INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

NOTE TO USERS

This reproduction is the best copy available.

UMI

	•

CONTROL OF BACILLUS CEREUS IN ENGLISH-STYLE CRUMPETS

By:

WASSIM EL-KHOURY

Department of Food Science and Agricultural Chemistry

Macdonald Campus, McGill University

Montreal, Quebec

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment for the requirements for the degree of Master of Science.

Nominated for the Dean's Honour List

January 2001

[©]Wassim El-Khoury

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence

Our like Notre référence

The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-70421-1

Dedicated to:

My mother (Haïfa), my father (Toufic), my sister and brother (Marie and Joseph)

Abstract

CONTROL OF BACILLUS CEREUS IN ENGLISH-STYLE CRUMPETS

English-style crumpets (pH 6-8, a_w 0.97-0.99) are a popular baked product enjoyed by consumers worldwide. However, over the past few years, outbreaks of food poisoning have been caused by the growth of *Bacillus cereus* in crumpets. This spore forming microorganism, which originates in flour, can easily survive the baking process and grow to >10⁶ CFU/g within 3-5 days at ambient storage temperature. Therefore, control of this pathogen is essential to ensure the safety and marketability of English-style crumpets.

Initial studies were done to determine the effect of water activity (a_w), pH, modified atmosphere packaging (MAP), UV-light, bacteriocins, organic acids and esters, alone and in conjunction with each other, on the growth of *B. cereus* in model broth/agar systems. Control of *B. cereus* could be achieved through reduction of a_w to <0.92 and pH to <5. However, both approaches would not be commercially viable due to changes in the sensory/textural qualities of the reformulated products. Preservatives, such as calcium propionate and potassium sorbate, also failed to inhibit the growth of *B. cereus* at pH levels >6; however, mono-lauryl maleate (MLM) inhibited the growth of *B. cereus* at alkaline pH (8-9). MAP, using 100% CO₂ and Ageless oxygen absorbents, alone and in combination with each other, also failed to inhibit the growth of *B. cereus* in agar media. However, a combination of an ethanol vapor generator/oxygen absorbent (Negamold®) and 100% CO₂ inhibited the growth of this pathogen for >35 days at ambient storage temperature. UV-light also proved effective in delaying the growth of *B. cereus* in agar plates.

Based on these initial studies, subsequent experiments focused on the control of *B. cereus* in English-style crumpets. While both UV-light and MLM (1000-3000 ppm) controlled the growth of this pathogen in model agar studies, they failed to inhibit its growth in English-style crumpets. Negamold®, in conjunction with 100% CO₂, inhibited the growth of *B. cereus* in crumpets stored at 30°C for >35 days. However, crumpets were organoleptically unacceptable since the ethanol content of crumpets was ~3.5% (w/w) i.e., higher than the approved maximum limit of 2% (w/w) for food. Pasteurization of the crumpet batter, prior to baking on a hot plate, also failed to control the growth of this pathogen; furthermore, textural changes also occurred in the final product.

In conclusion, *B. cereus* is a difficult microorganism to control in food using conventional preservation methods. Further studies are now under way to investigate novel methods to control the growth of this pathogen, particularly in high pH crumpets.

RÉSUMÉ LE CONTRÔLE DU *BACILLUS CEREUS* DANS LES CRUMPETS ANGLAIS

Les crumpets anglais (pH 6-8, a_w 0.97-0.99) sont des produits populaires, cuits au four et appréciés par des consommateurs dans le monde entier. Cependant, au cours de ces dernières années, des manifestations d'intoxication alimentaire ont été provoquées par la croissance du *Bacillus cereus* dans les crumpets. Cette spore formant le micro-organisme, et provenant de la farine, peut facilement survivre la cuisson et se diviser jusqu'à >10⁶ CFU/g en une période de 3-5 jours, à température ambiante. Par conséquent, le contrôle de ce pathogène est essentiel afin d'assurer l'hygiène et la commercialité des crumpets anglais.

Des études préliminaires furent conduites afin de déterminer l'effet de l'activité de l'eau (aw), du pH, du conditionnement sous atmosphère modifiée, de la lumière UV, des bactériocines, des acides organiques et des esters, séparément et en combinaison, sur la croissance du *B. cereus* dans des systèmes de bouillon/agar. Le contrôle du *B. cereus* fut réalisé sous une activité de l'eau aw < 0.92 et un pH < 5. Cependant, ces deux approches ne seraient pas commercialement viables à cause des changements apportés à la qualité sensorielle et à la texture des produits reformulés. Les préservatifs tels que le propionate de calcium et le sorbate de potassium ne réussirent pas à empêcher la croissance du *B. cereus* à des pH supérieurs à 6; par contre, le maleate monolaurique (MLM) a empêché la croissance du *B. cereus* sous un pH alkalin (8-9). L'utilisation du conditionnement sous atmosphère modifiée, avec du CO₂ 100% et des absorbants d'oxygène Ageless, seule ou en combinaison, n'a pas réussi non pius à empêcher la croissance du *B. cereus* dans de l'agar. Toutefois, l'utilisation en combiné d'un générateur de vapeur d'éthanol/absorbant d'oxygène

(Négamold®) et de CO₂ 100% empêcha la croissance du pathogène pendant plus de 35 jours, à température ambiante. La lumière UV a également été efficace dans le le retardement du *B. cereus* dans les contenants d'agar.

Suite à ces résultats préliminaires, des recherches ultérieures portèrent sur le contrôle du *B. cereus* dans les crumpets anglais. Alors que la lumière UV et le MLM (1000-3000 ppm) contrôlèrent la croissance du pathogène dans les études utilisant l'agar, ils ne furent pas efficaces lorsque appliqués sur les crumpets anglais. Le Negamold[®], en combinaison avec du CO₂ 100%, a empêché la croissance du *B. cereus* dans les crumpets, sous une température de 30°C pendant plus de 35 jours. Cependant, les crumpets étaient organoleptiquement inacceptables puisque leur teneur en éthanol était ~3.5% (w/w) soit plus haut que la limite maximale acceptable de 2% (w/w) pour la nourriture. La pasteurisation de la pâte de crumpet, avant la cuisson sur plat chaud, n'a pas non plus réussi à contrôler la croissance de ce pathogène; en outre, des changements de texture se manifestèrent dans le produit final.

En conclusion, le *B. cereus* représente un micro-organisme difficile à contrôler dans la nourriture à l'aide de méthodes conventionnelles de conservation. Des études supplémentaires sont déjà entreprises afin de trouver de nouveaux moyens pour contrôler ce pathogène, en particulier dans des crumpets à pH élevé.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr. J.P. Smith for his guidance, patience, knowledge, and his greatly appreciated sense of humor throughout this study. I also wish to recognize the warmth and hospitality that I have received from the Smith family; they made me feel at home.

I would also like to extend my thanks to our research technician, Ms. Ilsemarie Tarte, for her assistance in carrying out the laboratory experiments and for sharing her great knowledge and expertise unreservedly.

Special thanks to everyone in my research group, including Daphne Phillips Daifas, Barbara Butler, Sameer Al-Zenki, John Koukoutsis, and Anis El-Khoury for their friendship and advice.

My thanks go to Mr. Fadi Balesh for his remarkable support and involvement in this work as a professional translator.

Additional thanks to Adel and Ronald for their unyielding encouragement throughout the course of this research.

Many thanks to my dear friends, Tala and Karim, for their friendship and their long distance prop ups.

Finally, I am mostly grateful to my family for their unrelenting love, encouragement and financial support. They definitely made my wishes come true.

TABLE OF CONTENTS

ABSTRACT	ii
RÉSUMÉ	iv
ACKNOWLEDGEMENTS	Vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xii
LIST OF TABLES	xiii
1.0. Introduction and literature review	1
1.1. Introduction	1
1.2. Spoilage of bakery products	2
1.2.1. Physical spoilage	2
1.2.2. Chemical spoilage	2
1.2.3. Microbiological spoilage	5
1.2.3.1. Food spoilage concerns	5
1.2.3.2. Foodborne illness	6
1.3. Bacillus cereus	13
1.3.1. History	13
1.3.2. Taxonomy	13
1.3.3. Ecology	13
1.3.4. Growth and survival	14
1.3.5. Food poisoning symptoms	14
1.3.6. B. cereus toxins	18
1.3.7. Outbreaks	18
1.4. Importance of B. cereus in cereal products	19
1.4.1. Pasta	19
1.4.2. Rice	20
1.4.3. Bakery products	21
1.4.3.1. Bread	21

1.4.3.2. Crumpets	22
1.5. Control of B. cereus	22
1.5.1. pH	22
1.5.2. Water activity (a _w)	27
1.5.3. Preservatives	30
1.5.3.1. Chemical preservatives	33
1.5.3.1.1. Propionic acid and propionates	33
1.5.3.1.2. Sorbic acid and sorbates	33
1.5.3.1.3. Acetic acid and acetates	37
1.5.3.1.4. Sodium benzoate	37
1.5.3.1.5. Parabens	38
1.5.3.2. Natural preservatives	38
1.5.3.2.1. Cultured products	38
1.5.4. Irradiation	39
1.5.5. Modified atmosphere packaging (MAP)	40
1.5.5.1. Methods for atmosphere modification	42
1.5.5.1.1. Vacuum packaging	43
1.5.5.1.2. Gas packaging	43
1.5.5.1.3. Oxygen scavengers	45
1.5.5.1.4. Ethanol vapor generators	50
1.6. Objectives of research	54
2.0. Studies to control the growth of B. cereus in vitro	55
2.1. Introduction	55
2.1.1. Objectives	56
2.2. Materials and methods	56
2.2.1. Microorganism and inoculum preparation	56
2.2.2. Growth curve	56
2.2.3. Factors influencing growth of B. cereus (aw, pH,	57
and chemical inhibitors)	
2.2.3.1. Effect of water activity (a _w)	57
2.2.3.2. Effect of pH	58

2.2.3.3. Effect of potassium sorbate (KS) and calcium propionate	58
(CP) at various pH levels	
2.2.3.4. Combined effect of a_w , pH, and CP, on the growth of	62
B. cereus in TSBYE at 30°C	
2.3. Results and discussion	65
2.3.1. Growth curve of B. cereus	65
2.3.2. Inhibitory effect of water activity	65
2.3.3. Inhibitory effect of pH	70
2.3.4. Antimicrobial effect of CP at various pH levels	72
2.3.5. Antimicrobial effect of KS at various pH levels	72
2.3.6. Combined effect of a_w , pH, and CP, on the growth of	73
B. cereus at in TSBYE incubated at 30°C	
2.4. Conclusion	76
3.0. Further studies to control the growth of B. cereus in vitro	77
3.1. Introduction	77
3.1.1. Objectives	79
3.2. Materials and methods	79
3.2.1. Inoculum and media preparation	79
3.2.2. Effect of MAP on the growth of B. cereus in PEMBA	79
3.2.3. Effect of ethanol vapor generators alone, and in combination	80
with 100% CO₂ on the growth of B. cereus	
3.2.4. Headspace gas analysis	80
3.2.5. Headspace ethanol	81
3.2.6. Effect of UV-light on the growth of B. cereus in PEMBA	81
3.2.7. Effect of nisin, Alta, and Per/Lac on the growth of	82
B. cereus in TSBYE	
3.2.8. Effect of mono-lauryl maleate (MLM) on the growth	83
of B. cereus in TSBYE	
3.3. Results and discussion	87
3.3.1. Effect of MAP on the growth of <i>B. cereus</i> in PEMBA at 30°C	87

3.3.2. Effect of ethanol vapor generators alone, and in combination	87
with 100% CO ₂ , on the growth of B. cereus in PEMBA at 30°C	
3.3.3. Effect of UV-light on the growth of B. cereus in PEMBA plates	91
stored at 30°C	
3.3.4. Effect of nisin on the growth of B. cereus in TSBYE at 30°C	94
and various pH levels	
3.3.5. Effect of Alta and Per/Lac on the growth of B. cereus in TSBYE	96
at 30°C and various pH levels	
3.3.6. Effect of MLM on the growth of B. cereus in TSBYE at pH 8-9	96
3.4. Conclusion	100
4.0. Effect of packaging and processing on the growth of B. cereus in	101
English-style crumpets	
4.1. Introduction	101
4.1.1. Objectives	101
4.2. Materials and methods	102
4.2.1. Preparation of spore inoculum/sample inoculation	102
4.2.2. Crumpet formulation and inoculation	102
4.2.3. Effect of 600S Negamold® in combination with 100% CO ₂ ,	105
on the growth of B. cereusin crumpets	
4.2.4. Headspace gas analysis	105
4.2.5. Headspace ethanol	105
4.2.6. Effect of UV-light on the growth of B. cereus in crumpets	106
4.2.7. Effect of MLM on the growth of B. cereus in crumpets	106
4.2.8. Effect of batter pasteurization on the growth of B. cereus	106
in crumpets	
4.2.9. Sampling of crumpets	107
4.2.10. Ethanol content of crumpets	107
4.3 Results and discussion	110

4.3.1. Effect of Negamold® (600S) in combination with 100% CO ₂	110
on the growth of B. cereus in crumpets	
4.3.2. Ethanol content of crumpets	113
4.3.3. Effect of UV-light on the growth of B. cereus in crumpets	113
at 30°C	
4.3.4. Effect of MLM on the growth of B. cereus in crumpets	116
at 30°C	
4.3.5. Effect of pasteurization on the growth of B. cereus in crumpets	116
at 30°C	
4.4. Conclusion	119
5.0. General conclusion	120
References	122

LIST OF FIGURES

Figure 1. Minimum a_w values for the growth of spoilage microorganisms in	7
selected bakery products	
Figure 2. Growth curve of B. cereus	67
Figure 3. Growth of <i>B. cereus</i> versus optical density @ 625 nm	67
Figure 4. Standard curve of headspace ethanol vapor	84
Figure 5. Standard curve for ethanol content in crumpets	108
Figure 6. Changes in headspace ethanol over a 35 d storage period	112
Figure 7. Changes in headspace CO ₂ over a 35 d storage period	112

LIST OF TABLES

Table 1. Categories of bakery products found on supermarket shelves	4
Table 2. Bakery products associated with foodborne incidents	8
Table 3. Most frequent food categories implicated in foodborne disease	11
outbreaks by country	
Table 4. Number of foodborne outbreaks/case in Canada (1991-1993)	12
Table 5. Incidence of B. cereus in raw foods	16
Table 6. Incidence of <i>B. cereus</i> in processed foods	17
Table 7. Some types of spoilage typically associated with foods of certain	25
pH values	
Table 8. Minimum pH for microbial growth	26
Table 9. Minimal a_w for microbial growth at optimum growth temperature	29
Table 10. Antimicrobial spectra of preservatives used in foods	31
Table 11. Characteristics of a good preservative	32
Table 12. Suggested use levels of propionates in baked goods	35
Table 13. Suggested use levels of sorbates in baked goods	36
Table 14. Advantages and disadvantages of gas packaging of food	47
Table 15. Advantages and disadvantages of oxygen absorbents	48
Table 16. Types and properties of Ageless oxygen absorbents	49
Table 17. Types of ethanol vapor generators	52
Table 18. Advantages and disadvantages of ethanol vapor generators	53
Table 19. A _w adjustment of TSBYE using glycerol	59
Table 20. A _w adjustment of TSBYE using NaCl	60
Table 21. Levels of lactic acid or NaOH used to adjust pH of TSBYE	61
Table 22. Levels of KS and CP added to 100 ml TSBYE to obtain final	61
concentrations of KS and CP ranging from 0-1000 ppm	
Table 23. Coded level combinations for a 3 variable central composite	63
rotatable design (CCRD) to control the growth of B. cereus	
Table 24. Values of coded levels used in the CCRD	64

Table 25.	in TSBYE	68
Table 26.	Effect of aw, adjusted using NaCl, on the growth of B. cereus	69
	in TSBYE	
Table 27.	Effect of pH on the growth of B. cereus in TSBYE (a _w 0.99)	71
	and incubated at 30°C	
Table 28.	Antimicrobial effect of CP on the growth of B. cereus in TSBYE	74
	at pH 5-9 and incubated at 30°C	
Table 29.	Antimicrobial effect of KS on the growth of B. cereus in TSBYE	74
	at pH 5-9 and incubated at 30°C	
Table 30.	Combined effect of aw, pH, and CP on the growth of B. cereus	75
	in TSBYE and incubated at 30°C	
Table 31.	Levels of Nisin added to 100 ml TSBYE	85
Table 32.	Levels of Alta and Per/Lac added to 100 ml TSBYE	86
Table 33.	Levels of MLM added to 100 ml TSBYE	86
Table 34.	Effect of gas packaging on the growth of B. cereus in PEMBA	89
	plates stored at 30°C	
Table 35.	Combined effect of gas packaging and an oxygen absorbent	89
	Ageless (FX) on the growth of B. cereus in PEMBA plates	
	stored at 30°C	
Table 36.	Effect of Ethicap® and Negamold® on the growth of B. cereus	90
	in PEMBA at 30°C	
Table 37.	Effect of Ethicap [®] and Negamold [®] , in combination with 100%	90
	CO ₂ , on the growth of <i>B. cereus</i> in PEMBA at 30°C	
Table 38	Effect of UV-light (50 cm from UV source) on the growth of B.	92
	cereus in PEMBA at 30°C	
Table 39.	Effect of UV-light (2 cm from UV source) on the growth of B.	93
	cereus in PEMBA at 30°C	
Table 40.	Effect of nisin on the growth of B. cereus in TSBYE at 30°C and	95
	various pH levels	

Table 41. Effect of Alta and Per/Lac on the growth of <i>B. cereus</i> in TSBYE	98
at 30°C	
Table 42. Effect of MLM on the growth of B. cereus in TSBYE at	99
30°C and pH8-9	
Table 43. Ingredients used in crumpet formulation	104
Table 44. Levels of MLM added to 100g of crumpet batter to obtain final	109
concentrations of 0-3000 ppm	
Table 45. Effect of Negamold® (NM ₆)/100% CO ₂ on the growth of <i>B. cereus</i>	111
in crumpets	
Table 46. Effect of UV radiation and distance (2 cm from source) on the	115
growth of B. cereus in crumpets stored at 30°C	
Table 47. Effect of MLM on the growth of <i>B. cereus</i> in crumpets at 30°C	118
Table 48. Effect of pasteurization on the growth of <i>B. cereus</i> in crumpets	118
At 30°C	

Chapter 1 Introduction and Literature Review

1.1. Introduction

Bakery products are a very important part of a balanced diet and account for ~20% of the daily dietary protein intake of the average Canadian consumer (Smith and Simpson, 1996). The importance of bakery products has increased over the past decade due to consumer demands for whole, natural grain and preservative-free products of nutritious value. Global consumption of bakery products, along with cereals, has increased at an average rate of 25% per annum since 1970. The average human consumption of cereals per annum is about 50% of the total production. In 1984-1986, out of 1677 Mt (metric ton) of the world's total domestic supply of cereals, 49% was used for human food, 37% for animal feed, 10% for processing and other uses, and 4% for seed. According to Hunt and Robbins (1989) spending on bakery products accounted for approximately 9% of total food expenditures in Canada. In 1997, the Canadian bread and bakery sub-sector shipped \$2.30 billion of products, an increase of 36.5% from 1988 levels, and accounted for 4.2% of total food and beverage processing sector shipments (Canadian Bread and Bakery Industry, 2000). Meanwhile, the bakery industry in the United States marketed about \$22 billion of products (Smith and Simpson, 1996). The various categories of bakery products, with specific examples of types within each category, are summarized in Table 1. The majority of bakery products are marketed fresh, both at the wholesale and the retail levels; however, others are stored frozen since they include more perishable ingredients, e.g., meat or cream. Bakery products, like most processed foods, are subject to physical, chemical, and microbiological spoilage over time. Each type of spoilage is briefly reviewed.

1.2. Spoilage of bakery products

1.2.1. Physical spoilage

Physical spoilage is characterized by moisture loss or gain resulting in a loss of texture. This problem can be overcome by the use of appropriate packaging film i.e., low-density polyethylene (LDPE), which is a high barrier to moisture (Smith and Simpson, 1996). However, accumulation of moisture on a product's surface, if packaged too soon after baking, could result in conditions conducive to mold growth. Moisture loss and staling are of economic concern to the bakery industry. It has been estimated that ~\$ 1 billion of products are lost annually due to staling (Kulp, 1979). Staling is characterized by a change in starch, from an amorphous to a crystalline form, at temperatures below 55°C. Starch, in its crystalline form, binds less water, which results in a toughening of the crust and hardening of the crumb, a loss of flavor and an opaqueness in the crumb (Kent and Evers, 1994). Staling is dependent upon the storage temperature with maximum staling occurring at 4°C. Thus, temperatures of -20°C and above 55°C are required to prevent staling (Kent and Evers, 1994). Emulsifiers, such as monoglycerides, are often added as anti-staling agents. Other surfactants, referred to as dough conditioners, such as calcium and sodium stearoyl-2-lactylate, are added to strengthen the dough properties during production.

1.2.2. Chemical spoilage

Chemical spoilage e.g., rancidity, occurs in products which have a high fat content. Rancidity can result in off-odors making them unpalatable and hence decreasing the shelf-life of products. Two types of rancidity can be distinguished namely, oxidative and hydrolytic.

