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ABSTRACT

The asymptotic properties of a new class of estimators of the
1oca£ion parameter are investigated. Each estimator is based on a
weighted sum of the observations. An observation is weighted according
to its magnitude (as for an M estimator) and according to its rank (as

for an L estimator).

These estimators induce a new class of location parameters which is

studied as a set of functionals defined from a space of distribution

functions into R.

Finally, a new ordering of distribution functions is introduced.

Some basic properties are derived using a generalized concept of unimodality.
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On a class of estimators of the location parameter

based on a weighted sum of the observations

Louis-Paul Rivest

RESUME

Dans cette thése on &tudie une nouvelle classe d'estimateurs
du paramétre de location. Chaque estimateur est basé sur une somme
pondérée des observations. La pondération de chaque observation dépend
de 1'ordre de grandeur de cette observation‘(comme pour un M estimateur)

et de son rang (comme pour un L estimateur).

Ces estimateurs définissent une nouvelle classe de caractéristiques
de location. On étudie les différentes propriétés de ces caractéristiques
en les considérant comme des fonctionnelles définies d'un ensemble de

fonctions de distribution dans R.

Finalement, on présente une nouvelle relation d'ordre pour les
fonctions de distribution. On prouve certaines propriétés fondamentales

de cette relation en utilisant un concept d'unimodalité généralisé.

Department of Mathematics.
McGill University
Ph.D. Thesis



iv

Acknoﬁledgements

I wish to express my gratitude to my supervisor, Prof. Harold Ruben,
for his helpful comments and valuable suggestions during the elaboration

of this work..

I am also indebted to Prof. Constance van Eeden for some challenging

discussions.

I wish to thank all the statistics group in the Department of
Mathematics of McGill University, especially Prof. George P.H. Styan, for

their encouragement.

I am grateful to the National Research Council Canada and to 1la
Direction générale de 1'Enseignement Supérieur du Québec for their

financial assistance.

Finally, I want to pay special tribute to Maura Crilly for her
skillful typing and for the patience she displayed towards the errors of

an inexperienced author.



ABSTRACT
RESUME
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter I Estimation of the location parameter

an historical survey

Section I.1
Section I.2
Section I.3

Section I.4

The mean: statistical and intuitive content
Early methods
Modern parametric estimation

Huber's contribution and the actual context

Chapter II  Asymptotic properties of a new estimator of the

location parameter

Section II.1
Section II.2
Section II.3

Section II.4

Section II.5
Section II.6

Section II.7

Two known estimators of the location parameter
Introduction of Gaussian processes

L-M estimator of the location parameter

Asymptotic normality for L-M estimators with

J(t) = 0 tf [8, 1-8], where 6¢(0,1/2)
Asymptotic behaviour of L-M estimators
Step estimators

Asymptotically efficient and minimax estimators

Chapter III A formal theory of L-M location parameters

‘Section III.1

Section III.2

Bickel-Lehmann location parameters

Robustness

ii

iii

iv

10

12

24
36
65

77

85
85

100



vi

Section 111.3 Influence Curve

Chapter IV  Two ofderings of distributions

Section IV.1
Section IV.2
Section IV.3
Section IV.4

Section IV.5

Bibliography

Appendix T

o unimodality

Applications

On a new ordering of distributions
Decomposition of a stable distribution

Conclusion and remarks

118

139
139
152
161
168

174

176

181



Chapter 1

Estimation of the location parameter,

an historical survey

In this thesis, the following problem is investigated: let
Xl s XZ""’xn be a random sample from a distribution F . Suppose

F(x) = G(x—Bx) , the parameter ex is to be estimated.

Section I.1 The mean : statistical and intuitive content

Long before there was any statistical concern on this subject, the
mean was commonly used. Even now, despite the "a la mode" emphasis on

robustness, it still retains its supremacy among all measures of location.

As a consequence, the location parameter and its estimator, the mean,
have usually been singled out. This is exemplified by the early robust
methods implemented to decrease the influence of extreme observations by
rejection of outliers. In this approach, one computes the "mean" without

taking the outliers into consideration.

For the non statistician, the mean is the location parameter. In
day to day life, there are mény examples of fhis identification, for
instance, the final standing of a student is obtained by averaging his
marks,. the average produétidn of goals by a hockey player is a measure of

his ability.

One may tentatively explain such a popularity using the following
arguments: the mean is an easily computable statistic and it has an
intuitive content which is lacking to its modern challengers; it measures

the average performance of the observed random phenomenon. The mean



carries intuitive meaning while most '"robust' estimators do not.

The statistical model which legitimates this approach'is well known:
assume that G is the standard normal distribution, then the mean is the

minimum variance unbiased estimator.

Section 1.2 Early methods

This section is taken out of a paper by Stigler (1973) about the

history of robust estimation.

Before the end of the last century, statistics was not a science in its

own right. The problem of estimating location was left to the experimenter.

In 1763, James Short (an English astronomer) had estimated the sun's
parallax using the average of 3 means (the standard one and 2 trimmed

versions).

In 1852, Benjamin Pierce (a mathematician astronomer) introduced a
test to find outliers. He estimated the location using the mean of the

restricted sample.

The method of least squares was introduced by Gauss and Legendre at
the beginning of the nineteenth century. By the end of that cenfury,
weighted least squares estimates were commonly used. The weight of each
observation dépended upon the experimenter's estimate of the probable

error.

The median and other simple functionsof order statistics were intro-

duced by Laplace and Gauss in the 1810's.



Section I.3 Modern narametric estimation

Traditionally, the estimation of the location parameter has been
linked to the estimation of the scale parameter. The problem investigated
was the following: Xl’ X2,...,Xn is a random sample from a distribution F,
where F(x) = G((x—ex)/ox) in which G is known, Bx and Tys the location

and scale parameter respectively are to be estimated.

The actual approach is however different. Nowadays, when estimating
location one assumes that the scale is known. If, however, it is not
known, and if it is needed for the estimation, one uses a simple estimator,

such as, for example, the interquartile range..

The results discussed in the later part of this section concern only

the location problem, they really are special cases of the locatiom-scale

results originally found.

Assume that 0x=1 , that G is known and has an absolutely continuous
density. The maximum likelihood method, foreshadowed by Gauss (and much

lately by Edgeworth), estimates ex using the value of 6 maximizing:

1 X
i1 8(%-6)

A

where g is the density of G. ex is a solution of:
1 L.y (X.-8) = 0
where y(x) = - g'(x)/g(x) .

This approach requires the use of numerical analysis techniques to

solve (1.1).



In order to find suitable and easily computable estimators, Lloyd
(1952) used the least squares method in the following way:

Let X < X <..< X be the order statistics from the random

(1) (2)

sample under consideration.

(n)

Let U(k) =‘X(k) - ex . Note that the U(k)'s are the order statistics

from a random sample with known distribution G . One computes

E(U(k)) = oy k=1,2,...,n

Cov (U k,2=1,2,...,n .

@’ %) = ke

's, V be the nxn matrix of the v, . 's and

Let a be the vector of the a K

k
1 ]
g( )be the vector of the X(i) s.

E(X( )—a) = ¢ 0 where e is an nxl vector of 1's and

~

-a) =V .
Cov (X( y=®)
The least squares estimator of Gx, éx is the one minimizing:

(yme-e® W Eyma-eo0 .

Using the Gauss-Markov.theorem, this estimator is the best linear

unbiased estimator of ex. One computes:

S R R | _

ex (e 'V g), e Vv (X( ) a) .
and

v = (' Vit

's and a,'s

Much time has been spent computing numerically the Yok X

for well known distributions.

Jung (1958) and Bennett (1952) have studied the asymptotic



approximation of this estimator which had been introduced by Daniell (1920).

They estimatedex using the L estimator éx :

D
]
o |-

(£, TG/ @) X
where J(t) is a function defined in [0,1].
If J satisfies
IEE) = (& - 8 @/ (g (1)) ey ey |

they showed that éx is an efficient estimator.

Estimators based on ranks were introduced by Hodges and Lehmann

(1963), we shall not here consider such estimators.

Section I.4 Huber's contribution and the actual context

Tukey'(1960) initiated the modern preoccupation on robustness.
Tukey posed the following.questinn: "In parametric estimation, the
underlying distribution is assumed a priori to be G, let say, then
using the statistical theory an optimal estimator.for ex can be found;
are the optimality properties preserved if G , the true underlying disf

tribution, differs from Go "

The answer to this question is no: for example, the mean of a

random sample from a contaminated normal behaves very poorly.

Huber (1964) made the first important contribution to the theory of
robust estimation of a location parameter. First he defined the M

estimator of a location parameter in the following way:



let p be a given convex function having derivative ¢y . Then the

M estimator of ex is obtained by minimizing

3. (X
hence, éx is a solution of
n
X - =
i§1 P ( 1 0) 0.

2 . . \ .
If p(x)=x" , the M estimator is the least squares estimator. This estimator
is the analogue of the maximum likelihood estimator, instead of maximizing

the likelihood function, one is maximizing

n _ -
21 e p(xi 0) .

Huber then investigated the following problem: if G is unknown but
lies in a given "neighborhood" of a known distribution G, , say;
under certain regularity conditions he found a minimax estimator for ex s
i.e. an estimator minimizing, in this neighborhood of Go , the maximum of
the "error'". 1In the asymptotic theory of the minimax estimation, the

variance is used to measure the error. The minimax M estimator is based

upon
-k x5x0
- gy(x)
P(x) = 'g—om x0<x5x1
k xl<x

where x, and x, are the end points of the interval {x : |g'(x)/g(x)|<k} .

1

Once this work was completed, the following questions arose: ‘'How

can order statistics be used in robust estimation?", "Are there L



estimators asymptotically analogous to the minimax M estimator?" '"What

is the asymptotic relation between M and 1 estimators?"

Some of these questions were answered by Jaeckel (1971). Jaeckel

found a minimax L estimator for symmetric A if:

0 x<-M
3G = 1 [E - gy /e 1M (8550 2 (gy () Ty MexsH
0 M<x s

the L estimator based on J is minimax for the given neighborhood of G0 .

Note that this L estimator is a trimmed version of the efficient L

estimator for G, found by Bennett (1952) and Jung (1958).

0

Besides these questions, the Princeton Robustness study (1972) high-
‘1lights the fact that minimax M estimators are satisfactory if the con-
tamination of the known distribution was small. In a highly contaminated

situation these estimators break down.

To cope with this difficulty highly robust M estimators were intro-

duced.

The content of this thesis lies in the continuation of these results.

Some pending problems will be discussed in the second chapter: the
asymptotic relation between M and L estimators, the L counter part of
highly robust M estimator will be investigated and a formal theory of the

highly robust M estimator will be developed.



Chapter II

Asymptotic properties of a new estimator

of the location parameter

Section II.1 Two known estimators of the location parameter

The problem under investigation is the following:

Let G be a distribution function and

Gy = {G(x-8) : 6 € R} .

A random variable X, having distribution F in Ge is sampled and we wish

to estimate ex such that

F(x) = G(x—ex)

Let Xl,...,X be a random sample of X and X(l),..., (n) the corres-

pondlng ordered sample.

Definition I1.1 Estimator based on linear combination of ordered statistics

or L estimator

Let J(t) be an integrable function on [0,1] such that fé J(t)de = 1 .

Then
)x()

is an L estimator.

Definition II.2 Huber's M estimator

Let y(x) be an increasing function such that ¥(x) is positive
(negative) for large positive (negative) values of x. The M estimator Tn

is defined as a solution of

21 w(xi-e) =0.



O

C

Definition II.3

Let F(x) be a distribution function and define

Fl(t) = inf {x : F(x) > t} .

Theorem I1I.1

If (1) J(t) is a bounded variation function in [0,1] and J(t) = O
t$ [5,1-8] where 1/2>86>0,

(ii) F—l(t) and J(t) are not discontinuous together,

the estimator

=13 5dox
n n i=]1 " "ntl (i)
is such that
1/2,~0 . 2
L(n (Tn— u)) e N(0,07)

where (i) L(X) is the distribution of X

(1) u = Ié It) Fl(e)de
(111) o% = f% [A(t)]%at - [IéA(t)dt]z

and d A(t) = J(t) d F 1(¢t)
Proof: See Huber (1969) page 129.

Theorem II.2 (Huber (1969) p. 67)

If A(E) = S _¥(x-E)dF(x) is such that
W A =0 ,

(ii) A(Z) is continuous monotone in a neighborhood of EO ,
(1ii) ffm(w(x-g))zdF(x)is finite and continuous at EO ,

the estimator Tn solution of:



- =10-

/2. A 2 2 = 2
1) L(n X(Tn));—;—;N(O,ol ) where gy = f_m(w(x—io)) d¥ (x) ,

2) if furthermore A 1is differentiable at EO and 1if
A (Eg) € (-=,0)

1 -
L(n /2 (Tn—EO))————+N(0,02) where 02 = oi/(l'(go))z

n->ow

Section I1.2 Introduction of Gaussian processes

This section contains a survey of known results about Gaussian

processes which will be used in section II.4.

Lemma II.1

If U is a random variable with a U [0,1] distribution, F—l(U)

is a random variable having distribution F .

Proof: Clear
Therefore if X is a random variable having distribution F, X and

F—l(U) » where U 4is U [0,1] , are identically distributed. Hence an

ordered sample from X, X(l)"°f’x(n) » can be written as

-1 1

F (U(l))’;..fF (U(n)) where U(l)""’U(ﬁ) is an ordered sample from U .

Let U(n)(t) be a stochastic process defined in the following way:

t = —1_4=0,1,...,nH

(n)
u (t) = U(i) nt+l

U(n)(t) = the linear interpolation between the points
i i+1 i i+l

(m' s U(i)) and (ﬁ s U(i+1)) t e (n+1 ’ m) i=10,1,...,n
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where U(O) =1, U(n+1) =1

Let: z® (v) = al/2 (U(n)(t) -t) .

Definition II.4 Gaussian process

A stochastic process with continuous path Z(t) is Gaussian if all the
vectors (Z(tl),...,Z(tm)) where m is finite and tie[O,l] are normally
distributed. The distribution of such a process is specified by E(Z(t))

for all t €[0,1] and cov (Z(t),Z(s)) for s and t in thevunit square.

A Gaussian process satisfying:
(1) E@(t)) =0 t [0,1] ,
(ii) Cov (Z(t),Z(s)) = min (s,t)-st

for s and t in [0,1] is called a Brownian Bridge.

Définition II.5 Weak convergence of a sequence of stochastic processes

Let {Y(n)(t)}:=1 be a sequeﬂce of processes taking values in C[0,1],
the space of continuous functith'hl[O;I] with the sup norm, Y(n)(t) is
said to converge weakly to Y(t) if for any continuous functional q

,defined on C[0,1]:

2™ ()N === T

Thedrem I1.3

The sequence of processes {Z(n)(t)}:=1 previously defined is such
that:

Z(n)(t) Parara Z(t) weakly,

o0

where Z(t) is the Brownian Bridge.

Proof: Huber (1969) p. 115.
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Theorem II.4

Given €>0 , there exist Me in R, n_ in N such that

supn1/2| —.i|<M
i=1,...,n' (1) n+l €

n>n_ -+
€
except on a set of probabiiity € .

The proof of this theorem is an easy consequence of theorem II.3.

H4jek and Siddk (1967) p. 174-184 and Billingsley (1968) p. 102-108

provide some explanations on this topic.

Lemma I1I.2
~ Let G(t) be a bounded variation function in [0,1] then fé Z(t)dG(t)

is distributed N(O,Sz) , where
s? = s 16017 dt - [7g 6(6)de]”

Proof: see Miller (1964) p. 103;104.

Section II.3 L-M estimator of the location parameter

Definition II1.6 L-M estimator of the location parameter

Let: (i) J(t) be a positive bounded variation function defined on
[0,1] such that fé J(t) dt > 0 ,
(i1) y(x) be an increasing left continuous function which is
positive (negative) for large positive (negative)

values of x .

The L-M estimator in based on J and ¢ 1is defined as a
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solution of:

g::y

(2.0) 121 J <n_-li-I) v (x(i)-e) =0 .

Remarks
1) Tn is defined only if there exists 1 e{1,2,...,n} such that

i
J(;;I) >0,

(1i) Since ¢ is not assumed to be continuous nor strictly increasing
equation (2.0) may not have one and only one solution. In those

cases define:

- n i
Tn* = inf {6 : i£1 J(E;i) "/ (X(i) -8) <0},

N n
Tn** = sup {9 4 igl J('ni—l) q} (X(i) - 9) 2 0}

~

and T = aof * + (1-a) T ** where ae[0,1].
n n n

Note that since Y 1is left continuous, the LHS of (2.0) is right

continuous and

n i ~
F213 G Y (X(i) -T) <0,

(iii) If J(t) 1 for all te[0,1], L-M estimators reduce to M estimators,

(iv) If ¥(x)

x XxeR

it

A n i
T, = GE TG 121 TG X

and, in this case L-M estimators are asymptotically equivalent to L
estimators.

Define:
‘::; Cox) = Ié J(t)w(F_l(t)—x)dt .
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The next two lemmas will provide some clues about the behaviour of X .

Lemma II.3

If there exists x, € R satisfying |A(x0)|< ® . then

(1) A(x) is defined for all x in R (eventually A(x) = * «)
(i11) A(x) is decreasing, positive (negative) for large

negative (poéitive) values of x .

This lemma is a straightforward generalization of Huber's (1969)

lemma p. 64.

Lemma II1.4

If b >a in R satisfy:

féJ(t)wa(F-l(t)—a) ldt < » and
1 -1
oI (0) [W(F (t)-b)|dt < »  then

A(x) is finite in [a,b], continuous in (a,b).

Proof: Take xe(a,b) , since Y 1is increasing
WE )0 | < max ([vELe)-a)| , [w@E L(t)-b) |}
< lwELw-a)| + [pEFLE)-b)] .
So that: -
1. -1 ,
[ [WE T (O)-x) [de < =,
and

IA(x)I < o



O
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To prove the continuity take - X4 in (a,b) , for any x 1in [a,b]:

IA(xg) - Ax) ] <
@ PE o=y - vE©-0) a .
-1 ' -1
Since W E () x) - v(EF T ()-0] <

21 [oF L(e)-a) | + |w(EFL(e)-b) |}

and w(F_l(t)—xo) is continuous a.e.dt as an increasing function of t :
xl_;.mxol)\(x) - Ay | =0,

using the Lebesgue monotone convergence theorem.

This ends the proof.

Now on the asymptotic normality of these estimators will be proved.
One has investigated many ways to find conditions as mild as possible

for this asymptotic normality to hold.

For M estimators, Huber (1964), using the Lindeberg Lévy condition
has obtained what one might call the best possible result for this

restricted area.

For L estimators satisfying: J(t) =0 t ¢ [8, 18] for a & (0, 1/2),
Huber (1969) has again obtained the best possible result using the weak
convergence of the Z(n)(t)'s, defined in section II.2, to the Brownian

bridge.

Several attempts have been made in order to prove the asymptotic

normality of general L estimators.
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Jung (1958) proved the result under very restrictive conditions on

J . Recent authors have focussed their attention mainly in two directioms.

First, they were looking for a sum Sn of independent random
variables such that:

v 1/, .2 _ eqs
nl_i);n°° n'2 (Tn - Sn) = 0 in probability,

1/

where fn is the L estimator. Then the asymptotic normality of n™ 2 Sn

is a consequence of the Lindeberg Lévy condition for the Central Limit
theorem. Chernoff Gastwirth and Johns (1967) gave such a proof under
too many regularity conditions. Stigler (1969) (1974) using Hajek (1968)
projection method provided a very elegant proof under reasonable

assumptions.

The second method uses the weak convergence of the Z(n)(t)'s
towards Z(t). Shorack (1969) (1972) proved the result under conditions
more restrictive than those of Stigler (1974). Furthermore applic-
ation of Shorack's (1972) results to this problem requires very stringent

assumptions on J , the weight function.

A new method will be introduced now. First Huber's result for L
estimators with J(t) = 0 t ¢ [6,1-6] will be generalized to L-M
estimators having the same property. Then, using this result it will be
shown that in has the same asymptotic behaviour as a sum Sn of

independent random variables.
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The following two lemmas will be used in the next two sections:
Lemma II.5

If (1) (k)

n n=1 is an R-sequence copverging to 60 N

. . 3 1 -1,1i.
(ii) Xn(X) = & J‘(n+1) v (F (n+1)' X) ,

(iii) - there exists 6(1)5(0,1/2) such that

J(t) = 0,t < §

| @, ’
or (iv) 1lim e P (F_l(t)—x) = 0 for any x in a neighborhood of EO ,
, t>0
(v) there exists 6(2)5(0,;/2) such that

J(t) =0, t > 1—6(2),

or (vi) %iT -t (F—l(t)—x) = 0 for any x in a neighborhood of EO s
_).

then 1im nl/2 (k) - A (k)) = 0.

n > o
Proof: Without loss of generality, assume EO=O . The convergence of kn

implies: for any ¢ > 0, there exists n, = no(e) satisfying:

n>n, > |k |<e.
n

0

Pick 6 in the,followihg way:

a)  (ii1) holds take § = §

@9)
b) (iv) holds and %ig ] (F_l(t)-e) > — o take § = 0
©) (V) holds and Lfm ¥ (F (t)-e) = - = , take § 1n (0,'/2)
small enough such that: ¢(F_l(t)+e) <0 fort <§.
Let: 3By = [,J(t) tel6,1] |
0 elsewhere
(1) 1)
and A (x) , An (x) be the corresponding A and An function with J

replaced by J(l) . We first prove:
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1
/2, 1) =
(2.1) 1im n T ATk ) - A (k) =0

If 8=0 take 61=O , 1f 6>0 take 61 in (0,8) .

For t in [61,1] there exists M0 in R such that

w(F'l(t)-e) > My

If M0 is positive, w(F-l(t) - kh) is increasing positive for n>n, .

If M0 is negative then w(F_l(t) - kn) can be written as the difference

of two positive increasing functions in [F—l(Gl)—e , ®) 3
v = 9 (x) - ¥, ()

where wz(x) = —Mo,xe[F_1(5l)—€ ,®) . Note that if ¢ fulfills assumption

(iv), wl and wz fulfill the same assumption.

