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SYNOPSlS 

" 
A~general theory is p"'sented to 'account 

dyn~mics and stabili ty of a slender, t o'we d' body wi th tapered 

'ends-, totally .,su?merged in w~ter, ,as i t ~ndergoes smail, free ,: 

lateral motions. Stability conditions and modal shapes are 

found based on solutions to -linearized equations resulting 
o 

frorn'~mall deflection assumptions. -If\ is found that the system rnay be s'ubjeét to ri~d-
,~ 

body type instabilities at low towing speeds, and to flexural 

instabllities at higRer towing speeds. The rigid-body' insta­

bili ties, 'occurring in the 'so ... called zeroth ~ncl fi~'mo",de of 

:h~_~lexible body, are' shawn t~_correspond to the inS~bllities 
of a ~igid body of the sarne shape and gravimetric proP~ies •. ,. 

Partlcular attention ls focused on the ~ffects on 

st-abili ty of (a) the ratio of the length of tow-r'ope ta the 
// 

length of main body and Cb) the bluntn~ss of tail portion. 

The former-affects the stability of a rigid or flexible system 

only in terrns of oscillatory i~stabilities, but does not affect 

yawing; on the other hand, a sufficlently blunt tail rnay sta­

the' system ove~the ,full flow-range in aIl its modes. 

be sa id that th~: stability of a slender body is vir-

bilize 

, It can 

tua~ly controlled by ~é shape of the' tail' portion of the body. 
r~r ""\ 
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STABILITE ELA~~HYDRODY~AMIQUE D'UN 

CORPS ALLONGE PRIS E~ REMORQUE 

,SOMMAIRE 

l ' 

Cette th~se pr~sente une ~tude de la dynamique ~ 

de la stabilit~ d'un corps allong~, aux extr~mit~s coniques, 

compl~tement imrnerg~ dans, un flui~e visqueux dans lequel on­

le remorque.t En se d~plaçant ce corps subit de faibles 
'J 

d~placements lat~raux. Si l'on suppose q4e ces d~flexions ' - , -

sont de faible amplitude on peut utiliser des,~quations 

lin~aris~es qui permettent de d~terminer les conditions de 

stabilit~'et les formes modales. 

On constate que le systême subit des i_nstabilitês 
, 

de corps rigides .lorsque la vitesse d.e remorquage est faible,-
, >-J ~. , 

tandis qu'A ,de plus grandes yitesses, on obtielt des .. inst-a-
,~ "_ ,'1 • ~ - ~j". if 

bili tês de 'flexion. Les inêtabili t~s se produisant .dans le 
c ' 

premier et le second modes du corps fleiible, correspondent· 

A des instabilitês d'un corps rigide ae même fatme et de mêmes 

propri~t~s gravim~triques. 

Deux paramêtres, en particulier, semblent avoir un 

effet d~terminant sur la stabilitê du corps, il s'agit 

a) du rapport de la longueur du filin a 1"a 110ngue\lr du corps 
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~remorqu~, 

b) de la form~ plus ou moins obtuse de la queue. 

~ pr~ier de ,ces deux p~ram'tres peut cau~r'des instabi~. 
, os'èillatoire.s, que le systême soit rigide ou flexibié mais . . 

n'a pas d'effet- sur l'angle de lacet. Quant au second, si . 

la queue est suffisamme~t i'btuse 1 le systêm~ \peut être ~table 

dans. tous ses modes quelle que soit la vitesse du remorquage. 

On peut même dire que la s~abilitê d!un corps allongê dêpend 

virtuellement de la forme de sa queue • 
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de'fined by equation (17) 

defined by equation (15) 

mf~e drag co~fficient 

• 

friction drag coe~ficients defined by equations 
(10-12) 

friction drag èoefficient on the forebody , 

equal te C4/rr}CD and (4/rr)Cf , respectively 

equal to cL (M/El) S" 

diameter of cylinder 

diameter of base of cylinder 

flexural rig~dity of cylinder 
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normal viscous force on,cylinder, per unit length 

longitudinal viscous force on cylinder, per unit ~ 
length 

slenderness coetficients for hydrodynamic forces at 
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, 

angle of inclination\. C!)f cylinder io flow 

normal inviscid hydrodyn~ic force on cylinder, per 
uni. 1:- length 
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longi tudinal inviscid hydrodynamic force on ~ylinder, 
per uni t lenqth 

length of main body . 
mass of cylinder per unit length • f 

virtual mass,of cylinder per unit length 
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tow-rope forces defined by Figure 4b 

shear force at a cross-section of the cylinder 

surface area of base of cylinder' 

length of- tow-rope 

tension 

time 

rnean flow velocity 

dimensio~iess fl,ow velocity "" (MIEl) 'UL 

critical dimensionless flow velocity 

axial co-ordinate 

lateral displacement of cylinder 

bluntness of tail por~ion 

equal to MI (m+M) 

angles defined by Figure 4b 

equal to L/D 

equal to y/L 

defined by equation C2} and (S) 
-

equ(il to sIL 
, , 

rndmen,t on ~ a cross-section of the .,.cylinder 

in~eral damPinq coefficient 

dimensionless interal damping coefficient • 

{I/[E1M+m») }1~/L2 

equal to x/L 
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1. INTRODUC'!'ION 

1.1 General 

There are many problems in the operation of marine 

vehicle systems, associated with ~e dynamical stability and 
, 

control of towed s:(~tems'. By' tow"ed. systems we understand the 

complete sy~tem comprising the towed body, the ·towing body and 
, 0 

the tow-rope. The performance' of each element of the system 

contributes ta the stability and motion resPQnse of the system 

as a whole. In general, the three elements are intercoupled, 

one element of the system can ,destabilize the' inherent sta-

bility of ,the otber elements, or can stabilize an inherent 

in'!l'tabili ty of an'other element. 

\:1 
The analysis of the stability and small linear motion 

response of towed systems comrne~ces with a perturbation of an 

original ççndition or,position of equilibrium--w~ere the 

system (or body) move~ at c&nstant speed in an equilibrium, 
, , 

configuI:'ation. For several ty.pes of towing situations, 

especially where the towing vehicle i~ a surface craft and the 
, 

towed body is submerg,ed at d.epth, it is essential to establish 

the equilibrium shape of the'cable confiçuration a~d position 

and attitude ot the towe,\ body'. This equili~rium condilion 

depends on .. the speed ~e system;, the size, l~ngth, cross-

,sectional "shap~,'weight and elasticity of the ca~le; and the 
fi 

, .. 

) 
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geometry, weight and point of attachment of the towed 
~~i 

body. Also, in estab1ishing this condition, it must be en-
, , 

sured that the system remain 'intacti i.e., the amount of 

tension in the cable ,at a1l points must be be10w the breaking 

load, and the cable force at the points of attachment to the 
" . 

\ bodies must be below the te~ring load of the attachment mecha-

nism and supportiAg structure. 

, 
The behaviour of the towed body is important. Mini-

mum resistance is experienced when the body is towed in a 

s~raight 1ine. On t,he' other hand; when the towed body has~ 

lateral motion about the tow-point on the towing vesse1, resis-

tance is increased and the speed o.f ,the whole towed syst~m is. 

reduced commensurately. 

As was mentioned, in considering the stabil~ty of 

the t9wed ~ystem, we a'ssume sorne kind of perturbation to the 

equilibrium statei here we shall consider,this disturbance to 

be applied to the towed body. We are not concerned with the 

nature of this di'sturbance, but merely with its effects. The 

usual effect i8 a srnall sidewise translation of body as well , ~ 
,\ 

as a rotation about its center of masse The latter is the more 

important of the two, since the syrnrnetry of the streamline flow 

i5 thereby disturbed and a'l.ateral hydrodynarnic' fo~ce and a 

moment on the body are produced. This induced fOFce and its 

~~ 

.. 
> 

~ 1 
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moment are in most cases many times greqter th an the initial 
, 

d~sturbing force and its moment. Besides this force and 

moment, another previously non~existant lateral fOLée and 

turning moment arise from the tow rope force, i~ the tow rope 
~ 

is attached at the bow of the body, which usually is the case. 
i 

Finally, translation and rotational inertia', reactions corne 
< 

'intô play due to the fact that the lateral motion is an accel- _, 

erated or decelerated motion spper.imposed on the steady forward 

m0tion of the towed body. 

Finally, it should be mentiqned that most solutions 

to instability of towed system involve design changes which 
~ 1 

either lirnit speed or result in increased drag (and hence power 

c;::onswnption) . It is, the're-fore, of considerable practi'cal 

interest: 

a) to know accurately the limits of stability of a 

given system, and 

b) to make design changes to an unstable system, 50 

,as to regain stability, which would not seriously 

affect its efficiency. 

1. 2 Outline of previous Nork 

Interest in the, dynamic stability.of towed ships 

dates baek to the halcyon-days when solutions to engineering 

problems could still be obtained by expe~ience, without, the 

'1 

'\ , 

\ / " 

/- \ 
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aid of sophisticated analysis. Substantive work on the rnethods 

for mooring airships in the air by means of cable systems began 

early this century, as reported for instance by Krell [1], . , 

using the three'wire "pyramid" system. This type of .mooring 

apparently originated with Crocco [2}, but received more ex-

tended use in England. Frazer [3] undertook laborgtory experi­
f 

ments with this and other forms of "free" wire system, whose 

dynamics are essentially the same'as with a solid mast but eor 

the increased'e~asticity. A more complicated dynamical problem 

is offered when a ship is moored by one cable only, like a kite 

balloon, which was"discussed by Bairstow, Relf and Jones ~ 4T. 

Later, Munk,,[ 5 ],' Glauert [6], and Bryant, Brown and Sweeting 

[7] contributed to the study of this préblem. 

In 1950 Strandhagen et al. [8), carefully discussed 

the dynamic stability ~f the COurse of towed ships, using the 

following assumptions: 

'i) the motion is steady along a straight line where 

the yaw angle of both the towing and towed ship 
\ 

is zero, which is r~ferred to às "steady course 

condi tions " 1 

ii) the towing ship remains on this course and 

maintains a steàdy velocity even after the 

towed vessel has bégun 'to ya~; 

iii) the motiôn takes place in a horizontal plane; 
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iv) yawing angles and v are small and'the 

" tow line is rnassless an,d", inextensible and 

in the plane of "the 

They show th.àt, when the towed ship s dist'urbed from 

straight course, it experiences no c in velocity 

x-axis. The analysis ~lso i~dicates a dynamically 

ship wQen towed rnlght ~ecome unstabl when thé tow l~ne ls , 

lonp and that a dynamically unst~le ship may become stabl if 

'towed wi th a short :tow line. 

The fi~st analysts of stabi ity of a flexible towed 

body was done by Hawthorne [9], for tH case of the Dr cone 

flexible barge. He laid down the ~oll~Wing require nts for the 

directional'\ stability of such a towed ship: " 

) 
~ 

\ 
\, 

__ ::""'{).> the point of attachment of the t w-line should 
-' 

be located forward of both the center of gra-

vit Y and the center of press 

lateral forcé; 

thel static . 
"1',. v 

l",· . 

ii) the ship should be dynarni ally stable when 

movi ng un towed; 

iii) when condition (~i) fulfilled, it i8 
',) , 

possible to irectional stability 
. 

. ; ei ther wi th a long or short enough tow-

line. 

The critical lengths depend upo the degree of.the dynamioal 

in8tability. 

/ 
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Reéently many applications have arisen fGr underwater 

towed systems in oceanography, fishing, 'an warfare. 

The recent development of faired tow~ng cab s has opened up 

new possibilities of higher which calI for 

a refined design approach. ted~a parametric 
\ 

stud"y onl stabi'li ty which demonstrated, sorne fun amental' effects 

of cable and body design and their interacti 5' on body peha-. , 

viour. A more c?mplicàted study of the thr -dimensional ~otion 
, . 

of a cable-body,towing system wa~ undertaken by Schram and 
~ , 

Reyle [Il]. Many papers have been' publishe~ in this field, 

e.g., by Eames [121, Rebér {13], Parson and Casarella [14], 

Sti::~ndhagen' and Thomson [ 15 l, RichardsQn ['16], Patton and 
"\ F"'-

Schram [17] and Laitinen [18) __ 
" 

Païdoussi's [19, 20) proposed'.a gen,el='al theory to 

account for the sma11, free, l~teral motions of a flexible, 

slender, cylindrical body immersed' in fluid flowi,ng parà'llel 

to the position of the rest of its axi~. Later, Païdoussis 
'-

[21, 22] extended ~is previous study of the dyna~~~ of flexible 
• 

cylinder in axial flow t~ deal with a towed system, which was 
. ' 

studiéd both analytically a'n@} experimentally. In this work he 

confirmed that there exists two main ,factors for optimum s~a­

bility of thè system; 

i) the tail must be,as blunt as possible, 

~i) the, tow-rope as short as possible. 

Q 

," 
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Also he found that the experiments do not show any advantage , , 

in making the nose particul~rly weIl streamlined, which does 

not entirely agree with theory. Ortloff and Ives [23] examined 

the stability and time-depend.,ent deflections of a thin flexible 

cylinder with zero bending rigidity set i~ a viscous stream. 

Later,Païdoussis [24J,re~examined the dynamics of fléxible 

towed bodies of revolution and determined the relation in dyna-

mical behaviour between rigid and flexible bodies. lt was 

found that the system may be sub'ject to rigid-body type insta-
~ 

bilities at low towing speeds; and to flexural ins~abilities 

at higher towing speeds. 

The conditions of stabili'ty have 'been invest'igated 

by calculating systernatical.ly the critical ~low velocities for 

neutral stabil'ity and their associated frequencies by PaO ( 25]. 

He estimated that. for L/O ::S~,~Ô, the critical velocity and the 
. \' ',' 2 assoeiated ~requency are Uc [<4/T) <c,fE) ] ..." 6 and· ne [(40/CT ) 

(~/6E) iJ .... 12. Pao and Tran [ 26 J discussed the fo-rced oscil-, 

lations of a th in flexible cylinder towed in a viscous fluide 
~. . 

lt was shown that the.' forcing frequency had a dominating influ-

ence on the modal-~hape amplitude of the towed cylinder. 

Yoder and païdoussis '[25) have forrnulated the equations 

for the dynamics of body towed in a~ial flow, focusing cheir \ 

at.tention to the various hydrodynamic forces ari,sing near the 

nO,se and taii sections of body, which were not previously 
<J 

_, .' \éA".taiLii~ ,_ ..... 'Y' 

• ,,'" 
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defined by Païdoussis [24]. The work presented in this Thesis 

is base~ on the formulation of the problern as developed by 

Yoder'and Paidoussis, particularly the work of Appendrx A. 

1.3 Scope of Present Work 
, 

The present study' is concerned with the extension of 

the theoretical ana1ysis made by Hawthorne [9] and Païdoussis 

[24], of the l sma1l, 1aterai motiuns of slender bodies towed 

through incompressible fluid. The author's interest in this 

thesis is to examine, carefully the various hydrodynamic forces 
-". 

arising near the nose and tail of the body which had been inade-

quately accounted for in tqe previous treatments. Accordingly, 
, . 

an extensive survey of the pertinent 1iterature was undertaken, 

out of which has grown a drastic reformulation of the inviscid-

flow forces acting near the ends of the body • 

This theoretical developmen't has entailed a substan­

tial amount' of effort, as evidertced by the fact that it com-
i 

prises the latter half of Cnapter 2, wh~le a,t the same. time 

drawing upon the results obtained in Appendix A. 
,~ 

In Chapter. 3', 

we have derlved the equations of smal!, lateral motion; also, 
, , .. 

the tensile force, shear force and moment which are exerted by' 

the tail an~ nose.section. The complete equation of moti9n i8 

'constructed and four boundary conditions are'formulated in 

Chapter '4. To compare the new theory with Païdoussis' (24) 

f-
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systematically, we modi~ie~Jt~e tow-rope force,and the coordi-· 
; .. 

nate system of J 24]. These are surveyed briefly in Chapter s., 

. Equations of motion of a rigid, towed body are discussed in­

Chapter 6. Instead of deriving the equations of force and 

moment balance independently of the previous work, we make ~se 

of the work of Chapter 4. Chapter 7 presents the theoretical 
, 

results obtained for 'flexible cylinders. The instab{lity 

regions are determined, and the effect of the different para­

meters on the behaviour of the system is discussed. Finally we 

consider the theoretical analysis'of rigid cylinders in Chapter 

8. 

., 

" 

, '. fi 

.' . 
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, 
2. FORCE~ ACTING ON A SLENDER, TOWED BODY 

Consider a slender body of revolution irnmersed in an 

incompressible fluid of density p,' flowing with unifôrm velocity 

U parallel to the'x-axis, which coincides with the position of 

rest of the body and of tlte "tow-rope", as shown in Figure +. 
It is noted that this sy~tem i5 exactly equivalent to a slender 

'body being towed wi th veloci ty tJ in sti!'l water. The body' is 
;, , 

presumed to be flexiblé or rigid,and to be supported somehow 

at the other extremi ty of the tow-rope 50 thàt··.,tt is not washed 

away downstream .. The x- and y-axes lie in a horizontal plane 

wherein aIl motions, y(x,t), are supposed to be confined. At 
.... ~ -.. 

its t~o e~~~, the body is tapered over a short length, compared 

with its overall length; but the tapered sections are presumed 
, , 

to be s~fficiently 'long so'as to admit no discontinuities in 
~. " 

the flow pa~t the body. We d€note the body diameter by D(x), 

its cross-sectional area by S(x), and its mass per unit length 

by m(x). It is assurned to be of null buoyancytand uniform 

density, so that neither a lateral force nor a moment is nece~-

sary te keep it 1ying along the x-axis, at 1east at zero f10w 

ve1ocity. 
t 

2.1 Modification of Coordinates 

Before proceeq.ing with the analysi's," it is desirab1e 

to express the proP1em'in dimensionless terms and accordingly 

. , 
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we put 
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~':8"~ , 

n :z t ' 
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" 

where L is the 1ength of main "portion of body and U ls the f10w 

ve10city of the fluid in the x-direction. .. 

We begin by dividing·th~\body, for the sake of ana-

1ysis, into three parts, as indicat~d in Figure 2 and take the 

origin of the x-axis to coincide with the equi1ibrium po~ 

-----of its midpoint. The ~engths ?f the nose and~~ctions,· 

------------~l and 12, respec~ive1y, need not ~~ stage be precisely, 
" -_...----------- -------- . 

specified. We do ~~~Ee~-though, that À1 = t1/L and À2 = t 2/L 

. he ~~~the--orèfêr-~; [ n Ji, so ~hat[ À1 )2 and [ À2 )2can be treated" 

----------~ as eqnall quantities. 

Th~se assumptions lèad to significant mathemat~cal 

simplifications over the nos~ and tail sections, as can be 

appre~iated by expanding n(~, T) in a Taylor series in ~ about 

1 the ~ = ,.; 

l an l' J n (-"!' T) + at ( ,., T) , {~ + 

1 a2n l" 1 2 
+ 2!~" (2:,1) {( + ~} 

+ " •• 
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1 1 . 
Over the ,nose, i. e., in the interval -2"-À1. <: ~ " -2,' the 

quantity (t: "+'})'i,~ o~ ord~r of Àl. Recal!ing that [À
l

] 2, 
2 3', 

d n and d n are very sma!! quantities, we 
~ ~. 
~ . 

the nose section n (E" T) can be by 

the notation 

o (T) = 
1 

1 

displaQements over the nose section may.now be written as 

(2) 

( 3) 

It'is clear' from the forro /Df equation P> that, in physical -

terms# we h~ve simply taken the nose section to be short 

enough to allow us to 'treat it as rigid; afthough it is, in .• , 

fact, flexible.' By the same process, n(;,T) over 'the tail 

section may'be written as 

(4) 

where 

(5) 

.. 
l, 



• (: 

\ 

" " 1,' 

t 

- 13 -

• 
The tail, thus, can also be treated as rigid without loss of 

generality. 