Oxidative rancidity involves a breakdown of unsaturated fatty acids by oxygen through an autolytic free-radical mechanism. This in turn will lead to the

formation of odorous aldehydes, ketones and short chain fatty acids (Smith and Simpson, 1996).

Hydrolytic rancidity, unlike oxidative rancidity, occurs in the absence of oxygen. It is enhanced by the presence of endogenous enzymes i.e., lipases and lipoxygenases and moisture. It results in the hydrolysis of triglycerides, release of glycerol, and malodorous short-chain fatty acids (Smith and Simpson, 1996).

Table 1. Categories of bakery products found on supermarket shelves

Categories of bakery products Types within each category Unsweetened goods Bread: sliced, crusty, partbaked ethnic-Rolls: soft, crusty Crumpets English muffins Croissants Pizza base Raw pastry Large cakes: plain, fruited Sweet goods Pancakes Doughnuts Waffles Cookies **Biscuits** American muffins Buns Wafers Filled goods Tarts: fruit, jam Pies: meat, fruit Sausage rolls **Pasties** Cakes: cream, custard Pizza Quiche

Adapted from Blakistone (1998)

1.2.3. Microbiological spoilage

Microbiological spoilage is often the major factor limiting the shelf-life of bakery products. Spoilage due to microbial growth causes economic losses for both manufacturers and consumers (Hickey, 1980). It is estimated that, in the U.S. alone, losses due to microbial spoilage are 1 to 3 % or over 90 million kg of products each year (Smith and Simpson, 1996). Among the intrinsic food-related factors, water activity (a_w) is the most important factor affecting microbial spoilage. The minimum a_w value for the growth of spoilage microorganisms and the a_w of selected baked goods is shown in Figure 1.

1.2.3.1. Food spoilage concerns

While mold growth is the most common form of spoilage in bakery products, yeast, and bacterial spoilage is also of concern. Mold growth usually occurs in products of high a_w . The majority of the molds found in white bread belong to the genus *Aspergillus* and *Penicillium* (Hartung *et al.*, 1973). Flour contains mold spores and therefore mold spoilage results from post-processing contamination. This occurs after baking of the product, during cooling and packaging, from contamination by airborne spores or contact with contaminated surfaces (Black *et al.*, 1993).

Yeast spoilage is due to wild species of yeast including *Pichia*, *Zygosaccharomyces*, and *Saccharomyces* strains (Graves *et al.*, 1967). Chalk bread occurs due to *Saccharomyces* spp., which produces white spots in the breadcrumb.

The major bacterial problem in high moisture bread is "rope" caused by Bacillus subtilis (also known as Bacillus mesentericus). Spores of B. subtilis can survive the baking process and then germinate and multiply when conditions are favorable for their growth (Volavsek et al., 1992). For instance, stacking of bread or underbaking can both provide moisture favorable for germination and subsequent growth of vegetative cells to levels that cause rope. Rope

development is fairly rapid, occurring within 12 hours of baking. Ropy bread is characterized by discoloration in the center of the loaf, softening of the crumb, and a sweet fruity odor which is similar to overripe pineapple (Kirschner and von Holy, 1989).

1.2.3.2. Foodborne illness

Although spoilage is of major concern to the food industry, bakery products have also been implicated in foodborne disease outbreaks. Egg-associated salmonellosis is a substantial public health problem. Unlike most *Salmonella* species, which contaminate only the eggshell, *Salmonella enteritidis* can be found inside eggs. In 1995 alone, 45,970 cases of salmonellosis were reported to the Centers for Disease Control and Prevention (Center for Disease Control and Prevention, 1996). The major source of *S. enteritidis* is grade-A table eggs (Shah et al., 1991). Cheesecake prepared from raw eggs has been reported in numerous outbreaks, the source being the raw eggs contaminated with *S. enteritidis*. In Canada, the major incidents of foodborne diseases associated with bakery products arose from pizza and pasta products, and to a lesser extent, cake and breads. Examples of the foodborne illnesses associated with bakery products are summarized in Table 2.

Figure 1. Minimum a_w values for the growth of spoilage microorganisms in selected bakery products (Blakistone, 1998)

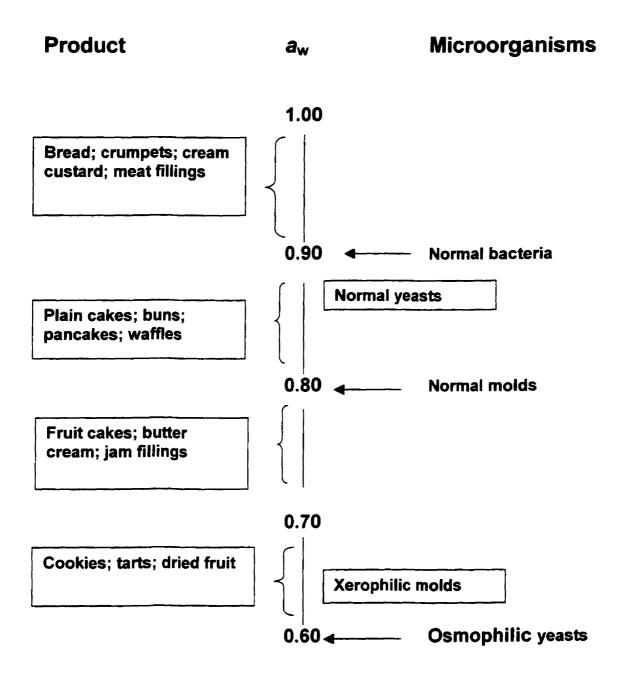


Table 2. Bakery associated with foodborne incidents

Product	1991	1992	1993
	(%)	(%)	(%)
Pizza	52	51.6	60.0
Cakes:			
Cheese cake	2.0	3.2	1.3
Other cakes	6.1	5.3	9.3
Pasta products:			
Canned ravioli	2.0	2.1	1.3
Lasagna	3.1	8.4	6.7
Spaghetti	2.0	6.3	4.0
Other pasta	6.1	4.2	4.0
Breads	4.1	1.1	N/A ^a
Cookies	4.1	N/A	1.3
Cereal	1.0	N/A	1.3
Muffins	1.0	N/A	1.3
Pastries	3.1	4.2	N/A
Pies and tarts	6.1	2.1	N/A

Adapted from Foodborne Disease-Reporting Center in Canada (1992-93)

^a Not available

The incidence of foodborne illnesses in developed countries is less than in developing countries (Gavarni, 1987; Bean and Griffin, 1990). The major reasons for these lower incidences are better manufacturing practices, stricter regulations for the production and handling of foods, good sanitary practices, and regulatory and inspection agencies.

In 1992, two deaths occurred in Canada. A fifteen-year old girl died of cardiac arrest following a hemolytic uremic syndrome arising from an infection of Escherichia coli O157: H7 after eating a hamburger at a family barbecue. In the following year, three deaths occurred. One of them occurred following an outbreak of Bacillus cereus. Between the years 1991 to 1993 in Canada, incidents associated with meat represented the largest hazard category, followed by poultry, marine food, bakery products, and to a lesser extent. Chinese foods. salads, vegetables, sandwiches, dairy foods, and beverages. The most frequent food categories implicated in foodborne disease outbreaks by country are shown in Table 3. The number of outbreaks, along with the number of cases in each outbreak between 1991 and 1993, are summarized in Table 4. Certain food types are implicated with foodborne diseases more frequently than others, especially when food is prepared under specific conditions and the environment is conducive to the growth of specific bacteria. The presence of a pathogen in the raw material results in a greater chance of contamination of the finished product. The incidence of Clostridium botulinum (non-proteolytic type E) outbreaks is high in fish products, due to the presence of the bacteria in the marine environment. Similarly, fruits and vegetables are contaminated by C. botulinum (type A and B) present in soils. Staphylococcal food poisoning is considered to be one of the world's most frequently occurring foodborne diseases, caused by toxins of Staphylococcus aureus. St. aureus are Gram-positive cocci, facultative anaerobes which cause food intoxication. They are mesophiles with a growth temperature range of 7-48°C. They are able to grow at low a_w (0.86), low pH (4.8), high salt concentrations up to 15 % and in the presence of NO₂. Some of the most commonly implicated foods involved in St. aureus outbreaks include

ham, corned beef, salami, salads, cream fillings, and cheeses i.e., foods high in salt or sugar.

Table 3. Most frequent food categories implicated in foodborne disease outbreaks by country

Food	Countries			
Meat	Canada (19%)			
	United States (16%)			
	Finland (34%)			
	England/Wales (36%)			
	Belgium (46%)			
Poultry	Scotland (43%)			
Bakery products	Poland (35%)			
	Portugal (37%)			
	Bulgaria (46%)			
	Switzerland (47%)			
Eggs/egg products	France (45%)			
	Spain (62%)			
Poisonous mushrooms	Hungary (47%)			
Chinese foods	Netherlands (30%)			

Adapted from World Health Organization (1992) and Todd (1994).

Table 4. Number of foodborne outbreaks/cases in Canada (1991-1993)

Microorganism	Number of outbreaks			Number of cases in outbreaks		
	1991	1992	1993	1991	1992	1993
Bacillus cereus	8	12	8	49	39	34
Campylobacter spp.	5	14	7	21	72	37
Clostridium botulinum	1	2	-	3	9	-
Escherichia coli	-	2	-	-	35	-
Listeria	-	-	2	-	-	4
monocytogenes						
Salmonella spp.	25	23	39	470	126	407
Staphylococcus	18	22	6	162	281	37
aureus						
Mold	4	-	1	83	-	4
Suspect yeasts	3	-	-	8	-	-

Adapted from Foodborne Disease-Reporting Center in Canada (1992-93)

1.3. Bacillus cereus

1.3.1. History

B. cereus was first isolated and described by Frankland and Frankland in 1887 (Baird-Parker et al., 1996). It was not until the 1950s that the role of B. cereus was firmly established as an agent of foodborne disease. Hauge (1950; 1955) was able to prove that this organism could actually cause foodborne illness by describing four outbreaks, all involving vanilla sauce. These outbreaks were characterized by watery diarrhea occurring 8-16 h after ingestion of the food. In 1971, an outbreak, characterized by nausea and vomiting, 1-5 h after ingestion of cooked rice, was reported. In all cases, B. cereus was implicated.

1.3.2. Taxonomy

The genus *Bacillus* is widely accepted as being a heterogeneous collection of Gram-positive, catalase positive spore-forming rods, which are facultative anaerobes but grow faster with the presence of oxygen (Claus and Berkeley, 1986). Group I *Bacilli* includes *B. cereus* and are defined as having a sporangium which is not swollen by the spore. Within this group are subdivisions of the species based on cell diameter. The large celled *B. cereus* has a cell diameter > $0.9 \, \mu m$.

1.3.3. Ecology

B. cereus is widely distributed in nature. It is found in soil, dust, cereal crops, vegetation, animal hair, fresh water, and sediments (Kramer and Gilbert, 1989). Although its presence in fish products is not well established, it is found in other raw agricultural commodities, especially foods of plant origin which are the major source of *B. cereus*. A survey by Nygren (1962) revealed that 52% of 1546 food ingredients, 44% of 1911 cream and dessert dishes, and 52% of 431 meat

and vegetable products were contaminated with *B. cereus*. This organism is also frequently found in milk and dairy products, particularly if cows are fed with silage or housed in barns. Approximately 9 to 48% of such products, including UHT-treated milk (48%), were found to contain *B. cereus*. The incidence of *B. cereus* in raw food is summarized in Table 5.

In processed foods, the presence of *B. cereus* is often associated with the ability of spores to survive the heat treatment process. The incidence of *B. cereus* in processed foods is shown in Table 6.

1.3.4. Growth and survival

Strains of *B. cereus* vary widely in their growth and survival characteristics. Some strains are psychrotrophic (being able to grow at temperatures of 4-5°C), whereas other strains are mesophilic (can grow between 15°C and 55°C). The optimal temperature for growth ranges between 30-40°C. Similarly, the minimal pH for growth varies among strains and also depends on the acidulant. In general, growth does not occur at pH 4.8 in media acidified with hydrochloric acid (HCl), or at pH 5.6 in media acidified with lactic acid.

1.3.5. Food poisoning symptoms

B. cereus causes two different types of poisoning: the diarrheal type, first recognized after a hospital outbreak caused by contaminated vanilla sauce in Oslo, Norway, (Hauge, 1950;1955), and the emetic type described twenty years later after several outbreaks associated with rice, in London, England (Mortimer and McCann, 1974).

The diarrheal illness has a longer incubation period, commonly 10-13 h, although incubation periods of 8-16 h have been reported. The gastroenteritis is usually mild with abdominal cramps, profuse watery diarrhea, rectal spasm and moderate nausea, usually without vomiting.

The emetic illness generally has an onset of ~1-5 h after consumption of the implicated food. Acute nausea and vomiting are the major symptoms of the emetic type illness with diarrhea being uncommon.

Table 5. Incidence of B. cereus in raw foods

Food	Number positive/ tested	Spores/ gram	Reference
Raw milk	N/A	0-10 ¹	Stadhouders & Driessen (1992)
Rice	6/13	10 ² -10 ³	Lee & Chang (1980)
Flour	25/25	0-10 ¹	Eyles <i>et al.</i> (1989)
Fish	4/10	10²-10⁴	Kamat <i>et al.</i> (1989)
Meat chicken	8/10	10 ³ -10 ⁴	Kamat <i>et al.</i> (1989)
Beans	5/9	<10 ² -10 ³	Blackey and Priest (1980)
Cocoa	2/6	10 ³ -10 ⁵	te Giffel <i>et al</i> . (1996)
Dried potatoes	8/20	10 ² –10 ³	Kusunoki <i>et al</i> . (1977)
Powdered spices	5/7	10 ³ -10 ⁴	Kamat <i>et al.</i> (1989)

Table 6. Incidence of B. cereus in processed foods

Food	Incidence	Spores/gram	Reference
Bakery products	9/10	10 ³ –10 ⁴	te Giffel et al. (1996)
Boiled rice	25/252	10 ² -10 ⁵	Gilbert and Parry (1977)
Chinese meals	15/18	10 ³ –10 ⁵	te Giffel et al. (1996)
Meat products	9/10	10 ² -10 ⁴	te Giffel <i>et al.</i> (1996)
Milk	56/157	10 ¹ -10 ⁴	te Giffel <i>et al.</i> (1996)
Pasta products	4/8	10 ⁴	te Giffel et al. (1996)
Pastries	23/212	10 ¹ -10 ⁴	Kusunoki et al. (1977)
Ice cream	48/100	10 ¹ -10 ³	Ahmed <i>et al.</i> (1983)
Vanilla slices	55/133	10 ² -10 ³	Pinegar and Buxton (1977)
Egg yolk powder	10/34	<10 ² -10 ³	van Netten and Kramer (1992)

1.3.6. B. cereus toxins

Recent studies have shown that at least two different *B. cereus* toxins exist. The diarrheal enterotoxin is heat labile (inactivated by 56°C for 5 min, but not 45°C for 30 min), unstable at pH values beyond the range of 4-11, and sensitive to proteolytic enzymes. Toxin activity is reduced with an increase in temperature. Little is known about the emetic toxin due to poor purification techniques. However, it has been shown to be stable at high temperatures (121°C for 90 min) and pH values ranging from 2-11 (Shinagawa, 1993). This toxin is most commonly found in rice and other starchy food products.

1.3.7. Outbreaks

In the United States, federal regulatory agencies define foodborne disease as an outbreak "when two or more people become sick with a similar illness (symptoms) from the consumption of the same food(s) from the same source, and the epidemiological investigations implicate, either directly or indirectly, the same food(s) from the same source as the cause of the illness". However, in the case of botulism, for instance, due to a high fatality rate, even when only one person has the illness, it is considered an outbreak. For chemical poisoning, a single case is also considered an outbreak (Bibek, 1996).

The incidence of foodborne gastroenteritis from *B. cereus* is relatively high in some European countries (Bean *et al.*, 1990). In contrast, the incidence is relatively low in the United States. In the United States, it was first recognized as a causative gastroenteritis agent in 1969. However, between 1973 and 1987, 58 outbreaks, involving 1123 cases, were reported. Both the incidence of outbreaks and the number of cases per outbreak were low and no fatalities were reported. However, as the symptoms are not severe and last for only 12 h, many cases may not be reported. Moreover, foodborne illness transmitted through milk may affect only a few persons in many homes and, thus, would not be considered as

an outbreak. Another factor may be that milk drinkers can acquire some immunity through continuous ingestion of small amounts of *B. cereus*.

The dominant type of illness from *B. cereus* differs from country to country, depending on the eating habits of its population. In Japan, for instance, the emetic illness is reported about ten times more frequently than the diarrheal illness (Shinagawa, 1993). In Europe and North America, the diarrheal type is most frequently reported (Kramer and Gilbert, 1989). Several reports indicate that some patients have suffered from both types of *B. cereus* illnesses simultaneously. Countries also have different reporting procedures for foodborne illnesses, making comparison for foodborne outbreaks among them a tedious task. The percentage of reported outbreaks and cases attributed to *B. cereus* in Japan, North America, and Europe vary from about 1 to 22 % of outbreaks and from about 0.7 to 33% of cases (reports from different periods between 1960 and 1992) (Aas *et al.*, 1992).

The Netherlands and Norway were among the first countries to report outbreaks due to *B. cereus*. Recent outbreaks in Norway were associated with stew with the infective dose being estimated at 10⁴ to 10⁵ CFU/g. Of the 17 people affected, 3 were hospitalized for 1-3 weeks (Granum, 1994). The second outbreak in 1995 involved 152 cases among competitors at the Norwegian junior ski championship (Granum *et al.*, 1993). The young athletes (16 to 19 years old) had the most severe symptoms, while their coaches and officials were not affected. The onset of symptoms for many patients was more than 24 h, and the duration of illness varied from two to several days.

1.4. Importance of B. cereus in cereal products

1.4.1. Pasta

Studies in Australia have shown that the incidence of *B. cereus* in pasta products is ~50%. However, counts of this bacteria in pasta products were <10⁴CFU/g i.e., below the levels which would be of public health significance

(10⁵CFU/g), (te Giffel *et al.*, 1996). The most conducive factor for growth of *B. cereus* is cooking temperature which can induce spore germination. Furthermore, the slow cooling of the product and storage of large amounts of food at temperatures between 10°C and 50°C will enhance the growth of vegetative cells. If food needs to be kept warm, it should be maintained at a temperature of 60°C to be safe. Conventionally, the drying temperature for pasta is about 55°C.

In some countries the drying temperature of pasta has been increased to 75°C and in other countries to 100°C. This has resulted in a better quality and safer product as well as a reduced drying time. Precautions which need to be adhered to in order to prevent the growth of either *B. cereus* or other microorganisms in pasta include:

- (i) Frequent and thorough cleaning of machinery;
- (ii) Pasta should be dried or refrigerated promptly after manufacture;
- (iii) Liquid eggs, if used, should be pasteurized;
- (iv) Pasta dough, or dried pasta dough, should always be boiled prior to consumption.

1.4.2. Rice

Boiled rice, and more frequently fried rice, usually contains high levels of *B. cereus* (10³-10⁴CFU/g). According to the Food Disease-Reporting Center in Canada, fried rice was involved in a number of incidents from 1991 to 1993. However, the percentage of these incidents decreased from 8.2% in 1992 to 3.5% in 1993. Factors conducive to the growth of *B. cereus* include, low cooking temperatures (<100°C), and the time elapsed between cooking and consumption. When rice is allowed to cool slowly, spores germinate and rapid cell multiplication occurs when rice is stored between 10-50°C before being served i.e., conditions which are favorable to the growth of *B. cereus*. Raw rice has a certain level of *B. cereus* naturally present upon harvesting. This initial level of bacteria is insufficient to cause illness; however, it can reach infectious levels when rice has been inadequately cooked or stored improperly. This

problem could be easily overcome by cooling the food rapidly after cooking and storing it at <10°C. If it is to be consumed hot, rice should be maintained at 60°C or higher. In addition to strict temperature control, attention should be paid to good hygiene practices during preparation and storage of rice.

1.4.3. Bakery products

1.4.3.1. Bread

Despite the frequent contamination of flour, bread is rarely a source of B. cereus. One survey found B. cereus in 1 of 46 bread samples tested (Rosenkvist and Hansen, 1995). This could be due to the fact that bread has a lower aw (aw <0.95). In another survey (te Giffel et al., 1996), B. cereus was found at levels of 10³ and 10⁴ CFU/g in 9 out of 10 bakery products tested. However, it is possible that they were present in cream or custard filled products, which have sometimes been associated with food poisoning outbreaks (Fenton et al., 1984). The presence of B. cereus in food at levels <103 CFU/g is considered innocuous since the minimum level required to cause an illness has been estimated to be >10⁵ CFU/g (Hobbs and Gilbert, 1974). A study of bread production showed that growth of B. cereus was unlikely unless the dough contained a high level of spores. A lag time of at least 24 h occurred before growth commenced, and, preservatives, such as calcium propionate, were effective in delaying growth of Bacillus (Kaur, 1986). B. cereus can also be found in liquid and powdered egg yolk (van Netten et al., 1990) and can seriously affect the shelf-life of products. According to the Foodborne Disease-Reporting Center in Canada, foodborne incidents related to bread have decreased from 4.1 % to 1.1 % between 1991 and 1992. Moreover, B. cereus was not related to any of the previously mentioned incidents including the year 1993.

