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Abstract

This thesis addresses the problcm of modcling and computing dense 2-0 vcloc­

ity and acceleration fields from time-varying images and applying them to motion­

compensatec! interpolation. Unlike in many other approaches that assume motion to

he locally translatiolial, the approach proposed here uses a quadratic motion trajec­

tory modcl that incorpora,tes both vclocity and acccleration. This modcl corresponds

better to natural image sequences especially when processing over multiple frames is

considered. One of the advantages of using accclerated motion over linear trajectorics

is in motion-compensated proccssing over multiple images. This is due to the fact

that OVer longer time frame, a quadratic motion model is capable of providing a better

intensity match along trajectories than the linear mode\. The side effect is, however,

that with more images used for estimation occlusion effects play a more dominant role.

Therefore, another motion model is proposed to account for occlusions and motion

discontinuities. The algorithm for the estimation of velocity, acceleration, occlusion

and discontinuity fields is formulated using Gibbs-Markov models that are linked ta­

gether by the l\-!aximum A Posteriori (MAP) probability criterion_ This is equiva1ent

to reguiari:ation where the stabilizing functional is related to a priori motion models.

The resulting multiple term cost function is optimized using deterministic relaxation

implemented over a pyramid of resolutions. Numerous experimental results are pre­

sented for interlaced and progressive test images. Mean-squared error is calculated for

motion estimates obtained from images with (known) synthetic motion. For sequences

with natural motion temporal interpolation compensated for motion is implemented

and the estimates are eva1uated with respect to the image reconstruction errOt'. It

is concluded that for images containing acceleration, sucb as "talking heads", the

quadratic motion model permits a substantial reduction of the reconstruction error

when compared with the ubiquitous linear mode\. A further improvement, especially

around motion boundaries, is observed when motion as weil as occlusions are esti­

mated. The improvements are particularly striking around the mouth and eyes of a

"talking head".
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Somnlaire

Le présent r:lémoire t.rait., le pmbli,me d.' nll)d.;lisatiün et de cakul d., champs d.'n$O's

2-D de vélocités at ci"accélérations à partir de S(~qllt~nCt~S dïlliages dYllanli<l'leS et il'Uf

applications dans un contexte de codage int.erpolatif avef: compensation du mouve­

ment. L'approche proposL~ utilise un modèle quadratique de trajectoire de mouve·

ment, incorporant des vélocités ct des accélérations. en contra.."te il. plusieurs autrt~

approches qui supposent un mouvement de translation, Le modèle quadratique cor·

respond mieux aux séquences d'images naturelles surtout quand le traitement sur

plusieurs trames est considéré. Un des atouts de cc modèle en comparaison avec

le modèle linéaire apparait lors d'un traitement compensé par le mouvement sur

plusieurs images. Ceci est dû au fait que sur une plus longue période de temps,

un modèle de trajectoire quadratique est capable d'offrir un meilleur appariement

d'intensités le long des trajectoires que le modèle linéaire. Par contre, les effets

d'occlusions jouent un rôle dominant quand l'estimation est étendue sur plusieurs

images. Un autre modèle de mouvement qui tient compte des occlusions ct des dis·

continuités en mouvement est en conséquence proposé. L'algorithme d'estimation de

champs de vélocités, d'accélérations, d'occlusions, ct de discontinuités est formulé à

partir de modèles de Gibbs-Markov reliés par le critère de probabilité A posUriori

ivlaximale (APM). Ceci est équivalent à la méthode de régularisation où le fonc·

tionnel stabilizateur est relié aux modèles à priori de mouvement. La fonction de

coût résultante, à termes multiples, est optimisée par relaxation déterministe avec

un traitement hierarchique. Plusieurs résultats expérimentaux sont présentés pour

des tests d'images à structures d'échantillonage progressives et entrelacées. L'erreur

quadratique moyenne est calculée sur les paramètres de mouvement estimés à partir

de séquences d'images ayant un mouvement synthétique (connu). Une interpola.

tion temporelle avec compensation du mouvement est par ailleurs implémentée pour

les séquences d'images naturelles. L'estimation de mouvement sur ces dernières est

évaluée par rapport à l'image d'erreur reconstruite. Il sera conclu que pour les images

contenant des accélérations, comme dans les "têtes parlantes", le modèle de mouve­

ment quadratique, en comparaison avec le modèle linéaire omniprésent, permet une.

réduction considérable de l'erreur reconstruite. Une amélioration plus importante,

surtout autour des contours en mouvement, est observée quand le mouvement aussi

bien que les occlusions sont estimés. Ces améliorations sont particulièrement sail­

lantes autour de la bouche et des yeux d'une "tête parlante".
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Chapter 1

Introduction

1.1 Video compression

The amount of data associated with visual information is very large. Typi­

cal television images, for instance, generat~ data rates excccding 10 million pixels

per second. Storage and/or transmissic.n of such data require large capacity and/or

bandwidth, which could be very expensive. Video compression is concerned with the

reduction of number of bits required to store or transmit images under the constraint

of achieving sorne target quality. The 2:1 Hne interlacing in conventional tdevision

was one of the first techniques used to provide a simple means of 2: 1 bandwidth re­

duction without objectionable flicker or image breakup. The success of this method

rests on the fact that the Human ',lisual System (HVS) acts as a low-pass lilter and

has a poor response to simultaneous high spatial and temporal frequencies.

Video compression methods f<LH into two common categories [23J. The first cat­

egory is concerned with statistical redundancy removal such as HuffTli:J.n, run-Iengih,

and ariihmetic coding. Huffman coding is one of the most efficient techniques in this

category that increases the averag(: compression by assigning shorter code words to

frequently encountered blocks (or symbols) and longer ones for rarely encountercd

blocks. This technique is not very practical for te1evision images whose long-term
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hislogram is approxirnaldy nniform. bUl il is qnile usdnl for coding of binary dala

s"ch iLS graphics and facsimil" images. and also in prcdidil'c and transform codillg

;dgorilhms. Thes" algorilhms fall in lhe second calegory lhal is concernee! with l'cr·

ceplnal irrclcvancy removal. They try to exploit the low-pass rcsponse of the HVS

by removing mutuai redundancies in the video signal while preserving a good sub­

jective quality. One of the most common techniques used in predictive coding is the

difJerential pulse code modulation (DPCM) or differcntial PCM. Trar.sform coding,

such as the Discrete Cosine Transform (DCT), is an alternative to predictive coding.

In this method, a block of data is unitarily transformed so that a large fraction of

its total energy is packed in relatively few transform coefficients, which are quantized

independently. The optimal transform coder is defined as the one that minimizes the

mean square distortion of the reproduced data for a given number of total bits.

On the other hand, moving image compression can c-xploit temporal redun-.

dancy due to the high correlation of intensity along motion trajectories. For in­

stance, motion-compensated prediction is a powerful tool, provided that motion is

known, helpful in removing interimage redundancy. This technique has given rise to

the currently most sophisticated realizable coder, known as the motion-compensated

hybrid (DPCM/DCT) coder (Figure 1.1), used in MPEG-l, MPEG-2, and H.261

Figure 1.1: Motion-compensated hybrid (DPCM/DCT) coder.
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standards. This encoder consists Lypically of a temporal [)['(':'.I. with a l'r''dicli'lIl

based on motion paramcters esti;'lated .lt th,- encoder and transmitted to the decoder

as side information. The dilTerence between the predi"ted ,,,,,1 aetllal fields is lh"n

comprcssed like a still image llsing OCT t.ransform.

In motion-compensated predictive coding [8][3:l]. the main goal of motion ,'om­

pensation is to minimize the variance of the prediction error; it is not nec"ssary tü

obtain the truc motion field sincc errors in motion estimates sim!,ly inerc,,-'e th,' mag­

nitude of the prediction error. This error is quantized and transmitted at the cost of a

few extra bits with little impact on picture quality. Thus highly accurate motion ,"'ti­

mation is not crucial with DPCM coding schemes currently used. The block-oriented

motion field estimates are probably adequate for this application.

1.2 Motion-compensated processing

Motion-compensated processing is another important area which exploits the

high correlation along motion trajectories. Sampling structure convcrsion that relies

on spatio-temporal interpolation, and interpolativc coding are two frequently encoun­

tered applications that fall into this category.

There are two main situations where the use of motion-compensated interpola­

tion in sampling structure conversion is advantageous over the use of fixed spatial

interpolation :nters. The first is when the current image field is spatially aliased,

usually because a nonorthogonal spatio-temporal sampling structure (such as in in­

terlaced sampling) has been used, so that spatial interpolation alone does not perform

adequately. A use of temporal interpolation perhaps jointly with spatial interpola­

tion as proposed in [34] can considerably increase the quality of interlaced images.

An example of this application is the conversion from interlaced scanning to pro­

gressive scanning known as deinterlacing. The second situation arises when no input

data is available at a certain time instant for which interpolation is being carried out
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and henCl: pnrdy temporal interpolation must be used. [n other words, an image

fi('ld is being generated al. a time for which no input image fields exisl.s. This is the

,:;"'" for applications sueh '"' field rate conversion (e.g., bclwccn 50 Ilz and 60 Hz).

upconvcrsion from temporally subsampled signais, and field rate increase to reduce

display artifacts or for slow motion effects. Sampling structure conversion is also

uscd in standards conversion (such as conversion from NTSC to PAL and vice versa),

and in spatio-temporal pyramidal coding [3i][38][:l9] for multiscale representation of

video signais (i.e., HDTV, videophone, and video-conference). It should be noted that

th"re is no possibility of recovering from errors during sampling structure conversion,

thus it is imperative that motion estimates be of high quality, and that occlusions be

properly handled. The occlusion e[ect is a common problem in motion estimation

algorithms. Il manifests itself by the fact that moving objects in a sequence of images

generate occluded regions (i.e., covered or exposed) in which the estimation of motion

becomes much more complex or even maybe impossible.

Motion-compensated processing can also be used in the context of interpola­

tive coding. In this application, images are omitted in the transmitter and then

reconstructed in the receiver by motion-compensated interpolation. These images

correspond to the B-frames (Figure 1.2) in MPEG standards where I-frames are intra­

coded frames, P-frames are predictive-coded frames, and B-frames are bidirectionally

interpolated frames using motion compensation. The motion estimates and/or the

B B p B B P B B

•
Figure 1.2: Typicai MPEG motion compensation structure.

motion-compensated interpolation error (residuai) of the omitted fields are encoded
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and transnlittcd. If nlotion estirnatcs arc not precise. llwtl cnrn~('ti')11 bv tlit' lr<Llls·

rnittcù rcsidual is possible. Howc\'er. in case of no transrnissioll of residu.d. t1H,t.ion

~stimatt:s must be precise.

1.3 Motion estimation

As discusscd, motion is widely uscd in rllotion·colllpCIlSalcc.! proccssing alai video

compression. On the other hand, estimation of motion from dynamic images is a

very difficult task due its i/l-posedness [21. Despite this difficulty, howe\'er, mauy

approaches to the problem have bcen proposed in the last dozcn years [20][18][2i][il.

Most of these approaches use only 2 fields to estimate motion. In this thesis, a new

motion estimation algorithm that uses multiple fields to estimate motion is addressed.

For this task a quadratic model, incorporating both velocity and acce1cration, is used

to model motion trajectories. The side effect is, however, that with more images

used for estimation occlusion effects play a dominant role. Therefore, another feature

which helps in canceling this side effect, has also bcen added to the motion estimation

algorithm. This feature consists of simultancously detecting occlusion areas [9] and

estimating motion in order to maintain high quality of motion estimates near motion

discontinuities.

1.4 Organization of the thesis

The ill-posed nature of the motion estimation problem and its solution via reg­

ulari.:ation theory are discussed in Chapter 2. An overview of motion estimation

techniques is then presented. Various approaches used to improve motion estimates,

such as hierarchical processing, modeling of motion discontinuities and occlusions, and

multiframe processing, are finally described. Chapter 3 is concerned with the descrip­

tion of the new motion estimation algorithm. The derivation of the objective function

is illustrated in detail using Gibbs-Markov models linked together by the Maximum
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:l l'o,,'aio/'; (:\1:\1') pro},abilil.y criterion. The optimization of this ,:)jccti\'e func­

lion llsing dell:nniuistic relaxatiotl irnplcrllL'lltco o\"er a pyrélnlid of resol11tions is thcn

discllssed. Experimental results for image seqnences with synthetic and natllra! mo­

tion are aiso presented. ln Chapter ·1. the proposed moLion estimation algorithm is

extendcd Lo account for occlusions. Experimental results illllstrating the advantagcs

of occlusion processing in generating piecewise-conLinuous motion fields rather than

globally-continllolls arc prcscntcd at the end. The conclusions and sllmmary of the

main contributions of this thcsis are discussed in Chapter 5.
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Chapter 2

Overview of Motion Estimation

Techniques

In this chapter definition of the motion estimation problem is given and sorne

existing mcthods that solve it arc describcd. The image acquisition proccss along with .

the definition of the disp!acement field and sorne applications of motion estimation

are presented in Section 2.1. Section 2.2 is concerned \vith the ill-posed nature of

the problem and with its solution via rcgu/ari::ation thconJ. Various approachcs lo

motion estimation are discussed and compared in Section 2.3. Techniques used lo

improve motion estimates such as hierarchical processing, mode1ing of discontinuitics

and occlusion areas and multiframe processing arc revicwcd in Section 2.4.

2.1 Introduction

2.1.1 Apparent motion

The relative motion between objects in a scene and a camera gives rise to the

apparent motion of objects in a sequence of images. This motion can be characterized .

by observing the apparent motion of a discrete set of features or brightness patterns

in the images. Two distinct categories have been developed for the computation of
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motion frOUI itllage seq lH~IICI·S.

1. Tilt: firsl cfLtegory, kno\\'l1 as fralurt: malch ill!]. requires an cxtcnsi vc image anal·

ysis lo exlracl a sel of rdat.ivdy sparse, bUl highly discriminalory, 2-D fealures

in lhe images (i.e., poinls, corners. lines). Such fcalures arc extracted from

each image, and then arc idelltified in subsequent images leading ultimately to

the computation of motion paramcters of differenl objects in the image. This·

category is very sltitable for establishing the long range correspondence in a

sequence of images.

2. The second category, characterized by pixel-based processing, consists of using

pixel intensities to compute 2-D field of instantancous veloeities of pixels in

the image plane. This relatively dense field is known as the optical fiow and is

usually defined for every pixel in the image. This category, on the other hand, is

suitable for ~tablishing the short range correspondence in a sequence of images.

Optical lIow, or 2-D velocity field, represents ~the distribution of apparent veloei­

ties of movement of brightness patterns in an image" [20]. For images sampled in

the temporal direction, the concept of the velocity field is rep'aced by that of the

displacement field which will be shortly defined. The motion field which caU denote

either a vc10eity field or a displacement field, can be used in conjunction with added

coustraints or information regarding the scene to compute the actual 3-D relative

veloeities between scene objects and camera [1]. AIso, discontinuities in the motion

field can help in segmenting images into regions that correspond to different objects.

2.1.2 Applications

Apparent motion estimated from a sequence of images (often called video) is

used in il. wide range of applications such as:

1. transmission and processing of video: motion-compensated interpolation for

sampling structure conversion, motion-compensated filtering for noise reduc­

tion, motion-compensated coding for bit rate reduction,

s
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.) biolllCdical applicat.ion:,: clnalysis \,.lf I1wdical Îlllagt'ry fnt" gt'Ih'ratitlil of dii\~llos­

t.i(s.

:>. 1l1cteor,>iogy: interpn..·tatiOll of salt'llit.L' illlagl's fur l)f(',licti">ll \.)i" attlwspht'ril'

proccsscs .

.1. computer vision (robotics): structure from motion for pa.'Sin· n"xigation. :I-D

motion from 2-D motion for passive navigation and objed tr<tàing.

Al! these applications revealthe importance of 2-D motion information. and th"

need of a good estimation algorithm capable of calculating motion that is clos,' to the

true underlying motion.

2.1.3 Observation process

The data from which motion is estimated is usual!y obtained by an image .1C·

quisition system. Thus, the observed image 9 is rclated to the true underlying image

u by the observation process which can be modcled at varying degrccs of sophisti­

cation. In general, this process has threc main clements: a nonlinear shift·variant

spatio-temporal filtering, a random perturbation, and a spatio.temporal sampling

operation.

The basic model typically used is the fi1tering of u by a linear shift·invariant

camera aperture (impulse response h) and addition of noise n

g.(x, t) = h(x, t) * u(x, t) +n(x, t), (2.1)

followed by sampling on lattice (Aa), [10] every T seconds

g(x, t) =g.(x, t), xE (Aa)" t =kT. (2.2)

•
In this thesis, progressive and interlaced lattices are studied. Without 10ss of general·

ity, the case of no filtering, i.e., h(x, t) =é(x, t) with é being the Dirac dclta function,

is used to simplify subsequent deve1opments.

9



• Th., degree of sophistication Ilsecl in lllo,lding the obsen'ation proccss llndoubt­

edl)' hiLs an impact on the estilllated motion fields. It is not clear. howe\'er, whether

il. Î:-o (J1on~ aclvalltageous to incrcase the conlplcxity of the observation proccss or of

the lllodds llsed in the estimation a!goril.lltn. L'Specially in the view of the usual un-

availa!>ility of imaging system paramcters.

2.1.4 Definition of the displacement field

Most of the estimation methods proposed in the literature rel)' on spatio-temporal

variations of the observed intensity 9 to estimate 2-D motion. In the context of digital

coding adaptecl to motion information, the goal is to fincl such a motion field that .

minimizes the amount of information to be transmitted. Displacement field at time

t establishes a correspondence between points from the image at time t and points

from images at time Land t+. The displacement field d(t) at time t of a sequence

of images consisting of a sphere moving downward on a still background is shown

in Figure 2.1. Only the displacement vectors of point x that belongs to the moving• •

,.
'..,
'.1. ..1
le , ..., ....
~" d(t)

t

•

Figure 2.1: Illustration of the displacement field d, at time t estimated from two

image fields at L and t+ (only 2 displacement vcctors d(x, t) and dey, t) are shown).

sphere, and the point y that belongs to the stationary background are shown. The

notation di will be used to denote the displacement vcctor d(x;, t) at position (X;, t)•

10
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Estimation of displaccment fields IIsllal1)' rdies 011 the fol1owing a.<sllmptions:

1. Irnagc intcnsity rcnlains constant along the nlotion trajcct(xy.

2. Displacement fields are spatial1)' smooth.

3. Displacement field consists of a dense set of motion \"ect.ors.

4. Effects of occlusions arc negligible.

5. Motion is 10cal1y translational, i.e., linear motion trajectory model is uscd.

These assumptions often do not refiect real case situations; the intensity along mo'

tion trajectories can vary due to a change of illumination in the scene and hence

assumption l is violated. The truc displacement vectors at the boundaries of two

objects underiying different motion trajectorics are usually not smooth, and hence

assumption 2 is violated at motion discontinuitics. The assumption of locally transla- .

tional motion (assumption 5) is violated for motion trajectories with longer temporal

support. Ali these assumptions can however be modified in such a way to improve

the motion estimates, as will be discussed in Section 2.4 which will invcstigate the

modeling of discontinuities and occlusion areas and the use of a non-linear motion

trajectory mode\.

