National Library
l * I of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibiiographic Services Branch  des services biblicgraphiques

395 Wellington Street
Ottawa, Ontano
KIAONS KIA OGNS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Quawa (Ontano)

Youx e WONre tefreene

Quw fip NOiTE reétiervnce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualite
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

L.a reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Estimation of Accelerated Motion and

Occlusions from Time-Varying Images

Michel J. Chahine
B. Eng.

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements

for the degree of Master of Engineering

Department of Electrical Engineering
McGill University
Montréal, Canada

July 1994

©Michel J. Chahine, 1994



I* I National Library Bibliothéque nationaie

of Canada du Canada

Acquisitions and Direction des acquisitions et

Bibliographic Services Branch  des services bibliographicues

335 Wellington Street 395, rue Welington

Ctiawa, Onlario Ottawa (Ontanio)

K1A ON4 K1A ON4 o bl Votre rentrerce

Qur e Notre reideance
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET
FORMAT, MAKING THIS THESIS SOUS QUELQUE FORME QUE CE SOIT
AVAILABLE TO INTERESTED POUR METTRE DES EXEMPLAIRES DE
PERSONS. CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP L'AUTEUR CONSERVE LA PROPRIETE
OF THE COPYRIGHT IN HIS/HER DU DROIT D'AUTEUR QUI PROTEGE
THESIS. NEITHER THE THESIS NOR SA THESE. NI LA THESE NI DES
SUBSTANTIAL EXTRACTS FROMIT EXTRAITS SUBSTANTIELS DE CELLE-
MAY BE PRINTED OR OTHERWISE CINE DOIVENT ETRE IMPRIMES OU
REPRODUCED WITHOUT HIS/HER AUTREMENT REPRODUITS SANS SON
PERMISSION. AUTORISATION.

ISBN 0-315-99959-4

Canadi



Abstract

This thesis addresses the problemn of modeling and computing dense 2-D veloc-
ity and acceleration fields from time-varying images and applying them to motion-
compensated intecpolation. Unlike in many other approaches that assume motion to
be locally translational, the approach proposed here uses a quadratic motion trajec-
tory model that incorporates both velocity and acceleration. This model corresponds
better to natural image sequences especially when processing over muitiple frames is
considered. One of the advantages of using accelerated motion over linear trajectories
is in motion-compcensated processing over multiple images. This is due to the fact
that over longer time frame, a quadratic motion model is capable of providing a better
intensity match along trajectories than the linear model. The side effect is, however,
that with more images used for estimation occlusion effects play a more dominant role.
Thercfore, another motion model is proposed to account for occlusions and motion
discontinuities. The algorithm for the estimation of velocity, acceleration, occlusion
and discontinuity fields is formulated using Gibbs-Markov models that are linked to-
gether by the Mazimum A Posteriori (MAP) probability criterion. This is equivalent
to regularization where the stabilizing functional is related to a priori motion models.
The resulting multiple term cost function is optimized using deterministic relaxation
implemented over a pyramid of resolutions. Numerous experimental results are pre-
sented for interlaced and progressive test images. Mean-squared error is calculated for
motion estimates obtained from images with (known) synthetic motion. For sequences
with natural motion temporal interpolation compensated for motion is implemented
and the estimates are evaluated with respect to the image reconstruction errov. It
is concluded that for images containing acceleration, such as “talking heads”, the
quadratic motion model permits a substantial reduction of the reconstruction error
when compared with the ubiquitous linear model. A further improvement, especially |
around motion boundaries, is observed when motion as well as occlusions are esti-
mated. The tmprovements are particularly striking around the mouth and eyes of 2
“talking head”.



Sommaire

Le présent mémoire traite le probleme de modélisation o de caleul de champs denses
2-D de vélocitds at d’accélérations a partir de séquences d'images dyvnamiques et leur
applications dans un contexte de codage interpolatifl aver compensation du mouve-
ment. L'approche proposée utilise un modele quadratique de trajectoire de mouve-
ment, incorporant des vélocités et des accélérations, en contraste a plusicurs autres
approches qui supposent un mouvement de translation. Le modele quadratique cor-
respond mieux aux séquences d'images naturelles surtout quand le traitement sur
plusieurs trames est considéré. Un des atouts de ce modeéle en comparaison avec
le modele linéaire apparait lors d'un traitement compensé par le mouvement sur
plusieurs images. Ceci est di au fait que sur une plus longue période de temps,
un modele de trajectoire quadratique est capable d’offrir un meilleur appariement
d’intensités le long des trajectoires que le modeéle linéaire. Par contre, les effets
d’occlusions jouent un role dominant quand l'estimation est étendue sur plusicurs
images. Un autre modéle de mouvement qui tient compte des occlusions et des dis-
continuités en mouvement est en conséquence proposé. L’algorithme d'estimation de
champs de vélociteés, d’accélérations, d’occlusions, et de discontinuités est formulé a
partir de modéles de Gibbs-Markov reliés par le critére de probabilité A postérior:
Mazimale (APM). Ceci est équivalent & la méthode de régularisation ou le fonc-
tionnel stabilizateur est relié aux modeles ¢ priori de mouvement. La fonction de
coiit résultante, & termes multiples, est optimisée par relaxation déterministe avec
un traitement hierarchique. Plusieurs résultats expérimentaux sont présentés pour
des tests d’images 2 structures d'échantillonage progressives et entrelacées. L'erreur
quadratique moyenne est calculée sur les paramétres de mouvement estimés a partir
de séquences d’images ayant un mouvement synthétique (connu). Une interpola-
tion temporelle avec compensation du mouvement est par ailleurs implémentée pour
les séquences d'images naturelles. L’estimation de mouvement sur ces dernicres est
évaluée par rapport a I'image d’erreur reconstruite. Il sera conclu que pour les images
contenant des accélérations, comme dans les “tétes parlantes”, le modéle de mouve-
ment quadratique, en comparaison avec le modéle linéaire omniprésent, permet une .
réduction considérable de I’erreur reconstruite. Une amélioration plus importante,
surtout autour des contours en mouvement, est observée quand le mouvement aussi
bien que les occlusions sont estimés. Ces améliorations sont particulierement sail-
lantes autour de la bouche et des yeux d’une “téte parlante”.
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Chapter 1

Introduction

1.1 Video compression

The amount of data associated with visual information is very large. Typi-
cal television images, for instance, generate data rates exceeding 10 million pixels
per second. Storage and/or transmissica of such data require large capacity and/or
bandwidth, which could be very expensive. Video compression is concerned with the
reduction of number of bits required to store or transmit images under the constraint,
of achieving some target quality. The 2:1 line interlacing in conventional television
was one of the first techniques used to provide a simple means of 2:1 bandwidth re-
duction without objectionable flicker or image breakup. The success of this method
rests on the fact that the Human Visual System (HVS) acts as a low-pass filter and |

has a poor response to simultaneous high spatial and temporal frequencies.

Video compression methods fall into two common categories [23]. The first cat-
egory is concerned with statistical redundancy removal such as Huffman, run-length,
and arithmetic coding. Huffman coding is one of the most efficient techniques in this
category that increases the average compression by assigning shorter code words to
frequently encountered blocks (or symbols) and longer ones for rarely encountered

blocks. This technique is not very practica! for television images whose long-term



histogram is approximately uniform, but 1t is quite useful for coding of binary data
such as graphics and facsimile images, and also in predictive and transform coding
algorithms. These algorithms fall in the second category that is concerned with per-
ceptual irrelevancy removal. They try to exploit the low-pass response of the HVS
by removing mutual redundancies in the video signal while preserving a good sub-
jective quality. One of the most common techniques used in predictive coding is the
differential pulse code modulation (DPCM) or differential PCM. Trarsform coding,
such as the Discrete Cosine Transform (DCT), is an alternative to predictive coding.
In this method, a block of data is unitarily transformed so that a large fraction of
its total energy is packed in relatively few transform coefficients, which are quantized
independently. The optimal transform coder is defined as the one that minimizes the

mean square distortion of the reproduced data for a given number of total bits.

On the other hand, moving image compression can exploit temporal redun-
dancy due to the high correlation of intensity along motion trajectories. For in-
stance, motion-compensated prediction is a powerful tool, provided that motion is
known, helpfu! in removing interimage redundancy. This technique has given rise to
the currently most sophisticated realizable coder, known as the motion-compensated
hybrid (DPCM/DCT) coder (Figure 1.1), used in MPEG-1, MPEG-2, and H.261
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Figure 1.1: Motion-compensated hybrid (DPCM/DCT) coder.
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standards. This encoder consists ivpically of a temporal DPCM. with a prediction
based on motion parameters estimated at the encoder and transmitted to the decoder
as side information. The difference between the predicted and actual fields is then

compressed like a still image using DC'T transform.

In motion-compensated predictive coding [8][33]. the main goal of motion com-
pensation is to minimize the variance of the prediction error; it is not necessary to
obtain the true motion ficld since errors in motion estimates simply increase the mag-
nitude of the prediction error. This error is quantized and transmitted at the cost of a
few extra bits with little impact on picture quality. Thus highly accurate motion esti-
mation is not crucial with DPCM coding schemes currently used. The block-oriented

motion field estimates are probably adequate for this application.

1.2 DMotion-compensated processing

Motion-compensated processing is another important area which exploits the
high correlation along motion trajectories. Sampling structure conversion that relies
on spatio-temporal interpolation, and interpolative coding are two frequently encoun-

tered applications that fall into this category.

There are two main situations where the use of motion-compensated interpola-
tion in sampling structure conversion is advantageous over the use of fixed spatial
interpolation ilters. The first is when the current image field is spatially aliased,
usually because a2 nonorthogonal spatio-temporal sampling structure (such as in in-
terlaced sampling) has been used, so that spatial interpolation alone does not perform
adequately. A use of temporal interpolation perhaps jointly with spatial interpola-
tion as proposed in [34] can considerably increase the quality of interlaced images.
An example of this application is the conversion from interlaced scanning to pro-
gressive scanning known as deinterlacing. The second situation arises when no input

data is available at a certain time instant for which interpolation is being carried out



and hence purely temporal interpolation must be used. In other words, an image
field is being generated at a time for which no input image ficlds exists. This is the
case for applications such as field rate conversion (e.g., between 30 [z and 60 Hz),
upconversion from temporally subsampled signals, and field rate increase to reduce
display artifacts or for slow motion cffects. Sampling structure conversion is also
used in standards conversion (such as conversion from NTSC to PAL and vice versa),
and in spatio-temporal pyramidal coding [37][38][39] for multiscale representation of
video signals (i.c., HDTV, videophone, and video-conference). It should be noted that
there is no possibility of recovering from errors during sampling structure conversion,
thus it is imperative that motion estimates be of high quality, and that occlusions be
properly handled. The occlusion effect is 2 common problem in motion estimation
algorithms. It manifests itself by the fact that moving objects in a sequence of images
generate occluded regions (i.c., covered or exposed) in which the estimation of motion

becomes much more complex or even maybe impossible.

Motion-compensated processing can also be used in the context of interpola.--
tive coding. In this application, images are omitted in the transmitter and then
reconstructed in the receiver by motion-compensated interpolation. These images
correspond to the B-frames (Figure 1.2) in MPEG standards where I-frames are intra-
coded frames, P-frames are predictive-coded frames, and B-frames are bidirectionally

interpolated frames using motion compensation. The motion estimates and/or the

Figure 1.2: Typical MPEG motion compensation structure.

motion-compensated interpolation error (residual) of the omitted fields are encoded

4



and transmitted. If motion estimates are not precise, then correction by the trans-
mitted restdual is possible. However, in case of no transmission of residual, motion

ostimates must be precise.

1.3 Motion estimation

As discussed, motion is widely used in motion-compensated processing and video
compression. On the other hand, estimation of motion from dynamic images is a
very difficult task due its ill-posedness [2]. Despite this difficulty, however, many
approaches to the problem have been proposed in the last dozen years [20][18][27](7].
Most of these approaches use only 2 fields to estimate motion. In this thesis, a new
motion estimation algorithm that uses multiple fields to estimate motion is addressed.
For this task a quadratic model, incorporating both velocity and acceleration, is used
to model motion trajectories. The side effect is, however, that with more images
used for estiniation occlusion effects play a dominant role. Therefore, another feature
which helps in canceling this side effect, has also been added to the motion estimation
algorithm. This feature consists of simultancously detecting occlusion arcas [9] and
estimating motion in order to maintain high quality of motion estimates near motion

discontinuities.

1.4 Organization of the thesis

The ill-posed nature of the motion estimation problem and its solution via rcy-
ularization theory are discussed in Chapter 2. An overview of motion estimation
techniques is then presented. Various approaches used to improve motion estimates,
such as hierarchical processing, modeling of motion discontinuities and occlusions, and
multiframe processing, are finally described. Chapter 3 is concerned with the descrip-
tion of the new motion estimation algorithm. The derivation of the objective function

is illustrated in detail using Gibbs-Markov models linked together by the Mazimum



A Posteriori {(MADP) probability criterion. The optimization of this ¢bjective func-
tion using deterministic relaxation implemented over a pyramid of resolutions is then
discussed. Experimental results for image sequences with synthetic and natural mo-
tion are also presented. In Chapter . the proposed motion estimation algorithm is
extended to account for occlusions. Experimental results illustrating the advantages
of occlusion processing in generating piccewise-continuous motion fields rather than
globally-continuous are presented at the end. The conclusions and summary of the

main contributions of this thesis are discussed in Chapter 3.



Chapter 2

Overview of Motion Estimation

Techniques

In this chapter definition of the motion estimation problem is given and some
existing methods that solve it are described. The image acquisition process along with -
the definition of the displacement field and some applications of motion estimation
are presented in Section 2.1. Section 2.2 is concerned with the ill-posed nature of
the problem and with its solution via regularization theory. Various approaches to
motion estimation are discussed and compared in Section 2.3. Techniques used to
improve motion estimates such as hierarchical processing, modeling of discontinuitics

and occlusion areas and multiframe processing are reviewed in Section 2.4,

2.1 Introduction

2.1.1 Apparent motion

The relative motion between objects in a scene and 2 camera gives rise to the
apparent motion of objects in a sequence of images. This motion can be characterized -
by observing the apparent motion of a discrete set of features or brightness patterns

in the images. Two distinct categories have been developed for the computation of



motion frotn image sequences,

1. The first category, known as feature malching, requires an extensive image anal-
ysis to extract a set of relatively sparse, but highly discriminatory, 2-D features
in the images (i.c., points, corners, lines). Such features are extracted from
cach image, and then are identified in subscquent images leading ultimately to
the computation of motion parameters of different objects in the image. This '
category is very suitable for establishing the long range correspondence in a

sequence of images.

&)

. The second category, characterized by pixel-based processing, consists of using
pixel intensities to compute 2-D field of instantaneous velocities of pixels in
the image plane. This relatively dense field is known as the optical flow and is
usually defined for every pixel in the image. This category, on the other hand, is

suitable for establishing the short range correspondence in a sequence of images.

Optical fiow, or 2-D velocity field, represents “the distribution of apparent veloci-
ties of movement of brightness patterns in an image” [20]. For images sampled in
the temporal direction, the concept of the velocity field is rep'aced by that of the
displacement field which will be shortly defined. The motion field which can denote _
either a velocity field or a displacement, field, can be used in conjunction with added
constraints or information regarding the scene to compute the actual 3-D relative
velocities between scene objects and camera [1]. Also, discontinuities in the motion

field can help in segmenting images into regions that correspond to different objects.

2.1.2 Applications

Apparent motion estimated from a sequence of images (often called video) is

used in a wide range of applications such as:

1. transmission and processing of video: motion-compensated interpolation for
sampling structure conversion, motion-compensated filtering for noise reduc-

tion, motion-compensated coding for bit rate reduction,

S
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biomedical applications: analysis of medical imagery for gencration of diagnos-

Lics,

3. meteorology: interpretation of satellite images for prediction of atmospheric

processes,

1. computer vision {robotics): structure from motion for passive navigation, 3-1

motion from 2-D motion for passive navigation and object tracking.

All these applications reveal the importance of 2-D) motion information, and the
nced of a good estimation algorithin capable of calculating motion that is close to Lthe

true underlying motion.

2.1.3 Observation process

The data from which motion is estimated is usually obtained by an tmage ac-
quisition system. Thus, the observed image g is related to the true underlying image
u by the observation process which can be modeled at varying degrees of sophisti-
cation. In general, this process has threc main clements: a nonlinear shift-variant
spatio-temporal filtering, a random perturbation, and a spatio-temporal sampling
operation.

The basic model typically used is the filtering of u by a linear shift-invariant

camera aperture (impulse response k) and addition of noise n
ge(x, t) = h(x, t) * u(x, t) + n{x, t), xe R teR (2.1)
followed by sampling on lattice (A,): [10] every T seconds
g(x,t) = g.(x,1), x € (Ag)e, t=kT. (2.2)

In this thesis, progressive and interlaced lattices are studied. Without loss of general-

ity, the case of no filtering, i.e., h(x, t) = é{x, ) with § being the Dirac delta function,

is used to simplify subsequent developments.



The degree of sophistication used in modeling the observation process undoubt-
edly has an impact on the estimated motion fields. It is not clear, however, whether
it is more advantageous to inercase the complexity of the observation process or of
the models used in the estimation algorithin. especially in the view of the usual un-

availability of imaging system parameters.

2.1.4 Definition of the displacement field

Most of the estimation methods proposed in the literature rely on spatio-temporal
variations of the observed intensity g to estimate 2-D motion. In the context of digital
coding adapted to motion information, the goal is to find such a2 motion field that
minimizes the amount of information to be transmitted. Displacement field at time
t establishes a correspondence between points from the image at time ¢ and points
from images at time ¢t and t;. The displacement field d(t) at time ¢t of a sequence
of images consisting of a sphere moving downward on a still background is shown

in Figure 2.1. Only the displacement vectors of point x that belongs to the moving

i ] -
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Figure 2.1: Illustration of the displacement field d; at time ¢ estimated from two

image fields at ¢_ and ¢, (only 2 displacement vectors d(x, {) and d(y, t) are shown).

sphere, and the point y that belongs to the stationary background are shown. The
notation d; will be used to denote the displacement vector d(x;,t) at position (x;,t).
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Estimation of displacement fields usually relics on the following assumptions:

1. Image intensity remains constant along the motion trajectory.

[
.

