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dynamics and stability of a slender, towed body with tapered
‘ends, totally .submerged in water, as it undergoes small, free,
lateral motions. Stabllity conditions and modal shapes are

found based on solutions to linearized equations resulting

S_iain & bl

from small deflection assumptions.

I8 is found that the system may be subject to rigtd-
body type instabilities at low towing speeds, and to flexural
! . | ' instabllities at higher towing speeds. The rigid-bod&‘insta-‘
bilities,:occurring in the 'so-called zeroth end firs mode of

the flexible body, are'shown to correspond to the inst bllltles

of a rlgld body of the same shape and gravimetric propgéﬁles.

o

.o Partlcular attention is focused on the effects on

stablllty of (a) the ratio of the length of tow-rope to the .

|

1

|

i .

} length of maln body and (b) the bluntnass of tall portion.

{

i The former ‘affects the stability of a rigid or flexible system
only in terms of oscillatory instabilities, but does not affect

yawing; on the other hand, a sefficiently blunt tail may sta-

bilize the system over)\the full flow-range in all its modes.

' It can be said that th"xstability of a slender body is vir-
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| STABILITE ELASTO-HYDRODYNAMIQUE D'UN
CORPS ALLONGE PRIS EN REMORQUE .

SOMMAIRE

-

Cette th2se présente une &tude de la dynamique gt
de la stabilité d'un corps allong&, aux extrémit&s coniques,
. compla&tement immergé dans un fluide visgqueux dans legquel on -

le remorque;? En se déplagant cé corps subit de faibles

]
déplacements latfraux. Si l'on suppose ng ces déflexions
sont de faible amplitude on peut utiliser des.é&quations
linéarisées qui permettent de déterminer les conditions de

stabilit& et les formes modales. g

On constate que le systéme subit des instabilité&s
deycorps rigides lorsque la vitesse de remorquage %gt fa;ble;
tandis qu'a de plus grandes vitesses, on obtieft des insta-
bilités de flexion. Les:inétabili£és;;é prodﬁisant.&gﬁs le

premier et le second modes du corps fieiible, corfespondent‘

3 des instabilités d'un'corps rigide de méme Ffokme et de mémes

propriétés gravimétriques.

Deux param&tres, en particulier, semblent avoir un

effet déterminant sur la stabilité& du éorps, il s'agit

a) du rapport de la longueur du filin 3 laﬂlongueur du corps

Y, .
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- remorqué, -
b) de la forme plus ou moins obtuse de la queue,
~ A . \

premier de .ces deux paramétres peut causer des instabité&s

-

_,o0scillatoires, que le syst@me soit rigide ou flexible mais

n'a paé d'effeg'éur 1l'angle deolacet. Quant au second, si °

la queue est suffisammeqt pbtuse, 1le systéﬁg\peut 8tre stable
dans_ tous ses modes quelle gue soit la vitesse au remorquage.
On peut méme dire que la stabilit& d'un corps allongé dépend

virtuellement de la forme de sa queue.

{
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NOMENCLATURE

' ) 4

a’ defined by equation (17)

b defined by equation (15)

Cop’ gse drag coefficient ,

¢, C friction drag coefficientsdefined by equations

D f
{(10-12)

Cep ‘ friction drag coefficient on the forebody . Lo

c, C¢ equal to (4/7r)CD and (4/1r)cf, respectively

o equal to cL(M‘/EI)iu

D diameter of cylinder

DBase X dlametugr of base of cylinder

EI flexural rigidity of cylinder

e eccentricity of ellipsoid '

Fn normal viscous force on cylinder, per unit length

Fl longitudinal viscous force on cylinder, per unit 2
length

fl' fz slenderness coefficients for hyldrodynamic forces at
free ends . . . ) ’

i angle of inclination' of cylinder to flow ’

I n normal inviscid hydrodynamic force on cylinder, per
unit- length

IR; longitudinal inviscid hydrodynamié force on pylinder,

X per unit length .

L length of main body -

m mass of cylinder per unit length . T

M virtual mass.of cylinder per unit length ’

s
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tow-rope forcesdefined by Figure 4b

shear force at a crosé-section of the cylindfzr
surface area of base of cylinder

length of- tow-rope

tension

time " .

‘"mean flow velocity

dimensionless flow velocity = (M/EI) §UL
critical dimensionless flow velocity
axial co-ordinate

lat;eral diSplacemegxt of cylinder
bluntness of tail portion

equal to M/ (m+M)

angles defined by Figure 4b

equal to L/D
equal to y/L
defined by equation (2) and (5)

equal to s/L ) ' o I

n‘ldmen,t on "a cross-section of the.cylinder
in%erai damping coefficient

dimensionless interal damping coefficient' =
{1/[ EXM#n) ] }*1;/Io2 |
equal to x/L
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p fluid density
o -equal to m/M : N .
'. Ut it L
T,T equal to z—"and {EI/{m+M)} ~»,respectively
. - L L . .
Q circular natural frequency °
&«
W, dimensionless natural frequency = { (m+M) /EI}59L2
Wyr We dimensionless natural frequencies of rigid and
flexible cylinders, respectively
W, critical dimensionless natural frequency
X ¢
| : ' '
| «
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depends on the speed o
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1. INTRODUCTION

N

There are many problems in the operation of marine

1.1 General

vehicle systems, associated with tfie dynamical stability and ]
control of towed systems. By’ towed.systenms ;e understand the
complete system comprising tﬁe towed body, the -towing body and
the toW-rope: The performance‘of'each element of the~system
contributes to the stability andvmotion response of the system
as atwhole. In general, the three elements are intercoupled,
one element of the system can destabilize the inherent sta-

bility of the other elements, or can stabilize an inherent

instability of another element.

The analysis of the stability and small linear motion

response of towed systems commegces‘With a perturbation of an

original condition or position of equilibrium--where the
system (or body) moves at c®nstant speed in an equilibrium
configuration. For several types of towing situations,

” .

especially where the towing vehicle ig a surface craft and the

* towed body is submerged at depth, it is essential to establish

the equilibrium shape of the cable configuration amd position

and attitude of' the tz:izlbody; This equilibrium condiLion

e system; the size, length, cross-

,sectional'shapé,‘weight and elasticity of the c¢able; and the

fi \
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‘size, geometry, weight and poift ,of attachment of the towed

bedy. Also, in establishing this condition, it must be en-

sured that the system remain'fntact; i.e., the amount of

tension in the cable .at all points must be below the breaking

load, and the cable force at the points of attachment to the

A

\ bodies must be below the tearing load of the attachment mecha-

“ nism and supporting structure.

The behaviour of the ‘towed body is important. Mini-
mum resistance is experienced when the body is towed in a
s;raight line. On the' other hand; when the towed body has- .,

lateral motion about the tow-point on the towing vessel, resis-

tance is increased and the speed of the whole towed system is,

reduced commensurately.

As was mentioned, in considering the stability of
the towed éystem, we assume some kind of perturbation to the
equilibrium state; here we shall consider this disturbance to
be applied to the towed body. We are not concerned with the
nature of this disturbance, bu£ merely with its effects. The
usual effect is a small sideﬁise translation of body as well
as a rotation about its center of mass. The latter is the ?oré
important of the two, since the symmetry of the strea@line flow
is thereby distufbed and a’ lateral hydrodynamic'fo§ce and a
moment on the body are produced. This induced force and its

A
g

L . , -
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moment are in most cases many times greater than the initial

»

disturbing force and its moment. Besides this force and

e LR B

moment, another previousiy non-existant lateral force and
turning moment arise from the tow rope force, if the tow rope
is attached at the bow of the bod&, which usually is the case.
'Finally, translation and rotational inertia{reactions come
'into play due to the fact that the lateral ﬁotion is an accel- ,

erated or decelerated motion superimposed on the steady forward

motion of the towed body.

O et WL Lt o W

Finally, it should be mentioned that most solutions
to instability of towed system involve de§ign changes which
- : either limit speed or result in increased drag (and hence power
consumption). It is, therefore, of considerable practical
interest:

-

E _ a) @o‘know accurately the limits of stability of a

given system, and
b) to make design chahges to an unstable system, so
E 1 o .as to regain stability, which would not seriously

affect its efficiency.

1.2 oOutline of Previous Work
Interest in the dynamic stability, of towed ships
.dates back to the halcyon-days when solutions to engineering

- . problems could still be obtained by experience, without, the B
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aid of sobhisticated analysis. Substantive work on the methods
for mooring airships in the air by means of cable systems began
early this century, as repofted for instance by Krell [1],
using the three wire "pyramid" system. This type of.moori?g
apparently originated with Crocco [ 2], but received more ex-
tended use in England. Frazer [ 3] undertook laboratory experi-

,
ments with this and other forms of "free" wire system, whose

-

dynamics are essentially the same~as\with é solid mast but for
the inéreased‘eiasticity. A more complicated dynamica; p;oblem
is offéred whenra ship is moored by one cable only, like a kite
balloon, which was discussed by éairstow, Relf and jones'[4I.
Later, Munk“[S],'Glauert [6], and Bryant, Brown and Sweeting
[7] contribéted to the stgdy of this problem. )
In 1950 Strandhagen et al. [ 8], carefully discussed
the dynamic stability of the course of towed ships, using the'
following éssumptions: ‘
‘i) the motion is steady along a straight line where
the yaY angle of both the towing and towed ship
is zero, which.;s referred to as "steady course
cénditions";

ii) the towing ship remains on this course and

maintains a steady velocity even after the

towed vessel has begun -to yaw;

the motidn takes place in a horizontal plane;

!

e
[
-
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iv) yéwing angléé and velocities are small and the

s

P il :’ﬁa’g

tow line is massless| and-inextensible and lies

v in the plane of the motion. -

' They show that, when the towed ship is disturbed from its stead
straight course, it experierices no change in velocity along th
. ! N . o

x-axis. The analysis -also indicates that a dynamically stabl

ship wher towed might become unstable when the tow line is

long and that a dynamically unstable| ship may become stablge if

towed with a short tow line.

The first analysis of stability of a flexible /towed

body was done by Hawthorne (o], for the case of the Dracone

flexible barge. He laid down the folleing requirements for the

directional, stability of such a towed ship:
—. 'j) 'the point of attachment of the tgw-line should

., N

be located forward of both the/center of gra- ‘

e of theastatic
‘ . lateral force; i L

vity and the center of press

e *

ii) the ship should be dynamigally stable when

- oyt
~—

moving untowed;’

1i1) when condition (ii) is/not fulfilled, it is
possible tc achieve irectional stability

-.either with a long gnough or short enough tow-

‘line; ' ‘

The critical lengths depend upo thg degree of . .the aynamical

instability.
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Recently many applications have arisen for underwater

" towed systems in oceanography, fishing,\an maritime warfare.

The recent development of faired tow1ng cables has opened up

new p0531b111t1es of hlgher speeds and depths which call for

a refined design approach. Jeffrey [ 10] condu ted a parametrlc

study on\stablllty which demonstrated some fun amentaloeffects

of ceble and body design and their interactiods on body beha-.

viour. A more complicéted séudy of the three-dimensional motion

of a cable- body«tow1ng system was undertaken by Schram and .

Reyle [11]. Many papers have been publlshed in this fleld,

e.g., by Eames [ 12], Reber { 131, Parson and Casarella [14],

Strandhagen and Thomson [15], Richafdsgn [16], Patton and

Schram [ 17] and Laitinen [18]. o , .
Paidoussis [ 19, 20] proposed‘a general theory to

account for the small, free, lateral motions of a fiexible,

slender, cylindrical body immersed~in fluid flowing pargilel

to the position of the rest of its axisi Later, Paidoussis

{21, 22] extended his previous study_bf the dyna@;gs‘of }1exib1e

cylinder in axial flow tb deal with a eowed system, which was .

studied both analytically and experimentally. in this work he

confirmed that there exists two main factors for optimum sta-

bility of the system; )

i) the tail must be as blunt as possible;

ii) the tow-rope as short as possible.
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Also he found that the experiments do not show any advantage

in making the nose particularly well streamlined, which does

.not entirely agree with theory. Ortloff and Ives [ 23] examined

the stapility and time-dependent deflections of a thin flexible
EYlinder with zero bending rigidity set in a viscous stream.
Later Paidoussis [ 24]. re-examined the dynamics of fléxible
towed bodies,of revolution and determined the relation in dyna-
mical behaviour between rigid and flexible bodies. It was
found that the éystem may be subject to rigid-body type insta-
bilities at low towing speeds; and to flexural %nsfﬁbilities

at higher towing speeds.

~ The conditions ofwstability have ‘been investigated
by calculating systematically the cr§tical flow velocities for
neutral stability and their asseciated frequenéies by Pao { 25].
He estimated that for L/D >3 30 the critical velocity and the
aSSoelated frequency are U [(4/T)«ﬁ(E)§] ~ 6 and- Q [(4D/c )
(¢/BE)§] ~ 12. Pao and Tran [ 26] discussed the forced oscil-.
lations of a thin flexible cylinder towed in a viscous fluid.
It was‘shown that the forc1ng frequency had a domlnatlng influ-

ence on the modal-shape amplitude of the towed cylinder.

Yoder and Paidoussis [25] have formulated the equations
fer the dynamics of body towed in axial flow, focusing their

attention to the various hydrodynamic forces arising near the

"ane and tail sections.bf body, wh?ch were not previously

+




defined by Paidoussis [ 24]. The work présented in this Thesis '
is based on the formulation of the problem as developed by

‘

Yoder 'and Paidoussis, particularly the work of Appendix A.

1.3 Scope of Present Work ' - N

The present study' is concerned with the extensioﬂ of
the theoretical analysis made by Hawthorne [ 9] and Paidoussis
[24&, of the‘sﬁall, lateral mﬁtions of slender bodies towed
through incompressible £luid. The author's interest in this
thesis is to examine carefully the various hydrodynamic forces
arising near the nose and tail of the body which had been inade-
quéteiy accounted for in the previoﬁs treatments. Accordingly,
~an extensive survey of thé pertiﬁent literatpre was undertakeh,
out of which has grown a drastic reformulation of the inviscid-

flow forces acting near the ends of the body.

This theoretical development has entailed a substan-
tial amount of effort, as evidenced by the fact that it com-
prises the latter half of Eﬁapter 2, while at the same, time
drawiné upon the results obtained in Appendix A. 1In Chapter~§i
we have derived the equationé of fmall, lateral motion; glso,
the tensiié force, shear force and moment which are exerted by’
the tail and nose,sectionl The complete equation of motion is

' constructed and four boundary conditions are formulated in

Chapter 4. To compare the new theory with Paidoussis' [ 24]

FoafETTI w4
L “gb;f‘,:.aﬁ.. ot
e e L AT 0, T

4
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systematlcally, we mod1ﬁ1edpthe

nate system of [24] These are

_Equations of motion of a rigid,

Chapter 6. Instead of deriving

x

moment balance independently of

of the work of Chapter 4.

tow—rop; force\and the coordi--
surveyed bri;fly in Chapter 5.
towed body are discussed in
the equations of force and

the previous work, we make use

Chapter 7 presents the theoretical

¢

results obtained for -flexible cylinders. The 1nstab111ty

regions are determlned and the effect of the different para-

meters on the behaviour of the system is discussed.

Finally we

con51der the theoretlcal analysis ‘of rigid cylinders in Chapter

8.

-

>
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1

2. FORCES ACTING ON A SLENDER, TOWEIS BODY

Consider a slender body of revolution immersed in an
incompressible fluid of density p,'flowiné with uniform veloécity
U parallel to the  x-axis, which coincides with the position of

rest of the body and of the "tow-rope", as shown in Figure 1.

It is noted that this system is exactly equivalent to a slender

‘body being towed with velocity U in still water. The body is
..

*

presumed to be flexiblé or rigid .and to be supported somehow

at the other extremity of the tow-rope so that.it is not washed

—
[

away downstream. The x- aﬁd y-axes lie in a horizontal plane
wherein all motions, y(x,t), are supposed to be confined. At
its two epég: the body is tapered over a short length, compared
with its gverall length; but the tapered sections are presumed
to be sufﬁiciently'long so'as to admit no discontinuities in

the flo; past the body. We denote the body diameter by D(x),
its cross-sectional area by S(x), and iﬁs mass per unit length

by m(x}. ‘It is assumed to be of null buoyancy'and uniform—

density, so that neither a lateral force nor a moment is neces-

¥

sary to keep it lying along the x-axis, at least at zero flow

Al

velocity. _ ’ P
. . L

“

2.1 Modification of Coordinates

Before proceeding with the analysis,” it is desirable

~ to express the problem:in dimensionless terms and accdrdingly

.




~ 9
‘ i A}
: - 11 -
we put
%’_ . n =%r }
| T=1%, |

where L is the length of hain'portion of body and U is the flow

-

AR

velocity of the fluid in the x-direction. o

»~

We begin by dividingrthé“body, for the sake of ana-~

lysis, into three parts, as indicated in Figure 2 and take the

origin of the x-axis to coincide with the equilibrium péiifign/////f/,

of its midpoint. The lengths of the nose anq///;l/s/btlons,

&1 and 22, respectively, need not‘/t/th’é stage be precisely,

specified. We do rggylre, though, that Al = 21/L and Az = zz/L

—

be of/;he»ofdé?lof [n]i, so fhat’[lllz and [Azlzcan be treated

~ as gmall quantities.

-

These assumptions lead to significant mathematical

simplifications over the nose and tail sections, as can be

apprec1ated by expandlng n{g, T in a Taylor series in { about

theE==-2-.

0= e+ J g0 (& + 7}

2 .3
1 3™n 1 3'n 1
+-2-:—-2- (‘7;1) {£ + 'i} + -3--5;3' (7:"-’)(5 +I’

¥
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Over the nose, i.e., in th§~EEEE£XEl_:%:}l,< £ < -l; the
guantity (E‘#ré)(is of the order of Al. Recalling that [Allz,

2 3 - '

3 .
ng and ——g,are very small quantities, we conclude that-dlong
oE 1
the nose section n(¢,1) can be adequately repfesented by
- H(EIT) < n(-}"rT X (—.]-.'IT) {g'f‘l} .
. 98 2 2 )
‘Introducing” the notation )
1 -
o~ npdt) = ni-351) , . (2)
5 _ : ot = 30 .

displacements over the nose section may .now be written as

4

n(g, 1) = ni(n) + o (1) {& + %} . (3)

b ]

It'is clear from the form of equation (3) that, in physical
terms, we have simply taken the nose section to be short
enough to allow us to‘treat it as rigid; although it is, in .o

fact, flexible. By the same process, n(§,T) over ‘the tail

section may ‘be written as
' 1
n(g,t) = n, (1) + 92(“,{5"-_2'} ’ © o (4)

where

n, (1) n(%.r) '

-

. o (1) = 51 G0 . (5)




»

The tail, thus, can also be treated as rigid without loss of

generality.

2.2 Base Drag Force ) -

Considering Qiscoug flow past a rigid, blunt-based
body of revoludtion at a large angle of attack, Kelly [ 28] has
shown by means of semi-empirical arguments thatthe force arisidg
from boundary-layer builé;éu;iong the leeward side of the body
is of the order a3, where o is the angle of attack. Since we
are treating %% as a small gquantity, this force can clearly Eé
neglected. There will, on the other hand, inevitably arise
flow separation at the tail. Accordingly, we shall follow -
Kelly [ 28] and assume the tail to be truncated upstream of the
point where flow separation would other&ise take‘place. In thig

way we can assure that'only the blunt base itself is in contact

with the wake and that the form\drag at tﬁe tail acts in the

' lateral diréftion. ~Thus we-express the base drag as follows:

1 ..2
pB = Ppase’7°Y Spase .

1

C (6)

Hoerner {29 ] describes the so-called “j;§~pump"
mechanism .by which the pressure in the wake of a blﬁnt-based
body is reduced as a result of the tu;§:3; "jet" around it.
He also deécribes the "insulating" effectvof the separated

boundary layer, tending ﬁb\diminishxthe jet-pump effect.

