O,.l] distributed random variable, there exists a 

random variable Y independent of u0 such that: 

_1/a 
a+ u0 (Y-a) has distribution F, 
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iv) -1 -a IF (t)-al is convex in(O,t0), (t0 ,1) for a certain t 0 dO,l] and 

Proof: Assume a = 0 . 
-1 To prove i) ++ ii) note that X is a unimodal if 

and only if (using theorem IV.l) 

(

F(O) - F(x-1) - (ax)-l f(x-1) x < 0 

G(x) = 

F(O) + 1 - F(x-1) - (ax)-1 f(~-1) x > 0 

is a distribution. If Y has distributionG,l/Y has distribution 

M(x) = F(x) + xf(x)/a 

using (4. 7). 

i) ++ iii) by theorem IV.2. 

-1 To prove i) + iv), take ~O = F (a) • For t > t 0 

or 

-1 -a Integrating we obtain F (t) is convex in (t0 ,1). Similarly, it is 

-1 -a shown that (-F (t)) is convex in (O,t0). To prove iv) + i, one uses 

an argument similar to the one used at the end of theorem IV.2. The 

condition on F-1(0) and F-1(1) implies f(x)~O x e R which is a necessary 

condition to have a-unimodality. 

In the last theorem, the absolute continuity of F allows the use of 

the relationship between a and a- unimodality to obtain a short proof. 
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This assumption is not necessary. Arguments similar to the ones used in 

the proof of theorems IV.l and IV.2 would prove theorem IV.4 without this 

assumption. 

Finally, we will find an expression for the characteristic function 
' 

of an a distribution. 

Corollary IV.2 

F is an a distribution if and only if $ the chracteristic function 

of F satisfies: 

$(t) for t > 0 

where v is a characteristic function. 

Proof: Without loss of generality assume a=O. By theorem IV.S, F is 

a unimodal if and only if 

!jl(t) 

where v is the characteristic function of Y • 

-du = at av-(a+l) dv and 

Now, if v 

!jl(t) = at af~ v-(a+l) v(v) dv • 

Remark: 

Assume a=O • !j>(t) is differentiable as a product of differentiable 
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functions. Given ~(t) , v(t) can be found solving: 

<Xt-(<X+l) v(t) = 

v(t) = ~(t) - t~'(t)/<X fort> 0 

The conclusion of theorem IV.6 holds if and only if v(t) is a 

characteristic function. 

Section IV.2 Applications 

In this section, the results of section IV.l will be used to find 

the distributions of infinite products of uniformly distributed random 

variables. 

Notation 

• GEO (F) if given a random variable X having distribution F, a random 

variable Y, independent of X, can be found such that XY has 

distribution G . 
1 

F(<X) denotes the distribution of u
0 

/<X where u
0 

is a U[O,l] random 
_l,(X 

variable, F<X denotes the distribution of u0 

F(<X)(x) = 

/:" 

X < 0 

xe:[O, 1] 

X > 1 

F (x) = 

{:-
X !S, 1 (X 

-<X 
1 X X > 

• r denotes the Gamma distribution with parameter <X and 1 (X 
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·~(x) denotes the standard normal distribution 

1 1 2 
~(x) = /~00 (2~)- 12e- / 2 y dy 

•tv denotes the t distribution with v degrees of freedom 

t (x) = 1x r((v+l)/2) 
V - 1/ 

CO 2 
<~v) r (v/2) 

2 -l/2(v+l) dt 
(l+t /V) 

•F denotes the F distribution with v1 and v2 degrees of freedom 
vl,v2 

•B denotes the Beta distribution with parameter p and q p,q 

B (x) = 
p,q 

(

0 

x r(p+q) 
:0 f(p)f(q) 

•Wb denotes the Weibull distribution with parameter b 

X :5. 0 

X > 0 

X '< 0 

x£[0,1] 

X > 1 

•{Ui}~=O {V1 }~=0 denote two independent sequences of independently 
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distributed U[O,l] random variables while U denotes a U[-1,1] random 

variable. For posit~ve random variables, the results of section IV.l 

can be summarized as follows: 