1.4.3.2. Crumpets

Crumpets are high moisture flour based products containing yeast, an aerating agent, or both, to give them a raised profile and open texture after baking. They are produced from flour, instant yeast, milk powder, baking soda, salt, and water. Greased cylindrical molds are filled with the crumpet batter and then baked on a hot plate, only cooking the bottom of the product. They have been implicated in many outbreaks of food poisoning. This is mainly due to the growth and toxin formation by naturally occurring B. cereus. The presence of B. cereus was noticeable after 5 days at ambient temperature (Jenson et al., 1994). Spores in the batter which come in direct contact with the hot plate, do not survive the cooking temperature. However, surface spores can easily survive baking and, upon germination, produce toxin. Crumpets have a short shelf-life, i.e., < 6 days, due to the fact that crumpets have a non-acidic pH (6 to 8), a high moisture content (48 to 54%), and also a high water activity (aw) (0.95 to 0.97). All of these factors make crumpets an ideal substrate for microbial growth. A recent study conducted by Jenson et al. (1994), proved the efficacy of using nisin, a bacteriocin produced by Lactococcus lactis, as an antimicrobial agent to control the growth of B. cereus in crumpets. It was the first time that nisin had been used in a flour-based product. As a result, regulations in Australia now allow the use of nisin in crumpets and similar high moisture flour-based products to control the growth of this important pathogen.

1.5. Control of B. cereus

1.5.1. pH

When microorganisms were implicated in food spoilage and foodborne diseases, methods to control their growth were investigated. One such method is pH.

In the unprocessed state, most foods, such as meat, fish, and vegetables are slightly acidic, most fruits are moderately acidic, while a few foods, such as egg white, are alkaline. The acidity of a food can be used to enhance its microbiological stability and to ensure its safety. For example, acidity is the primary factor in preserving acidic foods, such as yogurt, sauerkraut, and pickles. Examples of acid/alkaline foods which are contaminated by different microorganisms are shown in Table 7. Microorganisms vary in their ability to grow at low pH levels. The minimum pH for growth of different types of bacteria, molds and yeasts is summarized in Table 8.

In general, Gram-negative bacteria are more sensitive to low pH than Gram-positive bacteria, while yeast and molds are the least sensitive to acidic conditions. Fermentative bacteria are more resistant to lower pH than respiring bacteria, probably because they are able to resist changes in the external pH, as well as withstand slightly lower internal pH. The ability of yeast and molds to withstand low pH is also due to these factors (Baird-Parker, 1980). Some microorganisms in food, such as *Salmonella* strains, may be controlled by pH lower than 4.0, but even lower pH values or a combination of low pH and other factors, such as low temperature, are needed to control coliforms. In many meat products the growth of salmonellae is restricted by the growth of lactic acid producing organisms (i.e., *Lactobacillus* spp.). Since these foods have a high buffering capacity, large amounts of acid are produced without a corresponding decrease in pH. In poorly buffered foods, such as pickles, much less activity by similar acid producers will produce inhibitory concentrations of weak acids.

Most meat products do not have sufficiently low pH values and high salt concentrations to completely inhibit *C. botulinum* (Riemann *et al.*, 1972). However, *C. botulinum* does not grow in pickles containing acetic acid (0.9-1.8%, v/v) and outgrowth of spores is inhibited at pH 4.8, but not at pH 5.0.

When *B. cereus* was inoculated into canned foods, including fruit, vegetables, soups, and meat (pH values ranging from 3.64 to 6.3), no growth was observed below pH 5.0. At pH values above 5.15, the extent of growth was proportional to pH (Pivovarov and Kukhto, 1970). In laboratory media, *B. cereus*

may grow over a pH range of 4.9-9.3 (Goepfert *et al.*, 1972). However, meat and rice products are less inhibitory than laboratory media, supporting growth at pH 4.35 (Raevuori and Genigeorgis, 1975). The effect of pH and NaCl on the growth of both *B. cereus* and *St. aureus* varies with the strain and growth medium used. At decreasing pH values, a larger inoculum is needed to initiate growth, while both high NaCl concentrations and extreme pH values are needed to inhibit the growth of *B. cereus* (Raevuori and Genigeorgis, 1975).

Table 7. Some types of spoilage typically associated with foods of certain pH values

Type of food	Examples	pН	Spoilage	Reference
		range	microorganism	
Alkaline	Egg albumen	~9.6	Pseudomonas spp.,	Board (1969)
			Aeromonas spp.	
Neutral	Milk	7.6-6.8	Bacillus spp.,	Ingram (1962)
			Micrococcus spp.	
Low acid	Raw beef	5.8-5.4	Staphylococcus,	Labadie et al. (1975)
			Micrococcus spp.	
Medium acid	Cheese	4.5	Bacillus nigificans,	Jay (1970)
			Aerobacter spp.	
Acid	Mayonnaise	4.1-3.0	Saccharomyces	Jay (1970)
	Tomato, fruits	4.0	Bacillus coagulans	
High acid	Pickles, juice,	3.9-3.5	Molds, yeast, some	Jay (1970)
	salad dressing		lactic acid bacteria	
	Citrus fruits	3.5-3.0	Penicillium italicum	Eskin <i>et al.</i> (1971)

Table 8. Minimum pH for microbial growth

Microorganism	Minimum pH	
Gram-negative bacteria		
Escherichia coli	4.4	
Pseudomonas spp.	5.6	
Salmonella spp.	4.5	
Vibrio spp.	4.8	
Gram-positive bacteria		
Bacillus cereus	4.9	
Bacillus stearothermophilus	5.2	
Clostridium botulinum	4.6	
Clostridium perfringens	5.0	
Enterococcus faecalis	4.4	
Lactobacillus spp.	3.8	
Staphylococcus aureus	4.0	
Listeria monocytogenes	4.6	
Yeasts		
Candida spp.	1.5-2.3	
Saccharomyces spp.	2.1-2.4	
Molds		
Aspergillus spp.	1.6	
Penicillium spp.	1.6-1.9	

1.5.2. Water activity (a_w)

The growth and metabolism of microorganisms requires the presence of water in an available form. The most useful measurement of the availability of water is water activity (a_w). The main objective of reducing a_w in food is to prevent or reduce the growth of vegetative cells and germination and outgrowth of spores of microorganisms (Christian, 1980).

Solutes are often used to reduce a_w and they differ in their ability to do so. The amounts of NaCl, sucrose, glucose, and inverted sugar (%w/w) necessary to reduce the a_w of pure water at 25°C to 0.99 are 1.74, 15.45, 8.9, and 4.11 g respectively. To reduce a_w to 0.92, 11.9, 54.34, 43.72, and 32.87g of these solutes are required respectively. These solutes do not freely enter the microbial cell and thus have a greater inhibitory effect on microbial cells compared to solutes that enter freely into cells, (e.g., glycerol), which are required in higher amounts for similar inhibition.

Studies on minimal aw values to support the growth of specific microorganisms have generated conflicting data. This could be due to the inherent problems with different techniques to measure a_{w} . However, with modern electronic hygrometers, this problem is minimized (Sperber, 1983). Minimal a_w values for growth, as well as the influence of a_w on viability loss of microorganisms vary with the characteristics of the food and the food environment. In a homogeneous food, aw will remain unchanged provided other factors remain constant. However, a heterogeneous food, ingredients or items of different $\mathbf{a}_{\mathbf{w}}$ (e.g., sandwich or a meal with different items in the same package) will generate an aw gradient. This can lead to microbial growth in products preserved by aw alone and stored with products of high aw containing a preservative. In addition, condensation of water during storage with temperature fluctuation, followed by dripping of moisture onto food, can alter a safe a_w level to an unsafe level. Microorganisms differ greatly in their minimal aw requirements for growth, sporulation, and germination (Table 9). In general, molds and yeasts can grow better at lower aw values than bacteria. Among pathogenic and spoilage

bacteria, Gram-negative bacteria require a slightly higher a_w than Gram-positive bacteria for growth. Sporulation by spore forming bacteria occurs at a_w values in which the species-strain will grow. Toxin production may occur at the a_w of growth or at a slightly higher a_w than the minimum required for growth. Meanwhile, the minimum a_w for microbial growth can vary with the type of solutes in a food. C. botulinum type E failed to grow below a_w 0.97 when NaCl was used as a solute, but grew up to a_w 0.94 when glycerol was the solute (Sperber, 1983). This is because glycerol enters freely inside the cell and thus does not cause as much osmotic stress as non-permeable NaCl, sucrose, and similar solutes.

Among microbial groups, halophiles, osmophiles, and xerophiles grow better at lower a_w values. Halophiles, such as some *Vibrio* spp., need NaCl in varying amounts for growth. Osmophilic bacteria and xerophilic bacteria, yeasts, and molds grow at $a_w < 0.85$, as they have no competition from bacteria. Optimum growth of most microorganisms in food occurs at a_w greater or equal to 0.98. At $a_w > 0.98$, Gram-negative bacteria, due to their faster growth rate, predominate if other needs for optimum growth are met. As the a_w decreases to 0.97, Gram-positive bacteria, such as bacilli, lactobacilli, micrococci, and clostridia, will be predominant. Below a_w 0.93, Gram-positive bacteria such as micrococci, staphylococci, enterococci, and pediococci, as well as yeasts and molds are able to grow. As the a_w decreases below 0.86, osmophilic yeasts and xerophilic molds dominate. They will be able to grow in foods with a_w up to 0.6; at an a_w below 0.6, microbial growth stops (Sperber, 1983).

Table 9. Minimal a_w for microbial growth at optimum growth temperature

Microorganisms

	Aw		Aw
Bacteria		Yeasts	
Bacillus cereus	0.95	Saccharomyces cerevisiae	0.90
Bacillus stearothermophilus	0.93	Saccharomyces rouxii	0.62
Clostridium botulinum type A	0.95	Debaromyces hansenii	0.83
Clostridium botulinum type B	0.94		
Clostridium botulinum type E	0.97	Molds	
Clostridium perfringens	0.95	Rhizopus nigricans	0.93
Escherichia coli	0.95	Penicillium chrysogenum	0.79
Salmonella spp.	0.95	Penicillium patulin	0.81
Vibrio parahaemolyticus	0.94	Aspergillus flavus	0.78
Staphylococcus aureus	0.86	Aspergillus niger	0.77
Penicillium fluorescens	0.97	Alternaria citri	0.84
Lactococcus viridescens	0.94		

Adapted from Bibek (1996)

1.5.3. Preservatives

Preservatives are used in food in relatively small amounts, either to kill undesirable microorganisms, to prevent or retard their growth. They vary greatly in their ability to act against different microorganisms. Preservatives that inhibit or retard microbial growth are called fungistatic or bacteriostatic. However, the allowable limits of preservatives used in foods, cannot completely kill all the microorganisms or prevent their growth for a long time during storage. There are two types of preservatives: chemical and natural.

The Code of Federal Regulations (CFR) defines a chemical preservative as "any chemical that tends to prevent or retard deterioration when added to food" (CFR, 1992). The concentrations of undissociated acid required to inhibit growth of most strains in microbiological media is illustrated in Table 10.

Natural preservatives are ingredients, such as cultured products, vinegar, or raisins. They are typically used in baked products marketed as "preservative-free" products. A good chemical or natural preservative must have several features, which ensures its acceptance and justifies its use as described by King (1981) in Table 11.

There is a wide variety of chemical preservatives being used in today's processed foods; however, not all preservatives are used in bakery products for suitability, and specificity purposes. The commonly used chemical preservatives in bakery products are calcium propionate, sodium propionate, sorbic acid, potassium sorbate, sodium diacetate, methylparaben, propylparaben, sodium benzoate, ethyl alcohol, and acetic acid.

Table 10. Antimicrobial spectra of preservatives used in foods

Organic acids	Yeasts	Molds	Enterobacteriacea	Micrococcaceae	Bacillaceae	
	Minimum levels required for inhibition (% w/w)					
Acetic acid	0.5	0.1	0.05	0.05	0.1	
Benzoic acid	0.05	0.1	0.01	0.01	0.02	
Citric acid	>0.005	>0.005	>0.005	0.001	>0.005	
Lactic acid	>0.01	>0.02	>0.01	>0.01	>0.03	
Parabens:						
Methyl	0.1	0.1	0.2	0.4	0.2	
Ethyl	0.1	0.05	0.1	0.1	0.1	
Propyl	0.01	0.02	0.1	0.05	0.05	
Propionic acid	0.2	0.05	0.05	0.1	0.1	
Sorbic acid	0.02	0.04	0.01	0.02	0.02	

Adapted from Chichester and Tanner (1972)

Table 11. Characteristics of a good preservative

Broad antimicrobial spectrum

Non-toxic to humans

Effective at low concentration

Little effect on pH

Free of odor, color, and flavor at levels used

Available in dry form

Water soluble

Non-corrosive

Stable during storage

No adverse effects on fermentation or loaf characteristics

Cost effective to use

Adapted from King (1981)

1.5.3.1. Chemical preservatives

1.5.3.1.1. Propionic acid and propionates

Propionic acid and its salts, called propionates, were patented in 1939 as mold inhibitors. They have also been shown to be effective in controlling the rope-causing bacterium, B. subtilis (O'Leary and Kralovec, 1941). Although propionic acid has a higher antimicrobial activity, propionates are more commonly used in bakery products due to the fact that, unlike propionic acid, propionates are non-corrosive and possess only a slight odor which is not noticeable in baked goods. There are two types of propionates, sodium and calcium propionate. These are white, free flowing powders, and recently offered in low dust form. They are effective against molds, but have little activity against bacteria (with the exception of B. subtilis) and no activity against yeasts. The antimicrobial activity of calcium propionate is optimized at pH values between 4.5-6.0. They blend well with other baking ingredients and do not alter color, taste, volume, or baking time at normal use levels (Chichester and Tanner, 1972). Either calcium or sodium propionate can be used in yeast-leavened products; however, calcium propionate is preferred because of its contribution to nutritional enrichment, ease of handling, and cost effectiveness. The calcium ion can affect the leavening action of baking powder and other chemical-leavening agents. When sodium propionate is used, it replaces an equal weight of salt (Na chloride) in the formula (Hebeda and Zobel, 1996). Suggested levels of use of propionates in bakery products are shown in Table 12.

1.5.3.1.2. Sorbic acid and sorbates

Sorbic acid and its salts, called sorbates, are effective preservatives in a wide variety of foods. In baked goods, sorbic acid and potassium sorbate are utilized as antimicrobial agents. While potassium sorbate is substantially more water-soluble than sorbic acid, its potency is only 74% of the potency of sorbic

acid on an equivalent weight basis. This means that 4 parts of potassium sorbate are needed for 3 parts of sorbic acid (Hebeda and Zobel, 1996). Sorbates are relatively tasteless and odorless and are not noticeable in baked goods at normal use levels.

Sorbic acid and sorbates have a broad-spectrum activity against yeasts and molds, but have little activity against bacteria, with the exception of *B. subtilis*. Sorbates are functional preservatives in foods of pH values ranging from 4-7 and with an optimum pH of 5.5-6, hence the antimicrobial activity of sorbates increases with an increase in acidity. Sorbates are twice as effective than propionates in inhibiting mold growth in bakery products, but have an adverse effect on yeast, reducing loaf volume and making dough sticky and difficult to process (Legan, 1993). This problem can be overcome by either spraying sorbate onto the product's surface after baking or mixing anhydrates of sorbic acid with fatty acids, such as palmitic acid. Moreover, sorboyl palmitate has also been successful in controlling mold growth without interfering in the fermentation process. The heat of the baking process hydrolyses sorboyl palmitate and releases sorbic acid which inhibits molds during storage (Sofos, 1989). The suggested levels of sorbates used in baked goods are shown in Table 13.

Sorbates can be applied to bakery products in different ways, including direct addition into the formulation, spraying onto the product as an aerosol, or incorporation into the packaging material (Sofos, 1989). The benefits of surface application of sorbate involve lowering yeast cost up to 20% in some systems, decreasing mixing time by 25%, reduced customer complaints due to spoilage in the home, reduced returns of unsold products, inhibition of mold growth, no adverse sensory qualities in the product (Monsanto Company, 1977).

Table 12. Suggested use levels of propionates in baked goods

Product type	Propionate level oz/100 lb. flou	
Breads	Use calcium/sodium propionate	
White breads, buns, rolls, specialties	2.5-5	
Dark bread, whole or cracked wheat rye breads, buns, rolls, etc.	3-6	
English muffins	6.5-12	
Pita bread	4-5	
Tortillas/ soft tacos	4-5	

Table 13. Suggested use levels of sorbates in baked goods

Product	Use level oz/100 lb. flour	Method of application
Breads		
Breads, buns, rolls, etc.	1-6	Surface spraying
Tortillas	1.25-3	Dry blend
	% of batter weight	Dry blend with:
Cakes		
Cheese cake	0.1-0.3	Sugar/milk powder
Chocolate cake	0.1-0.3	Flour
Fruit cake	0.1-0.4	Flour
Pies		
Pie crusts	0.05-0.1	Flour/dough
Pie fillings	0.05-0.1	Flour/add and agitate after heating

Adapted from Hebeda and Zobel (1996)

1.5.3.1.3. Acetic acid and acetates

Acetic acid is soluble in water and has a pK_a value of 4.76. The main reasons for using it as a food preservative are its low cost, its availability, and its low toxicity. Salts of acetic acid, known as acetates, not only have antimicrobial activity, but they can be also used as acidulants, flavoring agents, and sequesterants. Purified acetic acid is corrosive, solid at about 60°F, and dangerous since its vapors are flammable and harmful if inhaled. For these reasons, it is always better to work with acetates in food products. It has been found that acetic acid has a greater activity against yeasts and bacteria than molds. Moreover, acetic acid and acetates have a greater antimicrobial activity as the pH is lowered, due to increasing quantities of the undissociated acid. In baked goods, sodium diacetate is preferred over acetate, because of its effectiveness against rope formation. However, in order to prevent interference with the leavening of yeasts, 0.4 % is usually used.

1.5.3.1.4. Sodium benzoate

Sodium benzoate has been used for over 80 years now and has been affirmed as Generally Recognized as Safe (GRAS). Sodium benzoate is more effective against bacteria and yeasts than molds, and has an antimicrobial activity that is optimized at a pH range of 2.5-4.0. This characteristic limits its use in bakery products to fruit fillings, jams, and jellies. In cases where lower sodium levels are required in a food product, potassium benzoate is used instead. Potassium benzoate can replace sodium benzoate in almost every application. However, to obtain the same efficacy as sodium benzoate, approximately 10% more potassium benzoate should be used (Hebeda and Zobel, 1996).

1.5.3.1.5. Parabens

These are alkyl esters of *p*-hydroxybenzoic acid and have been widely used in pharmaceutical products and cosmetics for many years. It was found that they could be used in some food products as antimicrobial agents. This is mainly due to the similarity of parabens to benzoic acid and their effectiveness over a broad pH range. They are more effective against molds and yeasts, but less effective against bacteria. However, molds and yeasts are more responsible for spoilage in an acidic environment, where they could be controlled by other less expensive antimicrobial agents.

The most common forms of parabens which are widely used in food products are methyl and propyl-parabens. They are both regarded as GRAS, and have a white color and present in the form of a free-flowing powder. Methyl-paraben has a faint color and an objectionable medicinal taste, while propyl-paraben is odorless. The use of parabens in baked goods is functionally limited, due to their activity against yeast that act as leavening agents for the dough. Basically, parabens are used as antimicrobial agents in cakes (particularly fruitcakes) pie crusts, non-yeast pastries, icings, fruit jellies and toppings at levels ranging from 0.01 to 0.1%.

1.5.3.2. Natural preservatives

1.5.3.2.1. Cultured products

Cultured products are produced by fermenting either wheat or whey with food-grade bacterial cultures. Microorganisms produce different organic acids, such as propionic acid, acetic, and lactic acid as by-products of fermentation. The fermentation solution is neutralized to prevent the evaporation of the volatile organic acids, converted to their salt forms and then dried. The higher cost incurred by using natural cultured products, instead of chemical agents, has made their use uneconomical. Moreover, higher amounts must be applied when

using natural antimicrobial agents to obtain a similar efficacy. For example, 15 g of a 20% natural calcium propionate is equivalent to 3 g of calcium propionate.

Nisin, a bacteriocin produced by *Lactococcus lactis*, has been widely used as a food preservative for many years now. It is accepted as safe for food in many countries and regarded as GRAS in the United States. Nisin has proved to be effective against Gram-positive bacteria, especially the spore formers such as *Bacillus and Clostridium* spp. In vegetative cells, nisin acts as a surface-active cationic detergent, destabilizes the cytoplasmic membrane. In spores, it allows them to germinate but inhibits outgrowth of the pre-emergent spore. In general, spore coats of *Bacillus* species, which are opened by mechanical pressure, are more sensitive to nisin than species whose spore coats are opened by lysis. At a molecular level, nisin modifies the sulfhydryl groups in the envelopes of germinated spores (Doyle *et al.*, 1997). Nisin is more soluble and stable at pH levels < 4, and usually loses its antimicrobial activity at pH levels >8. Nisin's efficacy is also dependent on the ease of its molecular dispersion in food systems, which is greatly affected by the lipid content and nature of lipid distribution in a food.

