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ABSTRACT

Apart from its classic calciotropic properties, vitamin D has been shown to boost innate
and attenuate inflammatory adaptive immune responses. However, several studies have suggested
effects on innate immune signaling that are primate-specific. Here, we extended these findings by
demonstrating that the vitamin D response element- (VDRE) dependent transcriptional stimulation
of human genes encoding the pattern recognition receptor NOD2 and its targets, the antimicrobial
peptides cathelicidin and human beta-defensin 2, was absent in mouse, where the VDRES were
not conserved. Moreover, the hormonal vitamin D-mediated upregulation of these vanguards of
the innate immune response to infection was paralleled by significantly enhanced antimicrobial
activity in human but not mouse epithelial and myeloid cells. Similarly, we discovered that
upregulation of the two ligands for the PD-1 T cell checkpoint receptor, PD-L1 and PD-L2, was
also human-specific and the VDREs required for transcriptional control of their genes were not
conserved in mouse. The fact that vitamin D attenuated inflammatory T cell responses in a PD-
L1-dependent fashion gave rise to the notion that an entire facet of its tolerogenic properties is also
human-specific. Together with our previous findings, this observation suggests that there is a
certain degree of divergence in the mechanisms accounting for the immune homeostatic effects of
vitamin D between human and mouse. To test this hypothesis, we conducted a large-scale meta-
analysis of vitamin D gene expression profiling studies in human and mouse cells of various
origins. We showed that there was a significant overlap of biological processes, indicative of
conservation of global actions. However, we found a substantial divergence in the underlying
molecular genetic events as inferred from the minimal intersection between the two species of
genes whose expression was modified by vitamin D. The systems approach that we adopted also
contributed to the identification of a novel pathway upregulated by vitamin D in humans —
intestinal immune network for IgA production. Together our findings provide a mechanistic basis
for the beneficial effects of vitamin D observed in conditions characterised by compromised

immune homeostasis such as inflammatory bowel disease.



RESUME

En dehors de ses propriétés calciotropes, il est démontré que la vitamine D renforce les
réponses immunitaires innées et atténue celles des défenses inflammatoires spécifiques. Toutefois,
plusieurs études ont mis en évidence I’existence d’effets sur le systeme immunitaire inné qui sont
specifiques aux primates. Ici nous étendons ces résultats en montrant que la stimulation
transcriptionnelle de génes humains codant pour le récepteur NOD2 et ses cibles, les peptides
antimicrobiens cathelicidin et human beta-defensin 2, est dépendante d’¢léments de réponse a la
vitamine D (VDRESs) et qu’elle est absente chez la souris ou les VDRES ne sont pas conserves. De
plus, la régulation positive par la vitamine D hormonale de ces protéines a 1’avant-garde de la
réponse innée a I’infection est concomitante a une activité antimicrobienne considérablement
améliorée dans les cellules épithéliales et myé¢loides chez 1’humain, mais pas chez la souris. De
méme, nous avons découvert que la régulation positive des deux ligands, PD-L1 et PD-L2, au
récepteur de contrdle PD-1 chez les lymphocytes T est spécifique a I’humain et que les VDRES
requis pour le contréle transcriptionnel de ces genes ne sont pas conservés chez la souris. Le fait
que la vitamine D atténue les réponses inflammatoires des cellules T de maniére dépendante de
PD-L1 met en évidence le fait qu’un aspect complet de ses propriétés tolérogénes est également
spécifique a ’humain. Conjointement avec nos résultats précédents, cette observation suggere
qu’il existe un certain degré de divergence entre I’humain et la souris dans les mécanismes des
effets de la vitamine D sur I’homéostasie du systéeme immunitaire. Afin de vérifier cette hypothese,
nous avons effectué une méta-analyse a grande-échelle de profils d’expression génique aprés un
traitement a la vitamine D de cellules humaines ou de souris d’origines tissulaires diverses. Nous
avons démontré qu’il existe un recoupement significatif des processus biologiques, ce qui indique
que les actions globales sont conservées. Toutefois, nous avons découvert une divergence
considérable dans les événements moléculaires génétiques déduite de I’intersection minimale entre
les deux espéces de génes dont I’expression est modifiée par la vitamine D. L’approche systémique
que nous avons choisie nous a permis d’identifier une nouvelle voie de signalisation régulée a la
hausse par la vitamine D chez I’humain — le réseau intestinal de production d’IgA. Ainsi, nos
résultats apportent une base mécanistique qui explique les effets bénéfiques de la vitamine D
observés dans des maladies qui se caractérisent par une homéostasie immunitaire compromise,

comme la maladie intestinale inflammatoire.
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PREFACE AND CONTRIBUTION OF AUTHORS

All of the text, results, analyses, ideas, and interpretations presented in this thesis represent
original scholarship. Portions of the literature review section (chapter 1) were obtained with
permission from a review that | have written published in Molecular and Cellular Endocrinology
[1] and others were modified from my master’s thesis entitled “The Cancer Chemo-Preventive
Properties of Vitamin D are Due, at Least in Part, to the Transcriptional Regulation of Genes
Implicated in Cell Cycle, DNA Replication and Apoptosis, and Activation of FoxO3a
Transcription Factor” (2011) completed at McGill University. A version of the manuscript
presented in Chapter 2 has been published as Dimitrov, V. and White, J.H. (2016). Species-specific
regulation of innate immunity by vitamin D signaling. Journal of Steroid Biochemistry &
Molecular Biology, Nov;164:246-253. Giselle Boukhaled prepared primary mouse dendritic cells
(chapter 2, fig. 2D) and Mark Verway, primary human monocytes (chapter 2, fig. 2B) for this
study. The manuscript presented in chapter 3 is also published — Dimitrov, V., Bouttier, M.,
Boukhaled, G., Salehi-Tabar, R., Avramescu, R.G., Memari, B., Hasaj, B., Lukacs, G.L.,
Krawczyk, C.M., and White, J.H. (2017). Hormonal vitamin D up-regulates tissue-specific PD-L1
and PD-L2 surface glycoprotein expression in humans but not amice. Journal of Biological
Chemistry. Dec 15;292(50):20657-20668. Manuella Bouttier performed microscopy studies with
the aid of Radu Avramescu (chapter 3, figs. 2C, 2D, S6D, and S7). Giselle Boukhaled did most of
the flow cytometry experiments (chapter 3, figs. 6, S10, and S12-S18). Radu G. Avramescu
isolated and cultured the bronchial epithelial cells (chapter 3, fig2D and S7). | performed the rest
of the experiments and analyses in chapters 2, 3, and 4. John H. White and | conceived all the
experiments and wrote the manuscripts for the published papers. | conceived, conducted the
analysis, and wrote the manuscript presented in chapter 4 (unpublished data) with guidance from
Manuella Bouttier and John H. White. Camille Barbier provided help with translation of the thesis
abstract. Finally, parts of the discussion (chapter 5) were taken with permission from a review that
| have written [1].

The work presented in this thesis outlines several aspects of vitamin D signaling that
constitute novel findings. As described in chapter 2, we demonstrated lack of conservation between
human and mouse of vitamin D-induced antimicrobial activity, gene regulation of important

components of innate immune responses to infection, and of their regulatory elements. These
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findings not only complement and extend other studies highlighting the species-specificity of
vitamin D signaling in immunity, but also emphasise its importance inferred from the difference
in phenotypes following exposure to vitamin D of human and mouse cells. The study presented in
chapter 3 also supports this notion and characterises a new mechanism contributing to the
tolerogenic properties of vitamin D. Finally, chapter 4 contains the first large-scale analysis to
examine the overlap of global effects and single-genes regulated by vitamin D signaling between
multiple human and mouse cell types. Moreover, the analytical tools and methodology that were
employed allowed the identification of a novel pathway (intestinal network for IgA production)
upregulated at the gene level by vitamin D signaling. Together these findings strongly support a

role of vitamin D as a regulatory factor in multiple facets of immune homeostasis in humans.
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INTRODUCTION

Vitamin D signaling has been shown to boost innate while attenuating inflammatory
adaptive immune responses. Several studies have demonstrated that the regulation of genes
implicated in anti-microbial innate immunity is primate-specific [2-5]. We decided to expand these
findings by quantifying differences in antimicrobial responses, such as bactericidal/bacteriostatic
effects, between human and mouse innate immune cells exposed to hormonal vitamin D and to
investigate the underlying molecular genetic events leading to the observed species specificity.
Notably, a number of these genes are also known to play important roles in immune homeostasis,
particularly in the gastrointestinal tract, and deficiencies in their function are associated with
inflammatory bowel disease.

The finding that regulation by vitamin D of several genes implicated in immune
homeostasis was not conserved between human and mouse gave rise to the hypothesis that there
may be substantial mechanistic differences in the immune homeostatic effects of vitamin D. This
prompted us to search for novel signaling events initiated by vitamin D in human innate immune
cells and to assess the degree of conservation in their mouse counterparts. Our initial focus was on
control of adaptive inflammatory immune responses as it constitutes an important facet of global
immune homeostasis and is critical for prevention against collateral tissue damage during
immunological challenges.

The observation that the genomic effects of vitamin D in the context of the new mechanism
we identified were also human-specific, combined with our previous findings, solidified the notion
that a significant proportion of its actions related to immune homeostasis may be species-specific.
Interestingly, however, the global effects of vitamin D signaling seem to be conserved between
human and mouse. Therefore, we decided to conduct a large-scale meta-analysis of gene
expression profiling studies with the aim of examining similarities and differences of vitamin D
genomic effects between human and mouse. Furthermore, this undertaking presented us with the
opportunity to identify novel vitamin D-regulated immune signaling pathways, which may
generate new insight into the molecular genetic events that account for its beneficial effects in the

context of conditions associated with compromised immune homeostasis.
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CHAPTER 1

LITERATURE REVIEW

Vitamin D

First of all, it should be noted that vitamin D (VD) is a bit of a misnomer, since it can be
produced in human skin exposed to ultraviolet (UV) light and heat [6-8], naturally derived from
sunlight. The beneficial effects of vitamin D in human physiology have been suspected and
exploited since antiquity. For instance, Hippocrates, “the father of medicine”, discovered that
heliotherapy is quite beneficial in treating “phthisis” (tuberculosis, TB) [9]. In fact, sanatoria were
common medical facilities in the 1800s used to treat TB and the 1903 Nobel Prize in Medicine and
Physiology winner Niels Finsen demonstrated that phototherapy can cure cutaneous TB (lupus
vulgaris) [10, 11]. The ancient Greeks also believed sunlight has many beneficial effects and
considered the southern slope of a hill, which receives the most sunlight in the northern
hemisphere, to be the healthiest place to live on. Curiously, the great temple of Aesculapius (the
God of medicine) was built at such location [9]. Perhaps the miraculous cures thought to have
taken place there may have simply been caused by increased sunlight exposure. As time
progressed, physicians and scientists discovered increasingly more concrete evidence supporting
the health benefits of VD. For example, cod liver oil, which contains VD, was used to treat
rheumatism, gout, and scrofula since 1793 [12]. Around the same time, the Polish physician
Jedrzej Sniadecki established the link between lack of sunlight exposure and the incidence of
rickets [13]. Rickets is a bone disorder in children caused by calcium malabsorption resulting in
softening of the bones and subsequent delayed growth, skeletal deformities and muscle weakness.
It was a major epidemic in Northern Europe, North America and parts of Northern Asia during
and after the industrial revolution, which caused lifestyle changes resulting in less sunlight
exposure and, as a consequence, decreased VD levels [13]. In support of Sniadecki’s findings,
Theodore Palm observed that rickets was much less prevalent in regions near the Equator
compared with Europe [14]. Sir Edward Mellanby later demonstrated that rickets is caused by a
dietary factor and was able to cure it by administering cod liver oil to dogs kept indoors and fed

oatmeal [15]. A similar practice was later extended to humans following Kurt Huldschinsky’s
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demonstration that UV light treatment is beneficial in rachitic infants [13]. Harry Steenbock
conducted experiments that complemented Huldschinsky’s findings in discovering that UV
irradiation of the cholesterol-containing portion of the diet cured rickets in rodents, which led to
UV-irradiated foods being used as anti-rachitic agents [16]. This inspired the identification of the
cholesterol precursor of VD, 7-DHT, by Adolf Windhaus, for which he received the Nobel Prize
in 1937 [16-18]. Altogether, the aforementioned studies greatly contributed to the realization that
rickets is a classic case of compromised calcium homeostasis, which is closely regulated by the
VD endocrine system.

The Vitamin D Endocrine System

As mentioned above, VD, or vitamin D3 (VDs, cholecalciferol or calciol) in humans, is not
a real vitamin as it can be synthesized in the skin basal and supra-basal levels from its precursor,
7-DHT (pro-VD:3) [6, 7]. This reaction is catalyzed in intensity-dependent manner by UV light [7,
8], especially the 280-315nm spectrum [19], which stimulates the rapid photolysis of 7-DHC
leading to the generation of pre-VDs [6, 20]. Clearly 7-DHC availability constitutes an important
factor in pre-VDz production. Interestingly, 7-DHC levels decline with age, which correlates with
reduced VDs levels [21]. The other critical player in the process of pre-VDz synthesis is UV light,
especially the B spectrum (vide supra), which is naturally acquired from sunlight exposure. In this
context, skin pigmentation, solar zenith angle (determined by season and geographical location),
and behavioural aspects — clothing, sunscreen usage, and indoor lifestyle — are critical for pre-VDs
production [8, 22, 23]. Excessive UV irradiation, however, leads to further isomerization of pre-
VD3 into the inert compounds lumisterol and tachysterol or stimulates its conversion back to 7-
DHC [8]. Optimal production of pre-VDs, therefore, is achieved at suberythemogenic levels of
UV exposure.

VD3 is generated through a heat-dependent isomerization of pre-VDs in a reaction that
could take up to several hours [6]. It can also be obtained from supplements and limited dietary
sources including oily fish, egg yolk and beef liver [24]. Some mushrooms, plants, and yeast
produce vitamin D2 (VD., ergocalciferol) whose metabolism and effects are virtually identical to
those of VD3 [25-27] although there are reports about ergocalciferol being less effective in
maintaining circulating VD levels [28-30]. There are four other forms of VD (vitamin D4 through

14



D7) that are naturally occurring and around 2000 synthetic analogues with various modes of action
[31]. Henceforth, VD will be used to refer to VD3 and VDo, collectively.

Following production in the skin or dietary intake, VD enters the circulation bound to the
vitamin D binding protein (DBP) [32]. DBP is a group-specific Gc-globulin [33] that has a half-
life of 2.5 days in the plasma [33, 34]. It not only acts to transports VD metabolites, but also
functions as reservoir [35] and plays a role in macrophage and neutrophil activation and
chemotaxis [36-40]. DBP-bound VD is transported through the circulation to the liver where it is
hydroxylated at position 25 to produce the major circulating form, 25-hydroxyvitamin D (25D,
calcidiol, calcifediol) [41, 42] in a rapid reaction that is not subject to any regulation. This allows
for the conversion of essentially all VD to 25D [19, 43]. With a half-life of about 12 days, calcidiol
is an indicator of VD status in the body [42, 43]. 25D concentrations of at least 75nmol/l (30ng/ml)
indicate VD sufficiency, whereas concentration of 50-74nmol/l (20-29ng/ml) is reflective of
insufficiency and levels lower than 50nmol/l (<20ng/ml), of hypovitaminosis D [44-46]. In order
to maintain VD sufficiency, daily supplementation with 45-100 pg (1800-4000 IU) is
recommended particularly during winter and spring in the northern hemisphere [47]. The enzyme
responsible for the hepatic 25-hydroxylation is a mitochondrial member of the cytochrome p450
family called CYP27A1 [48]. There are other, microsomal 25-hydroxylases, namely CYP2R1,
CYP3A4, and CYP2J2, which also contribute to 25D production [49-52].

Calcidiol enters the circulation bound to DBP in order to reach the kidneys where the
25D/DBP complex is filtered through the glomerulus and internalized from the luminal side of the
proximal tubule by the megalin/cubulin receptor [53]. Hydroxylation at position 1 produces the
hormonally active form of VD, 1a,25-dihydroxyvitamin D (1,25D; calcitriol) [42], in a reaction
catalyzed by the mitochondrial l1a-hydroxylase CYP27B1 [54-58]. Contrary to the VD 25-
hydroxylases, renal CYP27BL1 is tightly controlled by calcium and phosphate homeostatic signals
as discussed later in this chapter. CYP27BL1 is also expressed in cells of the gastrointestinal tract,
epidermis, pancreas, endothelial cells, placenta, brain, adipose tissue, brain, activated leukocytes
and macrophages, but is not subject to the same regulatory signals as its renal counterpart [59-61].
This extra-renal CYP27B1-mediated local production of 1,25D has been proposed to play an
important role in regulating cellular function in autocrine and paracrine manner [62]. CYP27B1
appears to be the only 25D la-hydroxylase and mutations are associated with symptoms of VD

deficiency, easily reverse by 1,25D administration [57]. Following renal production, calcitriol is
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transported in a DBP- bound form through the circulation to peripheral tissues where free 1,25D
diffuses trough the plasma membrane to exert its non-genomic and genomic actions [63].

The best characterized effects of VD are implicated in increasing calcium absorption and
controlling Ca** homeostasis [64]. Calcium is an important mineral that can only be obtained from
the diet, needs to be kept within narrow serum concentration ranges, and is essential for bone
mineralization and a variety of physiological, extra- and intracellular signaling events [65]. In the
intestine, calcitriol stimulates the energy-dependent saturable transcellular vesicular transport and
transcaltachia, and the energy-independent non-saturable facilitated diffusion and paracellular
absorption (through tight junctions) of Ca?* from the lumen [66-72]. Regarding facilitated
diffusion, VD signaling was shown to upregulate both the apical membrane Ca?* channel TRPV6
and calbindin Dgk, which is a rate-limiting factor in transport from the apical to basolateral
membrane of enterocytes [73-75]. Calcitriol also stimulates expression of the Ca** ATPase 1b
(PMCAL1b) required for cellular export of Ca?* against the concentration gradient [76]. In the
context of vesicular transport, calcitriol was shown to enhance the formation of lysosomes, which
ferry calcium across the cells [77]. 1,25D also initiates rapid (several minutes) calcium absorption,
transcaltachia, implying non-genomic actions [78]. This is believed to be mediated by two
membrane receptors for calcitriol — the membrane-associated vitamin D receptor (VDRmem) and
membrane-associated rapid response steroid-binding (MARRS) receptor [79].

VD signaling also enhances Ca2* reabsorption in the distal convoluted and connecting
tubules of the kidney via mechanisms similar to those in enterocytes [80]. Concordantly, in rat and
mouse models, VD deficiency resulted in decreased expression of proteins associated with Ca?*
reabsorption — TRPV5, calbindinD2gx and NCX1 — and subsequent hypocalcemia [81, 82].
Supplementation with calcitriol normalized protein expression and serum Ca?* levels [82, 83].

Apart from calcium reabsorption, the kidney is also a site where several Ca?* homeostatic
signals converge. As mentioned previously, it is the location of hormonal VD production catalyzed
by CYP27B1 expressed in cells of the proximal tubules [54-56]. CYP27B1 transcription is
inhibited by 1,25(0OH).D3 in a negative feedback loop and is activated by the calciotropic stimuli
parathyroid hormone (PTH) and calcitonin [84, 85]. In addition, calcitriol induces expression of
CYP24A1, whose gene product is responsible for 1,25D degradation, in another classical negative
feedback loop [86]). On the other hand, PTH, whose circulating levels are increased as a

consequence of low serum Ca?* levels, upregulates renal CYP27B1 expression [87, 88]. PTH
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secretion is inhibited by activated (Ca?*-bound) calcium sensing receptor (CaR), which also acts
to decrease renal Ca?" reabsorption [89-91]. Therefore, the mechanistic events leading to
normalization of serum calcium levels can be described as follows. When circulating Ca?*
concentration is low, increased levels of PTH stimulate renal CYP27B1 expression, which results
in enhanced production of calcitriol that, in turn, stimulates intestinal absorption and renal
reabsorption of Ca?*. Conversely, high levels of 1,25D and Ca?* act to inhibit PTH production and
secretion, respectively, in the parathyroid gland [82, 92, 93]. In addition, in order to combat
hypocalcemia, calcitriol and PTH act together to increase bone resorption, which is an essential
calcium and phosphate reservoir [94]. By itself, PTH seems to promote bone accretion, whereas
1,25D has been associated with both resorption and accretion [94-96].

VD signaling is also implicated in phosphate homeostasis. Apart from bone mineralization,
phosphate is required for a plethora of synthetic processes and intracellular signaling events. Its
circulating levels are regulated at the level of renal reabsorption mainly by PTH and fibroblast
growth factor 23 (FGF23) [97, 98]. High serum PO4* levels stimulate PTH production directly
and indirectly by binding and effectively downregulating free serum calcium, which keeps CaR in
an inactive state [81]. PTH then inhibits phosphate reabsorption by inducing internalization of
membrane sodium-phosphate co-transporters, which results in PO4> wasting [99]. Similarly,
increased FGF23 production, mainly by osteocytes and osteoblasts as a consequence of high PO4*
concentration, induces phosphate wasting and also acts to inhibit CYP27B1 and to upregulate
CYP24A1 expression, which reduces hormonal VD levels [100-104]. 1,25D, on the other hand,
upregulates phosphate uptake and enhances FGF23 production [105-107]. Altogether, the complex
interplay between VD, PTH, and FGF23 signaling ensures that Ca?* and PO concentration are

kept within physiological ranges.

Non-Genomic Effects of Vitamin D

The non-genomic actions of VD are rapid, taking place within seconds to minutes
following exposure. They modulate intracellular signal transduction pathways and ion channel
function. Calcitriol activates (or suppresses) in a cell type-specific manner extracellular signal-
regulated kinase (ERK) [108-114], protein kinase C (PKC) [115-120], phospholipase C (PLC)
[117, 121-125] and phospholipase D (PLD) [126], protein kinase A (PKA) as the result of
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enhanced adenylate cyclase activity [127-131], production of inositol 1,4,5-triphosphate and 1,2-
diacylglycerol as a consequence of enhanced phosphoinositide turnover [132, 133], and stimulates
release of intracellular Ca?* stores [125, 132, 134-136]. In addition, hormonal vitamin D was also
shown to rapidly increase calcium absorption [124, 125, 131, 134, 137-145], as discussed earlier,
and to trigger outward rectifying chloride channel currents resulting in regulatory cell volume
changes[146-150].

While the genomic effects of 1,25D are mediated by the nucleus-localized VDR (VDRnuc)
[151-153], its non-genomic actions are initiated at the cell membrane. A number of reports provide
evidence for the existence of two membrane-localized vitamin D receptors: VDRmem and MARRS.
MARRS is also known as glucose responsive protein 58kDa (GRP58) and endoplasmic reticulum
57-60kDa (ERp57 or ERp60) [154, 155]. Its discovery was triggered by the observation that
calcitriol was found to localize to the basolateral membrane of rat and chick enterocytes, bound to
a protein distinct from the classical VDR [156, 157]. Moreover, certain VD analogues incapable
of binding the classic VDR still initiated rapid responses, such as activation of PKC and
stimulation of Ca?* and PO4* uptake, which were blocked by an anti-MARRS antibody [78, 113,
115, 154]. Finally, the non-genomic effects of VD were not entirely abolished in VDR knockout
mice, which suggests the existence of a non-VDR receptor for 1,25D [158].

VDRmem, 0On the other hand, is the classical VDR localized to the cell membrane, more
specifically lipid rafts and caveolae. It appears to trigger the rapid effects of VD in at least
osteoblasts and fibroblasts as these were abolished in Vdr’” mice [79, 159, 160]. Calcitriol
analogues that only elicit rapid responses were shown to bind to an alternative pocket in the VDR
further reinforcing the idea that VDRmem does participate in mediating the non-genomic actions of
VD [161].

Genomic Effects of Vitamin D

The genomic actions of VD entail regulation of target gene expression and are mediated
by VDRne. VDR is a nuclear receptor (NR) — a class of transcription factors (TFs) that are
activated by ligand binding [162-164]. Structurally, NRs are comprised of 6 regions, A through F,
each containing important functional domains such as the DNA binding domain (DBD) within
region C, the C-terminal ligand binding domain (LBD) within region E, and a flexible hinge
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domain in region D connecting the DBD and LBD [165-168]. NR ligand binding triggers its
association with specific DNA sequences called hormone response elements (HRES), specificity
for which is determined by a P box region within the first of the two C4 zinc fingers within the
DBD [169-172]. NR agonists trigger recruitment of coactivators such as members of the p160
family, whereas antagonists induce association with co-repressors such as silencing mediator for
retinoid and thyroid hormone receptors (SMART) and nuclear co-repressor (NCoR) in order to
stimulate or suppress gene expression, respectively [173, 174]. The LBD consists of 11-13 anti-
parallel a-helices and ligand binding stabilizes a specific conformation of the activation function
2 (AF-2) domain, which is crucial for control of transcriptional regulation [175]. Interestingly,
some NRs have no known ligands and are called orphan receptors, whereas others lack a DBD and
function through binding to and modulating the activity of other NRs [176-180].

NRs can be divided into three categories based on the mode of binding to their cognate
HRE: monomers, homodimers, and heterodimers [181, 182]. Notably, the retinoid X receptor
(RXR) can associate with DNA as both homo- and heterodimer, whereas VDR forms a
heterodimer with the apo form of RXR, which was shown to stabilize the otherwise unstable VDR
[183, 184]. Calcitriol binding triggers important conformational changes, such as closing of the
ligand binding pocket by helix 12. This allows for recruitment of coactivators by AF-2 [185].
Conversely, an open helix 12 conformation is conducive to interaction with co-repressor, such as
NCoR [186]. It has been demonstrated that 1,25D further stabilizes the VDR/RXR heterodimer
and induces conformational changes in the VDR DBD increasing its flexibility and creating a
larger capture radius [183, 187, 188]. This permits faster screening of the DNA for vitamin D
response elements (VDRES) [183, 187, 188]. Binding to a VDRE further stabilizes the heterodimer
and induces conformational changes that enhance its capacity to recruit coactivators [183, 189].
VDR/RXR contacts the major groove of DNA via both DBDs such that the LBDs are rotated
around a perpendicular axis relative to that of the DNA strand [183, 190].

The VDRE consists of two identical 5’-PuGG/TTCA-3’ repeats separated by 3 (direct
repeats, DR3) or 6 (everted repeats, ER6) base pairs [191-193] with the VDR associating with the
3’ half-site and RXR, with the 5’ [183]. The VDREs are enhancer elements. Enhancers are short
DNA sequences, either promoter-proximal or distal, that function as cis-regulatory elements and
are critical for tissue-specific transcriptional regulation [194, 195]. TFs bind to their cognate

enhancers, which allows for the recruitment of coactivator and chromatin remodeling complexes,

19



and eventually leads to RNA polymerase 1l (Pol 11) loading at the transcription start site (TSS) of
target genes and upregulation of expression [196]. In this context, it is not surprising that active
enhancers are found in regions of open chromatin and are associated with specific histone
modification marks such as histone 3 lysine 27 acetylation (H3K27ac) or lysine 4 mono-
methylation (H3K4mel) [197, 198]. H3K4mel alone denotes inactive or poised enhancers,
whereas the addition of H3K27ac marks is indicative of active enhancers [199]. Genome-wide
techniques designed to identify open chromatin regions as well as histone modification and TF
binding sites are employed to identify putative enhancers [200].
Methods such as DNase | digestion or assay for transposase-accessible chromatin followed by next
generation sequencing (DNase-lI-seq and ATAC-seq, respectively) and digital genomic
footprinting (DGF) are used to infer chromatin state, whereas massively parallel sequencing of
chromatin immunoprecipitated material (ChIP-seq) is commonly employed to measure changes in
histone modifications and TF occupancy. Interestingly, recent reports demonstrated that Pol 11
associates with promoter-distal enhancer elements [201]. Such binding events are believed to lead
to synthesis of short non-coding RNA species called enhancer RNAs (eRNAs), whose levels were
shown to correlate with target gene expression [202, 203]. These eRNAs are believed to be either
simply the result of spurious Pol Il-mediated transcriptional activity, or to be actively involved in
transcriptional control [204-206]. For instance, studies have shown that eRNAs are required for
chromatin looping in order to bring the enhancer-associated Pol Il to the target gene TSS [207,
208]. Mechanisms independent of altering chromatin architecture have also been proposed, such
as eviction of transcriptional repressors or providing a scaffold for the recruitment of coactivator
complexes [209-215]. Irrespective of their mode of action, eRNAs are considered as markers of
active enhancers.

Association of ligand-bound VDR/RXR heterodimer to VDREs is followed by recruitment
of coactivators. They interact with the AF-2 domain and a number of lysine residues from helix 3,
4, and 12, which form a charged clamp created through conformational changes induced by ligand
and DNA binding [183, 190, 216-218]. Coactivator complexes bind to the VDR, or other NRs, in
1:1 stoichiometry via specific motifs composed of 3 lysine amino acids surrounding any two other
residues (LXXLL) called NR boxes [219, 220]. One class of coactivators that have been shown to
associate with VDR are members of the p160 family of steroid receptor coactivators (SRCSs),
namely SRC-1, SRC-2 (transcriptional mediators/intermediary factor 2, TIF-2), and SRC-3
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(amplified in breast 1, AIB-1) [221-228]. These proteins are also known as nuclear receptor
coactivator 1, 2, and 3 (NCOA1, NCOA2, and NCOAS3, respectively). This class of coactivators
recruit enzymes with histone acetyl-transferase activity (HAT), such as CREB binding protein and
p300 (CBP/p300), which acetylate specific histone lysine residues (e.g. H3K27) [229-232]. This
induces an open chromatin structure allowing for loading of proteins forming the pre-initiation
complex, namely general TFs and Pol II. Interestingly, SRC-1 also interacts with transcription
factor 2 B and TATA box binding protein, which de facto serves as a bridge between VDR and
the basal transcriptional machinery [233]. This can also be achieved through recruitment by ligand-
bound VDR of the VDR-interacting proteins (DRIP) complex [234]. It has been demonstrated in
keratinocytes that DRIP and p160 coactivators participates in the regulation of genes that play a
role in proliferation and differentiation, respectively [235-238]. Other VDR coactivators include
SMAD3 and NCOAG62 [239, 240]. The latter does not belong to the p160 family and does not
interact with the AF-2 motif of the VDR, with which it can associate in the absence of ligand [230].
1,25D, however stabilizes the interaction [230]. Calcitriol also stimulates the formation of a ternary
VDR/SRC-1/NCOA62 complex where NCOAG62 and SRC-1 synergize in gene activation [230].
It should be noted that coactivator binding to VDR is a cyclical process that permits constant
probing for the presence of 1,25D in the ligand-binding pocket. This is achieved through
assessment of the conformation of AF-2 [241]. A closed form of helix 12 of the LBD, is indicative
of the ligand binding and the ability to recruit coactivators and stimulate gene expression [241].
Conversely, corepressors such as nuclear receptor corepressor (NCoR) and silencing
mediator for retinoic acid and thyroid hormone receptor (SMRT) bind to the open conformation
of AF-2 motif of the VDR via a corepressor NR box (CoRNR) [242-244]. Its consensus amino
acid sequence is L/IXX1/VI or LXXI/HIXXXI/L, which forms an extra a-helix turn compared to
the coactivator LXXLL motif suited for open AF-2 interaction [245-247]. Ligand binding,
therefore closes helix 12 of the AF-2 domain resulting in co-repressor release [248]. NCoR and
SMRT repressor function was shown to be mediated by their N-terminal histone dacetylase
(HDAC) activity [249-251]. Hairless, another corepressor, was shown to affect ligand-dependent
allosteric communication between VDR and RXR required for coactivator recruitment [252]. In
addition, it enhances VDR association with NCoR resulting in target gene repression [252].
Hairless binds the VDR AF-2 domain via four motifs, two of which are of the form LXXLL and

two, 0XXoo (¢: leucine, isoleucine, or valine). It also and interacts with HDACs in order to
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modify chromatin and silence transcription [253-256]. Alien also represses VD target gene
expression via HDAC activity [249]. Contrary to most co-repressors, however, it is not recruited
to the VDR via the AF-2 domain, but is still released upon 1,25D binding [249]. The mechanisms
of gene regulation described to this point constitute the classical genomic effects of VD signaling.
However, there are alternative modes of transcriptional control by the VDR. These  non-
classical mechanisms of gene regulation are supported by observations from VDR ChIP-seq
studies. Namely, only 67% of VDR binding sites in lymphoblastoid cells contained VDRE-like
motifs suggesting association through tethering [257]. Notably, the VDR was rarely found on
VDRE-containing DNA segments in unstimulated cells, whereas 1,25D increased the proportion
of VDRE association events [257]. In addition, another study estimated the proportion of VDRE-
containing VDR association sites to be 20% and 90% for unstimulated and stimulated monocytic
cells [258]. Together, these reports suggest that 1,25D induces relocation of the VDR to VDRE-
containing DNA sequences. Interestingly, the VDR peaks lacking VDRE-like sequences were rich
in SP1 and ETS motifs [258]. An earlier report also supports the involvement of Ets in rat Cyp24al
gene regulation by VDR [259]. Enrichment at the VDR peaks of other transcription factor binding
sites, such as TCF4/B-catenin, CDX2, and C/EBPJ, were detected in another ChIP-seq experiment
[260]. A role for these factors in 1,25D-mediated gene regulation was also suggested in several
previous studies [261-263]. The implications of these observations are two-fold: the VDR may
bind DNA through tethering to other TFs; these tethering events are highly cell type-specific. The
former notion is supported by the fact that re-expression of DNA binding-incompetent human
VDR in Vdr-/- mice partially retained mammary tumour growth inhibitory effects [264].
Regulation of PTH expression represents another non-classical mode of VD-mediated gene
regulation. A member of the basic helix-loop-helix family of TFs called VDR-interacting repressor
(VDIR) binds to tandem E-box type (CANNTG) sequences in the PTH promoter and stimulates
transcription in the absence of exposure to calcitriol [265, 266]. 1,25D, however, promotes VDR-
VDIR protein-protein interactions effectively blocking VDIR-induced PTH expression [265].
VDR-mediated transcriptional repression via binding to other TFs has also been demonstrated in
the regulation of interleukin 2 (IL2) and colony stimulating factor 2 (CSF2). The group led by
Leonard Freedman noticed that calcitriol is capable of suppressing IL2 expression in a
cycloheximide-resistant manner, consistent with direct repression via the VDR [267]. It was

discovered that ligand-bound VDR associated with a 40-bp region containing motifs required by
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nuclear factor of activated T cells (NFAT-1) and activator protein 1 (AP-1) for gene transactivation
[267]. Therefore, calcitriol-dependent binding of VDR/RXR or VDR alone to this site interfered
with NFAT/AP1 complex formation [267, 268]. Interestingly, no VDRE was found at the VDR
binding site in the CSF2 promoter [268]. In the context of the gene encoding rat osteocalcin
(Bglap), however, AP1 appears to cooperate with VDR-mediated gene upregulation in response
to calcitriol [269]. This was reliant on an internal AP1 binding site within a Bglap promoter VDRE
and mutations within this sequence abolished 1,25D-dependent gene expression [269].

