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Le comportement après flambage et la résistance ultime dies 

éléments à parois minces debatimentsest étudié à-l'aide de la méthode 
1 

des éléments fi~is. 'A l'aide des concepts de travail virtuel ,jet 

d'énergie potentielle minimum, des formulatio~s basées sur le principe 

des variations et sur 1e principe des variations par incrêments sont 

developpées. Les matériaux considérés sont élastiques et parfaitemént 

plastiques, élastiques et subissant un écrouissement 1ineaire, et 

élastiques et subissant un écrouissement non-linéalre. Des matrices 

linéaires et non-linéaires sont d~rivees de façon explicite jusqu'au 

niveau précédant l'intégration numérique. Des méthodes de solution du 

type de celle de Newton-Raphson par itération et du type graduel avec 

vér,ifications ~'équilibre sont utilisées et comparées. 

la formulation est d'abord utilisée pour étudier une variété 

de prObl~mes concernant d~S plaques. Les résultats se comparent de 

façon favorable avec des solutions 'théoriques et expérimentales déjà 

publiées dans la littèrature technique. La m,thode proposée est ensuite 

appliquée à un nombre de profilés à parois minces non plan. Les 'résultats 

de flexion, de contrainte et.de plastification sont étudiés en déltail. 

Des comparaisons avec les résistances ultimes obtenues d'autres sources 

sont effectuées lorsque possible. 
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ABSTRACT 

, 
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The post-buckling behaviour and the u1timate strength of thln-

wal)ed structural elements is studied using the finite element method. 

Formul'atiorrS bas)ed on the variational princip1e and the incrementa1 

variational principle are de~eloped using "the approaches of virtual 

work and of minimum potentia1 energy. Materia1 treated as elastic­

perfectly plastic, elastic-linear/str,ain har~ening, and e1astic-non1inear 
Il. 

strain ,hardening are con;;*idered. Linear and non1 inear matrices are 

derived expl~citly up to the level prior ta numerical i~tergration. 

, ' 

• e _ , ___ 

Solution procedures of the Newton-Raphson iterative techni;:QUe an~d the. ~ 

step by step method with equilibrium check are emp10yed and coro ed. 
- 1 

The formulation is first used to study a var" tYO'i plate- l 
1 . / 

problems'.' The results compare favourabl theoretical and experimental 

solutions already 

technique is th 

S~h slope 

literature. The Rroposed 

number of thin-walled non-pl anar structural 

discontinuities. Results in terms ~f deflection, 
1 

stress and pl~stificatian are studied in detail. C~mparisons with 

ultimate strengths fram other 's'ourees are also made whenever possible. 
\ 
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o 

Deviatoric stress tensor 

Initial yield stress 

Subsequent yiel d stress 

Equivalent stress 

Secant yield stress at a.lE 

, Specified 0.2 pe~ cent' proof stress 

Ultimate uniaxial st'less 

" 

Potential function due to external force 

Components of curvature 

Scalar to denote the intensity of loading 

Nonnegative constant (Eq. 3.61) 
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Iotal potential energy 

Part of total potential energy due to nonlinearity 
\. 

Strain energy function 

Variational operator 

Kronecker deltas 

Poi sson 1 s rati 0 
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CONVERSION FACTQRS .. 
f 

The fol1owing is a 1ist of the conversion factors for a11 

imperia1 units (Eng1ish system) used throughout this thesis to the 

"Metr; c s)'s.tem" and the "S. 1. sys tem" .. 

1 Foot 

l ft2 

l Inch 

l . 2 ln. 

, 
= 30.48 centlmeters 

= .09290301 meter2~ 

= 2.54 cm 

=' 6. 451 6 cm 2 

l . 3 ln. 
. 3 

.;:; 16.387 c~ 

l 
. 4 ln. 

l ki p-force 

1 ki pli n2 (ksi) 

1 p-oünror:ce 

1 Po_und-force/i nch 

l'Pound-force in. 

= 41.623 cm4 

= 453.~ kilograms force = 4448.2 Newtons 

;:; 6.895 Mega-Pascal 

( l Pascal = 1 Newton/m2) 

= 453.5923 grams-force ;:; 4.4482 Newtons 

= 178:5796 gr/cm 

= 0.112985 Newton-meter 
~ , 

l Pound-force, fo'o~ 1.355818 Newion-meter 
, --2 ~- 2 

1 Pou~d-force/ft 1 -" --_____ = 4.88242 kg/m 

1 Pound-forèe/i n2 ",psi) ~6~4-7--..~Dynes/cm2 
, , é$ -______________. __ 

= 6.895 Kilo-Pascal 

;:; 70.3069 gr/cm2 ,._ 
..,-
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CHAPTER 1 

INTRODUCTION 

I.l Thin-Wal1ed Members 

1 

Metallic thin-walled members are widely used in various! industri'ès. 
1 

There is a long history involving the use of thin-walled members lin Shlp 

bU,ilding and aircraft manufacturing. In fact the investigation lOf thin- /// 

walled members was initiated in these industries and then extend~d to cover 
, 1 

other 'applications. T,hin-wall~d members are now used exterrsive1y in the 

construction of car bodies, railway coaches, water tanks, culver s, barriers, 

,shell and tubular structures of many shapes, as well as various ypes of 

equipment. 

Thin-walled members are fabricated by extrusion, cold- orming or 

by welding their component elements together. They are generally ass,emblages 

of curved or f19} plates and their cross-sections can be either closed 
• 

(tubll1ar) or opeh, (prôfile). Thin-walled members are distingu shed from 

conven ti ona l compact members not s imply beC'ause of ·.the th i nness of ~hei r 
., 

walls but rather, more importantly, due ta' their different behavlour in areas 

which include llocal instability,. post-buckling strength and to sional-warping. 

The classification as thin-walled m~mbers also depends on the 

configuration since external forces play an important role in 

the behaviour of the member. 
\ 

The application of co1d-formedl thin-wal1ed members in building 

construction is presently very popular. Standardized prefab icated 

buildings, entirely or partially constructed usfng cold-forme members, 

are already on the market. Shapes such as I-sections, hat s ctions, 
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channels, ang~es or any combinatlon of these, wlth or without stiffening 

lips, are commonly used'as roof purlins, wall girts or studs. Various 

1 . . t <:: ;:u:w+-(~----sections are a150 us,ed ~n open web stee JO~S~,,~ space frames. Although 

these members may be individually unstable due to their configuration and 

dimensi'ons. their stability and hence their load-carrying capacity is 

" greatly increased once they are connected to other parts of the structure 

suèh as roof decks. wall panels, etc.. Corrugated shapes are generally 

used as roof decKing, floor de~king. wall sheathing and siding. ~hin­

waTled fuembers are also used in the const~uction, of folded plate and 

hyperbolic parab'oloid roofs and may provide a pleasing appearance. "In 

addition to carrying normal 10ads, these members may also farm a diaphragm 

which resists inplane shear deformation. transfers lateral forces (wind 

and/or earthquake), anq provides la~eral bracing for individual members ;n 

a steel framed buil~ing. 

The advantages of using cold-formed metal members are: 

'" ,-
( 1) Ec,onomy: High strength-weight ratio, mass production and 

'-

pre-fabrication. ease in transportation and erection, 

high durability and reusability, a11 contribute to 

substantial savings. 

(2) Mu1ti-purpose applications: These members are often able to 

fulfi1l more than one purpose. For example, wall 

panels, while providing structural strength, may also be 

architectura11y desirable. F100r decki ng, whi ch 

creates a composite structural member in combination with 

concrete, serves as the form during construction and also 
1 

provides utility conduits in the finished floer. 
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Today, va-r-iouS specifications and codes app1y1ng to th1n-walled 

members are beingW used by designers and" are under constant review ;n 
1-6 c 

North America and Europe . The ana1ysis and design of such members 

have recent1y been the subject of books by severa1 authors inc1uding Yu? 

and Wa 1 ker8. 

1. 2 The Prob 1 em 

Thin-wal1ed membe~have nonlinearly, that is, the relationship 

between the applied loads and the resulting r:sponse of the members lS ~ 
~non li nèa r. Nonlin~arities encountered are due to two effects: 

/ 

[lJ Gebmet;ical Nonline~rity: / 
/ 

/ 

When a member defleç:ts sign;ficantly,t~e effect of ç'ha-no/ng 

geometry on equi1ibrium must be taken into account and 'the 

stretching of the middle plane of the plate must be included 

in th'e ana1ysis. l"hese effec~s lead ta an increase in ' 

bending stiffness of the membér, even though the stiffness' 

of resistance to axial compression decreases. This type 
\' 

,,-r~-ilO-nlinearity is intro,duced by ad~ing hiJher order terms 

in ~~ain-diSPlacement rela~i~ns and/or by updating the 
_ ) ,1 

geometry of the member using a step-by-step approach. 
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[2J Material Nonlinearity: r,l 

~ 

"At high load levels sorne porti~n of the member may yield, and 

based on its nonlinear constitutive relat;on~ start ta respond 

inelastically. Thi s "soften i ng" of the mater; al due ta 

plastification reduces the stiffnessuuf the mem~er and causes 

its final collapse. This type of nonlinearity lS introduc"ed 

throU~h the stres~-strain relation (P\as~itY). 
1 1 

These nonlinearities play an extremel.Y)mportant role in the" 

beh-aviour of thin-walled members. It is well-known that the uti.1lZation 

of post-buckling strength is the prime advantage associated with thin-
, . 

\ 

wal}ed member~ The investigation of behaviour above critical lOads and 

the prediction of ultimate 

tvJf, ty'pes of nbn 1 i nea rit y . 

strength demand the inclusion of both of these 

These nonlinear characteristics of thin-
'\, , 

walled m~bers have not yet 
." 

been thoroughly treated. 

The analysis of thin-walled members is inherently difficult since 

it involves the problems of stability and warping. Furthermore, the 

inclusion of nonlinearities makes the analysis extremely complex and it; 

~ cannot be solved in closed form. 
l, 

50 far, attempts have been limi1ted to ' 
\ 

simple problems such as plates or tubes under compression. Everf in s uch 

s~mple cases an ad hoc approach was often adopted 50 that assumptions could 

be made to simplify the complex mathematics involved, although the final 
1 ) 

results still had to be obtained numerically. These earli~r works have 

provided some important contributions towards solving the problem. 

However, they are by no means complete, exact or géneral, and hence th~ir 
~ 

appli~ations are limited. 
.1 'oc, 
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Exact theoretical treatments oF thin-walled flexural members 

are scarce. A recommended way for calculati~g the deflection of thin-

walled beams, based'on the effective section of the member, which is a 

function of the stress 'level ,'and therefore varies along the span of the 
.' 

beam. is tedious. ,Further simplification by using only the least 

effective~tion (the location with the maximum moment) causes the 

calculated def1~ct;on to be conservative and appr~x;mate. Previous 
0-

investigations involving ~ore comp1icated problems such as thin-walled 

memblers under torsion, or comb,ined bend'ing and torsion, wlth consideration 

of non1inearities, are virtually nonexistant. This explains why the 

present codes, and specifications, wherever nonlinearities must be taken 

into account. such as in post-buckling strength and web crippling, are 
~ 

based main1y on the resul~~ of experiments. 
1 

In these experiments, 

"obviously, limitations on the sh~pe and dimensions of sections, loading 

configurations, boundary conditions and types of materials used, cannot 
, 

be avoided. Howevê~ the results, in spite of the limitations, are 

applied for genera1 use. 

Thts evidence reflects the fact that theoretical work must be 

promoted, since the progress of theoretica1 work falls far behind 

experi,ments. Also, no matter how satisfactory the experimental work 

proves to be, ideally these results should be theoretically justified 

and a marri age of experimental and theoretical results should be set as 

the final goal. Further, even though ex~eriments may pr9vide'answers 

to definiteo questions (e. g., ultimate 10ad), a prope'r underst'~nding of 

the behaviour of the member by a detailed study of stress distribution 
Q 
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patterns and the chronologica1 spreading of p1ast1c zones, which can 

be convenientl\y obtairred by theoretical methods, lS likely to be 

impractical by experiment. Using a theoretikal study which includ~s 
non11nearities, a better,-understanding of the b-ehaviour and the strength 

of thin-walled members and furthe~ improvement of present specifications 

and codes are poss i b le. This, in turn. promotes greater economy-

through lower margins of safety in'the use of thin-wallerl members. 

1.3 Prevlous Work 

Classical treatments on the bending, torsion and buckling of 

thin-walled members fo1law smal1 deformation theary and assume th,at the 

material 1S fu11y e1astie. This type of treatmentras been, extensively 

studi ed and documented in nume,rous references in many we ll-known 

books10- 13 . This 1inear, elastic analysis ;s not the topie Ol'th~present 

study and hence a review on these works is not ~arranted. 1 n ) th i s 
(' 

section, previous studies. tha1 considered on1y geometrica1 or materia), 
l' ' 

nonlinearity are presented first. Works considering combined non-
" 

linearities fol10w. They are presented in chronological order~ The 

object is ta present a historical background and an up-to-date state-of-

the-art revi ew. Thin-walled sections with curved plates (shel1s) are 

excluded. 

, , 
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Gêometric,l'Nonlinearity - E1astic Plates and Thin-Walled Sections 

with Large Deflection~ 

Even though the first treatment ,of plate~ with large def1ectlons 

back to Kir. off t1877)9.it was Von Karman14 who derived the 
1 

present lar deflection .compatibi1ity and equilibrium equ~tions of plates 
~ 

in 1910. Timoshenko1 5 , and Marguerre and Trefftz 16 were among the earliest 
, ' 

, 
in the nineteen thirties to investigate p,lates with large deflections 

/ 

where -'they us ed the ene rgy meth od to ob fa i n approx i ma te sol ut ions. Way 1 7 

used the Ritz method to study a c1ampe~ rectangular plate under unlform 
( 18 19 

_ lat~ral loa, which was later studied ~y Wang , using flnite differences • 
. ' 20 \ 21 23 and by Chien and Yeh. using successivè,approximations. Levy - (1942) 

\ 

was able (to reach an "exact ll solution usù~g double Fourier series' for 

simp1y supported or clamped plates under uriciform 1atera1 load, in-plane 
if • 
/ 

load, or combined 1atera1 and in-plane l09.d .. On the uniformly compressed, 

simply supported plate he constrained the un10aded edges to remain straight. 

This was extended by Hu, Lundquist a~d Batdorf24 to include~initial 
imperfection effects, by Coan20 to consider unloaded edges free to move in 

its plane, and by Yamaki 26 to coyer various ~oundary conditions. In his 

doctoral thesis of 1945, Koiter27 initiated a perturbation technique to 

investigate jmmediate post-buck1ing behaviour and imperfection sensiiivity 

~ of plates. ,~erger28 proposed an approximate approach which simpl ified ' 

the' non1inear equations by neg1ecting the second invariant of the membrane 

strain. Post-buckling was later studied b St . 29 . . y eln uSlng power serles. 

Change of the buck1ing form of a plate was investigated by Stein30 • Supp1e 

and Chilver3l - 33 . For details on plates with large deflections, 

references 13, 34 and 125 can be consulted. 

/ 
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Recent work ~on plates is inclined towards numencal approaches 
. 

due to the rapid g~owth of the storage capacitr and speed of computers. 

~alker and others 35-38 ,studied the post-buckling of compressed plates 

. using perturbation techniques. Alternatively, Rushton 39- 42 used the 

method tif dynamic relaxation. 43-45 Rhodes and Harvey used the Ritz 

methodQ;nd501".d Von Karman's compatibility equation "exac tly". Flnite l 

difference.methods were used by Chapman et al. 46,47 on plates under 
. , 

transverse load and under combined transverse and in-plane loads. A 

review on post-bucU-ing by Hutchison and Koiter48 and by Bieniek49 a150 

provided information on plates. 

Studies of large deflection, elastic plate beh'avi'our using 

fi nite el ements a rA numerous. '"', . Early works mostly used a step-bY-5tep 
\ 

method with the lineâr incrEmental equilibrium equatio~ with inclusion 

of geometric stiffness being formulated and solved for a piecewise 

1 inear approximat';on of the true solution. Among them, Murray and 
1 

Wilson50 ,5l studied large deflection and post-buckling of plates with~ 

incremental equilibrium equatior1s formulated ustng the principle of 

virtual work. The unbalanced residual forces are calculated and 

iteration is then performed within each increment. Lang and Hartz 52 

later'coupled a finite element formulation with a general energy 

perturbation approach to study post-buckling of plates. Roberts and 
1 

Ashwel1 53 proposed a (Newton-Raphson) corrector and (mid-increment 

stiffness) predictor solution procedure to investigate laterally loaded 

square plates and the post-buckling of an imperfect plate. Kawai and 

Yoshimura54 employed energy formulations and reached' a force-displacement 

relation where nonlinear terms are interpreted as ,additional nodal forces 

·1 , 

.-
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which are functions of unknown nodal displacements and are solved 

iterativelY1 A sample problem of a clamped square plate under lateral 

loads uSing rectangular elements was given. Kawai?5 further combined 
a Il 

the finite element,method for the analysis of in-plane stress fields and 

-Rayleigh-Ritz's procedure for plate bending problems to study bending and 

buckling of rectangular plates. Vos and Vann 56 studied buckling and 
, 57 

post-buckling~of plates utilizing a tensor formulation. Bergan 

investigated bending and post-buckling of-?plat€s using the Marguerre 

-------shallow shell theory where equilibrium and incremental equations for 

generar Rayleigh-Ritz ty-pe solution methods are deriv'ed ~rom the Variational 

Principle of tota1 potentiallenergy. Yang5~-62 extended the incremen'tal 
..; 

formulattbn initially introduced by Mallett and Marcal lBl to investlgate ~ 
" 
rectangular flexure plate behaviour on an elastic foundation with suppor~ 

at the edges only being treated as a special case. The behaviour with 

initial def~ction and the buckling and post-buckli"ng---problem w,as treated 

as well. Also, various type~ of boundary conditions were conside~ed: 

Recently Bagchi and Rockey63 used a rectangular plate element to investigate 

a web plate under partial edge loading .. Works by'SChmit et-al. 64 , Bre~bia 
65 66' -"'}"68 69 and Connor , Tezcan et al. ,Gallagher et al.v.~ ,Bergan and Clougb , 

and Gass and Tabarrok70 also included applications ta flat rectangular plates. 

O~ thin-walled sections, Black71 used Galerkin's method to 

Soltis and Christian072 
.~ \ 

emp10yed fin1te difference and Newton-Raphson ite~ative metttops to investi-

, 
study beams subjected to bending and torsion. 

gate ?ections under biaxial loading. 
" 

Ghobarah and Tso 73. 74 d~;.ved 
11 V

y 

non1 inear different.ial equations using the minimum potentia1 energy 

J 
• 
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princi~le for thin-walled beams and a perturbation-process was carried 
1 0 

out to obtain *lutions for 'the.beam pro~l~m with non-uniform torsion'. 

Mikhail and Gu~alnick75 a1so applied the minimum potenttal energy 

pr~nciple with a Rayleigh-Ritz method to a folded-plate type beam which 

was 

and 

later studied by Khan and Harri/6 using finite elements. Rajasekaran 

Murray77 used finite elements and adoptedf"augmented stiffness" and 

"alpha constant ll techniques to the solution ot;, beams and beam-columns. 
l"~ 

1.3.2 Material' Nonlinearity - E)asto-Plastic Plates and Thin-Walled Se€tions 
o 

Due to the difficulty in treating th~oretically the elasto-

plastl;c plate in b-ending, the extremum principle of PlastiCity78-81 is 

gener~lly applied to obtain upper) and lower" bounds for the true ultimate 

load. In this respect, the 'well-known limit analysis method is pre-

domi nant ly used. However, this simplified method assu~es that the 

material is perfectly plastic and hence the strain hardening effect is 

neglected. Alternative approaches have been proposed by several . 
investigators. Massonnet82 and Cornelis83 used a finite difference 

method with an in~remental procedure for solving the plate bending problem. 

Ang and Lopez~4 attacked the problem by treating a plate as a grid ~ystem. 

,A method using successive elastic approxi~ations85 wa.,s.also att.~mpted_ 

previously. Work on rectangular plate problems by Lin86 ,87 who applied 

an analogy concept to reduce the analysis of a plate with plastic strain 

to the analysis of an identical plate with an additional set of lateral 

loads and edge moments, ;s worth noting . 
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P~obably the approach most actively addpted in recent years 

is that,using finite elements ~hich not only provides a bounded value 
/ 

for the ,true solufion, but also describes the stress distribution and the 

.. progress of plastification in the plate. Among previously published 

work on the initial strain method, Marcal and Manett88 investigated a 

centrally loaded and simply supported square plate usin§ triangular 
89 90' elements, Armen et al. ' employed both rectangular and triangular 

elements on various plates subjected to lateral loads and to combined 

lateral and in-plane loads, and Whang91 adopted a shallow rectangular shell 

element to uniformly loade9 clamped and ~i~ply supported square plates. 

For the tangent stiffness method, Bergan and Clough92 studied uniformly 1 . 

ldaded plates uSing refined qUa~rilateral elements, and Wegmuller93 ,94 

studied clamped square plates using a rectangular element. Us~ing the 

initi al stress method. Barnard and Sharman95 recently 'adopted a hybri d 
,1 

, 1 

plate-bendi ng el ement to s·imply supported and cl amped square ~1 ates under 

uniform loading. ,. 

Investigation of thin-walled sections considering onlY,materia1 

nonlinearity is based on the assumption th'at the deflection is comp~rativel) 
small and hence geometrical nonlinear eff~cts can be neglected. 'T~is is 

unlikely to hold true for thin-wa1led members and studies under such 

assumptions are very rare. On the other hand, the limit analysis method 

(plastic design) for conventional compact sections has beên well-established 

.nd is of little interest in the present study. However, it is worthwhile 

to point out that the finite el~ment method has recently been applied by • 

Rajaskaran and Murray96 to investigate elasto-plastic plated-sectio~s, and 

1 Lundgren97 ,98 recently 'studied thin-walled b~ams under torsion assuming 

the material is nonlinear,elastic?r elastic-perfectly plastic. 