Food in which nisin is used include pasteurized processed cheese products, dairy desserts, cured meat and high moisture baked products, such as crumpets and pikelets, and canned foods where there is a need to control the outgrowth of bacterial spores (Jenson *et al.*, 1994). When added to crumpet batter at levels of 3.75 μg/g, nisin restricted the growth of naturally occurring *B. cereus* during ambient storage to levels below those capable of causing food poisoning (Jenson *et al.*, 1994). It was also found that the growth of 12 psychrotrophic strains of *B. cereus* in skim milk was inhibited by 6.25 μg at 7°C while 2 strains could grow in the presence of 1.25 μg (Dufrene *et al.*, 1995).

1.5.4. Irradiation

It should be noted that, microorganisms vary greatly in their sensitivity to irradiation. For instance, molds are more sensitive than yeasts, which are more

sensitive than bacterial cells; bacterial cells in turn are more sensitive than viruses. Among bacteria, Gram-negative are more sensitive than Gram-positive, and rods are more sensitive than cocci. Spores are quite resistant to irradiation, and this is mainly due to their low water content. Among the spore formers, spores of *Clostridium botulinum* type A and *Bacillus pumilus* are probably the most resistant to irradiation. Generally, *Bacillus* spores (aerobes) are more sensitive than *Clostridium* spores (anaerobes). Irradiation is most commonly used in foods like roast beef, pork, fresh fish, and gravy meals, to improve their microbiological and sensory quality. However, it is not a commercially viable method of control for bakery products.

1.5.5. Modified atmosphere packaging (MAP)

Modified atmosphere packaging or MAP has become increasingly popular as a preservation method to extend the mold-free shelf-life of bakery products. MAP has been defined as "the enclosure of a food product in a high gas barrier film in which the gaseous environment has been changed or modified to slow respiration rate, reduce microbial growth, and retard enzymatic spoilage with the intent of extending shelf-life" (Young et al., 1988). MAP technology has been more successful in the European countries than in North America. Currently, the United Kingdom is the leader in MAP technology, accounting for about half of the European market, followed by France which has approximately 25% of the MA packaged food market. As for North America, MAP is still in its infancy. This is mainly due to customer/regulatory concerns about the safety of this technology. Several factors have played a major role in the growth of MAP in Europe and these are:

1. Developments in new polymeric barrier packaging materials

New developments in polymer chemistry have produced packaging films with different barrier properties to air, water vapor, and gases. Also, the

production of laminates has allowed variable heat sealability and strength as well as permeability characteristics. This has allowed food to be packaged/maintained under MA conditions (Smith and Simpson, 1996).

2. Extended market areas

Recent marketing strategies emphasize the importance and necessity of globalization. The aim of the bakery industry is to satisfy the needs and demands of consumers on a regional basis. However, with new trends in marketing, it is essential that the bakery industry targets consumers on a national and even international basis. To achieve these goals, food packaging must be done in a way to help extend a product's shelf-life. MAP food can achieve such goals. A good example is Forecrest Foods of Calgary, Alberta, which produced crumpets. Prior to gas packaging, this product had a mold-free shelf-life of ~4 days. However, the mold-free shelf-life could be extended to 28-35 days through reformulation and gas packaging in 60% CO₂. This allowed the distribution of these crumpets all around Canada and into U.S. markets. Consequently, sales of crumpets quadrupled (Smith and Simpson, 1996).

3. Consumer concerns about preservatives

Many consumers nowadays are concerned about the use of preservatives in food and are demanding preservative-free food. The use of MAP is an alternative to preservatives and the gases used in MAP (CO₂, N₂) are all natural (Smith and Simpson, 1996).

4. Increasing energy costs

The conventional methods of preservation, such as freezing, can control microbial growth, enzymatic spoilage as well as mold growth. However, it is

energy consuming. It has been estimated that MAP can reduce energy consumption by 18-20 % (Aboagye *et al.*, 1986).

5. Consumer perception of MAP

A recent consumer survey conducted by Agriculture-Food Canada, on consumers' perception of MAP, indicated that Canadian consumers favored MAP technology over other methods of preservation and were willing to pay a premium for MAP food products (Smith and Simpson, 1996).

1.5.5.1. Methods for atmosphere modification

Atmosphere modification process can be sub-divided into two categories: (1) Passive modification, and (2) Active modification.

1. Passive modification

In commodity-generated or passive modification, the food product alters the original composition of the gases in the enclosed atmosphere. Usually, passive modification is suitable for fruits and vegetables since they respire and continue to do so even after harvesting. However, a critical factor in passive modification is the choice of packaging material.

Each film has certain characteristics which are suited for a specific kind of food and packaging requirements. In order to achieve such task, the film must allow O₂ to enter the package at a rate similar to its consumption by the product. Similarly, CO₂ must be allowed to escape of the product to offset the production of CO₂ by the product. It is important to maintain such balance to prevent rapid spoilage of the product. The most commonly used films for packaging of fresh produce include, low density polyethylene (LDPE) or polypropylene (PP). LDPE has higher gas permeability values while PP has greater clarity. However, both films are relatively inexpensive.

2. Active modification

To actively modify the atmosphere of a package, several methods can be employed. These include vacuum packaging, gas packaging (injection of gas mixtures), O₂ absorbents, CO₂ generators, and ethanol vapor generators.

1.5.5.1.1. Vacuum packaging

Vacuum packaging is used in muscle foods to prevent the growth of aerobic spoilage microorganisms, including *Pseudomonas* and *Alteromonas* species. The product is packaged in a film of low O₂ permeability and then air is removed under vacuum. Under good vacuum conditions, oxygen in the package headspace is reduced to <1%, and carbon dioxide increases to ~10-20%. Vacuum packaging is not a suitable technology for most soft bakery products due to its crushability effect. However, it has been used in shortbread, a product with a hard texture.

1.5.5.1.2. Gas packaging

Altering the gas composition of the atmosphere surrounding a food can result in an extension of its shelf-life. Gases used in packaging mainly include nitrogen and carbon dioxide.

Nitrogen is an inert gas which has no effect on microbial activity. It is used to prevent package collapse and oxidation of fats i.e., in potato chips, or oxidative rancidity in low a_w bakery products and snacks.

Many gases can exert an antimicrobial effect namely, carbon dioxide, carbon monoxide, ozone, ethylene oxide, propylene oxide, nitrous oxide, and sulfur dioxide. Of these gases, only carbon dioxide is safe enough to be used in food for reasons of stability, toxicity, organoleptic quality, and economic feasibility.

Carbon dioxide is the most important gas used in gas packaging of bakery products. It is considered both bacteriostatic and fungistatic since it controls both mold and bacterial growth. Moreover, it can prevent the growth of insects in packaged and stored food products. It is highly soluble in water and fats, where it forms carbonic acid, which may result in a reduction of a product's pH (Smith and Simpson, 1996). Furthermore, CO₂ could be absorbed by the food product and cause package collapse. Mixtures of nitrogen and carbon dioxide are used to overcome this problem. The type of film used to package the food is also important in helping prevent the partial vacuum which is formed when the film is more permeable to CO₂ than to air e.g., laminated films based on nylon.

Carbon dioxide can inhibit the growth of many microorganisms and its inhibitory effect increases with increasing concentration. It interferes with various enzymatic and biochemical pathways necessary for metabolism; hence it affects growth of microorganisms.

The antimicrobial effect of CO₂ is dependent on the number and the type of microorganism present in food. It is therefore most effective against aerobic microorganisms. Anaerobic bacteria, such as *C. botulinum*, are not inhibited by high concentrations of CO₂.

Molds have different sensitivity to CO_2 . Molds which contaminate products of low a_w i.e., fruitcakes are more susceptible to CO_2 than *Penicillium* species, which predominate in products of higher a_w . Indeed, some species of *Penicillium*, e.g., *P. roquefortii*, are very resistant to the effects of carbon dioxide.

With respect to bacteria, CO₂ prevents the growth of aerobic spore forming bacteria in bread i.e., the rope causing *B. subtilis*. The inhibition is more related to the acidic environment created by CO₂ rather than its antimicrobial activity. It is possible for a facultative anaerobe which is acid tolerant i.e., *B. licheniformis*, to grow and cause rope spoilage even in the presence of carbon dioxide. Secondary problems can also occur in MAP products due to lactic acid bacteria. Ooraikul (1982) reported problems of swelling of the package caused by the growth of lactic acid bacteria in crumpets. To overcome this problem, products

were refrigerated to prevent the growth of lactic acid bacteria prior to MAP. The advantages and disadvantages of gas packaging of food are shown in Table 14.

1.5.5.1.3. Oxygen scavengers

Gas packaging can protect a food from deterioration by replacing oxygen inside the package. However, no matter how impermeable to oxygen the package is, oxygen can still be found in the package headspace due to (a) permeability of the packaging material; (b) ability of the food to trap air; (c) leakage through poor sealing; (d) inadequate gas flushing. For these reasons, oxygen absorbents or oxygen scavengers are used inside the package to maintain an oxygen-free environment.

Oxygen absorbents can be defined as "a range of chemical compounds introduced into the MAP package (not the product) to alter the atmosphere within the package" (Agriculture and Agri-Food Canada, 1990). They were developed in Japan by Mitsubishi Gas Chemical Co., and marketed under the name of Ageless (Smith et al., 1990). Fine iron powder is placed inside a sachet (like a desiccant). The sachet material is highly permeable to oxygen and hence allows the iron inside the sachet to become oxidized and form non-toxic iron oxide i.e., rust. A range of oxygen absorbents can be employed according to the shelf-life desired. Some act rapidly, others slowly; some are used with moist food, others with dry; and some have a dual effect, such as oxygen absorption and CO₂ generation (Harima, 1990). The types and properties of Ageless oxygen absorbents are shown in Table 16. Several studies have shown that oxygen absorbents can extend the shelf-life of food. For instance, the mold-free shelf-life of white bread, packaged in polypropylene film, could be extended from 5 days to 45 days at room temperature by incorporating an oxygen absorbent sachet into the package. Pizza crust, which has a mold-free shelf-life of 2 days at 30°C, can be kept mold-free for more than 14 days at this temperature using appropriate oxygen absorbents (Smith et al., 1990).

Some of the advantages and disadvantages of oxygen absorbents are listed in Table 15.

Table 14. Advantages and disadvantages of gas packaging of food	Table 14	. Advantages and	disadvantages	of gas	packaging	of food
---	----------	------------------	---------------	--------	-----------	---------

Advantages	Disadvantages
☐ Increased shelf-life	☐ Initial high cost of films, equipment
☐ Increased market area	☐ Discoloration of meat pigments
☐ Reduction in production/storage costs	☐ Leakage
☐ Improved presentation	☐ Fermentation and swelling
☐ Fresh appearance	☐ Potential growth of organisms of public health significance
☐ Clear view of the product	
☐ Easy separation of slices	
Adapted from Smith et al. (1990)	

Table 15. Advantages and disadvantages of oxygen absorbents

Advantages	Disadvantages
☐ Inexpensive and simple to use	Free air-flow around sachet is needed
☐ Non-toxic and safe to use	☐ Cause package collapse
☐ Prevent aerobic microbial spoilage	☐ May promote growth of <i>C. botulinum</i>
☐ Extend shelf-life of product	
☐ Prevent rancidity/off-flavors in fats and oils	☐ May cause flavor changes in:
	 High moisture food
	High fat foods
Maintain flavor by preventing oxidation of flavor compounds	 Consumer resistance to sachet use in packages. Possible misuse of the sachet
☐ Maintain quality without additives	
☐ Increase product shelf-life	
☐ Increase distribution radius	
☐ Reduce distribution losses	
☐ Replace chemical pesticides to prevent insect damage of foods	

Adapted from Smith et al. (1990)

Table 16. Types and properties of Ageless oxygen absorbents

Туре	Function	Moisture status	Water activity	Absorption speed (Day)
Z	Decreases O ₂	Self reacting	< 0.65	0.5-2
S	Decreases O ₂	Self reacting	> 0.65	0.5-2
SS	Decreases O ₂	Self reacting	> 0.85	2-3 (0-4°C)
				10 (-25°C)
FX	Decreases O ₂	Moisture dependent	> 0.85	0.5-1
FM	Decreases O ₂	Moisture dependent	> 0.85	0.5-1
E	Decreases C ₂	Self reacting	<0.3	3-8
	Increases CO ₂			
G	Decreases O ₂	Self reacting	0.3-0.5	1-4
	Increases CO ₂			
SE	Decreases O ₂ /increases ethanol	Moisture dependent	>0.85	1-2

Adapted from Smith and Simpson (1996)

1.5.5.1.4. Ethanol vapor generators

A novel method of atmosphere modification is using ethanol vapor generators. Ethanol vapor generators release ethanol vapor into the headspace of the package to act as antimicrobial compound. The sachets contain absorbed or encapsulated ethanol in a carrier material and placed in a packaging film of selective permeability, thus allowing slow or rapid release of ethanol. They are sold under the trade name of Ethicap or Antimold 102 and are manufactured by Freund Co. Ltd., in Japan (Freund Technical Information, 1985). Ethicap consists of food grade alcohol (55%) by weight adsorbed on to silicon powder (35%) and contained in a sachet made of a copolymer of paper/ethyl vinyl acetate copolymer. Some sachets also have flavor compounds such as vanilla, in order to mask the odor of alcohol. A newly marketed type by the same company is called Negamold (dual function). Negamold absorbs oxygen from the headspace and releases ethanol. The size of the sachet varies from 0.6 to 6 g and is determined depending on many factors such as, (a) weight of food, (b) aw of food, and (c) desired shelf-life of the product. For instance, if the a_w of a product is 0.95 and a shelf-life of (1-2 weeks) is desired, then a 2G size of Ethicap should be used for 100 g of product. For a longer shelf-life, a larger size Ethicap is used (4G) (Freund Technical Information, 1985). The types of alcohol generators manufactured are illustrated in Table 17.

When food is packaged along with an Ethicap sachet, moisture is absorbed from the food, ethanol vapor is generated from encapsulation and permeates into the package headspace. The amount of ethanol in the package headspace is a function of both the sachet size, and water activity of the product (Smith et al., 1987). Ethicap is extensively used to extend the shelf-life of cakes and high moisture bakery products. For instance, a 5-20 times extension in mold-free shelf-life was observed for high- a_w cakes depending on the size of Ethicap used (Freund Technical Information, 1985). Furthermore, results have shown that Ethicap exerts an anti-staling effect as well as an antimycotic effect (Freund Technical Information, 1985). Most of the studies conducted on Ethicap have

concentrated on its use as an antimycotic agent. However, few studies have dealt with its potential to control food spoilage and food poisoning bacteria. Seiler and Russell (1993) reported that 1% ethanol by product weight delayed the onset of 'rope' caused by the growth of *B. subtilis*. They also reported that low concentrations of ethanol inhibited bacterial growth in both whipping cream and custard i.e., known vectors of food poisoning bacteria in filled bakery products. The advantages and disadvantages of ethanol vapor generators are outlined in Table 18.

Ethanol vapor generator technology is one of the most innovative "interactive packaging" technologies which shows promise to extend the shelf-life of food products and control microorganisms of public health significance. Ethanol vapor generators have also been shown to control at least 10 species of mold, including *Aspergillus* and *Penicillium*; 15 species of bacteria including *Staphylococcus*, *Salmonella*, and *E coli*, as well as three species of spoilage yeasts (Freund Technical Information, 1985).

Table 17. Types of ethanol vapor generators

Туре	Function	Application	A _w of product
Ethicap	Generates ethanol vapor	Moisture dependent cakes/bread	> 0.85
Negamold	Absorbs O₂/generates ethanol vapor	Moisture dependent cakes/bread	> 0.85

Adapted from Freund Technical Information (1985)

Table 18. Advantages and disadvantages of ethanol vapor generators

Advantages						Disadvantages
	•	spray		generated anol directly packaging	0	Absorption of ethanol from the package headspace into the product
	package	e and	disca	ly removed rded at the		
	benzoa	ites a	•	eservatives corbates to		
Controls staling in	mold bakery (•	•	and delay		

Adapted from Smith et al. (1987)

1.6. Objectives of research

Bakery products, especially high moisture products such as crumpets, are very susceptible to mold spoilage within a few days at room temperature. The bakery industry is constantly exploring new techniques to extend the mold-free shelf-life and safety of baked products, while preserving organoleptic qualities. To date, food preservatives (potassium sorbate and calcium propionate) are added to achieve this objective. Most of these preservatives are effective at relatively low pH values i.e., below 6 and are of little value in controlling microbial spoilage in high pH products i.e., > 7. However, few studies have been done to control the growth of *B. cereus*, a pathogen implicated in several food poisoning outbreaks from the consumption of crumpets, a high moisture bakery product. Thus, the objectives of this research were:

- 1. To determine the effect and optimal levels of a_w , pH, bacteriocins, and preservatives alone, and in combination with each other, on the growth of *Bacillus cereus* in a model broth/agar system.
- 2. To determine the effect of modified atmosphere packaging (MAP) involving gas flushing, oxygen absorbents, and ethanol vapor generators on the growth of *B. cereus* in model agar systems.
- 3. To extrapolate the data obtained from 1 and 2 to extend the shelf-life and safety of English-style crumpets in challenge studies with *B. cereus*.

Chapter 2

Studies to Control the Growth of B. cereus In Vitro

2.1. Introduction

Extensive studies have not been carried out on the control of *B. cereus*, despite the fact it is a microorganism of public health concern and it has been implicated in numerous foodborne illnesses associated with the consumption of bakery products (Jenson *et al.*, 1994). Several factors influence the growth of *B. cereus* including pH, water activity (a_w), antimicrobial agents, and gaseous atmosphere (Baird-Parker *et al.*, 1996).

Antimicrobial agents are chemical compounds which are either naturally present e.g., organic acids in citrus fruits, or are formed during processing e.g., lactic acid, or synthetically produced and added as generally regarded as safe (GRAS) ingredients to bakery products. The most commonly used chemical preservatives in bakery products are sorbates and propionates. Although sorbates are more effective against molds than against bacteria, they can inhibit the growth of *B. cereus* at acidic pH (5-6). Calcium propionate is widely used in bakery products, e.g., bread and rolls, since it does not affect the leavening process and the calcium contributes to the enrichment of the product (Hebeda and Zobel, 1996). Calcium propionate has been found to delay the germination of *B. cereus* spores and their subsequent growth and multiplication (Kaur, 1986).

 $A_{\rm w}$ and pH are also two important parameters influencing the growth and survival of bacteria. The majority of bacteria contaminating foods grow better at higher $a_{\rm w}$ and basic pH; therefore, maintaining these two parameters below optimal levels could be used to inhibit the growth of B. cereus in bakery products.

Numerous studies have been carried out to examine the effect of combining preservatives and physical measures on the growth of microorganisms. This is commonly referred to as the "hurdle technology", a concept developed by Leistner (Bibek, 1996). The concept states that "several hurdles (inhibitory factors), even if individually unable to inhibit the growth of microorganisms, will nevertheless together prevent microorganisms' growth if incorporated into a substrate in sufficient number and height".

2.1.1. Objectives

The objectives of this initial study were to determine the effect of a_w , pH, and chemical inhibitors, alone and in combination with each other, on the growth of B. cereus in broth.

2.2. Materials and methods

2.2.1. Microorganism and inoculum preparation

A strain of *B. cereus*, previously isolated from fish nugget ingredients (breadcrumbs and spices), was obtained from Health Canada, Ottawa, ON. The culture was grown overnight in Tryptic Soy Broth (TSB) (Difco, Michigan, USA) and then streaked onto polymyxin egg yolk mannitol bromothymol blue agar (PEMBA) plates (Oxoid LTD., Hampshire, England) and incubated at 30°C for 24 h to check for purity. Cultures grown on PEMBA were transferred every three weeks to ensure viability.

2.2.2. Growth curve

The inoculum was prepared for the growth curve by transferring a loopful of pure culture from the PEMBA plates into 5 ml of TSB + 0.6% yeast-extract (TSBYE) (Difco, Michigan, USA) followed by incubation at 30°C for 24 h.

Appropriate dilutions were then made from the stock solution, using 9 ml of sterile peptone water (0.1% w/v) to give a working suspension of 10³ CFU/ml. One ml of this suspension was transferred to tubes containing 9 ml of TSBYE, which were incubated at 30°C. Tubes of TSBYE were monitored for growth every hour for ~16 hours by measuring the optical density (OD) using a spectrophotometer (Ultrospec 1000, Pharmacia Biotech. Cambridge, England) set at a wavelength 625 nm. Counts at each OD were made by preparing serial dilutions, again using 0.1% sterile peptone water, followed by surface plating onto Tryptic Soy Agar plates (TSA) (Difco, Michigan, USA). Plates were incubated at 30°C for approximately 24 h and colonies were enumerated using a Darkfield Quebec Colony Counter (AO Scientific Instruments, Quebec, Canada). Counts were expressed as Colony Forming Units per ml (CFU/ml).

2.2.3. Factors influencing growth of B. cereus (aw, pH, and chemical inhibitors)

2.2.3.1. Effect of water activity (a_w)

A preliminary study was done in a model broth system to determine the effect of a_w on the growth of B. cereus. TSBYE was again used as the growth medium and appropriate amounts of glycerol and NaCl salt were added, on a weight per weight basis (% w/w), to reduce a_w from 0.99 to 0.90 (Tables 19-20). The a_w of the prepared media was checked using a Decagon a_w meter (Decagon Device Inc., Pollman, Washington, USA) previously calibrated with a saturated solution of sodium chloride (a_w 0.75). All measurements were carried out at ambient temperature (25°C) and had an accuracy of \pm 0.1%. The a_w adjusted media were then autoclaved at 121°C for 15 min and allowed to cool at room temperature. Tubes were inoculated, in duplicate, with 1 ml of the B. cereus stock suspension (10³ CFU/ml) using an Eppendorf automatic pipette (Brinkmann Instruments Inc., Ontario, Canada). All tubes were then incubated at 30°C and checked for turbidity and OD at 625 nm daily for up to 35 d. Enumeration of B. cereus at each OD reading was monitored on PEMBA plates, as described

previously. All plates were incubated aerobically at 30°C for 24 h and counts expressed as CFU/ml.