2.2 Ill-posed nature of motion estimation

2.2.1 Statement of the problem

Problems encountered in early vision [2), such as the recovery of 3-D motion

and optica1 f1ow, shape from shading, surface interpolation, and edge detection, arc

common in nature. They cao be regarded as inverse problems that try, for instance, .

to recover physica1 properties of 3-D surfaces from their projection onto an image

plane. It is clear that the data (observations) used (i.e., 2-D images) contain in

generallimited information a.bout the solutions (i.e., the 3-D properties). This lack

11



• of inforrn...tion irnplics th...t problcrns of carly vision arc "ery often ill-poscd. In the

original sense of Hadamard [2], a wcll-po$cd problern is characterized by the fol\owing

thre<: propcrties:

1. F:xistcnœ: There is a solution.

2. Uniquencss: The solution is unique.

3. Continuity: The solution depends in a continuous manner on the data.

Hence in an ill-posed problem, the solution may not exist, may not be unique (giving

an ambiguous reconstruction), or it may not depend continuously on the data. From

this definition, it is clear that motion estimation based on assumptions from the

previous section is ill-posed as it may violate the above properties:

x

•
..

Y:
z

ç:::::--- w~ .. .'

t- t t+

o Moving rcgion

:: :: Occludcd rcgion

•

Figure 2.2: Illustration of the ill-posed nature of the motion estimation problem (dl

and d:! are two possible displacement vectors at position (z, t».

1. For occluded pixels there is no solution as the intensities of those pixels (i.e., the

data) are not available in the next or previous frames (violation of existence).

Figure 2.2 shows an example of occluded regions generated at time t when the

object is moving upward from time L to time t+. Hence, for pixels (w,t).

and (y, t), both belonging to occluded regions at time t, displacement vector

12
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does nol exisl. This is dlle lo the fact that pixc! (y, t) becomes eo\'ered al

time t+, whereas pixel (w, t) beeomes exposed only at time t. and henee no

correspondencc ean be esta.blished for these pixds along the thrcc eonsiderl'd

lime instants.

2. There are many possible motion trajeclories that satisfy the da.ta even for some

predefined motion trajectory modcl (violation of uniqueness). For instance, if

the moving object in Figure 2.2 has constant intensity, dl and d2 may be two .

possible displacement vectors at position (z, t) when linear motion trajectory is

considered.

3. For a smalliocai modification of intensities, there may be significant change in

the estimated motion vector length and/or orientation (violation of continuity).

The nced to analyze ili-posed problems such as motion estimation has given rise to

reguiari::ation theory discussed in the ne:'Ct section.

2.2.2 The regularization theory

Most linear inverse problems can be formulated as fo11ows. Suppose that func­

tional spaces X and Y are given along with a continuous operator .c from X into

Y. The problem is then to find, by sorne regularization theory, a function u E X for

some observation 9 E Y such that 9 = .cu. The approach proposed by Tikhonov,

which is addressed in [2), attempts to solve this problem while minimizing a certain

cost function. The minimization problem can be formulated as fo11ows [2]:

(2.3)

•
with Il . lIy denoting the norm in Y, and C being a linear operator from X into the

constraint space Z that expresses a certain a priori property of the solution such as

spatial smoothness in the case of motion estimation. >. is the regularization parameter

that plays a crucial role in weighting the compromise between the two terms of the

cost function.
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ln spi!." of existing !.heory for the optimal choice of ,\. such choice is probably

the !!lOS!. <lifficllit problem in the reglliarizatioll theory as will be shown later. It is

worth to note that regll!arization thcory can provide optimal techniques to reduce

the effect of noise but cannot produce new information if it is not originally available.

Most of the motion estimation mcthods that will be discussed next can actua11y be

viewed as a direct consequence of the regularization thcory via the solution proposed

by Tikhonov in (2.3).

2.3 Methods of motion field estimation

2.3.1 Transform-domain methods

The Fourier-phase approach [15] is the most common one used. It uses the

shift property of the Fourier transform which states that a spatial shift in a signal

corresponds to a shift in phase in the Fourier transform of that signal. Hence, if

G(w",wv) denotes the Fourier transform of the image g(x,y), then, if this image

undergoes a uniform translation cl = [d" dvjT,

(2.4)

•

Measuring the difference in phase between the 2-D Fourier transforms of the images

at L and t+, one can deduct a displacement vector corresponding to a sufficiently

large bloc of the image. However, the position of the obtained displacement vector is

not known, and therefore has to be localized in sorne \Vay.

Another approach is the spatio-temporal frequency method [22] that consists.

of calculating the orientation of the 3-D Fourier spectrum of a time-varying image

g(x, y, t) undergoing a translational motion with sorne constant veloeity v = [v" vvf.
In this case, g(x, y, t) can he e.'I':pressed as fo11ows:

g(x,y, t) =g(x - v"t, Y - vvt, 0) =g(x, y, 0) * e5(x - v"t, Y - vvt, 0). (2.5)

14
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Hence. the spectrum of such an image has a1l it.s energy t'ont't'ntrale,\ in a plane

defined by: Vr!Vr +vu!Vu +!V, = O. The orientation of sllch a plane is lIniqlle!y detllll'd

by the components of the Yc1ocil.y vector v.

These methods allow to determine a "clocity yector for the whole analyzcd block.

They are used to determine the velocity of a single object moYing on a uniform

background. On the other hand, they cannot be used just by themsc1vcs on rcal

television sequences where the motion is much more complex but l'an be followed by

sorne other methods.

2.3.2 Matching algorithms

Matching algorithms associate structures in a reference image with correspond­

ing structures in subsequent images. The best match is detected following a search .

that yields the optimal displacement vector lor each structure. These algorithms are

divided into two categories.

Feature matching

This is the only method structured to resolve the long-range correspondence

problems. A number of approaches to this method is presented in [1]. Usually, fea­

tures (i.e., points, lines, corners) are !irst identi!ied in the images used, and then

correspondence between those features is established. The task of establishing and

maintaining such correspondence is, however, nontrivia1. The ambiguity is also in­

creased by occlusion efi'ects which cause features to appear or disappear and also give

rise to "false" features.
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•

Block matching

li. simpler mdhod that does not r"'"luire a search for features is block matching.

This approach is bil,;ed on the assumption that ail pixels inside a block have the same

motion (only a single ""dor is estimatccl for ea("h block). The problem is then to

estimate motion of an Al x N block of pixels of the ill1ag'~ 9. at time 1 with respect

to the prcvious image at time L. For this purpose, the block in 9. is compared with

t-

Figure 2.3: Matching of an Al x N block of pixels at time 1 within a (AI +2p) x (N+2p)

search area R at L.

another block inside a search area R of dimensions (M +2p) x (N +2p) in g,_ (Figure·

2.3) wherc p is the ma.'Cimal allowed displacement. The mean distortion fundion

betwccn thcsc two blocks is defined as:

D(i,j) = A';N îlE 4J (g,(m,n) - gdm+i,n+j)), -p $ i,j $ p (2.;)

where g,(m, n) denotes the brightness value at pixel position (m, n) and time t, and

4J(x) is a positive ascending distortion function (i.e., the resulting criterion is MSE

for ç;(x) = x 2, absolute minimal error for ç;(x) = Ixi). The direction of minimal

distortion is then given by Ci",j") such that:

(i" ,j") =min D(i,j), -p $ i,j $ P
(i,j)

(2.8)

•
To speed up the search procedure many methods have been proposed such as the ~D­

logarilhmic search [24), the three-slep search [26), and the conjugate direction search

[36).
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•

Black mat.ching is usually suitable for t.h,' shart.·rang" carr"spand,'nce prûbl"llls,

while il is inapprapriate for the long-range ones. This l'an 1", "xplained by tlll' fad

that. for a largcr search arctl.. the search procc~dllrt.' beCOl11t'S too n)stly. and l'qun.tion

(2.7) tends to he noneCOJl\"cx. lcading tü cOll\'crgt...·ncl' lo a local 1l1iniuUl1ll. This

methad, hawever, warks weil with image sequenCt'S salllpled in tillle at 60 Il=that do

not contain vialent motion.

2.3.3 Spatio-temporal gradient methods

Black matching is a simple technique to implement and relatively fast. It gen·

l'rates a single displacement vectar far each black of pixels. But this mcthad becollles

very slow and costly when dense displacement fields arc required (i.e., the bloc is

reduced to a single pixel). For higher spatial l'l'solution of the optical naw, spatio­

temporal gradient methods are recommended. Thrcc approaches to these lllethods arc

hereby introduced with an emphasis on the Horn-Schunck and Baycsian approaches.

Minimization of the DF D

This approach introduced by Netravali·Robbins [33] is based on the iterativc

rninimization of the square of the DFD (Displaced Frame Difference), a measurc of

the rnotion-compensated prediction l'l'l'or. Displacement field d, at time t is cstimated

on a pixel-by·pixel basis using the images at times Land t+ with ~, = 1 (Figure'

2.1). The DFD is defined as follows:

DFD(x,d) =g(x,t) - g(x - d,L), (2.9)

•

where d is displacement vector for pixel x at time t, and g(x, t) l'l'presents the observed

intensity of pixel x at time t. A displacement field estimate d, can be derived as

follows:

(2.10)

17



• The lIlinillliz:ttion is carried 0111. iterati\'e!y IIsing the stecpest descent algorithm. The

n:sllltillg ilerati ....e updale cql1al.ion is l'xprcsscu as:

d' = d'-l - (f)FIJ(x,cl'-')VdDFD(x,di-')

= di - l - r.DFD(x, cl i - l )vxg(x - Ldi-1J, L),
(2.11 )

•

where vd is the gradient with respect to cl, v x = Lf" ;,f is the spatial gradient, di
is the esl.imate of cl at iteratioll i, and Ldi

-
I J denotes the closest lower integer value

of di - l .

The resulting estimated displacement field is more representative of the real

motion when compared with the one obtained by block matching. This is due to'

the fact that the above algorithm overcomes, to a large extent, the problems of

multiple moving objects. It also permits different parts of an object to undergo

different displacements, provided the recursive algorithm in (2.11) has sufficiently

rapid convergence.

The Horn-Sehunck approach

Horn and Shunck [20][19] proposed to estimate the 2-D velodty field v at time

t using the motion constraint cquation, where v(x, t) = [v" vyjT denotes the velocity

vedor at position (x, t). Ifdx and dy denote the corresponding horizontal and vertical

displacements of pixel (x, y, t) after a time increment dt, then the assumption of

constant image intensity along motion trajectories can he expressed as follows:

g(x + dx, y + dy, t + dt) = g(x, y, t) (2.12)

If the intensity varies smoothly with x, y, and t, the expansion of the left·hand side

of (2.12) by the Taylor series results in the following:

where e contains second and higher order terms in dx, dy, and dt. Canceling g(x,y, t)

in (2.13), dividing through hy dt, and taking the limit as dt -+ 0, the motion constraint•
8g 8g 8g

g(x,y, t) + dx8x + dy 8y + dt 8t + e = g(x,y, t), (2.13)
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• eqllation c(v) at (x.l) can he oht.aincd:

T iJ!J
c(v) = v(x. t). '\"â + iJl = O. (2.J.l)

Using the IllolÎon con~lraint. PCplèüion. Ol}(' can ol1\Y ch-rivt' the COlllpOIlt'llt of tllt'

velocity veetor in the direction of the brightness gradient (bllt not the eomponellt

along the isobrightness contour). This ambiguity is known ,L< the apCl'lurc l'roblr'lIl.

In order to solve this ambiguity. regularization approaeh proposed by Tikhono\'

(equation (2.3)) is used. Hence, an additional motion smoothness error s(v) which

ensures the smoothness of the calculated \'elocity field is added ta the error based on

the motion constraint equation. s(v) is expressed as the sum of squared magnitudes

of gradients of the velocity components:

(2.15)

•

•

The estimated velocity field vl'an then be derived by solving the following continuous

minimization problem:

(2.16)

where >. is the regularization parameter that weighs the error c(v), relative to the

smoothness error s(v). This parameter is ideally small if the assumption exprcssed in

(2.12) is accurate, and large otherwise. The choice of a fixed value for this parameter

remains to be a very crucial problem in such motion estimation algorithms.

After discretization of 9 and v, an estimate V(iJ), where (i,j) denotes the dis­

cretized spatial position x, can be calculated directly by solving a \inear system of

the form: AV(iJ) = b. This linear system is obtained by using the necessary condition

for optimality of the objective function in (2.16) [20]. If Nu is the number of velocity

sites at time t, then standard methods such as Gauss·Jordan elimination, used in an

attempt to solve simultaneously the 2N. linear equations (2 for each position), are

very costly. The reason for this is that the corresponding matrix of order 2N. is very

large and sparse. Therefore, Horn and Schunck proposed to use deterministic relax­

ation (Jacobi, Gauss.Seidel) to solve iteratively this \inear system. The relaxation
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• algorit.hlll rcsnlt.cd in the fol1owing itcrat.ive npdate eqllation:

v'· ·v'r '9+9'.·. '+1 _ -. _ (',J) (',J) (',J) V ..
V(i,J) - v(i,J) ,\ + Il'V

U
,il91l 2 (',J)9,

(2.1 i)

•

•

whcre VU,J)9 = [9(;,)) 9Ii,J)f, and 9(;,), 9Ii,J)' gli,J) arc finite·difference approximations

of the horizontal, vertical, and temporal derivatives of 9 respectively. Note that the

new value of v~~) at (i,j) is set equal to the average of the surrounding vectors

vli,i) at the previous iteration minus an adjustment which, in vclocity space, is in

the direction of the brightness gradient. This algorithm rcsults in vclocities that are

cstimated at points lying midway betwcen the pixels and successive frames. This is

duc to the fact that the first derivativcs gr, gY, and g', required in the iterative scheme

arc estimated using finite differences in a 2 x 2 x 2 cube of brightness values [20].

The Bayesian approach

This probabilistic approach consists of estimating the 2-D displacement field at

time t using images at L and t+ (Figure 2.1) [28]. The estimated displacement field

is a Maximum A Posteriori Probability (MAP) estimate that represents the most

likely displacement field d, on the basis of the two observed fields g,_ and g,+ :

d, =arg~,:"'CP(D, =d,IG,_ =g,_,G,+ =g,+)

= arg~,:"'C [P(G,+ =g,+ID, =d"G,_ =g,->' P(D, = d,IG,_ =g,->].

(2.18)

Two models are therefore needed in the formulation: a structural mode! that models

~he relationship between observed images and the rcal displacement field, and a dis­

placement field model that ensures the smoothness of the displacement field over all

spatial positions (disregarding discontinuities and occlusion effects).

The structural model relies on the assumption of constant intensity along motion

trajectory and is e.'Cpressed by the Gibbs distribution (Appendix A) with a potential

function Ug equal to the square of the DPD (Displaced Pixel Difference). The DPD

cau be regarded as a motion-compensated prediction errar measure between the im-
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• DPD(x;,d;) = g(Xi + (1 - .è>,)d;.t+) - g(x; - ~,d;.t_). (:l.19)

where d; is defined at (X;, t). and !j(x. t) denotes the intcrpolatcd intensity at time t

and position x which does not neœssarily belong to the sampling griJ of the image

(rcfer to Figure 2.1 for illustration of this case). The potential fllnction U.(d) that

describes the ill-posed matching problem 01 the data by the motion field. is then

exprcssed as follows:
Nd

U9 (d) = LDPD2 (x"d;),
i=1

(2.20)

where Nd is the number of displacement vectors to estimate at time t.

The displacement field d at time t, on the other hand, is modeled by a 2-D

VMRF (Vector Markov Random Field) expressed also by Gibbs distribution whose

energy function Ud captures the smoothness of the displacement field as follows:

with Il ·11 denoting the norm in n2 • This potential function represents the cost asse>­

ciated with the lack of smoothness of the motion field through a first-order ncighbor­

hood system.,,1 (Figure A.l) where Ci denotes the ensemble of 2-clement cliques [311'

al position Xi.

Using the above models, the MAP problem in (2.18) reduces to one of minimizing

an energy function U(d), having the following regularized form:

•
Nd

Ud(d) = L L IIdi - di ll 2

,=1 {Xi'XJ}eCi
(2.21 )

(2.22)

•

and which is, in a sense, equivalent to the objective function used by Horn and

Schunck in equation (2.16) except that the motion constraint equation is replaced by

the DPD measure. The ratio À9 / Àd plays the l'ole of the regularization parameter À,

introduced in the Horn-Schunck approach, and weighs the confidence in the a priori

mode!.

The global minimum of U(d) in (2.22) cau be calculated using simulated annealing
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• [2ïJ, a stochastic optimizal.ion method. 1I0wever, using a deterministic rela.xation

with first-ordcr ncighborhood 'II, as the one used by 1I0rn and Schunck, will only

resllil. in an approximation of the MA? cstimate [30]. This is calculated from the

fol1owing iterative IIp''atc cqllation:

ê1n+1 an DPD(Xi,t) v DPD( )
; = i - 4~ + Ilvd DPD(Xi, t)II 2 d Xi, t . (2.23)

•

•

The algorithm in (2.23) is a modified version of the Horn-Schunck algorithm in (2.1 ï)

whcreby:

• Algorithm (2.23) allows computation of displacement vectors for arbitrary po­

sitions unlike the Horn-Schunck algorithm. This property is crucial for motion­

compensated interpolation applications.

• The motion constraint equation is replaced by the the DPD measure in (2.23).

This modification is important because it allows intensity pattern tracking thus

pcrmitting more accurate intensity derivative computation.

• The spatial intensity derivatives are computed from a separable polyno'llial

model instead of finite difference approximation over a cube as proposed by

Horn and Schunck.

The simulations that have been carried out in [30], showed that the MAP estimation.

algorithm (stochastic and deterministic) resulted in a better estimation than the

original Horn and Schunck algorithm which produces over-estimatcd motion vectors

at strong edges, and under-estimatcd vectors in uniform areas.

2.4 Other important aspects of motion estima-

tion

Since the purpose of this thesis is to estimate dense motion parameters from real

TV image sequences, a spatio-temporal gradient approach is chosen. Such method,
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• as shown cartier. rcquirt~s the p.liuilnization of an object.ive funct.iotl of the Conn:

U(p) = F,(p) + '\Up(p). (2.2-\ )

•

•

where p is the field of motion paramclers (in the continn,)lIS cas,' p, = ["r '·.rr
represents one vc10city vector at Xi. and in the discrete ca.'e p, = [dr d.f reprcscnts

one displaccment veclor). The rcgularizcd objective fnnction in (2.2·1) consists of a

combination of two terms:

1. The structural model term U,(p) that represents a measure of matching cr­

ror betwcen images used in the estimation. This term consists of the motion

cOll$traint equation in the Horn and Schunck algorithm, and the DPD in the

Bayesian approach. Any other error measure, such as the sample variance over

multiple frames, can be used in this term. However, the choice of a partie­

ular measure depends directly on the type of motion-compensated processing

applications (interpolation, coding, filtcring) for which the estimated motion is

intended.

2. The smoothness term Up(p) that measllres how weil motion field p conforms

to an a priori model, such as spatial smoothness with the exception of isolated

boundaries. Equation (2.21) is a typical expression of this term throllgh a first·

order neighborhood system 7/1. A high value of Up(p) indicates that the motion

field is not smooth.

On the other hand, the role of the regularization parameter ,\ in (2.24) is thrcc·fold:

• Compensate errors due to noise present in the image. Noise in the image can

render invalid the structural mode!. In [20] it is proposed to choose ,\ as the

variance of the noise in the image.