/ 
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1.3.3 Ul~imate Strength of Plates and Thin-Walled Sections 

. Investigation of the u-ltimate stren-gth of plates and thin-wa1led 

'" sections requires the consideration of both geometric'à'"l and material 

nonlinearlties as at this final stage of its loading history, the member 

has already deflected a significant amount and parts of the member have 

yielded. Because of its~xtreme mathematical complexity in theoretical 

treatment. closed-form solutions do not exist. There are two approaches 

most commonly used to predict the ultimate strength and both are semi-
. •. r 

empirical in nature. The first approach is to propose a simplified formul~ 

where ultimate strength is expressed as a function of the member's critical 
1 

stress and th,e yield stress of the material being used. The necessary 
, \ 

factor term and exponent term in the f~rmula is chosen by comparison with 

the experimental data. For the thin-walled section the ultimate strength 

is evaluated by summing the weighted strength of each plate ~lement based 

on its cross-sectional ar~a: The second approach is to use trhe effective 

width concept where post-buckling strength is considered to be uniformly 
\ 

carried by longitudinal str~ps along the stiffened edges of the plate so 

th~t the. stress -resultant of the plate remains the same. It simp.lifies 

the nonl~near stress distr~bution along the plate width to uniformly 
1O 

.' distributed stress blocks and the formula for 'effective width is gene.fdlly 

~~~. based on experimental results. Consequently. the strength of thin-
.. 

Il 
walled sections is evaluated using a reduced effective section. 

Schuman and Back99 ~ested rectangUla~ ~lates under edge compression 
l' 

with unloaded edges supported in V grooves. They noticed that. because 
1 

,.. 
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the center part of the ate buck1ed most, the post-buckling load is 

mainly carried by strips alo the unloaded but supported edges, and 

the capacity of the plate was not ised significantly by increasing 

the plate width. Von Karman lOO (1932 as the first ta use the effective 

width concept and had derived an approximat~(mula for simply supported 
",,--

plate~ Various expressions for the effective wid~h were proposed by 

many researchers .thereaf~er. Early works were conducted by Sechler10l , . 

-who tested steel plates and by Cox l02 ,103 and t~arguerre et al. 104 ,105 

who used the energy method and also included ~he effects due to initial 

,imperfection. Stowell 106 used the defonnation ,theory oCplasticity ta 
..t7--' 

study rectangular plates with one unloaded edge simply supported and 

remaining straight, and the other unloaded edge totally free. This was 

simulated experimentally by test,ing crucifonn columns where, due to symmetry, 

only torsional buckling occurs and the center line of the column (repre­

senting the supported edge of each flange) provides no restratnt on rotation 

but remains straight. ~~d agreement between theoretical results and 

test data was obtained. Mayers and Budianskyl07 attempted an approx,imate 

theoretlcal solution using the energy method with the Rayleigh-Ritz 

proc'edure on simply supported square plate~ where unloaded edges remain 

straight. Deformation theory w~s adopted and the plate was treated as 

consisting of only two. stress-carrying faces (sandwich-lik.e). Results' 

. compared fairly wel1 with exper1mental data but failed to show load 
.... 

shedding. 

Heimerl 108 tested extruded sections and proposed semi-empirical 

formulas for ultimate stress. Applying the same formulation to fonned 
Il 
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sections, Schuette l09 found consistent discrepancies and pOlnted out 

that the ultimate stress for formed sections depended on the width-
• 1 _--~ 

thickness ratio. Later, NeedhamllO propose~ his ultimate stress 

formulas for formed sections to take this parameter into account. He 

further suggested that a 'formed member consisting of a serles of flat 

plate e1ements cah be treated as a series of angle, seçtions by "cutting" 

through the center line of each stiffened plate element since that region 

is least rigid and hence less sensitive regarding the prediction of 

ultimate strength. After having reviewed previous investigations. 

Gera;d lll ,112 combined the formulas for extruded sections and formed 

sections into one and made further extensions to coyer general shapes and 

stiffened panels. This work was mainly for the member whose effective 

slenderness ratio is small and hence the member fails due to local crippling 

rather than to overal1 co1umn buckling. 

Perhaps the most jmportant work is due to Winter l13 ,114 who 

performed a series of tests on cold-formed steel sections. His results 

formed the basis for the·main contents of the AISr 4 and other codes 1,3,6. 

Chilver1l5 has investigated lipped and unlipped channel seètions of cold-
\ 

formed steel. Work on post-buckling behaviour of plates was reviewed by 
116 '117 Jbmbock and Clark , and by European researchers 

Research in the las t ten "years has been extens ive. f.>..Ii ght and. 

Ractliffe l18 tested steel and aluminum alloy plates. Graves-Smithl19-122 

used the Ritz method with a rigQrous mathematical formulation to 

investigate rectangular tube c~umns and later square box beam~. r~assonnet 123 

proposed a solution using the iterative finite difference method. 

r , \ 
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1 

He employed the Prandtl-Reuss equations of plastic flow thebry 'wlth the 

assumptio~ that the plate performs a, sudden transition fr~~ elastic to 

fully plastic beh~vio,ur oncë the plastic moment is reaChed.
1 

Reiss and 

Chilver124 pointed out that, for ;ome sections, the assumption that the 

ultimate strength of a compressed section is the llnear summation ot the 

individual strengths of the cempenent plates assuming it is simpl~ suPPorte~ 
along the longitudinal edges, may be in error on the unsafe side. Bulson 12 

1 

summariz~d ~revious ~ork. Abdel-Sayed126 re-examined the' effective width 
1 

of plates within the elastic range including the case where unloaded 

edges are free to move in their planes. Rhodes et,a1. l27 ,163,164 used' 

a semi-energy method on 1ipped channel beams subjected to end moments ~nd 

on edcentrical1y loaded plates with initlal imperfections. Sherbourne 
a 

128-130 . et al. studled plates and tubes by using the energy method to 

formulate an elastic loading (post-buckling) line and a·rigid-plastic 

unloading (mechanism) line. Their prediction for ultimate strength by 

considering the intersection of two lines overestimated the real capacity 

of the plate and maj be considered as an upper bound~ wang 131 proposed 

a numeric1al me ... thod to predict post-buJkling behaviour of thin-walled 

continuous beams where nonlinearities are accounted for by th~ non1ineir 

moment-curvature relations of a section derived with the aid of the 

,. 

effective width concept. Rockey et al.132-134 investigated experimental1y 

the ultimate strength of thin-walled members under patch loading and under 

combined patch loading and bending. They demo~strated that the method 

can be used to p~edict the failure loading of ljght gauge girders with a 

good degree of accuracy. Venkataramaiah135 Jested channel columns. 

1 
1 

" 
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J 

Eq~ipped with rev;ews of formulas previously proposed for light gauge 

steel design and incorporated with the spirit of limit state design, 
o 

Lind ~t al.136-138 proposed a simple expression for effective width u~ing 

a statisticar approach. lin et a1. 139 studied plates usingfinite 
, 140? 

difference and special iteration techniques. Walker et al. analysed 

plate mechanisms and predicted the unloading path of simply supp~rted 

plates in compression. 

Again, the finite e1ement method has been employed ta investigate 

. -the ultimate load of thin-walled members. Murray and Wilson 141 adopted 

triangular elements and developed an approximate formu1atlon which was 

tested on plate bending problems. Marcal 142 used triangular elements to 

~!J.idy a simply supported square plate under uniform pressure. Oh~oSUbo143 
also used triangular elements on square pl~tes under uniform pressure or 

~ 

Ritz procedure with the aid of under edge compression. 

the finite element 

He adopted the 
1 

method and had plastic analysls' based on an initial 

Crisfield144-148 used the Ilyushin and the modified 

Ilyushin yie1d criterion with rectangular elements f6r 1the plate subjected 

strain concept. 

t~ edge compression or ta shear force. He l ater ex~ended ys work to 

coyer eccentrically stiffened plates. Extensive stress an~lysis using 

fi nite elements" has been performed by Armen et al. 173. Arai 149 used 
/ 

/refi ned tri angul ar elements ta study various problems where the theory of 
! 

,1 plasticity was not fully taken into account and hence his formulation can 

be considered a; an approximation., Murray and Rajasekaran150 presented a 

set of differential equilibrium equat;ons
l 
for thin-walled open~section 

beams. Since the formulation was based on the principle of virtual work,' , 
\\ 

the equations are valid for inelastic behaviour. However, the work is 

l , 

, 

i 
1 
1 
: 
1 
!1 
1 , 
1 , 
1 
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limited to qualltative results. Stiffened plates have recently been 

investigatedC'bY, Soreide, Bergan and Moan i51 ,152 where triangular elements 

were adopted. They have developed two computer progr~s based on the 

Lagranglan formulation and moving coordinate formulation respectively. 

1.3,.4 Overall Buckling of Thin-l-lalled Sections in the Post-Critical Range 

1 

Thin-walled columns with intermedjate slenderness ratio~ ~ay fall 

by ov€rall buckling in the post-critical range. In this case the column 

may or may not yield depending upon its slenderness ratio. Study of 
o 

this failure mode requires consideration of the 1nteraction of post-

buckling strength and the column deflection. Bijlaard and Fisher153 

reached approximate solutions using the energy method where -formu1ations 
, 

were derived specifically for ~-sections and square tube columns. The 

~ossibility of generalization to other sections was claimed. Cherry154,. 

has analysed'and 'tested 1- and T-section beams which failed by lateral 
1 

. but:kling after the compression' flange had buckled locally. Jombock 

and Clark1l6 ,155 used the effective width concept ,t;""àccOun\ for post- f».r, 

buckling nonlinear effects. Graves-Smith1l9-l22 performed a' rigorous 
.; \ 

mathematica~ derivation including plasticity effe~s for-rf;ctangular tube 

sections and obtained good agreement with tests on luminum tubes. 

Bulson156 suggested an empirically d~rived interacti n equation to treat 
. 1 

this problem. ~hobarah '~nd Tso 157 investi~ated channel columns. Sharp158 

provided a simple empirical formula. Wang159 proposed a numerical method 

and adopted 'effective width concepts ta the investigation of r~ctangular 

.Î • • 1 
'~ 

~ 
1 
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\ 

tube col umns. ' Recentl~, Winter et al.160-162 presented a semi-empirical 

effective width approach incorporated with the tangent modulus of the 
o 

malérial to account for inelasti~ effects. This work was extended by 

De Wolf161 to the ca.e of overall torsional column buckling. 

, 1.4 Objecti~e of Present Stud,y 

~ The literature review reveals that most previous work has bèen 
. 

limited to plates and tubes which are generally treated as plates. 'Work 
1 

on other sections is almost all limited to'-loading cases of axial com-

pression and the'VanalYSiS is either empirical or semi-empirical. There-, 

is very little' theoretical wor:k'on no~planar thf.n-walled open sections. 

This wor~, which includes only one type of nonlinearity, cannot be cQn­

sidered complete. Without geometrical nonlinearity, the behaviour cannot 
.. ,. ~1"~ .. , .. 

be investigated correctly and wifhout material nonlinearity,the ultimjte 

strength cannot be accurately predicted. Previous nonlinear analysl> of 

"three-dimens0~al, thin-walled members such as those shown in,Fig, l with 

various loading and boundary co'nditions, to the writer1s knowledge, is 
'1J' l' Q \ (J 

~ virtually non-existent. The aim·of the present ~tudy is therefore to 
~ " • f 

perform complete nonlinear investigations of this type of thin-wa~ed 

member under various conditions of loading, boundary co~straint and material. 
o 

It is hoped that, by·tracing the load history and response from initial 

loading to finaol 

can be a~~ieved. 
collapse,\ a better understandÏ<l19 of nonlinear behaviour 

, ' -, ....... : \ 

It is the aim of tHe present study to make a1,~ignificant, 
\1 ' 

advance in the theoret ica l treatment of th i n'-wa 11 ed lIlembe,rs. ' 1 

-' ,/"' __ '::::::--1'0 
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( 1.5 Proposed Approac'h 

/ 

c' 

o 

Since obtaining a closed-form solution is practically impossible, 

a numer;cal approach ;s suggested. Among the many different methods, it 
'1-

is due to its simplicity and versatility that the finite element method 

appears to be the most appealing. A finite element displacement method 

using the tangent stiffness is proposed. Strain displac~ment re,lations 
-

(geometrical nonlinearity) pre established by'adopting' the Lagrangian 

formulation and stres5~strain relations {mater1al nonlinearity) by the flow 

theory of plasticity. "\ The Prandtl-~èu'ss .r~Jation and its associated 
'.' 

Von Mises yield criter;on is used and subsequent yielding is governed by 
, 

an isotropic hardening rule. Solu:ti'on of the equ'ilibrium eqJations is 

based on the modified Cholesky decomposition procedure. 

1.6 Scope of Present Study 

l ' 
The present study only investigates thin-walled memb~rs which 

. 
are composed of flat plates but the members can be of any shape and dimension. 

t 1 

~ven though the member behaves with large displacements, ,the strain rem~ins 

small. The problem of large displacements and large strains is beyond the 

scope of the present study. No limitations on loadi,ng configuration ..and 

conditions are required except that they must be consistent with 

the degrees of freedom used ih the present finite element anal~si~. 
1 

The 
1 

material can be treated as elastic-perfectly plastic,l elastic-l inear 

hardenin~, and elastic-nonlinear hardening.· Members are ~resumed to be 

initially stress free and the strain hardening of material due to cold 

'i, 

j 
/ . • 

i," 
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• 
forming is not considered. Also, members are subjected to static 

_ conservative loads only. However, u~loading and reloading in the post-

yielding stage is atlowed. 

It is the intent of, Chapter II ta present the Iistate of the art" 

of nonlinear analysis using the finite element method. The g~neral 

technique of attacking nonlinear problems is reviewed\from two different 

perspectives. The first is to consider the formulation based on different , 

coordinate systems. The second is to discuss the different ways of . \ 
treating nonlinear terms in the governing equations. One important 

J' 

feature of nonlinear analysis is the solution procedure. There are quite 

a number of available solution procedures which are bri~fly described as 

the final part of this chapter. 

Chapter III is devoted to the detailed mathematical formulation. 

~he variational principle ii introduced first. This is followed by a 

description of the element sel.ected for the present study. " Geometrical 

) d t~ . 1 1 . . t t d t 1 t th b .. d an ma erla non lnearl y are reate separa e y a e eglnnlng, an 

incorporated w~th strain-displacement equations an~ stress-strain equations 
\ 

in matrix notation. With the application çf the varia~ional principle, 

nonlinearities are ~bsequently combined and the tangent stiffhess matrix 

is formed. The method of\generating the tangent stiffness matrix, which 

vitally affects the computing cost fs extremely important in nonlinear 

finite element analysis, is considered to be efficient. The Chapter i s 

ended by introducing the modified Cholesky method of solving simultaneous 

1 inear equati ons. ,1 J 

, 

'1 , , 
1 

Il 
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In Chapter IV the computer program developed, based on the 
1 

mathematical formulation of Chapter III, is descrlbed. In vest i gat,; ons 

primarily on square and rectangular plates' which represent the e'arly 

part of the study, are" pre~ented. Test examples cover various loading 

configurations, boundary conditlons and material properties. Results 

are compared against the published values conducted by other researchers 

using either the finite element method or other means. Probl~ms such 

as Iconvergence. step s lZe, and other mi sce 11 aneous items are al so di scussed. 

Applications io three-dimensional (nen-coplanar) thin-wa11ed 

members a~ presented in Chapter V. On the basi~ of one test for each 

different shape, most types of commonly used sections are considered. 

Again, different types of loading configurations, boundary conditions, 

and material properties are involved. Behaviour is investigated ih 

detail and comparison of results with experimental values and with present 

Canadian Standards is ma~e wherever possible. 
f~~ 1,,/ 1 

The work is concluded in Chapter VI. Recommendations are made 

for possible future work using the present program. The issue of 
\ 

computing costs which is a key obstacle to nonlinear Analysis is a1so 

discussed. 

( 
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CHAPTER II 

INTRODUCTION TO NONLINESR FINITE ELEMENT ANALYSIS 
1 (~ 

In this chapter it is intended to present a brief, but overall, 

look at the possible methods of attacking the nonlinear problem. No 

thorough derivations on each particular method are attempted. The 

purpose is to provide a philosophical view, in qualitative terms, and 

ta present the current "state of the art" of nonlinear finite element , 

methods. 

II. l Some Notes on the Flnite Element Method 

~wo approa~hes are generally employed to formulate structural 

engineering problems 166 . The first approach is to form differential 

equations which gavern the behaviour of a typical, }nfinitesimal regian 
- . 

of the structure. ·The differential equations are solved using methods 

such as finite differences in a discrete manner. The second approach is 
, 1 

to apply the principle of variations to minimize a functional (e.g. the 

potential energy of the structure) which is defined by suitable integ.ra-

tian of the un~nown quantities over the whole domain of the structure. 

The variational approach using the finite element method, which ;s now 
c -

recognized as a variant of the Ritz process. has the structure "physically" 

discretized prior to thamathematic formulation. The derivation based on 

assumed displacement functions (or stress functions or a combi'natio~ of 

two types of funétions) for the "elements" leads finally to th~ so1ution 

'of a set of algebraic equations. Act~ally 
1 

equ i va lent as they can be transfonned from 
1 

l' 

1 

-22/ 

the two approaches are essential1y 

one fonn to the, other through . 

l' 

~ 
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1 

the ca1culus of variations. The difference really lies in the solution 

procedures. A method of combining the two approaches by adopting a 

finite element formuiation and a finite difference solution technique is 

"bl d 1" 197 pOSSl e an appea lng 

,Alternative1y, the finite element method 'can be formulated directly 

from differential equations without referring to the variational 

Thi sis the we 11 known method of wei ghted res i dua 1 s 166,167 where 

princ ip1es. 
t 

the' i ~tegra'l \ 
'. '\ 

the region of the structure due to the introdŒèMon > 
, ~ 

\ of the residua1s throughout 

of trial function~ into the g0verning differential equations are minimized. 

This method has certain advantages particularly for nonstructural prob1ems 

when ~:\ functional tan~ot 'Je formed. Within the range of this method the 
. 1\ 

Galerkin process of having the shape functions of thf element play the role 

of weighting functions is commonly. used. 

Even within the domain of the finite element method, there are 

many possible ways ta solve the same structural problem as several varia­

tional pr;nciPl~s168,169 are available to follow. The basis of the 

variational formulation is the principle of virtual work (principle of 

virtual displacement) which is based on the variati~of strain and 

displacement. There also exists another impor,tant variational 'p~inciple, 
the principle of complementary virtual work (principle of virtua1 forie) 

which is based on the variatio~of stress 'and force. Froml these two 
1 

basic principles, several bther variational principles can be derived; , 

such as the principle of ~tationary po'tential energy", the principle of 

stationary compl.emen'tary energy, the Hellinger-Reissner variational 
, 

principle and the very general Hu-Washizu variational principle. Among 

t 

1 
! 

/ 
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these principles the principle of virtual work, including its 

subsequently derived p)inciPle of statiônary potential energy (generally 

referred to as the displacement method), repres~nts the main-stream of 

the various fonmulations in finite elemènt analysis and is employed in 

theJ~resent study. Hence only this variational principle will be further 

referred to, tnvestigàted and discussed. 

II.2 Methods on~Solving Nonlinear Problem 

When nonlinearity is encountered, the problem is basically: solved 

using iterations and/or increments of loading where each iteration or 

each incremen~ is a linear process. This was pointed out in the first 

nonlinear (geometrical) finite element analysis by Turner et al 170 . The 

methods of treating the nonTinear problem can probably Be classified 

separately from two different points of view. For each point of view, 

there are three distinct methods l available: 

The first view is generall) relevant to the first stage of tQe 

analysis of the problem ~i.e. derivation and formulation of gov,rning 

equations). The diJferent possible methods of formuhtion is due to-the 

occurance of geometrical nonlinearity. The three methods of formulation49 

are respectively based on a convected c09rdinate system, a Lagrangian 
l 

(material) coordinate system~,and an Eulerian (~atial) coordinate system. 
\ 1 

o Anoth~r ~iew has more connection with the ~cond stage of the 

analysis of thé\prOblem (i.e~ solving governing equations). The different 

methods were ini,ially developed for treating the problem of material 

\ .. 

1 
1 

t ~ 



1 ~ 1 

( 

, 

o 

-25-

non1inearity., However, the concepts of hand1ing nonlinear terms are 

also applicable to the problem of geometrical non1inearHt and of 

combined non1inearities. 

Iproced~res as examp1es. 

These may be best explained by using s6lution 

Th'e three methods are respectivel) the method 

of tangent stiffness, the'method of pseudo force, and the method of 

combining tangent stiffnesses and pseudo forces. 

These methods are discussed in the following sections. 

,11.3 Formulation Based on Different Coordinate Systems 

II.3.1 Convected oordinate Formulation 

, 
The convect d coordinate formulation was overwhelmingly used at 

an early stage of t e development of geometrical non1inear analysis170-l72 

and is still employ d by researchers173-l75 at the present time for ~ 

~combined nonlinear problems, even though it is becoming less favoured. 

In this formulation 176 , Ithe prob1em;s solved, using a step by step technique, 

by incrementing the to~al loads. The coordinate system is updated for the 

changed geometry after each load i ncrel)1ent. 1 Suppose it i s des i reJ to 

solve the problem for load increment n+1. The coordinate system after 

load increment n is considered as the "undeformed" position for, and only 
, ' 

for,'load increment n+l, remembering that the position of load increment 

n may be substantially different fram its real initial configuration of 

load increment zero. Later the position of load increment n+l is used 
. 

for increment n+2 etc .. It is seen that within each increment the formulation 
1 

is a Lagrangian onè. The incremental stresses and strains are, respectively, 

the Kirchhoffstresses (2nd Piola-Kirchhoff stresses) increment a~d Green . 
strains inc~ement. However, -the fot~'1 stresses at the end of each 
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increment, which provide the initial stresses for the next increment, 

must be retained and transformed at each i ncrement due to the movin~ 

of coordinates an~ are, therefore, the Eulerian stresses l6~. Fa.::Ahe 
" ,/ 

same reason as the updating of the coordinate system, the revlsion of 

the transformation matrlx of local-global coordinates at each step 1S 

n~cessary. The forynulation based on a,convected cOQ~dinate system 

has also been named the incremental moving coordinate formulation or 

1ncremental combined Eulerian and Lagrangian formulation and is only 

valid for sm~ll strains. 

The variational principles may now be applied in order to obtain 