Calcitriol can also regulate gene expression by modulating several components of the
WNT/B-catenin signaling pathway, which has been implicated in carcinogenesis [270, 271].
Mutations in the tumour suppressor adenomatous polyposis coli (APC) gene results in lost ability
for B-catenin phosphorylation and subsequent degradation that normally occur in the absence of
Whnt ligands [272, 273]. This de facto results in higher availability of f-catenin for the formation
of the lymphoid enhancer-binding factor 1 (LEF1)/pB-catenin complex, which acts as a TF to
orchestrate downstream transcriptional programs linked to oncogenesis [272, 274]. Calcitriol
stimulates VDR-dependent nuclear export of B-catenin [275-278]. It also upregulates the
expression of a transmembrane component of intercellular junctions, E-cadherin (CDH1), which
binds B-catenin thus retaining it in the cytoplasm and limiting its tumour-promoting actions [275-
278]. Notably, 1,25D has also been shown to trigger recruitment of B-catenin to the AF-2 domain
of the VDR, which enhances transcriptional upregulation of VD target genes [278]. The inhibitory
effects of calcitriol on B-catenin signaling are opposed by the transcription factor Snaill, which
repressed VDR and CDH1 expression, and abolishes nuclear export of $-catenin in colon cancer
cells [279-281]. 1,25D can also induce VDR association with the bona fide oncoprotein c-Jun,
component of AP1, and inhibit its transcription stimulatory and proliferative effects in cancer cells
[282-284]. Conversely, binding of the p65 subunit of necrosis factor kappa B (NF-kB) to VDR
prevents coactivator recruitment and gene transactivation [285]. Other work suggested that
p65/VDR formation suppresses NF-kB function and is consistent with the observation that NF-xB
activity is elevated in VDR-null fibroblasts [286, 287]. This mutual repression is not always in
effect as work in our lab suggested that the VDR and NF-kB can cooperatively induce expression
of the anti-microbial peptide human beta-defensin 2 (HBD2) in monocytes [5].  Calcitriol was
shown to affect tumour growth factor beta (TGF-) signaling by promoting interaction of the VDR
with SMAD3, which can act as a coactivator by enhancing recruitment of SRC1 [239, 288, 289].
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VDR and SMAD3 can synergize in upregulating common target genes containing tandem VDRE
and SMAD-binding motifs [239, 290]. Consistently, the anti-proliferative activity of 1,25(0OH).D3
was blocked by a TGF- neutralizing antibody in the promyelocytic leukemia HL-60 cells [291].

Our lab has described two more mechanisms that add to the arsenal of non-classical
genomic effects of VD. One of these is the ligand-dependent regulation by VDR of the function
of sirtuin 1 (SIRT1) and members of the forkhead box O (FOXO) family of TFs. FOXO proteins
FOXO1, FOX03A, FOX04, and FOXO6 regulate cell metabolism, growth, proliferation, and
differentiation, and are considered to be bona fide tumour suppressors [292-296]. Their function
is inhibited by phosphoinositide 3-kinase- (PI3K) induced, protein kinase B- (PKB) dependent
phosphorylation, followed by nuclear export and degradation [292-296]. FOXO acetylation
induces release from DNA, which allows for phosphorylation and the subsequent nuclear export
and degradation to take place [297]. It is reverse by the class 111 histone deacetylase SIRT1 [298].
Interestingly, we found that there was a partial overlap between VDR and FOXO target genes. In
addition, calcitriol induced FOXO protein accumulation via suppressing expression of the gene
encoding the p455K"2 ubiquitin ligase responsible for its proteasomal degradation [298-300].
P455KP2 was downregulated in a partially 1,25D-dependent manner by binding of a VDR/Spl
complex at the SKP2 promoter, recruitment of HDACL, and gene repression [301]. VDR also
associated directly with FOXO proteins and enhanced, upon stimulation with calcitriol, SIRT1
recruitment and FOXO deacetylation [302]. Consistent with previous studies, we observed that the
catalytic subunit of protein phosphatase 1 was constitutively bound to VDR [302]. 1,25D
upregulated VDR-associated phosphatase activity leading to FOXO dephosphorylation [302, 303].
Deacetylation and dephosphorylation, consistent with activation, were paralleled by increased
binding of FOXO/SIRT1/VDR complex to FOXO target gene promoters [302]. Ablation of FOXO
or SIRT1 expression attenuated or completely blocked calcitriol-dependent regulation of common
FOXO/VDR target genes implicated in inducing cell cycle arrest and resulted in a markedly
reduced capacity of calcitriol to block cell proliferation [302]. The second non-classical
mechanism of gene regulation by hormonal VD implicates the c-MYC/MXD1 network [304].
While c-MYC is an oncoprotein and a TF critical for cell cycle progression, MXDL1 is a tumour
suppressor and a c-MYC antagonist that associates with its heterodimeric partner MAX, recruits
corepressors such as HDAC2 and mSIN3A, and inhibits c-MY C target gene expression [305, 306].
c-MYC is targeted for proteasomal degradation by the E3 ubiquitin ligase F-box/WD repeat-
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containing protein 7 (FBW?7) [307]. 1,25D was found to robustly stimulate c-MY C turnover, while
stabilizing MXD1, in a VDR and FBW7-dependent fashion as knockdown of these two proteins
abolished these effects [304]. Notably, hormonal VD led to loss of DNA-bound c-MYC with a
concomitant increase in MXD1 and associated corepressors HDAC2 and mSIN3A at DNA binding
sites of c-MYC target genes [304]. Interestingly, VDR directly associated with both DNA-bound
c-MYC and MXDL1 in a hormone-dependent manner, although it is not clear at this point whether
replacement of c-MYC with MXD1 is a consequence of changes in their turnover. In support of
these findings, ChlP-seq analyses of published studies revealed a substantial overlap between VDR
and c-MYC binding locations in lymphoblastoid cell lines [257, 308]. Moreover, c-MYC protein
levels were found to be elevated in Vdr’- mouse skin and colon tissues, while topical application

of calcitriol downregulated levels of c-Myc and its target gene Setd8 while increasing Mxd1 [304].

Vitamin D and Cancer

Epidemiological observations since 1936 have pointed to a protective role of VD in cancer
[309, 310]. In 1970, the “declaration of war on cancer” by the US government led to the
compilation of maps of mortality rates per geographical region, which proved instrumental in the
discovery by Cedric and Frank Garlad that UV-dependent VD production correlates with lower
colon cancer incidence and mortality [311-313]. Similar epidemiologic and observational studies
established an association with other forms of cancer, such as breast, ovarian, renal, endometrial,
lung, leukemias and lymphomas [314-326]. In the case of prostate cancer, however, reports are
not always supportive of a preventive role of VD [327-333]. The Women Health Initiative clinical
trial followed 60,000 female subjects that received 400 IU daily dose of VD. The lack of any
apparent anti-cancer effects in this study can be attributed to the small dosage, which is believed
to be insufficient to produce any changes in circulating 25D levels [334].

Beneficial effects of VD signaling in the context of cancer have been observed in vivo,
especially in Vdr” mice crossed with tumour-predisposed animals. Vdr ablation was shown to
cause hyperproliferation in and alter the morphology of colon and breast tissue [335, 336].
Haplosufficient animals, compared with complete knock outs, generally display reduced tumour
burden and susceptibility to carcinogens [336, 337]. Similar observations were made in mouse
models of colon and skin cancer [338-340]. Furthermore, VD-deficient diets were associated with
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increased breast and prostate tumour xenograft growth in wild type animals and with induction of
colonic tumours in a model of sporadic colon cancer [341-344]. Conversely, supplementation with
VD, its metabolites, or analogs reduced tumour formation, growth, and metastasis in mouse models
of a number of cancer types [345-355].

Randomized controlled trials, however, have produced mixed results regarding benefits of
VD supplementation in the context of cancer [356-368]. A concern commonly raised following
these studies is lack of power due to small sample size, which prompted researches to conduct a
number of meta analyses. Despite lack of significance, most of these highlight a trend of inverse
association between supplementation and overall mortality [369-371]. The ongoing vitamin D and
omega-3 trial (VITAL) is currently examining the effects of VD and/or omega-3 fatty acid
supplementation on cancer and cardiovascular disease in a multi-ethnic group of more than 25 000
participants [372-375]. Researchers in the field of VD are eagerly expecting the results of this
study.

Vitamin D and the Immune System

VD sufficiency is associated with a number of health benefits. Initially, VD was described
as the curative agent for nutritional rickets and osteomalacia, which arise from insufficient uptake
of dietary calcium and lead to inadequate bone mineralization [376]. However, the VDR is
expressed in several tissues that are unrelated to calcium homeostasis, and a number of extra-
skeletal effects have been ascribed to VVD. For example, the actions of VD in the immune system
may be responsible for its beneficial effects in the context of infectious diseases (e.g. Helicobacter
pilori [377] and respiratory tract infections [378]) as well as autoimmune and inflammatory
disorders such as multiple sclerosis [379, 380], arthritis [381], type 1 diabetes [382], systemic
lupus erythematosus [383], and inflammatory bowel disease (IBD).

As discussed previously, VD obtained via cutaneous UVB exposure or through dietary
sources must undergo two consecutive modifications to become biologically active. The major
circulating metabolite, 25D, is produced by largely hepatic hydroxylation, followed by another
hydroxylation, mediated exclusively by CYP27B1, to generate the biologically active form. Apart
from kidney, CYP27B1 activity is present a number of peripheral tissues including epithelial,

innate, and adaptive immune cells, where it is not subject to Ca?* or PO4*> homeostatic regulatory
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signals [45, 57, 58, 60, 61, 384-392]. This suggests that 1,25D can be produced locally and act not
only in intracrine, but also in autocrine/paracrine manner to activate the VDR, which is expressed
in fibroblasts, immune, endothelial, and epithelial cells [393-397]. Interestingly, a study by
Wagner and colleagues did not find any correlation between circulating 25D and local 1,25D levels
in the colon — a site where most cell populations possess CYP27B1 activity [398]. Instead,
calcitriol was present in colonic tissue at physiologically relevant concentrations, and was partially
correlated with serum 1,25D. However, the correlation coefficient (r = 0.58, indicative of partial
correlation) along with the lack of DBP, required for transport of circulating 1,25D, in the colonic
tissue is consistent with some degree of local production. In addition, there are important
limitations in this study: low serum 25D (62nmol/L) in this patient population and small quantities
of colon tissue precluding measurement of 1,25D and 25D levels separately in the colon mucosa
and muscularis. In conclusion, additional studies are required to elucidate the degree and
importance of local 1,25D production in the intestine. Nevertheless, the capacity of several cell
types implicated in immune homeostasis to produce locally and respond to calcitriol suggests a
role of VD in the regulation of immune homeostatic events.

Immune homeostasis is determined by the interplay among several major players —
epithelial barrier in the mucosa, innate and adaptive immune signaling, which protect against
pathogenic but allow symbiotic microorganisms (especially in the intestinal lumen) to exist
unperturbed by the host’s defenses. The epithelium is important in immune signaling not only in
its capacity as a barrier constituent (vide infra). Apart from producing molecules important in
innate immune signaling, such as anti-microbial peptides (AMPs), epithelial cells have been shown
to impact dendritic cell (DC) function by secretion of a number of regulatory cytokines including
TGF-B, interleukin (IL) -33 and -25, and thymic stromal lymphopoietin (TSLP) [399-405], which
promotes T-helper 2- (Th2) immune response [406]. In addition, intestinal epithelial cells (IECs)
were shown to act as antigen presenting cells (APCs) capable of activating T cells directly [407-
409].

Innate Immunity

The crosstalk between the various facets of immune signaling is exemplified best in the

gut lumen where compromised function in any cell population implicated in immune homeostasis
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may result in development of the chronic inflammatory condition IBD [410-412]. The intestinal
lumen hosts not only a plethora of commensal bacteria (enteric flora), but may also harbour
pathogens, various antigens, and toxins [413]. It is therefore crucial to keep potentially dangerous
microorganisms or toxic substances in check. This is the main function of the intestinal epithelial
barrier, which consists of a single layer of tightly bound IECs and is characterized by selective
permeability for water and nutrients [411, 412, 414, 415]. VD signaling has been shown to promote
epithelial cell differentiation while reducing apoptosis particularly in inflammatory settings and to
enhance intestinal epithelial barrier function [276, 394, 416-419]. 1,25D also upregulates TSLP
transcription in primary keratinocytes and squamous cell carcinoma epithelial cells in human and
mouse [402, 403]. Interestingly, elevated levels of TSLP have been reported in colonic epithelial
cells [404, 405]. It would therefore be interesting to test whether 1,25D further upregulates TSLP
expression in mucosal tissues, as this may turn out to be a contributory factor in the maintenance
of immune homeostasis. For example, DCs exposed to TSLP [404] drive differentiation of
tolerogenic regulatory T cells (Treg) and Th2 cells, rather than the inflammatory Thl and Th17
sub-types, which results in the establishment of a cytokine profile that favours intestinal tolerance
[399, 420, 421]. In line with these observations, mice lacking the TSLP receptor exhibit increased
incidence and severity of experimental colitis [405]. TSLP signaling has also been shown to
enhance macrophage production of the tolerogenic cytokine interleukin 10 (IL-10) and to expand
systemic Treg cells [422, 423]. In addition, TSLP, along with complement component C5, acts to
enhance the bactericidal properties of neutrophils, which are among the first innate immune cells
in the intestinal tissue to respond to infection and damage [424-426]. The potential calcitriol-
dependent intestinal TSLP upregulation therefore would result in enhanced innate immune
responses in response to infection and injury and attenuated T cell-mediated inflammatory
adaptive immune responses associated with tissue damage.

Research, particularly in the last decade or so, has revealed a central role for VD signaling
in regulation of innate immune responses [3-5, 397]. One critical aspect of this regulation is the
stimulation of AMP production by human epithelial cells, monocytes/macrophages and
neutrophils [4, 5, 427]. Human beta-defensin 2 (HBD2) [4, 5] and cathelicidin antimicrobial
peptide (CAMP) [2, 4, 5], whose genes contain consensus promoter-proximal VDREs, are two
such examples. AMPs are small oligopeptides of 5-100 amino acids, which are capable of killing

a variety of pathogenic organisms — viruses, bacteria, fungi, and even parasites. They are produced

28



in several tissues including lymphs, epithelial cells in skin, gastrointestinal, and genitourinary tract,
phagocytes, and lymphocytes [428-431]. Apart from bactericidal effects, AMPs have been shown
to promote inflammatory responses upon infection [432, 433]. For instance, cathelicidin displays
context-dependent pro- and anti-inflammatory activity. It promotes differentiation of macrophages
and DCs towards the inflammatory M1 and Thl-inducing subtypes, respectively [434, 435].
Conversely, it binds and inhibits the chemotactic receptor chemokine receptor 2 (CCR2) in
monocytes and macrophages, and enhances 1L-10 production by DCs, monocytes, T and B cells
[436, 437]. Beta-defensins, on the other hand, can inhibit release of inflammatory cytokines and
stimulate phagocytosis in macrophages [438, 439], and function as chemoattractants for
neutrophils, monocytes, DCs, mast cells and T lymphocytes [440, 441]. AMP signaling has also
been implicated in enhancing wound healing [442].

Structurally, AMPs can be divided into 4 groups — a-helical, -sheet, extended, and loop
peptides with a-helical and B-sheet being the most common [443]. They exert their rapid
bactericidal activities by targeting the lipopolysaccharide (LPS) layer of microorganisms, while
eukaryotic cells are exempt due to high amount of cholesterol and low anionic charge in the
membrane [444, 445]. AMPs also synergize with antibiotics to greatly enhance pathogen killing
[446]. In terms of anti-viral actions, it has been demonstrated that these peptides greatly
compromise viral envelope integrity and cell membrane of infected cells. In addition, they reduce
binding to host cells — defensins, for instance, bind to herpes simplex virus glycoproteins [447-
452]. Not all AMPs exert their bactericidal effects via membrane disintegration. Some have been
shown to diffuse across the membrane without causing any damage and bind DNA, RNA, or other
intracellular targets [453-456]. Antifungal AMPs may target the cell membrane (chitin) or
intracellular components, while antiparasitic AMPs, including CAMP, contribute to infection
clearance solely by forming pores in the lipid bilayer [457-460].

Apart from direct VDR-dependent upregulation of CAMP and HBD2 gene expression by
calcitriol, production of these peptides is also induced following activation of the pattern
recognition receptor (PRR) nucleotide-binding oligomerization domain-containing protein 2
(NOD2), which in humans is encoded by another direct VD target gene [5]. NOD2 senses
breakdown products of bacterial cells walls in the form of muramyl dipeptides, leading to
activation of the transcription factor NF-xB and subsequent expression of the HBD2 and CAMP
genes [461] (fig. 1). VD therefore regulates both ends of a NOD2/HBD2/CAMP innate immune
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signaling pathway, and 1,25D and muramyl dipeptides (MDPs) synergize to enhance HBD2 and
CAMP expression [5]. The importance of VD signaling in induction of antimicrobial peptides in
mice is highlighted by the observation that VD-deficient (25D < 2.5 ng/ml) mice display reduced
angiogenin-4 (another antimicrobial peptide) expression and increased bacterial load in the colon
[462, 463].

NOD?2 is part of the nucleotide-binding domain leucine-rich repeat-containing receptor
(NLR) family consisting of 22 human and 34 mouse cytoplasmic receptors. These proteins have a
similar domain architecture with an N-terminal effector domain, a central nucleotide binding and
oligomerization domain, and a variable number of C-terminal leucine-rich repeat[464]. NOD2 and
its homolog NOD1, which binds y-D-glutamyl-meso-diaminopimelic acid (ie-DAP) produced by
Gram-negative and a few Gram-positive bacteria, are pro-inflammatory NLRs and act via NF-xB
activation [465-467]. They are expressed in a variety of cells including epithelial, stromal,
endothelial, myeloid cells, and lymphocytes [468-471]. MDP and ie-DAP are imported and
released in the cytoplasm with bacterial entry or through members of the solute carrier proteins
family in order to interact with the cytosolic NOD1 and NOD?2 receptors [472-475]. In the absence
of ligands, NOD1 and NOD?2 are locked into an inactive conformation with the help of chaperone
proteins [476-478]. Upon ligand recognition, they shed the associated chaperones in an ATP-
dependent fashion and oligomerise such that their caspase activation and recruitment domains
(CARDs) are accessible for interaction with downstream signaling molecules, such as receptor-
interacting protein-2 (RIP2) kinase. RIP2 associates with NOD1/2 via homotypic CARD-CARD
interactions, followed by recruitment of the transforming growth factor beta-activated kinase 1
(TAK1) required for 1kB kinase (IKK) complex and mitogen-associated protein kinase (MAPK)
pathway activation [471, 479]. IKK triggers degradation of the inhibitor IkB, allowing NF-kB to
translocate to the nucleus and induce pro-inflammatory transcriptional programs [480, 481].
NOD1 and NOD2 have also been implicated in induction of autophagy as a defense mechanism
against bacterial infection [482, 483]. Interestingly, NOD2 polymorphisms represent the strongest
risk factor for Crohn’s Disease, an inflammatory condition that originates in the intestine [484,
485]. NOD-like receptors appear to play a redundant role with Toll-like receptors (TLRS) as both
classes of PRRs lead to NF-kB and MAPK activation, and production of pro-inflammatory
molecules in response to bacterial detection [480, 481]. There are 10 TLRs in humans, which

recognize a variety of pathogen- and damage-associated ligands [486]. TLR1, 2, 4, 5, 10, and 11
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are located at the cell membrane, while TLR 3, 7, 8, and 9 are found in endosomes and act as viral
sensors (oligonucleotides specifically) [487, 488]. Dimerization of TLR following ligand binding
positions the Toll/interleukin-1 receptor (TIR) signaling domains in close proximity creating a
scaffold for the recruitment of adapter proteins. Downstream signaling events are tailored
according to the type of activated TLR and associated adaptor proteins [486]. Subsequently,
several kinases, including interleukin-1 receptor-associated kinase (IRAK) and TANK-binding
kinase 1 (TBK1), activate NF-kB and interferon regulatory transcription factor 3 (IRF3) TFs,
upregulating production of various genes implicated in innate immune responses and
inflammation. TLR4 was the first identified and best characterized member of the TLR family of
PRR [489]. It associates with myeloid differentiation protein 2 (MD-2) and binds to LPS [490].
Mice lacking Md-2 are incapable of initiating a response to LPS [491]. CD14 is another molecule
important for LPS binding by TLR4/MD-2. LPS bound by LPS binding protein in the serum is
transferred to CD14, which then enhances the sensitivity of TLR4/MD-2 and effectively increases
the affinity for LPS [492-494]. LPS-bound TLR4 associates with two pairs of adapter proteins:
Mal/MyD88 and TRAN/TRIF [495, 496]. MyD88 acts via associated kinases IRAK1 and IRAK4
to activated NF-kB rapidly, which results in production of pro-inflammatory cytokines, whereas
TRIF is linked to sustained activation NF-kB and IRF3, required for expression of a different set
of inflammatory mediators such as interferon beta (IFN-B) and C-C motif chemokine ligand 5
(CCLY5) [486, 495, 497]. Apart from the induction of inflammation, LPS engagement by TLR4
leads to activation of innate immune responses including production of AMPs, which are also
implicated in wound healing [498-502]. The importance of TLR4 signaling in immune
homeostasis is emphasized by observations that mutations in its gene are linked to a number of
diseases such as IBD, diabetes, rheumatoid arthritis, asthma, multiple sclerosis, and other disorders
of autoimmune or inflammatory origin [503-505]. Interestingly, VD signaling has been shown to
enhance TLR4 function by strongly upregulating expression of its coreceptor CD14 [402, 506].
VD also impacts the function of Paneth cells in the intestine, which are specialized not only
in AMP production, but also in sensing the gastrointestinal flora [507]. In mice, VD deficient high-
fat diet — recapitulating the dietary habits in industrialized countries — resulted in reduced alpha-
defensins production and matrix metalloprotease 7 release (required for pro-defensin activation)
by Paneth cells [508]. These defects gave rise to increased pathogenic bacteria load, mucosal

barrier permeability, and inflammation. Vdr”- mice on high phosphorus and calcium diet also
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displayed a similar phenotype [508]. In general, compromised intestinal VDR signaling was
associated with biochemically abnormal Paneth cells and reduced autophagy [507]. Autophagy is
characterized by the generation of double-membrane-bound organelles called autophagosomes,
which target intracellular pathogens, other damaged organelles, and proteins for lysosomal
degradation. It plays a central role in regulation of innate immunity and gut homeostasis, and is
stimulated by VD and by the products of its target genes CAMP, NOD2 and ATG16L1 [482, 507,
509]. NOD2 enhances ATG16L1 function by recruiting the latter to sites of bacterial entry at the
plasma membrane [483]. One study suggested that reduced autophagic potential resulting from
compromised VD signaling was due to decreased production of ATG16L1 [427, 507]. These
observations highlight the importance of VD sufficiency for Paneth cell function.

Some of the most critical aspects of innate immune responses entail macrophage activation.
Interestingly, stimulation through the pattern recognition receptor TLR2 was shown to upregulate
macrophage CYP27B1 expression, enhancing the endogenous production of hormonally active
calcitriol from circulating 25D [510]. Subsequent work demonstrated that myeloid CYP27B1
expression is regulated by several cytokines, highlighting the fact that VD signaling in innate
immunity is induced by signals independent of the calcium homeostatic inputs driving renal VD
actions [511]. This is important, as it implies that infection de facto stimulates VD signaling in
macrophages, pointing to a central role of VD signaling in response to pathogenic threats.
Consistent with this idea, the gene encoding IL-1 is also a direct target of VD signaling. IL-1p is
one of the first innate immune system cytokines produced in response to infection. It is released
from its pro-form by proteolytic cleavage catalyzed by caspase 1 coupled to a pattern recognition
receptor-activated complex called the inflammasome. Notably, IL-1 expression and secretion was
cooperatively induced in macrophages by a combination of M. tuberculosis infection and 1,25D
treatment [3].

Apart from monocytes/macrophages, hormonal VD also acts on natural killer (NK) and
innate lymphoid cells (ILCs). NK cells represent an important component of innate immunity and
are capable of modulating dendritic and T cell responses [512, 513]. 1,25D enhances their
cytotoxic function while downregulating inflammatory cytokine expression [514-516]. In many
respects, NK cells are functionally similar to CD8" cytotoxic T lymphocytes (CTLs). By the same
token, one can draw parallels between innate lymphoid cells type 1 (ILC1), 2 and 3, and Th1, Th2,
and Th17 cells, respectively [517]. ILCs are spread throughout mucosal tissues and are one of the
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first immune cells to respond to pathogen threats by secreting pro-inflammatory intermediates
[517]. These cells are activated mainly by epithelial and myeloid cell-derived molecules such as
cytokines and alarmins [517]. A very important function of ILC3’s is the secretion of 1L-22.
Binding of 1L-22 to its receptor, IL-22Ra1/IL-10Rp, on epithelial cells induces signaling events
culminating in signal transducer and activator of transcription 3 (STAT3) phosphorylation,
secretion of antimicrobial peptides and cell proliferation [518-520]. In fact, IL-22 is crucial for
epithelial barrier maintenance and repair, which is an important prerequisite for the resolution of
inflammation [517] and IL-22 deficiency results in chronic inflammation [521]. Epithelial damage
also induces ILC2 cells to produce amphiregulin, which stimulates epithelial cells proliferation
and repair [522]. Finally, ILC2’s secrete 1L-13, which upregulates mucus production by goblet
cells further enhancing barrier function [517] (fig. 2). It is not surprising, therefore, that the
function of ILCs in the mucosa is often altered during infection or chronic inflammatory conditions
[517].

The effects of VD on ILCs remain understudied and not fully resolved. Based on previous
findings, 1,25D-induced expression of IL-1p from myeloid cells and potentially TSLP from
epithelial cells would be expected to stimulate IL-22-producing ILC3’s and ILC2’s, respectively
[3, 402, 403, 517, 523, 524]. However, this view is complicated by observations that TSLP
suppresses IL-22 secretion by ILC3’s [525, 526]. Moreover, Vdr-null mice (no indication whether
on rescue diet) produce more IL-22 and display higher frequencies of ILC’s in the small intestine
and colon [527]. This is likely due to inhibition of the integrin a4f7 that targets these cells to the
adhesion molecule MadCAM-1 on endothelial cells in Peyer’s patches [527]. It has also been
demonstrated that 1,25D blocks vitamin A-induced cytokine production by ILC’s [528].
Moreover, supplemental and hormonal VD indirectly suppresses the function of ILC2’s by
upregulating epithelial E-cadherin expression [517, 529, 530]. However, the VD analogue
calcipotriol seems to promote ILC2-dependent skin inflammation [524, 531]. It is clear that more
studies are required in order to understand the direct and indirect effects of VD on ILCs in the gut
and the impacts on intestinal homeostasis.

Although neutrophils are the most abundant type of white blood cells in humans, studies
investigating the effects of VD on this subpopulation are scarce. Neutrophils clear pathogenic
threats by phagocytosis and generation of reactive oxygen species, by production of AMPs, and

by releasing neutrophil extracellular traps (NETS), which capture and kill microbes, but at the same
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time cause extensive collateral tissue damage [532]. Neutrophils express the VDR, but, unlike
most of the other cells of the immune system, lack CYP27B1 activity and are therefore incapable
of producing 1,25D locally [533]. Calcitriol, was shown to inhibit reactive oxygen species and
inflammatory mediators production in neutrophils by upregulating and suppressing the genes
coding for arachidonic 5-lipoxygenase (ALOX5) and cyclooxygenase-2 (COX2), respectively
[534]. VD signaling can also reduce the formation of NETs by neutrophils, thus protecting against
tissue damage, and block apoptosis in a p38 MAPK pathway-dependent manner [535, 536].

DCs, which orchestrate the adaptive immune response, represent another important target
for VD. Their function is particularly important in the gut, which hosts not only a number of
microorganism, but also many immunogens of dietary provenance. Abnormal DC function,
therefore, may cause aberrant activation of adaptive immunity resulting in chronic inflammatory
conditions such as celiac and inflammatory bowel disease [537]. VD signaling generally acts to
keep DCs in immature state and favours tolerogenic properties [538]. Notably, 1,25D-treated
monocyte-derived DCs (moDCs) are less effective in stimulating inflammatory effector T cells
(Thl, Thl7, and CTL) proliferation, while favouring tolerogenic Treg production [538-540].
Calcitriol reduces secretion of IL-12 by DCs, which is required for inflammatory T cell activation,
and stimulates production of the anti-inflammatory cytokine IL-10 [541-543]. In addition, VD
signaling lowers the expression of co-stimulatory molecules CD80 and CD86, and of the major
histocompatibility complex, class Il (MHC 1) on DCs [541-543]. By downregulating the
expression of these three pillars of T cell activation (cytokines, co-stimulation, and antigen
presentation) in DCs, VD signaling effectively reduces pro-inflammatory T cell responses.

Interestingly, VD may also affect DCs by altering their metabolism. During activation, due
to high energy demand, DCs display elevated rates of glycolysis required for the rapid production
of ATP and for providing building blocks for fatty acid synthesis [544]. In human moDCs,
however, calcitriol treatment generated a transcriptional profile more reflective of oxidative
phosphorylation, which is often indicative of a differentiated or resting state [545, 546]. This
supports a role for VD in inducing immunological quiescence in DCs. Calcitriol has also been
shown to upregulate a4p7 expression allowing homing of DCs to Peyer’s patches in the intestine
[547]. Interestingly, exposure of DCs to inflammatory cytokines and pathogen-associated
molecular patterns results in upregulation of CYP27B1 [548]. Consistent with this finding, moDC
treated with physiological concentrations of 25D (10-100nM) were capable of producing locally
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1,25D, which led to a tolerogenic DC phenotype and T cell hypo-responsiveness [546, 549]. These
observations also highlight the possibility that local production of calcitriol by DCs may signal
directly to associated T cells in a paracrine fashion.

Taken together, the studies described above, which were performed in human cells and in
mouse models, provide evidence for widespread effects of VD signaling in innate immunity. It
should be noted, that while there is ample evidence that disrupted VD signaling in mice
compromises innate immunity [462, 527, 550] many of the underlying mechanisms appear to be
species-specific. For example, regulation of many of the VD target genes implicated in innate
immunity identified in humans (CAMP, HBD2, NOD2, IL1B) appears to be conserved in primates

(based on conservation of promoter VDRES) but not in rodent species [2, 3, 551].

Adaptive immunity

Activation of T cell-mediated responses is often required for infection clearance. However,
aberrant, overactive, or prolonged responses are associated with chronic inflammatory conditions,
such as ulcerative colitis and Crohn’s disease, characterized by extensive tissue damage [552-554].
It is important, therefore, to control inflammatory immune responses so that tissue homeostasis is
not compromised [412, 414, 552, 553]. T cells can be subdivided broadly into two groups: CD4*
and CD8* T cells. CD8" T cells are CTLs, which produce the inflammatory cytokines interferon-
gamma (IFN-y) and tumour necrosis factor-alpha (TNF-o), and are instrumental in clearing
intracellular pathogens and infected cells via release of cytotoxins such as perforin and granzymes.
CD4" T cells consist of several subpopulations including T helper and Treg cells. Thl cells also
produce IFN-y and TNF-a, and stimulate intracellular infection clearance [555-557]. Th2
lymphocytes secrete IL-4, IL-5, and IL-13, trigger humoral immunity and B cell-mediated
antibody production, and orchestrate anti-parasitic responses [558]. Th17 cells are associated with
production of IL-17, IL-22, granulocyte macrophage-colony stimulating factor (GM-CSF), and
IFN-y and are crucial in mounting defenses against extracellular pathogens [559, 560]. Tregs, on
the other hand, dampen effector T cell responses, partly via IL-10 secretion, and are essential for
peripheral tolerance [561]. Natural killer T (NKT) cells share characteristics of both natural killer
and T cells. NKT cells are activated early during infection and are capable of binding self and
foreign lipid antigens [562].
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Apart from indirect effects mediated by DCs, calcitriol directly targets T cells to inhibit
human CD4* and CD8" T cell proliferation [563-565]. More specifically, it stimulate the more
tolerogenic Treg subpopulation in favour of inflammatory effector T (Teff; Thl, Th2, and Th17)
cells [540, 566-569]. In fact, VD signaling in mouse was shown to alter T helper cell polarization
towards Th2, rather than Th1, and upregulate IL-4, IL-5, and IL-10 production [570]. Interestingly,
T cell activation stimulates VDR and CYP27B1 expression indicating that VD may signal in
autocrine/paracrine fashion in this cell type [395, 566, 571-573]. It should be noted that a
considerable portion of the work investigating the direct effects of VD has been done using mouse
T cells from different tissues. Conversely, peripheral blood mononuclear cells (PBMCs) were
employed in vitro to study its effects in human T cells. T cell behavior, however, is strongly
dependent on location and associated signaling cues suggesting that not all findings regarding VD
signaling in mouse apply to human T cells. VDR KO mice (no indication whether on rescue diet)
display chronic inflammation associated with reduced intra-epithelial populations of CD4/CD8aa
and NKT cells [574, 575]. Consistent with this observation, 1,25D was found to suppress
inflammatory cytokine IFN-y, TNF-a, IL-17 and IL-2, but enhanced IL-4 production and
cooperated with IL-2 to promote development of anti-inflammatory FoxP3"CTLA-4" Tregs [383,
540, 566, 576]. CD4" T cells that lack the Vdr or Cyp27b1 from mice on rescue diet or not
proliferate rapidly and produce large amount of IFN-y and IL-17, causing colitis when adoptively
transferred to naive mice [418, 530, 567, 577]. Similar observations were documented in human
T cells where calcitriol inhibited IL-2, IFN-y, and IL-17 [566, 578-580]. In vitro exposure of mouse
CD8" T cells to 1,25D inhibited proliferation [564]. In addition, Vdr”-CD8" T cells overexpressed
IL-2, were able to proliferate in the absence of antigen stimulation, produced higher levels of IL-
17 and IFN-y but less granzyme B, and had altered expression of homing receptors [564, 577].
Altogether, the direct and indirect effects of VD on T cells support its role in attenuating
inflammation and inducing tolerance. This is confirmed by in vivo observations in humans and
mice showing that hormonal VD suppressed function and reduced numbers of inflammatory Thl
and Th17 [581-585].