Corollary IV.3 

Let F be the distribution function of a strictly positive random 

variable, then: 

i) F'£ 0 (F {a.)) if and only if · 

t a. a.-1 M(t) = -10 x df(x)/(a.x ) 

is a distribution where f is the density of F; furthermore if Y has 

distribution M(t) and is independent of u0 , 

1 
u

0 
fa.y has distribution F , 

ii) FeO(Fa) if and only if 

is a distribution function; furthermore if Y has distribution M(t) and 

is independent of u0 , 

_1/a 
u

0 
Y has distribution F • 

Theorem IV.5 Decomposition of a Gamma distribution 

The random variable defined by: 

lim 
n+oo 

1 n-1 I 
(n+o.) .II

0 
U. (i+a) 

1= 1 

has distribution r (x) • 
a 
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Proof: The density of r is: 
a 

f(x) 
a-1 -x 

x e 

since f(x)/xa-l is decreasing, 

r c.:o 
a 

where u0 and Yo are 

by corollary IV.3. 

n-1 
il.Io 

(F(a)) and 
1 

U /ay 
0 0 

independent and Yo has 

Iterating this result: 

1 
U. /(i+a) y 

1 n-1 

X > 0 

has distribution r a 

density: 

t ·> 0 

has distribution ra(x) where Yn-l is independent of the Ui's and has 

distribution fa+n • Now, 

E(Yn_1/(n+a)) = 1 and V(Yn_1/(n+a)) 
-1 (n+a) 

-1 
hence (a+n) Yn_1 goes in probability to 1 as n tends to oo and the 

theorem is proved. 

Corollary IV.4 Multiplication of Gamma random variables 

k-1 
If {Xj}j=O is a sequence of independent random variables distrib-

uted ra+j/k(x) then: 

knl 11k 
( j=O X j) is distributed fka (kx) 
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Proof 
0) k-1 Let {U } be a sequence of independent U[O,l] random 

i(j) i=O j=O 

variables. Then 

lim n 
n 

~1 u 1
/(i+a+j/k) 

i=O i(j) 

has distribution ra+j/k Since each limit is finite almost surely, 

k~l (li n-IIl U 1/(i+a+j/k))l/k 
j]o nm n i=O i(j) 

1 . n-1 k~l u1/(ka+ki+j) 
= k 1!m nk 1llo j]o (i)j 

Using theorem IV.S the last random variable has distribution rka(kx) • 

Theorem IV.6 Decomposition of a normal distribution 

The random variable defined by: 

lim 
n+m 

is distributed ~(x) 

Proof: Note that if X has distribution ~(x) , jxj has density: 

f(x) 

and 1x1 2 
is distributed r

1 
(x/2) • Hence 

/2 

::: 

< 11m 2(n+l/2) ~rrl u.l/(i+l/2))1/2 
n ~ "" 1=0 1 

lim 
n+m 

X > 0 
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haH the same distribution as lXI • Let Y be a random variable distributed 

independently of X such that P(Y=±l)=l/2 , Ylxl has distribution ~(x) . 

Now YU
0 

is distributed as U and the theorem is proved. 

Remarks 

1) Note that the double 

corollary IV.4 (with a=1/2 

exponential distribution is in 0 (~) . 
1 

' k = 2) 12ixllx2 
12 

is distributed rl 

Using 

, where 

x
1 

, and x2 are independent 

respectively. Hence 12 x
1 

random variables distributed~ and r
1 

1 
x2 12 is distributed double exponential. This 

technique has been used in Andrews et al. (1972) to generate the double 

exponential from the normal distribution. 

2) Let X be a r distributed random variable then Y(X/a)a has density: 
a 

-1 h (x) = [2f(a+l)] exp ( x 
a 

1 
/a/a) XER 

and its representation as an infinite product is: 

lim 
n 

The next corollary is an easy consequence of theorem IV.5 and IV.6. 

Corollary IV. 5 Decomposition of a t ., an F and a .W distribution 

Let veN , then: 

U V 

is distributed tv • 



c 

c 

-158-

is distributed F 
"'1' "'z . 