the governing equations. Nonlinear terms in the strain-displacement 

relations are initially included. However, the higher order terms in 

the energy expres~ion or in the incremental strain expression, which 

introduce, nonlinearity into the stiffness matrix of the system. are 

deleted. This is justifiable since the geometry is kept updated. The 

final incremental linear equilibrium equations can bb expressed • 

symbolically at the (n+l)th inèrement as 

(2. 1) 
-

" where {~q} are the incremental displacements and {~p} are the incremental 

Il 

applied loads. [Ko] is the conventional linear'elastic stiffness matrix of 

~h,~ sy,stem. [K,] ;5 a function of the existing ~tress level of the system at 

the#end of the nth inicrement and is considered as the initial stress for the 

(n+l)~h increment. Also the mer~ing of the [Kl ])11atrix is due to the 
i 

-J 
1 , 
" 

l 
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geometrical effect,'as the individual terms of this matrix can be 

expressed in terms of geometricà1 parameters. Hence, it lS often 
, 

11 . 170-172 . 177 178 ca ed the initial stress matrlx or geometrlc matrix ' . 

if} is the unbalanced residua1 forces at the end of the nth increment 

and is added to improve the resu1ts. To continuously solve Eq. 2.1, 

a piecewise 1inear approximation of the true solution is obtalned. 

Further iterations can "be perfonned within each increment to reduce 

the unbalanced forces to within any limit of to1erance, and in this 

case "the [K1] matrix can either be retained ~'r droppeb 50 ,51. The 

inclusion of the [K1] matrix is essentia1 and often sufficient for 

solving the stability problem167 ,179,2l6. 

II.3.2 Lagrangiarl Coordinate Formulation 

The"Lagrangian coordinate formulation is a more popular method 
v \ 

today. It is often called the Total Lagrangian coordinate formulation 

to em~hasize its difference from the previously discu~s~d convec~ed 
1 Il 1 

coordinate formulation. As its name implies, this formulation is totall-y 

based on the initial coordinate system of an undeformed configuration at 

load increment zero. Hence, no transformation of stresses, updating of 

geometry. and revision of the local-global coordinate transformation matrix 

is requir.ed. This formulation is valid for small strairrs as well as large . 

. Further improvement is possible by accounting for changes in the direction 

~f the loads du,ring incremental changes in the deformation180. This can 

be 
, , 

done by transffrrmation from defonmed ta global directions, whereas. it 

. . . h h l L . f 1 t' 176 lS inconslstent Wlt t e tota agranglan ormu a 10n . 

.. / 
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By applying the variational principle and ret~ining all the 

higher order terms, the final nonlinear equilibrium equatlons can be 

exp~es~ed symbolically as 

(2.2) 

where [K*] is a ~onlineâr· stiffness matrix to account for the nonlinear 

effects. {q} and {pl are displacements and appljed loads respectively. 

Eq. 2.2 can be c?nverted into an initial value problem by taking 

the total derivative of the equations with respect'to a load parameter. 
pJ 

À. which is a scalar to denote the intensity of loading (i.e. let {pl :;: 

À{~}). resulting in: 

(2.3) . 

where {?}iS the derivative with respeçt ta À and {pl are the generalized 

loads. 

The incremental linear equilibrium equations can be generated in 

many ways ,such a·s using a first arder Taylor's series expa~sion of Eq. 2.2, 

taking a simple Euler forward difference of Eq. 2.3, or formul~ting directly. 

through the incremental variational principle168 lt can be written as 

([KO] + [KNL]n){âqfn+1 ={6p}n+l + {fIn (2.4) 

where [KNL] is the incremental nonlinear stiffness/ma~~iX evaluated 
1 

using the knô~n values of displacements, stresses and strains at the end 

of the nth incre~ent. 

When onlY geometrical nonlinearity is involved {this represents 

the stage of initial loading up to. and just prior ta, first yielding 1 

1 
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1 

of the structure), the nonlinear stiffness Imatrlx is only a fun~tion 

of displacements. Formulations~are often derived by minimlzing the 

181 total potential energy of the system. Mallett and Marcal presented 

an appealing formulation which is expressed as:, 

in total potential energy: 
l 1 l l 

<p :: "q.J (2 [Ko ] + i"CN1] + tz-CN-2]) - Lq..l {pl (2.5) 
/ 

in equilibrium equations: 

(2.6) 

in incremental equations: 

(2.7) 

~here [N l ] includes all the first order nonlinear terms (first order 

geometrical matrix) and [N2] the second order nonlinear terms (second 

order geometrical matrix). Either of the three ~quations can be used 

to solve nonlinear problems. Eq. 2.5 is solved by a dirêct search for 

th "'. t t" l 64,182 E 2 6 b l d" t t" 1 e mlnlmUm po en la energy . q. . can e 50 ve l era lve y 

using either the direct iteration method, the Newton-Raphson method, 

or the modified Newton-Raphson method. Further explanation will be 

given"later. Solving Eq. 2.7 using a step-by-step technlque is straight-

forward. 
~ //' 

Alternate formulations also based on "the Lagrangian reference fram~ 
~ ...-

can be typified by the work by Stricklin et al 183 . This formulation)-s/ 
. / 

" ess~nti a lly the same as the previ ous one except it differs in t/J.e' fonn 
.///1'/ 

of expression. Following the same routine of decomposing.AJie strains 
,/ 

,// 

into linear and nonlinear parts and applying the t~~iâtional principle, 

/ 

...-/ 
/// 

_____ !1!1!!1~!!!It'.a~i SSS4!!l1&!II!.!!!IiAl!!!"l!II-..."""""''''''''''''''''''''''''''' ....... ______ -'' ~/~/, 
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jthe equllibrium equations can be written-as 

q ::; {p} 

and in incremental fonn / 

dcjlNL 
([Ko] + [ aq. aq. Jn) ~lIq}n+l = {lIP}n+l + {fJ n 

l J 
! 

(2.8) 

(2.9) 

where ~NL represents the pàrt of the potential energy due to nonlinear 

tenns. 

The above me~tioned incremental equilibrium ~quations have often 

been written in an' alternate fonn as: 
; 

; 

1 

(2.10) 

where [~1]1 is the aforementioned initial stress matrix and [K2] l~ 

referred to as the initial displacement matrix and covers all other 
, j 

~ 

nO,n1 i near tenns whi.ch were d ropped in the convected coord i nate formu 1 a t ion. 

When material nonlinearity has to be included (this represents 
, ~ 

/ the loading stage of post-yielding), no strain energy function exists, 

which is uniquely deflned by the current displacements in the flow theory 

of plasticity. Such a function would dep~nd on previous loads anq the 

deformation history. A formulation based on the incremental variatlonal 

principle derived by using virtual work is, therefore, preferred. This q 

i s because the vi rtual work fonnulati on i s more general qnd does not 

involve the stress-strain relation; hence, it is independent of, material 

properties. The loads, of course, have to be app}ied in increments in 

this case. The incremental equilibrium ~quation can now be written in 

4() 1 -
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1 

anotheroform, by explicitly separating the geometrlcal'and material 

nonl inear parts: 

where subscripts G anQ P represent the terms due ta geometrical non-

linearity a'nd material nonllnearity, respectively. lij . ' 

* Oespite the difference in QPpearance due to the different ways 

of arranging the non1inear terms, these equations are essentially the 
, 

same if th1e same order of di.splacement functions were used. In any 
(=-(~_. 

case the incremental equil}brium equations can be written in short as 

[KTJri'{~q}n+l = {~P}n+l + {f}n ~ (2.12) 

where [Ky] is called the tangent stiffness matrlx' or incremental stiffness 

ma~rix. The tangent stiffness matrix is originally referred to in the " 

" 
Newton-Rap~son iteration soluti~n procedure. However, the tangent 

1 

stiffness matrix and the incremental stiffness matrix are really the same. 

This can be~seen, for example, by noting that both the Newton-Raphson 

iteration and the generatiQ~ of incrementa1 equi1ibrium equations emp10y 

the first order" Tay1or's series expansion of the basic nonlinèar equllibrlum 

equations: Eq. 2.12 is the
o
wel1-known incremental method with a one 

step Newton-Raphson iteration. 
1 

II.3.3 Eulerian Coordinate Formulation 
\ 

The fonnulation based on the ['uler coordinate system has very 

limited application because of its disadvantages in formulation and 
o 

computation. It is therefore not ,disç.!Jssed here. References 49, 184 

aod 185 can be consulted for d~tails. 
c 

l, 

• 
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D 
\ ~ 

11.4 Solution Technigues Based on Differing Wa~s of Handling the 

Nonlinear Terms 
, 

We,initiate our discussion by considering ~he material nonlinear 

p~oblem, remembering that the loads are now applied in i,ncrements'd~~ to 
o 

the consideration of the flow theory of plasticity. Write the stress-strain 
1 

relatlon in a very gener~l form166 , 

{~} = [E] ({e} - {EO}) + {ab} 

where the parameters 

[E] = a matrix defining the constitutive relation for a 

multi-stress field 

{EO} = initial strain in the system 

{~o} = initial stress in the ~ystem 

~y adjusting one or more ofa these parametars to satisfy the previous1y 
_7 

disEu"ssed equilibrium equations, a solution can then be found. 

II.4.1 Tangent Stiffness Approach 
, 0, ~ 

When parameter [E] is adjusted in Eq. 2.13, the nonlinearity due 

to plasticity is introduced directly into the stiffness matrix. T~is 

fPproach is,calle~ the tangenf:motlulus method\86-19~ in finite el~ment 
elasto-plastic anal~is. It is seen that in this method the stiffness 

matri x i s revi sed at each- load i ncrement and henc~ va ri es. " 

When this· approach is applied to the problem of geometrical non­

linear~y.\or of combined nonlinearities QY ret,9ining the nonlinea~ tenns 

within the stiffness-_matrix on the left hand side of t~e governing equatiolls, 

.it is called the tangent stiffness method. The stiffness matrix (or~ at least 
1 

the nonlinear pa~t of the matrix) is recalculated cbntinuously to take , " 

.. , 

.-' 

, ~~,: 
-' 
" , .. 
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-. 
into account the latest nonlinear effects. The extra computing cost 

of evaluating and inv1erting the stiffness matrA is \paid back by faster 
1 

convergency and usually better accuracy. All equations given in 

Section II.3 were presented in forms 
! ..,. 

representing the,tangent stiffness 

approach. 

{ 

II.4.2 Pseudo-Force Approach 

We refer again to Eq. 2.13 for the problem of material nonlinearlty. 

If the plastic part ,or th~ ,$trains is interpreted as i~itial stra.in", 

{to}! which is kept adjusted and treated as external pseudo-forces, it 

is called the initial /s~rain method l77 ,191-194.\--An alternative is ta '-
1 

find the difference between the stresses, based on elastic analysis and 

the subsequent stresses after relaxation due t~ plastification. This 

stress difference is considered as an initial stress, {oo}' and is aTso 

treated as pseudo-forces. It is called the initial stress method 195 . 

It may be seen that either the initial strain method or the 

initial stress method retain the original constant (elastlc) stiffness 

matrix but convert the nonlinear effects into external pseudo-forces . . 
An iterative process is then applied until the pseudo-forces vanish. 

\ 

This pseudo-force approach can be generalized to coyer geometrical 

10nlinearity and combined nonlinearities bY\lhaving the nonlinear terms 

fonmulated in'the form of a force vector and transferred to the right 

hand side of th~-goyerning equations. In this case, the updating and 

inverting of the stiffne~s matrix is avoided. This advantage, however, 

is compensated for by the slower convergence~d possible numerical 

, instability in certain cases.'S6 The pseudo-fo~ce method can be written 

" 

\ ! 

w' 



1 

(, 

o. 

-34-

in a typical form as 

',/ 
/' 

(2.14) 

where {QNL} arJ the pseudo-force~ to account for geometrical nonlinearity, 

or material non1inearity, or both. 

II.4.3_ Combined Tangent Stiffness and Pseudo-Force App~oach 

On the problem\\of combined nonlinearities, t~e nor1Jif'1ear tangent 
~ \ , 

stiffness mat~ix consists of two parts, the geometrical nonlinear part 
1 

and the material non1inear part, which can be explicitly separated197 . 

Similarly, the pseudo-force due to nonlinearity can also be decomposed 

into twa parts. How~ver, the pseudo-force approach in the incremental 

form is less appea1ing, since.the pseudo-force of the geometrical nonlinear 

part may cause AUmeri ca 1 i ns~abil itiOO ,202 . \ . 

The a1ternat~ is to include geometrical nonlinearity within'the 

tangent stiffness matrix but treat material nonlinearity as a pseudo-
l , , 

force. This can be ~ritten in incremental form as 

\:, ([Ka] + [KNL(G)J.,){flq}n+l = {flP}n+{{flQNL(P)}n + {f}n (2.15) 

Armen et a 1173-175 have used th
4

i s'J ~ppro~ch by e~p 1 oyi ng a convected 

coordinate system so that the initial stress matrix. [K1J, has been used 
-' 

tO replace [~L(G)]' 

,1 
/ 
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II.5 Numerica1 Solution Procedures 
~\ 

A number of solution procedures have been tried and reported in 

·terature. Detail ed descr; pti ons and di scussi ons of the merits and 

shortcomings of ~ost of these procedures are avai1ab1e in sorne excellent 

pa pers such as t'ho~e by Gallagher210 and by Strick1in et al197-202. In 

this section, only the main feature of each solution procedure is presented 
1 ~ ._, 

and brief1y discussed. The presentation fo11ows the works by Strick1in et 

al, hence their terminologies are used as much as possible. The procedures 

will be described in both the form using the tangent stiffness and the fonm 

using pseudo-forces to further demonstrate the difference and the applica­

bi1ity of the two approaches. 
o 

We rewrite the fundamenta1 nonlinear equi1ibrium equatjons for the 

tangent stiffness method an~ pseudo-force method re pectively as 

([K
O

] + [K*]) {q} 

{f(>.,q)} = À{p} + {QNL} - [Ka] {q} 

(2.f6) 

(2.17) 

all tenms in these equations have been previously define1. The Cla'~sifica­

tion of solution procedures into three catagories by Stricklin et al\)will 
. '1 

be employed in the following demonstratiDn~ ____ -< ~-----._~--~ ____ ~-/ 

( 
11. 5. 1 Exact Sol ution Procedure - {if) = 0 " ' , '\ ,_ 

~ - 'c , 
In this class, an exact solutLon-is soûght~through iterations to 

reduce the force_u~~Janee-; (f}, to zero. At a. gtven load, À{i)}, and 

based upon sorne initial estimate of tq}n' a first order Taylor's series 

,/ 

i' 

'\1 

.. , 
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expansion of the force unbalance about point {q} and setting f(À,q + 6q) 
, ' n n 

of Eq. 2,16 to zero, yields the well known Newton-Raphson method 

([KO] + [KNL]n) {6q}n+l = {f}n 
f 

The correction, {~q}n+l' is added to the approximate root, {q}n' to 

(2.18) 

\ 

obtain a more nearly correct {q}n+l approximation. Eq. 2.18 dearly 

shows that the Newton-Raphson method is a ta~gent stiffness approach. 

Convergency difficulties have previous1y been reported by using the 

Newton-Raphson method on problems invo1ving material nonlinearity202 . 
. 

If [KNI) in Eq. 2,.18 were kept constant- by aVOidi\ïg further 

updating, after first iteration or after the fir6t several 'iterations, 

the so ca11ed modified Newton-Raphson method is obtained. An advantage , 
j~"gained by elimination of further re'-evaluation of the tangent stiffness 

matrix. Of course, the convergency rate b~comes slower aS,a consequence. 

'If [KNL ] is set to zerQ, a recurrence formula can be obtained 

fram Eq. 2.16 and 2.17 by setting {f} = 0: 
(2 :19) 

"'­This is the direct iteration (successive approximation) method and is a 

pseudo-force approach. It can ~e seen that ~he ite~àtive p~oces~ of each 

in'çrement for the aforementioned initial stra,in ruethod and initial stress 
1 -:'.f : 

method is essentially Eq. 2.19. The initial strain method may encounter 

numerical instability for perfect-Pl~stic material 196 . 
- ,~-.,./--

, ln this class. even tho~gh the sOlutt~" ca," beaccomplished in a 

one-step operation for a fu,11 load on occasion for'" less severe geometrical 

" 

" 
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.nonlinearity, it is po~sib1e that a non-unique solution may arise and 

the physically unimportant one may be obtained. Hence, it is gener~lly 

better ta proceed by incrementing the load and obtaining theQsolution 

for each increme~t as for material nonlinearity. The size of increments 
1 

is important as the increme~ can be comparatively large for geometrical 

nonlinear problems, whereas it has to be kept smal1 when ma ten al non-

1inearity lS involved. /' 
/ 

v 
{f} 11.5.2 Initia l Value Procedure - = 0 

\ 
~-.>-"p,' 

This class is based on the as~umption that the first derivative 

of the force unbalance with respect t,a load parameter, À, is zero. It 

o leads ta the type of solution procedure which moves"along the' load-displacementl 

path incremental1y w;'thout iterations. Bath the tangent stiffness method 
\ . 

and the pseudo-force method are applicable. Differentiating Eq. 2.16 and 

2.17 with respect to À and setting to zero, we may obtain, with the aid 

of chain rule: 

([Ka] + [KNL])'{9} = {pl 

[Ka] {cH =. ùn + {QNL} 

(2.20) 

( 2.21 ) 

Eq. 2.20 and 2.21, which are fir t order differential equat10ns, together 

with the initial condition, {q(À:Q t = 0, may be solved by various 

numerical procedures such as the Run ~-Kutta method, open and clos~d 

integration formulas, an of difference approxi-

mations for the dèr;vativ 

", 
l 

1 

A" i 
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Usingan Euler forward difference expression for {q} and a backward 

difference formula for {QNl}, Eq. 2.20 and' 2.21 become the conventional 

incremental forms: 

(2.22) 

(2.23) 

Another solution procedure which is inc1uded in this blass is the 

well-kn_~wh perturbati on techni que203-206. At a known equi l i brium poi nt 

on the load displaeement path. t~e derivatives of this path may be used 

to prediet a further point. Expanding l the disp1acements in a Taylor series ,­

about sorne known load-displacement state (q,>.) yields 

q . (Ht!>.) = q. (>.) + Cr. (>.) t!À + -21 Ci. (À) (4)') 2 
1 1 1 1 1 

/ 
(2.24 ) 

where i refers to the ~egree of freedom. Solve Eq. 2.20 or 2.21 for q .. 
. 1 

Further differentia~ion of these equations repeatedly will yield si~ilarn 

sets of simultaneous equations which may be solved sequentially for ~., 1, 
/ Qi' etc .. SUbstit~ing the knowrt value of qi and of derivatives into Eq. 

) 2.24, the displacement at (HIU) !I~S then obtained. 

The method is limited to problems with a moderate degree of 

nonlinearity such as the study of initial post-buckling response, but 

may not be suitable for extens.l~n far into the post-buckling range sinee 

the Taylor's series expansion ~mployed is strictly valid only in an 

asymptotic sense ~at the bifurcation point. The solution then tends to 

drift away from the true equilibrium load path due to the accumulation of 

MS.A 

, 
! , , 

, -
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errors at succeeding ~oad steps. Also, a c'ansiderable amou~t of 
, i 

mathematical manipulation is re4tâ~~d if a significant numbe~r of path 
i 

derivatives must be calculated at each load step. To overcome these 

limitations, the method is often used in conjunction with other 
, 

techniques. It invalves the use of the perturbation method ta yield 
1 

1 
1 

a higher arder predictor fonnula, and the employmenit of an i~elatlve 

formula, such as the Newton-Raphson fannu~'a" as a corrector2~4. In 

this manner the perturbation tec~nique may be extended for us~e on 
1 

highly nonlinear portions o~ load-displacement curves. Recen~ly the 

methad has been used for solving the combined nonli~ear prob~em207. 
It has been rJported that the p~eudo-force approach under the 

class of {f} = 0 may encounter numerical instability in geometrical 
1 

nonlinear problems200.202. 

III: 5.3 Self-Correcti ng Sol uti on Procedures, 

This class of solution procedure is a natural extension of 
c 

previous classes. Its main fu~ction is to provide a suitable correcting 
v 

term to prevent the incrementa~ approxi~ate solution from drifing away 
~ 1 

" 

1-

from the true load-displacement path, as often occurs in the aforementioned 

second c1ass solution proc~re. This c1ass is comp~sed of two sub-

classes. I . 
(~) The first arder self-correcting solution procedure is characterized 

by 

{f} + Z {f} ~ 0 

where z is an amplification factor. Substituting Eq. e.16 and 2.17 

.il 

1 
l' 

1 

] 
, 

1 
, 1 
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..".. , 

and their first derivatives with respect to loa'd parameter, À. 

into Eq. 2.25, YiJ~dS the self-correcting first arder differential 
1 

equations: 

(2.26) 

(2.27) 

Applying an Euler farward difference for {q} and a batkwards difference 
n 

fonnula for {QNL}n' the equations result in incremen.ta1lequilibrium 

equations with correcting term: 

(2.Z8) 

'\ 
(2.29) 

\ 1 

If we set z(6À)=1, the equations become the incremental solution procedure 

/ 

t _ 

with a o~e step Newton-Raphson' correction whi~h is currently actively 

employed by researchers. 

(b) Second order ielf-correcting solution procedure characterized by 

{l} + cff} + zif} = ~ (2.30) 

where c is a1so an arbitrary scalar quantity. Eq. 2.30 ;s identical 

to a si~ple harmonie motion. The variable c is analagous to the 
. . 

damping factor and the square root tf z represents the undampéd 

natural' frequency of the system. This simulation provides sorne 

insight into the selection of these qtiantities. Solving Eq. 2~30 

by employing lexact integration: 

• .....e)WM·tWQW 

". 

. l, 
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... cs/2 AZ=ë2 ~2 
{f(s)} = e [{A} cos z2c s + {B} sin..'LfZ2C' 'sJ (2.31) i 

\ 

where s is a variable for/the load increment such that at the beginning 

of each load step, s is set equal to zero, and at the end of the step 

s is equal to !J.À. {A} and {B} are consta~t vectors ta be determined using 

the "inftial" value of {f(o)} and {t(o)}. The dispJacement vector at 

the end of the increm~nt is then obtained; By fearranging Eq. 2.16 and 

2.17, the expressions defining the force unbaldnce, yields 

(2.32) 

~2.33) 
where'{f}n+l is obtained from Eq. 2.31. The second order se1f-correcting 

procedure has not been wide1y accepted because of its high dependence 

,j on the ana1yst ' s fami1iarity and experience in choosing the step siz~ as 

well as the parameters within the formula. 

II.6 Closure , 

A survey of finite element nonlinear analysii has been conducted 

by many researchers176,180~~08-211. Most of the recently pu~ished finite 

elè~ent books166 ,212-2l4 ;l~o caver, mOre or less, the-fundamental treat­

ment of nonlinearities.- Qden215 has devoted an entire book to this subject 

and has a wide range of nonlinear applications ta physical problems. 

These references can be consulted for further details. The for.mulation 

and the solution procedure of the present s~udy is based on the total 

(, ( 
-,) l, 

Lagrangian coordinate system and the tangent stiffness method. - Only these / / 
./' 

methods will be further investigated. The convected coordinate f~ns 

and pseudo-force solutions are excluded. _ / Il 

// 

/ 
1. ,1 .. 5 ... Jyg ,G . kl::t!i6iEil4&L ~ , Il 
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( CHAPTER III 

MATHEMATICAL FORMULATION OF THE PROBLEM 

111.1 Principle of ~ariations 

III.l.l Principle of Virturl Work 

The following derivation employs the Lagrangian description and 

the reference coordinate system to be used is rectangUl:r 'cartesian. ~~ 
Let xi be the coordinates o~ an arbitrary point of a continu~us body in /// 

its initial undeformed state and let X. be the coordinates of that ~ial 
1 /' 

point after deformation. The equation of equilibrium can be ressed 

as 217 

1 aX. 
( 0J' k -' ) + p. = 0 ( 3. 1) d X • ,.!< , 

J 1 

.r ~/ 

where 0jk is Kirchhoff stress tensor (2n~01q-Kirchhoff stress tensor) 

and is symmetric. Pi is the bOdyl~per unit volume of the in,tial 

configuration. The acceler~erm in Eq. 3.1 is dropped because only 

static equilibrium ~~~onSidered in this study. 

To deriv e principle of virtual work, we integrate the product , 

~f the equ' brium equations and the corresponding displacements,' ou., 
,./ ',168,1 1 

ove~e initial volume of the body 1) 

,/ aX. - 11('" 
// J v [( a j k -a x-~ ), k 0 U i + Pi 0 u i] d v = 0 ~\ ( 3 . 2 ) 

./ J > 

/' ou,' is an arbitrary, infinitesimal, and kinematically admissible virtual 
/" , 

diSP11kcement field. For simplicity, the body force term is now dropped. 

J Applying integrat'ion by parts on Eq. 3.2, resu~ts in: 

0 
1 

-42-- ," 
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(3.3) 

Employing Gauss' divergence theorem ta convert the volumetrie 

integration to a surface integration, the f,irst term of Eq. 3.3 can'be 

written as 

J 
a X. 

(o'k ~ ou.) k dv = J T.6u.ds = J T,.6U,. ds 
J oX. " l , 

J. , s 0 sa 
(3.4) 

1 

v 

where s represents ~he body surface which can be ~onsldered as consisting 

of two parts; s where the surface tractions are prescribed qnd s where 1 

o " ,lu /. 