!
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It is clear that the drag in equation (6) will be
inversely proportional to some measure of the boundary-layer
thickness-at the'basé, which can be characterized by the drag

on the fore-body. Accordingly, he ﬁroposed that-

CDB

i} 0y | g
= 0.029/(CfB) . (7 a)’
where CfB’ the skin friction drag on the forebody, is given by

. (8)

[

i Cep = fore/ pU Spase

This is applicable to cases where the base atea is
essentially equal to the maximum cross-sectional area. Other-
wise, if the body is tagered ahead of the base, then referring

the drag to the maximuf cross-sectional_area of such bodies,

Hoerner proposes

DBase 3 e
Cpg = 0.029 (D ) / VT, ’ (7-b)
: { . “max . ‘
where the forebody drag CDf
C . = (%—ﬁg)zc . : )
Df Dmax fB

Hence the base drag coefficients CDB's are, respectively,
1l .2
_ 5P0"S ? ) ]
Cyp = 0.029 (E—22%€)" (9-a)
¢ fore

o

and




7 .
v . -/15 =

' [}

Y // ¢

Lt . ( * / 1 2 - h ]

5pU"S i
) _ CDB - 0.029( BaSe) (% Base ) . (9-b)
N max fore ‘ : /

2.3 Skin Friction Forces

The viscous forces actjing on ldgg inclined cylinders

have been discussed by Taylor [30] For rough cylinders and

~

. turbulent boundary layers; Taylor proposed the following K

expf@ssions: / ~
e‘" . ) I
, _1 2 o2 e .
Fn = EpDU (CDp51?2¢ + Cf81n1) ' { (10)
N , 1 2 ‘
F 2 = -2—p DU Cf(.?QSl ’ .
& ' ’

where i = tan (2—) + tan.l( ) Hoerwer [ 29] compiled data

on the viscous forces onglncllned cylxn ers.and obtalned the
i
expressions for the forqps ‘acting in the f-and n-directions;

5
<«

2

-1 N2 o3,
Fé 5 PD(EIV (ng Sini + Cg)

and .

1 2 2,
N . 4 D .
. Fo=35P -(E{U C pSin~iCosi

Upon being transformed to the directions used here, these

reduce iﬂgntically to equation ~(10). It is of interest that
o » o Q

Cf is given by . " )
4 -

pe)

!

(11

. o L RT
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‘the 'm factor appearing since the skin friction coefficient is

based on the surface area. It is recognized that, at best,

equations (10) give mean values since, strictly speaking,

the coefficients vary from point to point with the developing
boundary layer. Typically, Ce = 0.01 to 0.03 for ﬁeD > 104.

For small %% and %% equatlons (10) reduce to

= 1.2 S(&),3n an 1 S(£) 3an
F o=3PUc D(E)(s? + —E{ + 5pUc D(EY 3t * - (12)
/
= 1 y2. S(8)
. Fz—pr Cfﬁr v

where the second term in F ~represents a linearization of the

quadratic viscous force at zero flow velocity, %—pU2 CD anI(an).

this was retained since all other terms wvanish at U = 0.

2.4 Inviscid Hydrodynamic Forces

o

2.4.1 °Main Portion of Body

Lighthill [31,-327], has investigated the potential
flow pattern arising near a slender,. flexible body underéoing
small scale<“deflections y(x,t) while subjécted to nominally
longitudinal flow and has shown, on the basis of the first
perturbation to the undisturbed flow field, that the body

experiences a force per unit length normal to its axis of

symmetry and acting in what is roughly the negative y-direction;
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& .
% ® 3 3
’ = [5¢ * 03-; 1(Mv) , q (13)

where v is the lateral relative velocity between the body and

the fluid flowing past it, and M is the virtual mass of the

fluid.. Here the effects of sideslip have been neglected,

effectively assuming that each cross-section of the body is

part\of,én infinite  cylinder; boundary layer effects have also

been neglected. The virtual mass M(x), is‘equal to pS(x) for

! unconfined flow, and v(x,t) = [ (3/3¢t) + ﬁ(a/ax)] [y(x,t)], which

when substituted into equation (13) yield

I 3 |
I, =GP + UGgRles I &Y + vy

| _ ou%s(e 3 .3 2, pu®asg an, (14-a)
¢ = T 3w tagl " +'i ‘g_ar+35]

_According to Ligﬁthill's work, there exists no corresponding

force in the lonéitudinal directionifthus,

2 . . (14-d)

o

N . 2.4.2° Tapered Ends

Unfortunately, the above expressions are valid only

Q ' over those portions of the body for which @D(g)/dg‘ban be con-

sidered small. This clearly is not the case near the nose or

»

the tail; indeed, in the vicinity of a rounded nose dD(t)/dE

4

'
|
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can be expected to approach infinity. Paidoussis [ 22, 24],
was obviously aware of this problem, as evidenced by the fact
that he multiplied the gxpression given in equation (l4-a)
by a correction factor f before applying it near tge nose or

tail.

For this present investigétion a better formulation
has been gought. General ‘expressions which are analogous to
thosefobtained by Lighthill bug uniformly valid o;er the whole*
length of the body have been deriQed—§the derivation being
presented in Appendix A- for the distribution of force ana
moment along a prolaté ellipsoid of revolution as it.undé;goes
general plane motion through an infinite medium of iﬁeal fluid.
These expressions will ultimately be used to test out the cor-
rected Lighthill formulation when it becomes available. "In

the interim we shall apply the expressions worked out in

Appendix A sbmewhat more directly.

v °

To examine the end sections more carefully, we now

_ introduce a procedurez which has been shown by Upson and Klikoff

[33] to produce a fairly accurate approximation to the inviscid
pressure forces arising along a typical, rigid airship hull.

. . N ! .
We fit to each cross-sectional element of the nose and tail

‘sections an element from an axisymmetric ellipsoid which has,

as nearly‘as possible, the same geometric characteristics. Then
. R

W

-
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we take the potential flow forces acting’on the element from

‘the nose or tail to equal the corresponding forces which arise
on the ellipsoidal element while, as part of the total-ellip-
soid, ié unde;goes translation and rotation equivalent to that

of the nose or tail element to which it is fitted.

fhe critefia‘for fitting are as follows:®
i)} the ellipsoid fitted to any element of the’

nose or of the tail be concentric to that end
section or, in other wordé, have the. same
longitudinal axis;

ii) the maximum diameter of the éllipsoid be equal to
the maximum diameter of % f}exible body,
Dhax’ in tgrms of the notation of Appen?ix A,

this can equivalently be stated as follows:

b =

2of i~

Diax ' - (15)
iii) the local diameter of the ellipsoid match the
local diameter of the nose or tail at the
point of f£it; in view of equations:(AIS),
(A20) , and (A21) of Appendix A, this implies
; that

14 v

. 2,
2 b(l-[le )i = D{§) ,
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%ﬁ' N ‘ - 20 - -
gﬁ%( . . r
E: ) so that .
¥ L4
By : : * } .
B 2
& | . ’X2={l" (g—(—g-)—)”} . « . (16)
¥ - - ) max . .
%‘ iv) the product of the first and second deriva-
& .
' . tives of local diameter with respect to longi-
tudinal distance l;)é the same for the. ellipsoid
as for the body at the point of fit; !
. ’ .
cdpx) . ao _ dn(zh) . a®pi2)
dx i az1 arz °
4 . _ -[ N
| o “ (H?2,
. ' : X {Zb(l-——T ) }
. ; ' . a
1 5. 2_‘ 2 1/2
a3 Drax {Pmax "D 7{8)y :
) p* (&)
Finally we get
. ) 172 '
Pra vho  2-pfen 13
. . ) - a = { - } . ’(17)
k | - . - ‘ D (g) '%ELL . dZD(E) e
1 dg
‘f N ’
i
o : . . & :
" !
T ¢ S ) |
.. ' !
! - ) ’ - g |
L Rt !




" order terms to obtain,

-Using the zi co-ordinate system of Appendix A,
ﬁe must relaté the velocity aﬁd notation of T
each cross-sectional element of the nose and
tail sections._

a) Nose Section

From the Figure 3a, we can easily find the longitudinal

[

veldcity component

dn . 4ae '
1 _ 1 1,991, oo
vV o= U{E?_4-1£+i)a¥—} sxnel U cosel,n

4

and a lateral component -~

2 dn, 1,99
- vV = U{-d??— + (E""Z)a-;—} cosel‘+ U 8\11191,

LY

and the angular velocity °

3'_Ud91
m_—-

; L dT . .

L3

Actually the motion is very small, and we can drop the second
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[
" dn a0 ;
2 S | 1 '
v® = U{'&r—" + (£+§) d_r“} + Uel,
_ 2 2,
72 = 93{.——2——(1 Ly (eed —T—d 6)]'}-r o2 29 (18)
” L ar 2 dt L T
- LI
3 = P.. f.?!’.
w L drt /
J 2 a2e N /
3_U 1 ‘ /
;7 dt

e .
To follow Upson and Klikoff's.procedure, we substitute the

above relations into equation (A37) of Appendix A} we obtain
expressions for the transverég and longitudinal inviscid forces -

acting per unit length along the nose;

, 2 2 :
a2 d“n d“e a0
. pU“S(E) . 1 1 1 1
I,== [{ By —= g R
n L idtz 2 dr dt
dn do ) ' 2
1 1 1 L X .
1 - e.[xﬁ
2, ' 2 2
; d (-)i a, xz ) d@l {CH-kl) (1+2,3(2[x - 1)) -1}
g 2L 3 at 2 2. % ’
T 1-e[x7] '
2 e 2-(21) ‘
2 X 1 ) 1. (19-b)
Io = PU Spax a— | 2 1]

’ i~ ?2[X2]
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b)

the tail ' section, we have

and

" S L S PR o . -
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—

Tail Section

]

Similarly, applyiné the Upson and Klikoff scheme to

'

N

-u
0 B ~
an dae,’
2 1, ~°2 S :
2 2
o® {——z-d 2 4 (el iﬁ%} L U ;Gé
L dt 2" ar L !
L B | |
L dr
2
v? a“e,
L2 at : -
2 2,
2 d n dace doe
pU“S(§) = N2 1 2 2
(= + (6-3) —= + 577} k
L de 2 art dt 2
' dn T dan : 2.
2 1 2 L X
B R U R Ul e
‘ ) : ‘-l-e [x7]
' 2 ' ) ) Iz 2
L 0%, 2 39 () (e, 20] -1) J1y - (20-a)
de L 73 dt 2. 2. ¢ o
l-e”[x"]
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. o
2 ek QixA)

¢ ¢ 2 X

I, =pUs = ;[ -1] (20-b)
- 2, 22 - ’
' 1-e“ [x°]
where S = lwbz , the maximum cross-sectional area of the
) max, 4 max .
body . ‘ - .

It is important to realize, and can be readily appre-~
ciated by examining.equatioﬁs le), (16), (17), (A20) and (a31),

17 k2 and‘23 are all functions

of E;- . ) y

L

that the guantities xz, a, e,'k

\
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3. EQUATIONS OF SMALL LATERAL MOTIONS

We shall devote this chapter 'to a discussion oféfree ‘
motions of a slender body. In section 3.1, we shall rgstrict
our attention to the main portion of the body, that is, the s
part along yhich we can apply Lighthill's formulation (14)
of the inviscid-flow forces. In section 3.2 and 3.3,‘§e derive

3 .
the tensile force, shear force and moment exerted by the tail

and nose sections based on the work of Chapter 2,

<

3.1 Equations'of Motion Goverﬁing the Main Portion of the Body

Consider'now a small element §¢ of the cylinder under-
going small free l;teral motions n(&,t): The cylinder is sub-
jected to a lateral force due to inviscid flow around it,

Inﬁg, and to viscous forces Fnﬁs and Ihdg' in the lateral and
longitudinal directions respectively. We also a;sume that it
is subjectéd to a tension T(§). We coﬁside: the cylinder as
an Euler-Bernoulli beam subject to lateral shear forces Q(£)

and to bending moments ## ), as shown in Figure 3c.

Now taking force balances in the ¢- and n-directions

and a moment balance,'we obtain

aT 3n , dn, . '
Ferrrrm e ghegh =0




2 R
90 3 an 2 3°n 4
™ - (F + I )L + o (T ) + F,L mU- —s =0, (22)
o 3 3 UOE Ul T,
’ il
QL + %’-5”—_— 0, ' o : (23)
P
where we have dropped terms of second and higher order of magni-
tude in g%

i
X _ ) Now, subspytutlng equatlons (12) and (l14-a) into (21),

-
neglecting terms of Second order in small-quantitigs, and inte-
grating from some arbitrary value of & out to the point where

“\\d R v ':‘."‘ - -
the tail section begins,-we obtain

A ~—

N T——

_ _ 1 o2 3 \S(C)\ ' '

where T2 is the axial force, exerted by the tail on the main

-

portion of the body.

If in turn we substitute equation (24), along with '

. |
-(12) and (l4-a), into (22) »and make use of equation (21), we

obtain, upon dropping terms of second order in n and its deri-

vatives, h

BBTST AL

. 2
9 2 ] 3 2 dS(E) 8ﬂ
- #%‘+ PUTS (&) [37 + 3] N+ PUT g [57 E] \
1 2. s(8, (23 an S(8. an o
] + 7p0%c; Srart Gp * 5+ 20V BrEt 3




|

]
’ » JI
Lol -
! - 27 - '
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1 .
i
i
1

» ' 1
' 2

, 2 Y
1 1 .2 s(g) 4 3 23" _
. L TUTy ¢ geUeek [ ppey ded (3 MOV g =0 29)

“which is the equation of small lateral motions valid only over

the major part of tt_te body. If, as a special case, we take this

. ; : '
" major portion to be a uniform cylinder, the above equatipn be-

comes ‘
% : 2
i ] 25 03,3 an , 3n
gt PUSIgT tggl NPV 5L 5Tt )
. 2,
. .1, S 3 - 1 2. s 1
+5 UL [T, + 3pU0°C. 5 L (3-8)] 2 (28)
Ry
+ mU2 3___3_ =0, 9
at
- where D and m are now constant. . ‘ ‘ .

i

. : - .
Equations (25) and (26) are actually identical.din’

it should be realized, though, that Paidoussis coﬂstrued these*
equations as being valid over the entire lenyth of the body, we

here claim them té be applicable only over the main section of

body. . ’ N e

-

3.2 The Tail Section

.
¢

We try to develop expressions for the tensile and

s

shear force and for the moment exerted by the tail on the main

e e

' part of the body, starting with the evaluation of the tensile

¥ - 0

s

<

o

ry o
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force T2. Referring_to Figure 4a, we ‘take.a force balance in

the longitudinal direction to get

?

‘1+>\ ' ' -
T, = 2 -2 (p 4 1,)ndg + 2pu?s c (27)
2 1 L ) 2 Base DB
2
_ 1.2 R S 1.2
= 2PV Spax €Ct120 Y PU Spaxtg20 Y 2PV Spase Cps

)
where w& have made use of equations (12) and (20-b) and have

-

introduced ’ \\

[

"l -] !
L N .Y

Dmax

€

(28
r L '

along with a couple of the quantities defined in Appendix B.

Recalling that ?DB -depends upon f£he forebody drag, we now set

out to find an expression for it. :

o3ty
Dtore = i}‘ - (Fy + I,)Ld¢
+ 2 ! ’
l t 1
12 Co L Drax f2 S(z)
= 3°U Spax Celt110 * Y120 * B (o 99,

N~

“max -

1 . - 2 ] _
+PUTS Ly (B910 + 1929)

mak jng use of equations (12), (19-b), and (20-b). )

(™

)




[ ] - '
. In view of equation (9), it follows that

)

-

v
’ i . >

k C.. = 0.029(E§E§S? {ec_(i + i + Pmax x
DB D £'7110 120 © 8
, - 1
2 S(£) . . =
]

- f .

If the major portion of thé body is a uniform cylinder, this

equation leads to o,
’ DBase 3 y NS
| C... = 0.029 (—D—-——') - A{e cf(1+1llo+;120) + 2(1710+1720)}

DB
‘ max
(30)

. In order.- to find a shéar/fo"‘fc‘:e Q2, we take a force balance in

¢

the lateral djirectiord, dro;pping terms' of second order in small °
’ . A Y

quantities.
1 o -
3+hy n(e)u? 3%n,. ¢ o
Q, = -/ 2% (g + 3 + DEIUT 2y 4¢
2. 1 I.;l L‘ 31’ %
?. A ~ P
, ; . ‘
__ 1.2 - 2 1 S
= = 3°U°S jax €Cet120fgTm * ©2) ~3PUSHaxECE 50l ;]
"o L 62”2 a9, 2. . dngy
. . T e Smaxl320( 2 t &t ) + DU'S?axi420(dT + 62)
2 dt - °
v ' 2
. o S Y 2. . 99
L Smaxlsrqudrz ) + o0 Sm’aleZO(dr )
< 2 éznz ,
¢ ’ . (31) 1_ Al

-m__ Ui ( )
max 220 dt?

/ ) ) 4

KU e e ——— ey vy S g
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wiere we have used equations (4{‘and (12) in evaluating the
in friction forces and (20-a) in'treating the inviscid

forces. In dealing with the inertial force, we have -set the

mass per unit length’af the bodf kequal to di§p1aced fluid for

, - \
neutral buoyancy)
14

m(E) = pS(E) S (32)

]

and 4

Mnax ~ PSmax . . (33)

Finally, we seek an expression for the moment4ﬂ&.
Accordingly, we take a moment balance about the point B as
shown in Figure 4a. Before proceeding , though, we should
note that the longitudinal coméonent'of inviscid-flow force
arising along an ellipsoid of revolution gives rise to a- dis-

cting in the plane of motion which has magn@—

tributed moment

and is opposed in sense to the moment arising

tude (bz/a)len
equation (A38) bf Appéndix A. 1In any case, this moment is of

negligible magnitude since (b/a) is presumably of the same
N

order as Dmax/L, which is a small quantity.

T
B

In fact, it can readily be seen that

1
. 3+,

2 .2
\ _ . _1 m(E)U™ 9°n
=A”3 - fi L(g 7)(Fn tIazt ;:Z)L ag

2

. ORI —
o amE " g AR L PR I N T R AT 2 2 S S Y S »
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,.w.
o g weaT G

. . (34
, : to first order in small quantities.

3.3 The Nose Section’

A

In this section we turn owr attention to developing
expressions for the shear force and moment exerted by the nose

on the main pértion of the body. Upon glancing.at Figure 4b,
v 9

We see that before proceeding we must consider the functional

form of the tow|rope force ‘. Accordingly, we tackle that

problem fifj}‘ )

_Substituting equation (27) into equation’(24), setting
E= -5 and employing eqguations '(12) and (19-b) in evaluating
L

integral, we find T1

1
z
_ 2. fs(g) .o o
Ty = T, + 3 U%Lc, fl b(z) 9%
T2
1
D 2
1 2 P . “max s(t)
= =pU”S ec (i + I dzg)
2 max £ 7120 ‘Smax "1 p(o)
2
’ 2 . - 1l ..2 '
'ﬂf PU S ax 1720 ¥ 3PV Spage “pB - (35)
Thus, ' u




tow-line. Taking the length of the tow-rope to be s and let- '

. - 32 -
1
I r
P =T, + / L (Fy + I,) LdF
Y )
2 "1 1
, I 3 |
="pu? e L
= PUSpax £l gt t 5 I orey 49
max _;
' 2
b oU%S (i, 41 ) + 1,05 c (36)
max ~ 710 T720 2 Base DB °

.

Now, the total force P must clearly act in the direction of the

ting A = s/L serve as its non-dimensional analogue, we conclude
that the normal cémponent Pn is equal to, the total tow-rope

force, P, times the tangent of the angle that the tow-rope

. makes 'with the position of rest. For small motions this is

linearized (Durand.[34] and Strandhagen [81]).

P, = P, tan (y-68) . . ‘ 5
where . . ' .
= .Il I !
Cosy A' £= ‘%’Al.' v
and
= an .
cot § = =% [E _ L, |
. M , o
- Y

as shown in Figure 4b. ,

v

Using familiar trigonometric identitieé and the binomial
expansion for the exéressions for (3n/3¢) and (n/A), and

neglecting terms of second order of magnitude,

- ’ ' . \
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¥

=33 -
. NS
tan(y-§) = 40 - 1
e A 1
§=7 -
It follows, then, that the normal component of the tow-rope
pull, - .
—p. (0 _n
Pn.-- PR'(B—E A)— - 1 A
o EE T,
4 « ' Ny ™ G’A
- -1 171
=Py 0y - )

(37)

making use of_eqpation (3).
\

It is informative and intuitively reassuring as well

to note that when the slope of the nose, el(to first order),

equals the inclination of the tow-rope, (nl-elkl)/A, then. the

normal component of %Pw-line pull vanishes.