Displacement ficlds are spatially smooth.

3. Displacement field consists of a dense set of motion vectors,

4. Effects of occlusions are negligible.

3. Motion is locally translational, i.e., linear motion trajectory model is used.

These assumptions often do not reflect real case situations; the intensity along mo-
tion trajectories can vary due to a change of illumination in tke scenc and hence
assumption 1 is violated. The true displacement vectors at the boundaries of two
objects underlying different motion trajectories are usually not smooth, and hence
assumption 2 is violated at motion discontinuities. The assumption of locally transla-
tional motion (assumption 5) is violated for motion trajectories with longer temporal
support. All these assumptions can however be modified in such a way to improve
the motion estimates, as will be discussed in Section 2.4 which will investigate the
modeling of discontinuities and occlusion areas and the use of a non-linear motion

trajectory model.

2.2 Ill-posed nature of motion estimation

2.2.1 Statement of the problem

Problems encountered in early vision [2], such as the recovery of 3-D motion
and optical flow, shape from shading, surface interpolation, and edge detection, are
common in nature. They can be regarded as inverse problems that try, for instance, .
to recover physical properties of 3-D surfaces from their projection onto an image
plane. It is clear that the data (observations) used (i.e., 2-D images) contain in

general limited information about the solutions (i.e., the 3-D properties). This lack
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of information implies that problems of carly vision are very often #l-posed. In the
original sense of Hadamard [2], a well-posecd problem is characterized by the following

three properties:

1. Existence: There is a solution.

8

. Uniquencss: The solution is unique.
3. Continuity: The solution depends in a continuous manner on the data.

Hence in an ill-posed problem, the solution may not exist, may not be unique (giving
an ambiguous reconstruction), or it may not depend continuously on the data. From
this definition, it is clear that motion estimation based on assumptions from the

previous section is ill-posed as it may violate the above properties:

x| _axn=0 _

t- t =+

O Moving region y
ven . T——» t
t.+ Occluded region

Figure 2.2: Illustration of the ill-posed nature of the motion estimation problem (di

and d2 are two possible displacement vectors at position (z, t)).

1. For occluded pixels there is no solution as the intensities of those pixels (i.e., the
data) are not available in the next or previous frames (violation of existence).
Figure 2.2 shows an example of occluded regions generated at time ¢ when the
object is moving upward from time t_ to time t,. Hence, for pixels (w,t)

and (y,t), both belonging to occluded regions at time ¢, displacement vector

12



does not exist. This is due to the fact that pixel {y,t) becomes covered at
time £, whereas pixel (w,t) becomes exposed only at time ¢, and henee no
correspondence can be established for these pixels along the three counsidered

time instants.

(8]

. There are many possible motion trajectories that satisfy the data even for some
predefined motion trajectory model (violation of uniqueness). For instance, if
the moving object in Figure 2.2 has constant intensity, d; and ds may be two .

possible displacement vectors at position (2,t) when linear motion trajectory is

considered.

3. For a small local modification of intensities, there may be significant change in

the estimated motion vector length and/or orientation (violation of continuity).

The need to analyze ili-posed problems such as motion estimation has given rise to

regularization theory discussed in the next section.

2.2.2 The regularization theory

Most linear inverse problems can be formulated as follows. Suppose that func-
tional spaces X and Y are given along with a continuous operator £ from X into
Y. The problem is then to find, by some regularization theory, a function u € X for
some observation g € Y such that ¢ = Lu. The approach proposed by Tikhonov,
which is addressed in [2], attempts to solve this problem while minimizing a certain

cost function. The minimization problem can be formulated as follows [2]:
min{[1€u — gl + MicullZ} (2.3)

with || - |ly denoting the norm in Y, and C being a linear operator from X into the
constraint space Z that expresses a certain a priori property of the solution such as
spatial smoothness in the case of motion estimation. A is the regularization parameter

that plays a crucial role in weighting the compromise between the two terms of the

cost function.
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[n spite of existing theory for the optimal choice of A, such choice is probably
the most difficult problem in the regularization theory as will be shown later. It is
worth to note that regularization theory can provide optimal techniques to reduce
the effect of notse but cannot produce new information if it is not originally available.
Most of the motion estimation methods that will be discussed next can actually be
viewed as a direct consequence of the regularization theory via the solution proposed

by Tikhonov in (2.3).

2.3 Methods of motion field estimation

2.3.1 Transform-domain methods

The Fourier-phase approach [15] is the most common one used. It uses the
shift property of the Fourier transform which states that a spatial shift in a signal
corresponds to a shift in phase in the Fourier transform of that signal. Hence, if
G(wz,w,) denotes the Fourier transform of the image g(z,y), then, if this image

undergoes 2 uniform translation d = [d. d,]7,
9 = deyy — dy) <= G(ws,w,) - eI wedatuydy), (2.4)

Measuring the difference in phase between the 2-D Fourier transforms of the images
at ¢_ and t., one can deduct a displacement vector corresponding to a sufficiently
large bloc of the image. However, the position of the obtained displacement vector is
not known, and therefore has to be localized in some way.

Another approach is the spatio-temporal frequency method [22] that consists
of calculating the orientation of the 3-D Fourier spectrum of a time-varying image
g(x,y,t) undergoing a translational motion with some constant velocity v = v, vy]T.

In this case, g(z,y,t) can be expressed as follows:

9(z,y,t) = g(z — vty — v,2,0) = g(z,y,0) * 6(z — vzt,y — v,t,0). (2.5)
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The Fourier transform of gz, y,t) in (2.5) 15 then derived as follows:
Glug,wyowey) = Gz wy) - e, + vy, 4 1wy). (2.6}

Hence, the spectrum of such an image has all its energy concentrated in a plane
defined by: vew,: + vywy + 1w, = 0. The orientation of such a plane is uniquely defined
by the components of the velocity vector v.

These methods allow to determince a velocity vector for the whole analyzed block.
They are used to determine the velocity of a single object moving on a uniform
background. On the other hand, they cannot be used just by themselves on real

television sequences where the motion is much more complex but can be followed by

some other methods.

2.3.2 Matching algorithms

Matching algorithms associate structures in a reference image with correspond-
ing structures in subsequent images. The best match is detected following a search
that yields the optimal displacement vector for each structure. These algorithms are

divided into two categories.

Feature matching

This is the only method structured to resolve the long-range correspondence
problems. A number of approaches to this method is presented in [1]. Usually, fea-
tures (i.e., points, lines, corners) are first identified in the images used, and then
correspondence between those features is established. The task of establishing and
maintaining such correspondence is, however, nontrivial. The ambiguity is also in-
creased by occlusion effects which cause features to appear or disappear and also give

rise to “false” features.

15



Block matching

A simpler method that doces not require a search for features is block matching.
This approach is based on the assumption that all pixels inside a block have the same
niotion (enly a single vector is estimated for cach block). The problem is then to
estimate motion of an M x N block of pixels of the image ¢, at time ¢ with respect

to the previous image at time (.. For this purpose, the block in ¢, is compared with

Figure 2.3: Matching of an M x NV block of pixels at time ¢ within a (M +2p) x (N +2p)

scarch area R at t_.

another block inside a search area R of dimensions (M +2p) x (N +2p) in g._ (Figure -
2.3) where p is the maximal allowed displacement. The mean distortion function

between these two blocks is defined as:
. 1 & C .
DGi.j) = g 2 L (elmm) g (mt+in+), -p<ij<p  (27)
m=1 n=1
where g:(m, n) denotes the brightness value at pixel position (m,n) and time ¢, and
#(z) is a positive ascending distortion function (i.e., the resulting criterion is MSFE

for ¢(z) = z*, absolute minimal error for ¢(z) = |z|). The direction of minimal

distortion is then given by (i*, 77) such that:
(37 = min D(,j), —-p<,i<p (2.8)
i

To speed up the search procedure many methods have been proposed such as the 2D-

logarithmic search [24], the three-step search [26], and the conjugate direction search
[36)].
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Block matching is usually suitable for the short-range correspondence problems,
while it is inappropriate for the long-range ones. This can be explained by the fact
that for a larger search arca, the scarch procedure becomes too costly, and equation
(2.7) tends to be non-convex, leading to convergence to a local minimum. This
method, however, works well with image sequences sampled in time at 60 /12 that do

not contain violent motion.

2.3.3 Spatio-temporal gradient methods

Block matching is a simple technique to implement and relatively fast. It gen-
erates a single displacement vector for cach block of pixels. But this method becomes
very slow and costly when dense displacement ficlds are required (i.c., the bloc is
reduced to a single pixel). For higher spatial resolution of the optical flow, spatio-
temporal gradient methods arc recommended. Three approaches to these methods are

hereby introduced with an emphasis on the Horn-Schunck and Bayesian approaches.

Minimization of the DFD

This approach introduced by Netravali-Robbins [33] is based on the iterative
minimization of the square of the DF D (Displaced Frame Difference), 2 measure of
the motion-compensated prediction error. Displacement field d; at time ¢ is estimated
on a pixel-by.pixel basis using the images at times {_ and ¢y with &, = 1 (Figure’
2.1). The DFD is defined as follows:

DFD(xad) = g(xat) _g(x - dJ-)v (2°9)

where d ts displacement vector for pixel x at timet, and g(x, t) represents the observed

intensity of pixel x at time t. A displacement field estimate a, can be derived as

follows:

d= min DFD*(x,d), Vx€ (A (2.10)
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The mintmization is carried out iteratively using the steepest descent algorithm. The

resulting iterative update equation is expressed as:

d* =d! = DFD(x, AN VaDFD(x,d"Y)

3 Dl d " (2.11)
= d'™! = DFD(x,d"™")Vxg(x - [d'], 1),

where V4 is the gradient with respect to d, Vi = [£ B%]T is the spatial gradient, d

is the estimate of d at iteration i, and |d'~!] denotes the closest lower integer value
of di-1,

The resulting estimated displacement field is more representative of the real
motion when compared with the one obtained by block matching. This is due to
the fact that the above algorithm overcomes, to a large extent, the problems of
multiple moving objects. [t also permits different parts of an object to undergo
different displacements, provided the recursive algorithm in (2.11) has sufficiently

rapid convergence.

The Horn-Schunck approach

Horn and Shunck [20][19] proposed to estimate the 2-D velocity field v at time
t using the motion constraint equation, where v(x,t) = [v. v,)7 denotes the velocity
vector at position (X, t). If dr and dy denote the corresponding horizontal and vertical
displacements of pixel (z,y,t) after a time increment d¢, then the assumption of

constant image intensity along motion trajectories can be expressed as follows:
g(z + dz,y + dy, t + dt) = g(,3,1) (2.12)

If the intensity varies smoothly with z, y, and t, the expansion of the left-hand side

of (2.12) by the Taylor series results in the following:

9 .09 .09 5
9(z,y,t) + dz= +dyay +dio0+e=g(z,y, 1), (2.13)

where e contains second and higher order terms in dz, dy, and dt. Canceling g(z,¥,1)

in (2.13), dividing through by dt, and taking the limit as dt — 0, the motion constraint
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equation ¢{v) at (x.t) can be obtained:

r(v):v(x.z)-\"zg-i-%y;- = 0. (2.14)

Using the motion constraint equation, one can ounly derive the component of the
velocity vectlor in the direction of the brightuess gradient (but not the component
along the isobrightness contour), This ambiguity is known as the aperture problem.
In order to solve this ambiguity, regularization approach proposed by Tikhonov
(equation (2.3)) is used. Hence, an additional motion smoothness error s(v) which
ensures the smoothness of the calculated velocity field is added to the error based on
the motion constraint equation. s(v) is expressed as the sum of squared magnitudes

of gradients of the velocity components:

S(v) = [0l + [ty | = (aa—x) + (%—;) + (%7) + (‘;—J) (215)

The estimated velocity field ¥ can then be derived by solving the following continuous

minimization problem:

mjn [ (2(v) + A - 5(v)) dx, (2.16)
where A is the regularization parameter that weighs the error ¢(v), relative to the
smoothness error s(v). This parameter is idcally small if the assumption expressed in
(2.12) is accurate, and large otherwise. The choice of a fixed value for this parameter
remains to be a very crucial problem in such motion estimation algorithms.

After discretization of g and v, an estimate v(; ;), where (7, 7) denotes the dis-
cretized spatial position X, can be calculated directly by solving a linear system of
the form: Av;;y = b. This linear system is obtained by using the necessary condition
for optimality of the objective function in (2.16) (20]. If N, is the number of velocity
sites at time ¢, then standard methods such as Gauss-Jordan elimination, used in an
attempt to solve simultaneously the 2N, linear equations (2 for each position), are
very costly. The reason for this is that the corresponding matrix of order 2N, is very
large and sparse. Therefore, Horn and Schunck proposed to use deterministic relax-

ation (Jacobi, Gauss-Seidel) to solve iteratively this linear system. The relaxation
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algorithm resulted in the following iterative update equation:

-1 »T
viin: Vind + 90
A+ {IViaell?

o+l _ -n -
Vg = Vi

(.Y (2.17)

where V0 = 97y 96.5]7 and 95 jy0 905 965y ate finite-difference approximations
of the horizontal, vertical, and temporal derivatives of ¢ respectively. Note that the
new value of VE:*;; at (i,7) is set equal to the average of the surrounding vectors
Vii.j) at the previous iteration minus an adjustment which, in velocity space, is in
the direction of the brightness gradient. This algorithm results in velocities that are
estimated at points lying midway between the pixels and successive frames. This is

due to the fact that the first derivatives g%, ¢¥, and ¢, required in the iterative scheme

arc estimated using finite differences in a 2 x 2 x 2 cube of brightness values [20].

The Bayesian approach

This probabilistic approach consists of estimating the 2-D displacement field at
time ¢ using images at ¢t_ and t,. {Figure 2.1) [28]. The estimated displacement field
is a Maximum A Posteriori Probability (MAP) estimate that represents the most

likely displacement field d, on the basis of the two observed fields g,_ and g,,:

d, =arg rraa:.x P(D, =di|Gi_ = 9, Gep = g1,)
= argmax [P(Ge, =9, ID: =d:,Ge_ = g.)- P(D, = di|G._ = g..)].
(2.18)
Two models are thereforc needed in the formulation: a structural model that models
the relationship between observed images and the real displacement field, and a dis-
placement field model that ensures the smoothness of the displacement field over all
spatial positions (disregarding discontinuities and occlusion effects}.
The structural model relies on the assumption of constant intensity along motion
trajectory and is expressed by the Gibbs distribution (Appendix A) with a potential
function U, equal to the square of the DPD (Displaced Pixel Difference). The DPD

can be regarded as a motion-compensated prediction error measure between the im-
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ages at £ and f4. and is expressed as follows [27]:
DPD(xi,di) = g(x; + (1 — 3 )di ty) = g{xi — Agdint), (2.19)

where d; is defined at (x;.t). and g(x.t) denotes the interpolated intensity at time ¢
and position x which does not necessarily belong to the sampling grid of the image
(refer to Figure 2.1 for illustration of this case). The potential function /;(d) that

describes the ill-posed matching problem ot the data by the motion field, is then

expressed as follows:
Nl,

U,(d) = 3. DPD*(x;, dy), (2.20)

i=1

where Vg 1s the number of displacement vectors to estimate at time £.
The displacement field d at time ¢, on the other hand, is modeled by a 2-D
VMRF (Vector Markov Random Field) expressed also by Gibbs distribution whose

energy function Uy captures the smoothness of the displacement field as follows:

Ny

Udd) =3 3 lldi—d;|)° (2.21)

i=1 {x;,x, }&Ci
with || - || denoting the norm in R?. This potential function represents the cost asso-
ciated with the lack of smoothness of the motion field through a first-order neighbor-
hood system 5! (Figure A.1) where C; denotes the ensemble of 2-clement cliques [31] -
at position x;.
Using the above models, the MAP problem in (2.18) reduces to one of minimizing

an energy function U(d), having the following regularized form:
U(d) = AgUs(d) + AgUa(d), (2.22)

and which is, in a sense, equivalent to the objective function used by Horn and
Schunck in equation (2.16) except that the motion constraint equation is replaced by
the DPD measure. The ratio A,/Aq plays the role of the regularization parameter A,
introduced in the Horn-Schunck approach, and weighs the confidence in the a priori

model.

The global minimum of U(d) in (2.22) can be calculated using simulated annealing
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[27], a stochastic optimization method. However, using a deterministic relaxation
with first-order ncighborhood p', as the one used by Horn and Schunck, will enly
result in an approximation of the MAP estimate [30]. This is calculated from the

following iterative npdate equation:

5 - DPD(x;,t)
dr*! =d* — . VaDPD(x;,t). 2.23
CT AR | VaDPD(xi, ) ) (229)

The algorithm in (2.23} is a modified version of the Horn-Schunck algorithm in (2.17)

whereby:

e Algorithm (2.23) allows computation of displacement vectors for arbitrary po-
sitions unlike the Horn-Schunck algorithm. This property is crucial for motion-

compensated interpolation applications.

¢ The motion constraint equalion is replaced by the the DPD measure in (2.23).
This modification is important because it allows intensity pattern tracking thus

permitting more accurate intensity derivative computation.

¢ The spatial intensity derivatives are computed from a separable polynomial
model instead of finite difference approximation over a cube as proposed by

Horn and Schunck.

The simulations that have been carried out in [30], showed that the MAP estimation
algorithm (stochastic and deterministic) resulted in a better estimation than the
original Horn and Schunck algorithm which produces over-estimated motion vectors

at strong edges, and under-estimated vectors in uniform areas.

2.4 Other important aspects of motion estima-
tion

Since the purpose of this thesis is to estimate dense motion parameters from real

TV image sequences, a spatio-temporal gradient approach is chosen. Such method,
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as shown carlier, requires the mitimization of an objective function of the form:

U(p) = Uy(p) + AUy(p): (2:21)

where p is the field of motion parameters (in the continuous case p; = [v, v,]"
represents one velocity vector at X;. and in the discrete case p; = {d, d,]7 represents
one displacement vector). The regularized objective function in (2.24) consists of a

combination of two terms:

1. The structural model term U,(p) that represents a measure of matching cr-
ror between images used in the estimation. This term consists of the motion
constraint equation in the Horn and Schunck algorithm, and the DPD in the
Bayesian approach. Any other error measure, such as the sample variance over
multiple frames, can be used in this term. However, the choice of a partic-
ular measure depends directly on the type of motion-compensated processing
applications (interpolation, coding, filtering) for which the estimated motion is

intended.

