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° Abstract

_This thesis studies a low delay speech coder operating at 16 kbits/sec. The coding’
-

algorithm is a delayed decision tree-coding ‘scheme using the multipath (M,AL)‘ tree

search algo;‘ithn;. Two different adaptive synthésis filter configurations are used for
mapping the innovations code (excitation sequences) to the output or reconstruction
code. The first conﬁguration uses a shknt-term or formant synthesis filter which re-
constructs the speech spectral’envelope. The fine structure of the speech spectrum is
contained in the innovations sequence 1n this case. The second configuration consists
of a cascade of a long-term or pitch synthesis ﬁiter and a formant synthesis filter. The
pitch filter first reconstructs the spectral fine structure, and the formant synthesis fil-

ter inserts the spectral envelope. Backward adaptation of both the pitch and formant

_ synthesis filters results in né side information requirements for the transmission of

adaptation information. Noise feedback encoder configurations are employed to allow
for the use of a frequency weighted error measure. The innovations tree is populated

using random n*unibers?with a Laplacian distribution, and includes the effect of a

t

backward adaptive gain.

~  Results of both objective and formal subjective testing of the encoding algorithm

are presented. At ‘an encoding rate of 16 kbits/sec,'and an encoding delay of 1
ms, the algorithm yields a subjective quality equivalent to 7 bits/sample log-PCM.
The encoding algorith;n is suitable for use in digital links having low encoding delay

constraints, such as the switched telephone network. Recommendations for future

~
1

studies are given.

g




‘ .
. . Sommaire
e, h ' .
. ‘ "

-

Ce mémoire étudie un codeur de parole a delai court et of)éra,nt A une vitesse
de 16 kbits/sec. L’algorithme de <odage est un schéme de codage vd'arbre a déci-

sion reportée utilisant Ialgorithme multi-chemin (.M,]z) de recherche dans un arbre.

1

" Deux types de configuration de filtre de s&nthése adaptif ont été utilisés pour ap-

4 :
pliquer les séquences d’excitation au code de reconstruction en sortie. Le premiere

P

configuration utilise un filtre d? synthese de formant reconstruisant ’enveloppe du
spectre vocal. La structure fine du spectre vocal est dans ce cas contenue dans la sé-
quence d’excitation. Le deuxiéme configuration consiste en une cascade formée d’un
filire de synthése de périp(;dicité et d’un filtre de synthése de formant: Le filtre de ’
périodicité reconstruit d’abord le structure fine du spectre, le ﬁlt,;e de formant insere
I’enveloppe spectral. L’adaptation causal des filtres de synthese de périodicité et de

[~}

formant 1mplique quil n’est pas nécessaire de transmettre d’information latérale. Des

- configurations de codeur a retour de bruit sont employées pour permettre 'utilisation

d’une mesure pondérée d’erreur de fréquence. L’arbre d’excitation est aléatoirement

peuplé en utilisant des nombres générés selon une distribution de Laplace. Un gain
(s ’

adaptif est utilisé dans I’arbre d’excitation. \ ‘.
.

Les résultats des tests objectifs est subjectifs formels de l’algorithn\ie de codage
sont présentés. A une vitesse de codage de 16, kbits/sec et un délai d’une micro
seconde, I'algorithme produit une qualité subjectivef'zquiva]ente a 7 bits/échantillon
log-PCM. L’algor;thme de codage convient pour utilisation dans les liens digitaux

ayant une contrainte de delai de codage faible, tel que les réseaux téléphoniques

commutés. Finalement on offre des recommendations au sujet de recherches futures

.

possibles. _ i
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. Chap%er 1 , -Introduction

L4

- o
- Dugital C'oding refers to the process of representing an analog signal (continuous

in time and amplitude), by a digital “signal (discrete both in time and amplitude).

t
.

The digital signals are usually ir the form of a stream of binary digits or bits.
Digital representation of analog signalk;t offers many advantages [1]. The most
important and obvious of these are (1) regenerative amplification for transmission
over long distances and (2) ease of encryption for secure.communicatiqns.’/Regen-
erative amplification allows better use of noisy channels, provéded enough repeaters
are stationedzl;etween the source and the destination. During each regeneration, the

digital signal can be stripped of noise and interference introduced during the trans-

s . el . . a
mission. If regeneration is done before the channel noise and interference become too

~
“~

severe, performance can be made virtually independent of distance. In analog sys-_
tems, however, noise and other impairments accumulate with distance. Also, analog
repeaters exhibit some non-linear behaviour, the effects of this being accumulated at
every repeater. 1The advantages of'digit.a.l coding for speech signals have, oizfer t‘he
’yea;s, prompted the integration 6f digital techniques into telephone nflztworks. A?’a
result, the last two decades have witnessed a great deal of activity in speech coding.

Digital coding of analog waveforms entails some amount of coding distortion.
Coding distortion, in general, decreases with increasing coder bit rate. However, high

bit rate signals require a higher transmission bandwidth for reliable transmission,

¢ .'1-
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and this implies higher transmission costs. The goal of all speech coding an;)rithms,

therefore, is to represent speech with high quality (low distortion), yet at low encoding

-

bit rates.

- ¥
Speech researchers have over the years distinguished between four grades of qual-

ity (1) Commentary or Broadcasi quahty, (0-7000 Hz bandwidth) which is wide band-
width speech with no perceptible‘qoise, (2) Toll quahty orl‘Tl’elephon“é quahty, (0-3400
. Hz bandwidth), which is narrow bandwidth speech as heard over the switched tele-
phone network, (3) Communicatinns quality, which°is,:'haracterized by high intelligi;-
l}ility but with perce};tible amounts of noise and distortion, and (4) Synthetsc quality,
which is highly i’ntelligible, but which also tends to so’und buzzy ;nd unnatural, and
lacks speaker identlﬁabilitr The work in this thesis is concerned with coders that
yield- toll qua.lity“or near toll quality spejech, for use aver the switched telephone
network. ‘ \ ’

A starting point in ;J,ny speech coding process is that of time discretization (sam-
pling). According to the sampling theorem, afiy band-limited— analog signal can be
sampled uniformly without loss of information provided the sampling rate is at least
eq;al to the Nyquist rate, (twice the highest frequency component in the original

analog sig!nal). Altrhougkl speech signals have an energy which falls off rapidly with
frequency, low pass ﬁltering to preserve the perceptually important frequen@cies en-
sures that the signal 1s essentially b%nd-limited. For example, speech transmitted
over— the telephone networ{( is first band-limited to 3400 Hz, and then sampled using

~
5

a conservative rate1 of 8000 Hz. ‘Umform time sampling at a sampling pate_greater
than or equal to the Nyquist rate is an information preserving operation, aild the
original band-limited analog si gr;.al can be recovered by low pass filtering the sampled
> . .
signal. To obtain a digital re:)resentation, the information contained in the sampled

speech signal has to be quantized. Speech coders are broadly classified into two cate

gories a,.ccording to how the sampled speech information is quantized. The two coder

. 9. , .
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types are (1) Voice coders or vocoders, and (2) Waveform coders.

Vocoders can be described in terms of a discre;e time I-nodel~ for sampled speech
signals. The model consists of a recursive digital filter driven by either white noise
or & periodic pulse train [2]. The type of excitation and the pa;ameters of the filter
are determi;led in an analysis phase. The relevant parameters are then transmitted
to the Mreceiver where they are used to synthesize the output speec};. Since no simple

parametric model-for the filter and the excitation can possibly take into account all

the complexities of the human speech production process, the output speech usually

“has a ‘buzzy’ and synthetic quality. The synthetic quality of vocoder speech is also in

part due to the autonratic parameter estimation alg&rithms. Better quality speech can

be obtained by manual fine tuning of the filter and excitation parameters. Vocoders-

genera:lly operate at rates below 4.8 kbits/sec, and yield synthetic quality speech, and
certainly do not meet toll qual'ity standards yet. The coder considered in this thesis
is therefore not of the vocéding fype. - ‘

Waveform coders, unlike vocoders, attempt to track the actual time variations of
the input speech. Waveform coders generally operate at rates above 9.6 kbits/sec, and
afhieve qualities ranging from comrnu\nica,tions quality to broa‘%gast quality. Hence,
almost all toll qu.ahty coders are waveform coders. The conventional method of
waveform coding is Pulse Code Modulation (PCM), with the so-called p-law and A-
law companding schemes [3],[4]. Figure 1.1 illustrates the operation of the PCM
coder. The PCM coder i:llustrates the two basic processes involved in ‘waveform
coding, sampling and amplhiude guantization. Uniform time sar‘npling is followed by
amplitude quantization to one of a finite set of amplitudes. Usually, speech samplecd
at 8000. Hz is quantized {o one of 256 amplitude levels givi\‘ng a coding rate of 64
kbits/sec. ~After sampling, the analog input is comp;essed using the p-law or A-
law schemes. The final step Oin the encoding process is uniform quantization of t.h.e
sampled and compressed signal. At.the re(:eiver, the output of the inverse quantizer

d

.39-
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is expanded and low pass filtered to yield the output speéqh signal. Companding:
together with uniform quantization is equivalent to nonuniform quantization with a
logarithmic characteristic, and yields a higher dynami\cyge and better idle-channel
noise performance than uniform PCM schemes. Log-PCM is a low complexity coding
scheme with"essentially zero encoding delay, and was ﬁrét standardized about 20'
‘ years ago. Spurred on by the decreasing cost of hardware, researchers havg looked

to more complex coding schemes that provide equivalent quality speech at lower
e rates. The complexity of a codG':r is determined by its signal procefsing and meamory’
' requirements. The following paragraphs review the evolution of some of these coding

. schemes, leading up to the coder studied in this thesis.

2

K . Band |
S (t ) e — Limuting Sampler Compressor Quantizer

Analog Falter -

Input .

! ) “
‘l
N 0.
- “ Interpolating _ Inverse
3(t ) et Expander
Analog Filter ) Quantizer
) Output

Fig. 1.1 Log-PCM Coder,

1
[

It is well known that speech signals sampled at the Nyquist rate exhibit significant
I'd

correlation between successive samples. In PCM, each sample is coded independently
of all other samples. This method of coding 1s inefficient since the correlgxti(;n between
samples is 1gnored, and requires coding at rates of 64 kbits/sec to provide telephone
quality speech. A class of coders called Dufferential Pulse Code Modulation (DPCM.)
coders utilize this redundancy to achieve reductions in coding rate OV%PCM [4]. A

DPCM coder is shown in Fig. 1.2. It includes the use of a predictor in addition to

a quantizer. The predictor exploits redundancy in the input stream through time

-4 - ° R
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domain operations. The input to the quantizer is a prediction error formed by the
. : N"‘\ - (

difference between the current sample and the output of the predictor. Because of

the correlation between successive samples, the prediction error sequence will have a

. smaller dynamiczrange," or variz;nce, than the sampled speech signal. The quantizer

can therefore have fewer levels in a DPCM coder than in a PCM coder without

, '
~suffering an increase in quantization error variance.
< «

-~ o . L4

4

+ \
-——-————G?———;———.r Quantizer - -
*_ Input -§ Output
. ' - v o
Prediction : S
ir+5+ . %
TN
« -
- B:
e Predictor
b » 4

* Fig. 1.2 Differential Encoder

Speech is a quasi:stationary source whose short time behaviour is statlona,ry, but
b - «

whose modes of stationarity change slowly with time. In DPCM coders, a fixed quan-
" tizer and fixed predictor are used. The design of these coders is based on long-term
statistics of the inp1‘1t signal. The\f)erf(;rmance 0} differential encoders can be further
impro:red by adapti’ng.the predictor \and quantizer to match the short-term modes
' of stationarity of the input speech, and th(; dynamic range of the prediction error
sequence respectively,:‘Such coders are called Adaptive Differential Pulse Code Modu-
lation (ADPCM) coders [4]. ADPCM coders can yield toll quality speech (equivalent
“to 34 kbits/sec log-PCM) at rates of 32 kbits/sec, a saving}fof 1:2 over conventional
log-PCM techniques [5]. Indeed, the CCITT formally approved an ADPCM coder

algorithm as an international standard at its October 1984 plenary session [6].
- 9 )
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The CCITT é\DP(’M.sta;dard, while providing toll quality speech at half the bit

rate of the PCM sta}\lﬁrd, also observes several important coder constraints imposed
by existing telecommunications networks. One very severe constraint for terrestrial
networks is that of echo toler'ance of telephone links. Telephone links provide unsat-
isfactory performance in the presence of large round trip delays due to the problem
of disturbing echo effects. Echoes are generate—d at the interface between 4-wire and
2-wire lines due to impedance mismatches at the hybrid interface. The disturbing
effects of echoes can be reduced by introducing artificial losses in bot'h directions
of the 4-wire link. The amount of echo loss reqilired for satisfactory performance
increases with the round trip delay. Both t:he' encociing delay and the propagation
time contribute to the round trip delay. Since echo suppression affects the received

signal also, the amount of echo suppression loss used has to be limited, and this in

turn sets a himit on the maximum allowable round trip delay. Also end-to-end links
)

\
.may not be entirely digital, necessitating several tandem coding/decoding processes
. ) »

in cascade. Transmission across digital links may also involve several stages of digital
L]

transcodings to and from 64 kbit/sec log-PCM. In consideration of all these factors,

it is in general necessary to limit single stage encoding delays to a maximum of 1 to

2 ms per direction [7]. This limit on pr.ocessjng delay should be taken into account

when designing a new coding algorithm. A second property of the CCITT coding

.algorithm is that of backward adaptation of the predictor and quantizer, i.e., the

predictor and quantizer are updated using information contained in the past quan-

" tized output signal. Since this signal is available at the receiver, it can keep track

1)

of the evolution of the predictor and quantizer witliout relying on side information.