Let b > 0 then 

is distributed wb • 

The following corollary gives a relation between two Weibull 

distributions when the parameter of one distribution is a multiple of 

the other. The proof is a direct consequence of corollary IV.4 

Corollary IV.6 

k-1 
Let {Xi}i=O be a sequence of independent random variables such 

that Xi is distributed r 1 +i i=O,l, ••• ,k-2 and ~-lis distributed 
. /k /k --k 

wkb then: 

~-1 
k-2 
i~O 

Theorem IV.7 Decomposition of the Beta distribution 

Let p and q be positive numbers,define: 

1 
Yi = { U I (i+q) with probability 

1 with probability 

1-(i+q)/(i+p+q) 

(i+q)/(i+p+q) 

.., 
then i~O Yi has distribution Bp,q 

Proof: Let x1 be 

is independent of 

distributed r + • If x2 has distribution B and x2 p q p,q 

x1 then x1x2 has distribution rp To prove this 

result, one uses the fact that if Y1 and Y2 are dis'tributed rp and rq 
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respectively, then Y
1

/(Y
1

+Y2) is distributed B independently of p,p+q 

Now if a< 8 , F(a) € O(F(S)) and u
0

1
/S Y is distributed F{a) where 

Y has distribution: 

0 ::; t < 1 

M(t) = 

1 t 2: 1 

0 ::; t < 1 
= 

t > 1 

Therefore if 

with probability 1 - (i+p)/(i+p+q) 
V = .:.i 

with probability (i+p)/(i+p+q) 

Y U 
1

/(i+p+q) d V 
1
/(i+p) h h d. .b . i i an i ave t e same 1str1 ut1on, and 

li nrrl u 1/(i+p+q) y 
m n i=O i i n 

is distributed r . Reordering the random variables: p 

(lim n n1·~ol U1.1/(i+p+q)) .ITO Y. 
n P 1 

has distribution r p 

(X) 

Now, x1 x2 and x1 illo Yi have the same distribution. Since x2 and 



c 

-160-

00 

i~O Yi are bounded random variables, they are determined by their moments, 
00 

using Carleman criterion, Chung (1974) p. 68. Hence x2 and iUO Yi have 

the same distribution. This ends the proof. 

Special cases 

1) For q=l , B = F(p) and if: 
p,l 

1 

{ ~i /(i~) with probability 1 - (i+p)/(i+p+l) 

with probability (i+p)/(i+p+l) 

1 
illo Yi has the same distribution as u0 /p 

2) Bp,l-p is the generalized arc sine distribution (see Feller 1971 p. 

470). If: 

with probability 1 - (i+p)/(i+l) 

= 

with probability (i+p)/(i+l) 

00 

illo Yi has distribution Bl-p,p • If p = 1/2 , IT Y1 has the same distrib-

ution as: 

(Sin 

Remarks 

1) 
a oo 

If X is distributed Bp,q , for any a~ , X and illo Y1 have the same 

distribution where: 

with probability 1 - (i+p)/(i+p+q) 

= 
with probability (i+p)/(i+p+q) . 



-161-

00 00 

2) If .TIO Y. has distribution B ' i~k yi has distribution B . 
1= 1 P,q p+k,q 

3) Therefore: if X has distribution k-1 X has distribution B 
' i~O yi p+k,q 

B , while if X and Y are independent and have distribution B B XY pq p,q p+q,r 

has distribution B + see Rao, (1973) p. 168. p,q r 

Section IV.3 On a new ordering of distributions 

Definition IV.3 Ordering 0 

A distribution G is said to be bigger than F (notation Ge:O(F)) if G 

can be viewed as the distribution of the product of two independent 

random variables, XY where Y is strictly positive and X has distribution 

F. 

Remarks 

1) If Ge:O (F) 

00 

G(x) =!
0 

F(x/t) dM(t) 

for a certain distribution M. 

2) Note that if G (x) = G(x/a) a > 0 ,. G e: O(F) for any a since G is a a a 

the distribution of aXY . Therefore 0 is scale independent. 