Returning to Figure 4a, we now balance forces -in,

the transverse directions in order to obtain an expression for
the shear force.

1
2 2
= - m(E)U™ 9°n
Q = P + .f L (Fn+In. i atz) Lag
!
12 () -
: ' = 3PS ax {ch‘1110+1120+ “ax I ‘TET dz ) .

e ’ ' - 'I

.

* this equation is not valid as A*O A must be greater than O(ﬁ*)
In this thesis, calculations are conducted whed A20.5 .

. 1
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: S: Ny=g1A
. . Base 1 Y171
+ 2(i yptiqnn) + C..}l (——= - 0,)
. 71074720 © 5~ o Y 1
dn
1 .2 . 1
, * 3P0 Spax €C¢ 1310 (g7t 0)
v . ’ '
: b 1 c . : &
" * 2P05,ax5C 1110 &1 . ‘
2 . dznl del
= PUSpax 1310 ‘E‘T‘T ta)
2 . dny 2 - dzel‘
t oU S ax 1410 (dT 0 = pUTS Lk 1510 de
, -
de ' d™n
2 . ] l m 2 » l
+ pU Smax l610 dr * max v 1210 de » (38)

Iwhere we have substituted equation (36) into (37) to obtain én'
invcked equation (12) and k3) to evaluate the frictional forces,
made use of equation (19a) in treating the inviécidvforceé,
and employed equations (32) and (33) in dealing with the
inertial force. As usual, wé have dropped terms of second

,

order in small quantities.  Finally, we hust obtain an expres-

sion f#r. the nioxhentiﬂl. Accordingly, we take a moment balapce
about the- point A shown in Fiqufé 4a. Proceeding much as we

did in Section 3.2 we get

1 .
"7 ; 2 .2
- 3 1 m(£)U” 3°n

'/”1 = L\,P_ + f ) L(&+g) (F +1  + —=2— a—Tz)'Ldf, .

M
-1
- d . 2 2 +
b<_2
- J N a X II.‘LdE
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since all terms except those associated with the tow-rope force
are negligibly small. , ' :
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4. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS OPf
OF A FLEXIBLE TOWED BODY

4.1 Equations of Motion o~ . j

)

We shall assume the flexural rigidity, EI, to be
constant along the cyl;ndrxcal segment of the body, though it
may vary appreciably over the end sections or even be infinite
there. It has been assumed that the Eulér—Bernoﬁlli beam theory }
is adequate to describe the motions along the body's uniform
"middle section; moveovér) a Kelvin-Voigt type of damping in

the material of the cylinder has been assumed to apply. Thus,

2 :3 . :
M= EL N, U 3 (40)
L e 12 oanag? T . |
where Mis the bending moment shown in Figure 3c¢. Invoking .
- . |
equation (23}, the shear force Q is ‘ ) 1
EI 35n _ uru 3%n . (a1)

Q.= - - ’ .
Lf a3 1> arag” -

1

Substltutlng now’equatlon (41) into (26) and making use of

(27) , we obtain

MIU sﬂ E 4
"3

‘;3 arag

3

+ pu?s (52 + -g—g)"’n

'*11

v

+ %pUZSecf (*— + —E)4+ %pUSec(%%)
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. . -. 37 -
2
A . l1
- 10025 tec, (R4i,. -E) #KZi + “Base c..} Eiﬂ‘
2P° £'27 120 41920 7' 3 DB’ 5,2
,
smo2 2D - 0, = (42)
3T ‘ '
. - X
where 8 = S . ’ \ *
max -
)
r . \

4.2 - Boundary Conditions

Consider the towed flexible cylindrical body .depicted

in Figure 1. The body consists of a uniform cylinder ter-

o .. .
minated . py a rounded nose and a truncated, streamlined tail, :
-incorporated to provide reasonable axial flow conditions over

the body. It has been assumed that the towing craft moves

¢

' " horizontally in a straight course with uniform velocity U, so

\thét the tow-rope in its undisturbed state lies along the x-
axis. ‘

i
<

The two boundary conditions at g = —% are obtained

-by substituting equation (41} and (2) into (38) and then simi~-

. é\ larly applying (40) and (2) in con]unctlon with (39)

o v -

4 3
WIU an+EIBn+12 . . . . ‘
—_— pU“s {ec (1+i +i,,4)+2(1 +i )
P—‘S arag .;I 5E 2 £ 110 120 710" ~720
) . s . an 1.2
. Base ﬂ—agxl D, )
t5 o %l g,+7pu § ecelioGntar)
£ : azn
\ + % Usec illo(ag) pU s 1310(—~—7 ‘ E)

T
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N
: 33
2. an s n.oo.
tAUS i, Grt ’A'E) is10 2= 235)
+ pu%s i a S I ?—?ﬂ) = (43)
U'S ig1g arag 210 € 3
and
b1y %y +E182n+%-pUZSA lec. (. . < + 1...)
]‘3‘('136'2 ;zgf 110 © 1207
an
S n- CA
‘ . Base 1 W)
+ 2y + i) + 2222 ey - =0 (44)

The other two boundary conditions required at & = % ard obtained

by using '‘equations (40), (41) , (5), (31) and (34) analogously;
4 .
pIU 3 + EL n 1 UZ . dn an 1
—s~-=p Sec i _— + =) - ZpUSec i (
_3‘L 31353 ;2’ 363' 2 1120 G ) 2 12032
e l 2 2 '
2. d™n an . 2 . dn Bn
pUTSi., A\( + ) % pU'Si (= +
320 12 aTaE 420 ‘dt '5_5
2 53n ) 5%n
pU“s (-—-—)+OUZSJ. ( mUzl (—= )—0,
520 2 620 220
. L
and )
. .3 2 N
‘ L’ aag’ L2 a2
. o
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* 5. EQUATIONS, OF MOTION ' AND BOUNDARY
CONDITIONS OF THE MODIFIED OLD THEORY

'The equations of motion and boundary conditions of

Reference [ 241 are given by

e
2
o = Eemigh ru BTy I @Sutdy v uds
i Y . | i |
- T——l +'m -% =0 ,
ex ot<
and ‘ ,° -

o Ly 3y _ Y
- Q + flmu(~1+u } + EMU (Cy+ 2+e§T)(ax <)

2
3% _ -
PR ELE flM)Xl‘gzg =0, ot x =0

~

2

.6 _2,91 J
o=l e oS+ mor £ x, ;2& .

i
(=]
.
2
»”

if

e ) ,
1 . .
where Xl ='é J S(x)dx and X2 = é‘ / S(x)dx

0 ‘ . )
L-Ez

L]

)]

(47)

(50)

(51)
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_the body into three sections, as shown in Figure 2b.

" from x =

E

In order to transform these equations to a similar

form as that used in the tﬁeory’presented in this thesis, we

must transform the coordinates, .since in the theory-of Reference

[24]) the origin of the axes was taken at the nose. We divide
It is
recalled that the main portion of the body is of lehgth~L and
1 and 22,

For th? sake of simplicity, we assume that the

the lengthg’of the*nose and Eéil sections are £
respectively.
center of mass of the main'portion coincides with the geometric
center of body. For conyenience we~ﬁow measure x from the
center of mass, so that the main portion of the body extends

-L/2 to . x = L/2.

%

Hence, the modified equations of Reference [24] may
be obtained by applying equations (41), (24), (27) and (28) to
(47) in conjunction with '(1); yielding

Y

5 4.
uIU 9™n EI 3°n 2 ) 3 2
—3 = — +t pU's (z=+xx) n
o Pt 1 9t~ 3¢
"+ -%QUZSECf(%% + gél)
i s, - 2
1.2 1 _ Base an
- 3pU°S {ch‘(f\ £) +~—————.S CZ} 'a—gz' (47a)
2 a2 .
+ mU _g = 0 ’ )
ot~
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) ,
Y A S ‘
Z ) where c. = CN = CT’ C2 = CDB ' ' ’
This equatior®is almost the same as equation (42). e

Substituting equatidn (41) into.(48) and also making -

S use of (1), we obtain the boundary condition at = -1
: .t
4 33 - |

‘ EI 3°n 2.3n.9n, _ 1 \2\ :
: plU 3™m  + ;7 ;Ei + f,MU (§?+§E) MU\ [C +Cotece] X
v L 3‘1’35 ’
] n=-1.0 2 .

an 171 2. a n

X hae =
(3!5 A ) + U 1210(m+Mfl)g?- DO . , (48a) ‘
[

Similarly applying equations (1) and (41 to (49)

i
{

L4
. 3 2"
S ot B Eny wd? 33N - oty iy,000
3 3 L 9¢ 9T
. L™ 9T13d§
& y - N
' ‘ -
=0, . ate'= 3
' . " (49a)
. LY g < @
] where we, introduce i,00 =' l/L and i, = XZ/L',
‘ N »
. The other two boundary conditions at § = % % are

.

obtained directly from equations (34) aﬁd (39) respectively,
using (40),

—

‘/——<-__//

L 1

\ ] 3TIE 98
(’ \ | ' | //%///// : -

‘ N .
. ) @X
. . »
. .
. : -
JOS— . — R — o N— — . - 5
i Y &3 T E . : N vty o, 1, 3
e o - s o PR #
R T P

an
nIU 3 + EI ) 1.2 13 an -
1 __ﬂ.z o) ._B. + 2.pU S ((:1+(:2+5cf) ( - -5?‘) =0,

1
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hY R
. : .1 L
at £ = - 5 A(50a)
‘ N 3 2
uwIll 9°n + EI 3™ n 1
! —-— =0 at £ = (51a)
12 atag? 1 9g2 2

The pé;ameters fl and f2' which are equal to unity for.slender-

.body, inviscid flow theory, are introduced to account for the

theoretical lateral ﬁ?rées at.the free ends not b§ing fully
rbalized because of (a) the. lateral flow not being truly two-
dimensional, since the fluid has oppoftunity to pass around
(sideslip) rather than over the tapered ends (Munk [5]), and
(b)‘boundary-layer effects (Hawthorne [91]). Aécordlngly, fﬁi

and f2 w1ll normally be 1ess than unlty. | .
x/‘, . \\ - ( ? ’ ’ d

v
k4

~ Comparlng the above boundary conditions with equatlons
(43), (44), '(45), and (46), we can get the values of fl and

f2 theoretlcally. N
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6. EQUATIONS boF MOTION OF A RIGID » TOWED BODY
4 "' i s ' \
e S /. ) “

*6.1 ° Mathematical Model

‘\xénsider the equation of motion for exactly the same

configuration'ad in Figure-1, but impose the restriction that

N o : '
the body is rig;.&*havmg a streamliped nose and a trunca‘i;ed - o

/ .
- tail. In this case, the system can be completely described

N
n(g,T) to be the non-dimensionalized displacement of the centre

~

/W just two“g')eﬁé;_’aliZed co—ord‘:i}ates. Ac&érdingly, we defjf

N

of the cylindrical portion of the body, n. to be the latera];* !

displacement /i the center of mass, and t:ake ¢ to be the angle

that the axis of symmetry makes with the x-axis.
Thus 'the displacement at any point along the body

is given by

ME, T = nglt) + (D& - (52)
-

6.2 Eguation of Motion Based on the Present Theory
-’ -,—A-

Instead of deriving the equations of force and moment

-

balance independently of the previous work, we shall first

integrate equation (26) along the cylindrical region to obtain -

' : dz\n

0, - Q. + pu’s [—S + 2 3¢ g
1~ % e

2 dr
L 4
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dn -
1.2 c 1
+ 5pU Sec  (—= + ¢) + ZpUSecd _ . (53)
drt
L]
2 dznc o
+ nmy —T- = .
dr

Slmllarly we :shall integrate the product of the forces in

equatlon (26) by & in order to obtain the equation of moment

balancey i . .
\_1 N . _. '
' Consequently the equation leads to
‘B
7 :
2
v - [LEQ] + ! LQdE + DUZSL (—l d ¢)
: g__l A 12 de
\ 2 2
1g2 1 d¢ '
+ sz SLecf (Tf dT)
2
+ molL (= ¢ =0 . .
12 a
T

L. _ L _ 12 24
-39 -39 +’”1 M, + 500°sL ‘—‘2’
+ =—2pus ec.L (—Q) +'—-1-ml(12L (dz‘*) =0 (54)
24 ECe™ 37 iz E—Z . ,
- t ~ T M
\ .4 J
\ e

The following relations are used to perform the integrations:

o
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.
S 2 n(ng)dg =1 (7T) ’ \
-1 : I .‘c -~
) 3
. )
2 3n _
s . 5% (g,T)dE = ¢(1) ,
2
1 5
r? 20 gna =0 , - "
1 9%
-3
and
S %enna = 2,
) :
-1 |
1
x €22 (g,vag=10 ',
1 . .
. .
L
ko azn _
fi g-a—g-z(gr'l')dg—o -

L

The shear forces Q, and Q, and mdments//(l anc‘i//(2 which
the end sections exert upon the cylindrical part of the body have;;
§

. . 'Y . .
already been found_’.\ Now comparing equation (52) with (3) and (4)

we see that

. 1 «
nl—nc §¢ ’ -
‘n, =n_ +i¢ ‘ (55)
2 c 27/

gl e
ads
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Substituting these relations into equations (31),
.

(34), (38) and (39), and then substituting in turn the results

into equations (53) and (54), we obtain after collecting terms,

2
. . . . d nc

12 * 1910 * 1220 7 310 * E320] o

1 , . . ‘ dnc
tlhgsee (T +dyp0 % 1120) * 4410 T B20!

. T
E g 4 .
;+[—’}——-{€c (L + i + i ) + 2(i + i)+ SBalsec 13
2] £ 110 120 710 720 S DB ¢
) . 1 d2¢ m

CHL G Gy tipng Figg +igng) ~igpp + gyl )

IR T I SR )
U2 = 1310 * 300 * Y510 T 1520 T TM410 * 1g20) * 70t 00 1

»

Lo . . .
HEgece I +ipg + i) * g~ ign (562)

Y

, ' ;
1 . - : ‘ Base 1
x (eCe(l+ iy gt igsg) + 200 + ipp) + 5 Cpllz +a 4+

L
(=)

‘ +A)1 ¢
1( . s + .Q . ) dznc .
132510 + 199 * 1370 + 130! 2

&E

1, = ;
*03C0 = 20! * 0% Cine * il &
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SBase
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1 S : . 1,
+
% tlgp (eep (L 4y g+ dyo0) + 20ig0 + dpp)* 5= CppH5A diny
A |
i T TTTTIGU TR YY I @’ )
P 6 " 1210220 10" 3200 * 2Ms10Ms) T 2
g‘. -
- ' -
g 4 [3ligy g + Gapg = dpqo = Ap) + (i =i, )
2310 7 Y320 T Y610 T Y20’ T T'*410 T ta20
1,1, . : dé
M R T I P e 360)

8

1. : _ 1, Py
g% (iygg ¥ dyag) T 3ligg i)

* oy lece (Lt g+ dypp) + 205 + dg90) ,

SBa 1 1 | 4 ~
. se . A .
+ 22 e b gagml =0,

0

where we have set c = 0.-

6.3 Equation of Motion Based on the Modified 0ld Theory

In this case boundary conditions (48a-Sia)' are :
incorporated through the Jintegral of the first term of these
equations; alternatively, the shear forcés atf =% %may be -
view.ed as forces replacing the effect of nose and tail on the
main part of the body. Similarly, as we did in'Sectio'n 6.2,

we shall use équati.on (53) with the boundary conditions (48a),

e



(49a) to get the force balance equation,

d n- ) !

[2+ (1L+f )1210 + (1 + fz)lzzo] ——-2— | , :
"
“{"::

§° +[}£c + f, - fi 529-+ l[C + C. + ec.]

: e SIS B s N W R T A

i i d2¢ 1 . a9

g +i-5 {(1 +£))ing = A+ f )1220}] ;ZH 2 -3 (fl + £,)] I

£, ) :

- 1 (57a)

A + 5+ )

+[—§-ecf{l-(C1+C2+ecf)( 1 )}+fl-f21¢=0.

[

In order to-obtain the moment bdlance equation we shall

»

"apply the boundary conditions (50a) and (51la) to equation (54),

and' this yields

3

1
[-7 L+

. 1
PVipetz A+

Nv
Ne
Ny

QL

. . dn
+[- % (£, + £,)] a?c- +[{c, +C, +_ecf (- Jﬂ—) (% + A1 n,

&
¥

1,

t1g Z‘ 1+ £) l2J,o +3 a+ ) lzzo] ar 2
1 i, . d¢ - ' L
. tlgpece g - P “\ (57b) -
<1 1 1 1 ) }
+ =g+ E) 5 (A +FHA)O +P(C +Cy+ecdlp= 0,
: . ,
where we have set c = 0. o . ;%
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7. DYNAMICS OF FLEXIBLE, TOWED CYLINDERS

¥

’.WV‘« i ~ ' A
s .
&

¥ K Before proceeding with the analysis, it is desirable

: _—_— to express Epe problem in dimensionless terms and accordingly
. Vi 0 -

we put - '
. 1
x EI 2 At
E=%/L, n=y/L , T =(=) = ,'  (58)
L .
B = 2

m+M '
g .

comparing these relations with equation (1), we find t' to be

modified as

; E
s w7 S o
% o
. =85 v (59
. . 1 .
! g where u ='(§¥ : UL ‘.- ’ (60)

The reason for using t' in preférence"to T is that
with this definition the dimensionless f;équencies of the
flexural modes then become identical to those of .a free-free’

beam at zero towing speed.
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: Now substituting equations (59) and (60) into (42),
i and dropping the prime on 1, for éimplicitQ, we obtain
' -
8%1 %} 2 1 1 ' %&me ;
v 7 (1= gecglg+ippq =8 + 2y + 5= Cplye?
'arB& 3¢ ) .
1/2 2 ‘
+ [28 ]—a—- +%—-u2e:[c +c] %g—
¥ , . TIE
3 2 1/2 ‘
L 3n 1 an  _ S
) §~( +—a———2-+'§' B uﬁcfar —0- > (61)
T
ok
i
#

Similarly, the boundary conditions can be.expressed dimensionlessly

by substituting equations (59) and (60) into (43), (44), (45) and

(46), yielding

- -

4 .3 3 ' :
v 20,20 - Bigg +Bu [-igy5 +ig ) oh
arae> a2 3T E 6107 arpe
2 : . Ay
10 . 1+ . .
tgledyg gt Sg) *2 iy - ‘T) lecg (141474 + 1))
B3 o + 2(i ) + 258 SB;se o }1
; . 710 T 1720 Y3
2 . _ Spase . \n
tap lecg Utifgtifgg +2 Uyt iy +5— Gt (62
2 1/2
. . 13 1 . .. .
‘ + Bligyg = I3l ?‘]” ub (2 £ 110 T igodeT = 0
¢ - . 0T
) / ' at E==-‘%
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and
3 2 A, LA
an 3n 1(71+4 UZIEC 1+ , . .
- ; € i.,4) + 20 +-i,,,)
arag aEz 2 £ 110 129 710 T *720
S
Base - an
+ 13 Cm] gE
Al 2 ' : (63)
tagulecg (L4 dyy5+ d990) + 2(igyq + dm5p)
+———SBaseC n =0,atf= -1
S. m] - e =3
= a4n 83n 3 % 52
v + - Bi +B8uf- | vy
- E 2 3~ Plsyo 31235 Y6201 375 .
+u2[—ei‘(c -;c)+2i '].?_'1_3{1' + i ﬁ)_g‘. ('64)
7 120 (% * % 4200 3¢~ Blipzo * *320) 2 -
N % . : ‘ # -
L 1. M : 1
HuB { -y eceigg tifgl 570 - atg=73
and
3 2
AT P atg:% (65)
9TIES. 2k ;

’

Similarly, the equatioh of motion of the modified old

thedry of Reference [ 24] can be expressed as follows:

¢ o

5 4 ' S

an. + 90 Base 3 n

v + u? (1 - {ec( g)# Ch

atag? 354 772 22 ag2

%_ 2 2 11 ’ .