2.2.3.2. Effect of pH

Tubes containing TSBYE were adjusted to pH 5, 6, 7, 8, and 9, using either 85% (v/v) lactic acid or 1N NaOH (v/v) as shown in Table 21. Following pH adjustment, the broths were autoclaved (15 min at 121°C), cooled to room temperature, and random samples checked for pH using a previously calibrated pH meter (Model 220, Corning Glassworks, New York, USA). All pH adjusted broths were then inoculated aseptically in a laminar flow cabinet (Labconco Corporation, Missouri, USA) with a fresh culture of *B. cereus* (10³ CFU/ml), incubated aerobically at 30°C and checked daily for turbidity and OD as described previously.

2.2.3.3. Effect of potassium sorbate (KS) and calcium propionate (CP) at various pH levels

The pH of broths was adjusted to pH 5, 6, 7, 8, and 9 as described previously. Appropriate amounts of KS (K&K Laboratories, Division of ICN Biomedicals Inc., Ohio, USA) and CP (ICN Biomedicals Inc., Ohio, USA) were added to give final concentrations ranging from 0 to 1000 ppm at increments of 250 ppm (Table 22). All media were then sterilized, cooled to room temperature and aseptically inoculated with 10³ CFU/ml of *B. cereus* as described previously. Inoculated broths were then incubated at 30°C for 24 h and checked for turbidity/OD at 625 nm daily for up to 35 d.

Table 19. A_w adjustment of TSBYE using glycerol

Weight of glycerol	Weight of broth	A _w reading	Temperature (°C)
(g)	(g)		
32	68	0.90	25.1
31	69	0.91	21.3
29	71	0.92	22.0
26	74	0.93	21.8
23	77	0.94	20.7
20	80	0.95	25.5
17	83	0.96	25.3
11	89	0.97	24.9
5	95	0.98	24.0
3	97	0.99	25.1

Table 20. Awadjustment of TSBYE using NaCl

Weight of NaCl	Weight of broth	A _w reading	Temperature (°C)
(g)	(g)		
13.5	86.5	0.90	21.5
12.0	88.0	0.91	21.8
10.5	89.5	0.92	22.2
10.0	90.0	0.93	22.3
8.3	91.7	0.94	22.2
6.5	93.5	0.95	21.4
5.0	95.0	0.96	21.7
4.5	95.5	0.97	21.8
2.5	97.5	0.98	21.7
1.0	99.0	0.99	22.0

Table 21. Levels of lactic acid or NaOH used to adjust pH of TSBYE

рН	85% Lactic acid	1N NaOH	
	(ml)	(ml)	
5	0.32	N/A ^a	
6	0.21	N/A	
7	0	0	
8	N/A	1.01	
9	N/A	3.01	

^a Not applicable

Table 22. Levels of KS and CP added to 100 ml TSBYE to obtain final concentrations of KS and CP ranging from 0-1000 ppm

Weight of KS	Weight of CP	Final concentration
(g)	(g)	(ppm)
0	0	0
0.025	0.025	250
0.05	0.05	500
0.075	0.075	750
0.1	0.1	1000

2.2.3.4. Combined effect of a_w, pH, and CP, on the growth of B. cereus in TSBYE at 30°C

Experimental Design

To determine the combined effect of a_w , pH, and CP on the growth of B. cereus in broth, a 2^K+2k+n Central Composite Rotatable design (CCRD) was used (Box et al., 1978). The design consisted of 3 factors, each at 5 levels. The levels of each factor used in this study included a_w (0.95-0.99), pH (5-9), and CP concentrations (0-1000 ppm). CP was chosen mainly since it is widely used in bakery products, it does not affect the leavening process, and previous studies by Kaur (1986) showed that CP delayed the germination and growth of B. cereus spores. The levels of these three factors were chosen based on the results of previous studies. The CCRD design and coded levels of each factor used in this design are shown in Table 23. Variable levels were coded -2, -1, 0, +1, +2, to facilitate statistical analysis. The coded and actual values of levels used in CCRD are shown in Table 24.

Table 23. Coded level combinations for a 3 variable Central Composite Rotatable Design (CCRD) to control the growth of *B. cereus*

Run #	A _w	рН	Inhibitor Level
1	-1	-1	-1
2	+1	-1	-1
3	-1	+1	-1
4	+1	+1	-1
5	-1	-1	1
6	+1	-1	1
7	-1	+1	1
8	+1	+1	1
9	-α(-2)	0	0
10	+ α(+ 2)	0	0
11	0	- α(- 2)	0
12	0	+ α(+ 2)	0
13	0	0	- α(-2)
14	0	0	+ α(+2)
15	0	0	0
16	0	0	0

Table 24. Values of coded levels used in the CCRD

	Levels				
Variables	-2	-1	0	+1	+2
Aw	0.95	0.96	0.97	0.98	0.99
рН	5	6	7	8	9
CP ^a (ppm)	0	250	500	750	1000

^a Calcium propionate

2.3. Results and discussion

2.3.1. Growth curve of B. cereus

The growth curve of *B. cereus* is shown in Figure 2. Maximum growth ($\sim 10^8$ CFU/ml) was reached after 14h at 30°C. These results are in agreement with Al-Zenki (1996) who observed that the maximum growth of *S. enteritidis* was reached after $\sim 12h$ at 30°C. The relationship between OD and bacterial counts at each OD was determined using linear regression analysis and is shown graphically in Figure 3. There was a high correlation between OD and growth ($R^2=0.9105$) indicating that OD could be used as a reliable indicator to predict the maximum growth of *B. cereus*. Hence, OD was subsequently used throughout this study to determine the time taken to reach a maximum OD of 1.4 at 625 nm and a count of $\sim 10^8$ CFU/ml.

2.3.2. Inhibitory effect of water activity

The effect of a_w on the growth of B. cereus at pH 7±0.2 and 30°C is shown in Tables 25-26. This study was conducted to test the inhibitory effect of a_w alone without altering the pH of the media. Glycerol was chosen to reduce the a_w since it has been shown to have no antimicrobial effect per se (Smith $et\ al.$, 1987). Inhibition of growth was proportional to the amount of glycerol added i.e., as a_w was reduced, B. cereus growth was delayed. In broth of a_w 0.99 (pH 7), a maximum OD of 1.4 at 625 nm was observed after 1 d at 30°C. However, when a_w was reduced from 0.99 to 0.93, the growth of B. cereus was delayed and a maximum OD of 1.4 at 625 nm was observed after 3 d at 30°C. When the a_w was further reduced (a_w <0.92), no growth was observed for >35 d (Table 25).

Almost identical results were observed in broth adjusted with NaCl. Growth occurred at a_w 0.99 after 1 d at 30°C. However, when the a_w was further reduced (a_w 0.93), no growth was observed (Table 26).

The results of this preliminary study confirm the work of Marshall et al. (1971). They reported that B. cereus did not grow at a_w 0.93 when NaCl was used to reduce the a_w of the broth. However, when glycerol was used to reduce a_w , growth of B. cereus occurred at a_w 0.93 but not at a_w 0.92. However, studies conducted in food systems showed different results. Bryan et al. (1981), observed that rice samples from Cantonese-style restaurants, with an a_w as low as a_w 0.912, supported the growth of B. cereus. However, in food, moisture can migrate resulting in pockets of a_w which may be sufficiently high to encourage growth.

Figure 2. Growth curve of B. cereus

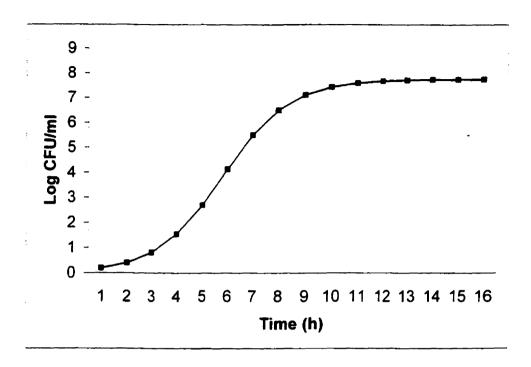


Figure 3. Growth of B. cereus versus optical density @ 625 nm

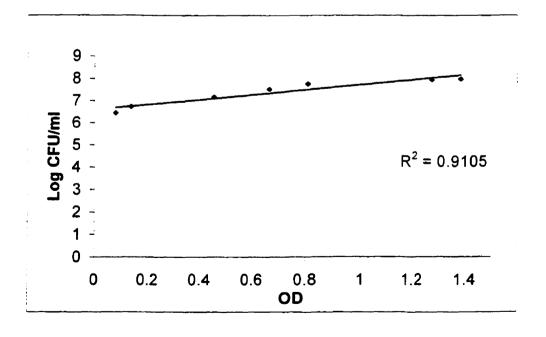


Table 25. Effect of $a_{\rm w}$, adjusted by glycerol, on the growth of B. cereus in TSBYE

A _w	Maximum OD @ 625 nm	Time (day) to reach maximum OD
0.99	1.4 ^a	1
0.98	1.4	1
0.97	1.4	2
0.96	1.4	2
0.95	1.4	2
0.94	1.4	2
0.93	1.4	3
0.92	0 ^b	>35
0.91	0	>35
0.90	0	>35

^a Maximum OD corresponding to a ~10⁸ CFU/ml

^b Minimum OD - no growth

Table 26. Effect of $a_{\rm w}$, adjusted by NaCl, on the growth of B. cereus in TSBYE

A _w	Maximum OD @ 625 nm	Time (day) to maximum QD
0.99	1.4	1
0.98	1.4	1
0.97	1.4	1
0.96	1.4	1
0.95	1.4	1
0.94	1.4	2
0.93	0	>35
0.92	0	>35
0.91	0	>35
0.90	0	>35

2.3.3. Inhibitory effect of pH

The effect of pH on the growth of *B. cereus* in TSBYE is shown in Table 27. The optimum pH for growth of *B. cereus* in broth is pH 7, as the maximum OD was reached in 1 d at 30°C. However, growth was only slightly inhibited at pH levels between 6 to 9 as shown by the time to reach the maximum OD (1.5-3 d, Table 27). In broth adjusted to pH 5, growth of *B. cereus* was inhibited for >35 d at 30°C. However, it was not obvious if pH caused a lethal or a sublethal injury to the vegetative cells, i.e., if effect of pH was bacteriostatic or bactericidal. These results are in agreement with those previously reported by Chorin *et al.* (1997) who examined the growth of *B. cereus* in a model broth system using various strains of *B. cereus*. They reported that no growth was observed at pH 5, even at various water activities. However, at pH >5, growth was observed at all water activities investigated.

Table 27. Effect of pH on the growth of *B. cereus* in TSBYE (a_w 0.99) incubated at 30°C

рН	Time (day) to reach max OD @625 nm		
5	>35		
6	3		
7	1		
8	1-2		
9	3		

2.3.4. Antimicrobial effect of CP at various pH levels

The antimicrobial effect of CP at pH 5 to 9 is shown in Table 28. The growth of *B. cereus* at pH 7 to 9 was noticeable after 1 d at 30°C, regardless of the levels of CP used. This lack of inhibition can be attributed to the total dissociation of CP at higher pH which prevents the acid from entering the cell membrane freely and interfering with cell metabolism. The antimicrobial activity of CP at pH 5 and 6 is also shown in Table 28. At pH 6, growth of *B. cereus* was observed after 1 d in control tubes and after only 2 d for all other levels of CP. This again confirms that the inhibitory effect of CP was pH dependent. Complete inhibition of *B. cereus* was observed at pH 5 - even with low levels of CP (250 ppm). However, it is not clear whether CP played a role in this inhibition since the growth of *B. cereus* was delayed for 35 d at this pH without CP (Table 28).

2.3.5. Antimicrobial effect of KS at various pH levels

The effects of various concentrations of KS (0-1000 ppm) on the growth of *B. cereus* at pH 5 to 9 at 30°C are shown in Table 29. The results were similar to those observed for CP in the previous study (see section **2.3.4**). Growth of *B. cereus* at pH 6 to 9 was observed after 1 d at 30°C. Again, this is due to the high pH and the dissociation of KS which is more effective at pH levels <6.5 (Sofos, 1989). Furthermore, KS is mostly effective against mold and yeast growth and has little or no effect on bacterial cells (with the exception of *B. subtilis*). As pH decreased to pH 6, the antimicrobial activity of KS was enhanced and the growth of *B. cereus* was delayed for ~2 d, regardless of KS concentration. At pH 5, growth of *B. cereus* was completely inhibited. Again, this could not be attributed to the effect of KS since this pH alone inhibited the growth of *B. cereus*.

It is evident that the antimicrobial activity of both CP and KS is pH dependent and decreases as the pH of the medium increases i.e., as it further moves away from its dissociation constant (pK_a 4.76). This confirms the work conducted by Lahellec *et al.* (1981) on the growth effect of sorbate and selected

antioxidants on toxigenic strains of *St. aureus*. Growth of *St. aureus* was inhibited at pH 5 in 50 ml Brain Heart Infusion (BHI) (Difco, Michigan, USA) by 1% (w/v) potassium sorbate. However, at pH 7, growth of *St. aureus* occurred, even in the presence of 5% (w/v) KS.

2.3.6. Combined effect of a_w, pH, and CP on the growth of B. cereus in TSBYE incubated at 30°C

In the previous studies the effect of each of a_w , pH, and level of inhibitor on the growth of B. cereus were examined one at a time. Although, hurdles used to inhibit bacterial growth are usually more effective when used in combination with each other. The combined effects of a_w , pH, and CP on the growth of B. cereus in TSBYE are shown in Table 30. The growth of B. cereus was visible in most treatment combinations after 1 d at 30°C. However, inhibition of growth was observed in only one treatment i.e., Run #11 which had an a_w 0.97, a pH of 5, and 500 ppm CP (Table 30). In general, two or more environmental conditions will have a more inhibitory effect when combined than each parameter considered separately (hurdle technology). In this study, it is evident that no inhibition was observed even when several hurdles were used to control the growth of B. cereus. The inhibition observed in only one of the 16 treatments was mainly attributed to the inhibitory effect of low pH (pH 5) alone, and not to the other two factors namely, a_w , and CP concentration, since at higher pH levels (with similar levels for a_w , and CP), no inhibition was observed.

In general, mathematical models (first and second order polynomials) are generated to determine the optimal levels of the most significant factors to give a desired response (Box et al., 1978). Since there was insufficient variation in the results, statistical analysis could not be done to quantify the combined effect of **aw**, pH, and CP concentration on the growth of *B. cereus*.

Table 28. Antimicrobial effect of CP on the growth of *B. cereus* in TSBYE at pH 5-9 and incubated at 30°C

		Time (day) to	reach max (DD @ 625 nm	
Level of CP			рН		
(ppm)	5	6	7	8	9
0	>35	1	1	1	1
250	>35	2	1	1	1
500	>35	2	1	1	1
750	>35	2	1	1	1
1000	>35	2	1	1	1

Table 29. Antimicrobial effect of KS on the growth of *B. cereus* in TSBYE at pH 5-9 and incubated at 30°C

	Time (day) to reach max OD @ 625 nm						
Level of KS							
(ppm)	5	6	7	8	9		
0	>35	1	1	1	1		
250	>35	1	1	1	1		
500	>35	2	1	1	1		
750	>35	2	1	1	1		
1000	>35	2	1	1	1		

Table 30. Combined effect of $a_{\rm w}$, pH, and CP on the growth of B. cereus in TSBYE and incubated at 30°C

	Factors			Time (day) to
Run#	Aw	рΗ	CP	reach max OD @
			(ppm)	625 nm
1	0.96	6	250	1
2	0.98	6	250	1
3	0.96	8	250	1
4	0.98	8	250	1
5	0.96	6	750	1
6	0.98	6	750	1
7	0.96	8	750	1
8	0.98	8	750	1
9	0.95	7	500	1
10	0.99	7	500	1
11	0.97	5	500	NG ^a
12	0.97	9	500	1
13	0.97	7	0	1
14	0.97	7	1000	1
15	0.97	7	500	1
16	0.97	7	500	1

^a No visible growth after 35 d at 30°C

2.4. Conclusion

In conclusion, the use of a_w as a means of food preservation is not new. Glycerol and NaCl were both tested for their inhibitory effect on the growth of B. cereus with NaCl being slightly more inhibitory than glycerol. However, this study has shown that a_w is not a viable method to control the growth of B. cereus since large amounts of salt or glycerol would be required for complete inhibition of this pathogen and this may severely affect the organoleptic and textural qualities of the food.

Most processed food products on the market have a low pH (more acidic) to increase their shelf-life and to ensure the safety of the food product. This study has shown that the growth of *B. cereus* was inhibited by low pH (pH 5) - with or without preservatives. However, many bakery products e.g., English-style crumpets, are formulated to pH levels >8 to enhance color. Hence, other methods need to be considered to control the growth of *B. cereus* in such high pH products.

Chapter 3

Further Studies to Control the Growth of *B. cereus In Vitro*

3.1. Introduction

The introduction of new high-barrier plastic packaging materials has resulted in the development of new preservation methods of food products, such as modified atmosphere packaging (MAP). The desire of consumers for fresh, ready-to-eat, and preservative-free foods, has drastically increased the demand for MAP products which has become one of the most prominent methods of food preservation.

The objective of MAP is to control or reduce the growth of undesirable microorganisms in food. In addition, MAP retards enzymatic and respiratory activity of fresh foods, hence, extending the shelf-life and reducing spoilage losses. Most of the studies related to MAP have focused on determining the optimum gas mixture (CO₂; O₂; N₂) for specific products (Devlieghere *et al.*, 1998). The most important component of the gas mixture is CO₂ due to its antimicrobial activity (Devlieghere *et al.*, 1998).

MAP technology has been applied to different food products including meat, poultry, bakery products and vegetables. However, few studies have examined the effect of MAP on the growth of pathogenic bacteria i.e., *B. cereus* in bakery products. Daifas et al. (1998) reported that MAP packaged bakery products supported the growth of proteolytic strains of *C. botulinum*, regardless of the atmosphere in the packaged product.

Ethanol, or ethyl alcohol (C₂H₅OH), has been used as an antimicrobial agent since alcoholic fermentation was employed to preserve fruits (Shelef and

Seiter, 1993). Ethanol is bactericidal at high concentrations (60-75%) and has an inhibitory activity at lower concentrations (5-20%). However, it has been reported that ethanol is not sporicidal (Banwart, 1989).

Lactic acid bacteria are well known for their production of antimicrobial proteins and peptides called bacteriocins. Nisin, an antibacterial polypeptide, is produced by some strains of *Lactococcus lactis* subsp. *lactis*. Nisin has been widely used in many countries and is generally regarded as safe (GRAS) in the U.S. (Jenson *et al.*, 1994). It is effective in controlling the growth of Gram-positive bacteria; however, it is not inhibitory against yeasts, fungi, or Gram-negative bacteria (Hurst and Hoover, 1993). Foods in which nisin is used as a preservative include pasteurized processed cheese products and canned foods (Jenson *et al.*, 1994).

Ultra-violet light is a physical method used to control the growth of undesirable microorganisms. UV-light has been shown to be lethal in the near 260 nm region by forming thymine dimers on bacterial DNA, thereby blocking further DNA replication. It has been demonstrated that UV-light is effective in killing microorganisms contaminating the surfaces of a variety of materials (Kuo et al., 1997). In addition, UV-light has been applied to various food products e.g., bakery products, to prevent mold growth (Smith, 1993). Stermer et al. (1987) reported that UV-light was effective in reducing the bacterial load on the surface of fresh meat. Bank et al. (1991) also showed that Salmonella growing on agar plates were susceptible to UV-light.

Numerous studies have been carried out on the antifungal and bactericidal properties of fatty acids and their esters. It has been found that the activity of various esters can be altered by the environment in which their potency is measured. For instance, the antimicrobial activity of esters was markedly reduced in the presence of proteins which was attributed to the formation of the detergent-protein complex (Kabara, 1978).

3.1.1. Objectives

The objectives of this study were to determine the effect of modified atmosphere packaging (MAP), ethanol vapor generators (alone and in combination with gas flushing), UV-light, bacteriocins, and mono-lauryl maleate on the growth of *B. cereus* in model broth and agar systems.

3.2. Materials and methods

3.2.1. Inoculum and media preparation

A stock suspension of *B. cereus* was prepared as described previously (see section **2.2.2**). Appropriate dilutions of this stock suspension were made using 0.1% sterile peptone water to obtain a working suspension of 10³ CFU/ml. *B. cereus* media or PEMBA plates were prepared, sterilized at 121°C for 15 min, supplemented with *B. cereus* selective supplement (SR009E Oxoid Ltd., Hampshire, England), and stored in the dark according to the manufacturer's specifications. The pH of the media was maintained at pH 7.2±0.2.