2.2 Base Drag Force 

Considering viscous flow ~ast a rigid, blunt-based 

body of revolùtion at a large angle of attack, Kelly [28) has 

shown by means of semi-empirical arguments thatthe forc~ arising 

from boundary-layer buildu~ along the leeward side of the body 

is of the order n3 , where n is the a~gle of attack. Since we 

are treating ~~ as 'a small quanti ty, this force can clearly be 

neglected. There will, on the other hand, inevit~bly arise 

flow separa~ion at the tail. Accordingly, we shall follôw 

Kelly (28) and assume the tail to be truncated upstream of the 

point where flow separation woulà otherwise take place. In this 

way we can assure that only the blunt base itself is in contact 
, 1 

with the wake and that the form drag at the tail acts in the 

lateral dir~tion •. Thus we'express the base drag as follows: 

(6) 

", 

Hoerner [29] des~ribes the so-called "je~-RUIDP" 

mechanism.by which the pressure in 

body' is reducéd as a result of the 

He also describes the "insulating" 

, 
th~ake of a blunt-based 

tUb~~ "jet- around it. 

effect of the separated 

boundary layer, tending t~. diminish\ the tet-pump effect. 
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It i5 clear" that the drag in equation (6) will be 

inversely proportional to sorne measure of the boundary-~ayer 

thickness'at the base, which can,be characterized by the drag 
, 

On the fore-body. Accordingly, he proposed that· 

(7-a) 

where CfB , th~ skin friction drag on tne forebody; i5 give? by 

(8) 

This is applicable to cases where the base area is 

essentia1ly equal te the maximum cross-sectional area. other­

wise, if the body is t~ered ahead.of the base, then referririg 

the drag to the maximum cross-sectional_area of 5uch bodies, 

Hoerner proposes 

D 3' 
C "" 0.029 • ( Base) / IC: 

J?B (0 ' Of , max 
, (7-b) 

} . 
where the forebody drag CDf"i~. 

D 2 
C

Of 
= ( Base) C 

0max fB 

Hence the base drag coefficients COB's are, respect~vely, 

jpu2s i 
C

DB 
= 0.029 ( D Base) 

, fore 
, (9-a) 

and 



r 

\ 

1 

" 

l , 

1\ 0 

- . 

, (9-b) 
F 

2.3 Skin Friction forces 

The viscous forces aC~fng on l~g inC1inedtCYlind~rs 

have been disc~ssed by Taylor [30]. For rough cylinders and .. 
turbulent boundary layer;; Taylor proposed the fOllowing 

expressions: ) 
! 

,;~ 

, F n = ~Du2 (CDpSi~;i + CfSini) (10) 
, " 

l 2 '. 
FR. !: ï PDU C f C,p$1 , 

, t' 

where i -= ta~ (aT) t...~n, '(TI). H?er~e [29] compi1ed data '-1 ~ + -1 an t . 
on the viscous forces o~'inclined cyl*n ers. and ~~tained the 

, v' 
expressions for the f~~es 'acting in the ~-and n-directions; 

and, 
/) 

Fn = ~P D(E;)U
2

C Sin2ic~si 
'1 L. . OP p 

Upon being transformed to the directions used here, these 

redpce id~ntically to equat,ion . (10) • 
,\ 1 ... 

Cf i8 given by 
"'/ 

c = f 

It i8 of interest' that 
t " 

(11) 

" 
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/ 

the '71" factor appearing sinee the skin frict'ion coefficient is 

based on the surface area. It is recognized that, at best, 

equations (10) give mean values since, strictly speaking, 

the coefficients vary from poin~ to point with the developing 

boundary laye·r. Typica11y, Cf = 0.01 to 0.03 for ReD> 104 • 
a d 1 

For small aï and d~ equations (10) reduce to 

, 

1 

.. 

where the secon. term in F represents a linearization n 

quadratic viscous force at zero f10w ve1ocity, ~pu2 C
DP 

(12) 

of the 

, dn 1 (h) . 
dT dT' 

this was retained sinee aIl other terms vanish at U e O. 

2.4 Inviseid Hydrodynamic Forces 

2.4.1 :Main Portion of Body 

Lighthill [31~-~], has investigated the potential 

f10w pattern arising ~ear' a slender," flexible body undergoing 

smail scale':deflections y(x,t) while subjected to nomina1ly 

longi tudinal flow and has shown, on the bas.is of the first 

perturbation to the undisturbed flow field, that the body 

experiences a force per unit length normal .to its axis of 
, 

symmetry and acting in what ~s roughly the negative y-direction7 

.. ' 

, . 
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a a 
In = [tE + Ùrx ] (Mv) , (13) 

where v is the lateral relative velocity between the body a~d 

the fluid flowing past it, and M 1s the virtual mass of the 

fluid.· Here the effects o,f sideslip have been neglected, 

effectively assuming ~at each cross-section of the body is 

part. ,of. an infinite' cylinder; boundary layer effects ha,va also 

been neglected. The virtual mass M (x), is equal ta pS ex) for 

unconfined flow, and v(x,t) = [ (ô/()t) + U(é)/ôx)J [y{x,t)1, which 

when substitutèd ~nto equation (13) yield 

= 
2 

+ .. pU dS {.Q. [!!!. + a~l (14-a) 
L de; aT a~ 

. Accordinq to Liqhthill's work, there exists no corresponding 

force in the longitudinal direction; thus, 
'"' 1 

2.4.2' Tapered Ends 

(l4-b ) 

,- Unfortunately, the ab ove express~ons are valid only 
, 

\ aver those portions of the body for ~WhiCh ~D(~)/d'; ~an he coo-

sidered smail. This clearly is not the case near the nose or 
, ,; 

the tail: indeed, in the vicinity of a rounded,nose dD(~)/dt 

o 
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can be expected to approach infinity. Paldoussis [22, 24], 

was obviously aware of this problem, as evidenced by the fact 

that he multiplied the expression giv~n in equation (l4-a) 

by a correction factor f before applying it near the nose or 

tai!., 

For this present investigation a better formulation 

has been sought. General 'expressions which are analogous to 

thosefo~tained by Lighthill but uniformly valid over the whole 

length of the body have been derived- the derivation being , 

presented in Appendix A- for the distribution of force and 

moment along a prolate ellipsoid of revolution as it undergoes 

general plane motion through an infinite medium of ideal fluide 

'These expressions will ul timately be used to test out the cor-

rected Lighthill formulation when it becomes available. In 

the interim we shall apply the expressions worked out in 

Appendix A sbmewhat more directly. 

To examine the end sections more carefully, we now 

o introduce a procedur~which has been shown by Upson and Klikoff 

[33 J to produce a fairly accurate approximation to the inviscid 

pressure forces arising along a ty~;cal, rigid airship hull. 
, , 1 

We fit to each cross-sectional element of the nose and tait . , . 

"sections an elernent from an axisymmetric e~lipsoid which has, 
" 

as nearly as possible, the sarne' geometric characteristics. Then 
:\ 
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we take the potential flow forces acting on the element from 

the nose or tail to equal. the corresponding f,orees which arise 

on the ellipsoidal element while, as part of the total' ellip- . 

" ~oid, it undergoes translation and rotation equivalent to that 

of the.nose or tai1 eleme~t to which it is fitted. 

The criteria for fitting are as follows:' 

i) the ellipsoid fitted t,a any element of the' 

nase or of the tail be coneentr~c to that end 

section or, in other words, have the, sarne 

longitudinal axis~ 

ii) the maximum diameter of the el1ipsoid be equal ~o 

the m?ximum diameter Of' f!-exibl~ body, 

Orna,,; in terms of the notation of Appen4'ix A, 
1 

this can equivalently be stated as fol'lows: 

b !D = 2 max (15) 

" 
iii) the local diarneter of the ellipsoid match the 

local diameter of the nose or tail at the 

point of f.it; in view of equations, (Al9) , 

(·A20), and (A2l) of Appendix A, tliis irnplies 
J • 

that -, 
'. 

1:1 Q.H) , 
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so that 
"- f 

! 
(!U.U.)~ } 2 {I x = - , -
.omax 

(l.6) 

the productof the first and second deriva-

tives of local diameter with respect te longi­

tudinal distance be the same for the,ellipseid 

as for ,the body at the point of fit; 

2 . 
'dO(x) • d,O(x) ;:: 

dx 2 • dx 

~ 1 2 1/~ 
x {2b(1-J...;l) } 

a 
, 

!3 0max 
5 

fDmax 2_0
2
'(0 l/2 

= 04(t) 

Fina11y we get 

1/3 
a } . (17) 

, . '. . . 

. . 

, . 
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,using the zi co-ordinate system of APpendix A, 
, , 

we must relate the velocity and notation of 
o 

each cross-~ectional element of the nose and 

tail sections. 

a) Nose Section 

From the Figure 3a , we can easily find the longitudinal 

velocity co~ponent 

dll " de 
vl == u{_l + (~~)--.!} sinel - U cos9l , 

dT . 2 dT 

and a la teral component .--

and the angular velocity 

Actually the motion is very small, and we can drop the second 

order"terms to obtain, 

~l • 0 

, , 

.. , 
.. 
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1 
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/. 

To follow Upson and Klikoff's.procedure, we substitute the 
--

above relations into ~quation (A37) of Appendix A, we obtain 

expressions for the transvers~ and longitudinal inviscid forces 

acting per unit length along the nose; 

. 2 n d 2n d 2 e 
l = ... p U 5 ( '->, (' { l + (E;i-!.) l + 

n L .7 27 
2 

.x . (l9-a) 
2 2. .2 

de 
l 

- dT 

22 2 
2 x 2 a.-+k l ) (1-( x ) ) 

I.t = pu Smax a [ 2 2 2 -1) '.­
l - ~ [x ] 

'. 

l - e .[x~J 

1 
1 

.1 
(19-b) ; 

... 
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Tail Section 
0 

Similarly, applying the Upson and KliRoff scheme to 

tail' section, we ha-ve 

, v1 , = - U 

v~ = 0 

3 w 

·3 II) 

dn 2 {- + 
dt' 

d2e 
+ 2 a ;;r:L 

" 

1 
( ,-}): 

l' 2 
3
x 

da
2 L (1+\ >C l-Ht2 ) 

x2 . 
-+ 9 2 }. a-

2 2 2 dt' 
-1-e [x ) 

2 ' 
d92 (~+kl) (1+13 (2 [X

2
] -1» 

{ -1 }] -~ 2" 2 2 
1-e (x l 

, 

., 

1 (20-a) 

.. 

\ 

III 
1 
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(l.+k
1

) t (1:[ x2l
2

) 
'[ , - 1 ] (20-:-b) 

2 22 
l-e lx) 

where S = !~b2 the maximum cross-sectional area of the max 4 max' 

body. 

It is important to rea1ize, and can be readily appre-
- , 

ciated by examining ,equations (15), (16), (17), (A20) 'and (A31) , 

that the quantities x~, a, e , 'k1, k 2 and'!3 are a11 functions 

of ~. 

, . 
, , 

o 

• 

, ' 

" 
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3. EQUATIONS OF SMALL LATERAL MOTIONS 

We shal1 devote this chapter ,to a"discus$ion of free . ~ 

motions of a slender bOdy. In Section 3.1, Me shall restrict 

our atteption to the main portion of the body, that is, the 

part along which we can apply Ligh~hill's formulation (14) 

of the inviscid-flow forces. In section 3.2 and 3.3, we derive 
v 

the tensile force, .shear force and moment exerted by the tail 

and nose sections' based on the work of Chapter 2 • 

3.1 Equations of Motion Governing the Main Portion of the BOdy 

Consider now a small element é ~ of the cylinder under-. 

going small free lateral mot~ns n(~,T). The cylinder is sub-

jected to a lateral force due to inviscid flow <:around it, 

In é ~, and to v:iscous forces F n cS ~ and l'R, é ~ 1 in the la teral and ' 

longitudinal directions respectively. We also assume that it 

i5 subjected to a tension T(~). We consider. the cylinder as 

an Euler-Bernoulli beam subject to lateral shear forces Q(~) 

anq to bending moment~'ç), as shown in Figure 30. 

Now taking force balances .in the ~- and n-directions 

an~ a moment b~lanèe,'~e obtain 

~ + F ilL + (F + l ) L (!!! +!!!.) - 0 
CI r:;. '" n' n 3 ~ 3T " 

(21) 

, " 
"~ .. :;.~~~:.J~:;;Z':,., .. ~ .. _ :;..1& lÉ +·werrr~z=JlU_& 
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'c 22) 

• 
Qt. + ~= 0, (23) 

~ 

where w~ have dropped terms of s~cond and higher order of magni­

an tude in -a"(" 

Now, subst~tuting equations (12) and (14-a) into (21), 
."...., . ,/ 

, : 
rteglecting terms of S,econd ord~r in small,quantiti,ës, and inte­

grating from sorne arbitrary value of ~ out to the point where . 
~11 section ~egi~s/'we obtain 

l 
T(ç:) = T2 + ï 

where T2 is the axial force,exerted by the tail on the main 

portion of ,the body. 

If ih turn we,substitute equation (24), along with 
1 ~ 

. (12) and (14-a) , into (22) land make use of equation (21), we' 

obtain, upon dropping terms of second order in n and its deri-

vatives, 

_ ~ + PU2,S(C)[aaT a·
2 

pu2 dS(~) [!.!l + an) a F;' ~ + TI;) 11 + d ~ a T ' a t ' 

.. 

'. + ipu
2

Cf ~~ g~ (~i + :~). + !puc ~~8L * 1 • 

o 

1! __ ~ _______ .,..,... _______ -=·-

1 

_.1 



..... " 

" 

,1 
~-

~ . \ 

- 27 -

1 
a 20 ' 2 - [ T2 + 1 ·2 2" ~ èÎl;] m(t;) U2 .L!l ( ?5) 2 PU CfL f ~+ = 0, 

C 
o (ç) ar 2 

, which is the equatièn of 'Srnall laterai motions valid only ov~r 

the major part of the body. ' ff, as a special 'case, we take this 
1 

major portion te be a uniform cylinder~ the above equation be-

cornes 
(lQ 2 a a 2 1 2 san a -' at + pUS [aT + a ~ 1 n + ï"P U cf ï5 L (fi + a ~ l 

2' 
I S L~[T2 1 u2 ' S' 1 a Tl 

+ "2 Uc - + '2P cf -L (2~)J ;? (2,6) 
,D D 

.l , 

~'-à,2 ~. ' 

+ mU --D. = o , ~ 

ar 2 

where band 'ro are now constant. 

./ 
Equations (25) and (26) are actùaIIy,identical,in' 

forro to ,equations (9) and (l0} deri"ITed by Paidoussis [ 24). But 

i~ should be realized, though, that paidoussis construed these . ... 
equations as'being ~alid over the entire length qf the body, we 

" here claim thern té be applicable only over the main section of • 

body. , 

3. 2 The Tai'l Section 
, , 

We try to develop expressions 'for the tensUe and 

shear force and for the moment exerted by the tail on the main 

part of the body, starting with the evaluation of the tensUe 

( 

( 
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Q 

force T2 , Referring. to ~igure 4a, we ,take.a force balance in 

the longitudinal direction to get 

( 27) 

= 

wh~re wê have made use of equations (12) and (20-b) and have 

introduced 

, \ 

(28) 

l 

along with ~ couple of the quantities defined in Appendix B. 

Recalling tha t t~B -~ends upon ·t.he forebody drag, we now set 

out to find an expression for it. 

Dfor~ 

mak;i.ng use of equations (12), (19-h), and (20-b). 
1.. ... 

" 
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1" 

In view of equation {.~J, i t follows that 

( 29) 

.' 
If the major portion of the body ls a uniform çylinder, this 

equation leads to 

D 3 - V2 
= o. 029 (D:::~)' {e: cf (l+'illO+~120) + 2 {i710+i720)} 

( 30) 

In ordero ta find a shear~ee Q2' w~ take a force balance in 

the lateral d~rectiorl, dropping terms'of second order in small . , 
quantities. 

= -

• 
, . . , 

( 31) 

aeGaz=z .. ;Ss\ '. 

-
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n w.ere we have used equatic:ms (4), 'and (12) in eval~ating the 

1 ~in friction forces and (20-a) in'treating the inviscid 

forces. In dea~ing with the inertial force, we have 'set the 

~ss per unit length ,of the body (equal to displaced fluid for 

" neutral buoya~c~) 
~ 

(32) 

(33) 

Finally, we see~ an expression for the moment~2' 

Accordingly, we take a moment baiance about the point B as 

shown in rigure 4a. Before proceeding , though, we should 

note that the longitudinal eomponent 'of inviscid-flow force 

arising al~o~n ____ ~ ellipsoid of ~evolution gives rise to a' dis~ 

cting in the plane of motion which has magn~-

tude (b 2/a)x21 opposed in sense to the moment arising _ n ~ 

equation (A38) bf Appèndix·A. In any case, this moment is of , 

negligible magnitude sinee (b/a) is presumably of ~he same 

order as Dmax/L, which is a small q~antity. 

In fact, 'it can readily be seen ~hat 

U4= 

.. 
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= - 0 (341 

d 

to first order in smal1 quantities. 

~e see that be~re proceeding we must consider the functional 

form of the tow rope force AccordinglYt we tâckle that 
.. 

problem firj 

Substituting equation (27) into equation° (24) , setting 

f;= -~ and employinq eql1ations '(12) and '(19-b) in evaluatinq 

'" integral, we find Tl '. 

(35) 

Thus, 
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32 

NOW, the total force P must clearly act in the pirection of the 

tow-line. Taking the length of the tow-rope te be sand let­

ting A = siL serve as ,its non-dimensional analogue, we conclude 
. 

that the normal component P is equal to, the total tow-rope n , 

fo~ce, P, times the tangent of the angle that the tow-rope 

makes'with the position of reste For sma1l motions this is 

linearized (Durand.[34] and Str~ndhagen [8}). 

where 

Cosy == !lI 'l' 
A ~== -'2À1. , .. 

and 
cot ô an == n r ~ 1 = -2À1 -as shown in Figure 4b. 

, 
.. 

u!iling fami1iar trigonometric identities and the binomial 
. 

expansion for 1 the expression~ for (an/a~) and ,(niA); and 

neglecting terl,llS of second order of magni tUcie, 
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tan (Y-6) 

'. 

It follows, then, that the normal componept of the tow-rope 

pùll, , 

) (37) 

making usé of eq,uation (3). 
- 1 • 

\ 

It 15 informative and intuitively reassuring as weIl 

to note that wh en the slo?e of the nose, el(to first order), 

equal~ the inclination of the.tow-rope, (n1-elh1)/h, then,the 

normal component.of tow-line pull vanishes. 
\) 

Returning to Figure 4a, we now balance forces ,in, 

~~ trarisverse directions in order to obtain an expression for 

the shear·force. 

= -p 
n 

1 
2' 

+ .f 
,lÀ 
21 

i 
! 

!iQ dl; ) I. 0 ( ç) 

l 
2" 

. . 

. 
*. this equation,is not v~lid as A+O. A must be greater than o(n+)e 
In this thesis, calculations are conducted wh~ A~O.5 • 
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SSase nl- e1À1 
+ 2(i710+i720'> + Smax COB} ~ A' - al) 

l 2 . dn1 
+ ~PU Smax ECf 1110(~al) 

2 da1 u2s . 
. d nI 

.P max i 310 ( -:-'"'r + d'r ) 
dT 

u2s 
. dOl u2s 

d2a' 1 + p max 1.410 ( d'r + e ) l P max i S10 ;;r 

+m 
max U2 . 