" +[2 8%y ﬁi% %uz ECfg'%+-1I‘+§BIu chg%so ) (61a)
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The boundary conditions, are given by

a4 a3 [ (Al-l-A) 1
——§+-—-—+u f ( +ec)
9T3¢ Bg : ate £
+ 35 0c +cy el | ' (62a)
: 1
. 3z‘n 2 37]'_ ' _ 1
+81210[1+f1]a—rz-+uq fl—?—o, atg =-3
3 2, A (A+HA) - | .
a'n 3'n 1YL 2 an :
v + — - ut [ + +ec.] == (63a)
A - VGG repl i |
2 ,
Ay : 1
tar G tCredn =0, al=-3
and "
4 3 2
an 27N 2 3n . In
vID o+ 20+ - g1 + £]4 (64a)
araed a3 2 (3 27220 2, = }
+£,8 udd ¢ ats:,é
33\’1 32” '_ 1-
v + =0. atk g = , (65a) .
2t - z
3Tok %* . \.\
7.1 Method of Analysis : ' . *".‘

Let us c%der motions of the cylinder of the form
n=v(E)e*T, {66) .
.where w is a dimensionless frequency defined by .~

. . ) ﬁ | \

.3
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1/2
= [ (m+M) /EI} QLZ , in which @ is the circular

frequency of motion.. In gerieral § will be cghplex and the
systém will be stable or.unstable éccordingly as the imaginary
part of w 1s positive or negative; in the case of neutral

stablllty Im(w) = 0.

/ ) ;I‘he system under consideration has an infinite
number of degrees of freedom.- The complete solution of the
dynamical problemm therefore involves thé determination of the

" infinite set of frequencies of the normz;ll modes of oscillation

’ 'of th;é/ ;ystem, as continuous functions of the dimensionless

veldcity u and the system parameters lllo, S R 1720,

>‘2' fl,” f'2, a,_B, R c,’cf, etc. .

4
'
.

«  Applying Equatlon (66) to the new theory we obtain’

/

}zfme main equatlon and four boundary c0nd1t10ns which are

/ written conveniently in theﬁ form

< . aty a%y ay
/ ¢ g = +g +4g,¢ +g——-—+gY"0 (67)
‘ © P04 Lg? 2742 BE 4 ’
(o 1
/,"\ and' at§f = - 3
/~ QEX+ X gy =0 - (68) -
~ ' \ *
d dy - . .
, +g, D vgy =0 : (69)
Yog2 "Ta % T , .
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gg_"’g_+g ooy o= g (70)
odEZ 9 dg 10 '
. :
2 .
ay '
g = 0 . (71)
odgj

Similar eguations can be obtained by. substituting

equation (66) into the modified oid theory of Reference [24],

4, 2 .2 ,
a’y- d“y a‘y dy
h + h + h,e &5 + h, == + h,Y = 0, (67a)
. o(—i—g 1;‘6—2 -2 dgz 3 4t 4
The boﬁndary conditions at § = =~ %‘-
. 3 o
a’y dy N
h, == + hy 3¢ + hY =0, ‘ (68a)
de .
h d2Y+h1g—¥-+'hY=0 | (69a)
Xe) d? 7 dg 8 ’ )
and a}:& =%—
h !‘-3—’5+-h A Ly oyoag ' (16;)
i / o z3 9 dk 1o S |
) - | |
2 o - Yo
d“y
h, == =0, . ' (71a)
° ag ' .

where the coefficients 9; and hi are given in Appendix C and D

¢ AN

~

respectively.
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Let us try the solution
- ~
' 5 1T ° .
Y(g) = “r=0 A_(E+ 3) K - (72)

LN

where A are generally ‘complex quantities to be determined..
It is assumed that the mation of the cylindér may be described
adequét’ly by a sufficient number of terms in power series to

appro;»{imate the sﬁape of the.body.

Substituting equation (72) into (68), (69)| (70)_‘and
(71) '
gﬁAo + gsAl + 6goA3 = {

+
-

9gho * 99BAy T 29 A, = O
.

/e ®, -
ZA2 + 6A3,+ Er___4 {r(r—l)>] Ar =0

g

91080 't (Fgt91g) Ay + (299%g )R, + (69, +3g4+g, )R,

-~

+ 2

9

¥
p=g (97 (x-1) (x-2) +rggtg) ol A, = (73)

4
|

and substituting equation (72) into (67) and, c°llecting terms,
we obtain e ' . |
249‘0A4 + ?glAz + 93Al +’g4Ao = 0

- . ! g

R
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' ' N\
4 . lZOgQA5 + 691A3 + 2(g2+g3)~A2 + g~4A1 = 0

360g A, + 12g,A, + (6g, + 3§3)A3 +gA, =0 T (74).

. gz '
n(n-1) (n-2) (n-3}g A  + (g;-77) (n=2) (n=-3)A__, % .

+ (n-3) [gy(n-4) + g1 A 5 +9A _, =0

FrorrTl the first three equations in (74), it is evident
that all the A_'may be expressed as linear combiniﬁéions of A, .
Ay Azlanc} A3 alone. Consequently equation (73) can be expressed
as a 4 x 4:\determinant \lerhich must vknish for non-trivial solution.
Hence this provides an implicit relation between w on tbe one

hand, and u and the ,system parameters on the other.

The modified old theory may be analyzed in much the *

same manner.

L ]

4 ’ . . In general, & will be complex. Clearly, we have an. .
, & R * \ )
infinite set of fregquencies, w, , as the system has an infinite

b e
' o

numb"elzr of degrees of freedom. if the imaginary components of
T : ’;{f ‘ v
- the frequencies, Im(wi), are all positi;, then the system will
o+ il v

.be stable. If on the other hand, for the’jth mode we have

-

I 1m( wj) < 0, then the system Qill be unstable in that mode; now

if the corresponding real component of the frequency, Re( wj),

’

=

M .
. : (
>
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is zero this will represent a divergent motion without oscil-

lations, which we shal® call yawing; Re(mjf # 0, then the

instability will be oscillatory. "L

The calculation procedure is as follows:

~ .
(a) - ayséf of values of ll, €, a, Bﬂ f

(b)

A

17 Tz S0 €
nd A are selected; : .

the complex frequéncie§ of the lowest five modes
of the system are traced as functions of u,
starting with u = 0 and increasing the flow
velocity in small steps. The results demonstrate
the general character of the dynamical behaviour
of the system for varyiné u, illustrating some

of the modes of instability to which it may be

subjected. ®

N

. © 7.2 Theoretical Results

7.2.1 The Modified 01d Theory

Typical results of the modified old theory are dis-

played as an Argand diagram .ign Figure 6, obtainéd'by using‘

eqﬁations (6la) to (65a). In this cage we only consider the

second mode to compare the modified old theory with the present

-

b I

theory. Figure 6 shd@s the loci of the so-called second mode

of the system of tha present theory and that of the modified

. ""“"“"’*"J"”‘ -
-y IR A
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old theory as functions ot towing speed. The-frequency of this
mode at zero towing speed corresponds to the second-mode fre-
quency of the flexible body treated as a free-free beam; aéco

« #

dingly, this is flexural in character.

The form drag coefficient at the tail for this theo%y,

Y is arbitrarily taken to have a numerical value

cy = (L - £,0/2 ,

-
Y

on the reasonable assumption that, as the tail becomes blunter,

f2 is reduced and the form drag coefficient increases.

-ﬂe~§sg that the coefficient f2 can be found approxi-
maﬁely, on comparing g4 of Eguation (70) with hy of Equation
(70a); on the other hand, fl is determined from otﬂer coeffi-
cients. A systematic comparison was made between the old
thecory and ‘the present one to determine the values of f1 and
f2 in i rational manner, at leést fo} ellipsoidal ends. This
was done by comparing equivalent terms in the boundary cbndiéipns.
In some cases the comparison was made by equating the magnitude
of the whole coefficients of uzjn gg and 99 with those of h5

and h in such cases the result®s clearly depend on the parti- '

9*
cular values of some parameters, e.g., A. In other cases the
coefficients of u2 in the terms gs and ég, i.e., f1 or fz, were

compared with thg'éorrespodding dominant coefficients in h5

a 2

W !
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and h

9 in the old theory which depend only on shape, i.e.,

ig00 O i,59- The results are shown in Figure 7, where Al
(or Xz, as the case may be) are compared with‘fl and f2.
8
Returning now to the discussion of Figure 6, it is

noted that small flow velocities act to damp free oscillations
of the system. As the flow velocity increases, however, the
‘system becomes unstable. We observe that for 8.7 < u < 10.7,

the system of the present theory loses stability. On the

" other hand, the system analysed by the modified old theory is

unstable in the range 8 < u < 10.8 for f1 = 0.56 and 8.6 < u <

10.6 for fl = 0.62.
%

- It is seen that the behaviour of the system in this
mode is yery sensitive to t@e values of fl and, of course,

to the values of a. Other similar second modes corresponding

- .

to sigiems Vith*a =‘0.9 and various f1 and fé = 0.57, are shown
in Figure 6b. Comparing the present theorymwith the old one
in this case, it is eb&s?ged that the systems lose stability for
u = 5%9 and u = 5.8, respeqéively. Another notable .feature of
this system is that the second mode goes back to “the stable

region -after it first crosses over to the unstable one.

In short, these particuiar diagrams lead to the

following conclusions: “h b

<
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a) the parameters'fl and f2, which:are less than
unity, may be approximately estimapéd by comparing
the coefficients g's and h's numerically,

b) for optimal stability,-#he tail should bé blunt

(f2 small, <, large).

7.2.2 The Present Theory

Figuﬁg 8 to 15 illustrate the results obtained by, the

present theory, - u ing the equations (61) to (65).

Figures 8and 9 show the dynamical behaviour, with
increasing towing speed, of the zeroth, first, second, third
and fourth modes of a system with well streamlined nose and

tail.

T

The nose and tail sections consist of originally ~
identical half ellipsoids whose diameter is a minor axis.

The nose section &sﬁalways streamlined. On the other hand,

the tail section becomes blunt by cutting it at the end; & is

the ;atio of the cut iength to-the original length. Therefore,-
% . .
as o decreases the tail becomes blunter. Hence, o is equivalent
to f2 in the modified old theory. It is also noted here that
-~

A/;s/gaken as the ratio of tow rope length/length of the main Body. =

e
e

The 'zeroth' and 'first' mode (Figure B8) correspond

-

.
a ]
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ﬂ system as above, but with other values of a and A[ to show the
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to essentiallyvrigiq-body motions, at least for very low
values of u. At u = 0, the frequency w = 0 corresponds to
rigid-body rotation about the point where the tow-rope is
attached to the towing vessel; for u - 0, deever, evidently
two dist}ncf modes emanate fro;n this point, one oscillatory

A .

and the other non-oscillatory. The zeroth mode generally .

remains on the [ Im(w) ]*~axis and the instability associated
. . N

with this }’uode will be called 'yawing'. At low flow th\e system
is evidently stable in the zeroth, first, second, third and

fourtﬁimodes. The loci of the zeroth mode initially récede from
the‘origin but eventually double baék , and the né§ativé‘branch

eventually crosses the origin. It is seen that the zeroth mode

of the system with A= l'lé@ds to stability for u~ 3.38. At

‘higher u the loci reunite and leave the Im(w) -axis and then

again rejoin !&, bifurcating §t u ® 6.625,
The first mode with A\= 1 is unstable, in the range

4.15 < u < 6.8l. Similarly,- the ‘system loses stability in its

second, third dnd fourth'modeuat respectively higher towing

rd
speeds.

Furfher calculations'were conducted for the same

4

effect on stabﬁhkty, as shown in Figures 8 and 9 (dashed lines).

It is found that the zeroth and first modes are stabilized with.




4 5o
m”i’:

. ""‘“@V;

W%

decreasing a.

The ranges of instability of the first mode,

A\ ‘ .
\\for various values of A are found to be as follows: 4.30 < u <

|

ki

3;

4.15 < u < 6.81 for A= 1;

é\¥i for A= 0.5; 4. .
fo “ = 5; 4.38 < u < 6.05 for A=

\

10 (cCf.

4.28 < u < 6.20

Figures 10 and 11).

ThusA\ﬁhe effect of A ¥s not unlform insofar as stablllty in

\
\

\,
this mog

1s concexrned.

On the other hand,

stabilizé@ uniformly with decreasing o and increasing A, as

shown num;}ically*in Table 1 (Cf. Figure 12).

\
\,
o \\
A's
0.5 1.0 5.0 10.0
Modes Values of uC
Zeroth 3.328 3.381 3.343 3.378
7.950 7.935
&
. 4.298 4.150 4.276 « 4.381
First 6.951 6.806 6.206 6.045
| 7.935 7.935
Second 3.776 4,592 5.562 5.674:
i
Third ' 6.299 7.102 7.799 7.897
¥ Fou::th .8.793 9.608—4.10. 305 10,400
| Fourth S08 0.3 | X
\ ,\AL
|
TABLE Crltlcal VQ}OCltles of a flexible
lnder with various A 's. Other
/ eters a=l, B=0.5, eco—O,
\gc =], =0,015.

*p

.

the other modes are
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Figure 13 shows the effect of the tow-rope-~length on

' the frequency associated with neutral stability for a system

£ 1 = 0,015, Here'kl, which is the vadue

of £1/L, is taken based on modified old theory. Paidoussis

with ec., = 1, ¢ =1, and A

4

[24] set X1 = XZ = 0.01, which correspond to is10 and i50
respectively for a cylinder with streamline@ nose and tail
sectioné. From Appendix B, we get i210 = 2A1/3 = 0.01. Finally
we have Al = 0.015. It is also seen that W becomes larger for

higher modes, with decreasing A. !

Figure 14 shows the effect of the tow-roperlength on
a system with ECg = 1, Al = 0.015 and perfectly streamlined
nose and tail sections. The upper regions marked 'first-mode
oscillatory instability' corresponds to the secon unstable‘
loop of the first:mode. We see that reducipg t ow-rope
féngth does not enlarge the stable region, contrar& to Paidoussis'
[24] results. ‘For A = 0.5, for instince, there appears to be a
region of yawing 0 < u < 3.5;,the system is stable for 3.3 < u <
3.8, approximately, u =~ 3.8 being the threshold of second-mode
oscillatory instability. It is seen'that for A < 0.7, the stable

region is reduced; for A > 0.7, 'this region is independent ofl\.
)
gagure 15a shqws the effect onﬂstability of the shape
of the tail of a cylinder with ec, =1, A; = 0.015 and A =1,
and a perfectly streamlined nose. We see that the range of u

v -
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over which the system is stable is enlarged as the tail becomes
blunter. For o < 0.5 approximately, the system is stable over
the whole range of flow velocities in all modes. It'is also

noted that the system is always stable for 3.6 < u < 4.2,

Another attempt was made to check the stability for
a higher value of Al’ i.e., for more elongated end sections.
The effect on stability of the shape of the tail of a cylinder
with €Ce = 1,‘x1 = 0.05‘aqd A with a streamlined nose is shown
in Figure 15b. As was expec£ed, therr§gion of stability is
enlaréed tremendously, comparing with Figure 1l5a, presumably
because\the stabilizing effect of streamlining the nose section
overcomes the destabilizing effect of streamlining the tail.
It is noted that the threshold of the sec?nd mode oscillatory
instabil&ty appears over the range of u =\I§. It is seen that
the.system is always stable for o < 0.57. Thus we have
concluded éhe systelm becomes more stable by making both nose and

tail more elongated.

Finally, the following general conclusions’ma& be

drawn: ' . o (

a) the tail should be blunt (o small) for optimal
' ’ ' * @ .
stability,
b) a system that is unstable by yawing, within a

range of towing speeds, can be stgblized by

-

]
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blunting the tail, but net by manipﬁlqﬁing the

A

S
8 e g s

AT

el

length of the tow-rope, ;
=

v

¢) in some cases, it is possible tééstabilize a

| . : .system which is ungtable at low to@ing sbeeds,
by to&ing it faster, within a specified range
of towing spgedé,

d) Tow-rope length does not enlarge the stable

a

towing speed range if& > 0.7.
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8. DYNAMICS OF RIGID, TOWED CYLINDERS<” .
~ ;
, e 2 f y
8.1 Method of Analysis P
V4
Let us consid7{ motions of the cylinder of the form
v
/ /
oiwT, i WT
n = He' /,a»{d o= ve",

Substituting n and ¢ into the Equation (56) we obtain
k4

S

(1241, 5t 00=1310% 3507 %) + {‘tc g0t y10%E 20

. / +igg " Lgg0t 1 ’ /
/\ ‘ /f L ‘
. + g leep Qi gty o) + 201 gtiggg) + =5 CpllH
' ¢
PR i i HT Y = i+ ) (=) (75)
217721077220 7310 320 510 5200 ¥ o “
,f
+ {243 9t 300% 510 ie20” 2‘1410 1420 +_€cf(1110+1120)} (10)

+ -fec (1+1110 120) -' -1420

Se =
~ g (eog gt + 2(1710"1720’ + 5% o i 1*"""Jl 4=0.

and

. . N ' X
' e DT T e e R e T .
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1, . L I N P W .
{5 g0 * 1220 * 310 i390} (w07) + (G(-i4q57E 007+ gEC ! i1gtiep ()
‘ , . .
+-—1[ec (L#i, 4 iy na) + 2(1,,F1 )+iB—9§—e—c ]{—l—k‘)llé
5x LeceI¥ig 9t 20 71071720 s ‘m Tz R
& .
T 1) . 2
+1 (g + 70,10t 9007 310320 ¥ 2151 Hgpg ! (w) ‘

.. 1, : 11, .. .
+ {5l tiaonie107heno) + 7H4a107N20 ch(?x‘“noﬂlzo} (L

a
-

1. .. V.. ..e
+ {zecg iy gt 50) ~ 5lig0%i00
oL o (L4h. +i.) 4 2(i, H )+§§9§9_'C ) x
TR CECEVTTII0T 120 710" 720 S DB

1 1 ; _
X (-2-+Al? (§+kl+/\)}]4? =0,

where we haue'set ¢ = 0.

Similar equations are obtained when using the modified

old theofy, i.e., Equation (57), namely
. |

i

. . 2 1_- .
[{2+ ()i, 0+ (1+f2)12.20} (;w ) + {iecf + £ - fz}r (iw)

<
L1 e/ ‘ (75
' ' o+ ﬂ{ cl+c2+ecf}] H. / . )
[l R \ , *
+ o4 % {(L+£)) 15 = (145} 10! (-?) + {2 -v%(ﬁffz)} (iw)
h ‘7 r
o b )
® -
- !t :'7» ::/’
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1 Al+5+A
+ (E'ch(l“j (cptc tec) ( )+ £ - fz}] ¢ =0,

u}

@

xand ‘
[—l-{—(l+f )i + (1+£,)i,,,) (= 2) + {= -l—(f +£.)} (iw)
2 1’*210 2'*220° ¢ 2' 5 r2!

+ -2 da ).(c"'c +ec)H H

p) 2 1 V12 s ,

L]

l l .
+ {= z l+fl)l

'\

(76a)

+ {5 (f A = F } ~ A
5 1+2+A)( )(cl+c2+ecf) 1¢ = 0.

. A
) ,/ 4

For nontrivial solutions, the determinant of the coef-

ficients of H and ¢ in Equations (75) and (76), or in (75a) and

(76aj, must vanish, yielding a quartic in w

w4+Aw3+Bw2+Cm+E = 0 ,

where A, B, C, and E are compléx.