displacements are prescribed. T. are the prescribed surface traction 

l 

forces per'unit.of surface area. Eq. 3.4 denotes the external virtual work 

and is non-zero only in the spart. 
a 

The second term of Eq. 3.3, after manipulations (which can be done, 
-. 

for example, by exp'licitl/w~ltting down all terms, regroupin,g them and 

then applying the strain-displacement relations), representS the internal 

virtual work of the body. and iS'~itten as 

[' "ax· 
J ,t u ' k -' ou. k) dv = f o .. Oe .. dv v J aXj , , v 'J lJ 

where e .. is the Green strain tensor. lJ 

(3.5) 

Substituting Eq. 3.4 and 3.5 into Eq. 3.3, we obtain the well-known 

equation for virtuJl 

- f T.ôu.ds = 0 s l l a 

II 1. 1. 2 .!:.P.!...rl.!1· n~c:....!.i~p~l ~~~a~t~i o~n~a~r.:J..y~Po~t~e~n~t~i a~l~E~ne~r,-!gt.LY 

When the body remains elastic, there exists a 
:1 

which does not depend on the loading path but only on 

This function is pe~fe~tlY diffe~entiab~e such that168 

\ 

1 

• (3.6) 

state function w(e iJ ) 

final strains. 
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= a .. 
1J 

(3.7) 

The state function, w, is called the strain energy function defined 

per unit volume of the reference body. Substituting the strain energy, 

function into the first term of Eq. 3.6,the principle of virtual work 

is then specialized to the prin'ciple of stationary potentiaLenergy ,,, 

as: 

(3.8) 

where the strain function w(u i ) is written in te::~,s of lUi' by the use 

of the strain-displacement relations. Eq. 3.8 is very useful in 

appl~c,tion to elasticity problems in which ~xternal forces are not 

derivable from potential functions. If the applied external forces are 

constant or conservative, that is they are derivable from potential 

functions, Ij!(u i ), such' that 

ôlj! = - T. ou. 
1 1 

(3.9) 

substituting Eq. 3.9 into ,the second term of Eq. 3.8, we obtain: 

\ .. 
or, in short: 

ô(fv wdv + f wds) = a 
sa 

(3.10) 

'*" (3.11) 

where U, V and $ are respectively the strain energy, the potential 

energy due "to externa l f~rces, and the tota 1 potent i a 1 energy' wi thi n 
"r 

the domain of the body under consideration. 

l ' 

.r 

" 

/ 
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The above equations of th~ principle ôf the stationary potential 

energy state that. for equilibrium to be ensured, 1he total potential 

energy, ~, must be stationary for variations of admissible displacements, 
... 

Limiting the principle to small displacements only, it can be shown that 
" 

the stationary state is a, minimum potential 'energy state', However~ in 
, 

large displacement theory, the energy doesllnot necessafily attain a minimum 
, " 

f th t t , d't' 255 or e s a lo~ary con l lon . 

! 
1> 

111.2 Incremental Variational Principle 

III.2.1 Virtual WorkoAp~roaêh \ ' 

\ 

\ A Lagrangian reference frame is again employed in the following 

derivation. The formulation of the incremental theories 233 begins by 
l! . 

dividing the loading path of the soli? body problem into a number of 

equilibrium states. It"i's assumed that all the state varlables such as 
, ' 

stress, strain and disP.1acement together with the loading history, are 

known up to the nth state. dur 'problem, then, ,is to formulate an 

incremental theory for determining all state variabies in tne (n+l)th 

<state, under the assumption that the (n+l)th' state is incrementally close 

to the nth state and all the gov~g equations may be linearlized with 

respect ta the incremental quantities. We denote the stress, strain, 

displacements, and external forces acting on s in the nth and (n+l)th 
... cr 

states respectively by 

cr ' •• lJ 
1 

e .. , 
lJ 

a,nd (oij+t.0ij ), (eij+t.eij ). C~i+t.ui)'· 

1 

1 

" 

l': ' \~ , 
h .. 
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~ 

known thÙ the- Green ,st).·ain tensors at the n th\ and (n+ 1) th 

are respec~ivelY defined by168 ,218,219 

1 e.· = ~(u .. + u·. + uk '- u
k

.) 
lJ Co 1,J J,l .,1 ,J (3.12) 

. 

1 fe .. +lIe .. ) = -2 [(u."f-llu.) . + (u.+lIu.) . 
l J , J l 1,J ' J J, 1 . 

(3.13) , 

\\ . \ 

We read)ly obta1n from Eq. 3.1~ and 3.13 that 

+ iUk .iluk .] 
1 ,1 ,J 

o 

\ 

\ 
1 

j 1 
\ t,€:ij = 2" [(6 kj ;"' Uk ,j}lIU k ,i'+ (ok; + Uk:i,)bUk,j} 

(3.14) 

(3.15) c 

IThe principle of virtua1 work for the (n t 1)th state is now)expressed 

_. by 
, 

J (a . . +llo .. ) o(e .. +/le .. }dv·- J (T.+ilT.) é (u,.+lIU,.) dsl, = 0 
,v 1 J; l J l J 1 J Sol l 

(3. 16) 

Ap~lying·the re1ationi given by Eqs. 3.12 through 3.15 to the abbve. 

, equation and noting that the vari~tion JS taken with respect to lIu., 
, • 0 1 

Eq. 3.16 (~fter sorne manipulatfbn~ and n~~~ect;ng the higher or~er \ 

terms)Ocan be wri~ten as 168 

. . ~
. 1 1 

J [lia . . ME .. + O .. é{i\ lIuk .llu k .)]dV - J l\T.611U. ds v 1 lJ lJ ~i- ,1 ,J S ,1 1 . . -, cr 

Is Ti é6U i ds) = 0 
(1 

(3.17) 

\ 

'1 --

l • 
\ 

, , 

J 
l' . 
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, 
The 1ast part, which is enclosed by parentheses, in the above equat\on 

represents the un11iinced ~esidual forces in the nth state. 1t will 

vanish if equil;'brium ,is achieved. However, the nth state may ~~t be 

in complete equilibrium in this kind of incremental theory due ta neglect 

of the higher order terms and computational inaccuracies. Conseq~ently 

these force unba1ances are retained in Eq. 3.17 for an equilibrium check. 

111.2.2 Potentia1 Energy Approach 

Similar to the 1ast section, the incremental governing equations 

can be form~lated using the minimization of the incremental potential 

energy of.the system (~$). 

where 

\1 

6(1I$) = 0 

1I$ = $(u.+lIu.) - $(u,.) , , 
(3.18) 

(3.19) 

The variation of 1I$ is mathematican~ equiva1ent to the variation of 
- -,; 

<P(ui+~ui) with respect to ~ui ~'i'ri~~\-<P(Ui) is independent of lIU i " It can 

be found that the derivation, using the potentia1 energy approach to 

'obtain the governing 

, Eq. 3. lé to ,Eq:\J. 17 

1 

equations, \iS like1y the same, proced~~e as 

in the virtua1 work approach. The detai1s 

that from 

are 1 eft 

ta section 111.8.2 where the explicit-formulati9n is demonstrated ln . 

matrix notatioo>. 

.' 
" -

\ 
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if 
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111.3 Choice of Elements 

A simple non-confonning (discontinuity in the nonnal slope 

betwee~ two qdjacent elements) flat rectangular el~ment with six degrees 

of freedom (d.o.f.) at each no de is used in this study. The definition 

of axes and d.o.f. are shown in Fig. 2 where x-y represent loc\l 

coordinates and Ç-n normalized coordinates. u and v are in plane 

displacements and w is the transverse displacement. 

Jhe chaice of the element geometry is largely influenced by the 
\ 

shape of the structure to be analy~ed and the rectangular"element is 

found perfectly sujtable and SUfficient~he purpose of the present 

study. Compa~ison with other shapes such as triangular elements~ the 

rectangu]ar element generally produces better results with less effort 

on input data. Thereois also a corresponding reduction in the total 
lof 

number o~ degrees of freedom in the structure and hence a reduction in 

co~puter time required\ for solving the system of equations. / r. 

The -use of a curved e]ement is obviously'unnecessary as most 
) 

curved elements require the shell to possess continuous curvature or. 

at "leasJ continubus slopes. The type of structures considered in this 

study (see. Fig. 1) does not admit either of these conditlons. Furtner-
" ' 

more. the present formulation and solution is based on the undeformed 
a 

-
configuration of the el'ements which were initially plane and has 

"'-
demonstrated that the use of a curved element is unnecessary. For the 

c~se where large 'initial imperfections \are introduced through nodal 

,coordinates. the four nodes of a rectangular element do not remain 

coplanar. A transformation matrix for each node. which was derived 

with respect to a plane passing through that node, and theo two most 
I.I 

adjacent ones, may be employed for better accurfcy.~ . . 
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The choice of a "simple" or a "refined" element is again a 

matter of judgement. The refined elements 221 ,222 may eliminate the 

problem of nonconfonnity and 9roduc~ comparab~e accuracy. However, 
. , 

this is t~aded off by generating higher order d.o.f. for WhlCh the corres-

ponding force terms ~ack physical interpretat{on and/or by uS1ng other 

techniques s~ch'as's\ati~ conden'sation which increase the\time of 

calculation. Even though the refined elements have been used in nonlinear 

1 . ~7. 149 .. 11 d . 1 1 f h f ana yS1S , lt lS genera yagree ,'partlcu ar y or t e_cil-sejO 
1 ~ 

-' , 
combi,l1ed nonlinearities. that the-simple element is preferr~d223,224 

/ 
due 'to its economy in computing cost. 

One attractive conforiing rectangular bending element is that 

developed by Boqner et a1 220 and it has been used by others89 •90 in non­

linear analysis. This element requires one more d.o.f. than the one 

emplGyed in this study. At first glance. i~ would seem that adding one 

more d.o.f. a-t each, node is not a big increa,se. However, when thlS 

is applied to a three dimensional strùctural member where quite a number 

of el ements are 

this additional 

required, the increase beCO!r: very significant. Fur:ther, 

d.o.f. (~:~y)' although it does not give difficulty in 

the present case, may prove awk~~d when a coordinate transformation ;5 

needed for more general structures thus preven~ing the possible extension 
\ 

of the current dpproath in future. Hence, even though the element by 

Bogner et al provides .... the merit of confonnity', it was not adopted. 

The proposed ,element has th'ree components of translation (u,v,w) 

and three of rotation (OxIOy'O~)' These d.o.f.'s are first order tensor 

quantities and obey the simple~law of vector transformation. The poly-

nominal terms corresponding ta each displacement function are 

1 .. \ 

/' 
/ 

, 

.t 
1 
J 

~ 
1 
1 
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.. 
./' 

xy, - 3 x , 2 x y, X3y 
2 3 2 xy, y , x , x y, 

c .' 

xy2 3 y 3 , x y, 

\ 
1 

Xy3 

It can be seen tha~ the bending part of the element lS a'ctually the ACM 
C 

element225 ,226. Even,though non-conforming, it has shown good,convergency 
1 

in practice in linear226-228 and non~inear144,22~ analysis.' Note that 

for the membrane part, the v displacement varies linearly in the y direction 

but cJbiC1Y in the x direction to achie·ve the same d,egree as the w d1splace­

ment and it has also been prèviously employèd230 . This i5 due to the 

compatibility requirement between v and w for the neighbouring elements 

'which are joined at non-zero angles along their common axys. (see Fig. 3). 
,1 \~ r: .. T 

This causes a preferential orientation by setting the x~axes of b th the 

global and local coordinate systems para~lel to the longitudinal direction 

of'the member. However, in pract~ce, this disadvantage does not create 

any inconvenience at all. On the contrary, advantages have been gained , 

by using these higher order polynominal terms in the v displacement function. 

~ It' 'improves the accuracy of the results which is reduced in the case of 

a large aspect ratio for an element which often has to be used for reasons 

oof economy. The sixth d.o.f. '(ez)' which is created because of introducing 

higher order terms, also serves another purpose which is to provide in­

plane rotational stftfness to avoid a s-ingular matrix whe,n neig'h6ôuring 

elements connecting to a node are all coplanar. Hence, the employment 

of a fictitious set of sèlf.eqwlibr~ted moments 166 or any other means / 

are not reqUir\d ô' 1 

1 

\\ 11>\ , 
, 

4 

1 

t 
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The displa.cements at any pOirn within ,the elem 

expressed in terms of noda 1 di sp 1 abements as: \ 
\ 

{u} = [N] {q} 

or in incrementa l, form 

{6u} = [N] {l:Iq} 

be 

(3.20) 

~3.21) 
The explic-it form of the stape function, [N], and"of'Eq. 3.20 is shown 

in Appendix A-l and A-2. The explicit,form of Eq. 3.21 is similar ta 

that of Eq. 3.20. 

111.4 Strain-Displacement Relations for Thin Plates 
, c 

III.4.1 Total Strain-Displacement Relations' 

'\ Let xi be a set of rectangular cartes i an coord; nate axes and 1 et ' 

u. be the components of the displacement vector along these axes. The 
• l 

Green\'s strain tensor e .. is defined in the LagrangiaFl frame by Eq. 3.12. 
lJ ' 

For\plates, it is common to replace the tensor subscript notation 
, \ 

by the more f~miliar notaÎtion x, y, z for xl' x2·, x3 and u, v, w for u1, 

u2 , u3 respectively. The x and y axes are perpendicular axes in the 
\ 

.' middle plane of the plate where the z-axis is normal ta the plane. u and 

v are ,in-plane displacement compone~s and w indicates transverse deflection 

f 
of the plate. 

The Kirchhoff theory of thin plates* assumes 
/ 

(a) Nonmals to the unstrained middle plane remain straight 
# 

and normal -to the strained middle surface after defonnation: 

* for details of theories of plates, see Love231 who also extended 
, Kirchhoff's hypothesis to shell 
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(b) The distance of any point of the plate from the middle 

surface remains unchanged by the deformation. 

The first assumption sets shear's~rain components of exz and eyz equal 
! • 

to zero~and the second assumption sets the normal strain~~omponent of' 
,; . 

, \ 

ezz equal to zero. Hence, only three non-zero strain components, e , , xx 
eyy • and exy are left in Eq. 3.12. The simplified eqUations~ome 

exx = ~ + l ((~)2 + (~)2 + (~)2] 
ax 2 ax ax ax 

1 

l, .. ) \...----.... eyy = ~ + l [(~)2 + (~)2 + (dw)2j (3.22) ay' 2 ay dy ay 

exy = l [~+ ~ + (~~ + ~ ~ + aw aW)] 
'2 dy ax ax ay ax ay ax ay 

It is seen that the original three d{mensional problem has been reduced 

to a two,dimensional one. Eq. 3.22 is valid for the general lwr~e 

defle,ctiort,-large strain problem. Hm'/ever,!for the type of prqblems to 
\ , 

be co~\ider~~ in this study,_the strains remain small compared to unit y 
\ 

and the squarès of the derivatives of the in-plane displacements are 
\ 

\ 
small compared to other terms and may be neglected. This_jus~Lties 

~ ~ 

retaining only the rotational contributions, dW and dW among the higher 
_, • ax ay' 

order terms, resulting in: 

- \ 

e: px 
~ + l (aw)2 
ax 2 3x 

= \ ~ + l.. (3W)2 
"ay 2 3y 

~ + lY. + aw oW 
3y ,3x ax ay 

(3.23) 

\ '-
1 
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Note that in Eq. 3.23 the components are engineering strains ~nd not 
Q 

tênsor compon~nts as in Eq. 3.12 or Eq. 3.22. The subscript p indicate~ 

Th; s stra ln-d i sp lacement the in-plan~ or middle surface strains. 

relationship is rendered nonlinear in the displacement gradients by 

the presence of quadra1;ic terms (~)2, etc.. .. 

For thé flexural 'strains, the Kirchhôff htpothesis implies that 

the higher order correcting terms due ta "shear deformation on strain 

components, can be fgnored. Hence, strains vary linearly from the middle 

surface. With further simplification by deleting'higher order terms in 

the expression for curvature219 , th~ strains can ther be Lritten 
@2w -z-
ax 2 

a2w 
Eby 

;; -ZIjJ :z: -z- (3.24) yy ay2 

E:bxy -ZljJxy _2Z a2w 
axay 

1 
where b indicates strains due to bending ./. etc. are the curvatures 't'xx 

along the x and y axes, and Z is the dis ance fram the middle surface 

a10ng the normal. 

Cambining Eqs. 3.23 ard 3.24, th 

the plate are: 

"" total strains at any point in 

au + 1 aw)2 _ a2 w 0 0 

EX âX "2 z-ax ax2 
1 • 

{cl = Ey' = II + ~ .1{aw)2 _ za 2
w ~3.25) 

ay .1 ay, '. ay2 . v_ ...... 
2.Y.+ÈJ!.+ (~W)( aw~ _ a2w 

Exy (lX ay ax ay 2zaxay 

\\ 

~I 

1 

1 
i 
f , 
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Eq. 3.25 1eads to the formulation for the deformation of thin plates 

" 14 
proposed by yon Karman . ft is warthwhile noting that Kirchhoff's 

hypothesis employed herein deals on,ly with kinematic relationshi p 

does not 1nc1ude any assumptions about the properties of 

of the plate. Thus it is equally a:Plicab~~s which obey 

Hooke's 1aw as well as those which do~: 

Each strain component 0 ~ 3.25 may be decomposed inta 1 inear 
, 

and nonlinear parts and an be expressed 

Rajasekaran an~~y232 :s 

in a way si~to that of 
----------------------

where: 

/' 
// 

1 

1 

(3.26 ) 

t 

Ei (;=1,2,3) denoteSClE:x~ EY',and EXY respectively .. 
A. is a vector and is defined by 

l 

L. AJ l ::;: L l o o o o 

L.AJ 2 = LO o o l o 

o 

o 

L.AJ 3 = LO l l o O' O. 

-z ° 
o -z 

o o 

o J 

o J 

-2z J 

[HJ.'s are 9
1 

x 9 Sy~trical\ matrices wher:-e all the coefficients of l _ 

, 
" 

(3.27) 

the mairices"tre zero except for Hl (5,5) = H2(6,6) = H3(5,6) = H3(i6,5) ::;: 1. 

{G} is a vector representing displacement gradients 
.1 

(3.28) 

/ ." 

- , 
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Substitute Eq. 3.20 into Eq. 3.28 and. after mathematicaf manipulations, 

it can·be written as \ 

i 
{G} ::; [D] {q}, (3.29) 

[D] is shown explicity in Appendix A-3. Substituting Eq. 3.29 ;nto Eq. 

3.t6, and denoting 

(3.30) 

Eq. 3.26, after combining all three cases of i ::; 1,2,3, becomes 

(3.32) 

If we take the ~riation of Eq. 3.26 with respect to displacements 
1 

(3.33) 

1 

Note that the second and the third tenns on the right hand side are 

equa land can be combined: 

ÔE i = ~A.Ji :OfG}+ LG.J[H]i 6{G} 

Substituting Eq. 3.29 into Eq. 3.34 

éE;1 = I-A~i [0] é{~} + I-G.J[H]i~D] é{q} 

combining all three cases of ; = 1,2,3, we obtain: 

~{E} =([SL] + [SNL)' é{q} 

\L 

l, 
J 

(3.34) 

(3.35) 

(3.36 ) 

( 
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111.4.2 Incremental Strain-Oisplacement Relations 

Wh en strain-displacement relations are expressed in incremental 

fonn, a procedure similar to that above can be employed. APPly~lng Eq. 
'-- " . 

3.14 to thin p1a~e and adding f1exura1 strain terms. we may write 

incremcnta1 non1inear strains in the Lîgrangian frame explicitly as 

;)(L\uJ + J~ J(l\wl + ,1_ [1l~J2 
J x J x J x 2 -- () x 

_Z;)2(L\W) 
,) X 2 

-z-4-(/\W) 
:JyL 

;)(I\:D.. + ~ + ()W a(lIw) + ()W .Q..L~ +[~ ~]-2 ;):'(L\w) 
(lx ay ()X 3y 'Jy JX ax ay Z ~xay, 

(3.37) 

Note thùt Eq. 3.29 is now writte'h in incremental form as: 

{ fiG} ':: [D ] { L\q } (3.38) 

T' \ 
where the c91llponents of {AG} are incremental displatement gradlents, 

-~~-, etc .. Each component of the increment-b1 strains in Eq. 3.37 is 
< "x 

decomposed into 11nea( and nonlinear parts and is expressed as 

ne. = 
l 

:: 

M.. . 
1 

+ M. 
1 

:: . (LAJ; [0] + L.GJ [H]i[D]){ôq} + 

\ 

1 (f ~~GJ [H]i[O]){~q) 
, , 

," 
Dt' {l'le} :: ([BL] + [BNL ]){6q} + i[6BNL ]{L\q} 

Here we 'define 6e. (i = 1,2,3) for 6e , -!le, and! Ile" respectively 
i 1 \ X Y xy 

wit~ similar definiti~n5 for Ac. and AD .• We a150 define 
1 ~ 1 

LI\B
NL

J ; :: lL'lG J [H]i [0] 
• fil 

(3.39) 

(3.40) 

.' 

, 
, " 

1 , 
·1 
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Taking the variation of Eq. 3.39 with respect to the incremental dlsplace-

ments, results in: ~ 

, \" , 

8{~e} = o{6e::} + 8{M} 

\ 

L 

= ([BL] + [B
NL

]) 8 {6q} + [~BNL] 8{~q} (3.41) 
0 

~ ... -'''''''-.--...--- Il-..... , .. 

Dropping higher order terms in Eqs. 3.39 and 3.41, we obtain the linearized 

incremental strains \ 

(3.41a) "" 

(3.41 b) 

III.5 Incremental TheorY of PlastilCity 

The" are t~o major plasticity theories, namely, the total, 

, or deformation theory235 and the incremental, or flow theory236,237. 

The \ defor~at;on theory assumes that a uniqie relation between 

total stresses and total strains exists. The total strain components 

are functions of the current state of stress and are independe~t or tbe 

loading path. This is in contradiction with the experimentally determined 
\ 0 234 . 

properties of~materjals, and hence ,ts use 1s limited" . On the other 
1 

hand, in the flow theory only incremental stresses and strains are related. 
i 

The incremental plastic strain components at any instant of loading are 1 
- 1 

assumed to be p~oportional to the corresponding instantaneous deviatoric 

stresses. Plastic defonnations are traced by tntegrating ~he plastic 

strain increments OVe( the'previous loading history. Incremental and 
, . 

---------==~.===--_.-----------------

j , . 
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deformation theories coincide in the case of proportional loading in 

which the stress vector rema i ns fi xed in di recti on. In sorne engi neeH'i ng 
Il "1 

problems where the loading path is not far from proportiQnal loading, 

the deformation 'theory can be employed252 provided that, when unloading 

, 
o 

occurs, the problem is separated into two parts:· the loading part and ,; , \ 

the unloading part, which arè governed by different laws~5,234 However, ., 

the incremental theory is widely accepted and is adopted in this study 

due to its mathematical and physical consistency. J 

The plastic behaviour of a materia\ in a multiaxial stress state , .., 

can be described by specifying the following three parts which make up 

h t f h · t 1 h f 1 t" t 245 t e con ent 0 t e lncremen a t eory 0 p as 1C1 y 

1.1 a yield criterion which defines the elastic 1 im1 t 

of the material in a multi-stress state 

2. a hardening rule which specifies the changes in" 

shape and orientation of the yield surface for 

subsequent yield from a plastic state. 
, 

3. a fluw rule which provide~ the constitutive relations 

between incremental plastic strains and current state 
"'-.", 

of stress' 

The basis of the se three parts are discussed in the following section. 

Details of the derivation are available in several well known plasticity 

books78-81,85,~34,240,241 and will not be repeated here. 

r ' 

1 
'i 
\ 
f . 

'1, 
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"" II1.5.l Yield CriterlOn 

A yield condition can generally be descrited in the form 

f(a . . , k) ;;; 0 
., 1 J • 

(3.42) 

where 0ij are stress components and k are parameters such as plastic 
, 

strains or hardening parameters. In this study it is assum~d that the 

plastic behaviour of a material is independent of time and tem~erature. 

Eq. 3.42 can be expressed in an alternate form: 

, °f(aij) ::: c 
'\ 

(,1.43) 

where c represents some yielding parameter wh; ch is a constant for the 
~ 

case of initial yielding and is a function of'the complete prëvious 

stress and strain history of the material and its hardening properties for 

the case of subsequen1t yielding from a plasticstate. If the material 

1s elastic-pêrfectly plastic (non-hardening)~ c remains a constant. 

The function f of Eq. 3.42 is termed a yield function in the case 

?f initial yielding and is .refe~'red to as a subsequent yield' function or' 

loading function in the case of subsequent yïelqing. This function 
<;) • 

represents a hypersurface to bound "all the access; bl e states which can 
-0 

be achieved in_~n actual material el~ent by sorne program of stressing8l 

By temporarily fixing k as a constant at 'an instantaneous time, the 

hypersurface c~ be projected onto the ~tress space and is called the 

yield surface. The yield surface, similar to the hypersurface, bounds 
.. , 

the elastic region in· the stress space for a partjcular stress-strain 

" histQry (k). Yield surfaces gener~ted by changes in k during ~a stress 
q. 

program are referred to as the subsequen~ yield surfaces or loading 
,1 
~ 

surfaces. 

" . 
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/ ~ L ~ \\ 238 
Among ,\,any proposed yie 1d criteri,a, the !resca criteri on 

V~n Mises cr,iterian239 are the twa mo!?t c0l1111on1y ~sed for and the 

metaNic materia1s. The Tresca criterion assumes that yielding wlll 
-, 

, ,occur at-à.point when,,'th~ maximum shear ~tre~-;!0~ac~es the)value of 
~ " .. ' -

o l ' 

. the maximum shear stress in al simple teh~ion state (i~e. half the yiel~ 

stress obtained from a uniaxial tensile test-). When''''redlJced ta the 

two~di~ensional plane stress case, the j;'eld surface 'postulated by 

Tresca is seen to be a six-sided polygon. The.Tresca yield criterian 
/ 

. is les~ ~tdely 4,sed than\ the Von Mises criteripn because of a few 

:draw~acks. ~Firstly, experiments have showD that test points generally \ 
. . 

falT't,~osér ,to ~he ~on ,Mises Yi~ld condi~ion ~thà,to Tresca's. Secandly, 

the Tresca.criterion is exptess~d in terms of prin~\ stresses and 

, . '-hjye the maxlmum and m~ni.mum' pri nCiPa_l,: stresses have ~e" known in 

advance. The continuo~s\ calculàtion ~nd checking. o,f the rel'â;t~e sizes 
• l , / v ~ 

'of the principal stresses ;s necessart and 15 tedjous. Thirdly, ,,' 
, l , 

, ------'consid~ration of the associated'flow rules indicates that ~be discontinufttes 
~ 1 

at corners ~f the T\esca Yi~.ld surface are difficul t ta handl€ and 'can \ 

be avoided by the Von tJlises'O:r'iterion since the slope of the yield s"urface 

postulated by Vcin Mises i5 always continuous. It can' be,seen that by 

<, ,r~ducing to jhe twôJdim~n~ional plane stress case, the Von 'Mises yield 

surface becomes an ellipsé (See Fig. 4). In,the light of thes~âdvantages, 
\ ,b .... ~,~"", 

\ , "è ' ,_ 
the Von Mises criterion and its associated flow rule are -employed in" this 

"II ' .' 

study. • 

" ~he Von Mises yield criterion ~~sum~s ~hat yielding~~egin~ wh en 