The transmission of side information necessitates more complex framing schemes for

correct multiplexing of the quantizer output and side information bit streams, thus

increasing overall coder complexity.

The aim of this study is to obtain a 16 kbits/sec toll quality ‘coder that has

o Y s
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(1) an encoding delay nc greater than g ms’, a?d {(2) no side information require-
ments. The performance of an ADPCM coder (based on the CCITT‘ algorithm) at 16
kbits/sec and 24 kbits/sec is, unfortunately, poor. Specifically, at 16 kbits/sec, the
01[1tput is considerably distorted and has high amounts of quantization noise. This‘is
to be expected since the predictor and 1ts update algorithms are hindered by poor
quantization effects. The quantization effects in turn are affected by poor predictor
performance. Hence at low rates, it has been necessary to use forward adaptati(;n
schemes for adapting the predictor. This involves operation on a block of iilput speech
for determining the opt'imum predictor coefficients [3]. The maip disadvantages of t.his
are (1) encoding delays of the order of 10-20 ms due to data buffering to calc‘ulate the
optimal predictor coeflicients for the biogk, and (2) transmission of side information
for parameters and for maintaining coder/decoder frame alignment. Henje, coders
employing forward adaptation schemes are unsuitable for[general use over terrestrial

telephone networks. Some other refinement of the basic ADPCM scheme is required

to enable it to perform adequately at low rates, observing at the same time the con-

- straints of (1) low encoding delay and (2) no side information. A major advance

tbqu,g,rds improving the performance ‘of waveform coders at low bit rates came with
,the use of multipath tree search algorithms with differential waveform coders. Various
developments along these lines are discu'ssed n«;xt.

A characteristic of diﬁ‘er‘entlal coders is that the possible quantized output se-
quences are arrangedn in the form of a,_‘trce code. Encoding in conventional schemes
then proceeds by a single path search ofthis tree to ﬁnd\the bet;t output sequence.
This has been identified as being a clear shortcoming of conventional DPCM and
ADPCM. A major refinement to differential coders has been that 6T employing De-
layed Decz;zon with such coders. These schemes are called delayed decision DPCM
or delayed decision ADPCM as the case may be. Differenti:l‘uencoders with delayed

decision, as the term implies, involves some encoding delay. However, unlike forward

«
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adaptive differential coders, where encoding delay is utilized for efficient redundaﬂcy
removal from the inputl, delayed decision coders utilizedencodiqg delay to provide the
capability of a multipath search through the code tree, thus making more efficient
use of the tree code. Delayed decision is a feature that leads to efficient coding of
redundant as well as non-redundant inputs. The delays are usually of the order of a
few samples, and can be kept within network echo delay constraints.

Delayed decision applied to a DPCM coder was first studied by Anderson and
Bodie [8]. A computationally eﬂﬁci\ent multipath search algorithm, called the (M, L)
algorithm, was used with a fixed predictor and quantizer together with a squ;,}ed error
distort_fon I;leasure to give more than 4 dB improvement in signal-to-noise ratio over
conventional single path searched DPCM schemes at a rate of 1601(_bits/sec. Jayant and
Christensen |9] a.ppliedr delayed decision using the (M, L)-algorithm to a differential
— coder with ba.ckwar'd adaptive quantization and fixed prediction. Although delayed
decision coding in the above st‘;udies provided gains both in terms of measurable
signal-to-noise ratio gains and in terms of perceived speech quality over conventional
dlffer;ntial coders at a rate of 16 kbits/sec, the speech output quality was still reported
to be characterized by easily perceived quantization noise. This is due to two main
shortcomings. First, the encoding algorithm utilizes fixed gnd not adapfive predicti(;n.'
Second, the tree code is a deterministic tree code. Much can be gainedwith the use of
so-called stochastic tree codes as will be shown in this thesis work. Delayed decision
ADPCM with forwarfl adaptive prediction have been studied in {10] and [11]. The

use of a stochastic code with forward adaptation was reported in [12]. However

as mentioned previously, forward adaptation schemes are unsuitable for terrestrial

I

telephone networks.
This thesis studies a delayed decision tree coder employing backward adaptive
quantization and prediction. A stochastically populated innovations tree that includes

the effect of a backward adaptive gain is used. Both a short-term or formant predictor

e

\
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and’a long-term or pitch predictor are used. Both types of predictors are backward

_adaptive. Generalized noise feedback encoder configurations [13] are utilized to permit

,the use of a subjectively meaningful frequency dweighted error measure. The use of a
pitch pre(iictor in a tree coding application, and the adaptation of the pitch ‘predictor
using backward adaptive algoriechms is new. Backward adaptation of the formant
predictor in tree coding, and the use of a backward adaptive gain with a stochastic

innovations tree is also new.

~

Results show that with an 8-sample (1 ms with an 8 kHz sa;npling rate) encoding

1

delay, and a coding rate of 16 kbits/sec, speech quality equivalent to 7 bits/sample
log-PCM is achieved. ‘

1.1 Scope and organization of Thesis

Al

This thesis is organized into five chapters. Chapter 2 reviews the conventional

ADPCM coder, and the géneralized noise feedback coding scheme of Atal [13], with

- both short-term and long-term predictors. The'adaptation algorithms used for the

predictors in this work are described. Some backward gain adaptation schemes used
with conventional quantizers are presented.

In Chapter 3, descriptions are given of various tree codes associated with con-

' ventional DPCM and ADPCM schemes. The multipath (M, L) search algorithm is

briefly reviewed. Deterministic and stochastic tree codes are described. The conven-
b

tional quantizer gain adaptation schemes are extended to backward gain adaptation

with stochastic innovations code trees. A historical summary of past work in tree -

coding, relevant to this thesis work, 1n given.
Chapter 4 gives a detailed description of the encoding algorithms studied. Both
objective test results and results of subjective listening tests are presented.

‘Chapter 5 concludes the work and proposes recommendations for future research.

-9.- =
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Chaptér 2" Conventional Differential Coders

) o

7

This chapter provides a review of conventijonal Differefitial Encoding schemes.

These coders provide significant ¢oding gains overaPCM systems by exploiting redun-

?
o~y

- dancies in sampled speech signals. The conventional Feedback Around the Quantizer

configuration [14] is presented, together with the Generalized Predictive Coder con-

*

figuration with adjustable noise spectrun [13].
This thesis studies the use of delayed decision using the Generalized Predictive

Coder configuration. Such an encoder configuration allows for adaptive control of the

-

o

. output noise spectrum.

Finally, the adaptation schemes used in this study for the predictor and quantizer
which constitute part of any differential encoding scheme are briefly described. Such

I
adaptivity is necessary in order to account for the time varying nature of speech

signals. ,

S

2.1 Conventional ADPCM System

o

. The basic ADPCM system is shown in Fig. 2.1. The main components of the
system are the predictor and the quantizer. Redundancy removal from the input

speech samples is achieved by subtracting from each input sample s(n), a predicted

sample 5(n). Predictors that remove near-sample redundancies from the input have

A v
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(@™l quantizer 5(n)
“13(n) :
F(z): |=
‘ i(n) ;
F(z) |
} — ' ‘DECODER
ENCODER d
Fig. 2.1 Conventional ADPCMQCOder
. J
the system function of ’ i *
P/
F(z)=) a,=7}, (2.1)
1=1 -

\ .

where P is the order of the predictor. Such predictors' are based on the modelling of

the acoustic resonances of the vocal tract by an all pole synthesis filter. The vocal

\

tract resonances are called formants, and hence such predictors will be referred to

henceforth as formant predictors. The prediction error formed as (s(n) — E(n\jris ‘
T Y ) . :
then quantized and transmitted over the channel. Simultaneously, this quantized
\
value is summed with the predicted value to yield a quantized output sample 5(n).

The encoder configuration therefore also incorporates a local decoder. Since the input

-

to the predictor is the reconstructed output s(n), the predicted signal 3(n) is given

by

o

P ‘ 7
s(n) = ai(n —1) . (2.2)
1=1 o ) -

-The equations describing the operation of the system are given below.

e(n) =s(n) — 3(n)
c(23)
eg(n) =e(n) + g(n) '

S 11~
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Assuming that there are no channel errors, the decoder will form a reconstructed

signal $(n) given by

-

3(n) =eg(n) + 3(n) .. o

=) 43 +an) e

=s(n) + ¢(n). ’

'Ii}}e reconstruction error given by §(n) — s(n) is equ;ﬂ to thequantization error g(n).
For a given number of quantizer levewls, the quantization error variance tends to be pro-
portional te the variance of the quantizer input. Since the prediction error sequence
e(n) has a smaller variance than the input s(n), differentia]\ coders will provide better
performance than PCM systems, for the same number of quantizer levels. The main
objective in the design of the p}edictor is therefore that of maximizing the prediction
gamn, tile prediction gain 'being the ratio of the pc;wer in therinputasignal s(n) to the
power in the predicti(;n error signal e(n). The quantization error for a multi:level »
quantizer with finely spaced levels 1s approximately whale, i.e., has a fairly flat power
spectrum. Since the quantiffiti;)n error is equal to the reconstruction error, the latter
also has a white spectrum uhder the given assumptions. The Generalized Predictive -

Coder configuration allows more control over the shape of the reconstruction error
»

spectrum, and 1is presented in the next section. a

L4

2.2 Generalized Predictive Coder Configuration

The block diagram of a Generalized Predictive Coder is shown in Fig. 2.2. In
the conventional ADPCM coder described in the previous section, the output noise is
approximately white. A white spectrum ds, however, not perceptually good, especially

if the noise power is high. The shape of the noise spectrum in relation to the speech

spectrum is in{portant from the point of view of perceived distortion in the output
1 g

t speech. Noise in the formant regions is partially or totally masked by the speech




signal, since the speech power is high in the farmant regions. The perceived noise

in the output speech therefore comes from noise in those frequency ranges where

the signal level is low. A configuration that allows for adaptive adjustment of the

" noise spectrum in relation to the speech spectrum is the Generalized Predictive Coder

configuration [13].

. - 1-F(z) QUANTIZER -

kY

¢
L
—
=3
heg
o>
—
3
-

v

DECODER
Fig. 2.2 Generalized Predictive Coder

- 7

In Fig. 2.2 F(z) and N(z) are given by

- P *
F(z)=) a;z7*
=1 .

L - T (2.5)

&




The quantizer input e(n) is given by : .
i P P
e(n) = s(n) = Y a,s(n —i)+ Y byg(n —1), (2.6)
. i =1 1=1 °
The output of the decoder is given by )
; P :
§(n) =eq(n) -+ Z a,8(n — 1) ) i
=1 - ) v N
P /
L =) =g+ Y ad(n— ) (2.7)
1=1 . ‘ QA
P: ! P R -
=s(n) = D as(n =)+ 3 bg(n —1)~q(n) + 3 ad(n i) .
=1 1=] 1=1 .
Takié&z-transforms of both sides yields a
$(z) =5(2) = $(2)F(2) + N()Q(2) - Q(2) + 5()F(2)
1- N(z) (2.8)

5(3)—5(3):9(3)m .
The spectrum of the reconstruction error is §(z) — S(z) (=) is the spectrum ;Qf
the quantization error, and under the usual assumptions of white noise, is equal to a
cginstant. The shape of the reconstruction error can be controlled by choosing N(z)
appropriately It is us;ml to choose N(z) as a bandwidth expanded version of F(z),
le., N(z) = F(:_;)’ where 0 < p < 1. The value ojf f is usually chosen to be between
0.75 and 0.9. A value of p, = 1 gives a white reconstruction error spectrum, while
u = 0 gives an error spectru\m which has the same shape as the signal spectrux;l. An
intermediate value of u has the effect of decreasing the noise power .in the valleys
(regions between the formants) of the speech spectral envelope, and increasing the
noise power in the formant regions. This decreases the perceptual effect of noise in f:he

output speech. Note that the ahove method of controlling the output noise spectrum

relies on the quantizer noise spectrum being white.