(O]
H

The smoothness term U,(p) that measures how well motion field p conforms
to an a priori model, such as spatial smoothness with the exception of isolated
boundaries. Equation (2.21) is a typical expression of this term through a first-
order neighborhood system n'. A high value of U,(p) indicates that the motion

field is not smooth.
On the other hand, the role of the regularization parameter X in (2.24) is three-fold:

e Compensate errors due to noise present in the image. Noise in the image can
render invalid the structural model. In [20] it is proposed to choose A as the

variance of the noise in the image.

¢ Control the propagation of motion information in low contrast regions from the
neighboring regions. This behavior, however, must be inhibited in occluded

areas and across discontinuities where motion is not smooth.
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e Minimize the bit rate allocated to image residual and to motion information in a
DPCM-like coding scheme where motion parameters are coded and transmitted.
As will be seen in Chapter 3, the minimum of U,(p) and U,(p) cannot be
achieved simultancously. Hence A must be chosen in a way to obtain the best

compromise.

In this section, several factors that may help in optimizing the objective function in
(2.24) and may result in estimating motion field p that is closest to the true underlying

motion are investigated.

2.4.1 Minimization of the objective function

The minimization of U/(p) in (2.24) is very complex. For a motion field p of
N, vectors with each vector consisting of 2 motion parameters (i.e., the horizontal
and vertical displacements), the number of variables of the problem is 2N,. In ad-
dition, these variables are not independent because of the smoothness term U,(p)
that establishes a relation between neighboring motion vectors as in equation (2.21). -
Standard methods such as Gauss-Jordan elimination are very costly as explained ear-
lier in the Horn and Schunck approach. For this reason the minimization problem
is carried vut using an iterative relaxation algorithm which from a certain approxi-
mation of the solution p* is going to produce a better approximation p™*! such that
Up™") < U(p").

To this end, the minimization problem is expressed in the form of a system of 2N,
linear equations of 2V, unknowns. This is accomplished by using Taylor expansion
to approximate the objective function U(p) by a quadratic function of p, and then
using the necessary condition for optimality:

U(p) _
api

for each of the N, motion vectors.

0, i=1,---,N, (2.25)

The resulting system of equations can be solved using deterministic relaxation '

such as the Gauss-Seidel or Jacobi iterative algorithms. The difference between these
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two methods is that in the Gauss-Scidel method, the motion vector p? at position i
and iteration n is iterated using the updated neighbor motion vectors (usually from
a first-order neighborhood system 7') at the current iteration. The Jacobi method,
however, uses the neighboring motion vectors of the previous iteration n—1 to update
p? at iteration n. Hence, the Gauss-Seidel method is faster in convergence than the
Jacobi method as in the latter one has to wait a complete field teration in order to
usc the latest updated motion vectors. The order of update in both of these methods
usually follows a horizontal sequential scan of the motion field being estimated.

The iterative update equations in (2.17) for the Horn-Schunck approach, and

2.23) for the Bayesian approach are examples of relaxation algorithms solved by the
Gauss-Seidel method. A detailed derivation of such an algorithm will be presented in
Chapter 3 where the new algorithm is discussed.

These deterministic relaxation algorithms fail to converge to the global minimum
when the objective function U(p) is not convex. A stochastic relaxation algorithm
based on simulated annealing has been proposed in [27] and allows to obtain the
global minimum. However, the improvement in the subjective quality of the resulting

motion vectors applied to motion-compensated interpolation is marginal.

2.4.2 Hierarchical processing

Motivation

The approximation, by Taylor expansion, of the objective function U(p) by
a quadratic function of p is weakened when the data structure is characterized by
relatively high frequency content such as very sharp edges and noise. Hence, for
instance, the second and higher order terms in (2.13) become no more negligible and
have to be considered in order to derive the motion constraint equation. Smoothing
may reduce this high frequency content, so that the data is closer to a locally linear
behavior. The convergence to the global minimum will be more likely since U(p)

becomes closer to a convex function. Therefore, the minimization of U(p) is extended
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over a pyramid of image resolutions. Such hiecrarchical processing may also allow
handling rapid motion since reducing high frequency image content allows to perform

matching at larger displacements [29].

The hierarchical extension

Various multiresolution methods have been proposed for motion estimation
[3][13}{29]. One class of such methods is based on a non-recursive multigrid (coarse-
to-fine resolution) approach [29]. It consists of generating a pyramid of varying image
resolutions from the lowest resolution at the top level (£ = L) to the full resolution
at the bottom level (k = 0) of the pyramid. Figure 2.4(2) is an example of a 4-ievel
(L = 4) pyramid of 1D data resolution. A second pyramid for motion fields is then

constructed as follows. The estimation starts at the top level (k = L) of the pyramid
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Figure 2.4: Schematic (1D) representation of a 4-level pyramid (a) for hierarchical
data representation; (b) illustration of hierarchical displacement vector update over

3 image resolutions.

(coarse resolution), where the number of motion vector sites is small, and hence a
minimum is located very quickly. Then, the resulting estimate from this coarse level
is interpolated to the next finer resolution level (k = L — 1) where it is used as an ini-
tial solution for the estimation at this finer resolution level. This hierarchical process
is repeated until the full resolution estimate at the bottom of the pyramid (£ =0) is

obtained. An illustration of this hierarchical displacement vector update for L =2 is
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shown in Figure 2.4(b). The end point of the displacement vector at position (k1)
for cach resolution level & is denoted by d*. and the displacement update vector at

each resolution level is shown by a dotted line.

Choice of the smoothing filter

Generation of each resolution level of the image pyramid consists of spatial sub-
sampling, preceded by filtering in order to avoid aliasing effects which can significantly
deteriorate the quality of motion estimates. However, the images do not have to be
subsampled when moving up the pyramid, as subsampling causes data loss. This loss
may affect the performance of spatio-temporal gradient methods that require the cal-
culation of derivatives. Hence a “constant-width” pyramid for images and a regular
pyramid for motion fields are sometimes used in such algorithms.

The choice of the optimal smoothing filter (low-pass or band-pass) is not yet
clear. Enkelmann [13] has used the circularly symmetric Gaussian low-pass filter

with radius B = 4 pixels and spatial variance o* = 2.5. The 1D magnitude response

-} 008 [-X] 018 [-*§ 028 03 0.38 o4 048 o8
Normatred trequency

Figure 2.5: Magnitude of the frequency response of the Gaussian filter used in the

generation of the pyramid of resolutions.

of such a filter is shown in Figure 2.5. Note that the large transition band in the

magnitude response is essential in reducing the ringing effects near the contours.
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On the other hand, the filtering may introduce unwanted artifacts, such as con-
fusion of objects with background, which usually lcads to locally unreliable estimates.
To overcome this, a multiscale estimation (another class of coarse-to-fine algorithms)
has been proposed for globally smooth linear motion (displacements) based on Markov
hierarchical model [17] where instead of subsampling, the size of a block in which all
estimates arc kept constant varies from level to level. In this approach, Markov models
at higher levels of the pyramid are rigorously derived from the full resolution model.
This method has been reported to give results similar to those obtained by stochas-
tic monoresolution techniques [28) and superior to those obtained by deterministic

multiresolution methods using the smoothing filters [30].

2.4.3 Modeling of discontinuities and occlusion areas

Gradient-based motion estimation methods allow dense motion measurements,
but generally suffer from severe shortcomings especially near discontinuities and in
occlusion areas. Moreover, for real TV images the underlying motion is piecewise con-
tinuous rather than globally continuous. Taking into account motion discontinuities
is thus important when accurate motion estimates are required.

The smoothness term U,(p) in (2.24) captures the smoothness of the motion field
p to estimate. However, the smoothness constraint is violated at the boundaries of
an object moving across a still background. Hence, it was proposed [27][16] to include
a line field | in order to inhibit the smoothness constraint at certain boundaries, and
therefore to allow the estimation of a piecewise continuous motion field. The typical

smoothness term in (2.21) is then modified [27] as follows:

Na '
Upps ) =2 2 llpi = psllP[L — I(xi, ;)]s (2.26)
i=1 {x..x, }&Ci

where I(x;,X;) is the binary-valued line element defined between two pixel positions
at X; and x; (0 and 1 represent respectively absence and presence of a discontinuity).
If the line element separating motion vectors from clique {x:,x;} is “turned or”

(1(x;,%;) = 1), there is no cost associated with that clique, and hence the cost function
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U,(p,!) is not increased. However, if the line element is “turned off™ ({(x,.x;) = 0).
there exists an associated cost if the motion vectors p; and p, depart from the assumed
a priori model.

The above extension implies simultancous estiimation of two ficlds: motion field
and line field. It is intercsting to note that if all the line elements in the line field are
“turned on”, then the smoothness term in (2.26) is null and therefore is at minimum.
A model of the line field is thercfore nccessary. A binary MRF model is proposed
in [27] leading to the addition of Ui({) to the objective function in (2.24). This term
has the role of introducing penalties discouraging certain configurations such as the
introduction of a line element on a non-edge site, or the occurrence of an isolated
motion site.

On the other hand, it was shown in [16] that the detection of motion disconti-
nuities alone is not sufficient, but that the processing of occlusion arcas (along with
motion discontinuities) is necessary in order to maintain a high quality of estimation
near motion discontinuities.

This approach has been investigated in [9] for the estimation of a displacement
field from 3 images at t_, ¢, and t.. The three-state (M, £, C) occlusion field o
defined on the same sampling lattice as the motion field, was defined as follows: A
indicates that the point is visible over the entire interval from ¢_ to t,, E represents
newly exposed points over the interval from i_ to ¢, and C indicates covered points
over the interval from t to ;. An illustration of this three-state occlusion field is
depicted in Figure 2.2 where point z should be labeled as M, point y as C, and point
w as E. Note that the number of states an occlusion tag can take, depends on the
number of fields used in the estimation algorithm.

Using this definition of the occlusion field o, along with that of the line field
I, an additional term U,(o,!) is used in the objective function (2.24) which can be

expressed now as follows:

U(p, 0, 1) = Us(p,0) + AUp(py 1) + AoUo(0, 1) + MUI(1) (2.27)
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where the A’s denote weights associated with each term. Note that the structural
term U,(p,v) becomes dependent on the occlusion tag in the sense that if a point is
labeled as occluded, the fields on which this point is invisible are discarded in the
cvaluation of U,. The additional cost introduced by {/,{0,{) depends on whether or
not there is a discontinuity between two vector positions, and reflects the fact that
occlusion tags should only appear near motion discontinuities.

The same deterministic minimization techniques, as discussed earlier, can be
applied in order to minimize the modified objective function in (2.27). However,
the number of variables of this minimization problem is enormous. It consists of
Card(p) (the cardinality of the motion vector p) motion parameters, plus one or two
line elements (depending whether inside or at the boundary), plus one occlusion tag
per sampling point. For this reason, an interleaved optimization approach is used
whereby a sequential minimization with respect to each of the three fields is carried
out, while maintaining the other two fields fixed. This process is repeated until
suitable convergence is achieved.

The processing of discontinuities and occlusions has shown {9} to be helpful in
obtaining a more realistic estimate of the motion field especially in presence of ac-
celeration. This is due to the fact that accelerated motion tends to generate larger
occluded regions and hence the computation of these regions becomes vital for ob-
taining good motion estimates. The estimation of occlusion and line fields will be
discussed in more detail in Chapter 4 where they will be incorporated into the new

motion estimation algorithm.

2.4.4 Multiframe processing

Most of the existing motion estimation methods use two fields to estimate mo-
tion parameters (displacements, velocities). But motion estimation, and in particular
the identification of occlusion areas, can be considerably improved by using multiple
images as discussed in [S] where 3 fields have been used. Hence, considering a match-

ing error measure over several images should allow a more robust pixel-matching (with
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a certain allowable range of illumination variation). Also. accumulating the occlusion
tags over several ficlds should allow casier identitication of ocelusion reglons (i.e., the
newly exposed and covered points).

The only problem in this approach is that the assuniption of the locally transla-
tional motion model is no more valid over multiple fields. This is illustrated in Figure

2.6 where the real motion trajectory of point (x.t) is shown in solid line. In this
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Figure 2.6: Motion estimation using 5 fields and (a) first-order motion trajcctory

model; (b) second-order motion trajectory model.

example, the estimation is done for field at time ¢ using the five fields (N = 5) at
tw2 t=1,12¢t+1,1t+2 Theestimated displacement vector d = [d, d,]7 at (x,¢)
obtained in the case of a first-order trajectory model (i.e., linear model) is shown in
dotted line in Figure 2.6(2). However, for a second-order trajectory model [12] (i.e.,
both velocity v and acceleration a are included), the vector p = [v; v, ar a}7 of
motion parameters is estimated. This results in the quadratic trajectory drawn in
dotted line in Figure 2.6(b) through the point (x, ¢).

Note that the use of a higher order motion model in multiframe processing should
result in a better approximation of the real motion trajectory, and hence reduction
of the matching error in the structural term. This is expected to have consequence

in motion-compensated interpolation applications.
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{lence, for multiframe processing (i.e., N 2 3), the consideration of a higher-
order motion model should be an asset in motion-compensated applications. In Chap-
ter 3, a detailed formulation of a new spatio-temporal gradient motion estimation
method over multiple frames is discussed along with some simulation results. A
second-order (quadratic) motion model is used to model motion trajectorics over a
variable number of fields (selected by the user). The proposed algorithm relies on a
deterministic relaxation approach implemented over a pyramid of image resolutions.
Subjective and quantitative comparison between the use of a linear and quadratic
motion trajectory models with multiframe processing is also discussed. The proposed
algorithm is then extended in Chapter 4 to handle occlusions and motion discontinu-

itics.



Chapter 3

Estimation of Motion Trajectories

with Acceleration

In this chapter, the estimation of trajectories for accelerated motion from image
sequences is proposed. Unlike in many other approaches that assume lincar tra-
jectories, a higher order model that incorporates both velocity and acccleration is
considered. This model corresponds better to real case situations especially when the
estimation is carried out over several images.

One of the advantages of using accelerated over linear trajectories is in motion-
compensated processing over multiple images. This is due to the fact that over longer
time frame, a quadratic motion model is capable of providing a better intensity match
along trajectories than the linear model. In particular, the standards conversion
problem, has been addressed in the presence of accelerated motion in {35} where it
has been demonstrated that by taking into account accelcration during frame rate
conversion and deinterlacing, a superior result can be achieved. In the above work,
however, it was assumed that the velocity and acceleration parameters in an image
sequence are known a priori. However, in real TV sequences these motion parameters
are unknown. Hence, a good estimate of the velocity and acceleration parameters is
essential.

In Section 3.1 the notion of a motion trajectory is introduced and the motion
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estimation problem is defined. The algorithm for the estimation of dense accelerated
motion fields is formulated in Scetion 3.2 using Gibbs-Markov models linked together
by the Marimum A Posteriori (MAP) probability eriterion. This results in a mini-
mization of a regularized cost function. The solution that is proposed in Section 3.3
is based on deterministic relaxation implemented over a pyramid of resolutions. The
Lest images that are used to simulate the proposed algorithm are presented in Sccetion
3.1 along with a description of the measures that will be used to evaiuate the valid-
ity of motion estimates. The parameters used in the estimation algorithm are then
optimized in Section 3.5. Finally, experimental results of the proposed algorithm are
presented in Section 3.6 along with a comparison between the linear and quadratic

motion trajectory models.

3.1 Definition of motion trajectory

To describe motion with acceleration, the concept of motion trajectory is used
[11]). The projection of each scene point traces out a trajectory in the image plane W
during the time it is visible in the image. Hence, the motion in the image sequence
is characterized by the collection of all such trajectories. An illustration of a typical
trajectory of the center of a circle moving across the image plane is shown in Figure
3.1. The trajectory starts at the time ¢;(x,t} = {_ when the point first becomes
visible, and ends at time t;(x,t) = ¢4 when the point disappears. The trajectory of
point {x, ) can be specified by the function ¢(r;x,t) which gives the spatial position
at time 7 of an image point located at position X at time t.

For 7 # t, let V(7:t) definc a subset of W at time ¢ consisting of pixels that are

visible over the entire interval between ¢ and T:
V(r;t) = {x: (%, 1) £ 7 < ty(x, 1)} (3.1)

For 7 > t, W — V(7;1) is the set of pixels covered or leaving the image between ¢
and T, while for 7 < t, W — V(7;t) is the set of pixels exposed or introduced into the

image between = and ¢.
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Figure 3.1: Trajectory of a projected scene point in 3-1 x-y-t space.

From this mathematical description of motion in the image plane, one can derive

the optical flow which consists of the instantancous velocities in the image:

v,y = ZERA, (32)

For linear trajectory model, the displacement ficld, defined in the previous chapter,

is used. It can be described as follows:

—c(mx,1) ifr <t
d(r;x,t) = x—c(rix,) ifr x € V(r;t). (3.3)
c(r;x,t)—x ifT>¢

Note that for T > t, d(7;X,1) is a forward displacement field, while for 7 <t itisa
backward displacement field. The displacement field can also be calculated from the

velocity field by integration:
d(r;x,t} = f’ v(e(s;x, t), s)ds, x € V(7;1). (3.4)
¢

For constant velocity v(e(s;x,t),s) = v(x,t), the displacement is simply d(7;x,t) =

v(x,t){7 —t). Thus, it follows from (3.3} that
c(r;%,t) = x + v{x, t){7 — 1), x € V(7;t). (3.5)

To make the estimation problem tractable, we model each motion trajectory ¢

by a parametric function ¢P of a vector of motion parameters p [12]. Hence for the
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lincar trajectory model in (3.5), p = v. For quadratic trajectories based on velocity

and acceleration, p = [vT aT]l and

cPlrix, t) = x + v(x. ) (7 —t) + a(x, t)(r = 1)° (3.6)

Note that v(x,¢) is the instantancous velocity, and a(x, ¢) is the constant acceleration

over the length of the trajectory, both at (x,2). Equation (3.6) can be rewritten as

follows:
cP(r;x,l) =x+ Ap(x, i) (3.7
with
i va(x, t)
A = T—t 0 (r-1¢)? 0 ’ p(x,1) = vy(x, t) (3.9)
0 r-t 0 (r—1t)? az(x,t)
i ay(x,t) ]

The goal of this chapter is to estimate the field of motion parameters p, at time
t defined on the 2-D dense lattice (A,); which corresponds to the sampling grid of the

image. Let g, be an image at time ¢, and let
Z; = {7 : g1+ is used in estimation of p;} (3.9)

with Card(Z,) = N. The estimation of motion at time ¢ is carried out over images-
{ge4r} such that v € Z,. Figure 3.2 illustrates an example of quadratic trajectory
over N fields characterized by the vector of motion parameters p(x,t).