• Control the propagation of motion information in low contrast regions from the

neighboring regions. This behavior, however, must be inhibited in occludcd

areas and across discontinuities where motion is not smooth.
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•

•

• ~Iinimize the bit rate allocated to image residual and to motion information in a

DPC:-'I·like coding scheme where motion parameters arc coded and transmitted.

As will be seen in Chapter 3, the minimum of u,(p) and Up(p) cannot be

achieved simultancously. I1ence'\ must be chosen in a way to obtain the best

compromise.

ln this section. several factors that may hclp in optimizing the objective function in

(2.24) and may result in cstimating motion field p that is closest to the true underlying

motion are invcstigated.

2.4.1 Minimization of the objective function

The minimization of U(p) in (2.24) is very complex. For a motion field p of

Np vectors with each vector consisting of 2 motion parameters (i.e., the horizontal

and vertical displacements), the number oi variables of the problem is 2Np. In ad­

dition, these variables are not independent because of the smoothness term Up(p)

that establishes a relation between neighboring motion vectors as in equation (2.21)..

Standard methods such as Gauss-Jordan elimination are very costly as e.''<plained ear­

lier in the Horn and Schunck approach. For this reason the minimization problem

is carried <.lut using ac iterative rela.."(ation algorithm which from a certain approxi­

mation of the solution pn is going to produce a better approximation pn+t such that

U(pn+t) < U(pn).

To this end, the minimization problem is expressed in the form of a system of 2Np

linear equations of 2Np unknowns. This is accomplished by using Taylor expansion

to approximate the objective function U(p) by a quadratic function of p, and then

using the neccssary condition for optimality:

Ô~;~)=O, i=1, ... ,Np (2.25)

for each of the Np motion vectors.

The resulting system of equations can be solved using deterministic relaxation

such as the Gauss·Seidel or Jacobi iterative algorithms. The difi'erence between these
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•

•

two mcthods is that in the Gauss-Seidel mcthod, the motion \"('ctor pi at position i

and iteration n is iterated using the updated neighbor motion \"('ctors (usllally from

a first-order neighborhood system 'Il) at the current iteration. The .Jacobi Illdhocl.

howe\"er, uses the neighboring motion \"ectors of the pre\"ious iteration n -1 to Ilpdate

pi at iteration n. Hence, the Gauss-Seidel method is faster in cotl\'ergencc than the

Jacobi method as in the latter one has to wait a complete field iteration in order to

use the latcst updated motion vectors. The order of update in both of these mcthods

usually follows a horizontal sequential scan of the motion field being cstimated.

The iterative update equations in (2.lï) for the Horn-Schunck approach, and

(2.23) for the Baycsian approach are examplcs of rela.xation algorithms soh'ed by the

Gauss-Seidel method. A detailed derivation of such an algorithm will be presented in

Chapter 3 where the new algorithm is discussed.

These deterministic rela.xation algorithms fail to converge to the global minimum

when the objective function U(p) is not convex. A stochastic rc1a.xation algorithm

based on simulated annealing has been proposed in [2;J and allows to obtain the

global minimum. However, the improvement in the subjective quality of the rcsulting

motion vectors applied to motion-compensated interpolation is marginal.

2.4.2 Hierarchical processing

Motivation

The approximation, by Taylor expansion, of the objective function U(p) by

a quadratic function of p is weakened when the data structure is characterized by

relatively high frequen;:y content such as very sharp edges and noise, Hence, for

instance, the second and higher order terms in (2,13) become no more negligible and

have to be considered in order to derive the motion constraint equation, Smoothing

may reduce this high frequency content, so that the data is closer to a locally linear

behavior, The convergence to the global minimum will be more likely since U(p)

becomes closer to a convex function. Therefore, the minimization of U(p) is cxtended
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• over a. pyramid of image rcsolutions. Such hierarchical processing may also allow

h,mdling rapid motion sincc reducing high frequency image content allows to perform

rIlatching at larger displacements [29].

The hierarchical extension

Various multiresolution methods have bccn proposed for motion estimation

[.5][13][29]. One class of such methods is based on a non-recursive multigrid (coarse­

to-fine resolution) approach [29]. It consists of generating a pyramid of varying image

resolutions from the lowest resolution at the top level (k = L) to the full resolution

at the bottom level (k = 0) of the pyramid. Figure 2.4(0.) is an example of a 4-ievel

(L =4) pyramid of ID data resolution. A second pyramid for motion fields is then

constructed as follows. The estimation starts at the top level (k = L) of the pyramid

x x x
o .. ....... J

L~j~
(Ic.l)

C> k-3

• • • k-2

0 0 0 0 Ic-I

x x x x x x x x 1:-0

(a)

•

•

•

•

•
(b)

.. x •

•

•

Figure 2.4: Schematic (ID) representation of a 4-1evel pyramid (a) for hierarchieal

data representationj (b) illustration of hierarchica1 displacement veetor update over

3 image resolutions.

(eoarse resolution), where the number of motion vcetor sites is small, and henee a

minimum is located very quickly. Then, the resulting estim~te from this eoarse level

is interpolated to the next finer resolution level (k =L -1) where it is used as an ini­

tial solution for the estimation at this finer resolution level. This hierarchica1 process

is repcated until the full resolution estimate at the bottom of the pyramid (k = 0) is

obtained. An illustration of this hierarchical displacement vcetor update for L =2 is

26



•

•

•

shown in Figurt~ 2.·1(b). The end point of the displacenwnt "t'clor at position (k.l)

for cach resolution levcl k is denoted by d k
, and the displacenwnt update "eclur at

each resolution levcl is shown by a dottetl line.

Choice of the smoothing lUter

Generation of each resolution levcl of the image pyramid consists of spatial sub·

sampling, preceded by filtering in order to avoid aliasing elTects which can significantly

deteriorate the quality of motion estimates. However. the images do not have to be

subsampled when moving up the pyramid, as subsampling causes data loss. This loss

may affect the performance of spatio-temporal gradient methods that rt'quire the cal·

cuiation of derivatives. Hence a ~constant-width~ pyramid for images and a regular

pyramid for motion fields are sometimes used in such algori thms.

The choice of the optimal smoothing filter (Iow-pass or band-pass) is not ycl

c\ear. Enkelmann [13] has used the circularly symmetric Gaussian low-pass filter

with radius R =4 pixels and spatial variance 0'2 =2.5. The iD magnitude response
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Figure 2.5: Magnitude of the frequency responsc of the Gaussian filter used in the

generation of the pyramid of resolutions.

of sucb a filter is shown in Figure 2.5. Note that the large transition band in the

magnitude response is essential in reducing the ringing effects near the contours.
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(2.26)

•

•

•

On the other hand, the filtering may introduce unwanted artiracts, such as con­

rusion or objects with background, which usually leads to locally unreliable estimates.

To overcome this, a TnltltisclLic estimation (another cla." or coarse-to-finc algorithms)

has becn proposed ror giobally smooth linear motion (displaccments) based on Markov

hierarchical modcl [1 il whcre instead or subsamp!ing, the size of a block in which ail

estimates are kept constant varies rrom le\'cl to leve!. In this approach, Markov modcls

a.t higher levels of t.he pyramid are rigorously derived from the full resolution mode!.

This method has been reported to give rusults similar to those obtained by stochas­

tic monoresolution techniques [28J and superior to those obtained by deterministic

multiresolution methods using the smoothing filters [30).

2.4.3 Modeling of discontinuities and occlusion areas

Gradient·based motion estimation methods allow dense motion measurements,

but generally suifer from severe shortcomings especially near discontinuities and in

occlusion areas. Moreover, for real TV images the underlying motion is piecewise con­

tinuous rather than globally continuous. Taking into account motion discontinuities

is thus important when accurate motion estimates are required.

The smoothness term Up(p) in (2.24) captures the smoothness of the motion field

p to estimate. However, the smoothness constraint is violated at the boundaries of

an object moving across a still background. Hence, it was proposed [27][16) to include

a line field 1 in order to inhibit the smoothness constraint at certain boundaries, and

therefore to allow the estimation of a piecewise continuous motion field. The typical

smoothness term in (2.21) is then modified [27) as follows:

Nd

Up(p,l) = L L HPi - pjH2 [1 - I(Xi, Xj)),
i=1 {x.,x,}EC,

where I(Xi, Xj) is the binary-valued line element defined between two pixel positions

at Xi and Xj (0 and 1 represent respectively absence and presence of a discontinuity).

If the line element separating motion vectors from clique {Xi,Xj} is "turned on"

(I(Xi,Xj) =1), there is no cost associated with that clique, and hence the cost function
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•

•

Up(p,l) is not increased. Ilowever, if the line clement is ~turned olf~ (l(x,. xJ ) = 0),

there exists an associated cost if the motion "eclors Pi and PJ ""part from the assum,'d

a priori mode!.

The above extension implies s!multaneous estimation of two fields: motion field

and Hne field. It is interesting to note that if ail the line elements in the line field are

~turned on~, then the smoothness term in (2.26) is null and thercfore is at minimum.

A mode! of the line field is thercfore necessary. A binary MRF modcl is proposcd

in [2i]leading to the addition of U/(l) to the objective function in (2.2·1). This term

has the role of introducing penalties discouraging certain configurations such as the

introduction of a line element on a non-edge site, or the occurrence of an isolated

motion site.

On the other hand, it was shown in [16] that the detection of motion disconti­

nuities alone is not sufficient, but that the processing of occlusion areas (along with

motion discontinuities) is necessary in order to maintain a high quality of estimation

near motion discontinuities.

This approach has been investigated in [9] for the estimation of a displacement

field from 3 images at L, t, and t+. The thrcc-state (l'yi, E, C) occlusion field 0

defined on the same sampling lattice as the motion field, was defined as follows: M

indicates that the point is visible over the entire interval from L to t+, E represents

newly exposed points over the interva! from L to t, and C indicates coverecl points

over the interva! from t to t+. An illustration of this three-state occlusion field is

depicted in Figure 2.2 where point z should be labeled as M, point y as C, and point

w as E. Note that the number of states an occlusion tag can take, depends on the

number of fields used in the estimation algorithm.

Using this definition of the occlusion field 0, along with that of the line field

1, an additional term U.(o, l) is used in the objective function (2.24) which can he

expressed now as Collows:

(2.2i)
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where the À's clenote weights associal.ed with each term. Note that the structural

term U,(p, u) becomes clcpcndent on the occlusion tag in the sense that if a point is

labc1ecl as occluclecl, the fields on which this point is invisible arc cliscardecl in the

evaluation of U,. The aclditional cost introducccl by U.(o, /) depends on whether or

not there is a discontinuity bclween two vector positions, and reflects the fact that

occlusion tags should only appear near motion discontinuities.

The same deterministic minimization techniques, as discussed earlier, can be.

applied in order to minimize the modified objective function in (2.2ï). However,

the number of variables of this minimization problem is enormous. It consists of

Card(p) (the cardinality of the motion vector p) motion parameters, plus one or two

line elements (depending whether inside or at the boundary), plus one occlusion tag

per sampling point. For this reason, an interleaved optimization approach is used

whereby a sequential minimization with respect to each of the three fields is carried

out, while maintaining the other two fields fixed. This process is repeated until

suitable convergence is achieved.

The processing of discontinuities and occlusions has shown [9] to be helpful in

obtaining a more realistic estimate of the motion field especially in presence of ac·

celeration. This is due to the fact that accelerated motion tends to generate larger

occluded regions and hence the computation of these regions becomes vital for ob·

taining good motion estimates. The estimation of occlusion and line fields will be

discussed in more detail in Chapter 4 where they will be incorporated into the new

motion estimation algorithm.

2.4.4 Multiframe processing

Most of the existing motion estimation methods use two fields to estimate mo­

tion parameters (displacements, velocities). But motion estimation, and in particular

the identification of occlusion areas, can be considerably improved by using multiple

images as discussed in [8] where 3 fields have been~. Hence, considering a match·

ing error measure over several images should allow a more robust pixel-matching (with
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• a certain allowablc rangc of illlll11illat.ioll variat.i,>n). :\\,,). iI<"ClIllIlIlating thc o,'c1l1sion

tags ovcr scvcral fields should allow cilsier identilication of occlusion n'gions (i.e.. the

newly exposed and covercd points).

The only problem in this approach is that the asslIllIl't.ion of t.he lü,ally t.ransla·

tiona! motion model is no more "alid ü"cr multiple fields. This is illllstratcd in Figllre

2.6 where the real motion trajectory of point (x. Il is shown in solid line. ln this

Figure 2.6: Motion estimation using 5 fields and (a) first-order motion trajeetory

model; (b) second-order motion trajeetory mode!.
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0 ............,
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•

example, the estimation is done for field at time t using the five fields (N = 5) at

t - 2, t - 1, t, t + 1, t +2. The estimated displacement veetor cl = [d" dulT at (x, t)

obtained in the case of a first-order trajectory model (i.e., linear model) is shown in

dotted line in Figure 2.6(a). However, for a second-order trajectory model [12J (i.e.,

both velocity v and acceleration a are induded), the vector p = [v" Vu a" aulT of

motion parameters is estimated. This results in the quadratic trajeetory drawn in

dotted line in Figure 2.6(b) through the point (x, t).

Note that the use of a higher order motion model in multiframe processing should

result in a better approximation of the rea1 motion trajectory, and hence reduction

of the matching error in the structura! term. This is expected to have consequence

in motion-compensated interpolation applications.
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H"nce, for multiframe proCl>ssing (i.e., ;V :::: :3), the consideration of a higher­

oni<'r motion mode! should 1>" ..n asset. in Illotion-compensated applications. In Chal'­

ter :1, a dd..il"d formulat.ion of an,," spatio-temporal gradient motion estimation

rnethod over multiple frames is discussed along with some simulation results. A.

second-order (quadratic) motion mode! is used to model motion trajectorics over a

variable number of fields (selected by the user). The proposed algorithm relies on a

dctcrministic rcla.'<ation approach implemcntcd over a pyramid of image resolutions_

Subjective and quantitative comparison betwcen the use of a linear and quadratic

motion trajectory models with multiframe processing is also discussed. The proposed

algorithm is then extended in Chapter.j to handle occlusions and motion discontinu­

itics.
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Chapter 3

Estimation of Motion Trajectories

with Acceleration

In this chapter, the estimation of trajectories for accelerated motion from image

sequences is proposed. Unlike in many other approaches that assume tinear tra­

jectories, a higher order model that incorporates both velocity and accc1eration is

considered. This model corresponds better to real case situations especial1y when the

estimation is carried out over several images.

One of the advantages of using accelerated over linear trajectories is in motion­

compensated processing over multiple images. This is due to the fact that over longer

time frame, a quadratic motion model is capable of providing a better intensity match.

along trajectories than the linear mode\. In particular, the standards conversion

problem, has been addressed in the presence of accelerated motion in [35] where it

has been demonstrated that by taking into account acceleration during frame rate

conversion and deinterlacing, a superior result can be achieved. In the above work,

however, it was assumed that the velocity and acceleration parameters in an image

sequence are known a priori. However, in real TV sequences these motion parameters

are unknown. Hence, a good estimate of the velocity and accc1eration parameters is

essential.

In Section 3.1 the notion of a motion trajectory is introduced. and the motion
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"stilllatioll prohle'lI is ddined. The algorithm for the estilllation of dense accelerated

Illotioll fi.·lds is f"rllllllakd ill Section :l.2 Ilsillg Gihbs·:-'Iarko\· lllodcls linked togcther

hy tl .., .\lll.ri/llll/lt :l ['o.;iaiori (:-'1:\1') probability crit<:rioll. This results in a mini·

lIlizatioll of a reglliarized cost fllllctioll. The SOllltioll that is proposed in Section 3.3

is b'Lse<! on deterministic relaxation implemented over a pyramid of resolutions. The

test images that are used to simulate the proposed algorithm are presented in Section

:1.·1 alollg with a description of the measures that will be used to evaiuate the valid·

ity of motion estimates. The parameters used in the estimation algorithm are then

optimized in Section 3..5. Finally, experimental results of the proposed algorithm are

prcsented in Section 3.6 along with a comparison between the linear and quadratic

motion trajectory modcls.

3.1 Definition of motion trajectory

1'0 describe motion with acceleration, the concept of motion trajectory is used

[Il]. The projection of each scene point traces out a trajectory in the image plane W

during the time it is visible in the image. Hence, the motion in the image sequence

is characterized by the collection of ail such trajectories. An illustration of a typical

trajectory of the center of a circle moving across the image plane is shown in Figure

3.1. The trajectory starts at the time ti(X, t) = L when the point first becomes

visible, and ends at time tJ(x, t) = t+ when the point disappears. The trajectory of

point (x, t) can be specified by the function C(T; x, t) which gives the spatial position

at time l' of an image point located at position x at time t.

For l' "# t, let V(T; t) define a subset of W at time t consisting of pixels that are

visible over the entire interval between t and 1':

V(T; t) ={x: ti(X, t) ::; l' ::; tJ(x, tn. (3.1)

•
For l' > t, W - V(T; t) is the set of pixels covered or leaving the image between t

and T, while for l' < t, W - V(T; t) is the set of pixels exposed or introduced into the

image betwcen l' and t.
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Figure 3.1: Trajectory of a projected scene point in 3-D x-y·1 spacc.

For linear trajectory model, the displacement field, defined in the previous chapter,

is used. It can be described as follows:

From this mathematical description of motion in the image plane, one can deri,'c

the oplical fiow which consists of the instantaneous vc10eities in the image:

•
( )

_ De(T; x, 1) 1
v x, 1 - DT T=t • (3.2)

{

x-e(T;x,l)
d(T;X,t) =

e(T;x,t) - x

if T < 1;

if T > 1;
xe VtT; t). (3.3)

(:lA)xeV(Tjt).

Note that for T > t, d(T;X,t) is a forward displacement field, while for T < t it is a

backward displacement field. The displacement field can also he calculated from the

veloeity field by integration:

d(T;X,t) = [ v(e(s;x,t),s)ds,

For constant veloeity v(e(s; x, 1), s) =v(x, t), the displacement is simply d(T; x, 1) =
v(X,t)(T - t). Thus, it follows from (3.3) that

To make the estimation problem tractable, we model each motion trajectory e

by a parametrie function cP of a vector of motion parametcrs p [12]. Hence for the•
e(T;X, t) =x +v(x, I)(T - t), Xe VtT; t). (3.5)
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• li'l"M trajeclory mode! in (:l..i), p = v, For quadratic traj,xt.orics based on "c1ocity

and oiLccdt:ration, p = [vT aTrr and

cl'(.; x, t) = X + v(x. t)(. - t) + a(x. t)(. - tf. (:3.6)

Not.e that v(x, t) is the instant.anCüus vclocity, and a(x, t) is the constant acceleration

ovcr the Icngth of the trajectory, both at (x, t). Equation (a.6) can be rewritten as .

follows:

CP(T; x, t) =x + LlTp(x, t) (S.i)

with

(S.S)
(. - tf

o
o

.-t[

T -0 tLl T =

vz(x, t)

v~(x,t)
p(x, t) =

az(x, t)

a~(x, t)

The goal of this chapter is to estimate the field of motion parameters p, at time

t defined on the 2-D dense lattice (Ap ), which corresponds to the sampling grid of the

image. Let g, be an image at time t, and let•
I, = {T : g,+, is used in estimation of p,} (3.9)

(3.10)

•

with Card(I,) = N. The estimation of motion at time t is carried out over images .