30 210 (38) 

where we have substituted eguation (3.6) into (37) to obtain Pn' 

invoked eguation (12) and (3) to evaluate the frictiona1 fotces, 

made use of equation (19a) in treating the inviscid forces, 

~ and employed equations (32) a~d (33) in dea1ing with ~he 

inertia1 force. As usual, we have dropped tèrms of second . 
order in small quantities. ,Finally, we ~ust obtain an expres-

sion 86r. the moment~. Accordingly, we take a ~oment balance 
". 

about the- point A shoWn in Figure 4a. Proceedi~g ~uch ~s we 

did in Section 3.2 we get 
1 '" -'2" 

L(~4) ~Fn+I m(f;)U2 a20) 
LÀlPn + r + Ld~ 

1 n L~ 
2).1 

1 
-2' 2 

- 1 ~ X
2

IJ,lLd( 
l 

11. 

-rÀ ~1 
,-= -

.. 
' .. "" ... 

" 
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.... 

-, 
1 

• (39) 

sinee all terms except those associated with the tow-rope force ( 

~re negligibly ~mall. 

- ' . 

... 
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4. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS ott 
OF A FLEXIBLE TOWED BODY - ~ 

• 

4.1 Equations of Motion 

We shall assume the flexural rigidity, El, to be 

constant along the cylindrical segment of the body, though it 

may vary appreciably over the end sections 'or even be infinite 
. . 

there. It has been a~sumed that the Euler-Bernoulli beam theory 

is adequate to describe the motions along the body's uniform 

"middle section; moveover, a Kelvin~Voigt type of damping in 

the m~terial .of the cylinder haa been assumed to apply. Thus, 

o 

·3 a 11 

aTa r,,2 ' 
( 40) 

where~is the bending moment shown in Figure 3c. Invokinq 

equation (23) ,the she~r force Q is 
. 

El a3n 
Q.= - ::1 :-::J La, 

Substituting n~equation (41) into (26) and rnaking use of: 

(27), we obtain 

(41) 
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+ 
2 d2n 

0 . (42) mU , :-2 = l r;' 

\ dT 
r' -

where S = S • max ) 

• 
4.2 : Bounâary Conditions 

Consider the towed flexible cyl~ndrical body.depicted 

in Figure 1., The body consists of a uniform cylinder ter-, 
'~. A~ \. 

minated~py a rounded nose pnd a truncated, streamlined tail, 

-incorporated to provide reasonable axial flow conditions over 

the body. It has been assUrned that the towing craft'mo'ves 

horizontally in a straig~t course with,uniform velocity U, 50 

,that the tow-rope in its undisturbed state lies along" the x-

axis. 

1 The two boundary conditions at ~ = -2 are obtained 

-by substituting equation (41) and (2) into (38) and then simi­
..'\ 

larly applying (40) an,d (2) in conjunction \fÏth (39). 
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38 

and 

(43) 
.~ 

(44) 

The other two boundary conditions requireq at ~ = î ar~ obtained 
1 .' 

,by using 'equations (40) 1 (41), (5) 1 (31) and (34) analogouslYi 

and 
'3 

+EI 
2 

lJIO' 3 n • !Jl = 0 73T3? -;:t a~2 
(46) 

.. .. 
\ cl 0' 

.. 

, ... 

" 

,. 
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..li 
, 5. EQUATION~ OF'~OTION'AND BOUNDARY 

CONDITIONS OF THE MODIFIED OLD THEORY 

'The equations of motion and boundary conditions of 

Ref~rence 'C 24 ] are given by 
'" 

" .,i 

aQ + (ai> (L) ] 
2 ic (PS) U [ (~) u(L)')y M + U y + + ai ox N 0 at ax 

(47) 

and o 
t , 

- Q + flMU(~i.'~fi} + ~U2(Cl+C2+EèT) (~~ - ;> 

( 48) 

I-
l ' a2 

+ (m, + f 2M)X2 ~ = 0 at x = L 1 

'\ 

• . Q f MU (Ê.!'+ u. ~) 
2 3t ()x 

", 

( 49) 

S(x)dx and 1, L 
X2 = S 1 S(x)dx 

L-R. 2 ... 

1'" 
the other 'two boundàry conditions are .j 

vII= 0 at x = 0 (50) 

vIt= 0 at (51) 



i.;; 

1 ,11 [, . 

1 

'. 

, . 

o~ r .'" 

1 

'\ , . 
40 .. 

rn order to transform these equations to a similar 

form as that used in the theory.presented in this thes~s, we 

must transform the coordinates, .since in the theorY'of Reference 

[ 24] the origin of the axes was taken at the nose,. We divide 

,the body into three sections, as shown in Figure 2b. It is 

recalled that the main portion of the body is of length.L and 

the lengt~ of the" nose and \ail sections are 11 and 12 , 

resp~ctively. ~6r thT sake of simplicity, we assume that the 

center of mass of the main portion coincides with the geometric 

.center of body. For convenience we 'now measure x from the 

center of mass, 50 that the main portion of the body extends 

from x :: -L/2 to .x = L/2. 

Hence, the modified equations, of Reference [241 may 

be obtained by applying equations (41), (24), (27) and (28) ta 

(47) in co~junqtion with '(1); yielding 

1 S' - 2 
tpu2s {ECf~j.- f;) + B:se C2} :~~ (47a) 

2 
+ mu2 .!-.!l == 0 , 

a~-Z· 

\\ 

.11\ 
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c 

This equatiorltis alrnost the sarne as equation (42). 

Substituting equatiQn (4~) into. (48) and also makinq 

f (1) bt " th b d d' t' 1 use 0 , we 0 a~n e oun ary con ~ l.on at ~ == -'2, 

3 "'-

~ 34n + El ~ + f MU2 (3 n I 3n ) 1 ~ , - ~U lCI +c2+cc f l x . 2' d~3 1 ât dç 
dTdÇ3 L ) 

(aiL 
Tl-À e 2 ' 

x I 1) + U2i210(m+Mfl)~ = 0 (48a) 
a~ Jo. aT 

',. 

SimiIa.zoly applying equations (1) and (411 to (49) 

2-
2e f)' 3 "Tl 

U m~M 2 l.220~ 
dT 

""' 0 , 
'tir 1 

~t ~ = '2' 

(49a) 
, . 

where we, introduce i 210 = X1/L and i 220 = X2/t. , -. 
The other two boundary conditions at ~ = ± i are 

obtained directly'from equations (34) and (39) respectivelY7 ' 

using (40), 

3 2 
uIU a n +!!. 4 + lp'U2's, (C +c + ) ~ 2 1Ir Al 1 2 e:C f ,-~ L ~ 

L 3T3t d~. 

o 

• 
~~:~' ~.~{' _~._ ";'i~~::~!i:.~_ .. ~: "'~ , 
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" 
.1 • 1 

at ~= - ! ,~50a) 

") 

llIU a3n + EI 3
2

1"1 0 1 (51a) 7 a-r3( 2 L. 3? =- a~ ~='! 
\ " . , 

\.. : 
The pafameters fI and f 2, which are equai to unit y for.slehder-'· 

,body, inv±scid flow 

theoreticai Iaterai 

tbalized because of 

theory, are introdueed to ~ecount foz: ,the 

~~ëes at ~he free,ends not ~~ing fully 

(a) the.Iater~l flow not being tru~y two-

dimensional, sinee the fluid has opportunity to pass around 

(sideslip) rather than over the tapered ends (Munk [5]), and 
f ..... 

(b) 'boundary-layer .effects (Hawthorne [9]). AJcor~Ungly, fl' 

and'f2 wi~l normally be Ie~~ than unity. 
" 1 

Compa~ing the above boundary.eonditions with equations 

(43), (44),': (45), and (46), we ean get the values of fI and 

f 2 theoreti6~ily. ,-
1 • .; 

. , ' . 
\ 

.' 

\ 
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6. EQUATIONS loF MOTION OF A RICID, TOWED BODY 

.' 

"6.1 Q Ma thema tical Model 
, . 

\ 

\énSider the equation Qf, moti'on for exactly the saxne 
. , . 

oonfiquration'a~ in Fi~e·l,'but impose the restrict~on, that 

the bo~y is ri~,~-ba~inq ~: streamltneQ nase and a truncëfted ~ 
• r 

/ 
,tail.. In this case, .. the system can° he completely described 

~
' by jilst two'::çfen~a~iZed e~~d~te~. Acê'oraing~y, we def~ 

n(ç,T) ta, he the'non-dimensiona~ized disp~acement of the c~ntre 
..... 

(". 
\ 

-\ 
of the cylindrical portion of the body, ne t~ b~ the latera~ 

displacement 1 the center of mass, and take ~ to be the angle 
, / 

that the axis of synnnetzy makes with the x-axis. 

~ 

Thus the displacement at any point along the body 

is qiven by 
\ 

n(ç,T) = n~(T) + ~(T)~ \ ",?!).' 

6 .. 2 Equation of Motion BaSed on ~e PreSent Theory 
.,........-

(52) 

Instead'of deriving the equations of'force and moment , ' -

balance independenllyof the previous work, we' shall first 

in~eqrate èquation (26) alqnq the cylindrical region to obtain 

. 2 
2 d,Tl d'" 

Q2 + pU S (--:=. + 2 ~ ) 
dT2 dT 

. ' 



z 

'~ 
-,' 
" 

• 

o 

1 

- 44 -

1 2 dn c <P) jPus EC<P + -iU SEC (- + + 
2 f dT 

2 

+ mu2 q. nc 
= 0 

~ 

Similar1y we<sha11 integrate the product of the forces in 
,;;t -

( 53) 

eQuati9n (26) by ~ in order to obtain the equation of moment 

balance\' 

\ • 1 

Consequently the equation 1eads to 
.~ 

l 1 . 
~ ~ 

+ PU
2
SL 

2 
- [L~Q] l + f l LQdi;; (....!. d <p) 

• 12 dT 2 ' ~=-2 -:-"2 

uslng equation (23), we see that the above is equiva1ent to 

2 
L L +~ -~ l ,2 (d <p) 
~1 ~2 + 12PU SL 

dT 2 
0 

--.lpu2s (~) 1 (2 2 
+ e:cfL + um!J L (d t) = 0 -'. (54) 

24 dT 
! '- dT 

\, 
... J 

The fol1owi-~g relations àre used ~o perform the integrations: 

, 

• 

", , 
f 
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, 'v, 
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r, 
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1 
i • 

l' 
1. 

1 ~ 
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l 

j "2 T)(~,T)d~ = T) (T) 
, C 

an n (~, T) ds = <Il (T) .' 

l, 
2 <Il . f ~ n (s, T) d~ = -
l 12 

-2 

1 

['2' ç~ (ç,T)d~ = 0 
1 

-} 

.!. a2 T) 
[2 SW(I;,T)d~=O 

1 :-1 

, 

, 

The shear forces QI and Q2 and moments4t1 and;/(2 whioh 

the end sections e~e.rt tlpon the' cylindrical part of the body havt;; 

J ~lready been found~ Now comparing'equation (52) with (3) and (4) 

we see that 

(55 ) 

. ~\-:. .- ~-_. -: 
• .-~", '"'! Joor, .... , . 
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Substi tuting t,hese relations into equations (31),' 
1 , 

(34), (38) and (39), and then substituting in turn the results 

into equations (53) and (54), we obtain after col1ecting terms, 

) 

.. 

dn c 

s 
, l ,1 { (1 + . ') + 2 ( . +' ) Base C } ] + "'2i\ EC f 1.110 + 1.120 1. 710 1. 720 + S DB ne 

2 • - . • . l ( • ') , i' (i " t' ) J d<P + [ - 1.310 -: 1 320 + 1610 - ~620 - 2' 1.410 + 1 420 + ~ef - 110 1,120 dT 

dn c 
dt 

(56a) 

+ Il)) ~ = 0 , 

~7i:" 

, .. :"·~·;:~\Â. ' 
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1 (1. ')] d41 + sfcf 3 + ~110 + 1120 dT 

S 
+ Base C ) (1. À HkÀ +A)] cp = 0 

S na 2 121 

where we have se,t c = 0.-

" 
6.3 Equation of Motion Aiased on t-he Modified' Old Theory 

, ' 

,In -this case boundary' conditions (48a-51a) ar::e ' 

incorpo~ated through the integral of the first term of ~ese 

equationsi alternativ~1y, the shear forces --:a.t ( = ± î may be 

viewed as for:ces replacing, the effect of nose and tai! on the 

main part of the body. Similarly, as we d.Ï;d in Sectio,n 6.2, 

we shall use equation (53) with the'bouneary condrtions (48a), 

- ~: 

" .. 
• '.t' ' 

{-
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(49a) tQ get the forc~ balance equation, 

(57a) 

In order to~-obtain the moment bàlance equation we shall 

'apply the boundary conditions (50a) and (5Ia) ta equation '(54) ( 

and' this yields. 

, . 

+ ~:.. i (fI + f 2) + 2~ 
where we hav~ set c = o. 

" 

" c 

2 d,n 
c 

dT 

__ . _____ ~_~~ __ ." ...... _,~~ ..•. , ..• _ ...... ".!..l...._ 

(57b) l .. , 
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J 
7. DYNAMICS OF FLEXlBL~, TOWEÔ CYLINOERS 

Before proceeding with the analysis f it is desirable 

to ~xpress )pe p~oblem in dimensionless terms and accordinqly 
1 

we put: r 

~ 

~ = x/L l n == y/L , , T' 

i 
El "2' 

= (m+M ) 
t 

~ 
, ( 58) 

comparing these relations with equation (1), we find TI tô he 

modified as 

or' {El = m+M 

1 
-M'1 

where u = (iI) UL 

El 
'{Di+M} 

, 

1 
'1 

(59) 

(60) 

Thè reason for using t'in preference to T is that 
, , 

with this definition the dimensionless f~equencies of the 

flexu~al modes then becom~, identical to those of,a free-free' .. 
beam a t zero towing speed • 
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Now substituting equations (59) and (60) into (42), 

and dropping the' prime on T, for 'simplici ty, we abtain 

5 4 S a2" 
v d:l)~4 + : ~1' + u

2 
[1 - ~ E:Cf (~ + 1120 - q + 2ïno + sBase CDB J ~ 

1/2 a2n 1 2 an 
+ [28 u] -- + !-u t. [cf + Co J ~ 

aTas 

a2n 1 1/2.; an 
+ aT2 + '! B. uEcf aT = 0 • :: " 

(61) 

Similarly, the boun~a·ry conditions can be. expr~ssed dimensionlessly. 

by substituting equations (59) and (60) into (43), (44), (45) and 

(46), yie1?ing 

S ~ 

+ 2 ( . +. ) + Base C }l 2.n. 
1 710 ' 1 720 S DB d~ 

• • 1 
at ~ = - '2' 

,", 

{l 
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• 

3- 2 
van +3n 

aTdE;2 af;2 

SBa$e , an 
+s Cœ] at" 

1. 

. 1 
~ P, at E;:: - 2" 

'i3~ 1 .. ~ 0 ,+' u [-"2 e:cf ~120 + 14201 Ôl = 

l' 

(63) 

at E; = l ,C 6 5) , 

.' 

Similarly, the equati~n of motion of the modified old 

iheory of Reference (24] can be expressed as follows: 

5 4 
v an. + a n + u 2 [ 1 

a-raE;4 ~ 
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The boundary cond~tions~ .are qiven ~y 

+ f 2 a '!!J. 
U aT 

v cfn + a2
n = 0 • 

aTâ~2 i2 W 

(À +A) , 
1 (e.. + c.... + €C )) an 
~ -1. -2 f ~ 

=·0 

, 1 
at~=-2' 

1 
at E; = -"7' 

at E; = 1 
'2" ,. 

at E; = 1· 
,} 

Let us . der motions of the cylinder of 

where tU is a dimensionless ~requency defined by 

.p, 

/ 

J. • 

(62a) 

C65a) \ 
\ 
\ 

\ 

\ 
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1/2 
n L2 

(ü = [ (m+M) lEI) , in which n i5 the circular 

freq':lency of motion. In gerier .. al n will -he c6mplex and the 

systém will oe stable or,unstable accordingly as the imaginary .. " 

part of w is po~itive or negative; in the case of neutral 

stability Im(w) = O. 

The system under consideration has an infinite 

number of degrees of freedom. The complete solution of tne 

dynamical problem therefore involves thè détermination of the 

" infinite set of frequencies of the normal modes of oscillation 
1 \r 

of th, system, ~s continuous funçtions o,f the -dimensionless 
/ 
city u and the sys~em parameters i 110 ' i 120 , • • ,. 1 

1 

/ 
/ 

, 
~2' 

~he main 

/ written 
/ 

and' at s 

and at ~ 

• , €, c,' cf' e ~c . 

Applying Equation (66) to the new theory we obtain' 

equation and four boundary conditions which are 

conveni,éntly in the form 

(67) 

l = - ï 

d3y dY _ 
go dF;3 + 95 &" t g'6Y - 0 , (6S) • 

,/ ./-, 

d2y dY" " 
go dt :T g7 dE; +gSY ~ ~ , (69) 

1 = 2' 

IL ,_ , ______ ,~ _ ~ ___ _ 
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- d 2y 
+ g9 

dY + 
glOY 0 go -y = 

d~ 
d~ 

( 70) 

d 2y 
go « ::;: 0 (71) 

Similar equations can be obtained by, substi tuting 

equation (66) into the modified old theory of Reference [ 24 J, 

. 
d4y. 2 d2y ~; ho d,;4 + 

h d Y + h 2 t: ~ + h3 h'Y = 0, (67a) 
1 d~2 . d~ 4 

d~ 

The boundary conditions at ~ == 1 
- 2" 

d 3y 
fi 

h dY + h
6
Y 0, (68a) --.., + h-S d~ = 

0 d ç;.) 

d2y 
, 

dY h d? + h, d~ + haY = 0, (69a) 
0 

and at ~ 
l 

= 2" 
... 

. . 
h 3y dY (10a) ho -3 -+. h9 dt" + h10Y = 0, 
dÇ; 

r 

" ",J • .. 

d2y 
ho d~2 

== 0, (7la) 
~ 

where the coefficients 9i and hi are given in Appendix C and' D 

respecti ve'ly • 

, : 

• 
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Let' ~~~try the solution 

, ( 72) 

where A· are generally ·complex quanti ties to be deterrnined., 
r 

It is assumed that the mQtion of the cylindèr may be described 

adeq~àt/lY by a sufficient number of terms in power ~eriés to 

approxima te the shape of the ,body. 

(71) 

Suosti tutin9 equation ( 72) into (68,) , ( 69) , (70), and 
, 

Q 
96Ao + 9SAI + 6go A3 = 0 

(6V3g~ +<] ~0)A3 
+ E;=4 (gor (r-l) ~~-2) +rg;+gI0J Ar =, 1 (73) 

\ 
\ 

and substituting equation (72) into (67) and. cOllecting terms, 

we obtain 

, \ .' 
1 
l' 
,; 

4 

. /, 

\ 
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1 

120goAS + 6gl A
3 + 2 (g 2+g3).A2 + 9"4 Al 

,~ 

360goA6 + ~291A4 + (6~2 + 3g 3)A3, + g.\A2 = 0 

---------------------~----------------------

n(n-l) (n-2) (n-3)g A o n 

+ en-3) r g2 (n-'<1) + g3 } An-3 

i 
From the first three equations in 

+ tJ4An-4 = 
.. 