the distortion ener,gy242 equals the distortio~ energy at yield in simple 

, ' .. \ 

J 

, . 'f' 
, -1. ,- • 0 

~
( 

. 1..... 1, , _._. _ \' 

" \ 1 ..J 
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f 
tension. Since the ,interna1 energy due to distortion can be expressed 

in terms of the octahedral shear stress or the second invariant of the 
, 243 \1" ' 

deviatoric stress'tensor (J2), two a1ternate ways of st~ting"the 
" 

criterion are respectively; (1) Yie1ding begins when the octahedral 
. ç 

shear stress exceeds ~ certain ~ imit 

in simple tensionl._ The octahedra1. 

(i~e. the octahedral shear stress 
~ , 

laneis referred to the principal 
, ' 

stress directions. 'And (2f'Yielding 1:) gins when J 2 reaches a critical 

\ 

~ n 

value ('i.~. the value of J 2 fri simple t ns~fun). Of the three forms of 

expression, the one usin9 J 2 is'most'çommonly used. Introducing the 

c:ftic,~l value of J 2 in a uniaxial tensi~e tes,t"w.h.j~h' lsè~ua1 to 
1 2 ' 
J 0

0 
• the Von Mises yield criteribn is written as \ . ~. 

). 
, ) 

(3.44') 
.j. 

N '.J 

l • '<F I-J 
where 0 1S the initial yie.rld -stress in a uniaxial tensile test,and the 

o " 
se'cond devd~ori C ,stress invariant i s d,efi n~d bY 

\ -(~-

J Î 
1 l " ~' 1\ 

2 "2 °ij. °ij ~ " 

, 1 2 • \ 2 '2 '1 ' 2 'Il 2;;' 
or J2 = '6 [(ox~Oy) +(Oy\,oz) ,+(oz-ox> \ 6h)<y '+Tlif4T zx )'J 

.' ., • \. '. \ • (3.45) \ , 

in which the deviatoric stresses ar~defined by ( .. ~ 
\ , l \ ° " = (}.. - -3 ~kk 6 .. lJ lJo ., lJ 

Kronecker delta e \ 

(3.46) 

\ 
. where ô •. denntes ~he 

1J 1J 

.. 

..J 
,'. 

~' \ 
• 

\ ' 

, \ / 

l 

\) 

\ 

" \ 

'~ 
"1 

l 
1 

, 
J 

,1 j 

" 

i 

l 
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,Introducing another terrn which is called the equivalent 
, 

stress and 

\ 
, , i s defi ned by 

-. -,~ (3.47) 

Eq. 3.44 can be etpressed as 

(3.48) 

Eq. 3.48 is a special fOnT! of Eq. 3.42 or 3.43. 

For a pla~e which i s 
" 

a two dimensional case CII;f plane stress. reduction 

lidS 
--, 

" 
of (J from Eq. 3A8 to an ,explicit forrn as: e 

(n 2 + 2 + 3 -( 2) 1/2 (3.49) - () II (} = Cl 
X X ~ Y xy 0 

J. 

III.5.2~ ll~rdening' Rul~ 
When the st~ess state of the matel"'lal lies on the yield surface 

(i.e. [q. 3.42 or 3.43 }s satisfied). \he departure fro~ the plastic 

state due to a f~rther load increment may result \in ~hr~~ different 

toading conditions for str<iin harden;,ng material 

Load~ 
, \ 

df ='Jf, d 0 o·· > 
dg iJ lJ 

NeutraJ l oad i ng df =.2!.. dû .. = 0 
da.. l J 

lJ 
(3.50) 

da. . lJ 
f lJ 

~nloading 

" 

The first case of df > 0 means ~
- ()f do .. < Qo 

the-str s state js moving out from the yield 

surface and pl~st.ic flow iS" occurri'ng.' The -secon~ case of ,df=O indicftes the 

'Oc-~,,~tress state is moying on the y,jeld/surface and represents perfect~y plasti,c 
• 

\\ 
- '. 

~ 

'. 
'" 

~~fl' 1 

\ 0, "', 

.. 
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4' 

• - - 1 

behaviour. The third case of df < 0 means the stres~ state is moving 

into'the èlastic region from th~ yield surfa~e ~nd is entirely an 

elastic behaviour. \ 

. 
In the casè df a perfectly plastic material, the case 0\ df > 0 

daes not exist. Plastic tlow occurs ~urinif the case of df = O. Elastic 
~ . 

unloading of df < 0 is the same as for hardening material. 

When loading occurs, a hardéning ru1e is requ~~ed to d~criQe 

• the manner in which the y~eld surface is modi'fied _'as a resJJ1"t of plastic 

_defarmat i on. 

state outside 

As a material is physica-llY ~.i'nable\\to maïntain a~tress 

its yiel'd surface, this modifi~ation is neceJsary to keep 

~he stress state on the subsequent yield surface and ta h~ve material 
~ -

capable pf maintaining a higher stress state dUf to work hardening. 
Il , ~ 

~ Many ha~jng r~les have beeneproposed ~uch as the isotropie harde~ing 

rule 234 • the Kinema~ic ha~dening rUle 244,.245. the' ~eehankal sublayer 

mode1 24.6,2 and the Mroz the6ri48 . A discussion and comparison of these 

model~ is availabl~;elsewhere173,l~5. ~f ~hese various models, the 
, ~.' 

isotropie, hardening ,rule is most wi~"ely use~' a~d i s, employed in thi s 

stud~ due ta its simplicity and econ~my in com~utation. 
l' 

This model 

assumes plastic defonmatjan tô be an isotropie proeess. The subsequent 

yield surface is uni~6rmlY éx~anded from its initial Yield sur~a~e and 

h~nce'it ~etains the same shape as originally (Fig. 4). The dfsadvantage 

of usi~~ the isotropie model is thè lack 'of consideration of the 
., 

o Bausehinger effect which- is taken into aeeount in other hardening rules 

su~h as-the kinematic model. However", 'since cyeli-c loadi~g is of no 
, r i ntere\t _in th,e present ~tudy, this i s not considered a seri OUS drawba~k. 

. ~-

t 
\ ~ 

·l 
~ 

J 
~ 

J 
1 
j 
l . : 
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1" 

We now replace the 00 of Eq. 3.48 by a to represent the 
. 

subsequent yield stress on the stress-strain curve for uniaxial tensile 

and to account for previous plastic 
85" 0 '-",' 

deformat ion. There are two hypo-

theses often used to~measure the amount of hardening. 

(a) Work-hardening hypothesis ' 
\ 

\ \ 
( In this hypothesis, plastic work (shaded area ;n Fi~. 5) ;s • 

used for measurement, 50 (j is a function of the plastic work done , 
on the ma teri al .. 

, 

wP = r (]ij de:~. 
lJ 

or wp = f (Je de: P 
e (3.51) 

where- the equivalent plas~i c stra i n increment is defined by 
~~ 1 

" u -JI ( p ' •• op ~1/2 dc P - 3" dE ij dEi!"'~""_ 1 (3.52) 
;1:: e J _o. --...... ,..... " --., 

'" ~he loading funct i on becomes 

, ' 
(3.53) 

(b) Strain-hardening hypothes1s 
, \, 

ln this hypothesis',the equivalent plastic strain is used for \ 
i 

measurement, sa a·is·a funct10n of the recorded eqûivalent plastic 

strain and ·is define~ ~: 

cP = ! d~P e e 

\. . 

\ ~3. 54) 

-(------

! 

.. 
1 
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'ft 
the loading fun~tionobeeomes 

a = H(E P) e \ e (3.55) 

For the ease ,~f the Vofr- Mises criterion assuming isotropie, 
... 
hardening, the two nypotheses are equivalent249 . In general, howev~r, 

\ . \ 

they need not be equivalent because of anisotro'py and the BalJschinger 

effect. Eqs. 3.53 and 3.55 are special forms of Eq. 3.43 'and canrbe 

obtained from the experimental result~ of a ùniaiial stress-strain 

\ . 
test.· 

. . 
\ ~ -

111.5.3 Form~s for Uniaxial Stress-Strain Relation 

In this study bath 

are considered. Two cases 

perfee t i~-"l ai t!~ p and 

of hardening mkterial 

hardeni ng, -~à'1ieri al s 

are tteated: linear 

hardening and nonlinear hardenjng~ These two uniaxial stress-strain 

curves are shown in Fig. 5. ' \ ? ......... J __ 

For the' linear hardening mate~'ia,l, the fonnula to express .the 

stress-strain equation is unique. The strain which is composed of " 
f 

elastic and plastic parts can be written as 
f 

.... 
where m = ETIE, 

i" 
, 0 l-m j ) 

e: = - + - \0 - 0 \ E mE 0 .-. 
, \ w ~ 

• Il • 
ET i s th~ ta.:~gef\t m<;>dulu's and E 

- 1 

, (3.56 ). 
\ 

is Youngls modulus. # 

\ For the ngnli~ear hardening ~terial t numerous stress-strain 

formuTas have been propo~ed85. -Among them, the Ramberg-Osgood fonn-~50 
~ 

strain il expressed as is ~o~t widely used in which the total 

\ 0 +, 30 (a ) n - l 
e: = Ë iE -0-

"'~ 0.7 

(3.57) 
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1 t 
where n is an exponent and 0a.~ is the secant yield stress at a.7E 
<~ 

(see Fig. 5). These two values can be obtained fram experimental data 
~ 1 

by nonlinear curve fitting or by any other means. 

An alternative form (e.g. see Ref. 118) which is appealing can 

be \witten as: 

(1 -0' 
c = r + 0.002 '( o)n 

O2-0
0 

(3.58) 

l /" , /' 

"~here' 02 i s the spec i fied 0.2 per cent prolof stress. There are three/ 
\ 

r~quirem~nts for Eq. 3.58: (a) !t should be tangent to the elas c 

l i ne a t a d ° ( b ) 
\ 0 

and (ci The plastic 

The plastic strain should equal 0.002 ° = 02 

strain shbuld eq~al, EP-at (1 = ° ~enotes u %(u.d 

u'ltimate). \The first two reèf'uir.ements are :a~ed automatically. 

'00 and n in Eq. 3.58 are adjusted so as to satisfy the third requirement. 

n is selected empirically thus 

(3.59 ) 

00 is then given by \ 

f.> 
(3.60) 

III.~.4 Flow Rule ~ ·/1\ li 

Drucker's postulate25l of stabÙity leads to the following two 

conSl;!quences: 
--·.-'<'-t • ~ 1 

\ l :-~--The initial "yiald surf~ and all subsequent loading 
~-

surfaces must be conv,ex (convexity). 

\r 
f ' T 
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1 \ 

, 1 

-f 

/ 2. The plastic strain increment vector d€:~. must be 
lJ 

. normal to the yield or loading surface (normality) 
, 

i.e. 

(3.61) 

where d>. is the non-negative constant which varie~ 

throlhout the 1 oadi ~g hi sto)y . The 1 oad i n9 fu~ct ion •. , 

f, plays the same role as a plastic potent'ial. 

It is ~ssumed that the relatio-n ~etween infinitesimals of plastic_strain 

and stresS- is \lin~ar. T/;f;..s linearity can be established by ~howing d>. 

to be~indèpendent of all components of dO ij "except the componeït in the-

direction pf the normal af then240 " aa:-:-' lJ 

/ ... (3.62) 

\ 
. where 9 i.s a positive scalar depending on the stress .. strain, and the 

l ' 

1\ - l, 

historyof loading but is ;ndependent of daij. Sub~titutin~ Eq. 3.62 into 

Eq. 3.6l,then ;nto Eq. 3.52~e obta;n, with the aid of Eq. 3.62, 

t 13 d€P ~ 
. d). \"\/t [(-1L) ~...2L)] 1/2 (3.63) 

ao.· dO" lJ lJ 

S!Jbstituting Eq. 3.63 inte Eq. 3.61, the general plastic stress,-strain 

relation becomes85 
(~ aa . . '-

lJ 

" 

\\ . ~ 

li 
~ ... : 't.l 

" 
'J (. 

!. ) 

a-,' , i 

:: 

• \ 

1 \ ~. 

\ 

\ 
1 
1 

1 

, ' 
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or j (~) \ r 

~H 
da •. 

de:~j lJ dO e H 1 [(-lL)(~)] 1/2 
ao.. ao .. 

lJ 0 lJ 

(3.64) 

whe~e H' = da/dE~, is t~e slope of the uniaxial stress-Plasiic strain 
, " curve at the current value of 0e' When substituting Von Mises yield 

function i nto Eq. 3.64, the associated f~OW rule of the Prandtl-Reuss 
-,' 

're lat i on is obtained .' 
n 

da 1 
dE~. 3 e ° ~ . c 

lJ = 2" H '0 lJ e 

..;. 3 dcP 
or e 1 (3.65) 

ï 2'" 0e °ij 

Il 
Eq. 3.65 states that the plastic str~jn inc~ement at any instant of loading 

is proportional to the instantaneous stress deviation. Eq. 3.65 can be 

written in matrix notation .. 

(3.66') 

af 3 . whe re J -a - = "2 
, aij 

Von Mises yie11 criterion. 

111.5.5 Increme al Total Stress-Strain Relation 

" The theory of plastic'lt»._dssumes that the incremental total i" 
-::.. ..... '" 1 

straïn can be decomposed intq elastic and plastic components. 

, 1 (3.67) .. 
Since,only the elastic part of the strain is associated with the change 

1 

of stress: 1 
-, 

-j 

• 

l, 

, / .. 

" , 
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/ 

o 

\ {do} = [EeJ idee} = [Ee] ({de) - {dE:.~}) (3.68)' 
• 

\ 
where [EeJ is the conventional elasticity modulus matrix. Premul~ip1y 

. df 
Eq. 3.68 by -;;- . and get: 

L. (JO ..J • 

The left 

..li {do} = ~ lîE ] ({~d- {deY}) (3.69) 
L.dO.l L.dO J '- e '11 

hand side of Eq. 3.69 represents the change of ~he loadtng 

and is equa1 to the differential of the equivalent unaxia1\ . funitian 

stress, doe , for the Von Mises yield criterian. 'Substituting do = H'de: P 
, e e 

into the left hand side and Eq, 3,66 into the right hand side, Eq. 3.69 
II ~ 

becomes: 

H' dc P = ,a f [ ] ( d af p 
1 e ,-da .. Ee {d-!.ao\}dce) (3.70) , 

or, rearranging terms: 

{dd /' (3.71) 
-' 

-~ \ 

The equivalent plasticstrain-i~crement of Eq, 3.71 is eva1uated at th~ 

stres~ and plastjc strain level at the end of the previous l\ad step. 

-Substituting Eq~ 3,7J into Eq. 3.66 and then into Eq. 3.68, the final 

incremental stress-strain relat~on in the plastic regioh is obtained211 

{da} 
1 
1 

\1, 

:'( [E ]{~} 2L [E] ) , e ao LdO.. e = J Ee] - -~---;"';;""""";;;;";"';;';:;""""'-""--- { de} 
v H' + .tt [E ]{-~.f} 

L.dO.J e da /' 
1 

(3.12) 

! 
<' 

,-
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When the materia1 is e1astic, the second term inside the parentheses 

vanishes. Eq. 3.72 is then reduced to the genera1ized Hooke's 1aw. 

Eq. 3.72 has a1so been developed,in .an alternative form by ~ifko et 

a1 253 and in an expliclt form by Yama~a et a1 254 . - However, the explicit 
~ 

\ fom does not pr,Qvide any advi;lntage fo~~ computatirn. 

-. PI..6 Eguilibrium Eguations 

111.6.1 Virtual Work A~proach 
1 \'J 

We now w;i~e the p~incip1~ of vi~tua1 work (Eq. 3.6) in matrix 

notation and with the imp~.ication that the finite e1ement method is 

employed. 

\ J \ ô{d
T 

I{O} dv == ô{q} T {pl 
v 

Substituting Eq. 3.36 inta ~he abave equation, we obtain: 
Il \1 

or 

Iv ([SL] + [BNLI1 T {~} dv ~ {pl 
J 

, (3.73) 

·~(3.74) 

Eq. 3.7~ is the basic equilibrium equation and is c,onvenient ta use for 

the equilbrium check when the stresses and disp1acements become knawn 
b' 

va,1ues. }. 

When the stresses can be unjquely expressed in terms of strains. 
1 

Eq. 3.74 becomes: / 

/ 
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For simplicity, [E] is substituted for [E ] jn Eq. 3.75 with the , e 

- 1\ 

understanding that the material is elastic. ~ubstltuting Eq. 3.32 

into the abov~ equation, results in: 

l 1 \ 

fA t[(rBL~ + [BNL])T LE] .([BL] + ~ [BNL])~"d'A ,{q} = {pl 

.. 
([K ] + [K*]) {q} :: {pl 

, 0 

111.6.2 Potential Energy Approach ... 

(3.76) 

(3.77) 

An alternate fanmul~tion based on the principle of stationary 
/ 

potentia'l energy i~irst express the po.tential 

\./ ~ • f v } (cl T (a) diV _ {q) T {pl 

~~ ~ 

\ , 
\ 

energy by 
(). 

/ 

Taking the vari at ion of pOtel'ilt i al energy with respect ta di spJacements 
\ \ \ 

and setting equal to zero: 
~ , 

'. T T ~ 
64' = Iv 6{e:} [EHe:} dv - 6-{q} {pl = a _\,3.'79) 

After ~ubstitut.lng \Eq. 3.32 and 3.36 i nta. Eq. 3.79. Eq. 3.76 i sI reat~ed. ~ \ , 

The rest of the formulation is idenf'cal to that ~hown abov~ by LSing the 
, \ / 

principle of virtual work and will ot be repeatea here. ' \ / 
~ 

") "" .. Il 

\ -
1 

/ 
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II 1.7 Element Tangent Stiffness Matrix 
c 

The nonl1near equilibrium equatiofiS ~erived in section 111.6 

are' often solved using a'n iterative process. Among the available 

approaches, the Newton-Raphson method, iso~he most\wid~ly used. wè' 

consider the principle of variation as applied to the element to 
,. "',,-

fonnulate the element tangent stiffness matrix. '" 
\ " , 

Let the force unbalance {f}n be that correspon~~ng to the nth 

" 

i~eratiO'n for tlle disPla:ement {q~n' Expanding {f}n+l in a first order 

Taylor's series about {q} = {q}.n for the improved displacements lq}n+l' 

"'" we seek for 

{f}n+1 =: if} + 6{f.} = {f} + _d_ if} cS q. :; 0 
n n n aq i n 1 

, 

Substituting Eq. 3.74 into the above equation, resu1ts i~: 

LIt', 
Noting [B ] is independent of the displacement and using Eqs. 3.29, 3.31 

and 3.36, Eq. 3.81 becomes 
~ 

Iy ([O]T[~oJ[oJ + ([~LJ+[BNL])T [E], i[B~J+[BNl]i)\dY 6{q} ~ {f}n 

where [R ] = ?: [H]. (11" -u-:- (;=\'1,2,3) 
'0 ;=1 1 1 \ 

Now multiply out the second term of Eq. 

ly [EO]l[R J[O] + [BL]T[E][BL] f 
• cr 

([BNL]tE][BL] + [BLjtE]EBNl~ + 

(3.82) 

de~otes (lx' 0y' T' respectively. 
xy " 

3,.82 

<1 \ 

r 
• 1 

,1 
r 

/ 

1 . 
1 

\ 

:; {f} n 

{3.83} 
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Using Eqs. 3.30 and 3.31 and with a large amount of manipulatjon, Eq. 

let 

or, in short, 

, \ 

éi{q} ,= {f}' 
n 

(3.84 ) 

norma~ axis of the element, 50 

U 

\ 

(3.85) 
~ 

o 

(3.86) 

where [Kr] i s the tangent stiffness mat,rix wh'" h i 5 used to efJne , 
, 0 

the corrections é{q} required to obtain t the 
o .,.. 

recursive formula: / (3~ /' 

, '\ ID 

~ '" 
~"" ..... /' ,... 

D J. . 
... • Il 

, f, <; 
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IlL8 Incremental Equflibrium Equations 

There are several ways of putting the nonlinear equillbrium 

equations into a linear incremental form. Methods have been proposed 

by many researchers including Mallett and Mar~a'1181 , Gallagher210 , 
1 

and part,iculà'rly Stricklin et al176.183.198-202. The most common methods 

using a flrst order Taylor's series expansion, an lnitial value problem , 

formulation plus a simple Euler difference application, and self-correctlng 
1 

solution procedures also linked with an Euler difference formla, have 

already been discussed in Chapter.II. In thlS sectlon, however, the 
/' 

incremental equilibrium equation will be.formulated by a direct 
1 

appli~ation of the incremental variational principle. 

Il J 
l' II I. 8. l Vi rtua l Work Approach 

We now write Eq. 3.17 in matrix notation with some manipulations: 

éU.q} ~ {p}) = 0 (3.89) 
, '--

" Al1 terms have been defined previously. Substituting Eqs. 3.38, 3.41a, 

3.4lb and 3.72 into the above equation, results ln: 

ô{ô }T (J [([SL]+[BNL])T[E] ([SL]+[BNL']) f6q} + [DJT [R ][OJ U~q}] dv q , v , a 

\- {6p} (3.90) 

1 

Again, for simplicity, we use [EJ to'-represent [Ee] for the elast(c case 

and to represent (E ] for the plqstic case. The quantities within ,the 
~ep 

i • ~,. L .' -, 

1 
f 
: 
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1ast brackets of Eq .. 3.90 represent the unba1anced resldua,l force~ 

at .the end o'f the pre,vious increment (see Eq. 3.74). Eq. 3.90 is 

then simp1ifiéd·to: 

= {lIP~ + {f} (3.91 ) 

The int'egra1 within the square brackets of ~q. 3.91 is the incremental 

stiffness matrix., Comparing thi s matri x Wl th the tangent stif(ness 
l 

matrix shown ln Eq. 3.82 of section 111.7, we find that the two are 

the same. Further work is referred to in the previous sectlon and is 

omitted here. We simp1y conc1ude the formulation by writlng the fi~a1 

fonn of the i nc rementa 1 equilibrium equation as: 

[KT] {lIq} = {lIp} + a{f} (3.92) 

\ 

Note that a factor d~noted.by a* i s added to Eq. 3.92 so that the magnitude 
" generally kept as of the force unbaJance can be flexibly adju~ted. Ct i s 

unity. However, when the solution is numerically stable, a value greater 

than unit y (say 1.3 or 1.4) can be used to increase the rate of convergence. 

On the other hand, if numerica1 instabi1ity is encountered, a value less 

than unityshou1d be used. 

* z(lIÀ) was used for a in the previous discussion in Chapter II 

\ 
-E.-~.b:asz:"""''''';''''''''''''j.,F.-''''' . .....,...~5 . ...,.., . .......,~~""':r'l. .. .". .. ..." .. _____ _ 
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1I1.8.2 Potential Energy Approach 

To forrnulate the incremental equillbnum cquatlons using the 

mlnimization of potential energy of the structure is rather trivlal. 

It is, simply a pure mathematlcal exercise ln fonnulation procedures. 
th . th il 

To reach the (n+l) loadlng statefrom a9we~ n loading state of 

equllibrium. the incremental potential energy can be written as: 

Iv -1 f6e)T [E] {Ad dv + Iv {/leJ T 
{u) dv {Aq}T {P+AP}-:lqJT{ApJ 

(3.93) 

TaRing the variation with respect to the incremental displacements 

and setting equal to zero, results in: 

M'l' = Iv (1- ,'i{ M} T [E] {!lr}+} {tlef ~ [,_E] ,',{ /l,}) dv 

c<-~ 
OfAq}T {Ap} + 1 

, V 

. (~. 

o . 
(3.94 ) 

Substituting Eqs. 3.39 and 3.41 into the above equation a~d neglecting 

the higher or.der terms so, generated wl .. thin-the" parentheses.of Eq. 3.94. 

we obtain: 1. 

o 

f 

r , 

, , 
o ' 



1 

( 

( 

' 11 1 

" ' .. 

,1 

-77-, 

• 
- {6p} - '[{pl - f ([SL]+[BNL])T {o}dv])= 0 ," (3.96)' 

v 

Eq. 3.96 is identical to Eq. 3.90 and this formulation is therefore 

not carried any further. 

111.9 Comments on the Tangent Stiffness Matrix 

The integration of matrlces through the thickness of the e1ement 
1 

, 1 

(Eq. 3.85) has'been evaluated exactly ln advance when the material is 

e1astic. When the material is in the plastic region, three basic 

technique~ have been proposed to incorporate th~ effects of the variation 
/J 175 

of stiffness through the thickness. Levine et al gave a detai1ed 

discussion of the' subJect which is briefed as follows: 

The first technique is tenned the 1ayered approach. The plate 

thickness is divjded .into several 1ayers. Plastic strains and stress1es 
" 

are eva1uated for each layer at a specified number of pOlnt'Sl along the 

surface of the e1ement (i.e. at nodes or Gaussian points). The stiffness 

matrix is then obtai.n,ed by numerically integrating"the properties 
• 1 \ 

through the thickness at each represen~ati~e pQint and then over the 

element surface. This approach does not add any additional degree of 

freedom to tnl system but requires plasticjty calculations to be performed 

at each integration point (layer) through the thickness . 

The second approach is to ass4me -a variation (often a linear 

variation1 of plastic s-train through the thickness. In this case, at 

, 0 

1 

.1 
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mO,st, only four points need te monitored for plastlc strains, the 

top and bottom surfaces and two possible elasto-pl astic boundary 

locations through' the thickness. The determination of the l.ocation 

of the elasto-plastic boundaries i~ relatively simpYe because of the 
• 1 

Kirchhoff assumption 'of a linear variation of total strains. Disadvantages 

of the method are that it is only approximate and for ùnloading and 

reversed loading the total plastic strain distribution is no longer 

nearly linear. Nevertheles~, for monQtonic loading'with, at most, 
• r 

simple isolated instances of unloading. it is efficient. 

The third possibility is thro~gh the use of a moment resultantl 

stress resultant int~raction curve. The advantage of this method lS 

that no monitoring of points through the thickness is requ1red. On 

the 'other hand, it is only approximate in nature and requires moment 

curvature tests for each structure considered. This explains why the 

method has not been widely accepted and its reduction in computing costs 

compared to other methods needs further investigation. ThlS method 
, 

would appear to have its most u~eful application with hybrid elements 

where the moment and stress resultants are the actual degrees of freedom 

of the problem and are calculated directly. 

\ \ 

This study employs the layered method as it provides sorne advantages. 

In this method, because the stresses are monitored at points, they mpy 

vary arbitrarily through the thickness. Conventional stress yield 

criteria may be used and reversed loading, un~oading and cyclic loading 

present no special problems. Only standard tensile stress-strain data . 
are required for the plasticity cal~ation. 

't-~ 

, 
J 
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Several numerical integration schemes have been used to integrate 

the tallgent stiffness through the thickness. These include trapezoidal 

integration, Simpson's rule and Gaussian quadrature. Simpson'~ rule lS 

preferred because it converges faster than the trapezoidal rule and 

includes as integration points the top and bottom plate-surfaces where 

plasticity must be initiated first due to the Kirchhoff hypothesis. 

On the other hand, even though Gaussian quadrature has been used by some 

r~searchers, lt' is not used in this study. Gaussian quadrature requires 

the stress at inter~pr points within the thickness ta exceed the yield 

stress before any con tri but; on i s obta ined. Hence, it i s not able to 

detect early yie)ding at ihe ~pper or'lower surface. Most impa~tantlY, 
the Gaussian quadrature formu1as assume the existence of continuous higher 

arder derivatives for the plastic strain dist~ibution. Physically, i t 

1 S known that this is not necessarily the case. This inconsistency 

in the mathemati cal model could prove important for a complex distribution 

of plastic str?i ns, particularly through the thi ck"ness of the element176 ,197. 

Other comments on the tanget stiffness matrix are that all 

matrices used ta form the tangent stiffness (Eq. 3.86) have been 

explicitly formed (see Appendices A-3 through A-10). 

is a constant matrix and only initial load 
1 • 

i ncrement. It! i 5 then sotred of the load increments.-

Hence, the only matrices which have ta be r. evaluated are the 9 x 9 

" " matrices of [Ka] and [KNJ where the and sparseness 

, \ 
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are provided. , The advahtage of avoiding the multipllcatlon of zero 

coefficients in the matrices has been taken into account d~ring the 

developmenf of the computer program. If the three parts WhlCh compose 

the tangent (l'ncremental) stiffnes's matnx were evaluated separately, 

they are respectively (from left to right as shown in Eq. 3.86) 
, J, 

initial stress matrix, conventional elastic small displa~ement matfix, 

and initial displacement matr,x. For elastic large displacement 

analysis, the total stress I!"n be expressed in term~ of s'train and 

then in tenns of displacem~nt gradients. Combining the ''Ïnitlal stress 

matrix and the initial displac~ment matrix and rearranging the coefficients, 

the so called N1 and N2,.matric~ as explicitly given by Mallet and 

Marcal 181 can be formed~ 

111.10 Assemblage of Elements 

The variatjonal principle has been applied to a sU,bdomain of the 
(. 

structure for deriving the individual element stiffnesses in the previous 

sections. To 0rtain the stiffness relationship for the total structure, 
.1 1 

the prlnciple<is applied to the whole domairl by integrating ove~ the 