3.2.2. Effect of MAP on the growth of B. cereus in PEMBA

To determine the effect of MAP on the growth of *B. cereus*, PEMBA plates were inoculated with 10³ CFU/ml of *B. cereus* using a spread plate technique. All plates were packaged in duplicate, in 210 x 210 mm high gas barrier Cryovac bags (O₂ transmission rate: 3-6 cc/m², 24 h, 1 atm at 4.4°C, 0% RH) obtained from Cryovac Sealed Air Corporation Mississauga, Ontario. The packaged plates were divided into two sets. The first set was packaged using the following gaseous atmospheres: Air, 25%CO₂, 50%CO₂, 75%CO₂, 100%CO₂ (balance N₂). Gas Packaging was done using a Multivac chamber type, heat seal packaging machine (Model KM100-3M, Wolfertschwenden, Germany). The desired gas mixture was obtained using a Smith's proportional gas mixer (Model 299-028,

Tescom Corp., Minneapolis, USA). The second set of plates was packaged under similar gaseous conditions. However, prior to gas flushing, an Ageless Type FX₁₀₀ oxygen absorbent (Mitsubishi Gas Co., Tokyo, Japan) was taped to the inside of each package, and packages were gas flushed as described previously. All packages were incubated at 30°C and checked daily for visible signs of *B. cereus* growth for up to 35 d.

3.2.3. Effect of ethanol vapor generators alone, and in combination with 100% CO₂ on the growth of B. cereus

In this study, inoculated PEMBA plates were packaged in duplicate, in Cryovac bags as described previously (see section 3.2.1). The packages were then divided into two sets. In the first set, plates were packaged with either 2, 4, or 6G Ethicap®, a commercially available ethanol vapor generator (Freund Industrial Co. Ltd., Tokyo, Japan), or 200, 400, or 600S sachets of Negamold® (Freund Industrial Co. Ltd., Tokyo, Japan). In the second set, PEMBA plates were packaged with either 3, or 6G Ethicap® and 100% CO₂ and 300 or 600S Negamold® and 100% CO₂. All sachets were taped to the inside of each package prior to gas flushing and sealing with an impulse heat sealer (E82163 Tish-300. Abtec Inc. Ohio, USA). Packages were stored at 30°C, and checked daily for visible signs of growth of *B. cereus* for up to 35 d.

3.2.4. Headspace gas analysis

Headspace gas (CO₂, O₂, and N₂) analysis was done on all gas packaged and oxygen absorbent packaged PEMBA plates. Gas samples were withdrawn using a 0.5 ml gas-tight Pressure-Lok syringe (Precision Sampling Corp., Baton Rouge, Louisiana, USA) through a septum previously attached to the outside of each package. Headspace gas was analyzed with a Varian gas chromatograph (Model 3400, Varian Inc., Ontario, Canada), fitted with a thermal conductivity detector (TCD), and using Porapak Q (80-100 mesh) and Molecular sieve 5 A

(80-100 mesh) columns in series (Supelco, Canada Ltd.). Helium was used as carrier gas at a flow rate of 30 ml/min. The column oven was set at 60°C, the injector at 100°C, and the detector filament at 170°C. Resultant peaks of CO₂, O₂, and N₂ were recorded using a Hewlett Packard integrator (Model 3390A, Hewlett Packard Co., Avondale, USA).

3.2.5. Headspace ethanol

Headspace ethanol was done using a Varian gas chromatograph fitted with a flame ionization detector (FID), and a Nukol column (30M x 0.53mm) (Supelco, Canada Ltd.). Helium was again used as the carrier gas at a flow rate of 30 ml/min. The column temperature was set at 60°C and the injector port temperature at 100°C. Resultant peaks of ethanol were recorded on a Hewlett Packard integrator, and the concentrations of ethanol were extrapolated from an existing standard curve.

A standard ethanol curve was made from 80% (v/v) stock solution of ethanol. Standard ethanol solutions of: 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, and 10.0% (v/v) were prepared from this stock solution. These standard solutions were placed in 250 ml volumetric flasks and wrapped with parafilm to prevent the escape of ethanol vapor. Prior to measuring the headspace, a septum was placed on the parafilm and 0.5 ml of each standard solution was injected into the Varian chromatograph as described previously. The results of the average of 3 injections, from each standard solution, were used to generate a standard curve of area versus ethanol concentration shown in Figure 4.

3.2.6. Effect of UV-light on the growth of B. cereus in PEMBA

To determine the effect of UV-light on the growth of *B. cereus*, PEMBA plates were swabbed with a suspension of *B. cereus* equivalent to 0.5 McFarland standard suspension (Remel, Lenexa, Kansas, USA). All plates were then exposed, uncovered, to UV-light (intensity of UV-light ~620µW/cm²) in the

laminar flow cabinet, for 1, 2, 3, 5-10, 20, and 30 min (Philips UV, TUV 30w/G30 T₈, Holland) at a distance of 50 cm above the inoculated plates. In the second study, the distance between the plates and the UV lamp was only 2 cm and the selected time intervals were 10, 20, 30 sec, and 1, 2, 3, 4, 6, 8, and 10 min. All UV treated plates were incubated at 30°C and checked daily for visible signs of *B. cereus* growth for up to 35 d.

3.2.7. Effect of nisin, Alta, and Per/Lac on the growth of B. cereus in TSBYE

Alta 2341 is a pediocin which is produced by *Pediococcus acidlactici*. The commercial product is produced by culturing savory flavor precursors such as, yeast extract, corn syrup, and vegetable protein. This is achieved using a food grade fermentation process (Quest Int. Technical Information). Perlac 1911 is produced by Lactococcus lactis and is derived from the fermentation of glucose solids. It is a multifunctional food ingredient which improves flavor, water retention, and shelf-life of various foods (Quest Int. Technical Information). To determine the effect of nisin, Alta, and Per/Lac on the growth of B. cereus, the pH of tubes containing TSBYE was adjusted to pH 5.5, 6, 7, 8, and 9 as described previously (see section 2.2.3.2). Appropriate amounts of nisin (Nisaplin, Applin & Barett LTD., Technical Dept., Dorset, England) with an activity of 10⁶ International unit per gram (IU/g), were added aseptically on a weight per volume basis (%w/v) to the sterilized broths to give final concentrations of 0-500 ppm at increments of 100 ppm (Tables 31). Similarly, Alta and Per/Lac (Quest International Ltd., Quebec, Canada) were added at concentrations of 0-500, and 0-10000 ppm (as per manufacturer's recommendations) respectively (Table 32). All broths were inoculated with 0.1 ml of a working suspension of B. cereus to give a final inoculum of 10² CFU/ml. Broths were then incubated at 30°C and checked daily for turbidity/OD for up to 35 d. Growth of B. cereus was confirmed on PEMBA plates as described previously.

3.2.8. Effect of mono-lauryl maleate (MLM) on the growth of B. cereus in TSBYE

MLM is a solid, long chain ester (16 C) with an active *cis* form (McGill University, Food Science and Agricultural Chemistry, Quebec, Canada). To determine the effect of MLM on the growth of *B. cereus*, the pH of TSBYE was adjusted to pH 8 and pH 9 using 1N NaOH as described previously. Concentrations of 0.1%, 0.2%, and 0.3% of MLM (%w/v) were added to the broths to obtain final concentrations of 1000, 2000 ppm, and 3000 ppm respectively (Table 33). All broths were autoclaved (121°C for 15 min), and inoculated with 0.1 ml of a working suspension of *B. cereus* to give a final inoculum of 10² CFU/ml. Broths were then incubated at 30°C, and checked for turbidity/OD daily for up to 35 d. Growth of *B. cereus* was again confirmed on PEMBA plates as described previously.

Figure 4. Standard curve of headspace ethanol vapor

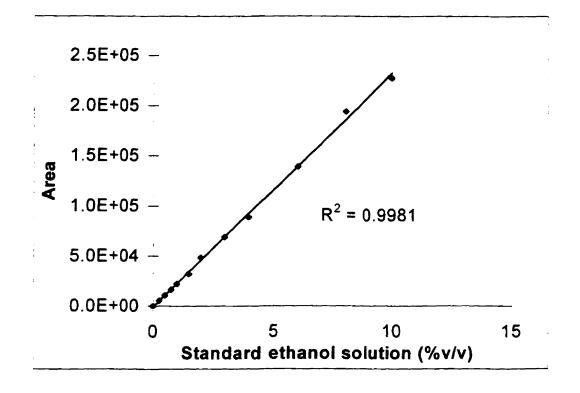


Table 31. Levels of nisin added to 100 ml TSBYE

Levels of nisin (g)	Final concentration (ppm)		
	, , , , , , , , , , , , , , , , , , ,		
0	0		
0.01	100		
0.02	200		
0.03	300		
0.04	400		
0.05	500		

Table 32. Levels of Alta and Per/Lac added to 100 ml TSBYE

Levels of Alta and Per/Lac	Final concentration
(g)	- (ppm)
0	0
0.01	100
0.02	200
0.03	300
0.04	400
0.05	500
0.30	3000
0.50	5000
1	10000

Table 33. Levels of MLM added to 100 ml TSBYE

Levels of MLM	Final concentration		
(g)	(ppm)		
0	0		
0.1	1000		
0.2	2000		
0.3	3000		

3.3. Results and discussion

3.3.1. Effect of MAP on the growth of B. cereus in PEMBA at 30°C

The effect of MAP on the growth of *B. cereus* in PEMBA plates is shown in Table 34. In all air-packaged plates, growth of *B. cereus* was observed after 1 d at 30°C. Colonies on PEMBA plates were large and blue in color due to the presence of bromothymol blue pH indicator. Growth also occurred in gas packaged plates after 1-2 d at 30°C regardless of the CO₂ concentration (Table 34). Colonies were smaller in size and the media was yellow in color which was attributed to the lower pH caused by dissolution of CO₂ in the media. These results are in partial agreement with the study of Bennik *et al.* (1995) who reported no significant difference in lag times for *B. cereus* packaged under various gaseous atmospheres. They observed that growth of *B. cereus* was slightly reduced in 20% CO₂ compared to 0% CO₂.

Similar results were observed in plates packaged with Ageless FX oxygen absorbents i.e., growth occurred after 1 d at 30°C, under all gaseous atmospheres (Table 35). These results show that *B. cereus* is capable of growing under reduced oxygen levels even in the presence of high CO₂.

3.3.2. Effect of ethanol vapor generators alone, and in combination with 100% CO₂, on the growth of B. cereus in PEMBA at 30°C

The effect of ethanol vapor on the growth of *B. cereus* is shown in Table 36. Growth of *B. cereus* was observed in all treatments after 1 d at 30°C. However, the effect of Negamold was more inhibitory than Ethicap. Unlike Negamold, which has a dual action, Ethicap produces only ethanol vapor (Freund Technical Information, 1985); therefore, headspace O₂ in packages containing Ethicap was higher (Table 36). Furthermore, studies in our laboratory have shown that higher levels of ethanol vapor had a plasticizing effect on the film structure and could influence its oxygen transmission rate (OTR). It was

found that as the size of the sachet increased (hence the level of ethanol vapor), the OTR of the film increased (El-Khoury, 1999). This explains the increase in headspace O₂ observed in packages with larger Negamold sachets (Table 36). These results are in agreement with those observed by Notermans *et al.* (1990) who studied the effect of EtOH on the growth of *B. cereus* in an eggnog-like product. Their results showed that growth of *B. cereus* occurred at 22°C, even in the presence of 7% EtOH.

The effect of ethanol vapor generators, combined with 100% CO₂, on the growth of *B. cereus* is shown in Table 37. This study was conducted to determine the required sachet size (in conjunction with 100% CO₂) which could inhibit the growth of *B. cereus* in PEMBA at 30°C. As shown in Table 37, the most effective treatment was Negamold (NM) 600S and 100% CO₂ followed by NM 300S. The growth of *B. cereus* was delayed for over 35 and 5 d at 30°C, respectively. However, Ethicap did not have similar inhibitory activity since the growth of *B. cereus* was observed after only 2 d at 30°C, regardless of the sachet size. These results are in agreement with those reported by Smith *et al.* (1987) who showed that the growth of *Saccharomyces cerevisiae* was inhibited in potato dextrose agar (PDA) plates when a combination of a_w 0.90 and 1.52% (v/v) ethanol vapor was used. They concluded that ethanol vapor does exert an antimicrobial effect on yeast growth and activity and that the concentration of headspace ethanol required for inhibition was dependent on the water activity of the system.

Table 34. Effect of gas packaging on the growth of *B. cereus* in PEMBA plates stored at 30°C

Packaging conditions	Days	Heads	pace @ time of	growth
	to growth	CO ₂	O ₂ %	N ₂ %
Air	1	5.1	14.85	N/A ^a
25% CO₂ ^b	1	20.9	3.75	N/A
50%CO₂	1	31.6	7.35	N/A
75%CO ₂	1	71.4	0.2	N/A
100%CO₂	1-2	97.1	0.5	N/A

^a Not available

Table 35. Combined effect of gas packaging and an oxygen absorbent Ageless (FX) on the growth of *B. cereus* in PEMBA plates stored at 30°C

Packaging conditions	Days to	Heads	pace @ time of	growth
	growth	CO ₂	O ₂	N ₂
		%	%	%
Air + Ageless FX	1	0.8	0	N/A
25% CO₂+ Ageless FX	1	9.8	0	N/A
50% CO₂+ Ageless FX	1	33.1	0	N/A
75% CO₂+ Ageless FX	1	55.1	0	N/A
100%CO ₂ + Ageless FX	1-2	97.0	0.4	N/A

^b Balance N₂

Table 36. Effect of Ethicap[®] and Negamold[®] on the growth of *B. cereus* in PEMBA at 30°C

Packaging	Days	•	leadspace @	time of growth	
conditions to growth	Ethanol (% v/v)	CO₂ %	O ₂	N ₂	
					
EC ₂	1	6.0	5.3	14.1	N/A
EC ₄	1	6.3	6.1	12.8	N/A
EC ₆	1	7.9	5.7	13.3	N/A
NM ₂	1	1.3	1.1	0.8	N/A
NM ₄	1	8.1	1.4	0.6	N/A
NM ₆	1	11.2	0.6	3.9	N/A

Table 37. Effect of Ethicap[®] and Negamold[®], in combination with 100% CO₂, on the growth of *B. cereus* in PEMBA at 30°C

Packaging conditions	Days	Headspace @ time of growth			wth
	to _ growth	Ethanol (% v/v)	CO₂ %	O ₂ %	N₂ %
EC ₃ +100%CO ₂	2	0.8	94	0.9	N/A
EC ₆ +100%CO ₂	2	1.4	95	1.0	N/A
NM ₃ +100%CO ₂	5	4.7	92	0.9	N/A
NM ₆ +100%CO ₂	>35	6.9	93	1.0	N/A

3.3.3. Effect of UV-light on the growth of B. cereus in PEMBA plates stored at 30°C

The effect of UV-light on the growth of *B. cereus* in PEMBA plates is shown in Tables (38-39). Growth of *B. cereus* was observed in all plates exposed to UV-light for 10 min or less at a distance of 50 cm from the UV source. However, for exposure times of >10 min, complete inhibition of *B. cereus* was observed.

In the second study, placing plates at a distance of 2 cm from UV source, growth of *B. cereus* was detected in plates exposed to UV-light for <2 min. However, for exposure times of >2 min, no growth was observed. Therefore, distance from the UV source appeared to influence the exposure time necessary to inhibit the growth of *B. cereus*. However, when the agar medium was cut and added to BHI broth, growth occurred within 1 week, indicating that the antimicrobial effect of UV-light was bacteriostatic rather than bactericidal. Similar results were reported by Kuo *et al.* (1997) who found that counts of *S. typhimurium*, in brilliant green agar (BGA) plates decreased by 6 log units after exposure to UV-light for 1 min or longer. They also reported that there was no growth in plates exposed to UV-light for >10 min.

Table 38. Effect of UV-light (50 cm from UV source) on the growth of *B. cereus* in PEMBA at 30°C

UV treatment (min)	Growth detection
(11111)	
0	+ ^a
1	+
2	+
3	+
5	+
6	+
7	+
8	+
9	+
10	_b
20	-
30	-

^a B. cereus growth occurred after 24h at 30°C

^b No growth observed at 30°C for 35 d

Table 39. Effect of UV-light (2 cm from UV source) on the growth of *B. cereus* in PEMBA at 30°C

UV treatment (min)	Growth detection
0.17	+
0.34	+
0.50	+
1	+
2	-
3	-
4	-
6	-
8	-
10	-

3.3.4. Effect of nisin on the growth of B. cereus in TSBYE at 30℃ and various pH levels

The effect of nisin on the growth of *B. cereus* in TSBYE at 30°C is shown in Table 40. The growth of *B. cereus* at pH 7-9 was observed after 1 d at 30°C, regardless of the concentration of nisin. This could be attributed to pH since at neutral or alkaline pH, nisin becomes practically insoluble and inactivated, even at room temperature. Rayman *et al.* (1981) reported that the effectiveness of nisin decreased with increasing pH. They observed that as the pH increased to pH>7, less nisin remained in solution. Hall (1966) reported that the solubility of nisin was ~ 4% at pH 5. However, at pH 7 and 8 nisin became practically insoluble.

At pH 6, the antimicrobial activity of nisin was noticeably enhanced and the growth of *B. cereus* was inhibited at all concentrations.

At pH 5.5, complete inhibition was observed for over 35 d at 30°C. At this pH, the solubility and antimicrobial activity of nisin was also enhanced. Furthermore, this effect was due to the antimicrobial effect of nisin alone since growth of *B. cereus* was detected at pH 5.5 in all control tubes. Therefore, nisin would appear to act in a similar manner to organic acids i.e., it is effective at acidic but ineffective at neutral or alkaline conditions.

Table 40. Effect of nisin on the growth of *B. cereus* in TSBYE at 30°C and various pH levels

Nisin levels		Time (day) to	reach max (DD @ 625 nm	
	5.5	6	7	8	9
0	1	1	1	1	1
100	>35	>35	1	1	1
200	>35	>35	1	1	1
300	>35	>35	1	1	1
400	>35	>35	1	1	1
500	>35	>35	1	1	1

3.3.5. Effect of Alta and Per/Lac on the growth of B. cereus in TSBYE at 30℃ and various pH levels

The effect of Alta and Per/Lac on the growth of *B. cereus* in TSBYE is shown in Table 41. At pH 5.5-9, the growth of *B. cereus* was observed after 1 d at 30°C, regardless of the concentration of either Alta or Per/Lac. Despite being active only against Gram-positive bacteria, pediocins are usually active against cells closely related to the producer strain (Green *et al.*, 1997). Furthermore, at pH levels greater than pH 5.5, the inhibitory activity of these pediocins decreased dramatically, even at high concentrations (3000-10000 ppm). Lower pH levels (5.5-6) did not enhance the antimicrobial activity of either Alta or Per/Lac, since the cell counts were still >10°CFU/ml.

3.3.6. Effect of MLM on the growth of B. cereus in TSBYE at pH 8-9

The effect of MLM on the growth of *B. cereus* is shown in Table 42. Most chemical preservatives used in the previous studies i.e., sorbates and propionates, were ineffective in controlling the growth of *B. cereus* at alkaline pH (pH>7). Thus, in order to overcome this problem, it was necessary to choose a chemical preservative, which is known for its antimicrobial properties at alkaline conditions i.e., phenolic esters or monoesters. Some of these esters have been shown to exert an antimicrobial activity at a wider pH range (3-8) i.e., parabens, than most of the other organic acid preservatives, which are usually effective at pH<6.5 (Russell and Gould, 1991). Hence, MLM was chosen and tested for its antimicrobial activity against the growth of *B. cereus* in TSBYE at 30°C and pH 8-9. MLM inhibited the growth of *B. cereus* in broth at alkaline conditions for > 35 d at 30°C. MLM is insoluble in water at room temperature, partially soluble in tris-HCI buffer (pH 9), and completely soluble in TSBYE after autoclaving for 15 min at 121°C. It should be noted that the antimicrobial activity of MLM was not altered by heat (121°C, 15 min). Therefore, based on this initial study, MLM would

appear to be an effective antimicrobial agent to control the growth of *B. cereus*, particularly at high pH levels (>7).

Table 41. Effect of Alta & Per/Lac on the growth of *B. cereus* in TSBYE at 30°C

	Time (day) to reach max OD @ 625 nm						
_	pH						
	5.5	6	7	8	9		
Alta levels							
(ppm)							
0	1	1	1	1	1		
100	1	1	1	1	1		
200	1	1	1	1	1		
300	'	'	•	•	•		
400	1	1	1	1	1		
500	1	1	1	1	1		
	1	1	1	1	1		
Per/Lac levels							
(ppm)							
0-500	1	1	1	1	1		
3000	1	1	1	1	1		
5000	1	1	1	1	1		
10000	1	1	1	1	1		

Table 42. Effect of MLM on the growth of *B. cereus* in TSBYE at 30°C and pH 8-9

	Time (day) to reach	max OD @ 625 nm
MLM levels	p	Н
(ppm)	8	9
0	1	1
1000	>35	>35
2000	>35	>35
3000	>35	>35

3.4. Conclusion

In conclusion, this study has clearly shown that modified atmosphere packaging is not a viable method to control the growth of *B. cereus* at neutral pH (~7) and elevated storage temperatures (30°C). Even at high CO₂ concentrations (>50%), *B. cereus* growth was observed after only 1 d at 30°C. Despite being effective in controlling the growth of molds i.e., *Penicillium notatum* and *Aspergillus niger* (Hasan, 1997), oxygen absorbents, alone and in combination with CO₂, also failed to inhibit the growth of *B. cereus* in agar plates.