2.3 Pitch Prediction

~

The block diagram of a Generalized Predictive Goder with a formant predictor ‘

as well as a long term or pitch predictor is shown in Fig. 2.3.

| 1 -
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_ N(z)
. k q(n)
a - ' h i + -
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+ r_ 6(7%) o 6q(7’1) Dagital
- - - Link °
. +
-
P(z) =
ENCODER
---------- i® -
Digital + 5(7’1)
F(z) fe
R . DECODER - ,

Fig. 2.3 Generalized Predictive Coder with Pitch Prediction
- . ‘ ) / .

- The use of pitch prediction is motivated by the fact that voiced speech segments
exhibit considerable similarity between ‘adjaceni pitch periods. Voi_ced speech is pro-
duced by excitation of the vocal tract by, thythmic glottal excitation. Voiced speech
therefore tends to be quasi-periodic in nature, the period being equal to the pitch pe-
riod, i.e., the time interval between adjacent glottal pulses. Foerant predictors only
remove redundancies in the input speech that are due to the vocal tract shape, and
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hence, formant pr}edicted residual signals will contain pitch pulses for voiced speech.
Between pitch pulses, the formant residual is noise-like in nature. The forma;.nt resid-
*ual during voiced segments still contains redundant information in the form of pitch
pulses, which can be effectively removed with the use of pitch prediction. The overall

residual can therefore be quantized more ea$ily since its variance is further reduced

o

through pitch prediction.

A third order pitch predictor has the system fu?ction of

S~

P(z) = By Mot 4 By o o= M, T (29)

where M, is the pitch period 1n samples. Since the sampling frequency is fixed and
is in general unrelated to the pitch peri;(;d, the pitch period may not be an integral
numbe; of samples. /}) third order predictor interpolates between adiz;cent samples
and gives higher correlation»fron{x one period to the next than the individual samples.

Adaptation. of pitch predictors is necessary, since both the pitch lag and the
predictor coeflicients have to be fine tuned to the analysis segment. Pitch prediction
is conventionally ach.ieved with forward adaptation. Tht'e use of backwgrd adaptatipp

is considered in this work. The following sections consider adaptation schemes used

in this work for the formant and pitch predictors.

2.4 TFormant Predictor .

S

Since the signal s‘pec‘trum 1s time varying, the coeflicients of the filter F'(z) must

be time varying also, to obtain a small prediction error variance. Predictor update

_algorithms are broadly classified into two categories, forward and backward adapta-

tion algorithms. Forward adaptation schemes were not considered in this work since
they involve large encoding delays, and also require extra channel-capacity for the
transmission of adaptation information.

- f

-16- ' ’
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Backward adaptatign algorithms make use of information contained in the past

quantized data to update the predictor. The predictor can thetefore be updated at

every sampling instant., This forms a framework for the use of recursive or seGuential
& -

update algorithms [15]. Most recursive update algorithms are based on the method of .

steepest descent. The mean square prediction error is in general a' quadratic function

of the predictor coeffirients. The error surface is therefore a bowl-shaped surface.
| ,

Algorithms based on the method of steepest descent adjust the predictor coefficients

by continually seeking the bottom of this bowl shaped surface.

2.4.1 Update Algorithm
3

The update algorithm used fof the predictor in this work is the Adaptive Dﬁttiqe

Algorithm [16]. This algorithm is briefly described below.

c

folm) - . film)  fpoaln)

Fig. 2.4 Lattice Filter of Order P

The prediction error filter in Fig. 2.2 is given by

g A(z) =1 — F(z)

L 2.10
=1 — Zalz——z ) ( )
1=1

- 17- ©
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, This transfer function can be implemented as a lattice filter shown in Fig. 2.4. The
° .
e 5 reflection (or partial correlation) coefficients K'y; have a unique relationship with the
predictor coeflicients a,: Given Km, m = 1,...,P, the set a,, 1 = 1,...,P are
- : computed recursively from the following relations: 5
v o v
’ agn) =K, - ° ) S . (2.11.a)- -
' ‘ . ,
’ ' -{m m—1 - m—1 ‘ . ® .
al™ = 5 ' KoY, 1< gm- L (2.11.b)
o Equations (2.11) are computed recursively for m =1,2,...,P. fThe coefficients qg-m)

“ are the cogfficients for the corresponding m® order predictor.

4

Y

Since the set of reflection coeficient’s K, of the lattice and the coefficients a, of
the corresponding transversal filter have a one-to-one relationship, both implementa-
tions are exitirely‘7 equivalent for time 1nvariant condifions. In the time varying case

however; and in particular the case where the filter A(z) is updated at every samiJling

“

instant, the two implementations (lattice and trz;nsversal) are not equivalent, due to

( differing inifial conditions. The adaptive lattice algorithm is an update scheme for

I

'the reflection coefficients of a lattice filter that can be used to realize the transfer

functiow A(z). In the actual implementation of the transfer function A(z) however,

°

one can use a lattice implementation directly, or use Eqs. (2.11) to convert the re-

e

flection coefficients to ‘the corresponding transversal tap coefficients towards a direct
<

',form realization. Thus while the underlying update algorithm 1s an adaptive lattice,
| : ’

both lat‘t}ce and transversal implementations can be used, although[these are not,

. v
; o

entir(:ly equivalent in theory. . -

—a

From Fig. 2.4, the following relations hold at the first stage and at each succeeding

/
stage of the lattice. - :
L folm) =hm =st)
fmt(n) =fuatm) = Bpabmln=1) - (219)
S C bma(n) = = Ena () + bl = 1) -
o ) - 18-
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where s(n) is the input speech signal. The value r{n) is the pr;(ﬁétion error or residual

\ signal at the final stage of the lattice. It is gi;en by

\ ‘ "(n) = fp(n) = fp_1(n) - Kpbp_y(n - 1) ‘ (2.13)

a

s

Tﬁe\ input speech signal is quasi-stationary. Therefore, the reflection coeficients
~

\ K must vary with time to track the modes of stationarity of the input s(n). The
9

reflection coeflicients Ky, are therefore a function of time n, and shown explicitly by

R
£

_writing Km(n), m =1,2,,..,P. ‘From the knowledge of all the quantities at time n
g;Vt;n in Eq. (2.12), we need to compute the reflection coefficients Km(n+1),at time
n + 1. In the update method used, the reflection coeflicients are updated on a stage
by stage basis. The update method is based on the minimization of a weighted error

R
g “of the form

Enfn) = Y. w(n - k)en(k), (2.14)

Lk:—oo

where e:;zn(k)ris a weighted’sum of forward and backward residual energies given by

¢

en(k) = (=) f(k) + 905 (k); . 0< <1, (2.15)

\ :6 —
and w(n) is a causal window function. Substituting Eq. (2.15) in Eq. (2.14) yields
n

En(n) = Y wiln = k)1 7)fhk) 4 v (2.16)

k=—o00 %

Substituting for f2 (k) and b2,(k) in Eq. {2.16) yields -~

1

En(n)= S w(n— k)1 -7)[f3 (k)
k= —oc
. , o 2K itk 1) 4 Kby (=10 )
+ 3 wn = k)KL () fE (k) .
k:—m' w0

- ZKm(‘")i)m«l(k - fm-1(k) 4 b?n\.](k - 1)]

. 19.
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Mnumxzxng Epm(n) with respect to Kp(n) yields the update Kpy(n + ). The-update

Km(n'+ 1) is given by -

n ]

> win = k) fpy (kb1 (k — 1) %
Knn+1)= = k=-oc0 - ‘
> win = k)1 (k) + (1= 7)bi_y(k - 1)] (2.18)
k=—co . ) .
= () ‘ 8.

Dm('n)
The'sufficient conditions for stability of the synthesis ﬂlter, - A( T= A e that (1) y = 0.5
and (2) w(n) > 0 for n > 0 [16]. The factor v in Eq. (2.15) determines the mix

between forward and backward residuals. Having 4 = 0.5 corresponds to an equal

mix of forward and backward residual energies. It is desirable to minimize only the

ﬁtward residual, but this implies having v = 0 which does not g“ua,rantee stability of

the resulting synthesis filter. The parameter v will be referred to henceforth as the
lattice stabilily constant.

&

2.4.2 Choice of Window and Effect on Computation
. Y

The window w(n) is used to form a weighted sum of a function of the forward
‘and backward residual energies at each stage of the lattice, i.e., the window w(n)
weights the residual energy into the past. The reflection coefficient for a particular
stage is then updated for the next time instant by minimizing the weighted sum in
Eq. (2.14) with respect to the :eﬂection coefhicient at that stage. The immediate pa’tst
contains information concerning the current mode of stationarity of the input speech.
Therefore, the shape of the window w(n) should be such that the residual energy over
the immediate past is weighted more than the residual energy over the more distant
past. This ensures that the predictor evolves in accordance with the ghai"mging modes

of stationarity of the input speech. The time frame over which the error is minimized

’ .20 - .

Y

»
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is also-an important design factor. A time frame that is too long results in averaging
G hod

over two or more different modes of stationarity, whereas a time frame that is too

.

short will not contain enough information about the input speech. Two important

considerations in choosing a window are therefore the shapt of the window, and the

v

effective length of the window. A third important consideration in choosing a window

is the eflect on the computational complexity of the update algorithm, as will be scen
> in the next paragraph.

The general update procedure is now given. At each timeinstant n, the algorithm

v -

has to maintain in memory the following, (l) Ko(m)em - 1,00 (P A2) fiu(k), m

1,.... P, :;,,ud k< nyand (3) bp(k), m = L,...,Pyand & - n 1. The mnput s(n) to

]

the lattice is the sequence of past quantized output speech data that is available at
both the encoder and the decoder. In response to®the latest output s(n), Eqs. (2.12)
are used to compute fi(n) and by(n) for m Io. . oP, P bemng the filter order.

The sums in the numerator and denominator of Eq (2.18) are the calculated for

m = 1, ... P. The updated reflection coeflicients are then caleulated and kept for

. o
e

. . I2al * g v
the next time instant¢ The forward and backward residuals [, (1) and by, (1) are also
3

kept for the next time instant  Although the sums i the numerator and denominator

are shown to be mfisnte, one could use finmite length windows, In that case, the forward

v

and backward resdual sequences at cach stage have to be mamtamed in iemory, the

o v
,

length of these sequences heing equal 1o the length of the window  Note also that

for each reflection coeflicient update, a Farge number of multiplication operations

are mnvolved 1 evaluating the the numerator and denonsnator of Eq. (2.18). I a

!

rectangular window 15 used, these multiphcations are avorded, but a relatively large

Al
amount of memory 15 «till required to mamntain the forward and backward residual
<sequences at each stage. A way of avording such ligh computational complexity i

the apdate procedure is to use windows win) that can be consmidered ax the ympulee

response of a causal finite order recursive digital filter. The use of such windows Jeuds
y -
. »ll . [

el
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to the possibility of obtaining recursive update equations for Crp(n) and Djy(n) in

Eq. (2.18) as explained below. ‘ .

-

.In general if W(z) is of the form

« N,
. 1—Y a.z7"

: Tl | (219)
s ] I— Z /312’*1 o d -
=1 .
then Cm(n) satisfies the following recursive relationship, ~
. N N,
Cm(n) = Zﬁzcm(n —1) - Zazfm—l(n = 1)by_1(n — 1 — i) :
=1 =1 . (2‘20)

+ fm—l(n)bm—](n - 1),

and D, (n) satisfies,

8

No¢ N _ ) .
Dpn) = gﬂsz(’" —1)- ;alhfmﬁ(" ~0) A (= 7)bng(r =1 =) (2-2'1)

- i)+ (L= bR y(n = 1)),

" A simple window is the one-pole or exponeﬁ[ial window given by

1

Wi(z)= ———. 2.22
T (2.22)
A The update equations for C'y(n) and Dpy(n) are then given by
! Cm(n) =BCm(n - 1) + fm—1(n)by_1(n — 1) .
. (2.23)

: 2 2
Dim(n) 28Dm(n = 1) + [vfm_1(n) + (1 = 7)bjm_q(n — 1)]
Such a recursive ‘update offers considerable savings in computation and memory re-

quirements of the update algorithm. The equivalent window response w(n) is given
by 7
a" forn >0

0 forn <0, ,
- DQ

and the parameter 3 cortrols the efféctive length of the window.