{g,+,} such that T E I,. Figure 3.2 illustrates an example of quadratic trajeetory

over N fields charaeterized by the veetor of motion parameters p(x, t).

Assuming that the following is true

{
t;(x, t) :5 t + T :5 tJ(x, t), and

'riT E I, '*
XEv(.;t)

implies that the estimation is performed only on moving or stationary (i.e., not oc­

cluded) pixels. Hence, the effects of occlusions are not considered in the estimation

algorithm. For the remaining of this chapter it is assumed that (3.10) is true which

is not the case in real sequences. For this reason, in Chapter 4, an occlusion model

will he incorporated into the estimation algorithm, in conjunction with a motion

discontinuity mode!, in order to obtain better estimates in occluded regions.
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•

Figure 3.2: Estimatcd quadratic trajcctory cP(T;x.I) at (x,I).

3.2 Formulation

The estimation of accclcrated motion trajectorics is tacklcd nsmg a spatio.

temporal gradient method based on a statistical approach. This Illclhod has h"cn

overviewed in Chapter 2 for the estimation of 2-D displaccment fields, and will hc cx­

tended in detail in this chapter to handle the estimation of the motion field P defined

for quadratic trajectories.

In the following sections MRFs, charactcrized by Gibbs distributions (GD), arc

used to model both the matching error along motion trajectorics and the motion field

p. In the case of MAP estimation [28], it was shown that the use of GD can Icad

directly to a cost function of the same form as equation (2.22).

According to the MAP criterion, the estimated motion field Pl at time 1 is the

most Iikely motion field p, based on observations 91 = {gl+T : TEIl}' Using the

Bayes' rule, MAP estimation for p, is a modified version of equation (2.18), and is

expressed as follows:

p, =argmax P(p,19,)
P,

=arg max [P(9~lp"g,.) . P(p,lg,.)]
p,

(3.11 )

•
where ln = 1 + Tn is an arbitrary chosen time instant such that Tn E Il , and 9~ =
{g'+T : TEIl - {Tn }}. It is assumed that vectors Pl are samples from a vector random

field Pl' and that images gl are samples from the luminance random fields Cl' The
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first pro\,,,\'iiity P(Ç;lp,.!It .. ) in (:1.11) is ddcrmincd by the structural mode! re!ating

motion Lü th" o\'s"rv"d image. and P(P:ig,.. ) is dctcrmined by the mot.ion trajectory

rnodd. TIlt's«~ two tllodels are discusscù in the next t\\"O sections.

3.2.1 Structural model and matching error

The structural mode! follows directly from the constant intensity assumptioll

along motion trajectorics. The conditionaI probability P(Ç~lp"g'n) deper,ds directly

on the intcnsity variation along motion tl'ajectorics. This variability is assumed to be

independent for each distinct trajectory on the lattice (Ap )" and similarly to [31] is

modeled here by independent and identically distributed Gaussian random variables.

Since Gaussian distribution is a special case of GD, the intensity variation along.

motion trajectories can be expressed by the GD (equation (A.3)). The conditional

distribution along each trajectory cP' at a certain pixel site (Xi, t) E (Ap ), is therefore

expressed as follows:
1 ul'I,lP1

P'(Ç~lp"g'n) = Z' e- '. , (3.12)
•

where U!il(p) is an energy function that measures departure of the observations from

the structural model, and hence must represent a measure of the intensity match·

ing error betwecn the Card(It ) = N fields used in the estimation. Since the main

interest in this chapter is to estimate motion fields for applications related to motion­

compensated interpolation, the energy U!'1(p) at pixel site (Xi, t) E (Ap), (refer to

Figure 3.2) is defined as the sample variance:

((Xi, t) = ~ :E g(x~, t + 7") (3.14)
't'eTc

g(xf, t + k) is the ir.terpolated intensity at time t + k and position xf defined as

follows:

•

with

U~i)(p) = L [g(xf, t + k) - ((Xi, t)t
kEr.

:<7 = Xi +v(Xi, t)k +a(xi, t)k2

- Xi + aCt+klPi
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• with ~('+k)' and Pi = p(x,. t) ddined in (:l.S).

The tot~! conditional distribution is th,'n a produ,·t Ol'er the ent.in' fi,'Id ,,1' .\'1'

pixel sites in (:\p)" of the distributions P'(Ç;'lp,,!J:.. ) along ,'ach t.rajt'ctory:

where, U,(p) is known as the structural modd lerlll:

Np

U,(p)= :L:U;il(p)

= ~ {L [g(x7,t + k) - (Xi,t)r},
1=1 ker~

(:1.l7)

•
which constitutes the main term of the objective function (2.2·1) discussed in Chapt"r

2, and whose minimization yields a MA? estimate of the motion fidd p.

3.2.2 Motion trajectory model

It was assumed earlier that motion vectors p, arc samplcs l'rom a vector randorr

field P,. Defining P, as a vector MRF on the lattice (Ap )" the a priori distribution

P(Ptig'n) l'an be expressed as a Gibbs distribution:

(3.18)

where Up(p) is the energy function that captures the dcsired smooth:lcss property of

the motion field through a first-order neighborhood system 7]1 (Figure A.l):

Np

Up(p) =L L (Pi - pjfr(pi - Pj)·
i=l {XliX) lec,

(3.19)

•

Note that Pi and Pj are parameter vectors for trajectorics passing through (Xi, t)

and (Xj, t), respective!y, and r is a 4 x 4 po,itive definite weight matrix that was

introduced in order to permit different weighting of horizontal and vertical motion

parameters as well as of !ower and higher order motion parameters (i.e., ve10city and
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accc1eration paramctcrs). For this purpose, r was choscn to be a. dia.gonal matrix of

the forlll:
tev; 0 0 0

0 lC lJlI 0 0r= (3.:20)
0 0 tL'as 0

0 0 0 wa~

where W.z ' w•• ' W Oz , and wo • are the respective weights assiglled to each of the four

motion parameters in p. This weight matrix r was discussed in [3:2] where its entries,

not neccssary on the diagonal, were chosen as funetions of the observations g'n in

order to a,!low suitable adaptation of the smoothness property to the local image

structure. Note that when r is the identity matrix, the Euc1idean norm resu!ts and

hence, the smoothness term in (3.19) is reduced to the same forrn as equation (2.21)

which was introduced earlier for the !inear trajectory mode!.

3.2.3 Derivation of the objective function

Combining now the calcu!ated conditiona! distributions of the previous sections

into equation (3.11), the fol1owing resu!ts:

Pt =arg maxP(p,IQ,)
p.

= arg max {.!..e-U(Pl}
p, Z

=argminU(p),
p.

(3.21)

where Z is a new normalizing constant incorporating Z. and ZP' and U(p) is the new

energy function defined as fol1ows:

(3.22)

•
with .Àp = l//3p, and /3. = 1. Like in equation (2.24) the regu!arized form of the

objective function U(p) follows direct!y from the MAP criterion. .xp is a regularization .

parameter that plays a vital ro!e in weighting the importance of the a priori motion

trajectory mode! with respect to the structural mode!.
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• 3.3 Solution method

•

The optimizatioll of the objecti"c fllnction in (:1.22). which is a non·lin(,M.

llon-qlladratic, and non-con\"cx function. ha.< b"cn hricl1y c1isclIssed in SectilHl 2..l.1.

Complex non-linear optimization approaches arc not snitahlc here. IIcnce. a dcter·

r:1Ïnistic rela:'\ation algorithm resulting in an it.crati\"c llpdat.c eqllation of the same

form as equation (2.2:J) is deri"cd in this section. This algorithm is deri\"t'd by "pprox­

imating U(p) by a quadratic function of p, and then llsing thc nccessary condition

for optimality expressed in (2.25) to deri\"e a linear system of thc form APi = b for

each of the Np motion vector positions in (Ap ),. The solutions of thcsc depcndcnt

linear systems are then calculated iterati\"ely by using thc Gauss-Seidel relaxation

approach, discussed in Chapter 2.

3.3.1 Approximation of the objective function

Approximation of the objective function in (3.22) by a quadratic function of p

is made possible by using the Taylor expansion of g(xf, t +k) = g(Xi+ ~(I+k)Pi, t +k)

in (3.1i) about sorne intermediate solution Pi:

g(Xi +~(I+k)Pi, t +k) ~ 9(Xi + ~(I+k)Pi, t + k) + V'~9(Xi + ~(I+k)Pi, t +k)(Pi - Pi),

(3.23)

with 'Vpg(-) being the gradient of g(.) with respect to the motion veetor P expresscd

as:
'Vpg(.) = ~ft+k)'V'xY{-)

k 0

0 k [~ ]- - ai~)p 0

0 p

- [k 809(') k809(') kz8g(. ) kz89(·)r
8x 8y 8x 8y

•
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SlIhslilllling "'lllation (:3.2:1) into (:l.li). U(p) can he' "pproximal,'cl as rollows:

whcrc

rW);) = g(Xi + .6.('+k)Pi' t + k) - ,~ 1: g(x; + .6.(*lPi. t + 7'), (:3.26)
• 'TeIl

and

3.3.2 The iterative algorithm

Now that the objective function U(p) is a quadralic function of p, the global

minimum P'm.n which corresponds to an approximation of the MAP estimate p, (equa­

tion (3.~l)) can be obtained by establishing the necessary condition for optimality

over the entire motion field at time t:

au(p) =0,
api

i = l,···,Np. (3.28)

The derivative of U(p) with respect to the motion vector Pi defined at pixel site

Xi E (Ap), is expressed as fo11ows:

au(p) "a [k • k' T .]2 a" Ta. = L.... "'fj. ri (Pi) + (Si (Pi)) (Pi - Pi) +2Àp "'fj. L.... (pi-Pj) r(pi-pj)·
P. ker, p. p. {x.,x,}ec.

(3.29)

ACter sorne straightforward differentiations, equation (3.28) becomes

•
where Pi is the average motion vector at position Xi given by:

_ l"
Pi =- L.... Pj·ei je~l(i)
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• 11 1(i) is the first-order ncighhorhood al. !,ositi'>I1 x, r,·sldl.ing in ~i = ·1 ,·verywl\l'rt·

excepl at I.he boundarics of th" lanice (.\"l, wl\l'rt'~, < ·1 (in !,Ml.intlar.~, = ~ al. th,'

four corners).

Hen'~e. the global minimum Pt.•.• of the 'luadml.ically approxilllal.<'d ohjecti\'('

function (3.2.5) is dctermined by solving (3.30) for Pi at each of the NI' pixel sites

on the lattice (:\p)t. But since each solution Pi depends on Pi which is a function

of motion vectors in the neighborhood of Xi. then an itemti"e relaxation mcthod is

necded. Considering that each iteration Il consists of a full scan of the field at time l,

and letting pi = pi-1 at each iteration. then pi is updated at iteration Il by solving .

the following linear system:

AO: • pO: = bO:
1 l l , (3.32)

(3.35)

(3.33)

which directly follows from equation (3.30) with:

Ai = [2: (Sf(Pi)(Sf(P;'))T)] +2Çi'\p . r.
ker•

and

bi = ([2: (s~(pi)(S~(Pi)f)] + 2Çi'\p' r) .pi - 2: (r7(pi)sf(pi)). (3.34)
ker. ker,

The deterministic rela.xation method is based on the Gauss-Seidel approach, which

calculates pi at iteration Il using the latest updatecl neighbor motion vectors at the

current iteration. That is why for a horizontal scan at each iteration, the average

motion vector pi makes use of the updated left and top neighbor motion vectors at

iteration n, as well as of the right and bottom neighboring motion vectors at iteration

n - 1 (since the ones at iteration n are not yet available). This characterization of pi

changes obviously with the scan mode.

The Gauss-Seidel relaxation method is used to iterate the complete motion field,

and this process is repeated until a convergence is achieved. Convergence is detected

by monitoring the oscillatory decreasing behavior of Un(p) in (3.22) after each itera­

tion, and hence the following condition:

I

Un(p) - Un-I(p) 1
Un(p) < (•

•
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cau serve il..") a robust stopping critcrion for convergence.

3.3.3 Spatial interpolation

The motion vector Pi defined at pixel x, E (Ap ), is dcscribed by continuous­

valued parameters. I-Ience, in order to cvaluate the components of the linear system

in (3.32), intcnsitics g(x7, t + k) (Figure 3.2) and there respective spatial derivatives

at non grid points x;+~('+k)Pi '/. (Ap ), are needed. Therefore, a spatial interpolation

method is nccded.

For this task, a Cl cubic convolution interpolation [25] has bcen used. Note

that by using cubic convolution instead of linear interpolation or nearest-neighbor

resampling, the degree of complexity of function~ that can be exactly reconstructed

is increased. The 2-D cubic convolution interpolation function (used in the motion.

estimation algorithm) is just a separable extension of the I-D interpolation function

(Figure B.l). It is worth to note here that the order of accuracy of the cubic convolu­

tion method, introduced by Keys, is betwcen that of the linear interpolation and that

of cubic splines. However, cubic convolution is much more efficient than the method

of cubic splines in terms of both storage and computation time.

3.3.4 Estimation over a hierarchy of resolutions

The approximation of the objective function U(p) by a quadratic function of p

in (3.25) is made possible by the use of first-order Taylor expansion. The higher order

terms of this expansion are considered to be negligible in the case of small motion

parameters and are therefore dropped. However, in the case of fast motion (large

displacements), a first-order approximation is not sufficient as these higher order.

terms cannot be neglected anymore. To deal with the above problem a hierarchical

approach is u!'Cd in the motion estimation algorithm. This hierarchical processing that

has bcen explained in Section 2.4.2 consists of updating the motion fields (velocity

and acceleratio:l) at each image resolution level until the full image resolution is
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reached (Figu re 2.·1), These updates beroml' sma.Il,'r a.t. the bot tom level"f tlll, ima!\,'

pyranlid and hcncc lcss ilerat.iol1:' arc nl'(~ded 1.0 rt..'ach C'l)t1"t'rgt'tlCt'. Bl'sidl'S of s.wing

computational time (sinee t.he uumber ,)f motion ""t'tors t.o est.imat." is divi.led by

four at each lower resolution), the hierarchical ml'thod allo,,"s to n,duce the risks of

convergence to a local minimum espccially wh,'n t'stima.ting la.rge motion. This is uut'

to the fact that the image at each resolution is filtered by a Gaussian filter (Figur,'

2..5) and hence the high frequency content in the data. that is the main reason of

forcing the solution to be trapped in a local minimum, is reduced.

3.4 Test images

The motion estimation algorithm presented so far has bccn tested on some image

sequences with synthetic and natural motion. These test images arc described next

along with the measures that will be uscd to evaluate the validity of motion estimatcs.

3.4.1 Image sequences with synthetic motion

In order to test the accuracy of motion estimation, natural sequences with syn­

thetic mo~ion are generated. Each sequence consists of a 4.5 x 38 pixel rectangle

moving on a still background. The n.oving rectangle fo11ows a quadratic trajectory

at a certain initial velocity Va and constant acceleration parameter a. The position

of the rectangle at field t is then described as fo11ows:

x(t) =Xa + vot + at2
, (3.36)

where Xo is its initial position at field O. The instantancous velocity v( i) at field t of

any pixel within that rectangle is therefore describcd by:

The data in the moving rectangle was obtaincd from a still image different from

that of the background by the following procedure. An image had been first prefiltered•
vtt) =Va +2at. (3.37)
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• hy a 2·D low.pass Gallssi"n 1,'lIt [ilter in order to avoid aiia.,ing after subsampling,

The data inside the rectangle was then obtained b)' a stlitable shift of the ·1 times

stlbsalllpled version of the prdill.ered image. The slIbsampling factor of ·1 provides

a 1/,1 pixel precision of the motion pamllleters. Figllre :l.:l illustrates the idea for

il moving rectangle of 2 x 2 pixel. The 2 x 2 pixels are selected from the 8 x 8

0.0 0.:5 O~ 0.75 1.0 I~ 1,jO 1.75

o.o@ -€I •••

0""

0.>0

0.75· •

1.0 El

13

•

• • •

I!) •

•

•

1.2S • ••••••

1~··I3···13

1.15· • • • • • • •

Figure 3.3: Adaptive shifting of a 2 x 2 pixel rectangle for 1/4 pixel precision.

pixel grid according to the real displacement of the moving rectangle. Hence, for

no displacement the pixels surrounded by a circle are selected, for a displacement of

(0.50,0.50) the pixels surrounded by a square are selected, and for a displacement of

(0.25, 0.75) the pixels surrounded by a .iiamond are selected. Due to this sub-pixel

accuracy, the matching in the rectangle area is not perfect and hence providing a

more realistic testing than pixel accuracy.

In this context, two test images with synthetic motion and different sampling

structures have becn generated: the test image 1 in Figure 3.4a is au interlaced test

sequence, whereas the test image 2 in Figure 3.4b is a progressively sampled test

sequence.

In each of these test images the white frame emphasizes the area of 72 x 64

pixels (the actual size of test image 1 shown in Figure 3.4a is twice larger in the

vertical dimension due to its interlaced sampling structure) over which the motion
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(a) (b)

•

Figure 3.4: Field #2 of (a) test. image 1 (interlaced); field #2 of (b) tesL image 2

(progressive). The white frames encircle the areas used for estimation.

estimation algorithm will be tested. Each area comprises Lhe 45 x 38 pixel rectangle

which is moving at 1/4 pixel accuracy according Lo the quadraLic Lrajcctory dcscribed

in (3.36).

The validity of motion estimaLes within the ï2 x 64 pixel esLimation area is

verified by the following Mean Square Error (MSE) measure. The MSE measure is

expressed as follows:

MSE =E [(p(t) - p(t))2] ~ ~ :E [p(x;, t) - p(x;, t))2 ,
'R. x.E'R

(3.38)

•

where p(t) and p(t) are the real and estimated motion fields respectively in the region

n of P'R. pixel sites. 'R can either be the full estimation area ('Ra), or the area of the

moving rectangle ('RI)' or the area 'R2 = 'Ra - 'RI. In orcier to eliminate boundary

efFects of the moving rectangle, the areas labeled 'R~ and ~ will also be used to

represent the areas 'RI and 'R2 respectively deprived of a narrow strip of 5 pixels that

contains the boundaries of the moving rectangle. 'R~, for instance, represents the area .

inside the moving rectangle.
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3.4.2 Natural sequences

The tcst image :3 is an intcrlaccd 2.~6 x 212 pixel scqucnce "femme ct arbre~

whose field #2:l (from a total of 120 fields) is displayed in Figure :l.5.

Figure 3.5: Field #23 of test image 3: "femme et arbre~. The white frame encircles

the area used for estimation.

It contains complex motion, primarily of the hand and the arm. The second

natura1 sequence "Miss America" which is labeled test image 4 (displayed in Figure

3.6) is a typica1 progressively sampled 360 x 288 pixel CIF video conference sequence.

Figure 3.6: Field #16 of test image 4: "Miss America". The wr.ite frame encircles

the area used for estimation.
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• These natural sequences ha,·c been ohtaincd with a vid,'o canwra. No filtering or

any other processing has becn applied to them after thdr acqnisition. Neverthdess.

some aliasing is present in the data duc to insnfficicnt liltcring bcfore sampling.

The validity of motion estimatcs for these natural sequences can be vcrifi,-d by

USlllg these cstimates in a motion-compensatcd interpolation schcmc as describcd

next.