Since J(l) is a bounded variation function there exist two

increasing functions Jil) and ng) such that for ts[dl,l] :

Note that:
1Dy = Jil)(t) + |c0|;{3§1)(t) + |egl?

where c0=min {Jil)(dl) s Jél)(Gl) , 0} . Hence it can be assumed that

J{l) and Jiz) are positive increasing.

Therefore it will suffice to prove (2.1) under the following

assumptions:
d) J(l)(t) is positive increasing in [61,1] .

e) Y(x) is positive increasing in [F_l(Gl) - g, ®) ,

If 6=0, take n1=n0 if 8>0 there exists n1>n0 such that
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For n>n1, consider:

APy = 1oy v F L)k at

i
n
i—[n6]+1 i
' n

I

In

né]+1

1

+ S
L1
n

using assumptions d) and e).

J(l)(t) v (F (t)-k ) dt

(1) i ~1,1
IOV FQ - k)

1D ey v #1(e)-k ) at

The I in the previous expression is less or equal than:

_1_n3:-1 (l)
n i=[n6]+l
.l S
“n i-[n6]+1
_ (D,
S k)
In order to prove:
1 .
/2 .. (1)
2.2) | limnsup n (2 (kn) -
one must show: )
1
1im n /Zfl 1
n 1- =

If (v) holds, that is obvious.

enough such that:

(i+1) ¥ (F-l(i+1) k)
G v & Yo - k)
(1) :
Ak )) <0,

J(l)(t) Y (F—l(t)—kn) dt =0 -

Suppose (vi) holds and that ¢ is small

-1
%_1)1{ -t ¢ (F (t)+e) =
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Choose n2>nl in N such that for

t> 1 - j%- , VI-t ¢ (F'l(t)+e) < e .

2
Let M, = sup J(l)(t) , for n > n, :
te[61,1]
1 &) 1,
n'°J 19 (t) ¥ (F "(t) - k) dt
;-1 n
n
1 .
<n /2 M e Il 1 —l—— dt
1 _— V
n
= g M1 .

Therefore (2.2) holds. To prove (2.1) it will suffice to prove:

L o
/2,.(1) (1)
1§m inf n (2 (kn) - An (kn)) 20.

For n > n,, consider:
Wy =t sy v #™hwy -1 ae
i+l

> el @ vaEio - k) a
n

n

" P& vEtd - )

i
n

v

n6]+1

using assumptions d and e) ,

1ol (D) -1, i
2 =[n6]+l (n+l) v (F (n+1) - kh)
(1) l (1) -1, n
k) - <n+1”’ FrE) -~ )

Using assumption (v) or (vi), it is easily seen that:
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lim 1' An -1, n

and (2.1) is true.

The lemma is true under assumption a) or b), suppose c) holds: let

1@y =30y - 3P .

Let A(z) and Aéz) be the corresponding expression for A and An when J
is replaced by J(z) . Pick 62 in (6,1), using an argument similar to the
preceeding one, it will suffice to show that:
1
(2.3) 1 2 /2 0Py -2 @ =0

n

under the following conditions:

£) J(z) is a negative increasing bounded function in [O, 62] s

g) ¢ 1s a negative increasing function in (- » , F 1(62)+e) .

Pick n3 > n2 in N such that

For n > n3 consider:

A(z)(kn) =8 3@y v &l - k) at

§

0
i .
n

(2.4) < Ji1

1Py v # L) - k) dt .

n
Using assumptions f) and g) and the fact that the product of two
increasing negative functions is a positive decreasing function, (2.4) is

less or equal to:

1 |
B8]+l _(2) 1-1 -1,4i-1, n (2) -1 _
. %,1_2 IED) b (F (‘n ) =k )HGIT(R) ¥ (F () - k) de
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- 1
< %-iif] (2)(n+1) v (F I(E%I) - kn)+fd/n 1Py v #F L - k) dt.
To prove:

: 1 1
1lim n /2 fO/n J(t) v (F—l(t) -k)dt=0
n . n

one uses an argument Similar to the one used in the proof of (2.2) with

assumption (iv). Therefore:
lim su nllz(k(z)(k‘) 2Py <o
hSUP : n n n’’ - *
To end the proof, for n>n3 , consider:

A(z)(kn) - fg 1P @y v 7 L) - k) dt

i
n

1P vl - k) at

i
[y
]
'—d

[n6] _ i+1

-1 i+l
é J(n+1

) b (F (n+1>

kn) dt

v
=N

using assumptions f) and g),

- S -
=3P ) - PG Y ET G -y

Using assumption (iv), 1t is easily seen that:

1

lim n
n

12 3ty v 7l ) - k) <

n+1 n+l

Hence (2.3) holds and the lemma is proved.

Note that Ié wz(F_l(t)eE) dt < « in a neighborhood of Eo is a sufficient

condition for assumptions (iv) and (vi) to hold.
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. Lemma II.6

If 1) 'A(EO) =0,

ii) A is continuous monotone near EO ’
1

iii)  the asymptotic distribution of n /2

n i
2 UGEED v Kgyk) -

' = ® is defined by:
)\(kn)} is continuous where {kn}n=1 {kn(g) }n=1 s is defined by

1
a2 -8,

1/2 .
then 1lim P{n )\(Tn) > gl =
n

1im P{n'l/2 ? (J(—-i—-) v (X,,.~k ) - Ak)) <~ g}
o i=1"" ‘n+l (i) m n

Proof: Using the assumption on A ,

lim kn = EO and

for n big enough:

1/2 ~ A
{n )\(Tn)zg}={Tn§kn}.

Using the definition of 'fn , one obitains:

n i ~ .
I, X - T
{iél J(n+1) v ( (1) kn) < 0} ¢ {Tn < kn} , for n big enough

and if € > 0 :

e B i \ ' .
{Tn < kn} c {igl-.](m) 1 (X(i) - kn)‘ e} or:

{n—l/Z 2 J (....1-_) ¥ (X ~ k) -2 (k.)) < -g }
121 n+l (1) n n’” g
c {'En < k } and
_1/2 n i
(7 1) O G b Ky k) = AG)) < - g

D {’f!ns kn} so that if the asymptotic



T

-24-

1 _ )
—/2 _
distribution of n (J (n+1) Q)(X(i) kn) A(kn)) is continuous

the result is true.
Note that for any € > 0 and for any n big enough:

2
/ “k) -2 (k)< - g)

n
210 (ifn + 1) ¥ X (49

12

c {n A (fn) > gl C

dpon
{n ngl(J (1/(n+1)) ¥ X = kn) - A(kn))s -g+el.

(1)

Section I1I.4 Asymptotic normality of L-M estimators with

J(t) =0, ¢t ¢ [§,1-8], where 66(0, 2 .

In this section, we assume J(t) = 0,t¢[6,1-6] . Note that for

te[6,1~6]:

| v ¢H) - o< maxt] v FH@-0]1 a8 - 0
and

I3 @ [ v FH) - 0lat <o xer .
Hence the conclusion of lemma II.4 holds and A is continuous.

Definition II.7

Dealing with asymptotic properties of estimators, the following

symbols will be used. A sequence of random variaﬁkﬁé{xn}:=l is said to be

a o (1) if

) p()
lim X = 0 in probability ,
n n

b) Op(l) if
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limhsup |Xn| is bounded in probability.

Theorem II.5

If 1) o (F—l(t) - x) is continuous at Eo a.é.dt where A (Eo) =0,
ii) ¢ (F_l(t) - EO) and J(t) are not discontinuous together,
11i) A is strictly decreasing near EO
then the L-M estimator in defined as a solution of:
n i
(I I VY (X, - ©) = 0

is such that:

1
D 16 P @) =, N0,

where oi - fé [ACE) 12 dt - [Ié AGE)dt]? and d(A(H)) = J()dy (F L) - £y)

2) if furthermore A is differentiable at Eo , and A'(EO) g€ (- , 0):

0.2

L(n ‘2 (@ -£)) —52 N (0,0 2y here o2 —
[AJ(EO)]

The following iemma is needed:

Lemma II.7

1f (1) J(t) and dl(F_l(t)) are not discontinuous together.,

(ii) w(F-l(t)—x) is continuous at 0 a.e. dt,
(ii1) v{kn}:=l is an R sequence such that

limk =0 ,

n_ll2
i

. 1
then, h_(x(*)) = 3D et T k) - k)

- F D) - k)]

n
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and h (x(*)) = fé x(t) J (£) dv (F L)

are such that:
hn (x(*)) - h(x(*)) goes to O uniformly on the set S

of functions satisfying:

1) sup||x|| < = where ||x||= sup [x(t)]
S te[0,1]

ii) sup qa(x(~)) — 0 if a— 0
S

where q_ (x(-)) = o |x(t) - x(s)|
t-s | <a

]

Proof: Take &' in (0,68) such that F-1 is continuous at 60 = 88 and

lfGO and :

vaE e -, vETa-s) - ®

are continuous at 0 . Since F is a distribution function,'sup||x|| < o
S

and lim kn = 0 , there exist M and n, in N such that:

a 0 0

1

1 -/

n>ny—F 2 2(0) -k e [-,M)]

(t+n
-1
and F " (t) - kn 3 [_MO’MO]

for all t in [6) 1-8"] and for all x(+) € S . Using an argument similar

to the one at the beginning of lemma II.5, we may assume:

a) J(t) is a positive increasing bounded function in [6} 1-6'] ,

b) ¢Y(x) is a positive increasing function in [—MO,MO] .
Define: G(t) = ¢(F-1(t))
G (t) = V@E @) - k) .
n n

For any >0 , there exists ay =_a1(€) ,ua1>0 such that:
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sup q (x(*))<eifa 2a ,
s ¢ 1

there exist a, = az(ex @, > 0 and m = ml(e) such that:

ml—l 1—60

| jEg ICtyyy) Gley,y) = G(E)) - f‘so J(t) d 6(v)| £
and

ml;l ‘ 1—60 .

| Zo T (Glty,) - 6(x)) - s 3(t) dG(t)|<§ ;

. - = — 6 —6
for all partitions § =t; < t; <...< tml 1-8, of [8,, 1 0!
satisfying:
max
0sj<m, |tj+1—tj| <8 -

This is possible since J and G are not discontinuous together. Let:

@y = min{al , az}

m = m(e) , m € N and choose:

60 = to < tl <.iee< tm =1 - 60

such that F_l is continuous at tj and ¢ is continuous at F_l(tj) for all
jef1,2,...,m} and:.

m-1

z - ) -
120 (J(tj+1) J(tj)) (G(tj+1) G(tj)) <€
max |t, .-t | < a.
0sj<m It

Note that almost all t's in [0,1] satisfy the continuity condition using

assumption ii), hence such a choice of tj's is feasible.

Using € , m, @ and the fixed tj's we will prove the lemma.
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Consider{
h (x(+)) = - ozl (g2, + E%, + ED)
n'* =0 g0 Y13 7 P23 T %3
where:
i i tze—i4<t
J nt+l i+l
no_ i ony =
Eyq = EJ(tj) 6 g+ Yj) G, GG}
=5y € (b a2 x () -6 (Ao 4D
2j i h] n'ntl © ° nt+l n ntl Yj
B0 - ek - 50 6. (ha w121 () o ()
33 i ntl h| n ntl ntl n ntl
. v
[n /2 x (t,)]
n _ J , note [x] = entire value of x .
Yy = n+l
k|
The sign of y? is function of x(tj) only, therefore assume
Y? >0 . For j =m1, one should have:
b pX i
i ==:tm—]; §n+15 tm ?

since the three lost terms are bounded, we may omit them.

Let n.e N, n.>n,. such that

1 10
n>n, > Yn < § ~8' for all j
1 3 0
Consider:
n _ i i
Elj - J(tj) z Gn (n+1) - z Gn (n+l)
i n i n
41 S St Yy fy ST CSH T
forn > n

1
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1 1
-7/2 _n n - /2 n
n Ep; < J(tj) Yy o {Gn(tj+1+wj) - G(tj)}

using assumptionsa), b), and the fact that Yg 20 . Now,

’ n —1/2
lim J(tj) Yj n = x(tj) J(tj) and
n,.
1im Gn (tj+l + Yj) - Gn(tj) = G(tj+1) - G(tj)

using the continuity assumptions on the t,'s. Bounding similarly

h|
1
~-/2 n .
n / E1j from.below, one obtains: there exists n, = nz(e,m,tl,tz,...,tm)
n, > ny in N such that:
n > > 'n'l/2 Er, - J(t,) (6(t,,) - G(t,)) x(t,) |<e
R TR | ] 11 3 5L

for all j « {1,2,...,m} .

n

Consider E2j , since

b=t <oa,lx(t) - x ()| <q. &)< e
| j+1 j| , | i o) | dag

by the choice of %y - Gn being increasing:

i —1/2 i i —1/2
Gn(;;I +n x (;;i)) < Gn.(;;I-+ n (x(tj) +¢))
Ceeny L2
i+{(nt+l) n (x(tj)+e)+1]
<6 ( )
n n+l
1 .
Let 5? = ;%I'[(n+1)n- /z(x(t ) + €) + 1] and note:

h|
n n
Ej 2 Yj .

Using once more assumptions a) and b),



=30~

i
n n+l

iA

n i n
. 2 J(t) {g(cn(E;I + €j) - Y M}

3

J(;j) T Gn (;;I)

L]

+ v ——= <t + £}

j+1 jn T ntl i+l h|

n (n+1)

i
b, +Y, S =<t +
$ Ve ST Sty tE

1
Since (n+1) (E? - Y?) behaves asymptotically as n
continuity properties of the tj's » N /2 Egj is asymptotically bounded by

/2

€ and using the

€ J(tj) {G(tj+l) - G(tj)}

The same way one can find a lower asymptotic bound for n /2 2j and:

/2 n |

limnsup |n < € J(t ) (G(t - G(tj)) .

Consider En

33 using a) and b);

n : i
Eyy 3 ((rgyy) - () 26 Cr+6) - ( —»}

v 1l
where Bn = E%T [(n+l) n /2||x||+1] .

Hence:

n : )
. i
Byy sW(tg,) - I(tg) . 6 oD = T 6y G

i
Cip1 Sl G T Bty ST 8 T By

1

Therefore n /2 B

34 is asymptotically bounded by:
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SO IER O I CICIN IR CO N IEY

j+1 3

using an argument similar to the preceeding one. Bounding the same way

En from below,

3]
-1/2 n
lin sup |n EBj‘ S @) - I(E)) (Gleg ) - 6(e ) |[x|| .
Hence:
m=1
[ (x(+)) = JTg It (Gl ) = 6(e))) x (£

is asymptotically bounded by O(g).

Consider:
m=1
LICI@Ev S (CRRCICID I CRME O]
- oo - 3 d c()}]
= 140 £ t)x(t) - (tj) x (tj)) G(t)

t
o ']
o T am k@ - x(epd 6o

J

A

' t
+ |xepl s Gw - ac

))d c(t)}
J .

3

-85
(x(*)) fs I(E) d G(r) + g |[x]]
0 0 2

LA

9

It

0(e) -

Hence for any €0 > 0 , we can find Ns‘ €N such that:
: 0

n >N, = oup b (x()) = h(x(N] < ¢

The lemma is proved.

This is a generalization of the lemma used by Huber (1969) to prove

theorem II.1 .
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Proof of theorem I1.5 Without 1oss of generality, assume g0~0 . Using

Lemma II.6, /2 A (T ) ‘will have the same asymptotic distribution as

i v
-=/2 n i
(2.5) | n Zl (J(E;I) ] X

i=

(i) - kn) - A (kn))

where n /2 A (kn) =g , g fixed in R provided tﬁe asymptotic distribution

of (2.5) is continuous.

Using lemma II.5 under assumptions iii) and v), lemma II.1 and the
definition of the processes {Z(n)(t)} , one obtains that (2.5) has the

same asymptotic distribution as:

n
n /2 1D (v ey 12 (“)< =5 - k) -

-1 i
v ETED - k)

As shown By Rivest (1976) p. 26-27, given € > 0 there exist ae , M€ s

nl=n1(e) such that, if

5. = {x(+) ec[0,1] : | |x]] < Me qu(x(')) <eforallacal,

(n)

P(z (t) ¢ Se) > 1-e for alln > n

1 .

Now, using lemma 1I.7,
thy ™) -1 @) s 0 @

Hence hn (Z(n)(°)) and h(Z(n)(')) have the same asymptotic distribution
and using theorem II.3
p@™ ) —=2 Lh@Ee))) .

Therefore the asymptotic distribution of hn(Z(n)(-)) is the one of:
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I3 3 2(t) dv (FH(R)

which, according to lemma II.2, is:

2
N(O,ol)

Hence the asymptotic distribution of (2.5) is continuous and the first
part of the theorem is proved.

Since A is differentiable and in is consistent,

A (fn) = A(0) + T AT(0) + o (Tn)

hence:

o1 -

n /ZA(Tn)

1 - ' — 1 in probability as n » « .
/2' - .
p\ (O)Tn
o %G ) | 2

Since n’ converges weakly to a N(0,0”) the last statement implies:

A'(0)

L(n ”r);T;N(om :

Note that the result of this theorem is still valid if the assumption
J(t) =0 t$[6,1-8] is replaced by ¥ (x) is a bounded function of x or

F—l(t) is a bounded function of t .

Corollary II.1

Let {fn*} be a sequence of statistics satisfying:

for all € > 0 there exist M. = Mo(e) and n

0 = 1, (e,M5)

0
in N such that:

n>n. >P {n /2|

% ~
0 T4 "0l > Mo} <

Then assuming:
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i=1 n->e

i) w(Ffl(t)—x) iS continuous at 60 a.e.dt,
ii) w(F-l(t)—BO) and‘J(t) are not discontinuous together,
iii) .A is strictly decreasing near 60 ',
1y on
L Cn2GE IGED ¥ Kgym T -2 (@)

L (Ié J(t) z (&) d v (F L) - 8,)) -

Note that 60 is not assumed to satisfy:

A(eo) =0 .
Proof: Without loss of generality assume 6, = 0 .

0

Consider for a fixed ¢ > 0 ,

2adn -2 @0 > ey,

for n > n, this is less or equal to:

'2 T | T * -2
€ + P{n IA(Tn) - Xn(Tn)l > ¢ and |Tn| <n MO}.

1

. — / 2 o .
* =
Using lemma II.5, if IT l <n MO there exists ny nl(e,Ml) > By > n,

in N such that

>n T2a(Er) - 2 (B2)] < €

n>n
1 : n n n >

so that for n > n1

1/, . .
P{n |A(T;) - ln(TE)I > ¢} < ¢ and

v, . .
n T - A (T | is o (1) .
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Define:
1
-7f2 B i
i§1 J(1'1+1

1/
y Ly ek 407 ARG -

hyx(-)) =n o+l

. -1, 1
k(v (D= ¥ (FED -k G (O,

h (x(+))

[ 3Ct) x(t) & ¥ (F ()

where yn(-) € Cnc: c [0,1] and kn is a functional defined on C [0,1] .
Note that the conclusion of lemma II.7 is true with kn as a functional

provided kn(yn(')) converges uniformly to 0 as n goes to « .

To end the proof it suffices to show that hn(Z(n)(°)) and h(Z(n)('))

have the same behaviour as n »+ « (with kn(yn(')) = f:).

We want to find N0 = No(e) € N such that

piln ™)) - 0@z™ )] > e} = 0(e) 1£ 0 > N
As in theorem II.5, we can find M2=M2(e) s ao=a0(€) n2=n2(e,M ),

n2>n1 such that the set

S, = {x(-) e C[0,1] : ||x]|] < M,, qa(x(-)) < e for all a < aO}

satisfies:
m > n, > P{Z(m)(') eSS }t>1-¢€.

For a fixed m > nz_and n > n;

(™)) -0 @™ > e

s 26 + 2([RE™ ) - 0 @™ D] > cand 2™ ) e s, and

1/2M }

|T*] < n 0
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’ 1
For Z(m)(') € Ss and IT:I <n /2 M, , note that kn(Z(n)

uniformly to 0 as n > « hence using lemma II.6 there exists ng =

in N such that n > n3 implies suplh(Z(m)(-)) - hn(Z(m)('))I < g,

S
€

Therefore for any fixed m > n, and for n > n,

(™) - n ™ > ed < 2e
this implies for n > ny:
p(nz®™ ) - n ™) > e} < 26

And the corollary is proved.

Sectioh II.5 Asymptotic behaviour of L-M estimators .

Suppose >‘(‘Eo) = (0 and define:

GO0 = S wEH(E) - 0 dt
where: .
V() = f:; J(F(y+Ey)) d ¥ (¥)
1 F‘l(t)—g0 :
- I0 o J(F(y+gy)) d ¥ (y) de

X ]

fa dv = f[a’b) dv

a .
fb av = - f[a,b) dV if b > a .

Lemma II.8

if fé wZ(F-l(t)-x) dt is finite in V) = {£ : e - Eol < el

)) = fg converges

n3(e,S€,Ml)

where
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e >0, Yx) is a well defined increasing function satisfying:
1) Ay (5 =0

ii) fé ¢§(F_l(t) - x) dt, AH and ) are continuous at EO .

Proof: Let M = sup IJ(t)I , note that M is finite since J is a bounded
te[0,1]
variation function.

Consider:

1 Fle)-¢

I 1y °J(F(y+£0)) dy(y) dt

(2.6)

s sp MlvaHe-g) | + 0@} at
Since fé vaEte) - Epte) dt <=, f(l)lw(F'l(t) - Eote)|dt < ® go that:

1 FH(e)-g, -
folo D IEGHEY) dvGIdE <

0°0
using (2.6). Hence ¢H is a well defined increasing function and:

AuBg) =0 .

' The fact that félw(F-l(t)—Eoie)ldt < » tmplies fg| b (F "(£)-E te)|dt < o

and, using lemma II.4, A and AH are continuous at EO .
(2f6) and the assumption on V¥ imply:
1 .2,-1
fo wH(F (t) - Eote) dt < = ,

We want to prove:
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1.2,-1 1.2, -1 _
%})Elofo Y (F 7 (r) - g)de = Iy Y (F 7(e) -gy)de .