entire structure. This is done by assembling the elements together to 

form an jdealized structure using the topological conditions. Mathematically i 

it is achieved by transformillg the equilibrium equations 'for the elements 

to a cOOlTlon coordinate system! and' summing the corresponding element 
1 

stiffness terms: The final equilibrium equations for the entire structure 

are then'solved using any of the ayailable solution procedures. 
" > 

" 
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III. 11 Choice of Numerlcal Solution Procedure 

The solution procedures used in this study are the Newton-Raphson 
" 

method (including Modified Newton-Raphson method) and, the incremental 

method with unbalanced force correction. The Newton-Raphson method is 
o 

'mainly used Jn th~ ela~tic range ~the loading history. Due to its 

fast ~onvergence and hence large step'~ze, the Newton-Raphson method 

has proved to be more economical in computing costs and it provides a 

more accurate solution. The method can 'be extended to the initial post­
J;./ 

yielding stage when ~terial n'onlinearity" is still not very severe. 
, 

However, the rat~ of converg~nce begins ~o be retarded quickly whlle the 

step size has to be continuously reduced and the method becomes expensive. 

It finally reaches a point where the\i~crementa1 method must be used 

for the rest of the l.oad; ng ; ncrements. The correct; ng tenn of force 

unbalance ;s added to the incremental equil;briu'm' equation to prevent 

thJ solution from ~rifting from the true load-displacement path. The 

three methods are demonstrated graphically for the case of a single degree 

of freedom ;n Fig. 6. 

111.12 Modified Cholesky Decompositi6n Method 

In the finite element displacement method, regardless of which 

type of formulation and solut;~n procedure is'being used ~or the nonlinear 

analysis at each iteration or at each load step, equations of the 

following fonn must be solved: 

[K] {q} = {pl (3.97) 
/ 
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in which [K] 1s the symmetrical, positive-deflnite stlffness matrix, 

and {q} and {pl are as defined previously. Eq. 3.97 herein 1S assumed 

to be the final form after the lntroduction of the klnematic constrain~s ", 

into the stiffness matrix. ) 

The two most p~pular'ways of solvi~' Eq. 3.97,di~e 
-....f~ 

Gauss elimination method and the Cholesky dec~~position method. Compared 

to Gauss eli~ination, the Cholesky algorithm 15 Tess accurate, mainly 
f 

due ta its. process errars in forming the square roots. Despite this 
" /l'" deff1c1encj, the Cholesky method does have important data storage 

advantages. 

This study employs a modified Cholesky decomposition256 ,257 method 

which avoids taking square roots and hence retains t~e good features of 
1 

both Gauss elimination and Cholesky decomposition. The algorithm lS 

to decompose the stiffness matrix as follows: 

where [L] is 

• \K) = [L)[Or
1 

[L)T (3.98) 

a lower triangular matrix, [D] is a diagonal matrix with 
( 

11 " 
element O .. equa1 to d\~agonal elements of L .. , andl[L]: is the transpose 

11 

of [L]. The stiffness m trix, [K], is assured of being positive-definite ., 

by checking that the diagonal elements of [D] are~reater than zero. It 

i s seen that only the [L] matrix has to be ~valuated l!.sing the formula 

~l l ~ L . 
L .. = K .. - 4 nJ nl (where i .~ j) . (3.99) 

1J lJ n=l Lnn 

Substituting Eq. 3.98 into Eq. 3.97, results 

[L] {Y} = {Pl (3.l00) 

--~~~--- -----

l' 

.. 

1 
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.where (3.101) 

Eq. 3.100 is first solved for {y} using forward substitution. {q} is 
, 

then obtained by sblving Eq. 3.101 using backward substitution. 
• ' 0 

The above algorithm proceeds with one equa~ion at a time and 

thûs requlres only one row of the matrix to be in the core of the 
(\ 1 

computer. This reduces the requlred core size to a minimum but lt 

significarotly increases the 1/0 time and may not necessarily be more 

economical. 

A common alternative tech~ique. is to partition the stiffness 

matrix into a tridiagonal form*. Eqs. 3.97 and 3.98 can now be 

written as 

A, BT 
1 l ql . Pl 

[K] {q} B, A2 BT = q2 P2 2 = (3.102) 

B ' 
2 A3 BT 

3 q3 P3 

B3 A4 q4 P4 

Al BT L, -1 
l Dl . 

T T 
L" Ml 

~ 

A2 BT 
Ml L2 

-1 
B, 2 O2 

, T 
L2 

BT = -1 B2 A3 M2 L D3 3 , 3. 

B3 A4 M3 L4 
-1 0
4 

. 

~ (3. 103) 

.. , 
t 

\ * The case using the conventional Cholesky plgorith~ is descr~be~ in 
Ref. 253. 

J 

MT 
2 

LT 
3 

MT 
3 

LT 
4 1 

'1 
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For clarity, all the blocked submatrices will be represented by a 

capital letter without brackets. Now, at any time: lt has one diagonal 

and one off-dlagonal block retained in the cor~. The space can be 

used for other purposes, when equation solving lS not executing,as a 

dynamic storage area. 

The procedure"to obtain submatriceS' L. ·and M. is as follows: n l 

-+ 

-+ 

-+ 

etc. 

These equations are used to determine Ll , Ml' L2, M2 etc. to obtaln 
, 

each diagonal block by the modified Cholesky decompo~ition algorithm 
o 

and each off-diagonal black by salving the Gorresponding equations. 
J 

The "forward" sol ution for Eq'. 3.100 can be expressed ~s 

Y1 Pl 

Yi. P2 

Y3 
;: 'P (3. 105) 

3 

Y4 P4 

\ 
which leads ta ., 

., 
= Pl 

\\ 

\ = P2 f1tY 1 (3. 1 06) 

\ 
= Pl - M2Y 2 

etc. \ ~ 

,L .. '. 7'~-~-------

.' .-
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. CHAPTER IV 
, 1 

TEST EXAMPLES " 

computer program (see App~ndi·x B) using FORTRAN language CGl 

""""" ' 1) was deve1oped. Prior to the application to thin-walled 

members. examples of bea~s and plates were tested and the 
{ 

presented in this Chapter. 
1 

Examp1es were chosen 50 that 

different hapes, different loading patterns, various boundary conditions 

and differ~nt matenal prop"erties can be tested. Direct comparîsons with 
l ,~~ 

pub1ished resu1ts, using either the finite e1ement method, àn a1ternatlve 

theoretical approach,"or experimental work, are made. 
. , 

The stiffness matrix is eva1uated numerlcal1y using Ga~sslan 

quadrature over the plane of" the elements and Simpson's rule through the 
o '1> 

thickness. The numbér of integrating points is left ta the user as input. 
""' . . 

It is judged that 2 x 2 Gaussian points probably will not be able to 
\, ~ '" . 

provide adequate accuracy and a 4 x 4 scheme is tao, experysive; h'ence a 

3 x 3 Gaussian quadrature is consistent1y useç for a11 ~est examp1es. 

Either nine or eleven 'points (layersf aî"e used through the tliickness 0 

except for the first test of a restrained beam where sev~nteen are chosen 

insté~d. $even layers may possibly give satisfactory results 6ut has 

not been tried. 

The transformation of the stiffness matrix and the displacement 

and load vectors between focal and global coord,inate systems are performed 

only for certain joints where non-coplanar elements meet and the locâl 

coordinate systems of these non-coplanar eleme~ts are different from the 

global. For those cases where an initial imperfection o~, the member is 

-86- , 
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• < , ~ 

introduced thrdugh joint coordinates, the four node transformation 

matrix as discussed in Section 111.3 is employed. 

integrating points. 

ln this Chapter,only beam is analyzed due to symmetry 
" 

and only' a quarter of each plate is ta double symmetry. 

The mesh idealizations are shown1'in \~' fi gu res . \... 
. 

, ~he test < examp l es serve the purposes: 
f 

l , 

1. To verify the mathemat)cal formulation of the last chaRter. 

, 2. To check Dut the cC?mputer 'program. ô . 

3. To furt4ter explore t.he post-buckling behavio'ur, 

s~rength of plates and?the factors which 

4. To study the accuracy and the convergency of the results with .,. 

respect to the step size and fineness of the flnite elernent 

id€alization. 

t 

1 V • l 

• + .1 
.~-" ...... 1 <t "r:--' .' 

Restrainea Sirnply Supported Bearn, Elastic-Perfectly Plpstic Materiàl 

One of the earliest finite element'applications considering comblned 
l' 

geometrical and material nonlinearity was due to Armen, Pifko and Levine89 
o 

who tèste~ a restrained bea~ and a simply ~upported circular arch. The 

~eam,-(wQ.\~h is simply supported under unifonn lateral loàds with its edges 

restrained from moving toward e~ch other, was chosen for comparison because 

more detai,l~d, results wére available. Results of two cases of investigation 
~ - ~ ~ 

') - - c 

are shawn in Fig. 7 and 8. 

.. 

j 
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The previous investigation used lJeam elementsl , included' material 

'. 1 nonlinearity b9using the initial strain method, and assumed a l1near> 

variation of plastic str4in and of elastic-pla?tic boundary Wl thin"the 

elemen,t . .The present study uses a plate element, the tangent stiffness 

method and the layered approach. ~enfe the method and the elements used 

for the two cases of lnvestigation are ~u;te different. 

, The step size used in the previous lnvestigatlon was report~d 

as 39 lb (13.61 kg). In the present study, it varies from 120 lb 

(54.43 kg) to 240 lb (108.86 kg) in th) elastic range and ;'s, after 

initial yielding, gradU~~ ,0 lb (13.61 kg) at "a ... load level 

,Of 95 lb/in (16.96 kg/cm). In arder ta speed up the investigatlon, the 

step size is again increased to 90 lb (40.82 kg) at a load level of 154 

l b/,in (27.5 kg/cm) and i s maintained the same throughout the rest of the 

analysis. Na i~eratian is performed durlng the coursé of the study. 

Fig. 7 and 8 show very good agreement between th~ two studles up 

to a load Jevel of about 150 lb lin (26.79 kg/cm). Aft~r that, the 

differences become more pronounced. The present results show that the 
-> ' 

beâm is stiffer than that of the, previous investi~ation and also shows 
!.. ~ (' ('l 

that ,the softening of a 'member a.t th~ final stage-of loading is Sllght. 
, 

The difference is probably due to several causes. Firstly, it is attribut~d 

to the inclusion of a force unbalance at eàch increment and also the 

greater step size used in the present study: Secondly, even though the 

,> 

beam is softening due to plastification. its bending stiffness is· increasing 

due to geomet'rical nonlinearity. The inc[ease in ber'lding stiffness by 

using'the present element is probably greater than that of the previous 
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one. Thirdly, the previous investigation is a beam analysls, whereas 

the present study lS a plate analysis. .... One on1y invo1ved ln single stress 
a. 

field while the other involves a multi-stress field. Hence, a slight 

difference may arise through computation, particularly in the plastlc 

reglon where the theory of plasticity ;s used. 
C 

,On the other hand, the solutions using different numbers of elements 

in the previous investigation (see Fig. 7) indicate a trend that the solution 

of the two 1nvestigations get closer when more elements are used. Hence 

it is believed that when the idealization of the present study is further 

refi ned, the difference betwee'n the t'Wo i nvestiga ti ons" shoul d be even 

smaller. Furthermore, both results show identical progression of the 

plasticization pattern which initiJted at the' bottom and penetrated through 

the thickness toward the top of the beam, with on1y a small discrepanc-y 
.,\ 

at the edges (Element #12 in Fig. 8). 
1 

ThlS was because stresses were 

presumably evaluated at the nodal joints ln the previous investlgation 

but at the centroids of the elements,which is also one of the integration 

points, in the present :study. 

One interesting phenomenon observed during the analysis was that 

the longitudinal unbalance9 forc~s gradually ïncreased and oscillated 

along with the progression of the elastic-plastic boundary until it 

passed through iPprOXimatelY two-thirds of the depth of the beam and then 

started to diminish again (this phenomenon did not occur in later test 

examples'of plates when the edges are free to move in the plane of the, 

member). The l arger l ongitudi na 1 unbalanced force.s are apparently due 
. 

ta very hi gh membrane stresses genera ted due to the beam bei ng res tra i ned 
1 

, 1 

from moving in that direction. These unbalanc~d forces, even though 

higher than those in the transverse direction, remain\small compared to 

,0 

, 1 
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the total membrane force. However, it is felt necessary to reduce these 

unbalanced forces. Due ta the slow improvement but rapid increase"in / 

computing cast, choosing a smaller step size is considered uneconomlcal. 

Therefore, it was felt best' to reduce the magnltude of the unbalanced forces, 

l, which are used as correcting teqns within the equilibnum equations for 

the next load step. The first attempt was an under-relaxation on unbalanced 

forces by letting a < l (see Eq. 3.92). This was not very successful 

because it was found that the proportionality constant, a, is not necessarily 

the same for all unbalanced force components. Judging the character of 

the oscillatlOn of these unbalanc'èd forces, the meth9d of generating ... t~ 

~nbalanc:d forces used, in t~e second-order self-correcting s~lution ~ocedure , ( 
as discussed in Chapter II is adopted te provide a better predlction lfor 

these 'correcting tèrms. 

After a few trials, it is found 

z of Eq. 2.31 can be bes~ressed as: 

t 
that the ,alue of parameters c~nd 

\ a 1 z = bp 0.125 ~ 0.875 
p. P \ 

where a and b are scalar quantities, 6p is the current load increment, and 

P is the cumulative applied load. Similar forms were previously used in 

Refs. 199, 201, and 202 except that the exponents for each parameter were 

different and a and b were maintained as constants. In the present study, 

it was found that better 

the value of "a" from 13 

/"" 
results can \be obtained by gradually adjusting 

(' ) 
te 2.5 and ~b« from 1.8 to 0.2. The unbalanced 

forces are indeed graduallJ(reduced to small values agaln and it is believed 

, i '. 
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that the improvement is partially due to the appllcation of the second-, 

order self-correcting'procedure and p~tially due to ltS own nature'of 

decreasing the residual forces at later stages of the analysis, 

~ IV.2 Simply Supported Square Plates Beyond the Buckling Load 

The post-buckling behaviour of slmply ~~ported square plates was 
~ , 

studied previously by Levy21, Coan25 , and 'Yamaki 26 uSlng a double Fourier 

series approach and recently by many investigators51-~7,61 ,144,149,229 
[ 

using the flnite-e1ement method. Yamaki '5 c1assical $Olutlon is generally 

accepted as tht most exact. Three prob1ems were tested under this category 

and involve different width-thickness ratios, different materia1s, and 

different idealizations. In order to initiate a latera1 def1ectlon, 

imperfections are introduced as single half-sine,waves in both directions 

with maximum magnitudes of ten percent of the thickness at the center of 

the plate: 

O 1 t s1"n ~ s1"n ~ Wo = • L L 

The plates are uniformly coÇlpressed in one direction by lmposing specified 

displacements along the 10aded edges. The unloaded edges are f.ree to move 

in the plane of the plates. The magnitudes qf the requ1r~d in-plane loads 

can be eva~uated lateL~ integ 

the reactio~SOlVin, th 

in good agreement. 

ting the element stresses or by calculating 

'-,--

equations. The two a~ always 
, 

/ 

1 / 

1 

1 
( / 

l ' 
1 / 

,/ 
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IV.2.A Width-Thickness Ratio = 192, Elastic-Perfectly Plastic Materia1 

An identical p)ate 48" x 48" x 0.25" (122 cm x 122 cm x 0.635 cm) 
7 ' 5' 2 with E = la psi (7.03 x 10 kg/cm) and" = 0.316, which was previous1y 

tested in the elastic region by Khan et a1 229 was retested as the flrst 

test exampl'e of a plate in the current study. Resu1 ts are shown in, Fig.. 
(, 

9 where Yamaki's elastic solution is also plotted for comparlson. The 

study of the elastic post-buckling behavi~ur of simply supported square 
1 

plates has also been conducted by many other investigators whose results, 

are not demonstrated in Fig. 9 for clarity. 

In this particular toest, Khan ,et al used a rectangular plate with 

fi ve degrees\ 0,: 
corresponding to 

'-freedom and employed artifical stiffness coefficients 

ez as proposed by Zienkiewicz~66 for tnese cop1anar 

elements. These artlficial stiffness coefficients were not required in 

the presen1 study since 8z itself !s a degree ~f freedom. 

Because the plate has a high width-thlckness ratio which implies 
.' 

a small initlal buckling load but large post-buc~fing strength. the 

analysis was mainly in the post-buckling range where the behaviour was 

highly'nonlinear. Consequently, the step size should be small an~ the 

growth of stresses in the element was slow. In addition, the ultimate4 

strength of this test plate was not comparable since both Yamaki's and 

Khan et al 's work considered geometrical nonlinearity only. For these 

• reasons, the yield stress of the material was' set ta a low value (10 ksi 

(703 kg/cm2)) sa ,that the test cou}d be terminated sooner. 

Fig. 9 shows that the present result lies between the two previous 

investigations. After initial yielding, the increase in stiffness of the 

1. 

1 
1 ~ 

i 
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plate due ta large deflections is gradually more than co~pensated by 

the decrease in stiffness~due to plastification. Probably due to the 

severe nonlinearities and the small step sizes that are used, the Tesponse 

of both loads and deflections were sluggish in the reglon of the 

ultimate load. The test was terminated when the loads ceased to grow. 

IV.2.B Width-Thickness Ratio; 150 

Case a: Elastic-Perfectly Plastic Material 

q Arai 149 used refined conforming triangular elements with three 
. 4 

sub-elements) to te\t a plate 600 mm x 600 mm x 4 mm with E = 2.1 x 10 

kg/mm2 and 0 y = 25\ kg/mm2 (\l was not reported). One coarse mesh of 

eight elements and one fine mesh of thirty-two e'lements were Itested. An 
\ u \ 

identical plate was retes!ed"using twenty-five rectangular elements and 

setting v = 0.31 

Comparing the results against Yamaki's26 classical elastic solution 

,in the pre-buckling and p6st-bJckling region respectively, Flg. 10 shows 

that Arai 's results changed from being on the stiff side to Sllghtly on 

'the flexible side. The present test ~lmost coinc~des with Yamaki 's b~, 

later becomes too stiff. The difference, probably can be attributed to the 

following reasons: 

1. The present study considers unloading eve~ though it very rarely 

occurs in this test problem. In general, had un10ading occurred, 

the stiffness would be evaluated based on the elastic properties 

of the material unti1 yielding is reached again. Hence, the effect 

of unloading is essentia11y to stiffen the member. 
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It ·seems that Arai covered material nonlinearlty by simply settlng 

the stiffneSj to l,ero for the plastic portion of the member without 

further reference to the theory of plasticlty. ThlS may be the 

reason for his results being on the flexible side. 

3. The present non-conforming rectangular element is too stiff ln this 

particular problem. 

Experimental results conducted by Arai are also reproduced in Fig. 10. 

No description of the. work indicating how the loads were applied or how 

\. the boundary conditions were set was gi ven. 

Fig. 11 shows the history of the stress distribution néar the 

loàded edge and near the centerline of the plate. I.:t may be observed 

that the stress quickly drops toward the center of the plate pfter initial 
1 

buckling and the ultimate strength is reached, when the maximum stress at 

the edge yields and starts to decrease. This conform~ with the ~oncept 

of effective width initi ated by Von Karman 100. Note that the differences ' 

between the two tests âre pronounced in Fig. lla. The stress distribution 

pattern of the current study agrees with the classical solution (~.g. see 
" 

Coan25 ) whereas Arai's result is actua11y c10ser to the case where the 

unloaded edges were kept straight. However. this is fn conflict with his 
. ' 

own choice of using Yamaki 's solution for comparison (shown in Fig. 10) 

which implies _that the un10aded ed9,~s were free to "!pve in the plane of 

plate. 

Figs. 12 and\ 13 compare the results on lateral deflection and 

extension of the plastic area. Generally speaking, the resu1ts of the 

two tests are simi1ar. 

-" 

( 

i 
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Computing losts are al so compared in Table 1. It i s not certaln 
... 

t t the computing time can be dlrectly compared as Ara; did not clearly 

defin his computing1time of ~40 seconds, nor .did he mention any attempt 

at itera i ons in each loading step. The time of 32 seconds ln the present 

test is an verage CPU time per iteration using H level Fortran language. 

Two or three i erations were used for each 10,~J1fiJW step depending on the 

step size. In most parts of th~ analysis, two iterations were more than 
\,,1,' 

adequate. 

Case b: E1astic-Linear Strain Hardening Material 

The same plate as Case (a) w~~ retested using a different mesh 

and different material properties. The purpose is to compare results with 

different fineness of idealization\ and to check the computer subprogram 

fo~ material with strain hardening. Fig. 10 shows that the degree of 

improvement on the result from a 3 x 3 coarse mesh to a 5 x 5 flner mesh 1s 

not proportiona1 to the amount of extra\compu~in9 cost required and this 

lS quite a cOlTVllon conclusion in finite e1ement analyds. However, 'the 

plate does have a higher strength due to strain hardening . 
... 

IV.3 Restrained SimpTy Supported Square Plate Under Uniform Pressure, 
1 

1 Elastic-Perfectly Plastic Material 

~he classica~ ~lastic solution of this problem was previously found 

by Levy2 who'. used double Fourier series to ·solve von Karman 's 14 large 

def1ection equation. Marcal 142 attacked the same problem using triangular 

elements at the earlier stage of development of combined nonlinear finite 
[ 

elemeAt anal~sis. Ohtsubo143 later ~dopted the Ritz procedure with the 
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aid of the finite element method with the plastic ana1ys1s based on the 

initial strain concept. These works are compared with the presen~; study 
• CI \1 

for a plate 24 in x 24 in x 0.25 in (61 cm x 61 cm x 0.635 cm). ' 

Fig. 14 indicates-that the preslnt study results indlcate a l~ss 
stiff plate than those of previous investigations. The Newton-Raphson 

procedure was émployed up to the load level of pa4/Et4 = 334 and 1t took 

twelve steps to reach this level. The number of iterations,were varied 
1 

from two at the beginning to twelve at the twelfth step \where converg~ncy 
J 0 l ' 

.became extremely slow due to se/vere Plastif;~on. The rest of the study 

was then carried out by strictly following the step by step procedure 

with a small incremental size. 
i 

~t i~ observed that both Ohtsubo's and 
"::;~"~-\ \ 

Marca1's inves~~gations terminated at an earlier stage comparlng ta the 

present study. 

Crisfield144 has rec~ntly used,a rectangular element wlth five 

degrees of freedom to solve the nonlinear plate problem. He considered 

only geometrical nonlinearity in this particular problem and compared his 

~esult against Levy's classical solution. The elastic part of the solution 

of the present study i s now added to thi s campa ri son and i s sho,wn in Fi 9s. 
J 

15 and 16. 1t can be seen that, de~pite the coarse mesh being used in 

the present study, stresses are still in fairly good agreement. 

'Since it is the total stress calculated by the present computer • 
program, the membrane and bending components are not explicitly Ifeparable 

after yielding. The post-yielding stresses are then presented in an 

alternate form as shown in Fig. 17 which sho~s t,he progression of plastifi­

cation in the plate. 1t;s clearly seen that yie1ding initiated along 

! ... - • 
21 4 $%1 
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the diagonal of the plate which is in Q,9reemenCwlth 11 ne theory. 

However, due to the restraint along the edges of the Wh1 ch causes 

membrane stretching. the yielding zone, ocalL~ed along 

the diagonal and through the thickness, er the whole 

plate in a manner similar to the one dlmension d beam presented 

of pa
4
/Et

4
= 123 

because the ~tored data (stresses, strains, displacements,' etc) were 

in Section IV.l. The test was terminated at a 

unfortunately destroyed due to a human error. Note in t~is test that 

• the in-plane unbalanced forces again increase at high load levels due to 

th~ building up of sizable membrane. stresses. It;s believed that a better 

predlction of the unbalanced forces which ~re used as correcting terms 
( 

in the incremental Jquilibrium equations, using the second arder self-
1 

correcting proced~rJ of Section IV. l, should be helpful if the continuatlon 

9f loading up to the plastification of the entire plate had been carried 

out. 
\1 

., 
IV.4 Simply Supported Rectangular Plates Beyond the Buckling Load . , 

Two rectangular plates of different aspeci ratios and different 