(74) , it is 

\ , 

(74) . 

0 
r. 

evi(ient 

that aIl the A lrnay be expressed as Li,.near combi,natlions of A , , 
r . '1 0 

" 
Al' A2 an~ A3 alone.' Consequentlyequation (73) cân be expressed 

as a 4 x ~-determinant which must vlnish for non-trivial solution. 

Hence this' ,provides an implicit relation between 1,ù on the one 

hand, and u and the ,system parameters ,on the other. 

The modified old theory may be analyzed in much the 1 

sarne manner.' 

In gener.al, &{ will be comple~. Clearly, we' have an < /' ,. . . ~ 
infinite 'pet of frequencies, w.,' as the system h:as an infinite 

1 
" 1 . 1 

n~e~ of degrees of freedom. If the im~ginary c~mponents of 
,./r 

the .;reQUE;mcies, Im(w i ), are' aIl positi~, then the syst~m will 

,be ~table. If on the other hand 1 for t~" j th mode we have , 
~ Im( w,} <. 0, then the, system will be uns'table in that 'mode; now 

J . 
if the corr~sponding real compone,t of the frequenc~ ~. Re( wj ) , 

( 

• 
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is zero this will represent a divergent motion without oscil-

lations, which we shal~ calI yawing; Re (w.) :;. 0, then the 
, ] 

instability will be osçillatory •. 
" - Iv 

The calculation procedure is as follows: 
/' 

(a)' a ~t of values of À1r E, a, B, f l , f 2 , cl' c 2 

~d A are sèlected, 

(b) the complex frequ'encies of the lowest five modes 

of the system are traced as functions of u, 

starting with u = 0 and increasing the flow 

velQCity in smali steps. The results demonstrate 

the generai character of the dynarnical behaviour 

of the system fbr varying u, illustrating sorne 
. 

of the ~odes of instability ta which it may be 

subjected. 

7.2 Theoretical Results 

7.2.1 The Mod+fied Old Theory 

Typical results of thimodified old theory are dis­

pIayed as an Argand diagram ~ Figure 6, obtained by using 

equations (6la) to (65a). In this c~e we only consider the 

se~ond mode te compare the modified old theory with the pres~nt 
... , 

theory. Figure 6 she~s the loci of the so-called second mode 

of the :rstem of t~present theo~ ànd that of the modifled 

, . 
~--1H'--,,-_ .. -_,~-~;;., ·,"'~""~.M~.3~:;:p.;.?!.'i~& ~h,-;,:-.";;r:-,,.""'.-. ------...-

- .;w.~~ J. .,~ J. ..... '-' 
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old theory as functions 01 towing speed. The.frequepcy of this 

mode at zero towing speed corresponds ta the second-mode fre- / 

aC7 
, 

guency of the flexible body treated as a free-free beam: 

dingly, this is flexural in character. 

The form drag coefficient at the tail for this thea~, 

is arbitrarily taken ta have a numerical value 

on the reasanable assumption that, as the tail becomes blunter, 

f 2 is reduced and the farro drag coefficient increases. 

~e that the coefficient f 2 can be found ~pproxi­

mately, on GOrnparihg g9 of EqUation (70) with h9 of Equation 

(70a)i on the other hand, fI i5 determined from other coeffi­

cients. A. systematic comparisan was made between tne ald 

theory and ~he pres2nt one ta determine the values of fI and 

f 2 in a rational manner, at leas~ for ellipsoidal ends. This 
,.; " " 

was done by cornparing equivalent terms i~ the boundary conditions. 

In sorne cases the comparison was made by equating th~ magnitude 

2 ~ 
of the whole coefficients of u in q5 and gg wi,th those of hS 

and hg; in such cases the resul~ clearly depend on the parti-

cular val~es of sorne parameters, e.9., A. In other,cases the 

coefficients of u
2 

in the terms 9S and 99' i.e.; fI or f 2 , were 

cornpared with th~·éorrespodding domina~t coefficients in hS 
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and hg in the old theory which depend only on shape, i.e., 

i 410 or i 420 . Tbe results are shown in Figure 7, w~ere ÀI 

(or À2' as the cas~ may be) are compared with fI and f 2 • 

'1 

Returning now to tae discussion of Figure 6, it is 

noted that small flow velocities act to damp free oscillations 

of the system. As the flow velocity increases, however, the 
\ 

'sys~em becomes unstable. We observe that for 8.7 < u < 10.7, 

the system of the present theory loses stability. On the 

oth~r hand, the system analysed by the modified old theory is 

unstable in the range 8 < u < 10.8 for fI = 0.56 and 8.6 < u < 

10.6 for fI = 0.62 • 

. It is seen that the behaviour of the system in this 

made is very sensitive te t~e values of f l and, of course, 

to the values of a. other sirnilar second modes corresponding 
,---. :, 

to systems w1th a = 0.9 and various fI and :2 = 0.57, a~e shown 

in Figure 6b. Comparing the present theory with the old one 

in this case, it is o~r~ed that the systems lose stability for 
J ( • . ~ 

u ~ 5"."9 and u ~ 5.8, respe~tively. Another notable .feature of 

• this system is that the second mode goes back to the stabl~ 

region ·after it first crosses over to the unstable one. 

In short, these particular diagrams lead to the 

following conclus~ons: 
~ 

• 0 

. , 
---------- ," ' ....... " .. -

.. 
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a) the parameters· f~ and f 2 , which are less than 

unit y, May be approximately estima~~d by compar.ing 

the coefficien~s g's and h's numerically, 

b) for optimal stability,.~he tail should be blunt 

(f
2 

sma!l, c 2 large). 

7.2·.2 The Present Theory-

Figu~~ 8 to 15 illustrate the results obtained by, the 

present the9ry,· u~ing the equations (61) to (65). 

. , 
Figures 8 and 9 show the dynamical behaviour, wi th 

increasing towing speed, of the zeroth, f~rsb, second, third 

and fourth modes of a system with well streamlined nose and 

tail. 

The nose and tail sections consist of originally 
# 

identical hiilf ellipsoids whose diameter is a minor ax'is. 

Th ' l, 1 l' d e nose sect10n 1S~ ways stream 1ne • On the oth~r hand, 

the tail section hecornes blunt by cutting it at the end; n is 

the ~atio of the cut length to·the origina~ length. -Therefore,' , 
as n decreases the tail becomes blunter.· H~nce, a is equivalent 

to f 2 ~n the rnodified old t~eory. It is aiso noted here that . 

, , 

A Ytaken as the ratio. of ~OW' rope lÊmgth,.{length of the main body. '" 
/' 

/ . 

The 'zeroth' and 'first' mode (Figure B) correspond 

. ., 
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to esscntially?rigid-body motions, at least f,or very low 

values of,u. At u = 0, the frequency w ~ a corresponds ta 

rigid-body rotation about the point where the tow-rope is 

attached to the towing vesse1; for u > 0, ho~ever, evidently 

two distinct modes emanate from this point, one oscillatory 

and ,the other p~n-oscillatorl. The, zero th mode generally . 
-.. \ 

remains on the [Im(w) ]~axis and the instability ass~ciated 
" .. \ 
with this !l'tode will be called 'yawing.'. At low flow t~ system 

is evidently stable in the zeroth, first, second, third a~d 

fourth modes. The loci of the zeroth mode ini~ially rècede from , \ 

the origin but eventually double back , and the ne~ative\ branch 
, 

eventually crosses the o:ti\gin. It is seen that the zeroth mode 

of the system with li ::;;; l ,1E;\ads ta stability for u ~ 3.38. At 

'higher u the loci reuni te a~ leave the Im (w) -axis and then 

again rejoin ft, bifurcating t u ~ 6.625. 

The hrst mode ~4th Il = l is unstable, in t~e range, 

~.15 < u < 6.81. Similarly,.the y~tern loses stab~lity in its 

second, third and fourth'mode~at réspectively higher towing 

- ,~peeds. 

·f 

Further calcula tians were conducted for the sarne 

system as above, but with other values of Cl and Il,' to show the 

effect on stab~ty, as shown ~n Figures 8 and 9 (da~~ed li~es). 
It is found that the zeroth and first modes are stabilized with., .. ~Î v, 

/ 
/ 

~ 

/ , 
---- ~ .... "- ~ . --_.-~----....--.-- - .. ,~ 4$:-:--,- ,.~'- ~,,~<". / -.-- ,,", ,.~-I ,~ f -i!.M-"'~ ; .... r;.._ / 

\ 
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_. , ~ecreJ~ing a. The ranges of instQbi1ity of the first mode, 
\ :a~. 
~r_various values of A are found ta be as fo11ows: 4.30 < ~ < 

~ for A:::: 0.5i 4.15 < li < 6.81 for A:::: 1; 4.28 < u < 6~20 

fO;;~ == 5; 4.38 < u < 6.05 for /1.:::: 10 (Cf. Figures 10 and Il). 
\ \ 

,Thus ~\ \he effect of ft.., not uniform insofar as stabili ty in 
\\\ 

this m~~s concerned. On the other hand, the other modes are 

stabiliz~d uni'formly with decreasing a and increasing A, as 

.~ shown num~~callY'in Table l (Cf. Figure 12). 

\ 

~ 
0.5 ' 1.0 5.0 10.0 

lvbdes " Values of li c 

Zeroth 3.328 3.381 3.343 3.378 
7.950 7.935 

, 

First 4.298 4.150 4.276 \ 4.381 
6.951 6.806 6.206 6.045 

t 7.935 7.935 
1 

'Second 3 ~ 776 4.592 5.562 5.674,' 

1 

'lbird' 6.299 7.102 7.799 7.897 

~. 
. 

'", 

\ Fourth ,8.793 9. ~!Y- -+0. 3~ lQ..-4..00 
\ 

~,'~,~ 
/ . \ (' . 

[, 
TABLE . . Cri tical ~locitiep of a flexible 

1 ~der with variolis A • s. Other 
'\ r eter~: a=l, a=O.5, €Co=O' 
'~cf=l, Àl=0.015~ 

\ 
\ \ 

\ 
. 

"', 

- \ ~ 
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Figure 13 shows the effect of the tow-rope"'length on . 

the frequency associated with neutral stability for a system 

with ~cf = 1, a = l, and À1 = 0.015. Here·À l , which is the vqiue 

of Il/L, is taken based on modified old theory. Pa~doussis 

[ 24] set X'l = X 2 = O. 01, which correspond to i 210 and i 220 

respectively for a cylinder with streamlined nose and tail 

sections. From Appenâix B, we get i 2l0 = ~Àl/3 = 0.01. Fina11y 

we have Àl = 0.015. 
\ 

It is also seen that w becomes 1arger for c 

higher modes, with decreasing A. 

Figure 14 shows the effect of the tow-rope length on 

a system with ECf = l, À1 = 0.015 and perfectly streamlined 

nose and tail sections. the upper regions marked 'first-mode 

lODE of the first'mode. We see that reducing t ow-rope 

oscillatory instabili ty' c,oI?reSPOndS to the ~ec:fn unstab1e. 

'It 
~ngth does not'enlarge the stabl~ region, contrary to païdoussis' 

[24] results. For A = 0.5, for instance, there appears to be a 
• 

region of yawing a < u < 3.3; the system is stable for 3.3 < u < 

3.8, approximately, u ~ 3.,8 being tbe thre'shold of' second-ijlode 

os~i1latory lnstability. It is seenlthat' for A < 0.7, the stable 

region is reduced; ,for A > 0.7 ,:this region is independent of A • .. , 
figure l5a shows the effect on stability of the shape 

of the tail of a cylinder with ECf = 1, Àl = 0.015 and!l. = ~, 
and a perfectly streamlined nose. We see that the range of u 

• 

, 
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over WhlCh the systBm is stable is enlarged as the tail becomes 

blunter. For 0 < 0'.5 approximately, the system is stable over 

the whole range'of flow velocities in aIl modes. It'is also 

noted that the system i5 always stable for 3.6 < u < 4.2. 

Another attempt was m~de to check the stability for 

a higher value of ~l' i.er, for more elongated end sections. 

The effect on stability of the shape of the tail of a cylinder 

with EC f = l, Àl = 0.05 and A with a streamlined nose is shawn 
r 

in Figure l5b. As was expected, the r~gion of stability is 

enlarged tremendously, comparing with Figure ISa, presurnably 

because the stabilizing effect Of streamlinin~ the nose section 

overcomes the destabilizing effect of streamlining the tail. 

It is nated that the threshold of the second mode oscillatory 
1 

instabil/ity appears over the range of u = '12. It is seen that 

the system is always stable nor'a < 0.57. Thus we have 

concluded the system hecomes more stable by making both nose and 
, . 

tail more elongated. 

Finally, the following generai conclusions 'may be 

drawn: 

a) the tail should be blunt (0 small) for optimal 

stability, . , 
b) a system that is unstable by yawing, within a 

range of towing speeds, can be s~lized by 
1 ,1 ---.", 

le . 

• 

• l '-
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, 

blunting the tail, but not by manipula~ing the 

length of the tow-rope, 
t 

~ t 

in sorne cases, it is possibl'e tc," stabilize a 

,system wh1ch is un,table at low towing ~eeds, 

by towing it faster, within a specified range 

of towing speeas, 

d) To~-rope length does not enlarge the stqble 

towing speed range if \ > 0.7, • 

1 

\ 

/ . 

,c 

, 
, .. élA.....r.,~!U., .. 
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8. DYNlu'vlICS OF RIGID, Tot'JED CYXINDERS~ 
" 

Method of Analysis 
/ 

//' 

/ 
-" 

Let us consi7' mO~i/ori's of the cylinder of th~ form 

/ 
• WT / // • wt 

n = iie/'/rd ~ = ~e'. 

where W s,td' :nsionless frequency defined as W = n /U 1 n 

being e,,~C:plex circular frequency of oscillation. 
/' "'-.. \. "., 

// 
/ 

Substituting n and ~ into the Equation (56) we obtain ... 

+ . '} (~W) 
~410 - ~420 ... 

s 
+ ~se <W}IH 

f 

(75)' , 
, 

/ 

)' 

+ {2-i310+i320+i610-i620- !(i410+i420) ~ ~cf(illO+i12d} (iw) , 

+ iECf~l+il~O+il;O) ~~i420 . . 

-.~ (e:Cj5 Cl:+ilO+i 120) ,+ 2(i710+i1~O) + 5 se <na) <}À1-ih'+JJ ~ = a , 

and J .. 

.l , :' 

• 
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where we ha~ 'set c = O.' 

Similar equations are obtained when using the modified 

old theory, i.e., Equation (57), narnely .. 
2 1-

[ {2 + (1+f
1
)i

21
<t+ (1+f2)i220} (;W ) + fre f + fI - f 2} (iw) 

.. 
(75a) 

(iw) 

,.' 

". 

o / 
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, À1. +!+A 
+ (}:Cf (l)- (cl+C2+€Cf)(~») + fI - f2}],~ = 0 , 

li{-(l+fl )i210 + {1+f~)i220} (_w
2) + (~~(fl+f2)} (iw) 

• 

\ 
+ ( ~(fl .ff2) -t: 21 (Àl+N (Àl +Î> (Cl +Ci~€Cf)}]!II = o. 

./ 

(76a) 
.... , 

For nontrivial solutio~s, the deterrninant of th~ coef-

-fiGients 'of li ahd !II in Equations (75) and (76), or in OSa) and 

(76a1, must vanish, yielding a quartic in w 

where A, B, C, and E are cornplex. 

8.2' Theoretical Results 
\ 
ô~" 

8~2.l The Modified Old Theory 

• 

Calculations were conducted to compare the dy,namical 
l' 

. ~haviour of the rigid body to that of ~ fl~xible body: as the 

) 

( 77) 

J_ r 

1 
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/" 

rigid body may be regarded as a flexible one of very large , . 

flexural rigidity~ it wou\d be reasonable to expect correspondence 
._r 

of the dynamical behaviour of the rigid body to the '~igid-body' 

" modes of/the fl~xural one, i.e., the ~eroth and first modes. 
/( 

Recalling that the dimensionless flow velocit~ in the ~ase of a 

flexural body Was defined as u = (M/EI)1/2u~" the dynamical be­
\ , \ 

haviour of the rigid body should approach that of the flexib~e 
• 

one as u -+ o. 50 the system is i~pendent of flow veloçity u. 
" ' \ r 

We define the dimensionless complex frequ~nc~ of the 

rigid body W = nL/U in 8.1. 
, r ',' 

On the other hand, ·the dimension1ess 

complex frequency of the flexible body is defined as W f :;: 
, . 

[ (M+m) /EI}l/2QL ~, , 1/2 
which may be rewr1.tten as wf == [ (M+m) /M} un 

Liu, where u i5 dimensionless flow velocity. Since m = M, we 

have wf =: v'2unL/U. Now if the :dimensionless frequency, n, of the 
ta ~ ~ .. 1 

ri~id b~dy an~ of the flexible ~ody are, identical, we may rewrite 
, , 

,this as wf = /2uwr , and we can see that 

frequency will occur when>,-u :; 
J' 

8.2.2 The Present Theory 

1 

i2 

identity Qf dimensionless 
\­

'j 
\ 

1 

1 

Making us~', of Equa--rion (77), the four rigid body fre­

quencies 'are cornput~d for various AIs. It is'found,that, in the ". 
/' 

./ ' 

case also, the dyn~mical beh~viour of the rigid body corresponds 
, -, 

to that of t~e 7êroth and first modés of the f~.exïble one at low 
~. 

t~wing speeds- quan~itative correspondence of frequencies 

.. 

J " 
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occurring at u ::: 1/ /2 (See Table 2). ( .. 
-----~ 

- 1-

Rigid Body FleXible body (u=1//2) - a r 
p 

'"" 
~ 

/ 

Ais 
Wl W2 W3 Wl W2 W3 1 . -

0.5 -0.412i O.822i 1.899+0.050i -O.40li O.81Bi 1. 87J~~. 055i , 
, .. 

1 -O.422i 
• 

0.64li J..496+0.145i -0.410i 0.640i 1.479+0.146i 

• \0 

5 -O.455i 
V' 
0.202i 1.089+O.3a1i -Q..441i O.203i 1.075+0.377i 

/ 

10 -O.466i O.lO~ ~.046+0.4~7i ' . -0.4531 O.102i 1. 033+0. 432i . , - , 

. 
TABLE 2. Rigi"d body and flexible-It.ody 

"compared. Other parameters: 
€C ::: 0, €C f = l, Àl = 0.015 • 

frequencies 

\ 
;: 

<' 

\ 

Ir 

• cl 

Cl '= l, B == 0 ~ 5 , 

.. .-1 

( 

. l 

:From the ~esu~ts shown it ~gùres 8, lO'apd Il, wé 

.• have the four frequencïes for the f~exible body; twel-are 
> l . 

zeroth mode, . a,èl the/other' two with the 

'ft ., 
f -

~ . 
J ( 

\ • . 
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flrst mode for u := 1/ ff. Table 2 shows that agreement in 

behaviour of the rigid body and the flexible body i5 good. ' 

... It is obser~ed that oscillatory instability never occurs, 
r ~ 

\ 

because the syst~m is\always stable in the first modes in range 
1 

o < u,~ 1/ )If; . the system is on1y subj ect to yawing instab.Ü.i ty 

for var ious 1\ '$'. 