3.4.3 Motion-compensated interpolation application

•

In various video coding schemcs temporal subsampling of image sequences is

often used to assure high compression ratios needed. Then, at the recciver the miss­

ing images are reconstructed via motion-compensated interpolation using transmittcd

motion parameters or motion parameters computed at the receiver from the transmit­

ted images. In Figure 3.; the first scenario for the case of 4: l subsamplillg is presented.

'IRA.'IDllliER .--- RECElVER
C

,... Molial CS1ÎlmIiOll P H
,

ca rclds Il,2,3 A !N

ls
N

ls --L& E MOIÎa1<01llpOlS11l:l1
4:1 s.bsomplin& L iIlI<:polalica

'--

.......... .._ .

.................. . .
.........

..........

......................... ' ....

o 2 l 4 o 2 4 o 2 3 4

Figure 3.;: Illustration of a typical motion-compensated interpolation scheme used

in video coding.

•
Motion fields Pt for the images to be omitted at the transmitter (images #1,2,3) arc

estimated from images #0,1,2,3,4, i.e., I t = {-2, -1,0,1, 2} for estimation at field

#2 (Table 3.1).

49



• Let. :J, = {T : !/I+' is IIsed ill mot.ion-compensated int.erpolation}. Then. im­

ages g, #0 'L1ul ,1 are t.ransmit.t.ed, and joint.ly wit.h mot.ion estimates p, are useù to

reconstrllcl. ÎIllages # 1,2,:J al the rcceivcr as follows:

g(xi,t +T) = 2: Iky(x7,t + k),
k€.:J,

where 2: ,. = 1 anù I, = :J, U/Ct.
kE:!,

i=1,"',1Vp , TEJ(t (3.39)

•

I,

1 {-1,0,1,2,3} {-1,3} 0.i5,0.25

2 {-2,-1,0,1,2} {_99} 0.50,0.50-,-

3 {-3,-2,-1,0,1} {-3,1 } 0.25,0.i5

Table 3.1: Configurations of I, and :J, as well as the weights 1 for each of the 3

omitted fields for the motion-compensated interpolation scheme described in Figure

3.i.

Since for each T E /Ct we know the original image gt+..

TE /Ct (3.40)

is the reconstructed error at t +T that can be used to evaluate the quality of motion

est' nates Pt+.. Note that in order that eH. be small, the trajectories Cf+T must

be close to the true motion trajectories in the image. To describe quantitatively

the quality of motion estimates p,+.. the Peak Signal to Noise Ratio (PSNR) is

calculated as follows:

where var denotes variance.

TE /Ct (3.41)

•
The motion-compensated interpolation scheme described above will be used to

illustrate the advantages of using a quadratic trajectory model over a linear one. The

estimated quadratic and linear trajectories over N = 5 images will be compared.

Another scenario for the case of 4:1 subsampling is to estimate linear motion at the
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•

recci"er using the 2 rccci"cd images 9. #0 and ·1 (i.e.. :V = 2). ln this ,·as,'. t.he sel Il

will be equal to the sel :f, defined in Table :1.1 for cadI of t.he :3 ollliu,'d lidds. This

scenario sccnlS more practieal than the linear trajccl,,>ry 1l10dt,t O\,('f 5 itnôlg('s sillet'

no motion cstimatcs nced to be transmitted.

3.5 Selection of parameters

The motion estimation algorithm, discussed III this chapter, is qui te lIcxiblc

from the point of view of a possible choice of paramcters. The primary paramelPrs

of the algorithm ,,-re:

1. The number of resolution levels L in the hierarchical processing.

2. The ma.xim,lm number of iterations at each resolution level of the image pyra­

mid.

3. The set I, of time instants of the test image used during the estimation algo­

rithm, e.g., I, = {-2, -1, 0,1, 2} indicates that the estimation of motion field

Pt at time t is carried out using 5 fields at t - 2, t - 1, t, t + 1, and t +2.

4. The choice between linear and quadratic trajectory models. This will be usefu\

in comparing the two approaches by quantifying the gain/loss achieved in a.

motion-compensated interpolation application. Note that in ail simulations,

the quadratic trajectory model is used by default unless otherwise stated.

5. The regularization pararneter Àp which plays a crucial roll' in weighting the

importance between the smoothness term and the structural term.

6. The matrix r that permits different weighing of individual motion parameters..

The maximum number of iterations at each image resolution levcl was set to SO.

However, the a1gorithm was a1lowed to stop or switch to the next higher resolution

level if the condition expressed by (3.35) is satisfied for a sufficiently small (. When
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•

the "Igorithrn stops. the motion fIcid p of the best convergcd energy U"(p) at iteration

Tl sdected "",ong the ia.,t 10 iterations is stored as a final res,,!t.

On the other har:d, the diagonal clements of the weight matrix in (3.20) were

chosen as follows: [wu, w.. W a, wa.] = [1 1 2 2]. In this way, more weight is

given to the acccleration parameters in the smoothncss term (3.19), and he'1ce morc

smoothness is cnforced on the acceleration field than on the velocity ficld. This scems

reasonable especially if more than 2 fields (i.e., N > 2) are used in the estimation

since a small deviation in the estimated acccleration causes a significant deviation of

the two end points of the estimated trajectory (dependence on (T - t)2 in (3.6)). In

the following sections the selection of the rest of the parameters is discussed.

3.5.1 Selection of L

Thc number of resolution IC\'cls L has been varied from 1 to 4 in the estimation a1­

gorithm applied to field #2 of test image 2. A quadratic motion trajectory at pixel

accuracy has been selected with the actual motion parameters p(2) = [1 2 1 IjT at

ficld #2. Note that the velocity p:l.l'ameters have been calculated directly from equa­

tion (3.3ï). The behavior of the objective function Un(p) as a function of the iteration .

number n for each case is shown in Figure 3.8 for Àp = 30, I, = {-2, -1, 0,1, 2}, and

r =I, where I is the identity matrix.

The discontinuities in Figures 3.8b, 3.8c, and 3.8d correspond to switching of

the estimation a1gorithm to the next higher resolution level which is determined

when the inequality in (3.35) is satisfied for certain~. It is worth to notice here

the advantage of using a multiresolution approach: the rate of convergence to a

minimum is improved. Hence, without a multiresolution approach, i.e., L = 1, the

algorithm failed to converge to the optimum, and instead converged to a local one

at Un(p) = 165 (Figure 3.8a). However, for L > 1, the optimum Un(p) = 20 has

been dctected successfully with a lower computational burden. Thus, for L = 2 the

global optimum is detected at n ::::: 60 (Figure 3.8b), for L :. 3 the global optimum

is detected at n::::: 50 (Figure 3.8c), and for L =4 the global optimum is detected at.
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Figure 3.S: Behavior of Un(p) as a function of the iteration number n for field #2 of

test image 2 with.Àp =30, I t ={-2,-1,0,1,2}, and r =l, for (a) L =1; (b) L =2;

(c) L =3; (d) L =4.

n ~ 40 (Figure 3.Sd). The estimated motion fields p(2) for L = 1, and L = ·1 arc

shown in Figures 3.9 and 3.10, respectively.

The estimated motion parameters for L = 1 in Figure 3.9 correspond to a local

minimum, that is why the estimation inside the moving rectangle is far from the

true motion parameters. For L = 4 the estimate in Figure 3.10 is consistent with

the true motion except at the boundaries of the moving rectangle where the motion

of the rectangle has smeared outside the boundaries due t.o the desired smoothncss

property of motion introduced by the smoothness term. Hence L =4 will be used in

the estimation algorithm for the rest of the simulations in this chapter.
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Figure 3.9: Estimated: (a) velocity v(2), and (b) acccleration a for L

#2 of test image 2 with p(2) - [1 2 1 1jT.
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Figure 3.10: Estimated: (a) velocity v(2), and (b) acceleration â for L =4 and field

#2 of test it1age 2 with p(2) = [1 2 1 1jT.
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• 3.5.2 Selection of _\'

The test image 2 has been use<1 with thl' sanl<' set of syntll<'tic mlltion par'Ul\dl'rS

but now the rcgularization parameter .\p is \·a.ried from 10 tll :WO with a skI' of 10.

The results are shown in Figure ;\.1 L

•
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Figure 3.11: Energies: (a) U.c(p); (b) Upc(p); (c) Uc(p) after convergence and (d) the

!YISE of motion estimates in 'Ra as a fundion of >'p for field #2 of test image 2 with

p(2) = [1 2 1 IjT,I,={-2,-1,0,1,2},andr=I.

Figures 3.11a, 3.11b, and 3.11c ilIustrate the behavior of the following energics:

U.c(p), Upc(p), Uc(p) = U.c(p) +>'pUpc(p), respectively, as functions of >'p (the addi·

tional subseript 'e' is used to denote eonverged energy). Figure 3.11d, on the other

hand, illustrates thp. behavior of the !YISE as a funetion of >'p for each of the 4 mo­

tion parameters estimated over 'Ra. Note that the graphs of Figures 3.11e, and 3.11d

both show a minimum around >'p = 30. The estimated motion fields for >'p = 10 and

>'p = 200 are shown in Figures 3.12 and 3.13 respectively.
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Figure 3.12: Estimated: (a) velocity v(2), and (b) acceleration a for >'p

field #2 of test image 2 with p(2) = [1 2 1 1jT.

10 and

(a) (b)

•

Figure 3.13: Estimated: (a) velocity v(2), and (b) acceleration â for >'p

field #2 of test image 2 with p(2) - [1 2 1 1JT.

56

200 and



• For >." = 10, the smoothing at the boundarics of the Illo"ing rectangl,· is not

sufficient causing the estimatcs at the bonnuaries to deviate noticea!>ly from the

truc motion vectors. On the other hand, for .\" = 200 the high import..mce of the

smoothness term has caused the estimates within th., moving rectangle t.o propagate

far away from its boundaries (Figure 3.13). This il1ustratcs the con"ex property of the
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Figure 3.14: Energies: (...) U.c(p); (!» Upc(p); (c) Uc(p) after convergence and (d) the

M5E of motion estimates in no as a fundion of >." for field #2 of test image 1 with

p(2) = [1.75 1.5 1 1.5]T, I. = {-2,-1,0, 1,2}, and r =1.

•

M5E curves drawn in Figure 3.Ild. A value of >." =30 (Figure 3.10) scems to give a

reasonable trade-off between under- and over-smoothing, and also coincides with the

minimum of Uc(p) (Figure 3.Ilc). The same test has been performed for test image

1 but with sub-pixel accuracy of motion parameters p(2) = [1.75 1.5 1 1.5]T. The

same kind of behavior can be noticed in the results shown in Figure 3.14.

The selection of >." on natura! sequences has been performed 00 field #30 of test
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image:) wil.h I, = {-2, -1. (J. l, 2} and r = 1. Two ('valuiltion me"-<ures ilre plotted

as il function of Àp III Figure :3.15.
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Figure 3.15: Behavior of the PSNR (a) and the converged energy Uc(p) (b) as a

function of Àp resulting from motion estimation performed on field #30 of test image

3 with I, ={-2, -1, 0, 1,2}, and ,J, ={-l, 1}.

•

The first one (Figure 3.15a) is the PSNR in dB of the reconstructed field #30

using interpolation. The reconstruction is done using the estimated motion vectors

and a simple bilinear interpolation of the motion-compensated pixels between the

previous (#29) and the next (#31) fields. Hence, the case :r. ={-l, 1} is used here.

The second measure (Figure 3.15b) represents the best converged value Uc(p) of the

objective function U(p) during the estimation algorithm. Àp =20 seems to result in a

good PSNR and the best converged energy. The estimated motion fields at Àp = 20

are shown in Figure 3.16. These fields illustrate the motion of the hand that is moving

downward with sorne deceleration (note the acceleration vectors on the hand that are
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Figure 3.16: Estimated: (a) velocity v(30), and (b) acccleration â (sca.lcd by 4) for

Àp = 20 and field #30 of test image 3.

pointing upward).

To conclude, one can say that it is diflicult to choose a fixed value of Àp for aIl

the sequences. However, a range of 20 < Àp < 30 seems to yield to best compromise

for the tests that were performed on test images 1,2, and 3. The value of Àp has been

dividcd by 2 betwcen a hi:;her and a lower resolution level. This is due to the fact

that the distance betwcen two consecutive motion vectors at the next lower resolution

level is multiplied by two and hence the contribution of the smoothness should be

reduced.

3.5.3 Selection of Il

•

The number of fields N =Card(I,) used in the estimation algorithm has been varied

by selecting different configurations of the set I,. This was done for Àp = 25, and field

#2 of test image 1 with the rectangle moving at subpixc1 accuracy along a quadratic

trajectory characterized by the set p(2) =[1.5 1.5 0.5 If.
The !vISE of motion estimates inside the moving rectangle (i.e., region n~)

for cach case is shown in Table 3.2. Note that the overall !vISE measure (of the 4
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{-I,I} 0.0:35082 0.05466ï 0.2,1962.5 0.838163

{-I,O,I} 0.0.566·11 0.068800 0.010226 0.910025

{-2,-1,0,1} 0.08138:3 0.14608ï 0.025569 0.Oï3·154

{-1,0,1,2} 0.05ï416 0.048389 0.04304ï 0.055020

{-2, -1,0, l, 2} 0.0458·14 0.028816 0.02ïïOl 0.034414

{-2,-1,0,1,2,3} 0.0·10133 0.0290ï3 0.020ï34 0.020564

• I, v,(2) G,

•

•

Table 3.2: MSE of motion estimat<.'S in region n~ at field #2 of test image 1 with

p(2) = [1.5 1.5 0.5 1.ojT for different sets I" and >'p = 25.

parameters) decreases when N increases.

This is ilIustrated in Figure 3.1ï that displays the real and estimated trajectories

at position x(2) = [3ï 30jT (a point inside the moving rectangle chosen at random)

ior field #2 of test image 1 for each of the 6 combinations of the set I,.

The estimated and real trajectories are drawn in dotted and fulllines respectively

around the selected motion site x(2) at field #2 indicated by a '0'. The positions

indicated byan 'x' represent the tracked (on the dotted line) or real (on the fullline)

positions of pixel x(2) at fields #0,1,3,4,5 of test image 1.

It is clear from Figure 3.1ï that a better tracking of the real trajectory is achieved .

for larger temporal support N which seems to be reasonable. However, for much larger

temporal support (i.e., N ;:: 5), occluded areas begin to play a role in the estimation

algorithm, cspecially on natural TV sequences. Since occlusions are not considered

in this chapter, a choice of I, = {-2, -1, 0, 1, 2} i.e., N = 5 seems to be reasonable

(Figure 3.1 i e) and will be used for the rest of the simulations in this chapter.
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Figure 3.1;: Estimated (dotted \ine) and real trajectories (full line) at x(2) ­

[3; 30Y for field #2 of test image 1 with p(2) = [1.5 1.5 0.5 1.0 ]T for (a)

I, = {-l,l}; (b) I, = {-1,0,1}; (c) I, = {-2,-1,0,1}; (d) I, = {-1,0,1,2}; (c)

I, ={-2,-1,0,1,2}; (f) I, ={-2,-1,0,1,2,3}.

61



•

•

•

3.6 Simulation results

3.6.1 Results for synthetic sequences

The test image 1 has been gcneratcd using -1 different sets of synthctic motion

paramcters p" P2, P3, and p." wherc Pl and P2 arc motion fields generated at pixel

accuracy, white P3 and p., arc motion fields generated at sub-pixel accuracy.

vr (2) vy(2) ar ay

PI(2) 1.000000 0.000000 0.000000 1.000000

MSE in no 0.036494 0.005016 0.014221 0.044516

MSE in ni 0.006976 0.00H29 0.001633 0.025963

MSE in n~ 0.002572 0.000982 0.001027 0.018506

MSE in n2 0.053912 0.006955 0.021648 0.055463

MSE in ~ 0.003176 0.0003,16 0.015453 0.029455

P2(2) 2.000000 2.000000 1.00000(\ 1.000000

MSE in no 0.316888 0.217085 0.114484 0.091598

MSE in n~ 0.008364 0.020709 0.003950 0.003291

P3(2) 1.500000 1.500000 0.500000 1.000000

MSE in no 0.163142 0.103574 0.057372 0.073342

MSE in n~ 0.045844 0.028816 0.027701 0.034414

p~(2) 1.250000 1.750000 0.250000 0.750000

MSE in no 0.173114 0.173606 0.069072 0.082292

MSEin ~ 0.096116 0.054574 0.081085 0.063015

Table 3.3: MSE of motion estimates in various regions at field #2 of test image 1

for 4 different sets of synthetic motion parameters.

In each case the motion fields at field #2 are estimated with L = 4, >'p = 25,

I.= {-2,-1,0,1,2},and (wv• wv• W •• w••l=(l 1 2 21.TheMSEinno&~

along with the true velocity and acceleration parameters at field #2 for each case are
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Figure 3.18: Estimated: (a) velocity v(2), and (b) acce1erat.ion â for field #2 of

test image 1 with p(2) = PI(2) (due 1.0 interlacing, the actua! distance betwecn twa

motion sites in the vertical direction is twice larger than il. appears).
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Figure 3.19: Estimated: (a) velocity v(2), and (b) acceleration â for field #2 of test

image 1 with p(2) - P3(2).
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sh"wll iIl Table :1.:1.

'1' 1If' eslimiltcd molioll fields for t.he sels Pt and POl of synthet.ic motion parameters

al"<' showll in Figll""s :1. P; and :l.la. rcspeclicely. "'ote lhat thL' cSlimated motion and

acc"'eralion fields correspond weIl to the motion of the rectangle (the smoothing at

boundaries is due to lack of a motion bOllndary modcl). This is c0nfirmed by the

MSE in n; (no boundary effccls) that is il' gcncral mllch smallcr than the "rror in

'Ru (Table 3.:1).

vz (2) t'y(2) az ay

ps(2) ·~.OOOOOO 1.000000 0.000000 0.000000

AISE in 'RQ 0.22959.; 0.0686ï9 0.012156 0.009899

l'vISE in n~ 0.005424 0.00n88 0.000961 0.r.03390

P6(2) 1.000000 2.000000 1.000000 1.000000

AISE in 'RQ 0.1264ï9 0.250304 0.100246 0.096698

AISE in n~ 0.001685 0.008511 0.001823 0.00285ï

p,(2) 1.ï50000 1.500000 1.000000 1.500000

MSE in 'RQ 0.690936 0.2ï9143 0.312324 0.2ï5153

JHSE in n~ 0.106i35 0.069062 0.05ï06:~ 0.03695ï

ps(2) l.i50000 2.250000 0.ï50000 1.250000

MSE in 'RQ 0.585331 0.613616 0.22ï904 0.2686ïO

!lvISE in n~ 0.145411 0.231920 0.120366 0.1885ï4

Table 3.4: MSE of motion estimates in regions 'RQ & n~ at field #2 of test image 2

for 4 different sets of synthetic motion parameters.

The MSE in various regions of the motion field estimate for the Pl set of syn­

thetic motion parameters is also shown in Table 3.3. Note that the small values of the

,"1SEin regions n~ and n; (no boundary elfect) demonstrate weIl the ability of the

motion estimation algorithm to deteet accurately the quadratic trajectory specified

by motion parameters at pixel accuracy.
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• The sanle sirnll!'ltioll ha...; hel'Il carri,,·tiollt. for tt~SI itIlCl!!.t·:! Ilsin).!; anol.ilt,(' st't of

gl'nf~raled al pixel accuracy. while p~ and Ps an' tth>lion lit'lds gt'nerah'd at slIh·piXt·1

a,:curacy. The .HSE resn\t.s in Ru and R; for earh ,·a."· an' sl\<>\\"n in Tahk :l..l.