-

8.2 Theorefical Results
T
. d-*,

8.2.1 The Modified 0ld Theory

Calculations were conducted to comparé the dynamical

. : 4
?ehaviour 6f the rigid body to that of a flexible body; as the

. ‘ ] -
- :

+

(77)

4

10 * %.( +f2)1220} (~w ) + {——-ec +-%(fl—f2)} (1w)




*. ’ - 69 -

[ '

.
3 . ) e 4
T

rigid body may be regarded as a flexible one of very large

A"

4 ' flexural rigidity, it would be reasonable to expect correspondence
N 1 ot
T/ ' of the dynamical behﬁx?our of the rigid body to the 'trigid-body'

modes of ,the flexural one, i.e., the zerotb’and first modes.
a - : / o ‘
P n Recalling that the dimensionless flow velocity in the 'case of a

flexural body was defined as u = (M/EI)l/zUQ,Ithe dynamical be-

o

haviour.of the rigid body should appfoach that of the flexibie

i
one as u * 0. So the system is i pendent of flow velocity u.
. ’ . ;

We define the dimensionless complex freqdéncy of the

rigid body w, = L,/U in 8.1. On the other hand, .the dimensionless
\ "4’ f

complex freguency of the flexible body is defined as wg =
4

[(M+m)/EIll/ZQL%, which may be rewritten as we = [(M+m)/M]l/2uQ

L/U, where u is dimensionless flow velocity. Since m = M, we

have we = V2uQL/U. Now if thejdimensionléss frequency, &, of the -

. rigid‘bééy and of the flexible body are identical, we may rewrite

this as we = /fuwr, and we &an see that identity of dimensionless

frequency will occur whemns-u = %i . B .
o~ e /2 \ s

" 8.2.2 The Present Theory

y

1

Making use, of Equaffion (77), the four rigid body fre-

. 3 , £.
guencies are computed for various A's. It is found that, in the L

case also, the dynéhical behaviour of the rigid body corresponds
to that of the reroth and first modes of the flexible one at low

*
towing speeds- quantitative correspondence of frequencies




- 70 -

oceurring at u = 1/v 2 (See Table 2). { ,
[ ¢
Q
Rigid Body Flexible body (u=1/v2)
e L
e \\
o /
“, Wa w3 wy wa w3
- v .
0.5 |-0.412i 0.822i 1.899+0.050i | -0.401i 0.818i 1.873.055i
. ’40‘ | )
1 -0.422i  0.641i 1.496+0.145i | -0.410i 0.640i 1.479+0.146i
- . . 1Y
5 -0.455i ?)'.2021 1.089+0.3811 | -Gu441i 0,203i 1.075+0.377i
: \ ,
10 ~0.4661 0.10M  1.046+0.4371 -0.453i 0.102i 1.033+0.432i

~compared .

Other parameters: a
ec = 0, ecf =1, A\ T 0.015.

aY

A

TABLE 2. kigid body and flexible—ﬁody frequencies

=1, B = 0.5,

&

P9

3\

3 ’
,From the results shown i?

-

£

¥
i

s
-

Pigures 8, 10 apd 11, we
_have the four frequencfés for the flexible body; twe* are

. . ) . ' oL
associated with the zeroth mode,na‘P the .other two with the 5




!

first mode for u = 1/ V2. Table 2 shows that agreement in

behaviour of the rigid body and the flexible body 1is good.

It is observed that oscillatory instability never occ@?s,
' ~

because the systiem ismalways stable in the first modes in range v
¢ ! . . '
0 < us 1/ X .the system is only subject to yawing instability

for various p'S.

A

Based on such complex-frequency calculations it is
possibl? to construct stability diégrams illustrating the effect
of various parameters on the system. An exampie is given in

(Figure'IG showiég the effect of @ and Aon stability of a rigid
chlinde;. One qotewo;thy aspect of fhe analysis is that the
exigtence of yaw&ng instability is not\affected By A, i.e.,
by alteringwthe tow-fope length. In the gése of the rigid body
this becomes obvioué!upon @onsideriﬁ% Equation (77). Since the
threfhold for yaw;ng instability implies w = 0, this threshold

is established by the equation E = 0.

4 0""%* ~_

’ It is shown that yawing instability is affgcted by

various €. The stable region becomes large as slepderness pf

cylinder increases. - <7

The last criterion for stabiliﬁ& is studied by elon-

“

.o . .
' gyting the nose section. Here we' see that elongated streamlined

»

,
o
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N i 9. CONCLUSIONS
L ,
The analysis preseﬁted in this thesis is appropria%ely
characterized as an attempt to extend the theoretical
studies ' of Hawthorne [9] and Paidoussis [24], concerned with

the small, lateral motions of slg?dér bodies towed through in-
¢ o, K

i

compressible fluid,

’ Hygrodynamic forcgs arising near the nose and tail
sections of the body had been inadequately accounted for in the
previous treaéments. vAccordingly, an extensive survey@of the
pertinent literature has been untertaken, out of which has i
grown asreformulation of the inviscid-flow forces acting near s
the ends 'of the body. The other difference is associated with %

tow-rope force which is incorporated more correctly here. It

is found that these modiﬁicatidns predict the system to be more .
\

stable in all its modes than does the previous work. Spébia;ly
'

we should, note that the first mode is stable at low towing speeds,
which is contrary to Paidoussis' [24] previous' findings.
. ]

A substantive analysis has been conducteé to "treat the

(e

N
\

forces on the non-cylindrical end sections, making use of

Upson & Klikoff's [ 33] work. An ellipsoid whose minor axis
is equal to the maximum diameter of the main bgay is divided
"into axisymmetric slices and fitted to nose énd tail sections

respectiveiy, The nose ﬁgcﬁion is always streamlined; on the
~ ’

other hand, the tﬁif is manipulated to be-blunt. .

8 - > N - 1




An attempt has been made to find the coefficients
' kS

f and}fz, which were used in Eﬁidoussis [24]) to express the

1
hydrodynamic forces at nose and tail sections, respectively.

First we have modified the coordinate systems and tow rope

el -
force of previoys paper. For a given condition,.comparing the

EOundary coﬁdig?ons éf the present theory with those of

modified (24], these processes have led to inter-relate the )
two theories. It is seen tj@t coefficients f1 and_f7 of the
modified old theory agree well with i410 and i420 respectively

for comparatively small values of Al(or Az).

. . b
It.%s observed that the system of the flexible body

[4
is subject to rigid-body-type instabilities &t low towing speeds,
\

and to flexural\Jﬁgtabilities at higher towing Speeds._‘The
rigid body ingtabilities, occurring im the so-called zeroth and

first mode of the flexible body are shown ,to correspond to the

‘
A 8 B AT B S

instabilities of a rigid body of the same shape and graviﬁe£ric
proper%iesi Indeed, the study of the dynamics of towed flexible
5~ body yields sufficient information to establish the ‘dynamical

£ . behaviour of the corresponding rigid body. It is also reviewed

¢ that, whereas the dynamical behaviour in the case of rigid bodiy
is indépendent of towing speed, in the case of flexih&s body

the dynamic stability of the systpm'is highly dependent on towing

speed.

We first consider briefly the instabilities of rigid

body. The behaviour of rigid body motion is gquivalent to that

IS

(} ) of flexible body at low towing speed, It is observed that
-~ ]
F
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sb\

oscillatory instabilities do not occur, At the beginning
{low towing specds) the girst mode is stable; this is cause
by the modification in the formulation of the tow-rope in
this theory. The vawing instabilitics,kwhich are'associated
with the zcroth mode, are diminished by manipulé%ing some
paranmtters, specially by making the gail section blunt,
Strandhagen et al [ 8] proposed that a dynamically qgséable
ship may become directionally stable when towed with a short'
enough Eowline. But it is noted that yawing igstabilities are
independent of tow-rope length in this séﬁdy. We hé&e found

*
that this agrees well with Paidoussis [;A] in terms of tow-

rope lehgth effect. He had shown that the instabilities

(yawing) are ;ndependent of tow-rope length, It is congluded’
that according to the présent theory, where thé tow—-rope force
was introduced in a more refined way, the system is generally
more stable - and that stability is not affécted by tow-rope

*

length.

We next consider the fléxural instabilities, As we
have seen, uhé cy linder may be stablé as a rigid bodyi yet for
sufficiently high towin% speeds it may be unstable in one of
its flexural modes. Several dftempts havg been undertaken to
check the stability. It is bossible to make a number of recom-
mendations regarding optimum stability of the system. The two
main ones are the following: (a) the~§ai3 should be as blunt

as possible, and (b) the tow-rope length does not enlarge the

stability region. The former is the most ef%sctive way of

1

'y
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stabilizing a towed)system, which has the disadvantage of

. ]

‘increasing the' towing drag, Clearly, what ig,needed is a
. blunt tail without separated flow. The lattger is contrary
to Paidoussis'[24] work. He had proposed the tow-rope should

~

be as short as posgsible for stability.

Frbm Figure\lSa (Al=0.01§) it is seen that the
system is unconditionally &able when o=0.5, while from
Figure 15b (Al=0.05)4it is seen that the same condition applies<
when a=0,57. Since the tail bage égta in the latter case is

spaller, End hence thehbasexgrag is smaller, it, is clearly

—

“preferable “to use the more streaﬁiihed end (Al=0.05); besides

being more stable, generally, it would require a small amocunt '
of power for towing. The experiments [22] do not show any
advantage in making the nose particularly well streamlined.

In practice, of course, the desire to minimize drag would dictate

a well streamlined nose in any case..
t

I . . ’
In terms of application of this work, it has been

]

€, ) .
shown that, provided that the tail is blunis, a system may be

designed which would be stable to high tqming"speeds.

! »
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Figure 1. Diagram of a towed flexible, slender:

cylinder with streamlined "nose" and

"tail" sections
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(a) Diagram of a fleiible, slender body of
© revolution in axial flow

(b) the three parts of the body showing the s
, forces,, tensile forces and moments exerte
- the nose and tail séctions
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Figure 3. (a) Velocity and rotation of the nose section as seen
’ by af -observer fixed in the x-y coordinate system,

”

(b) Veloegity and rotéﬁon of the nose séction as seen
by an observer fixed in -space. h ¥

(c) ‘Forces and momehts acting o}p an element §§ of the
‘main portion of the body "\ :
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(a) Forces and moments acting on the nose and
the tall sectionS.

(b) Normal and 10K§Ltud1nal components of tow-rope
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', ‘ APPENDIX A: FORCE AND MOMENT DISTRIBUTION ALONG AN

o N
v ELLIPSOID OF REVOLUTION

w

In this section we turn our attention to developing
expressions for the force and moment acting per unit length .
along the axis of a pfolate spheroid as it undergoes general -
plane motion ﬁh{ough an infinite medium of ideal fluid. The
fundamental problem of deﬁérmining the flow pattern that

arises under these conditions has beén discussed by Lamb [357 in
¥ , - \

sections 103~106 of his classic volume, Hydrodynamics .(1932).
‘. In that work Lamb inwvestigates the net dverall forces and
moments exerted by the fluid on a translating and rotating

spheroid, but, seeking to avoid_the "troublesome calculation

~

™ of the effect of the fluid pregbures on the surface of the
. solids," (seciion 117) he refrains from exploring the dis-
tribution of these forces and moments. The troublesome cal-

N culations te which Lamb refers haye been 'carried out by Jones

[36] for .the case of a spheroid undergoing steady-state motion
confined to a plane. ﬁégrettably, though, Jopes' failure to

.account for the effects of linear and angular accelerations

renders his findings inadequate Yor our purposes,

\
, ’ ; N
Given this situation, it would be tempting to provide

" herew just 2 bare outline .of how to generalize Jones' arguments,
were it not for the age and the evident obscurity of. his paper.
» In view of these latter considerations, though, and also of

~  the fact that_Jones and Lamb chose to work in terms of a notation

L < ¥

!
;
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which is now passing out of use, it has seemed appgdpriate .
to give a derivation from first principles of the expressions
required. In the interest of making this appendix as self-
sufficient as practicable, we include as Section A1l a brief
re&iew of the theory of purvilinear tensors. Having laid

\
these foundations, we shall then be ready to derive in Section

A.2 expressions for -the force and moment acting per unit
length along the axis of a spheroid undergoing general plane

motion. . .

A.l1 An Aside on Curvilinear Tensors -
i kY

-

‘We begin by setting forth the genometric basis of
tensorial notation. Suppose, as indicated in Figure 5a , we,
are given Cartesian coordinates zi and want to describe the
location of any point in space .also by use of the curvilinear
co&rdinates xi, where z = zt(xJ) and xt = k%zj) . Clearly;
it .is possible to express an arbitrary posiﬁion veétor r in
terms of the unit base vectors e, corresponding to the Cartesian

system:
r=z'e (= zle + 22e + z3e ) .
‘ o~ ~1 RS ~ -
Alternatively, we can-define curvilinear base vectors g;7°

whose magnitude and direction are, in general, position de-

pendent, s?ch that ‘ !

[ e
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It follows that .
orx 2z7 LT
gi.f 5:; = T ey 1 (Al)
and equivalently,‘
i 1.3 j .
i e - R

‘.-

2]

wbere we have invoked the chain rule of differentiatibn.

We define the metric tensor

/

' /
e, L /
92 32
., = .. . = ——— S . A3
SRR T~ e [

L4 /
/ -
/
and note that it is symmetric in its two indi@es;- '

Taking the dot product of both sides of (é%)/hith g., we

obtain ' - -/
i
ax AJ}
g.. =e.. g = ——?’, (Ad)
3z 13 ~k =) ~X ox

3

. (a5)

el , 3 r
X 9X 9z
TF e 9y = T € - e
azt L =i azt L oxt ~F
- axd 9z - ax] S
23z % axi axs | i

.
i rs T M S




Hence,

Coad .
3o, ' (a6)

g
02

o

Substituting '(A2) into the above, we obtain

. 3j i~ . -

j- 9X IxX - ij
g’ = =7 -7 9 = 99 . (A7)
- . 0z 9z i =1 . <

where we have introdﬁced the rebiproéal metric tensor,
. ) '

.. . . i 3

glj - gl‘ gj - X~ . 9x ©_ (a8)
82" ¢ 9z ~

Note that it is also symmetric, Invoking now (A5) and

(A7), we deduce that

5 ij 3

i _ _ j
93x9 % 9397 T % &% (A9)
If we multiply through the above by g, where
G
g = det ‘gi_k) 4 ) ‘ . (Alo ) .

we obtain

o .,
g, [9'e ] = g

or
k PR g '
gkl[glkgl + gkztgz gl + gk3[g3"_93* = g,

where there is no summation over the indexnkw ‘
We can regard the above as the expansion of a determinant in
terms of'cofactbrs, where [glkg] is the cofadtor of 91 and
so forth, Récalling that the cofactor of a matriﬁ element

aij contains no .terms involving elements from either the ith

R A o
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row or the jth column, we realize that none of the cofactors

“in thé last equation depend fﬁnctiona%ly upon gy Gy, or I3*

Accordingly,’we obtain by partial differentiation

g o ik
9 g
9y s

It fo&ws then by the chain rule o‘”jifferentiation that,

g g 99, . iy 3G, . ) '
—.—j = — —-..)JS—J.'- = g glk -—-.]JT{-}. . (A 11)
9x 3gki X ax

Let us now find tensor représentations for the familiar

cperator V. We know that the gradient of a scalar;

‘VA= e 3A = e ____'_axj 3A_
' <i i <i 1 ]
oz 3z~ 3x (a 12)
_ 3 8A _ . _ij 3A “
=g’ — =4g. g r—
* axd ~1 axd

where we have made use of (A 6) and (A 7) in the lagt

two éteps, respectively. We can similarly obtain expréssions

for the divergence of a vector: -
V'E*:. ek L‘E’ . B = ek a—JEIJE‘ "a'—" + B
"t 2z h ~X 9z axd ™
. . i . 99, (X 13)
= gj 3 . B=gJ, (3B g; + B —%)
* axd - ¥ ax’ -3xJ

where we have set B = Blgiu Now, invoking (A 1) and then

% “«

(A 2), we obtain

agy . - d 32X 92X 225K "a;m
B p— (”‘*ﬂe ) = T—— Q = -y 14 )
axd  3xd e kT axdaxt K axdext agk om .

{
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-A,6-
a2k ™ ,
,l' The system of quantities: —r— - is customarily denoted
‘ ‘ L I axt oz -
) y:: N m 4
?n by {j i'} ! 4 ‘ |
%

. the Christoffel symbol of the second kind.

ST

%

B Substituting the relation
¥
£
- . \ 3 ' “ k
94 2 m
%. . ‘ = {, ?} 9, & Wwhere {. ?} = 3*3——T ox (A 14)
4 ax? ] J axtax’ oz
G into (A 13) and using (A 5), we obtain - i
v Big = EEi + Bl { jf (A1S5)
TR x> id

+

We seek, now, a more convenient expression for V.Blgi
Invoking (A 4) and (A 14), we obtain

azzk 3zk ‘

e ——

axjax1 ax“

m =
{j i} Imn =

Using (A 3) it may readily be verified that

i axd ™

"9 i Ynon © 2 axi

Ix

so that, with the use of (A 9), we éan infér that .

99 3g, 3g. .
o, };} = -2]-'-(.—-%:-‘- + in - %l) gnk .
’ dx ax? dx ,
Hence . {
. ; | )
(. 3y = 1%%n 53 '
j i 2 g
) [ ° s = 1 P
29 ‘
. -

]
aif™ &
S FTET R
78
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~A,7=
. ' l !

where we have used the symmetry of gij and gl] in the first

“ step and have invoked (A 11) in the second. We now note that

\

(] 'i ]
-]:_.. 3._,1.(/5 ,Bl) = .a_g.i. + 1 3_/% Bl »
Yg ax* ax /g ax -
i i .' N .
— - 2B J i . é
= ;;-.{ + {j l} B P
hence, in view of (A 15),
v . Big. = l‘— ?——P (/§ Bi) . N

As a particular case of the above, we can set B equal to

the gradient of a scalar and, using (A 12), obtain an &k-

L

pression for the Laplacian:

v2A=V-VA=-1-/:§—-i-(/§ 9”35-5-) (A 16)
e g 9Xx X

.

A.2 Calculation of Distributed Force and Moment

'With these preliminaries at our disposal we can now
! N ? .

tackle’the problem we set oﬁt to investigate, that of
finding the force and moment acting along a spheroid as
it undergoes plane motion. We begin by describing the
three coordinate systems,which figure(in.the subsequent
-derivations, It is convenient, first of all, ‘to introduce

l,zz,za) which is fixed in space,

a Cartesian system (Z
that is to say, which has the property that an observer
at rest in it measuring fluid velocities would find that

they tend to zero far away from the moving spheroid.

o T e A W T R R S S T SRRt —



By

A
An

“origin coincides at all times with the spheroid's centroid,

“and angular velocities of the sphéroid, as measured in the

. -Ao 8"‘

' ¥
This is the frame of reference in which Bér;;GiEIT;\EQuation

applies in its most familiar form:

- (o}
¢

P = P, « 3¢ 1 v
—— = -3¢ "3 ¢.Vo (A 17)

-~

{

ﬁere, p.is the ambientpressure, p is the fluid density,
which is considered to be constant, and ¢ 'is a scalar

function whose gradient equals thé fluid velocity at each

o

point, In order to find ¢ for a translating and retating

ellipsoid of revolution, it is necgssarY‘té work in terms

of coordinates which move with the body. We in%roducge,

therefore, a second Cartesian system (zl, z2, 23) whose'

‘

the z1- axis pointing along the axis of the body. We
assume, ,without loss of generality, that the two coordinate '

systems were initially coincident and take the translational

. v - ! I ///
_fixed frame, to be V(t) and w(t) respectively. -Accordingly,
" for - an arbitrary particle moving through space, the position

vectors corresponding to the.fixed and moving coordinate -

~

o~
systems, R and r respectively, must be‘related as follb%ij,//"/f/

t| . , e
"R(t) = JSV(t)dTt + r(t) :
Ble) = JY L
R(E) = V(E) + I(t) + w(t)x r(t) . . kA-18)-

We are obliged to consider also a set of spheroidal »
2 . .