Based on such complex-frequency ca1culations it is 

possible ta construct stabi1ity diagrams i11ustrating the effect 
• 

of various parameters on the system. An exampie is given in , , 

Figure, 16 showi~g the effect of a and 1\ on stabi1itij of a rigid 

l ' " ~ 
. cylinder. One noteworthy aspect of the analysis is tha t the 

" . 

exiatence of yaw:ing instabi1ity i5 not affected l)y A, i.e., 
~ ~' 

by altering the tow-rope length. I~ the case of the rigid body 

this becomes obviou~ ! upon '<;?onsider,int Equa tion (77). S ince the , 
threjhold for ya~ing instabili ty ünplies w ~ 0, this thresliold 
, 

is established by the equation E = O. 
.J 0 ~ 

-
It is shoWn that yawing instability is aff cted by 

v4rious E. The stable rBgion becomes large as 

- -
cylinder increases ... 

<l 

The last criterion for stabilit"Y. is 
... 

g\ting the hose section. Here we' see that 

nose has stabilized the system markedly. 

optimum stability the nose shall be made 
, v 

.. pQssibl,e • 
-. 

_ i .. 

l 

derness ~f 

d strearnlined 

as 

v. 

, . 

" 

l 

) 
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CONCLUSIONS 

• • • The analysis presented in this thesis 15 approprl.ately 

characterized as an attempt to extend the theoretical 

studies " of Hawthorne (9) and Païdoussis [24), concerned with 

the small, later-al mptions of slender bodies towed tprough in-. \, ( 

compressible fluid. 

Hydrodynamic forces arising near the nose and tail ,. -' 

sections of the body had been inadequately accounted for in the 

previous treatments, ~ccordinJlY, an extensive survey10f the 

pertinent literd tuté has been untertaken f out of which has ~ 

grown a "refôrmulation of the inviscid-flow forces acting near ~:) 

the ends'of the body. The other difference is associated with -,. 

tow-rope force which i5 incorporated more correctly here. It 

1:S found that these modifications predict the system to be more , 
,.~ 

. -----
stable in aIl its m9des than does·the previous work. Speci~lly . ' 

~ we should. note that the first mode is stable at low towing speeds, 

which is contrary to Païdoussis' [24J previous'findings. 
) ' 

A substantive analy~is has been conducteé to "treat 
. 

forces on the non-cylindrical end sections, making use of 

Upson & Klikoff' s [33] work. An ellipsoid whose minor axis 

is equal to the maximum d~ameter of the main body is divided 
.. . ' 

- into axisymmetric slices and fitted to nose and tail sections 

respecti vely., The nose î~c;tion is always strèamlined l on the 
1 

other hand, the t~ ls.manipulated to be .. blunt. 

.~~---

the 

\ 
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1-
,. 

\ 

AD attempt has been made to find the coefficients 

f 1 and If 2' whi ch were used in l?"".,aïdoussis [24 J to expres s the 

hydrodynamic forces ,at nose and tail sections, respecti vely. 

First wc have modificd the coordinate systems and tow r?pe 

" o 
" 

force of prcvio4s pa~er. For a given condition,.comparing the 
, \ 

boundary condi tions of the present theory WJ.. th thosc of 
" 

modified [24] ~/ these processes have led 'to inter~relate- the 

two theories. It is seen t~t coeffici:nts f l and, f"2 of the 

modified old theory agree well with i 4l0 and i 420 respectively 

for comparatively small values of Àl(or À2 ). 

~ . r 
It'1s o~served th~t the system of the flexible body 

( 

is ~ubject té rigid-body-typc instabilities at low towing speeds, 

and to flexu~al~;t~bilities at higher towing speeds, The ... , ., 
rigid body instabilities, occurring in the so-called zeroth and 

first mode of the flexible body are shown.to çorrespond to the 

instabilities of a rigid body of the same shape and gravimetric 
1 • 

properties". Indeed, the study of the dynamics of towed flexible 

body yi€lds sufticient information to establish the'dynamical 

behaviou'r of the corresponding rigid body. It is also reviewed 

that, whereas the dynamical,behaviour in the case of rigid bod~ 

is independent of towirig speed, in the case of flexi~ body 

, 

the dynarnic stability of the sys~em i5 hignly dependent on towing 

speed. 

We first consider briefly the instabilities qf rigid 

body. The behavidur of rigid body motion is ~quivalent to that 

of flexible body at Ibw towing speed. It i5 observed that 

• 

_~,._ .&-'J ... "'­.. '" 
, .".~ .. 

( 

.. 
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oscillatoryinstabilities do not occur. At the beginning \ 

(low towing speeds) the first mode, is stable; this is ca~s~' 
by the modiiication in tho formulation of the tow-rope in 

thls theory. The yaw ing ins tabili tics, which are as sociated 
~ 

with the zeroth mode, ar~ diminished by manipula'ting sorne 

par~ters, specially by making the tail section blunt. 

Strandhagen et ai [ 8] proposed that a dyna:mically u~stable 

ship may become directionally stable when towed wi th a short 

enough towline. But it i6 noted that yawing instabilitie~ are . 
independent of tow7rope length in this study. We have foun~ 

• that this agrees well wi th Païdoussis [ .. 4] in terms of tow-

rope length effec~. He had shown that the instabilities 
.,-

(yawing) are ~nd.epcndent of tow-l:ope length. l t i5 cOIl9.1uded. 

that according'to the presènt theory, where the tow-rope force 

was ihtroduced in a more refined way, the system is geIle~ally 

more stable - and that stability is not affccted by tow-rope 

length. 

We next consider the flexural instabilities. As we 

have sèen, ~he cylinder may be stabl~ as a rigid body: yet for 

sufficiently high towin~ ,speeds it may be unstable in one of 

its flexural' modes.. s~ver~l â'ttempts have been undertaken to 

check the stability. It is possible te ~ake a number of recom­

mendations règarding optimum stability of the system. The two .. 
main ones are the following: (a) the_~aiJ should be as blunt 

as po~sible, and (b) t~e tow-rope length does not enla.rge the 

stability reglon. The former is the rnost effective way of 
~ 

-.'.\.' .~_. ----------,..-

( 



.... 

". 

.. 

; , 

't: 
, ~. 

" ' 

. -, 
," 

It{ 

( -75-

stabilizing a toweqJsystem, which has the disadvantage of 
...... .c,. 

increasing the' tow.i.ng drag. Clearly, what ,is ,necded is a 

blunt tail without separated flow. The latt~ is contra~ 
torpaidoussis' (24] work. He had proposed ~e - tow,-rope S~O~lod 
be as short as pos~ible for stabllity. 

From Figure ,15a (ÀI::;:O.OI,?) it i5 seen that tpe 

system ls uncon~itionally Jtable when a::;:0.5, while from 
, 

Figure 15b (À I =0.05) ,it is seen that the same condition applies 

,when Cl =0.57. Since the tail bas'e a~a in the latter càse is 

sUlaller, ~nd ~ence the ~base, érag i5 smaller, i t\ 1s clearly 
"----, 

~,~ 

" preferable "to use the moré streamllned ~nd p, I =0. O~); besides 

being more stable, generaIly, it would require a smalL amount 

of power for towing. The experiments (22] do not show any 

advantage in making t,he nose particularly well streamlined. 

In'practice, of course, the desire to minimize drag would dictate 

a weIl streamlined nose in any caS~h 
1 

~ 

In terms of application of this *ork, it has be~n 
;~ 

shown that, provided that the taiî< is blunil<l, a system may be 
, 

designed which wou Id be stable to high to~ng·speeds. 

'. 
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APPENDIX A: FORCE AND MOMENT DISTRIBUTION ~LONG AN 
-) l 

ELLIPSOID OF REVOLUTION 

In this section we,turn our attention to developing 

expressiqns for the for.ce and moment acting per unit length 

along the axis of a prolate spheroid as i t undergoes general ., 

plane motion thEough an infinite medium of iaeal f.luid. The 
'; 

fundamental p~oblem of determining the flow pattern that 

arises under these conditions has been discussed by Lamb [351 in 
\ 

sections 103-106 of his classic ~olume, Hydrodynarnics .(1932) • 
", 

In tha~ work Lamb investigates the net oyerall forces and 

moItl.ents exerted by the fluid on a transl'ating and rotating 

spheroid, but, seeking to avoid_ the "tro-qblesome calculation 

of the effect of the fluid pre~ures on the surface of the 

. solid~," (section 117) .he retrains from exploring the dis-
• 

tribution of these forces and moments. The troublesorne cal-
, 

culations t~ which Lamb refers haye been 'carried out by Jones 

[36) for.the case of a spheroid undergoing steady-state' motion , . 
conf~ned to a plane. fegrettably, though, Jones' failure to 

~ 

.account for the effects of linear and angular acceleration,s 

renders his findings inadequate Yor our purposes. 
; 

Given this situation, it would be tempting to provide 

, her~just ~ bare outline .of how to generalize Jones'. arguments, 

were it not for the age and the evident obscurity of.his paper . 

" In view of these latter considerations, though, and ~lso of 
o 

the fact that.Jones and Lamb chose to worK in terms of a notation 
• ... ri 

L 

~­
\ 

•• 
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It follows that 

and equivalently, 

'" i . 
dZ j dZ j 

dX dXl. 
.. 

~ 
g. = 

~-;;r 
e. = a?" e. = 

-1. -J -J 
.... 

where we have invoked the chain rule 

We define the rnet::ric tensor 

dZ l dZl. 
g .. ::: g .. g. = -. ---,-

l.J -1. -J axl. dXJ 

and note that it is symmetric in its 

obtain 

We define reciprocàl base ectors 2
j 

2'j. 2i ::1 cS i 

where cS~ 
1. 

is the Kronecker delta, and 

o 
dX j ax j azr 

7"l ~t· g. = â? !l • ax1 ~r a~ 
... 1 

~k 

" 

of differentiation. 

1 

/ 
/ 

/ 
j' . / 

1 
j 

two ind~c~s~ . 

by the 

observe 

/ 

g., we 
-J 

\ . 

1 

relation 
.0 

that 

ax j - 3z' élxj 
~j '0 • a;t .a xl 

= 
-agI 

p i - • 

, , 
-~ ~.~.!;~~7.~~gi~~~~~ ~_~~~ • .iJ#kJ~1 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 
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Hence, 

= 

Substi.tuting '(A2) into the above, we obtain 

2 
j- = 

• 
where we 

3x j i' 
3x azr a;r ~i 

have introduced 

i a j 
~ , ~ = 

g gij = Ni 

the re'ciproéal metrlc 

• 
tensor, 

Note that it is also symmetric. Invoking how (AS) and 

CA7), we deduce that 

ij = 2k' 
g.gij = 2k' 2

j = ô
j 

gikg 
-l. k 

If we multiply through the above by g', where 
l't 

9 = det~gi~) , 

we obtain 

. 
ij 

gki [g ,g] = IÔ~g 

~ 
or 

. 
gk2[;~g) lk + ' 3k -

gkl[g g] + gk3 [g . g]. ::;: 9 , 

where there ls no summation over t1t~ indexk. 

(A6) 

, (A7) 

_ (AB) 

(A9) 

CAIO) , 

We can regard the above as the expansion of a determinant in 

terms of cofactors, where [g(kg] ~s the cofaètor of gkl' and 

80 forth. Recalling that the cofactor of a matrix element 

atj contain~ no,terms involving' elements from either the i~h 

" 

. 
• 
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row or the jth column, we realize that none of the cofactors 
, l ' 1 

. in the last equation de pend functiona~ly upon gki' gk2' or gk3-

Accordingly,'we obtain by partial differentiation 

ik 
9 9 

It fO!low~ then by the chain rule ~iff.erenti~tion that, 

= 
3çr ôgid 

--..,....- = 
ôgki ôxJ 

CA Il) 

Let us now find tensor representations for the familiar 

operator V. We know 
" 

that the gradient of a scalar, .. dA ax j ôA V.A = e. 
êz

i = e. '"--r __ 

-~ -~ az~ ôxJ 
(A 12) 

~j êA _ , i' êA = ----.- - g. 9 J __ 
ax J -~ ôxJ 

where we have ma'de use of (A 6) and (A 7) in the 1ast 

two steps, respectively., We can simi1arly obtain exprèssions 

for the divergence of a vector: 

V·lr = !k 
a a ôx j 

ô 
B 

~ 
. = ~ -:::--1{ ---.- • 

ôz ôxJ . -
~j a ~j. aBi . ôg-. (N 13) 

= --.- • ' B = (--.- g . + B~~) 
ax J ôxJ -~ ·axJ 

where ~ave set B 
i Now, iJlv6king (A 1) and then we = B g .• 

.; ~ 

(A 21, we bbtain 

dZk k 32 zk . 
axm a9i' . a a"z , 

ax3 = ;-r (~ e k ) = , 1 e = , , 
~2m ax .. axJax~ -k axJax ~ 

1 \ 
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is customari1y denoted 

by {, ~} , 
) 1.. 

the C~ristoffe1 symbo1 of the second kind. 

Substituting the relatiqn 

{. ~} Cl l l. 1!m = 

into (A 13) and using (A S), we obtain 

i = aB
i 

Bi J,' }' ~ • B q, --r + {, 
. -1. ax1. ) l. 

We s'eek, ~ow, a more convenient expression 

Invoking (A 4) and (A 14) , we obtain 

{ . ~} a 2 zk azk 
gmn = , • -J 1. axJaxl. ax n 

Using (A 3) it may readily ~e verified that 

for 

so that, w~th the use of (A-9), we can i~fér that 

.Hence 'i '\ çp 

{j j} = 
l agjn fij 

i ï 1. 9 
3x . 

'" = l~ 
Tg élx - l iL ~/~ = '2g alg 3x 

/' = L~· 
19 élx 

, . 

. . 
" 

(A 14) 

(AIS) 

V. Bi2i 

/" 

1 

J 



~ 5 t 

", 

'h 

\. 

o 

.' ' 

-A.7 .. 

/' 

, 
'" 

where we have used tpe symme~ry of g .. and gij in the first 
~J 

~ step and have invoked (A Il) in the second. We' now note that 

L ~(.rg Si) aB i 
Ld~ Bi = ---.- + 

Ig axl. ax l. .rg dX~ 

r aB i 
{j ~} Bi = ---.- + ; 

l. l. ax 

hence, in view of (A 15) , 

i B g. 
-1 

\ = 

AS a particular case of the above, we can set B equal to 

the ~radient of a sca~ar and, using '(A 12) , obtain an St­
pression for the Laplacian: 

.. 

(A 16) 

~ 
A.2 Calculatxon of Distributed Farce and Moment 

'With these preliminariès at our dispOsaI we can now 
\ . 

tackle the problern we set out to investigate, thât of 

finding the force and moment acting along a sph~roid as 

~ t undergoes plane motion.. We begin by describing the 

three coordinate systems .w~ich figure in.the subsequent 

-derivations. rt ls convenient, first of aIl, ·to introduce '"' -.. 
. '. 1 2 3 

~ a Cartesian system (Z ,Z ,Z ) which is fixed in space, 

that is to say, which has the property that an observer 

àt rest in it measuring fluid velocities would find that 

they tend to zero far away frqm the moving spheroid. 

• 
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,~ , 

, ' 

-0 

,-A. 8 ... 

This i,s the frame of refe!ence in which Bêrn~tion 
applies in its most familiar form: 

,p - Pao 
p 

o 

Here, p .is the ambient pressure, p is the, fl uid density, 

which is considered to be constant, and $ 'is a scalar 

(A 17) 

function whose gradient equals thè fluid velocity at ea~~~_~~~~ 

pbint. In order to find $ for a translating and~otâf1~g 

ellipsoid of revolution, it is nec~s~·to worR in terms 

of coordinates which rnove with the body. We in~odu~e, 
, 1 2 3 

therefore, a second Cartesian system (z , z , z ) ~hose 

:. . origin 'coincides él; t, a;l.l times wi th the, spheroic;i' s centroid,' 
" . 

the zl_ a~is pointing along the axis of the 'body. We 

assume, ,without loss cf generality, that' the two co~rdinate. 

systems were initially coincident and take the translational 

> , 

.and angular velocities of the sphèroid, as measured in the t _______ :.---

..-.--:; ---------.. fixed frame, to be y(t) and ~(t) respectively ... Accorchng.ly, 

. for'an arbitrary particle moving through space, the position 
, 

véctors corres'ponding to the -fixed and moving coordina~e . ~ 
~' 

systems, Rand r respectively, must be' relat.ed as follbw?~..7 ._ 

'R(t) ::: 
t 
fV(1")dT + r (t) o .. 

.~/./' ,,-' 

; 

We a~e obliged to consider aiso a set of spheroidal \ 

x3) which are defined 2 x , coordinates {xl; by ~he rela~ions 
~ - ~~ 
.~. ------ ", . 

r • ------4. 
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below and lnterpreted in Figure 5b 

a e 1 
x 

. -.-

a e / 
;2/2 3 

-Il-Ix] cos x 
/ 

"---- ,....--,,...., ~-- y---

z3 = a e (Ex l J2 .. i /l-~/sin x3 
/~ 

/~ 

where 'xl>l, -l~~î, and O<x3<2~ 
, ~ 

It Sh~~ noted that the lOc,us of points satis fying 
/ 

~ ~! is a'prolate spheroid whose length is 2a and 
~ e -, . // . 

. // whose maximum radius is 
,/ 

We shall take the 

i 1 F(x ) = x -

relation 

~lo 
fine the surface of e ellipsoid whose motio~ 

we wi,sh to study. /) 
/ ' 

,Q 

• 
',' 

... 
... 

(A 19) 

L 

(A 20) 

(A 21) 

J 

1 

1 

1 
Î 
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We' shail throughout the co'urse of the argument which 

foilows observe the rnoving ellipsoid and measure the fluid 

velocity V~ from a frame'of reference fixed in the 'zi co­

'ordinate system. Now, within the context of incompressible, 

ideal-fluid flow, the'equation Of-continui'ty takes on the 

par,ticularly simple foim,.' ' 

V2 ~ = O. 

In order to obtain boundary conditions we note that ale 

the interface b~tween the spheroid and the fluid 

component of velocity of the body's surface must equal the 

normal component of flhid velocity. Hence, 

i7~.n = R. n 
-- i 

on F(Z" t) = 0 " (A 22b) - "" 
where n denotes a unit vector normal.to the surface of ... 
the moving spheroid and R is understood to be a dis-- . 
placement vector which follows sorne point on this surface. 

We a~so, require V~ to'approach'zero at distances far from 

the b.ody 

,While ~ontinuing to regard'V~ as th~ fluid velocity 
J 

as measured from a vantage point fixed'in spac~, we no~ 

set out to express it as a fu~ction of the zi,s. 'Since 

the zi and zi coordinate systems differ only in that they 

are in relative motion f gradients and Laplacians shou1d 

bé the sarne .whether· evaluated in terrns of on'~ system or 

of the other. Usinq, then, (A 18) we can rewrite equations 

(A 22) in terms of. the zia 

V2~ lOI 0 

(V(t) + w(t)xr) n on F(zi~ = 0 CA 23)' .. 
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/ , 
1 

I.n this last step we }:{ave 

. / 

recognized' that Lthe z1 co-

ordinate system moves with the spheroid, the equation of 

its 'surface F ~ 0 does not involve time eiplic~tly and, 

furthermore, the position vector E of a ~epres~ntative 

point on thi~ surface does not depend ffction~11Y ~pon, 
time. 

,aefore we can expand equations (A ~3) in terms of 
l ' 

spheroidal coordinates, we must 'evaluate a number of tensor 

quantities.. App1ying the relations (A 1), (A 3), (A 9) 

and (A '10) to (A 19) we obtaln: 

2 X l /.. 2 2 3 
= aex ~l + ae~ 1 2 . ~l-[x J cos x ~~ 

[x ] -1 

1 
g2 ::: aex Ell-

1 c:tJ = -ae 

; 

g11 
= 2 2 { [xl J2 ~ ·IX2)2.} ; a e 1 2 

[x J - . l 

a 2e 2 { [x
l
,i

2 _ [X3 )2} 
<122 == 

[x2J2 
1 

l "7 

---------.. ~.- ~"'r- """l""--:f' . ...,.., _____________ .~-----

; 

, 
f. 