Assuming that the following is true

vreT = | B SEFTSYx 1), and (3.10)

x € V(r;t)
implies that the estimation is performed only on moving or stationary (i.e., not oc-
cluded) pixels. Hence, the effects of occlusions are not considered in the estimation
algorithm. For the remaining of this chapter it is assumed that (3.10) is true which
is not the case in real sequences. For this reason, in Chapter 4, an occlusion model

will be incorporated into the estimation algorithm, in conjunction with a motion

discontinuity model, in order to obtain better estimates in occluded regions.
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Figure 3.2: Estimated quadratic trajectory cP(r;x.t) at (x,¢).
3.2 Formulation

t+1

The estimation of accclerated motion trajectories is tackled using a spatio-
temporal gradient method based on a statistical approach. This method has been
overviewed in Chapter 2 for the estimation of 2-D displacement ficlds, and will be ex-
tended in detail in this chapter to handle the estimation of the motion ficld p defined

for quadratic trajectories.

In the following sections MRFs, characterized by Gibbs distributions (GD), are

used to model both the matching error along motion trajectories and the motion ficld

p. In the case of MAP estimation [28], it was shown that the use of GD can lead
directly to a cost function of the same form as equation (

2.22).
According to the MAP criterion, the estimated motion field p, at time ¢ is the

most likely motion field p, based on observations G, = {gi+r : 7 € I,}. Using the

Bayes’ rule, MAP estimation for p; is a modified version of equation (2.18), and is
expressed as follows:

P = arg max P(p|G:)

(3.11)
= arg rx},alnx [P(g?lpn 9e.) - P(pelgen )]

where {, = t + 7, is an arbitrary chosen time instant such that , € Z, , and G}

{gt4r : 7 € T, — {7n}}. It is assumed that vectors p, are samples from a vector random

field P,, and that images g, are samples from the luminance random fields G;. The

37



first probability P{G}|pe. 4., ) in (3.11) 1s determined by the structural model relating
motion to the observed image. and P(p;|g:.} is determined by the motion trajectory

muodel, These two models are discussed in the next two sections.

3.2.1 Structural model and matching error

The structural model follows directly from the constant intensity assumption
along motion trajectorics. The conditional probability P(G}'|p., g:,) depends directly
on the intensity variation along motion trajectories. This variability is assumed to be
independent for each distinct trajectory on the lattice {Ap):, and similarly to [31] is
modeled here by independent and identically distributed Gaussian random variables.
Since Gaussian distribution is a special case of GD, the intensity variation along .
motion trajectories can be expressed by the GD (equation (A.3)). The conditional
distribution along each trajectory cP at a certain pixel site (x;,t) € (A,); is therefore

cxpressed as follows:

, 1 _u(')( )
P'(G!lpgi) = 77 o (3.12)

where U{)(p) is an energy function that measures departure of the observations from
the structural model, and hence must represent a measure of the intensity match-
ing error between the Card(Z;) = N fields used in the estimation. Since the main
interest in this chapter is to estimate motion fields for applications related to motion-
compensated interpolation, the energy U (p) at pixel site (x;,t) € (Ap): (refer to

Figure 3.2) is defined as the sample variance:

US®) = 3 [atxtit+4) - (x:,t)]° (3.13)
€
with
Clxint) = 3 0,1+ 7). (3.24)
r€l;

§(x5,t + k) is the interpolated intensity at time t + k and position x¥ defined as

follows:

F = x; + v(x, )k + a(x;, t)&°

(3.15)
= Xi+ Ap+nPi
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with Mesry. and p; = p(x;.t) defined in (3.8).
The total conditional distribution is then a product over the entire field of Np

pixel sites in (AL):, of the distributions £(G}'|p:.g..,) along cach trajectory:

N el
. P l _tl |pl
PG} pe-gen) = 7L
=1 s (3“;)
1 _L.am
= 7:(_ Fa
where, {/,(p) is known as the structural model term:
Np
Ulp) = 2. UP(p)
e X (3.17)
= 203 etk =t}

which constitutes the main term of the objective function (2.21) discussed in Chapter

2, and whose minimization yields a MAP estimate of the motion field p.

3.2.2 Motion trajectory model

It was assumed earlier that motion vectors p, are samples from a vector random
field P,. Defining P, as a vector MRF on the lattice (A,);, the e priori distribution
P(p:lg:,) can be expressed as a Gibbs distribution:

Uplp)

1 -
P(pelgen) = 5 "%, (3.18)
P

where U,(p) is the energy function that captures the desired smoothness property of

the motion field through a first-order neighborhood system n' (Figure A.1):
Np :
Up) =% Y (p:i—p;)"T(p: - ps) (3.19)
i=1 {x,.x,}&C,

Note that p; and p; are parameter vectors for trajectorics passing through (x;,t)
and (x;,1t), respectively, and I is 2 4 X 4 positive definite weight matrix that was
introduced in order to permit different weighting of horizontal and vertical motion

parameters as well as of lower and higher order motion parameters (i.e., velocity and
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acceleration parameters). For this purpose, I was chosen to be a diagonal matrix of

the form:

wy ) 0 0

z

0 w, 0 0
L= Y , (3.20)
0 0 w, O

0 0 0 w,, ]

where wy,, w,y,, wa,, and w,, are the respective weights assigned to each of the four
motion parameters in p. This weight matrix I" was discussed in [32] where its entries,
not necessary on the diagonal, were chosen as functions of the observations g, in
order to a'low suitable adaptation of the smoothness property to the local image
structure. Note that when I is the identity matrix, the Euclidean norm results and
hence, the smoothness term in (3.19) is reduced to the same form as equation (2.21)

which was introduced carlier for the linear trajectory model.

3.2.3 Derivation of the objective function

Combining now the calculated conditional distributions of the previous sections

into equation {3.11), the following results:
P = argmax P(p:|G.)
= argmax {_;_C—U(P)} (3.21)
= arg minU(p),
where Z is a new normalizing constant incorporating Z, and Z,, and U(p) is the new

energy function defined as follows:

U(p) = Us(P) + A:Us(p), (3.22)

with A, = 1/8;, and B, = 1. Like in equation (2.24) the regularized form of the
objective function U(p) follows directly from the MAP criterion. A; is a regularization ,
parameter that plays a vital role in weighting the importance of the a priori motion

trajectory model with respect to the structural model.
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3.3 Solution method

The optimization of the objective function in (3.22), which is a non-linear,
non-quadratic, and non-convex function, has been briefly discussed in Section 2.4.1.
Complex non-linear optimization approaches are not suitable here. Hence, a deter-
ministic relaxation algorithm resulting in an iterative update equation of the same
form as equation (2.23) is derived in this section. This algorithm is derived by approx.
imating {/(p) by a quadratic function of p, and then using the necessary condition
for optimality expressed in (2.23) to derive a linear system of the form Ap; = b for
each of the Np motion vector positions in {Ap):. The solutions of these dependent
linear systems are then calculated iteratively by using the Gauss-Scidel relaxation

approach, discussed in Chapter 2.

3.3.1 Approximation of the objective function

Approximation of the objective function in (3.22) by a quadratic function of p
is made possible by using the Taylor expansion of (x¥,t+k) = §(x; + A(sryPir L + &)

in (3.17) about some intermediate solution p;:

3(%: + AperyPir t + k) 2 §(%i + AeaigPis t + k) + VEG(X: + AeaiyPi t + k) (pi — i),
(3.23)
with Vpg(-) being the gradient of §(-) with respect to the motion vector p expressed

as:
vpﬁ(’) = Aa.;-k)-vzd-l(')

k0
|0 e E
I I A 10 (3.24)
oy
- 0 k2-
_ [880) 930) 2950) 2050)]"
| Oz dy Oz ay |
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Substituting equation (3.23} into (3.17). {/(p) can be approxtmated as [ollows:

Np
Uip)=y { S ) (e -+ A Y (pi-p) T(pi - p,)} :
i=l { kel, {%,.%; }eC,
(3.25)
where
T ( g(x. + A‘(H—J.)put + ‘," Y Z J xi + A(H- )P;,t + T) (326]
N rel;
and

(Sf‘(p.)) = Vrg(x, + ApeyayPint + k) — ﬁ z Vpg Xi + Apenbit + 7). (3.27)
r€l;

3.3.2 The iterative algorithm

Now that the objective function U(p) is a quadratic function of p, the global
minimum p;_,,, which corresponds to an approximation of the MAP estimate p, (equa-
tion (3.21)) can be obtained by establishing the necessary condition for optimality
over the entire motion field at time ¢:

aU(p

o~ O i= Lo Ap (3.28)

The derivative of U(p) with respect to the motion vector p; defined at pixel site

X; € (Ap): is expressed as follows:

o
Jp; _Z

Z ap: [ k(p)‘f'(s (B:) )T(pn P:)] +2A aa Z (p,--pJ) T{pi—p;)-

Pi {x.x,}ec,
(3.29)

After some straightforward differentiations, equation (3.28) becomes

;; (rEBast(B:) + [Z (S?(ﬁf)(S?(ﬁa))T)] (Pi=Pi)+26: Ay T-(pi—P:) = 0, (3.30)
(=¥ 1 k

€T,

where p; is the average motion vector at position x; given by:

pi=— Z P;- (3.31)



n'(#) is the first-order neighborhood at position X, resulting in & = 4 everywhere

except at the boundaries of the fattice (\,); where § < 1 (in particular, & =2 at the
four corners).

Hence, the global minimum pe,,,, of the quadratically approximated objective
function (3.25) is determined by solving (3.30) for p; at each of the Ny pixel sites
on the lattice (A,;),. But since cach solution p; depends on P; which is a function
of motion vectors in the ncighborhood of x;, then an iterative relaxation method is
needed. Considering that each iteration n consists of a full scan of the field at time ¢,
and letting p? = pI~! at each iteration, then pl is updated at iteration n by solving’

the following linear system:

A7 -p} =b}, (3.32)
which directly follows from equation (3.30) with:
Al= LEZI (s?(ﬁ?)(s?(ﬁ?))“”)] +264, - T, (3.33)
and '
b} = ([;‘Z:z (S?(ﬁ?)(S?(ﬁ?))T)] +2£;Ap-r) -pr - kezz: (rE(eMsk(AY)) . (3.34)

The deterministic relaxation method is based on the Gauss-Seidel approach, which
calculates p} at iteration n using the latest updated neighbor motion vectors at the
current iteration. That is why for a horizontal scan at each iteration, the average
motion vector P! makes use of the updated left and top ncighbor motion vectors at
iteration n, as well as of the right and bottom neighboring motion vectors at iteration
n — 1 (since the ones at iteration n are not yet available). This characterization of p?
changes obviously with the scan mode.

The Gauss-Seidel relaxation method is used to iterate the complete motion field,
and this process is repeated until a convergence is achieved. Convergence is detected
by monitoring the oscillatory decreasing behavior of U™(p) in (3.22) after each itera-

tion, and hence the following condition:

un(p) - U""'(p)
Un(p)
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can serve as a robust stopping criterion for convergence.

3.3.3 Spatial interpolation

The motion vector p; defined at pixel x; € (A,); is described by continuous-
valued parameters. Hence, in order to evaluate the components of the linear system
in (3.32), intensitics §(x¥,¢ + k) (Figure 3.2) and there respective spatial derivatives
at non grid points X; + Atk Pi € (Ap): are needed. Therefore, a spatial interpolation
method is needed.

For this task, a C! cubic convolution interpolation [23] has been used. Note
that by using cubic convolution instead of linear interpolation or nearest-neighbor
resampling, the degree of complexity of functions that can be exactly reconstructed
is increased. The 2-D cubic convolution interpolation function (used in the motion
estimation algorithm) is just a separable extension of the 1-D interpolation function
(Figure B.1). It is worth to note here that the order of accuracy of the cubic convolu-
tion method, introduced by Keys, is between that of the linear interpolation and that
of cubic splines. However, cubic convolution is much more efficient than the method

of cubic splines in terms of both storage and computation time.

3.3.4 Estimation over a hierarchy of resolutions

The approximation of the objective function U/{p) by a quadratic function of p
in (3.25) is made possible by the use of first-order Taylor expansion. The higher order
terms of this expansion are considered to be negligible in the case of small motion
parameters and are therefore dropped. However, in the case of fast motion (large
displacements), a first-order approximation is not sufficient as these higher order
terms cannot be neglected anymore. To deal with the above problem a hierarchical
approach is used in the motion estimation algorithm. This hierarchical processing that
has been explained in Section 2.4.2 consists of updating the motion fields (velocity

and acceleration) at each image resolution level until the full image resolution is
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reached {Figure 2.4). These updates become smaller at the bottom level of the image
pyramid and henee less iterations are needed to reach convergencee. Besides of saving
computational time (since the number of motion vectors to estimate s divided by
four at cach lower resolution), the hierarchical method allows to reduce the risks of
convergence to a local minimum especially when estimating large motion. This is due
to the fact that the image at each resolution is filtered by a Gaussian filter (Figure
2.3) and hence the high frequency content in the data, that is the main reason of

forcing the solution to be trapped in a local minimum, is reduced.

3.4 Test images

The motion estimation algorithm presented so far has been tested on some image
sequences with synthetic and natural motion. These test images are described next

along with the measures that will be used to evaluate the validity of motion estimates.

3.4.1 Image sequences with synthetic motion

In order to test the accuracy of motion estimation, natural sequences with syn-
thetic motion are generated. Each sequence consists of a 45 x 38 pixel rectangle
moving on a still background. The n.oving rectangle follows a quadratic trajectory
at a certain initial velocity vy and constant acceleration parameter a. The position

of the rectangle at field ¢ is then described as follows:
X(t) = Xp + Vot + at?, (3.36)

where X is its initial position at field 0. The instantanecous velocity v(¢) at field ¢ of

any pixel within that rectangle is therefore described by:
v(t) = vo + 2at. (3.37)

The data in the moving rectangle was obtained from a still image different from

that of the background by the following procedure. An imnage had been first prefiltered ’
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by a 2-D low-pass Gaussian FIR filter in order to avoid aliasing alter subsampling.
The data inside the rectangle was then obtained by a suitable shift of the 4 times
subsampled version of the prefiltered image. The subsampling factor of 4 provides
a 1/4 pixel precision of the motion parameters. Figure 3.3 illustrates the idea for
a moving rectangle of 2 x 2 pixel. The 2 x 2 pixels are selected from the 8 x 8

.0 025 03¢ 0I5 1O 123 130 175
a0 [ @ . . . @ . . .

035 - - L) . - - - -

030 |- . ] . . . = .

035 » - . . L J - .

101@® . - - ® . - .

[ A A d * hd hd bl .

Figure 3.3: Adaptive shifting of 2 2 x 2 pixel rectangle for 1/4 pixel precision.

pixel grid according to the real displacement of the moving rectangle. Hence, for
no displacement the pixels surrounded by a circle are selected, for a displacement of
(0.50,0.50) the pixels surrounded by a square are selected, and for a displacement of '
(0.25,0.75) the pixels surrounded by a diamond are selected. Due to this sub-pixel
accuracy, the matching in the rectangle area is not perfect and hence providing a
more realistic testing than pixel accuracy.

In this context, two test images with synthetic motion and different sampling
structures have been generated: the test image 1 in Figure 3.4a is an interlaced test
sequence, whereas the test image 2 in Figure 3.4b is a progressively sampled test
sequence.

In each of these test images the white frame emphasizes the area of 72 x 64
pixels (the actual size of test image 1 shown in Figure 3.4a is twice larger in the

vertical dimension due to its interlaced sampling structure) over which the motion
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Figure 3.4: Field #2 of (a) test image 1 (interlaced); field #2 of (b) test image 2

(progressive). The white frames encircle the arcas used for estimation.

estimation algorithm will be tested. Each area comprises the 45 x 38 pixel rectangle
which is moving at 1/4 pixel accuracy according to the quadratic trajectory described
in (3.36).

The validity of motion estimates within the 72 x 64 pixel estimation arca is
verified by the following Mean Square Error (M SE) measure. The MSE mcasure is

expressed as follows:

MSE = E (o) - 5] = 5z T o) = blxa 8, (338)

X.ER

where p(¢) and p(t) are the real and estimated motion fields respectively in the region
‘R of Pr pixel sites. R can either be the full estimation area (Ry), or the area of the
moving rectangle (R,), or the area Ry = Ry — R;. In order to eliminate boundary
effects of the moving rectangle, the areas labeled R} and R} will also be used to
represent the areas R, and R, respectively deprived of a narrow strip of 5 pixels that

contains the boundaries of the moving rectangle. R, for instance, represents the area

inside the moving rectangle.

47



3.4.2 Natural sequences

The test image 3 is an interlaced 256 x 212 pixel sequence “femme et arbre”

whose field #23 (from a total of 120 fields) is displayed in Figure 3.5.

Figure 3.5: Field #23 of test image 3: “femme et arbre”. The white frame encircles

the area used for estimation.

It contains complex motion, primarily of the hand and the arm. The second
natural sequence “Miss America” which is labeled test image 4 (displayed in Figure

3.6) is a typical progressively sampled 360 x 288 pixel CIF video conference sequence.

Figure 3.6: Field #16 of test image 4: “Miss America”. The wkhite frame encircles

the area used for estimation.
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These natural sequences have been obtained with a video camera. No filtering or
any other processing has been applied to them after their acquisition. Nevertheless,
some aliasing is present in the data due to insufficient filtering before sampling.

The validity of motion estimates for these natural sequences can be verified by
using these estimates in a motion-compensated interpolation scheme as desceribed

next.