material properties were tested ;n this section. Again, the inttl~l 

imperfection is introducéd through the nodal coordinates using a sinusoidal 

curve. The plates are unifonnly compre'ssed in one direction by imposing 

specified di~Placements along the loaded edges . 

. 
IV.4.A Aspect Ratio (a/b) = O.87~Width-Thickness Ratio (bit) = 80, 

Elastic-Perfectly Plastic Material 

Even though the behaviQur of this plate, 22~.25 mm x 254 mm x ....... . 
1. , 

3.175 mm, is similar to that of the square1plate and the buckling fonn 
f 

1 

/; 
r l ' 
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\1 

involves only a single half wave, it was tested because a direct 

comparison with 'the results 'bY Crisfield 144 ,145 is possible. Crisfleld 

has used the Ilyushin yield criterion and a modifled Ilyu~hln criterlon 

to test this plate. He employed a rectangular element with flve degrees 

of freedom at each node .. 

A single half sine wave lS used ln both directlons for introducing 

an initial imperfection with a maximum amplitude of w = 0.001 b = 0.254 mm 
o 

at the center of the plate. It took ~ total of seven steps to reach the 

ultimate strength prior to enterlng the region of load shedding. Within 

each increment, two iterations were used in the elastlc range and three , 
to four iterations in the range of post-yielding. Figs. 18 and 19 show 

excellent agreement between the two investigations which is p~obably due 

to the fact that a similar ~ype of element was used in the two investlga-

ti ons. 
~l 

is .. also 

Moxham's '~ô'nfintte-element analysis, referred to by Crisfield, 

reproduced from Crisfield's report144 ,145 in" Figs. 18 and 19. 
1 ..1;. '- )' .. '"" ..... ~ 

Crisfield has also provided'information on his co~puting time. T 

The computing times for the present study are added to Crisfield's in 

Table 2 as additional information. It should be noted that the computing 

times Sho~ld not be compared dir~ctly because they depend on the computér 

model being used. Further, Crisfield used the Modified Newton-Raphson 
, . 

solution procedure, whereas the present study employs the unmodlfied 
1'(, 

Newton-Raphson method. Hence, the number o'f iteration~'listed in Table 

2 should not be comp~red directly either. 
/ 

.. , 
• l . 1 

î 

1 
1 
\ 
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IV.4.B Aspect Ratio (a/b) = 3.7, Width-Thlckness~ .. atio (bit) = 49, ., 

Elastic-Li~ear Strain Hardening Material 
. ' 

Dwight and Ractliffel18 have conducted a series of experlmental 

tests on steel plates and aluminum al10y plates to investigate the u1tlmate 

strength of plates under uniaxia l compression. The~ have al 50 'Performed 

theoretical ca1culations to predict the plate\strengths.', T_heirtheoretlcal 

development (not a finite e1ement method) was based on the analysls of a 

quadrant of a square plate using a few assumptions. One of the assumptions 

is that the straio in the y-direction (i .e. the dlrection paral1e1 to that 

of the applied loads) varies only with x. The Tresca yield criterlon was 
/ 

employed. The plasticlty was checked at a,number of pOlnts around the edge 

and corrections were made on the basls of approprlately reduced stresses 

in the plastic zone~. 

Among the specimens tested by Dwight and Ractliffe, one was arbitrarlly 

chosen for re-an~lysls using the presently developed finite element program. 

The chosen specimen was a simply supported aluminum rectangu1ar plate 
;"'~,} ,.. .. :;:-:--3- . 41 

45.5" X "2.225" x 0.25" (115.5 cm x 31.0 cm x 0.635 cm). The stress-straln 

relation of the aluminum alloy la~ linearized to elastic-linear hardening 

according to Dwight and Ractliffe. l\ The initial imperfections were\ set in 

accordance with the formul a' Jx 

wo = ,0.03 t sin Cf) sin (aÎ*) 
, 

In this test the unloaded allowed to move in the plane 

of the plate but must remain straig t. This can usually be achieved by 

adding to the unloaded edge~ the ri id bar elements with two degrees of 
, 

freedom" (in-plane translation and r tation) at each node. In the presènt 

study. the in-pfane- rotatiph {ez} is a d.o.f. and can be restrained' 

~ 

J , 
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accc5rding1y. The restralnt of translation was imposed by adding a large 

value to the corresponding coeffici~nts of the stiffness matrix. Hence, . 
no additional e1ements were actually added. 

,,-
Flg.~20 shows the load-plate shortenlng response and the two 

1 

1 

~ investigations are in excellent agreement. Dwight and RactJiffe's 

_.----- ---uïeoret i ca l result and thelr experimental results on the same plate but 

of different width are reproduced in Fig. 21 to further demonstrate the 

agreement between the two investigations. Fi 9 ~ 22 shows the load-lateral 

deflection curves for the plate, whë~Nodes 9 and 25 are the locations 

of maXlmum magnitude of initial imperfection but ln Opposlte dlrections 

and Node 33 represents the éenter of the plate. Since only a 'quarter of 

the plate is analysed, the boundary conditions at the center of the plate 
o 

,,(i .e. Nodes 33 through 36) has been 'set' by restrawlng J:he longHudlnal 

~lop~ at the se nodes. This actually ruled out the possible anti-symmetrlc 

buckling modes. Fig.> 23 clarifies this point by showing that the plate 

does buckle into three symmetr~cal half waves even t~ough four half waves 

were initlally introduced,through initial imperfections. 
> " 

The maximum load obtained in the present 

compressive stress of 8.26 T/in2 (1300 kg(cm2). 

~'0 

test ls equal to an average 

BeYQnd that stres~, l1ïe 

tangent stiffness matrix was detected as non-positive-definite which 

implied'that the plate became unstab1e at a secondary point of bifurcation. 

This is also seen in \Fig. 22 which demonstrates that the 'Plate was 
cpt 

stiffening in the initial post-buckling rarige but the stiffness of the 

plate later gradually decreased. This post-initial-bucJding, stable, 
c 

oand rising equilibrium path is referred ta as the primary path and is 
o Q 

, 
finally discontinued at the secondary bifurcation which imp1ies either a 

... 

-

l , 
1 

1 
j 

o j . 
1 , 
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possible change in buck1jng ~attern'or a further instabi1ity phenomenon 

after ~he initial buck1ing. The post-branching behaviour is very 

comp1icated and has not been fully understood so far., Studies have been 

~ conductetl by severa1 r;se"arCher~JÛ133 ,258 ,259 ;n genera1 terms using the 
\ 

s~r~ctura1 mode1 with two ~egrees of freedom to investigate the, existence 

and the stabi1ity of the secondary equi1ibr1um path which represents a 

, h"fuher buck1 i ng mode t and the coup 1 i ng equ i Hbri um path Whl ch branches 

from the pr1mary path into a secondary path. Such coup1ing occurs in 

specifie ways depending on the propert1es of the syste.m.,bou'tldary conditions 

and method~f control on app1ied 10ads. It lS a1so imperfection sensitive. 

These properties are reflected in the topo1ogy and in the stabi1ity of 

the ~oupling paths. Stable coup1ing pa}hs ensure a gradual statica1 , " 

transition between buckling modes whi1e on unstab1e paths this transition 
-

iS d'ynam.Ïc (e.g. snap through). 
'1 1 

This comp1icated mode coup1ing and bifurcations fram the primary 

paths reqûi re somewhat more refi ned v post-criti cal load anal ys i s than t,hose 

which can be simulated usinra single ,degree of freedom. lt requires 

essentially an eigenvalue ~n~YSiSù and an investigation of the possible ~ 
'1 ' • 

existance of a coupling path to connect the buck1ing modes. If such a 
1 
\ . 

transition curve exists and if the plate iS compressed by controlled ,', 
" 

10ading, the transition curve ;s unstable and the secondary buck1ing is 

of the snap through type. This is achieved in finite e1ement ana1ysis 

by adding load1 increment~l1y above the bifur~ation 10ad and app1ying a 
l.... 

~eWton iterati9G: ateach 10ad 1èvel. T~e iteration eventua11y will 
"', ~~ 

... r-

conve~ge to the ~econdary p~th when, the load is increased above snap~o 
If " 

throùgh load. '-On the other hand, i.f the plate is compr~ssed by cont,rolled 
" 

, , ' 

j , 
1 , 
1 
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, 
/ . 

shortening, the transitioQ curve is stable and i~dicates a gradua1 

but rapid'dr6p in loading before the stable and rising secondary 

path is r~ached. In this case the imperfection perturbation technique 

should be introduced in order to get the plate into the transition 

statec

• 

In any case, the analysis after the secondary bifurcation 1S 

considered to be· a pure1y academic exercise. The post-secondary-buck1ing 

streng~h can on1y be obtain~d through adynamie disturbance or through 

a period of load shedding which is not acceptable for a practical ~ 

structural member. In fact, t~e ex\eriments (e.g. Fig. 20) would not 

show a higher" buckling mode un1ess artificia1 restraints were introduced. 

Furthermore, there'is a1ways a possibi1ity that the secondary bifurcation 
" , 

may indicate the total instability of ,the system and imply that no 

coupling path is avai1ab1e to 1ink the primary pa th to the secondary 
... c 4 -

path. Hence, the peak load,of 8.26 T/in2 (1300 kg/cm2) is Justifiab1y 

considered to be the ultimate strength of the plate. At this ultimate 

load, yielding has ~een dJtected at a iew integrating points on the 
1 

surface of the plate. This indicates that the plate is approaching its 

ultimate strength due ,to yielding in any case. 

IV.5 Discussion 
.A< 

Mi sce 11 aneous items, wh ich 'were encountered duri ng the cour,se-

of testing specifie examples and are general to all proble~, are , 
"" 

discussed under this section. 



1 , .. 

( 

( 

-103-

The merit of successive runhins of a problem 

It is not recommended that a problem be completed ln one computer 

run. Us i ng the present computer prog ram. success l ve runnl ng of one 

problem is possible and the resulting displacements. stresses, and strains 

are stored: This is prèfe~red because it permits the user to have better 

control of the problem. The ,user caIn examine the results at an ea rl i,er 

stage of the analysis and can either terminate and restart the solution 

or make the necessary corrections if mi stakes have been detected. ln ~ 

this way. he can take a close look at the results as well as study the 

progress of the analysis. Results which are unsatisfactory, cart be 

disregarded and re-run at the extra expense of that particular step only. 

The number of steps, step size, and maXlmum allowable number of iterations 

ar,e all left as input data for each run and hence i~ is very convenient 

and flexible for the user. 
'1 

Choice of step s ize ' 
~\ ( 

" 
Step size" is not necessarily kept the. same throughout the 'analysis 

of a rOblem. Numerous simple agorithms can be incorporated into the \ 

computer program which chang~ the step size automatically. For example, 1 

a criterion of tolerance can be set and the step size increased or 

decreased in accordance with a comparison of errors in the results against 
,~~ 

the al~owable tolerance. A simple scheme is used in the present computer 

program such that the step size is automatically doubled when the error 

-becomes less than ten per cent of the allowable talerance and the step size 

is reduced ta half when the error becomes greater than five times of thr 

~ 
,1 , . 
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allowable tolerance. If the err.or becomes ten times greater than the 

allowable tolerance, the computatlon is termlnated for investigatlon 

before further continuation to the next load step. Besldes, the crlterion 

of t01erance is problem dependent an~ a different user may prefer a 

different accurqcy. Hence, the value of the tolerante 1S treated as 
" 

input data rather than a fixed value within the computer program. 

Maximum economy of compùting time is obtalned, particularly > 

in the elastlc range, by keeping the step s,ize as large as possible and 

having the required accuracy achieve9 with iterations. In other words, 

the Newton-Raphson method is more economical than the step by step method. 

Of course, the step s~ze 'is also subject to certain limltations which ' 

de pend on the lt;pe of probl em bei ng anaîyzed. 1 n genera l, the s tep si ze 

should be kept sma 11 a t the i nit i al step and in the vicinity of a buckling 

l oad. However, it can be large"in the pre- ànd post-buckling range where , 

the structure is stable. The step size should gr~dua1ly be\reduced ta a 
• / 1 

small value after the member starts to yield.,t6 comply with the concept 

of the fllow theory of plasticity' and to cope with the slower convergence. 
r ______ \ r .'\ 

Choice of'single or double precision . ( / 
' .... _. ,ô 

Doubl~ precision is used in the present computer program (half 

word for integers). Single precision was attempted, which gave good 

accuracy for displacements but not for stresses. and was therefore 

jiban'doned. This further confirmed the concluslOn previously reported, 
- -

by Melosh257 . The Modified Sholesky Decomposition method was adopted 

for solving the equilibrium e1quations, which should have improved the 

accuracy of the results. However, it was still not adequate to warrant 

the use of single precision in the present study. 

, 

"'a, : 
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Interpretat i on of accuracy of results (convergence) 

The Euclidean norm, defined by 

" 

in which {A} stands either for the iterative dlsplacement changes, the 

total displacements, the unbalanced resldual forces" or the total applied 

loads, is used as j.l basis for 'determining convergence in the present computer 

program. The. errors are defined as the ratio of the Eucl idean norm of 

the iterative displacement changes to the Euclldean norm of the total 

displacements, and as the ratio of the Euclidean norm of the unbalanced 

residual forces ta the Euclidean noY1Jl of the total applied loads . .The 
\ 

allowable toler~ce for the error is usually set at one percent. When 

the plate is well into the plastic range and the solution procedure is 

performed us i,ng the incrementa l method wi thout iteratl ons, the error i s 

evaluated only in terms of unbalanced residual forces and an error of flve 

percent is generally considered tolerable. 

In general, it is found that, in the pr~-buckling range, errors 

calculated from unbalanced residual forces may be small while those from 

displacements are considerably larger. Hence, displacements lnstead of 
i' 

residual forces should be used for interpretation of accuracy. On the 

other hand, in the post-yielding range the opposite is true mainly because 

of the smaller step,size being employed. In the range between post­

buckling and pre-yielding, errors calculated in both displacements and 

residual forces respond very well and hence either one is reliablé and can 

be used. In conclusion, the consistent use of only one parameter, displace-

ment or residual force, ta interpret the accuracy of results may be 

misleading in sorne range of the analysis.' Of course, the best accuracy 

, 
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can be obtained by having the error ca1culated from bath parameters and 

have both tolerance allowances satisfied simu1taneous1y. Apparent1y 

this will be compensated by higher computing costs and may not be worth­

while. Probablya good practice is to use the most re1iable parameter 
( 

for calcu1ation of the error in the corresponding region and sWltch the 

" tenm motivationa11y as l~'necessary during the course of analysis. This 

can be done very easily when the problem is analyzed successive1y. 

I{~~OUld be noted that the above discussion of errors and co~vergence 
~ 

is subje~t to the i~portant questlon of the re1iability of uSlng the 
57 unbalanced residual forces to estimate the accuracy of the retults . 

Many investigators suggest that this residual check is unrellable. It 
r' 

is well :Iknown that to solve a set of simultaneous algebraic equations 

~riCallY, it is possible for an entirely erroneous solution ta have 

a very small resi~al and it is possible for the-fuore exact of tw~ 

approxima~e solutions to have the 1arger residual particufarly when the 

equations are not well conditioned260 . Similarily, in finite e1em~nt 

analysis, a satisfactory residua1 check may be obtained wit~ stresses that 
~; l ,'y 

214 -
are considerably in error or vice versa . For example, 1 if a support 

\ 
reaction R,. is computed by sUlTJTling k .. q., it 

; lJ J 
may be nearly exact but 

displacements qj may have appreciable error. If Ri is computed from 

element stresses, it is conceivable that stresses may be satisfactory 

whl1e Ri is erroneous, since stresses at the element corners are less 

reliable than elsewhere. 

Furthermore, the in-plane forces, ttansverse forces and moments 

------may all be of different arder. A beam or a plate which is laterally 

loaded and is restrained from mavement in its own plane is a good example 

--------,,- .. _~-_ .. 

. , 
,-
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to demonstrate this point. Consider the beam case which was tested in 

Section IV.l, where the iï-Plane forces were quickly built' up and 

remained high in the plastic range. We mai plck any node and evaluate 

the in-plane force at th~t node. Since t~ere is no applied external 

fo~ce in the longitudinal direction, the tw~ values of in-plane force 

computed from the stresses in adjacent eleMents on either side of the 

node should be equal and of opposite. slgn if the equilibrium condition is 

to be exact1y satisfied. If not, thé difference of the two values 1S 
o 

the unbalanced residual force-in that direction. This residual force 
\ 

is very small compared to the in-plane force but may be big when compared 

\to the transverse incremental loading or the residual forces in other 

directions. The situation now\arises that the'Euclidean norm of the 
1 

residual forces is contributed to mostly by residual forces in the 

. longitudinal direction while the Euc1idean norm of the total applied load 

is entirely due to the transverse loading. The two are nelther in the 

same direction nor are the forces in the two directions of the same order. 

Hence, in this case, to use the ratio of the two Euclidean norms to measure 

the accuracy of the results may be erroneous. Consequently, some 

investigators simply use displacements to deter~ine the conve'rgen~e:- This 

may be adequate for a non-l}near elastic analysis but it is doubtful that 
... 

checking on displacements alone will fully reflect the accuracy of stresses 

when material nonlinearity is involved. It is felt that the unbala'nced 

residual forces are still worth checking as long as it is handled with 

caution. This is the reason for checking both displacer1tents and residuaf 

forces in the present study. 

1 
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It is worthwhile repeating that problems of convergence have 

been reported by several investigators when the Newton-Raphson procedure 

is used well into the plastic range. The present study also experienced 

slower convergence in the post-yielding stage along with the progression 

of plastification and the Newton-Raphson procedure was finally replaced 
\ 

by an incremental procedure not only because of slower convergence but 

also for reasons of economy.' Stricklin et a1 202 pointed out that since all 

the convergence proofs for the Newton-Raphson procedure assume a continuous 

first derivatjve, the stiffness matri~ which takes account of plasticity, 

[KP], can have discrete discontinuities when unloading occurs, hence tt 

can destroy any assurance of convergence when there is a possibility of 

elastic unloading. Furthermore, under such conditions, there is no unique 

solution for the defl~ctions. On the other, hand, Davis et a1 263 stressed 

the importance of studying the sign of the rate of plastic work and making 

the necessary modifications to maintain a positive rate Of work in all 

plastic areas. A negative rate of plastic work implies a physically 

imposslblecsituation and should be removed by assuming that the plastic 

elements are elastic (elastic unloading). It;5 felt that information 
\ 

is limited and further investigation of methods for ~mproving convergence' 

in the plastic range is required. 

1; Prediction of computinQ cost and behaviour of member 

"1 

In addition to the method of analysis and efficiency in programming. 

it is clear that the cost of computing time is also highly dependent upon 

the type of problem and the member geometry. For example. compare a 
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<:) 

\ 

latera'l1y loaded beam or pilate where edges are free to move ln the plane 

of the member to the case where edges are restrained. The former wlll 

reach its ~ltimate strength shortly after its initial ylelding and o~ly 

a small portion of the member will have yielded while the rest of the 
1 

member remains elastic~ However, the latter case will not reach its 

ultimate strength until the whole member has Yielded. Apparently the 

latter is more costly than the former. 

1 Consider the classlcal problem of the uniformly compressed, simply 

supported square or rectangular plate as th~ second example. A plate 

with a high width-thickness ratio (thinner plate) will cost much more than 

the same plate wit~ a lower width-thickness ratio (thicker plate). ThlS 

is because the thinner plate has a smaller buckling load but a greater 

post-buckling strength. Hence most of the analysis is in the post-buckling 

range where nonlinearity is severe. Ultimate strength lS not immediately 

reached after initial yielding but only after a significant range of gradual 

reduction in member stiffness. Even the load shedding part of the analysis 

performs in the same manner of slow and gradual decreasing. This implies 
, 

that a smaller step size and more iterations are required and hence 
~ 

results in higher computing costs. On the other hand, the thicker plate 

has a greater buck l1ng load and a shorter post-buckl i ng range. Ultim}\e 

strength is reached very quickly after initiql yielding and abrupt load 

shedding immediately follows~ 

8ased on these consideratiohs, an approximate prediction of 

computing costs and the behaviour of the plate may be attainable in advance. 

! 

J 
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CHAPTER V 

APPLICATIONS TO THIN-WALLED SECTIONS 

\\ 

It is to be noted that a 3 x,3 Gaussian point integrating 

scheme over the element surface and 9 layets through the element 

thickness a~used for all the problems treated in this Chapter. 

V.l A Cruclform Section Under Uniform Compression, Elastic-Nonlinear 

Strain Hardening Materia1 

Similar to conventional hot rolled members. it is not uncommon 

for a thin-wal1ed section to have an unstiffened flange which is 

supported by the web plate along .one longitudinal edge wlth the other 

longitudinal edge free of support. Ta represent such an unstiffened 

f1ange,'Stowel1 106 chose a cruciform section loaded axially (Fig. 24). 
,. 

The dimensions were chosen in such a way that the individual flanges 

will buckle well befor~ the Euler load for the entire column is reached. '. 

The column thus undergoes a torsiona1 m~de Of.buc~ling as the middle 

cross-section rotates about the longitudinal axis with respect to the 

end cross-sections which are restrained from moving i~ their own planes. 
, . 106 
Stowell has investigated severa1 sections with different 

dimensions and the results were presented in a form of axial shortening 

ts maximum rotati~n except for one section whose rJsults were presented in 
- Q , 

terms of stress distribution and strain distribution. The latter section 
Q 

was chosen for the present study using the finite element method. The reason 
, ' 

for this cRoice was because in using the finite element disp1acement method, ... 
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a comparison of the two tests in terms of deformdtions might result 

in very good agreement while the comparlson in terms of stresse~ may 

be substantially less so. By comparing stress~s, the maXlmum d1fference 

between the present investigation and that of Stowel·l could then be ,~( 

obtained. It may be noted that Stowell used the deformation theory of 

plasticity, whereas the present study employs the flow theory. Hence 

the two are quite different. 

Due to symmetry about the two axes, each flange of the cruclform 

section defârms identically. Mathematically, the problem is thus reduced 

to two dtmensions as a single flange could be lso1ated and analysed. 

Further advantage of symmetry on a flange can be taken and hence only 

half o~ a single flange was actually investigated. The half flange is 
1 

idealized by a mesh with 8 (rows) x 3 (columns) (Fig. 24). Actuallya 
-mesh of 8 x 2 will giNe a better aspect ratio (i .e. the ratio lS closer 

to on~) for each element. However, it was ~elt that a minimum of three 

elements across the width of the flange was necessary in order to faith­

fully describe the stress and strain distribution patterns. The ~esh 

8 x 3 was therefore chosen with the understanding that the accuracy may 

possibly be reduced due to higher aspect ratio in the elements. 