The effects of VD on B lymphocytes in humans are less well characterized partly due to
lack of reliable experimental in vitro system recapitulating the in vivo settings. In a set of highly
controlled steps, hematopoietic progenitor cells in the bone marrow give rise to mature B cells

following sequential VV(D)J recombinations and order rearrangements at the immunoglobulin (1g)
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loci [586]. This process ensures that each nascent B lymphocyte possesses a unique B cell receptor
(BCR). The BCR in these cells is an Ig molecule (whose secreted form is called antibody). After
negative selection against self-reacting BCRs, the immunocompetent B cell exits the bone marrow
[586]. At this point, the mature naive B cell expresses Ig type M and D (IgM, IgD) as its BCR
[587]. Antigen binding via the BCR, activation by T-helper cells, or both in secondary lymphoid
organs induces a process called somatic hypermutation, which greatly increases the Ig affinity
towards its cognate antigen [588]. A subsequent clonal expansion and class-switch recombination
events take place, where B cells proliferate and the constant Ig region is altered, essentially
changing the properties and function of the antibody [589]. This gives rise to antibody-secreting
plasma cells, and memory B cells. Interestingly, Th2 and follicular T-helper cells appear to play
an important role in stimulating class-switch recombination to IgE and 1gG [590]. IgGs are
monomeric and are the most abundant Igs found in the circulation. There are four sub-types and
they are responsible for mediating the majority of antibody-based immune responses against
pathogens — neutralization, opsonization, phagocyte and complement activation [591, 592]. IgE is
also monomeric and is associated with allergies due to its capacity to activate basophils and mast
cells [593]. IgA and IgM are dimeric and pentameric, respectively. IgM can be produced
spontaneously without exposure to antigen (natural IgM), or following exogenous antigen
recognition (immune IgM) [594, 595]. Both natural and immune IgM participate in anti-pathogen
immune responses. While providing early defenses against microbes, natural IgM can also
recognize self-antigens and trigger anti-inflammatory and anti-autoimmunogenic events [596-
598]. IgA is particularly important for mucosal immunity. It is produced by locally activated
lamina propria plasma cells and is transported across the epithelial layer via the poly-lg-receptor
on the basolateral surface [599, 600]. While not capable of activating phagocytosis and displaying
weak complement-activating properties, IgA is particularly effective at neutralizing and expelling
pathogens into the luminal side of the epithelial layer. It also plays an important role in neutralizing
toxins and in control of the resident microbiota, which is crucial for the maintenance of proper
immune homeostasis [601-604].

The potential regulatory roles of VD signaling in B lymphocytes are highlighted by
expression of both VDR and CYP27B1 [605]. The presence of the latter also implies
autocrine/paracrine effects. VDR levels are further upregulated upon B cell activation [605, 606].

Various experimental observations suggest an inhibitory role of vitamin D on human B cells and
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antibody production. For instance, 1,25D induced B cell apoptosis during in vitro stimulation and
reduced 1gG and IgM levels [605]. Importantly, it has been suggested that vitamin D signaling has
any impact on B cells only during the activation stage at least in vitro [605, 607]. Proliferation and
production of 1gG, and IgM were also shown to be suppressed by calcitriol in Epstein-Barr virus-
(EBV) or pokeweed mitogen-activated B lymphocytes and in PBMCs [607-609]. Another study
demonstrated inhibition of IgE, but not IgM or IgG, production by the non-calcemic 1,25D analog
EB1089 during anti-CD40/IL4-induced B cells activation[610]. Yet another report highlighted
VD-dependent IgE reduction in both in vitro generated IgE producing human B cells and in mouse
[611]. Mechanistically, this appears to occur via inhibition of NF-xB signaling following CD40
ligation and through transcriptional repression of germline I required for IgE production [612,
613]. More specifically, calcitriol blocked translocation of the p65 subunit of NF-«xB, resulting in
reduced binding to the p105 NF-«B subunit promoter and reduced mRNA and protein levels [612].
It directly suppressed Ie by induction of VDR/RXR binding to a VDRE in its promoter and
recruitment of histone deacetylases SMRT, HDACL1, and HDAC3 [613]. VD signaling has also
been shown to inhibit IgE production in mice [614, 615]. VD deficient, whole-body and B cell-
but not T cell-specific Vdr knockout animals displayed higher circulating IgE levels [614]. Similar
results were obtained in Cyp27b1”" mice, which also had higher IgG1 titers [615]. Interestingly,
the higher IgE levels in the general compared to the B lymphocyte-specific Vdr knockout suggests
that B cell extrinsic mechanism also contribute to VVD-dependent inhibition of IgE production
[614]. Interestingly, calcitriol impaired in mice the formation of B cell-containing granulomas that
normally surround and contain Mycobacterium tuberculosis (M. tb) in the lung during the acute
phase of the infection, which resulted in higher bacterial burden during the chronic phase [616].
Exposure to calcitriol during in vitro generation of the 1L-10-secreting tolerogenic regulatory B
cells (Breg) resulted in higher IL-10" Breg numbers and more IL-10 per cell [606]. These
observations are in line with the tolerogenic actions of vitamin D.

Human clinical trials and observational studies, however, failed to confirm the conclusions
reached from in vitro experiments. There was no association between 25D concentrations and IgG
levels in patients with multiple sclerosis (MS) [617]. Similarly, VD supplementation in relapsing-
remitting MS patients or healthy control did not result in any change in IgG or IgM levels [618].
Haas et al. showed, however, that MS patients with low circulating VD status display increased B

cell immunoreactivity, which was attenuated following VD supplementation [619]. Higher VD
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concentrations were also associated with reduced EBV nuclear antigen-1- but not viral capsid
antigen-specific antibody levels [620]. Interestingly, a study in children and adults with low
vitamin A and D levels established a correlation between vitamin A and VD, between vitamin A
concentrations and IgA and 1gG4 levels, and between VD concentrations and IgM and 1gG3 levels
[621]. In the context of systemic lupus erythematosus (SLE), however, VD supplementation
decreased the numbers of memory B cells and concentrations of anti-DNA antibodies [622]. This
was paralleled by an increase in naive CD4" T cells and Tregs, and a decrease in the inflammatory
Thland Th17, implying potential modulation of B cell responses via changes in differentiation of
T cell subpopulations [622]. The reverse may also occur as calcitriol was found to inhibit the
capacity of primed human B cells to activate autologous CD4" T cells at least in vitro [623].
Clearly, further investigation into the direct and indirect effects of VD signaling on B cell biology

is necessary to elucidate the molecular underpinnings of its actions in immune homeostasis.

Vitamin D in Autoimmune and Inflammatory Disorders

Given the impact of VD signaling on the immune system, it is not surprising that it has
been implicated in a variety of human autoimmune and inflammatory disorders. Indeed, a number
of observational and intervention studies, as well as work in in vivo mouse models, suggest
beneficial effects of VD. Genome-wide association studies (GWAS) have established a correlation
between DBP and VDR polymorphisms with autoimmune and inflammatory disease, suggesting a
role for VD signaling in such conditions. For instance, DBP polymorphisms correlate with
conditions such as rheumatoid arthritis (RA), IBD (characterized by progressive chronic relapsing-
remitting inflammation of the gastrointestinal tract), and asthma, but not MS or type 1 diabetes
(T1D) [624]. VDR polymorphisms, were associated with both forms of IBD — Crohn’s disease and
ulcerative colitis, and with T1D but only in Asian populations [625]. In line with these
observations, Vdr’- or Cyp27b1”- mice display increased susceptibility and severity of colitis, an
inflammatory condition that usually precedes IBD [416], while Vdr-overexpressing intestinal
epithelial cells conferred protection against colitis [394]. Mice on a VD-deficient diet were also
more susceptible to colitis induced by dextran sodium sulfate- (DSS) [462]. DSS triggers intestinal
damage and is used to study chemically-induced colitis, whereas 11107~ and Smad3”" mice are
models of compromised immune homeostasis-induced colitis. VD deficient diet, Vdr or Cyp27b1
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knockout in 11107~ mice caused more sever disease compared to animals with sufficient VD levels
[530, 626]. Supplementation, on the other hand, was beneficial in Smad3”, DSS-, and 2,4,6-
trinitrobenzene sulphonic acid- (TNBS) induced models of IBD [627, 628]. VD, particularly in
combination with IFN-B, was also capable of preventing and even reversing paralysis in vivo in
experimental autoimmune encephalomyelitis (EAE), the model of MS [580, 629]. In addition,
protective effects have been attributed to VD in the context of mouse models for several other
autoimmune and inflammatory disorders, namely autoimmune diabetes [non-obese diabetic
(NOD)] [630-632], SLE [633], RA [634], and asthma [635].

Epidemiological studies also support beneficial effects of VD in autoimmune and
inflammatory disease. There are several reports, which demonstrated a correlation between 25D
levels and incidence and severity of asthma [636-642], and some that found no association [639,
643-645]. The north-south gradient seen in IBD is also suggestive of a role for UV-dependent VD
production in disease prevention [646, 647]. Indeed, VD deficiency has been associated with
increased incidence and disease activity [648-650]. Similar conclusions were drawn following
observational studies for MS [379, 651-655] and RA [656-659]. Low 25D levels were also very
common in SLE patients [622, 660-664] and correlated with flare-ups in children [665]. It is
difficult to establish a causal relationship based on observational reports particularly in the case of
IBD and SLE since VD deficiency may arise from supplement malabsorption, protection from
sunlight or glucocorticoid usage. These shortcomings of the epidemiological findings are
addressed by intervention studies.

In the case of asthma, supplementation of VD-deficient children or pregnant women
diminished severity and incidence in patients and offspring, respectively [666-673]. Findings were
similar in adults, particularly in patients that reached circulating 25D levels of at least 30ng/ml
[374, 674]. Results obtained from clinical trials investigating the effects of VD in IBD suggest that
supplementation diminished relapse rate, although in a non-statistically significant manner, and
decreased CD activity index scores [646, 675, 676]. Cholecalciferol also improved Expanded
Disability Status Scale, reduced relapses and lesions (as assessed by MRI), generally improved
functionality [677-679], and appeared to mitigate progression to MS from optic neuritis [680]. One
trial, however, found no effect in MS [681]. VD supplementation reduced disease activity in open-
label [381, 682], but not double-blind placebo-controlled randomized trials [683, 684]. It also
decreased relapse rate, although this study did not reach statistical significance [685]. Work on the
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effects of cholecalciferol in the context of T1D appears inconclusive with two reports showing
beneficial and two, no effects of VD administration in adults [686-690]. In children, however,
supplementation greatly reduced the risk of developing T1D later in life [686, 691]. Reports about
VD in SLE show both beneficial [692-694] and no effects [695, 696]. Topical treatment with VD
analogs is quite effective in psoriasis, however [697-699]. Overall, intervention studies appear to
not always conclusively point to a beneficial effect of cholecalciferol signaling in autoimmune and
inflammatory disease. Better understanding of the physiological and molecular mechanisms of
action of VD is required to explain the observed differences and identify contexts in which

supplementation would be effective as a therapeutic or chemopreventive strategy.

PD-1 Ligand Signaling

T cells are activated following exposure to two simultaneous signals: engagement of the T
cell receptor (TCR), conferring specificity, and antigen non-specific co-stimulatory signal. The
absence of the latter leads to T cell anergy or non-responsiveness to subsequent antigenic
stimulation [700-702]. Apart from co-stimulatory cues, there are also co-inhibitory signals that act
to induce peripheral tolerance and are known as immune checkpoints [703-706]. Activation of the
programmed death-1 (PD-1; CD279) receptor on T cells by its ligands, programmed death ligand
1 (PD-L1, B7-H1, CD274) and 2 (PD-L2, B7-DC, CD273), is one such immune checkpoint
pathway [707, 708]. PD-1 is a 288 amino-acid type | (single transmembrane span) membrane
protein composed of N-terminal IgV-like domain, a 20 amino-acid stalk connecting the IgV to the
transmembrane domain, and a cytoplasmic domain that harbours two tyrosine signaling motifs
[709-711]. It functions as a monomer [711]. The cytoplasmic portion of the protein contains an N-
terminal VDYGEL sequence that is part of an immunoreceptor tyrosine-based inhibitor motif
(ITIM), to which SH2-containing phorphatases are recruited [712]. The C-terminal TEYATI
sequence forms an immunoreceptor tyrosine-based switch motif (ITSM), which was shown to be
required for the inhibitory functions of PD-1 [712]. Its ligands are also type | transmembrane
glycoproteins containing IgC and IgV domains and sharing 40% identity one with the other [713,
714]. There is 70% identity between human and mouse PD-1 ligands (PD-Ls) [714].

PD-1 exerts its immune regulatory function only when in close proximity to TCR or BCR,

which is achieved by translocation to and accumulation within the central supramolecular
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activation cluster (cCSMAC) formed at the immunological synapse [715, 716]. Its ligation triggers
downstream signaling events that culminate in changes in survival, proliferation, glucose
consumption and metabolism, and cytokine production [707, 708]. Notably, co-stimulation via
CD28 can be countered by the inhibitory properties of PD-1 signaling whereas IL-2 receptor
engagement has been shown to overcome PD-1-dependent inhibition in mouse T cells in an in
vitro setting [707, 717]. PD-1 stimulation leads ITSM and ITIM phosphorylation, which is a
prerequisite for recruitment of the phosphatases SHP-1 and SHP-2 [709, 718]. It has been
demonstrated in live T lymphocytes that it is SHP-2 and not SHP-1 that associates with PD-1 upon
ligation [715]. The ensuing dephosphorylation of TCR-proximal molecules CD3{ and ZAP70
prevents downstream T cell-stimulatory signal transduction mediated by protein kinase C-theta
(PKCH), RAS-ERK1/2, and phosphoinositide 3-kinase/protein kinase B (PI3K-PKB) pathways
[709, 716, 719-721]. PD-1/SHP-2 signaling also inhibits CD28-induced PI3K signaling directly
and indirectly by increasing phosphatase and tensin homolog (PTEN) activity [721, 722]. PD-1
also inhibits CD28 signaling by driving this co-coreceptor away without entirely excluding it from
the cSMAC [715, 716]. PD-1 ligation in B cells also recruits SHP-2, which results in inhibition
signals propagated by phosphorylation-activated molecules downstream of the BCR — Igp, Syk,
PLCy2, ERK1/2, PI3K, and vav — and in blockade of Ca?* mobilization required for B cell
activation [718, 723].

TCR/CD3 and CD28 co-stimulation normally results in activation of PI3K-PKB and
Ras/MEK/ERK pathways required for upregulation of Skp2, a component of the SCF<P? ubiquitin
ligase complex, which targets p27Kip1, the inhibitor of Cdk2, for degradation [724, 725]. Cdk2 is
necessary for entry into S-phase of the cell cycle that occurs upon T cell activation [726-728]. PD-
1 signaling therefore targets the cell cycle in T cells. Cdk2 inhibition de facto results in activation
of the checkpoint inhibitor Smad3, effectively reducing the threshold levels of TGF-f signaling.
TGF-B and IL-2 are required for the differentiation of Treg cells from CD4" T cells in the
periphery. In addition, these cytokines have tolerogenic properties and are important in controlling
the adaptive immune response [729, 730]. In this context, it was shown that PD-1 signaling
synergised with TGF-p to promote Treg generation and PD-L1-deficient APCs were less capable
of inducing Tregs [719, 731-733]. PD-L1 also enhanced the suppressive function of established
Treg cells in a PTEN-dependent fashion [731, 734]. Furthermore, PD-1 signaling may promote

the differentiation of Tregs by altering cellular metabolism. Activated effector T cells switch from
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oxidative phosphorylation to glycolysis and memory T cells are characterized metabolically by
fatty acid beta-oxidation [735-740]. Interestingly, imposition of fatty acid beta-oxidation as the
main metabolic means of generating energy and building blocks enhances production of Treg cells
[741]. In line with its effects on Tregs, PD-1 stimulation increased fatty acid beta-oxidation rates
and decreased enzymes and channels implicated in glycolysis and glutaminolysis [742, 743].

PD-1 surface expression has been demonstrated in activated lymphocytes, NK and APCs
[239, 710, 744-746]. Itis also present on CD4°CD8" thymocytes where it plays a crucial role during
selection [747, 748]. IL-2, 7, 15, and 21 upregulate PD-1 on T cells [749]. FOXO1, NFATc1,
Notch, and IRF9 are all transcriptional inducers of CD279 (coding for PD-1), whereas T-bet is a
repressor [750-754]. In macrophages/monocytes and DCs, STAT1 and 2 also upregulate CD279
expression [755]. DCs are capable of upregulating PD-1 levels upon encounter with certain
pathogens and activation of the PRRs TLR2, 3, 4, and NODs, whereas IL-4 and TLR9 inhibit its
production [756]. Interestingly, chronic viral infection upregulates PD-1 on exhausted T
lymphocytes precluding viral clearance [757, 758]. PD-L1 expression was observed on
mesenchymal and a number of hematopoietic cells including lymphocytes, macrophages, DCs and
mast cells [759]. Other cells displaying surface PD-L1 are keratinocytes, lung epithelium, neurons
and astrocytes, vascular endothelium, pancreatic islets, liver non-parenchymal cells, and
fibroblastic reticular cells [744]. Its presence in the placenta is important for feto-maternal
tolerance, whereas retinal pigmented and corneal epithelial PD-L1 prevent inflammatory T cell
responses in the eye — an immune-privileged site — where collateral tissue damage is irreversibly
detrimental [760-765]. PD-L2 has a much more restricted expression pattern and is confined
mainly to APCs, but has been observed in mast cells as well [766]. PD-Ls are also present cells in
the thymus implying a role in normal T cell development [767, 768]. IL-2, 7, and 15 induce PD-
L1 expression on T lymphocytes, whereas IL-21, LPS, and BCR activation induce both PD-Ls in
B cells [707, 708, 769]. IFN-y and IL-10 both upregulate PD-Ls on monocytic cells, while I1L-4
and GM-CSF exposure results in PD-L1 upregulation on DCs [770]. IFN-y also induces PD-L1
expression on endothelial and epithelial cells [771, 772]. Intracellularly, signaling pathways reliant
on MyD88, TRAF6, MEK, and JAK2 have been shown to be important in PD-L1 upregulation
[773-775].

Given its role in self-tolerance and the wide PD-L1 tissue expression pattern, it should

come as no surprise that the PD-1/PD-L pathway has been implicated in transplantation,
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autoimmune and inflammatory disease. For instance, PD-1 activation by soluble PD-L1-Ig
decreased heart allotransplantation rejection [776]. Similarly, compromised PD-1 signaling has
been linked to higher mortality from graft-versus-host disease [777]. The same applies to
autoimmune disorders such as T1D and SLE. Similarly, PD-1 or PD-L1 blocking antibodies in
NOD mice were found to accelerate diabetes [778]. PD-1-deficient mice display SLE-like
symptoms, which is in line with the identification of a regulatory CD279 polymorphism as a SLE
susceptibility locus in humans [705, 779]. Deficits in PD-1 signaling have also been associated
with other autoimmune conditions including MS and RA, and with chronic inflammatory disorders
such as IBD [780, 781]. Both mouse and human IECs were shown to express PD-L1 and its
ablation in mouse intestinal epithelium resulted in increased DSS- and TNBS-induced gut injury,
and development of colitis [781]. Downregulation of PD-1 and PD-L1 was also observed in MS
patients compared to healthy controls [782]. In addition, knock out of PD-L1 in a MS-related
mouse model of spontaneous central nervous system autoimmunity increased incidence rate,
disease severity, and T cell infiltration in the brain [783]. Interestingly, there appears to be a
significant overlap between VD deficiency-associated autoimmune conditions and those linked to
defective PD-1/PD-L signaling. This does not apply to cancer, however, where PD-L1 was shown
to protect against immune detection and clearance (vide infra).

PD-Ls are expressed on APCs and high surface levels of PD-L1 are often observed in
cancer cell lines or primary cancers, which implies strong PD-1-activating capabilities within the
tumour microenvironment leading to immunosuppression [708, 784]. Consistently, PD-L1
overexpression in mouse mastocytoma cells inhibited CTL-mediated Killing in a PD-1-dependent
fashion [785]. PD-L1 was found to be expressed in a number of cancers including hematological
malignancies, glioblastoma, melanoma, non-small cell lung carcinoma (NSCLC), ovarian, breast,
urothelial, head and neck, colon, gastric, and pancreatic cancer [786-792]. Abnormal surface PD-
L1 expression in malignant cells can occur as the result of oncogenic mutations or of T cell-
released IFN-y [793, 794]. Immune infiltrating cells — tumour-associated macrophages, DCs, and
myeloid suppressor cells — as well as fibroblasts and endothelial cells often exhibit high levels of
PD-L1 also, which further enhances the immunosuppressive properties of the tumour
microenvironment. Not surprisingly, the amount of surface PD-L1 was found to correlate strongly
with the anti-cancer efficacy of PD-1/PD-L1 blocking agents [795-798]. Functional PD-1/PD-L1

signaling in the context of malignancies reduces apoptosis of transformed cells while inhibiting T
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cell activation required for cancer detection and clearance. It also promotes generation of the
tolerogenic Treg (vide supra) and the functionally impaired exhausted T cell (Tex) [799]. Tex are
characterized by sequential loss of effector functions, namely IL-2 production, proliferative
potential, cytolytic activity and degranulation, and TNF-a secretion [800, 801]. Interestingly,
however, they upregulate granzyme B levels, continue producing low amounts of IFN-y and may
display some residual cytotoxic activity [800, 802, 803]. Although Tex cells express several co-
stimulatory and co-inhibitory molecules, blockade of only PD-1 appeared sufficient to reverse
their exhausted phenotype. This induced an increase in pathogen-specific T lymphocytes resulting
in diminished hepatitis C and human immunodeficiency virus loads [757, 758, 802-805].
Therapeutic anti-PD-1 and anti-PD-L1 blocking antibodies have shown remarkable clinical
potential in the treatment of a plethora of hematologic and solid tumours: Hodgkin’s, diffuse large
B cell, and follicular lymphomas, renal and Merkel cell carcinoma, small and non-small cell lung
cancer, head and neck squamous cell carcinoma, ovarian, cervical, uterine, breast, bladder,
prostate, gastric and colorectal cancer, and hepatocellular carcinoma [788, 795-797, 806-825].
Several anti-PD-1 — nivolumab (BMS-936558), pembrolizumab (MK-3475), and MEDI0680
(AMP-514) — and anti-PD-L1 — atezolizumab (MPDL-3280A), durvalumab (MEDI4736),
avelumab (MSB0010718C), and MDX-1105/BMS-936559 — blocking antibodies are currently
FDA-approved as they exhibit better toxicity profiles compared to another immune checkpoint
inhibitor, anti-CTLA-4 [810, 821]. Nivolumab was the first developed PD-1 pathway inhibitor that
functions via binding to PD-1 and blocking downstream signaling. As expected, therapeutic
benefit correlates with PD-L1 levels [796, 797, 819, 822]. This also applies to pembrolizumab,
another anti-PD-1 antibody, which has been and is currently used for the treatment of advanced
melanoma, Hodgkin’s lymphoma, non-small cell lung carcinoma, head and neck cancer, and renal
cell carcinoma [807, 809, 810, 817, 826-829]. The initial success has led to more than 100 clinical
trials investigating the efficacy of PD-1 signaling blocking agents as single or combination therapy
for a variety of malignancies. These also include the anti-PD-L1 antibodies durvalumab, avelumab,
and atezolizumab. They have shown promising anti-tumour activity in advanced or metastatic
cancers, and reduced toxicity compared with PD-1 blocking agents in a number of clinical trials
[812, 830-850]. Interestingly, therapeutic benefit of PD-1/PD-L1 blockade is occasionally
detectable even in the absence of cancer-associated PD-L1/2 expression [839, 848]. In addition to

anti-cancer effects, PD-L1 blockade was also tested for boosting anti-viral immunity. Nivolumab
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appeared to enhanced HIV-1-specific immunity in infected but otherwise healthy participants
[851].

Given the mode of action of checkpoint inhibitors in general and of PD-1 inhibitors
specifically, it is not surprising that immune-related adverse events occasionally develop,
particularly in patients with a history of autoimmune disease [852-854]. High-grade side effects,
however, display relatively low rate (< 10%) [855]. Incidence of colitis has been associated with
CTLA-4 blockade [856]. Similarly, anti-CTLA-4 and anti-PD-1/PD-L1 antibody treatments have
both be linked to development of skin toxicities [856]. However, these occur at low rate and mostly
in melanoma patients [822, 825, 856]. As expected, combination therapy with nivolumab (a-PD-
1) and ipilimumab (a-CTLA4) had to be discontinued more frequently than either individual
therapy due to adverse effects such as myocarditis [857-859]. Overall, therapeutic blocking anti-
PD-1 and anti-PD-L1 antibodies are well tolerated and quite efficacious in cancer treatment.

Mucosal Immunity: a Primer

The mucosa constitutes the largest and most important surface in the human body where
interaction with the outside environment takes place. It is comprised of the gastro-intestinal,
urogenital, and respiratory tract, including nasal and oral cavities. The mucosal barriers at these
locations are constantly exposed to a plethora of toxins, various antigens, pathogens, and
commensal bacteria (the microbiota), which, despite many benefits, can cause local or systemic
inflammation if not properly contained [412, 860]. Appropriate immune function is therefore
critical for maintaining tissue homeostasis, integrity, and tolerance to food antigens and resident
microbiota, while triggering adequate responses to infection and invasion. In fact, the enteric flora
has been shown to stimulate rapid and more effective host immune responses to infection, and to
prevent pathogenic colonization of the mucosa via bacterial antagonism [861]. Around three
quarters of all lymphocytes are localised at the mucosa and are part of the mucosal, rather than
systemic, immunity. The mucosal immune system will be examined below with a particular focus
on the gut and with the understanding that similar mechanisms and responses are in place in the
other mucosal surfaces. Interestingly, an immune response generated in one area of the mucosa

(e.g. nasal) can trigger similar events locally in other areas (e.g. colon) or may translate into a
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systemic immune response — a fact which has important implications in vaccine development
[862].

Mesenteric lymph nodes, which are most numerous in the small intestine, play a central
role in initiating an adaptive immune response and represent, along with Peyer’s patches, the
mucosal immune inductive sites [863, 864]. Inductive sites typically do not contain any effector
lymphocytes, but rather APCs and naive B, CD4* and CD8" T cells. Activated lymphocytes and a
number of innate immune cells including macrophages reside within the connective tissue area
underneath the epithelial barrier called lamina propria, which constitutes the mucosal effector site.
Peyer’s patches are organized lymphoid follicles interspersed between intestinal villi/crypts
formed by the single-cell epithelial layer and contain follicle-associated epithelial and microfold
(M) cells [865]. M cells are important in that they take up antigen — antigen sampling — through
endocytosis and transport it inside the Peyer’s patch via a process called transcytosis. APCs are
then recruited by chemokines (CCL19 and 20) produced by the follicle-associated epithelium
lining the Peyer’s patches. Subsequent engulfment and processing allows antigen presentation to
naive lymphocytes either in Peyer’s patches or the mesenteric lymph nodes [866]. It should be
noted that lamina propria-residing APCs can also acquire antigen, which triggers their
translocation to lymphoid tissues (Peyer’s patches and mesenteric lymph nodes), where they can
activate naive lymphocytes. Activated T and B cells then substitute expression of the chemokine
receptor CCR7 and L-selectin, which targets them to the CCL21- and CCL19-producing lymphoid
tissues, with that of the homing receptors CCR9 and 047 integrin. CCR9 and a4p7 bind to the
chemotactic cytokine CCL25 produced by epithelial cells and the addressin MAdCAM-1 on
activated endothelial or lamina propria cells, respectively [867, 868]. This allows homing of
activated lymphocytes to mucosal effector sites, i.e. lamina propria, where they can effectively
prevent/resolve infections. Interestingly, the CD4*/CD8" T cell ratio in the lamina propria is 3:1.
At this location, the CD4* T cells are T helper cells, while the CD8* T cells are CTLs and memory
T cell. CTL usually associate via aEB7 integrin with the epithelial barrier, where they can
effectively kill infected cells by producing minimum collateral damage. The higher amount of
CD4" T cells may be due to the fact that T helper cells are required for macrophage activation and
for differentiation of the activated B lymphocytes into functional IgA-producing plasma cells —a
process that only occurs locally in the lamina propria. The IL-5- and IL-6- producing Th2 subset

is particularly important in stimulating generation of IgA-producing plasma cells. These are
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induced following CD40-CD40L interaction in the presence of TGF-p and contribution from
signaling molecules such as IL-4, 5, 6, 10, and 21, BAFF (TNFSF13B), APRIL (TNFSF13), and
retinoic acid [869-875]. Apart from acting synergistically with IL-5/6 in stimulating IgA
production, retinoic acid induces expression of gut homing receptors on B cells [876]. Instead of
a4pB7 and CCRY, differentiation of IgA-producing cells in the absence of retinoic acid triggers
expression of a4f1, L-selectin, and CCR10, which target the cells to other mucosal areas such as
the airway, oral, and reproductive mucosa [877]. Plasma cell generation was shown to require
prolonged interaction in the subepithelial dome of PPs with DCs, whose localization to this
compartment appears to be enhanced by innate lymphoid cells [866, 878]. IgA class switch
recombination occurs via T cell-dependent and independent mechanisms and depends on the
antigen type and environment. High-affinity IgA is generated in a T cell-dependent fashion,
whereas T cell-independent B cell stimulation results in IgA with low or no affinity due to lack of
somatic hypermutation. The IL-21-producing follicular Th cells in lymphoid tissues are the most
crucial contributor to plasma cell IgA B cell generation [869, 879]. Notably, there are many reports
describing the gut-specific follicular Th cell differentiation from CD4" T cells (microbiota- and
MyD88-dependent), FoxP3* Tregs, and Th17 subsets, highlighting the plasticity of mucosal T
lymphocytes [880-884]. T-independent IgA production may occur in lymphoid structures such as
Peyer’s patches or mesenteric lymph nodes, or even the lamina propria and is believed to implicate
plasmacytoid DCs and the high in number innate lymphoid cells, which produce cytokine profiles
similar to T lymphocytes [871, 885-891]. The pro-inflammatory and allergenic eosinophils also
promote class switch recombination and IgA production by producing TGF-p [892]. Even
epithelial cells participate in secretory IgA (slgA) production by secreting IgA-promoting
cytokines such as BAFF and TGF-. In addition, the intestinal epithelium provides the secretory
component (SC) of slgA acquired upon transport by the polymeric Ig receptor (pIgR) across the
epithelial barrier into the lumen [893-897]. The SC of sIgA prevents antibody degradation by host
and microbial proteolytic enzymes, as well as the harsh acidic environment. Once in the lumen,
slgA, along with the secreted mucous, contributes to the generation of a virtually sterile
environment adjacent to the mucosal barrier [893].

The IgA secreted by the plasma cells is dimeric, composed of two IgA antibodies connected
by a J chain [600]. Interestingly, it was demonstrated that exposure to commensal bacteria induced

sIgA production implying a role in limiting microbiota overgrowth [898, 899]. In addition, the
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transport mechanism towards the lumen is responsible for expelling intraepithelial antigens or
those that have crossed the epithelial barrier back to the lumen. sIgA, therefore, indirectly prevents
inflammatory responses triggered by pathogen-associated molecular patterns recognized by PRRs
in innate immune cells [893]. This effect is also highlighted by the observation that epithelial cells
increased plIgR expression upon exposure to inflammatory cytokines such as IL-1, IFN-y, TNF-a,
and I1L-4 [897].

Neutrophils are not normally present in the mucosa, but are rapidly recruited during
invasion [900]. This may be due to the fact that despite their important role as phagocytes, they
are associated with extensive collateral tissue damage. It has also been suggested, however, that
they may participate in the generation of signals promoting the restitution of the epithelial barrier,
which is an important step in returning to normal immune and tissue homeostasis following
immune challenge [901]. Overall, crosstalk among the various components of the immune system,
the epithelial layer, and the resident microbiota determine the type and magnitude of the response.
Inadequacies in any of these elements have been associated with chronic immunological
conditions such as IBD or allergies [411, 412, 414, 902-904].
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Preface to Chapter 2

As described earlier, VD signaling has been shown to upregulated expression of the anti-
microbial peptides HBD2 and CAMP. It also stimulates expression of the pattern recognition
receptor NOD2, which triggers downstream signaling events that further upregulate AMP
production. Although global actions may be conserved, the fact that the VDRE responsible for
CAMP stimulation falls within an AluS element specific to humans/primates and is not conserved
in rodents suggests that hormonal vitamin D may have species-specific effects in innate immunity.
This prompted us to investigate the differences in innate immune responses to hormonal vitamin
D in mouse and human with initial focus on NOD2 upregulation and AMP induction. In this
context, we extend the findings of Wang et al. [4, 5] and demonstrate that hormonal vitamin D
upregulation of HBD2, CAMP and NOD2 in human epithelial and monocytic cells is not conserved
in mouse, nor are the VDREs in the vicinity of these genes responsible for transcriptional control.
In support of the importance of the species-specific induction of this innate immune response,
1,25D robustly enhanced the capacity of human but not mouse epithelial cells to secrete
antimicrobial activity and inhibit bacterial growth. This observation suggests that its species-
specific effects have important consequences for the use of animal models to study VD-regulated

innate immunity and warrant further investigation.
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Abstract

While many global mechanisms of innate immune responses to pathogen threat are
conserved over a vast range of species, the details of those responses and their regulation appear
to be highly species-specific. An array of studies over recent years has revealed that hormonal
vitamin D is an important regulator of innate immunity. In humans, the hormone-bound VDR
directly induces the transcription of genes encoding antimicrobial peptides (AMPs), pattern
recognition receptors and key cytokines implicated in innate immune responses. We find that the
vitamin D response elements (VDRES) in a number of these human genes are highly conserved in
a range of primates, but not present in rodent genes. Consistent with this, VDR target genes
encoding AMPs human beta-defensin 2 (HBD2) and cathelicidin (CAMP) and the pattern
recognition receptor NOD2 are induced by 1,25(0OH)2D in human cells of epithelial or myeloid
origin but not similarly regulated in mouse cells. In addition, while conditioned media from human
epithelial cells treated with 1,25(OH).D produced antimicrobial activity against E. coli and the
lung pathogen Pseudomonas aeruginosa, no such activity was detected in conditioned media from
comparable 1,25(OH).D-treated mouse epithelial cells. Given that other work has provided
evidence that 1,25(OH).D does control innate immune responses in mouse models of disease, we

discuss the species-specific similarities and differences in 1,25(0OH).D-regulated innate immunity.
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Introduction

The hormonal form of vitamin D, 1,25-dihydroxyvitamin D [1,25(0OH)D], signals through
the vitamin D receptor (VDR), which is a member of the nuclear receptor family of hormone-
regulated transcription factors. 1,25(OH).D binding induces heterodimerization with related
retinoid X receptors and high affinity binding to cognate vitamin D response elements (VDREs),
composed of repeats of PUGG/TTCA half-sites usually arranged as direct repeats separated by 3bp
(DR3 elements). In the presence of 1,25(0OH).D, the VDRE-bound VDR recruits a series of
ancillary factors necessary for chromatin remodeling and, ultimately, binding of RNA polymerase
I1. However, gene expression profiling studies have revealed that 1,25(OH).D signaling leads to
activation and repression of gene expression in roughly equal proportions, and the hormone-bound
VDR can repress gene transcription by a variety of mechanisms, many of which implicated direct
interactions of the VDR with other classes of transactivators [905].

Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth. In
the classic model of vitamin D metabolism, vitamin D obtained from dietary sources or UV
irradiation of 7-dehydrocholesterol in skin is converted to 25-hydroxyvitamin D (250HD) largely
and constitutively in the liver, which then is la-hydroxylated in the kidney by CYP27B1 to
produce hormonal 1,25(OH).D. Renal CYP27B1 expression is controlled by calcium homeostatic
signals, consistent with the importance of 1,25(OH).D in calcium homeostasis [906, 907].
However, research, particularly in the last couple of decades, has revealed pleiotropic
physiological roles of vitamin D signaling [385], in agreement with the virtually ubiquitous
expression of the VDR. Moreover, it is now recognized that 1,25(OH)2D is produced in several
tissues and that extra-renal CYP27B1 expression is controlled by non-calcium homeostatic inputs
[392, 397], consistent with widespread action of 1,25(OH).D as a locally produced
intracrine/paracrine hormone with tissue-specific actions. Notably, the VDR is expressed in cell
lineages responsible for both innate and adaptive immune responses [908], and a number of lines
of evidence have accumulated in recent years that vitamin D signaling boosts innate immune
responses to infection in humans [4, 5, 909, 910].

Links between vitamin D or sun exposure and infections go back to the use of heliotherapy
by the ancient Greeks to treat phthisis (tuberculosis; TB) [9]. The concept re-emerged in the mid-

1800s with the advent of the sanatorium movement in Europe to treat TB, and the subsequent

53



demonstration that UV light could treat cutaneous TB (lupus vulgaris). Cod-liver oil,
discovered in the 1820’s as an anti-rachitic agent, was used by the mid-19" century to treat
TB, and scrofula, cervical tuberculosis lymphadenopathy arising from lymph node
infections by M. tuberculosis (M.tb.) or other mycobacteria [10, 11, 911]. Over a century
later, it was found that 1,25(OH).D inhibited the growth of M.tb. in macrophages in vitro
[912], providing the first evidence for direct stimulation by hormonal vitamin D of host
responses to M.tb.

Innate immune responses are initiated by detection of molecular motifs
characteristic of pathogens through so-called pattern recognition receptors (PRRs), which
leads to an antimicrobial response via synthesis and release of antimicrobial peptides
(AMPs). Importantly, engagement of toll-like receptor (TLR) PRRs on human
macrophages enhances expression of CYP27B1, leading to 1,25(OH).D-driven AMP
responses under conditions of 25(OH)D sufficiency [910]. Thus, innate immune cells
respond to pathogen threat by becoming responsive to endogenous levels of 25(OH)D and
producing a VDR-driven innate immune response. There is accumulating evidence that
1,25(0OH).D signaling regulates the expression of many components of innate immune
pathways. The VDR directly stimulates transcription of genes encoding AMPs, including
CAMP (cathelicidin antimicrobial peptide, which produces the AMP LL37) and
DEFB4/HBD?2 (B-defensin 4 / human B-defensin2) through promoter-proximal consensus
VDREs in a variety of human cell types [5, 909]. Similarly, the gene encoding the pattern
recognition receptor NOD2/CARD15 is a direct target of the hormone-bound VDR in
human epithelial and myeloid cells [5]. NOD2 function is deficient or abolished in a subset
of patients with Crohn’s disease, an inflammatory bowel condition arising from defective
intestinal innate immune homeostasis [902]. Intriguingly, NOD2 signaling stimulates
transcription of the DEFB4/HBD2 gene, which is also a target of the VDR, revealing that
1,25(0H).D signaling induces both ends of the NOD2-DEFB4 innate immune pathway
[5].

Early molecular-genetic evidence for innate immune regulation by vitamin D
signaling arose from the observation that expression of the coreceptor of TLR4, CD14, is
strongly induced by 1,25(OH).D in human cells [913]. This regulation appears to be

conserved in the mouse; for example, CD14 expression in mice induced by 250HD was
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abrogated in mice lacking CYP27B1 [914]. Similarly, the induction of macrophage Cyp27bl
expression via TLR signaling or interferon vy is also conserved in mice [915]. However, there is
emerging evidence that many mechanisms of innate immune regulation by 1,25(0OH).D are
species-specific. Notably, Gombart et al. found that the CAMP VDRE is embedded in a
human/primate-specific Alu repeat transposable element [2]. This paper provides an overview of
the extent of conservation of mechanisms of vitamin D-regulated innate immunity in primates and

non-primate species.
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Results

1,25(0OH).D-induced expression of genes encoding AMPs and NOD?2 is not conserved in mice.

We compared the regulation by 1,25(OH).D of human and mouse homologues of CAMP
and DEFB4/HBD?2 (referred to as HBD2 hereafter), coding for the AMPs cathelicidin and human
B-defensin 2, along with that encoding the PRR NOD2. These studies were performed in
1,25(0OH).D-sensitive human and mouse oral squamous carcinoma lines SCC25 [916] and AT84
[917], respectively. SCC25 and AT84 (cell line from a spontaneously arising tumour of the oral
mucosa of C3H mice) are very well differentiated oral epithelial cells and as such display
characteristics of both keratinocytes (squamous cells traditionally associated with skin) and
epithelial cells of the digestive tract (mostly columnar epithelium) [918, 919], both of which are
expected to provide protection against the harsh environment and constant exposure to pathogens.
Consistent with previous reports [4, 5], mMRNAs levels encoding CAMP, HBD2 and NOD2
increased in a time-dependent fashion (fig. 1A). As a positive control, CYP24A1 induction was
confirmed in both SCC25 (fig. 1A) and the mouse line AT84 (fig. 1B). However, in AT84 cells,
Camp induction is much more modest and follows different dynamics: initial increase at 4h,
peaking at 8h, and returning to baseline after 24h of 1,25(OH).D exposure (fig. 1B). Moreover,
mouse Camp mRNA levels were very low, as can be seen by direct gene expression comparison
between Camp and Nod2 (fig. 1C) and inferred by the much higher RT-qPCR Cq values observed
in mouse compared to human cells (data not shown). This low expression of Camp implies that
although the 1,25(OH).D-dependent change in its mMRNA levels is statistically significant, it may
not be biologically relevant. In contrast to SCC25 cells, Nod2 expression in AT84 cells appeared
slightly reduced by 1,25(0OH).D treatment (fig. 1B). and levels of Defb2, the mouse homolog of
HBD2, were undetectable in AT84 cells (data not shown).

We tested further the regulation of these genes in primary human and mouse myeloid cells.
In human monocytes from donor 1, 24h treatment with 1,25(OH)2D robustly induced both CAMP
and NOD2 expression (fig. 2A). Note that this occurred despite quite modest CYP24A1 induction
(approx. 8-fold). In a separate experiment with cells from another donor, monocytes were treated
with vehicle or induced to differentiate with granulocyte/macrophage colony stimulating factor
(GM-CSF). In this experiment, CYP24A1l was strongly upregulated in both monocytes and
macrophages (fig. 2B; note units are in 1000-fold). Similar to donor 1 (fig. 2A), NOD2 and CAMP
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expression was induced in monocytes and in macrophages (fig. 2B). HBD2 levels were unchanged
in monocytes, but were upregulated by 1,25(0OH).D in macrophages (fig. 2B). We also tested
regulation of these genes in duplicate preparations of primary mouse macrophages (fig. 2C). The
Vdr gene was expressed in these cells and Cyp24al gene expression was strongly induced by
1,25(0H).D. However, a 24 h treatment with 1,25(OH)2D failed to induce expression of Defb2,
Camp, or Nod2 (fig. 2C). In differentiated mouse dendritic cells (treated with vehicle or LPS),
Camp and Nod2 induction by 1,25(OH).D was absent or present at much lower levels compared
to the regulation observed in human monocytes/macrophages, despite a strong stimulation of
Cyp24al expression in mouse cells (fig. 2D). Contrary to primary human monocytic cells but
similar to mouse epithelial cells, we did not detect any Defb2 mRNA in mouse DCs. Conversely,
the basal expression of Nod2 and Camp levels were comparable between human and mouse
primary monocytic cells, as inferred by the fact that their RT-gPCR Cq values in the vehicle-
treated samples were similar (data not shown). Taken together, these data indicate that regulation
of AMP gene expression by 1,25(0OH).D in human epithelial or myeloid cells is not or is poorly

conserved in mouse.

Conditioned media from 1,25(OH).D-treated human, but not mouse, epithelial cells suppress

bacterial growth.

While the homologues of human HBD2 and CAMP do not appear to be regulated by
1,25(0H).D in mouse cells, this does not rule out the possibility that vitamin D signaling stimulates
the expression of other AMP genes in rodents. To test for induction of AMP activity, we used an
antimicrobial assay [4] to determine whether differences in gene regulation by 1,25(0OH).D
translate into different phenotypes in terms of control of bacterial growth. Consistent with previous
reports [4], conditioned culture media from human epithelial SCC25 cells treated with 1,25(0OH).D
robustly inhibited proliferation of Escherichia coli (fig. 3A; left) and, to a lesser extent, of
Pseudomonas aeruginosa (fig 3B; left). This effect was not seen in mouse AT84 cells (fig. 3A and
3B; right), consistent with a lack of stimulation by 1,25(0OH).D of AMP expression. The above
results provide genetic and phenotypic evidence of differential effects of vitamin D signaling on

innate immune response in human and mouse.
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Lack of conservation in mouse of VDRESs in HBD2, CAMP, and NOD?2 genes.

To substantiate the above results, the regulatory regions of human HBD2, CAMP, and
NOD?2 were aligned with homologues from other species in order to evaluate conservation of gene
sequence in general and the VDREs in particular [2, 4, 5] (fig. 4). Figure 4A suggests that these
are not conserved in mouse, but are completely or partially conserved in primates (chimp and
rhesus). The exact sequences encompassing the VDREs for the three genes are compared among
primates, mouse, and rat (fig. 4B). The gene sequence in general and the VDRE found 1231 bp
upstream of the HBD2 TSS [4] was not conserved in mouse or rat, but was completely conserved
in chimp and gorilla, and partially in rhesus (figs. 4A and 4B; upper panels and data not shown).
Note that there was only a single mismatch in the 5” half site in rhesus (fig. 4B). The VDRE located
upstream of CAMP was also not conserved in mouse or rat, but perfectly conserved in chimp,
gorilla, and rhesus (fig. 4B; upper). Note that in primates, Gombart et al. showed that the VDRE
falls within a human/primate-specific Alu-type short interspersed nuclear element (SINE) region
[2] (fig. 4A; middle), and both half sites of the VDRE perfectly match those of human element
(fig. 4B; upper). The two functional human NOD2 VDREs — 12,534 bp (#1) upstream and 23,760
bp (#3) downstream of the TSS (fig. 4A; bottom) [5] — are conserved in primates, but not in mouse
or rat (fig. 4B; bottom). Another putative non-consensus VDRE (#2) is located within an exon
14,985 bp downstream of the TSS (fig. 4A; bottom). This sequence was partially conserved in
mouse and rat, which is not unexpected given its location in coding sequence, although with an
additional non-consensus substitution (fig 4B; bottom). It should be noted, however, that this
element bound the VDR in human cells much more weakly following exposure to 1,25(0OH).D
[5]. In addition, unlike the other two VDREs, this element did not loop back to the TSS of NOD2,
as assessed by a chromatin conformation capture (3C) assay, indicative of lack of 1,25(0OH).D

/VDR-mediated gene regulation via this site [5].
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Discussion

The data presented above provide evidence that many of the key mechanisms of innate
immune regulation by hormonal vitamin D that are active in human cells, and apparently in
primates, are not active in mouse. In highly vitamin D responsive mouse epithelial AT84 cells
[917], under conditions where Cyp24al is induced several thousand-fold, we observed weak
expression and only modest induction of the Camp gene, and no stimulation of Nod2 gene
expression, both of which are robustly 1,25(OH).D-regulated in multiple human cell types,
including epithelial cells [4, 5]. In addition, we could not detect expression of the poorly conserved
mouse homolog of HBD2/DEFB4, whose expression is modestly induced by 1,25(0OH).D [4].
Gombart and coworkers showed that the VDRE present in the human CAMP gene is imbedded in
a human/primate-specific Alu repeat, and its insertion in the CAMP locus predates the old-
world/new-world primate split [2]. A promoter-proximal VDRE is not present at a comparable
location in the mouse locus, indicating that the ~2-fold induction of the gene in mouse occurs by
other mechanisms. Notably in this regard, previous work has shown that the CAMP gene is
strongly induced in human keratinocytes during epithelial wound healing, consistent with a role
for 1,25(0OH)2D signaling in stimulating wound healing responses [498, 914, 920, 921]. Induction
of Camp expression was mildly attenuated in Cyp27b1-/- mice in response to epithelial wounding,
but the effect did not achieve statistical significance [914]. This may be consistent with the modest
induction of Camp gene expression by 1,25(OH).D observed in epithelial AT84 cells in the present
study. However, the Camp gene was weakly expressed, and no substantial changes in antimicrobial
activity were observed in conditioned media from 1,25(0OH).D-treated AT84 cells (fig. 2), in
contrast to their human counterparts. Potential masking of VD-dependent induction of these genes
implicated in the anti-microbial immune response by higher basal expression levels in mouse can
be disproved by the observations that Defb2 mRNA is absent, whereas Camp and Nod2 expression
levels are lower or comparable, respectively, in mouse versus human epithelium.

Neither the VDRESs in the human NOD2 gene nor the regulation of its expression by
1,25(0H)2D is conserved in mouse. The VDREs present in the NOD2 gene were retained in
primates, but were poorly or not conserved in rodents. These findings are reminiscent of previous
work, which showed that 1,25(OH).D, alone or in combination with M.tb. infection, induced

expression of the gene encoding interleukin-1f (IL-1f, IL1B) in human myeloid cells [3]. IL-1p
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thus produced acted in a paracrine manner to induce AMP gene expression in co-culture
experiments with human primary lung epithelial cells. A promoter-proximal consensus VDRE
(AGGTCANNNGGTTCA) is present in the human IL1B gene. The element is fully conserved in a
number of primates (chimpanzee, rhesus macaque, baboon, gorilla), and partially conserved in
other primates and a number of non-primate species (e.g. AGGTgAnNnnGGGTCA in cats and
dogs), but not conserved in rodents, and the 1l11b gene is not regulated by 1,25(OH)2D in mouse
macrophages [3].

These results support the notion that, while global strategies of innate immunity responses
are widely conserved in mouse (e.g. the expression of pattern recognition receptors, and the
production of AMPs in innate immune and intestinal epithelial cells [462, 508]), there exist
substantial inter-species variation in the specifics of the responses and in their regulation. For
example, while classes of AMPs are conserved, gene sequences, gene numbers, gene variants and
tissue distribution of AMP expression vary widely. This is typified by subclasses of defensins (a,
B, and 6), which contain six disulfide bond-forming cysteines with varying relative spacings [922].
Production of p-defensins is broadly conserved in vertebrates. However, o-defensins are
mammalian, and 6—defensins are present only in primates. Moreover, there are 5 genes encoding
a-defensins in humans, whereas there are 19 genes (cryptdins) in mouse, the latter exhibiting a
more tissue-restricted pattern of expression. Species-specific variations in gene number are also
observed in other classes of AMPs; mice and humans have single cathelicidin genes, whereas there
are several loci in bovine species [923]. One argument made for the distinct mechanisms of
regulation of AMP expression in humans and mice is that mice are nocturnal, whereas human are
active during the daytime and more likely to acquire vitamin D from sun exposure [910].

While the regulation by vitamin D of several target genes implicated in innate immunity in
human/primate species is not conserved in rodents, an increasing body of evidence indicates that
vitamin D signaling does play an important role in controlling innate immunity in mice. In the
study mentioned above [914], Cyp27b1 ablation completely eliminated the strong injury-induced
expression of the mouse Cd14 gene, consistent with the conserved regulation of the TLR4
coreceptor by 1,25(OH).D in human and mouse. Moreover, important work by Cantorna and
coworkers has shown that vitamin D signaling controls the composition of the gut microbiome.
Fecal samples from Cyp27b1-/- or Vdr-/- mice were richer in Bacteroidetes and Proteobacteria

and relatively deficient in Firmicutes and Deferribacteres phyla compared to their wild-type
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counterparts [530]. Interestingly, feces of knockout mice contained more beneficial bacteria from
families such as Lactobacillaceae and Lachnospiraceae, but higher levels of members of the
Helicobacteraceae family associated with colitis. The authors noted that the dysbiosis observed in
the knockout animals was accompanied by lower levels of tolerogenic dendritic cells in the gut
and an increased sensitivity to intestinal inflammation [530]. More recent work by the group
showed that the intestines of VDR-null mice were richer in IL-22-producing innate lymphoid cells
(ILCs) and were resistant to the murine pathogen C. rodentium [527]. IL-22 is an innate immune
cytokine produced by a subclass of ILCs (ILC3s) that signals through epithelial cells to bolster
intestinal innate immunity through enhancing the production of AMPs and components of the
mucosal layer [521, 924]. Innate lymphoid cells have attracted rapidly increasing interest recently
because of growing awareness of their diversity and their critical roles in barrier organ immune
homeostasis [925]. These results are intriguing because of the molecular and clinical links between
vitamin D deficiency and Crohn’s disease in humans [5, 926, 927], and raise the possibility that
innate immune regulation by vitamin D may regulate ILC function in the intestine and control the
composition of the intestinal microbiome in humans. It is thus important to continue to use a
variety of model systems to explore the mechanisms of by which vitamin D signaling controls

innate immunity.
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Experimental Procedure

Tissue culture and treatment:

All cell lines were cultured under recommended conditions. SCC25 and AT84 cell lines
were obtained from the ATCC, were passaged in DMEM/F12 (Wisent, 319-085-CL) containing
10% FBS (Wisent, 080150), and were used for experiments between passage 10 and 18. Cell
medium was changed to DMEM/F12 containing 10% charcoal-stripped FBS 24h after plating.
Cells were then treated with 100nM 1,25(OH).Ds (Enzo, BML-DM200-0050) dissolved in pure
ethanol. Dendritic cells (DCs) were differentiated using culture medium containing 20 ng/ml
granulocyte macrophage colony-stimulating factor (GM-CSF) and, when applicable, were
activated with lipopolysaccharide (LPS) (Sigma-Aldrich, L3012-5MG). Human primary
monocytes were purified as described [928] from the peripheral blood mononuclear cell fractions
of two donors following informed consent, using Ficoll-Paque Premium (GE Healthcare, 17-5442-
02). Human monocytes were differentiated using GM-CSF (Life Technologies, PHC2011). Mouse
primary DCs and human primary monocytes/macrophages were cultured in RPMI 1640 (Wisent,
350-005-CL) supplemented with 10% FBS. Primary cells were treated with 100nM 1,25(0OH)2D3

or vehicle for 24h.

RT-qPCR

RNA was extracted using TRIZOL reagent (Invitrogen, 15596-018) as per the
manufacturer’s instructions. RNA was reverse-transcribed into cDNA using iScript cDNA
Synthesis kit (Bio-Rad, 170-8891), 1 ug RNA template, and the manufacturer’s protocol. cDNA
was diluted 10 times and used in real-time quantitative PCR (qQPCR) with SsoFast EvaGreen
Supermix (Bio-Rad, cat # 172-5201). Mouse primers are as follows: Defb2 forward — 5°-
GTCTGAGTGCCCTTTCTACC-3’; Defb2 reverse — 5°-ACAGTACCCTCCATTGGTGT-3’;

Camp forward - 5-TTCAACCAGCAGTCCCTAGA-3’; Camp reverse — 5’-
TTCCTTGAAGGCACATTGCT-3’; Nod2 forward — 5’-CCGACCACCAGAACCTAAAG-3’;
Nod2 reverse -~ 5 -CTCTTGAGTCCTTCTGCGAG-3’; Actb forward - 5°-

CCACCATGTACCCAGGCATT-3"; Actb reverse — 5’-CAGCTCAGTAACAGTCCGCC-3’;
Cyp24al forward — 5’-GGCGGAAGATGTGAGGAATA-3’; Cyp24al reverse — 5’-
AAGGGTCCGAGTTGTGAATG-3’. Human primers are as follows: HBD2 forward — 5’-
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CCAGGGAGACCACAGGTGCC-3’; HBD2 reverse — 5’-GCTCCCATCAGCCATG-3’; CAMP
forward — 5’-GACAGTGACCCTCAACCAGG-37; CAMP reverse - 5’-
AGGGCACACACTAGGACTCT-3’ ; NOD2 forward — 5’CTCCATGGCTAAGCTCCTTG-3’ ;
NOD2 reverse — 5-CACACTGCCAATGTTGTTCC-3> ; CYP24A1 forward - 5’-
TCTCTGGAAAGGGGGTCTA-3"; CYP24Al reverse — 5’-CCCAACTTCATGCGGAAAAT-3’;
ACTB forward - 5’-GGCATGGGTCAGAAGGATTCC-3> ; ACTB reverse — 5’-
GCTGGGGTGTTGAAGGTCTC-3".

Antimicrobial assay

Escherichia coli and P. aeruginosa were grown to early log phase at 37°C in Luria-Bertani
(LB) broth (Wisent, 800-060-LG). 50 ul cultures in LB broth were diluted to 500 CFU with 150
ul of regular medium or conditioned medium. Samples were incubated at 37°C with shaking for 2
h, bacteria were plated onto LB agar (Wisent, 800-011-LG) plates, and CFU were counted after
18 h. The results for the conditioned medium experiments are expressed as percentage of CFUs
relative to bacteria cultured in non-conditioned medium (lacking exposure to cells).

Conservation studies

UCSC Genome Browser was used to align the regulatory regions of the genes investigated
in human (hgl9), primates (panTro4, gorGor3, rheMac3), mouse (mm10) and rat (rn5). The
sequences for the regions encompassing the VDREs were extracted and compared for each species.

Statistics

R was used for statistical calculations. Gosset’s T-test assuming unequal variance was used
to determine p-values relative to the control group for each set of data. The p-values were then
attributed to different intervals of significance, as indicated in the figures. In the case of multiple
testing, the false discovery rate was adjusted using the Benjamini-Hochberg method.
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Figure 1: Induction of gene expression by 1,25(OH)2D of AMPs and NOD?2 is not conserved
in epithelial cells in mice. (A) Regulation of VDR target genes CYP24A1, CAMP, HBD2 and
NOD2 in 1,25(OH).D-sensitive human SCC25 oral squamous carcinoma cells. Cells were
incubated with 100 nM 1,25(OH)2D over a 24 h period, as indicated. (B) Regulation of Cyp24a1l,
Camp and Nod2 in 1,25(OH).D-sensitive mouse AT84 oral squamous carcinoma cells. Cells were
incubated with 100 nM 1,25(0OH)2D over a 24 h period, as indicated. (C) Ratio of the Cq values
measured during gPCR amplification of Camp and Nod2 cDNA from mRNA extracted from AT84

cells. p-values: 0 < *** <0.001 <** <*<0.05<#<0.1
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Figure 2: Induction of gene expression by 1,25(OH)2D of AMPs and NOD?2 is not conserved
in myeloid cells in mice. (A and B) Regulation of VDR target genes CYP24A1, CAMP, HBD2,
and NOD2, as indicated, in cultures of primary human monocytes from two donors. Cells were
incubated with 100 nM 1,25(0OH).D for 24 h. In (B), monocytes were incubated with vehicle or
induced to differentiate into macrophages with GM-CSF. The inset in the NOD2 data shows NOD2
expression + 1,25(0OH).D in cells incubated with vehicle. (C) Expression of the Vdr gene and
regulation of Cyp24al, Camp and Nod2 expression in duplicate preparations of primary mouse
macrophages treated with vehicle or 1,25(OH).D for 24 h. (D) Regulation of Cyp24al, Camp and
Nod2 in primary mouse dendritic cells. Cells were treated with vehicle or activated LPS prior to
incubation with 1,25(0OH)2D for 24 h. p-values: 0 < *** < (0,001 < ** <*<(0.05<#<0.1
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Figure 3: 1,25(OH)2D induces anti-microbial activity in human, but not in mouse epithelial
cells. 500 CFU of E. coli (A) and P. aeruginosa (B) were incubated in conditioned medium from
SCC25 or AT84 cell cultures treated with 1,25(0OH)2D (1,25D) for the indicated times. Bacterial

samples were incubated at 37°C with shaking for 2 h prior to plating. The results are expressed as

percentage relative to bacteria cultured in conditioned medium obtained cells not treated with

1,25(CH)2D (0 h). p-values: 0 < *** <0.001 <**<*<0.05<#<0.1
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Figure 4: VDREs in HBD2, CAMP, and NOD?2 genes are conserved in primates, but not in
rodents. (A) Schematics showing the position of VDREs relative to human VDR target genes.
The arrows indicate direction of transcription. Conservation for chimp, rhesus, and mouse obtained
using UCSC Genome Browser (hg19) is shown above the VDRE and gene diagrams, and SINE
regions, below. (B) Sequences encompassing the VDREs in the HBD2, CAMP, and NOD2 genes
are displayed for each of the indicated species. The consensus VDRE is in capital and its position

is marked in red. Non-conserved nucleotides are underlined.
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Preface to Chapter 3

It has been shown by us (chapter 1) and others [3, 388, 462, 463, 909, 929] that vitamin D
enhances innate immune responses, which are often accompanied by an increase in pro-
inflammatory mediators (e.g. 1lI-1B). Paradoxically, inflammatory T cell responses are known to
be inhibited by vitamin D signaling. This strict control of the level of inflammation is important
for insuring adequate immune defences while protecting against excessive tissue damage and

compromised immune homeostasis at the site of challenge.

Apart from some direct actions in cells of the adaptive immune system, vitamin D’s anti-
inflammatory effects are believed to be mediated mainly by modulation of the properties of DCs,
which subsequently interact with T cells in peripheral lymph nodes. We decided to look for other
innate immune signaling events that would lead to reduction of local excessive T-cell-mediated
inflammation. To this end, we examined gene expression profiling studies in epithelial cells and
macrophages, and identified as potential candidates PD-L1 and PD-L2, which are essential for
peripheral tolerance in human and mouse. Their potential role in vitamin D-dependent control of
inflammatory T cell responses was further supported by a significant overlap between the long-
term consequences of vitamin D deficiency and defective PD-L/PD-1 signaling associated with
autoimmune and inflammatory conditions [705, 776-781]. In addition, given the results presented
in chapter 1, providing evidence for species-specific effects of vitamin D signaling, we decided to
explore whether any potential calcitriol-dependent regulation PD-L1 and PD-L2 expression is

conserved in mouse.
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Abstract

PD-L1 (programmed death ligand 1) and PD-L2 are cell-surface glycoproteins that interact
with programmed death 1 (PD-1) on T cells to attenuate inflammation. PD-1 signaling has attracted
intense interest for its role in a pathophysiological context: suppression of anti-tumor immunity.
Similarly, vitamin D signaling has been increasingly investigated for its nonclassical actions in
stimulation of innate immunity and suppression of inflammatory responses. Here, we show that
hormonal 1,25-dihydroxyvitamin D (1,25D) is a direct transcriptional inducer of the human genes
encoding PD-L1 and PD-L2 through the vitamin D receptor, a ligand-regulated transcription
factor. 1,25D stimulated transcription of the gene encoding PD-L1 in epithelial and myeloid cells,
whereas the gene encoding the more tissue-restricted PD-L2 was regulated only in myeloid cells.
We identified and characterized vitamin D response elements (VDRES) located in both genes and
showed that 1,25D treatment induces cell-surface expression of PD-L1 in epithelial and myeloid
cells. In co-culture experiments with primary human T cells, epithelial cells pre-treated with 1,25D
suppressed activation of CD4and CD8cells and inhibited inflammatory cytokine production in a
manner that was abrogated by antiPD-L1 blocking antibody. Consistent with previous
observations of species-specific regulation of immunity by vitamin D, the VDRES are present in
primate genes, but neither the VDRESs nor the regulation by 1,25D is present in mice. These
findings reinforce the physiological role of 1,25D in controlling inflammatory immune responses
but may represent a double-edged sword, as they suggest that elevated vitamin D signaling in

humans could suppress anti-tumor immunity
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Introduction

Programmed death ligand 1 (PD-L1, B7-H1, or CD274) and its homologue programmed
death ligand 2 (PD-L2, B7-DC, or CD273) are surface glycoproteins essential for peripheral
tolerance [769]. Binding of programmed death ligands to their cognate receptor, programmed
death 1 (PD-1), on T cells results in a blockade of downstream T cell receptor signaling inducing
anergy, exhaustion, and apoptosis in inflammatory effector T (Teff) cells [930], while stimulating
de novo differentiation and existing pool expansion of regulatory T (Treg) cells [931, 932]. This
effectively decreases the ratio of inflammatory to anti-inflammatory cytokines [769, 931, 933,
934]. PD-L1 also interferes with priming of naive T cells [934], with polarization of CD4™ T cells
towards Th1 subtype [931], with Teff cell proliferation [931, 934], or it simply acts to reduce time
of interaction between cytotoxic T lymphocytes (CTLs) and target cells, essentially acting as a
shield to protect the latter against T cell-mediated immune responses [935]. CD274 (which codes
for PD-L1) displays a very wide pattern of tissue gene expression, but PD-L1 is only seen at the
protein level in myeloid cells, airway and kidney tubular epithelium, heart, placenta, and intestinal
colon epithelium of inflammatory bowel disease (IBD) patients [934]. PD-L2 expression is
restricted to professional antigen presenting cells (APCs) and is generally present at much lower
levels on the cell surface compared with PD-L1 [934].

PD-L/PD-1 signaling has come under intense scrutiny because its physiological pro-
tolerogenic effects are exploited by a number of cancers (e.g. carcinomas of the lung, ovary, head
and neck, bladder, colon, melanomas, and gliomas) to escape immune detection and clearance
[775, 784, 930]. Greater PD-L1 surface expression in tumors or tumor-associated macrophages
(TAMSs) has been linked to poor prognosis and increased proliferation, epithelial-mesenchymal
transition, and metastasis despite adequate numbers of tumor infiltrating lymphocytes (TILs) [930,
936]. In this context, antibody therapies targeting PD-L1 or its receptor, PD-1, have proven
remarkably efficacious in clinical and pre-clinical settings for a number of cancers [807, 930],
including recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) [937]. Recent
meta-analyses have provided evidence that clinical response to PD-1 blocking therapy correlates
positively with the level of expression of PD-L1 in tumors [938-941], underlining the importance

of understanding the signaling pathways regulating PD-L1 expression.
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The pro-tolerogenic actions of PD-L1 have also been linked to beneficial effects in a plethora
of immune-related disorders [934] namely, multiple sclerosis (MS), inflammatory bowel disease
(IBD), systemic lupus erythematosus (SLE), and diabetes. For example, intestinal epithelial
ablation of PD-L1 expression in mice leads to IBD [781]. We noted that several of these conditions
overlap those linked to vitamin D (VD) deficiency. VD was discovered as the curative agent for
nutritional rickets, a disease of bone growth, and is a critical regulator of calcium homeostasis
[385]. However, it is now recognized to have pleiotropic actions [385]. It undergoes sequential
hydroxylations to produce its hormonal form 1,25-dihydroxyvitamin D (1,25D, calcitriol), which
signals through the vitamin D receptor (VDR), a ligand-regulated transcription factor. The VDR
is expressed throughout the immune system, and 1,25D has emerged as a key regulator of innate
immunity via its actions in both myeloid and epithelial cells [3-5, 86]. The VDR regulates the
transcription of several genes implicated in innate immune responses; e.g. 1,25D signaling lies
upstream and downstream of pattern recognition receptor engagement, and is a direct inducer of
antimicrobial peptide gene transcription [3, 5, 86]. Notably, 1,25D directly and indirectly induces
signaling through the NOD2 — HBD2 innate immune pathway [5], whose deficiency has been
linked to Crohn’s disease, a form of IBD. Remarkably, however, many of the mechanisms of 1,25D
signaling identified appear to be human-primate-specific and are not conserved in mice [2, 551].