BEo -0 < e © - g - o + YET© - g

+e) for & in V0

The RHS is an integrable function, hence, using domininated convergence,

one obtains the continuity of:

Theorem II.6

If 1)

ii)

iii)

iv)
v)

vi)

vii)

‘{xeR:|x|>M1} and f(x) = égézl <M, if |x| > M

1 .2, -1
IO Y (F 7 (t) - &) dt at € *

Y is left continuous and J(t) and w(F-l(t)—Eo) are not
discontinuous together,

w(F-l(t)—x) is continuous at EO a.e, dt ,

fé wz(F_l(t)—x) dt < »© in a neighborhood of EO ,

A is monotone at EO R

A'(g) = dgé&) exists and is negative at EO s

There exist e > 0 , Mo in N such that ,J(t) - J(s)|<M0|t—s|

for s, t in [0,€] or s,t in [l-€,1],

There exist Ml’MZ in N such that F is differentiable in

1

Then the estimator Tn s, a solution of
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n 1
iil J(m) v (X(i) -6) =0

is such that:

1
/2 2
L(n ('f‘n—Eo)) 5= N(0,07)

where g = 02 -——l;-—z
[A' (5]
2 _ 2
and o] = E(¢H(X1 - Eo))-

Note that ¢ is left continuous implies:

SR VER T IR
Assumptions (vi) and (vii) may be replaced by J(t) =0, ¢t ¢ [s, 1-§]

1/

for a certain 8¢(0,772) .

Lemma I1.9

Under the assumptions of theorem II.6, for any n>0

1/

-2, 1 i
Ln Pl |5 I ¥ ® gy - k(@) - Al (@)-

WH(Xi-EOH >nl=0

‘where {kn(g)}:=l is an R sequence satisfying

i/,
n A(kn(g)) =g forgeR, n gN
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Proof: Without loss of generaiity, assume £0=0 and fé ¢2(F—1(t)ie)dt < w
Let g be a fixed real number and kn = kn(g). The fact that A is decreas-

ing implies:

limk =0.
a 0

We will first prove:

Aot ol v &, - k) - AGRD) -
n i=1 n+l (1) n n

n

is Op(l) .

Using lemma II.5 under assumptions (iv) and (vi) and lemma II.1, it

suffices to prove:

1/
) n i -1 -1, 1
n L2 TGD OE ")) - k) - v(F @D - k)

(2.7)
- By G (5 (U(i)) - k) = b, EED) - k)

is op(l) .

Using theorem 1I.4, given n > 0 , there exist M3 = M3(n) and

n M3 , n) in N such that:

0 = Pof

(2.8) max [ - -1/2
1ie{1,2,...n} ntl (i)

probability at most n/3 .

| < M for n > n, except on a set of

Consider:

A'(0) = 1im A(k )/k
n n"" n
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1

= lim n_ g
n K ’
n

' 1 = .
hence for any M4 > g/} (9) there exists ny nl(M4), n, > ng such that

1/2 )
(2.9) - n>mn > |n knl M, .

Let ¢l(x) = P(x) - ¢(F-1(e) + €) , note that replacing ¥ by wl in

(2.7) does not change the value of the expression and:

fé wz(F—l(t) -£) dt < » in a neighborhood of 0

implies:

:“ . fé wi (F—l(t) ~ £) dt < » in this same neighborhood,

‘hence we may suppose: Y(x) is negative increasing in
-1, )
(-, F () +€].

We want to prove:

1

-7/2 B i -1 IS D SN
n 2 UG W F WU -k) = vEF D - k)
= WgF T )) - k) - D - k)
Ao PO -k
= o i._f:l{fF_l i, 9D J(F(x)) ay(x)}
(n+l n :

is 0p(1)~.

The strategy of the proof is the following: given n > 0 , we first
find

Gj = Gj(n), j=1,2, such that:
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[nd.]
P! n . n
n - I%ﬁ- (...)| < 3 except on a set of probability at most-g for
n > N1 s
Ly n |
n |z ...)] < 3 except on a set of probability at most n/3
n~[nd, ]+1
2
for n > Nl .

Once 61 and 62 are given using an argument similar to the one used

in section II.4:

1

n-[né,]
Lin /2 2

15[n61]+1 }

(...)} ;rj;j;.L{l[o,m)

so that there exists N2 > N1 such that:

2]

1,, n-[né
- /2|iz ..
=[n61]+1

n > N, implies n

2 )| < g' except on a set of

probability at most-% .

Choose §

1 = Gl(n) in the following way:

A
I

. . -1
lftlim F “(t)

o o take 61 =0

i
1
8.

. -1 _
iftlimo F “(t)

let M, = M0{2M4 M2 + M3} and take 61 e (0, 1/2) satisfying:

5
F(-2M,)
£ _____l_ v
61<max{2’ 2 ,Ml}'
note thattlimo F—l(t) = ~ o implies that 61 e (0, 1/2) satisfying this

condition exists,
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. _ 61 -1 _ n
IO P(F ~(t) e) dt < 12M5

-1
F(F (261) + 261) < ¢

. 61 is a continuity point of w(F-l(t))

If 61 = 0 , there is nothing to prove’, if 61 e (0, l/2) we prove that

there exiéts N1 € N such that:

[n6 ]
iZ1

_/2

...)| < n/3 for N > N, except on a set of

|n 1

probability n/3 .

Using (2.8) and (2.9), there exists n, =.n2(e, 61 s T s 8) n, > 0,

such that

for n > n, and i € {1,2,...,[%61 n]}
F"l(nil) <-2 M
;%I < 251
PRI

and | U(i) < 261

-1 ’
F (U(i)) < =2 M1

except on a set of probability at most n/3 . So that v

max{F(F-l(U(i)) - kn) F(F ( ) -k )} < ¢ and using assumption (vi)



O

(2.10)

Now,

-

-k
n

sup l3F@) - 1G]
x e FH00) - Ky > FGED - K]
<M, sup |Fex) - i/(nt1) ]
xe [F W) -k » Frgp -kl
s My (o = FE @) - 1]+ Iy - P
max {F1(U(0) =Ky s F @) F G
<-2Ml+a<_Ml‘,

so, using the fact that F is differentiable in

where 6,
in

Therefore n

{|x| > M;} (assumption vii) ,

-1
F(F (U )) - kn) -U kn f (ein) and

(i i

-1, 1 i
FOE TG ~ k)~ = £ (oyy)

n

and w_in<--M1 so that:

f(ein) and f(win) < M

5 -
ny)
(2.10) is less or equal than:
1
-7/2 i
n My (=5 U(i)| +2 [k | M} .

1
M 2
< ,:? M + 2 |k |n /

1.1
o+l

-kn)l}.

ks

n+1

L))



45—

M
=0 {My+2M M}

for n > n2 .

1
Therefore n_ /2 (2.10) is less than fi for n > n, except on a set of
n

probability at most n/3 .

Hence :
Rt [nS, ]

S IO S
[n61]

M -1

n

LU
-3 5 21 V(F (U(i)) - €) + Y(F ( ) e¢) for n > n, ,

using the assumption on y and the way 61 was chosen.

Using lemma II.5 under assumptions (iv) and (v): there exists

.n3 > n, such that

[né.] | ')
-1 -
n>ng >t gb D - o -t vE o) - o def 3%,
_q [nd.]
or vt - < o
6M5

To end the proof of this first part, it suffices to show:

[ns, ] ' 8. . _
{n~ -1 izi v(F l(U(i)) - €) - fol v(F 1(t) - ¢g) dt}

is Op(l) .
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Let w*(x) =y -€), X< F-l(Gl)

0 elsewhere

Since fé (q;*(F—l(t)))2 dt < » the weak law of large numbers

yields:

8

g e @) - e - o) an s 0 ()

(n

It is sufficient to show:

-1 [ 8

(2.11) Zvrx) - Blye (U( )= ol s o ) .

Choose €, ¢ (0,6]/2) such that

1

-1 ,
%_ ellw(F (61 - el) -e)| < n/24M5 s

using (2.8) there exists n, =mn, (M3 , N) n, >n, such that for each

n>mn, and i satisfying:

1 e (0,8, —€,/2), U,,y <8
oFL 1 1 (i) 1

i e (5, +e,/2,1),= U,y > 8 and
n+l 11 (1) 1

U([n(c‘il - e, /2)] + 1) > 6 - g

except on this same set of probability at most n/3 .

For n > n, s (2.11) reduces to:

"B, e 2y 4 HET ) - v ) - 0
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[(n(s,+ 61/2)]

-1
- P P (F W, N -
1=[ns 141 1)

Now since V¥ is negative in (- = , F-l(s)+e) the last expression is bounded

by:
) - €)

N

-1
ey lver (U([n(cl-e1/2)1+1)

IA

-1 :
el|w(F (61 - sl) - ¢)| forn > n,

Nojw

A

Nr2uM5

so, there exists n5 > n4 such that

nd, ]

' 1
n>n. *n i£1

_1|[
5

‘ 12M5

and the first part of the prdof is completed.

Using a symmetric argument, §, = 62€h) a continuity point of

2
w(F—l(t)) , satisfying:

I

1
-"f2, 1
n |i=n-[n62]+1("'

)| < n/3 except on a set of probability

at most n/3 is easily found.

To prove (2.7), it suffices to show:

1
-"/2nz[né,]
n ,15[26i1+1("°), is qp(l) or
1 .
n" 289 G ) - k) b D - )
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' TS | -1, 4, |
=3, G F W) - k) - WE TG - k)| 1s 0 (D),

where Jl(t) =
0 , elsewhere

J(t) t e [6, , 1-8.]
e - { 101

0 elsewvhere .

Note that Jl and J2 fulfill requirements of section II.4 so that

1
T/l ) T2 L (3 () 2@ F o) -

L(n i=[n61]+1

I3 3,(8) 2(®)d vE ) ) -

For any x(.) ¢ C[0,1] (the set of continuous functions on [0,1]), one

easily shows:

15 3,(8) x(®dggF D) =[5 1, 2O E D) .

1
- /2n§[n52] ("'))E—:T;L {1[0,w]} .

Since P{Z(*) € C[0,1]1} =1, L (n iE[ns2]+1
1

1
such that n /ﬁnf[nGZ] (...)| <n/3

Therefore there exists ng , n. >n i=[n61]+1

5 4
except on a set of probability at most n/3 and this ends the first part

of the lemma.

In order to prove the result we now need to show:

1
-7/2 8 1,1
nT TR Ky - ) - ey UG - k) - ) 1s 0 ()
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Lemma II1.8 insures us that wH fulfills assumptions (iv) and (vi) of

lJemma I1.5 hence:

1/2 2
0 151(¢H(X1 - kn) - AH(kn)) and
1/, n
-2 -1, i
n igl(wH(Xi - kn) - lpH(F (ﬂ""l) - kn))

will reach the same limit as n + », It suffices to show:
1

1im P{n /2| I Pr(X =k ) = Ag(k ) - p(X)| >nt =0

n i=1"HY'1 " H Y 'n H '3

for all n > 0 in order to end the proof of this lemma. That last con-

vergence is an easy consequence of the following condition:

L
-~/2. 1 - _ 2 _
lim E(n {igle(Xi - kn)_— AH(kn) - wH(Xi)}) =0 .

Let V(x) be the variance of x .
Since:
E‘¢H(X1 - kn)) = AH(kn) i ¢ {1,2,...,n}
.and E(wH(Xi)) =0,

the sum under consideration is a sum of i.i.d. random variables with null

expectation. Therefore E[(...)2

] =V (...) and it suffices to show:
I%m v (wH(Xi - kn) - ¢H(Xi) - XH<kn)) =0.
The last variance is equal to

2
EQh(X) - k) = (%) = Ak )

2 k) .

— p— e 2 2 2 —
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Since 1im kn = 0 for n big enough, lknl < € hence
n .

I‘JH(X) - wH(X"'E) 5 ll’H(X) - ‘J’H(X"kn) 5 ]l'H(x) - ‘pH(x—e)

and:

A

W) = Gk N < W) = dpeN® + WG - vy Geve))”

2(¢§(X) + wﬁ(x-e) + wﬁ(x) + wﬁ(X+e))

A

The last function is integrable so that applying dominated convergence:

. _ : 2 _

and the lemma is proved.

Proof of‘theorem 11.6:

L R and {k_} _. = {k (g)} _, be an R h that:
et g ¢ an n'n=1 n g n=1 e an sequence such that:

1
)\(kn) =n /2g .

Now, using lemma II.6,

lim P{ -1 I, Gy k) - A(k)) < -g} =
e gy UG v - n) T MK, “81 =

1
1im (o 22 (F) > g}
n n

provided the asymptotic distribution of the former is continuous. By

lemma II.9, the desired limit is equal to:

A Lyan
1;m P{n iél wH(Xi-go) < -g} .
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Assumption iii) and lemma II.8 imply

hence applying the Central Limit Theorem,

1
/2 A 2
A (Tn)) 5o N(O, 01) .

-»>

L(n

Using an argument similar to the one at the end of theorem II.5:
1
/25 o 2
L ""(T - &) =2 N0, o) .

Lemma II.9 has stronger implications than asymptotic normality.

Theorem I1I.7

Under the assumptions of theorem II1.6, the L-M estimator in based on
¢y and J satisfies:
f e >0 1imP{nl/2|'f et EN IS [ >el=0
or any P A n 0 0 n

where:
_le
Sy =™ Iy vy - &)

Proof: Assume without loss of generality 50 = 0 , take € > 0 and define:

5,(8) = 0 L L U w5k (@) - gk (@)

where {kn(g)}:==1 has been defined in lemma II.9 .

12

Since n A(%n) is asymptotically normal, there exist M=M(e) and

N0 = No(e,M) in N such that:
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1
n > Ny implies Pin /ZIA(Tn)l > M} < e/2.

So that:

1
pln /ZAcE ) +5 | > )

1 .
< e/2 + Pin /le(Tn) + snl > ¢ and lx(Tn)I < M} .

Choose m in N such that ¢ > 3/m and consider:
1

: 1
P{n /ZIX(Tn) + Snl > ¢ and n /ZIA(Tn)| < M}

1

jzgﬁMP{{j/m <n 2k(’fn) < (§+1)/m}IN

1/ 1 1

1 . _
{n /zsn >e-nl? () or n /zsn <-e-n!? A1

1

< . X P{j/m g /2 MT ) < (J4+1)/ d 1/28. < /m}
£ j=-mM? j/m<n 0 (j+1)/m and n n <€ - 3/m
' g L2 |

+ P{j/m < n A(Tn) < (j#¥1)/m and n Sn > € - (j+1)/m} .

Using lemma II.9 and lemma II.6, for each j in {-mM, -mM+l,...,mM} ,

there exists:

n, = n,{m,e) , n, > N. such that:

h| 3 3 0
(2.12 P{ l/zls : / Ly < ers
.12) n n =~ 5,0 m) | > =} < e/4nM and

1 1
@13 (a5 (/m) < ~ifmic (a2 AG) > 3/mic

1/2
{n Sn(j/m) < - (-1 /m}

for n > n, -
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Take n > ny and consider:

1
P {j/m<n

1

/2 k(in) < (j+1)/m and n

/2 s> ¢~ (3#D/m} ,

by (2.12), this is less or equal than:

Y2 . e
e + P{i/m<sn " MTHDIN {0 78 (3/m) > e - (3+2)/u}} ,

——ne

4Mm
using (2.13) and the fact that € > 3/m, the last expression is less or

equal than:-

12 7

P{{n '8 _(3/m) < - (3-1)/m}N {n Sn(j/m) > - (3-1)/m}}
+ ¢/4Mm

= ¢/4Mm .,

Now, take n > n , and consider:

441

1
P{j/m < n

1

/2 (@) < (G+1)/m and n /zsn <-¢ - /m

1 . 1
< PUn /2 2E) < G+D/mIN o %5 (D /m < - € - (3-1)/m))

+ e¢/4Mm by (2.12)
Y2 - Y2 oA
< P{{n X(Tn) < (j+1)/m} N {n X(Tn) > (j+1)/m}} + e/4Mm

= ¢/4Mm .

Hence for n > max n

]
je{-mM, -mMHl,...,mM}

1/2 .
P{n |X(Tn) + Snl >e} < ¢ and
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1/2 .
n (A(Tn) + Sn) is op(l) .

Using an argument similar to the one at the end of theorem II.5 ends the

proof.

The next lemma provides an expression of l'(Eo) as a function of

o= é%éﬁl , J and Fl.

Lemma I1I.10

Assuming Y(x) is an absolutely continuous function having derivative

' - dv
¥'(x) I such that

' (x) = h(x) 8x) a.e.dx
where:
a) h(F-l(t)—x) is a positive bounded continuous function of x

at EO a.e, dt
b) there exist € > 0, and a partition

0 < tl < 8 << Sn()< 1 of [0,1] such that

i) g is decreasing in (- =, F'l(tl) + ¢] and g is increasing in

[F—l(sn ) ~ €, o) and:
0

..1 .
flo,tl)u [sp,01] g(F (8)-8) dt < =, gelile-g| < e

ii) g is uniformly continuous in A = [F-l(tl),F-l(sn )] -
: 0

N1, . -1
121 (F (ti) , F (Si))
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iii) F has a bounded variation derivative

-1 -1
fin [F (t.) , F (s_ )] - A,
n 1 n,

then:

' _ 1 v o1
ATEY = - fo J(E) VE () - £ dt .

 Proof: Without loosing generality, assume: &, =0 .

0
Since J is a bounded variation function, there exists M0 in R such
that:

J(t) <M t e [0,1] .

0

M) = A0 = Sp I vE®) - &) - vaEle) a

€ €

- f(l) fcl) J(t) w'(F"l(t) -~ Eu) du dt .

" Let M, = sup h(x) and consider:
xeR

(2.14) f(l) I v (F L) -Eu) du de,

i)
[0,e;1 U [sno,ll
for lgl < ell2 and t € [o’tll H)

A E e - e au < m gD - €/2)

if t € [s_ ,1]
Iy
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fé ¢'(F-1(t) - &u) du < Ml g(F—l(t) + €/2) ;

the assumption on h and the dominated convergence theorem imply that (2.14)

goes to:

g
flo,e,1 u [s, 1 I8 ¥/ E)) ae
0

as £ goes to 0 .
Consider:

(2.15) fAfé I(t) h (F L) - gu) g (FL(t) - £u) du dt .

Since g is uniformly continuous in A , g is bounded in A and using

dominated convergence, as £ goes to 0 (2.15) tends to:
v,-1
fA J() v (F ~(t)) dt .

Using Tonelli theorem:

s

fti fé I(e) $ F L) - £u) du dt
i

S

L 5oy v @) - £u) dt du .

_ 1l
._ fO fti

We want to show:

S S
lim [ fti I v F L) - Eu) dt du = fﬁi 3t v E L) de .
£->0 i i

O

Integrating by part the inner integral of:

S
st el ‘t) - Ew) L(l—‘t—)) £F () dt du
ty f(F (t)) f(F (t))

leads to:
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2t £ Ns)) GETHs) - Ew) - BE (s )Y
It £ (F () GE e - gw) - v(F (D)) -
i i i i

Fie o JOET® - B - yEHONAOEE )T au

ivdi :
Using the uniform continuity of ¢y and the fact that J(t) f(F_l(t)) is a
bounded variation function in [ti’si] , the last expression goes to O as

£ > 0 and A'(0) = -féJ(t)tp'(F-l(t)) dt .

Remark: If y(x) is differentiable so is Y (x) , wﬁ(x) = J(F(x+£0))1be) .
wH(x) fulfills the assumptions of lemma II.10 provided J(F(F—l(t) - x + EO))

is continuous at EO a.e. dt; one easily checks that the last condition is veri-
fied if F is continuous. Note that the continuity of F implies:

F(F—l(t)) = t,so that under this additional assumption,
ACEL) = AL (E)) =.fl 3e) v F ) - £ at
0 H “°0 0 0 :

In the last part of this section, theorem II.7 will be used to prove
various results about the asymptotic behaviour of quantiles and L-M

estimators.

First, in corollary 1I.2 a partial generalization of theorem II.7

is proved.
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Corollary II.2

Let J(t) be a bounded variation function in [0,1] (note that J(t) is
not assumed to be positive) and take Y(x) = x , if the assumptions of

theorem II.6 hold with J(t) and y(x) then the estimator:

S 1 th i
Tn - . igl J(n+l) X

(i)
i .
1£1

TG

satisfies:

1/2'A
n (Tn —_EO - Sn) is op(l)

where: S n igl wH(Xi-EO)/IO J(t) dt

i
f

- fé I(t) dF—l(t)/fé J(t) dt

-1
wH(Y) ='f0 J(F(x+€0)) dx - IO IO J(F(x+€0)) dx dt .

Note that this corollary implies:

1

/2,4 1 2
L (n. (T -8)) =52 N(O,V(¢H(X1-EO))/(IO J(t)d(t)) ™).

Proof: Let: Jl(t) =lJ(t) if J(t) > 0
0 elsewhere

Jz(t) = Jl(t) - J(t) .

Note that Jj(t) > 0 and Jj(t) and P(x) fulfill the assumptions of

theorem II.6.

Using lemma II.9, with kn(g) =0 ,
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Y(x) = x and A(x) = f J (¢) F (t) dt - x f J,(t) dtfor any € > 0 ,

3

;1/2 n
lim P{n iZ1 9 (+1)( (1) - EJ.)- Vin (xi-Ej)I > ¢} =

n

j = 1,2, where:

1
E. fo J.(t) daF (t)/f0 Jj(t) dt

h| h|

and ij corresponds to wH with J(t) and Eo replaced by Jj(t) and Ej . In

order to prove the result, one needs to show:

(2.16) ¥y (x-E)) - ¥,y (x-8,) = ¢H(x—50) .

Consider:
x—El
fo Jl(F(y+§1)) dy; if u = y+£1-€o , this integral becomes
x—EO
fg -£ J (F(u+€ )) du ,
1 0
hence: -1 '
‘ x—Eo 1 F (t)—§0
¢1H(x—€1) =.%1€OJ1(F(u+§ )) du - fo fg E JfF(u+£0)) du dt
. and -1
x—EO 1 F (t)-E0
lblH(x—El) = fo Jl(F(uH;O)) du - fo fO J"l(F(u+EO)) du dt .

Using a similar argument with wzn proves (2.16) .
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Corollary II.3 Joint asymptotic distribution of L-M estimators.