3) If F = ~ and 

with probability c 

y = 

with probability 1 - c , 

G(x) = c~(x) + (1-c) ~(x/a) • 
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The set of these distributions G is known as the Tukey model. It has been 

used by astronomer Newcomb to describe distributions with a tail heavier 

than the normal one in 1886. 

4) Let x
1 

, x2 , ••. ,Xn be a random sample from the distribution F(~) 

where a is the scale parameter. Suppose cr is a positive random variable 

with distribution M , then the distribution of the sample is 

CO 

!
0 

F(xt) dM(t) 

and O(F) can be seen as the set of all possible distributions of a random 

sample from F with randomized scale. 

Let 

F = {F : F is the distribution of a random variable X 

satisfying E(lxlct) < co for an a+ O} 

Theorem IV.8 

The relation 0 is a weak ordering in F • 

Proof: The antisymmetry property is the only one which needs a proof. 

Suppose F£0(G) and G£0(F) where F,G£F If X and Y have distribution 

F and G respectively, there exist two positive random variables, U and V, 

independent of X and Y such that: 

ux has distribution G 

VY has distribution F • 

Therefore X and uvx has distribution F . Suppose that for et > 0 ' 

E(lxla) < CO Then E ( I X I r) < "" , re [O,ct] Hence E( (UV) r) = 1, r e[O,a] 

By Cauchy Schwarz inequality, 
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uv 1 a.s. 

and since U and V are independent, 

U c and V = C-l 

where C is a constant. Therefore: 

O(F) O(G) • 

Remark 

Note that this ordering is not complete. 
(1) 

Consider F and F
1 

F(l) has density 

te[O,l] 

elsewhere 

t 2 f(l)(t) is not increasing in (O,m) and F(l) ~ O(F
1

) . F
1 

has density: 

C-2 

t < 1 

t ~ 1 

and f
1

(t) is not decreasing in (O,m) and F
1 

~ O(F(l)). Using a similar 

argument, one can show that F(a) and F
8 

are not comparable. 

The following theorem is a direct consequence of section IV.2 results. 

Theorem IV.9 

i) If Cll > az > 0 r e O(r ) . 
az Cll 

ii) If vl > v2 where vl "z e N , t e O(t ) . 
vz vl 
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v) If a ~ 1/2 H e O(t) (h is defined page 157) . 
a a 

vi) If p1 > Pz > o and 0 < q1 < q2 , P1 - Pz e N 

The fact that if a > S, 

has an interesting consequence. 

Corollary IV.7 

Let He be the distribution of 

1 
(1im C(n) ~~ Ui /a(i))S 

n 

where a(x) and C(n) are functions defined from N in R • Then if s1 > s2 

The second ordering has been first studied by van Zwet (1970). It has 

been used by Bar1ow and Proschan (1966) in reliability theory and by 

Bickel and Lehmann (1975) in estimation. 
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Definition IV.4 Ordering Ov 

If F and G are distributions symmetric with respect to 0 , 

0 (F) = {G : G : G-1(t)/F-1(t) is increasing in (1/2,1)} 
V 

If F and G satisfy F(x) and G(x) = 0 if x < 0 , 

0 (F) = {G : G-1 (t)/F-1 (t) is increasing in (0,1)} . 
V 

As the other ordering, Ov is scale invariant: if F
0

(x) = F(x/cr),cr > 0, 

0 (F) = 0 (F ,..) • 
V V V 

van Zwet's definition is more restrictive, he has defined 

0 (F) = {G : G-l(t) = K(F-l(t))} 
V 

where K is an even convex function such that K(O) = 0 • In the last 

part of this section the relation between the two orderings will be 

investigated. The next lemma will be used to prove theorem IV.lO. 

Lemma IV.l 

(A) Let h1 and h2 be two positive increasing functions defined in [a,b] 

where -= < a < b < = such that 

hi (u) =!~ h~(y) dy,i = 1,2 

then if hi(u)/hz(u) is increasing in (a,b), h1 (u)/h2 (u) is increasing in 

(a,b) • 

(B) Let h1 and h2 be two positive decreasing functions defined in [a,b] 

such that: 
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!~ hi(y) dy +M, M> 0 

and 

then if hi(u)/hz(u) is increasing in (a,b), h1 (u)/h2(u) is 

increasing in (a,b) . 