The simplified update algorithm that results with the use of a recursive window

s now given. The algorithm maintains the following in, memory, (1) Kpn(n), m =




4

&9

@

.

. ' s -
. samples results in the following system of hnear equations 1o be solved,

i §ov
M ¥

L., P, (2) Cm(n —d), @ = 1,..., N, Dm(n - i), i = ..., N, and for m =
1,...,P, (3) fm——l(’{l ~ z):, t=1,.0.,N., byy_1(n — 1), 2 =1,...,N:, and for m =
1,...,P. \For eacil value of m, Eqgs. (2.12) are used to calculate fyu(n) and by(n). The
quanfities Cm(n) and Dy (n) are then updated according to Eq. (2.20) and Eq. (2.21).
The updated reflection coeflicient A,;(n + 1) is given by Eq. (2.18). The reflection

coeflicients and the backward residual b;,(n) are then saved for the next time instant.

-

2.5 Pitch Predictor -Update Algorithm (

Unlike recursive adaptation schemes used for formant predictors, the pitch pre-
7

* dictor adaptation scheme is basically a non-recursive procedure operating on past

¢

quantized formant residual samples.

A 3-tap pitch };redlctor is given by .

P(z)= pp=" My oMy g =My (2.25)

~

was used exclusively in this work. The update is based on the covariance formulation
-

of linear prediction [2]. Minimjzing the mean square ertor over a frame of length N
¥ o

N k 3 N - -
z r(n)r(n —Mp+H 2-12) = X 3, Z rln - My v 20 d)r(n - My 1 20 ), (2.20)
=1

n=] 'E n- |

. . b » 3
for : = 1,2,3. The sequence r(n) is a formant predicted residual signal. This above
]

equation can be written in matnx form as

'

N ) ,

HMp—1,Mpy—1) o(Mp- 1,Mu) (M, 1M, )] [ 5 H0, M, 1)

S Mp, My-1) G(My,, My) WML Myt [t (0, M)

HMp+ LMy 1) @My VM) (Mt LML) [ 53 G0, My 11)

. (2.27)
7
where ¢(7, ) is given by
N
Ha,j) - N e d)e(n - ). o {2.28)
: n o1

i

. *
.09 s

fLres



This in turn can be written compactly as 8 = a. * R

Given data consisting of the past qtiantized formant residual or the actual formant
residual, an estimate of the pitch period M, is first obtained, and this value 6f M)
is used in conjunction with Eq. (2.27) to obtain tl}e corresponding set of predictor

- coeflicients 3,. In a backward adaptation scheme, the sequence r(n) would correspond

to a quantized formant residual éignal.

The lag estimate is obtained 1n this work using a computationally inexpensive
method described in {17]. This method is briefly described below. The mean squared
prediction- error'e? is given by

e = $(0,9) — o’ ®a. : (2.29)

- f
i

[

.

The pitch lag M, is chosen so as to maximize al ®a. If the off-diagonal terms in the

matrix of Eq. 2.27 are neglected, o ®a is approximately given by
b My+1 o

oToar 3 . 20M) (2.30)

m=M,~1 ¢(m,m)
The pitch lag M, is chosen so #s to maximize Eq. (2.30). Neglecting the off diagon'al
te1:;115 18 jusg?ﬁed since r(n J1s the formant predicted residual, and therefore has small
near sample correlations Note that this method of estimating the lag is appropriate
only when the lag is estimated from the formant predicted residual.

If the pitch'predictor is backward adapted, the frame over which the mea;n square
prediction error is minimized does not correspond to the frame over which the pitch
predictor is applied. Backward adapted pitch predictors perform pooriy in transition
regions v;here the pitch lag is changing rapidly. This is because the pitch lag and coef-
ficients are too finely tuned to the analysis frame. Due to encodiAng delay constraints,

the encoding algorithm is constrained to use backward adaptation. The solution

considered hete to reduce some of the adverse effects of backward pitch predictor
o

adaptation is that of ‘softening’ the pitch predictor. Softening the pitch predictor -

k] _24_
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amounts to making the predictor les¢ finely tuned 5 the analysis frame. This can be

done By adding uncorrelated white noise to the signal r(n) or its quantized version

and using this perturbed signal to solve for the pitch predictor coeflicients. This ap-

S

proach is equivalent to adding a noise termn to the diagonal elements of the covariance
matrix @, and is the approach used here. Thus the diagonal elements ¢(2,1) of the
matrix & are replaced by (1 + a)¢(:,2). This perturbed matrix is used in Eq. (2.27)

to solve for the pitch predictor coeflicients.

2.6 Quantizer Gain Update Algorithm

For a source whose statistics do not vary with time, there are two basic issues

involved in the design of a quantizer for the source. These are (1) the characteristic
© o T
and (2) the dynamuc range of the quantizer. The quantizer characteristic is determined
from the distribution function of the source. and the dynamic range is determined
from variance of the source. When quantizing a source with time varying statistics,
both t};e quantizer characteristic and dynamic range have to ;ul;q‘)t to match the
source statistics. Most diﬁ(’r(:ntia] on(;o(lors use quantizers with a umform step size
characteristi‘c. Thus differential encoders with adaptive quantizers adapt the dynamie
range or step size of a uniform quantizer to match the local variations 1in dynamic
range of the prediction residual. Just as with predictor updates, both forward and
backward adaptations of the step size can be nsed. but only backward adaptation
schemes are considered 1 {his work Backward adaptation schenies usually take the
form of a recursive variance estimator.
v N4

An adaptive quantizer can be thought of as one that normalizes its input with a

variable gain, and quantizes the normalized value with a fixed quantizer. A well known

bac.ward adaptation scheme is that of adaptive guantizatron with a one word memory.,

also known as a Jayan! adaptive quantizer {18 0 In this scheme, the normalizing

o
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Fig. 2.5 Backward Adaptive Quantizer

Ay

variable of the quantizer is updated by multiplying by a multiplier which depends on
the quantizer codeword or level chosen at the previous sampling instant. A Jayant

adaptive quantizer is shown in Fig 2.5. The variable gain at time n, Ay, is given by

An = Dpy - M(Pyy), (2.31)

where P, 1 1s the quantizer output coleword at time n — 1, and M(-) is the gain

multiplier. The outer levels of the quantizer are assigned multiplier values greater

<

than one, while the inner values are assigned values less than one. The quantizer
M 3

. range thus tends to track the dynamic range of the input.

Fixed P'ﬂ Inverse On €q ( n )
’ s Quantizer Quantizer
- fa,“n
Variance ’
Estimator ¢
’ o

Fig. 2.6 Variance Estimating Quantizer

An alternative to the above gain adaptation scheme is that of the variance es-

tumating quantizer shown in Fig. 2.6. In this scheme, the input is normalized by a

,
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variance estimate of the input. This variance estimate is obtained using a weighted

sum of the square of the past quantized outputs, eg(n). 1t is shown in [19] that there

exists a Jayant Adaptive Quantizer which is equivalent to an exponential average

based Variance Estimating Quantizer.

The exponential based variance estimate is updated using the following equation,

Opy1=80n + (1= 8)ez(n) 0<E<1, - (2:32)

»

The pa,rameteré controls the effective melmory of the estimator. If the output levels of
the fixed quantizer are given by f(Pn), then an equivalent Jayant adaptive qu&nt’izer
has a fixed quantizer with the same output levels f{Fy), and multipliers assigned to

these levels given by -

MA(Pa) = (1 - &)FH(Py) + 8 © L (239

~

The above adaptive quantization schemes deal with instantaneous quantization
of individual samples using a quantizer with a variable step size. However, the ideas
dealing with step size adaptation will be extended later to backward gan adaptation

/ .
with stochastic and deterministic innovations tree codes in the next chapter.
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Chapter 3 « . Delayed Decision Encoding

Delayed Deczs.zon Coding or Multipath Search C'(odmg are en oding\ techniques
that employ encoding delay to provide a multipath search cap;bility. The use of
delayed decision in the coding of a sour'ce can provide encoding performance; that
is closer to the rate distortion bound for that source than the performance of a
zero memory quantizer [20]. This is true even for a source that is independent'and
identically distributed (i..d). Delayed decision also prow"ides a fra;}lework for source
encoding at, rates less than 1 bit per sample, i.e., at_fractional bit rates per sample.

(The lowest possible rate that can be achieved with instantaneous quantization is

one bit per sample). Delayed decision coding techniques are brdadly classified into

three categories, the so-called codebook, multipath free and mulidpath trellis coding.

algorithms [11]. Codebook coding is also known as vector quantization. In vector
quantization, a block of samples are encoded together by choosing one of a set of
output blocks that best matches the input block. The delay involved is therefore equal
to the waiting time for gathering a block of samples of a given size f(;r subsequent
quantization. In tree-and trellis coders, the possible quantized output sequences are
graphically arranged in the form of tree and trellis structures respectively.

The class of df:layed decision coders relevant to this study are tree coders. Differ-

P

ential encoding schemes and PCM schemes which have formed the basis of waveform

coding of speecil signals, offer candidate output sequences which can be graphically
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listed in the form of a code tree. Subsequent sections will describe various tree codes

. associated with PCM and differential encoding schemes. Among differential encoding

a

schemes, a distinction can 'be made between deterministic tree codes and stochastic
tree codes. Deterministic codes are generated according to a fixed rule, and have more
modqe\st memory requirements than stoclfastic tree codes, although the latter ;'lass of
codes give better performance. . .

- \ ) -

3.1 Tree Coders

Fig. 3.1 Tree Structure of Branching Factor 2%

L —. .
In tree coders, the output sequences possess a particular graphical structure called

a trec structure. The purpose of the next paragraph is to establish some common

*
terminology regarding tree struefures.




A .trec structure is shown in Fig. 3.1. Thetree consists of branches and nodes.
A ﬁxéd number of branches emanate from each node, and each of these branches
terminates in nodes. No two branches terminate on the same node. The number of
branches emanating from each node is called the branching factor. The tree shown in

Fig. 3.1 has a branching factor of 2%, A tree with a branching factor of two is called

-a binary tree. The initial node of the tree is called the root. The depth of a set of

nodes is the number of branches traversed along the path from the root to any one
oi." that set of nodes. A given tree structure is spe;iﬁed by its branching factor.

In tree codes, each of the, branches éfnanating from a node is assigned a unique
bra,nih number. This branch number assignment is then consistently applied through-
out the tree as shown in Fig. 3.1. In gene;z‘ﬂ, each node of the tree is associated with 3

output values. In this work, interest was centered only on the case where 3 = 1, i.e.,

one oitput value is assigned to each node. Each depth of the tree then corresponds

_to a sampling instant. Thus, depth 1 corresponds to sampling instant 1, depth 2 to

sampling instant 2 and so on. The values assigned to the set of nodes at a particular
depth correspond to the possible output values at the time instant asso\ciated with
that depth. A particular output sequence is specified by traang along a particular
path of the tree. This path is uniquely spﬁ\-‘ciﬁed by the sequence of branch numbers
encountered along that path. “This sequence of branch numbers is called the path
map. The-éncoding rate in bits per sample is given by’%l;, where b is the branching
factor of the tree structure. Knowledge gf the code tree and~a path map enables the
;iecoder to uniquely decode a particular output sequence. Note that corresponding
to a depth d, there are bd_;\mssible output sequences starting from the root. bb
Any tree coding scheme involves two basic issues., The first is the choice of an
eflective code tree, and the second involves the choice of a search algorithm to search

through the tree for the output sequence that best matches the input. The choice of

a code tree deals with the issue of how the nodes of the tree are to be populated with

L]

- 30 -

@




output values. A effective tree code is one that offers good (typical) c;mdidate output
@ “sequences that are ty-ical of the input. Among search algorithms. a distinction can
be made between single path ;earches and multipath searches. Single path searches
v proceed through the code tree along one line of decisions, whereas multipath sea,rch;s
consider several paths in parallel, and choose among them at a later time. The fact
that a multipath search can and should yield I)etter performance than single path
searches is seenufrom the following argument. Suppose we have two sampling instants
t; and t9, witﬁ {1 < ty. Consider the‘opt?mum path map sequences up to time
instants 4 and‘tz given by consideration of the input sequence up to time ¢ty and {9
—_— respectively. Denote these path map sequences by P; and Py. The path map Py up
to time {; need not in general be the same as P;. Single path se’arches neglect this
possibility by making irreversihle instantaneous decisions about the best path map.
,, N

‘Multipath searches therefore yield better performance than single path searches.