While 1,25D generally enhances innate immune responses, it induces a more tolerogenic
adaptive immunity associated with higher Treg/Teff cell and anti-inflammatory (IL-10) to
inflammatory (IFN-y, TNF-a, IL-17, and IL-21) cytokines [86, 566, 576] ratio. Apart from the
above, little is known about the effects of VD signaling on crosstalk between target cells or cells
of the innate and those of the adaptive arms of the immune system. Here, we show that 1,25D
directly upregulates the transcription of the genes encoding PD-L1 and PD-L2 in human epithelial
and myeloid cells. We found that the VDR binds to enhancers located in the CD274 and CD273
(encoding PD-L2) genes, which are adjacent in the human genome. We also provide evidence that
1,25D-induced PD-L1 expression on epithelial or myeloid cells inhibits T cell cytokine production.
However, similar to other immune-related actions of 1,25D [551], the observed regulatory events
are not conserved in mice. The induction of PD-L1 and PD-L2 expression is a mechanism
accounting for the effects of VD signaling in T cell tolerance, and is in accord with other studies
providing evidence that it is protective against IBD [942, 943]. Importantly, however, this may

prove to be a double-edged sword in terms of physiological versus potential pathophysiological
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actions of VD signaling, as elevated 1,25D-induced PD-L1 expression may be detrimental to anti-

tumor immunity.
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Results

Tissue-specific 1,25D-regulated CD274 and CD273 expression in human but not mouse
Analysis of our previous profiling studies of calcitriol-regulated gene expression in human
cells of epithelial or myeloid origin revealed CD274 and CD273 as potential VDR targets [3, 944].
These data were validated by performing RT-gPCR on RNA extracted from human HNSCC cell
lines SCC25 and SCC4, and human differentiated THP-1 macrophages treated with calcitriol for
up to 24h (fig. 1A). SCC25 cells are well-differentiated and sensitive to the antiproliferative effects
of 1,25D, whereas SCC4 cells are poorly differentiated and 1,25D-resistant, although they retain
1,25D signaling [916]. CD274 expression increased in all cell lines exposed to 1,25D relative to
vehicle (fig. 1A). Consistent with its tissue-specific expression pattern, CD273 was only
upregulated in differentiated THP-1 cells (fig. 1A; right panel), and was unchanged in SCC25 and
SCC4 cells (fig. 1A, left and middle panels). 1,25D also induced CD274, but not CD273,
expression in two cultures of primary human keratinocytes (fig. 1B). Similarly, CD274 expression
was stimulated (along with positive-control genes CYP24A1, AREG and NOD2) by 1,25D in
primary human nasal epithelial cells (fig. S1A and B). Consistent with results obtained in
differentiated THP-1 cells, 1,25D enhanced the expression of both genes in primary human
myeloid cells, namely macrophages (Mo’s) (fig. 1C). While the fold inductions of CD274 and
CD273 in myeloid cells were comparable, CD273 was generally more weakly expressed than
CD274 (fig. S2). Interestingly, 1,25D and the pathogen-associated molecular pattern (PAMP)
lipopolysaccharide (LPS), a known PD-L1/PD-L2 inducer [945], upregulated CD274
cooperatively in THP1 cells (fig. S3A, left panel), but not in SCC25 cells, where LPS had no effect
(fig S3A,; right panel). A similar combined effect of 1,25D and LPS on CD273 expression was
seen in THP-1 cells (fig S3B). These observations provide evidence for cooperative effects of Toll-
like receptor 4 and vitamin D signaling pathways in regulation of CD274 and CD273 transcription.
Given that many aspects of innate immune regulation by 1,25D appear to be largely
human/primate-specific [2, 551], we assessed the degree of conservation of the regulation by
1,25D of these genes in a model organism. We used the mouse HNSCC cell line AT84, which is
essentially identical histologically and in terms of 1,25D responsiveness to human SCC25 cells.
We also analyzed primary mouse M¢@’s obtained from 2 mice, and both non-activated and activated
mouse dendritic cells (DCs). Calcitriol treatment for 24h had no effect on Cd274 and Cd273
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expression in AT84 or in myeloid cells (figs. S4A and B). Note that Cd273 mRNA levels were
below detection limit in AT84 cells. The transcriptional stimulation of Cyp24al, a target of VD in
both mice and humans, was measured as a positive control for 1,25D genomic signaling in AT84
cells and in primary mouse myeloid cells, and as expected, calcitriol strongly upregulated Cyp24al
gene expression (figs. S4C and D).

In order to determine whether increased transcription of CD274 by 1,25D translates into
elevated PD-L1 protein levels, we performed Western blotting in SCC25 and in SCCA4 cells treated
with vehicle or calcitriol for 24h. 1,25D substantially upregulated protein levels in both cell lines
(fig. 2A), consistent with its effects on CD274 gene expression. Note that calcitriol-induced
increase in PD-L1 protein levels (fig S5) paralleled CD274 mRNA stimulation (fig 1A, left panel)
in a time-dependent experiment. This observation suggests that hormonal vitamin D increases PD-
L1 abundance via stimulating its gene expression. PD-L2 expression was below the detection limit
by Western blot in human and mouse epithelial cells (data not shown).

Calcitriol-induced PD-L1 increase persisted for up to 48h after 1,25D withdrawal in SCC25
cells (fig. 2B). Note that we observed two bands, both upregulated, for PD-L1 in SCC25 cells (fig.
2A; left panel). These likely correspond to the smaller cytosolic and the larger cell surface isoforms
[769, 946, 947]. We also analyzed the effect of 1,25D treatment on PD-L1 expression in primary
human keratinocytes and human HT29 colon carcinoma cells and observed a similar upregulation
(figs. S6A and B). 1,25D-dependent changes in protein levels were reflected in cell-surface PD-
L1 being robustly upregulated by 1,25D in THP-1 cells, as measured by wide-field microscopy
(fig. 2C) or by flow cytometry (fig. S6C). We also tested for calcitriol-dependent upregulation of
PD-L1 in primary human bronchial epithelial cells obtained from healthy donor explants and
differentiated on air-liquid interface filters. Filter incongruities and varied cell height necessitated
the generation of Z-stacks from several focal planes in order to accurately quantify differences in
staining. These studies revealed that 1,25D treatment increased PD-L1 levels in bronchial
epithelial cells relative to vehicle-treated cells (fig. 2D). Images from a single focal plane are
shown in fig S7. Comparable effects of 1,25D on cell surface expression of PD-L1 were observed
in SCC25 cells by wide-field microscopy (fig. S6D). In contrast, Pd-I11 protein was unaffected by
1,25D treatment in mouse AT84 cells (fig. S4E), consistent with the lack of gene regulation by
1,25D. Similarly, exposure to calcitriol had no effect on Pd-I1 protein expression in primary mouse

DCs (fig. S4F). Finally, we also tested in SCC25 cells for calcitriol-induced changes in the
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production of soluble PD-L1 (sPD-L1), which has been shown to retain immunosuppressive
properties similar to those of the cell surface molecule [948]. However, if SPD-L1 was produced,
it was below the detection limit in enzyme-linked immunosorbent assay (ELISA) performed on
culture medium samples from 1,25D- or vehicle-treated SCC25 cells.

Direct regulation of CD274 and CD273 gene expression by 1,25D via VDRES

In order to determine whether 1,25D signaling directly upregulates transcription of CD274
and of CD273, we searched for potential VDRES in the two genes. Analysis of published chromatin
immunoprecipitation followed by next generation sequencing (ChlP-seq) data sets identified a
VDR peak in an intronic region of CD273, located downstream of exon 5 and centered at 47959
bp downstream of the TSS (VDRE®P273+479%9) [258] (fig. 3A). The latter region contains a non-
consensus VDRE-like sequence (fig. 3A). Additionally, a putative near-consensus VDRE
(VDRE®P?74-829) was identified at 829 bp upstream of the CD274 TSS in data generated by an in
silico screen [944]. Note that neither of these sites is conserved in mouse (fig. S8), consistent with
the lack of regulation by 1,25D of gene or protein expression in this species. We employed ChiIP
assays followed by gPCR to monitor VDR binding to the VDREs described above. Calcitriol
treatment resulted in increased VDR association with VDRE®P27482% and with VDRECP273+479%9
both SCC25 (fig. 3B) and THP-1 cells (fig. 3C), relative to vehicle, suggestive of potential
enhancer activity. We probed further for changes in epigenetic markers denoting enhancer
function. 1,25D upregulated histone 3 lysine 4 monomethylation (H3K4me1) marks, indicative of
active/poised enhancers, at VDRECP?74-82% and VDRECP?73*479%9 regions in both SCC25 (fig. 3D)
and THP-1 (fig. 3E) cells, in a pattern similar to that of the VDR association with these elements.
We also assessed the level of histone 3 lysine 27 acetylation (H3K27ac). In SCC25 cells,
VDRE®P?7482 displayed high levels of H3K27ac, which were not affected by calcitriol (fig. 3F;
left panel), whereas 1,25D increased H3K27ac at VDRECP273+479% (fig. 3F; right panel). In THP-
1 cells, 1,25D exposure was associated with increased H3K27ac marks at both enhancers (fig. 3G).
These results suggest that both VDRES function as active cis-acting enhancer elements. Moreover,
1,25D stimulated association of Pol Il with both VDRECP?74829 and VDRECP?73+47959 jn SCC25
(fig. 4A) and in THP-1 cells (fig. 4B). Notably, however, enhanced recruitment of Pol Il was
observed at the transcription start site (TSS) of CD274, but not CD273, in SCC25 cells, whereas
Pol 11 association to both TSSs was stimulated by 1,25D in THP-1 cells (figs. 4C, D). Essentially

77



identical results were obtained when VDR recruitment to TSS was examined (figs. 4E, F). These
observations demonstrate the direct regulation of CD274 and CD273 transcription by 1,25D and
are consistent with their tissue-specificity.

As described above, we observed 1,25D-dependent changes in VDR and Pol Il recruitment
and levels of epigenetic markers in SCC25 cells at the intronic CD273 VDRE despite lack of
regulation of the adjacent gene. Pol 11 recruited to enhancer elements often undergoes a round of
transcription at these sites producing small non-coding so-called enhancer RNAs (eRNAs), whose
expression correlates strongly with enhancer function and may contribute to target gene expression
[206, 209]. Therefore, as a further test for VDRECP273*47959 fynction in SCC25 and THP-1 cells,
we screened for production of eRNAs at various distances upstream of the VDRES using strand-
specific directed RT-gPCR, which avoids detection of spliced intronic RNA species (see
Experimental Procedure). We did not detect any expression for myoblast-specific hMUNC eRNA
[949], serving as a negative control. In contrast, 1,25D strongly induced the production of eRNAs
(fig. 4G) in THP-1 cells centered at 224 bp upstream of VDRECP?73+47%9 and complementary to
the 47810-47660 bp region downstream of CD273 TSS (see fig 3A). However, we did not find
any eRNAs produced from the same, or any other, site in SCC25 cells, which highlights the tissue-
specific effects of 1,25D action, and strongly suggests that the intronic enhancer in the CD273

gene is fully functional in THP-1 cells and not in SCC25 cells.

1,25D-regulated epithelial PD-L1 expression inhibits T-cell function

Ablation of PD-L1 expression in epithelial cells in mouse intestine leads to an
inflammatory phenotype [781] and other studies have provided evidence that epithelial PD-L1 can
control T cell behavior [933, 934]. To assess the impact of calcitriol-stimulated epithelial PD-L1
expression on T cell function, we set up a co-culture system consisting of primary human whole T
cells in direct contact with SCC25 or THP-1 cells, which had been pre-treated for 24h with vehicle
or 1,25D. T cells (both CD3"CD4" and CD3*CD8") were isolated by negative selection from
PBMC blood fractions of 3 healthy donors (figs SI0A-C) and were tested for purity (fig S10D-G)
(see Experimental Procedure). The T cells obtained had no APCs (DCs and monocyte) (figs S10D
and E), natural killer (fig S10F), or B cells (fig S10G) contaminants.

Pre-treated SCC25 and THP-1 cells and primary human whole T cells were co-cultured for

24h in 1,25D-free media in the presence of control IgG or PD-L1-specific blocking antibody
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(MIH1). The release of tumor necrosis factor o (TNF-a) and interferon y (IFN-y) into the media
by co-cultured T cells was measured by ELISA. Production of IFN-y or TNF-a was inhibited by
co-culturing with cells pre-treated with 1,25D (figs. 5A, B, left panels). Importantly, addition of
anti-PD-L1 blocking antibody completely reversed the inhibitory effect of 1,25D pre-treatment on
TNF-a release and partially abrogated the effect on IFN-y (figs. 5A, B, right panels). In separate
experiments, we also measured by ELISA the production of interleukin 2 (IL-2), constitutively
secreted by activated Jurkat cells, co-cultured with SCC25 cells, as a readout for T-cell function
(fig. S9). 1,25D pre-treatment of SCC25 cells resulted in a 2-fold reduction of 1L-2 release into
the medium, an effect reversed completely by blocking PD-L1.

PD-L1 engagement by T cells has been linked to inhibition of activation and a resulting
decrease in inflammatory cytokine production. We therefore used the experimental co-culture
system described above to assess the effect of 1,25D-dependent PD-L1 expression in SCC25 cells
on the activation status of co-cultured pan-T cells obtained from 3 healthy donors (1 male and 2
female). Notably, 1,25D pre-treatment significantly reduced early (CD69), mid-early (CD71), and
intermediate (CD25) activation markers on CD4" T cells obtained from all 3 donors and co-
cultured in the presence of normal non-specific I1gG (fig. 6D-F). Similar trend was observed in
CD8" (fig. 6A-C) cells, where changes in CD25" populations did not reach statistical significance
(fig. 6A), but conformed to the pattern observed in the corresponding CD4" T cells (fig. 6D).
Blocking of PD-L1 signaling by aPD-L1 antibody partially or completely rescued this effect (fig.
6). The observed PD-L1-dependent effects of calcitriol pre-treatment on T cell activation become
even more obvious upon examination of density plots of CD25 (figs. S11, S14), CD69 (figs. S12,
S15), and CD71 (figs. S13, S16) activation markers in CD4* (figs. S10-S12) and CD8*
subpopulations (figs. S14-S16) for each patient and experimental condition. Note that there was
no significant effect of 1,25D pre-treatment in the presence of non-specific IgG or aPD-L1
blocking antibody on T cell apoptosis (fig. S16). Therefore, we conclude that 1,25D-induced
surface expression of PD-L1 inhibits activation of effector T cells, which translates in reduced
inflammatory cytokine production. These results highlight the importance of induced epithelial
PD-L1 expression in regulation of T cell function by 1,25D.
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Discussion

A role for VD signaling in suppression of inflammatory responses has been well
established [566, 576]. However, the molecular-genetic events underlying this regulation have
been poorly characterized. The results presented here reveal that 1,25D acting through the VDR
directly induces the transcription of the genes encoding PD-L1 and PD-L2 in human cell lines and
primary cultures. These findings complement previous observations showing that calcitriol
treatment induces a stable semi-mature DC phenotype capable of stimulating Treg and IL-10
production [950]. Induction of PD-L1 expression was observed in epithelial and myeloid cells,
while 1,25D-regulated expression of PD-L2 was myeloid-specific, consistent with the expression
patterns of the two genes.

We identified VDREs in both genes, which appeared to function as poised or active
enhancers in both epithelial and myeloid cells, given the 1,25D-dependent recruitment of Pol Il
and regulation of enhancer marks at these sites. However, we only detected 1,25D-dependent Pol
Il recruitment to the CD273 TSS in myeloid cells, conditions under which the gene is regulated.
We also detected the 1,25D-dependent production of eRNAs from the CD273 VDRE only in
myeloid cells. Consistent with other findings [206], it appears likely, therefore, that the eRNA
produced following exposure to 1,25D in THP-1 cells may act to stimulate CD273 transcription.
The absence of this eRNA species in epithelial SCC25 cells is consistent with lack of
transcriptional control of CD273 by calcitriol in these cells. Note that we performed 3C assays to
detect the formation of a loop between the CD273 VDRE and the TSS of the CD274 gene but
failed to detect any interaction. It thus appears that while 1,25D-dependent recruitment of the VDR
and cofactors to the CD273 VDRE occurs in both epithelial and myeloid cells, it is only fully
functional as an enhancer in myeloid cells, consistent with the expression pattern of CD273. In
this regard, numerous ChIP-seq studies of the VDR, other nuclear receptors, and other classes of
transcription factors have generally identified far greater numbers of binding sites than regulated
genes, indicating that many bona fide binding sites do not correspond to fully functional enhancers
under the conditions of the ChlP-seq experiment [258, 951].

We further demonstrated cell surface upregulation of PD-L1, and a PD-L1-dependent
suppression of T cell cytokine production in the presence of 1,25D. Neither the regulatory events

nor the VDR binding sites characterized in the two human genes were conserved in mice. This
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lack of conservation was not unexpected, as many of the previously identified innate immune
responses driven by VD signaling in human cells appear to be (largely) human/primate-specific.
This includes the 1,25D-induced expression of antimicrobial peptide genes CAMP and
HBD2/DEFBA4, the gene encoding the pattern recognition receptor NOD2 [5], and the IL1B gene
[3]. Notably, the VDRE in the promoter-proximal region encoding CAMP gene is embedded in a
human/primate-specific AluS repeat that appears to have been inserted at the dawn of the primate
lineage [2]. Therefore, our observations of species-specific regulation of PD-L1 and PD-L2
expression reinforce the notion that many aspects of VD-regulated innate immunity appear to have
evolved with the primate lineage.

1,25D-regulated expression of PD-L1 and PD-L2 is of considerable physiological and
clinical significance given their critical role in controlling T cell activation and suppression of
inflammatory immune responses. Notably, intestinal epithelial ablation of Pd-11 expression in mice
led to intestinal inflammation through defects in innate immune signaling [781]. The maintenance
of intestinal PD-L1 expression through 1,25D signaling is thus entirely consistent with an
emerging picture of a role for VD in maintenance of intestinal innate immune homeostasis.
Previous studies showed that the hormone-bound VDR directly stimulates the transcription of the
NOD2 and HBD2/DEFB4 genes, which lie at either end of an innate immune pathway that is
defective or attenuated in a subset of patients with Crohn’s disease (CD) [5, 952]. These results
suggested that VD deficiency may contribute to the pathogenesis of CD, a notion that is reinforced
by the results of intervention trials that strongly support a role for VD supplementation in
suppression of symptoms and enhancing the quality of life in CD patients [675, 952, 953]. 1,25D-
induced expression of PD-L1 and PD-L2 thus provides another mechanism supporting a central
role for VD signaling in controlling intestinal inflammation.

While our findings are entirely consistent with the previously established roles of VD in
regulating immune system function, they represent something of a double-edged sword given the
implication of elevated signaling through PD-1 in suppression of anti-tumor immunity. They also
represent a conundrum given the extensive evidence that maintenance of VD sufficiency reduces
the incidence of several cancers. The cancer-preventive activities of 1,25D signaling are supported
by epidemiological data [954], experiments in animal models and several mechanistic studies
[955]. 1,25D signaling can block cancer cell proliferation in some in vitro models and induce

differentiation [955]. Moreover, it can suppress oncogenic pathways driven by Wnt signaling [278,
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955], c-MYC [304] and others, and can promote the activity of tumor suppressors such as FoxO
proteins [302]. However, while the activated VDR may be effective at blocking aberrant signaling
at early stages of the oncogenic process and may suppress the growth of some tumors (at least in
animal models), there is ample evidence for acquisition of resistance to 1,25D signaling during
tumorigenesis. Several cell lines derived from malignancies of various origins are partially or
wholly resistant to the anti-proliferative effects of 1,25D even though VDR expression and 1,25D-
dependent transactivation are maintained [5]. These observations are consistent with the failure of
1,25D and several of its analogues as cancer therapeutics because of tumor resistance.

Our results provide another potential mechanism of tumor resistance to 1,25D therapy
through maintenance of elevated PD-L1 and PD-L2 signaling in the tumor microenvironment,
thereby suppressing T cell-mediated anti-tumor immunity. These findings may also provide a
potential explanation for the observations in some studies of a reverse J-shaped curve in the
relationship between cancer incidence and levels of the major circulating VD metabolite 25-
hydroxyvitamin D [956]; i.e. a correlation between increased incidence of some malignancies and
super-physiological circulating 25-hydroxyvitamin D levels, an observation for which there was
previously no mechanistic basis. Based on our findings, it can also be argued that it would be
important to take VD status of patients into account in settings of tumor immunotherapy. It is
perhaps paradoxical that, while elevated PD-L1 expression may suppress anti-tumor immunity, its
level of expression in tumors also correlates positively with clinical responses to anti-PD-L1/PD-
1 therapy [938-941]. In conclusion, we have shown that 1,25D stimulates the expression of the
genes encoding PD-L1 and PD-L2, an observation that strengthens the role of VD signaling in
immune system regulation, but which may represent a risk factor because of its potential to
contribute to suppression of anti-tumor immunity.

The generation of mouse cancer models where hormonal vitamin D induces PD-L1
expression similar to what is observed in human could provide valuable information regarding the
physiological outcome of the pro- and anti-cancer effects of calcitriol. This can be achieved by
inserting a consensus VDRE (e.g. for the mouse osteopontin gene) or control sequence (scramble,
with no binding sites for known TFs) upstream of the Cd274 gene using CRISPR/Cas9 in mouse
embryos. An interesting system could be a dox-inducible in vivo breast cancer model where
doxycyclin triggers the formation of mammary tumours that are PD-L1- and weakly PD-L2-

positive implying reliance on immune evasion [957]. Tumour induction by doxycycline treatment
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and assessment of tumour burden and metastases following exposure of these animals to high dose
vitamin D and/or anti-PD-L1/PD-1 blocking antibodies will reveal weather: (i) vitamin D-induced
PD-L1 expression can enhance the anti-cancer potential of anti-PD-1/PD-L1 immunotherapy; (ii)
vitamin D still displays measurable anti-cancer effects in vivo despite its contribution to tumour
immune evasion via PD-L1 upregulation. It would also be interesting to apply this experimental
system to mouse models of immune suppression-independent cancer (i.e. PD-L1", but VDR")
types. A possible workflow in this case would roughly include the following steps: (i) select a PD-
L1, vitamin D-responsive mouse cancer cell line; introduce vitamin D-dependent Cd274 gene
regulation via VDRE insertion using CRISPR/Cas9; establish allografts in wild-type animals and
finally assess the effects of vitamin D and PD-1 blockade separately and together on tumour
growth and progression. The results of these studies will provide valuable information about the
potential of vitamin D as an easily administered, inexpensive agent that can be used as adjunct

therapy with PD-L1/PD-1 blocking antibodies in the context of personalized medicine.
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Experimental Procedure

Cell isolation and tissue culture

All cell lines were cultured under conditions recommended by the American Type Culture
Collection (ATCC). SCC25, SCC4, and AT84 cell lines were obtained from the ATCC and were
passaged in DMEM/F12 (Wisent, 319-085-CL) containing 10% FBS (Wisent, 080150) — 10%
DMEM/F12. Primary human normal epidermal keratinocytes (NHEK; #2110) with the appropriate
culture  medium  (#2101) supplemented with KGS (#2152), and antibiotics
(penicillin/streptomycin; #0503) were purchased from ScienCell. THP-1 and Jurkat (ATCC) cell
lines were cultured in 10% RPMI 1640 (Wisent, 350-005-CL). Primary mouse DCs and Mgs were
obtained by flushing C57BL6 tibia and femur, followed by lysing erythrocytes using BD Pharm
Lyse buffer (BD Biosciences, 555,899), and culturing for 4 h. The non-adherent cells were re-
plated in fresh culture medium. Mouse DCs were differentiated in 10% RPMI 1640 (Wisent, 350-
005-CL) containing 20 ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF) for 8
days. Where applicable, DCs were activated with LPS (Sigma-Aldrich, L3012-5MG). Mouse
macrophages were cultured in 10% DMEM (Wisent, 319-005) containing 30% conditioned
medium from L929 cells (containing macrophage colony-stimulating factor, M-CSF). Human
primary cells were obtained from healthy subjects following informed consent according to McGill
policy on ethical conduct of research involving human subjects and approved by the McGill Ethics
Committee. Human primary monocytes were purified as described [3] from the peripheral blood
mononuclear cell (PBMC) fractions of two donors, using Ficoll-Paque Premium (GE Healthcare,
17-5442-02), and differentiated using GM-CSF (Life Technologies, PHC2011). Primary bronchial
epithelial cells were obtained from healthy donors and were cultured and differentiated as
previously described [958]. Primary human pan-T cells were obtained from PBMC fraction of 3
donors by negative selection using EasySep kit (StemCell, 17951) and were cultured in 10%
ISCOVE’s (Wisent, 319-105-CL) medium. T cell purity was assessed through flow cytometry (fig
S9) by quantifying the markers of various cell populations found in PBMCs, namely CD3 (T cells)
(fig S9B) CD11c (DCs) (fig S9D), CD14 (monocytes) (fig SO9E), CD56 (NK cells) (fig S9F), and
CD19 (B cells) (fig S9G). In addition, the CD3" cells (T cells) were subdivided into CD4" and
CD8" (CD3*/CD4") populations (fig S9C). All treatments were done using 100nM 1,25(0OH)2D3
or vehicle (DMSO). THP-1 cells were first differentiated with 10nM phorbol 12-myristate 13-
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acetate (PMA) overnight and washed 3 times with complete medium before exposure to
1,25(0OH).D3 /vehicle. 1ug/ml of LPS was used where applicable.

Co-culture experiments

The co-culture procedure was inspired by mixed lymphocyte reaction (MLR) and was
performed essentially as described [959]. Briefly, 28,000 pre-treated SCC25 or differentiated
THP-1 cells were pre-blocked with 20pg/ml anti-PD-L1 antibody (eBioscience, 14-5983-82) or
isotype normal 1gG (eBioscience, 14-4714-85) and FcR blocking solution (BioLegend, 422302)
in the case of THP-1 for 2h. Primary human T cells were resuspended in 10% ISCOVE’S
containing blocking antibodies at concentrations indicated above, and added to the target cells. For
Jurkat cells 50ng/ml PMA and 1pg/ml PHA, required for activation, were also added. T/Jurkat (2.8
x 10°) cells were in 10:1 ratio with SCC25/THP-1 cells and were co-cultured for 24h.

RNA extraction, reverse-transcription, and g°PCR

RNA was extracted using TRIZOL reagent (Invitrogen, 15596-018) as per the
manufacturer’s instructions. iScript cDNA Synthesis kit (Bio-Rad, 170-8891) and 1 ug RNA
template was used to generate cDNA, which was diluted 5 times and used in real-time quantitative
PCR (qPCR) with SsoFast EvaGreen Supermix (Bio-Rad, cat # 172-5201) in a Roche LightCycler
96 machine. eRNA production was tested essentially as described [960]. Briefly, reverse-
transcription (RT) was performed using specific stem-loop oligonucleotides for detection of
directed strand-specific RNA production. Supplementary table 1 contains a full list of primers

used.

Western blotting

A standard Western blotting protocol [3] was employed. Rabbit polyclonal anti-PD-L1
(reactive to human, mouse, and rat) (H-130, sc-50298), goat anti-beta-actin (C-11, sc-1615), and
donkey horseradish peroxidase- (HRP) conjugated anti-goat (sc-2020) antibodies were purchased
from Santa Cruz Biotechnologies. Goat anti-rabbit-HRP (7074) was obtained from Cell Signaling.
Goat anti-mouse Pd-I1 was purchased from R&D Systems (AF1019). Changes in protein levels

were quantified relative to control using ImageJ after normalization to actin; the fold change is
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displayed underneath each Western blot figure. Representative images of at least 3 biological trials

are presented.

VDRE screens

Peaks from VDR ChIP-seq studies were aligned with the human genome (build hg19) using
the USCS genome browser. The VDRE upstream of the CD274 TSS was identified by an in silico
screen for consensus human VDREs taken from JASPAR database: both positive and negative
strands of the human genome (build hg19) encompassing the CD274 gene locus were used as a

template.

Chromatin immunoprecipitation assays

ChIP was performed previously described [5] with minor modifications. For histones, cell
membrane was first lysed (10 mM TRIS pH 7.5, 10 mM NacCl, 0.2% NP-40), nuclei were washed
3 times with MNase buffer (NEB, 7007BC), followed by digestion with MNase (NEB , M0247S)
for 30min at 37°C rotating. Nuclei were pelleted and re-suspended in ChIP lysis buffer. Mild
sonication was applied in order to break the nuclear membrane and extract the DNA. For TFs, cells
were directly lysed in ChIP lysis buffer and sonicated in order to shear the DNA to fragment of
length 200-600bp. 4 pg of antibodies for VDR (D-6; Santa Cruz, sc-13133), Pol 2 (Abcam,
ab5131), H3K4mel (Abcam, ab8895), and H3K27ac (Abcam, ab4729) were used for IP in 500ul
dilution buffer. DNA was purified using FavorGen PCR/Gel DNA purification kit (FAGCKO001-

1) and gPCR was performed with primers specific for each region (supplementary table 1).

Flow cytometry and imaging

Adherent cells were detached using Trypsin-EDTA (Wisent, 325-542-EL). Adherent and
suspension cells were centrifuged at 500 rcf for 5min and supernatant was removed. Cells were
resuspended in FACS buffer (0.5-1% BSA in PBS) at a concentration of 1x10° cells per ml. 2 pg
of anti-mouse (BioLegend, 124308) or anti-human PD-L1-PE (eBioscience, 12-5983-426), FITC-
CD3 (eBioscience, 11-0038-80), APC-CD56 (Invitrogen, 17-0566-41), PE/Cy7-CD19
(eBioscience, 25-0198-41), PerCP/Cy5.5-CD11c (BioLegend, 301623), PE-CD14 (Invitrogen, 12-
0149-41), and APC/Cy7-CD4 (eBioscience, 56-0048-41) antibodies were added and incubated for

30 min at room temperature in the dark. Cells were washed 3 times with ice-cold FACS buffer and

86



were run immediately on FACSCalibur (BD Biosciences) instruments. At least 20,000 cells per
sample were monitored. Results were analyzed using FlowJo v10.6.

SCC25 and THP-1 were fixed for 10 min with 4% paraformaldehyde, then washed with
PBS twice. After a 5-min permeabilization with 0.1% Triton X-100, cells were incubated with anti
PD-L1-PE antibody (eBiosciences, 12-5983-42) in PBS containing 0.2% BSA at RT for L hin a
dark, humidified chamber. Following three washes, slides were mounted in Prolong Gold
containing DAPI (Lifetechnologies, P36935) and observed with a Zeiss Axiovert X100 bright field
microscope. Images were acquired using Zen software [processing and analysis was performed at
the McGill University Life Sciences Complex Advanced Biolmaging Facility (ABIF)].

Primary bronchial epithelium was stained as previously described. Zonula occludens-1
(Z0-1) staining was included as a mark for differentiation. Confocal images were taken on an
LSM750 microscope (Zeiss; 63X oil immersion objective), using Zen blue. Image stacks were
processed with Zen Black and ImagelJ, and are shown as representation with maximum intensity
projection. Quantification was performed with MetaExpress and analyzed using multi-wavelength
scoring. All the images (n=7) in each condition (DMSO and 1,25D) were processed and quantified
using the same settings. We quantified the image by obtaining the average of the number of PD-
L1* cells (normalized to cell numbers assessed via DAPI and ZO-1) across all 7 fields and by
calculating the total percentage of PD-L1" cells (PD-L1* cells / total cells). Image processing and
analysis was performed at the McGill University Life Sciences Complex Advanced Biolmaging
Facility (ABIF).

T cells were collected by centrifugation at 350 rcf for 10 min at RT and washed twice with
ice-cold PBS. They were then blocked with human FcR binding inhibitor (eBioscience, 14-9161-
73) and stained with the following antibodies: PE-Cy7-CD71 (eBioscience, 25-0719-41), PE-
CD69 (eBioscience, 12-0699-41), PerCP-Cy5.5-CD44 (eBioscience, 45-0441-80), APC-CD25
(eBioscience, 17-0259-41), AlexaFluor-700-CD4 (eBioscience, 56-0048-41), and APC-eFluor-
780-CD8 (eBioscience, 47-0088-41). Cells were washed and crosslink in 2% paraformaldehyde.
Flow cytometry was performed using BD-LSRFortessa analyzer.

ELISA
Supernatants of SCC25/THP-1 cells co-cultured with Jurkat/T cells were centrifuged at
4°C for 10min at 500 rcf in order to pellet cells and debris. Supernatant was filtered through a 0.22
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um sterile filters. Samples were frozen in liquid nitrogen and shipped on dry ice for analysis to
University of Maryland Cytokine Core Lab (http://cytokines.com/) for IL-2, TNF-a, and IFN-y
ELISA.