’ x3) which are defined by the relations o

4 , //

coordinates (xl; X

i

2 wa e ot o



|

‘ i
§‘ ‘ "Avg—
:“‘51‘ ) [ . ) //,(/. /
?w . below and interpreted in Figure 5b - T T
1 o : : . , o B2 , 7
'%' 2l _ae xlt ;2'7' //”////,//”'—
o : , -
v 22 - a e 2.1 /1-1x%1% cos x3.
5»’ A / ' / - o l
E 1 ‘ // ’ - = ”
| - L
o /////// 23 = ae {fxljz-l /&—Lx;jz sin x3 (A 19)
b // . . ) ////
. 7 o
where x1>l,/:}5x;<1, and 0<x3<2n v
It shguld/g; noted that the locus of points sétisfying
1, , _ B
/;>//?ﬁk/; S is a prolate spheroid whpse length is 2a and
whose maximum radius is .
b= a/l -~ e? (A 20)
We shall take the relation ) X
R .
F(x7) = x e ~0 & (A ?1)

P
—

___——to define the surface of
o

we wish to study.

e
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set out to express it as a function ¢f the 2z

~A,10~ - .
We shall throughout the course of the argument which
follows observe the moving ellipsoid and measﬁre the fluid

velocity V¢ from a ffame of reference fixed in the '‘z' co-

‘'ordinate system. Now, within the context of incompressiblé,

" ideal-fluid flow, the equation of-continuity takes on the

particularly simple form, -

¢ = 0. {a 220
In order to obtain boundary copditions we note that alo l
the interface between the spheroid and the fluid the normal
component of velocity of the body's surface must equal the
normal component of fluid velocity. Hence,

Y¢n = R.n on F(z',t) = 0, (A 22b)

"where n denotes a unit vector normal to the surface of
[y ~

the moving spheroid and R is understood to be a dis-
placement vector which follows some point on this surface.
We al'so require V¢ to approach zero at distances far from

the body

‘While continuing to regard V¢ as the fluid velocity

3 -
as measured from a vantage point fixed-in space, we now
15, -since .

the z* and zi coordinate systems differ only in that they

are in relative motion, gradients and Laplacians should

_be the same whether-evaluated in terms of oné system or

~of the other. Using, then, (A 18) we can rewrite equations

(A 22) in terms of the zis

v2¢ =0

\

Vom = (V(t) + wltlxx) . n on F(zh) =0 (a23)




e T >

L
| ; —A/&l ;-
/o - n

/ {////
In this last step we(héve recognized’ that s n;e the z' co-
ordinate system moves with tﬁe spher&id, the equation of |
its 'surface F = 0 does not involve time explicifly and,
furthermore, the position vector r of a ﬁepreséhtative

point on this surface does not depend functionally upon.

time.

+

.Before we can expand equations (A 23) in terms of
: s
spheroidal coordinates, we must evaluate a number of tensor
quantities. Applying the relations (A 1), (A 3), (A 9)

and (A 10) to (A 19) we obtain:

¥

1 ,
(2 X Jl—[xZJ2 cos x> e

.9 = aex” e, + ae -
w 1 JixX 121 o -2

1l
+ ae X /l-[x:] sin x3 e
;[xIJz—l
. . ‘ 2
g, = aex1 e, - ae/{kIjz—l X cos x3 e
- ;l-ilez

]
w
~e

. 2 ‘
: - ae/&xjj!-l X sin x3 e, '
T ;l—sz]2 ¥ \ ’

= ~ae /1x112—L /&—Liziz sin x3 e,

+ae /ix¥ 121 /1j~LxI]2 cos ‘x> e

-

“M"“"‘M
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933 = ale? {[xl 2_131-1x23%)
g3 = 0 if  iA3
glj=§:'l-'—.- if i=9
J.J, .
0 if i#3 ;
e

g = af® (xh1? - xh1H2E., ///’

Substiﬁuting from the above into (A 1%), we can write
out the first of equations (A 23) in spheroidal co- =

ordinates:

|

gx—l{([:ﬁllz-l)g;%} . ?-—2{(1 (x412) —?7}
+ zxj{([ Exzj 2]22 P ’ii}

=1) (1-0[x"17) 9x™7

~

In order to deal with the boundary conditions we must

obtain an expression for the unit normal_n., Recalling

(4

that, in general, VF points in a direction perpendiculur

to the surface F = 0, we set

) S 91 gt .
LA ]l B
= J/l-e 7_1*3-” e +7—2---2--2-'1"EX:1 cos x° e,
1-e“[x"] 1-e"(x"]
/i-rx21% '

+ - sin x3 e3 ’
;1—e![x ] -

A 24)

(A 25a)
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-A.l3- .

L

where we have applied (A 12) to (A 21) in the second step

and make use of relations (A 24) in the last. We note by

-

inspection that n is, in fac¢ct, an outward normal. If we

specialize, now, to the case of general plane motion,

>~

1 2
Y= Ve g+ vI(E) g

w w3(t) e

and substitute from (A" 12), (A 24), and (A 26) into the

second of equations (A 23), we obtain as our Boundary

1

condition

11 3 22 3 , 33 2 g
(g 8 Prrg 0 t939 ). =
ax C X ax Yg,.
11

. : 91

= ([vl—m322] e, + [v2+mszl] e,).

€1 . /g

11

on F = x1 -1 . 0 ;

e

2 e 2

3 G

+ m3 a . x 1-{x"] cos x3 ' (A 25b)

l-e a

where we have made use of (A 19) in the last step.

. . ;
The general problem of finding solutions to ‘equation

(A 25a) has been tackled systematically by Lamb (351 . It
will suffice for our purposes to note that the following

function does indeed satisfy (A 25a) and meet the boundary
g

condition (A 25b):

ey R e, R
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g
1
%
§

-A.14-. N

%
v' ae' 1 k
o = i {ilx%log x_+l 1) x
Iy l+te _ e 2 x1~1 ’ .
7199 1=¢ l-e . .

2 ‘ 1 ‘1
, ¥ e TP s Bt 2
_2_10g e il v~y ) x =1 [(x*1%-1.

) ' . .71l - [xz] cos g3

3. 2 3 . :
Y oyeer——Tre X3 ' ’
-e e e
‘f( e ) log l-e 6 + 1-e?,

(A 28)
- 1 . R ._'

T 3.1 +1 1 2 /T2 3
SMxTIT-1 {-2- X lof%'j?l- -3 - TET'F:T} x"/1-[x"] C;OS- X

!

Having found the hydrodynamic potential\ﬁ,.we can now
invoke Bernoulli's equation (A 17) to obtain the distribution
of pressures about the spheroids We must bear in mind that

this relation holds only if the fluid velocity field V¢ is

measured from a frame of reference which i's inertial and in

which fluid velocities tend to zero at points far away from

the moving spheroid. This requirement poses no direct problem

&

for -us since we have consistenfi?‘gefiﬁed V¢ in just this way.
It is important to realize also that the term g% in (A 17)

refers to the time rate at which ¢ is changing at aigoint

" fixed in this same ¥eference frame., This can be;appreciated

oy noting that in the derivation of Bernoulli's equation it

is necessary to set the material derivative.

%? = %E + Vo . V




. ? ~A,15«
' . & ?
. ;- f{inc‘e vé ié the fluid velocity as measured from a fixed
point in space, %% must also be evaluated af a position ’

fixed relative to the zt coordinate system.
As a preliminary to finding %% in the sense of (A 17),
we consider what would be seen by an observer whose position

in space is given by an arbitrary time-dependent position
/ ~

vector r = zlei. For him, ¢ would appear to fluctuate at a

rate

. ’ isk '

o al-, == -a—il ' + az _2‘_3 I

at 9t ¢ = constant _ ot 9z

LY , + r. Ve ;

T ~
r = constant

-CON LT © o+ (R(E) - V(t) - a(t)xp). Vg,
dt . t ~ -

r = constant

in view of (A 18).  Now to obtain the rate of change of § as .

seen by an observer fixed in space’, we need simplyoset R{t)=0
o

in 'the above equation. Bernoulli's equation'(A 17) can,

therefbre, be written equivalently as follows:

TER, M ' +(yro x 1) . Tp - 3WeTp (A 29)
L ot r .= congtant ) ‘

7?
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We are interested in finding the pressurd distribution
only over the sufface of the spheroid .and shall accordingly
set x1 = é as we procéed,in evaluating the term; on the
right hand side of (A 29). We can readily deduce from
(A 28) that

- Ef = Ola kl x2 + sz k2

at
+& Jab 23 xz/l-[le cos x3 y

1-{x"] cos x3

r = constant '
(A 30) .

‘

where we have made use of (A 20) and have introduced the

constants . ) ’ -
1 l+e a
k- e{53 log 05 -~ 1}
171, 1lte e '
209 T2 7 T-e?
1 l+e e
- k. = ~{2 log l-e l—ez} ’ ) ’ (A 31)
2,1, 1+e _ e=2el
2-°9 18 T T=eT"
2
2,3 l+e e
-7 = € {Ze Lo l-e 3 lée‘}
37 3 2-¢e7 1te e’
37 =) 12 1 b+ g7
, 4 . . 1 _1
We obtain an expression for V¢ on the surface x~ = s by _

applying (A 12) to (A 28), making-use

and reqailing that g*J

0 for i # j:

-

11 .1 2 2 e / 2.2 .- 3
Vé = g, g {vaex” + v a 7-12 1-[(x"]° cos x
* - 1 ‘ 1 ~

1]

3 .2

-

of (A25b) and (A 20),

-

t

N 3 . . '
= xz{l—[x?JE cos x3} |
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2 4
X

+ 92922 {-vlakl + Vzbkz m C‘S’ x3
. - X

) 2.2 . 3
_ w3 ab£3 (1-2{x"1%) cos x”} (A 32)
I-[x" ]
[ . ' ’ - r

+ g,3°% (v?bk, A-1x217 sin 23 + WPabex?A-1xF17 sin X )

’ .

»

3

Using (A 27), (A 19), (A 20), and (A 24) ,in conjunction with’
the_above, we can evaluate the second term on the right-hand

side of (A 29):

Yy + 0 x E){' Vo = (vl—w3zz)gl + (,v2+w3zl),§2 . Vo) ‘
2
= (vl-wBb/l-[xZJ cos x3) {aexz. 1 l-e
. 2 2 2, 2.2 : |
. a“e® 1-e“[x“]
.(vlaex2 + v2a —-2-2 il-[x:J cos'x3
. /l-je v
1 ¥ - v A 3
+ m3a2 S xz/l—[le cos x3$
21—e ‘
‘ b oa . L 1-[x2 2 ‘
a ’l—eztx:]
) ‘ 2 -
1 2 X 3
.{(-v7ak, + v°'bk TO8 X~
1 2 o (x232 ,
' 2,2
- m3ab£3 (1-2Lx 1) 6s %3}
: 1-{x“J
. . 2
1 - .
+(v2 + w3a xz) {a ey /1-1x°1% cos %3, % 5 . 1 3 53
l-e a‘e l-e“[(x“1]

‘.(Qlae x2 + v2a s v/l—LxZJ2 cos x3
. ;l-e '

. 3 * )
+ wial 7Ji12 xzfl—[xz]: ‘cod x% ,

1

) l-e”
oy X3 1 1-ix?)? ]
/ 7,2 ;7 l--ez[x?]2

1-{x"]

&
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]
Y L
1 2 %2 3
.(-vTak, + vbk cos X
1 o2 ;l-Lx:]
. 2.2
u 3 abt (1-20x717) o0 3
1-[x“] ’

- B/l—[xz]2 sin x3 ~l7 1 3

a? (1-e%) (1-[x%1%)

.(vzbszl—[x 17 sin x3 ¥ w3ab£3 lel-[x:]2 sin x3)‘}~ (A 33)
We can evaluate the last term on the right-hand side of

Bernoulli's equation (A 29) with the use of (A 32), (A 24),
anq (A 21): ‘

l .
e 11 1_92 {vlaex2 + v2a e 1-[{x“1° cos x3
2 a%e? 1-e?1x%12 ;l—e2 '

3 : ~
+ m3a2 g lel-[x:]z cos x3]2 ‘
- . - ;l-e:
2.2 : 2 .
11 1-{x°] 1 .2 X 3
= {-v~ak + v bk cos X
22 1-e%5? 1 L 2 N1-1x) '_
2.2, . %
_ w3ab£3'(%"2[x 1) cos 23}2
1-[x“]
- % 17 ‘ = 1 - t;vzbszl-[lez sin x3
a” (1-e7) (1-[x"1%) ) '
»
+ u?ab£3 x2¢l—£x2] sin x3)2

(A 34)
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Substituting, now, (A 31), (A 33), and (A 34) irto
Bernoulli's equation (A 29) and regrouping terms, we

. obtain an éxpression for the pressure distribution on

b

the surface of the moving spheroid.
p-p
0 ‘ 3 2 .3 . 2 .3
- = 09 * c; cos X7 + ¢, cos” x” + ¢, sin” x7,
where' e

1, (kpla-edih

= ¥ ak, x? [v'1® (@ - 5 )

= v akl X +

I

Co

[x2]2'

f{——z-z ' _ 20T
o, = ¥8 bk, M-1x21% + vivE By (k1) XS L

]
2 2tx2]2

+ 63 ab£3'x2/l—[x j| T

2.2 ’ 1
Ly (k) (145 (2032 12-1)
+ wvb{ -1} /1-[x ]
‘ ' 1 - ez ]? .

l-e

l-e

roara 7w ?ndi?
c; = vl - F—a—5g }
2 20, 1-e2(x?]
b, 2 ‘2.2
: (D)% (1+k,) (1+£,(20x%1% = 1) ..
+ wavz axz{l -2 2 3 }

1 - e*[x%1°

+ 10392 @2rx%1% + b2 (1-1x%1%) -

37 %[0212{1 - (l+k2)2J + wv? ax?{1 - (1+k2{(1+£j}

+ 10?1?2201 - (eep?)

b2 (142, (20x%1% -1)2
5 }
1 - e2[x2]2

.
14
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Having determined the distribution of pressure about

BB

pe

a moving sphé:oid, we can now investigate the force to which
this pressure gives rise. As a preliminary we recall the

well-known result, discussed at some length in Franklin

.t :;'3&";:"% < ks
.
+

that the area of an orientable surfacd is given unambiguously
by ,
| : o

A=

= ’ 1 1 2
fdA -/:L 12 TE-O—S—Y.T‘ dz” dz ’
z z .

e

where the integration is carried out-over the projection

of the surface onto the (zl,zz) plane, It is implicitly

assumed here that no two regions of the surface project

onto the same part of P 1 27 since vy is the angle between
ZiZ

the normal to the surface and the z3- direction; hence

cosYy = n . e,

More generally, .the surface integral of a function f whose

domain is the surface under consideration,

- N 1,2
] ff da = :rfp 1 2 'I-E.—s—;] ‘dz dz“ .
2 2 -

Remembering that the unit normal n points in ‘the out-
ward direction, we can readily see that the force acting on

an element dA of the spheroid's surface is equal to -pnda,

Accordingly, if we let f be the vector function ~pn and apply

the above equation first to the portion of the ellipsoid

I

*
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v

above the (z1,2%) plane and then to the part below, we

determine that the total force ac#ng over the body,

* .
/ Z .

\ a, br/l-[—] _ S
F = f f a Pn | az2az! (upper sector)
- . l Ti'e ' ° . A

-a = 1-—,[%——]2 =73 *

P

——

(lower sector)

Actually, we have no interést in eValuéting the above -
integrals; expressions for F can be obtained by more
direct means. What we do wish to find is the force

per unit length along the spheroid's axis,
&t‘ " H

oF Tp-tE? M
o a
';‘z’l'_' f —Pn az
—*b/f—[é—] [n.eg]
[ gl2
b l*"['a\'—]

+ . jr =Pn | az? (lowér sector)
12 Jn.e. .
+b£—[§-—] ~=

2 (upper sector)

In performing these integrations we must hold constant

1 2

Z- = ax~, (Recall that x1 = é on ??e spherofd.) It

follows, in view of (A 19), that

-
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-Ao 22"'
dz2 = -b A- [x® 1] sin x3 dx3 ;
hence '
oF y /“—2—2 3
= T—n—g—l( bY1l-[x“]® sin x ) dx (qpper sector)
- " i
+ . B0 (pA-rx*] ‘sin x3) d_x3 (lower sector)
[n.ejl - N\ '

2
27 . .

= j ~Pn bv'{-[xz]E sin x3 dx3 (A 36)
0 «

) 2 27 V2T
- b 2 3 _ - 3
= gl-a—-x dex ‘?_zb [x®] fP cosx dx
) 0 0

’ ' - 2m
» .
- e, ’b.li—[xz]2 fP-sin x3 dx3
R 0

) .
2 "

-e, p b x2(21rc + mc, + ne

a | o 2 3)

3 -e, pb/l-[x:]:z LCAY ’ :

wHere we have used {A 26) in next to the last step and have

-

made reference ,to‘ (A 35) in the last.. It should be noted.

that in this 'fina;. step we have negléqted a term involving

P, v':hic}is not spatially dependent and cannot therefore

B LN ale




"Agza"k
, : o .
b 1
=" - P — xz{ 291 aklx2 ’
a 1 4
12 (1+k) ? (1-1x21%)
+ [v1* @1 - > 2‘) ‘
1 - e™[x"]
- b, 2 2..2.2 :
g - @7 e ’
1 - e2[x%1° :
32 3 )2 (14x,) (142, (21x212-1),
+ wv ax" (1 - 5 ) ,
1 - e“[x“] . - ' ‘
‘ / 2 212 1442
b? (1+£, (2[x%1%-1)) _
§ + 2312?0212 + b2 a-1x20?) - 2 ) -
z 222

l“'.e EXJ ]

+'%[v212(1—(1—k2)2) + 32 axz(l—(l+k2)(1+£3))

+ 30aP1% 2% P2 a-aeep?y (A37a)

énd to a component in the transverse direction,

l A
, oF 4

b i -a-—;T . e, = ~pm bz(l-[lez) {v2k2

5 - . \ 1 2.1 x2 3, 2

o ‘ . + vy ('a-) (l+k1) (l+k2)'i*T‘-§'—T + W a£3x

A . . e [x7]
' 2.2
31 (1+k1)(1+£3(2[x 17-1)) -
_twtv( >33 -1} , (A37b)
1l ~-e"[x7] ' .

3

* where we have made use of -(A 35),
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. By reasoning analogous to that leading to {A 36), we
- " .
find that the moment exerted by the fluid on a transverse

section of the spheroid,

—

oM 21 r x (-P)n - ,
—7 = S -~ . b/l-[x:J sin x> ax> -
3z _ In. e,]
. ' 27
= ~e, {ﬁl. b/1-[x"] P cos x> ax>
: 0

2n 7,
- g— x2 . bY/1-[{x"]) .}[ P cos x3 dx3}
o .

d 1l b 2 ' .
= e, (27 - —~ x) . e P . . (A 38) .
~3 a azI ~2 .

where we have made use of (A 19), (A 26), and the

&

statement following (A 37)
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APPENDIX B:

NON-DIMENSIONAL INTEGRALS

D

.. = _max

111m S
max

: 1\1 2m S
Y2im T 5
122m 5

13im © 78

)
et

32m

41lm

42m T B

S(E) ( \m._
bear. Chae

~~
S(E)

DL (&-1) d€

s(&) € +3)"a¢

s(&) €-3)"a¢g

SOk, (eep)™ag .

S(g)k, (&-1)"aE

2

S(E)-’(1+k )(l+k )——-2-——2—-2- (&) "ag
; l1-e™[x"[

/

s(pkask )(1+k )—7_'27('” Tag
' E) 1 2le[x] *




mB,2=
‘l ‘ g 2
bsim T TS S(HFx" € +hag
. hENDY
S
;+X2 |
, - 1 a 2 m
fom T 5o ) SOF A (ehTas
, a .
2 2
L i (L)) Q42 @ xF) 1) -
Lo = -3 [ s ’ 11 (e "ag
max "i“Al 1-e4 x4 '
A ) . 2 %
| L, e asmpueg@d ) |
feom = % s (8] " -1) (e-h)"aE
. max
3 l-elx
v - ' Y 2
- R (1+k.) 2 -1x4 )
foim” = /‘ :aIi. x_2 { 1 \ - 1) +§)Mae
3 1-ed x4 ‘
- 1 -e[x ] .
\ A, N 2. 272 - |
. 2 2 ampia-rx) .
dom = f =% 1 ——— - V-
i l-e [3(2'1 .
b.

It should be noted that the quantities x2, a, e, kl,

k2 and 2.3

are all functioné of £ and any of the integrals listed above

becomes a small quantity, ifm 2> 1.

The nose and tail sections consist of half ellipsoids, whose

major axis is 22, and minor axis % The tail may be less than’

a half ellipsoid since its end may have been c¢ut off to make it

-

5
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blunter; in such casés )\2 = aAl.
- !