Let {T n}?=l be a sequence of L-M estimators based on Jj and wj and

k|
estimating Ej > 3=1,2,...,n . Assuming each pair Jj’wj fulfills the

assumptions of theorem II.6 ,

1/2 .
I 7T -5 2N, (0,)

~

where T is the vector of T, 's ,
n jn

-~

vy

is the vector of Ej'S R

0 is a kx1 vector of 0's ,

{ is the kxk matrix of O S °

e cov (wrﬂ(xl-ar) ¥y (XmE)
rs A (Er) KS(ES)

Proof: This is a straightforward consequence of theorem II.7 .

Using the last corollary, one can find the distribution of the difference

between 2 L-M estimators, so that one can prove the following:

Corollary II.4

Let T1n , T2n be two L-M estimators based on Jl and *1 . J2 and wz

respectively, assuming:
i) Jj and wj fulfill the assumptions of theorem II.6 j = 1,2,

-1ii) T1n and T2n are estimating the same parameter 50,

1
_ /2 4 A . .
then n (T1n T2n) is op(l) if and only if
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T (FGRrE)) ¥y (1) = T, (F(xHE ) dv, (x) and

'Ai (EO) = Aé (EO) (where Aj corresponds to A with J and y replaced

by J, and wj) .

3

Such a relapion between L and M estimators has been conjectured and
proved under very restrictive conditions by Jaeckel (1971) in his

theorem 2.
Note that Jl(F(x+§0)) dwl(x) = JZ(F(x+£O)) dwz(x) implies:
Vg®) = b,u(x) and Yia(®) = v (x) .

Hence if wl and wz satisfy the assumptions of lemma II.10 and if F is

continuous, then:
| ] 1 ]
A = A = A = A
l(EO) 1H(€0) ZH(EO) 2(50)

so that the assumption Ai(go) = Aé(ao) is fulfilled.

Corollary II.5 Application of theorem II.7 to quantiles

Suppose F, the distribution of the random sample, has a positive

derivative, f(F_l(a)) at F_l(a) . Then the ath quantile X[ can be

‘an]+1

seen as an M estimator based on:

wa<x) = P x>0
-(1-a) xx20
so that:
1/2 -1 -1 -1
n (X[om]_'_1 - F “(a) - ([#X>F ()] - n(1-a))/£(F “(a))) is op(l)
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where [#Xi>a] = number of Xi's bigger than a .

Proof: Consider:

Vo () = @ x>0

A

The M estimator Tn

h(e)

Note that

h(e)

8o that if 6 ¢ [X

h(o)

and if -0 g [X

h(e)

[on] * X[an]+1

-(1-a), x< 0

corresponding to wa is a solution of:

n
1Z1 ¥, (%70 = 0.

[#Xi>6]a f(l—a) [#xise]
[#Xi>9]a -(1-a) (n—[#Xi>9])

[#Xi>6] - n(l-a) .

)

an - [an] > O

[an]+1 2 X[an]+2) ’

on - fon] -1 <0 .

Therefore if an#[an] ,

sup {6 : h(g) > 0} =

and X[na]+1

inf {6: h(g) < 0} = X[(xn]+l

= in , the M estimator corresponding to wa(x) .
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Consider:

Alx)

1 -1
Ty v (F 7(e) - x) dt,

for x in a neighborhood of F_l(a) , F is monotone increasing and:

F_lGKx))= x, therefore:

]

Ax) = - (1~a) F(x) + a(1-F(x))

a -F(x)
and A" (F L)) = - £F () .

Applying theorem II.7 (note that since wa is bounded the regularity
assumptions on F are not needed)

1
n

2 x - F @) - a R v K F @) EE @) s

[nel+1

op(l) .

Since:

[#Xi>F—l(a)] - n(1l-a)

n -1
1% \ba(Xi - F "(a))
the theorem is proved.

One easily computes:

VG, (% ~F (@) = a(l-a)

and applying theorem II.6 to the ath quantile:
1
n /2

| o i
D Ry = F @) 552 N0, all-a) 122 (F L))

Once more one computes:
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Cov (¥, (%;-F (@) ¥ (X,-F () = (1-0) B

if a > B . Hence applying corollary II.3, with 0< @y <@y < ... <@y < 1,

yields the following classical result:

where X is the kX1 vector of the X
0 [ain

£ 1is the kx1 vector of the F_l(ai)'s ’

0 is a kx1 vector of 0's ,

t is the kxk matrix of orS“S where

o = @=-a) as/f(F’l(ar)). f(F_l(as)) forr > s .

Remark:

In theorem II.7, writing

' __ A -1,
| A (EO) = fo J() V' (EF () EO) dt
yields
1 . n ¥,(X.-E.)
n/z(Tn'go‘%iﬁlg—lo -1 ) is o (1) .
fo J(e)Y' (F (t)-Eo) dt
Note that
Y (x-E)
4 sIcFW
Iy 3(6) ¥ FH(e)-g ) de
is Hampel's influence curve (see Hampel (1974)) . For the L estimator,

this result has been proved by Stigler (1974).
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Section II.6 Step estimators

This section is motivated by practical problems. The first one is
the computational aspect involved in finding L-M estimates. To solve the
equation

G ¥ Ky -0 =0

igl n+1

directly may be time consuming. Using the asymptotic linearity as
described in theorem II1.7 should lead to very good approximation of that

equation's solution.

During recent years, a great deal of interest has been given to

M estimators based on non monotone ¥ . For example, Hampel's M estimator

based on:
(
P(x) = - P(-x) = X 0<x<a
a as<x<bhb
4
%E% a b<x<ec
0 c £x

has shown a highly robust behavior in the Princeton robustness study
(Andrews et al. 1972). So that, it should be of some interest to relax

the increasingness assumption on J and the positiveness assumption on J .

Definition II.8 The step version of an L-M estimator.

Let Tn be an L-M estimator based on § and J , the jth step estimator

% & of T based on f* is defined as:
n n n
n (3-1)
26 a6, i 7Ge +1) P& -5
n n LIy ., - T ‘j‘l))
2 IGD V' 1) ~ Tn
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(0)

where T T§' satisfies

/Z(T* - 0 ) is 0 (1) for 60 R .

Remarks
1) Note that T (3 is in fact the jth approximation of the solution
of

I ¥ (Kgy-9)= 0

1_.

using the well known Newton-Raphson method starting at

O _%

n

=33

2)  If Y(x) = x then fn(J) = %n j e R.

3) Note that once the observations have been ordered to compute
7 (@)
n

does not require more work than to compute a step version of an

M estimator.

- The next theorem will provide some clues about the asymptotic

behaviour of these step-estimators.

Theorem II.8

"o ’ R .
=1 be a sequence of left continuous increasing

Let 1) {wj}j

functions and

where ajeR >y J = 1,2,...,n0 .

ii) Jl(t) and Jz(t) be two positive bounded variation
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functions and J(t) = Jl(t) - J2(t) ,

iii) {%*}w= be a sequence of statistics satisfying

/Z(T* -0 ) is 0 (1) for a eoeR .

Assuming each triplet (wj » Ty s 60) j=1,...,n0 k=1,2 satisfies the

(x) is differentiable at 6. then:

conditions of theorem II1.6 and A 0

72|

(J,k)H

i) lim P{n

T J(
I iZ1

-y (X - 65| > el =0,

ii) if furthermore y' exists, A'(eo) # 0 and:
¢

n
G 5 IGED ¥ Ry - T - 3 (0g)) 1s 0 (1)

then:
1
/2 4 n i -
n (T* + .5, I v gy = T - 20y - 6, +
n i . ~
121 IGED v Rgy - TH)
E‘igl —“—X—?B—j') is o (1)
where:

A = 5 3(E) y (FH®) - %) de

-1
1 F (t)-E

0 0

by (%) f J(F(}""«Eo)) dy(y) - J(F(y+gy)) dy (y) dt

Ay () f(l) wH(F—l(t) - x) dt .

Let A(j,k) (%) , w(j,k)H (x) and A(j’k)Hv(x) be the A , ¥y and Ay

functions corresponding to wj and Jy .
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0

Note that 6. is not assumed to be a solution of A(x) = 0 .

Proof: Without loss of generality assume eo =0 .

Note that:
2 M
W) =&y 55 35 V5,0 &
2 ng
W1 58 %5 Aon &

and AH(x)

Therefore it suffices to prove i) under the assumptions:

a) Y is an increasing left continuous function in R ,

b) J(t) is a positive increasing bounded function in [0,1] .

Using assumption iii), for any € > 0 , there exist M1 = Ml(e) and

n, = nl(s,Ml) such that:

1
1

n>mn, > l%:|_< M1 n

/2

except on a set of probability at most € . Therefore using corollary
I1.1, the first half of lemma II.9 is true and:

tr2 oo i ~ «
GEp 3 G ¥ (Regy = T = A(@%) -y, (

Xy = )

Y . }
+ AH (Tn)} is Op(l) as n > .

Hence, to end the proof of i) it suffices to show

1 ‘
-7/2 n - N
(2.17) n iEpley Ry - TR - (TR - g, (X)) s op(l) .

Using the differentiability of XH at 0 :
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A (T*)
LA > 1 in prob.
! *
A (0)TH
as n > « .,
1
AH(-n‘ /2Ml)
—_—) 1
- A'(O)n_l/zM
H 1

So that there exist M =M2(€,M1,AH) and n2=n2(e,M2) n,>n, in N such

2
that: n > n, implies
1
%
IAH(Tn)l <n” "M,
and
1
*
|Tn[ <n My

except on a set of probability € and

1 1
12y1 < o7 12

IAH(—Mln M, .
Let 61 = Eﬁ and consider, for n>n2
2
_1/2[n61] X X
1 1 1
- /z[nSl] -7/2 -7/2
<n iE7 (g egy + M0 09 =AM 7 - wH(x(i))}
1 1
-"/2 -/2 A
+n (08,1 (A (-¥;n ) = A (T5)}

except on a set of probability at most ¢ . Using the fact that

8 and the way M, and M, were chosen, for n>n, the last expression is

__€
1 2M2 1 2
less or equal than:

2
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JEVPRLS 22 2

B N O (e L IR MR

except on a set of probability e .

One proves the same way, for n>n2:

—1/2 2 T* \ (s
n iﬁn-[n61]+1{wﬂ(x(i)‘Tn) = A, (T*) - wﬂ(x(i))}

1 1
_/2n ._/2
ién-[n61]+l{¢H(X(i)+Mln )

1

/2
- AH( Mln

.Ln

) - wH(X(i))}+ €

except on this same set of probability at most € .

So that for ™o, , (2.17) is less or.equal than:

1 1 -1
~-“/2 1 -1/2 /2
n .i§1{¢H(xi+Mln ) - AH(—Mn ) - wH(xi)} +
l n— [nG ] ~ A _1
-7/2 1 /2
n i§[n611+1{¢ﬂ(x(i)'T§) = Ag(TH) - lpn(x(i)J’Mln )

1
+ A (M 2y} 4+ 2¢

except on a set of probability at most € .

By an argument similar to the one in the second half of lemma II.9

with
k =~ n-l/2 one proves:
n Ml ? P :

1 1 1
-*/2n /2 -
n gyl Gy 1Y) - Ay (Myn

/2) - wH(xi)} is op(l) .
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By corollary II.1 and by an argument similar to the one used at the

L.
d end of the first half of lemma II.9:
1,, n-[n6.] 1
-=/2 1 _hy o k) -/2
® e e ® @R T AT E @yt )

1l
+ AH(-Min- /2)} is op(l) .

Therefore (2.17) is bounded by O(e) except on a set of probability at

most € for bign .

Using a similar argument, it is shown that (2.17) is bigger than
0(-€) except on a set of probability at most € for large n and i)

is proved.

To prove ii), first note that

1
n

A (T%)-1(0)

i ~
n JGEDYE) TN 4, @)
xT(0) '

/2 ¢
i=1 A'(0) A'(0)

1
- 1} is op(l)
using part (i) and the fact that A'(0) exists and is non zero.

By an argument similar to the one used at the end of theorem II.5

1 ~
*)— -
n /2615321_1521 - Ty s o, () -
O] n P

Now consider

1 .
- /2 n _i_ _A _ 1 L n .
n L UEDEE 4y-TH-A O} {577,

E Iy x -i*i
1219 GV Ky T

To prove that the last expression is op(l) it suffices to show:
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_1/2 n i ~ }
— -— * - . .
Using the preceding argument:

1 1/

n /Z(X(ig) - A(0)) and n ZA'(O)i; have the same asymptotic

behaviour, and using part (i):

TR i | - .
L {n i§1{J(3;19 3 (X(i) - T:) - X(Tn)}} s

N0, EGE(K))).

So that writing

_1/2 n i o .
n (5 UG v X 1) - T%) - A (0)} =

-/2n L 1 P L
n L UED v Ry - TR - ATDY +

1 .
a /2@ - A0}

ends the proof.

Corollary 11.6

Under the assumptions of theorem II.8, assuming A(60)=0 then
Y2 a9 ,
n (Tn —60) is (%(l) je{l,2,...}

Proof: Assume without loss of generality 90=0 .
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Using theorem I1I.8

Yy (XD

/2
1 (0)) is o a -

(1);;}
n=

(T -

therefore (T( )—0 ) is 0 (1)

The corollary is proved by iterating this result.

Note that if F is assumed to be symmetric about 60 , if an odd

¥(x) and a J(t) symmetric about 1/2 are chosen, then A(GO) =0 .

~

So that if Tg is any statistic converging to'e0 (the median or the
§-trimmed mean or a symmetrically weighted sum of selected quanti les)

the result of corollary II.6 holds.

The next corollary is dealing with the asymmetric case:

Corollary II.7

Assuming A'(x) and A''(x) exist in a subset of R containing {ej }§<=O where

]
Raphson method starting at ©

6, is the jth approximation of the solution of A(x)=0 using the Newton
0
Assuming each triplet (w,J,ej) , (w',J,Bj) fulfil the assumptions of

theorem 1I.8 for je{0,1,...,k-1}

1
n /Z(T(k) k) is Op(l) .

Proof: Without loss of generality, assume 6,=0 , using theorem II.8:

0
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n1/2 1 n wH(Xi)

TGV (-1

Using the Central Limit theorem:

by (X,

/2 1 )) is O ¢1) .

(n 121 AT (0

Note that 6. the first approximation of the root of A(x)

1
the Newton Raphson method starting at 0 is:

-2 (0
A (0)

Y2, (0
To prove n (T 61) is Op(l), it suffices to show:

1 .
2 27 (0) + a7t i&1 J(E%T) X )

Note that
-2 =AM = s v E o a3

using theorem II.8's part (i) with (J,y')

n I2(E, J(E;I) Vg - T AT s 0,(1) .

Now using the fact that A''(x) exists,

l/2 - A
n {A'(Tg) - A'(0) - A"(O)VTg} is op(l)

- %3)) is 0 (1) .

(T(l) n n X(O) - + = - izl 7 (0) ) is 0 1) .

= 0 using

by an argument similar to the one used at the end of theorem II.5 .

So that, since

Y
n (T;) is Op(l), and
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1 -~
n /2(X'(T;) - A'(0) is Op(l) , one obtains

1 .
/2 ,5(1)
n (Tn 61) is Op(l).
Iterating this result proves the theorem.

In the second part of this section, an extension of the L-M estimator
will be presented. In recent literature there is a great deal of interest
in M estimators based on non-increasing ¢ (Andrews et al. (1972), Collins

(1976) (1977)) so that it makes sense to drop the increasingness assumpt-

" ion on ¥ and the positiveness assumption on J in order to obtain analogous

L-M estimators.

To give a formal definition of those extended L-M estimators

presents a problem since the equation:

n i
1 IGD ¥ Ky = 0

no lohger has a unique solution. Furthermore this formal definition

should lead to easily computable estimates. The following is suggested:

Definition ITI.9 Extended L-M estimator

Let i) J(t) be a bounded variation function in [0,1]

ii) ¢(x) be a left continuous function.

The extended L-M estimator Tn based on ¢ and J, is defined as the

Nth step estimator obtained when solving

n .
1
18 TG ¥ Kg)=®) =0

using the Newton Raphson method starting at a given statistic T; .
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Remarks:
1) If the extended L-M estimator is defined as §£=lim fn(k) , for each
k:
112~ ) 1o Y8 ) MO ) nA (8 y) ,
Y I U CHI A AT R i o) 18 0p ()
k-1 k-1 iglJ(i/(n+l))waG)—Tn )

by corollary II.7.": To conclude %n is consistent, ‘the last convergence
should be uniform in k, this is not obvious (cf Collins (1976)).
P n i
2) If y(x) =x, Tn = 1 - . iél J(;:i) X(i) ,

iél J(n+l

n
\ i
provided &1 J(E;I) 0

Corollary I11.8

Suppose §, J and T: fulfil the assumptions of theorem II.8, the

~

extended L-M estimator Tn satisfies:

i) if A(Oo) =0,

1 .
/2,4 1 oy (X.-8,

n (T -g.+= Z.JH'i 0 .
n Q ni l—K173;$- ) is op(l) .

ii) if furthermore ¢ and J satisfy the assumptions of corollary II.7
for k=N and if EO is the solution obtained when solving A(x)=0 using the

Newton Raphson method starting at 6, after N iterations,

0

1
n /z(in - gy) is Op(l)

Proof: These results are easy consequences of theorem II.8 and corollary

I1.6 and II.7,

Note that the results of corollary II.3, II.4, II.6 and II.7 are

also true for extended L-M estimators in the symmetric case.
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Section II.7 Asymptotically efficient and minimax estimators.

In this section it will be shown that, in a parametric context,

certain L-M estimators have desirable asymptotic properties.

Excluding superefficiency, see Huber (1969), an estimator %n of a
location parameter Eotms asymptotically minimum variance for a distribution

F (with density f) if:

1 R 1
L@ 2@ e —2 n0,10™h

where I(f) is the Fisher information for the location parameter:

£' (x+E,)

1(£) = /7 ¢ F £Gerg) dx .

f(x-l-Eo)

Such an estimator is said to be efficient. The next theorem will provide

a characterization of efficient L-M estimators.

Theorem I1I.9

Let F be a distribution with a twice differentiable density such that

1lim f'(x)=0 and suppose that the L-M (or extended L-M) estimator %n based
nte ,
on Y and J has asymptotic variance:

), VOG5
17 3 (x-E ) E (1) dx]

then Tn is an efficient estimator for EO » the location parameter of F if

and only if:

£ (x+E )

- m and aeR .

UJH(X) = a¢(x) where ¢ (x) =

Proof: Without loss of generality, assume EO =0 .
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Since E(wH(x)) =0,

(1~

o2

17 Vi) £() dx

U7, £G) b dxl?

Consider:

17, 0 G0 dx = £60) v |7,

o0
- /o TRy (x) dx,
under the condition:

lim f(x)wH(x) =0,
xtoo

ITEE V() ax = ST e G0 £(x) dx .
Using the Cauchy-Schwarz inequality:
7 8GO vy axd’ < 17 00 £ ax . /T a0 £(0) dx

with equality if and only if:

¢H(X) = a¢(x) where aceR .

2
So that ¢ 2 I(f)

with equality if and only if:
Py (x) = ad(x) .

Note that lim f'(x) = 0 implies:
X->+oo
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lim ¢(x) f(x) = 0
x>t

and the theorem is proved.

Examples
1) Let Xl,...,Xn be a random sample from a distribution F(x)=¢(x—£0)
where
1 y2
d(x) = ffm(Zw)_le— /2 dy -

We want to find an efficient L-M estimator of EO based on ¥ and:

J(@) = u(l-u) uel0,1]
V() = S5 8(y) (1-e(y)) ¥' () dy>

so that taking

_ X 1
v =1y 3y @y Y

wH(x) = ¢(x) = x and the L-M estimator in based on ¢ and J is efficient.

Note that using corollary I1I.4

l A
n /2(Tn—i) is 0 (1) .

2) X .,Xn is a random sample from a distribution F(x)=G(x—£0)

120"

where: 1
G(x) =

-~ xeR
1+e

is the logistic distribution ’

o(x) = - é%’ n g(x)
-%
- _ 4 e
= Ix n 9

1+ %)
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So that an efficient L-M estimator for Eo with:

ex—l

ex+l

J(t) = 1 must have ¥(x) =

This is the maximum likelihood estimator.

satisfy:
ex-l
ex+l 1+e.'y
X
Ze .2 = J( l_x) so that
(1+e™) 1+e

Now if ¢(x)

x , J(t) must

= fg J¢ 1 ) dy . Differentiating bqth sides we have

if  J(t) = t(1~t) and Y(x) = x,we have the efficient L estimator.

If J(u) = { u2 s u<l/2

(1—u)2, ux1l/2

for x > 0
ez"l = sy ¢ ;Y Y bt (3)
e +1 e +1
differentiating:
2™ = (ez)Z , V')

(*1)%2  (e¥41)

so that if y'(x) = e X for x > 0

X

or y(x) =' 1-e x30

ex-l x <0

the L-M estimator based on J and ¢ is efficient.
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Definition IT.10 Strong unimodality

A distribution F is said to be strongly unimodal if its density £
exists and satisfies: 1log f(x) is a convex function within some open

interval (a,b) such that - ®sa < b < =

and f: f(x) dx =1.

Note that strongly unimodal distributions are distributions having

a monotone likelihood ratio for the location parameter.

Let Go be a given strongly unimodal distribution and let:

G=1{G : G = (1-¢) G, + €H where H is an absolutely

continuous distribution function} where e is fixed in (0,1)

Given that the Xi's distribution F(x) can be written Gx(x-Eo) where
GxeG , we want to find an estimétor for EO which is minimax for the

family G , i.e. an estimator which minimizes

max o2 (G)
GeG

where cz(G) is the asymptotic variance of the estimator if the Xi's dis-

tribution is G(x—go) .

The next theorem due to Huber (1969) provides a minimax M estimator.

Theorem II.10

The maximum likelihood estimator for the distribution:
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K(x—xo)

(1-¢) g, (x)) e 0
£,(x) = (1-€) g5 (%) Xg S X%
-K{(x-x_)
(1-¢) 89 (xl) e 1 X S X
where "8 is the density of G0
X, and x, are the end points of
81 ()
{x: ——?;7 < K}
8o
*K satisfies:
g(xq) g(x,) X
(1-€) ¢ X + K + S T g(x) dx) =1
*0

is minimax for the family G .

The next theorem will provide some minimax L-M estimators.