Statistics

Student T-test or one-way ANOVA followed by Tukey’s HSD post-hoc test were
performed to assess significance in the case of two or multiple samples, respectively. A p-value of
less than or equal to 0.05 was considered significant. Symbols use to denote p-value are as follows:

ns>0.05>*>0.01>** >0.001 > ***, Statistical analysis was performed using R (version 3.2.3).
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Figure 1. 1,25D treatment increases mRNA levels of CD274 in epithelial cells and of CD274
and CD273 in myeloid cells. A—C, analysis by RT-qPCR of the regulation by 100 nM 1,25D of
CD274 and CD273 gene expression in SCC25 and SCC4 cells (epithelial) and THP-1 cells
(myeloid) (A), primary human keratinocytes (B), and primary human macrophages (C). Fold
change and p-values are relative to control sample (“C” or 0 h) and are calculated separately for
each gene (CD274 and CD273). C, vehicle (ethanol); D, 100 nM 1,25D (n = 3); ns > 0.05 > * >
0.01 > **>0.001 > ***_Error bars, S.D
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Figure 2. 1,25D increases protein expression of PD-L1. (A), analysis by Western blotting of PD-
L1 expression in SCC25 and SCC4 cells following a 24-h exposure to 100 nM 1,25D (“D”) or
ethanol (“C”). (B) 1,25D-induced PD-L1 expression is stable in SCC25 cells after 1,25D
withdrawal, as assessed by Western blotting. Fold change relative to control and normalized to
actin is indicated below each PD-L1 blot. (C) wide-field microscopy for DAPI nuclear staining (i
and i1) and PD-L1 expression (iii and iv) in differentiated THP-1 macrophages exposed for 24 h to
vehicle (“C”) or to 100 nM 1,25D (“D”). v and vi, merge of the images. (D), a compilation of z-
stacks from several focal planes is presented from confocal microscopy for bronchiolar epithelium
differentiation marker ZO-1 (i and ii), PD-L1 expression (iii and iv), and DAPI nuclear staining (v
and vi) in primary bronchial epithelial cells treated for 48 h with vehicle (“C”) or with 100 nM
1,25D (“D”). (vii and viii), merge for all images. (ix) total percentage of PD-L1-positive cells
across all seven fields. (x) average number of PD-L1—positive cells from seven separate fields. ns

>0.05>*2>0.01 =** >0.001 > ***
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Figure 3. CD274 and CD273 VDREs act as enhancer elements. (A), tandem CD274 (5’-end
only) and PDCDILGI (CDZ273) genes and positions of VDREs. The dotted red arrow upstream of
CD273 VDRE indicates eRNA. (B—G), ChIP analysis in extracts of SCC25 (B, D, and F) or THP-
1 cells (C, E, and G) of 1,25D-dependent binding of the VDR (B and C) to the VDREs in the
CD274 and CD273 genes, along with effects of 1,25D on histone H3 Lys-4 monomethylation (D
and E) and histone H3 Lys-27 acetylation (F and G). The fold change is calculated relative to the
nonspecific IgG IP performed with the control sample. C, vehicle (24 h); D, 100 nM 1,25D (24 h)
(n=3);ns>0.05>*>0.01 >**>0.001 > ***,
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Figure 4. 1,25D directly regulates CD274 and CD273 gene expression via both VDREs. (A—
D) ChIP analysis of the effects of 1,25D on recruitment of the large subunit of RNA polymerase 11
(Pol 2) to the VDREs (A and B) and TSSs (C and D) in SCC25 cells and THP-1 cells, as indicated.
(E and F) effects of 1,25D on recruitment of the VDR to the TSS of CD274 or CD273 genes in
SCC25 (E) and THP-1 cells (F), as indicated. The fold change is calculated relative to the
nonspecific IgG IP performed with the control sample. (G) 1,25D treatment for the indicated times
stimulates eRNA synthesis upstream of VDREP?73*4795 Dyirected RT-qPCR was employed to
show 1,25D-dependent production of eRNA 5° of VDREP?7347959 and centered at 47,810 bp
downstream of the CD273 TSS in THP-1 cells. C, vehicle (24 h); D, 100 nM 1,25D (24 h). A-F,
n=3;G,n=5;ns>0.05>*>0.01 >** >0.001 > ***,
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Figure 5. 1,25D-dependent PD-L1 increase in epithelial and myeloid cells results in
diminished cytokine production by co-cultured T cells. (A and B) effects of 1,25D pre-treatment
of SCC25 (A) and THP-1 (B) cells followed by co-culture for 24 h with primary human whole T
cells in the presence of nonspecific IgG (i and iii) or anti-PD-L1 (ii and iv) blocking antibody on
secretion of TNF-a (i and ii) and IFN-y (iii and iv), assessed by ELISA. C, vehicle pre-treatment
for 24 h; D, 100 nM 1,25D pre-treatment for 24 h (n = 3); ns > 0.05 > * > 0.01 > ** > 0.001 >
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Figure 6. 1,25D-dependent PD-L1 increase in epithelial cells results in reduction of activation
of co-cultured CD4" and CD8" T cell populations. Flow cytometry of T cells co-cultured with
1,25D-pre-treated SCC25 cells and stained for CD8 (A—C), CD4 (D-F), and the activation markers
CD25 (A and D), CD71 (B and E), and CD69 (C and F). p-values were calculated for treated
(vitamin D, 1,25D) versus control (vehicle) in IgG and aPD-L1 groups separately and for control
(IgG) versus control (PD-L1). Shown is vitamin D pre-treatment for 24 h with 100 nM 1,25D (n
=3); ns>0.05>*,
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Figure S1. Calcitriol-dependent gene regulation in primary human nasal epithelium. Primary
human nasal epithelium cells obtained from 2 donors were treated with 1,25D for 24h. Calcitriol
upregulated CD274 (A) in these cells. Gene expression of known 1,25D-inducible genes CYP24A1
(B; left panel), NOD2 (B; middle panel), and AREG (B; right panel) demonstrate 1,25D
responsiveness, as assessed by gPCR. In (A) all fold changes are relative to the control sample (C,
vehicle) for CD274 in order to show any differences in levels of CD274 and CD273. p-values
denote significance relative to control (C, vehicle) and are calculated separately for each gene. In
(B) fold change and p-values are relative to control sample (C, vehicle) and are calculated
separately for each donor. C — vehicle (ethanol), D — 100nM 1,25D; (n = 3); ns > 0.05 > * > 0.01
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Figure S2. CD273 is expressed at lower levels compared with CD274 in human epithelial and
myeloid cells. RT-gPCR for CD274 and CD273 mRNA in SCC25, SCC4, and THP-1 cell lines
(A), primary human keratinocytes (B), and primary human macrophages (C). (n = 3); ns > 0.05 >
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Figure S3. LPS synergizes with 1,25D in inducing CD274 and CD273 expression. Effect of
LPS on upregulation of mMRNA levels of CD274 (A; left panel) and CD273 (B) in THP-1, but not
SCC25 cells (A; right panel), as assessed by gPCR. C — vehicle (24h); D — 100nM 1,25D (24h).
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Figure S4. 1,25D does not regulate PD-L1 expression in mouse. Analysis by RT/gPCR of the
regulation by 1,25D of Cd274 and Pdcdllg2 gene expression in mouse (A) AT84 squamous
carcinoma cells and (B) 1° mouse macrophages and dendritic cells (DCs). Note that CD273
expression was not detectable by RT/gPCR in AT84 cells (A). Mouse AT84 (C), DCs (D, left
panel), and Mos (D; right panel) show Cyp24al stimulation upon 1,25D exposure, demonstrating
responsiveness to calcitriol. Fold change and p-values are relative to control sample (C or Oh) and
are calculated separately for each gene and sample set. Western blots for total protein in AT84
(E), DCs (F), and 1° mouse skin cells (G) show no change in Pd-11 levels following 1,25D
treatment for 24h. Fold change relative to control and normalized to actin is indicated beneath each
Pd-I1 blot. C — vehicle (24h); D — 100nM 1,25D (24h). (N = 3); ns > 0.05 > *>0.01 > ** >0.001
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Figure S5. 1,25D upregulates PD-L1 protein levels in a time-dependent fashion. Western blot
for SCC25 cells treated for the times indicated with 100nM 1,25D. Fold change relative to Oh and
normalized to actin is indicated beneath PD-L1 blot.
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Figure S6. Calcitriol upregulates PD-L1 protein levels. WB for total PD-L1 demonstrates
1,25D-dependent increase in primary human keratinocytes (A) and in the human colon
adenocarcinoma cell line HT29 (B). Fold change relative to control and normalized to actin is
indicated beneath each PD-L1 blot. Flow cytometry revealed increased surface expression of PD-
L1 by 1,25D in THP-1 cells (C). Calcitriol upregulates surface PD-L1 in SCC25 cells as well (D),
as assessed by wide-field microscopy: DAPI nucleus stain (i, ii), PD-L1 staining (iii, iv), merged
images (v, vi). C — vehicle (24h); D — 100nM 1,25D (24h). (n = 3)
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Figure S7. 1,25D treatment results in increased PD-L1 staining in primary human bronchial
epithelial cells. Single plane confocal microscopy images of primary human bronchial epithelial
cells stained with Zonula Occludens-1 (ZO-1), PD-L1, and DAPI.
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Figure S8. VDREs are not conserved in mouse or rat, but are active enhancers in human.

(A) The areas surrounding the discovered VDREs in the promoter region of CD274 (top; red

rectangle) and in the intronic region of PDCD1LG2/CD273 (top; blue rectangle) within

chromosome 9 are shown. These regions are expanded (bottom) to show the precise location of

each VDRE (blue), a corresponding VDR ChlP-seq peak (red), and conserved regions with rhesus,

mouse and rat genomes. (B) Luciferase reporter assay for (i) VDRECP?73*47%59 and (ii)
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Figure S9. 1,25D induces luciferase expression from pGLuc-basic 2 or pGL4.24 vectors only
in the presence of CD274 or CD273 VDREs, respectively. (A) CD274 promoter regions with or
without the CD274 VDRE were cloned upstream of a promoterless luciferase gene. HEK293 cells
transfected with pGLuc-Basic 2 vector that was unmodified (pGLuc) or contained CD274
promoter with (pGLuc-CD274*VPRE) and without the VDRE (pGLuc-CD274VPRE) were treated
with vehicle or 100nM 1,25D for 12h. (B) The CD273 VDRE was introduced upstream of the
pGL4.24 promoter (pGL4.24-CD273*VPRE), HEK 293 cells transfected with unmodified pGL4.24
or pGL4.24-CD273*VPRE yvectors were treated with vehicle or 100nM 1,25D for 12h. (n = 3)
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Figure S10. Whole T cell purity. T cells were purified from PBMCs by negative selection with
the majority of purified cells were single-cell lymphocytes (A) and stained for CD3 (B). (C) shows
the proportion of CD4* and CD8" subpopulations of the purified T cells. To demonstrate the purity
of the isolated T cells, staining for markers of other cell populations found in PBMCs, namely DCs
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Figure S12. 1,25D pre-treatment of SCC25 cells reduces CD25 activation marker in the CD4*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD4* T cell
population of the co-cultured whole T cells was examined for changes in surface CD44 and CD25
expression in donor 1 (A), 2 (B), and 3 (C). Vitamin D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S13. 1,25D pre-treatment of SCC25 cells reduces CD69 activation marker in the CD4*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD4* T cell
population of the co-cultured whole T cells was examined for changes in surface CD44 and CD69
expression in donor 1 (A), 2 (B), and 3 (C). Vit D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S14. 1,25D pre-treatment of SCC25 cells reduces CD71 activation marker in the CD4*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD4* T cell

population of the co-cultured whole T cells was examined for changes in surface CD44 and CD71
expression in donor 1 (A), 2 (B), and 3 (C). Vit D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S15. 1,25D pre-treatment of SCC25 cells reduces CD25 activation marker in the CD8*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD8* T cell
population of the co-cultured whole T cells was examined for changes in surface CD44 and CD25
expression in donor 1 (A), 2 (B), and 3 (C). Vit D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S16. 1,25D pre-treatment of SCC25 cells reduces CD69 activation marker in the CD8*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD8* T cell
population of the co-cultured whole T cells was examined for changes in surface CD44 and CD69
expression in donor 1 (A), 2 (B), and 3 (C). Vit D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S17.1,25D pre-treatment of SCC25 cells reduces CD71 activation marker in the CD8*
subpopulation of co-cultured whole T cells in a PD-L1-dependent manner. The CD8* T cell
population of the co-cultured whole T cells was examined for changes in surface CD44 and CD71
expression in donor 1 (A), 2 (B), and 3 (C). Vit D — pre-treatment of SCC25 cells with 100nM
1,25D for 24h; aPD-L1 — blocking anti-human PD-L1 antibody.
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Figure S18. 1,25D pre-treatment of SCC25 cells does not affect induction of apoptosis in co-
cultured whole T cells. Flow cytometry of T cells co-cultured with 1,25D pre-treated SCC25 cells
and stained for viability (eFluor 506) and apoptosis (annexin V-FITC). p-values were calculated
for treated (vitamin D, 1,25D) vs. control (vehicle) in IgG and aPD-L1 groups separately and for
control (IgG) vs. control (PD-L1). Vitamin D — pre-treatment for 24h with 100nM 1,25D; (N=3);
ns>0.05>*,
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Application
cDNA
cDNA
cDNA
ChlP
cDNA
cDNA
cDNA
ChlP
ChlP
ChlP
cDNA
cDNA
cDNA

cDNA

Stem-loop RT

eRNA gPCR
sequencing
sequencing
normalization

normalization

mutagenesis

Target
ACTB

AREG

CD274
CD274Tss
CYP24A1
NOD2
PDCD1LG2
PDCD1LG2Tss
VDRECD274-823
V/DRECD273+47553
Actb

Cd274
Cyp24al
Pdcd1lg2

PDCD1LG2 eRNA

5’ \VDREFPDCDI1LG2+47955

eRNA
pGLuc-basic 2
pGL4.24

pGLuc-basic 2 luciferase

pGL4.24 luciferase

Species
human

human
human
human
human
human
human
human
human
human
mouse
mouse
mouse

mouse

human

human
vector
vecotr
vector

vector

pGL4.24/VDRECD273+47555 yector

Table S1: Primers and oligonucleotides.

Forward

GGCATGGGTCAGAAGGATTCC
TCGCTCTTGATACTCGGCTC
GCTTTTCAATGTGACCAGCA
AAACTGGATTTGCTGCCTTG
TCTCTGGAAAGGGGGTCTCA
GTGGTTCAGCCTCTCACGA
ACTTTGGCCAGCATTGACCT
TCCACACCATTTGAGGCAAG
GGAAAGGCAAACAACGAAGA
CTTTGGTTTCCTGGGTGGAG
CCACCATGTACCCAGGCATT
CCTGCTGTCACTTGCTACGG
GGCGGAAGATGTGAGGAATA
GTACCGTTGCCTGGTCATCT

GTCGTATCCAGTGCAGGGTCCGAGG GTCGTATCCAGTGCAGGGTCCGAGG
TATTCGCACTGGATACGACGTTTCG

TATTCGCACTGGATACGAC

GTGCAGGGTCCGAGGT
GTGGTCGCGAAGTTGC

CTTCTTAATGTTTTTGGCATCTTC
GAGAACAACGAAGACTTCAACATC CTGGGATGAACTTCTTCATCTIG

GCAGCTTGCAAGACTATAAGATTCA GTGCTCTTAGCGAAGAAGCTAAATA
CTGCACTCAATGAACTTCCTCGAGG CTAGCGAGCTCAGGTACCGGCCAGT

ATATCAAGATCTG

Reverse

GCTGGGGTGTTGAAGGTCTC
AAATGGTTCACGCTTCCCAG
ATTTGGAGGATGTGCCAGAG
AGGAACAACGCTCCCTACCT
CCCAACTTCATGCGGAAAAT
TCCTGCGAGCACATTTCACA
TGATGCAGAAGGGGATGAAA
CTGGGGCAGGAGGACATTAG
GCGCTGAACTTCTAGGTGCT
AGCCGTTTAGGAAAGCACCA
CAGCTCAGTAACAGTCCGCC
TTGCTGCCATACTCCACCAC
AAGGGTCCGAGTTGTGAATG
CCAGGACACTTCTGCTAGGG

CGGACTTCCATCCCGAGCTACA

TAG
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Preface to Chapter 4

The results presented in the two previous studies (chapters 2 and 3) clearly indicate that
the species-specific effects of VD on innate immunity have important consequences in terms of
pathogen clearance and control of excessive T-cell-mediated inflammation. We were therefore
compelled to extend these findings by assessing the species specificity of vitamin D signaling in
immunity on a broader scale. To this end, an extensive bioinformatic meta-analysis was performed
of existing VD gene expression profiling studies in human and mouse cells. Our goals were two-
fold: (1) to compare the biological processes regulated by vitamin D in human vs. mouse cells as
an indication of the conservations of its global actions; (2) to discover novel pathways of regulation
and over-represented genes across datasets in human and assess their conservation in mouse. This
type of analysis is important because mouse models are used to study the actions of vitamin D
signaling in a number of human disorders, including inflammatory bowel diseases. While the
global physiological effects of vitamin D may be comparable between human and mouse, the
specific mechanisms of action may not necessarily be identical or even similar, implying that
findings in mouse may not be readily generalizable to humans. This becomes particularly
important in the context of discovery of single-target therapies. The large-scale cataloguing of
human and mouse gene enrichment for biological processes presented here constitutes an
important first step in understanding the similarities and differences in vitamin D responses
between the two species and in selecting appropriate models to study the effects of vitamin D
signaling in the context of human disease. The lack of gene expression studies in mouse cells of
the adaptive immune system, as opposed to human, precludes us from making direct comparison
of the effects of vitamin D between the two species in the context of adaptive immunity.
Nevertheless, we found that the underlying innate immune signaling events (in myeloid and
epithelial cells) can be compared in order to shed light into possible conservation of vitamin D

actions with implications in adaptive immunity.
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Abstract

Initially identified as the curative agent for nutritional rickets, vitamin D is now recognized
for its pleiotropic physiological effects. In particular, it is an important regulator of immunity. We
have previously shown that hormonal vitamin D directly upregulated expression of the pattern
recognition receptor NOD2 and its downstream targets, the antimicrobial peptides CAMP and
HBD2. This was paralleled by increased antimicrobial activity. In addition, hormonal vitamin D
inhibited T cell-dependent inflammation via stimulation of the checkpoint receptor PD-1 ligands.
These effects were observed in human but not the corresponding mouse cells, which prompted us
to examine the species-specific effects of vitamin D on a larger scale. Raw data for all available
gene expression profiling studies following treatment with vitamin D metabolites or analogs (94
in total) were re-analysed in order to extract significantly regulated genes for each dataset, which
served as the basis for further analysis. Disease ontology clustering confirmed a role for vitamin
D in various conditions whose etiology implicates altered immune homeostasis. In order to gain
insight into the global actions of vitamin D, we performed gene enrichment analysis for biological
processes. The significant overlap between human and mouse indicates a substantial degree of
conservation in the global mechanisms affected by vitamin D signaling. However, the intersection
between human and mouse over-represented genes for each tissue type was minimal, indicating
that there are important species-specific differences in the molecular genetic events underlying the
global effects of vitamin D. Next, in order to discover novel pathways controlled by vitamin D
signaling and implicated in immune homeostasis, we adopted a systems approach where over-
represented genes across all human datasets were combined into a single list that was used to
screen for enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) canonical
pathways. Thus, we identified intestinal immune network for IgA production as significantly
upregulated by vitamin D. Notably, the lack of consistent conservation in the regulation of genes
corresponding to nodes in this pathway in mouse further emphasizes the species-specificity of

vitamin D signaling.
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Introduction

Initially identified as the curative agent for nutritional rickets, vitamin D (VD) is now
known to have pleiotropic physiological effects [385]. It can be produced in skin exposed to UV
light and heat from the cholesterol precursor 7-dehydrocholesterol. A hepatic reaction produces
the major circulating form 25-hydroxyvitamin D3z (25D, calcidiol), which is transported bound to
the vitamin D binding protein (DBP), a Gc globulin [32, 48-52]. A subsequent hydroxylation by
CYP27B1 in kidneys or peripheral tissues produces the hormonally active form, 1,25-
dihydroxyvitamin D3 (1,25D, calcitriol) [906, 907]. While renal CYP27B1 expression is subject
to control by calcium homeostatic signals, its extra-renal counterpart is regulated by different
physiological inputs and may be important in autocrine/paracrine vitamin D signaling in peripheral
tissues [392, 397].

Calcitriol acts by binding to its receptor, the vitamin D receptor (VDR) — a ligand-activated
transcription factor [151-153]. This leads to heterodimerization with another nuclear receptor,
RXR, and association with specific DNA motifs, vitamin D response elements (VDRES) [183,
190]. Consensus VDRESs are composed of 2 direct 5’-PUGG/TTCA-3’ repeats separated by 3 bp
(DR3) [191-193]. Subsequent recruitment of ancillary factors required for chromatin remodeling
and, ultimately, RNA polymerase Il, culminates in stimulation of target gene expression [196, 219,
220]. Hormone-bound VDR can also repress gene transcription by a number of mechanisms, many
of which require interaction with other classes of transactivators [905].

In line with the pleiotropic actions of VD, the VDR is virtually ubiquitously expressed.
The fact that VDR and CYP27B1, enabling local production of hormonal VD, are present in many
cells implicated in innate and adaptive immune responses suggests that VD may play an important
role in immunity [3-5, 86, 908-910]. Numerous reports suggest that VD signaling boosts anti-
microbial innate immune responses [3-5, 388, 462, 463, 909, 910, 929]. For instance, engagement
of pattern recognition receptors, such as Toll-like receptors (TLRs), by pathogen-associated
molecular patterns leads to production of anti-microbial peptides (AMPs) and enhances CYP27B1
expression in macrophages, leading to increased local 1,25D levels [910, 915]. Calcitriol then acts
to stimulate in epithelial cells, neutrophils, and monocytes/macrophages expression of AMPs,
including cathelicidin (CAMP) and B-defensin 2 (HBD2), and the pattern recognition receptor
NOD2, which also upregulates HBD2 expression [3, 5, 86, 909, 913, 914]. Interestingly,
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deficiencies in the NOD2-HBD2 pathway have been linked to Crohn’s disease, a form of
inflammatory bowels disease (IBD) arising from chronic intestinal inflammation [5, 902]. This is
consistent with studies providing evidence for a protective role of VD against IBD [942, 943]. In
addition, VD signaling has been shown to inhibit Mycobacterium tuberculosis (M.th.) growth and
to enhance infection-induced IL-1p production in human macrophages through a VDRE that is not
conserved in mouse [3, 912]. Gombart et al. found that the CAMP VDRE is embedded in a
human/primate-specific Alu repeat transposable element [2]. There was also lack of conservation
between human and rodents of the VDREs responsible for regulation of HBD2 and NOD2 [5, 551],
and of those required for transcriptional upregulation of the immune checkpoint proteins
programmed death ligand 1 (PD-L1) and 2 (PD-L2) [961]. These finding highlight the species-
specific effects of VD in innate immunity.

PD-L1/2 molecules are essential for peripheral tolerance and their upregulation by
calcitriol is in line with its tolerogenic actions in the context of adaptive immunity [769, 930-934].
This mechanism complements the effects of VD on dendritic cells (DCs) keeping them in an
immature, more tolerogenic state and with enhanced capacity to stimulate differentiation of
regulatory T cells (Tregs) in favour of inflammatory effector T cell subsets — Thl, Th17,and CTLs
[538-543, 546, 549]. The direct actions of VD on T cells, which upregulate both CYP27B1 and
VDR upon activation, are also consistent with its tolerogenic properties in that it increased
Treg/Teff cell and anti-inflammatory (IL-10) to inflammatory (IFN-y, TNF-a, IL-17, IL-2, and IL-
21) cytokines ratio [86, 395, 540, 564, 566, 571-573, 576]. Notably, it also enhances the
development of Th2, rather than Thl, responses and IL-4 production in mouse [566, 570].

While Th2 lymphocytes are known to generally stimulate humoral immunity, the direct
effects of VD on B cells are less well characterized [590]. Several human in vitro and mouse in
vivo studies suggested an inhibitory role in activation, survival, and antibody production,
particularly IgE [605, 607-609, 612-615]. However, these findings have not been confirmed by
clinical trials or observational studies [617, 618]. In fact, low circulating concentrations of vitamin
A and D in humans correlated with decreased IgA, IgM and 1gG levels [621]. Secretory IgA (sIgA)
is particularly important in mucosal immunity. It is produced by plasma cells in the lamina propria
and is critical for the neutralization and expulsion of potentially immunogenic and inflammogenic

antigens [599-602]. Notably, sIgA plays a central role in regulating the resident gut microbiota
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[603, 604] and has been associated with a significantly reduced risk of developing IgE-associated
allergies in infants [962].

VD signaling has been shown to have beneficial effects in mouse models of allergies,
autoimmune and inflammatory disorders, namely IBD [394, 416, 462, 530, 626-628], MS/EAE
[580, 629], diabetes [630-632], SLE [633], RA [634], and asthma [635]. Intervention studies in
humans, however, have often been inconclusive [381, 681-690, 692-696]. This discrepancy
implies that there are important differences in the responses to VD between the two species (e.g.
[2, 5, 551, 961]) and that using mouse models to study human diseases may not always be the
optimal approach. This notion is also supported by the fact that humans are diurnal whereas mice
are nocturnal creatures that are not expected to generate large amounts of VD from exposure to
sunlight. Therefore, we decided to perform a large-scale meta-analysis of all published human and
mouse gene expression profiling studies in order to define global similarities between the two
species in terms of biological processes affected by VD metabolites or calcitriol analogs. A second
aim was to extract VD-regulated novel pathways and over-represented genes across datasets

implicated in immune homeostasis in humans, and assess their conservation in mouse.
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Results

Enrichment analysis for genes regulated by VD in human datasets confirms its role in cancer,
infection, autoimmune and inflammatory disease.

A meta-analysis of all 94 available profiling studies investigating the effects of VD on gene
expression (table S1) was conducted in order to define common and unique aspects of VD
signaling in human and mouse. Only datasets with available raw data were included. Differential
gene expression analysis was performed using the same pipeline in order to ensure that results
were as comparable as possible. To this end, we used the Linear Models for Microarray Data
(LIMMA) Bioconductor package as it performs very well in a variety of settings for both
microarray and RNA-seq experiments [963]. Statistically significantly regulated genes (fold
change of at least 1.5 with p-value no greater than 0.1) for each dataset were extracted and grouped
based on tissue type (epithelial, fibroblastic, PBMCs, B and T cells, monocytic, granulocytes, and
other) and served as the foundation for further analyses. A p-value of 0.1 and fold change of 1.5,
were used to partially circumvent limitations imposed by low statistical power arising from small
number of replicates.

First, we performed Disease Ontology (DO) enrichment analysis in all human datasets in
order to evaluate whether there are changes in global gene expression signatures associated with
various disease states (fig. 1). In agreement with the literature, VD-regulated genes were associated
with a number of cancers, infection, autoimmune and inflammatory disease (fig. 1). As the etiology
of the latter three categories appears to implicate compromized immune homeostasis, we decided
to place extra attention on exploring VD signaling related to this physiological theme. Since mice
are often used as model organisms to study effects the effects of VD in the context of human
disease, we also chose to explore the degree of conservation of VD signaling in human versus
mouse. This was achieved via a broader approach examining enrichment for and conservation of
biological processes, and through a related but more specific, gene-centric method, as discussed

below.

There is a significant overlap between human and mouse vitamin D-regulated biological processes
Significantly regulated genes for each human dataset were used to perform gene ontology
(GO) enrichment analysis for biological processes (GO_BPs) (fig. 2). In line with what was

observed at the DO clustering level (fig. 1) and with the literature, some of the GO_BP categories
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(e.g. DNA replication, metabolism, MAPK signaling, etc.) were related to cell growth,
proliferation, and regulation of intracellular signaling cascades (fig. 2). Notably, a number of
epithelial datasets clustered around extracellular matrix organization-related categories (fig. 2).
GO enrichment analysis for cellular components supports this observation, as there was an
accumulation of epithelial datasets for categories related to adhesion to and formation of
extracellular matrix (fig. S1). Leukocyte datasets, on the other hand, clustered around granule
formation, which generally occurs following activation (fig. S1). Indeed, GO_BP enrichment
revealed significant aggregation of these datasets for activation and migration
(chemotaxis/homing) (fig. 2). Interestingly, enrichment for the chemotaxis was also observed for
some fibroblastic and epithelial datasets indicating that these cell types may participate in the
regulation of processes typically associated with leukocytes. This is can be seen more clearly in
fig. S2 where only biological processes related to immune homeostasis (adhesion, wound healing,
extracellular matrix, cell-cell contacts, activation, and migration, chemotaxis or homing) are
displayed for all human datasets.

We employed the same biological processes clustering approach for all available mouse
datasets (fig. 3). There appeared to be an overlap with the immune homeostatic categories (fig. S3)
for which the human datasets were enriched (fig. S2), especially the case of myeloid cells.
Therefore, we decided to quantify the total overlap in enriched biological processes for human and
for mouse datasets (fig. 4A). The intersection was quite significant despite the fact that a number
of human datasets (lymphocytes and PBMCs) had no mouse counterparts. This suggests that
overall VD affects similar patterns of biological processes in human and mouse. When datasets
were paired based on tissue type, the overlap was only slightly diminished for myeloid cells (fig.
4B). However, it decreased substantially in the case of epithelial cells (fig. 4C). There may be
several factors contributing to this phenomenon. Generally, epithelial datasets appear quite
heterogeneous in their gene expression profiles, which is consistent with their varied tissues of
origin and with the highly tissue-specific effects of VVD. In addition, the human epithelial datasets
are greater in number (21 vs. 6) and diversity (breast, corneal, liver, lung, prostate, and pancreatic
vs. colon and prostate) compared to mouse (table S1). Note that only 16 of the 21 human epithelial
datasets (fig. 2) had expression profiles that were associated with a number of differentially

regulated genes large enough to allow for statistically significant enrichment in GO_BP categories.
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The overlap between human and mouse vitamin D-regulated genes is minimal

Over-represented genes for each cell type were selected based on the following criteria: (i)
the gene had to be significantly regulated by VD — fold change of at least 1.5 and p-value less than
or equal to 0.10; (ii) upregulated genes could not appear as downregulated in any dataset of the
same cell type and vice versa; and (iii) due to the large number of human epithelial datasets, the
up-/down-regulated gene had to appear in at least 3 of these. The distribution of the number of
gene occurrences in same-cell-type datasets is shown using violin plots in fig. S4 for human down-
and up-regulated genes. Interestingly, there was a much greater overlap in upregulated than
downregulated genes by VD signaling in the epithelium, monocyte, and B lymphocyte categories.
This observation suggests higher degree of dependency on tissue-specific factors for gene
repression by VD and less so for transactivation. Despite the fact that the time of treatment with
calcitriol varied from 8h to 36h, the heterogeneity of gene expression profiling in B cells, leading
to small number of over-represented genes, was unexpected considering that all datasets used
virtually identical cell types and were exposed to identical concentrations of 1,25D. This finding
highlights the inter-laboratory/inter-platform variability, and, possibly, different sources of
calcitriol.

The same selection criteria, as described above, were applied to mouse datasets after
obtaining the human gene orthologues. Then, we quantified the overlap in over-represented down-
or up-regulated genes in paired human/mouse cell type categories (fig. 5). In contrast to what was
observed at the level of biological processes, the intersection of over-represented genes in
human/mouse DCs (fig. 5A and B, tables S2 and S3), human monocytic/mouse DCs (fig. 5C and
D, tables S4 and S5), and human/mouse epithelial cells (fig. 5E and F, tables S6 and S7) was
minimal. The distribution of the number of occurrences in datasets for each cell type is shown
using violin plots for over-represented overlapping down- and up-regulated genes is shown in fig.
5G and fig. 5H, respectively. In conclusion, while there were significant similarities between
human and mouse cells in terms of biological processes affected by VD signaling (fig. 4), the two

species appeared quite divergent at the individual gene level (fig. 5).
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Vitamin D upregulates the intestinal immune network for IgA production and genes implicated in
immune homeostasis

We searched for whole pathways that appear to be regulated by VD signaling. We
combined the over-represented genes across all human datasets and performed a KEGG pathway
enrichment analysis. One canonical pathway upregulated by VD was hsa04672: intestinal immune
network for IgA production (fig. 6). Note that the pathway nodes correspond to significantly
regulated over-represented genes (> = 1.5-fold) in the appropriate cell type. Notable exceptions
are TGF-p and MADCAMI1, which were upregulated in only one macrophage and one epithelial
dataset, respectively, but never appeared as downregulated in these cell types. Therefore, we
decided to include these genes. Similarly, BAFF (TNFSF13B) was only upregulated in one T-
lymphocyte dataset and not in DCs, as shown in the diagram (fig. 6). Nonetheless, based on the
gene expression profile depicted on fig. 6, the output — intestinal 1gA production — would be
expected to increase following exposure to VD, which constitutes a clear phenotype that can be
tested experimentally. Ideally, validation of these findings would be done in vivo in mice. This
prompted us to check whether regulation of these genes was conserved in the corresponding mouse
datasets. We combined the genes implicated in intestinal immune network for IgA production with
over-represented genes across human datasets that are associated with biological processes related
to immune homeostasis (adhesion, migration, chemotaxis, homing, cell activation, wound healing,
extracellular matrix, and cell-cell contacts; fig. S2) (table 1). Over-represented genes in red (table
1) were retained despite their higher p-value (0.05 < p-value < 0.10) in individual datasets. The
VD-dependent upregulation of all the genes in table 1, except for CD80, was not conserved in a
consistent manner in cell-type matching mouse datasets (data not shown). This is not surprising
considering the minimal overlap between human and mouse over-represented genes (fig. 5).
Interestingly, many of the selected genes appear to have complementary functions. For instance,
VD upregulates IL-8 (CXCL8) production in macrophages and IL8R (CXCR2) expression in
neutrophils, which suggests enhanced chemotaxis. At the same time, it acts to protect against
collateral tissue damage by stimulating the expression of genes such as SERPINB1, which
neutralizes neutrophil-derived proteinases, and SERPINB9, which inhibits granzyme B activity.

In order to infer direct transcriptional regulation by VD, we screened for the presence of
consensus or 1-mismatch VDRESs and included the location of VDR peaks obtained from available
ChlP-seq studies [257, 258, 260, 964, 965] in the vicinity of the list of selected genes (table 1).
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We selected for further examination several novel genes regulated by VD — CD40, TNFRSF17,
CXCR4, ITGB7, and CCL25 — which are all implicated in intestinal IgA production (table 1;
highlighted in green). Direct regulation in this case can be inferred by the presence of VDREs
and/or VDR peaks, but will have to be validated experimentally. VDR peaks at or around CD40,
TNFRSF17, ITGB7, and CXCR4 appear in open chromatin regions (DNasel hypersensitivity
clusters) high in H3K4mel/H3K27ac marks, indicative of active enhancers (fig. 7). There is also
enrichment of other TF binding sites (fig. 7; Tnx Factor ChIP tracks) within the VDR peaks and
close to the CCL25 VDRE motif (fig. 7) that may contribute to VD-dependent gene regulation.
Interestingly, conservation of the regulatory regions between human and mouse was not always
apparent (fig. 7). VDR association with these sites and the presence or absence of gene regulation

in human and mouse has to be validated experimentally.
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Discussion

Mice are often used as models to study human disease and in the pre-clinical phase of drug
development. As there are many differences between rodents and primates, the present study was
undertaken in an attempt to quantify the overlap between human and mouse changes in gene
expression profiles following exposure of a number of cell types to VD metabolites and analogs.
A broad approach of cataloguing biological processes altered by VD signaling revealed enrichment
for categories implicated in immune homeostasis — barrier integrity, leukocyte activation,
migration, chemotaxis, and homing — in human and mouse, despite lack of lymphocyte datasets in
the latter but not the former species. This observation suggests that global immune homeostatic
events affected by VD may be analogous in human and mouse. In line with this notion, there was
a significant overlap between human and mouse total enriched biological processes across all
datasets. This overlap was considerably smaller in epithelial but not myeloid cells. Since the latter
are mainly implicated in innate immune responses, this finding reinforces the idea that there may
be an appreciable conservation of global actions of VD in innate immune signaling between human
and mouse.