=

- Given a tree code, what is the optimum multipath search scheme? If the total

length of the input sequence to be encoded is L samples, then the best search scheme

would consider all possible output sequences of length L, i.e., the encoder performs an

- \

»

exhaustive search of all possible outpﬁ)t sequences. If the branching factor of the tree

is b, then there are b¥ possible output sequences of length L. A two second speech

+

segment consists of 16000 samples (assuming an 8 kHz sampling rate). With b = 2,
the exhaustive search algorithm has to consider 219990 5utput sequences and choose
the best one, an 1mpossibly complex and unnecessary procedure in pra&xcc. Also, the
choice of L is limited in practice by an encoding delay constraint. One therefore ha;q to

consider suboptimal (non-exhaustive) but less computationally expensive multipath

.

search schemes. A highly efficient multipath search scheme is the (M, L) algorithm.

=Although well described in the literature. a description of the (M, L) algorithm is
@ S given in the next section for the sake of completeness.
v te
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3.2 (M,L) Algorithm " . '

The (M, L) algorithm is controlled by two parameters, M and L. Since this sedrch
algorithm is a multipath search algorithm, the algonthm keeps several paths of equal

lefigth in contention at any stage n the encoding process. The maximum number of

s ¢
. paths kept is equal to Af. The length of these paths is equal to L. The paths saved

by the (A, L) algorithm have the property that at any given stage they stem from a
sinéle node at most L tume samples back. The path lea;ling up to this node represents
a path tHrough the tree that has already been decided upon. The branch number
sequence for this path can therefore be transn?itted to the receiver. .

The encoding process is as follows. Each of the saved paths is first extended
to the nodes cortesponding to the next sampling instant. The cumulative errors for
each of the paths are then calculated, and the extended path with the lowest error
is ldentlﬁed This lowest.error path will extend from a single node L time samples

H

" back. The bra.nch number for this node is then transmitted; (This corresponds to the
incremental mode of operation where each search involving sequences of length L+ 1
is followed by the release of one branch number). Among the other z’xtended paths, a
distinction is made between valid paths and invalid-paths. Valid paths are those that

extend from the thosen node L time samples back, and :in{;aliil paths are those that

do not. Among the valid paths, at most M lowest error paths are kept and saved for

the next stage. This preserves the basic property of the retained paths at any stage

¢

in the encoding process. In general the number of valid paths may be less than M.

s b

3.3 Examples of Tree Codes

This section describes the tree codes asséciated with some waveform coders.
These tree codes can be classified into two “categories, deterministically populated

and stochastically populated tree codes. The tree codes associated with conventional
/

T
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waveform coders such as PCM, DPCM, and AD%CM, are examples of\ﬁ.;termin'istic
tree codes. These tree codes have a branching factor equal to 2R where R is the

"number of bits per sample used to encode the input.

© o

3.3.1 PCM Tree Codes ’
A

’

Consider the case where a source is quantized on a sample by sample basis using

a quantizer of some given characteristic. Suppose that the quantizer is non-adaptive,

its-characteristics having been matched to the source a priori, based on the statistics
of the source. If the encoding rate 1s R bits per sample, then there, are ok possible
output. reconstruction values at each time instant. Therefore, the possible output
reconstrliction sequences can‘})e listed on a code tree with a branching factor of 2l 4
in Flg 3.1. The values assigned to the nodes are the possible output reconstruction

. A}
! ; \ :
values of the quantizer. In conventional PCM schemes, having arrived at a given

node in the course of the path selection processs a choice 1s made among the 2k

Y

Branches emanating from that node given Yhe inptut sample at that time instant.

Instantaneous and irreversible decisions are therefore made at cach sampling mstant.

This corresponds to a single path search of the P('M code tree. The search for the

. - . . . o . . .
optimum sequence is carried out along only a sipgle line of decisions. The conventional

’

PCM tree code 1s an example of a deterministic tree code. This code is known to

both the encoder and the decoder Given the transnutted path map. the decoder can

form the reconstructed output sequence

J N

3.3.2 Differential Encoder Tree Codes

» <
A differential encoder consists of two main parts, a quantizer and a predictor.

-
The quantizer in a differential encoder quantizes a prediction residual formed as the

difference between an input sample and its predicted value. The quantized residual
- ’

i .
NPy
>
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sequence is then used to drive a synthesis filter to produce an output sequence. With

L)

‘ differential encoders, it is useful, for reasons of clarity, to make a distinction between
° the quantized residual or innovatons code tree and the output or reconstruction code
. tree. The innovations code tree1s a graphical listing of the possible quantized resid-
ual Sequences in time. The fact that the possible quantized residual sec;uences are
arranged in the form of a tree is most easily seen, due to the similarity of such codes’
with PCI\ZI tree codes. The reconstruction code treeis obtained by passing each of the
° quantized residual sequences of the innovations code tree through the decoder filter.
The nodes of the reconstruc“tion code tree are then populated with the output values
of the decoder filter. The decoder filter may be either fixed, batkward adaptive, or
forward adaptive. In all three qases, there 1s a one to one correspondence between the N
. innovation§ code tree and»the reconstruction code tree. With a backward adaptive’}
synthesis filter, theQ reconsiruction code tree is completely specified by the filter order,
( the innovations (‘:)de tree, the initial conditions of the filter at the starting time of
T . the filter, and finally the update algorithms of the parameters of the filter. With
a forward adaptive filter, the reconstruction code tree is completely specified by the

) innovations code tree, and the side information giving the values of the synthesis filter

parameters for each frame.

3.3.2.1 Innovations Tree Codes

£

Innovations code trees can be broadly classified into two categories, the deter-
manistic and so—éalmlzasfzcally populaied trees. The 1nnovations code tree and
the decoder filter at tlie receiver (whether adaptive or fixed) uniquely determines ti](’
2 reconstruction code tre¢. Reconstruction code trees are therefore claséiﬁed as being

deterministic or stochastic depending on whether the corresponding innovations code
tree is deterministic or stochastlmoth the deterministic and stochastic tree cases,

- Q o
(' the decoder receives a digital sequénce ("orreasponding to the path map sequence. Hav-
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have larger storage requirements

ing received the path map sequence, a table look up is then employed to determine

the quantized residual sequence. This innovations sequence is then fed into a recur-
* *

sive synthesis filter to produce an output sequence. If the encoding rate is R bits per

o R

sample, a,quantized residual sample can only take on one of values in a deter-

mynistic innovations tree In the stochastic tree case however, this iestriction is not
impcsed. Stochastic codes are therefore less restricted in providing good candidate
output sequences. The nodes of a stochastic innovations tree are populated as fol-

n

14 . . r
2NV contaimng 2% numbers. Each node

lows. One starts off with a dictionary of size
in the tree is associated with a umique path map or branch number sequence from
the root up to that particular node The N least sigmficaht bits of the path map are
used as an index into the dictionary. The node is then populated with the number
from the dirtionary assoc?ated with that index The tree nodes are therefore popu-
lated with values from the dictionary. Such code trees are said to be stochastically
populated because the dictionary 1s usually populated with random numbers with a
certain distribution. For proper decoding of the quantized residual sequence at the

recerver, identical copies of the dictionary must be stored at both the transmitter and

the receiver. Thus although stochastic codes are richer than deterministic codes, they

—

»
* Gain Adaptation The inngyations tree discussed above are examples of fixed

o ¢

gain trees In bo)t,h the deterministic and stochastic cases, it is also possible to have
an adaptive gain. This adaptive gain can be cither forward or backward adaptive,
Only backward adaptive schemes are considered here

A useful adaptive gain sirategy 1in thedetermimstic case s the Jayant Adaptive
Gain strateg): In this case, the extended nodes emanating from a given node are all
astigned an adaptive gain value (7. The 2% quantizer output values are all multiplied

by this gan (/. The modificd alphabet 1s then used to populate the extended nodes

Just as in the fixed gain case. Each of the extended nodes is associated with a branch
- e

- 2
~ ) I
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( o
number, the branch mumbers being associated with multi;lier values. The extendéd
nodes are then assigned different gain values given by the previous gain G multiplied
by the respective multiplier values of the extended nodes. At any givgi stage, each
of the paths of the deterministic tree are associated with different gain values. The
multiplier values assigned to the branch numbers depend on the addressed values from
the fixed alphabet. Small values are assigned multiplier values~with a magnitude less
than one, while large values are assigne{l multi};lier values with magnitude greater
than one. -

With stochastic trees, the above gain adaptation strategies have to be modified.

The fixed values addressed are all taken from a dlction.ary of size 2V, where N could be

as large as ten. It is not feasible to assign multiphers for each of the 2/ numbers, since

this effectively doubles storage, and also involves the complic:’ation of how to assign
0

the multipliers. The following modification can therefore be made. The effective

amplitude range of the 2%V dictionary values 1s split up into several sub-ranges. Each

of these subsections is then assigned a multipher value. If a node has a dictionary

- address D, then that node is populated with the dictionary number correspordiyg.

to address D multiplied by the adaptive gain value (v. This gain is then updated by
the multipler value assigned to the amplitude Su‘b-section oZ‘cupied by the dictionary
number with address D.

An alternative stratqegy 1n the stochastic case is to update the gain based on an
exponentially averaged variance estimate as in a va.riance. estimating quantizer (see

Chapter 2). The dictionary value assigned to a node is multiplied by the node gain

G to yield an innovations sample e. The node gain is then updated according to

3

GE=8G2+(1-68)e%, 0<b<1, (3.1)

where G is the new gain value, and 6 1s a parameter that controls the effective length

of the exponential window.
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3.4 Brief Historical Review

Tree coding with a multipath search was first studied by Anderson and Bodie

.

[8]. A deterministic innovations tree with a fixed gain was used together with a fixed

Ar
synthesis filter. It was noted that a code tree optimal for a single path search was not

°
L]

necessarily optimal for a multipath search. Hence various “smoothing” techniques
were used to modify the code for use with a multipath search.
¢ -

Jayant and Christensen [9] studied the effects of multipath searching on code trees
having a deterministic innovations code with a backward adaptive gain, and a fixed
synthesis filter Gains o_f\].5 to 3 dB over a single path search were reported.

Wilson and Husain [10] studied multipath searching with a deterministic innova-
tions tree with a forward adaptive gain, and a forward adaptive synthesis filter. The
use of a fixed noise shaping filter was also studied.

Studies with a stochastic tree were reported 1 {12, Both the gaiu and the
synthesis filter were forward adaptive. The use of a stochistic trellis was btll(]i(‘d in
[ll],pand was found to give significant gains over the us¢ of a deterministic trellis. .

N

- -

3.5 Discussion and ‘Summary

The previous sections have described the various types of innovations and re-
construction code trees encountered 1n practice. The following is a summary of the

properties of differential enc¢oder code trees. .

DPCM coders have a fixed predictor and quantizer. The innovations code tree is

therefore a deterministic tree with a fixed gain. The mapping from the innovations

tree to the reconstruction tree is done through a fixed synthesis filter,
Backward adaptive ADPCM coders have a backward adaptive predictor and quan-

»

tizer. The innovations tree in this case-is deterministic with an adaptive gain. A
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backward adaptive synthesis filler maps the innovations tree to the reconstguction
tree. s

The encoding algorithm studied in this work is described in the nex?‘ chapt:?r,
and uses the ideas presented in this chapter. Briefly stated, the coding scheme is‘a
delayedvdﬁxsjksion scheme using the multipath (M,L) algorithm, and operating on‘ a

reconstruction code trees defined by a stochastically populated innovations code tree

‘with a backward adaptive gai';l, and backward adaptive recursive synthesis filters.

*
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— Encoding Algorithm and
Chapter 4 ~

[y

, - Computer Simulation Results

This chapter gives a detailed description of the encoding algorithm studied in this
thesis. The relevant background material has been covered the previous chapters.
The encoding bit rate of the system 1s 16 kbits/sec, (2 bits per sample with an 8
kHz sampling rate). The encoding algorithm was simulated (;ll a VAX 8600 computer
using FORTRAN. All arithmetic operations were done using floating point arithmetic.