Proof: See Rivest (1976). 

Note that using lemma IV.l (A), if K is convex, K is increasing and if 

K(O) = 0 , 

K(x)/x is increasing, 

this proves that van Zwet's definition is more stringent than the present 

one. 

Theorem IV.lO 

For any a > 0 , 

i) 

ii) 0 (F ) C 0 v(F ) • a et 

Proof: 

equivalent to: -1 et 
(F (t)) is convex in (0, 1). 

increases in (0,1) and i) is proved. Now, 

F -l(t) = 
a 

-et 
(1-t) • 

Therefore 
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-1 -a Take G e: O(F ) , G (t) is convex in (0,1) , this implies that: 
a 

is increasing in (0,1) or 

-1 

is increasing in (0,1) • Applying lemma IV.l (B) , 

is increasing or: 

G-1 (t)/F -l(t) is increasing. 
a 

This theorem clarifies the relation between 0 and 0 for an 
V 

elementary set of distributions. In more complicated cases, the problem 

is intractable. Bicke1 and Lehmann (1975) have conjectured that 

0 (F) C:: 0 (F) 
V 

provided the one parameter family of distributions F(ax) have densities 

with a monotone likelihood ratio. 

The converse of theorem IV.lO is not true. 

1 
X € [0, /2] 

Let F(x) = 

1 
X E: [ /2,1] . 
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f(x) = 

hence f(x) is not decreasing. Now 

= 

and 

Therefore F £ 0 (F(1)) while F ~ O(F(l)) • 
V 

1 . 
x c ro.· /21 

1 
X £ [ /2,1] • 

1 
t £ [0, /2] 

1 t £ [ /2,1] 

1 
t £ [0, /2] 

Note that theorem IV.lO holds if F(~) and F are replaced by the 
~ 

distribution of $ (U) and ($ (U))-l where U is a random variable 
~ a. 

distributed uniformly in [-1,1] and 

Section IV.4 Decomposition of a stable distribution 

In this section, the following double significance of the Laplace 

transform will be exploited: let X be a positive random variable with 

distribution F , 

f~ e-tx dF(x) 
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can he seen as both: the Laplace transform of X and one minus the 

distribution of Y/X where Y is independent of X and has distribution f l 

Definition IV.S Strictly stable distribution 

A distribution R is strictly stable if given two arbitrary constants 

cl ' c2 and two independent random variables xl ' x2 having distribution 

R , there exists a constant C such that c
1 

x1 + c 2 x2 and C x1 have the 

same distribution. 

For the properties of these distributions see Feller (1971) pp. 169-

176 and Gnedenko and Kolmogorov (1954) pp. 162-171. 

Here only strictly stable distributions will be considered, for 

convenience, they will be called stable distributions. 

Theorem IV.ll Decomposition of a positive stable distribution 

Define 

Y. 
l. I 

Ui-l/a(i+l) with probability L-a 

1 with probability a 

where a e(O,l) , then 

has a positive stable distribution with parameter a . 

Proof: A positive random variable X is stable with parameter a if and 
a 

only if its Laplace transform is equal to: 
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(4.6) 
-ta 

e for a e (0,1) • 

see Feller (1971) p. 448. In section IV.3, it has been shown that: 

Therefore there exists a distribution M such that: 

a 
1 - e-t • I~ (1-e-tx) dM(x) 

or 

Using (4.8) and the unicity of the Laplace transform, X has distribution 
a 

M and if Y is distributed r1 , independently of X , Y/X has distribution 
a a 

Wa • Using corollary IV.5 

n 1/(i+l) 
lim n i~O Ui has distribution r1 n 

and 1 1 
l~m n /a ~~ vi /(ai+a) has distribution wa 

As shown in theorem IV.7 

and if 

y -i 

y -1 u 
1
/(l+i) 

i i 

-1 

( :~ /a(l+~) with probability 1 - a 

with probability a , 

1 
and Vi /(a+ai) have the same distribution. Hence 

1 
lim nl- /a :'iil Y 

n i•O i 
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has distribution M(t) and the theorem is proved. 