Theorem II.11

When G, and H are symmetric

0

with respect to 0 , any efficient L-M estimator for F, satisfying:

0
i) ¢y(x) = x,xeR ,

or ii) J(t) is symmetric with respect to 1/2 , decreasing in [1/2, 1],

null in [FO(xl)’1] and ' (x) is an even function decreasing in [0,»),

is minimax for the family G.

Q
Proof: Without loss of generality assume EO , the estimated parameter,
is 0 . Under condition i), the estimator under consideration is the
efficient L estimator for F0 and the result is proved in Jaeckel (1971)

theorem 3.
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Under condition ii),

2/70% JEEN Y () ) de(y)

1 2
1

o2 (G) =

I(e) ' @ L e))de)
/2

(2s
using the symmetry assumptions.
For xe[O,xl] .

G(x) = (1-¢) Go(x) +e H(x)
2(1-¢) GO(X)
= FO(X) ’

so that for te[l/Z,Fo(xl)]

£ = GETH(B)) 2 Fy(€7 (1)) honce

SL®) 2 F @) > Fhe) 2 6T

FO(F
Therefore using the fact that J is decreasing in [1/2,1],
JEGE) ¥ () £ JE Y () xe[0,x, ]

and using the fact that Y' is decreasing in [0,*] ,

I @ L(r)) > J(t)w'(Fal(t)) te[1/2,F (x)] »
hence:

1503 3@ ®an)” acty)

1 ' o1 2
l/ZJ(S)llJ (FO (s))ds]

2 1
07 (6) =5
2 s

now since:

fg J(Fo(x))w'(x) dx is increasing in [0,xl] , constant y > x

1

’
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UIE V@ ),

— = o (F.)
3 (75l (s)) ds)? °

2 1
g @) ==
21y

~Rjo 8

/2

and the result is proved.
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Chapter III

A formal theory of L-M location parameters

In this chapter, the location parameter will be studied as a functional

defined from a set of distribution functions F into R.

Section III.1 Bickel-Lehmann location parameters

Definition III.1

Let X and Y be random variables distributed according to FX and FY
respectively, then
i) X is stochastically greater than Y <+ FY(x) > Fx(x) xeR ,

notation X > Y s.,

x-b
i1) Y =2a X +b s.<+> FX (—;—) = FY(X) xR, a>0,

iii) Y = - X s. > FY(x) =1 - FX(—x) a.e..

Definition III,2 Bickel-Lehmann location parameter

A functional p defined from a set of distributions F (if X is a
random variable distributed according to F, u(X) or p(F) will be used to
denote the image of F by u) into R is said to be a Bickel-Lehmann location
parameter (BLLP) if:

i) X,YeF such that X > Ys.+ u(X) > u(Y)

ii) X,YeF "~ such that X =-Y s.> u(X) = -u(Y)

iii) X,YeF such that Y = aX+b s+ p(Y) = au(X) + b

where agRt+ , beR .

As pointed out in Lehmann and Bickel's (1975) theorem 1:

¢::? (3.1) If F is symmetric with respect to 6 and u is a BLLP, u(F) = 6 .
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(3.2) . 1f P{Xe[a,bl} =1 and u is a BLLP, b > u(X) 2 a .

Definition III.3 L-M location parameter

Let i) J(t) be a positive bounded variation function defined on
(0,1} ,
ii) P(x) be an increasing differentiable function defined in

R

The L-M location parameter based on J and ¢ for the distribution F, u(F)

~ is defined as the solution of:

fé J(t) w(F'l(t) -8)dt =0 .

In this section we will find what conditions must J and ¢y fulfill

in order for u to be a BLLP.

For convenience, p is a BLLP on F will really mean p is a BLLP on

the subset of F in which it is defined.

One easily checks that u(X) = E(X) is a BLLP on any set ¥ of
distributions having finite first moment. According to the last statement

we say p is BLLP on any set F .
X
fine: F = F(=

Define o(x) F(c) ,

FO(x) = 1-F(-x) - 1im [F(-x) - F(y)] .
y+-X

y<-x

Note that if X has distribution F, oX has distribution Fo and -X has
-)

distribution F
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Theorem III.1

Let ¢ be an L-M location parameter based on J, and ¥ which is a

J 0

0
BLLP on any set of distributions.
Assuming:
i) Jo(t) >n for te[l/2 - n, 1/2] for some n > 0 ,
ii) there exists an absolutely continuous, symmetric with respect to 0
distribution F, having a density with compact support f0 which is

0

non null in {x : 0 < FO(X) < 1} satisfying:

for any bounded variation function J(t) defined on [0,1], for any

>0, xR ,

d 1 -1
TS fo J(t) (o er(t) - eeo) dt

1 d -1
fo J(t) I V(o er(t) --6Ecy ) dt

and the last expression is a continuous function for € in [0,1/2]

where:
er = (1-€) F0 + edx
6x = l[x,w)
o, = ny(F  (3/0))

Then Jo(t) = Jo(l—t) and
P(x) = sgn(x) |x|a a>0.

Note since fo has compact support uJ(erég))is always defined where My is

the L-M location parameter based on ¢ and J .
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Lemma III.1

Let K(t) be an absolutely continuous distribution defined on [0,1]
which is symmetric with respect to 1/2 , let F be a set of distributions
and

FK = {K(F(x)) : FeF}
if u is a BLLP on F_ , then
uK(F) = u(K(F)) is a BLLP on F .

Proof: If X is a random variable distributed according to FX , then XK
is a random variable distributed according to K(FX).

i) X>Y s« FY(x) > Fx(x)

> K(Fy () 2 K(Fy (x))
since K is non decreasing.hence

X, > Y, 6 s. so that:

K K
uK(X) = u(XK) 2 n(¥p) = uK(Y)-
ii) Y=-Xs. FY(x) =1 - FX(—x) a.e.
> K(Fy(x)) = R(1-F,(-x)) a.e.

- - .e.
1 K(FY( x)) a
since K is absolutely continuous symmetric with respect to 1/2 .

Therefore:

YK = - XK s. and uK(Y) = - uK(X) .
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iii) Y aX + b s, a > 0 beR

> FY(x) = Fx(Eéh)

o K(Fy () = K(F, D)) and

YK = aXK + b s. so that uK(Y) = auK(X) + b
This ends the proof.

Note that if the distributions in F are absolutely continuous, the

absolute continuity of K may be removed and the result is still valid.

Proof of theorem III.1

Consider:

Exe(t) = inf {y : (1-¢) Fo(y) + edx(y) > t}

i) if t < (1-¢) Fo(x)

1oy = p ~lots
er(t) - FO ( —e)

ii) if (1-¢) Fo(x) <t < (1-e) Fo(x) + e

~1
er(t) = X

iii) 1if (1-¢) Fo(x) +ex<t

1

- _ o1, t-¢
er(t) =F

0 (I:Z) .

-1 A1
So that Elim er(t) = FO (t) hence:

0

. 1 -
since fO J(t) w(in(t) - ee) dt is a continuous function of ¢ ,
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1 -1 _
fo w(FO (t) - eo) dt = 0
where 60 = €limo 6s

and 90

uJ(FO) = 0 if Wy is a BLLP, by (3.1).

Furthermore F;i is differehtiablevand:

t t < (1-¢) Fo(x)
d -1 I -1t
I er(t) = (1_8)2 fO(F0 (1-6))
0 (1-¢) Fo(x) <t < (1-¢) FO(x)+e
t-1 ” (1-¢) Fo(x) +e<t.

-1 t-¢
fO(FO (1—8))
Using the differentiability assumption, for € small enough

1 d -1 d -1 . -
fo J(t) (R er(t) - e 98) d)'(er(t) - ee) dt = 0

so that if € goes to 0 ,

-1
£-8_(Fy' (1))

1 -1 '
I5 3C®) - v ES ) dt
0 £, (Fy (£)) 0

ey 1 v o1
=0 fo J() ¢ (F0 (t)) dt

de

provided u; is BLLP . If t = F (y)

a, 17, IENY) (o) - 8 () ¥' () dy
de €

0 o JE,3) V() £4(y) dy

Note that:
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[(1-€) F0 + edx](—)= (1-€) Fé—)+ edi-)

= (1-¢) F0 + eﬁ_x .
Repeating the preceding argument with

w, = uJ{[(l—e)F0+96x]G-§ =-0_,

one obtains

s | 1@, ¢ - 6900 v e

-0 =
de €l o 3@ Do vy arg

CITIEG) Ey) - 5 (5)) ¥ dy

ffmJ(FO(y)) ¥'(y) dF,(y) .

Hence:

IZIE G Fy) - §_(1)) ¥ () dy
= - SSIEG) F) - 8 (1)) v () dy
differentiating with respect to x:
(3.3)  J(F =D V' (-x) = I(F (X)) ¥' (x)

Note that the fact that f0 has compact support ‘implies that the

preceding integrals are defined.
Now consider:

17, 3E ) (Fyy) - 8 (s () dy
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IXIEL ) V@) dy + SO IE ) Tl ¥ () dy

+ 05 IFNE) [Fy(n)-11 ¥' (¥) dy
if y = -u in the second term, one obtains
I3 IF(-w) Fol-u) ¥'(-u) du
using (3.3) and the fact that
FO(—u) = l—FO(u) .
I IEG)N Fyly) - 8 () ' () dy =
fg J(F(y)) ¥'(y) dy .

Therefore if uj is a BLLP:

X '
Lim u ((1-e) F0+eéx) fO J(F, () ¥'(y) dy

(3.4) e>0 € =

17, IFH) V' () dF,(y)

Note that without loss of generality, one may suppose:

1
/2 1
0 < fl/z—nJO(S) ds <3 .
Let:
-1,. ..t
(1-2p) (1—2[1/2“nJ0(t) dt) te[0,1/2-n]
J (e) = Jo(0) te(1/2-n,1/2]

J1(1~t) te(1/2,1]
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and K, (£) = f(t) I (s) s .

Thus K1 is an absolutely continuous distribution on [0,1] having

non null density in [0,1].Hence K;l(t) is an absolutely continuous dis-

tribution function in [0,1].

For any set of distributions F , u, 1is a BLLP in FK -1 =

Jo 1

Y{Kil(F) : FeF} ., TUsing lemma III.1 ,

My (F) = My (KIl(F)) is a BLLP in F , My (F) is solution of:

o2 0 2
s vt (1)) -0) dt = 0
0 Jo 1

or

-1
J (K. "(s)) _
rp 2t v e) -0) s = 0
J, (K;7(8))
and uz is an L-M location parameter based on

T &7 ()

J2(s) =——3 and V¥ .
J, K, 7(s))

Note that J2 is a bounded variation function since

12

1/2—n
. 1-2n

1-27 Jo(s) ds

Jl(t) > min {n, } for te [0,1] .

Using (3.4):
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., ((1-e)F +ed_) X '
lim I, 0 x fo Jz(Fo(y)) V' (y) dy

=0 ; 173, EF () ¥ (y) dF ()

= b4

repeating a similar argument with:

[(1-¢) F0+s:6x]0 , one obtains:

b M 1O Fored el xoy 6y vy ay

e+0 3 % v ' y
IZ 3, @) v () dF D)

ofg 3,F () ' (oy) dy

© oA ' Y
17, 3, EE) v ) ary

(-]

Since My is a BLLP :
2

g (1(1-0) Fgres 1} = oy ((-oFgies,)

2
and:
Iy 3,(Fa) v' () dy Ty REO) vy dy
12, 3, (F () ¥ (3)dF,(y) 17,3, v () dF &)
differentiating with respé;t to x :
3, (B (x) y' (x) 1) 3 (ox)
17, 3,Ee(r)) ' (y) dF () R A NGO DI CONE | G2
Therefofe:
X ' X '
3.5) Fo I3 Fo () ¢’ (oy) dy } Jo JFo(3)) w'(y) dy

p' (ox) P (%)
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Note Jz(t) =1 te[Kl(%-— n) , 1] and Kl is strictly increasing symmetric

with respect to 1/2 so that

. 1
1/2 > K1(2 -n) .
-1 1
For xe[F0 (Kl(2 -n)) , 0]
(3.5) is equivalent to:

plox) - ¥(0) _ ¥(x) - v(0)
oy’ (ox%) ' (x)

For a fixed x , integrating with respect to O leads
log (-y(ox) + Y(0)) = o log 0+C where o > 0O

oa where a > 0 , Cl >0

v() - C

or Y (ox) 1

so that

Y(-0) = $(0) - czo“ for ¢ > 0 ,

rgpeating a similar argument with w=-0 leads:

P(o) = ¥(0) + czo“ for 0 > 0 ,

¥(0) +ksgn(x) lea

and P(x)
Note that ¥'(x) = P'(-x) so that (3.3) implies:

JO(FO(X)) = JO(FO(—X))) xeR

Jo(l—FO(X))

or: Jo(t) = Jo(l—t) since F_ is absolutely continuous.
{

0

-
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Since MJO(FO) = (0

1 ~1 -1 o
Iy Jo(e) sen (F) (t))IF0 (t)| at
+ fl J (t) ¢(0) dt = 0
00
Using the symmetry properties the first integral is null so that:

1 L
¥(0) Sy J,(t) dt =0
and ¥(0) = 0 . Thus the theorem is proved.

This theorem is a generalization of Bickel and Lehmann's (1975)

theorem 2.

Theorem II1I.2

If y(x) = lxla sgn(x) o > 0 and J(t) = J(1-t) for all t in [0,1],
the L-M location parameter y based on y and J defined on any set of

distributions F is a BLLP.

The proof of this theorem is an easy consequence of lemma III.1 and

of the following:

Lemma I1I.2
If y(x) = c |x|* sgn(x%ya > 0 uy(F) , the L-M location parameter
based on § and J(t) = 1 te[0,1] and defined on any set of distributions

is a BLLP .

Proof:

i) Let Fx and FY e F
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X>Y s. > FY(X) > FX(x) x € R .

Consider: F_l(t) = inf {x : F_(x) > t}
X X
2 inf {x : Fy(x) > t}
-1
= FY (t) for all te (0,1) .
So that:
-1 -1 -1
¥ () - e_|°‘ 2 [F5 (o) - o 1f F(r) 2 @
- - -1
and et - of® < lEgh ) - 0% 1502 Py (©)
Consider:
F(6) F (8)
X -1 o o
foo =lEgT(e) - 8™ dt - IF (e)IF (t) - o|% at + fF (e)|F
Fx(e) o F (8)
<7 |F Lty - o] dt+fF (e)lF (t) - 8|* cu:+fF (e)lF

1 -1

fo ] (FX (t) - 8) dt .

Therefore:

1 -1

Io ¥ (FL () - uy(D) de > 0

which implies:

uH(X) > uH(Y) since Ié ] (F_l(t) - 8) dt is a decreasing

function of 6 .

ii) if Y = -X s. then FY(x) = l—FX(—x) a.e.

-6

ld.

dt

- o|®

dt
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u(Y) is a solution of:
17, $(x=8) dFy(x) = 0

or ST, b(x-8) A(1-Fy(-x)) = 0

since FY(x) = l—Fx(—x) a.e. and ¥ is a continuous function.

This implies uH(Y) = - uH(X) because ¥ is odd.
iii) if Y=aX+bs. a>0 beR u(¥) is solution of:
;7% (x-8) dF (x) = 0
or 17 (x-8) aF ) = 0
or ffw Y(ay + b-6) dFX(y) =0
or 7wty + h;—e-)) dF (v) = 0

since y(ax)

pa) p(x) if a > 0,
'uH(Y) = a uH(X) +b.

This ends the proof.

Remark: 1) The preceding theorem shows that there are two ways to
compute an L-M location parameter for a distribution F:

i) as the L-M location parameter based on J and { for the distribution
F .

ii) as the M location parameter based on y for the distribution K(F)

where K(t) = fg J(s) ds .
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2) Note that if J(t) = 0, t$[6,1-8] where 8¢(0,1/2) ,
P{XKe[F_l(G),F_l(l—G)]} = 1 where XK is a random variable having distrib-

ution K(F) . Using (3.2),

W) = w ®Ee £, Fla-9)] .

3) Let ¥(x) = x, xR ,

1/(1-28) te[§,1-6]

J(t) = .
0 elsewhere
Hence,
0 X < F_l(ﬁ)
k) = Z® =8 Lor iy , Fla-e)]
1-2§8
1 x > F_l(l—d)

is the 6-trimmed version of F.
The L-M location parameter based on ¥ and J is the S6-trimmed mean.

The corresponding M estimator is the mean of the §-trimmed distrib-

ution.

Yet, note that even if estimating the S-trimmed mean from a random
sample of a distribution F and estimating the mean from a random sample
of a 6~trimmed version of F , one estimates the same parameter, the two
estimators have different asymptotic behaviour (assume F is symmetric):

1) when estimating the trimmed mean of F :
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1, _
L P& u ) =2 800,07
where of = (1-28)% [73 °F N(t)%ae + s H(8)% + Fl-6)%)]

ii) | and‘when estimating the mean of 8-trimmed F:
b 2@, - u(Ey) ——s 8(0,00)
XK n-> o *72

where °§ = (1—26)—2f§_6F-1(t)2 dt .

Section III.2 Robustness

In this section, two concepts of robustness are investigated.

The first one, absolute robustness, is a property that a functional
does or does not possess. Loosely speaking a functional u is robust if
a small variation in F produces a small variation in u(F) . (See Hampel

1971).

The second one, relative robustness, is a tool to compare two
functionals. Loosely speaking My is more robust than My if given that
a small variation in F produces a small variation in uZ(F) , the
pertubation caused to ul(F) will also be small. This concept has been

first discussed by Bickel and Lehmann (1975).

Definition III.4

A functional y is said to be robust at F. if u is continuous at F

0 0

with respect to the Lévy (or Prohorov) distance.

A functional p is said to be robust in a set F if p is continuous at
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every FO in F .

Throughout this section, the following characterization of the weak

convergence will be used:

Theorem III.3

Let d(*,*) denotes the Lévy distance andF{Fn}:=1 be a sequence of

distribution functions:
lim d(F_,F) = 0 <> F.1 () —— F 1(t) a.e.
oy n n n >
Proof: * Let first prove - .
By definition (see Chung (1974) p. 94):
d(Fn,F) = inf {e : Fn(x—e) - e < F(x) < Fn(x+e) + ¢ for all xeR}

Let te(0,1) be a continuity point of F.-1 and choose § > 0 such that
8 <-% min (t,1-t) . Using the assumption there exists ngeN such that:

n>ng > d(Fn,F) < § so that:

F(x-8) - 8 <F_(x) < F(x+8) + & -

Taking xéFgl(t)

-1 -1
PN (E)+8) 2 F_(F (1)) - 6
> t-6 since F_ is right continuous.
-1 -1 ,
Hence: F (£)+8 > F ~(t-8) since

F'l(t—é) = inf {x : F(x) > -8} .
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Using the symmetry of t(he Lévy distance yields:

C

F—l(t-s) - § or

v

Fh(eHs) + 6§ 2 F;I(t)
FN(E8) - FH(E) + 6 2 Fo(e) - FOU(E) 2 FN(e-8) - F () - 6 .

. -1 . .
Since F is continuous at t:

lim F;l(t) = F-l(t) ,
n .

F = is continuous a.e. being an increasing function, so that
-1 -1
F, (v) T2 F (t) a.e.

To prove the converse, the following criterion for weak convergence will

be used (see Chung (1974) p. 87)

1im d(Fn,F) =0 <>
n

(3.6) ¢€CK lim wa(x) an(x) = wa(x) dF (x) ,

where CK is the set of continuous functionswith compact support.

Let Xn be a random variable having distribution Fn , and T be a
random variable having the U[0,1] distribution. Using lemma II.1, Xn and

F;l(T) have the same distribution and:

E(H(X) = Spp(0) dF (0 = [ o ) wCE () ae

Let weck . There exists MeN such that |$(x)| < M , xeR and
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Lim ¥ 1(e)) = W(F 1(e)) a.e.
n n

so that the Lebesgue dominated convergence theorem may be used and:

lim / ]w(F;%t)) dt =

0.1 ]w(F'l(t)) dt
n ’

Tro,1

= SR (x) dF(x) |

hence, using the criterion (3.6), lim d(Fn,F) = 0 and the theorem is
n
proved.

In this section, robustness properties of L-M location parameters

which are BLLP will be investigated, therefore assume:
*J(t) = J(-t) tef0,1]

P(x) = csgn x |x|a ceR+ o >0,

Theorem III.5

An L-M location parameter is robust in any set F if and only if:
(3.7) J(t) = 0 te[8,1-8] where 8e(0,1/2) .

Proof: Suppose that there does not exist any 8 such that (3.7) is

satisfied, let

1
a = s 1 J(t) dt , a > 0 neN.

1-7/n
Suppose

¥(x) = sgn x |x|® a>0,

let:
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1 x20
F(x) =
0 x <0
0 x < 0
1
1 1 .7 /a
F (x) = 1-"/n 0 < x4<(;——)
n n
1
1 x5 /o
n
Note u(fF) = 0 ,
lim d(F ,F) = 0 and
n n
1
0 0<t<gl-~ n
F i) =
n 1
(—1—)/“1——1—<t<1 .
a n
n
u(Fn) is solution of:
f(l) J(t) \P(F;l(t) ~0) dt =0 .

Note that if Xn is a random variable having distribution Fn :
N
P(Xn e[O,(;—) 1) =1 so that:
n

the solution of the last equation is in [O,C:L)a] , therefore w(—9)=-—6a

n
and
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1 1
1.7 /a _ 1,7 /a
v (D %0 = (D e

n n

o

Hence u(Fn) is solution of:

1
1.7 /0 .qa o _
an[(;;) -6]" - (1-a )6~ =0

1.7 /a1 o -
> an((g;) e 1)” - (lfan) =0
1 l-a 1
- C;L) Ja 1l _ 1= (D /a and
n 6 2
1
1.7/
(an) o
w(E ) = 1
1-a_ " /a
—  +1
a4

oy

1
[(1-a ) lo 4 a /ot

As n > _a_ - 0 and
n
l;m u(Fn) =1.
So that p is not robust at F .

Conversely, let‘{Fn}°° be a sequence of distribution functions con-
n=1
verging weakly to F .,

Without loss of generality assume § is a continuity point of F ,

Using theorem III.4, F;1(1—6) and F;l(a)
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converge to F-1(1—6) and F_l(G) respectively, so that there exist M and

n1 in N such that

n > n, > max {IF;I(l-G)I , EN@ | <

Using the remark at the end of section III.1 ,

n > n, > |u(Fn)| <M.