3.4.3 Motion-compensated interpolation application

In various video coding schemes temporal subsampling of image sequences is
often used to assure high compression ratios needed. Then, at the receiver the miss-
ing images are reconstructed via motion-compensated interpolation uSing transmitted
motion parameters or motion parameters computed at the receiver from the transmit-

ted images. In Figure 3.7 the first scenario for the case of 4:1 subsampling is presented.

TRANSMITTER RECHVER
C
Motion estimation P H ]
onfelds? 123 :I
4 & p & | Motion-compensatcd _;..
E obon:
______ . — 1 ' | [} 1
P e . e
L, ‘ L] ] 1 ] ]
., ' 1 ] 1
. ' | 1 ' ! 1
. \_‘.. - 1 3 ] - /—l\'\l -
) Lo Lo
] ' ] ' '
- T b ——
i ] L) [} ] 1
0 1 2 3 4 0 1 23 4 0 1 11 4

Figure 3.7: Illustration of a typical motion-compensated interpolation scheme used

in video coding.

Motion fields p, for the images to be omitted at the transmitter (images #1,2,3) are
estimated from images #0,1,2,3,4, i.e.,, I; = {—2,-1,0,1,2} for estimation at field
#2 (Table 3.1).
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Let Jo = {7 : gesr 1s used in motion-compensated interpolation}. Then. im-
ages ¢, #0 and 4 are transmitted, and jointly with motion estimates p, are used to

reconstruct images #1,2,3 at the receiver as follows:

JxI Y= wgxft+ k),  i=1l,---,Np, €K, (3.39)
ke
where Z w=land T, = T UK,
kT

1} {1,0,1,2,3} | {-1,3} | 0.75, 0.25
{-2-1,0,1,2} | {-2,2} | 0.50, 0.50
31 {-3-2-1,0,1} | {-3,1} | 0.25, 0.75

[ V]

Table 3.1: Configurations of Z, and J; as well as the weights v for each of the 3
omitted fields for the motion-compensated interpolation scheme described in Figure
3.7.

Since for each 7 € K; we know the original image g -,
Crir = Jeer = Grirs T €K, (3.40)

is the reconstructed error at ¢ + 7 that can be used to evaluate the quality of motion
est’ nates Peyr. Note that in order that e;., be small, the trajectories c?.,_.,. must
be close to the true motion trajectories in the image. To describe quantitatively
the quality of motion estimates p.yr, the Peak Signal to Noise Ratio (PSNR) is
calculated as follows:

2352

ar(etsr)

PSNR = IOIogmv , T €K, (3.41)

where var denotes variance.

The motion-compensated interpolation scheme described above will be used to
illustrate the advantages of using a quadratic trajectory model over a linear one. The
estimated quadratic and linear trajectories over N = 5 images will be compared.

Another scenario for the case of 4:1 subsampling is to estimate linear motion at the
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receiver using the 2 received images g, #0 and 4 (i.e.. 2V = 2). In this case, the set 7,
will be equal to the set 7, defined in Table 3.1 for each of the 3 omitted fields. This
scenario seems more practical than the linear trajectory model over 5 images since

no motion estimates need to be transmitted.

3.5 Selection of parameters

The motion estimation algorithm, discussed in this chapter, is quite flexible
from the point of view of a possible choice of parameters. The primary parameters

of the algorithm ure:

1. The number of resolution levels L in the hicrarchical processing.

o

The maximam number of iterations at each resolution level of the image pyra-

mid.

3. The set I, of time instants of the test image used during the cstimation algo-
rithm, e.g., I, = {~2,-1,0,1,2} indicates that the estimation of motion ficld

P: at time t is carried out using 5 fieldsat t =2, ¢t =1, ¢, ¢+ 1, and ¢ + 2.

4. The choice between linear and quadratic trajectory models. This will be useful
in comparing the two approaches by quantifying the gainfloss achicved in a
motion-compensated interpolation application. Note that in all simulations,

the quadratic trajectory model is used by default unless otherwise stated.

5. The regularization parameter A, which plays a crucial role in weighting the

importance between the smoothness term and the structural term.
6. The matrix I" that permits different weighing of individual motion parameters. -

The maximum number of iterations at each image resolution level was sct to 50.
However, the algorithm was allowed to stop or switch to the next higher resolution

level if the condition expressed by {3.35) is satisfied for a sufficiently small e. When
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the algorithm stops. the motion field p of the best converged cnergy U(p) at iteration
n selecied among the last 10 iterations is stored as a final result.

On the other hard, the diagonal clements of the weight matrix in (3.20} were
chosen as follows: [w,, w., w.,, w,]=1[1 1 2 2]. In this way, more weight is
given to the acceleration parameters in the smoothness term (3.19), and hence more
smoothness is enforced on the acceleration field than on the velocity field. This seems
reasonable especially if more than 2 fields {i.e., NV > 2) are used in the estimation
since a small deviation in the estimated acceleration causes a significant deviation of
the two end points of the estimated trajectory (dependence on {7 — ¢)* in (3.6)). In

the following sections the selection of the rest of the parameters is discussed.

3.5.1 Selection of L

The number of resolution levels L has been varied from 1 to 4 in the estimation al-
gorithm applied to field #2 of test image 2. A quadratic motion trajectory at pixel
accuracy has been selected with the actual motion parameters p(2) =[1 2 1 1]T at
ficld #2. Note that the velocity parameters have been calculated directly from equa-
tion (3.37). The behavior of the objective function U™(p) as a function of the iteration
number n for each case is shown in Figure 3.8 for A, = 30, 7, = {-2,-1,0,1,2}, and
I =1, where I is the identity matrix.

The discontinuities in Figures 3.8b, 3.8¢, and 3.8d correspond to switching of
the estimation algorithm to the next higher resolution level which is determined
when the inequality in (3.35) is satisfied for certain e. It is worth to notice here
the advantage of using a multiresolution approach: the rate of convergence to a
minimum is improved. Hence, without a multiresolution approach, t.e., L = 1, the
algorithm failed to converge to the optimum, and instead converged to a local one
at U*(p) = 165 (Figure 3.8a). However, for L > 1, the optimum U/*(p) = 20 has
been detected successfully with a lower computational burden. Thus, for L = 2 the
global optimum is detected at n = 60 (Figure 3.8b), for L = 3 the global optimum
is detected at n = 50 (Figure 3.8¢c), and for L = 4 the global optimum is detected at .
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Figure 3.8: Behavior of U/%(p) as a function of the iteration number n for ficld #2 of
test image 2 with A, =30, 7, = {-2,-1,0,1,2},and T =L for (a) L=1;(b) L = 2;
() L=3;(d) L=4.

n = 40 (Figure 3.8d). Tle estimated motion fields p(2) for L = 1, and L = 1 are
shown in Figures 3.9 and 3.10, respeciively.

The estimated motion parameters for L = 1 in Figure 3.9 correspond to a local
minimum, that is why the estimation inside the moving rectangle is far from the
true motion parameters. For L = 4 the estimate in Figure 3.10 is consistent with
the true motion except at the boundaries of the moving rectangle where the motion
of the rectangle has smeared outside the boundaries due to the desired smoothness
property of motion introduced by the smoothness term. Hence L = 4 will be used in

the estimation algorithm for the rest of the simulations in this chapter.
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3.5.2 Selection of },

The test image 2 has been used with the same set of synthetic motion parameters
but now the regularization parameter A, is varied from 10 to 200 with a step of 10.

The results are shown in Figure 3.11.

{v)

Upcip)

0 50 100 150 200 [+] 50 100 150 200
lambda lambda
(c) {d} FvxLvyd-Jaxi-Jay
35 - - 0.4 - .
0.3}-% et
20.2 3‘ .......... ....... , ........
\ : - :
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Figure 3.11: Energies: (a) U,(p); (b) Upn(p); (c) U.(p) after convergence and (d) the
MSE of motion estimates in Rg as a function of A, for field #2 of test image 2 with

p(2y={1 2 1 1}7, I, = {-2,-1,0,1,2},and I =11

Figures 3.11a, 3.11b, and 3.11c illustrate the behavior of the following cnergies:
Use(P)y Upe(P), Ue(P) = Use(P) + ApUpe(p), respectively, as functions of A, (the addi-
tional subscript ¢’ is used to denote converged energy). Figure 3.11d, on the other
hand, illustrates the behavior of the MSE as a function of A, for each of the 4 mo-
tion parameters estimated over Ro. Note that the graphs of Figures 3.11¢, and 3.11d
both show a2 minimum around A, = 30. The estimated motion fields for A, = 10 and

Ap = 200 are shown in Figures 3.12 and 3.13 respectively.
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acceleration a for A, = 10 and

Figure 3.13: Estimated: (a) velocity ¥(2), and (b) acceleration a for A, = 200 and
field #2 of test image 2 with p(2) =[1 2 1 1]7.
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For A, = 10, the smoothing at the boundaries of the moving rectangle is not
sufficient causing the estimates at the boundaries to deviate noticeably from the
truc motion vectors. On the other hand. for A, = 200 the high importance of the
smoothness term has caused the estimates within the moving rectangie to propagate

far away from its boundaries {Figure 3.13). This illustrates the convex property of the

(a} =)

50 100 150 200 0 50 100 150 200
lambda lambda

(d) T vyil-Jaxd~Jay

MSE

o s 100 150 200 o 50 100 180 200
lambda lambda

Figure 3.14: Energies: (2} U,(p); (b) Upe(p}); (c) Uc(p) after convergence and (d) the

MSE of motion estimates in Ro as a function of A, for field #2 of test image 1 with

p(2) =[1.75 1.5 1 157, T, ={-~2,-1,0,1,2},and T =L

MSE curves drawn in Figure 3.11d. A value of A, = 30 (Figure 3.10) secems to give a
reasonable trade-off between under- and over-smoothing, and also coincides with the
minimum of U (p) (Figure 3.11c). The same test has been performed for test image
1 but with sub-pixel accuracy of motion parameters p(2) = [1.75 1.5 1 1.5]7. The
same kind of behavior can be noticed in the results shown in Figure 3.14.

The selection of A, on natural sequences has been performed on field #30 of test
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image 3 with I, = {-2,=-1.0.1,2} and ' = I. Two evalnation measures are plotted

as a function of A, in Figure 3.15.

{2

41 T T T

8

PSNR (dB)
2

K=

37L ) n L t 1 1 : i !
0 10 20 30 4 50 &0 0 80 %0 100

Figure 3.15: Behavior of the PSNR (a) and the converged energy U.(p) (b) as a
function of A, resulting from motion estimation performed on field #30 of test image

3 with Z, = {—2,-1,0,1,2}, and J; = {~1,1}.

The first one (Figure 3.15a) is the PSNR in dB of the reconstructed field #30
using interpolation. The reconstruction is done using the estimated motion vectors
and a simple bilinear interpolation of the motion-compensated pixels between the
previous (#29) and the next (#31) fields. Hence, the case J;: = {—1,1} is used here.
The second measure (Figure 3.15b) represents the best converged value U, (p) of the
objective function U{p) during the estimation algorithm. A, = 20 seems toresult ina
good PSNR and the best converged energy. The estimated motion fields at A, = 20
are shown in Figure 3.16. These fields illustrate the motion of the hand that is moving

downward with some deceleration (note the acceleration vectors on the hand that are
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Figure 3.16: Estimated: (a) velocity v(30), and (b) acceleration a (scaled by 4) for
Ap = 20 and field #30 of test image 3.

pointing upward).

To conclude, one can say that it is difficult to choose a fixed value of A, for all
the sequences. However, a range of 20 < A, < 30 seems to yicld to best compromise
for the tests that were performed on test images 1, 2, and 3. The value of A, has been
divided by 2 between a hizher and a lower resolution level. This is duc to the fact
that the distance between two consecutive motion vectors at the next lower resolution

level is multiplied by two and hence the contribution of the smoothness should be

reduced.

3.5.3 Selection of 7,

The number of fields N =Card(Z;) used in the estimation algorithm has been varied
by selecting different configurations of the set Z,. This was done for A, = 25, and field
#2 of test image 1 with the rectangle moving at subpixel accuracy along a quadratic
trajectory characterized by the set p(2) = [1.5 1.5 0.5 1]7.

The MSE of motion estimates inside the moving rectangle (i.e., region R})

for each case is shown in Table 3.2. Note that the overall MSE measure (of the 4
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I, ve(2) vy (2) a1, ay

{-1,1} 0.035082 | 0.054667 | 0.249625 | 0.838163
{-1,0,1} 0.0566-11 | 0.068300 | 0.010226 | 0.910025
{-2,-1,0,1} 0.081383 | 0.146087 | 0.025569 | 0.073454
{-1,0,1,2} 0.057416 | 0.048339 | 0.0430+7 | 0.055020
{-2,-1,0,1,2} | 0.045844 | 0.028816 | 0.027701 | 0.034414
{-2,-1,0,1,2,3} | 0.010133 | 0.029073 | 0.020734 | 0.02056

Table 3.2: MSE of motion estimates in region R| at field #2 of test image 1 with
p(2) =[1.5 1.5 0.5 1.0]7 for different sets Z,, and X, = 25.

parameters) decreases when N increases.

This is illustrated in Figure 3.17 that displays the real and estimated trajectories
at position x(2) = [37 30]7 (a point inside the moving rectangle chosen at random)
for field #2 of test image 1 for each of the 6 combinations of the set Z.

The estimated and real trajectories are drawn in dotted and full lines respectively
around the selected motion site x(2) at field #2 indicated by a ’o’. The positions
indicated by an x’ represent the tracked (on the dotted line) or real (on the full line)
positions of pixe! x(2) at fields #0,1,3,4,5 of test image 1.

It is clear from Figure 3.17 that a better tracking of the real trajectory is achieved -
for larger temporal support N which seems to be reasonable. However, for much larger
temporal support {i.e., N > 3), occluded areas begin to play a role in the estimation
algorithm, especially on natural TV sequences. Since occlusions are not considered
in this chapter, a choice of I; = {-2,-1,0,1,2} i.e., N = 5 seems to be reasonable

(Figure 3.17e) and will be used for the rest of the simulations in this chapter.
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Figure 3.17: Estimated (dotted line) and real trajectories (full line) at x(2) =
[37 30)7 for field #2 of test image 1 with p(2) = [1.5 1.5 0.5 1.0 7 for (a)
T, = {-1,1}; (b) Z: = {-1,0,1}; (¢) T, = {-2,-1,0,1}; (d) I, = {~1,0,1,2}; ()
7. = {-2,-1,0,1,2}; (f) I, = {-2,-1,0,1,2,3}.
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3.6 Simulation results

3.6.1 Results for synthetic sequences

The test image 1 has been generated using 4 different sets of synthetic motion
parameters p, Pz, P3, and pg, where p; and p; are motion fields generated at pixel

accuracy, while pa and p; arc motion fields generated at sub-pixel accuracy.

v:(2) v,(2) ar a,

P (2) 1.000000 | 0.000000 | 0.000000C | 1.000000
MSE in Ro | 0.036494 | 0.005016 | 0.014221 | 0.044516
MSE in R, | 0.006976 | 0.001729 | 0.001633 | 0.025963
MSE in R | 0.002572 | 0.000982 { 0.001027 | 0.018506
MSE in R, | 0.053912 | 0.006955 | 0.021648 | 0.055463
MSE in R, | 0.003176 | 0.000346 | 0.015453 | 0.029455

L —

p2(2) | 2.000000 | 2.000000 | 1.000009 | 1.000000
MSE in Ro | 0.316888 | 0.217085 | 0.114484 | 0.091598
MSE in R} | 0.008364 | 0.020709 | 0.003950 | 0.003291

p3(2) 1.500000 { 1.500000 | 0.500000 | 1.000000
MSE in Ry | 0.163142 | 0.103574 | 0.057372 | 0.073342
MSE in R | 0.045844 | 0.028816 | 0.027701 } 0.034414

——

Pi(2) 1.250000 | 1.750000 | 0.250000 | 0.750000
MSE in Ro | 0.173114 | 0.173606 | 0.069072 | 0.082292
MSE in R} | 0.096116 | 0.054574 | 0.081085 | 0.063015

Table 3.3: MSE of motion estimates in various regions at field #2 of test image 1

for 4 different sets of synthetic motion parameters.

In each case the motion fields at field #2 are estimated with L = 4, A, = 25,
I, = {—2,-1,0,1,2}, and [wy, wy, wa, ws,]=[1 1 2 2]. The MSE in Ro & R}

along with the true velocity and acceleration parameters at field #2 for each case are
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Figure 3.18: Estimated: (a) velocity v(2), and (b} acceleration

a for field #2 of

test image 1 with p(2) = pi(2) (due to interlacing, the actual distance between two

motion sites in the vertical direction is twice larger than it appears).
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Figure 3.19: Estimated: (a) velocity ¥(2), and (b)

(a)

image 1 with p(2) = pa(2).
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shown in Table 3.3.

The estimated motion fields for the sets py and py of synthetic motion parameters
arc shown in Figures 3,18 and 3.19, respectively. Note that the estimated motion and
acceleration fields correspond well to the metion of the rectangle (the smoothing at
bonndaries is due to lack of a motion boundary model). This is confirmed by the

MSE in R} (no boundary effects) that is ir gencral much smaller than the error in

Ry {Table 3.3).

v2(2) vy (2) ar a,

ps(2) 2.000000 | 1.000000 | 0.0G0OO0 | 0.000000
MSE in Ro } 0.229595 | 0.063679 | 0.012156 | 0.009899
MSE in R} | 0.005424 | 0.007238 | 0.000961 0.003390
ps(2) 1.000G00 | 2.600000 | 1.000000 | 1.000000
MSE in Ro | 0.126479 | 0.250304 { 0.100246 | 0.09669S
MSE in R | 0.001685 | 0.008511 | 0.001823 | 0.002857
pr(2) 1.750000 | 1.500000 | 1.000000 | 1.500000
MSE in Ro | 0.690936 | 0.279143 | 0.312324 | 0.275153
MSE in R { 0.106735 | 0.069062 | 0.057062 | 0.036957
_-p_g(?.) 1.750000 | 2.250000 | 0.750000 | 1.250000
MSE in Re | 0.585331 | 0.613616 | 0.227904 | 0.268670
MSE in Ry | 0.145411 | 0.231920 | 0.120366 | 0.188574

Table 3.4: MSE of motion estimates in regions Ry & R at field #2 of test image 2

for 4 different sets of synthetic motion parameters.