Ta illustrate ho\\" \\"dl the motion parame!.l'rs \\"ith snh-pix,'1 arrnl'acy al"<' d,··

tcctcd. a comparison bct\\'cen the cst.inlatcd and l'cal trajt~ctl)rit~s al. a. ct'l'tain point

inside the mo\'ing rectangle is considercd.

(a) (b)
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•
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Figure 3.20: Estimatcd trajectories at: (a) x(2) = [22 2ijT; (b) x(2) = [28 22]T;

(c) x(2) = [33 30jT; (d) x(2) = [39 39jT inside the moving rectangle of test image 2

with p(2) =p,(2) =[LiS 1.5 1 LSjT, and Il ={-2, -l, 0, l, 2}.

Figure 3.20 illustrates the estimated trajectories at 4 different positions (choscn

at random) inside the moving rectangle of test image 2 for the set p,. Note that the

deviation from the real trajectory is more noticeable at the furthest fields, i.e., fields

#0 and 5, however, in general, the quadratic trajectory is very weIl followed.
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This t.rajeC"!.ory repre$'·ntat.ion is usdul t.o illu$trat.e the dirrerence in t.racking be·

t.ween lirl"ar and quadrat.ic mot.ion trajectory rnodel$. The estimat.ion was perfornl<'d

I1sitlg 1>olll rlloc1('is on lest irnage 1 with the' set P3 of synthL·tir tllolion pararnctcrs

g('ner;Lted al sub·pixci accllracy.

The rcsulting velocity field e$timate$ v(2) obtained u$ing the linear and quadratic

motion trajectory moclels arc compared in Figure 3.21. The discrepancy between the

two rnodel$ can be seen in Tahle 3.5 that. shows the calculated ;\[SEin no and n~

for the two considered models.

Model vz (2) vu(2) a: au

1 MSE in no quadratic 0.163142 0.1035ï4 0.0.5ï:3;2 0.0ï3342

linear O.SllSïS 0.512640 - -
MSE in n~ quadratic 0.045844 0.02SS16 0.02ïï01 0.034414

linear 2.230566 0.9323ïO - .

Table 3.05: Comparison of the AISE of motion estimatC$ in no and n; rC$ulting from

quadratic and linear trajectory models at field #2 of test image 1 with p(2) = P3(2) =

[1.51.50.5 ljT,andI,={-2,-1,0,1,2}.

From Figure 3.21, and Table 3.5 one can deduce that the use of a linear tra­

jectory model is not enough to track the real instantaneous vl'locities on a quadratic

trajectory, and hence the use of the quadratic trajectory model is advantageous in

comparison with the linear one.

This difference between the two models is also illustrated graphically in Figure

3.22 in which the real trajectory at a certain point (x,2) (chosen at random inside

the mO"ing rectangle) is drawn in fullline. Trajectory resulting from the use of the

quadratic motion trajectory model is shown in dotted line, and trajectory resulting

from the use of the !inear model is shown in dashed lir.e. It is worth to ::lote how well

tiJe real trajector~ is represented by using the quadratic trajectory mode\. However,

in the case of the linear model, the algorithm failed to track the real trajectory because

of the rC$tricted é: ::gree of freedom of this mode!.
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• 1

1

(a) (b)

•

Figure 3.21: Estimated vclocity v(2) at field #2 of test image 1 with p(2) = P3(2)

using (a) linear and (b) quadratic motion trajectory models.

Figure 3.22: Estimated linear (dashed line) and quadratic (dotted line) trajectorics

at the point x(2) = [3; 30jT inside the moving rectangle of test image 1 \Vith

p(2) =P3(2) = [1.5 1.5 0.5 W, andI. = {-2,-1,0,1,2}.
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• 3.6.2 Results for natural sequences

III order to siInl1lat.e tht~ mot.ion-COrllp(~n.sat('d intf~rpolétt.iotl applicat.ion describcd

in Fi~ure :l.ï, the estimation algorithm wa:; applied to the firs! :1:1 fields of test. image

:1 (o,"er the estimation area defined in Figure :l ..~) with L = .1. .\p = 20, and the sets

1, iLnd :f, defined as in Table :l.l. This experiment wa. performed three times: using

lirst a linear trajectory modcl with ;11 = .~, then a quadratic trajectory model with

IV = .~, and finally a linear trajectory mode! with ;V = 2. In the last C<l$e the set 1,

is equal to the set :f" as described in Section :3.4.3. The PSNR cllrves for ail the

processed fields are plotted in Figure 3.2:3.

44r------------------------,

0: quadratlc. N_5
x: lin••" N_5
"': llno.r, N-2

35

.........
2G15 20

FIELO.
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)'<.. )( li< )(
)( x_ -.' "'><- -J<"... "'>0..,"" x)(-- -JO(" '\
w ... ·•• ·.... 1Ol\.c--)o(_,)'(..

... JIll" "'..... ." loi • x_ ~ )0(... ,
III _Ill; X. ~.

40
~
<5""
2!
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Figure 3.23: Comparison of the PSNR for reconstructed fields from test image 3

using linear (dashed line) and quadratic (full line) motion trajectory mode1s with

N =5 and linear trajectory model with N =2 (dotted line).

•

The resulting means for PSNR (PSNR) obtained from the estimation algorithm

are shown in Table 3.6 for the linear and quadratic trajectory models.

The use of the quadratic trajectory model resulted in an average gain of +1.89

dB with respect to the linear trajectory model with N = 5, and +3.2i dB with

respect. to the linear trajectory model with N = 2. These gains are due to better

tracking of the real motion trajectories that causes the structural term U.(p) in (3.1i)

to decrease substantially.
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• ~lodt'l !'SS il' 1

1
linear (S = 2) :l7.7!1

linear (S =5) :19.17
1

qnadratic (S =.5) ·1l.O6
1

Table 3.6: io.lcans for PSNR c\'alllatcd over 2~ fields of tt'st illlag<' :lllsing lillt'ar and

quadratic motion trajectory modcls.

Figure 3.24: Estimation area (a) of field #26 of test iMage :3; interpolation error (mag­

nified by 2) using: (h) linear trajectory mode! (PSNR = 39.03 dB); (c) quadratic

trajectory model (PSNR =41.93 dB) with N =5.•
(a) (b) (cl

•

The error images (between the reconstructed and the original ones) for the lincar

and quadratic trajectory models with N =5 are shown in Figures :l.24, 3.25, and 3.26

for fields #26, 80, and 105 of test image 3, respectively. Also the estimatcd velocity

and acceleration fields for fields #80 and 105 are shown in Figures 3.27 and :3.28,

respectively.

It is evident from the motion field plots, and the interpolation error images that

in the case of the linear trajectory model the errors are more concentrated in the

regions that have accelerated motion (i.e., the hand and the arm). This explains the

degradation in the PSNR for the reconstructed fields when linear trajectory modcl

is used in the estimation algorithm.

The same experiment was run on 33 fields of the test image 4 (over the estimation
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(a) (b) (c)

•

Figure 3.2.5: Estimation area (ai of field #80 of test image 3: interpolation error (mag­

nified by 2) using: (b) linear trajectory mode! (P5NR = 37.76 dB): (c) quadratk

trajectory model (P5NR = 41.61 dB) with N = 5.

(a) (b) (c)

•

Figure 3.26: Estimation area (a) of field #105 of test image 3; in:erpolation er­

ror (magnified by 2) using: (b) linear trajectory model (P5NR = 37.68 dB); (c)

qu..dratic trajectory model (PSNR =41.80 dB) with N =5.

area defined in Figure 3.6) with L = 4, Àp = 20 and the sets I. and .J. defined as

in 3.1. The PSNR curves for all the processed fields are plotted in Figure 3.29.

The resulting means for PSNR (PSNR) obtained from the estimation algùrithm are

shown in Table 3.7 for the linear and quadratic trajectory models. Note that the use

of the quadratic trajectory model resulted in an average gain of +4.39 dB with respect

to the linear trajectory model with N =5, and +5.72 dB with respect to the linear

trajectory model with N = 2. These results are consistent with those i:l Table 3.6

for test image 3. However, higher gains have been achieved by using the quadratic
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Figure 3.27: Estimated: (a) velocity v(SO), and (b) accclcration a (scalcd by ·1) at

field #SO of test image 3.
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Figure 3.2S: Estimated: (a) velocity v(105), and (b) acceleration â (scaled by 4) at

field #105 of test image 3.
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Figure 3.29: Comparison of the PSN R for reconstructed fields from test image 4

using linear (dashed line) and quadratic (full line) motion trajectory models with

N = 5 and linear trajectory model with N = 2 (dotted !ine).

linear (N = 2) 32.8i

linear (N =5) 34.20

quadratic (N = 5) 38.59•
Model 1 PSNR (dB) 1

•
..

Table 3.i: Means for PSNR evaluated over 24 fields of test image 4 using linear and

quadratic motion trajectory models.

trajectory mode!. This is due to motion present in the sequence that is doser to

the quadratic trajectory model than to the linear mode!. This hypothesis seems to

be reasonable as test image 4 is a typical video conference sequence in which the

movements of the mouth and the eyes of the speaker exhibit substantial acceleration.

The reconstructed images as weU as the interpolation error for the linear and

quadratic trajectory models with N =5 are shown in Figures 3.30, 3.31, and 3.32 for

fields #6, 14, and 22 of test image 4, respectively. Also, the estimated velocity and

acceleration fields for these same fields are shown in Figures 3.33, 3.34, and 3.35.

It is worth to note here that most of the velocity and acceleration vectors are

concentrated in the regions of the eyes and the mouth. These are basically the regions
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(a) (b) (c) (d)

Figure 3.30: Reconstructed field #6 of test image -l using: (a) lincar (PSNR = 30.26

dB): (b) quadratic trajectory model (PSNR = 36.91 dB) with N = 5 and their

respective error images (magnified by 2) in (c) and (d).

• (a) (b) (c) (d)

•

Figure 3.31: Reconstructed field #14 oftest image 4 using: (a) linear (P5NR = 30.il

dB); (b) quadratic trajectory model (P5NR = 37.27 dB) with N = 5 ..nd their

respective error images (magnified by 2) in (c) and (d).

where the interpolation errors are concentrated and where the use of a Iinear or

quadratic motion trajectory model makes the difference. The motion fields displayed

in Figures 3.34 and 3.35, for instance, ref!ect weil the opening and closure of the

mouth, respectively. The estimated acceleration vectors in the region of the mouth

result in a substantiai decrease of the interpolation errors when a quadratic trajectory

model is used. This is aiso ref!ected in the interpolated images where, in particular,

the mouth in Figure 3.32a appears to be less open than in Figure 3.32b.
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(a) (b) (c) (d)

Figure 3.32: Reconstructed field #22 of test image 4 using: (a) linear (PSNR == 30.95

dB); (b) quadratic trajectory model (PSNR = 39.42 dB) \Vith N = 5 and their

respective crror images (magnified by 2) in (c) and (d).
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Figure 3.33: Estimated: (a) velocity v(6) (scaled by 2); (b) acceleration â (scaled by

4) at field #6 of test image 4.
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Figure 3.34: Estimated: (a) velocity v(l·l) (scaled by 2); (b) accelcration â (scale<\

by '1) at field #14 of test image 4.
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Figure 3.35: Estimated: (a) velocity v(22) (scaled by 2); (b) acceleration â (scalcd

by 4) at field #22 of test image 4.
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Chapter 4.

Estimation of Occlusions

The motion estimation algorithm that was proposeà in Chapter 3 gives accu­

rate motion estimates in moving or stationary regions. However erroneous motion

cstimates result in occluded regions (i.e., near motion discontinuities) due to the lack

of occlusion processing in the motion estimation algorithm. This problem is refiected

in motion-compensated interpolated images where the ability to reconstruct clearly

moving boundaries fails in generaL The need to process occluded regions becomes

even more critical in the presence of accelerated motion which generally produces

larger occluded areas. Also, the use of multiframe processing contributes to the need

of proccSsing the occluded regions. In this chapter, the motion estimation algorithm is

modified in order to take occlusion e!fects into consideBtion. The modeling of occlu­

sions and motion discontinuities is discussed in Section 4.1 along with the derivation of

a new multiple-term objective function. Section 4.2 describes an optimization method

that allows to minimize this objective function and compute piecewise smooth mo­

tion fields along with the corresponding occlusion and motion discontinuity fields.

Experimental results for sequences with synthetic motion and for natural sequences

are presented in Section 4.3.
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• 4.1 Extension of the motion estimation algorithm

•

•

4.1.1 Definitions and reformulation of the problem

The estimation algorithm presenteu in Chapter :3 is made complete by taking

into account occlusion effects present in dynamic images. This is possible, as explaincd

in Section 2.·1.3, by defining an occlusion ficld 0 and a motion discontinrlily field l,

often called line field or Linc proccss [14J. The occlusion field has its samplcs defined on

the lattice Ap with sampling periods (T;, T;. Tp ) [10J. Every occlusion tag 0 l'an take

one of several possible states, e.g., moving/stationary (visible), exposed, or covered.

The number of such states is finite and depends on the cardinality of I,. On the other

hand, the line field is defined over a union of shifted lattices q,1= ,ph U ,pu, where

,ph = Ap + [0 T; /2 ojT, and ,pu = Ap + [T;/2 a ojT are orthorhornbic cosets [101

specifying positions of horizontal and vertical discontinuities, rcspectively. Hcnce,

each line element is defined between two pixel positions. The notation I(Xi,xi) will

be used to denote the absence (I(Xi,Xi) = 0) or presence (I(Xi' xi) = 1) of a motion

discontinuity between pixels Xi and Xi'

The a1gorithm is hence extended to determine the mosl likely triplet (p" 0" l,)

corresponding to the true underlying image u based on observations 9, = {g'+T :

T E I,}. Assuming that occlusion fields 0, and line fields l, are samples from scalar

random fields 0, and L" respectively, the MAP estimate is obtained by extending

equation 3.11 as follows:

(p" ô,,l,) = arg max P(p"O, = 0" L, = 1,19,)
(pt,Or,lr)

=arg max [P(9~lp"0"I"g,.).P(p,lo"I,,g,.)' (4.1)
(Pt.oc.1c)

P(O, = o,ll"g,.)· P(L, = 1,lg,.) J.

In the following sections, models that allow to specify the constituent probabilitics

in (4.1) are investigated in order to derive the new objective function U(p) (equation

(3.22)).
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• 4.1.2 Structural model

ln the formulation of the structural mode! term (Section 3.2.1) it was assumed

that the trajcctory through a point (x, t) extends through the whole time interval

defined by I, (Figure 3.2). But this is only true if the necessary condition stated in

(3.10) is satisfied, i.e., the point (x,t) is visibleover the N fields defined by I,. Hence,

at each spatio-temporal position (x, t) a subset of I, can be defined as follows:

I~ = {T E I, : x E .c,}, (4.2)

where .c, = (A.), n V(T; t) is the set of all pixels on lattice A. at time t visible in

the image sequence between t and T. If is called the visibility set [12] and contains

time instants from I, at which pixel (x, t) is visible. This set can be directly derived

from the occlusion state o(x, t) at (x, t) as illustrated in Table 4.1 for 3- and 5-image

estimation. Only the most likely visibility/non-visibility combinations are taken into

• I, 0(>:, t) Description If
M moving/stationary {-1,0,1}

{-1,0,1} E exposed {O,l}

C covered {-1,0}

M moving/stationary {-2, -1,0, l, 2}

E exposed in (t - l, t) {O, l, 2}

{-2, -l, 0, l, 2} E_1 exposed in (t - 2, t - 1) {-1,0,1,2}

C covered in (t, t + 1) {-2, -1,0}

CH covered in (t + l, t + 2) {-2,-1,0,1}

Table 4.1: Table of occ1usic.n states and visibility sets for I, = {-l, 0, l} and I t =

{-2,-1,0,1,2}.

•
account for N = 5.

The structura! model term in (3.17), which relies on the sample variance measure
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• (e'luat ion rU:l)). i$ then modi fi"d a-' follol\"S:

U,(p.u) = ~ { I: [9(X~.t + k) - (X,.t)r}.
1=1 k~r;"

I\"ith

(.1.:1)

(·1..1 )

•

•

and the position xr defined as in (:l.15). Bence, the nel\" structural term U..lp, u)

bccomcs dependent on the occlusion field u in the sense that ollly the fields refert'llœd

by the visibility set I~' at position (x;, t) will contribute to the evaluation of the

sampie variance. However. the dependence of U,(p, 0) on the line field [ has been

omitted since the information about motion discontinuities will be conveyed throllgh

the motion trajectory mode!.

It is worth also to mention that U,(p, o) is the energy function of Gibbs distri·

bution (equation (3.16)) that models the conditional distribution P(Ç;' Ip" 0" [" y,.)

in (4.1).

4.1.3 Motion trajectory model

Defining motion vectors p, as samples from a vector MRF P" as discussed in

Section 3.2.2, the conditional distribution P(p,Jo" ["g,.) in (<1.1) can be expressed by

a Gibbs distribution whose energy function (cquation (3.19)) is modified as follows:

Np

Up(p, l) =I: I: (p; - pj)Tr(Pi - pj)[l -1(Xi,Xj)]. (<1.5)
i=l {x"xJ }ECi

This energy captures the desired smoothness property of the motion field for the

first-order neighborhood system 1/1 (Figure 4.1) only in the absence of motion dis·

continuities. The dependence of the smoothness term Up(p,l) on the line field [ by

the multiplicative term [1 - [(x;, Xj)] has been investigated in Section 2.4.3 whcreby

a jump in motion parameters is not penalized if a motion discontinuity had been de·

tecte<!. Howcver, the dependence on the occlusion field 0 is not necessary here, since
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• 0

= 0

0 o • 0 0 =
= 0

0
(a) (b)

000

(c)

•

Figure 4.1: First-order neighborhood system 1]' (a) for motion licld p ddincd over

Ap with motion discontinuities 1 defined over w/; (b) vertical c1iqne; (c) horizontal

clique (emilty circle: motion position; filled circle: central motion position: rectangle:

position of a line element).

the information about occlusion state transition is considered to be passed bl' a line

element.

4.1.4 Occlusion model

In [il the occlusion field 0, was modeled for the case of estimation from 3 images

(Le., I, = {-1, 0,1}). A similar approach is used here for the case of 5-il'1age esti­

mation (i.e., N = 5). The five possible states of an occlusion label o(x, 1) are shown

in Table 4.1 for I, = {-2,-1,0,1,2}. The occlusion field 0, is thus modeled by a

discrete-valued scalar MRF described by the following Gibbs distribution

1 _~
P(O, =o,II"g'n) = Z. e P., (4.6)

•

with Z. and f30 being constants. The energy function Uo(0, 1) is defined as follows:

Uo(o,l) =~ {Vol (O(Xi,t)) + L V"" (O(Xi,t),O(Xiot),I(Xi,Xj))}, (4.i)
1=1 {x"x} }ec,

where Vo, and V"" are potential functions associated with single- and two-element

cliques respectively. These cliques are chosen from the first-order neighborhood sys­

tem 1/1 shown in Figure 4.1. It is expccted that a typical occlusion field consist~ mostly

of patches of pixels labek-d as visible, and sorne smaller clusters of pixels labcled as .

occluded. Therefore, the potential function Vo, provides a penalty associated witb
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• thc introduction of an occlusion statc, whcrcas thc potcntia[ funclion v;" favors thc

crcation of continuous occlusion rcgions near motion discontinuitics only. To achicvc

this goal, the dcpcndcnce of v;" on thc line ficld l is utilizcd. For instance, whenc\'cr

(x" 1) and (Xi, t) havc thc samc occlusion statc, v;" (o(Xi, 1), O(Xi, t), l(Xi' xi)) is set to

o (high probability) if thc two positions are not scparated by a motion discontinuity

(i.e., l(Xi, xi) = 0) and to a high value (Iow probability) if they are separated by a

motion discontinuity (i.e., l(Xi, xi) = 1).