Therefore there exists a convergent subsequence, say {n(k)h:=1

satisfying

U(Fn(k)) K - '0: Y .

Consider

1 -1
fo J(t) ﬂ)(Fn(k)(t) = U(Fn(k))) dt )

There exists n, > ny such that for te[6,1-6] and n(k) > n,

-1
[0 CF, (1 (8 = u(F, )< vOs2]v])
and using dominated convergence

fé J(t) ¢(F;%k)(t) - u(Fn(k))) dt converges to

fé J(t) w(F"l(t) - v) dt ,

and

u(F) = v .

Therefore all converging subsequences converge to u(F) . This implies:
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lim u(Fn) = u(F)
n

and the theorem is proved.
Intuitively ¥; 1is more robust than U, if{uz(Fn)}converges to uz(F)
implies{ul(Fn)}converges to ul(F) . As exemplified in the next page

{u(Fn)} may converge to u(F) fortuitously, take a in (0,1) and let:

(l/n)l+a x = —n2
PR =x) =3 1- G/ -dmt® o x=o0
¢rm® x =n

The distribution Fn of'%ﬁitends to:

F(x) =

as n > « ,

“a(Fn) , the M location parameter based on P(x) = sgn x [xla , is the

solution of

ST W(x-8) dF_(x) = 0 or
- At e + a-Em™ - Em® veo) + A/m® m-e)* =0 .

We want to solve the fbllowing equation:

3.8)  a-Gm® - At o) - a-e/m® + Ayt @a-6/02)% = o
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for 8 = 0 ; the LHS equals:
a+ Gl % <0 forn> 1.
for 8 = 2 , the LHS is bigger or equal than:

1

o 4% - (1_2/n)a + (l/n)l_a(l—Z/nz) > 22 _ 150
2

for n big enough. So that

ud(Fn) e [0,2] if n is big
and as n > © , equation (3.8) becomes:

P(8) -1 =046 i.e. 6 =1,

and lim My (Fn) =1

while l;m ul(Fn) =0 .

Hence {ua (Fn)} does not converge to ua(F) while {ul(Fn)} does.

Therefore a "naive" definition of relative robustness would lead to
noncomparability for My, and uy when intuitively o, is more robust than

M1 for a <1 .

The following approach is suggested. If one is able to find a

reasonable condition, C(u) say, on a sequence {Fn}:;l of distribution

functions such that:

{Fn} fulfills C(u) implies'{p(Fn)} converges.
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Then define: My is more robust than W, if {Fn} fulfills C(uz) implies
{Fn} fulfills C(“l) .

If u(X) = E(X) , such a condition is known: if the sequence {Fn}

is uniformly integrable then
{u(Fn)} converges.

(see Billingsley (1968) p. 32).

Definition III.5 Uniform integrability

A sequence {Fn} of distribution functions is said to be uniformly

integrable if

IF—l(t)I dt .—=> 0 .

Supf M > o

n {lF;l(t>| > M} "

This is the same as:

{
(=]

éig - u(En(',M)) + M(Fn(*,M)) =

uniformly in n , where:

-F—(x,M) = 0 x <0
F(M) 0<x<M
F(x) x > M
F(x,M) = F(x) x $ -M
F(-M) -M<x<0
1 x20 .

4 r
C' This suggests the following:
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Definition I1I.6 1y uniform integrability

e:; A sequence {F }°° of distribution functions is said to be y uniform-
n .
n=1

ly integrable if:
i) {Fn} converges weakly

ii) lim u(F (+,M)) -p(F (+,M)) = 0 uniformly in n .
M>ow D —n

In the general case, the conditions on yu are too weak to prove {Fn}

is p uniformly integrable implies {u(Fn)} converges. We shall therefore

restrict ourselves to the L-M case.

Let ¢ be an L-M location parameter based on J and ¥. If u is robust,
J(t) = 0 te[8,1-8] for a given 55(0,1/2) so that if M > max {IF'1(6/2)| .
F-1(1—6/2)} u(ﬁﬁ(-,M)) = u(En,M) = 0 for n big enough and every sequence

{Fn} converging weakly is p uniformly integrable.

Theorem IITI.4 Let u be an L-M location parameter based on J and ¢ , if

{F }m is a p uniformly integrable sequence converging to F then
n'n=1 Lo

{u(Fn)}n=l converges to u(F) .

Proof: Let K(t) =f8 J(s) ds .

Notice that:

K(F(,M) = KF) (-,M) and
K(F(-,M) = K(F) (-,M) .

ﬁ bd Hence a sequence {Fn} is y uniformly integrable if and only if
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{K(Fn)} is My uniformly integrable where uH is the M location parameter

c

based on ¥ . Therefore it suffices to prove the theorem with i replaced

by By

This will be an easy consequence of the following result:
{Fn} is uy uniformly integrable if and only if:

(3.9) 1}14m I{IXI>M}|w(x)]an(x) =0

uniformly in n .

Suppose {Fn} is Uy uniformly integrable, uH(Fn(°,M)) = Gn satisfies:

(3.10) f;_ ¥(x-8_) d F_(x) = y(6 ) F_(0) .

Using the My uniform integrability of {Fn} for any € > 0 there exists

MOEN such that:
M>MO+|‘enl<g neN .

There exists M, = Ml(w) » M; > M, , such that:
X > M > q,(k—e ) > Yp(x-e) > 1 P (x)
1 n 2
neN . ,
Hence (3.10) leads, for M > M1 .
LY dF () < 29()  meN .

Using a similar argument with uH(En(',M)) , the first half of statement

C (3.9) is proved.
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To prove the converse, note that (3.9) is equivalent to:

lim f|¥(x-0)|d Fn(x) = 0 wniformly in n for any 6 > 0 . This
M

{|x|>mM3

implies that for any continuity point Mof F , M > 0 ,

1im I (x-8) d Fn(x,M) = [ b(x-6) d F(x,M) .

Hence for such M ,

(3.11) lim u F_(4,0) = u (F(,10) .

[

Using Billingsley's (1968) theorem 5.

1?umff”beﬂw&Hanm)zf”xhﬁﬂw&ﬂdFﬁo

so that

I;m f{|X|>M}|w(x)|d F(x) =0 .
Now, e=uH(f(-,M)) satisfies:

f;w(x~e) d F(x) = $(8) F(M)

or, since 6 2 0 ,

Sp(®) d F(x)
F(M)

> y(6)

and 1lim u (F(-,M)) =0 .
M H

Using that last result and (3.11), there exist M2=M2(s) and n€=nE(M2) in

N such that:
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n > n_ M>M, imply:

2

uH(i"—n ¢,M) < e .
And one concludes:

lim uH(Fﬁ(°,M)) = 0 uniformly for neN . Using a similar
M
argument with uH(Eﬁ‘,M)) proves statement (3.9).

Note that statement (3.9) may be generalized to the L-M case:

Corollary III.1

{Fn}:=l is u uniformly integrable if and only if:

Un [ sy [eE ) |ae = o
M {t:an (t) |>M} n

uniformly in n .

Proof: {Fn} is u uniformly integrable if and only if K(Fn) is uy

uniformly integrable, i.e. if and only if:
Lin L i1x)sm V@ aRE ) = 0

uniformly for neN .

Let T be a random variable defined on [0,1] having distribution K ,

F;l(T) has distribution K(F ) so that

L x|om VOO R E () =

I3 3@ [wE ten| ae ,
aaOIEYS n



-114-

and the corollary is proved.

Theorem III.4 insures us that as far as L-M location parameters are

concerned, the following definition is consistent.

Definition IIT.7

Let ul and uz

robust than u, if {Fn}:=l is u, uniformly integrable implies {Fh}:=1

be two location parameters, ul is said to be more

is also My integrable.

Note that if u is a robust L-M location parameter, p is more robust

than any L-M location parameter using the remark after definition IIIL.6 .

Theorem III.5

Let ul and u2 be two L-M location parameters based on J. and wl s

1
J2 and wz respectively . (note that wi(x) = sgn X |x|ai , 1 =1,2) . My is

: 1
more robust than Mo if oy 2 and if there exists ¢ in (0, /2) such that:

%

Kz(t)

v

Kl(t) te[0,e]

Kz(t) < Kl(t) tel[l-e,1]

A

_ t :
where Ki(t) = IO Ji(s) ds i=1,2 .

Proof:
Let {Fn} be a My integrable sequence converging weakly to F and

consider:
-1
oy (F_7(0) | ARy ()

{|F;1(t)| > M}
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Since a, > a

9 the last expression is less than or equal to:

1

-1
s v, (F-T(r)) dK (t) .
et my 2 e 1

Since 1lim F;l(t) = F'l(t) a.e.,
n

there exists ne such that:

n>n_ > {t:F;l(t) > |F_1(1—e/2)|} is an interval included in

(1-¢,1] 4 hence for n > n_

Ly (FDR) AR (E) S gy (FL N (6))dR, (¢)
<

Fhe) > [Fra-e/2) [} N > F e/ [
because Kl(t) > Kz(t) te[l-¢,1] and wz(F;I(t)) is increasing.
Using a similar argument for t near 0 , a number M in N can be

found such that:

neN

IR [ar e 1 T, ) [aR, (o)

IA

ety | > w ety > w
n n
so that {Fn} uz uniformly integrable implies {Fn} ul uniformly integrable.

To end this section, we will prove a partial converse of theorem

I11.4 .
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Theorem III.6

(e
Let {Fn}n—l be a sequence of distribution functions converging

weakly to F such that:

Fn(0~) = 1im Fn(x) = 0 for any neN

x>0

x <0
{u(Fn)}n=1 converges to u(F) if and only if {Fn}n=1 is u

uniformly integrable.

Proof: The sufficiency of the assumption "{Fn} is p uniformly integrable"

is a consequence of theorem III.4 . We only need to show its necessity.
Since Fn(O') = (0 for any n

s J(e) w(F;l(t)) dt = 0 for all n in N and M > 0O

-1
,{Fn (t) < -M}
and the following has to be proved:

u(Fn) T2 u(F) implies

(3.12)  Lim f3(t) $(F_'(£)) dt = 0 uniformly
M

-1
{F_ (t) > M}
for neN .

Let 6, =u (Fn) , 8= u(F) , ¢ be a fixed positive number and choose
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M0 in the following way:

1im {t : F;kt) < MO} = {t : F_l(t) < MO}

- F () v@F L) - 8) dt < & and M, >0+ e

OB M,}

X > M0 implies:

Y(x-0-¢) | 1
¥(x) 2

Using dominated convergence:

£3ee) wE Le) - 0) de

lim fJ(t) w(F;l(t) -6 ) dt
n

F ) < M) ) g M)

Therefore there exists n, = nl(e,M), nleN such that n > ny implies

[£3(t) w(F;l(t) - 8.) dt - fI(t) W@ L) - 0) dtl< e

Fh) em) ) s u)

and |6 -0] <€,
n

so that for n > ny and M > Mo ,

-1 -1
JI(t) W(F (t))dt < 2 fJ(t) w(Fn () - sn) dt

-1 -1
{F ~(t) > M} {F_"(t) > My}
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= 2 { £3(t) W L(e) - o) at

{F"l(t) > MO}
FLIE) PE) - 0) de - £3(E) WCELL(E) - 6 ) at}

F L) < MO} {Fgl(t) < MO}

For each n 5{1,2,...,n1} , one can find M such that:
-1
M > Mn -+ [J(t) \p(Fn (t)) dt < 4e ,
-1
{Fn (t) > Mn}
and (3.12) is proved.

Note that this theorem is a generalization of the second part of
Billingsley's (1968) theorem 5.4, and theorem III.4 is a generalization

of its first part.

Section I11.3 1Influence Curve

In this section the concept of influence as introduced by Hampel

(1974) is discussed.

Let X1» x2,...,xn be a set of observed values with empirical
distribution Fn . The L-M estimate u(Fn) has been computed where u is

any L-M location parameter. An (n+1)th observation x is added. Let Fn+1
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be the empirical distribution corresponding to x, xl, x2,...,xn 3y the
"influence of x on M (Fn+l)" can be defined as:

W (F ,)~-u (Fn)

nt+l
For instance, if p is the mean, the influence of x is equal to:
-1
(n+l) (X—U(Fn)) s

if p# is the S-trimmed mean, the influence of x is equal to:

*(tenprn” M B T X S X(psn1a)
[(+1) (1-28)179 x - wED AE x4y <X 2 X [sn])
X(m-ron])” ¥ Fo) if *(n-[on]) < ¥

The influence curve is the asymptotic counterpart of this notion; it
is a function whose value at x is a measure of n times the "asymptotic

influence" of x. This leads to the following formal definition:

Definition III1.8 Influence Curve

The influence curve of a functional u at a probability distribution

F is defined as:

u((l—e)F+edx) - u(F)
0 €

Ic (F,u) (x) = el;m

where Gx(y) = 0 if y<x

1 if x <y

Note that the IC (influence curve) of a functional u is nothing more than

its first Gateaux or Fréchet "derivative'. Von Mises (1947) and Filippova
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(1962) have introduced these notions in a probabilistic context.
If ¥ is the expectation,
IC (F,u) (x) = x - u(F) ,

if u is the 6-trimmed expectation,

FL(8) - u(F) x < F1(5)

IC (F,1) () = (1-26)774 x - u(F) F1(8) < x s F1(1-6)

Fl(1-8) - u(F) F 1(1-8) < x

These IC are the limits of n times the function defining the
influence of the (n+l)th observation for the mean and the §-trimmed mean

respectiﬁely.

More generally, if H is any distribution function,

p((1-g) F+eH) - u(F)
0 €

el_i;m =[1IC (F,») (x) dH(x) ,
e [ IC (F,H) (x) dH(x)

measures the influence of the contaminant €H on u (F) since:

p ((1-e) F+eH) = u(F) + ¢ J IC (F,u) (x) dH(x) .

Theorem II1.7 IC of M location parameters

If p is an M location parameter based on J assuming

A(x) = féw(F_l(t) - x) dt has a strictly negative derivative at u(F) ,

Ic (F,u) (x) = - v(x=p(F))/A' (u(F))
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at each point x - u(F) where Yy is continuous.

Proof: Let
A (8) = (1-¢€) fR Y(y-8) dF(y) + ep(x-0)

and 6E be the solution of xe(e) = 0 . Assume without loss of generality,

x > u(F) . Therefore:
Ae(u(F)) > 0 and Ae(x) <0 or
6 _e[u(F),x]

So, assuming without loss of generality ¢(0) = 0 ,
0 2 fep(y=8) dF(y) 2 - ep(x-u(F))/(1-¢)

and as € goes to 0 , A(ee) goes to 0 . Since A has non null derivative

at u(F) , A-l is continuous at 0 and

elimo ee = u(F) .

Now:
(1-¢) fR w(y—ee) dF(y) + ew(x—es) =0

or

ee-u(F) wa(Y-es) dF(y)
o, -u(F)

(1-¢) = -y(x-5)

and as € > 0 ,

IC (F,p)(x) = - p(x-u(F)) /2" (u(F))
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assuming ¥ 1s continuous at x - u(F) .

Remark

This theorem contains a proof of the existence of the IC and provides
an algebraic expression for that IC. The previous theorems on the IC for an
M location parameter (Andrews et al.(1972) p. 40, Hampel (1974), Huber (1977)

p. 14) do not prove the existence.

The proof of the existence of the IC for a general L-M location parameter
is not straightforward. The beginning of theorem III.1 contains a proof

of the next result under very restrictive regularity conditions:

Theorem I11.8 IC for L-M location parameter

Under certain regularity conditions, the IC of ¥ , an L-M location

parameter based on J and y is equal to:

O 3@ (phu(E))) Qb (y)
Ic (F,u) (x) = A (n(F)) + C

where C is a constant such that
S IC (F,u) (x) dF(x) = 0 .

A formal proof of this theorem would require intricate analysis.

Furthermore this result has merely an intuitive interest,

Therefore it will not be proved here.
Note that:

IC (F,1) (x)= —dyy(x=E0) /A" (£ )



=123~

where ¢H and EO has been defined in section II.5. So that using this new

concept, theorem II.7 may be reformulated in the following way:

Theorem I1II.9

Let Xl,Xz,...,Xn be a random sample from a distribution F , let
-1 g
Fn(x) = (n+l) i&1 I (x—Xi)
where I(x) = { 0] x <0
1 x20

Then for any L-M location parameter u based on J and § satisfying

the assumptions of Corollary II.S8,

1/ 1

n /2 () - w® -n /2

n
1Z I¢ (F,w) (X)) is op(l) .

1/2 . 1/

So that n (Tn - EO) = n 2 (u(Fn) - u(F)) has the same

asymptotic behaviour as the sum of the influences of the Xi's on u(Fn) .

This result has been proved in a different context under a lot of
messy regularity conditions by Filippova (1962). In the location model,
it has been conjectured by Huber (1972). It legitimates the use of the

IC as a tool in applied robust estimation. Coming back to BLLP,

Theorem III.10

If u is a BLLP then:

IC (Fpp » W) () = a IC (Fg,w) D)

and
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IC (F_po) (0= -IC (Fgow) (=x)

Proof: u((1-€) Fxczgh) + €8 _(y)) - an(F) - b

-b -b
w((@-e) F72) + 68 22)) - au(Fy) - b

a

a u((1-¢) FX + EéE:E) - au(Fx) ’

a

dividing by € and taking the limit as ¢ tends to O proves the first

statement.

To prove the second, consider:

W((1-€) F_, + €8 ) - u(F_p)

u((1-e) (A-Fp(-y)) + e(1-6_ (-y) N+ u(Fy)

(L - (1-e) Fo(-y) - e§__(-y)) + u(Fy)

- u((1-e) Fy + e8_ ) + u(Fy)
dividing by € and taking the limit as e goes to 0 ends the proof.
Note that only properties ii) and iii) of a BLLP have been used.

The IC has been useful in the M location parameter context to build

robust and highly robust estimators. Hampel ((1974), (1973)).

Huber's minimax M estimator is the prototype of robust M estimators
while Hampel's three parts descending M estimator as defined at the

beginning of section II.6 is the prototype of highly robust M estimators.
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The L counterpart of Huber's estimator, the trimmed mean or in
general a trimmed L estimator, has been investigated by Jaeckel (1971),
Bickel and Lehmann (1975) and for simulation Andrews et al, (1972). Yet,
the L counterpart of Hampel's proposal ﬁas never been considered. Figure
I A) contains the IC of a three parts descending M estimator up to a

constant.

A similar graph would be obtained for the IC of the L estimator

based on the following J:

let 0 <t < t, <¢t, < 1/2 , define for a > 0
0 1 2 }
0 - 0sgt< ty
—1/a tp s t<tg
J(t) = J(1-t) =
0 tyst<t,
1 t2 < t < l/2 .

This L estimator is the difference between a trimmed mean and a

trimmed outer mean. Assuming F is symmetric with respect to 0 , the

corresponding IC is: IC (F,p) (x) = - IC (F,u) (-x) =

x O xel0,F N (1-t,)]
Fla-e) ' . Cxe[FH (1)), F (-t )]
F_l(l—tz) - a e F e )Y xe[F T (1-t ), F 1 (1-t )]
Fl(l-t,) - a C(F T(1-t )= (1-t;)) xe[F 1 (1-t ) o]

Figure I B) contains the graph of such a function. The IC obtained is a

function of the underlying distribution. One should use this "adaptiveness'
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‘:> A) The IC of the three parts descending M estimator.

IC )

\ ' 0 a b £

B) The IC of the L analogue of the three parts descending M estimator.

Fity [T

- ~\
F'(‘ (- t&)— F —'l‘.,\;F (-t)

1L

; A . X
Fi-t)  FUt) F(

Figure I
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of the IC to build "nice" estimators.

The principle underlying the construction of the next estimators is
the following: first choose a heavy tailed distribution then design the
IC in such a way that the influence of the extreme observations is zero

for this special distribution.

The distribution used to build LM1 , LM2 , LM3 and LM4 , the L

estimator based on Jl . J2 s J3 and J4 is the Cauchy:

(1 te[.5,.75]
3, (t) = jl}l—t) - Y36 ] 121 te[.75,.9)
L 0 te[.9,1]
(1 te[.5,.75]
I, () = 3,(1-t) = .43 154 te[.75,.95]
0 te[.95,1]
1 te[.5,.75]
J3(t) = J3(1—t) = l/.47 ° cel.75, 9]
“1/3.3 tel.9,.95]
0 te[.95,1]
1 te[.5,.9]
3, = 3,00 = 17 -1 te[.9,.95]
0 t [.95,1]

Note that seen as functionals, these location parameters satisfy conditions
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x> 4l

Figure III
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ii) and iii) of BLLP's definition while highly robust M estimators

satisfy only condition ii); they are not scale invariant.

Figure II contains, up to a constant, the graphs of LMA'S IC when the
underlying distribution is normal and t with 3 degrees of freedom,
Figure IIT contains a similar graph when the underlying distribution is

Cauchy.

(Since the distributions under consideration are symmetric, the IC

are odd and IC (F,u) (x) has been graphed only for x 2 0)

LM5 and LM6 » the L estimators based on J5

using the t distribution with 2 degrees of freedom, LM7 , the L estimator

and J6 have been built

based on J, is using a t with 4 degrees of freedom.

1 te[.5,.75]
1 0 tel.75,.8]
Ig(6) = 3, (1-t) =17.37
172,25 tel.8,.95]
0 te[.95,1]
1 te[.5,9]
Jg(t) = 3 (1-t) =161 -1.9 tel.9,.95]
0 te[.95,1]
1 te[.5,8)
1 0 tel[.8,9]
J7(t) = J7(1—t) = /.42
1.8 te[.9,.95]

0 te[.95,1]
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Figure IV contains, up to a constant, the graphs ofLMs‘s IC when the
underlying distribution is normal, t with 3 degrees of freedom and

Cauchy (IC(F,u) (x) has been graphed for x > 0) .

The last part of this section contains a Monte-Carlo study of the
previously defined estimators. Each estimator was simulated a thousand
times from a sample of size 20 for ten sampling distributions. These
sampling distributions were distributions of the following type of
random variables: X/Y where X is distributed N(0,1) and Y, the contam-
inating random variable, is positive, distributed independently of X.