The MSE in various regions of the motion field estimate for the p; set of syn-
thetic motion parameters is also shown in Table 3.3. Note that the small values of the
MSE in regions R] and R, (no boundary effect) demonstrate well the ability of the
motion estimation algorithm to detect accurately the quadratic trajectory specified

by motion parameters at pixel accuracy.
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The same simulation has been carried out {or test image 2 nsing another set of
syuthetic motion parameters ps. pg. Pr. amd ps. where ps and pg are motion fields
senerated at pixel accuracy, while ps and py are motion tields generated at sub-pixel
accuracy. The W SE results in Ry and R for eack case are shown in Table 3.1

To illustrate how well the motion parameters with sub-pixel accuracy are de-
tected, a comparison between the estimated and real trajectories at a certain point

inside the moving rectangle is considered.

(a) 2 (L)
25
=2
30
. _
% 25 30 35 335 40
X
(c)
25 28
40
sor a2} -
-3 o
s 44
a8} -
% 45 %5 50

Figure 3.20: Estimatcd trajectories at: (a) x(2) = [22 27]7; (b) x(2) = (28 22]T;
(¢) x(2) = [33 30]7; (d) x(2) = [39 39]T inside the moving rectangle of test image 2
with p(2) = p=(2) = {175 15 1 15T, and T, = {~2,-1,0,1,2}.

Figure 3.20 illustrates the estimated trajectories at 4 different positions (chosen
at random) inside the moving rectangle of test image 2 for the set pr. Note that the
deviation from the real trajectory is more noticeable at the furthest fields, i.e., fields

#0 and 3, however, in general, the quadratic trajectory is very well followed.
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This trajectory representation is useful to illustrate the difference in tracking be-
tween linear and quadratic motion trajectory models. The estimation was performed
using both models on test image 1 with the sct py of synthetic motion parameters
generated at sub-pixel accuracy.

The resulting velocity ficld estimates v(2) obtained using the linear and quadratic
motion trajectory modeis are compared in Figure 3.21. The discrepancy between the
two models can be seen in Table 3.5 that shows the calculated MSE in Ry and R

for the two considered models.

Model vz(2) vy (2) a: a,
MSE in Ry | quadratic | 0.163142 | 0.103574 | 0.057372 | 0.073342
linear | 0.811878 | 0.512640 - -

MSE in R} | quadratic | 0.045344 | 0.028816 | 0.027701 | 0.034414
linear [ 2.230566 | 0.932370 - -

Table 3.5: Comparison of the M/ SE of motion estimates in Rp and R resulting from
quadratic and lirear trajectory models at field #2 of test image 1 with p(2) = p3(2) =
1.5 1.5 0.5 1}7, and Z, = {-2,-1,0,1,2}.

From Figure 3.21, and Table 3.5 one can deduce that the use of a linear tra-
jectory model is not enough to track the real instantaneous velocities on a quadratic
trajectory, and hence the use of the quadratic trajectory model is advantageous in
comparison with the linear one.

This difference between the two models is also illustrated graphically in Figure
3.22 in which the real trajectory at a certain point (x,2) (chosen at random inside
the moving rectangle) is drawn in full line. Trajectory resulting from the use of the
quadratic motion trajectory model is shown in dotted line, and trajectory resulting
from the use of the Linear model is shown in dashed lire. It is worth to aote how well
the real trajectory is represented by using the quadratic trajectory model. However,
in the case of the linear model, the algorithm failed to track the real trajectory because

of the restricted < agree of freedom of this model.
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Figure 3.21: Estimated velocity v(2) at ficld #2 of test image 1 with p(2) = p3(2)

using (a) linear and (b) quadratic motion trajectory models.

24

Figure 3.22: Estimated linear (dashed line) and quadratic (dotted line) trajectories
at the point x(2) = [37 30]7 inside the moving rectangle of test image 1 with
p(2) = ps(2) = [L5 1.5 0.5 1T, and T, = {—2,—1,0,1,2}.
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3.6.2 Results for natural sequences

In order to simlate the motion-compensated interpolation application described
in Figure 3.7, the estimation algorithm was applicd to the first 33 fields of test image
3 (over the estimation area defined in Figure 3.3) with L = 4. A, = 20, and the sets
I, and J, defined as in Table 3.1. This experiment was performed three times: using
first a lincar trajectory model with ¥ = 3, then a quadratic trajectory model with
N =3, and finally a linecar trajectory model with N = 2. In the last case the set 7,
is equal to the set J,, as described in Section 3.4.3. The PSNR curves for all the

processed fields are plotted in Figure 3.23.

a4

PSR ()

©: quadratic, N=S
x; linear, Nab

Caly = linoar, Na2 -1
K._. -t
325 3 30 26 30 3%

15 20
FIELD »

Figure 3.23: Comparison of the PSNR for reconstructed fields from test image 3
using linear (dashed line) and quadratic (full line) motion trajectory models with

N =5 and linear trajectory model with ¥ = 2 (dotted line).

The resulting means for PSN R (PSN R) obtained from the estimation algorithm
are shown in Table 3.6 for the linear and quadratic trajectory models.

The use of the quadratic irajectory model resulted in an average gain of +1.89
dB with respect to the linear trajectory model with N = 5, and +3.27 dB with
respect to the linear trajectory model with N = 2. These gains are due to better
tracking of the real motion trajectories that causes the structural term U,(p) in (3.17)

to decrease substantially.
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Model PsNe

37.79

L3
—

hnear (V=

39.17

e}
—

linear (N =

quadratic (N =5) | 11.06

Table 3.6: Mecans for PSN R evaluated over 24 fields of test image 3 using linear and

quadratic motion trajectory models.

(a) " (b) ©

Figure 3.24: Estimation area (a) of field #26 of test image 3; interpolation error (mag-
rified by 2) using: (b) linear trajectory model (PSNR = 39.03 dB); {c) quadratic
trajectory model (PSNR = 41.93 dB} with N =35.

The error images (between the reconstructed and the original ones) for the lincar
and quadratic trajectory models with NV = 5 are shown in Figures 3.24, 3.25, and 3.26
for fields #26, 80, and 103 of test image 3, respectively. Also the cstimated velocity
and acceleration fields for fields #80 and 105 are shown in Figures 3.27 and 3.28,
respectively.

It is evident from the motion field plots, and the interpolation error images that
in the case of the linear trajectory model the errors are more concentrated in the
regions that have accelerated motion (i.e., the hand and the arm). This explains the
degradation in the PSN R for the reconstructed fields when linear trajectory model
is used in the estimation algorithm.

The same experiment was run on 33 fields of the test image 4 (over the estimation
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Figure 3.25: Estimation area (2) of field #30 of test image 3; interpolation error (mag-
nified by 2) using: (b) linear trajectory model (PSNR = 37.76 dB); (¢} quadratic
trajectory model (PSNR = 41.61 dB) with N = 5.
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Figure 3.26: Estimation area (a) of field #1035 of test imnage 3; interpolation er-
ror (magnified by 2) using: (b) linear trajectory model (PSNR = 37.68 dB); (c)
quadratic trajectory model (PSNR = 41.80 dB) with NV =5.

area defined in Figure 3.6) with L = 4, A, = 20 and the sets Z; and J; defined as
in 3.1. The PSNR curves for all the processed fields are plotted in Figure 3.29.

The resulting means for PSNR (PSNR) obtained from the estimation algorithm are
shown in Table 3.7 for the linear and quadratic trajectory models. Note that the use
of the quadratic trajectory model resulted in an average gain of 4-4.39 dB with respect
to the linear trajectory model with N = 5, and +5.72 dB with respect to the linear
trajectory model with N = 2. These results are consistent with those in Table 3.6

for test image 3. However, higher gains have been achieved by using the quadratic
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Figure 3.27: Estimated: (a) velocity v(80), and (b) acceleration & (scaled by 1) at

field #80 of test image 3.
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Figure 3.28: Estimated: (a) velocity v(103), and (b) acceleration a (scaled by 4) at
field #105 of test image 3.
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Figure 3.29: Comparison of the PSN R for reconstructed fields from test image 4
using linear (dashed line) and quadratic (full line) motion trajectory models with

N =5 and linear trajectory model with /N = 2 (dotted line}.

| Model PSNE (dB)

linear (N = 2) 32.87

linear (N = 5) 34.20
quadratic {IV = 5) 38.59

Table 3.7: Means for PSN R evaluated over 24 fields of test image 4 using linear and

quadratic motion trajectory models.

trajectory model. This is due to motion present in the sequence that is closer to
the quadratic trajectory model ihan to the linear model. This hypothesis seems to
be reasonable as test image 4 is a typical video conference sequence in which the
movements of the mouth and the eyes of the speaker exhibit substantial acceleration.

The reconstructed images as well as the interpolation error for the linear and
quadratic trajectory models with N = 5 are shown in Figures 3.30, 3.31, and 3.32 for
fields #6, 14, and 22 of test image 4, respectively. Also, the estimated velocity and
acceleration fields for these same fields are shown in Figures 3.33, 3.34, and 3.35.

It is worth to note here that most of the velocity and acceleration vectors are

concentrated in the regions of the eyes and the mouth. These are basically the regions
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Figure 3.30: Reconstructed field #6 of test image 4 using: (a) linear (PSN R = 30.26
dB): (b) quadratic trajectory model (PSNR = 36.91 dB) with ' = 5 and their

respective error images (magnified by 2) in (c) and (d).

(d)

Fignre 3.31: Reconstructed field #14 of test image 4 using: (a) linear (PSNR = 30.71
dB); (b) quadratic trajectory model (PSNR = 37.27 dB) with N = 5 and their

respective error images (magnified by 2) in (c) and (d).

where the interpolation errors are concentrated and where the use of a linear or
quadratic motion trajectory model makes the difference. The motion fields displayed
in Figures 3.34 and 3.35, for instance, reflect well the opening and closure of the
mouth, respectively. The estimated acceleration vectors in the region of the mouth
result in a substantial decrease of the interpolation errors when a quadratic trajectory
model is used. This is also reflected in the interpolated images where, in particular,

the mouth in Figure 3.32a appears to be less open than in Figure 3.32b. -
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(d)

Figure 3.32: Reconstructed field #22 of test image 4 using: (2) linear (PSNR = 30.95
dB); (b) quadratic trajectory model (PSNR = 39.42 dB) with N = 5 and their

respective crror images (magnified by 2) in (c) and {d).

Figure 3.33: Estimated: (a) velocity V(6) (scaled by 2); (b) acceleration & (scaled by
4) at field #6 of test image 4.
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Chapter 4
Esﬁmation of Occlusions

The motion estimation algorithm that was proposed in Chapter 3 gives accu-
ratec motion estimates in moving or stationary regions. However erroneous motion
estimates result in occluded regions (i.e., near motion discontinuities) due to the lack
of occlusion processing in the motion estimation algorithm. This problem is reflected
in motion-compensated interpolated images where the ability to reconstruct clearly
moving boundaries fails in general. The need to process occluded regions becomes
even more critical in the presence of accelerated motion which generally produces
larger occluded areas. Also, the use of multiframe processing contributes to the need
of processing the occluded regions. In this chapter, the motion estimation algorithm is _
modified in order to take occlusion effects into consideration. The modeling of occlu-
sions and motion discontinuities is discussed in Section 4.1 along with the derivation of
a new multiple-term objective function. Section 4.2 describes an optimization method
that allows to minimize this objective function and compute piecewise smooth mo-
tion fields along with the corresponding occlusion and motion discontinuity fields.
Experimental results for sequences with synthetic motion and for natural sequences

are presented in Section 4.3.
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4.1 Extension of the motion estimation algorithm

4.1.1 Definitions and reformulation of the problem

The estimation algorithm presented in Chapter 3 is made complete by taking
into account occlusion effects present in dynamicimages. This is possible, as explained
in Section 2.1.3, by defining an occlusion field o and a motion discontinuity field !,
often called line field or line process [14]. The occlusion ficld has its samples defined on
the lattice A, with sampling periods (T:,T;’, T,) [10]. Every occlusion tag o can take
one of several possible states, e.g., moving/stationary (visible), exposed, or covered.
The number of such states is finite and depends on the cardinality of Z,. On the other
hand, the line field is defined over a union of shifted lattices ¥; = 3, U ¥,, where
va=A,+ [0 T2/2 0T, and ¢, = A, + [T2/2 0 0] are orthorhombic cosets [10]
specifying positions of horizontal and vertical discontinuitics, respectively. Hence,
each line element is defined between two pixel positions. The notation {(x;,x;) will
be used to denote the absence ({(x;,x;) = 0) or presence ({(x;,x;) = 1) of a motion
discontinuity between pixels x; and x;.

The algorithm is hence extended to determine the most likely triplet (p¢,o0:, 1)
corresponding to the true underlying image u based on observations G; = {gu4- :
T € I;}. Assuming that occlusion fields o, and line fields ; are samples from scalar
random fields O; and L., respectively, the MAP estimate is obtained by extending

equation 3.11 as follows:

(Br,ér, k) =arg max  P(pi, 0= o, L = L|Gy)

= arg (;nﬂ) [P(gﬂphohlhfhn) . P(ptlohlhgtn)‘ (4.1)

P(O: = o)ly, 9t,) - P(Le = li|ge,) ] .

In the following sections, models that allow to specify the constituent probabilitics
in (4.1) are investigated in order to derive the new objective function U(p) (equation
(3.22)).
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4.1.2 Structural model

In the formulation of the structural model term (Section 3.2.1) 1t was assumed
that the trajectory through a point (x,t) extends through the whole time interval
defined by T, (Figure 3.2). But this is only true if the necessary condition stated in
(3.10) is satisfied, i.e., the point (x, ) is visible over the N fields defined by Z,. Hence,

at cach spatio-temporal position (x,t) a subset of Z; can be defined as follows:
I:c= {TEI; X € .C:}, (4.2)

where £, = (Ap)e N V(7;t) is the set of all pixels on lattice A, at time ¢ visible in
the image sequence between ¢ and 7. I is called the visibility set [12] and contains
time instants from Z, at which pixel (x,¢) is visible. This set can be directly derived
from the occlusion state o(x,t} at (X,?} as illustrated in Table 4.1 for 3- and 5-image

estimation. Only the most likely visibility /non-visibility combinations are taken into

I o(x, 1) Description Ir
M moving/stationary {-1,0,1}
{-1,0,1} E exposed {0,1}

C covered {-1,0}
M moving/stationary {-2,-1,0,1,2}
E exposed in (¢ — 1,t) {0,1,2}

{-2,-1,0,1,2} E_,  exposedin(t—-2,t—1) {-1,0,1,2}
C covered in (¢,t + 1) {-2,-1,0}

Cy1 coveredin (t+1,t+2) {-2,-1,0,1}

Table 4.1: Table of occlusic.n states and visibility sets for 7, = {-1,0,1} and Z; =
{-2,-1,0,1,2}.

account for N = 5.

The structural model term in (3.17), which relies on the sample variance measure
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(equation (3.13)). is then modified as follows:

Np .
Usp.o) =3 { > [atbr+ k) - q(x,.t)}'} . (1.3)
=1 L'GI?“
with
. _ 1 -
C(xi, t) = W EZI; gx/ t+7) {1.1)

and the position x¥ defined as in {3.13). IHence, the new structural term U, (p, o)
becomes dependent on the occlusion field o in the sense that ouly the fields referenced
by the visibility set Z;* at position (x;,t) will contribute to the evaluation of the
sample variance. However, the dependence of U,(p, o} on the line ficld ! has been
omitted since the information about motion discontinuities will be conveyed through
the motion trajectory model.

It is worth also to mention that U,(p, o) is the cnergy (unction of Gibbs distri-

bution (equation (3.16)) that models the conditional distribution P(G}*|pe, o1, It 9t )
in (4.1).

4.1.3 Motion trajectory model

Defining motion vectors p; as samples from a vector MRF P,, as discussed in
Section 3.2.2, the conditional distribution P(p:|e:, ki, 9:.) in (4.1) can be expressed by

a Gibbs distribution whose energy function (equation (3.19)) is modified as follows:

Np
Upp, ) =3 X (Pi—p3) T(pi — p;)[1 — I(xi, ;)] (4.5)

i=1 {%;.%; }€Ci

This energy captures the desired smoothness property of the motion field for the

first-order neighborhood system n' (Figure 4.1) only in the absence of motion dis- |
continuities. The dependence of the smoothness term U,(p,!{) on the line field { by

the multiplicative term [1 — I(x;,%;)] has been investigated in Section 2.4.3 whereby

a jump in motion parameters is not penalized if a motion discontinuity had been de-

tected. Howcver, the dependence on the occlusion field o is not necessary here, since
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Figure 4.1: First-order neighborhood system ! (a) for motion ficld p defined over
A, with motion discontinuities [ defined over ¥y; (b) vertical clique; (¢) horizontal
clique (empty circle: motion position; filled circle: central motion position; rectangle:

position of a line element).

the information about occlusion state trausition is considered to be passed by a line

element.

4.1.4 Occlusion model

In [7] the occlusion field o; was modeled for the case of estimation from 3 images
(i.e., Z. = {—1,0,1}). A similar approach is used here for the case of 5-image csti-
mation (i.e., N = 3). The five possible states of an occlusion label o{x, t) are shown
in Table 4.1 for Z; = {-2,-1,0,1,2}. The occlusion field o, is thus modeled by a
discrete-valued scalar MRF described by the following Gibbs distribution

1 _Uﬁo.l!
P(O: = o}ls, gt,) = ?e Po (4.6)

Q

with Z, and B, being constants. The energy function Uy(0,!) is defined as follows:

Np
Ua(O, I) = Z {V01 (O(X;,i)) + E VD: (O(X.', i)'r O(xiv t)v [(xi, x.i))} ) (4'7)

=1 {xix, }ec,
where V, and V,, are potential functions associated with single- and two-element
cliques respectively. These cliques are chosen from the first-order ncighborhood sys-
tem 1! shown in Figure 4.1. It is expected that a typical occlusion field consists mostly
of patches of pixels labelcd as visible, and some smaller clusters of pixels labeled as

occluded. Therefore, the potential function V,, provides a2 penalty associated with
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the introduction of an occlusion state, whereas the potential function V,, favors the
creation of continuous occlusion regions near motion discontinuities only. To achieve
this goal, the dependence of V,, on the line field { is utilized. For instance, whenever
(x:,t) and (x;,¢) have the same occlusion state, V,, (o(x;, t), o(x;, t), {{x;, X;)) is set to
0 (high probability) if the two positions are not separated by a motion discontinuity
(i.e., I{({xi,x;) = 0) and to a high value (low probability) if they are separated by a’
motion discontinuity (i.e., I(x;,x;) = 1).