Similar trends were observed with ethanol vapor generators. Growth of *B. cereus* was observed after 1 d at 30°C in plates packaged with Ethicap and Negamold. However, Negamold, with its dual action, could be more effective in inhibiting the growth of *B. cereus* since it maintained low oxygen levels inside the package. The effect of Negamold may become more pronounced if used in combination with other inhibitors i.e., gas packaging (hurdle technology).

The growth of *B. cereus* was inhibited by UV-light in PEMBA plates. Exposure to UV-light for only 2 min was sufficient to inhibit the growth of *B. cereus*; however, the distance of the plates from the UV source was critical in determining exposure times of plates to UV-light. Furthermore, it has been found that the antimicrobial effect of UV-light was bacteriostatic and not bactericidal since growth occurred within 1 week, when cuts from the inoculated and irradiated media were added to BHI broth.

Alta and Per/Lac, commercially produced pediocins, did not exert any antimicrobial activity against the growth of *B. cereus*, even at acidic pH (pH 5.5). However, nisin inhibited the growth of *B. cereus* at acidic pH (5.5-6) for over 35 d at 30°C. Growth of *B. cereus* however, was observed in TSBYE at alkaline conditions (pH >7) after only 1 d at 30°C.

Mono-lauryl maleate (MLM) inhibited the growth of *B. cereus* at high pH (pH 8-9) in TSBYE for over 35 d at 30°C. However, MLM was insoluble in TSBYE at room temperature, but completely soluble after autoclaving for 15 min at 121°C.

Chapter 4

Effect of Packaging and Processing on the Growth of B. cereus in English-style Crumpets

4.1. Introduction

English-style crumpets are snack-type, high moisture bakery product which have been implicated in food poisoning outbreaks due to the growth of, and toxin production by, *B. cereus* (Jenson *et al.*, 1994). Due to their high water activity (**a**_w 0.95~0.97), high moisture content (48~54%), and neutral to alkaline pH (pH 6.5~8), crumpets have a short shelf-life of under 6 d (Jenson *et al.*, 1994). Crumpets are cooked on the bottom only on a hot griddle and are consumed within few days, prior to mold or bacterial spoilage. When a longer shelf-life is desired they are frozen (Ooraikul and Stiles, 1991). Various methods have been examined in previous chapters to control the growth of *B. cereus* in media. The more successful methods in broth/agar plate studies were now extrapolated to control the growth of this pathogen in fresh crumpets.

4.1.1. Objectives

The objectives of this study were to determine the effect of ethanol vapor generators, in combination with gas packaging (CO₂), UV-light, and mono-lauryl maleate, on the growth of *B. cereus* in English-style crumpets.

4.2. Materials and methods

4.2.1. Preparation of spore inoculum/sample inoculation

A strain of B. cereus, used previously in section 2.2.1, was used throughout this study. A spore suspension of B. cereus was prepared using a modified method of Thayer and Boyd (1994). B. cereus was sub-cultured from PEMBA plates (agar base, Oxoid LTD., Hampshire, England) onto sporulation media (Thayer and Boyd, 1994). The media consisted of 3.5 g of peptone, 4.0 g of nutrient broth, 1.0 of dextrose, and 15 g of agar/L of distilled water. The pH was adjusted to 6.55 with either 1N NaOH or 1 N HCl prior to sterilization. The B. cereus strain was spread on the agar and incubated for 1 week at 30°C. The cells and spores were washed from the agar plates with ~50 ml of sterile 0.1% peptone. The suspension was heated at 65°C for 30 min and washed 3 times with sterile 0.1% peptone and centrifuged (12.100 x a for 20 min) between washings using a IEC HN-S centrifuge (Damon/IEC Division, Massachusetts, USA). The suspension was heated a second time at 70°C for 30 min to eliminate vegetative cells and stored at 4°C until use. Spore suspensions were adjusted to approximately 7-log spores/ml, and appropriate dilutions of this stock suspension were then made using 0.1% peptone to obtain a working suspension of ~103 spores/ml.

4.2.2. Crumpet formulation and inoculation

High moisture, English-style crumpets, used in this study (a_w 0.990, pH 8.55), were prepared from all-purpose flour, sugar, instant yeast, reconstituted dry milk, salt, and baking soda, according to the method of Witty and Schneider Colchie (Table 43). All ingredients were weighed on a Mettler Toledo Scale (PB-3001, Switzerland) in round stainless steel bowls, placed in a Hobart Mixer (A-200, Hobart Canada Inc., Don Milis Ontario), and mixed for 5 min until a homogeneous batter was formed. The batter was then inoculated with ~10 3

spores/g prior to baking. Crumpets were then baked by pouring 65 g of batter into greased cylindrical molds on an oiled griddle (Moffat appliances, Montreal, Quebec, Canada) pre-heated to 204°C. Crumpets were baked for approximately 9 min until the surface was no longer wet and holes had formed on the top of the crumpets. Following baking, crumpets were cooled to room temperature, and then packaged in Cryovac bags.

Table 43. Ingredients used in crumpet formulation

Ingredient	Amount (g)	Brand name
Flour	1200	Robin Hood Inc.
Milk powder	110	Carnation, Nestlé
Salt	12	Sifto
Sugar	3.2	Redpath
Water	1300	-
Yeast	18	Fleischmanns (Quick-rise)
Baking soda	10	-

4.2.3. Effect of 600S Negamold® in combination with 100%CO₂, on the growth of B. cereus in crumpets

All inoculated and control crumpets were packaged by placing 2 crumpets (~50 g each) into 210 x 210 mm high gas barrier Cryovac bags (O₂ transmission rate: 3-6 cc/m², 24 h, 1 atm at 4.4°C, 0% RH; ethanol transmission rate; 0.21 g/m²/24h, 1 atm at 25°C). Crumpets were packaged with 600S sachets of Negamold® (Freund Industrial Co. Ltd., Tokyo, Japan) and 100%CO₂. Gas flushing was done as described previously (see section 3.2.2). The ethanol sachets were added to the bags immediately prior to gas flushing and sealing. All packaged samples were stored at 30°C. Duplicate samples of inoculated and control crumpets were analyzed after 0, 3, 5, 7, 14, 21, 28, and 35 d.

4.2.4. Headspace gas analysis

Changes in headspace O₂ and CO₂ were monitored using a previously calibrated Oxygen/Carbon Dioxide Analyzer (Servomex, Food Package Analyzer Series 1400, Minneapolis, USA). Samples of headspace gas were withdrawn using a 0.5 ml gastight pressure-Lok® syringe through a septum affixed to the outside of each package.

4.2.5. Headspace ethanol

Changes in headspace ethanol were monitored using a Varian gas chromatograph (see section 3.2.5). The concentration of headspace ethanol (% v/v) was determined from a standard curve (R²= 0.9981) generated by analyzing, in triplicate, standard solutions of food grade ethanol ranging in concentration from 0.25 to 10% (v/v) (section 3.2.5).

4.2.6. Effect of UV-light on the growth of B. cereus in crumpets

To determine the effect of UV-light on the growth of *B. cereus* in crumpets, crumpets were inoculated, in duplicate (~50g each), and placed uncovered in sterile petri dishes. All crumpets, with the exception of control crumpets, were exposed to UV-light at a distance of 2 cm from the UV source for 0-12 min at 1-min intervals. All samples were then packaged in Cryovac bags, stored at 30°C and monitored for growth of *B. cereus* on PEMBA plates.

4.2.7. Effect of MLM on the growth of B. cereus in crumpets

To examine the effect of MLM on the growth of *B. cereus*, crumpet batter was again prepared and inoculated with a working suspension of ~10³ spores/g as described previously in section *4.2.2*. Appropriate amounts of MLM were dissolved in 10 ml of sterile water at 70°C and added to the batter at concentrations of 0 to 3000 ppm at 1000 ppm increments (Table 44). Crumpets were then baked, allowed to cool and packaged in Cryovac bags (section *4.2.2*). All samples were incubated at 30°C and checked for *B. cereus* growth using PEMBA.

4.2.8. Effect of batter pasteurization on the growth of B. cereus in crumpets

To determine the effect of pasteurization on the growth of B. cereus, the batter was inoculated with ~ 10^3 spores/g as described previously. In the first batch, the batter was baked directly, without pasteurization, and was used as a control. In the second batch, the batter was pasteurized in a water bath at 75°C for 30 min. Crumpets were then prepared as described previously. All crumpets were then packaged in Cryovac bags and incubated at 30°C and checked for growth of B. cereus as outlined in section 4.2.4.

4.2.9. Sampling of crumpets

On the appropriate sampling day, crumpets were aseptically transferred to a stomacher bag. A 1:3 dilution was prepared by adding twice the sample weight of sterile 0.1% peptone water and stomaching for 1 min using a Stomacher Lab Blender 400 (Seward Medical Stomacher, London, UK). Decimal dilutions were subsequently prepared from this initial dilution. Growth of *B. cereus* was monitored by spread plating 0.1 ml of appropriate decimal dilutions of the 1:3 homogenized samples, in duplicate, on *B. cereus* agar (PEMBA). All plates were incubated at 30°C for 24 h and checked for visible growth of *B. cereus*.

4.2.10. Ethanol content of crumpets

In order to monitor changes in the ethanol content of crumpets, the column, carrier gas, carrier gas flow rate and column temperature were set as described previously (see section 3.2.5) for headspace ethanol analysis. However, the injector port temperature was increased to 150°C. The ethanol content of crumpets was analyzed by injecting 1 µl of supernatant of the centrifuged homogenized sample (1:3 dilution) into the chromatograph. Peaks were recorded and analyzed with the Hewlett-Packard integrator. The ethanol content of crumpets (% w/w) was determined from a standard curve (R²=0.994) generated by analyzing, in triplicate, standard solutions of 95% food grade ethanol ranging in concentration from 0.25-10% (w/w) (Figure 5).

Figure 5. Standard curve for ethanol content in crumpets

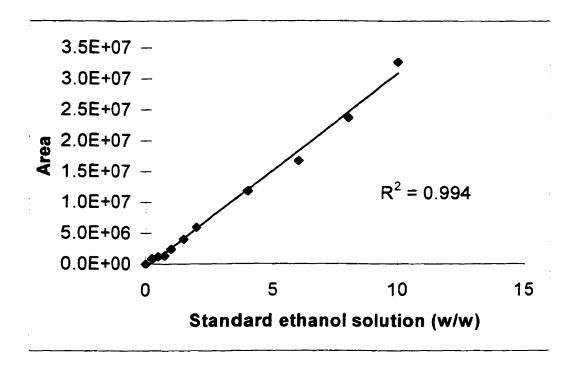


Table 44. Levels of MLM added to 100g of crumpet batter to obtain final concentrations of 0-3000 ppm

MLM levels (g)	Final concentration (ppm)
0	0
0.1	1000
0.2	2000
0.3	3000

4.3. Results and discussion

4.3.1. Effect of Negamold (600S) in combination with 100% CO₂ on the growth of B. cereus in crumpets

Studies were conducted to determine the combined effect of Negamold and 100% CO₂ to control the growth of *B. cereus* in crumpets. It was previously observed that the growth of *B. cereus* was inhibited for 35 d when 600S Negamold sachets were used in combination with 100% CO₂ in PEMBA media. These packaging conditions were subsequently chosen to determine their effect on the growth of *B. cereus* in English-style crumpets.

It is evident that a combination of CO₂ and ethanol vapor was effective in controlling the growth of *B. cereus*, as growth was inhibited for >35 d of at 30°C. The average headspace ethanol in crumpets was ~6% (Table 45), while the average headspace CO₂ level was ~90% (Figure 6-7). These results are in agreement with those reported by Smith *et al.* (1987) who reported that ethanol vapor could be used to extend shelf-life and keeping quality of apple turnovers. They observed that the growth of *S. cerevisiae* was completely inhibited for 21 d at 25°C when apple turnovers were packaged with ethanol vapor in conjunction with CO₂. Furthermore, they found that the level of ethanol decreased from an initial level (d 1) of 1.8% to 0.5% after 21 d at 25°C in products packaged with a combination of ethanol vapor generators and 60% CO₂ (balance N₂).

Table 45. Effect of Negamold (NM $_6$)/100% CO $_2$ on the growth of *B. cereus* in crumpets

Packaging conditions	Days to growth	Average headspace after 35 d storage		
		Ethanol (% v/v)	CO ₂ %	O ₂ %
NM ₆ +100% CO ₂	>35	5.9	90.2	0.3

Figure 6. Changes in headspace ethanol over a 35 d storage period

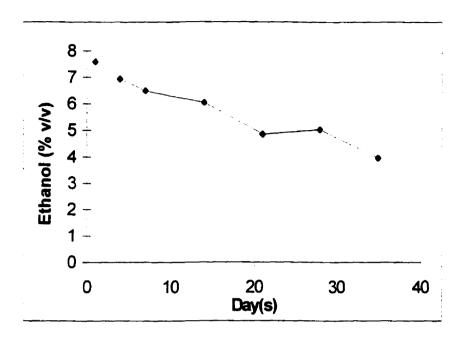
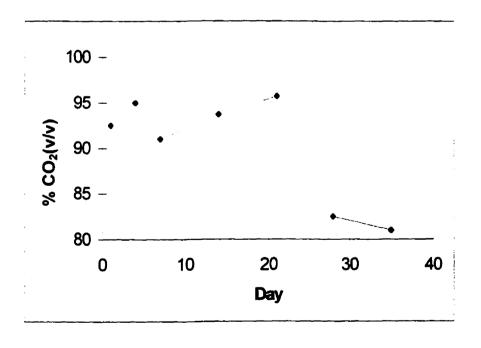



Figure 7. Changes in headspace CO₂ over a 35 d storage period

4.3.2. Ethanol content of crumpets

The ethanol content of crumpets packaged with 600S Negamold+100% CO_2 was analyzed at each sampling day. It was observed that at the end of the storage period the ethanol content of crumpets reached ~3.4% (Day 28). In this study, the ethanol content of crumpets at the end of shelf-life exceeded the permitted level of 2% (w/w) in bakery products (Federal Register, 1974). Higher levels of ethanol found in crumpets could be due to their higher a_w (0.990). Daifas et al. (2000) reported that the amount of ethanol generated and absorbed in a medium or product was greater at a higher a_w . Furthermore, they showed that the ethanol content of crumpets packaged without ethanol increased from 0.7% after baking to ~3% (w/w) at the end of storage and may be attributed to fermentation by yeast (Daifas et al., 2000).

4.3.3. Effect of UV-light on the growth of B. cereus in crumpets at 30 ℃

The effect of UV-light on the growth of *B. cereus* in crumpets is shown in Table 46. Growth of *B. cereus* was observed after only 1 d at 30°C at all exposure times. Previous studies on the effect of UV-light on the growth of *B. cereus* in PEMBA plates placed at either 2 or 50 cm away from the UV source showed that the distance from the UV source influenced the exposure time needed to cause inhibition of *B. cereus*. Consequently, crumpets in this study were placed at a distance of 2 cm. However, while UV-light was effective in controlling the growth of *B. cereus* in PEMBA plates, it was not effective in crumpets. Since the surface of PEMBA plates is smooth, UV-light was perhaps more effective in reducing the number of bacteria on plates. Conversely, the porous surface of a crumpet may prevent the UV rays from penetrating it, thus enabling bacterial cells to survive the UV treatment. These results are in agreement with those reported by Stermer *et al.* (1987) who compared the effectiveness of UV-light on beef round samples (rough surface) and inoculated agar plates (smooth surface). They found that UV-light was very effective in

reducing bacteria on agar plates inoculated with various species of *Staphylococcus*, *Pseudomonas*, and *Micrococcus* (a 90-99.9% kill rate was obtained depending on UV dose). However, lower inactivation levels were obtained when beef round samples were treated with UV-light. They concluded that UV-light is more effective on agar plates than on meat (Stermer *et al.*,1987).

Table 46. Effect of UV-light^a and distance (2 cm from source) on the growth of *B. cereus* in crumpets stored at 30°C.

UV treatment	Days to growth
(min)	(>10 ⁶ CFU/g)
0	1
1	1
2	1
.3	1
4	1
5	1
6	1
8	1
9	1
10	1
11	1
12	1

^aIntensity of UV-light ~620μW/cm²

4.3.4. Effect of MLM on the growth of B. cereus in crumpets at 30 ℃

The effect of MLM on the growth of B. cereus in crumpets is shown in Table 47. MLM has been shown to inhibit the growth of B. cereus in PEMBA plates, even at a highly alkaline pH (~9). However, due to the complexity of the food system, different results were obtained in crumpets. The growth of B. cereus occurred in all samples after only 1 d at 30°C, regardless of the level of MLM. This may be due to poor solubility and dispersion of MLM in the batter. Kato and Shibasaki (1975) reported that the antimicrobial activity of several fatty acids, and their esters, was dependent on the nature of the food, especially if it is comprised of starch, gelatin, and albumin. Crumpets are also high in starch and this may have contributed to the reduced antimicrobial activity of MLM in crumpets compared to PEMBA plates. Furthermore, MLM, being more lipophilic, was perhaps unavailable to exert an antimicrobial activity in the aqueous phase of the food where most microbial growth is likely to occur. These results are in agreement with those reported by Robach et al. (1981). They reported that monolaurin exerted antimicrobial activity in laboratory media. However, monolaurin had no effect on the growth of yeasts, molds, psychrotrophic bacteria, and coliforms in cottage cheese.

4.3.5. Effect of pasteurization on the growth of B. cereus in crumpets at 30° C

The effect of batter pasteurization (75°C for 30 min) on the growth of *B. cereus* in crumpets is shown in Table 48. The growth of *B. cereus* occurred after only 1 d at 30°C. The internal temperature of the batter, as measured using a portable thermometer, was only 50°C after 30 min. Therefore, this pasteurization treatment failed to heat-shock the spores, which would then become vegetative cells, hence making them more susceptible to the baking temperature. Spore cells survived the baking temperature and growth of *B. cereus* reached

>10⁶CFU/g after only 1 d at 30°C. Furthermore, the textural quality of the batter/crumpets was affected as a result of this pasteurization treatment.

Table 47. Effect of MLM on the growth of B. cereus in crumpets at 30°C

MLM levels (ppm)	Days to visible growth
0	1
1000	1
2000	1
3000	1

Table 48. Effect of pasteurization on the growth of *B. cereus* in crumpets at 30°C

Conditions	Days to visible growth
Control Batter pasteurized @ 75°C² for 30 min	1

a Internal temperature: ~50°C

4.4. Conclusion

In conclusion, ethanol vapor generators, combined with 100% CO_2 , were effective in delaying the growth of *B. cereus* for 35 d or longer. However, the headspace ethanol of the packages was high (\sim 6%), and the content of ethanol in crumpets was an average of \sim 3.5% after 28 d. Crumpets were also organoleptically unacceptable since the ethanol content had surpassed the maximum limit (\sim 2% w/w) approved for food.

UV-light did not inhibit the growth of *B. cereus* in crumpets due to the crumpets' rough and porous surface.

MLM also failed to inhibit the growth of *B. cereus* in crumpets; however, further studies are required to improve the solubility/dispersion of MLM in crumpets.

Pasteurization of the crumpet batter proved to be ineffective as well in controlling the growth of *B. cereus* in crumpets. Furthermore, pasteurization had a deleterious effect on the texture and organoleptic quality of crumpets.

Chapter 5

General Conclusion

Crumpets are high moisture bakery products which have been implicated in several food poisoning outbreaks involving *Bacillus cereus*. This microorganism is a spore former which is commonly found in flour and milk, ingredients used in the making of crumpets. In the baking process the bottom of the crumpet is fully baked, while the remainder of the crumpet, especially the surface, receives a partial baking treatment. Consequently, *B. cereus* spores can easily survive the baking temperature and subsequently germinate and grow to levels of 10⁵ CFU/g within 3-5 days at ambient temperature. Therefore, methods to control this pathogen are essential to ensure the safety of such minimally processed food products.

Preliminary studies clearly indicated that **a**_w was not a viable method to control the growth of *B. cereus*. Large amounts of salt or glycerol would be required for complete inhibition of this pathogen and such levels may severely affect the organoleptic and textural qualities of crumpets. This study has also shown that the growth of *B. cereus* was inhibited at pH 5. However, many bakery products e.g., English-style crumpets, are formulated to pH levels >8 to enhance color. Hence, other methods need to be considered to control the growth of *B. cereus* in such high pH products. However, the ability of *B. cereus* to grow over a wide pH range, 5 to 9, made it difficult to control using conventional preservation methods, such as organic acids and their salts. This study showed that neither calcium propionate nor potassium sorbate were effective in controlling the growth of this pathogen at pH> 5.

Further studies also showed that modified atmosphere packaging was not a viable method to control the growth of *B. cereus* at neutral pH (~7) and elevated storage temperatures (30°C). *B. cereus* is a facultative anaerobe, hence it could grow with or without the presence of oxygen. *B.* cereus was resistant to the antimicrobial activity of high CO₂ concentrations (100%), with growth being

observed after only 1 d at 30°C. Similar results were observed when an oxygen absorbent sachet (FX) was used introduced to the package. Furthermore, when ethanol vapor generators were used, growth of *B. cereus* was observed after 1 d at 30°C in plates packaged with Ethicap and Negamold. However, the effect of Negamold was enhanced when used in combination with 100% CO₂ and inhibition occurred in media and crumpets for over 35 d at 30°C. However, the ethanol content of crumpets was greater than the maximum allowable limit for food, i.e., ~2% (w/w). Thus, crumpets were rejected based on their organoleptic acceptability.