The integrals above are easily evaluated by hand, after sup-‘

pressing the commop % or -i from the limits of integration.
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APPENDIX C: CQEFFICIENTS OF DIFFERENTIAL EQUATIONS OF

THE PRESENT THEORY

g = 1+ v (iw)

\ Q :
2’ SBase‘ |
9 = Wil-decg(+),4) + 2 ippy g Cppll i
5.2 ‘ )
g, = iu ECg | |
I L
= pul{ele +c) b+ 28 ulin) ' | '
93 o £7°.
g, = etucc (i - F -
= u- (A1+A) {ec (14i, oti. ) . 2(in i)
o 95 = wl-dEE feeg (I yatty o0 7107720’ |
SBase C }D + % el (c_+c.)
+S—"—'—— DB- 110 o £

L]

S 3. » .
tigpel * Blul-ig atigg o) (1)

2.
1 W

* Blgyo -
a Ul [—i- {eC (L+i, o+l o) + 2(igqatio. o)
96 ZA £ 1107120 7107720
. N i
. ‘ : - |
5 ‘ ' + Spage € + iu'éec il #Hi,o o iw)—

ps 11 * B7U{%ECE Yy0ttat0

e ————

S .

o e b
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'gi are denoted Ci and that C5 to Clo have apposite sign to Ig to

L ) Y
-c.2- 4
o 2
- Bliy gmigpolw
o AL 2 . o s
9, = -z e v gri ) + 2015, gtig,0)
+ SRase ;| {x1+A}
, 5 - S

Al 2 . . . .
9g = x W lecp(l+iy o+l o) + 2015, 5+i,,4)

S
Base C ]

*t'3 DB

_ 2y —_— IR TR :
u lie(cb+cf)1120 i420] B aiy,, 1620)(1w)

«Q
)
i

(*”) ‘ + Biszu mz )

= - 5 i - : Py 2
910 Bfuldecglyg=i,50) + B(f;go + iy

&

Note that in the computef program of Apbendix E the coefficients
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APPENDIX D:

P T

—D. ‘l'-

COEFFICIENTS OF DIFFERENTIAL EQUATIONS OF THE .

MODIFIED OLD'THEQRY . .
hy = 1+ V(iw ;
h, = uz{l-;(gec +-S_§a—5£c>}
- 1 ‘ itCe 7 8 2
= 2
h, u €cp
h3 o= §u2€cf + zssu(iw)
h, = _;s’-‘uecf(iw) — ‘
2 AptA
hg = uS(f) - 3(=NAG + Cy + ecpl}
\ :
Loou© . ]
h6. = 73 (cl + c2 + scf) +‘f18
A k5+A
. MM 2
. h7 = 5 ( )(C1 + C, + ecf{u.
A
! 2
h8 = 3y (Cl + 02 + ecf)u
_ 2
h9 = fzu .
3 2

h10:= CEypfulin) + B(I+E,)iy04 W

. . y 2
u(iw) - 812‘10 (1+fl)w

o
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//"%QPENDIX'E: THE COMPUTER PROGRAM USED TO OBTAIN

THE CURVES OF FIGURES 6 AND 8 TO 15

b .m0 e




LELY

t1
1
2
3
4
H
[
T
8
9
0
1

12
13

1%
13
16
17
18
19

‘20

21
22

23
24
25
26
27
28
29
30
31

32

33
3%
3s
36
37

38
39
40
41
42
%3

o4
L 3]
LY
47
48
%9

50-.

31

)

c

c

—E. 1'

4

HATFIV oTIME=999,PAGES=999

TMPLICIT COMPLEX®16(0,A,C, V'.REAL‘B‘B. “HoP=Xo 1)

COMMON QL,02,0E 24, XCN, XCT

COMMON FL,F2,XC1,XC2
PARAMETERS

01=0.01500

02#1.00 X - .,

QA=1.00

0E=*42.00

Fl=1.00

F2=0.800

XCN=0:02500"

XCT=0.02500

XCN IS THE NORMAL.COMPONENT OF THE DRAG COEFFUCIENT
* XCT IS THE LONGITUDINAL COMPONENT OF ORAG COEFFUCIENT

R XC1=0,00
XC2=1.D0-F2
PARAMETERS
N=4%
MOOE=2 - ) .
[AX=1
[UPAX=L
KM=12
KEY=]1 "
TFEND=100
OM=2.0-4 v
UM=1464,00

UM IS THE MAXIMUM DIMENSIDNLESS VELOCITY GIVEN

U=0.00
DU=0.500
DM={62.D00,0.D00)
DM1={59.00,0.09)
DD1=(-1.D0,+0:0500%

' MRITE(6,100) MODE,N,DM

100 FOR“AT('l'MGOEi'.ll."*N!‘.IZ."‘DN" 1PDT.1777)

00LIN=L, [FEND

+ CALL PREDIC(DOML,0M,001,002,U,DU;0My [, N, K22K1sKyTAXy [UPAX ,KH)KEY)

EIGIM=(0.00,~1.D0)%0ML
EIGIM=0SIGNIDSQRT({DABSIEIGIM)) EIGIN)
EIGRE=DM]

EIGRE=DSQRT(DABS(EIGRE))
HRlTE(bolUlU OM1,EIGRELEIGIN,K

'

¢

¥

y o

‘10 FORMAT(!' *,F1D.7,4X, "OMEGA=",1P2014. 6,1[!.'SQR7(DHEGA’*'pOPZF9 6.13!.!3,

“

*3X,13,"ITERATIONS?/)
EI=EJGIMSEIGINM

TF{EX.GE.KMN®1) 209, ( (U~UM)*DULGT.0.D0),OR.{E1.GT14D2))60TO1000

t CONT INUE
1000 CONTINUE
stap
END,

SUBROUTINE MATRIX{A,U,OMESA M)

THPLICIT COMPLEX®16(DeA+BoCoZ) yREAL ®BID-~H,P~Y)

COMMON Q1,02,3E,QA,XCN, XCTY

COMMON Fl,F2,XC1l,XC2

DIMENSION A(10,410),8185,10),L185,12)
0=(0.D0,1.00}

I=0MEGA . \

L2wlel

o

-




57

58
59
-° 80
61
62
63
64
65

67

68

69

70
7
12
73
74
75
76
77
78
79
80

81 -

a2
83
84
85
86
87
88
a9
90

Y

92

9%
95
9%
o7
92

100

i a [aXaRaNaNyl

e [ .t e e -

BETA=DSQRTI2,00)
P123.141592653500
Qll=Q1#qQl :
QEE=QE#QE
QAA=QA*QA

Q1 IS THE RATID OF LENGTH OF NNSE SECTIONJLENGTHM OF MAIN BODY

Q2 IS THE RATIJ OF LENGTH OF TOW-RIPE/LENGTH OF MALN'BOOY

QA IS THE-RATIO OF LENGTH OF TAIL SECTIIN/LENGTH OF NOSE SECTION
QE IS THE RATIO OF LENGTH OF MAIN 80DY/DIAMETER OF CYLINDER
YE=DSQRT(1.00-1.00/{4.00*Q11«QEE}}

YE IS THE ECCENTRICITY OF THE ELLIPSOIO

YEE=YE®YE

YEI=1.DO/YE

YEL=DLOGI{1.00+YE)/{1.D0O~YE))

YEX=YE/(1.00-~-YEE)

. YEXX=YEE/{1.DO-YEE)

YEEE=YEE*YE

YEEI=1.D0/YEE

xxl:-v£-(o.soo~v51-vst 1:00)/710.500¢YEL~YEX)
XK2x~00,500%YEL-YEX]/7(0.5D0*YEL-YEX®(]1,00~2,DT*YEE)}
XL3=-YEE®(1.5D0#YEI#YEL-3. DO-YEXX)/(1.5000(2,00%YEI-YE)SYEL-~6.00+
tvE&x)

DIMENS [ONLESS PARAMETERS OF [$

Y110=PI#Q1/4.00 “

¥120=0.50u*QL*{QA+DSQRT{1.00~-QAA) *DARSINIQA})
¥21022,00%Q1/3.00

¥220=QA*31*{1.D00-0AA/3.00)

¥310=2.00%Q]1*XK2/3.00 .
Y32020QA%G1*(1.D0-QAA/3.D0)#XK2 .
XXKl=1,00+#XK1

XXK2=1.00¢XK2 .-
XXK12=XXK1leXXK2 .

XXKL1l1aXXK1#XXK1

XXK22=XXK2¥XXK2 . -
XYAEsYE®QA '
XXAzXK1-(1.00¢XKL}®XL3

XXB:YEE+2.00€XXK1®XL3

YEEZ=(1.D0-YEE)}/YEE

TE1=0LOG(1.D0-YEE)

TE2=DLOG(1.D0~-YEESQAA)

Tri=({XXA-XXB)*YEEL

Yel0=XXK12*YEET=(1, DOOYEEZ'TEI)IZ.DO
Y420=XXKI2*#YEEI#(QAA+YEEZ*TE2) /72,00

Y510=Q011%4L3/4.00 : . : *
¥520=Q11%QAA®XL3*(2.D0~-CAA}/4.D0

Y5610=01%{XXA-2,DO*XXB/3 .00+ XXRAYEEL +( XXA~ rrl-xxstv551tvesl)-o.soot
*YESYVEL ) *YEE!

Y620=01%[XXBuQAA®0A/3., DOO(xx&-xxB»XXB‘YEEl!'0A0(XXA-TYI-XXB'YEEI‘
SYEEL)®0.500%YE®NLOGI{ L. NOF*XYAE]I/{1L.DO-XYAE )} ) $YEEL
Y710=0.50UCYERI*{ XXX11-YEE+YEFZ®XXK1I*TEL)
YT720=0.5DUsYEET *(QAA* [ XXKIL=-VEE)} ¢ YEEZSXXK11¢TE2)
SMAX=PL/{4.,D0%QEE)

© SRASE=P|*(1.D0-04A)/ (&, DOSQEE)

XCOF=QE=XCTo(1,00+Y1100Y120142.00%1YT710¢Y720)
XCO=0.02900%(1}, DO‘QAA)"I 5/DSQRT{XCODF)
u2=y*yY

UX1=U®DSIRT(2.D0)

UX2=u/DSORT(2.07)

ot




"'E.l3"
}
101 X1=0.0100 Y
102 - X2=sX1
103x DRR=XCL¢XC2+QE®XCT
c . )
c COEFFICIENTS OF DIFFERENTIAL EQUATIONS C¥S
104 ! Cl=U2¢(1.00-0.5D0%(QE&XCT®{0.500+Y120)+2.00«Y720+SOASESXCO/SMAXY) '
105 C2=U2%0.500«QE«XCT
106 CL320.5DO*UESXC¥®U2+UX] #0982
. . 107 Cex-2240,500%UX2¢QESXCN*O*]
) 108 s . p2=02
109 C5=U2%0,500%«({01+P2 )= (DE=XCT*(1.D0+Y110+Y120)4+2, DOS{YT10+YT20)+
1SBASE¥XCO/SMAX)/Q2~0E®XCN®Y110-2.004Y410)+UX2%{-Y610+Y310)80%Z~
20.5D0%Y510422 ’
110 Co=-0,500%U2% (QE*XCT®(].DO+YI104Y120)42.00%(YT710+Y720)+SBASECXCO
- 3/SMAX) 702+UX2% (=D, 500#QE=XCNeYL13-Y4101+042+40.500*1Y210-Y31001#22 o
111 C7=U2%0.500%Q1*«(QE«XC Y& (1,DO+YLLI0+Y120)¢2.008(YT710¢YT2))+SBASE*XCD
' 4/SMAX) & (Qi4P2) /Q2
112 C8=~U2%0, 500*01*(OE*XCY'(!&DO’YI1301120)#2 DOS(YTI0+Y720) +SBASE*
SXCD/SMAX) /02
113 C9*U2%t 0. SDO#OEtXCN*YIZO Y420) +UX2¢(Y320-Y622)*0%1~2,.500¢Y520422
: Lie ' Cl10=ux2={y. 500tostxcnovlzo-7420)-ooz 0.500'(Y2200¥320i'12
. 115 00 91 I=l.&
116 DO 92 J=1,4 : N
117 . 92 CiI,J)={0.00,0.D0)
118 91 Cityli=tl, ,00,0.00)
o MM IS THE ORDER OF POWER SERIES
119 MM=T0 - ’
120 DO 93 N=5.MM .
121 J=N~-1 b *
122 - CX1%=(C1-0,500%C2) /(a8 4=1)) ,
123 CX22~(C2%(J-4)+L3)71an(J-1)¢(J-2))
124 CX3==Ca/id*lJ-112(J=2)%(J=~3)) ) '
125 DD 94 I=1,4 . v
126 CUN,[)=CXLeCIN-2,1)¢CX2*C{N=-3,1)4CX3#C(N-%,1) J » )
127 94 CONTINUE
128 93 CONTINUE .
129 All,L)=Cé . .
130 A(1,21=C5S . . _ .
131 .. A(1,3)=10.00,0.00) )
132 Al1,4)=(-6.00,0.D0)
133 A{2,11=C8 . : -
134 A{2,2)=CT i .t . "
135 Al243}=(-2,00,0,00) . '
* ;ag A02,6)=(0.00,0.00)
A{3,11=(0.00,0.D0)}
138 A(3,2)2{0.00,0.00) -
139 : AL3'3”(20Q000-D°’ ’
140 Al3,6)=(6.00,0.00) - .
141 Ala,11=C10 . )
142 AC4;21=C9+L10
143 Al4,3122,00%C9+C10 .
144 - Al4,4)=3.00¢C9+C10-6.00 y . -
145 DD B1 N35,MM . - .,
146 BIN, 1) =(N=1)%{N-2)¢CIN, 1) )
147 81 - A[3,11=A03,1)¢BIN,L) . .
148 DO 99 N=5,MN
149 BIN 213 (N~1) 8 (N=-238CIN, 2}
150 99 "Al3,2)=A(3,2)+B(N,2}
151 0D 96 N=5,MN
152. BINy3)=(N=11%(N=-2}*C(N,3)




153
154
155
156
157
158
159
160
161
162
163
164
165
166

- 167

168

169

170

m
172
173
17¢

175
176
177
178
179
180
181
182
183
186
185

186 -

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206

207
208

-

96

T

12

73

5

10,

20

22

FE. 4‘

Al3,31=A(3,3)+8(N,3)

DO 71 N=S,NM

BINy &) IN-118(N-2)%CIN, &)
A(a.”"":’r“,"a"“.k, .

DO 72 N=5,MM )

BINy 1 =C(N=-1)®(N=2)%(N~3)~CO*(N~11=-C10)8C(N,1)
Al6,1)=A14,1)- BlV.l)
00 73 N=S,MN’

-,

B(N,2i=f{N- ll‘(V‘Z)'(Nj3i-C9‘(N—l)-ClOI*C(N-Z'\

Ale,2)2A16,2)~B(%,2)

DO 74 N=S,MM

BINy3)=lLIN-1)#{N=-2)%(N=-3)-CI%(N~ l)-ClD)‘C(Np3)
Ales3)=A04,3)-B(N,3)

00 75 N=S,MN
BIN,4)={(N=-1)&IN=2)%(N=3)=-CIs(N=L)-CL10)®C(N, &)
Alh,a)=Allb, b))~ B(No#)

RETURN

ENO

COMPLEX FUNCTION COET*16(A,N)
COMPLEX=®16 A,PIVOT,HOLO

INTEGER ENDs+ ROW, COL. PIVROW, PIVIOL
DIMENSION A{10,12},L{1D),M(10} i
DETERMINANT OF THE BOUNDARY CONOITIONS

END =N-1 .

CDET={1.D0,0.D0) =
DO 10 f=1,N
Ltysg

M) =] -

.00 100 LMNT=]1,END

PIVOT={0.00,0.00)
DD 20 I=LHNT,N .
ROWsL{ [) ' -
DD 20 J=LMNT4N :
cotL=M{y)

PIVOT=A{RONW,LOL) v
CONT {NUE ’
[FIPIVROW.EQ.LMNT) GO TO 22
CDET=2-COET

KEEP*L(PIYROW)
LIPIVROMISLILMNT)

L{LMNT) =KEEP ,
IF(PIVCOL.EQ.LMNT) ‘GO TO 26

IF{(C DABS(P[VOTI GE. CDABSIA(ROH.COL .
PIVROW=L - °
PIVCIL=J .

_EDET=-CDET . .

KEEP=MIPIVCOL) .
MEPIVCOL JaMILMNT) ) x
MILUNT ) =KEEP :
COET=CORT#PIVOT
IF(CDABSIPIVOT),.EQ.0.D0) GO FO 333
JAUGELMNTe1" 5
PIVROW=L LLMNT) ‘ . SO
PIVCOL=MILANT) o
DD 100 1=JAUG.N Ce

ROWsL(1} | .
uOLu-A(nou.plvc0L)IP|vot




242
243
264
245
246

247
2648
249
250
251
252
253

254
255
256

257
‘258

259
260
261
262
263
266
265
265
267
268

269
270
n
212
2713
274
215
276
277
278
219

280

281
282
283
284

285
286
287
288
289

290

291

292°

293
294
295

. - : e
Dle=(SeD1+3%D)/32+{1/1M) *(01-D)/8.00
0M1=0M+D1
=4 :
12=2 - ~ Y
CO TD 80

SPECIAL PROCEDURE TO FACE TOD QUICK VARIATIONS OF FREQUEN9#¢
IF{KEY.LT.0) GO TO &
IFTIN.EQ.4) GO 'TO 64
1F(IAX.EQ.0) GO 70 S
F=({041-0M)/0 ‘
[F{(ABS{F).LT.0. 5) AND. (I, LE 2)) J=-1
t=1-)
IF(1AX.GT.4) GO ro 5
C SECOND , THIRD, FOURTH PQINTS ON OR OFF IM-AX(S.
D=(D+DM1-04)/2.D0
f=MINOCL,2)
60 10 &
5 "1F(I.GE.3) GO VO &
IFU I*11%]2.LE.B) GO TO 6%
1F{1.EQ.1) GO TO 65
GO TO &
64, KU=(U+RM/5.00) /DU
IFIKEY.EQ.0) KU=0 .
. IF(KU=(XU/2)%2 .EQ. O ) GO TO 68 .
65 Jal=2-(4/INYEMINOL(-3,2) _ '
_ G0 TO 67 »
66 Jx1/2 - (1764581 INY4)
T OIFL(IRT1.EQ.1) L ANDL(KU=(KU/&)*4 NIN 0) ) J=)
67 I=1-y -
C . PREDICTED STEP FALTAR . NEW CHARACTERISTICS.
6 D0OBx2,00%#(2=1) ;
10UM=DABS(DU/{ 191 #RM) )
IFL{IOUM+L)%0DB.LT.0.900) O0OB=2.D02%%(2/(IDUN¢L} - 2)
DU=DU*DDB - .
F={OM1-0MJ} /D1 .
I‘(FQGT.OO, Jl'-l
DD1=(QOM1-04-D11/2,00
D1 =(3%{DM1-IM}~-D + {OGM1-0M-D1%DD8)«DDB/2.00
D =(3={0HML-DM}-D = «onb;oh-oltuoantooaiz.oa

&~0

DD1=DD1%D1/D
1Z=l1-1+1/11
I1=l4y '
7 U=UsOU '
OM1=0M1+01+0D1
. IF(IAX.NE.OY TAX=[AX#]l
GO T0 80 .
C FIRST POINT OFF RE-AXIS (ro BE RECALCULATEO)
10 1AX=1 .
H1x01

IF(({(RO+3,D0%H]1),.GT,.0,00) .AND. (I.EQ.IM)) GO TO 11
Ol =Gl*=COAAS{OY=IyP

© OMI=QM-RD
. GO 10 S1
C FIRST POINT OFF IM-AXIS .(TO BE RECALCULATED)
11 TAX==4

D1=(COABS{D) + DllZ DO} *1.500
IFIR0.GT.10.0092M} Dl=(GICCDABS(D)'IUPOH11‘0.7500
OHL=0M
G0 TO 52
C SECOND POINT DFF [4-AXIS {YO 8€ PREDICTED)

1




BN

209
210
21t
212
213
214

-

~

218
218
217
218
219
220

221
222
223
224
225

, 226
227

\%
229
230
231
232
233
236
235
236

237
238

239
240
241

(s Ra N NaRaNa Nz el o NN o e NoN o NaNe N aNa Na Kyl

"E-G'-

DD 100 J=JAUG,N

' COL =M1 J)
100 A(ROW,COL)=A(ROW,COL)-HOLDSA(PIVROW,COL)
, CDET-COEIUA(RDw.tOL’
333 RETURN
END

REQUIRED SUBROUYINE SECANT(A XLoXOoUsONs KM, Ly MeN, Ko KEY) A%D NC20 883
DML = [IN=-1)-TH FREQUENCY (REQUIRED INITLIALLY (IN=1}) ==> (IN)=TH
OM = (IN-2)-TH RREQUENCY . AT IN=1,CHOSEN CLOSE TQ EXPECTED ROOT

SENERALLY AECNMES THE LIN=1)-T4 EXEPT NEAR DISCONTINUITEES.