.. ~ .. 
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:2 2 1 2 2 2 
933 = a e {[x J -l}{l-[x ] } 

9ij = 5> if i ". j . , 

ij 1 ,g = if' i ... j 
g .. 

.l.J, 

0 if i -; j . , 
;1. 

aGe 6 ([xl]2 ~x2]2)2 / 9 = - • , 

, - f , 
'Substi tuting from the above into (A 16) ; we ca,n write' 

out the first of equa~ions (A 23) in spheroidal 00-

ordinates: 

In order to deal with the boundary conditions we must 

obtain an expression for the unit normal n. Reca11ing 
'\~ o _ 

t-CA 24) 

CA 2Sa) 

that, in general, VF poin~s in a direction perpendiculur 

to the surface r = 0, we set 

VF 
g_ g11 

21 

Ix l 
-1 n ::: = 
1~1 g111 1 1 = - 1 ~ IVFI- 1911 _x = - = -e e 

CA 26) 

f _ 

, 

:': ~E, "..:;,:~iJJLitlg,,~ ''c. ~ :-. ~, ': .ft"~? ~;_.~", ~ 
" , 

t' 
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• where we have applied (A 12) to (A 21) in the second step . 
and make use of relations (A 24) in the last. We note by 

~ 
inspection that ~ is, in faèt, an outward nOrma,l. If we 

specialize, now, to the case of general plane motion, 

v = vI (t) ~l + v,2 (t) ~2 

3 
~ = w (t) ~3 , 

and sUbstitute from (A' 12), (A 24), and (A 26), into the 

second of equations (A 23), we,obtain as our boundary 

condition 

on F = ,0 ; 
'4 

:!I d1q l 
v1 aex2 + 

2 e Il-:cx2]2 x3 .= v a Pa cos 
~ 

" x =-e 
3 

+ 3 2 e 2 Il .... Cx2 J2 3 
w a 

/' 2 
x cos x 

1-e 
'" 

r 
where we have made uSè of (A 19) in the l~st step. 

(A 27) 

(A 25b) 

J 

The general problem of_finding sol~tions to 'equation 

(A 25aJ has' been tackled systematically by Lamb [35'] It 

will suffiee for our purposes to note that the foliowing 

function does indeed 'satisfy (A 25a) and meet the boundary 

condition (A 25b) : 

.. 
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" 
" 

,t , 

l 

" 0 
,1 ..,. 

1 

, , 

.. 'r 

+ l 1+e e-2e 3 
1 -log 2 1-e - 1-e2 

2 3"­
. a e 

-A. 14-, ~ 

il 1 2 ' lx ~ -1 
.. 

1+e e 2 
ï=ë - 6 + l-e'1 .{_ 

1 

- '-
{t1Og 

./1 

.. 

} 2 x 

x 1+1 '1 x --
x 1-1 [X 1 J2-1. 

Cx2 }2 3 cos ~ 

, 

Having found ,the hydrodynamic patential 4>,_ we can now 
. . 

} 

invoke Bernoulli 1 s equatian (A 11.) to ob~a.in ~he distribution 

of pressures about the spheroid... We must bear in rnind that 

this relation holds only if the f~uid velocity fieid V$ is 

measured fram a frame of re.ference which rs inertial.and in 

which fluid ve10cities tend ta zero at points far away from , ; 

> 

~ 

the'ffioving spheroid. This requirement poses no direct problem 
~ 

.for ~,us since we have cOJ)sistentlY~efi~ed V~ in j ust this way. 

It is important té realize also that the t.e~ ~ in (~ i 7) . 

refers to the tirne rate at which ~ is changing at a point 

fixed in this 'sarne "1-eference frame. This can be apprecülted 

~y noting that in the derivation of Bernoulli's equatian it 

" i5 necessary .to ·set the material derivative. 

D Dt = 



al 

t 

" 

1 • ~" 

... A.lS", 

" 
iinc-e V~ is the fluid velocity as measured from a fixed 

point in space, ~: must also be evaluated a~ a position 

frxed relative to the zi ~oordinate system. 

As a preliminary to finding it in the sense of (A 17)', 

we consider what would be seen by an observer whose position 

in spa~e ~s given by an arbitrary time-dependent position 
" 

i vector i' = z e.. For him, 4> would appear to fluctuate at a 
",- ",1. 

rate 

~- = 21 1 + 
dt at constant r = 

= III (' at r = constant 

+ 
. 
r . V 4» 

= *1 t r = constant 

+ w ( t ~ xr). V ~ , 

-
in view of (A 18). Now to obtain the rate of chan<1é of , as ' - , 
seen by an ol:?server fixed in space', we need simp1y, set R(t) =0 

" in "the above e~uation. Bernou11i's equation'CA 17) can, 

therefore, be wr-i tten equi valently as fo11ows: 

, ' 

.., P-Poo + (V+w (A 29) 
-=- ..... 

p 
con~tant 

? 
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We are interested in finding the pressure distribution 

only over the surface of the spheroitl ,and shall accordingly 

set xl = ! as we procee~ in evaluating the terrn: on the 
e 

right hand side of (A 29). We can readi1y deduce from 

(A 28) that 

a~ 

- at r = constant 

= vIa k
l 

x2 + v2b k
2

/1-[X2J2 cos x 3 

+w 3ab l3 x 2 /1_[X2 ]2 cos x3 , 

where we have made use of (A 20) and have introduced the 

constants 

'- k 
l 

- k 2 

- l 3 

1 l+e e 
{ï log ï=ë - ~2} 

= 1 l+è e-2e 3 
210g l-è - 'l-e2 4 

, 

, -

2{3 l+e e
2 

e 2ë log ï=ë - 3 - 1..:.e2} 
= ~~~~--~~~----~~--r---l (~2) 10 l:! _ b + e

2 

2 e 9 1-e l-e 2 .. 
We obtain

4 
an expression for Vcp on the surface xl = ! by 

,e 

(A 30~ 

(A 31) 

applyi~g (A 12) to (A 28), making-use of (A25b) and (A 20), 

and reC?al1ing that gij = 0 for i ~ j: 

. , 3 
cos x 
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(A 32) 

Using (A 27),. (A 19), (A 20), and (A 24)- ,in conjunction with' 

the,above, we can evaluate the secqnd term on the right-hand 

side of CA 29): 

(V + ûl x rH • Vcp 132 2 3 1 V." } ::; (V -w z ) ~l + (7J' +w z >'~2 . - ... 

1 3.fJ 22 2 
x 3) { aex 2 1 1-e = (v -w bI-ex J cos . 2"2 1_e2 lx 2J2 1 a e 

1 2 2 e /1_[x2 J2 cos 'x3 . (v aex + v a 1 2 1-e 
y 

e 3 3 2 x2/1_exZ ]2 x3~ 
1 

+ w a 
11-e 2 cos 

+ 1 1_[x2 J2 
a 

2" 1 2[ 2J2 a -e x 

1 2 2 
cos x 3 x . (-v ak1 + v b~2 

11-(x2 )2 
3 (1-2 [x2 ] 2 ) xl) } - w abt3 Il_[x2J2 

cos 

. 
x2/1_[x2]2 'cos ·x~ 

• 
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1 2 • (-v ak
1 

+ v bk2 
x

2 
cos x 3 

Il_lx2J2 

- w3 
ab.l 3 

'!J 2~ - b l-[x ] 1 1 
-:r 2 2 ~ a (l--e) ( 1- [x ] ) 

We can evaluate the 1ast terrn on the right-hand side of 

Bernoul1i's equation (A 29) with the'use of (A 32), (A 24), 

and (A 21) : 
, , 

l - ï VCP.Vcp 

" o l 1 l , 
- ï a 2 (1-e2') (1_ex2)2) . 

, 2 1 2 2 Lv bk2 l-Ex,] • 

". + c}abt3 x2/1_[x2 J2 sin x:3}2 

(A 34) 

, 

o 
~. , 
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1 substituting, now, (A 31), (A 33)., and (A 34) into 

Bernoulli's'equation (A 29) and,regrouping terms, we 
i ' 

" obtain an èxpression for the pressure distribut.ion on 

the surface of the 'movïng spheroid. 
o 

p-p 00 

X
3 2 3 . 2 3 

Co + cl: cos + c 2 cos x + c 3 S1n x , 
" 

- = 
p 

1 

~ , 

+ !Cw3 J2 {a2 [x2J2 + b 2 (1_(x2 j2) ... 
b 2 {l+l3 (2Cx2 ]2 _1)2 

} . 
2 1 - e2[~2]2 

, 

1[,,2 12 {l (1+k2)2J + 322 ~1+k2( (1+L3'1 ·C =f w v ax {l 
3 2 .. 

... ![w3 ]2 
. 2 

a 2 [x2 J2 {i - (l+l3) 2} CA 35) 

"\ 

o 
.' .. 
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~aving determined the distribution of pressure about 

a moving sphe~oid, we can now investigate the force to wh~ch 
, 

this pressure giv~s tise. As a prelirninary we recall the 

well-known result, discussed at sorne length in Franklin 

that the area of an orienta~le surfac~ is gi v,en unambiguously 

by 

A = = 

where the integration is carried out-over the ~rojection 

l 2 of the surface onto the (z ,z ) plane. It is implicitly 

aS5umed'here that no two regions of the surface project 

onto the samé part of P l 2' since y i5 the angle between 
z!z 3 

the normal to the surface and the z - direction; hence 

cosy = n e • -3 

More generally, .. the surface integral of a function f whose 

domain is the surface under consideration, 

. 
f Jjrr f l 2 

f dA = !J p 1 n. e 1 dz dz • 
• 1 2 ....,3 ' z z ' , 

1 ., 

Remember~ng that the unit normal n poinFs in 'the out­

ward direction, we can readily see that the force 'acting on 

an element dA of the spheroid's surface is equal to -pndA. 

Accordingly, 'if we let f be the vector function '-p~ and apply 
.. 

the above equation first ta the portion of the ell~psoid 

--.. --: ~:;g:,;,.jiJofu~W5!:<'1J 
, , ... /',"'l~ 

'-' 
....Ii. , 

" 

.' 
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-A. 21- 1 
above the (Zl,Z2) plane and then to the part below, ·.we 

determine that the total force ac«ng aver the body, 

- . 

F ::: (upper sector) 

~----------
Z ---------' a .. b 1 .. [-] 2 1 ------. 

+ f
a -Pn dZ ~--_ .... --- (lower sector) 

.. -------~ 1 .J~-~ , 
-~~] - " 

_~. a,. 

Actua1ly, we have no interest in evaluàting the above 

integrals; expressiohs for F can be obtained by more 

direct means. 'Wll1t:E we do wish ta find is the force 

per uni t length along the spheraid 1 s axis,· 

, bA-(t]2 " 

aF 
f.h an 

-
~l = ... Pn dz2 , -

1 ~·=31 ':'b l~[L] 
a 

(upper sector) 

li zl 2 -b 1-[,..,-.] 
a 

+, f.h zI 2 

~Pn dZ2 
'" 

1~'·!31 +b 10:-[-] a 

• 
(lowêr sector) 

In performing these integrations we must hold constant 

Zl ::: ax2 • (Recall that xl = ~ on t~e spheroid.) It 

fo11ows, in view of (A 19), that 

.' 

,-'---
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= ,{ 2 2 -b - [x J 

hence 

(upper sector) 

(1ower sector) 

(A 36) 

b 2 2 = -e -x _1 a 

2n \ 2'11' 

~ P dx
3 

- =2 bli.[x
2J2 ~P cos xl dx3 

o 0 

.' 2'IT 
. L 22/ l3 - -=3 'b~~-[x ] P,sin x dx 

~ 0 

2 
= -e p ~ X

2
(21TC

O' + 'lTc2 + 'II'(
3

) , -1 

. 
P~/1-[X2]~ -e 'II'c l 

, 
-2 

wHere we have used lA'26) in next to the last step and have 

made reference .to (A 35) in the last •. It shou1d be noted. . ' 

that in this fina~ step we have neglec~ed a term involvin9 

Pœ' Wh~S not spatially dependent and cannot therefore 

• 

. , 

-1 
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1 , t 
! 

" 1 

f 

1 

'. 

o 

ôr b
2 

x2{ 2',1 2 ~ 

3Z 1 • :1 = - pn -' ak1x t 

a 

[vI ]2, 
(l+k ) 2 (1_[~2 J2) 

+ (1 - 1 ') 
l - e 2[x2 ]2 

, 

'b2(1+t3(2[X2J~-I»2 
----~--------------} • 4 

" . , 

(A~7a) 

. 
and to a componen~ in ~he transverse dir~ction, 

1 2 l x2 
+ v v (â) (1+k1 ) {1+k2) 2 2 2 

l"e (x ] 

3 1 (1+k1 ) (l+lJ (2Cx
2

J2-l» 
+wv( 2 22 

l -'e [x ] 
, (AJ7b) -. l)} 

, where we have" made use' of ,(A 35). 
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'By reasoning analogous to that ieading to (~ 36'), we 

"-
find tha~ the moment e~erted by the fluid on a transverse 

section of the sp~eroid, 

• 

" 
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APPENDIX B: NON-OIMENSIONAL INTEGRALS 

-

D = max 
S-

= ,i12m 

~31m :: 

'li 

max 

o max 
~ max 

1 
S 'max 

l 

l 

Smax 

l 
i 32m = 

'/Smax 
r 

L 
Smax 

-! 

J 
-!-À . 1 

r 

~ ~i;+Ümd'i;' 
D( tf. 

• .. 

·-1+>.. J 2 S (~) (~ -! ) rnd ( 

l 

-1 
~ S(~)k2(~+1)md( 
-i->"~ 

'. 

• 

." 
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f, 

l 

~max 

l 

Smax 

l 

1 

-! 

1 -!-~ l 

L 2 -' x 
a 

~ 
L 2 -x a. 

.... 

It should he ~oted that the quantities x
2

, a, e, k l , k 2 and 13 

are aIl functions of ~ and any of the inteqrals listed above 

bacontes a small quantity, if m > 1. 

The nose and tail secti-ons- conaist of half &llipsoids, wbose 

major axis is 2). ... and minor axis 1. The tail may be less than·. 
.. . e 

a half el~ipsoid sinee its end may have been çut off to make it 

\. 

.. 

.. 
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blunter~ in such cases À2 = aÀ10 

The integrals above are easily evaluated' by hand, after sup­

pressing the conuno,n i or -i from the limits of integration. 
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C~EFFICIENTS OF DIFFERENTIAL EQUATIOWS OF 

THE PRESENT THEORY 

9
0 

= l + \J (iw) 

= 

. , 

" . 

2 - w 

t 

SB ' as~ C li 
S DB 

r 

Cl 

+ i 4101 + a:U(-i310+i610) (iw) 

+ 
2-w 

1 , -
i 

, 
f"";" ,,:,,,,-.,,..,..~- "'-'0 -'-_._ .. 

(t,f;c .. :; .. ,::: ,f'.!o. 
" F.!,':- {. 'J.,-l 

1 
1 

1 

! 
"'i 

, 
, ~ 
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1 f 
l, 1 \ 

-C.2-. 
f 

B(i~10-i310) II.) 
2 -

J 
.~ 

. 97 
Àl 2 

[ EC f (l+i11O+;120) + 2 (i710+i720) = - - u 2 

S ).1 +h Base coB1 + 
S 

{-r;:-} 

;1,1 2 
{ EC f (1+il10+iI20) + 2 (i 710+i72'0) 98 == n u 

s 
+ Base 

COB ] S 

2 [ fe: (co +C f ) i 120 
i

420
) -' S!uCi320-i620) (il.O) 99 = -u 

r 
+ aiS~O 

2 
II.) 

" . 
Note that in the computer prog.ram of Appendix Ethe coefficie'nts 

. 9i are .denoted Ci and that Cs to CIO have apposite siqn to g5 to 

el 
• 
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-
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APPENDIX Dt COEFFICIENTS OF DIFFERENTIAL EQUATIONS OF THE. 

~ODIFIED OLD THEORY 

hO 
::::; 1 ... v (i (0) 

hl = ,u2 {l i(~e:cf + 
SBase C

2
) } 

S 

h2 = !u
2

e: cf 

h3 
2 2S!u (iw) . ,- !u e: cf + 

~ 

h4 = . ! B ! ue: cf ( i w) 
2 - 00 

2· À +A 
hS = u'{f i (~(Çl + C2 + e:c )} " 

1 f 

-r. h6 
U

2 
E è f ) + f ai u (iw) Si 2l0 

::::; 21..' (Cl + C2 + -l 

ÀI À~+1.. 2 
h7 = -2 (~) (Cl + c2 + ECf),U. 

h' 
Àl 

(Cl + C2 + e:cf)u 
2 

= 2A 8 

h9 f 2u 2 = 

hlO '= , f21tiuÜOO) + 's (1+f2) i 220 
2 w 

-

1 

.1 
1 

(1+f
1

)00
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THE COMPUTER PROGRAM USED TO OBTAIN , 

THE CURVES OF FIGURES 6 AND 8 TO 15 
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CU 
1 
2 
) 

" S 

" 7 
8 
9 

10 
11 

12 
13 

lit 
lS' 
16 
11 
la 
19, 

, 20 
21 

- 22 

23 
~4 
2S 
Zb 
27 
28 
29 
30 
31 
-32 
33 
34 
35 
36 
)7 

38 
)q 

40 
loi 
42 
43 

"" 4' 
46 
47 
"8 
.. 9 
50-, 
"S1 

<If' 
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SWAJFrV .TrHE.99?,~A5ES-999 • 

t 

t 
C 

c 

c 

(HPllerT COMPlEX.16ID,A,C,YI.REAl.81~.D-H.P-X.l' 
COMM~~ Ql,02,QE,~A.xc~,xcr 
eOMM~~ Fl,Fl,xel.XCl 

PARAMETERS 
01-6.015DO 
02" 1.00 
<lA-l.00 
OE-100.DO 
Fl-I.DO 
F2-0.8DO 
XCN-O;02500-
xèrlSo.02SDO' 
~eN IS THE ~OR~Al.COMPONE~r OF THE DRAC COEFFUCIENr 
xer 15 THE Lo~~rTUDINAL eOMPO~ENT OF ORAG COEFFUCIEHr 
xe 1.0.00 
XC2-l.DO-F2 

PARAMETERS 
N-" Mooe-2 
(AX-l 
IUP,.,)'-l 
1("-12 
KEY-l' 
U:-eNp,·100 
1»4·2.0-4 
UM-14.00 
UM IS THE MAXIMUM OIMEN~IO~LESS VEloelrv GIVEN 
u-o.OO 
DU-O.SOO 
OH-lb2.DO.O.DOJ 
OM1·(Sq.OO,O.D~J 

OOl·(-1.D~,O.0500' 
~RITE(b.100I MODE.N,DM 

100 FOR"\ID.T( 'l.MQOE-', 1 1. • •• N-' .IZ. '''O"_t ,lPD1 •. 1111' 
001 1 ..... 1. ( FE tiO 

li. 