Alternative methods to control the growth of *B. cereus* included UV-light, bacteriocins, organic esters and batter pasteurization. Many of these methods were highly effective in media but not in crumpets, which is mainly due to the complexity of the food system. For instance, while UV-light inhibited the growth of *B. cereus* in agar, it failed to inhibit its growth in crumpets due to their rough and porous surface. Esters, such as mono-lauryl maleate, proved effective in broth, but they did not inhibit the growth of *B. cereus* in the crumpet batter at levels of 3000 ppm probably due to solubility and dispersion problems. Finally, pasteurization of the crumpet batter was not a viable method since it had a deleterious effect on the texture and organoleptic quality of the crumpets. The internal temperature reached in the pasteurization treatment (~50°C) was insufficient to heat-shock the spore cells and hence make them more susceptible to the baking temperature.

In conclusion, *B. cereus* is a difficult microorganism to control, especially in high pH crumpets. Further studies are now underway to examine the effect of other barriers, such as sorbic hydroxamic acid, an antimicrobial agent which has a high pK_a value (~12). Therefore, this preservative will remain in the undissociated and active form at high pH levels found in certain crumpet formulations (pH ~8). Moreover, the effect of L-alanine on spore germination and a novel antimicrobial gum will be examined, alone and in conjunction with each other, to control the growth of *B. cereus* in both agar plates and in high pH English-style crumpets.

References

- Aas, N., Gondrosen, B. and Langeland, G. 1992. Norwegian food control authority's report on food associated diseases in 1990. SNT report 3.

 Norwegian Food Control Authority, Oslo, Norway.
- Aboagye, N.Y., Ooraikul, B., Lawrence, R.A. and Jackson, E.D. 1986. Food Engineering and Process Applications, vol. 2. Unit operations. Elsevier Applied Science publishers, New York. pp. 417.
- Agriculture and Agri-Food Canada. 1990. *Modified Atmosphere Packaging: An extended Shelf-Life Packaging Technology.* Food Development Division.
- Ahmed, A.A.H., Moustafa, M.K. and Marth, E.H. 1983. Incidence of *Bacillus* cereus in milk and some milk products. *J. Food Prot.* **46**: 126-28.
- Al-Zenki, S. 1996. The combined effect of MAP and other barriers on the growth of Salmonella enteritidis in packaged chicken thighs under various storage conditions. M.Sc. thesis. Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Quebec, Canada.
- Baird-Parker, A.C. 1980. Organic acids. *In: Microbiology*, vol.1, Sillikel, J.H., Academic Press, New York. pp.126.
- Baird-Parker, A.C., Roberts, T.A. and Tompkin, R.B. 1996. *Microbiological Specifications of Food Pathogens*. Blackie Academic and Professional. London, UK. pp. 20-35.

- Bank, H.L., John J.E., Atkins, L.M., Schmehl, M.K. and Dratch, R.J. 1991.

 Bactericidal action of modulated ultraviolet light on six groups of Salmonella. Infect. Control Hosp. Epidemiol. 12: 486-489.
- Banwart, G.J. 1989. *Basic Food Microbiology*. 2nd ed., AVI, Van Nostrand-Reinhold, New York.
- Bean, N., Griffin, P.M., Goulding, J.S. and Ivey, C.B. 1990. Foodborne disease outbreak 5-Year Summary, 1983-1987. *J. Food Prot.* **53**: 711-728.
- Bean, N.H. and Griffin, P.M. 1990. Foodborne disease outbreak In the United States, 1973-1987: *Pathogens, vehicles and trends. J. Food Prot.* **53**: 804-817.
- Bennik, M.H.J., Smid, E.J., Rombouts, F.M. and Gorris, L.G.M. 1995. Growth of psychrotrophic foodborne pathogens in a solid surface model system under the influence of carbon dioxide and oxygen. *J. Food Microbiol.* **12**: 509-519.
- Bibek, R. 1996. Fundamental Food Microbiology. CRC Press Inc., New York.
- Black, R. P., Quail, V., Kuzyk, M. and Ruddick, L. 1993. Shelf-life extension of pita bread by modified atmosphere packaging. *Food Australia*. **45**: 387-391.
- Blackey, L.J. and Priest, F.G. 1980. The occurrence of *Bacillus cereus* in some dried foods including pulses and cereals. *J. Appl. Bacteriol.* **48**: 297-302.

- Blakistone, B.A. 1998. Principles and Applications of Modified Atmosphere Packaging of Foods. 2nd ed., Blackie Academic and Professional. London, UK. pp. 135-156.
- Board, R.G. 1969. The microbiology of the hen's egg. *Adv. Appl. Microbiol.* 11: 245-281.
- Box, G.E.P., Hunter, W.G. and Hunter, J.S. 1978. Statistics for experimenters.

 An introduction to design data analysis and model building. John Wiley and Sons, New York.
- Bryan, F.L., Bartleson, C.A. and Christopherson, N. 1981. Hazard analyses, in reference to *Bacillus cereus*, of boiled and fried rice in Cantonese-style restaurants. *J. Food Prot.* **44**: 500-512.
- Canadian Bread and Bakery Industry. 2000. Official website: http://www.agr.ca/food/facts/e_profile/bakery/bake-pro.html.
- Center for Disease Control and Prevention. 1996. Summary of notifiable diseases, United States (1995). *Morbid. Mortal. Weekly Rep.* 44: 1-87.
- Chichester, D.F. and Tanner Jr., F.W. 1972. CRC Handbook of Food Additives. 2nd ed., vol. 1. CRC Press, Cleveland, Ohio. pp. 115-184.
- Chorin, E., Thuault, D., Cléret, J.J. and Bourgeois, C.M. 1997. Modelling B. cereus growth. Int. J. Food Microbiol. 38: 229-234.
- Christian, J.H.B. 1980. Reduced water activity, *In: Microbiological Ecology of Food*. Vol. 1. Academic Press, New York.

- Claus, D. and Berkeley, R.C.W. 1986. Genus *Bacillus*. Bergey's Manual of Systematic Bacteriology. vol. 2. Williams and Wilkins, Baltimore. pp. 1105-1139.
- Code of Federal Regulations 1992. 21: Sec. 101. 22 (a) (5).
- Daifas, D.P., Smith, J.P., Blanchfield, B. and Austin, J. 1998. Growth and toxin production by *Clostridium. botulinum* in English-style crumpets packaged under modified atmosphere. *J. Food Prot.* **62**: 349-355.
- Daifas, D.P., Smith, J.P., Tarte, I., Blanchfield B. and Austin, J.W. 2000. Effect of ethanol vapor on growth and toxin production by *Clostridium botulinum* in a high moisture bakery product. *J. Food Safety.* **20**: 111-115.
- Devlieghere, F., Debevere. J. and Van Impe, J. 1998. Concentration of carbon dioxide in the water-phase as a parameter to model the effect of a modified atmosphere on microorganisms. *Int. J. Food Microbiol.* **43**: 105-113.
- Doyle, M.P., Beuchat, L.R. and Montville, T.J. 1997. Food Microbiology. Fundamentals and Frontiers. ASM Press. Washington, DC. pp. 495-578.
- Dufrene, J., Bijwaard, M., te Giffel, M., Beumer, R. and Notermans, S. 1995. Characteristics of some psychrotrophic *Bacillus cereus* isolates. *Int. J. Food Microbiol.* 27: 175-183.
- El-Khoury, A.A. 1999. Shelf-life extension studies on pita bread. M.Sc. thesis.

 Department of Food Science and Agricultural Chemistry, McGill
 University, Montreal, Canada.

- Eskin, N.A.M., Henderson, H.M. and Townsend, R.J. 1971. Biochemistry of foods. Academic Press, New York. pp. 160-163.
- Eyles, M.J., Moss, R. and Hocking, A.D. 1989. The microbiological status of Australian flour and the effects of milling procedures on the microflora of wheat and flour. *Food Australia*. **41**: 704-708.
- Federal Register. 1974. 39 (185, sept. 23): 34185.
- Fenton, P.A., Dobson, K.W., Eyre, A. and McKendrick, M.W. 1984. Unusually severe food poisoning from vanilla slice. *J. Hyg. Camb.* **93**: 377-380.
- Foodborne Disease-Reporting Center in Canada. 1992-1993. Health Protection Branch, Health Canada, Ottawa, Ontario. Polyscience Publications Inc., Laval, Quebec, Canada.
- Freund Technical Information. 1985. Ethicap, Freund. Co., Ltd., Japan.
- Gavarni, R.B. 1987. The causes and costs of foodborne disease. *Dairy Food Sanit.* **7**: 20-25.
- Gilbert, R.J. and Parry, J.M. 1977. Serotypes of *Bacillus cereus* from outbreaks of food poisoning and from routine foods. *J. Hyg. Camb.* **78**: 69-74.
- Goepfert, J.M., Spira, W.M. and Kim H.U. 1972. *Bacillus cereus*: Food poisoning organism: a review. *J. Milk Food Technol.* **35**: 213-227.
- Granum, P.E. 1994. *Bacillus cereus* and food hygiene. *Nordisk Hyg. Tidskr.* **31**: 189-206.

- Granum, P.E., Brynestad, S. and Kramer, J.M. 1993. Analysis of enterotoxin production by *Bacillus cereus* from dairy products, food poisoning incidents and non-gastrointestinal infections. *Int. J. Food Microbiol.* 17: 269-279.
- Graves, R.R., Rogers, R.F., Lyons, A.J. and Hesseltine, C.W. 1967. Bacterial and actinomycete flora of Kansas-Nebraska and Pacific Northwest wheat and wheat flour. *Cereal Chemistry*. **44**: 288-299.
- Green, G., Dicks, L.M.T., Bruggeman, G., Vandamme, E.J. and Chinkindas, M.L. 1997. Pediocin PD-1, a bactericidal antimicrobial peptide from *Pediococcus damnosus* NCFB 1832. *J. Appl. Microbiol.* **83**: 127-132.
- Hall, R.H. 1966. Nisin and food preservation. Proc. Biochem. 1: 461-464.
- Harima, Y. 1990. Free oxygen scavengers. *In: Food Packaging*. Academic Press, New York. pp. 477-491.
- Hartung, T.E., Bullerman, L.B., Arnold, R.G. and Heideilbaugh, N.D. 1973.

 Application of low dose irradiation to a fresh bread system for space flights. *J. Food Sci.* **38**: 129-131.
- Hasan, S. 1997. Methods to extend the mold free shelf-life of pizza crust. M.Sc. thesis. Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada.
- Hauge, S. 1950. *Bacillus cereus* as a cause of food poisoning. *Nordisk. Hyg. Tidskr.* **31**: 189-206.

- Hauge, S. 1955. Food poisoning caused by aerobic spore-forming *Bacilli*. *J. Appl. Bacteriol*. **18**: 591-595.
- Hebeda, R.E. and Zobel, H.F. 1996. Baked Goods Freshness. Marcel Dekker Inc., New York. 189-203.
- Hickey, C.S. 1980. Sorbate spray application for protecting yeast-raised bakery products. *Baker's Digest.* **54**: 4-7.
- Hobbs, B.C. and Gilbert, R.J. 1974. Microbiological counts in relation to food poisoning. *Proceedings of the 4th International Congress of Food Science Technology*. **3**: 159.
- Hunt, L. and Robbins, L. 1989. Food expenditure patterns of Canadian consumers. *Food Market Commentary*. **11**: 42-51.
- Hurst, A. and Hoover, D.G. 1993. Nisin. *In: Atimicrobials in Foods.* Marcel Dekker Inc. New York. pp. 369-394.
- Ingram, M. 1962. Microbiological principles in prepacking meats. *J. Appl. Bacteriol.* **25**: 259-281.
- Jay, J.M. 1970. Modern Food Microbiology. Van Nostrand-Reinhold, New York. pp. 27-31.
- Jenson, I., Baird, L. and Delves-Broughton, J. 1994. The use of nisin as a preservative in crumpets. *J. Food Prot.* **57**: 874-877.

- Kabara, J.J. 1978. Symposium on the pharmacological effect of lipids. The American Oil Chemists' Society, Champaign, Illinois. pp. 1-37.
- Kamat, A.S., Nerkkar, D.P. and Nair, P.M. 1989. *Bacillus cereus* in some Indian foods, incidence and antibiotic, heat and radiation resistance. *J. Food Safety.* **10**: 31-41.
- Kato, N. and Shibasaki, I. 1975. Comparison of antimicrobial activities of fatty acids and their esters. *J. Ferment. Technol.* **53**: 793.
- Kaur, P. 1986. Survival and growth of *Bacillus cereus* in bread. *J. Appl. Bacteriol*. **60**: 513-516.
- Kent, N.L. and Evers, A.D. 1994. Kent's Technology of Cereals, 4th ed., Pergamon Press Ltd., Oxford, England.
- King, B.D. 1981. Microbial inhibition in bakery products a review. *Baker's Digest.* **10**: 8-11.
- Kirschner, L.M. and von Holy, A. 1989. Rope spoilage of bread. *South African J. Sci.* **85**: 425-427.
- Kramer, J.M. and Gilbert, R.J. 1989. *Bacillus cereus* and other *Bacillus* species. Foodborne bacterial pathogens, Marcel Dekker Inc., New York. pp. 21-70.
- Kulp, K. 1979. Staling of Bread. American Institute of Baking. 1:1-7.

- Kuo, F.L., Carey, J.B. and Ricke, S.C. 1997. UV irradiation of shell eggs: Effect on populations of aerobes, molds, and inoculated Salmonella typhimurium. J. Food Prot. 60: 639-643.
- Kusunoki, J., Ikejima, N., Arai, T., Jin, M., Irikura, Y., Tomonari, M., Itoh, T. and Sakai, S. 1977. *Annual Report Tokyo Metr. Red. Lab. Pub. Health.* 28: 11-14.
- Labadie, J., Fournaud, J. and Dumont, B. L. 1975. Relations entre le pH et la microflore des viandes hachées de bovins. *Ann. Technol. Agr.* **24**: 193-203.
- Lahellec, C., Fung, D.Y. and Cunningham, F.E. 1981. Growth effect of sorbate and selected antioxidants on toxigenic strains of *Staphylococcus aureus*. *J. Food Prot.* **44**: 531-534.
- Lee, M.S. and Chang, D.S. 1980. Distribution and physiological characteristics of *Bacillus cereus* in rice and rice products. *Bull. of Korean Fish Soc.* **13**: 163-171.
- Legan, L.D. 1993. Mould spoilage of bread the problem and some solutions. *Int. Biodeterioration and Biodegradation*. **32**: 33-53.
- Marshall, B.J., Ohye, D.F. and Christian, J.H.B. 1971. Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium. *Appl. Micobiol.* 21: 363-364.
- Monsanto Technical Bulletin, 1977. Monsanto Nutrition Chemicals Division, St. Louis, Missouri, USA.

- Mortimer, P.R. and McCann, G. 1974. Food poisoning episodes associated with *Bacillus cereus* in fried rice. *Lancet.* 1: 1043-1045.
- Notermans, S., Soentoro, P.S.S. and Delfgou-van Asch, E.H.M. 1990. Survival of pathogenic microorganisms in an egg-nog-like product containing 7% ethanol. *Int. J. Food Microbiol.* **10**: 209-218.
- Nygren, B. 1962. Phospholipase C-producing bacteria and food poisoning. *Acta Pathologica Microbiologica*. **160**:1-89.
- O'Leary, D.K. and Kralovec, R.D. 1941. Development of *Bacillus mesentericus* in bread and control with calcium acid phosphate or calcium propionate. *Cereal Chem.* **18**: 730-741.
- Ooraikul, B. 1982. Gas packaging for a bakery product. *J. Canadian Institute Food Sc. Technol.* **15**: 313-315.
- Ooraikul, B. and Stiles, M.E. 1991. Modified Atmosphere Packaging of Food. Ellis Horwood Ltd. West Essex, England, UK. pp. 49-117.
- Pinegar, J.A. and Buxton, J.D. 1977. An investigation of the bacteriological quality of retail vanilla slices. *J. Hyg. Camb.* **78**: 387-394.
- Pivovarov, Y.P. and Kukhto, A.I. 1970. Effect of canned food pH on growth of *Bacillus cereus. Vopr. Pitan.* **29**: 72-75.
- Raevuori, M. and Genigeorgis, C. 1975. Effect of pH and sodium chloride on growth of *Bacillus cereus* in laboratory media and certain foods. *Appl. Microbiol.* **29**: 68-73.

- Rayman, M.K., Aris, B. and Hurst, A. 1981. Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. *Appl. Environ. Microbiol.* 41: 375-380.
- Riemann, H., Lee, W.H. and Genigeorgis, C. 1972. Control of *Clostridium botulinum* and *Staphylococcus aureus* in semi-preserved meat products. *J. Milk Food Technol.* **35**: 514-523.
- Robach, M.C., Hickey, C.S. and To, E.C. 1981. Comparison of antimicrobial actions of monolaurin and sorbic acid. *J. Food Safety.* **3**: 89-98.
- Rosenkvist, H. and Hansen, A. 1995. Contamination profiles and characterization of *Bacillus* species in wheat bread and raw materials for bread production. *Int. J. Food Microbiol.* **26**: 353-363.
- Russell, N.J. and Gould. G.W. 1991. Food Preservatives. AVI, Van Nostrand Reinhold, New York, USA. pp. 44-69.
- Seiler, D.A.L. and Russell, N.J. 1993. Food Preservatives. Blackie Academic and Professional, Glasgow, UK. pp. 153-171.
- Shah, D.B., Bradshaw, J.G. and Peeler, J.T. 1991. Thermal resistance of egg associated epidemic strains of *Salmonella enteritidis*. *J. Food Sci.* **56**: 391-393.
- Shelef, L.A. and Seiter, J.A. 1993. Indirect Antimicrobials. *In: Antimicrobials in Foods.* Marcel Dekker Inc., New York. pp. 539-569.

- Shinagawa, K. 1993. Serology and characterization of toxigenic *Bacillus cereus*. *Netherlands Milk Dairy J.* **47**: 89-103.
- Smith, J.P. 1993. Modified atmosphere packaging of food *Principles and Applications*. Academic and Professional. London, UK. pp. 134-169.
- Smith, J.P. and Simpson, B.K. 1996. Modified atmosphere packaging. *In: Baked Goods Freshness*. Marcel Dekker Inc., New York. pp. 205-237.
- Smith, J.P., Ooraikul, B., Koersen, W.J., van de Voort, F.R., Jackson, E.D. and Lawrence, R.A. 1987. Shelf-life extension of a bakery product using ethanol vapor. *Food Microbiol.* **4**: 329-337.
- Smith, J.P., Ramaswamy, H. and Simpson, B.K. 1990. Developments in food packaging technology. Part 2: Storage aspects. *Trends in Food Sci. Technol.* **11**: 112.
- Sofos, J.N. 1989. Sorbate food preservatives. CRC Press. Florida. pp. 33-192.
- Sperber, W.H. 1983. Influence of water activity on foodborne bacteria: a review. *J. Food Prot.* **46**: 142-150.
- Stadhouders, J. and Driessen, F.M. 1992. Other milk products. *Bull. Int. Dairy Fed.* **275**: 40-45.
- Stermer, A.R., Lasater-Smith, M. and Brasington, C.F. 1987. Ultraviolet radiation an effective bacteriocide for fresh meat. *J. Food Prot.* **50**:108-111.

- te Giffel, M.C., Beumer, R.R., Bonestroo, M.M. and Rombouts, F.M. 1996. Incidence and characterisation of *Bacillus cereus* in two dairy processing plants. *Netherlands Milk Dairy J.* **50**: 479-492.
- Thayer, D. W. and Boyd, G. 1994. Control of enterotoxic *B. cereus* on poultry of red meats and in beef gravy by gamma irradiation. *J. Food Prot.* **57**: 758-764.
- Todd, E.C.D. 1994. Surveillance of foodborne disease, *In: Foodborne Disease Handbook*. vol.1. Marcel Dekker Inc., New York. pp. 461-536.
- van Netten, P. and Kramer, J.M. 1992. Media for the detection and enumeration of *Bacillus cereus* in foods: a review. *Int. J. Food Microbiol.* **17**: 85-99.
- van Netten, P., van de Moosdijk, A., van Hoensel, P., Mossel, D.A.A. and Perales, I. 1990. Psychrotrophic strains of *Bacillus cereus* producing enterotoxin. *J. Appl. Bacteriol.* **69**: 73-79.
- Volavsek, P.J.A., Kirschner, L.M. and von Holy, A. (1992). Accelerated methods to predict the rope inducing potential of bread raw materials. *South African J. Sci.* **88**: 99-102.
- World Health Organization (WHO). 1992. Surveillance program for control of foodborne infections and intoxications in Europe. 5th report 1985-1989. Institute of veterinary medicine, Berlin, Germany. pp. 1-235.
- Young, L.L., Reviere, R.D. and Cole, A.B. 1988. Fresh red meats: a place to apply modified atmospheres. *Food Technol.* **42**: 65-66.