Dl = (IN=Y)~TH FREQUENZY INCREMENT PREDICTED (REQUIRED INITIALLY)

D = (IN=-2)-TH FEAL FREJUENCY INCREMENT (NOT REQUIRED INITIALLY),

DU = (IN-1)}-TH VELOCITY INCREMENT , BECIOMES THE IN-TH,

u = (IN~1)~TH VELOCITY ,BECOMING THE IN-TH (REQUIRED INITIALLY).

RM = GENERAL ACCURACY (MINIMUM DU = 100#RM),

IN = NUMBER OF PDINTS CALCULATED SJ FAR {LOOP [N MAIN PROGRAM),

12 = UIN-3}-TH SPCANT [TERATIONS (NOT REQUIRED AT IN=l).

Il = (IN=-2)rTH SECANT [TERATIONS (NOT REQUIRED AT IN=1),

I = (IN-1)-TH SECANT [TERATIONS (NOT REQUIRED AT IN=1),

IAX = NUMBER OF PDINTS INVESTIGTED OV IM-AXIS (INITIALLY O OR 1), .
fuP = 1 FOR UPWARDS ANALYSIS OF [MASINARY BRANCH (-1 DOWNAARDS). !
"IM = MAXIMUM SECANT ITERATIONS {I=I14vel IN CASE OF DIVERGENCE).

KEY = |,0,~1 IF INTERMEDIATE TALCULATIONS ARE TO BE PRINTED OUT,OR -1

. > 0 IF RESULAR VAR{ARLE STEPS IN VELOCITY ARE RNQURRED (DU .MAY
. BE DOUSLED IF U IS AN INTEGER MULTIPLE OF 2%DU AND l‘ll'lz<9).
= 0 FOR NON NECESSARY. REGULAR [NTEGER STEPPED VALUES OF U.
<

0 IF DU {5 TD REMAIN CONSTANT, (ALMIST ACHIEVED BY l'Z.ll)bl

SURRJUTINE PRCDlC(D“l.DM'DlsooU.DU.RH-lN.NnlZ.ll I.,1AX, TUP, [M,XEY)
DIMENSION A(10,10),L(10),M(10) °

COMPLEX*16 A,J0M1,0M0,04,01,0,G! .
REAL*8 U,DU,R4,0D0B8,R0O4R1,HL

00130

Ji=1 ¢ {(1/7IN)*(IM=1)

C INITIAL VELDCITY . INITIAL CHARACTERISTICS KEPT FOR NEXT STEP.
IFUIN JEQ. 1) 30 TO 81 ¢
Gl=(0.00,1.00)

J=0
1000 RQ=0M )
IFUI.LT.IM) GO 'TO 1
C SPECIAL CASES OF DIVERSGENCE,
IFCINGLEL3) 60 TO 101
ITF{(11.EQ.1) .AND. (I2.EQ.1)) GO TO 3 - i
TFL(1AX) 101,510,110 >
C SPECIAL CASES OF ZONVERGENCE,

~1 IF{ KEY.LT.0 ) (=2
~_ IFUINJLE.3) GO TO 50
“JAX=[AX+S
G010 (12."’4 ‘0.2.70’"6.6)..]“ . '
2 R1=0M1

IFU(R1.GT.RM*0, ).AND.(RO.LT.RH‘IO.u)l GO 70 12
IF((R1.LT.RM*1D. J.AND.(RJ.GT.RM&1D,. )) GO TO 10 '
IFL {RE+ RM LLT. RO/2.) .AMD. (11.GTel) ) I=MINOLE,S) -
IF(R1#RM LT, RO/4.) 1=MAXDL2,1-11)
TFOUILE.4+a/IN) OR. (DABSIDU/4.00).LT, 100#RMf) GO TO 4

C SLOW CONVERGENCE . DIVISION OF STEP 'BY &,

3 - U=U-0,75Da¢%0U , '
DY=0U/4.00 . . -
0 -titoosvollla‘ .
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296 12 fAX==-13 *
297 D1=CDABS (DML~ -oM) .
298 50 U=yesDUY .
_ 299 IF{IN.NE.3) GD TO $2
300 TAX=50AX
301 D1=0M1-0OM . )
302 51 0=D1 }
303 52 OM1=0M14D1 -
. 304 . 12=2
. 308 {1=2
306 T OIFUINGGTL3) J1=1+1ABSLIAXSL)
307 00120 5
308 ' 80 0M=2041-D1-001 o : -
309 R1=0M1 ‘ W
310 RO=0M
C INVESTISATION OF & NEGATIVE PREDICTION BEYOND IM-AXIS.
311 [F((R1.LT.10.D0¢#RM} .AND. [I1AX .E3.0}) GO TO 10
312 81 OMO=2M +D1¢0D1-J1*D1/1N
313 IF(IN.GT. 1) J1=1
3 ~  CALL SECANT(A,0M1,040,U, kn,ln,n.l.xevn
315 - ' [F(T®J] .GE. IM®IM) [=TMel
316 IF((I.LT.IM) .OR. (DARS(DOU},LT.199%RM) ,OR. [IN.LTa%)) GO TO 100
317 [F(CIAX-1)®(1AX+4)) 91,90,100
318 90 D1=(D*(1-1AX)+HLl*(4+1AX))/S
. 319 D=D1
320 [AX==[AX+]
321 91 IF{1AX.EQ.0) GO TO 100, P
322 WRITE(6,99) U
323 99 FORMAT(* -PREQIC- VELOCITY SET BACK TO"F9 6+ %-3/764%DU & DU=DU/4Y/)
324 G0 10 3
328 101 I=[M*]
. 326 100 1F({1.EQ.IM) GD YO 1000
327 RETURN
328 © END . ) . ’
o ]
329 SUBRJUTINE SECANTIA,X1,X0,UE,DM,XKM¢N,K,KEY) .
330 oxnegs;ov A(10,10)
331 COMPLEW*16 A,X0»XI4X24Y1,Y0,COET,X -
332 REAL®S ue.Ul.Dﬂ.Rx.cx .
333 X=Xi
334 X=0
335 IF(ZDABS(XD).LT.DM .OR, CDABS(X1~XOJ}.LV.0M) XO=X04(1. oo.l oo:con
3136 & CALL MATRIX(A,UE,XO,N) -
137 MsN .
138 YO=COET(AsN} '
339 " 10=CDABS{YO)
360 1 KaK#l
T 341 CALL MATRIXTA,UE,X1,N}
© 342 Y1=COET (AsM)
343 WRITE(6,1000Y),Y1
344 100 FDRMAT(10X,1P2015, 6.1?2015 6)
345 I1=CDABSIYL)
346 XZ-(XI'YO-XO‘YlIIlVO-Yl'
" 3 RX=X2 iy
3 YRO=Y0 * - ¢
349 ] WO=YRO®Y] ,
N 350 : Win(YRO-YO)aY1/0N , . -
: asi . lF((HO.LE.O.I «AND. (Hl.LTo-NO,” ZO'IO-‘ZO ;
352 TFL{(1~1/K1821.6T,20) .OR. tx.of.x?») GO TO 3
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1FLIABS(KEY) .NE.1] GO TO S o :

353
156 WRITE(6,1U} UE,XD,Y0,X1,Y1,X2
355 10 FORMAT(® ve',F9,6,2(*  Xx*,1P2010.3,* YRt 208.10,0  X2=9,2011.4)
156 S CX={0.00,-1.D01¢X2 '
357 IF(DARS(CX).LT.DM) X2=RX
358 TF{{CDABS(1.00~X1/X2).LT.OM).OR, (COABSEX2-X1).LT.DM)) GO TO 2
359 IF{RX+DM) 6,6,7
360 6 202X1-X0 .
161 X0=x2-RX . .
362 A1=X0~-(0,00,1.00)6R%
363 IF120.GT.2.4DM} X02X0-RX
356 GO TO & ' , 7 s,
65 T X0=X1 1
185 AL=X2 4 '
367 . IF(DABS (RX).LT.OM) X1=X1-RX "}
368 . 20=21 . \
169 . YOsY1
370 G0 0.1 . . ‘ )
371 3 - WRITE(6,11) KeKM,UE,X0,YO0,X1,Y1,X2 .
372 11 FIRVAT(*0-SECANT- [NTERRURTED BECAUSE OF DIVERGENCE OF FREQUENCY A
LFTER K=*o12,* ITERATIONS IF KCKMAX®Y,§2,' oLAST xrsanr:ou TRACEBA
1CK 2070 Vat ,F9.6,2("  X3%,1P2010.3,% Y=*,208.1), X22',2011.47)
373 K=XM
374 2 X0=X . -
375 XlaX2 "
3176 RETURN
77 ENOD
| N
»
L ]
A ,
\
-~
. ¥ 1

§ et e

R




e

: "
~ \ W
B FE LA FECCERY- TR S a{rjgn,:. L ] w?w;(.w,. o~ P SN o v
1 L 4 .y
. . *‘ . ”
. ' R ' s
. ‘ - ‘
' {
, -
v
N t -
[
' t
2 )
A »
P . - :
" a
. . §
- £
. . H
, i
APPENDIX F; THE COMPUTER PROGRAM USED TO OBTAIN \fﬁ
’ THE CURVES OF FIGURE 16 ) I
VoL ’ Y
. A}
{
a
. ‘ )
“ “
4 N
, ) .
FU— ¢ ' . '
\ 1
- . B
,\{ ] L .o
. - ' )
{

(SN Y



as

TG, 4

(1 SWATFIV ,TIME=999,PAGES=999
1 IMPLICIT REAL®8(A-H,0=2)
2 DIMENRSION A(20),XR(30) ¢ XXR(30),X1(30),%XxXT{30)
3 DIMENSION B{(30),C01030),X1{30),X2(30),XE[30),XAl30) .
4 Q1=0.0500 )
s Q2=10.00 )
, 3 QE=40.D0 ° - . :
7 0AX=0.0200 N
8 00 100 IX=1,50 .
9 QA=QAX®(X .
10 PI=3,141592600 . !
11 ° XCN=0.02500 8 —
12 XCT=0.02500 ' - .,
c 0w
c Ql IS THE 2WUTIO OF LENGTH OF NOSE SECTION/LENGTH)OF MAIN B800Y
c Q2 1S THE RATIO IF LENSGTH OF TOW-I1QPE/LENGTH OF ;MAIN BQDY
c QE IS THE RATIO OF LENGTH OF MAIN BOOY/OIAMETER{ OF CYLINDER
c XCT IS THE LONGITUDINAL COMPONENT NF DRAG COEFFUELJENT
c "XCN IS "THE NORMAL COMPONENT OF THE DRAG COEFFUCIENT
13 Ql1=Q1*=Ql
14 QEE=QE*QE .
15 QAA=QA®QA
16 YE=DSQARYT{1.D0~1.D0/{4. DO*DIl‘QEE))
(o .YE IS THE ECCENTRICITY OF THE ELLIPSOID
o 17 YEEeYE®YE
18 "YEI=1.00/YE
19 YEL=DLOG((1.DO+YE}/(1.DO- YE)'
20 . YEXsYE/(1.D0-YEE)
21 YEXX=YEE/ (1.DO-YEE)
22 YEEE=YEE®YE v
23 YCEI=1.D0/YEE
24 « XKi=-YE®{Q,5D0&YEI®YEL~1. DO)I!O.SDO‘YEL YEX)
N 25 XK2=~(0.SVI*YEL-YEX) /({0 .5@I*YEL-YEX*(1.00-2.D0¢YEE))
26 XL3=-YEE®(]. soo-vEl-vEL-ﬁo—YExn/(l.soot(z.DG-YEl—YENVEL-&.DQO ~
*YEXX)
. - DIMENS 1ONLESS, PARAMETERS OF I'S -
27 Y110=P1*Q1/4.D0
28 Y120=0,5Du*Q1*({QA®DSQRT{1,ND0~-QAA)+DARSIN(QA))
29 ¥210=2.D00%01/3.00
30 ¥220=0A%01%(1.D0-QAA/3.00)
31 ¥Y310=2.D00%21%xx2/3.D0 w
32 Y320=Q0A*QLl«(1.00-QAA/3.00)¢XK2
33 XXK1=1,00¢xK1 B
34 °© XXK2=1.D04#XK2
35 XXR12=XXKLeXXK2 e
36 - XXK11=XXKL*XXK1 N »
37 XXK22=«XXK26XXK2 : .
38 XYAE=YE®QA
39 XXA=XK1=-11.D0#XK1)#XL3 . \
40 XXBxYEE+2.,D08XXK1*XL3 . ’
41 YEEZ=(I.DO-YEE}/YEE
42 ZE1=DLOGI 1. DO-YEE)
43 ZE2=DLOG({1.D0O-YEE®QAA)
a6 IL1={ XXA-XXB)*YEEI
&S, P2=Q2
46 Y&10=XXK12¢YEET*(]. DO+YEELI*2E1)/72.00
47 Y420 XXK12#YEETR(QAACYEEZ*IE2) 72, 02 w
‘48 ¥510=011+%xL3/4,00
49 ¥520=Q116QAA&XL3*({2,00-0AA)/4.D0
50

Y610=QLl*(XXA-2.00¢XXB/3,D0+XXBSYEEI+{ XXA-L21~-XXB*YEEI®YEEL) 0,500
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St

52
53
54
55
.56
57
58
59
60

61
62

63

66
65
66

67
68

69

70
"

73
14
75

76
17
14
79
80
81
82
83
84
85
86
87
a8
' 89

91
92
‘93
9
95
96
97
98
99

90 .

i

10

20

25

30

35

36

37

AN

‘YE‘YEL)‘YEEI -

YbZO*Ql‘(XXH'QAA‘OA/) DO+ IXXA-XXB+XXBOYEE]) DA+ (XXA~Z 21 -XXB4YEE[®
SYEEI)#0.503¢YFeDLOGIL Y. DO+ XYRE) /(:1.D0~XYAE)) ) #YEEL
YT1020.50UYEET € {XXK]11~-YEE+YEEZ#XXK 1L OZEL) .
¥Y720=0.50usYEEI *(QAA®( XXKL1-YEE)+YEEZO#XXKLLI®ZE2)
SMAX=P1/(4.DO®0OEE)

SBASE=P[«{]1,D0-QAA)/{4%.DO*QEE)
COFA=QE*XCT®(1.D7+Y110+Y120)+2,D0¢€(vY710+Y720Q)
CDB8=0.029uU0%{ 1.00-0AA) ¢=].5/DSGRT{(CDFB)
Al=2,.004Y2104¥220-Y310+Y320

A230,500%0ESXCN&(1,00+Y110#Y120) +¥610-Y420 ) Tt

A3=0,SDO*{QE=XCTo(1.00+Y110+Y220)¢2. DO*(leD*YTZO!OSBASE*C0815HAXD
2/Q2
B81=0.500%(- v21o'v2200Y3100v320) Y510+YS20
B222.00-Y310+4Y320+Y610-Y620-0.500%1Y410+Y420) +0.250I*QE#XCN*{~Y110
*+Y120)°
B320.SDO0QE*XCN*I1.00+Y110+Y120)+Y410-Y420-2.5D0«(QFEeXCT¢(]1.00¢
IVL10+YL2Q)+2.00%(Y710+YT20)+SBASESCOB/SHAX)®(0.500+Q1 +P2)1/Q2 -
Cl1=0.5D0MN Y21 0+Y220+Y310+Y320) ’
C2=-.5D0%{ Y410 ¢Y420)+0. 25D0#QE*XCN*{-Y110+Y120)
C3=0.5D0®(JE*XCT*#{1,D0*YL104Y120)42. DO‘(7710&¥720)OSOASE'COBISMAXI
4*(-0.5D0-Q1)/G2
D1=1.00/6.D00+¢0.,2500%1Y210+Y220-Y310+Y320)+0,5D0%(+¥Y510+Y520)
D2=0.500%(¢Y310+Y320-Y5610-Y620)+0.2500%(Y410-Y420)40,125004QERXCNR
S(1.00/73.0Q+Y110+Y120)
D3=0.2500%Q6=XCN*(~-Y1L1O+Y120}-0.5D9%(Y610+Y620Y+0,500%(QE*
TL1.D0+Y1104Y120)+2, oo-(vvxoovrzonvsause*coe/snax)t(o soo»ofg‘f .
810.500+Q1)/0Q2 P
QQ=A1%N1-B1+C} -
THE COEFFICTIENT OF A QUARTIC EQUATION
A(1)=1,.00
A{2)={A1*D2+A2+D]1-R1*C2-B24C1)/QQ
Al3)=(A1*DI+A2#D2+R¥ED 1 -B1*L3-B2%C2~83¢C1)/QQ
A(&)=(A2¢*D3+A3D2-R2=C3-B3%C2)/QQ
AlS)s(A3=L3-B3#C23)/QQ '
BAIRSTOW METHOD - .
DATA N.EPS,P;QI'H1.0‘07.1.0001.001 -
NN = N + 1 Il .
M=0 : - ‘ .
J = N-2%N
M =M+l ' ; k
JI = g 4l .
IF1J-2) 2V, 25, 30 '
XR{NY = -a(23/7A(1) *
X1{N})=0.00 - .
GO 7O 60 <
AA = A(1) ’ h - ' . ‘
88 = A{2} .
CC = AL23): . .
GO TO S1 )
NL = 1
8lly « atyY .
8(2) = a(2)-P+B(1) .
00 36 1= 3,39 :
B(I1) = A([)-P*B(I-1}-QeBI([~-2)
Clil) = B(l} i
Ci2y = B(2)-PeC (1) . .
DO 37 (=3,4
ClI) = B(I)-P*C{I-1)-Q=C([~2) )
X = CLJI)= a(Jl ) t~

e o}
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100 CY = CUJ-1)se2-CX*C(4-2)

101+ OP = (B(J)*CLI-1)-B(IA)eCLI-2))/CY

102 ¢ D2 = (B(JJIIeC(I=1)=BI(J)*CX)/CY

103 P s« P e 0P .

10¢ Q 4« 0.,+0Q

105 TF(PARS(DP).GT.EPS LARD. TO 40 .

105 xswasswo).u.sps“m 43 .

107 40 I'FINLLGE,L000) GD FD 45

108 . NL=NL#1

109 * GD 10 35

110 . 45 0D SOt = 1,33

1 50 A{[)=@(I)

112 AA s 1,.DO

113 BB =P

114~ N G£23*‘0

115 51 DxB83¢88-4.D0%AASCC . -
116 IF(D.GE.0.D0) GO TO 52

117 X1J=-88/(24,D0%AA} .

118 X2J = X1J

119 X1K=DSQRT{~-D)/(2.D0O%AA)

120 X2K = ~X1K

121 _ GO TD 5%

122 . 52 DD = DSQRT{D)

123 ' X1 = (-8B8+0D)/(2.DO0%AA)

124 J={=-BB-DD)/{2.0D0%AA)

125 ¢ . " X1k=0.DO

126 X2K=0.D0

127 . 55 XR{2¥M-1}) = X1J

128 XR{2%M) = X2J .

129 X1(2¢M-1) = XIK

130 XT(2*¥M) = X2K B
131 IF{J4.GT.2) GO TO O

132 60 WRITE(4,300) e )

133 300 FORMAT{' *,'RDDT%,9X,"REAL PART',7X,* IMAGINARY PART*})
134 DD b4 1=],N ¢
135 XXR{TY=XI(1) . a

136 XXT(1)==XRUT) .

137 1;((oABS(x5R(|)).Lr.l;o—S).Auo.(xxl(x).Lr.o.oar$ G0 YO 1000
138 66  CONTINUE

139 100 conrruu(}wgz)

140 1000 WRITELS, Q1,04,02,QE

141 200 FORMAT(2X,4F15.37/7)

142 sToP

143 END , |