The assigned costs associated with all possible configurations of single- and two-

clement cliques in a 5-state occlusion field are shown in Figure 4.2. These costs are

o O < | $

40 0 pd 2.0 20
(@)

cflo OO <CIC mim  ¢le olo Ol <IC mlm  ¢le
a0

00 LTy 0.0 [+1+] 50 100 (o1} 100 100

ol ol¢ oim ole 0Qlo ol oI¢ oim ole OlIC
1.0 0.0 0.0

10 1.0 1.0 00 00 a0 200

ojx Ole <oim Ole mie O Cle Jlm Ole Ele

200 300 00 200 [+14] 200 200 200 200 200

®

Figure 4.2: Costs assigned to: (a) V,,; (b) Vi, for various configurations (up to
rotation and perrnutation) of occlusion cliques for 7, = {-2,-1,0,1,2} (occlusion
states: circle (M); empty square (E); empty diamond (E_,); filled square (C); filled

diamond {Cy4,), line element states: empty rectangle (“off”); filled rectangle (“on™)).

chosen experimentally, and therefore are not optimal in any way. Basically, the costs
associated with 2-element cliques are chosen in a way to discourage the occurrence
of an incompatible combination of neighboring occlusion tags (i.e., £ and C), and to

favor the creation of clusters of occluded pixels near motion discontinuities.
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4.1.5 Motion discontinuity model

In order to model continuity of motion boundaries, the motion discontinuity

field [, is modcled by a binary MRF L, [12] described by the Gibbs distribution

1 _utn
P(Le=1Llgi) = e 75 (4.8)

with Z; and §; being the usual constants. The energy function (1) is defined as

follows:

Ufl.g) = ZE {Vh(li,ci) + Y W)+ S l‘}a(l,,ci)} , (4.9)

i=1 EXTIR TR
where ¢; is a clique, NV is the number of horizontal and vertical line elements in the
motion discontinuity field [;, {; denotes a horizontal or vertical line element at position
x; € (¥1)e, and e; denotes presence (e; = 1) or absence (e; = 0) of an intensity edge
at x;. A line element /; is said to be turned “on™ (respectively “off®) at x; if [; = 1
(respectively I; = 0) i.e., a motion discontinuity is present (respectively absent) at
xi. W, W,, and V, are potential functions associated with single-clement, four-
element square-shaped, and four-element cross-shaped cliques, respectively (Figure

4.3). These cliques are chosen from a sufficiently large neighborhood system 7 [31]

= [

:D-H= I]Olon = [IOD :[Il:
N ol = = = of o
= I
(@ ®) (©) @ (©)

Figure 4.3: Neighborhood system 7 for motion discontinuity field { defined over ¥, (a)
for horizontal discontinuity defined over 14; (b) for vertical discontinuity defined over
Py; (¢) single-element clique; (d) four-element square-skaped clique; (¢) four-clement
cross-shaped clique (empty rectangle: positions of a line element; filled rectangle:

position of the central line element; circle: pixel position).
defined over ¥; at a horizontal or vertical discontinuity (Figure 4.3(a) and 4.3(b)).
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The set of four-element square-shaped cliques is denoted by Cp, while the set of four-
clement cross-shaped cliques is denoted by G,

[t is assumed that, in general, the introduction of a motion discontinuity should
coincide with an intensity edge. This is enforced by the potential function V4, which
uses single-clement cliques to associate a high penalty whenever 2 motion aiscon-
tinuity does not match an intensity edge [21]. Vi, can therefore be formulated as
follows:

Vi(l,e) =10+ (1.1 = &) - I, (4.10)
with [; and e; denoting the values of the line element and the intensity edge, respec-
tively, at position x;. Hence, the introduction of a motion discontinuity (;; = 1) is
penalized by 11 in the absence of an intensity edge (e; = 0) and by 1 if such edge is
present (e; = 1). This latter value assures a penalty associated with the introduction
of a line clement since otherwise such elements could be introduced everywhere on
(W), to bring the energy (4.5) to zero.

The field of intensity edges e, at ¢ is calculated a priori by the application of
Canny [6] edge detector £ to the observation field g, i.e., e; = £(g:). This operator
consists of finding zero-crossings (i.e., intensity edges) of a smoothed version of g; at

positions x; € (¥;);, along direction n, as follows:
g,0 .
E: a(*a-ﬁ (h(x,) * g(x,,t)) = 0, 1= 1, nen ,N1 (4.11)
where k& is a 2-D Gaussian
_ixf?
h(x) = e 37, (4.12)
and % is the directional derivative with respect to n which represents the direction

normal to the intensity edge ¢; at x; € (¥;);. Since only horizontal and vertical

intensity edges are needed, then
o 17 ifx: € ()

(4.13)
1 o7 if xi € (d0)e ’

The operator £ in (4.11) can be equivalently characterized by
£: n7.Vi(h(x)=*g(x:t))-n=0, i=1,---,Np, (4.14)
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with V% being the spatial Hessian matrix. This explains the dependence of the a
priori probability of the line process (1.8) on the observation g,.

The control over straight lines, corners and intersections is achieved by the
penalty functions Vi, and 1, using the four-element cliques in Figure 1.3(d) and
4.3(e), respectively. Vi, in particular, discourages formation of double lines and also
inhibits the gencration of isolated trajectories while 1, discourages the creation of

unended and intersecting segments.
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Figure 4.4: Costs assigned to: (a) V,; (b) W, for various configurations (up to rota-
tion} of line cliques (filled rectangle: line element “on”, empty rectangle: line element

“off’, circle: pixel position).

Figure 4.4 shows the proposed costs (inspired by {7]) associated with different

configurations (up to a rotation) of four-element square- and cross-shaped cliques.

4.1.6 New objective function

Substituting the conditional probabilities in (4.1), the following optimization

problem results

(B 6e, ) = i Ulpe,o,b), (4.15)

Prot e

where U(p, 0,1) is the new multiple-term objective function expressed as follows:
U(psoa I) = Ua(pa O) + APUP(P-r 1) + ‘\oUo(oa l) + AlUl(ly g)- (4'16)
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The constituent energies in (1.16) are defined in (L3). (£5). (L.7). and (4.9) re-
spectively, and A, = 1/3,. A, = 1/3,. A&t = 1/3; denote their respective associated

weights.

4.2 Optimization method

Since trajectories arc described by contizuous-valued parameters while occlu-
sions and motion discontinuities are described by finite discrete state spaces, different
optimization methods must be used to estimate p, o, and [. This can be accomplished
by solving the minimization problem in (4.15) in an interleaved fashion, i.e., while’
one field is iteratively updated, the others are kept constant. Hence, at each iteration
(full scan of a field) n, the three fields p,, o;, and I, are updated consecutively by

performing one iteration of the following minimization problems

(n-1)
. . o = 0
() pr= a.rg?;l’ltt}l{Us(P:,O:) + A Up(pe, 1) } “’Ith{ f = 1D

(n=1)
. . P: =P

(b) I} =arg rﬂ’?{‘\pUp(pz, L) + AUs(0, i) + MUL(Le, g0)} with { ‘ (;_1)
' Oy =0

= ™1
(¢) of = argmin{U;(p:,0:) + AUs(0s, 1)} with Pe=Pe
{or} l, = IS"-I)

(4.17)
respectively. Once all three fields have been updated, the process is repeated until a

suitable convergeace of U{(p, o,1) is achieved.

4.2.1 Optimization of the motion field

Optimization of the motion field p; in equation (4.17a) is carried out using
the deterministic relaxation algorithm discussed in Chapter 3. The same iterative
algorithm, as derived in Section 3.3.2, results with some minor modifications. Hence,
the updating of a motion vector p? at iteration n is accomplished by solving the linear

system: A? - p? = b?. The matrix A? and vector b? are defined in (3.33) and (3.34)
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respectively with the set T, replaced by the visibility set I, and the average motion

vector P; at position X; modified as follows:

[~

pi = 3 Z pJ[l - I(Xl'.'.\'j)]. ('LlS)
St opEnt(i)
with
S= Y [1=I{xux)) (1.19)
JEnt{i)

4.2.2 QOptimization of the line and occlusion fields

Optimization of the line and occlusion fields is carried out by solving the mini-
mization problems in equations (4.17b) and (4.17¢) respectively using Besag’s Iterated
Conditional Modes (ICM) method [4]. Each iteration of this method consists of two
scans. During the first scan some sclected positions are visited and the line ele- .
ment/occlusion state at each position is updated using an exhaustive scarch over ail
possible states (2 states for the line field, 5 states for the occlusion field). The line
element focclusion state that yields the lowest energy is chosen as the new state. The
remaining positions are then visited during the second scan. Such a procedure has
been chosen in order to break the dependence of linefocclusion state from neighboring

states, and thus to allow quick convergence.

4.3 Simulation results

4.3.1 Definition of parameters

The modified estimation algorithm has been simulated on some test images with

the main parameters chosen as follows:

1. The number of resolution levels L in the image pyramid is set to 4. Hence, at
cach resolution level k, coarse motion fields are estimated along with the corre-
sponding occlusion and line fields before switching to the next finer resolution

level k — 1 (Figure 2.4). Anr intensity edge field e, for each resolution level is
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(R
H

therefore needed in the estimation algorithm. These intensity edges are pre-
o - o
piared a priori by application of the Canny edge detection operator €. described

in (.14}, at each resolution level.

The quadratic motion trajectory model is used in the subsequent simulations.

Hence, both velocity and acceieration fields are estimated.

The regularization parameters (A,. A;) associated respectively with the occlusion
term Ui;(0,!) and the line term {i(l. g) of the new objective function U/(p,o0,{)
(4.16} arc chosen experimentally for cach image. On the other hand, the reg-
ularization parameter associated with the smoothness term U,(p. ) was set to

A, = 20.

. I, = {-2,-1,0,1,2} is selected in the motion estimation algorithm. However,

T, = {-1,0,1} will be used sometimes to compare the estimated occlusion and

motion discontinuity fields for N=5and N = 3.

The set of time instants used in the motion-compensated interpolation is set to
J: = IF N {-2,2}. Hence the set J; is now adapted to occlusion labels. Also, a
comparison with the interpolated sequences generated using motion estimates

from the previous algorithm (Chapter 3) will be possible.

In the following, algorithm A is used to represent the motion estimation algorithm
discussed in Chapter 3 (without processing of occlusion areas and motion disconti-
nuities), whereas algorithm B represents the new modified algorithm that estimates

piecewise-continuous motion along with occlusion areas and motion discontinuities.

4.3.2 Results for synthetic sequences

In order to verify the accuracy of the occlusion and motion discontinuity esti-

mates, test image 5 with synthetic motion has been generated using the procedure

from Section 3.4.1. The test image 5, shown in Figure 4.5a, differs from test images 1
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and 2 by the fact that it s a highly detailed sequence thus making it more challenging

. for motion estimation. The ability to isolate moving contours of the rectangle from
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Figure 4.5: Field #2 of (2) test image 5 (the white frame encircles the arca used for
estimation}; (b) intensity edges detected by the edge detection operator £ applied to

the encircled area.

the rest of the intensity edges will demonstrate the validity of motion discontinuity
estimates. Therefore, test image 5 should be a good test sequence for the modified
estimation algorithm B. Intensity edges computed within the estimation arca by the
Canny operator £ are shown in Figure 4.5b.

The algorithm has been tested on field #2 of test image 5 with (A,, A) = (7, 5),
and p(2) =[2 0 0 0]7 being the real motion parameters of the moving rectangle at
field #2. The resulting motion field estimates for algorithms A and B arc shown in
Figures 4.6 and 4.7, respectively.

Note that the estimates in Figure 4.7 obtained by algorithm B are more accurate
around the moving rectangle than those obtained by algorithm A. The reason for this
is that the successful estimation of motion discontinuities (Figure 4.8b) in algorithm
B was helpful in disabling the motion smoothness constraint around these disconti-
nuities and hence providing a piecewise-constant estimate. This corresponds better

. to the true underlying motion and leads to a substantial decrease in the MSE of the
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Figure 4.6: Estimated: (a) velocity ¥(2), and (b) acceleration a using algorithm A

at ficld #2 of test image 5 with p(2)={2 0 0 0]T.

s w

(2) {b)

Figure 4.7: Estimated: (a) velocity ¥(2), and (b} acceleration & using algorithm B at

field #2 of test image 5 with p(2) =[2 0 0 0]7.
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estimates (Tabie (1.2 in the overall estimation area 'Ry and in the moving rectanale

. arca Ry (with its boundaries). The extimated occlusion 021 and motion discontinuity
Algorithm 2 e, (2) o W, i, |
MSE in Ry A $.0235129 | 0.021696 | 0.029210 | 0.01107 ]
| B 0.024777 | 0.002163 | 0.001252 | 0.002063
MSE in R, A 0.026600 | 0.023300 | 0.027187 | Q01547
| ) 0.005794 | 0.002501 | 0.000659 | 0004616

Table 1.2: Comparison of the M/ S E of motion estimates in Ry and Ry resulting trom

application of algorithms A and B at field #2 of test image 5 with p(2) = {2 0 0 0]7.

fields {(2) are shown in Figure 4.8 for 7, = {—2,—1.0.1,2} (¥ = 5) and in Figure 4.9
for T, = {—1,0.1} (¥ = 3). The assigned intensity level to cach possible occlusion

state in the occlusion field is: M =128, E =192, £_, =255, C =64, and Cyy = 0.

(2) (b)

Figure 4.8: Estimated: (a) occlusion field o(2), and (b} line ficld I(2) at ficld #2 of
test image 5 with p(2) =[2 0 0 07 and Z, = {-2,-1,0,1,2}.

Note that the detected occluded regions in Figure 4.8a for V = 5 are consistent
with the horizontal motion (from left to right) of the rectangie moving at a constant
velocity of 2 pixels per field. The dark area represents the arca that is going to
be covered within the next 2 time intervals whereas the bright area represent the
area that has been exposed within the previous 2 time intervals. A comparison with

the detected occlusion regions for N = 3 [9] (Figure 4.92) shows that multiframe
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Figure 4.9: Estimated: (a) occlusion field 6(2), and (b) line field {(2) at field #2 of
test image 5 with p(2) =[2 0 0 0] and Z, = {-1.0.1}.

processing (i.e., N = 3) helps in a better identification of occluded regions. This is

also true for the identification of motion discontinuities {Figures 4.8b and 4.9b).

So far, Algorithm B has been tested on test image 5 with the rectangle moving
horizontally and no acceleration. In a second experiment, algorithm B has been
tested on field #2 of test image 5 with (), X)) = (7,9), and p(2) =[¢ 4 1 1J7. In
this case, the rectangle is moving diagonally (from top-left to bottom-right) with an
acceleration of a = [1 1)7 per field.

The resulting motion field estimates for algorithms .4 and B are shown in Figures
4.10 and 4.11, respectively, and the M SE of the resulting motion estimates in regions
Ro and R, is reported in Table 4.3.

Algorithm | v-(2) vy(2) ez ay

MSE in Ry A 0.964976 | 1.140209 | 0.243863 | 0.197281

B 0.616461 | 0.853218 | 0.129602 { 0.096950

MSE in R, A 0.232956 | 0.211468 | 0.096320 | 0.072566
B 0.019926 | 0.024308 | 0.003422 | 0.004236

Table 4.3: Comparison of the M SE of motion estimates in R and R; resulting from
application of algorithms .A and B at field #2 of test image 5 with p(2) ={¢ 4 1 1]7.

The estimated occlusion 6(2) and motion discontinuity fields I(2) are shown in
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Figure 4.10: Estimated: (a) velocity v(2) (scaled by 0.3). and (b) acceleration a using

algorithm A at field #2 of test image 5 with p(2) = [+ 4 1 17,
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Figure 4.11: Estimated: (a) velocity ¥(2) (scaled by 0.5), and (b) acccleration & using
algorithm B at field #2 of test image 5 with p(2) = [4 4 1 1.
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Figure 1,12 for I, = {=2.—1.0.1.2} [V =3) and in Fignre 113 for I, = {=1.0. 1}

Figure 4.12: Estimated: (a) occlusion field 6(2). and (b) line field [(2) at field #2 of

test image 5 with p(2) =[4 ¢ 1 1JT and Z, = {-2,-1,0,1,2}.

Figure 4.13: Estimated: (a) occlusion field 4(2), and (b) line field [(2) at field #2 of
test image 5 with p(2)=[4¢ 4 1 1)T and Z, = {-1,0,1}.

Similar observations as before can be made; processing of occlusion areas and
motion discontinuities helps to decrease the MSE of motion estimates, especially
around the border of the moving rectangle (Table 4.3). Also, occluded areas are
better tracked with N = 5 then with V = 3. Note that the covered area in Figure
4.12a is larger than the exposed area due to the presence of acceleration in the diagonal
direction, and hence the detected occluded areas are consistent with the motion of

the moving rectangle.
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4.3.3 Results for natural sequences

Algorithm B has been also tested on test images 3 and | (Figures 3.5 and

3.6) with (A, X)) = (1.2). The results are illustrated in this section along with a
comparison with the results obtained by algorithm A,

The computed intensity edges at fields #26. 12, and 70 of test image 3 are shown

in Figure 4.14. These fields are used in algorithm B to penalize the introdaction of

line clements at non-edge sites.

il

lm*@i --

h

Figure 4.14: Computed intensity edges: (a) ¢(26); (b) e{42): (¢) e(70) at ficlds #30,

42, and 70 of test image 3, respectively.

Figure 4.15 illustrates the PSNR of 28 reconstructed fields from test image
3 using motion obtained from algorithm A (full line) and motion and occlusions
obtained from algorithm B (dashed line).