CALL PREOIC(OM1.0H.001,OD2.U,O~,0~.I~.~,K2.Kl.K.IAXt[UPAX,KM,KEY' 
EICtM.(O.UO.-l.DOI.OMl 
EIGI~=OS(G~IDSO~T(OAR~(EI~IMI)tEIGIH) 
EIGRE-OMl 
EIGRE-OSORT(O~8S(eIGRE1' 

r 

WRIT&(6.1ulv.a~1.eIGRe.ErGrM,K , 
'10 FOR"IU (' .', F l:l. 7.4)(, 'O'1EGA-', lP2014. 6,11)(, • SORTI OMEGA)'" , OP2F9.1I. 13X, 13',' 

*]X.13.·ltE~ATIONS'/) 
EI-EIGIM.EICIM 
IF,(~.Ge.K~.I'.O'.((U-UK'.OU.GT.O.DO).OR.IEI.CT~1.02))GOTOI000 

1 CO~n"UE 
1000 .co",'" Nue 

STOP 
END, 

, 
SU8RaUTI~E MATRrX(A.u,OHE~A,MI 
l '1 Pl. ICIf ClI4PLEX.16( 0, ~ .B.C.ll .. RfAl UIO ... H,P-,YJ 
C~MMON Ql.02.~E.QA.XCN.XCT 
COI4"J~ Fl,F2~XC1,XCl 
DIHe~SIDN AI13.101.8185.10.,C(15,13' 
0-10.00,1.00, 
Z-O'4EG' 
UaZ-' 

. , 
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t 
52 
53 
5~ 
55 
56 

57 

58 
59 
60 
61 
62 
63 
61t 
65 
66 
67 

68 
69_ 
70 
71 
12 
73 
lit 
75 
76 
71 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
9Q 

·91 

92 
91 
94 
95 
96 
97 

:t-
100 

c 
c 
C 
t 
C 

C 

c 
c 

BeTA .. OSC~Tl2.001 
PI-3.141S926515DO 
Cll-0\-01 • 
oee·oe-OE 
C"A·O"-OA 

-E.2-

01 15 THE 'UTIO OF I.E'IGTH Of Nf)SE seCTIO~nE~:;T" OF I1An BOO., 
02 IS THE RATlcr Jf LEN~TH OF TOW-~'PE/LE~GTH OF MAl~'80DY 
dA IS THE-~AT,IO Of LE~GTH OF TAIL SECTI3~/lE~GrH OF ~OSE SeCTION 
OE IS THE RATI,O OF lENG Tf1 OF MAI~ 90D't/OUMETE~ OF CYLI~IlE~ 
VE-OSQRTCl.DO-l.OO/14.00*~11*OEE" , 
ve'15 THE EcceNT~IC[TY OF rHE Ell.lPSDIO 
VEE.,'iE-YE 
VE '''I.DO/VE 
YEL"OlOGlll.OOtYE'/ll.OO-YE') 
YEXzYe~ll.Do-vEEI 

YEEe-yee*VE 
YEEI·l.OOIY~E -

YE:U.YEE/H.DO-YEEI, 1. 
XKl·-ve·IO.500*YEr*YEl-l.o~"ro.SO'*YEl-YEXI 
XKz--rO.5ûO*YEL-YEX"IO.5DO.YEl-YEx*Cl.DD-Z.O *V~E" 
Xl3.-YEE*ll.5DO*VEI*YEl-3.00-YEXX'/ll.5DO*CZ.OO*YEI-ye'.YEL-6.00. 
*Ye~, 

OIHENSIONlE&S PAqAHETe~s OF r.s 
YI10.,P 1.0114.00 
V120.0.50ù*Qlt(QA*OSQRT(1.OO-QAAI.OARSI~(QAJ' 
V210·2.00-01/3.00 
Y220~QA*al·ll.00-QAA/1.OO' 
Y310·2.00~Ql·XKZ/3.00 
V3?O~OA*Ql·ll.OO-QA./l.OO'*XK2 
XXK1 .. i .OOUICI 
XXKZ .. l.OO+XICZ 
XXI( l ZsJ()Cl(ltXUZ 
Xl(K 11 "'XXI( l-XXI( 1 
XXKZZ-XXKZ*XXIC2 
XYAeaYE*QA ( 
XXAaXKl-(1.00tXKl'*Xll 
XXBaYEE+2.DOaXXK1*Xll 
YEEZa(l.DD-VEE'/VEe 
TEI-0LOGll.00-YEEJ 
TEZ-OlOGll.DO-VEE*OAA' 
,rla(XXh-XXRI*YEEI ~ 
Y~lO·XXK12.YEEI·11.oo+YeEl*TetJ/2.DO 
V4Z0-XXKIZ*vEEI*1QAA+VEez aTEZI/Z.03 
Y5IO .. Ol1·~l3/4.00 

• 

Y520·Qll·~AAtXL3aI2.DO-QAA"4.00 
Ybl~:Ql*I~XA-2.0~.XX8/3.D~.XXS*YEEI.(XXA-TTl-xx8.YeEi.veel'*o.sOO-

.VE*'fElI."EE 1 .. 
Yb20:01.r~XB.QAA.OA/3.00.IXXA-XX8.XX8*VEEI'*QA.(XXA-~f1-xxS*YEE'-

5VEEII*O.SOOaYE*OlOGIIl.nOtXYAEi/IL.OO-XVAE"'.YEEr 
V11D·O~SDV*YEilaIXXKI1-YeE+YEfZ*XX~lI*Tell 
Y1Z0=O.5nU t VEElaIQAA*IXXKll-YEE,tVEEZtXXKll*TEZI 
SMAxzpr/14.00·~EE' , 
S8ASE-P ,.11. DO-OU' 114-. DO*OEe, 
XCOF·QE·xtT.ll.00+Yl10tY120'~Z.DO.(YT10tY120' 
XCO·O.029uO.Cl.OO-Q_A'.*1.5/0SQRrClCDft 
UZ-U*U -
UXI-U*OSQRf(Z.OOI 
UX2.U/OSQRT(2.D~J 
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t 
101 
L02 
lO)"-

104 
105 
106 
101 
108 
10CJ 

110 

111 

112 

111 
114 
liS 
116 
117 
118 

119 
120 
121 
1,22 
123-
124 
12S 
126 
127 
128 .., 129 
130 
III 
132 

·133 
134 
135 

", 
~ 
138 
nq 
140 
141 
142 
lH 
L44 ' 
145 
146 
147 
ua 
149 
150 
151 
152, 

e? 

C 
C 

~ 

Xl-O.OlOO 
X2-XI 
DRR-XC1+xCZ+Oe.xCT 

"u" 

-E;3-

COEFFrcrENTS OF DrFFE~ENTfAL EOUArfO~S CiS 
CI ;:Uz., 1. Do-n. 500*C OE UC'J *c O. 500. V 1 20' +2. OO*Y 120+S0ASHltCO/SHAX" 
CZsUZ*O.5UO*oe*XCT 
C3·D.5DO*Uf*XC~*U2+UXl.0.1 
C .. ·-12+0.500*UXZ*QE+XCN~D·l 

, "PZ-OZ 
C5K~2*O.5ùO*C{OltPZI*(OE*XCT*Cl.OOtY110tY1Z01+2.00+(Y7lOtY120'+ 
ISBAse*xCD/SMAXI/OZ-OE*XCN*YI10-2.DO+Y4101+UX2*'-Yb10+Yll0'*0.l~ 
2D.5DO*Y51Q+ZZ 

Cb=-0.500-UZ+loe*xCT*Cl.OOtYl10+Y120'+Z.OO*CY110tY1Z0'+S8ASe*XCO 
3/SMA~)/02+UX2.(-O.500*OE.xC~+Yll~-Y~lOI+à.l+O.500*IYZIO-Y31~t.l2 

C7-UZ*Or5DO*OI*IOe*xCr*ll.OO+Y110+Y1ZOI+2.0l*CY110+Y12"+S8Ase*xco 
4/SMAXI*IQi+P21/Q2 
C8.~UZ.O.500*Ol*(Qe*xcr.(L,~O+Yll~.Y120'.Z.OO.(Y110.Y1ZO'+$BAse* 

5xCO/SMAX'/OZ ~, 
C9.UZ*tO.500*QE+XCN.Y120-Y4Z0l+UXZ+IY3Z0-Y620l*O*Z-O.5DO*Y5Z0*Z2 
CI0zUXZ*Cù.500*oe*xCN*Y120-Y420)+O+Z-0.SOO.'Y220.Y320'*zz 
00 91 1-1,' 

92 
91 

C 

00 92 .;J-l" 
Clr,JI-'O.OO,O.OO) 
C'I,I'·(1:00,0.00I 
MM IS THE O~OER OF POWER SEAtES 
MM-10 
00 93 Na 5,MM 
J-'N-l .... 
CXl·-ICl-0.500*C21/'J.(~-tl' 
CX2·-IC2*CJ-4)+C~I/CJ.JJ-ll*(J-2J' 
CX)a-C4/IJ*tJ-l'+'J-2,*CJ-)" 
DO 94 1,. L,4 
C(N.[J·CXl·C(N-Z,['+CX2*C(N-3~1'.CX3·C(N-"r) 

94 CONTINUe 
93 CONTINUE 

A' l, u .. d, 
Ail, Zl-C5 
AI l, J 1.2 « 0.00,0.001 
All,4)·'-6.00,0.DO' 
A(2, lI,.ca 
A", 2, Z 1 :sC 1 
A(Z,31"C-Z.OO,o~Oo, 
AIZ,41:(0.00.0.00, 
AI3.11·(0.00.0.DOl 
AI 3, ZI-2 10,00,0.00' 
Al3,31·12.00.0.DO' 
AI3."I-Cô.ÔO.O.DO' 
AC4,1I-Clll 
AH.ZI"C9+C10 
AC4,31 .. Z.00*C9tCIO 
A(4,41"3.00*C9+CI0-6.00 
00 III N-5,HM 
8(N.l'·(~-II*(~-ZI*C'N,ll 

81 . AI3,11.AI3,1'+8IN,l' 
DO 99 111-5,1414 
~CN.2' .. (N~II*(~-2'.C'~,~. 

99 . ACl.2' .. AI3,2,tOCN,Zl 
00 96 N-5,MM . 
8IN,)'·(~-1'.(N~ZI*C{N,3J 

.. 

.-._----
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-
,153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 

, 161 
168 
169 
l10 

111 
112 
173 
11ft 

C 
C 

115 
17,6 
177 
118 
179 
180 
181 
182 
183 
184 
185 
186 -
UT 
188 
189 
190 
191 

1 192 
193 
194 
·19~ 
19b 
19-7 
198 . 
199' 
200 
201 
202 
203 
204 
205 
,206 
207 
208 

e' 

96 

11 

AI3,3l.AJJfl'+~(~.1' 
00 11 N-5,HM 
6IN,41·(~-II.C~-l'*CCN.+' 
AI3t41.AIJ~4J+8f~.4' 
DO 72 N-S ,"MM 
8IN,1'.I(N-ll'I~-21-IN-)'-C9'1~.1'-CI0,.C(~,l' 

12' AI4,1,-AI4,1'-81".1) 
DO 73'1(-5,H"' i 

8IN,21.'fN-11·(~·21'(N-3'-C9*CN-l'-CI01'C(~.l' 
AIIo,Z'.Atlo.Z'-8C .. ,2' , 
00 74 N-5,HM 
8IN,1,aIIN-l'·I~-21·IN-3'-C9'IN-l)-CI0'.C'N,3' 
A(4,3).AI4.31-81~,1' 
00 15 I(-S,MM 

75 
BIN,Io)'CIN-1)·IN-2)·I"-3)-C9'1~-lJ-C10'.CCN.~' 
AlIo,4).AI4,4'-8(I(,4' 

• 

Rt.'fURN 
ENO 

COMPlEX FU~CTIO~ COET-lbIA,N. 
COMPlEX"lb A,P'IIIOT,HOlO 
HITEGER END, RO'W, CO~I PIII~OW, Pl'l:OL 
DIME~SlON Allo,l~"lInll,MClO' 

• DETERMINANT OF T~e 80U~DARY CO~D(rfDNS 

1 END al(-1 \ , 
COET.ll.D~,O.DOJ 
DO 10 l-l,N 
Uf'a( 

la MII'-' 
,00 lO~ lHNral,E~O 
PIVOT~IO.OO,O.DOJ 
DO 20 I-LHIH," 
ROWalll'l 
DO 20 JalMNT,,. 
COl-MIJ' 
[F(:OABS(p[VOrl.GE.COA8S~A(ROW.COL~ 40 ro 
PIVR,Ow",r ' ,'" " , 
PIVCJl-J 
PIVOTaA(ROW,COL' 

20 CONTINue 
IFI"-IVROW.EQ.lM .. fI GO ra 2Z 
coer .. -coer 
kEEP-U PlvROln 
l(P(VROW'.L~l"Nr. 
l (l:~'iT' -XEEP 

22 [FI PIVCOl.EQ.lM'fn 'GO TO 26 
t:oera-COfT 
ItEEP.MtpIVCOL) 
M(P{VCOl'aH(lHNr. 
MIL ,,~T) -KeEP 

2b COET-CO!T*PIVOr 
- [FICOABSIPIVOTJ.EO.O.DO' 

JAU:;-lMNTtl' 
PlliROWaUlHNU 
PIVeOl-HfLHI"" 
00 100 I-,.IAUG.!II 
ROW-LC Il 
HOlOaA(ROW,PIVCOL,/pIVOT 

" 

Go ra':1tt 

.. , 



44* ,. 

1 

" . 

2U 
243 
24,. 
,H5 
246 

2.,.7 
Zlt8 
249 
l50 
251 
'25~ 
253 

254 
255 
256 
257 

'258 
259 
260 
261 
262 
263 
'264 
265 
266 
267 
268 

269 
270 
2'11 
212 
273 
274 
,275 
276 
217 
278 
219 
280 
28\ 
282 
283 
284 

285 
286 
287 
288 
289 
290' 

291 
292 
293 
294 
295 

'\_"':"J 

) 

-E.S" 

D1-IS*01+]*D'/12+II/IH'*IQ1-O"8.00 
O"'l-O~+Dl 
11-~ 
12"Z ~ 
CO TO 80 

C SPECtAL PROCEDURE TO FACE TaO QUtCK VARIATIO~S OF FREQ~e~~ 
,. IFIKEY.LJ.OI GO TO 6 

1 F l 1 \1. E 0.4' GO 'JO 6~ 
IFIIAX.EO.O' GO fO S 
F- 1 O'U -OM)lb 
(FfIABSIFJ.LT.O.51.A~O.II.lE.2" J--l 
r-I-J 
IFIIAX.CT.~I GO TO 5 

C SECOND. T~IKO. fOURTH POINTS ON OR OFf IH-AXIS. 
Oa(O+OHI-O~1/2.DO 
I-MINOII.21 
GO TO 6 

5 'IFII.GE.l,GOT06 
1 F C 1 -1 l *12. LE .8 1 GO JO 6\ 
IfCI.EQ.11 GO ra 65 
GO TO 6 

61t, KU- 1 U+IU4/5.00J IOU 
IFCKEY.EQ.OI KU·O 
lFIKU~CKU/21*2 ~EQ. 0 , GO TO 66 

65 Jal-2-14/1~'*MINOI1-3.21_ 
GO TO 67 

66 J a ll2 - 11141*11\1'141 p. 

IFI(I-11.EO.1I.A'IO.IKU-IKU/4\*'" .E~. 0) , Jal 
1>7 I-(-J 
C . PREOICTEO STEP fA::rOR • NEW CHARACTEIUSTICS. 
1> 00e-2.00-.12-I' 

[OUM.OABSIDU/(l~l-RH" 
IFIIIOUM+l'.008.tT.O.900) DOB=2.DJ*.~2/(lDUM+l' _oZ, 
QU"OU*008 
Fa IOH1-OM.J"01 
I~(F.CT.O.I Jl--l 
001~IOM1-0~-01"2.DO 
Dl -()*IOH1-JM,-0 + '01'11-01'1-01*0081·008/2.00 
o -(3.IOH1-OM'-0 - lO~1-0k-OJ*0081.008/2.03 
001-001.01/0 ~ 
12-11-1+1111 
Il-t t'J 

T U-U+OU 
OMI-0Ml+ol+001 
IFIIAx.NE.or IAX-fAX+l 
GO TO SO 

C FIRsr POINT OFF RE-AXIS ITO BE ReCALCUlArEO' 
10 IU-I 

HI-OI 
IFICIRO+3.DouHI.GT.O.OOJ .ANo. Il.EQ.IM'' GD rD 11 
01 -CI.C04RS(Or*ll,lp 

, OMI-CH-RD 
CO rD 51 

C F If~ST POINT OFF tf1-AXIS .(TO 8E RECALCULATEO' 
11 rù--ft 

01-1:0A8SID' + 01/2.00t*I.~OO 
IF(RO.GT.IO.oO.~H' 01·ICI*COABSIO'*IUP+HII.0.75DO 
OHI-0M 
GO Ta 52 

c SECO~O POINT OFF I~-Axrs iTO SE PREDICTEO' 

.' 



(UO 

209 
210 
211 
212 
213 
2l't 

21'i 
216 
211 
218 
21q 
220 

221 
222 
223 
224 
225 

C 
C 

, C. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
t 
C 
C 
C 

'C 
C 
C 
C 

, . 

00 100 J-JAUG,N 
COl·14tJ' 

100 A fil. iJ-.I, COLI. A' ROW, COL '-HOL O. A (P 1 VROil, COL' 
CDET·COEr.A'Aow,~OL' 

333 RETUR~ , 
E~D , , 

REOUIREO SUIiROUtl'lE SECA-'fTtA.Xl.XO,U.D~,KM,L,M,N,K.KEYI A'ID N<ZO ' ••• 
OMt ,. IIOf-l'-TH FUoÛe",CY 'REQUII~E:J PH tl&.LL y 1 PI=lIl --> IINI-rH 
DM .. (lN-l'-TtI I)~EOUE."lCY ~ AT f'1=l,CHOSE"l CLOSE ro EXPEcrED Roor 

;ENERALlY ~E:OME5 THE 'l'f-tl-T~ EXE~r "lEAR OI5:~'fTI~UIJfES. 
Dl • lIN-fi-TH FREOUEN:Y l'fCRE~ENT PREOICTEO IREOUIREO INITIALLY' 
o • IIN-21-TH ~EAL FREOUE'fCY l'fCRE~E'fT '''lOT REOUIREO INITIALLY', 
OU • lIN-lI-TH VELOCITY l'fC~EHE'fl , BECJMES THE IN-TH. 
U • IIN-II-T~ VELOCITY ,BECO~I'fG T~E I~-TH 'REQUIRED INIT[ALlY" 
RM • GENERAL ACCU~ACY (~INI~U" OU - 100.RM'. 
IN • ~UMSER OF POI.NTS CAlCUlATEO SJ FAR tlOOP l'f MAIN PROGRAM,. 
12 .. liN-31-TH SfCANT ITERATIONS I~or REOUIREO AT IN-lI. 
Il - IIN-llrTH SECAloIf' ITERATlO"lS ('f'JT REOU[REO AT l~lJ. 
[ • lIN-II-TH SECANT ITER~TIO"'S IN:JT REOU[REO Ar IN-lI. 
IAX a 'fUMSER OF POI"lTS l'fVESTIGTEO O'f lM-AXIS IINITIALlY 0 OR 1'. 
IUP • 1 FOR UPWAQ~S A'fALYS[S OF IMA~I'fARY BRANCH (-1 DOW~~AROS). 
tM a fl\AXIMU~' SECll".rr ITEUTlO'fS 1I"1~.1 IN CASE OF DIVERGENCEI. 
~EY • 1,0,-1 IF l'fTER~EOIATE êALCULATIO'fS A~E TO BE pql~rEO OUr,OR 

) 0 IF ~E~ULA~ VA~{ABl~ STEPS I~ VELOCITY ARE RNOU~RED 10U.MAY 
BE DOUBlEO IF U 15 A~ [~TEGE~ ~UlTIPlE OF Z*OU A~O 1*11.12<9', 

• 0 FOR ,""O"l 'fECESSAItY, REGULAR l'fTE:;ER SfEP!)EO VALUES OF U. 1 

< 0 IF OU loS T::J REMAIN CO'fSTANT,. (AlMOST ACHIEVEO' BY (-Z,IlHÎ 

SUR~JUTI'fE PReDIC,pMl,'J~,Ol.D.U,OU,RM.IN,~,12;II.I,IAX,IUp,I~.xeY1 
DIMENSION AltO,'lOI,LllOl,MllO' . 
COMPlEX*16 A,J~l,OMO,O~.OL.D,GI 
R!Al.a U.UU.~~,OOB,RO,~l,"l 
001 .. 0 
J1 2 1 + (l/I~I'(I~-ll 

C INITIAL VElOCITY • INITIAL CHARACT€RlsrICS ~ePT FOR NeXr STEP. 
[FIl" .EO. 11 ~o ra 81 
G 1 al O. DO, 1.001 
JaO 

1000 11.0"0" 
IFII.lT.IHI GO'TO 1 

C SPECIAL CASES OF DIVER5ENCE. 
IF,I 1'I.lE.31 'Gr) TO 101 
If(IIl.EO.lI .A~O. (I2.EO.I)) GO rD ) 
IFflAXI IUI.IO.ll 

<~~ 
229 "i SPECIAG CASE~ OF :O'VERGe~Ce. 