The distributions of Y and the corresponding sampling distributions are:

Contaminating Sampling
distribution distribution

a) degenerate Y=1 a.e. (%)

b) v’x§/3 t with 3 d.f.

c) Y= [c_l with probability o ad(x/c) + (1-a) &(x)

1 with probability l-a
d) half normal Cauchy
2(0(y)-.5)
e) uniform [0,1] fé ®(xu) du
Remarks

1) The contaminated normal, c¢) was simulated for 2 values of ¢, 3 and
10, and for 3 values of o , .05,.1 and .25. The sampling distribution

for a given value of a and ¢ is labelled a , cN .

2) e) was added despite its artificial construction to provide a heavy



-133-

tailed distribution with an unpeaked center, see Andrews et al. (1972)

p. 123.

A variance reduction technique due to Dixon and Tukey (1968),
Relles (1970) and apparently based on ideas of Fraser (1968) was used,

see Andrews et al (1972). Here is a brief description:

Let: x denote the 20 x 1 vector of normal deviates,

~

y denote. the 20 x 1 vector of contaminating deviates, and

t N

=(xi/yi) is the vector of the observations.

T(z), the computed estimate, is location and scale invariant

and T(-z) = T(z). Hence E(T(z)) = 0 and E(Tz(z)) has to be estimated.

. - 2
Let: s (3 xiyi)/(zyi)

2,-1

given vy £ is distributed N(O,(Zyi) ),

S | 2
S, = 19 Z(xi - yiﬁ)

given y sg is distributed xi9/19 .

Define, c(z) the configuration in the following way:

c(z) = s%l (z - e?)

where e is a 20 x 1 vector of 1's . Note that giveny , c(z) , 2 and

S; are independent.

Thus:
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B’ (2)) = BT () ly,e(2)))

~ N~

and E(Tz(z)ly,c(z)) =

~ o~

T{z)-2 9
E(—=) s, + 2)7]..0)
2

= E((T(e(2) s, + 0)°[..0)
= T%(c(2) B(sjle@),y) + 2T(c(2)) E(s,2|c(x),y) + EG*[c(),y)
- (@) + GyD7

using the independence property. To obtain the desired variances, we
sum Tz(c(f)) + (Zyi)_l . Table I contains 20 times the sampling
vériances of the IM estimates for the different sampling distributions.
It also contains the corresponding variances for the 5%, 10%Z, and 25%

trimmed means computed by Andrews et al. (1972).

The empirical results are disappointing. ILM1, IM2 and IM3 are
equal to 25%, the 25% trimmed mean, minus a trimmed outer mean divided
by a normalizing constant. These estimates are totally outdone by 25%
(except IM1 for Normal/U). IM4 is the most successful; in gentle
situation it stands around 57 and 10%Z but for highly contaminated cases,
it breaks down rather surprisingly. 1IM5, IM6 and LM7 are even poorer
than IM1 to IM4. Furthermore IM1 - 1LM7 are completely outdone by the

Hampel estimates (for Hampel's estimate variances, see Andrews et al.

(1972)).

Two reasons are set forth to explain these results:



Sampling distributions

Estimates Normal t3 .05,3N .1;3N .25,3N .05,10N .1,10N .25,10N  Cauchy §2§9§l

M1 1.48 1.89 1.58 1.68 2.09 1.60 1.82 3.47 5.43 6.48
M2 1.31 1.70 1.40 1.50 1.89 1.42 1.55 2.22 8.72 8.46
M3 1.25 1.65 1.34 1.44 1.84 1.36 1.51 2.28 12.05 11.81
IM4 1.13 1.67 1.24 1.36 1.90 1.37 1.84 5.51 '35.72 37.67

5% 1.02 1.88 1.19 1.41 2.27 1.23 2.90 14.93 24 35.94 !
10% 1.05 1.68 1.17 1.33 | 1.92 1.20 1.46 6.71 7.3 13.60 ?
25% 1.20 1.59 1.29 1.39 1.79 1.29 1.47 2.18 3.1 6.62
LM5 1.55 2.02 1.65 1.76 2.18 1.85 2,70 6.73 56.15 33.94
LM6 1.28 1.94 1.41 1.55 | 2.16 2.31 4.69 11.18 193.68 161.22
M7 1.69 2.77 1.88 2.12 3.06 4.20 10.66 30.15 *xk kkk

Table I

20 times the variances of the estimates
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1) The normalizing constants

The IC of Hampel's estimates is equal to:

o (F)Y(x/a(F))/EW' (X/c(F)))

where X has distribution F and o(F)=(F L(3/&)-F L(1/4))/ (o 1 (3/6)-0"1(1/4)),

E(W' (X/o(F))) = {(P(|X/o(F)|e[0,a]) - P(|X/o(F)[e[b,c])a/(c~b)}

is the normalizing constant. Here are these constants for Himpel's
estimates considered by Andrews et al.(1972) in three sampling

situations:

a b c Normal t3 Cauchy
2.5 4.5 9.5 .98 .93 .78
2.2 3.7 5.9 .96 .88 .72
2.1 4. 8.2 .95 .89 .76
1.7 3.4 8.5 .89 .84 .72
1.2 3.5 8 .74 .76 .64

For the LM's estimate, the IC is equal to:
X 1
IO J(F(x)) dx/f0 J(t) dt

The normalizing constant is Ié J(t) dt. For the estimates in Table I

these constants are:
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Estimate constant
M1 .36
M2 .43
M3 47
M4 | .7

5% .9
10% .8
25% ]
M5 .37
M6 .61
M7 42

The normalizing constants for the L estimates are generally smaller
than the ones for the M estimates in all sampling distributions. To |
robustify L estimates, the price paid on the normalizing constants 1s
bigger than for the M case thereby increasing the effect of the influential

observations on the estimates.

2) Non normality

To explain the discrepancy between the LM's variances and the
trimmed variances, in vigorous situations, note that the influence
theory is asymptotic. The weight functions of the LM estimates are very
discontinuous, this may decrease the rate of convergence to the asymptotic
situation in highly contaminated cases. The fact that, in the Cauchy
and Normal/U cases, the variances increase with the absolute value of the

weight given to the extreme observations support this statement:
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M1 gives weight -1.33 to x(18)
LM2 " " - .43 to x(19)
M3 " " - .61 to x(19)
M4 " " -1.44 to x(19)

5% " " 1.11 to x(19)
10% " " 1.25 to x(18)
25% " " 2 to x(18)
LM5 " " -2.75 to x(19)
M6 " " -3.11 to x(19)
M7 " " -4.28 to x(19) .

Appendix I contains a listing of the computer program used in this

section.
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Chapter IV

Two orderings of distributions

In any estimation procedure, the performance of a certain estimator is
mainly a function of the tails of the underlying distribution. In the
location model the Princeton Simulation Study, Andrews et al. (1972), for
finite samples and Bickel and Lehmann (1975), Rivest (1976) for infinite
samples support this statement. Mosteller and Tukey (1977) have pointed out
that for real data, the most important deviation from normality is the

behaviour in the tails of the underlying distribution.

In this chapter, two methods for the classification of distributions

will be discussed.

The first one has been introduced by van Zwet in 1964. van Zwet's

ordering is based on F_l, the inverse of the distribution function.

The second ordering has never been defined as such. In this context,
G is bigger than F, if G can be regarded as the distribution of XY where
X and Y are independent random variables and X has distribution F. This
method has been used at the end of Chapter III to generate distributions

with tails bigger than the normal ones.

Section IV.1 o unimodality

In this section, a generalization of Khintchine (1938)'s concept of
unimodality introduced by Olshen and Savage (1970) is discussed. We will

characterize the distributions of the following type of random variables:
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whore UO is a U[0,1] random variable and Y is any random variable dis-

tributed independently of U0 .

Definition IV.1 o Unimodality

A distribution function F is said to be o unimodal (a > 0) if F has

a well defined density f(x), except may be at a point a in R, satisfying

f(x)/(x—a)m_1 is decreasing x > a ,

f(x)/(a—x)m_1 is increasing x < a.

Remarks

1) For a=1, this is analogous to standard unimodality as defined by
Gnedénko and Kolmogorov (1954) p. 157.

2) If F is a_ unimodal, F is o unimodal for any & 2 @

0

3) Without loss of generality, assume that f is right continuous so

0"

O—
that f(x)/(x-a) 1 is right continuous except maybe at a.

Example

Let:

f(x) = (@) B x e x>0,

then F(x) = fg f(x) dx, the Gamma with parameter @ and B , is @ unimodal

(taking a=0).

Theorem 1IV.1

F is o unimodal if and only if:

M(x) = F(x) - (x-a) f(x)/a
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is a distribution function.

Proof: Assume without loss of generality a = 0 .

Define for t < O

v, () = S5 0% dEG/ @0

and for t > 0

F(O) - ff ™ aE @) /(axh)

Vz(t?
where St = s
0 o,t]
Suppose first that f is o unimodaly it suffices to prove

Vl(t) t <0
M(t) =

V() t20
and Vl(—w) = 0 and Vz(w) =1 .
By definition

V() = Lim /5 (0% df G0/ (0D
M

Consider:

15 (O @/ (@ (-0
integrating by parts leads:
F(t) - F-M) - tf(t)/a -ME(-M)/a

In order to prove Vl(t) = M(t) , t < 0 and Vl(-w) = 0 , one has to show:
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(4.1) wlim M £(-M)/a = 0 .

Since f is a density, for any € > 0 , there exists Me such that

-M
M > ME implies f_Mef(x) dx < €

Me (-0 Fx) dx
-M a-1
(-x)

or: e > [

> e et/

Note thatb}_]’;m°° f(—M)/MOL—1 = 0 (otherwise, f?wf(x)dx = ») and (4.1)

is proved. The same way, it is shown that:
(4.2) Ml_i)_me° ME(M) = 0 .

Consider for t > 0 :

-1

V,(t) - F(0) = Ljmy Si-x"df(x)/(ax")

Integrating the RHS by parts leads:
F(t) - F(e) - tf(t)/a+ef(e)/a
In order to prove VZ(t) = M(t) , t > 0 and Vz(w) = 1 , one has to show:

(4.3) lim e f(e) = 0 .
e >0
e >0

Since f is integrable, for any n > 0 , there exists ¢, such that ¢

0
in (0,60) implies:
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n > fg £(x) dx

- r7 Ll /a0 dx

>(£ee)/ (c* 1) e /a

A}

Therefore (4.3) is proved. A similar argument would show that:

(4.4) lim € f(e) = 0

e >0
e <0

Note that since f is right continuous M(x) is right continuous except

maybe at 0 , but (4.3) implies that M(x) is right continuous at O .

Since (4.2) implies Vz(w) = 1 the first part is proved. To prove

the converse note that if x >y > 0

Vy(x) = Vy(y) = M(x) - M(y)
therefore if M(x) is increasing, so are Vz(x) and Vl(x) , hence

a~-1 | g

f(x)/(-x) increases in (~«, 0)
and f(x)/xmfl decreases in (0,») and f is a unimodal.
Remark
1) Gnedenko and Kolmogorov (1954) p.157 proved the theorem for a=1 .

An alternate proof of theorem IV.1 may be derived using their result and

the fact that if X is a unimodal (X—a)a is unimodal.
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Theorem IV.2

The following statements are equivalent:
i) F is o unimodal with respect to é,
ii) let U0 be a random variable uniformly distributed in [0,1], there
exists a random variable Y distributed independently of UO such
that:

L

a + UO

®(Y-a) has distribution F ,

iii) |F-l(t) - a|a is convex in [0,1]

Proof: Assume without loss of generality a = 0 .

To prove i) - ii) let Y be a random variable having distribution
M(x) . For x>0

1

Y < x) = M(0) + P(U0 /

vy e 0,x])

Note that M(0) = F(0) and consider:

1
(4.5) P(U, ey e0,x] = I ) /ey am(e)
where F(a)(x) = 0 x <0
x x € [0,1]
1 x > 1

Then (4.5) is equal to:

MG - M(0) -~ 1T G/E®) (6% af () (@t®

]

M(x) - M(0) + xf(x)/a

F(x) - M(0) .
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Similarly one shows that the result is true for x > 0 .
To prove ii) - iii1), for x > 0
= (@) ey ae
F(x) = F(0) + J, F 7 (x/t) dG (v) ,

for a certain distribution G . Let t0 = x/2 ', for any € satisfying

el <ty s

el @ ate) - FG0) = 1 @ (arrer /o) - 7P /) doo)
0

Using the mean value theorem and the fact that f(a)(x) = é% F(a)(x)

is monotone in [0,1] for t > to

e L@@ ((xte) /1) - T (x/e))

el [ Getled/e]® + | x=leDre|®

IA

IA

aty™ [lxtle] |7+ Jaele] 17
which is a G integrable function. Applying dominated convergence:

o-1

F(x) = o x f: ™ dc(t)

Therefore for x > 0 ,

a=-1
2 S is increasing or:
f(x) )

1

-1 a-1
(4.5) o(F _ff)) is increasing in (tl,l)
£(F (1))
where t, = inf {t : Fﬁl(t) > 0} . Integrating the last expression we
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obtain that:
(F—l(t))a is convex in (tl,l)
For x < 0
Feo = /2 Y @) oy
using a similar argument, one shows_that:
£x) = a(-0%1 /X (0)™ dac(e)
and

(4.6) - a(-Fle)®?
£(E L))

is increasing so that (-F—l(t))a is convex
. A _1

in (O,to) where t, = sup {t : F (t) <0}.

To prove iii) - i) , note that iii) implies that (4.3) and (4.6) hold so

i) is true.

Corollary IV.1

F is o unimodal if and only if ¢ the characteristic function of F

satisfies:

¢o(t) = e 1at a|t|—a flgl Sa—l v(sgn(t)s) ds

where v is any characteristic function.

Proof: Without loss of generality assume a = 0 . Using theorem IV.2,

1
F is o unimodal if and only if UO‘/aY has distribution F, hence:
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1
ity Oy
¢(t) = E(e )
1
ity [ay
= E(E(e Uy
1/a
= E(v(tU ))
0
where v is the characteristic function of Y . Hence:

' 1
o (t) = fé v(tu /a) du .

l/a

let v=|t| u ie du = a|t|™® vt

dv

¢(t) = a|t|—a fétl V2t v(sgn(t)v) dv «x

Remark:

Assume a = 0 , note that ¢(t) is differentiable és a product of
differentiable functions. Given ¢(t) , v(t) can be found in the following
way, if t > 0 ,

-1 -o+l d
t —

v(t) at

£ ¢(t)

)

é(t) + to' () /o .
Using a similar argument for t < 0 , F is a unimodal if and only if
v(t) = ¢(t) + t ¢"(t)/a
is a characteristic function.

Note that this condition on ¢, the characteristic function, is

similar to the condition on F as stated in theorem IV.1 .
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In the last part of this section, distributions of

-1
/o
U0 Y

will be characterized.

Definition IV.2 o unimodality

A distribution F is said to be o unimodal (o > 0) if F has a well

defined density f(x) except maybe at a point a in F satisfying:

1

(x-a)m+ f(x) increases in (a,x)

1

(a—x)a+ f(x) decreases in (-«,a)

Example

- Let

F(x) = T D)™t

F(x) = ffw f(y) dy is 1 unimodal (taking a=0)

Theorem IV.3

Let X be a random variable having an absolutely continuous
distribution F, F is a unimodal if and only if the distribution of (X—a)_1

is o unimodal.

Proof: Assume a=0 .
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F(O) + 1 - F(x—l) x > 0

A

el

~
0

(4.7) P(X

F(0) - F(x 1) x<0.
The density of 1/X is:
<2 .

Therefore, if x > 0

- (a+1)

x—(a_l) (x-.2 £ (x—l)) = x f(x—l)

is a decreasing function of x since F is o~ unimodal. For x < 0 , a
. v . . -1, .
similar argument proves that the distribution of X is o unimodal. The

converse is proved the same way.

Remark

1.

The assumption F is absolutely continuous implies that (X-a)

with probability 1 .

Theorem IV.4

Let F be an absolutely continuous distribution. The following

statements are equivalent:

i) F is o unimodal,
ii) M) = F(x) + a—l(x—a) f(x) is a distribution function,

iii) If U, is a U[0,1] distributed random variable, there exists a

0

random variable Y independent of UO such that:

1

a+U. /

0 0L(Y—a) has distribution F,
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iv) IF-l(t)—aI—a is convex in(O,tO), (to,l) for a certain to e[0,1] and

-1 S PN
Jimg Fo(e) = —= , Lim) F () = = .

Proof: Assume a = 0 . To prove i) «+»>1ii) note that X-l is o unimodal if
§

and only if (using theorem IV.1)

1

F(0) - F(x 1) - (ax) F £(x ¥) x < 0

F(O) +1 - F(x 1) - (ax) L £ x>0
is a distribution. If Y has distribution G,1/Y has distribution
M(x) = F(x) + xf(x)/a

using (4.7).

i) <> iii) by theorem IV.2. i

To prove i) -+ 1iv), take ty = F—l(a) . For t > tg
u—l F-l(t)m+1 f(F~](t)) is increasing
or - a F_l(t)-(a+l) [f(F_l(t))]_l is increasing.

Integrating we obtain F_l(t)_a is convex in (to,l). Similarly, it is
shown that (—F—l(t))_a is convex in (O,to). To prove iv) =+ i, one uses
an argument similar to the one used at the end of theorem IV.2. The
condition on F—l(O) and F-l(l) implies f(x)#0 x € R which is a necessary

condition to have o unimodality.

In the last theorem, the absolute continuity of F allows the use of

the relationship between a and o unimodality to obtain a short proof.
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This assumption is not necessary. Arguments similar to the ones used in
the proof of theorems IV.1 and IV.2 would prove theorem IV.4 without this

assumption.

Finally, we will find an expression for the characteristic function

of an o distribution.

Corollary IV.2

F is an o  distribution if and only if ¢ the chracteristic function

of F satisfies:

o(t) = e—iat at af: v—(a+l) v(v) dv for t > 0

where v is a characteristic function.

Proof: Without loss of generality assume a=0. By theorem IV.5, F is

o unimodal if and only if

-1/a
itU Y
¢(t) = E(e” 0 )
1
oo o
- 5(Ee 0 YIUO))
1
= Ié vt v 7% du
Yy
where v is the characteristic function of Y . Now, if v = tu @ s
-du = at 0lv—(cH-l) dv and
¢(t) = at af: v_(a+l) v(v) dv .
Remark:

Assume a=0 . ¢(t) is differentiable as a product of differentiable
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functions. Given ¢(t) , v(t) can be found solving:

at—(a+l) v(t)

d o
T 4t o(t)/t

v(t)

o(t) - to'(t)/o for t > 0

The conclusion of theorem IV.6 holds if and only if v(t) is a

characteristic function.

Section IV.2 Applications

In this section, the results of section IV.1 will be used to find
the distributions of infinite products of uniformly distributed random
variables.

Notation
* Ge0 (F) if given a random variable X having distribution F, a random
variable Y, independent of X, can be found such that XY has

distribution G .

1
. F(a) denotes the distribution of U0 /o where U0 is a U[0,1] random
1
variable, Fa denotes the distribution of UO— /o

F(a)(x) = 0 x <0
xa XE[O,l]
1 x > 1

Fa(X) =

{o x <1
1 - x—a x>1

. Pa denotes the Gamma distribution with parameter o and 1
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Pa(x) = [ 0 x <0

Are Ty eV gy x> 0

*d(x) denotes the standard normal distribution
2
1 1 y
8x) = X (amy” /27127 gy

"t denotes the t distribution with v degrees of freedom

-1/2(v+1) dt

f P((v;l)/Z) (1+t2/v)

tv(x) = [
® () 12 /2)

°F denotes the F distribution with v, and v, degrees of freedom
Vi2Vo 1 2
0 x <0
Fv sV (x) =
1772 v v 1 1
x 1/2 "2/2 /2(v_-2) /20v_+v,)
fovl v, P((v1+v2)/2)y 1 (v2+vly) 1 27dyx>0
T 72T 0y0)
*B denotes the Beta distribution with parameter.p and q
s
0 x <0
- x T'(ptq) p-1 .. q-1
Bp,q ™ foTiir ¥ 97~ & xe[0,1]

1 x> 1
-Wb denotes the Weibull distribution with parameter b

W (x) = 0 x<0
1 -e x>0

o0

;{Ui}i=0 {Vi}: denote two independent sequences of independently

i=0

é::;
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distributed U[0,1] random variables while U denotes a l/[-1,1] random
variable. For positive random variables, the results of section IV.1

can be summarized as follows:

Corollary IV.3

Let F be the distribution function of a strictly positive random
variable, then:

i) FEO(F(a)) if and only if
M(e) = -/ x*dE )/ (ax* )

is a distribution where f is the density of F; furthermore if Y has
distribution M(t) and is independent of UO s

1

Yo

/

0LY has distribution F ,
ii) FeO(Fa) if and only if

M(t) = o1 st ax*t £ (x)

- is a distribution function; furthermore if Y has distribution M(t) and

is independent of U0 ’

Y

o
0 Y has distribution F .

U

Theorem IV.5 Decomposition of a Gamma distribution

The random variable defined by:

n=1 1
rl1_:km°° (n+a)i£0 Ui

/(i+a)

has distribution Fa(x) .
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Proof: The density of Fa is:

1 -1 -x

£(x) =T (o) x e x >0 ;

since f(x)/xm_1 is decreasing,

1
/o Y. has distribution Fa

(o)
r €0 (F*"’) and U, 0

where U, and Y, are independent and Y

0 0 has density:

0

m(t) = [T4+1)]" T t%F t>0

by corollary IV.3. TIterating this result:

has distribution Fa(x) where Yn— is independent of the Ui's and has

1

distribution Pa Now,

4
E(Yn_l/(n+a)) = 1 and V(Yn_l/(n+a)) = (n+oc)—1 ,

hence (a+n)_1Yn—l goes in probability to 1 as n tends to « and the

theorem is proved.