Special case 

-1 
If a= k where k E N , using corollary IV.6 with b = 1/k , and if 

k-2 
{X.}. O are independent random variables distributed f . , 

J. J.= 1/k+i /k 

k-2 
Yk <il!o Xik) is distributed W (x) 

a 

therefore: 

-1 k-2 1 -1 k il!o (Xi k)- is positive stable with parameter a = k . 

For k 1 = 2 , if X is distributed r
1 

, /4X has Laplace transform 
/2 

This result is due to Levy (1940). 

Corollary IV.8 Moments of a positive stable distribution 

Let X be a positive stable random variable with parameter a < 1 , a 

then 

r(F-r/a) 
r(l-r) 

r €: (-oo,a) . 

Proof: If Y is independent of Xn and has distribution r 1 then 

X /Y and 1/Y 
a 1 

have the same distribution where Y1 is distributed Wa Therefore 
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and the result is proved. 

Now using the closed representation for stable distributions with 

-1 parameter k , it is possible to obtain a closed representation for a 

stable distribution with rational parameter.· 

Theorem IV.l2 

}p-1 { q-1 Let p , q £ N , q > p > 1 and {Zi i=l Yj}j=l be two independent 

sequences of independent random variables distributed B 
i/q' i(l/p-1/q) 

i=l, ••. ,p-1 and rj/q j=l, ••• ,q-1 respectively. Then: 

. 1 1 
[q/(p) ~~i 2i q/(p)]- /p ri~~ q Yi] - /p 

p/q 
-t has Laplace transform e 

Proof: According to Feller (1971) p. 176, if X and Y are independent 

positive stable random variables with exponent a and e respectively, the 

product XYl/a is stable with exponent aB • 

Let X be a positive stable distribution with parameter P/q, and 

{X1}i=l be a sequence of independent random variables distributed ri/p , 

which is independent of {Y.} and {Z.} . 
1 1 

p-1 -1 -1 [pinl X1p] is stable with exponent p 

Using theorem IV.ll 

p-1 q-1 -1 and [q
1
.U1 q Z.X .. TI q Y.] is 

1 1 1=p 1 

-1 stable with exponent q since z1. xi is distributed r. by the third 
1/ q 

remark following theorem IV.7. Applying Feller's proposition with p-1=a 
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have the same distribution which implies that: 

(4.7) 

have the same distribution. 

distribution r1 • Therefore using (4.7) and the fact that one minus the 

{ P ]
1
/p/ · h L 1 transform of X , distribution of i~l Xip X 1s t e ap ace 

have the same Laplace transform. The unicity of the Laplace transform 

concludes the proof. 

To obtain similar results for the symmetric stable distributions, 

note that if X and X are independently distributed ~(x) and positive 
a 

stable with exponent a(a < 1) respectively 

1 
X X 12 

a 

is symmetric stable with exponent 2a (Feller 1971 p. 176). Hence 

Corollary IV.9 

1) If {Zi} , {Yi} denote the same random variable as in theorem IV.l2 

and if Z is independent of {Zi} , {Y.} with distribution ~(x) 
1 

1 1 
= [ I p-1 ( I )]- /2p q-1 Y.]- /2p 

z2p/q z q P i~l zi q P [i~P q 1 
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2p/ 
-ltl q has characteristic function e 

2) if za has characteristic function 

-ltla 
e a £ (0,2) , 

r 

= 2 '
2
r((r+l)/2) 
r(l/2) 

for any r £ (-l,a) . 

r(l-r/a) 
r(l-r/2) 

Proof: The proof of 1) is a straightforward consequence of the last 

remark. To prove 2), note that: 

r 
E(jzlr) = 2 12 r(.(r+l)/2) 

r(l/2) r > -.1 ' 

and if X is positive stable with exponent a12 a/2 
r 

ECix I 12) = r(l-r/a)/r(l-r/2). a/2 

Section IV.5 Conclusion and remarks 

In the second chapter a unified asymptotic theory of L and M 

estimators has been presented. An important feature of this theory is 

the fact that it is still valid if a parameter is replaced by its 

estimator; this feature has been exploited in section II.6 to derive some 

asymptotic properties of step estimators. It should also lead to a 

satisfactory proof of asymptotic normality for the estimators of the 

scale parameter when the location has to be estimated (see Bickel and 

Lehmann (1976)). 
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In the linear regression model both the M and the L estimators have 

been defined (Relles (1968) and Bickel (1971)) and investigated. To 

introduce theL-M class in this context is of dubious interest. Neverthe­

less an application of the Newton R~hson method to the convergence proofs 

in the regression model should be fruitful (cf Bickel (1975)). 