IFI ~EY.Lr.O 1 raZ 
230 
zn 
232 
233 
234 
23S 
236 
237 
238 

239 
240 
Hl 

2 

~ rFIIN.lE.31 GO ra 50 
"". ~X"IA)( +S 

GO" 0 «12. ~. 4. ,., Z • 1,,..4, ft l "J U 
RlcoO"1 , 
IF(I~l.GT.RM.IO. I.A~D.IRO.LT.RM.l~. '1 GD TO 12 
IFI«~l.lT.~M.IO. I.À~O.(RO.GT.RH'lJ.·" GD ro 10 
IFI 111.1+ R~ .LT. ROf2.1 .UIO. (tl.Gr.lI l 1-I4'INOU.U 
IFIRl.RM ,loT. RO/4.1 I-MAlCIJIl.l-llI ' 
1""lolE.4+-4"'il'.0R.DABSIDU/4.0QI.U.LOO.RHlt G'O TO \ 

C SLOW CO'iVERGE"~E • DIVISION OF STEP 8V ft. 
3 U"U-O.15D~.OU 

OU"OU/4.00 , 
o ·fS'D+3~Ol,/)1 

, '. 

.. 



kW U 

o 

296 
297 
298 
299 
300 
301 
302 
303 
30ft 

.305 
306 
30T 
308 
309 
310 

311 . 
312 
3U 
.3U· 
31S· 
116 
317 
:H8 
319 
320 
321 
322 
323 
324 
325 
326 
327 
3U 

329 
330 
331 
332 
333 
334 
335 
336 
131 
13e 
339 
340 
)ltl 
342 
343 
344 
:litS 
346 

~». 
349 
350 
351 
3S2 

, l' 1 ..... -'71 

'. 
12 [Ax·-l 

o l-e OA8SC-9~ 1-0HI 
50 U·U+OU 

IFIIN.NE.ll GO TO 52 
tAX-5'IAX 
01-0111-0H 

51 0-01 
52 0141-0141.01 

rz-2 
11-2 
IF{I~.Gr.31 Jl~1+IA8StIAX.lt 
001-0 

. 80 O~",O~l-Ol-OOI 

RI-OMI 
RO-OH 

C INVESTI~ATION OF A ~EGATI~E PREOICTIO~ 8EYONO tM-AXIS. 
IF«Rl.lT.lO.O~'RMI .A~O. {IAX .E~.O)' GO TO 10 

81 OMO·lA +Ol+OOl-Jl'OI/IH 
IFI n.CT.U Jlal 
CALL S-ECANrtA .. O~l ,0'40.U,RM,·IH,N, 1 ,KEYI 
IFCr-JI .GE. lM-lM' l"'IMtl 
Iflll.Ll.!"I' .OR. (()A~SIOUI.LT.199'RM) .OR. IIN.U.ft)) GO TO 100 
IFICIAX-1)'CIAX+4', 9t.90,IÔO 

90 01-CO'II-IAXI+HI'C4+IAXJ'/5 
0·01 
IAX"-fAX+I 

91 1 F C U X • E Q • 0' GO rD \ 00 • J t3 
WR 1 TE (6199' U 

99 FOR~Arl' -PREOIC- VELOCITY SET B~CK TO·,F9.6. 1 -3/ft.OU t OUsOU/it'/J 
GO TO 3 

lOI I-PH\ 
100 IFCI.EQ.IH' GO TO 1000 

RETURN 

1 

100 

END 

SUBRSlTI~E SECA~TIA,Xl,XO,UE.OM.Jt",N,K,JtEY) 
OIME IO~ AC10.101 
COMPL *lb A.XO.X[.X2.Yl.VO,COET,X ~ 
RElL*8 UE.UI,~tRXtCX 
X-Xl 
K·O 
IFI:OASSIXOJ.LT.OM .OR. CO.BS(XI-XOI~lT.DHJ xo-xo+rl.DO,l.OO,-OH 
GALL HAT~IXCA,UE,XO,NJ~ 
M .... 
ya-COffIA,If' 
Z-o-CDABSrYOI 
K-K'.t 
CALL HATRlxIA,Ue,Xl,"' 
YI-eOHU,M' 
WRITElb;lûO'YO,Yl 
FOR~ATll0X.lP20t5.6,lPZ01,.6t 
Zl-COAOSCY1, 
X2.IXI-YO~XO.YII/IYO-Yl. 
RX-U 
YRO-YO 
wO-VltO'Yl 
Wl-e YRa-Va, -Y1/0" . . 
IF(CWO.lE.O., .A~D. IWI.lr.-wOll lO·IO •• Z~ 
IFI (( 1-1'10 -Zl.Gr.z.o, .OR. (K.G'E.K"fU GO Ta 1 

• 

, .. 

,.. 

" ,- .~---,.. 
..... ,.1,' r .. 

, ".1 



"*' 

1" 

';1 ï 

i .. 'j 
1 

j 

... 

353 
35ft 
355 10 
356 5 
357 
)Sa 

, 359 
360 6 
3U 
36l 
363 
3&" 
365 1 
36& 
367 " 368 
369 
)10 
371 3 
372 11 

373 
3H 2 
315 
37& 
Hl 

-B.S';" 

IF&IABSCKEVI.NE.11 GO Ta , 
WRtTEf6.1UI UE,X:J,VO,Xl.Yl.lCZ' 
FOR~ATI' y.·,F9.b,Z(' ".',lP2010.3,' V~t.2DI.11.' XZ-',zou.'" 
CXEIO.OO,-l.OOI'Xl . 
IF(OA~S(cxl.lr.O~1 XZ-RX 
IFIICOAeS'1.OO-Xl'X~I.lT.O~'~OR.CCOA8S'X2-Xl).LT.DHI) GO ro 2 
1 F 1 R HOM 1 6,6, 1 
20-)(I-XO 
XO-XZ-RX 
~l-XO-IO.OO,l.OO).R» , 
rFltO.GT.Z.'D~) XOsXO-RX 
GD rD ft " 
XO-Xl 
xt-xZ 
IFIOA8SCRXI.lT.OMI Xl-xl-Rl 
la-Il 
VO-Yl 
GO TO,l 
WRITEI6,111 KtK~.UE,XO.YOtXl,Yl.Xl • 
F3R~ATI 'O-SECA~T- [~T~~RUPTEO BECAUSE OF OIYçRGENCE OF FREQUENCY A 

IFTER K~·.12.' ITfRATIQ~S fF K<KMAX.~,l2,· .LAST ITERATION TlACfaÀ 
leK :'" Y-',F9.6.2I' X.',lPZOl:J.3,' Y-',lOS.I',' Xl-',2011.ft/' 
K-ItK 
xo-x 
XI-X2 .' 
RETUR.H 
END 

.. 
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APPENDIX F; THE COMPUTER PROGRAM USED TO OBTAIN 

THE CURVES OF FIGURE 16 " 

o 
, , 

l 

.. 
A '1 



. 
i 
r 

,c 

.1 

Cl' 
1 
2 
3 ,. 
5 

..6 
7 
8 
ca 

10 
11 
12 

13 
1" 
15 
16 

17 
18' 
19 
lO 
21 
22 
23 
24 
25 
26 

27 
"28 
29 
30 
31 
32 
33 
34 
]5 
36 
31 
38 
39 
40 
41 
#t2 
43 
"4 
45, 
46 
47 

'48 
49 
50 

,~.l-

-
SWATFIV ,TIME-QQq,PACES-Q99 

IHPLIClt REAl*8IA-H,O-ll 

C 
t 
C 
C 
C 
C 

c 

OIME~IO~ AI20"XR(30),XXRI30"XI130I,XX~130' 
OIHE~IO~ B{30ItCI301,XlI301,X21)OI~XEI301,XA'30' 
01-0.0500 
OZ-lO.OO 
oe-"O.,DO 
ou-o.OZOO 
DO 100 IX-l,50 
QA-QAX-IX < 

PI·3.1"15~2600 
)(CN-0.OZ500 
xtT-O.025DO 

, , 

" 

11. 

01 15 THE ~ATIO OF LEN&TH OF NOSE SECTION/lENGTH OF MAIN 800Y 
Q2 15 THE ~ATIO JF LEN~TH OF TOW-~OPEllE~GfH OF AIN 800Y 
OE 15 THE ~ATIO OF lE~GTH OF M~IH nOOYIDIAMEfER OF CYll~OEI 
XCT IS THE lONGlTlJOl"IAL CO"lPO'4ENT ')F DRAG COEFF lENT 
'XC~ IS 'THE NORMAL tOMPONENT OF THE DRAG COEFfUCI NT 
011-Ql*Ql 
OËE·~E·QE 
QU:rQA*OA 
VE~OSQ~T(~.OO-1.00/t".DO.Ql1-0EE)) 

.VE 15 THE ECCENTRltlTY OF THE ElllPSOIO 
VEE"VE*YE 

, VEIal.OO/YE 
YEL-OLOGCI1.OO+VEI/I1.DO-YEI' 
YEX-VE/Il.OO-YEel 
YEXX-YEE/I1.DO-YEEI 
YEEE·YEe*YE 
'EEI·l~DO/YEE ~ 
XKlc-YE*Cû.500*YEI*VEl-l.OOI/CO.500*VEl-VEXJ 
XKZ--CO.SOJ*YEl-YEXI/IOo'*VEl-VEX*ll.OO-ZoOO.VEEJ' 
XL3--YEE*ll.5DO*VEI*VEL- O-YEXXI/I1.500*(2.DO'YEI-Yel.'El-6.0~. 

.YEXXI . 
OlMENSIONLES~ PARAMETErtS OF l'S '''ft 
vllo-pr*Ol/4.DO 
V120.0.50v·Cl*(Q,*OSQRTtl.DO-OAAI+OARSINCQA), 
V210-Z.00.01'3.00 . 
Y2Z0-0A*Ol*'1.DO-QAA/3.00J 
Y310&2.00·~1·XK213000 

Y3Z0-C'*Ql*'1.OO-QAA/3.001.KKZ 
XXK l -1 • DOux 1 

• XXKZ z l.OOtXK2 
XXK 12 ;XXI( llrXXKl 
XXK Il'' XXK lr~XXK 1 
~XK2 Z - XXK 1 .UK2 
XYAEaVE*OA 
XXA a 1KI-ll.DO+XK11*Xll 
XXS·YEE+l.DO-XXKl*Xll 
YEEZ.II.OO~YE~J/VEe 
lE1-0LOGI1.OO-YEEJ 
leZ-OlOGll. DO-YEE*-OU, 
lll"C XXA-XX81.*VEEI 
Pl-02 
Y410.XXKll.~EE~·(1.OO+YEfl.ZE11,z.oo 
V4Z0.XXKll.YEEr.IQAA.YEEl'lE2)'2.0~ 
YSlO·Ol1*KL3/4.00 
Y520-011*QAA.Xl)'IZ.OO-OAAI/~.OO 
V610.01.IXXA-Z.OO'XX8/3.00.Xxe~VEEr+(XXA-Zll-xX8'YEer.VEEIJ'O.SOO-

," 

__ :uJ.<L::~~~ .. !:_~~< .. I:._ Ji ~~ r-~ ?~~~~~ 

t . } 



t 
51 

52 
53 
5~ 
55 

.56 
57 
58 

\., 59 
60 

61 
62 

63 

6~ 

65-
66 

67 
68 

69 

70 
c 

Tl 
72 
n 
74 
75 

c 
76 
77 
74 
79 
80 
81 
82 
83 
84 
8S 
86 
87 
88 

1 89 
90 
91 
92 

, 93 
94 
9S 
96 
97 
98 
99 , 

"e 
'" 

.-F.2-

.YE-YEll-VEEr , 
YbZO~Ol*IXXR*OAA'CA/3.0Q.IXXA-XX~tXX8*YEEI).gl+IXXl-lZl-XXS-Veel. 

5YEE Il -O. 5[J:J*YF -OLOto,' 1 1. OOt)(Y1kE I/H. OO-XYilE' 1 , *YEEI 
Y710.0.500-YEE"IXXKIl-YEË.YEEl'XX~11*ZEll 
Y720~O.50v*YEE"(CA4'(XXKII-YEEI+YeEl*XXKll·lE2' 
SMAX~PI/[4.00~OEEI 

SBASE=P'*11,OO-CAA'/14.DO*CEE' 
CDFA s Oe*xCr·'1.n?+YIIOtYIZOltZ.OO*IY710 t Y7201 
COBsO.aZ9uO*( 1.~O-OAAI*'1.5/0SCRrICDF81 
Als2.D~+YZlO+~2Z3-Y310+Y3l0 

AZzO. 5DO'*f,jE* X C~" [ 1. DO+Y 1l:J.Y120 1 tY41 0-'1'420 ~ .,,_. 
A3-0.5DO*CQE*XCr*ll.DO+YllOtYlZO)t2.00*ly710+Y120'+SBASE~OB/SHlX. 

2/0Z ' 
81-0.5DO*I-YZIOtYZ20+Y310tY3Z0J-Y510+Y520 
82.2.DO-Y310tY320.YblD~Yb20-0.500.tY410+Y4aO)+O.250l'QE*xCN*(-YIIO 

*+YI20l' ' 
8320.5DO~E'XC~*[1.00+Yl1~+Y120ItY410-Y420-J.;OO~IQE'XCTl<ll.OO+ 

3VIIO+YIZ 1+2.00'IV710+Y7Z0)+S8ASE~:06/SMAXI'CO.5DO+Ql.P2"O~ , 
CI-0.500 -Y210+Y220+Y31G+Y3201 ' 
C2:-.5DO*(Y410+Y420l+0.2500I<OE*XC~~C-YIIO+YIZOI . 
C3~O.5001<'~E*XCT~ll.DO.YllO+V1201.2.001«Y710~Y1201+S&ASE~c66/SHl~. 

4*1-0.500-011/C2 
Ol=1.OOlb.OO+O.25DO.IYZfo+Y220-Y310+Yl201+0.5DO*I+Y510+Y520) 
DZ:O.SDO*(+Y1IO+Y320-Y610-Yb201+D.25DO*(Y410-V4201+0~12500*QE*XCN* 
511.00/3.D~+YIIO+Y1201 

. 0320.2500.QE*XC~'(-YIIO+Y1201-0.5~'*(V410.Y420ttO.500*ICE* •• 
711.DO+Yll~+Y1201+2.00*IY710+Y7201.~BASE*COB/SMAXI.(O.500+01 J. 
810.500+QlI/02 . 

OQaAI*OI-Bl*Cl 
THE COEFFICIE~T pF A OUARTIC EQUATION 
II 1)-1 .. 00 
AI?I.IAl*OZ+AZ*01-Al*C2-BZ*ClI/OQ 
AI31.IAl*U3+42.0Z,~tlOl-Bl*C3-B2I<C2-83.Cl)/QO 
A(41=I~Z.03+A3.~2-~2*C3-6l·CZI/QQ 
AI51-143*U3-B3·C31/QO 
8AUS:rOW "'ElHDD 
DATA N.EPS.P,O/4,l.0-07,l.DO,l.OOI 
NHa N+l 
H a 0 

10 J ,. H-Z*" 
H ,. M + 1 
JJ .. J +1. ,~ 

IFIJ-2" N. ZS, lO 
20 XR(~) ,. -A(2)1tttll ' 

le ft ~laO.OO 
GO TO 60 

2S AA • Ani 
88 • AU) 
CC a AllI, 
GO Ta 51 

30 Nl a 1 
35 911' • ACl' . 

8121 - AI21-p-a(11 
00 36 I~ 3.JJ 

36 Bill a ACII-p*all-l,-Q*811-2, 
Cill a BUt 
(IZ1 • BIZI-P.CCl' 
00 )1 la) ,J 

31 CIl' • 8111-P*CCI-II-O-Clr-2. 
eK-. C(J'-8(Jl -

. -
! 

, ' 



(11$ 

100 
101,' 
102 
IOl 
104 
105 
IO~ 
lQ7 
108 
109 
HG 
lU 
112 
III 
1.\.4-
115 
116 
117 
118 
119 
1.20 
121 
122 
123 
1210 
125 ' 
126 
127 
128· 
U9 
pO 
131 
132 
133 
131. 
135 
136 
137 
138 
13q 
1100 
l'tl 
1'oZ 
Hl 

. ' 

cv • CIJ-ll •• 2-CX.CIJ-2. 
OP .. (B(JI.C(J-II-8(~I.C(J-2 •• /CY 
O~ • (BIJJ)*CIJ-l'-8IJI.CXI/C1 
p .. p • 'oP 
Q ,O_.OQ 
r ~ 1 ~AElS COP l'(iT. EPS !.a!:. TO 40 
rFIDABSIDQI.lr.EPS~TD ~, 

40 r~l~l.GE.l0001 GO TO ~5 
Nl"",l·1 
CO TO 35 

105 00 50 1 ,. l,JJ 
50 A ( Il -)t'( Il 

AA • 1.00 
-»Jl..- P 
~.-a 

51 0-SS*BS-4.00*AA*CC 
rFIO.GE.O.OOI GO TO 52 
XIJ--BB/IZ,DO*AAI 
XZJ ,. XIJ 
XIK=OSQRTI-OI/IZ.DO*AA' 
XlK " -XIK 
GO TO 55 

52 00 .. osaR Tlbl 
Xl/"1-88+001/12.00*AA. 
~J=(-S8-001'12.00*AA' 

. XlI(IIO.OO 
X2K a O.OO 

55 X~t2*M-l1 2 XIJ 
XRI2*M, • XZJ 
XII2*M-1I .. Xllt 
)(IIZ*M, • XlK 
(FIJ.GT.Zl GO Ta 10 

60 WRITEI6,3001 
300 FOR"IATI' • ,'R:l:lT \,9X, 'REAL P'ART', 7x,'IMA:ilNARV PART'. 

00 b'o J -1 • ~ 
XXRI1'''XIUI , 
XXIIII--XRltI ... 
Ifl 1 DARSI xXRlll,.LT. i.D-51.A~O. (Xl(III'.tT .O.O:))'ty, GO ro 1000 

64 CONTINU~' 
100 COHTI'NU 

100e WRITEI6, Ql,OA,Q2.QE 
ZOD FORMATIlX,4F15.31111 

STOP 
END 

J 

.. 

" 