Both the objective and the st;l)jvctivo performance of the coder were analysed
using six test utterances. Details of these utterances are given in the appendix. The
objective measures include segmental signal-to-noise ratios plotted versus time, and
also segmental signal-to-noise ratios averaged over the whole sentence based on non-

@ -
overlapping 16 ms blocks. Subjective testing was carried out by conducting preference

tests between sentences coded with the tree coding algorithm and sentences coded

‘with various bit rates of log-P('M

4.1 Descripti%n of Enéoding Algorithm .
r ¢ S ~ +

Recall from the previous chapter that the reconstruction code trees for differential
enccders are umquely defined by the innovations tree and the details of bperation of

the decoder filtMW!o be encoded, the encoding proceeds by a single

- 39 .



path or multipath search of the reconstruction code tree. Different encoder confige-
rations’ suth as the conventional feedbabgk around the quantizer configuration and the
Generalized Predictor Configuration merely reflect the use of different error criteri_a
in searching through the reconstruction code tree, irrespective; of the search scheme
used. The reconstruction code tree 1s not determined by the encoder configuration,
but by the decoder configuration and the innovations tree.

A stochastically populated innovations tree is used in this study. The tree was

populated from a dictionary containing random numbers from a Laplacian pseudo-

°  random number generator. The multipath (M, L) algorithm was then employed with

-

¥

the Generalized Predictive Coder conﬁguration“{ This configuration allows the use of

- +
a frequency weighted error measure in choosing among various paths of the recon-
struction code tree.

9

Two types of output codes are studied. These output codes result from the use

% of two different decoder conﬁguratloris. The first configuration consists of:m all-pole

formant synthesis filter, and the second consists of a cascade of a pitch synthesis filter

and a formant synthesis filter. A multipath search using the (M, L) algorithm, of
these two codes, is studied. -

The following section describes the sequence of operations to be performed while

proceeding along a single line of decisions or a single path of the code tree in question.

It is then relatively straightforward to extend the coding algorithm to the multipath |

search case. With a multipath search, several paths are followed in parallel, the
sequence of operations to be performed while proceeding along each of these paths

being identical to the single path search case.

4.1.1 Single Path Search Algorithm
- :

»

The encoder and decoder configurations of the Generalized Predictive Coder are

shown in Fig. 4.1. The system functions of F(z) and N(z) are as given in Chapter 2.
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Fig. 4.1 Generalized Predictive Coder

A single path search with this encoder configuration is now described.
In response toran input sample s(n), the prediction error filter 1 F(z) forms a
prediction residual r(n). This residual r(n) is then added o the output f(n) of the

noise feedback filter N(z). to form the quantizer input «(n). The value f(n) is formed

as a linear combination of the past quantization errors. The result of this addition,

- €(n), is then quantized. Since the quantization rate is 2 bits/sample, the quantizer

offers 4 possible candidate output samples, of which the one which minimizes the
square of the quantization error is chosen. The following paragraph explains how the
L

candidate quantized residual samples are obtained. -«

~With a single path search, the chosen path map (the branch number sequence
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that has alrea&y been decided upon) extends up to dépth n—1 of both the innovations
aI;d reconstruction code trees, since there is no delayed decision involved. This patil
is associated with an adaptive gain value G for the innovations tree. The candidate
quantized residual samp1e§ at t.ime instant n are obtained by extending the node at

/-1 depth n — 1 of the existing path of the innovations tree, and populating the extended
nodes as explained in Chapter 3. Since the branching factor of the code trees is four,
there will be four extended nodes. The chosen path map up to timen —11s ;;imply the
sequence of bits corresponding to the sequence of branch numbers aiong that path.
Each extended node is therefore associated with a different path ?‘flap starting from
the root. The path map up to a particular extended node is obtained by shifting the
chosen pat}r: map bit sequence left by two bits, and appending the branch number
of the extended node. The dictionary address for each of these extended nodes is
then givén by the N ieast significant bits of the corresponding path map (assufning
a dictiona'ry size of 27V), and the addreSSed/dlctionary numbers are multiplied by the
adaptive gain (G. These numbers are then used to populate the extended nodes of
the innovations tree.

The values populating the extended nodes of the reconstruction fgee are obtained
by driving the synthesis filter with the corresponding samples populating the extended
nodes of the innovaions tree. The Yextended node with the lowest error is ch(:sen,
according to some well defined distortion measure. If a squared error distortion
measure is used, the error for each extended node is given by the square of the
difference between the input sample $(n) and the value populating the extended node
of the reconstruction cotie tr'ee.‘The use of a squared error (unweighted) distortion
measure amounts to having the noisk feedback filter N(z)equal to F(z). Ifa frequency
weighted error measure is used, a squared error distortion measure is applied to the

output of a noise weighting filter W (z). In this case, the noise feedback filter N(z) is

a bandwidth expanded version of F'(z). With both types of error measures, choosing




¢

A

3

thg lowest efror extended- node of the reconstruction tree corresponds to choosing
the lowest error extended node of the innovations tree according to a squared error
criterion, provided N(z) is chos¥n a(“cording to the desired error measure, 'LI‘here
is therefore no need to cafculfxt.e the ‘values populating all the extended nodes of
the reconstruction tree with the aim of detérmining-; the node with the lowest error.
Hence, the fact that a reconstruction tree is searched is only implicit in the coding
algorithm.

Once the extended node with theJowest error is identified, the corresponding

branch number is trafsmitted to the receiver, i.e., an instantaneous irreversible de-

L/cision is made. Vapfous quantities are then updated before proceeding to the next

stage. The adaptive gain (¢ can be adapted using one of the methods described in «
Chapter 3. In this work, the gain was adapfed using a variance estimate of the inno-
vations samples along the existing innovations path, based on an exponential average.
Suppose the chosen extended node is populated by an innovations sample cq. The
value eg 15 given by the dictionary number for the chosen node multiplied by the path
gain GG. The updated path gain G s the given by |

A9

E = 6GE (1 8) (4.1)

where 0 < § < 1. The memory of the two filters 1 - F(z) and N(z), and the patll
map are then updated. Updating the path 111:ij m/erely consists of replacing the
previous path map by the path map of the chosen (=xtc/nded node. The updated pathb
map t,heref&re extends up to dop!}]l n of both the innovations and reconstrpction code
trees, once the input sample s(n) is quantized. From the quantized value c4(n) of ¢(n),
a local decoder forms the quantized output sample 3(n). This sm:plc populates the

chasen extended node of the reconstruction code tree. (The value cg(n) is the value

that populates the chosen extended node of the innavations tree). The past quantized

* output samples $(n) are then used via the Adaptive Lattice Algorithm to update

- 43
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the reflection coefficients of the lattice filter equivalent to 1 — F(z). The updated
reflection coefficients are then converted to transversal tap values using Eqgs. (2.11).
A transversal implementation results in reduced computational complexity over the
lattice implementation, even though there is an ovérhead involved in converting the
reflection coefficients to transversal tap values. Also, implementation of the noise/
feedback filter N(z) in the reflection coefficient domain is not possible. Further,“ /

expe}imental evidence shows that both transversal and lattice.implementations give

similar performance. The filter V(z) 1s also updated accordingly.

s(n) ' e r(n)
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Fig. 4.2 Configuration to study the effect of a delayed update on
prediction gain

Recall frox;l‘C‘hapter 2 that the reflection coeflicients z;.f’e updated based on the
minimization of an averaged error criterion, the error criterion being a functiorrof-the
o forward and backward residual energies. The update algorithm is explained in detail
in Chapter 2. If the update is performed at each sampling inst“z(;;t using the most

recent output sample §(n), the window is aiigned with and includes the immediate

past. Instead of using the most recent output, the update can also be done using

c  the output a finite number of samples back, i.e., the pre/d'_gtor evolves via a delayed
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update. The effect on the prediction gain of a delayed update was investigated using

‘ ' the configuration shown in Fig. 4.2. The adaptive lattice was used with .:xn expc‘)nentia.l
~ or one-pole window, with the poleafactor B equal to 0.986 and the predictor order
equal to 8. The prediction error filteris updated using a delz;yed versionmoi: the input
signal. Figure 4 3 shows the graph of prediction gain versus delay for two different
sentences. Note that the maximum prediction gain 1s not obtained with a delay of
zero as might be expected. It is interesting to note that the maximum predictiorf
éain is obtaingd with a non-zero delay. A delay of about 8 samples works well. The
use of a delayed update will be seen to‘redu'ce coi;lput‘g).tional complexity in a delayed

-

decision scheme. ! .

»  4.1.2  Multipath Search Algozjthm

With the single path se;rch, the encoding a;lgoritfxl;l has to keep track of various
ﬂguan.tities in memory. These are the memories required for the adaptive lattice,
memories for the filter FY{z)and N‘(:), the ;da;ptive gain for the path followed along

the innovations tree, and ﬁna}']y the path 1}1ap.
\ Inaa multipath search algorithm, the above is true for each of th; paths that
" are being considered invparallel. -In additioni, the cumulative errors for each of the

[

paths.}}ave to be tracked. The cumulative error*for each extended path is the sum
of the quantization errors at each node ;long that path. Since all the paths stem
from a single node N, a finite number of time samples back, the cumulative error for
each extended path 1s given by the sum of cumulative error up to node Ny and the

‘cumulative error from node Ny up to the final node of the extended path. Since only

the relative errors between the various paths is important, only the cumulative errors

<

from node N; need be considered.

The multipath search algorithm is as follow“s. Each of the saved paths is first

c extended, and the quantized residual values for the extended nodes are found. These
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values are given by the gain value for a particuiar path multiplied by the dictionary
values for each of the nodes extended from the final node of that parti(‘}dar path. In
response to an input sample s(n). a filter output r7(n) is found for each of the saved
paths. The superscript ;7 is used to signify that the particular quantity related to the
7t saved path. Note that each of the S'(;ved paths is associated with a diferent set
of transversal tap coeflicients a{ if there js no delay involved in the update, dince the
filters evolve differently along different paths. Next the outputs of the ;;;se feedback
filters f7(n) are found for each path. Each of the saved pafhs i# associated with a
noise feedback filter which is a ban(ikqidt.l? exéanded version of F/(z). The quantizer
input for each extended node emanating from the saved path j is then given by the
rJ(n) + fJ(n), and denoted by e7(n). The quantizer error for cach extended node
emanating from the jth saved path is given by the square of the diHC;(‘IlCP hetween
the innovations sample populating thg extended node and the quantizer input e/(n).
.“The new cumulative error for each of the extended paths is given by the previous
cumilative error plus the csquare of- the quantizer error. (Note 111;;t if there are M
saved paths, there will be 4M extended paths). Of all the extended paths, the one
with the lowest cumulative error is then identified. As explained in Chapter 3, this
path will stem froni a single node L time samples back, due to the property of the
paths saved by the (M, L) algorithimn. The branch nu:nber for this node is transmitted
to the receiver. Of the remaining extended pathsythe hest M valid paths are kept
for the next stage, and the rest of the paths are discarded. (Note that the number
of valid paths could be less than AJ). The memories for the retamed paths are then
updated for the next stage, as discussed 1n the next paragraph. '
The innovations path gains are updated according to Eq? (4.1). The path maps
\Kr each of the retained paths are updated as in the simgle path case. If the filters

are updated without a delayed update. then the filter coeflicignts for cach path are

updated using the sample populating the final node of the new saved path of the-
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reconstruction tree, 1.e., the most recent output sample along that path. If there are
G more than M valid paths, M sets of filters will have to be updated. Thus, a multipath
search without a delayed filter update involves the use of memory for each path to

track the evolutian of filters along that path, and also extra computation to update

ese paths. Use of a delayed update can reduce computatiohal

the filters alon/g
complexity of&}| e search as explained next.
update ariong any path amounts to updating the filters for that path
by a reconstruction-sample a fixed numbe) of time samples back along that path.
(Updating without a delay amounts to using the most recent reconstruction sample
’ 5® alon; that path). By the Vproperty of the paths saved by the (M, L) algorithm, all
the saved paths stem from a single release:l node L time samples back. This node
is common _to all the saved paths If the fynthesis filters are updated with a delay
of L samples, then the filters for each of the saved paths evolve in an 1dentical way.
Updating with a delay of L samples amounts to updating with the most recently
released output sample. All the saved paths are therefore associated with a single
filter F(:) which evolves via a delayed update of L sampTes. Furthermore, nothing is
lost by way of prediction gain, as seen from the plots presented earlier (see Fig. 4.3).
Note however that the use of a delayed update necessitates the use of buffers to
maintai; synchironization In decoding the reconstruction sample from the released
imnnovations sample, the synthesis filter should be the inverse of the prediction error
filter that was used L samples back. Therefore, L sets‘ of predictor coefficients have

to be kept in memory agd updated at each time instant. If L 1s less { M, the use

of a delayed update also results in a reduction in memory requireménts.
9
«4.1.3 Multipath Search with Pitch Prediction

@ The multipath search with pitch prediction is vety similar to the multipath search

( with formant aprediction. The block diagram of a Generalized Predictive Coder with

-~
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pitch prediction is shown in Fig. 4.4. The decoder configuration c‘onsisis of a pitch
synthesis filter in cascade with a formant synthesis filter. i

In response to an input sample s(n). a formant residual 77(2) and a pitch pre-
diction p’(n) is found for each of the saved paths. Again in this case, the superscript

! saved path.

j associated with}a quantity signifies that 1t 15 associated with the j”
T\he pitch prediction is a linear combination of the past quantized formant residual
samples. Since the pitch lags are constrained to.be 1n the range of 20 to 120 samplea,\
and an L value of 20 ’or greater'fwas not used, the quantized residual samples which |
form the pit—ch prediction all correspond to alrea('ly released samples,
‘

The quantizer input for each saved path 1s formed as r/(n) 4+ fI(n) p/{(n), and
denoted by e/(n). The cumulative errors for each extended i)a(h are then formed
as in the previous section. The lowest cumulative error ,path 15 identified, and the”
corresponding bianch number L time samples back 15 released. The best M valid
paths are then kept for the next stage

A local decoder forms the released output sample L time samples back. The
decoder in this case consists of a pitch synthesis filter followed by a formant synthesis
filter. The formant filter is then updated using the released output sample. The
pitch predictor is u})dn(e(l using the past relecased quantized residual samples, i.e.,
using the output of the pitch synthesis filter. The update method is as explained

o

in Chapter 2. Buffering is also required in this case for the pitch filter in order to

maintain synchronization.