An average increase of +1.27 dB in the PSINR has becn achieved by using
algorithm B instead of algorithm A. The PSNR boost is most apparent in ficlds
containing accelerated motion of the hand or arm. This can be easily explained by the
fact that accelerated motion generates more occluded regions than linear motion, and
hence the detection of these regions {in Algorithm B) in the presence of acceleration is
helpful in obtaining better motion estimates especially around motion discontinuitics.

The estimated piecewise-continuous velocities at fields #26 and 42 are shown
in Figures 4.16a and 4.17a, respectively, along with the corresponding estimated line
fields. The same fields derived by algorithm A are shown in Figures 4.16b and 4.17b.

Note that the estimation of motion discontinuities has allowed to disable the motion
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Figure 4.153: Comparison of the PSN R for reconstructed ficlds from test image 3

using algorithm A (full line) and algorithm B (dashed line).

smoothness constraint around these discontinuities (i.e., between moving/stationary
and occluded regions), and hence to produce piecewise-continuous motion estimates
that are closer to the true underlying motion.

The occlusion and motion discontinuity fields along with the reconstructed and
error images (using algorithms A and B) for fields #26, 42, and 70 are shown in
Figures 4.18, 4.19, and 4.20 respectively.

Note that the occlusion and motion discontinuity estimates seem consistent with
the motion in the sequence. This can be confirmed by the reconstructed fields and
their respective error images in Figures 4.18, 4.19, and 4.20. For instance, one can
notice that the interpolated field #40 obtained using the motion and occlusion es-
timates obtained by algorithm B (Figure 4.19e) is closer to the true field {Figure
4.19a) than the interpolated field obtained using only the motion estimate obtained
by algorithm A (Figure 4.19d). This difference is most noticeable in the region of the
left arm. The same kind of behavior can be noticed in Figure 4.20 where the contours

of the moving right hand are better reconstructed when algorithm B is used.

The same experiments have been run for test image 4. The computed intensity

edges at fields #6, 14, and 19 of test image 4 are shown in Figure 4.21.
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Figure 4.16: Estimated (a) velocity v(26) and line fields l(26) using algorithm B; (b)

velocity ¥(26) using algorithm A at field #26 of test image 3.
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Figure 4.17: Estimated: (a) velocity v(42) and line fields [(42) using algorithm B;
(b) velocity ¥(42) using algorithm A at field #42 of test image 3.
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Figure 4.18: Estimation (a) area of field #26 of test image 3; (b) occlusion field 6(26);
(c) line field {(26); reconstructed field using: (d) algorithm A (PSNR = 41.96 dB);
(e) algorithm B (PSNR = 42.76 dB) with their respective error images (magnified
by 2) in (f) and (g).
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Figure 4.19: Estimation (a) area of field #42 of test image 3; (b) occlusion field 4(42);
(c) line field [(42); reconstructed field using: (d) algorithm A (PSNR = 36.94 dB);
(e) algorithm B (PSNR = 39.67 dB) with their respective error images (magnified
by 2) in (f) and (g)-
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(e)
Figure 4.20: Estimation (2) area of field #70 of test image 3; (b) occlusion field 6(70);
(c) line field [(70); reconstructed field using: (d) algorithm A (PSNR = 35.31 dB);

(e) algorithm B (PSNR = 39.53 dB) with their respective error images (magnified
by 2) in (f) and (g).
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Figure 1.21: Computed intensity edges: (a) e(6): (b) ef 1) (¢) (19 at fields #6. 11

and 19 of test image 4, respectively.
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Figure 4.22: Comparison of the PSNR for reconstructed fields from test image 4

using algorithm A (full line) and algorithm B (dashed line).

The resulting PSNR curves are reported in Figure 4.22 where an average in-
crease of +2.3 dB in the PSNR has been achieved by using algorithm B instead of
algorithm A.

The occlusion and motion discontinuity fields obtained for fields #3, 6, 8, 14, 19,
and 26 are shown in Figures 4.23, 4.24, 4.25, 4.26, 4.27, and 4.28 respectively. Note
that most of the occluded regions are concentrated in the area of the eyes and the
mouth. Also, the estimated motion discontinuities match well the moving contours
of the eyes and the mouth.

The reconstructed fields and their respective error images (using algorithms A
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and B) at fields #6. 11 and 19 are shown in Figures 1.240d-g. 1.26d-g. and 1.27d-¢
respectively. From these results, one can conclude that the processing of occlusions
and motion disconinnities has helped o eliminate most of the interpolation errors
that were present in the regions of the eyves and the mouth prior to occlusion processing
(i.e., algorithm A). This improvement is also visible in the reconstructed fields.
especially in Figure 1.27, where a comparison of the two reconstructed fields #19
using algorithms A and B (shown in Figures 1.27d and 1.27c. respectively) with the
original field (Figurc .27a) illustrates the difference, mainly in the region of the

mouth.
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Figure 4.23: Estimation (a) arca of field #3 of test image 4: (b) occlusion field o(3):

(c) line field ?(5).

n
[]
.L'-a

(b) (c)

(d) (£) ()

Figure 4.24: Estimation (a) area of field #6 of test image 4; (b) occlusion field 6(6);
(c) line field {(6); reconstructed field using: (d) algorithm A (PSNR = 36.91 dB);
(e) algorithm B (PSNR = 41.41 dB) with their respective error images (magnified
by 2} in (f) and (g).
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(b) (c)
Figure 4.25: Estimation (a) area of field #38 of test image 4: (b) occlusion field 6(3):

-

(c) line field I(8).

(b) (c)

(d) (£)

Figure 4.26: Estimation (a) area of field #14 of test image 4; (b) occlusion field 6(14);
() line field i(14); reconstructed field using: (d) algorithm A (PSNR = 37.27 dB);
(e) algorithm B (PSNR = 41.72 dB) with their respective error images (magnified
by 2) in (f) and (g)-
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Figure 4.27: Estimation (a) area of field #19 of test image 4; (b) occlusion field 6(19);
(¢) line field 5(19); reconstructed field using: (d} algorithm A (PSNR = 35.79 dB);
(¢) algorithm B (PSNR = 41.17 dB) with their respective error images (magnified
by 2) in (f) and (g).

(b) (c)

Figure 4.28: Estimation (a) area of field #26 of test image 4; (b) occlusion field 6(26);
(c) line feld i(26).
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Chapter 5

Conclusions

5.1 Summary

Different types of motion-compensated processing of time-varying images, such
as predictive coding and standards conversion, require the availability of 2-D motion
estimates. In this thesis, estimation of dense motion trajectories with acceleration has
been investigated. Unlike in most of the existing motion estimation algoritbms that
assume a linear trajectory model over two fields in an image sequence, the proposed
method assumes a quadratic trajectory model defined over longer temporal support.
Hence, two motion field estimates of instantaneous velocities and accelerations are
generated to describe quadratic trajectories instead of one displacement field that

describes linear trajectories in an image.

Due to the ill-posed nature of motion estimation, the algorithm for the estima-
tion of dense accelerated motion fields has been formulated using regulerization. The
objective function has been derived using Gibbs-Markov models linked together by the
Mazimum A Posteriori (MAP) probability criterion. It consists of a structural model
that follows directly from the constant intensity assumption along motion trajecto-
ries, and of an a priori motion trajectory model that captures the desired smoothness

property of motion fields. Energies resulting from these models have been combined
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linearly using regularization parameter A, that plays a vital role in weighting the im-
portance of the two models. Optimization of the objective function has been carried
out using a deterministic relaxation algorithm implemented over a pyramid of reso-
lutions. The importance of multiresolution methods in the estimation of fast motion

and efficient localization of a near global optimum has also been addressed.

The motion estimation algorithm has been tested successfully on progressive
and interlaced sequences with synthetic motion parameters of 1/4 pixel accuracy.
The MSE measure has been used to measure the validity of motion estimates and
to select certain parameters in the algorithm such as the regularization parameter
Ap, and the number of images used in the estimation. Also, plots of some estimated
trajectories have been compared with their x:espective true trajectories in order to
illustrate the difference in trajectory tracking when the quadratic trajectory model is

used instead of the linear model.

The usefulness of motion trajectories with acceleration for motion-based pro-
cessing has been investigated on natural sequences. The estimated trajectories have
been applied to a motion-compensated interpolation scheme for the case of 4:1 sub-
sampling. A comparison of the PSNR for the reconstructed images using linear and
quadratic motion trajectory models over 5 fields and linear trajectory model over 2
fields was carried out. Similarly to [35], it was concluded that in images containing
acceleration, the knowledge of this acceleration permits a substantial reduction of
the reconstruction error. Also, subjectively the quadratic motion trajectory model
has resulted in a remarkable improvement of the reconstructed image quality. This
observation is particularly true for image sequences containing “talking heads” where
eyes and mouth do exhibit acceleration. Occasionally, the difference between the two
models has amounted to the mouth being closed, whereas in the original image it was
open. From the transmission point of view, this improvement comes at the cost of
additional bit rate allocated to acceleration parameters. It is not clear at this point

whether this increase can be compensated by the reduced prediction residual.
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The motion estimation algorithm was finally extended in order to detect oc-
clusion areas while estimating motion parameters. This feature is vital in motion-
compensated interpolation applications, where it is imperative that estimated motion
parameters near motion discontinuities be of high quality and that occlusions be prop-
erly handled. A new multiple-term objective function including an occlusion model
and a motion discontinuity model (in addition to the structural model and a priori
motion model) has been derived. The occlusion model, in the case of estimation from
5 images, has been presented. This model favors the creation of clusters of occlusion
tags near motion discontinuities. On the other hand, the motion discontinuity model
assigns a2 high penalty whenever a motion discontinuity does not match an inten-
sity edge. It also controls the formation of straight lines, corners, and intersections.
The minimization of the new objective function, performed in an interleaved fashion,
results in piecewise-continuous motion fields that correspond better to real TV im-
ages than the globally-continuous motion fields generated in absence of the occlusion

model.

The use of multiframe processing in the proposed motion estimation algorithm
has been expected to be beneficial from the point of view of improved identification
of occlusion areas and motion discontinuities. This was confirmed by comparing oc-
clusion and line fields estimated using 3 and 5 images from sequences with synthetic
motion. However, the estimation of occlusion fields in the motion estimation algo-
rithm requires more computational time. Also, the occlusion information has to be
transmitted with the motion information in interpolative coding schemes resulting in
some extra bits to be transmitted. These disadvantages, however, have to be weighted
against a significant increase in the quality of reconstructed sequences at the receiver

as was discussed in the section on experimental results for natural sequences.

The work reported in this thesis is of exploratory nature. We were interested in
finding out what possible improvements could the computation of acceleration and

occlusions bring. The proposed algorithm is very complex computationally due to
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its iterative nature and due to the calculation of derivatives. It is not intended for
real-time implementation. However, we hope that the demonstrated improvements

will eventually find their way to real-time implementations through some siinplified

algorithms.

5.2 Contributions

This thesis has contributed to the theory of 2-D motion estimation. The major

contributions of this work can be summarized as follows:
1. Modeling of motion trajectories with acceleration.
2. Estimation of motion and occlusions over multiple images.

3. Application of motion trajectories with acceleration to motion-compensated
temporal interpolation in a multiple-frame scenario. It has been shown tha.t.
for images containing acceleratior, such as “talking heads”, the quadratic mo-
tion model permits a substantial reduction of the reconstructed error when

compared with the ubiquitous linear model.

4. Application of occlusion processing in the context of motion-compensated tem-
poral interpolation. It has been demonstrated that a further improvement,
especially around motion discontinuities, is observed in reconstructed images

when occlusions are accounted for.

5.3 Open questions

5.3.1 Regularization parameters

The regularization parameters A,, ),, and A; have been chosen empirically.
Optimal estimation of these parameters remains to be a challenging task, especially

when estimating unobservables such as motion.
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5.3.2 Hierarchical processing

In the hierarchical processing, a “constant-width” pyramid for images and a
regular pyramid for motion fields have been considered. The likelithood of convergence
to the global optimum may be improved by considering also a regular pyramid for
images. This will allow to spread the displacement vector updates proportionally over
image resolutions and may result eventually in a better optimum. However, the use of
regular image pyramids will result in data loss (due to subsampling), and hence may
affect the performance of the motion estimation algorithm (because of the derivative
computation). Moreover, the smoothing by Gaussian filters destroys the contours in
the image, and hence results in erroneous occlusion estimation at the lower resolution
levels of the pyramid. Nyquist-like filters that do not unnecessarily oversmooth the

data may be worth considering in the generation of the pyramid of image resolutions.

5.3.3 Rate-constrained motion estimation

This thesis has demonstrated the importance of the estimation of accelerated motion
and occlusions in reducing the reconstruction error in an interpolative coding scheme.
With such an improvement, the motion-compensated interpolation error is very small. *
This error may be transmitted or not, depending on the target quality. It remains to
be studied whether the reduction of the transmitted residual (reconstruction error) or
the improvement in quality of reconstructed images compensate for the increased bit
rate needed to transmit the acceleration and/or occlusion information. This problem,
called “rate-constrained motion estimation”, has not been studied in-depth yet, except
for very simple cases. Perhaps, acceleration is worth considering for post-processing
in video conferencing and videophone applications where temporal subsampling is
often used. '
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Appendix A

Markov Random Fields and the
Gibbs Distribution

The main focus here are 2-D random fields defined over a finite N; x N, rect-
angular lattice of points (pixels) defined as: A = {(3,7): 1 €1 < M,1 £ 7 < N2}
The concepts of neighborhood and cliques are essential in the definition of the Gibbs
distribution. A neighborhood system on lattice A is defined as follows:

Definition I: A collection of subsets of A described as:

7={n;:(i,5) € A,m; C A} (A.1)
is a neighborhood system on A if and only if
1. (3,7) € mij, and
2. (kD en; = (E,7)€n V(7)) €A

A Markov Random Field {MRF') with respect to the neighborhood system 5 defined
over the lattice A is then defined as follows:

Definition 2. Let n be a neighborhood system defined over lattice A. A random
field X = {X;;} defined over lattice A is a Markov random field with respect to the
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neighborhood system 7 if and only if:

P(Xij = zi; | Xt = zia, (£, 1) € A, (K, 1) # (3, 7)) = P(Xy; = zi5 | Xt = 2w, (K, 1) € 1i5)
(A2)

for all (i,7) € A, and P(X =z) > 0 Vz.

Note that capital letters are used to denote random variables and random fields, and

lower case letters to denote specific realizations.

The first-order neighborhood system 7! is the most commonly used in image
modeling. It consists of the closest four neighbors of each pixel, and is known as
the nearest-neighbor model. The second-order neighborhood system n? = {3} is
such that n% consists of the eight pixels neighboring (,7). In general, the the m®
order neighborhood system ™ contains all sites of systems of order up tom—1 (i.e.,
7™ = {n* : k < m}). The “cliques™ associated with a lattice-neighborhood pair (A, %)
are defined as follows {14]:

Definition 3: A cligue of the pair (A,7), denoted by ¢, is a subset of A such that:

1. c consists of a single pixel, or
2. for (3,7) # (k,1), (i,7) € ¢, and (k, 1) € ¢ = (i,7) € nu.

The collection of all cliques of (A, ) is denoted by C. The types of cliques associated
with #! and 5? are shown in Figure A.1.

It is known that the usual characterization of 2 MRF through initial and tran-
sitional probabilities is complex. On the other hand, from the Hammersley-Clifford
theorem [3] it is known that a random field has Markovian properties if and only,
if it is governed by a Gibbs distribution (GD). The GD is defined in the following
manner{14]:

Definition {: Let n be a neighborhood system defined over the finite lattice A. A
random field X = {X;} defined on A has a Gibbs distribution or equivalently is a
Gibbs Random Field (GRF) with respect to 5 if and only if its joint distribution is

111



& o m F

(@) ®)

o cmBP

© 1G]

| L]

Figure A.1: Neighborhood system 7* (a) and associated cliques (b); Neighborhood

system n? (c), and associated cliques (d).

of the form:
P(X=z)= %e'%ﬂ (A3)
where

U) = 3 Vil=) (A4)
ceC

is the energy function and V.(z) is the potential associated with clique c. The partition
function Z = ¥, e~ is simply a normalizing constant, and 8 is another constant
called the natural temperature. The only condition on the otherwise totally arbitrary
clique potential V,(z) is that it depends only on the pixel values in clique ¢. The joint
distribution in (A.3) has a physical interpretation: the smaller U(z), the energy of
the realization z, the more likely that realization.

The GD is basically an exponential distribution. However, by choosing the clique
potential function V.(z) properly, 2 wide variety of distributions, both for discrete
and continuous random fields, can be formulated as GD (i.e. binomial, Poisson, and
Gaussian random fileds). Unlike the MRF characterization, the GD characterization
is free from consistency problems and in some applications provides a2 more workable

spatial model.
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Appendix B

Cubic Convolution Interpolation

Assuming 1-D notation, let w be an input signal defined over a lattice A. The
interpolated signal w defined over R can be obtained by the following convolution:
w(z) = wy)u(z-y), zE€R, (B.1)
vEA
where u is the impulse response of a low pass filter, known as the interpolation kernel
to be defined. Note that also, due to the linearity of the convolution, the derivative
of W can be obtained as follows:

2 - S w2y

Oz &

6“(3 W cer (B.2)
Keys [25] has proposed a cubic convolution kernel u(z) for one-dimensional problem
which converts the discrete data w into a continuous function @ by the convolution
operation in (B.1).

The cubic¢ convolution algorithm, normally requires that the interpolation kernel
be continuous, and possess a continuous first-order derivative. Otherwise the interpo-
lated function will have sharp edges at sampling points which is an undesirable effect,
especially when interpolating intensities in an image. The cubic convolution kernel
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introduced by Keys:

$elP =3z +1 0<lz| <
u(z)=¢ —LzP+ 5|z -4zl +2 1< |z} <2 (B.3)
0 2< 2|

is symmetric, continuous, and has a continuous first derivative as shown in Figure

B.l. Moreover, it is zero for all non-zero integers, and one when its argument is

&
h
xo
-r
L]
v

Figure B.1: Impulse response u(z) of cubic interpolator proposed by Keys.

zero (this condition has an important computational significance, namely, that the

interpolation coefficients become simply the sampled data points).
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