To narrow our analysis, we examined the overlap between over-represented human and
mouse genes in corresponding same-cell-type datasets. The term “over-represented” here is used
rather liberally in that such genes were not necessarily present in the majority of same-cell-type
datasets. Rather, they were selected in such a way that upregulated genes did not appear as
downregulated in any of the same-cell-type datasets and vice versa. This strategy allowed us to
eliminate genes whose fold change might have fluctuated randomly across similar datasets — an
occurrence that is particularly common for genes expressed at low levels. In this context, it is more
likely that the regulation of an over-represented gene is a real rather than spurious event. Thus, we
used more inclusive selection criteria, such as p-value of 0.1 and fold change of 1.5, and partially
circumvented limitations imposed by low statistical power arising from a small number of
replicates in an individual study.

Many of the genes we detected did not received any attention previously in individual
studies due to their low fold change/higher p-value (see table 1; genes in red). Nevertheless, the
coordinated regulation by VD of such genes may result in important and measurable phenotypic

changes, particularly when this regulation is considered in the context of the entire system allowing
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for crosstalk among multiple participating cell types. Importantly, our observation that several of
these genes are similarly regulated in multiple same-cell type datasets justifies their retention
despite their limited statistical significance in individual datasets, and argues for the biological
significance of their regulation by vitamin D signaling.

Interestingly, this procedure identified more over-represented upregulated than
downregulated genes in the apparently highly heterogeneous human epithelial datasets. This is
consistent with the understanding that gene repression by VD often implicates interactions of the
VDR with other classes of TFs [905], which may be cell type-specific. Transcriptional stimulation,
on the other hand is generally more direct, hence the higher degree of gene representation across
human epithelial datasets. In mouse epithelial datasets, however, up- and down-regulated over-
represented genes were similar in numbers. This may be due to the smaller number of datasets and
the fact that the majority (4 out of 6) had the same tissue origin. Consistent with this reasoning,
up- and down-regulated over-represented genes in human and mouse non-epithelial datasets were
of roughly equal proportions. Contrary to what was observed at the biological processes level,
there was minimal overlap between human and mouse same-cell-type over-represented up- and
down-regulated genes. This observation implies that while there may be similarities in global
phenotypes resulting from exposure to VD between human and mouse, the underlying molecular
genetic events may be quite different, which is entirely consistent with the results presented in
Chapters 2 and 3, and elsewhere in the literature [2, 3, 5, 551, 961]. Consistent with this, we
discovered that the majority of over-represented genes implicated in immune homeostasis
identified in human datasets did not overlap with the corresponding mouse over-represented genes.
Interestingly, the functions associated with the human over-represented genes seem very
complementary in nature (see table 1) highlighting the coordinated actions of VD in stimulating
activation and recruitment of phagocytes such as macrophages, monocytes, and neutrophils, while
enhancing barrier function and controlling collateral tissue damage. Notably, the systems approach
that we adopted for our meta-analysis greatly facilitated the discovery of such immune homeostatic
properties of VD.

This methodology also enabled us to screen for whole pathways where a clear and robust
output following VD stimulation can be predicted based on the gene expression measurements at
each node. Such findings enrich our understanding of the physiological effects of VD and its role

in disease prevention, and provide useful insights about its potential as a treatment agent. In this
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study, we identified the canonical pathway intestinal immune network for IgA production
(hsa04672) as upregulated by VD signaling. This is the first report suggesting that VD may
enhance B cell function and antibody production. The pathway indicates a role of VD signaling
specifically in the intestinal mucosa, where secretory IgA (slgA) is crucial in prevention of
infection, control of the enteric flora, reduction of inflammation, and is generally required for the
maintenance of immune homeostasis [599, 601, 603]. This finding is also consistent with a body
of literature ascribing protective effects of VD against inflammatory bowel disease, a condition
characterized by compromized intestinal mucosal immune homeostasis [646, 675, 676].

In order to show direct regulation by VD of over-represented genes, we screened for the
presence of VDRESs or VDR peaks from available VDR ChIP-seq studies [257, 258, 260, 964,
965]. The identification of VDRE-like sequences within VDR ChlP-seq peaks would indicate bona
fide VDR binding sites and suggest direct transcriptional regulation of target genes. In the event
no such VDRE-like motifs are present, indirect gene regulation by ligand-bound VDR may occur
via tethering to other TFs. In this context, we often observed an enrichment of ENCODE TF ChIP-
seq peaks within the VDR binding regions (see fig. 6). This could easily be tested using ChIP-re-
ChIP assays before and after knockdown/knockout of the TF under study in order to demonstrate
its direct role in VD-dependent target gene regulation. The presence of exposed LXXLL motif
through which ancillary co-factors interact with ligand-bound VDR would suggest possible
association at the VDR peak of the nuclear receptor with the TF in question. In addition, ligand-
bound VDR may bind the identified TF and elicit post-translational modifications that alter its
function, as has been shown for FOXO and MYC/MXD1 proteins [302, 304].

Notably, several genes related to immune homeostasis have no VDREs or VDR peaks
implying that their regulation by VD may be a secondary event (table 1). Alternatively, looping
events may account for VDR-dependent regulation via distal sites or even locations on different
chromosomes. In future studies, Hi-C datasets from relevant cell lines can be examined to catalog
associations of the TSSs of selected genes with distal locations. The presence of VDR ChlP-seq
peaks and VDRE-like sequences at the latter sites would suggest direct transcriptional regulation
and can be validated experimentally via chromatin conformation capture assays. This
complementary analysis, coupled to the findings presented in this study, will substantially improve
our understanding of the genomic effects of VD and may offer useful insights in understanding

the underpinnings of its tissue- and species-specific actions.
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Experimental Procedure

Data collection

The Gene Expression Omnibus (GEO) public repository was searched for studies using the
keyword “vitamin D.” All gene expression studies examining the effects of VD and its metabolites
or calcitriol analogs, for which the raw data were available, were included. Studies in VDR

knockout mice were excluded from the analysis.

Gene expression analysis

All gene expression analyses were performed using the R statistical package. To get signal
intensities from CEL files of Affymetrix microarrays, the oligo package was used and data was
normalized and summarized using the Robust Multi-Array Average (RMA) method, part of the
oligo package. Illumina raw input was summarized using Illumina’s BeadStudio or GenomStudio.
Illumina, Agilent, Nimblegen, and custom arrays were normalized using the Linear Models for
Microarray Data (LIMMA) package in R. RNA-seq raw files (SRA) were downloaded using
Aspera and converted to reads in fastq format by the fastq-dump function in the sratoolkit suite
from NCBI. A genome index was built based on human/mouse genomes, provided by Calcul
Quebec high-performance computing (HPC) cluster at McGill University, Guillimin, using the
Rsubread package. The latter was also employed to align RNA-seq reads in order to obtain read
counts based on the “seed-and-vote” paradigm. The resulting data was formatted for downstream
analysis using functionalities in the package EdgeR. RNA-seq data manipulation was done on
Guillimin. Differential gene expression for microarray and RNA-seq data was assessed using the
LIMMA package. LIMMA was chosen for RNA-seq studies as well, rather than the commonly used
Cuffdiff method from the Tuxedo suite. The latter appears to perform much worse compared to the
former, particularly in situations featuring small number of replicates [963]. Annotation including
human orthologs for mouse genes was performed via the biomaRt package, an interface to the

BioMart databases at Ensembl.

Enrichment analyses

Enrichment analysis and visualization was performed using the clusterProfiler package
[966]. Lists of significantly, differentially regulated genes (fold change > 1.5 and p-value < 0.1)
for each dataset were generated as the basis for further analysis. Enrichment for disease ontology
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(DO) and for canonical pathways (Kyoto Encyclopedia of Genes and Genomes; KEGG) terms
based on the hypergeometric test was performed using clusterProfiler, which also calls the
package DOSE. Enrichment analysis for gene ontology (GO) terms, on the other hand, relied on
Fisher’s exact test and the topGO package. Note that the gene universe was taken to be all known
genes rather than expressed/measured genes for each dataset. Graphical representation of the
enrichment results was done with the aid of clusterProfiler. The package pathview was used for
data integration and visualization of the gene expression results. Although the change in expression
of certain genes displayed in the KEGG pathway is more than 3-fold, the fold change was manually

set to 3 for clarity.

Selection and representation of over-represented and overlapping genes

Lists of differentially expressed genes from same-cell-type datasets were combined and
filtered in such a way as to exclude genes that appear as both up- and down-regulated. In order to
quantify the overlap between human and mouse over-represented genes, mouse differentially
expressed genes were annotated with the names and gene IDs for their human orthologs. The
overlap is illustrated using Venn diagrams implemented by the VennDiagram package in R. The
distribution of the number of appearances of each over-represented gene in same-cell-type datasets
is shown by violin plots (displaying the probability density at each value) through the vioplot
package in R.

ChlP-seq VDR binding locations

Results of published VDR ChlP-seq studies [257, 258, 260, 964, 965] were obtained in
order to extract genome-wide locations of VDR peaks indicative of VDR binding. Note that no re-
analysis of the raw data was performed in this case. BED files were generated and loaded into the
UCSC Genome Browser for visualization. The genome build (hgl8 or hg19) was selected based
on the version used as reference in the corresponding study. Additional features obtained from
studies conducted by the Encyclopedia of DNA Elements (ENCODE) Consortium and relevant to
regulation of gene expression were added: DNasel hypersensitivity clusters denoting open
chromatin regions, H3K4mel and H3K27ac indicative of enhancer elements, TF ChlP-seq

locations, and conservation tracks for rhesus and mouse genomic regions.
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Figure 1. Gene enrichment for Disease Ontology in human datasets. Lists of significantly
regulated genes for each human dataset were used to perform a disease ontology enrichment
analysis. The top 5 categories for each dataset are displayed. The datasets (x-axis ticks) are grouped
based on cell type, as indicated. p.adjust — Benjamini-Hochberg p-value adjusted for multiple

testing; count — number of genes per category.
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Figure 2. Gene enrichment for Biological Processes Ontology in human datasets. Lists of
significantly regulated genes for each human dataset were used to perform a gene ontology
enrichment analysis for biological processes. The top 5 categories for each dataset are displayed.
The datasets (x-axis ticks) are grouped based on cell type, as indicated. p.adjust — Benjamini-

Hochberg p-value adjusted for multiple testing; count — number of genes per category.
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Figure 3. Gene enrichment for Biological Processes Ontology in mouse datasets. Lists of
significantly regulated genes for each mouse dataset were used to perform a gene ontology
enrichment analysis for biological processes. The top 5 categories for each dataset are displayed.
The datasets (x-axis ticks) are grouped based on cell type, as indicated. p.adjust — Benjamini-

Hochberg p-value adjusted for multiple testing; count — number of genes per category.

138



A B C

GO_BP human GO_BP mouse GO_BP human epithelium

myeloid - -

1738

\ -
GO/'BP mouse
yp’ilhclium

O_BP human

myeloid

GO_BP mouse

Figure 4. Overlap of enriched Biological Processes between human and mouse. Lists of
statistically significantly (p.adjust < 0.05) enriched biological processes across all datasets for
human and for mouse were compiled. The overlap in biological processes for all cell types (A),
myeloid (B), or epithelial (C) cells is illustrated using Venn diagrams. The digits in each diagram

indicate the number of biological processes.

139



datasets

15
1

10

5

DOWN

Human DCs

Human monocytic

mouse
epithelium 6
J— .
395
AN Hl.}_rr'iﬁn epithelium
D gulated Overlapping Gene Occurences
1 (ARHGAP31) / 68
1 (ANLN) /& ‘
' T T
epithelial-21 DCs-3 monocytic=19

D

F

H

datasets

Human DCs

15
1

10

5

Human monocytic

Human epithelium

454

/.

“mouse
epithelium

Upregulated Overlapping Gene Occurences

-1 15/124

epithelial-21

T
DCs=3

monocytic=19

140



Figure 5. Over-represented gene overlap between human and mouse same-cell-type datasets.
Lists of over-represented down- or upregulated genes for each cell type were compiled for human
and mouse. Venn diagrams illustrate the intersection of down- (A, C, and E) or upregulated (B, D,
and F) over-represented genes between human and mouse dendritic (A and B), monocytic (C and
D), and epithelial (E and F) cells. (G and H) The violin plots illustrate the distribution of the
number (y-axis) of same-cell-type datasets where an overlapping over-represented gene is either
exclusively down- (G) or upregulated (H). The digits next to each plot indicate the number of

genes seen in more than 5 datasets.

141



INTESTINAL IMMFAE NETWORK FOR Igh PRODUCTION -l——l l | !-

Buctern '3 0 3

et S\

|/

[\/& A\ / YA AVAN /'\JU \/\ N YAVA! /\ AVAYA J'\ [\[ \J' W\ ‘ YAVAY, ‘/'\f VAVAY [AVAYAY, WAVAVAVAVAVAVAVA

M | /'\ /\ / \

~ ~ .
401010/00) 0/0/010)0)
Ioolated ymepheud folicks m“u:;z;m

'vﬁ ...\‘n //\\ [ — —
| |4’(ﬁ i [i T
\/ / l* ’

/ Igh+Borl Igh+ plasmabisst
/ I
/
Ledboryte Teonzul ool iemattion
\ /a olpbnt Sacoradeon | Swsendstielal mgetion ] Hosang | |
o] | Cesibmabens —_— —
/ Somate ypemutation /

73| ighyimacl
L]
Pepels puich T

/
/
/’/_\\ /\\ Luza progea stoma cell
]—> K _— ( L {1
/ \ /
oA
o e

Class swich moonbaatyn
Somssty ypermatation

JV-A

Lz propon stomt ool

Data on KEGG graph
Rendered by Pathview

Figure 6. Intestinal immune network for IgA production. This KEGG canonical pathway
constructed using over-represented genes across all human datasets depicts the intestinal immune
network for IgA production, where each node represents a gene regulated in the corresponding cell
type. “*’ indicates lack of correspondence to the illustrated cell type: BAFF was induced in T cells
rather than DCs and MADCAML — in epithelial rather than endothelial cells, for which there were
no available datasets. The fold change limit was set to 3 for clarity despite some genes being

upregulated more than 3-fold by vitamin D.
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VDREs VDR ChiP-seq peaks

Consensus VDRE
Cell Type |Function |GeneName |AGGTCAnnnAGTTCA |VDRE - single mismatch THP-1 Limphoblastoid 15180 HSCs
DCs < CD80 one one one promoter/intron
T ,2 (D28 one -7.5kb/-8.2kb one promoter/-20kb intron intron
B X CD40 one one one -5kb/-7kb one one
B () TNFRSF17 il one one -20kb/promoter/intron [j[J[: one
B E g CXCR4 one -7.9b one -15kb ohe one
B 8 ..3 ITGB7 one one one promoter one one
B g:J 35 CCR10 one -106/-380/-2583/-9591 one -30kb one one
Fib 59 ocn 4389 one one one one
T E S TNFSF3B [ one one one one one
Epit g <uf.o CCL25 one "+1180 one -30kb/promoter one one
Mono/DC @ = IL10 one one one -12kb/-10kb/intron one one
Mono/DC g IL6 one -4.6kb/-1.7kb/+1.8kb/+3.6kb/+4kb  -100kb one one one
Epit 8 TGFB2 one -9.7kb/-2.2kb/+4.8kb one one -400kb/+400kb one
Epit/Fib g TGFB3 one +103/+301/+1.2kb/+3.6kb one intron one one
Epit MADCAM1 [{[Ji: one one promoter/+2kb one one
Epit TGFBR2 one -196 one one one -60kb
Epit CDH6 one +2.8kb one one one one
Epit > CADM3 one one one one one one
Epit £ K4 one -2.2kb/-3.6kb/-9.7kb one one one one
Epit 3 poPN one +3.5kb one one one one
Epit € HMCNL one -1.6kb one promoter/intron introns one
Epit = CCDC8se one -9.3kb one promoter/intron -10kb one
Fib g NKD1 -2kb one intron one one one
Epit g ITGB6 one +2.2kb/+3.3kb one one intron one
Epit COL16A1 one -7.9kb/-6.6kh/-3.8kb/+1.8kb/+2.9kb/ intron one one intron
Epit SERPINBY  [11o)1: one one -40kh/-60kb one one
Epit SERPINBL  [{[¢][: +3.2kb/+3.3kb one -6kb promoter one
PBMC/Epit
[Myel O LPARL one -7.4kb one intron one one
Mono § TREM1 one one promoter  +20kb one promoter
Epit/Myel 5 LGALSO [yl -216/+1.7kb/+2.8kb one -30kb/+7kb one one
PBMC ® OSM -6.6kb -7.8kb/-7.9kb one one one ohe
Epit/Myel " ccL2 none one one -60kb one -10kb/promoter
MF £ ccs +155 one one one one one
DC g CCL22 one -505/+5kb promoter -20kb one one
MF ﬁ cxcLs one one +20kb/+30kb [1 0 promoter
Gran 'g CXCR2 one -7kb/+214/+1.7kb one one one one
Gran 8 IcAamL one one one one one one
T qE) OXCR3 [T 5.3kb/+4.6kb one Skb one ohe
Mono S ITeAam one -6.7kb promoter  [ylel: one one
Myel CD93 one one -50kb/-80kb [l [: -100kb -80kb
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Table 1. Over-represented genes regulated by vitamin D and implicated in immune
homeostasis. Genes from the intestinal immune network for IgA production were combined with
over-represented genes across human datasets that are linked to biological processes related to
immune homeostasis. Associated VDRESs, VDR ChIP-seq peaks, and their distance to the TSSs of
adjacent genes are also included in this table. Grey — lack of VDR peaks or VDREs in the
corresponding cell type; yellow — presence of VDRES or VDR peaks in the corresponding cell
type; blue highlight — selected novel genes regulated by VD; red — low p-value for gene expression

in individual datasets; bold — novelty regarding gene regulation in the corresponding cell type.
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Figure 7. Potential VDR binding sites at genes implicated in intestinal immune network for
IgA production. The locations of VDREs (green) and of VDR peaks (purple, red, and orange)
from published ChIP-seq studies were represented using the UCSC Genome Browser and are
highlighted in blue. The identified VDRE sequences in the vicinity of the CXCR4 and CCL25
genes are shown on the left-hand side, along with the logo representing the frequency matrix for
the VDRE obtained from JASPAR. Capitalized letters indicate appropriate corresponding DR3
nucleotides whereas lower case letters designate a mismatch. DR3-like VDRE motifs were not
identified in VDR-bound regions of CD40 and TNFRSF17.
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Figure S1: Gene enrichment for Cellular Components ontology in human datasets. Lists of
significantly regulated genes for each human dataset were used to perform a gene ontology
enrichment analysis for cellular components. The top 5 categories for each dataset are displayed.
The datasets (x-axis ticks) are grouped based on cell type, as indicated. p.adjust — Benjamini-

Hochberg p-value adjusted for multiple testing; count — number of genes per category.
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Figure S2: Biological Processes implicated in immune homeostasis in human datasets. Of the
entirety of all enriched biological processes in human datasets (see fig. 2), only ones related to
immune homeostasis were selected. These include categories implicated in cell-cell/cell-matrix
contact, wound healing, adhesion, extra-cellular matrix organization, migration, chemotaxis,
homing, and activation. The top 5 categories for each dataset are displayed. The datasets (x-axis
ticks) are grouped based on cell type, as indicated. p.adjust — Benjamini-Hochberg p-value

adjusted for multiple testing; count — number of genes per category.
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Figure S3: Biological Processes implicated in immune homeostasis in mouse datasets. Of the
entirety of all enriched biological processes in mouse datasets (see fig. 2), only ones related to
immune homeostasis were selected. These include categories implicated in cell-cell/cell-matrix
contact, wound healing, adhesion, extra-cellular matrix organization, migration, chemotaxis,
homing, and activation. The top 5 categories for each dataset are displayed. The datasets (x-axis

ticks) are grouped based on cell type, as indicated. p.adjust — Benjamini-Hochberg p-value
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Figure S4: Distribution of gene occurrences in human same-cell-type datasets. The violin
plots illustrate the distribution of the number (y-axis) of same-cell-type datasets where an over-
represented gene is either exclusively down- (A) or upregulated (B). The digits next to each plot

indicate the number of genes seen in more than 5 datasets.
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Dataset Species Tissue Cell type GEO accession  Ref.

E.Br.20h.1 H. sapiens Epithelium SkBr3 GSE19670 [967]
E.Br.24h.1 H. sapiens Epithelium MCF7 GSE53975 NA
E.Br.24h.2 H. sapiens Epithelium MDA-MB-31 GSE53975 NA
E.Br.24h.3 H. sapiens Epithelium Primary breast GSE27220 NA
cancer
E.Br.24h.4 H. sapiens Epithelium Primary breast GSE27220 NA
cancer
E.Br.30d.1 H. sapiens Epithelium Primary breast GSE35925 [968]
cancer
E.Br.50h.1 H. sapiens Epithelium SkBr3 GSE19670 [967]
E.Br.8h.1 H. sapiens Epithelium SkBr3 GSE19670 [967]
E.Corn.6h.1 H. sapiens Epithelium Primary corneal GSE72662 [969]
E.Liv.36h.1 H. sapiens Epithelium HEPG2 GSE22176 [257]
E.Liv.8h.1 H. sapiens Epithelium HEPG2 GSE22176 [257]
E.Lu.24h.1 H. sapiens Epithelium Lung GSE46749 [970]
E.Pan.3d.1 H. sapiens Epithelium Pancreas GSE43770 [971]
adenocarcinoma
E.Pan.7d.1 H. sapiens Epithelium Pancreas GSE43770 [971]
adenocarcinoma
E.Pr.24h.1 H. sapiens Epithelium LNCaP GSE60956 NA
E.Pr.24h.2 H. sapiens Epithelium prostosphere GSE60956 NA
E.Pr.24h.3 H. sapiens Epithelium RWPE1 GSE15947 [257]
E.Pr.48h.1 H. sapiens Epithelium RWPE1 GSE15947 [257]
E.Pr.48h.2 H. sapiens Epithelium LNCaP GSE17461 [972]
E.Pr.48h.3 H. sapiens Epithelium LNCaP GSE17461 [972]
E.Pr.6h.1 H. sapiens Epithelium RWPE1 GSE15947 [257]
F.Co.48h.1 H. sapiens Fibroblast Colon fibroblasts ~ GSE70468 [973]
(healthy)
F.Co.48h.2 H. sapiens Fibroblast Colon fibroblasts ~ GSE70468 [973]
(tumour)
F.F.36h.1 H. sapiens Fibroblast AG09309 GSE22176 [257]
F.F.36h.2 H. sapiens Fibroblast AG09309 GSE22176 [257]
F.F.8h.1 H. sapiens Fibroblast AG09309 GSE22176 [257]
F.F.8h.2 H. sapiens Fibroblast AG09309 GSE22176 [257]
L.B.24h.1 H. sapiens B cells B cells GSE22523 [974]
L.B.36h.1 H. sapiens B cells GMO07019 GSE22176 [257]
L.B.36h.2 H. sapiens B cells GMO07348 GSE22176 [257]
L.B.36h.3 H. sapiens B cells GM12878 GSE22176 [257]
L.B.36h.4 H. sapiens B cells GM18054 GSE22176 [257]
L.B.36h.5 H. sapiens B cells GM10855 GSE22172 [257]
L.B.36h.6 H. sapiens B cells GM10855 GSE22172 [257]
L.B.36h.7 H. sapiens B cells GM10861 GSE22172 [257]
L.B.36h.8 H. sapiens B cells GM10861 GSE22172 [257]
L.B.8h.1 H. sapiens B cells GMO07019 GSE22172 [257]
L.B.8h.2 H. sapiens B cells GMO07348 GSE22172 [257]
L.B.8h.3 H. sapiens B cells GM12878 GSE22172 [257]
L.B.8h.4 H. sapiens B cells GM18054 GSE22172 [257]
L.Pbmc.24h.1 H. sapiens PBMCs PBMCs GSE50012 [975]
L.Pbmc.24h.2 H. sapiens PBMCs PBMCs GSE50012 [975]
L.Pbmc.2M.1 H. sapiens PBMCs PBMCs GSE36941 [622]
L.Pbmc.6h.1 H. sapiens PBMCs PBMCs GSE82023 [976]
L.Pbmc.8h.1 H. sapiens PBMCs PBMCs GSE50012 [975]
L.Pbmc.8h.2 H. sapiens PBMCs PBMCs GSE50012 [975]
L.T.10d.1 H. sapiens T cells T cells GSE23984 [977]
L.T.2d.1 H. sapiens T cells T cells GSE6743 [548]
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Dataset Species Tissue Cell type GEO accession Ref.

L.T.2d.2 H. sapiens T cells T cells GSE6743 [548]

L.T.2d.3 H. sapiens T cells T cells GSE6743 [548]

M.APC.12h.1 H. sapiens myeloid Monocyte-derived GSE13762 [978]
DCs

M.APC.12h.2 H. sapiens myeloid Monocyte-derived GSE23073 [979]
DCs

M.APC.18h.1 H. sapiens myeloid Monocytes GSE46268 [980]

M.APC.24h.1 H. sapiens myeloid THP-1 GSE52819 [3]
(macrophage)

M.APC.24h.10 H. sapiens myeloid Monocytes GSE78083 [981]

M.APC.24h.2 H. sapiens myeloid THP-1 GSE52819 [3]
(macrophage)

M.APC.24h.3 H. sapiens myeloid Monocytes GSE56490 NA

M.APC.24h.4 H. sapiens myeloid THP-1 GSE57028 [982]
(macrophage)

M.APC.24h.5 H. sapiens myeloid THP-1 GSE57028 [982]
(macrophage)

M.APC.24h.6 H. sapiens myeloid THP-1 GSE60102 [983]
(monocyte)

M.APC.24h.7 H. sapiens myeloid Monocytes GSE78083 [981]

M.APC.24h.8 H. sapiens myeloid Monocytes GSE78083 [981]

M.APC.24h.9 H. sapiens myeloid Monocytes GSE78083 [981]

M.APC.3M H. sapiens myeloid Alveolar GSE56583 [984]
macrophages

M.APC.4h.1 H. sapiens myeloid Monocytes GSE56490 NA

M.APC.4h.2 H. sapiens myeloid THP-1 GSE27270 [258]
(monocyte)

M.APC.5d.1 H. sapiens myeloid Monocyte-derived GSE13762 [978]
DCs

M.APC.90min.1 H. sapiens myeloid THP-1 GSE36323 [985]
(monocyte)

M.APC.90min.2 H. sapiens myeloid THP-1 GSE36323 [985]
(monocyte)

M.Gran.36h.1 H. sapiens myeloid K562 GSE22172 [257]

M.Gran.8h.1 H. sapiens myeloid K562 GSE22172 [257]

M.Neutr.36h.1 H. sapiens myeloid HL-60 GSE22172 [257]

M.Neutr.72h.1 H. sapiens myeloid HL-60 GSE67826 [986]

M.Neutr.8h.1 H. sapiens myeloid HL-60 GSE22172 [257]

Musc.Skel.24h.1 H. sapiens muscle Skeletal (vastus GSE69698 [987]
lateralis)

Musc.Skel.48h.1 H. sapiens muscle Skeletal (vastus GSE68323 [988]
lateralis)

Musc.Smooth.24h.1 H. sapiens muscle Bronchial smooth ~ GSE5145 [989]
muscle

0.HSC.4h.1 H. sapiens HSCs Umbilical cord GSE86098 NA
HSCs

0O.Test.24h.1 H. sapiens testes Testicular cells GSE55207 [990]

0O.Test.24h.2 H. sapiens testes Testicular cells GSE55207 [990]

Supplementary table 1: Datasets included in the meta-analysis. All datasets included in the
analysis with associated GEO accession number and publication reference, if applicable.
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Gene.Name
AZM
AREG
KLF5
CBR3
CENPE
FHL2
HNRNPH3
IL1IR1
LY75
DCAF5
ZEB2
FARP2
TRIOBP
TRIM32
SIRT1
ABHD12
KRCC1
WAC
SLC47A1
DENND4C
LIN37
EIFAENIF1
ARHGAP31
ISL2
SLC38A1
RAB33B
RNF144B

Gene.ID

2

374
688
874
1062
2274
3189
3554
4065
8816
9839
9855
11078
22954
23411
26090
51315
51322
55244
55667
55957
56478
57514
64843
81539
83452
255488

Supplementary table 2: Downregulated overlapping genes in human vs. mouse DCs. Gene

symbol and Entrez gene ID for all overlapping downregulated genes between human and mouse

DC datasets.
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Gene.Name

C1QA
CDA
CRABP2
CYBB
F3

FBP1
FOSL2
G6PD
IFIT2
LGALS9
NDUFA9
CCL8
XPC
CIDEB
COQ4
TLR8
TIPIN
EFL1
TMEM53
FASTKD1
ECHDC3
ACSS1
PLD4

TMEM205

Gene.lD

712
978
1382
1536
2152
2203
2355
2539
3433
3965
4704
6355
7508
27141
51117
51311
54962
79631
79639
79675
79746
84532

122618
374882

Supplementary table 3: Upregulated overlapping genes in human vs. mouse DCs. Gene

symbol and Entrez gene ID for all overlapping upregulated genes between human and mouse DC

datasets.
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Gene.Name Gene.ID Gene.Name Gene.ID

AZM 2 SIRT1 23411
AREG 374 ABHD12 26090
RHOB 388 PLEK?2 26499
KLF5 688 CNPPD1 27013
CBR3 874 TRIB2 28951
CENPE 1062 GPR132 29933
CREB1 1385 KRCC1 51315
DGKA 1606 WAC 51322
EGR1 1958 NDFIP2 54602
FHL2 2274 BSPRY 54836
FLT3 2322 CENPQ 55166
HIVEP1 3096 SLC47A1 55244
HNRNPH3 3189 MNS1 55329
ILIR1 3554 BATF3 55509
LY75 4065 ZNF416 55659
NPR1 4881 DENNDA4C 55667
SGK 6446 BEX1 55859
TMOD1 7111 LIN37 55957
TRAF1 7185 EIFAENIF1 56478
TNFRSF11A 8792 KIAA1147 57189
DCAF5 8816 ARHGAP31 57514
CD83 9308 FANCM 57697
ZEB2 9839 MID1IP1 58526
FARP2 9855 ISL2 64843
IRXS5 10265 MRPL40 64976
IKZF1 10320 SLC38A1 81539
ARIDSA 10865 ITM2C 81618
TRIOBP 11078 RAB33B 83452
TRIM32 22954 SLF1 84250
SPIN4 139886 OTULIN 90268
SYNPO2 171024 H2AFV 94239
RNF144B 255488 FAM129A 116496
SNAI3 333929 IBRDC3 127544
NRROS 375387 PPM1M 132160

Supplementary table 4: Downregulated overlapping genes in human vs. mouse monocytic
cells. Gene symbol and Entrez gene ID for all overlapping downregulated genes between all human
monocytic and mouse DC datasets.
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Gene.Name Gene.ID Gene.Name Gene.ID

C1QA 712 SLC25A11 8402
C3AR1 719 YARS 8565
CDA 978 LRPPRC 10128
CEACAMS8 1088 NUP210 23225
CRABP2 1382 USP49 25862
CSF3R 1441 MMACHC 25974
CYBB 1536 CIDEB 27141
F3 2152 DBNL 28988
FBP1 2203 POMT2 29954
FOSL2 2355 COQ4 51117
G6PD 2539 TLR8 51311
HFE 3077 TIPIN 54962
IFIT2 3433 TBC1D23 55773
ILIORA 3587 PORCN 64840
IRF7 3665 EFL1 79631
LGALS9 3965 TMEM53 79639
MRC1 4360 FASTKD1 79675
NCF2 4688 ECHDC3 79746
NDUFA9 4704 GRPEL1 80273
OAS2 4939 ACSS1 84532
PDHA1 5160 DPH6 89978
CFP 5199 PLD4 122618
PLCB2 5330 C9orf72 203228
RPS3A 6189 JMJD8 339123
CCL8 6355 TMEMZ205 374882
SRM 6723 SLC27A1 376497
XPC 7508 LGALS9C 654346

Supplementary table 5: Upregulated overlapping genes in human vs. mouse monocytic cells.
Gene symbol and Entrez gene ID for all overlapping upregulated genes between all human

monocytic and mouse DC datasets.
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Gene.Name Gene.ID

CDC20 991
CTGF 1490
PLK1 5347
KIF23 9493
ANLN 54443
KIF18A 81930

Supplementary table 6: Downregulated overlapping genes in human vs. mouse epithelial
cells. Gene symbol and Entrez gene ID for all overlapping downregulated genes between human
and mouse epithelial datasets.
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Gene.Name Gene.ID

ACAAl 30
ALAS1 211
ALPI 248
AMBP 259
AREG 374
RHOC 389
ENTPD5 957
CEBPD 1052
CHNZ2 1124
CLCN5 1184
ABCC2 1244
CLDN4 1364
CTSS 1520
CYP2C9 1559
CYP4A1ll 1579
CYP24A1 1591
DPYD 1806
DUSP6 1848
EMP1 2012
FBP1 2203
FGF10 2255
GIP 2695
GNAL 2774
GNB1 2782
GRIN1 2902
PDIA3 2923
HIF1A 30901
HLA-F 3134
IL13RA1 3597
PDX1 3651
KRT7 3855
LY75 4065
MEP1A 4224
NDUFA3 4696
PDZK1 5174
PFDN4 5203
POR 5447
PPARD 5467
PPP3CA 5530
SRGN 5552
PTGS2 5743
ASAH2B 653308

Gene.Name Gene.lD
PTPRJ 5795
RASA2 5922
ACSM3 6296
SHMT1 6470
SLPI 6590
SULT1C?2 6819
TLE3 7090
SLC30A2 7780
RNF103 7844
GPR65 8477
CDC14A 8556
ALDH4A1 8659
SLC4A4 8671
ILIRL1 9173
GDA 9615
RAB11FIP3 9727
HEPH 9843
RECS8 9985
GLRX3 10539
AGPAT2 10555
HSPH1 10808
ABHD?2 11057
ATE1 11101
NT5C2 22978
ICOSLG 23308
STX12 23673
NOX1 27035
CHIA 27159
STK39 27347
SERTAD1 29950
GDE1 51573
UPB1 51733
CDHR5 53841
ERRFI1 54206
GFOD1 54438
CDHR2 54825
GDPD2 54857
PPP1R14D 54866
RETSAT 54884
TTC22 55001
PLEKHG6 55200
GGT2 728441

Gene.Name Gene.lID
KCNQ5 56479
PLSCR2 57047
ENTPD7 57089
PCDH10 57575
PBLD 64081
ATL2 64225
AKTIP 64400
EPS8L2 64787
YTHDC2 64848
VWA1 64856
MARCKSL1 65108
MPPE1 65258
RBM42 79171
CRELD2 79174
LONRF3 79836
PGAP1 80055
CcOoQ10B 80219
FAM214B 80256
STARD5 80765
APOL3 80833
CALN1 83698
B3GNT5 84002
TRIM5 85363
GGTLC1 92086
SYAP1 94056
FAMA43A 131583
EMB 133418
NADK?2 133686
C6orf141 135398
TRPM6 140803
TRPM6 140803
TTC39B 158219
SPTSSA 171546
ABHD3 171586
ANO5 203859
B4GALNT3 283358
RNF149 284996
FAM78A 286336
SLC6A19 340024
FAM102A 399665
SMIM22 440335
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Supplementary table 7: Upregulated overlapping genes in human vs. mouse epithelial cells.
Gene symbol and Entrez gene ID for all overlapping upregulated genes between human and mouse

epithelial datasets.
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CHAPTER 5
DISCUSSION

The results presented in this thesis demonstrate the capacity of VD to induce anti-microbial
innate immune responses, dampen T cell-mediated inflammation, and potentially enhance
intestinal sIgA production by B cells. Together these findings suggest an important role of VD in
immune homeostasis particularly at mucosal surfaces, which are constantly exposed to
immunogenic challenges. While the mucosa encompasses a range of body compartments, the main
focus of the discussion is on the gastrointestinal and respiratory tracts. The gut mucosa is of
particular interest as it harbours a plethora of commensal bacteria, potentially harmful microbes,
and food antigens, which could lead to the development of allergy or inflammation if
inappropriately triggered immune responses occur. Therefore, a fine balance between tolerance
and anti-microbial immune activity is crucial for the maintenance of adequate gut immune
homeostasis and for prevention against chronic conditions such as allergies and inflammatory
disorders. The regulation of components of such immune homeostatic mechanisms by VD,
however, appears to be species-specific, a finding that has important implications for the use of
mouse models for in vivo assessment of VD signaling events discovered and characterized in
human experimental systems.