The assigned costs associated with all possible configurations of single- and two-

clemcnt cliques in a 5-state occlusion field are shown in Figure 4.2. These costs are

0 0 0 - +
0.0 :z.o 2.0 :z.o :z.o

(.)

000 000 000 -0- +0+ 010 010 010 -1- +1+
00 00 0.0 0.0 0.0 S.O 10.0 .0.0 .0.0 10.0

000 000 00- 00+ 000 010 010 01_ 01+ DIO

• ID 10 ID 10 0.0 0.0 0.0 0.0 0.0 :lD.O

DO- 00+ on- on+ -0+ DI_ 01+ 01- 01+ -1+
30.0 30.0 300 30D 0.0 20.0 :lD.O :lDO :lDO :lDO

(b)

Figure 4.2: Costs assigned to: (a) Vo,; (b) V02 for various configurations (up to

rotation and permutation) of occlusion cliques for I, = {-2, -1, 0,1, 2} (occlusion

states: circle (M); empty square (E); empty diamond (E_1); filled square (C); filled

diamond (C+1 ), \ine element states: empty rectangle ("off"); filled rectangle ("on")).

chosen experimentally, and therefore are not optimal in any way. Basica!ly, the costs

associated with 2-element cliques are chosen in a way to discourage the occurrence

of an incompatible combination of neighboring occlusion tags (i.e., E and Cl, and to

favor the creation of clusters of occluded pixels near motion discontinuities.

•
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• 4.1.5 Motion di::lcontinuity model

ln order to modcl conti nuity of motion boun<1aries. the motion discontinuit)"

field l, is modcled by a binary ~IRF L, [12] described hy the Gibl" distribntion

1 Urll,-11

P( L, = I:\g,_) = -Zc- -, .
-1

(·I.S)

•

with ZI and ,f31 bcing the usua! constants. The energy function [il(l) is defined as

follows:

(-1.9)

where Ci is a clique, NI is the number of horizontal and vertical line clements in the

motion discontinuity ficld l" li denotes a horizontal or vertical line clement at position

Xi E (WI)', and Ci denotes presence (Ci = 1) or absence (Ci = 0) of an intensityedge

at Xi. A line clement 1; is said to be turned ~on" (rcspectivcly ~orr") at Xi if li = 1

(respectively li = 0) i.e., a motion discontinuity is present (respectively absent) at

Xi. '!!z" '!!z., and '!!z, are potential functio~s associated \Vith singlc-c1ement, four­

element square-shaped, and four-element cross-shaped cliques, respectivc1y (Figure

4.3). These cliques are chosen from a sufficiently large neighborhood system 711 [31]

= 0
00 0 = =

o 0 10 0= - =
00 0 = =

0=
(a) (b)

=

(c)

=

(d)

00 0

= =00 0

(c)

•

Figure 4.3: Neighborhood system 7/1 for motion discontinuity field 1defined ovcr W1 (a)

for horizontal discontinuity defined over tPh; (b) for vertical discontinuity defined over

tPv; (c) single-element clique; (d) four-element square-shaped clique; (e) four-clement

cross-shaped clique (empty rectangle: positions of a line element; filled rectangle:

position of the centralline elementi circle: pixel position).

defined over w/ at a horizontal or vertical discontinuity (Figure 4.3(a) and 4.3(b» ..
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• The set of four-clement square-shaped cliques is denoted by Cl: while the set of four­

elernellt cross-shaped cliques is àenoted by CIJ •

il is assumed that, in general, the introduction of a motion discontinuity should

coincide with an intensity edge. This is enforccd hy the potential function \Iz, which

uses single-clement. cliques to associate a high penalty whenever a motion discon­

tinuity dacs not match an intensity edge [21]. \Iz, can thcreforc be formulated as

fo11ows:

\Iz, (li, Ci) = 10· (1.1 - Ci) ·Ii, (4.10)

•

with li a:ld Ci denoting the values of the line e1emcnt and the intensity edge, respec­

ti ve1y, at position Xi. Hence, the introduction of a motion discontinuity (Ii = 1) is

penalized by 11 in the absence of an intensity edge (Ci = 0) and by 1 if such edge is

present (Ci = 1). This latter value assures a penalty associated with the introduction

of a line clement since otherwise such elements could be introduced everywhere on

(~l)' to bring the energy (4.5) to zero.

The field of intensity edges c, at t is calculated a priori by the application of

Canny [6] cdge detector & to the observation field g" i.e., c, = &(g,). This operator

consists of finding zero-crossings (i.e., intensity edges) of a smoothcd version of g, at

positions Xi E (~l)h along direction n, as follows:

a a
&: an (an (h(Xi) *g(Xi, t)) =0, i =1"",NI (4.11)

where h is a 2-D Gaussian
-';J'

h(x) = c' , (4.12)

and :n is the directional derivative with respect to n which represents the direction

normal to the intensity cdge Ci at Xi E (~I).' Since only horizontal and vertical

intensity cdges are necded, then

•
n={

&: nT. vi (h(x;) *g(x;, t)) . n = 0,

83

i = 1,···,NI,
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• with vi being the spatial IIcssian matrix. This explains tht' dependenct' of th,' "

priori probability of the line process (·1.S) on the obs,'rvation !l'"'

The control o,'er straight lines. corners and intersections is achk"'l'd hy tilt'

penalty functions loi, and l'i, using the four-clement diques in Figur,' ·1.:\(d) antl

4.:3(e), respectively. vi" in particu!ar, discourages formation of double lines and also

inhibits the generation of isolated trajectories while li, discourages the creation of

unended and intersecting segments.

= - - - - -00 0 00 0 00 0 DOl Dol 101

= = - = - -
0.0 0.0 60.0 0.0 100.0 300.0

(a)

0 o 0 01 0 01 0 01 0 01 0 01 0

= = = = = = = - = - - -0 o 0 0 o 0 0 1 0 0 o 0 0 1 0 0 1 0

0.0 0.8 0.2 0.4 2.0 4.0

• (h)

Figure 4.4: Costs assigned to: (a) VI,; (b) \'z, for various configurations (up to rota­

tion) of line cliques (fUled rectangle: line element "on", empty rectangle: line clement.

"off', circle: pixel position).

Figure 4.4 shows the proposed costs (inspired by [i]) associated with different

configurations (up to a rotation) of four-element square- and cross-shaped cliques.

4.1.6 New objective function

Substituting the conditional probabilities in (4.1), the following optimization

problem results

(Pt>ôt> 11) = min U(Pt> 0t> l,), (4.15)
{PI,OI.!.}

where U(p, 0, 1) is the new multiple-term objective function expressed as follows:

• U(p, 0, 1) =U.(p,o) + ÀpUp(p, 1) + ÀoUo(o, 1) + À/U/(/,g).

84

(4.16)



• The constituent energies in (.1.16) are defincd in (·U). (.1.:;). (·1.7). and (4.9) re­

spcctivdy, and Àp = I/;;p. Ào = 1/.3,. '\1 = 1/.31 dcnotc their respective associated

weights.

4.2 Optimization method

Sincc trajectorics arc dcscribed by contiGuous-valued parameters while occlu­

sions and motion discontinuitics are dcscribed by finite discrete state spaccs, different

optimization methods must be used to estimate p, 0, and 1. This can be accomplished

by solving the minimization problem in (4.15) in an interleaved fashion, i.e., while'

one field is iteratively updated, the others are kept constant. Hellce, at each iteration

(full scan of a field) n, the threc fields p" 0" and l, are updated consecutively by

performing one iteration of the following minimization problems

(a)

(b)
• {

0, = Ol,,-l)
p~ = argmin{U.(p" 0,) + ÀpUp(p"l,n with ()

{p,} 1 - l ,,-1,- ,

l~ = argmin{..\pUp(p"l,) +ÀoUo(o"I,) +"IUI(l"g,n with {
{l,}

{

_ ("-1)

(c) o~ = argmin{U.(p" 0,) + "oUo(o"l,n with Pt - p(, )
{o,} 1 - l ,,-1,- ,

P
_ p("-l),- ,

("-1)
0, = 0,

•

(4.17)

rcspectively. Once all three fields have been updated, the process is repeated until a

suitable converge.1ce of U(p, 0, 1) is achieved.

4.2.1 Optimization of the motion field

Optimization of the motion field p, in equation (4.17a) is carried out using

the deterministic relaxation algorithm discussed in Chapter 3. The same iterative

algorithm, as derived in Section 3.3.2, rcsults with sorne minor modifications. Hence,

the updating of a motion vector pf at iteration n is accomplished by solving the linear

system: Ai' .pf =bf. The matrix Ai' and vector bf are defined in (3.33) and (3.34)
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• rL'Spect;vcly with the set I, replaced by the visibility sc-t I,x.. and the a'"t'rage lllotion

vector Pi at position Xi modified "" fo\low",

1
Pi = c: I: p)[l -[(x,. x) lI.

'1 JE'lI(i)

with

~i= I: [l-[(Xi. X))].
jE.'(i)

4.2.2 Optimization of the line and occlusion fields

(.l.l Sl

(.l.l !l)

•

•

Optimization of the line and occlusion fields is carried out by solving the mini·

mization problems in equations (4.1Tb) and (4.1Tc) respectivcly using Bcsag's itera/cd

Conditional Modes (leM) method [4J. Each iteration of this method consists of two

scans. During the first scan sorne selected positions are visited and the line ek~ .

ment/occlusion state at each position is updated using an exhaustive search over aH

possible states (2 states for the line field, 5 states for the occlusion field). The line

element/occlusi,)n state that yields the lowest energy is chosen as the new state. The

remaining positions are then visited during the second scan. Such a procedure has

been chosen in order to break the dependence of line/occlusion state from neighboring

states, and thus to allow quick convergence.

4.3 Simulation results

4.3.1 Definition of parameters

The modified estimation algorithm has been simulatcd on sorne test images with

the main parameters chosen as follows:

1. The number of resolution levels L in the image pyramid is set to 4. Hencc, at

each resolution level k, coarse motion fields are estimated along with the corre­

sponding occlusion and line fields before switching to the next finer resolution

level k - 1 (Figure 2.4). An intensity edge field el for each resolution level is
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•

•

thenofon' ne"d"e! in th" "stimat.ion algorit.hnl. Th"s<' inknsity pdges arc pre·

paree! fl priori by applicat.ion of the Canny "e!g,. det.ection operat.or t:. described

in (·1.1"1). ,1t "ach resolut.ion le,",,1.

2. The quadratic motion trajectory model is used in the subsequent simulations.

lIencc. both vclocity and acccleration fields are cstimated.

3. The regularization parameters (À o • Àl ) associated respectivcly with the occlusion

term Uo(o,l) and the line term U/(l.g) of the new objective function U(p,o, 1)

(4.16) are chosen experimentally for each image. On the other hand. the reg·

ularization parameter associated with the smoothness term Up(p,l) was set to

Àp = 20.

4. I, ={-2,-1,0,1,2} is seleeted in the motion estimation algorithm. However,

I, = {-1,0, 1} will be used sometimes to compare the estimated occlusion and

motion discontinuity fields for N = 5 and N = 3.

5. The set of time instants used in the motion-compensated interpolation is set to

:r, =If n {-2, 2}. Hence the set :r, is now adapted to occlusion labels. Also, a

comparison \Vith the interpolated sequences generated using motion estimates

from the previous algorithm (Chapter 3) will be possible.

In the following, algorithm A is used to represent the motion estimation algorithm

discussed in Chapter 3 (without processing of occlusion areas and motion disconti­

nuities), whereas algorithm B represents the new modified algorithm that estimates

piece\Vise-continuous motion along \Vith occlusion areas and motion discontinuities.

4.3.2 Results for synthetic sequences

In order to verify the accuracy of the occlusion and motion discontinuity esti­

mates, test image 5 with synthetic motion has been generated using the procedure

from Section 3.4.1. The test image 5, shown in Figure 4.5a, differs from test images 1
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(a)

•

•

Figure 4..j: Field #2 of (a) test image 5 (the white frame encirc1es the 'm'a uSt'd for

estimation); (b) intensity edges detected by the edge detection operator [ apl'lied to

the encirc1ed area.

the rest of the int.ensity edges will demonstrate the validity of motion discontinuity

estimates. Therefore, test image 5 should be a good test sequence for the modified

estimation algorithm 8. Intensity edges computed within the estimation area by the

Canny operator & are shown in Figure 4.5b.

The algorithm has been tested on field #2 of test image 5 with (À., À,) = (i,05),

and p(2) =[2 0 0 OlT being the real motion parameters of the moving rectangle at

field #2. The resulting motion field estimates for algorithms A and 8 are show!! in

Figures 4.6 and 4.i, respectively.

Note that the estimates in Figure 4.i obtained by algorithm 8 are more accurate

around the moving rectangle than those obtained by algorithm A. The reason for this

is that the successful estimation of motion discontinuit.ies (Figure 4.8b) in algorithm

8 was helpful in disabling the motion smoothness constraint around these disconti­

nuities and hence providing a piecewise-constant estimate. This corresponds better

to the true underlying motion and leads to a substantiai decrease in the MSE of the
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Figure ·1.6: Estimated: (a) vclocity v(2), and (b) acccleration â using algorithm .A

at field #2 of test image 5 with p(2) =[2 0 0 ojT.
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Figure .1.i: Estimated: (a) velocity v(2), and (b) acceleration â using algorithm 13 at

field #2 of test image 5 with p(2) =[2 0 0 ojT.
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T"ble ·L2: Comparison of the MSE of motion estimatl's in Ru '11"\ RI resnltin)!, l'rom

application of algorithms .A and 13 at field #2 of test imagl' Ci with p(:l) = [:! 0 0 oF'.

fields Î(2) are shown in Figure -l.S for I, = {-2. -1. O. L 2} (N = .')) and in Figurl' ·U)

for I, = {-1, O. 1} (i'i = 3). The assigned intensity level to each possible occlnsion

state in the occlusion field is: Al = 12S. E = 192. E_ 1 = :l5.5. C = 6·1. and C+1 = O.

• 1---'-.
1

1

i ..

. -',
1

1
•

(a) (b)

Figure 4.8: Estimated: (a) occlusion field ô(2). and (b) line field Î(2) at field #2 of

test image 5 with p(2) = [2 0 0 OlT and I, = {-2. -1. 0, 1. 2}.

•

Note that the detected occluded regions in Figure 4.Sa for N = .') are consistent

with the horizontal motion (from left to right) of the rectangle moving at a const"n!

velocity of 2 pixels per field. The dark area represents the area that is going to

be covered within the next 2 time intervals whereas the bright area repn,sent the

area that has becn exposed within the previous 2 time intervals. A comparison with

the detected occlusion regions for N = 3 [9] (Figure 4.9a) shows that multiframe
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Figure 4.9: Estimated: (a) occlusion field ô(2). and (b) line field Î(2) at field ;;'2 of

test image 5 with p(2) = [2 0 0 OlT and I t = {-1. O.l}.

processing (i.e., N = 5) helps in a better identification of occluded regions. This is

also true for the identification of motion discontinuities (Figures 4.8b and 4.9b).

50 far, Algorithm 13 has been tested on test. image .5 with the rectangle moving

horizontally and no acceleration. In a second experiment, algorithm 13 has bccn

tested on field #2 of test image 5 with (>'0'>'/) = (i,9), and p(2) = [4 4 1 !]T. In

this case, the rectangle is moving diagonally (from top-left to bottom-right) with an

acceleration of a = [1 l]T per field.

The resulting motion field estimates for algorithms A and 13 are shown in Figures

4.10 and 4.11, respectively, and the J'vISE of the resulting motion estimates in regions

no and ni is reported in Table 4.3.

Algorithm v,,(2) v.(2) a" a.

M5E in no A 0.9649i6 1.140209 0.243863 0.19i2S1

13 0.616461 0.858218 0.129602 0.096950

MSE in ni A 0.232956 0.211468 0.096320 0.Oi2566

8 0.019926 0.024808 0.003422 0.004236

Table 4.3: Comparison of the MSE of motion estimates in no and ni resulting from

application of algorithms A and 13 at field #2 of test image 5 with p(2) = [4 4 1 l]T.

The estimated occlusion ô(2) and motion discontinuity fields i(2) are shown in
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Figure ·1.10: Estimated: (a) velocity v(2) (scaled by 0..5). and (b) acceleratioll à ll>illg

algorithm A at field #2 of test image.5 with p(2) = [.[ ·1 1 !]T.
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Figure 4.11: Estimated: (a) velocity v(2) (scaled by 0..5), and (b) acccleration â using

algorithm B at field #2 of test image 5 with p(2) = [4 4 1 1jT.
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(S = :1).
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Figure 4.12: Estimated: (a) occlusion field ô(2), and (b) line field Î(2) at field #2 of

test image 5 with p(2) = [4 4 1 Wand 1, = {-2, -1, 0,1, 2} .
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Figure 4.13: Estimated: (a) occlusion field ô(2), and (b) line field Î(2) at field #2 of

test image 5 \Vith p(2) = [4 4 1 Wand l, ={-1, 0, 1}.

Similar observations as before can be made; processing of occlusion areas and

motion discontinuities helps to decrease the AISE of motion estimates, especially

around the border of the moving rectangle (Table 4.3). Also, occluded areas are

better tracked \Vith N = 5 then \Vith N =3. Note that the covered area in Figure

4.12a is larger than the exposed area due to the presence of acceleration in the diagonal

direction, and hence the detected occluded areas are consistent \Vith the motion of

the moving rectangle.
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4.3.3 Results for natural sequences

:\Igorithlll 13 has I",en also t<'st,'d on t.est. illla~"s :\ and 1 (Fi~Ilr"s :\.:, 'lIId

:\.6) with (.\ù.,\{j = (1.2). The resllits art' illllsiratl'd in t.his s,'<"lion aloll~ witlt a

comparison wit.h t.he results Obt.ilillt'd by algoril hm .A.

The computed intellsity edg"s at. fields #2ti. ·12. and 7ll of t.,'st. illlag,· :1 M" sltowll

in Figure 4.1·[, These fields are used in algorit.hlll 13 t.o penaliz,' t.h,' int.ro<l11,·t.i,m ,)f

line clements at non·edge sites.

Figure 4.14: Computed intensity edges: (a) e(26); (b) e(42); (c) e(70) at fields #:lO,

42, and iO of test image 3, respectively.

Figure 4.15 illustrates the PSNR of 28 reconstructed fields l'rom test image

3 using motion obtained l'rom algorithm A (full line) and motion and occlusions

obtained l'rom algorithm 13 (dashed line).