Corollary IV.4 Multiplication of Gamma random variables

1f {Xj}ﬁ;é is a sequence of independent random variables distrib-

uted T (x) then:

atj/k

k=1 1

( T x ) [k is distributed Pka(kx)

=0 J
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3 k-1
i(j) i=0 j=0

variables. Then

Proof Let {U be a sequence of independent U[0,1] random

lim nnl U l/(i+u+j/k)
n i=0 "i(3)

has distribution T Since each limit is finite almost surely,

at+j/k °

L/ Civoi /R LK

1 )
j=0 4 i(3)

Using theorem IV.5 the last random variable has distribution Pka(kx)

Theorem IV.6 Decomposition of a normal distribution

The random variable defined by:

1gn, /BT o gty /D
n > e i=1

is distributed &(x)

Proof: Note that if X has distribution &(x) , |X| has density:
12 1, .2
f(x) = 2(2m) exp (-7/2 x7) x>0
and |X|2 is distributed ry (x/2) . Hence
/2

(_lim_ 2 (n#t /2) /(1+ /2)) H2

1/2 n=1 1/21+1
L0 U,
i=0

nlimw (2n+1)
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has the same distribution as ]X| . Let Y be a random variable distributed
independently of X such that P(Y=*1)=1/2 , Y]Xl has distribution &(x)
Now YU, is distributed as U and the theorem is proved.
Remarks
1) Note that the double exponential distribution is in 0 (%) . Using
1 12
corollary IV.4 (with a="/2 , k = 2) /§|X1|X2 is distributed Fl , where
X1 , and X2 are independent random variables distributed ¢ and Fl

1
respectively. Hence V2 X, X /2

1 %9 is distributed double exponential. This

technique has been used in Andrews et al. (1972) to generate the double
exponential from the normal distribution.

2) ~Let X be a Pa distributed random variable then Y(X/a)a has density:
1
-1 /o
hu(x) = [2T (a+1)] exp ( x /o) xeR

and its representation as an infinite product is:

1im (n/a+1)a v TR

1 Yt/
n i=1

U,
i

The next corollary is an easy consequence of theorem IV.5 and IV.6.

Corollary IV.5 Decomposition of a t , an F and a W distribution

Let vell , then:

/2 e Y2i+3) -1/ (2iv)
. U, v,
i=0 i i

is distributed tv .

Let vy > v2€N , then:

- 1
(v, /v.) nu l/(v1/2+i) \' ) /(v?/2+i)
2" 1 i=0 i ' i ’
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is distributed Fv v

1’72 °
Let b > 0 then
lim n / U /b1
n i=1

is distributed Wb .

The following corollary gives a relation between two Weibull
distributions when the parameter of one distribution is a multiple of

the other. The proof is a direct consequence of corollary IV.4

Corollary IV.6

Let {Xi}g;é be a sequence of independent random variables such

that Xi is distributed rl/k+i/k i=0,1,...,k=2 and Xk—l is distributed

ka then:

1 1
X1 1;3(2) X, kb is aistributed W (k oy .

Theorem IV.7 Decomposition of the Beta distribution

Let p and q be positive numbers, define:

1/(:'L+q)
Yi = [U with probability 1-(i+q)/(i+p+q)
1 with probability (i+q)/(i+p+q)

00

then 120 Yi has distribution Bp,q .

Proof: Let X, be distributed T . If X, has distribution B and X
— 1 ptq 2 P»4 2

172

result, one uses the fact that if Y1 and Y2 are distributed Pp and Pq

is independent of X1 then X.X, has distribution Fp . To prove this
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respectively, then Y /(Y ) is distributed Bp ptq independently of
b
Y1 + Y2 .

1
Now if o < B , F(a) € O(F(B)) and U0 /8 Y is distributed F(a) where
Y has distribution:
-s S of a w8/ 0<t<1
M(t) =

1 t21
{ (1-a/8) ¥ (¢) 0<t<1

1 t>1 .

Therefore if

L/ (p)
\ with probability 1 - (i+p)/(i+p+q)
i
1

with probability (i+p)/ (i+p+q) ,

¢ p G Vi1/<i+p)

1 : have the same distribution, and

lim n H U /(i+p+q)
n i=0 1

is distributed Tp' .Reordering the random variables:
1/ (itpq)
U, y LY
i i=0
has distribution Fp .

Now, X. X, and X H Y “have the same distribution. Since X, and

e::? 172 i=0 2
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‘T‘~ iHO Y, are bounded random variables, they are determined by their moments,
=4
using Carleman criterion, Chung (1974) p. 68. Hence X2 and iEO Yi have

the same distribution. This ends the proof.

Special cases

g (P)

1) For q=1 , B = and if:

P,1

/ (1+p) with probability 1 - (i+p)/(i+p+1)

i
Yi =
1 with probability (i+p)/(i+p+l)
1
Y, has the same distribution as U, 'P .
1-0 i 0
2) Bp 1-p is the generalized arc sine distribution (see Feller 1971 p.
470). 1If:
1/ (i4p)
i with probability 1 - (i+p)/(i+l)
Y. =
i
1 with probability (i+p)/(i+l)
H Y has distribution B . If p=1/2 , T Y, has the same distrib-
i=0 1-p,p i
ution as:
. 2
(Sin  U./2)
0
Remarks
1) If X is distributed Bp q°’ for aﬁy oeR , x* and iﬁo Yi have the same
, =
distribution where:
Oy ys
+
U /(i+p) with probability 1 - (i+p)/(i+p+q)

i

1 with probability (i+p)/(i+p+q)
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2) If . Y. has distribution B_ iﬁ

Y. has distribution B
i=0 i P,q i

k ptk,q

3)  Therefore: if X has distribution B , Fﬁl Y. X has distributdon
ptk,q > i=0 i .

B , while if X and Y are independent and have distribution B B
Pq P,q ; ptq,r

has distribution B see Rao, (1973) p. 168.

pPsqtr

Section IV.3 On a new ordering of distributions

Definition IV.3 Ordering O

A distribution G is said to be bigger than F (notation GeO(F)) if G
can be viewed as the distribution of the product of two independent
random variables, XY where Y is strictly positive and X has distribution

F.

Remarks

1) 1f GeO(F)
G(x) =/ F(x/t) au(t)
for a cerfain distribution M.

2) Note that if Gék) = G(x/o) 0 > 0 , G, € O(F) for any ¢ since G is

the distribution of oXY . Therefore 0 is scale independent.
3) If F =9 and

1 with probability c

a with probability 1 - ¢,

G(x) = co(x) + (1-c) ®(x/a) .

-
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The set of these distributions G is known as the Tukey model. It has been

used by astronomer Newcomb to describe distributions with a tail heavier

than the normal one in 1886.

4) Let Xl s X2,...,Xn be a random sample from the distribution Fﬁg)
where 0 is the scale parameter. Suppose 0 is a positive random variable

with distribution M , then the distribution of the sample is
o0
fo F(xt) dM(t)

and O(F) can be seen as the set of all possible distributions of a random

sample from F with randomized scale.

Let
F={F : F is the distribution of a random variable X

satisfying E(|X|%) < = for ana$ 0}

Theorem IV.8

The relation 0 is a weak ordering in F .

Proof: The antisymmetry property is the only one which needs a proof.

Suppose Fe0(G) and GeO(F) where F,Ge¥ ., If X and Y have distribution
F and G respectively, there exist two positive random variables, U and V,

independent of X and Y such that:

UX has distribution G

VY has distribution F .

Therefore X and UVX has distribution F . Suppose that for a > 0 ,
E([X|%) < @ . Then E(|X|") <= ,re [0,a] . Hence E((UV)") =1, re[0,a] .

By Cauchy Schwarz inequality,
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uv

[l
[
o)
O]

and since U and V are independent,

U=Cand V=cl

where C is a constant. Therefore:

0(F) = 0(G) .

Remark

(1

Note that this ordering is not complete. Consider F and F

1"

(1)

F has density

1 tef0,1]

£ Dy =

0 elsewhere

£2 f(l)(t) is not increasing in (0,®) and p(L) $ 0(F;) . T, has density:

fl(t) =

rr
[m3
v
ju—

and fl(t) is not decreasing in (0,«) and F ¢ O(F(l)

(o)

). Using a similar

argument, one can show that F and FB are not comparable.

The following theorem is a direct consequence of section IV.2 results.

Theorem IV.9

i) If a, >

] a, >0, Fa £ O(Fa )

2 1

ii) If vy >, where 4 Vz e, tv2 £ O(tvl) .
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iii) Ifr, > r s, > s. where si ri e N,

1= 72

F e O(F )
T, s S, rl,s1

iv) If b, >b, >0, W € OMW ).
b2 b1

v) Ifazxz1/2, H, € 0(9) (ha is defined page 157)

vi) If py >p,>0and 0 <qy <q,, Py ~Py€eN

B e 0(B

' )

The fact that if o > B,

8 . O(F

(@)

F ) and

FB € O(Fa)

has an interesting consequence.

Corollary IV.7

Let HB be the distribution of

TN

GELRICY v, )

where a(x) and C(n) are functions defined from N in R .

H, €0(H, )
Bl 82

Then if Bl > B

The second ordering has been first studied by van Zwet (1970). It has

been used by Barlow and Proschan (1966) in reliability theory and by

Bickel and Lehmann (1975) in estimation.

2
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Definition IV.4 Ordering 0V

If F and G are distributions symmetric with respect to 0 ,
-1 -1 .. .
OV(F) ={G :G: G "(t)/F (t) is increasing in (1/2,1)}
If F and G satisfy F(x) and G(x) = 0 if x < 0 ,
-1 -1 .. . .
OV(F) = {G : ¢ "(t)/F “(t) is increasing in (0,1)} .
As the other ordering, 0v is scale invariant: if Fo(x) = F(x/0),0 > 0 ,
OV(F) = OV(FG) .
van Zwet's definition is more restrictive, he has defined
-1 -1
0,(F) = {G : G "(t) = K(F "(t))}

where K is an even convex function such that K(0) = 0 . 1In the last
part of this section the relation between the two orderings will be

investigated. The next lemma will be used to prove theorem IV.10.

Lemma IV.1

(A) Let hl and h2 be two positive increasing functions defined in [a,b]

where =« < a < b < « guch that

L, .
hi (11) —.ra hi(Y) dY,l 192

then if hi(u)/hé(u) is increasing in (a,b), hl(u)/hz(u) is increasing in
(a,b) .
(B) Let hy and h, be two positive decreasing functions defined in [a,b]

such that:
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It

b ., S
h](u) - fu hl(y) dy + M , M >0

and

b
h2<u) - fu hé(y) dy

then if hi(u)/hé(u) is increasing in (a,b), hl(u)/hz(u) is
increasing in (a,b)
Proof: See Rivest (1976).

Note that using lemma IV.1 (A), if K is convex, K is increasing and if

K@) =0,

K(x)/x is increasing,

this proves that van Zwet's definition is more stringent than the present

one.

Theorem IV.10

For any ¢ > 0 ,
i) O(F(“))C:OV(F(“)) and
11) © 0(F) C Oy(F)

(@),-1 /a (@)
Proof: (F 7)) "(t) = t . Applying theorem IV.2 iii) G € O(F' ")is

equivalent to: (F—lﬁ)f is convex in (0,1). Therefore
-1
F o)/t

increases in (0,1) and i) is proved. Now,

Fa—l(t) = (1),
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< ?

Take G ¢ O(Fa) . G—l(t)—a is convex in (0,1) , this implies that:

/@I gl
is increasing in (0,1) or
-1
-/ ) g @ o

is increasing in (0,1) . Applying lemma IV.1 (B) ,
-1, \~a -1, -«
(1-t)/(G () ~ - tlim1 G (t) )
is increasing or:
-1 -1 .
G (t)/Fa (t) is increasing.

This theorem clarifies the relation between O and 0V for an
elementary set of distributions. In more complicated cases, the problem

is intractable. Bickel and Lehmann (1975) have conjectured that
0(F) ¢ OV(F)

provided the one parameter family of distributions F(ax) have densities

with a monotone likelihood ratio.

The converse of theorem IV.10 is not true.

1
x/2) 2 x e 10,%/2]
Let F(x) =

X X € [1/2,1] .
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(2 /5;5‘1 X € [0,1/2]
f(x) =

1 X € [1/2,1] ¢

hence f(x) is not decreasing. Now

2t t e [0,5/2]
Fle) =
t t e [1/2,1]
and
2t t e [0,7/2]
F_l(t)/t =
1 t e [1/2,1]
Therefore F ¢ OV(F(l)) while F ¢ O(F(l))
(a)

Note that theorem IV.10 holds if F and Fa are replaced by the

distribution of wa(U) and (¢Q(U))~l where U is a random variable

distributed uniformly in {-1,1] and

v, () = sgn(x) |x|*

Section IV.4 Decomposition of a stable distribution

In this section, the following double significance of the Laplace
transform will be exploited: 1let X be a positive random variable with

distribution F ,

o ~tx
IO e dF (x)
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can be seen as both: the Laplace transform of X and one minus the

distribution of Y/X where Y is independent of X and has distribution Fl .

Definition IV.5 Strictly stable distribution

A distribution R is strictly stable if given two arbitrary constants
Cl s C2 and two independent random variables X1 s X2_having distribution

R , there exists a constant C such that C1 X1 + C2 X2 and C Xl have the

same distribution.

For the properties of these distributions see Feller (1971) pp. 169-

176 and Gnedenko and Kolmogorov (1954) pp. 162-171.

Here only strictly stable distributions will be considered, for

convenience, they will be called stable distributions.

Theorem IV.11 Decomposition of a positive stable distribution

Define

- '—l/a (i+1)

1 with probability 1l-a

1 with probability «a

where a €(0,1) , then

1
1im nl_ /o ?ﬁl Y.
n i=0 i

has a positive stable distribution with parameter o .

Proof: A positive random variable Xa is stable with parameter o if and

only if its Laplace transform is equal to:
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(4.6) e for a ¢ (0,1)
see Feller (1971) p. 448. In section IV.3, it has been shown that:
Wa € O(Tl) provided o < 1 .

Therefore there exists a distribution M such that:

1-¢€et = fg(l-e't") M (x)

or

1]
]

-t f‘g et aM(x) .

Using (4.8) and the unicity of the Laplace transform, Xa has distribution
M and if Y is distributed Tl » independently of X , Y/Xa has distribution

Wa . Using corollary IV.5

1
n
limn I U /(1+1) has distribution T

and 1

1
[a ?gé v, [(@ite) oo distribution L

lim n
n i

As shown in theorem IV.7

F(a+ai) c 0(F(:'L+1))
and if
-1
v, /a(1+1) iih probability 1 -
Yi =
1 with probability a ,
-1 . 17+ L otai)
Yi Ui and Vi have the same distribution. Hence
1—1/a n=1

lgm n iEO Yi
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has distribution M(t) and the theorem is proved.

Special case

If a = k-1 where k € N , using corollary IV.6 with b = 1/k , and if

k-
{X.}, . are independent random variables distributed T_ . .
i’i=0 1, .1
Jk+ [k
Yk(kﬁzx ) is distributed W_(x) ;
iZo ik is distribute o (X) 5
therefore:

-1

k igg (Xi k)_1 is positive stable with parameter o = k—1 .

,1/4X has Laplace transform

/2

For k = 2 , if X is distributed T

1

‘e- t

1
/2

This result is due to Lévy (1940).

Corollary IV.8 Moments of a positive stable distribution

Let Xa be a positive stable random variable with parameter o < 1 ,

then

E(X;) =T(1-r/a) r e (~=,a)
r(1l-r)

Proof: If Y is independent of Xa and has distribution Pl then

1
Xa/Y and /Yl

have the same distribution where Y, is distributed Wu . Therefore

1

r -r -r
ED) = B, D/EET)
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and the result is proved.

Now using the closed representation for stable distributions with
-1 so s . . .
parameter k , it is possible to obtain a closed representation for a

stable distribution with rational parameter. "

Theorem IV.12

p-1 q-1 .
letp ,q€ehVN ,q>p>1 and {Zi}i=l {Yj}j=1 be two independent

sequences of independent random variables distributed B, i(1
b4

1/q )

-1
/p " /q
i=1l,...,p-1 and Fj j=1,...,9-1 respectively. Then:

/q .

' 1 1
[0/ @) B0} 2 a/G)17 /P (3 q v, TP

P/
¢ /d
has Laplace transform e .

Proof: According to Feller (1971) p. 176, if X and Y are independent
positive stable random variables with exponent a and B respectively, the

1
product XY /o is stable with exponent af .

Let X be a positive stable distribution with parameter p/q, and
{Xi}?=1 be a sequence of independent random variables distributed Pi/p ,
which is independent of {Yi} and {Zi} . Using theorem IV.11

p=1 -1, X -1 p=1 q=1 -1
[piI=I1 Xip] is stable with exponent p and [qig1 q Zixi igp q Yi] is

stable with exponent q—1 since Zi Xi is distributed Fi by the third
/ q
remark following theorem IV.7. Applying Feller's proposition with p l=a

PrgP

p=1 =1 .p
[piﬂl Xip] X" and
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Pl -1 p=1 ~1 gzl -1
O (30 X1 Ca/p)iTy 2, (a/p) 1l a Y, ]
have the same distribution which implies that:

1
P -
[0, X.p] /Px1 ana

i=1

(4.7)

P 1 _ 1 _ 1,
Ly X1 Pe@m Pl 2@ P R g T /e

1
have the same distribution. Using corollary IV.4, [iﬁl Xip] /e have
distribution Pl . Therefore using (4.7) and the fact that one minus the

1
distribution of [iﬁl Xip] /p/X is the Laplace transform of X ,

1 1
X and [(a/p)P0y 2, (a/p)]” PLITL q v,1 T /P

have the same Laplace transform. The unicity of the Laplace transform

concludes the proof.

To obtain similar results for the symmetric stable distributiomns,
note that if X and X, are independently distributed ®(x) and positive

stable with exponent a(o < 1) respectively

1
XX /2
o

is symmetric stable with exponent 2a (Feller 1971 p. 176). Hence

Corollary IV.9

1) If {Zi} . {Yi} denote the same random variable as in theorem IV.12

and if Z is independent of {Zi} s {Yi} with distribution &(x)

1 1
C‘ Zoplq = 2lalp ?in 2, (a/p)] /zp[ggi qv,1° /2



2
has characteristic function e

2) if Z, has characteristic function

o
el o 0,2) ,
r/2
E(|Za|r) =2 "r((x+1)/2) = r(1-r/a)
r(/2) r(i-r/2)

for any r € (-1,a) .

Proof: The proof of 1) is a straightforward consequencé of the last

remark. To prove 2), note that:

2 r (. (e+1) ) 2)

T(1/2)

r
E(|z]") = 2

r > -1,

b

and if X is positive stable with exponent o
oy /2

r

| /2
a/2

E(|x ) = I'(l-r/a)/T(1-x/2) .

Section IV.5 Conclusion and remarks

In the second chapter a unified asymptotic theory of L and M
estimators has been presented. An important feature of this theory is
the fact that it is still valid if a parameter is replaced by its
estimator; this feature has been exploited in section II.6 to derive some
asymptotic properties of step estimators. It should also lead to a
satisfactory proof of asymptotic normality for the estimators of the
scale parameter when the location has to be estimated (see Bickel and

Lehmann (1976)).
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In the linear regression model both the M and the L estimators have
been defined (Relles (1968) and Bickel (1971)) and investigated. To
introduce thel~M class in this context is of dubious interest. Neverthe-
less an application of the Newton ﬁéphson method to the convergence proofs
in the regression model should be fruitful (cf Bickel (1975)).

The ordering of distributiaﬁ functions defined in this chapter contains
a very wide range of contamination schemes. 1Its relation to van Zwet's
ordering deserve a special attention because of the numerous properties
of the latter ordefing (see van Zwet (1970)). Furthermore it should be
of some interest to make inferences about these orderings (i.e. to test
if the underlying distribution function of a random sample is bigger (or

less) than a given distribution function).
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APPENDIX I

This appendix contains a listing of the computer program used in

section III.3.

CALL RSTART(1294.,.26876)
DU S 11I=1+1000
C GENERATICH OF THE SAMPLE

on
- O

) Y(I)=1e/100

.
- O
.
N
i

MX=MX+
SX=S5X+
10 X{1)=X(

I
N
1
MO=MC+Y
X
X

N, v e
—~
— RN
A [ d

134
XX CHHtte

SX=(SX~-({( ¥z )¥EM0D))/(19)
SX=DSORT { )
C COMPUTATION OF THE CONFIGURATIOGN
DO 20 I=1.20
29 X{I)=(X{I)=N¥X)/5X
C NPRDERING OF THE CUONFIGURATICN
DO 30 I=1,290
M=21-1
Y(I)=X(1)
K=1
DU 40 JI=1,.M

]

I

I {(X{I1)eGRLY(T)) GL TL 40

. Y(I)=X(11)

k=11

40 CONTINUE

30 X(K)=X(M)

C COMPDUTATION OF THE LMI ESTIMATORS

S(1)=0
S(2)=D
S(3)=0
DD 59 I=6415

50 S{i1)=s(1)+Y(1])
D 60 1=3,5
J=20-1+1

50 S(2)=S(2)+Y(I)}+Y(J)
S(3)=Y(2)+Y(16)
LM(1)=(=S(2)72.145(1))/7(20%T(1))
Lv{2)=(-(5(2)45(3))/5.4+S(1))/7(20%T(2))
LM{3)=(=(S(2)/3:3)+S(1))/7(20%T(3))
LM(a)=(-S{3)+S{(2)+35(1))/7(20%T(4))
LM{S)=(=(S(2)+S{(3)=-Y(18)=Y(5))/(Z225)4+S (1)) /7{EC%T(5))
IM(E)=(=(S{3)*1+2)+S(1)+S(2))/7(T(€)%x20)
LMEZ)=(=(S{3)*1 &) +S{1)+Y(1€)4Y(S)I I/ {T(7)%20)

Cc CALCULATION F THE VARIANCES
DY) 300 I=1,7
300 vEM(I)=VLM(I)+LM{I)%%2+1/7MC
5 CINT INUE
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RNOR(0) denotes a normal deViate, UNI(0) denotes a random number
chosen in [0,1]. These random numbers were generated by the McGill

random number generator package Super Duper.

The T(I) involved in the computation of the LM(I) estimates are the

normalizing constants (T(1l) = .36 etc.).

The variances contained in Table I page 135 are obtained by dividing

the VIM(I)'s obtained after 1000 iterations by 50.

Computations were done in double precision on an IBM 370/158.