4,2 Initialization . .

+

With the (M, L) algorithm, a certain number of paths are retained at each stage.
At the start of the encoder operation, the coding algorithm requires the existence of

a certain number of saved paths. The saved paths should reflect the ‘rest state” of

'Y - /{\(}, N .




. N(z)
‘ q(n)
s
‘ , f(n)
s(n) r(n) N —e-
AN 1— F(-.) _:é’_(— e(n) QUANTIZER eq(n)ligmﬂ
p@”!)" Tnnk

:\ 1
¢ P(z)
ENCODER
¢
---------- @ “D— -
Digital + + é(n)
Link
P(z) F(z)
DECODER

Fig. 4.3 Generalized Predictive Coder with Pitch Prediction

the coder before start up. The most obvious choice for the initial saved baths 1s to

have one ‘saveg\innovations path of length L samples, whose nodes are all populated

‘with samples of value zero. The initial gain value for this path ean assigned any

reasonable value. The initial gain value was not found to be critical in this work.
The filter coefficients for the initial path are also set to zero. Note that the initial

innovations path and the gain value are assumed to be known to the decoder.
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4.3 Population of the Dictionary

In the course of the encoding process. the values extracted from the dictionary are
multiphed by an adaptive gain and then used to populate the nodes of the innovations
tree. The values populating the nodes of the innovations tree should in some way

reflect the statistics of residual or prediction error samples encountered in practice.

The statistics that one may consider are those of long-term average distribution, and -

also statistical dependence between samiples. Accounting for the corr¢lations between
residual samples is difficult in practice. For unvoiced speech, the residual samples
arce invariably noise-like, with htfle or no correlation hetween samples Populating
the dictionary with vanates having the same long-term distribution 1s therefore quite
adequate. However with voiced speech, the residual a’lgml contains pi‘t ch pulsesif only
a formant predictor 1s used. The residual signal in this case cannot be considered to
be noise-like, due to the presence of pitch pulses.

-

With the use of pitch prediction, the piteh pulses can be removed, resulting in
an overall nose-like residual signal. Eflective pitch prediction, however, necessitates
the use of an adaptation strategy. With the use of a backward adaptation strategy
for the pitch predictor, not all the pitch pulses can be r.('m()w-(‘l since the frame over
which the coefliaent analysis is done 15 not the frame over which the prtch prediction

]
is carried out With backward adaptation, pitch predictors are too finely tuned to
the analysis frame to fully compensate for rapid changes in prteh lags in transition
regions A backward adaptive pitch prediction scheme s used here, The innovations
tree will therefore be populated with values which account for the long term average
distribution of formant predicted residual signals encountered in practice. A long, tern
av;ragod histogram of formant predicted readual samples was obtiined using several

speech sentences. The histogram 1s shown in Fig. 1.5a. The long termn distribution

can be seen to be approximately Laplacian in nature. Since the dictionary values are
s
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multiplied by a gain before being used to populate the nodes of the innovations tree,
the dictionary values should have the same distribution as gain normalized residual
Sfxmples. Fig. 4.5b shows the long-term averaged distribu{_,ion of gain normalized
residual samples. (Normalization was done by dividing each residual sample by a
variance estimate of past residmnals). The distribution of gain normalized residual

samples is seen to be approximately Laplacian in nature. The dictionary values in

this study are therefore randém numbers from a Laplacian random number generator.

A
\

4.4 Objective Test Results

‘The objective test results of the coding algorithm are given in this section. The
objective results are given in terms of plots of segmental signal-to-noise ratio (segSNR)
versus time, and 1 terms of averaged segSNR values, the average being taken over a
whole sentence. In the former, the signal-to-noise ratio in deabels (dB) is caleulated
for successive overlapping blocks of 100 samples (12.5 ms blocks). thus vielding o
graphical display of the time variations in signal to noise ratio  Averaged sepSNR

-

i . . . .

values are obtained by caleulating the signal-to-noise ratios i dB for non-overlapping

blocks 16 ms in duration, and then averaging the SNR values over all the blocks in a

sentence. Thus.

1 -
segSNR v L SNR,. (4.2)

!

where SNR, 15 the signal-to noise ratio for the o' block in dB, there being N such

blocks. Such an objective measure is a more realistic indication of the performance

of an algorithm than an SNR value taken over a whole sentence since it takes into

acroung/tormin regions in a sentence where the signal-to noise ratios are high
Before presenting the results, the \'uru‘m:« parameters and factors controlling the
’

performance of the algorithin will be reviewed, in order to establish the notation.

5
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For the formant prediction error filter and the formant synthesis filter, the rele-
vant pa.rg}Qeters are the predlc;tor order P, and details controlling the update of the
predictor. The factors controllmé the update are the window used in the adaptive
lattice, and the stability constant v of the adaptive lattice. With an exponential
window, the polé factor 3 is fixed at 0.986. A later section considers thl& use of a new
class@bf windows. The stability constant v of the lattice was fixed at 0.5 to ensure
stability of the synthesis filter. :

The factors controlling the pitch prediction process are the order of the pitch

predictor, and the analysis method used to solve for the coefficients and the pitch lag.

The update rate of the pitch predictor is also a relevant parameter. \A
the distribution

J

The innovations tree is determined by the size of the dictionary,
of the variates populating the dictionary, and the effective length of the exponential
window used to obtain the variance estimate for the gain adaptation. The effective
length of the window 1s controlled by the value of é in Eq. (4.1). It was found
experimentally that a § value of 0.86 gave the best results. Laplacian random numbers
were used to populate the dictionary. The dictionary size Np also determines the
nature of the innovations code tree, and was fixed at 4096.

Finally, the multipath search i1s controlled by the values of M (the number of

paths kept in contention at each stage) and L (the length of these paths).
¥

4.4.1° Performance with M

This section‘ shows the performance of the system with M. The parameter M is
the number of paths kept in contention at any stage in the encoding process. The
two plots in Fig. 4.6 show the averaged segSNR values for :;/VO séntences, CATF8
and CATMS8. The value of L in both cases is fixed at 8. Other sentences show very

similar behaviour. The figures show that the segSNR values increase rapidly with M
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at first, and then finally saturate with M to an almost constant value. Saturation is
achieved with M equal to about 16. Note that the branching factor of the code tree
is equal to four, and that with L equal to eight, thert are 4% paths '.avai]able, of which’
a maximum of M are considered at any stage. Saturation in performance with Af is
therefore attained with a value of M that is very mnuch less than the total number
of paths available. This is in keeping with the results of multipath search using the
(M, L) algorithm of differential encoder code trees [8][9]{10}[11].

In the work of Anderson and Bodie [8], and Jayant and Christensen [9], it was
found that most of the performance from the multipath scarch igs obtained with M
equal to about 4. Furthermore, 1t was found in [8] that good codes required a larger
value of M for saturation than poorer codes, i.e., good codes demand a larger M to
find the better paths of the code tree This explains why saturation in performance
with M occurs at a large value of M = 16, 1n t‘hv present work. The stochastic
code studied here is a much ‘richer’ code than the (iotgrm'mist,ic code inherent in
conventional forward and backward adaptive difterential encoders.

Jayant and Chnrlst.enscn [9], have shown that the usec of gain adaptation with a de-
terministic innovations code tree yields a performance gain that is independent of the
gain obtained wit‘h the use of aamultipath search. Chan and Anderson [21] have shown
that adaptation of the predictor and quantizer yiclds an increase in performance that
is independent of the increase in performance ol)tuirted lhrou‘gh a multipath scarch.
With a single path search, increases in signal-to-nose ratio were obtained with predic-
tor adaptation and with quantizer step size adaptation. The use of a multipath search
in all these cases produced a further increase in signal-to-noise ratio. Gains obtained
through adaptation are complementary 1o the gamns obtained through a multipath
search. Th(" above ohservations can be summed up by saying that with deterministic
codes, inclusion of gain adaptation with the innovations tree, and predictor adap-

A

tation results in a reconstruction tree code that gives improved performance with

- 50 -
b



+ F{1]
m '
A== R (

o

Z 16 ?

)

éo P=38
p=10
6 =086 o
12t 3 o ot
4
A
. ‘ . ‘ N y /
‘ 8 12 16 20
g M
. (a) )
24 °
< ' °
? ,
. aof .
: e . [

o

&~ 1

c% 16 Np = 4096

éo P=238
‘ g =10
6=086 |
. 12t N
r e e m 20
¢ ¢ M
) (b) i ’
¢ Fig. 4.6 Performance of the system with- M




69

N

4

both single path and multipath searehes. An obvious question that now arises is

whether the *use of a gain adaptive stochastic innovations tree provides an indepen-

dent source of gain as compared with a gain adaptive deterministic innovations code

tree. This question can be answered in the negative by observing that the segSNR
value obtained for M =1 is several dB below that obtained with conventional single
path ADPCM with a deterministic tree. Use of a stochastic innovations tree therefore
yields a reconstruction code that do;es not perforin well with a single path search.
Figures 4.7 and 4.8 show spectrograms of some/onginal and coded sentences and
plots of signal-to-noise ratio. These av;"re obtained with'Af = 16 and L = 8. Note

that the formant and pitc‘h structures are well preserved in the coded signal. Signal-

to-noise ratios of 10-15 dB are attained in fricative segments.

4.4.2 Performance with L

This section investigates the performance. of the system with L. The parameter
L is the length of the paths considered in the mu]tipath‘scar('h.'; Figure 4.9 shows
plots of segSNR with L for fixed M, (M = 16). A saturating trend in performance
with L 1s seen. The value of L at which saturation occurs is somewhat related to the
predictor order as scen from Fig. 4 9a and Fig. 4.9b. With an cighth order predigtor,
performance is seen to saturate at L equal to about/ 10. With a third order predictor,
performance saturates at a lower value of L, this time at L equal to about 6.

The value of L does not seem to be critical, provided it4s high enough to ac-
count for the predictor order, although the dependence on the saturation point with
predictor order is not very strong.

B

4.4.3 Performance with Predictor order

Figure 4.10 shows objective performance with predictor order. The performance
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drops gradually with P and then falls off sharply at a value of P equal to'one.
Subjectively, degradation in the output speech becomes more audible for values

of P less than eight. No improvement in performance is obtained for values of P

greater than eight. .

G

4.5 Adaptive Lattice with Pole-Zero Windows

Recall from Chapter 2 that using windows corresponding to impulse responses of
recursive digital filters leads to recursive update equations for the Adaptive Lattice.
One-pole windows are simple and have the property of weighting the energy more over
the immediate past than the distant past. However it does not have the property of
uniformly weighting the energy over a narrow range of samples as would a Hamminé
window or a rectangular window. Two-pole windows are better approximations to
a Hamming-type window than exponential windows. However, two-pole windows

A

are not the best choice for the present application since the range of samples over

{ ny " §
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which the residual energy is minimized is considerably lagged from the time instant’

‘ ' of application of the predictor. The predictor therefore will not adequately track the

Y

" different stationanty modes of the input.