The differences in the genomic effects of vitamin D between human and mouse also raise
interesting questions from evolutionary standpoint. As pointed out earlier, mice are nocturnal or
crepuscular, whereas humans are diurnal creatures. The reliance on UV-dependent regulation of
physiological functions, therefore, is not surprising in the latter case. Interestingly, a large
proportion of these functions are conserved in mouse (see Chapter 4), which is incongruous with
the fact that vitamin D synthesis via skin exposure to sunlight may be minimal due to the presence
of fur and nocturnality/crepuscularity. However, as omnivores, mice may consume foods rich in
vitamin D, such as mushrooms and other fungi (vitamin D2) and may thus be able to reach
concentrations sufficient to activate the VDR in order to regulate these biological processes.
Alternatively, these physiological functions may be remnants from an early ancestor. Information
about the last human/mouse common ancestor is lacking, but since rodents and primates diverged
about 96 million years ago, when dinosaurs were not yet extinct, it was probably nocturnal like

most mammals. This implies that the conserved vitamin D-dependent biological processes
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between human and mouse may have been retained from an even earlier evolutionary predecessor.
Consistent with this notion, it has been shown that vitamin D signaling negatively impacts
hematopoietic stem cell production in zebrafish (diurnal sleep habits) [991]. Another interesting
notion that may account for differences in vitamin D-dependent gene regulation between human
and mouse is the location of small interspersed nuclear elements (SINEs). While both primate Alu
and rodent B1 SINEs originated prior to the primate/rodent split around 80 million years ago, they
later spread independently in the two genomes [992]. In this context, the VDR may have acquired
new targets in human as VDRE motifs may be embedded within these SINEs [2], an aspect of

vitamin D signaling that is still underexplored.

Gastrointestinal Tract

The gut is an active site of vitamin D signaling. Importantly, all cell populations there
(epithelial, myeloid, and lymphoid) possess CYP27B1 activity [388, 390, 391], which is not
subject to Ca?* or PO4> homeostatic regulatory signals, unlike its renal counterpart [910, 929].
This suggests that 1,25D can be produced locally and act not only in an intracrine, but also in an
autocrine/paracrine manner to regulate the VDR. Interestingly, a study by Wagner and colleagues
did not find any correlation between colonic 1,25D and circulating 25D levels [398]. Instead,
calcitriol was present in colonic tissue at physiologically relevant concentrations, and was partially
correlated with serum 1,25D. However, the lower correlation coefficient along with the lack of
DBP in the colonic tissue is consistent with some degree of local production. In addition, there are
important limitations in this study: low serum 25D (62 nmol/L) in this patient population and small
quantities of colon tissue precluding measurement of 1,25D and 25D levels separately in colon
mucosa and muscularis.

In addition to CYP27B1, the VDR is also present in resident immune and intestinal
epithelial cells [393-396]. In fact, the latter have the highest levels of VDR compared with other
tissue and cell types [396], which implies that they are poised to respond rapidly to local calcitriol.
The presence of CYP27B1 activity and the VDR in intestinal cell populations suggests that VD
signaling at this site is important. Indeed, a number of studies have attributed a role to calcitriol in
enhancing intestinal epithelial barrier function [276, 394, 416, 417, 626] and promoting IEC

differentiation while reducing apoptosis particularly in inflammatory settings [394, 419]. In line
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with these observations, our bioinformatic meta-analysis also revealed significant clustering of
epithelial datasets for categories related to epithelial barrier integrity, namely cell-cell and cell-
substrate contacts, as well as extracellular matrix organization and wound healing. In addition, a
number of epithelial over-represented genes upregulated by VD play a role not only in promoting
adequate barrier function, but also in protection against tissue damage. Examples of such genes
are ones encoding for serine protease inhibitors (serpins). Interestingly, two over-represented
members of this family — SERPINB1 and SERPINB9 — limit collateral tissue damage at
inflammatory sites. SERPINBO neutralizes CTL-derived granzyme B [993], whereas SERPINB1,
neutrophil-derived proteinases [994]. In fact, the latter was shown to reduce the formation of
NETSs, to promote neutrophil survival [995], and its knockout in mouse neutrophils resulted in
failure to clear infections [996, 997]. These novel findings complement studies showing that VD
acts directly on neutrophils to inhibit NETosis [535] and provide a potential alternative mechanism
whereby this inhibition is mediated via epithelial cells. In addition, VD seems to stimulate
neutrophil recruitment by coordinated upregulation of two over-represented genes — the
chemoattractant CXCLS8 and its receptor CXCR2 — in macrophages and neutrophils themselves,
respectively. Neutrophils express the VDR, but, unlike most other immune cells, lack CYP27B1
activity, which renders them reliant on locally produced calcitriol. Macrophages, on the other hand,
are capable of converting circulating 25D to 1,25D and the rate of this reaction is stimulated by
activation (e.g. LPS or HIV gp120) [998]. Therefore, locally produced calcitriol can act in a
paracrine fashion on the neutrophils recruited in the vicinity. This crosstalk between epithelial
cells, macrophages, and neutrophils highlights the highly coordinated actions of VD when the
entire system, such as the mucosa in this case, is considered.

Interestingly, human anti-microbial peptides — cathelicidin, a- and -defensins — have also
been demonstrated to suppress neutrophil apoptosis [999]. We and others have shown that
calcitriol stimulates expression of the PRR NOD2, and the antimicrobial peptides CAMP and
HBD2 in human but not mouse epithelial and monocytic cells, which was accompanied by
dramatic suppression of E.coli growth [2, 4, 5, 551, 909]. Induction of these innate immune
signaling mediators is important not only for protection against pathogenic threats but also for
control of the enteric flora and prevention against overgrowth of the commensal bacteria, which
are often resistant to a number of constitutive but not inducible AMPs [1000]. These actions are

crucial for gut immune homeostasis. NOD2, CAMP, and HBD2 have also been shown to stimulate
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autophagy [483, 1001, 1002], which is a process important not only in clearance of pathogenic
bacteria, but also in collateral host damage prevention and is therefore contributory to achieving
homeostasis [482, 1003]. It has been suggested that autophagy be pursued as an avenue of
reversing sepsis [1004], which is characterized by impaired innate immunity, tissue damage, and
excessive inflammation [1003]. Sepsis may also be amenable to significant reduction via
manipulation of another VD-controlled immune homeostatic mechanism, namely PD-L/PD-1
signaling (vide infra) [1005].

Another potential pathway that appears to be upregulated by VD and that plays a central
role in neutralization of harmful particles, tolerance, and control of the gut microbiota — actions
that are all contributory to immune hemostasis — is the intestinal immune network for IgA
production [601, 603, 604, 899]. Impaired IgA production has been associated with intestinal
dysbiosis [1006, 1007]. Therefore, adequate output of this pathway is important since microbial
colonization actually shapes the gut immune system at an early age and diverse microbiota has
been associated with adequate intestinal immune homeostasis in adults [1006, 1008]. Notably,
compromized VD signaling in mice has also been linked to dysbiosis and deficiencies in immune
system development [463, 530, 1009, 1010]. In humans, circulating 25D concentrations have been
associated with alterations in the composition of the enteric flora as well, resulting in a decrease
of relative abundance of several Clostridia species [1011]. The importance of VD signaling in the
regulation of the human intestinal microbiota is also highlighted by the identification of the VDR
gene as a factor influencing its composition [1012]. These parallels between the effects of IgA and
VD signaling imply that VD-dependent intestinal slgA upregulation may complement the
induction of AMPs as a mechanism responsible for control of the enteric flora. Apart from its huge
impact on immune homeostasis, the intestinal microbiota also affects brain function. The gut flora
coupled with the host immune response plays a role in the development of not only the enteric
nervous system, but also affects the central nervous system and the brain [1013]. It is not surprising
that dysbiosis has been linked to a number of neurodegenerative diseases — MS, Parkinson’s and
Alzheimer’s disease — and behavioral changes manifested in conditions as diverse as autism,
anxiety, and depression [1014]. Many of these disorders overlap with ones attributed to low
circulating VD levels [678, 1015-1017], suggesting a role of the regulation of the microbiota by
cholecalciferol as a contributory factor. The microbiome composition has also been shown to

affect drug therapeutic efficacy. For instance, the commensal Bifidobacterium promotes anti-
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tumour immunity and enhances anti-PD-L1 therapeutic efficacy in the context of cancer treatment
[1018]. This finding has important implications for checkpoint inhibitor cancer treatment. While
we showed that calcitriol stimulates PD-L1 expression, VD supplementation in conjunction with
anti-PD-L1 blocking antibodies may initiate a strong anti-tumour response.

Interestingly, IgA deficiency has been found to co-exist with autoimmune diseases, allergies
and malignancies [1019] suggesting anti-inflammatory, tolerogenic potential. It is believed to be
mediated mainly through immune exclusion of selected antigens in the gastrointestinal tract [1020]
and individuals with IgA deficiencies exhibit higher incidence of allergies [1019, 1021]. Therefore,
the notion that the tolerogenic properties of VD may be mediated partly via upregulation of IgA
production seems plausible. We also showed that calcitriol can promote immunotolerance and
inhibit T cell-dependent inflammatory responses by stimulation of PD-L1, and its paralog PD-L2,
expression [961]. This mechanism may account for the lower incidence of autoimmune and
inflammatory diseases in VD sufficient populations. In the context of the gastrointestinal tract, Pd-
I1 ablation in mouse intestinal epithelium resulted in increased inflammation, DSS- or TNBS-
induced gut injury, and development of colitis [781]. Notably, Pd-11 was found to be highly
protective against gut injury and its deficiency caused bacterial overgrowth, loss of epithelial
integrity and abolished IL-22-dependent wound healing capacity [781, 1022].

The potential effects of VD on the intestinal epithelial barrier, innate and adaptive
immunity, the microbiota, and intestinal immune homeostasis in general (vide supra) imply
potential benefits of supplementation in chronic inflammatory conditions such as IBD. The
etiology of IBD is ill-defined, but seems to encompass genetic predisposition and environmental
factors [412, 414], with dysregulated intestinal innate immunity playing a central role [902, 904].
The contribution of the enteric flora has been implicated but has yet to be clearly defined.
Increasing evidence suggests that it is important in initiation, maintenance, severity and type of
disease [411, 412, 414]. There are two major forms of IBD, Crohn’s disease and ulcerative colitis
[414]. The former could occur anywhere in the digestive tract and is characterized by a thickened
intestinal wall, patches of inflammation, and groups of small ulcers [414]. These can expand over
time and pierce the intestinal wall forming abscesses that could expand into fistulae, which may
lead to systemic spread of infection. Ulcerative colitis displays more uniform ulceration of the

mucosa and is generally restricted to the colon [414]. Both conditions are characterized by
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remission/relapse cycles with no cure. Medical treatment options include immune-suppressants,
glucocorticoids, and anti-TNF-a antibodies [1023].

A north-south gradient has been observed for IBD prevalence, which has prompted a
number of observational studies examining correlations between VD status and disease incidence
and severity. Notably, Crohn’s disease has been linked to low sun exposure [1024], and within
North America and Europe the incidence of both Crohn’s disease and ulcerative colitis rises with
increasing latitude [1025-1027]. Region of residence within USA at age 30 constituted a risk factor
[1025]. In addition, IBD prevalence in Canada, where VD deficiency is wide-spread due to the
northern climate, is the highest in the world [1028, 1029]. In line with these observations, the
overall quality of life of IBD patients seemed to correlate with circulating 25D levels [1030]. A
number of epidemiological studies confirmed the association between VD deficiency (<20 ng/ml)
and IBD incidence and severity, in particular Crohn’s disease. The Nurses’ Health study followed
72,719 women from 1986 to 2008, during which period 122 developed Crohn’s disease [1031].
Notably, higher levels of 25D were associated with significantly reduced incidence. A historic
cohort study of patients with Crohn’s disease also determined that VD deficiency was associated
with lower health-related quality of life [1032]. Levin and colleagues also concluded that low VD
status is a Crohn’s disease risk factor following a retrospective study in pediatric Crohn’s disease
population [1033], consistent with the observation that children suffering from IBD display
significantly lower levels of VD compared with healthy subjects [1034]. In addition, markers of
intestinal inflammation were inversely correlated with serum 25D in Crohn’s disease patients in
clinical remission, but not in those with active disease [1035].

In summary, there appears to be an association between low VD status and IBD. However,
data from observational studies are insufficient to determine whether this relationship is causal. In
addition, inflammation may reduce vitamin D signaling. For instance, TNF-a was shown to
downregulate VDR mRNA by activating micro-RNA (miR)-346 expression [1036]. Consistent
with this observation, Crohn’s disease patients display reduced IEC VDR levels [394, 1030].
Transgenic expression of human VDR in intestinal epithelium of 11207 mouse model of IBD,
however, inhibited experimental colitis incidence suggesting a protective role of VD signaling in
IBD [1037]. In general, VD-sufficient mice are more resistant to DSS-induced colitis compared to

deficient littermates. Supplementation also improved colitis symptoms in VVD-deficient diet-fed
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mice and Smad3” animals, where IBD was induced by exposure to Helicobacter pylori [627,
1038]. Interestingly, VD deficiency did not result in increased colitis incidence.

Not all reports support a protective role of VD in mouse models of IBD. For instance, it
was determined that treatment with 1,25D protected against DSS-induced, but exacerbated
Citrobacter rodentium-triggered colitis in mice [462, 1039]. Larmonier et al. found no effect of
dietary VD in the context of established colitis, as assessed by monitoring disease symptoms and
inflammatory cytokine expression in mice [1040]. However, the potential of VD as a therapeutic
agent in the context of chronic intestinal inflammation was highlighted in a study by Li et al.,
where intestinal macrophages were genetically modified to express Cyp27bl when in
inflammatory environment [1041]. These macrophages were protective in DSS-induced colitis in
mice without affecting serum calcium. In this context, 1,25D analogs have also exhibited
beneficial effects against IBD in mouse models [1042, 1043]. In addition, we have highlighted the
potential of calcitriol to reduce inflammation in a PD-L1-dependent fashion in humans, which
suggests that the use of non-calcemic analogs as treatment agents may be beneficial. Interestingly,
it was observed that dysbiosis, a hallmark of IBD, accompanied inflammation in IBD patients
[1012]. Therefore, VD actions related to reducing inflammation, enhancing innate immune
responses, and inducing intestinal IgA production may contribute significantly to controlling the
microbiota, which may be a valuable strategy in controlling progression and symptoms of 1BD.
Overall, the parallels of the beneficial effects of cholecalciferol, its metabolites, or analogs
between human and mouse in the context of IBD are many, which indicates that the global actions
of VD on immune homeostasis appear to overlap, as suggested by our bioinformatic meta-analysis.

A series of laboratory investigations, including our own data, also support a beneficial role
of VD in IBD. ChiIP-seq cataloguing of genomic VDR binding sites revealed loci associated with
IBD in GWAS studies — PTPN2 (IBD21) and CXCLB8/IL8. Interestingly, we found that VD
signaling upregulated expression of the CXCL8/CXCR?2 axis required for neutrophil homing. The
direct VD target gene NOD2 (IBD1) is a susceptibility locus for Crohn’s disease [484]. Moreover,
both CXCL8/IL8 and IL1B expression is controlled by NOD2 signaling [3-5, 1044]. Interestingly,
IL-1p is processed post-translationally by the inflammasome coupled to the pattern recognition
receptors NLRP3, whose gene is yet another susceptibility locus for Crohn’s disease [1045, 1046].
In fact, the VD signaling induced expression of NOD2, HBD2, CAMP, and ATG16L1, all of which

are associated with innate immune responses and autophagy, and are protective against IBD [952,
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1047-1049]. Indeed, GWAS studies have identified a large number of genes implicated in innate
immune responses as susceptibility loci for IBD [1050].

The above findings are consistent with VD deficiency contributing to the pathogenesis of
Crohn’s disease, and are generally supported by results from intervention studies. VD
supplementation in US veterans suffering from IBD was associated with a reduction in disease-
associated medical and laboratory tests, and medication use [1051]. Another study established a
link between VD supplementation and quiescence in pediatric IBD [953]. Similarly,
Ananthakrishnan et al. showed that low 25D levels were associated with increased incidence of
hospitalization and surgery in IBD patients, whereas serum 25D normalization reduced both rates
[1052]. In addition, a pilot study for VD supplementation in Crohn’s disease patients with
mild/moderate disease demonstrated that supplementation with up to 5000 1U VD per day for a
period of 24 weeks decreased symptoms and Crohn’s disease activity index, and improved quality-
of-life scores [676]. Finally, two randomized control trials [675, 952] strongly supported the
beneficial effects of VD in Crohn’s disease. In one, 84 Crohn’s disease patients in remission were
administered 1200 1U/day of VD for 12 months, which led to increased circulating 25D levels and
subsequent reduction of relapses [675]. In the other trial, Crohn’s disease patients in remission
supplemented with 2000 1U/day of VD for 3 months. This treatment increased not only serum
25D, but also CAMP levels, and reduced intestinal epithelial barrier permeability compared with
the placebo group [952], consistent with in vitro, ex vivo, and in silico observations by us and
others. Crohn’s disease patients whose circulating 25D were greater than or equal to 75nmol
following VD supplementation also displayed significant increase in quality of life and non-
significant (possibly due to the small sample size) reduction in Crohn’s disease activity index
[952].

Globally, the results of studies described above show that the effects of VD signaling in
the gut result in strengthened barrier function and enhanced innate immune responses. These
actions are conducive to healthy microbiota and prevention of infection. VD also acts to attenuate
inflammatory T cell-mediated adaptive immune responses, which are associated with IBD. Much
of the work analyzing the role of VD signaling in intestinal homeostasis was performed in mice,
and it is important to keep in mind that the specific mechanisms of VD signaling in humans are
not always conserved in rodents. Nonetheless, experiments performed in mice are generally

supportive of results obtained with human cells. In addition, randomized control trials in patients
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with IBD support a role of VD as a protective agent against the pathogenesis of Crohn’s disease,
a condition associated with defects in intestinal immune homeostasis, and suggest that VD

supplementation may be of therapeutic benefit to those with active disease.

Respiratory tract

The actions of VD signaling on epithelial barrier, innate immune responses, T-cell
mediated inflammation, and stimulation of IgA production also seem to align well with its
beneficial effects in respiratory tract — the largest mucosal surface after the digestive tract — where
it acts to reduce the rate of infection and possibly the incidence of allergies [1053, 1054].
Stimulation of innate immune signaling via upregulation of PRRs and AMPs production, as well
as enhanced IgA secretion are expected to contribute to reduced incidence and severity of
infection. We have demonstrated that conditioned medium from calcitriol-treated epithelial cells
greatly diminished numbers of Pseudomonas aeruginosa, a pathogen causing infections often
associated with chronic lung conditions [1055-1057]. Moreover, our bioinformatic analysis also
suggests that VD may further boost the anti-microbial immune response required for successfully
neutralizing pathogenic threats via enhanced neutrophil chemotaxis.

The anti-bacterial and anti-viral roles of mucosal IgA are well documented and may even
confer protection against pathogens such as HIV [1058], similar to what has been proposed for
vitamin D [1059, 1060]. In addition, sIgA provides protection at immune privileged sites such as
the eye [1061], where VD has been shown to have beneficial effects also [1062]. Interestingly,
allergen-specific IgA, instead of IgE, antibodies are thought to suppress the immune responses
associated with asthma development and progression [1063]. For instance, IgA production in
neonatal mice prevented the development of cockroach allergy, a condition related to severe
asthma [1064]. Interestingly, impaired IgA responses to the gut microbiota in children correlated
with asthma development [1064], which highlights the strong connection between respiratory and
enteric mucosal immune signaling [1065]. Generally, dysbiosis has been associated with the
development of allergies [1066], which suggests that normalizing the intestinal flora may be a
valuable therapeutic strategy for prevention and treatment of asthma. Our studies and other reports
point to an effect of VD that favours production of the protective IgA instead of the allergy-
associated IgE antibodies [610, 614]. These findings, along with the potential actions of VD
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signaling in regulating the intestinal microbiota, may be highly beneficial in the context of asthma.
Notably, the anti-allergenic properties of VD may arise not only from stimulating IgA-dependent
immune exclusion and controlling the microbiome, but also as a result of its tolerogenic effects.
This notion is in line with our observation that calcitriol reduces T cell-mediated inflammatory
responses by upregulating expression of PD-Ls [961]. Specifically, PD-L2 was shown to greatly
reduce airway hyper-reactivity and asthma severity [1067, 1068]. While observational and
mechanistic studies support a preventive role of cholecalciferol, clinical trials have not been
unanimous [669]. Nevertheless, there are a number of reports indicating that low VD status is
correlated with higher incidence of wheezing and asthma [669, 1069], as well as exacerbations
and poor lung function in children [637, 638, 1070-1072]. This association also applied to low
maternal 25D levels [637, 1073]. In adults, there was a correlation between VD status and current
asthma in non-Hispanic black and white patients [637, 1074].

Importantly, since most infectious pathogens have a mucosal point of entry, sublingually,
orally, nasally, or rectally administered vaccines that promote the generation of antigen-specific
IgA antibodies may significantly reduce inflammation, dampen allergic disease symptoms and
decrease infection rate [862, 1075]. In this context, the VD-dependent stimulation of the generation

of plasma cells and IgA production may enhance immunization efficacy.

Species-specific effects of vitamin D

A key point of our findings is the species-specific effects of VD on immunity. The fact that
calcitriol upregulates the expression of the PRR NOD2 and of the AMPs CAMP and HBD2 in
human but not mouse cells provides a mechanistic explanation for the observation that conditioned
medium from pre-treated human but not mouse cells inhibited bacterial growth [551]. However,
the general effects of VD on immune signaling in mouse are not too dissimilar to those in human;
it has been shown to induce production of AMPs such as a-defensin 5 and angiogenin-4 [462, 463,
508] and compromized VD signaling in mice is linked to deficiencies in innate immunity and
increased levels of inflammation [462, 508, 527, 550, 1040]. Upregulation of PD-1 ligands
constitutes a potential mechanism accounting for the control of excessive inflammation by VD in
humans but not in mouse [961]. Nevertheless, VD does have anti-inflammatory effects in mice as

well [574, 575]. Various other mechanisms — acting on DCs or directly on T cells — have been
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reported to mediate its anti-inflammatory actions, many of which overlap with observations in
humans [418, 530, 566, 567, 577-580]. The parallels between the two species regarding the effect
of VD on B cells are less clear, especially if one considers in vivo findings. While calcitriol
inhibited IgE production in both mouse in vivo and human in vitro settings, no changes in IgE
levels were observed in human clinical trials [605, 607, 610, 611, 614, 615, 617]. Our data also
suggests that VD-stimulated intestinal IgA production may be human-specific. While the results
need to be validated in the appropriate human and mouse cell lines, the VD-dependent regulation
of the over-represented genes associated with this pathway in humans was not conserved in over-
represented genes from paired mouse tissues. Note that no comparison was done for B
lymphocytes due to lack of corresponding mouse datasets. We cannot exclude, however, the
possibility that, as with other global signaling events, VD may stimulate mouse pathways, which
produce effects similar to that of upregulated IgA secretion. Despite species divergence in terms
of specific pathways affected by VD signaling, it has beneficial effects in the context of IBD in
both human and mouse, highlighting the fact that there must be a significant overlap in global
effects [394, 416, 462, 530, 626-628, 646, 675, 676]. This notion is supported by our observations
that enriched biological processes following VD treatment in human and mouse datasets overlap.
In sum, while the phenotypes following exposure to VD of mice may be similar to humans, the
underlying molecular genetic events may be different. We conclude that although mice are
important model organisms for studying VD signaling, findings therein should not be hastily
assumed to also apply to humans. Therefore, adequate validation strategies need to be established.
In situation where no conservation between human and mouse is observed, it will be important to
set up appropriate ex vivo systems in order to assess the approximate in vivo effects of VD signaling

in humans — an approach we applied in the studies presented in this thesis.
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Future Directions

Vitamin D-Dependent Gene Regulation — a Bioinformatic Analysis

We intend to extend our bioinformatic analysis to emphasize further similarities and
difference in genomic responses to VD among various human and mouse tissues. To this end, we
selected three clustering approaches: principal component analysis (PCA), hierarchical clustering,
and K-means clustering. A dimension-reduction algorithm like PCA can provide a visual
appreciation of how the different gene expression datasets cluster relative to each other. We expect
same-cell-type datasets to aggregate in closer proximity. It would be interesting to see whether
there appears to be more similarity between same-cell type datasets in humans (e.g. epithelial) or
between two corresponding datasets in human and mouse (e.g. human and mouse prostate
epithelium). Hierarchical clustering is also an appropriate approach to examine such relationships.
The dendrogram obtained would provide a visually simple and intuitive aid in assessing the
similarities and dissimilarities between datasets (the leaves). In addition, it would provide
information as to the distance among datasets with respect to each other and to species and tissue
of origin. Exploring the left and right sub-branch at each node may lead to useful insights about
time- concentration- tissue- and species-dependent actions of VD. Finally, the information
extracted from hierarchical clustering can be validated via another visually appealing technique,
K-means clustering. It is a method more exploratory in nature as the number of clusters (K) can
be user-defined. In this context, we also plan to explore scenarios with K=2 (expected clustering
of datasets for the 2 species) and K=7 (expected clustering of datasets for each cell type).

We are also interested in better understanding the over-arching principles that control the
genomic actions of VD and account for its tissue- and species-specific effects. To this end, we
propose to align gene expression data with available VDR ChIP-seq and miRNA profiling studies.
We have demonstrated that calcitriol stimulates the expression of non-coding RNA species such
as eRNAs. Similarly, a number of studies have shown that VD signaling modulates miRNA
production, which, in turn, controls entire networks of transcripts. GO clustering analysis of

predicted miRNA targets can be used to discover any themes in VVD-dependent post-transcriptional
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control of gene expression. The alignment of expression profiling results with VDR ChlP-seq
peaks and VDRE-like sequence screens will provide useful insights into the paradigm of
transcriptional regulation by VD. Moreover, the inclusion of Hi-C data describing chromatin
architecture conducive to looping events bridging distally bound VDRs or VDREs to target gene
TSSs could substantially enrich our understanding of the genomic actions of VD. Screens for
motifs recognized by other TFs and enriched within VDR peaks, on the other hand, would indicate
whether VDR binds via tethering or co-binds with a specific TF depending on the absence or
presence of a VDRE-like motif, respectively. Annotations from ENCODE will also be used to
make inferences about open chromatin requirement for VDR binding (DNasel hypersensitive sites)
and whether the VDR-bound region could function as an active/poised enhancer (e.g. histone
modifications). For instance, the requirement for a pioneer factor allowing VDR association with
a specific VDRE-containing region in condensed chromatin and subsequent transcriptional
upregulation of, say, the adjacent gene can be inferred based on several criteria. These include the
presence of co-localized VDR and TF peaks, marks of open chromatin (DNasel hypersensitive
sites), and enrichment for histone modifications indicative of active enhancers
(H3K4mel/H3K27ac) in cell types where the gene is stimulated by VD and their absence in cell
types where it is not. An intriguing possibility is to employ deep learning algorithms [e.g. neural
networks with Orange, TensorFlow (Python) or Keras (R)] in order to predict direction of gene
regulation by VD, or lack thereof, based on presence, number, and base-pair composition of
VDREs, chromatin environment and architecture, TF occupancy, and distance to VDR peaks. This
method will contribute to the generation of a comprehensive model explaining the tissue- and

species-specific effect of VD and could become a useful reference for researchers in the field.

Experimental Validation

Naturally, we plan to validate the results we obtained from our meta-analysis of gene
expression profiling studies in appropriate human cell lines and assess conservation of gene
regulation by VD in corresponding mouse cells. We do not expect any conservation, which will
necessitate the setup of systems recapitulating as closely as possible the human in vivo
environment under investigation in order to obtain a clinically relevant phenotype. It is quite

difficult to establish a co-culture system that precisely mirrors the in vivo setting for the intestinal
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immune network for IgA production pathway. Nevertheless, there are several validation strategies.
The simplest one consists of quantifying VD-dependent changes in expression of each gene
represented in the pathway in its corresponding cell line and of investigating the molecular genetic
events underlying gene regulation. However, this method would not have any associated
phenotype. ChIP assays for VDR association to potential regulatory regions (assessed in silico)
controlling target gene expression, histone modification, and RNA Pol Il recruitment would serve
as indicators for direct transcriptional stimulation. 3C assays will be performed in order to
demonstrate looping events bringing distal regulatory regions to the TSS of target genes. In the
cases where potential co-binding with or tethering to other TFs is suspected, ChIP-re-ChIP assays
will be perform. VDR and/or the TF of interest knockdowns via sSiRNA or CRISPR/Cas9-mediated
knockouts will confirm their role in VVD-dependent gene regulation.

The second approach requires the in vitro generation of IgA-producing plasma cells. While
many protocols are available in the literature for the generation of such cells, the lack of organized
tissue architecture (lymphoid tissue, blood vessels, lamina propria) implies that many of the
differentiation or translocation/homing signals will be absent. Therefore, any effect of VD or its
metabolites on this system will be biased depending on its constituents, which will make
extrapolation of the obtained results to the actual in vivo setting difficult. In this sense, the best
approach is to employ intestinal organotypic slices that could be obtained from donors undergoing
gastric bypass surgery. This ex vivo system provides a natural environment that would allow not
only the assessment of sIgA production under various conditions (e.g. epithelial barrier damage,
infection, exposure to various concentrations of VD, its metabolites or analogs), but also anti-
microbial activity, barrier integrity, permeability and wound healing. The level of inflammation
may also be monitored by quantifying the cytokine profile using cytokine arrays. Genomic effects
of VD on each subset of cells comprising the ex vivo system can also be assessed following cell
sorting. This technique will provide important insights into the actions of VD on human gut
mucosal immunity. Finally, we will assess in vivo intestinal sIgA production (via fecal
examination) in mice following exposure to VD, despite lack of evidence for the conservation of
the regulation of this pathway. Stimulation of sIgA production in humans and its absence in mice

would indicate lack of conservation of a whole facet of the actions of VD in immunity.
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Summary and conclusion

We have demonstrated that epithelial and monocytic cells exposed to calcitriol upregulated
expression of the PRR NODs and AMPs HBD2 and CAMP, and limit growth of the pathogens E.
coli and P. aeruginosa. These findings constitute a phenotypic evidence explaining the lower
incidence of infection and are in line with previous reports showing stimulation of innate immune
responses by VD. In addition, we showed that VD attenuated T cell-mediated inflammatory
responses via PD-L1 and potentially PD-L2 expression. This adds yet another mechanism to the
tolerogenic arsenal of VD. Moreover, it may account for the beneficial effects of cholecalciferol
seen in autoimmune and inflammatory diseases. We also discovered that VD may upregulate
production of intestinal IgA, which is required for tolerance, prevention against infection, and
control of the gut-resident microbiota. The fact that VD may have an impact on B cell function
should not be surprising, since B cells express both the VDR and CYP27B1, and are therefore
poised to respond rapidly to circulating VVD. The finding that VD signaling may stimulate intestinal
IgA production highlights the merits of a system’s approach in searching for pathways regulated
by VD. Notably, the smaller fold change and larger p-values of many of the genes we identified
may have resulted in their automatically being discarded as insignificant in conventional analyses.
However, concerted small regulation of multiple nodes in a certain pathway may result in a
dramatic change in its output. The bioinformatic meta-analysis presented here constitutes the first
step in characterizing the similarities and differences between human and mouse genomic
responses to VD. Our results emphasize the fact that while the conservation of global responses
(biological processes) to VD may be substantial, there are important mechanistic differences as
suggested by the minimal conservation of regulated genes.

Finally, taken together, our findings contribute to the growing evidence that VD is a critical
factor required for adequate immune homeostasis and strongly support a beneficial role for IBD.
The immune events triggered by VD — anti-microbial activity, PD-1 signaling-dependent anti-
inflammatory effects, and sIgA production — provide mechanistic explanation for the beneficial
effects of VD in IBD and align well with results from clinical trials. IBD prevalence has been on
the rise [1028, 1029]. It causes not only disability and diminished quality of life for the patient,

but also has a serious socio-economic impact and thus represents a considerable burden for society.
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The beneficial effects of vitamin D in the context of this chronic disorder highlight its potential as

an inexpensive, accessible, and easily administered agent.
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