The ordering of distributi6n functions defined in this chapter contains 

a very wide range of contamination schemes. Its relation to van Zwet's 

ordering deserve a special attention because of the numerous properties 

of the latter ordering (see van Zwet (1970)). Furthermore it should be 

of some interest to make inferences about these orderings (i.e. to test 

if the underlying distribution function of a random sample is bigger (or 

less) than a given distribution function). 

0 
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APPENDIX I 

This appendix contains a listing of the computer program used in 

section III.3. 

CALL RSTART(l294,2h876) 
DC' 5 I I I = 1 , 1 0 0 0 

C GE"4ERA Tl Qr,~ OF TI-'E SAMPU: 
SX=O 
MC=O 
MX=O 
on 10 I=t.2o 
X(l)=RNOI=<(O) 
Y( I)= 1 
IF ( U "'11 ( 0 ) • LT • J • 2 b ) Y ( I ) = 1 ,/ 1 1.) • 
MO=MO+Y(1)**2 
MX=~X+X( 1 )*V( I) 
SX=SX+X(1)**2 

10 X(l)=XCI)/Y(l) 
MX=MX/MO 
SX=(SX-((MX•*2)*M0))/(19) 
SX-=OSORT(SX) 

C COMPUTATION OF THE CONFlGURATIOh 
DO 20 I=lo20 

20 X(l)=(X(I)-WX)/SX 
C DRDERING OF THE CONFIGU~ATION 

DO 30 1=1,20 
M=21-I 
V( I )=XO) 
K=l 
DC' 4 0 I I = 1 t ,._, 

IF (Xllt).CF..v(l)) 6L TC 46 

V( l):X(ll) 
I<.= II 

40 CONTlNIJE 
30 XP<)=X(M) 

C COMPUTATION OF THE LMI ESTIMATORS 
S(l)=O 
5(2)=() 
S(J):O 
DD 50 1=6.15 

50 S(1)=S(1)+Y(l) 
0'] 60 1=3,5 
J=20-l+l 

60 S(2)=5(2)+V(l)+V(J) 
S(3):Y{2)+Y(19) 
LM ( 1 ) = ( -S ( 2) / :i • 1 + S ( 1 ) ) / ( 2 0 *T ( 1) ) 
L~(2)=(-(5(2)+5(3))/5a4+S(l))/(20tT(2)) 
LM(3)=(-(S(3)/3a3)+5(1))/(20*T(3)) 
LM(4)=(-S(3)+S(2)+S(1J)/(~O•T(4)) 
LM(5)=(-(5(2)+S(3)-Y(le)-Y(5))/(2.25)+S(l))/(~C*T(5)) 
L~(6):(-(5(3)*1•9)+S(l )+S(2))/(T(6)*20) 
LM(7):(-(S(1)*1•8)+S(l )+Y(le}+Y(5))/(T(7)*20) 

C CALCULATION rF THE V~PIANCES 
Dd 300 1=1•7 

300 VLM( I ):VLM( I )+LM( I )**2tl/MC 
'5 CONTINUE 
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RNOR(O) denotes a normal deviate, UNI(O) denotes a random number 

chosen in [0,1]. These random numbers were generated by the McGill 

random number generator package Super Duper. 

The T(I) involved in the computation of the LM(I) estimates are the 

normalizing constants (T(l) = .36 etc.). 

The variances contained in Table I page 135 are obtained by dividing 

the VLM(I)'s obtained after 1000 iterations by 50. 

Computations were done in double precision on an IBM 370/158. 