An average increase of +1.27 dB in the PSNR has becn achieved by using

algorithm 13 instead of algorithm A. The PSNR boost is most apparent in ficlds

containing accelerated motion of the hand or arm. This can be easily explained by the

fact that accelerated motion generates more occluded regions than linear motion, and

hence the detection of these regions (in Algorithm 13) in the presence of acce!eration is

helpful in obtaining better motion estimates especially around motion discontinuities.

The estimated piecewise-continuous velocities at fields #26 and 42 arc shown

in Figures 4.16a and 4.1ia, respectively, along with the corresponding estimated line

fields. The same fields derived by algorithm A are shown in Figures 4.16b and 4.lib.

Note that the estimation of motion discontinuities has allowed to disable the motion
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Figure 4.1.5: Comparison of the P5NR for reconstructed fields from test image :3

using algorithm A (fu1l1ine) and algorithm 13 (dashed !ine).

smoothness constraint around these discontinuities (i.e., betwecn movingjstationary

and occluded regions), and hence to produce piecewise-continuous motion estimates

that arc closer to the truc underlying motion.

The occlusion and motion discontinuity fields along with the reconstructed and

error images (using algorithms A and 13) for fields #26, 42, and ïO are shown in

Figures 4.18, 4.19, and 4.20 respectively.

Note that the occlusion and motion discontinuity estimates secm consistent with

the motion in the sequence. This can be confirmed by the reconstructed fields and

their respective error images in Figures 4.18, 4.19, and 4.20. For instance, one cao

notice that the interpolated field #40 obtained using the motion and occlusion es­

timates obtained by algorithm 13 (Figure 4.1ge) is closer to the true field (Figure

4.19a) than the interpolated field obtained using only the motion estimate obtained

by algorithm A (Figure 4.19d). This difference is most noticeable in the region of the

left a:m. The same kind of behavior cao be noticed in Figure 4.20 where the contours

of the moving right hand are better reconstructed when algorithm 13 is used.

The same experiments have becn run for test image 4. The computed intensity

edges at fields #6, 14, and 19 of test image 4 are shown in Figure 4.21.
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Figure 4.16: Estimated (a) velocity v(26) and line fields Î(26) lIsing algorithm 6; (h)

velocity v(26) using algorithm A at field #26 of test image :3.
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Figure 4.li: Estimated: (:1.) velocity v(42) and line fields Î(42) using algorithm B;

(b) velocity v(42) using algorithm A at field #42 of test image 3.
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Figure 4.18: Estimation (a) area of field #26 of test image 3; (b) occlusion field ô(26);

(c) Une field i(26); reconstructed field using: (d) algorithm A (PSNR = 41.96 dB);

(e) algorithm B (PSNR =42.76 dB) \Vith their respective error images (magnified

by 2) in (f) and (g).
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(a)

(d)

(e)

(b)

~.:,~.: -;::-:- -
"=7::?-7. _ ."i-~-- .---=:~..

(c)

(f)

(g)

1
. _1

--':"-:i
!

•

Figure 4.19: Estimation (a) area of field #42 of test image 3; (b) occlusion field ô(42);

(c) line field 1(42); reconstructed field using: (d) aigorithm A (PSNR =36.94 dB);

(e) aigorithm B (PSNR = 39.6; dB) with their respective error images (magnificd

by 2) in (f) and (g).
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Figure 4.20: Estimation (a) area of field #ïO of test image 3; (b) occlusion field ô(ïO);

(c) \ine field Î(ïO); reconstructed field using: (d) algorithm A (PSNR =35.31 dB);

(e) algorithm B (PSNR = 39.53 dB) with their respective error images (magnified

by 2) in (f) and (g).
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Figure ·1.21: Computed intensity edg"s: (a) c(6): (1,) c(l·I): (c) "( 19) al. li,'lds #ll. Il.

and 19 of test image 4, respecti\"cly.
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Figure 4.22: Comparison of the PSNR for reconstructed fields from test. image 4

using algorithm A (fuilline) and algorithm B (dashed line).

•

The resulting PSNR curves are reported in Figure 4.22 where an average in­

crease of +2.3 dB in the PSNR has been achieved by using algorithm B instead of

algorithm A-

The occlusion and motion discontinuity fields obtained for fields #5, 6, 8, 14, 19,

and 26 are shown in Figures 4.23, 4.24, 4.25, 4.26, 4.2ï, and 4.28 rcspectively. Nole

that most of the occluded regions are concentrated in the area of the eyes and the

mouth. Also, the estimated motion discontinuities match weil the moving contours

of the eyes and the mouth.

The reconstructed fields and their respective error images (using algorithms A
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illld 6) ill. lidds #li. Il. illld l!) M" showlI ill Figllres ·1.:!ld·g. ·1.:1(id-g. and ·1.:1id-g

r'"p''''l.i\·dy. From these res1l1l.s. 0111' "illl conclllde that the processing of occlusions

and motion discolltiIlllil.Îc·s hiL"i hdpc'd lo dilnillat.t' tll0St of t.he interpolation crrors

th;LI. Wert- present in t.he regions uf the Py('s and the rllollth prior to occlusion proccssing

(i ..,., algorithm Al. This improvemelli. is also visible in the reconst.ructed fields.

espeeially in Figure ·1.2ï. where a comparison of the two reconstructed fields ;;'19

llsing algorithms A and 6 (shown in Figures ·l.:1ïd and ·l.:1ïe. respectively) with the

origin"l field (Figure ·1.2ia) il1ustrates the differencc. mainly in the region of the

mouth.

101



•
(a) (h)

-
" .' .~:::-~~
~., ... -

,

!___ _ __ ___J
(c)

Figure 4.23: Estimation (a) arca of field #5 of test image 4: (h) occ\u,ion field ô(5):

(c) line field 1(5).
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(a) (b)
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(c)

(d) (e) (f) (g)

•

Figure 4.24: Estimation (a) area of field #6 of test image 4; (b) occlusion field ô(6);

(c) line field î(6); reconstructed field using: (d) algorithm A (P5NR = 36.91 dB);

(e) algorithm B (P5NR = 41.41 dB) with their respective error images (magnified

by 2) in (f) and (g).
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Figure 4.2.'5: Estimation (a) area of field #8 of test image 4: (b) occlusion field ô(8):

(c) line field Î(8).
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(a) (b) (c)

(d) (e) (f) (g)

•

Figure 4.26: Estimation (a) area of field #14 of test image 4; (b) occlusion field ô(14);

(c) line field Î(14); reconstructed field using: (d) algorithm A (PSNR = 37.27 dB);

(e) algorithm 8 (PSNR =41.72 dB) with their respective error images (magnified

by 2) in (f) and (g).
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•
Figure 4.27: Estimation (a) area of field #19 of test image 4; (b) occlusion field ô( 19);

(c) line field Î(19)j reconstructed field using: (d} algorithm A (PSNR = 3!i.79 dB):

(e) algorithm B (PSNR = 41.17 dB) with their respective error images (magnificd

by 2) in (f) and (g).

(a) (b) (c)

•
Figure 4.28: Estimation (a) area of field #26 of test image 4; (b) occlusion field ô(26);

(c) \ine field Î(26).
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Chapter 5

Conclusions

5.1 Summary

Different types of motion-compensated processing of time-varying images, such

as predictive coding and standards conversion, require the availability of 2-D motion

estimates. In this thesis, estimation of dense motion trajectories with acce!eration has

been investigated. Unlike in most of the existing motion estimation algorithms that

assume a linear trajectory model over two fields in an image sequence, the proposed

method assumes a quadratic trajectory mode! defined over longer temporal support.

Hence, two motion field estimates of instantaneous ve!ocities and acce!erations are

generated to describe quadratic trajectories instead of one displacement field that

describes linear trajectories in an image.

Due to the ill-posed nature of motion estimation, the algorithm for the estima­

tion of dense accelerated motion fields has been formu1ated using regularization. The

objective function has been derived using Gibbs-Markov mode!s linked together by the

Maximum A Posteriori (MAP) probability criterion. It consists of a structural mode!

that follows directly from the constant intensity assumption along motion trajecto­

ries, and of an a priori motion trajectory mode! that captures the desired smoothness

property of motion fields. Energies resu1ting from these models have been combined
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linearly using regularization parameter '\p that plays a vital roll' in ",eighting the im­

portance of the t",o models. Optimization of the objective function has been carried

out using a deterministic relaxation algorithm implemented O\'er a pyramid of reso­

lutions. The importance of multiresolution methods in the estimation of fast motion

and efficient localization of a near global optimum has also been addressed.

The motion estimation algorithm has been tested successfully on progressive

and interlaced sequences with synthetic motion parameters of 1/4 pixel accuracy.

The MSE measure has been used to measure the validity of motion estimates and

to select certain parameters in the algorithm such as the regularization parameter

>'p, and the number of images used in the estimation. Also, plots of sorne estimated

trajectories have been compared with their respective true trajectories in order to

illustrate the difference in trajectory tracking when the quadratic trajectory model is

used instead of the linear mode\.

The usefulness of motion trajectories with acceleration for motion-based pro­

cessing has been investigated on natural sequences. The estimated trajectories have

been applied to a motion-compensated interpolation scheme for the case of 4:1 sub·

sampling. A comparison of the PSNR for the reconstructed images using linear and

quadratic motion trajectory models over 5 fields and linear trajectory model over 2

fields was carried out. Similarly to [35], it was concluded that in images containing

acceleration, the knowledge of this acceleration permits a substantial reduction of

the reconstruction error. Also, subjectively the quadratic motion trajectory model

has resulted in a remarkable improvement of the reconstructed image quality. This

observation is particularly true for image sequences containing "talking heads" where

eyes and mouth do exhibit acceleration. Occasionally, the difference between the two

models has amounted to the mouth being closed, whereas in the original image it was

open. From the transmission point of view, this improvement cornes at the cost of

additional bit rate allocated to acceleration parameters. It is not clear at this point

whether this increase cau be compensated by the reduced prediction residual.
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The motion estimation algorithm was finally extended in order to detect oc­

clusion areas while estimating motion parameters. This feature is vital in motion­

compensated interpolation applications, where it is imperative that estimated motion

pararneters near motion discontinuities be of high quality and that occlusions be prop­

erly handled. A new multiple-term objective function including an occlusion model

and a motion discontinuity model (in addition to the structural model and a priori

motion model) has been derived. The occlusion model, in the case of estimation from

5 images, has been presented. This model favors the creation of clusters of occlusion

tags near motion discontinuities. On the other hand, the motion discontinuity model

assigns a high penalty whenever a motion discontinuity does not match an inten­

sity edge. It also controls the ·formation of straight lines, corners, and intersections.

The minimization of the new objective function, performed in an interleaved fashion,

results in piecewise-continuous motion fields that correspond better to real TV im­

ages than the globally-continuous motion fields generated in absence of the occlusion

mode!.

The use of multiframe processing in the proposed motion estimation algorithm

has been expected to be beneficial from the point of view of improved identification.

of occlusion areas and motion discontinuities. This was confirmed by comparing oc­

clusion and line fields estimated using 3 and 5 images from sequences with synthetic

motion. However, the estimation of occlusion fields in the motion estimation algo­

rithm requires more computational time. AIso, the occlusion information has to be

transmitted with the motion information in interpolative coding schemes resulting in

some extra bits to be transmitted. These disadvantages, however, have to be weighted

against a significant increase in the quality of reconstructed sequences at the receiver

as was discussed in the section on experimental results for natura! sequences.

The work reported in this thesis is of exploratory nature. We were interested in

finding out what possible improvements could the computation of acceIeration and

occlusions bring. The proposed algorithm is very complex computationally due to
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its iterative nature and due to the calculation of derivatives. It is not intended for

real-time implementation. However, wc hope that the demonstrated improvements

will eventually find their way to real-time implementations through sorne simp!ified

algorithms.

5.2 Contributions

This thesis has contributed to the theory of 2-D motion estimation. The major

contributions of this work can be summarized as follows:

1. Modeling of motion trajectories with acceleration.

2. Estimation of motion and occlusions over multiple images.

3. Application of motion trajectories with acceleration to motion-compensated

temporal interpolation in a multiple-frame scenario. It has been shown that

for images containing acceleration, such as "talking heads" • the quadratic mo­

tion model permits a substantia! reduction of the reconstructed error when

compared with the ubiquitous linear mode!.

4. Application of occlusion processing in the context of motion-compensated tem­

poral interpolation. It has been demonstrated that a further improvement,

especially around motion discontinuities, is observed in reconstructed images

when occlusions are accounted for.

5.3 Open questions

5.3.1 Regularization parameters

The regularization parameters À", Ào, and Àl have been chosen empirically.

Optimal estimation of these parameters remains to be a challenging task, especially

when estimating unobservables such as motion.
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5.3.2 Hierarchical processing

In the hierarchical processing, a "constant-width" pyrarnid for images and a

regular pyramid for motion fields have been considered. The likelihood of convergence

to the global optimum may be improved by considering also a regular pyrarnid for

images. This will al10w to spread the displacement vector updates proportionally over .

image resolutions and may result eventually in a better optimum. However, the use of

regular image pyrarnids will result in data loss (due to subsarnpling), and hence may

affect the performance of the motion estimation algorithm (because of the derivative

computation). Moreover, the smoothing by Gaussian filters destroys the contours in

the image, and hence resuIts in erroneous occlusion estimation at the lower resolution

levels of the pyrarnid. Nyquist-like filters that do not unnecessarily oversmooth the

data may be worth considering in the generation of the pyrarnid of image resolutions.

5.3.3 Rate-constrained motion estimation

This thesis has demonstrated the importance of the estimation of accelerated motion

and occlusions in reducing the reconstruction errar in an interpolative coding scheme.

With such an improvement, the motion-compensated interpolation error is very small..

This errar may be transmitted or not, depending on the target quality. It remains to

be studied whether the reduction of the transmitted residual (reconstruction errar) or

the improvement in quality of reconstructed images compensate for the increased bit

rate needed to transmit the acce1eration and/or occlusion informa.tion. This problem,

called "rate-constrained motion estimation", has not been studied in-depth yet, except

for very simple cases. Perhaps, acce1eration is worth considering for post-processing

in video conferencing and videophone applications where temporal subsampling is

often used.
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Appendix A

Markov Random Fields and the

Gibbs Distribution

The main focus here are 2-D random fields defined over a finite NI x N2 rect­

angular lattice of points (pixels) defined as: A = {(i,j) : 1 $ i $ NI, 1 $ j $ N2 } •

The concepts of neighborhood and cliques are essential in the definition of the Gibbs

distribution. A neighborhood system on lattice A is defined as follows:

Definition 1: A collection of subsets of A described as:

1} = hij : (i,j) E A,1}ij ç A}

is a neighborhood system on A if and only if

1. (i,j) ~ 1}ij, and

2. if (k, 1) E TJij => (i,j) E 1}kl V (i,j) E A.

(A.l)

•

A Markov Random Field (MRF) with respect to the neighborhood system Tf defined

over the lattice A is then defined as follows:

Definition!!: Let Tf be a neighborhood system defined over lattice A. A random

field X = {Xij} defined over lattice A is a Markofl rondom field with respect to the
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neighborhood system TJ if and only if:

P(Xij = Xij 1Xk1 = Xkl,(k,L) E A,(k,L) i: (i,j» = P(Xij = Xij 1X kI = xkl,(k,L) E TJij)

(A.2)

for ail (i,j) E A, and P(X =x) > 0 \Ix.

Note that capitalletters are used to denote random variables and random fields, and

lower ease letters to denote specifie realizations.

The first-order neighborhood system 711 is the most eommonly used in image

modeling. It eonsists of the closest four neighbors of each pixel, and is known as

the nearest-neighbor mode!. The second-order neighborhood system 712 = {711;} is

such that 71& consists of the eight pixels neighboring (i,j). In general, the the mth

order neighborhood system 71m contains ail sites of systems of order up to m - 1 (i.e., .

71m = {71k: k < ml). The "cliques" associated with alattice-neighborhood pair (A,71)

are defined as follows [14]:

Definition 3: A clique of the pair (A, 71), denoted by c, is a subset of A such that:

1. c consists of a single pixel, or

2. for (i,j) i: (k, L), (i,j) E C, and (k,l) E c => (i,j) E 71kI.

The collection of all cliques of (A, 71) is denoted by C. The types of cliques associated

with 711 and TJ2 are shown in Figure A.1.

It is known that the usual characterization of a MRF through initial and tran­

sitional probabilities is eomplex. On the other hand, from the Hammersley-Clifford

theorem [3] it is known that a random field has Markovian properties if and only.

if it is governed by a Gibbs distribution (GD). The GD is defined in the following

manner[14]:

Definition .4: Let TJ be a neighborhood system defined over the finite lattice A. A

random field X = {Xij} defined on A has a Gibbs distribution or equivalently is a

Gibbs Random Field (GRF) with respect to TJ if and only if its joint distribution is
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Figure A.l: Neighborhood system TJl (a) and associated cliques (b); Neighborhood

system TJ2 (c), and associated cliques (d).

of the form:

(A.3)

where

U(x) = L v.,(x) (A.4)
cee

is the energy function and v.,(x) is the potential associated with clique c. The partition

function Z = 2:: e-U(:) is simply a normalizing constant, and f3 is another constant

called the natural temperature. The only condition on the otherwise totally arbitrary

clique potential v.,(x) is that it depends only on the pixel values in clique c. The joint

distribution in (A.3) has a physical interpretation: the smaller U(x), the energy of

the realization x, the more likely that realization.

The GD is basically an exponential distribution. However, by choosing the clique

potential function v.,(x) properly, a wide variety of distributions, both for discrete

and continuous random fields, cao be formulated as GD (i.e. binomial, Poisson, and

Gaussian random fileds). Unlike the MRF characterization, the GD characterization

is free from consistency problems and in some applications provides a more workable

spatial model.
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Cubic Convolution Interpolation

Assuming I-D notation, let w be an input signal defined over a lattice A. The

interpolated signal ÜI defined over 'R. can be obtained by the following convolution:

where u is the impulse response of a low pass filter, known as the interpolation kernel

to be defined. Note that also, due to the linearity of the convolution, the derivative

of ÜI can be obtained as follows:

•
ÜI(X) = L;w(y)u(x-y), xE 'R.,

yEA

8Ü1(x) _ ~ ()8u(x - y)
8 -LJWY 8 1 xE'R..

x YEA x

(B.I)

(B.2)

•

Keys [25] has proposed a cubic convolution kernel u(x) for one-dimensional problem

which converts the discrete data w into a continuous function ÜI by the convolution

operation in (B.I).

The cubic convolution algorithm, normally requires that the interpolation kernel

be continuous, and possess a continuous first-order derivative. Otherwise the interpo­

lated function will have sharp edges at sampling points which is an undesirable efi"ect,

especially when interpolating intensities in an image. The cubic convolution kernel
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• introduced by Keys:

u(x) =
~lxl3 _ ~lxl2 + 1

_!lxI3 + ~lxi2 - 41xl + 2

o

0< Ixl < 1

1 < Ixl < 2

2 < Ixl

(B.3)

is symmetric, continuous, and has a continuous first derivative as shown in Figure

B.l. Moreover, it is zero for all non-zero integers, and one when its argument is

••••
.,..

•I---~ ··· ..········T·········..·· ·······"'··..,---1

0. -:- .

o.• ...............:. + ···1···· ~ .

• Figure B.1: Impulse response u(x) of cubic interpolator proposed by Keys.

zero (this condition has an important computationai significance, namely, that the

interpolation coefficients become simply the sampled data points).
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