0.3

T ‘ 100 ] 200
n
c Fig. 4.11 Window obtained with 3; = 0.97, 85 = 0.95, and
a = 0.85.
9 4
\ A class of windows that are impulse responses of filters having one zero and two

poles were tried. The window w(n)is obtained as the sum of two decaying exponential

P sequences as given below:

w(n) = (81)" - a(B)" (43)

The values of 31, 33 and d were chosen so as to ensure that w(n) > 0 for n > 0. The

z-transform of w(n) is given by

~_—] J‘
(1-a)+(apy — B)z , (4.4)

o

Wi(z)=
) 1—(B1 + o)z~ + B2

An example of such a window is shown in Fig. 4.11. By carefully controlling the

c parameters, a window shape that is intermediate to the one and two-pole-types is
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obtained. For B3; and (3 equal to 0.97 and 0.95 respectively, choosing a close to
zero results on a one-pole-iype window, and choosiI}g a close to one results in a two-
pole-type window. Use of the window showrn in Fig. 4.11 resulted in a 0.1-0.3 dB
increase in signal-to-noise ratio, for various sentences. Subjectively, this window gives
an output speech quality that is ‘crisper’ than that obtained with a one‘polt; window.
However for simplicity, only a one-pole window was used in the compilation of test

results.

3

4.6 Results With a Backward Adaptive Pitch Predictor

[

This section presents resujts of a multipath search with an encoder configuration
that incorporates a backward ad\fiptive 3-tap pitch predictor. The'pltch’predictor
is updated every 20 samples by analyzing the most recent released formant residual
sequence. Updating the pitch predictor at every sample involves a great deal of
computation, and does not give any improvement in performance over a slower update
rate of 20 samples. The coeflicients are calculated by mimmizing the predi(:tion error
over a frame of samples. The best performance was obtained wii’th a frame length of
about 100 samples. The pitch lags are constrained to lie between 20 and 120 samples.
This range 1s enough to account for a wide range of speakers. Details of the update
method are given in Chapter 2. ) |

Since the pitch predictor is backward adaptive, pitch prediction is not carried out
on the analysis frame. Because of chang;ing pitch lags during actual speech, and due
to transitions from unvoiced to voiced speech, not all the pitch pulses in the formant
residual are removed in practice. Pitch pulses are removed only in steady state voiced
segments during which the pitch period is relatively constant. Fig. 4.12 shows a plot of
segmental signal-to-noise ratio both with and without the use of pitch prediction. The
accompaﬁnying’spectrogram facilitates identification of goiced and unvoiced segments. ’
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Fig. 4.12 segSNR with Fitch Prediction
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Note that the signal-to-noise ratio with the pitch predictor is increased during voiced
segments and remains about the same during unvoiced segmeI:ts.

Because pitch filtering is not done in the analys;s frame, some extra pitch peaks
are added to the formant residual in regions where the lag is changing'rapidly. The
negative effects of this can be lessened by ‘soficning’ the pitch predictor, i.e., by
making it less finely tuned to t'he analysis frame. One way of accomplishing this is to
modify the diagonal elements of the covariance matrix used to evaluate the predictor
coefficients. In particular, each diagonal element ¢(:,2) is replaced by (1 + a)é(z, ),

for z = 1,2,3. Solving for the coeflicients using a covariance matrix perturbed in this
v "

way is equivalent to adding white noise to the formant residual and then evaluating

its covariance matnx and solving for the pitch predictor coeflicients. Solving for the
coefficients in this way has the effect of ‘softening’ the pitch predictof and reducing
some of the adverse effects of backward adaptation. A value of a equal to 0.01 gives
good results. Too high a value results in degradation 1n the output speech. Fig. 4.13
shows plots of segmental-SNR using a pitch predictor with and without noise addition.
Noise addition is seen to improve the SNR even further.

Pitch prediction taogether with the predictor softening approach yields up to 5
dB increase in signal-te-noise ratio in certain voiced segments as seen from Fig. 4.14
and Fig. 4.15. Subjectively, the use of plt(‘}; prediction produces a cleaner sounding
code)d speec}; signal. The reason for the improvement obtained with pitch prediction
is that pitch prediction renders the overall prediction error signal more noise-like.

The method used for populating the dictionary is more optimal in quantizing such a.

signal. l . \¢
' \

4.7 Subjective Test Results

A subjective test of the coder was carried out b); conducting a preference test
- 2t
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between tree coded files and log-PCM coded files of various bit rates. The sentences
used were CATF8, CATMS8, OAKF8, OAKMS8, THVF8, and THVMS (see Appendix
A). The tests were conducted with high quality headphones 1n a soundproof acoustic

chamber. The listeners consisted of mostly ‘naive listeners’ (students working in areas

other than speech coding) and a few trained listeners (those working in the speech

coding a.r\ea). The ‘naive listene£s’ were more inclined towards the tree coded speech
files than ‘trained listeners’. The following parameters were used for the tree coded
sentences; pitch prediction with noise addition (a = 0.01), noise shaping (p = 0.85),
" tree searching with M = 16 and L = 8, and finally an eighth order formant predictor
using a one-pole window (/3 = 0.986). The tree coded sentences were compared with
5, 6, 7, and 8 bit/sample log-PCM coded sentences. The subjective test file consisted

of pairs of sentences, a tree coded version and a log-PCM version. A preference test
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(b) The dashed curve shows segSNR without pitch prediction.
The solid line shows the segSNR with pitch pred1ct10n and_ .

noise addition.

Fig. 4.15 segSNR with Pitch Prediction and Noise Addition for
sentence OAKF8
) 2

- 68 -




.
€3
o T
. .

AR

el j{“"{a{ﬁ\‘n ISR
'

between a tree coded sentence and say a 5 bit/sample log-PCM version was done by

“including two pairs in the test file of the tree coded version and the log-PCM version,

in reverse order. This is done for each sentence, and with 5, 6, 7, and 8 bits/sample

log-PCM coded sentences. The various test pairs were randomly ordered in the test

z

file.

0N 1

o o
L @«

Preference over lbg-PCM

e
)
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S 6 4 -]

Bits/sample log-PC'M

Fig. 4.16 Preference curve over log-PCM
Results of the subjective tests are shown in Fig. 4.16. The vertical axis shows the
fraction of times that the tree coded sentences were preferred over the corresponding
log-PCM coded sentences. For example, tree coded sentences were preferred over
5 bits/sample log-PCM coded sentences every time. The equal preference point is

achieved at about 7 bit/sample log-PCM. One can therefore conclude that the tree

coding scheme achieves a level of subjective quality equal to 7 bit/sample log-PCM.
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Conclusion and

] Chapter 5 - Recommendations

: ' o For Future Research .

c

The aim of this siudy was to address the problem of low delay toll quality coding of
speech at a rate of 16 kbits/sec. The importance of digital encoaing and in particular
low-delay coding, was exln)lalned in Chapter 1.

t Waveforrr\l coding has formed the basis for high quality digital coding of speech.
Among waveform coders, the emphg,gis has been on predictive or differential encod-
ing schemes. Adaptation of the quantizer and predictor in such schemes is vital in
achieving high quality at low bit rates. However achieving high quality at a rate of
16 kbits/sec requires the use of forward adaptation schemes which introduce a large
amount of encoding delay, this being in wiolation of the objectives. Backward adap-

1

tation schemes enable encoder operation with near zero encoding delay, but coder
perform;nce with such schemes at a low rate of 16 kbits/sec is poor. |

The technique of multipath searching of differential encoder tree codes has played
an 1mportant role in improving the performance of differential encoders at low bit
rates, without introducing high encodi’ng delays. Multipath searching introdﬁ?ces only

a small amount of encoding delay, in th@acceptable range of 1 to 2 ms. Previous work

( has centered on multipath searching with the (M, L) algorithm, of tree codes given

’
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by a deterministic innovations tree, and either a fixed or forward adaptive formant
synthesis filter. A descriptiog of various differential encoder tree codes together with
a summary of previous work-in tree coding was given in Chapter 3.

In this thesis, a stochastically populated innovations code tree was used, The
tree 1s populated with random numbers having a Laplacian distribution, and further,
included the effect of a backward adaptive gain ‘along each path. The output code
is then given as a mapping through synthesis filters, gf the innovat;ons code. A
particular path of the output tree is obtained by passing the corresponding path of
the innovations tree through the synthe§i§—ﬁlter. Two synthesis filter configurations
were considered. The first consisted of a backward adaptive all-pole formant synthesis
filter. Although the filteris an adaptive lattice, its implementation was carried out in
transversal form. The second configuration consisted of a cascade of a pitch synthesis
filter and a formant synthesis filter. The pitch filter reconstructs the fine structure
of the speech spectrum, and the forl;lant filter insérts the speech spectral envelope.
The .pitch filter was backward adaptive, in that. the estimate of the pitch lag, and
the.coeflicients of the pitch filter were determined from the past quantized formant
residual signal. Addition of a small perturbation term to the diagonal elements of the
pi{,ch covariance matrix in the calculation of the pitch predictor coefficients, was seen
to reduce some of the adverse effects of backward adaptation of the pitch filter. The
use of a pitch filter gives almost 5 dB 'improvzement in signal-to-noise ratio in certain
steady state voiced segments. With both types of synthesis filter configurations,
encoder configurations that permit the use of a frequency weighted error measure
were used to reduce subjective loudness of the output noise.

The output code tree was searched using the multipath (M, L) search algorithm.
Most of the performance from the code is obtained with M and L valués of 16 and
8 respectively. Segmental SNR values of about 20 dB were obtained with a squared

error distortion measure. The tree code is one that gives good perforniice with a
g o g /
A e 3
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multipath search, although performance with a single path search is very poor. With
a single path search, segSNR values fall below 12 dB.

Subjective tests consisting of comparisons between log-PCM coded sentences and
tree coded sentences were carried out. The tests show that listjenerls hava ~= equal
preference between the tree coded sentences and the corresponding 7 bit/sample log-
PCM coded versions. i

To conclude, subjective quality equivalent to 7 bit/sample log-PCM was obtained
with an encoding delay of 1 ms (8 sample delay) together\ with a modest amount of

* tree searching (16 };aths kept in contention at each stage), all at an encoding rate
of 16 kb,its/sec. The coding algorithm is in conformity with the constraints of (1)

low encoding delay, (2) high quality, and (3) low to ‘medium encodirig bit'rate — 16

kbits/sec

5.1 Recommendations for Future Research

The dictionary was populated using random numbers with a Laplacian distribu-
tion. This method of population 1s optimal in coding the output of an i.i.d. Lapla-
cian source. Since the Laplacian distribution only reflects the long-term distr;bution
of residual samples, the method used for populating the di;tionary is not optimal.
Changing both the distribution and the gain adaptation strategy to take into account
the behaviour of the residual during voiced segments’ and plosives, for example, might

“be lookgd into. The use of a complementary innovations code might also be inves-
tiéa}.ed. Complementary code trees are pseudo-stochastic code trees, in which a set
of extended nodes are populated with non—in(iependent values. Complementary code
trees therefore have a controlled amount of structure imbedded.,

The encoding algorithm is suitable for use over the switched telephone network.

. However, full integration of the coding alg;)rithm into the telephone network would
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involve considerations of (1) transmiission of voice band data signals, (2) tarideming.
and (3) efficient’ transcoding to existing log-PCM techniques. The performance of

the algorithm 'in the ‘presence of channel errors should be investigated. Possible

3

.

modifications of the algorithm to improve "performance in the presence of non-ideal

channel conditions should be looked into.
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77 (6) THVMS - “Thieves who rob friends deserve jail” (Male speaker) -

Appendix A. Details of Speech Data Base

The speech sentences were first low pass filtered to 5.5 kHz (1 dB down at 5 kHz

and 40 dB down at 10 kHz) and then sampled 2t 2§ kHz. The speech data files were «

obtained by first digitally filtering the 20 kHz sampled dita and then changing the
sampling rate to § kHz. The digital filter had a pass band between 0 and 3200 Hz,
and a stop band between 3350 and 5000 Haz.

The speech sentences used are : . &

(1) CATF8 - “Cats and dogs each hate the other”. (Female speaker)

(2) CATMS - “Cats and dogs each hate the other”. (Male speaker)

(3) OAKFS8 - “Oak is strong and also gives shade” (Female speakér)

. 0 OAKMS - “Oak is strong and also gives shade” (Male speaker)

T T (5j THVFS8 - “Thieves who rob friends deserve jail” (Female speaker)

..
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