The material for the section was aluminum alloy 24S-T4 whose 

stress-strain relation. which was used in the present study, is shown 

in Fig. 25. This stress-strain cu~ve is expressed by a nonlinear formula 
'>~ 

4,sing Eq. 3.58. Initial imperfec,tions were introduced by applyirrg a 

unifonn lateral pressure of 0.03 psi (0.002 kg/cm2). Hi'e column was 

compressed by controlled axial displacement,: 

l>~'U ~"'~/~~-#<' ~ 

.' 
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-, The load-defonnation relations or the crucifonn section are 

shown in Figs. 26 and ~7,' resented 1 n these fonns by 
, 

Stowell for direct cOOlparison. "Fig. 26 demon trates the relation between 

the axial stress and axial elongation whi h indlcates the sluggish 

response in the ultimate load region a pronounced load shedding 

was obtai~ed. It 1 s i nterestiIlg to no 

occurs ln the case of axially ci cular cylinders as shown 

in Ref. 175 where a dHferént nt scheme was used and the 

nonlinear hardening was incorporate s g the Ramberg-Osgood equation 

(Eq., 3.57). 1 n resents the maximum rotation 

which occurs at 
l 

of the column. The axial straln 

at torsional buckling, according to St~well's theoretlcal fannula, \~' ~ 
( 

equal to 2 x 10-3 and is in, excellent agreement wlth the present investi~~/ 

gation. The present result is slightly lower due to lntroducing the 

initial imperfection. 

Fi g. 28 compares the axi al strai n and axi al s tress\\ d i stri buti ons 

trom the two inyestigations. Stowell did not specify on which cross-
j 

section the strain and stress distributions were plotted. However, he 

mentioned that these distributions hold over the greater part of the 

flange where bending is negligible. The 'distributions of the present 

study are the resu1ts from a cross-section passing through the centroid 
" ' 

of Elements 13, 14 and 15 (fig. 24) which are sorne distance from the end 

and from the center of the flange. Hence, it represents the greater part 

of the fiange. It is seen (Fig. 28.b) that, even though the maximum 

average stresses from the two, investigations are close (32.4 ksi in the 
, J • ~ 

j 
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'. 
present study and 32.1 ksi by Stowe.n ), the di fference betwe.en the 

1 \ 

, \ 

two distributions becomes greater when the stress level increases. \ 
o \ 

Compared to Stowe11 's, the stress in the present study grows faster \\ 
\ 

near the supported edge while, at the same tlme, it p1so drops faster \ 
, 

near the free edge. The resu1t is that the increased amount of stress 
i -- \ 

is cance11ed by the decreased amount of stress thus exp1ainlng why 
) \ 

the average stresses, which integrate to give the magnitud~ of the 
\' ~ 

applied axial load, remains close. Fig. 28.a shows a substlantia1 
\ , 

\ 

difference between the two strain distributions. This is easl1y exp1ained 

by noting that when the materia1 has Yle1ded, the stress-strâln curve 

is quick1y f1attened out (Fig. 25), hence~ a sma11 differenc~ ln 
1 
1 

stress may give a significant differencein strain. 

V.2 A Short Square Tube Column, E1astic-Perfect1y Plastic Mlterial 

A square or rectangular tube co1umn has genera11y been treated 
, 

by considering each of its plate components as a slmply supported reçtangular 

plate under compression. Previous tests indlcated (Fig. 34) that, when 

express~d in a non-dimens i ona ~ form, the s'trength of a sqJe tube i s 

close to that of a rectangu1ar plate wlth un10aded edges supported in V 

grooves. Graves-Smith l19 has studied bath short and long rectangular 
-

tube co1umns with rigorous mathematical ana1ysis. The main thrust o~ 

his work invo1ved the application of a variational principle and p1asticity, 
159 and solving the Von Karman equations for the plate. Recent research 0 

\ on rectangu1ar or square tube columns has applied the effective width 

concept to take into account the nonlinear effects due to 10ca11y buck1ed 

---
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plate components. In this section, a square tube column is analysed 

using an alternative approach, namely the finlte element method. 

Slnce the analysis of the uniformly compressed; slmply suppo,ted 

rectangular plate has already been demonstrated in the previous chapter, 
. 

the whole section of the tube will be analysed to take full account of 

the possible interaction between plate~components. 'The material properties 
. , 

and the dij;)lensions of the tube are chosen in accordance wi th Gravl!s-Smith 1 s 

so that a direct comparison of the two investigations is posslble. Due 

to symmetries, only one-eight~ of the tube is analysed and lts idealization 

is shown in Fig. 29. At the initial step, a lateral load of four pounds 

was applied on those nodes that layon the center line (in the longitudinal 

direction) of each plate component. The lateral loads were applled in 

the opposite direction at each alternate node so that a wave-form f9r the 

initlal imperfec~i9n is generated. Thé maxi~um magnltud; so generated 

was found to be equal ta O.OOla, where "ail is the width of the tube. The 

tu~e was compressed by controlled end displacef!1ents. ~ 

Fig. 30' shows the response in terms of average axial, stress vs. . . \ 
axial shortening and Fig. 31 in terms o~. axia) '"stt~ss vs. ou~ of plane 

deflection. Both curves indicate excellent agreement with the results 

of Graves-Smith except that the ultimate "strength 01: the present investi-
, 0 

g~tion is slight1y lower., Fi,g. 32 shows the grQwth of the buckling form 

of each plate component and is rather straightforward. Fig. 33 snows 

the yielded zones at ultimate load ~nd demon~trates clearly that the tube 
, > 

fails once its edge' has fully yielded .. It should be noted that, alç>ng 

the 1 o"ng ; tu d ; na 1 cen t elr 1 ; ne of ea ch pla teiomponen t. t hose a reas bei ng 

" .; 
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denoted as partially yielded have only ylelded very slightly at the 
() 

surface of the plate due to bending. This point can be easily seen 

by studying both Fig. 32 and fig. 33 which indicate that the yielded 

areas adjacent to the longitudinal center line always ~orrespond to 

the locations of maximum out~of;plane deflections.' This surface yielding 
't 

due to bending has ~ot yet been reached for the region close to the 
t' . 

midQJe of the colurim where the curvature at maximum deflëction is smaller 

than at other locations (Fig. 32). 

A ~ummary'of previous work on simply suppQrted plates and square 

tubes under c,preSSi?n, which is available from Refs. 107,111,119, 

1S reproduced in Fig. 34 on a log-log .scale. The present study, using 
, 

, finite eleme~tsJ which include four problems of square or rectang~lar 

plates i~ Chapte! IV and the square tub~ in 

this figure for comparison. tf we con~lder 

~ 

this Section, were added to 

the Mayers-Budians~y's 107 

curve where the unloaded edges were kept straight for an extreme upper 

limit, and the experiment~l curve for V-groove plates which had the 
, '--, ~ 

un19aded edges neither restrained from mavement in its own plane nor 
o 

fully restraî'ned in the transverse direcqon as a lower limit~ if;s 0 

1 

found that the present sUftty (denoted by points A, Band C)· which ~ave 
the unloaded edges fr~~ ta move in their own planes b~t rest~ained in the 

, 

transverse directions indeed fall between the two extremes.. The present 
v 

investigation'of a rectangular plate with the unloaded edge kept straigkt 
, 

(denoted by point 0) has a strength slightly higher than'Mayers-BudianSkY'~\ 
' ' \ 

but in very good agreement. It should be g~ted ~hat ,the the~rY,of Mayers-

Budiansky was uQable to'describe the region of load shedding. Thus the 
, 0 

o 
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average compressive stress at a 'strain of 0,,01 was ta ken as an indication 

of fai1ure. Compared to Graves-S~ith's result,the strength of a square 

tube éolumn in the current study" (denoted by pojnt E) 1S in closer agreement 

to previous experiments. 

V.3 Hat Sections Under Compression, Elastic-Linear' Strain Hardening 
" 

Material 

In this section, <the assumption o'f a 1inear strainlhardening 

type of materia1 is assumed for two three dimensiona1 thin-wal1ed members. 

Two hat sections under compression were Chose'n f~r ~he test.lIn the 

first case. the co1umn was 10aded concentricallly and a high value of 

linear hardening with a 'tangent modulus equal to 15% of its Young's 

modulus was used. In the second case, the column was 10aded eccentrically 

and a low value of linear hardening with a tangent modulus equal to 1.5% 

of its Young's modulu~ is assumed. A11 the data including member 

dimensions and, finite element idealizations are, shown in Fig. 35. 

In Figs. 36 and 39, the response of the two columns are plotted 

in terms of axial 'stress vs. axial shortening. In the first case (Fig. 

36), it is seen that, even though t~e stiffness of the column is grèatly 

o decreased after yielding, the assumed high strain hardening character 

is adequate to provide sufficient stiffness to carry higher loads a1though 

at a greater rate of defonnation. Since .constant linear hardening ies 

assumed'to last indefinite1y in this stüdy, t~e computation is terminated 

at a load of 16.0 kips (7.257 kg ) which gives an average axial stress 

of 25.9'ksi (1.821 kg/cm2) and is close enough to the yield stress of 
'1 

the material .(26.0 ksi). Thi s l oad-defonnati on curve' can be fowered if 
~ 0 

a tri-linear stress-strain r-elation were assumed by adding a third section 

_ "-"'T":-.. 
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-ho straight line representing zero straln hardening (a hOrlzontal line) 

to halt the growth of strain hardening. In the second case (Fig. 39) 

where the assumed lower va l ue of tangent modu lus represents the \amount 

of stain hardening usuavty possessed\by the common aluminum alloys, the 

eurve eventua11y f1att~ns out at an u1timate load of 14.4 kips (6,531.7 

kg ) eve'n though it does not show load shedding a? it did in several' 

previous investigations with perfect plastic material. 

In Figs. 37 and 40, the profiles of lateral deflection along the 

longitudinal center line of the flange which is also the center line 

of the column 'are presented for both cases. The loads which cause local 

buckling in the flange are respectively 9.2 kips (4,173 kg ) and 9.9 kips 
o 

(4,490 kg). The familar buckling pattern in wave-like forms are clearly . . 
deve~oped. A clOSè look at the last d~flection profile corresponding 

) to the highest load level in these two figures indicates that overall 

column buckling has also been initiated. The column in the second case 

buckles in the opposite direction with respect to the column buckling of 

the first case and ';s due t'a the eccentricity of the applied load . 
• ,l 

Figs. 38 and' 41 show the yielded areas on the members at the 

highest load levels. Plastification is seen to be widely sp'read and is 
() 

extremely severe for the f)rst case (Fig. 38). The column being able to 

. sustain such heavy yielding is due to the aforementioned reason for high 

'values of strain hardening. Note that th~ half inch wide lips play an 

ilJlPorta~t rol'e i~:,~tiffening th~ member. This is seen by noting that the 

\ 

-\ 

1 

web and the lip are heavily yielded when compared to the flange. 

particularly to its center portion. 
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V.4 Short Span Hat~Section Beams Under Local loads on the Webs, Elàstic-

Li near Strain Hardeni n9 Mater; al'" 

Local loads on webs is a common problem in the design of light 

gauge metal products. A theoretical analysis of this problem is extremely 

complex since it involves a combination of non-uniform stress distribution, 

elastic and plastic instabllity, local ylelding in the immediate region 

of load application, and, furthermore, the bendlng produced byeccentric , 

application of the load caused by the curved transition from the web to the 

bearing -flange. In view of this analytlcal compleXlty, the codes 1,4 rely 
:..1 

almost exclusively on experimental evitience. The purpose of the present 
1 

1 

study is ta demonstrate the capability of using the finite element method 

to perform a theoretical analysis on such a èomplicated phenomenon: The 

failure due ta web crippling is investigated and the results are examined 

in,the light of the current côdes on light gauge products 3 and compared 
. 

against the prey; DUS 'experimenta 1 tests. 

Previous experimental tests on short span, thin-walled alumlnum 

beams were reported in Ref. 261 and 262. Two specimens, one ~ith vlrtical 

webs and one with sloped webs, were chosen for the present theoretical 

analysis. The dimensions of the two beams are shawn in Figs. 42 and 52. 

The material was aluminum alloy ALCAN 57S-H34, whereas the yield stresses 

cited for the two previous tests were different. The one in Ref. 262 is 

herein employed. The strain-harden1ng, which was not reported previously 

is also considered by assuming a linear v~riation. 

According to Ref. 262, the beams were freely placed on 3/4 ln 

(1.91 cm) wide steel bearing plates at each end, which left the beams 

with a clear span of 9.25 in (23.5 cm). The beams were loaded through 

\ . 
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a 1.5 in (3.81 cm) wide, x O'l5 ln. (0.635 cm) thlck steel bar at the 

center. Laterally (horlzontally), in order to simulate the effects of 

adjacent materlal extending in bath directions as would be the case for 

a metal roof deck, a steel angle was placed against each outstandlng 

lip. The steel angles were fixed to prevent the lips from moving 

laterally outward. However, no means was used to prevent them from 

moving inward. 

Results of the present study for the two seëtions are now discussed 

separately. 

V.4.A Hat-Section with Vertical. Webs 

Considering the symmetry in both directions:" only one quarter 

of the beam was analyzed. The finite element idealization is shown 

in Fig. 42. In order to take into account the radiused bends between the 

webs and the flanges, a longitudinal row of elements was introduced at the 

web-flange junction. It was understood that this row of elements, with 

their smaller size and ~igher aspect ratio compared with adjacent rows 

of elements, might reduce the accuracy of the results. To improve ~his 

situation, the mesh could have been refined. This was not done after 

considering the substantial increase in computing costs that wauld result. 

The beam was restrained vertically at Nades 55 and 63 and laterally along 

the bottom flange-lip junctipns (i.e. Nodes 57-64). The load WqS applied 

at Nodes 17, 18 and 19. 
\\ 
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The tlef1ections in the direction nomal to their"plate elements 

at the center of the beam are plotted against the load in'Fig. 43. This 

means that the curves for those nodes in the f1anges (Nodes 1, 17 and 49) 

are vertical def1ections whi le those for nodes in the web (Nodes 33 and 41) 

are latera1 (horizontal) deflections. The curve for the dJflection at 

the center (Node 1) does not indicate any clear lpca1 buck11ng phenomenon 

at ~he top f1ange. However, it does indicate that the top flange was 

initial1y stiffening due to the effect of the large deflection and that 

the stiffness, after a load level of approximately 550 lb (249.5 kg ), 

gradua11y decreased due to the influence of p1astification in nearby 

regions. The decrease in stiffness was exhibited even more strong1y on 

t~e deflection curve for Node 17 where the stiffness started to decrease 
1 • ~ 

due to the yielding of the material at a load level of approximately 500 

lb (226.8 kg) anq the rate of decrease was faster than that of Node 1. 

This obviously demonstrates the phenomenon of local crushing in the region 
( 

of Node 17 which is direct1y under the applied load. It seems that the 

center and lower_portion of the web, which is represented by the deflection 

curves for Nades 33, 41 and 49, has not been aff~ed by local plastifica­

tian in the flange-web junction and re~ains stiffening. The vertical 
\ ' 

def1ection of Nodes 1 and 17 of the experimental test reported in Ref. 
~\ 

262 is reproduced in Fig. 43 for ~,mparison. It may be seen that there 

is a substantial discrepancy between the experimental and theoretical 

investigations. This point will be discussed at the~end of this section. 

Similàrîy~ the def1ections for those nodes at the end of the beam 

are also plotted against the load in Fig. 44. This figure exhibits 

the interesting phenomenon of reversing the buckling form in both flange 

\ 
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, , 

and web. The change of bUC~ 
1 

form was initiated at the top flange 

at a load level of 250 'lb (113.4 kg) and was later followed by the 

web at 500 lb (226.8 kg). After the reversal of the buckling form, 

the deflections at bath flange and web increased very quickly. This 

implied that the st;;fness was di\miniShing rapidly at a higher load. 
, 

Figs. 45 and 46 show the subsequent distortion of the cross~section 
, j , 

at midspan and at the end of the beam. These d~stortions are of the 

same form as those ?bserved in the experimenta1 test262 . Fig. 46 clear1y 

demonstrates the aforementioned tapid growth of deflection at the end 

of the beam at higher loads. Figs. 47 and 48 show the longitudinal 

profilfs of the vertical deflection along the center of the top flange 

and of lateral deflection along the center of the web, where the deflectian 

at the center of the web is obtained by averaging the deflection along 

nodal lines 33-40 and 41-48. Both flgures exhibit the change of buckling 

form in the region near the end of the beam. 

A comparison of the lon~itudin~l strain on the interior face of 

the web between the theoretical and experimental investigations is presented 

in Fig. 49 at load levels of 200 lb (90.7 kg ) and 400 lb (181.4 kg ). 

For the 1xperimental test, strain gauges were placed at 0.25 in. (0.635 cm) 

from the midspan . In the present study, 'strai n was eva 1 uated through 

the center of the first transverse row of eleme~ts,o.1675 in froi midsp~n. 

The difference~n location for the measurement o~train is negligible 

and hence the strains can be compared directly. It is seen that the 

general form of strain distribu\;on for t~e <two investigations Ire similar 

a~d~he strains in the upper and lO\'1er portion of the .web are in fair 

agreement. However, the stra\ins at the <!enter' of the web, where the web 

deflection is a maximum, are significantly different. w 
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The initial yielding is detected in Element 15 'at a load as 

low as 340 lb (154.2 kg). The analysis is terminated at a load of 

790 lb ~358.3 kg ) which is believed to be well after local crushing 

of the web. Between the initial yielding and final termination, the 

yielding area in the region directly under the applied load is shown 

at four different load 1evels in Fig. 50 ta demonstrate the progression 

of p1astification. 
- \ ' 

It had already been observed in Ref. 261 during the previous 
" , 

experimenta1 tests that the local deformation and yie1ding proceeded 

with increaslng load, but the maximum load representing the longitudinal 

bending strength was only reached well after conspicuous local crushing 

had taken place. This behaviour rfised the problem of defining failure. 

Consequent1y, each test was judged individua11y upon tbe degree of 

damage which represented failure being a severe permanent indentation 

in the specimen. It was pointed out that the possible variation in load 

which cou1d be obtained by varying the opinion of severe damage might 

have been as high as fifteen percent. The same problem of defining failure 

is encountered in the present theoretical analysis. Judging from the 

load-deflection curve, the distortion of the section and the yielding 
, \ 

l 

area, ,it 

~ study is 

is believed reasonab1e to say that the crushing load in the present 

somewhere between 600 lb (272 kg ) and 700 lb (317.5 kg ). 

\ The present Canadi4n code for the design of light gauge aluminum 
\ 

products (Clause 9.4 of CSA-S190-1968) controls local 10ads on webs by 

twa criteria: the load'which causes the elastic buckling of the web and 

the load 'which causes the yielding of the web due to direct bearing. 
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\ 
The4Faximum permi~sible 

two. Applying the c?de 

load for a member should be the lesser of these 

to the current hat-section beam, it is found that 

the maximum load is contrblled by web buckllng. After multlplying by 

a~safety factor of 2 as used in the ,code and assumlng that the web and 
" .. 

flange were connected perfectly without a curved transition area" this . ' 

failure load due tO,buckling is calculated to be 832 lb (377.4 kg ). 

If an inside radius of bend'equal to 1/8 in. is taken into account, the 

failure load is then reduced to 507 lb (230 kg ). 

For the previous experimental tests where the specimen had 1/8 in. 

radiused bends, the ultimate load reported in Ref. 262 wa~ 691 lb 

(313.4 kg ), and the failure load due to local crushing reported in Ref. 

261 was 740 l~ (335.7 kg). Note the yield stress of the specimen in 

Ref. 26r was reporte~ to be 37 ksi (2600 kg/cm2) which was higher than the 

yield stress of 29 ksi (2024 kg/cm2) used in the present study. Reducing 

the load in accordance with the ratio of the two yield stresses, the .... ;;- \ 
approximate crushing load would then become 580 lb (263.1 kg ). 

In Ref. 261, Marsh also suggested a semi-empirica1 formula to 

predict the failure load due to local crushing. He used a simple idea1iza-

tion of à possible collapse mechanism for a point load to obtain a lower 

bound 'solution. Following this fonnula and after considering radiused 

bend,the failure load of the current beam appe~rs to be 425 lb (192.8 kg ) . 

. It is seen that the present prediction of failure load is higher 

than that of the previous test results. One of the most important reasons 
, , , 

1s obviously because the present study analysed an ideal, 'perfect member, 
1 " , 1 

whereas the real specimens were by QO means physically perfec~.\ The initial 

imperfection of the member affects it5 strength very 5ignif~cantly, an~ 
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will be further discussed later. Also, the prediction of failure load 

based on the current code and based on Marsh's formula are less than the 
o 

present one and hence are on the safe side. Whether these values are too 

conservative or not~ requires further investigation. As a flnal note, 

the experience gained through the present study supports a concluslon 
. 

drawn previously in Ref. 261 and 262 that a larger bend radius at the web 

flange junction does not reduce the member strength signlficantly. 
i 
Therefore. the current code which suggests a reduction of allowable load 

by 10 Rit per cent~ where R is the inside radius of the bend and t the 

wall t~ickness. is considered to be excessively conservative. 

Finally, the distribution of the longitudinal stress along the 

center line of the first transverse row of elements adjacent to the mid-
> .) 

span is plotted in Fig. 51. The ~tress is plotted at two different load 

levels. First, at a load of 340 lb (154.2 kg ) when the initial yielding 
" 

has just b~en detected and hence the beam basically is still elastic at 

this stage. Second, at a high load of 720 lb (326.6 kg ) when local 

crushing has been fully developed. At this loadflevel. in' additlon to 

the average stress through the wall thickness. the two extreme fiber 
\ 1 

\ 

stresses are also plotte9 to demonstrate theit substantial differences. 

These differences are due to the local deformation as well as to the 

effect from the transverse bending stress which causes local yielding. 

Note that the highest stress has already reached yield, which implies 

that yielding at the top flange due to longitudinal bending of the beam 

has already started. 

) 
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V.4.B ijat-Section with Sloping Webs 

\ The idealization is shown in Fig. 52. 

1 

Again, only a quarter 

~of the beam is analysed. 90% of the 10ad is applied to the ridge 

(Nodes 15 and 16) and 10% directly to the top flange (Nodes 8 and 9). 

The beam is vertically supported at Nodes 41 and 48, but for the lateral 

restraint, two different cases are initially investigated. In the first 

case, restraint is applied at the\\ bottom flange-l ip Junction (i .e;' Nades 

" 43-49) and in the second case at the bottom flange-web Junction (i.e. 

Nodes 36-42). No radiused bends are considered in thlS beam. 

Similar ta the previous problem, the deflections ln the normal .. 

direction are plotte,d against 10a9 in Fig. 53 for the midspan sectlon 

and end section. ~t is seen that, for the two different lateral restraint 
.;> 

conditions, t~e behaviours of the beam are almost ldentical. Consequently, 

the case with restraints along Nodes 36-42 is terminated at a 10id of 

420 lbs (190.5 k?S) and only the case with restraint along Nodes 43-49 is 

carried further. Nbte that the deflect10n curves for Nodes 28 and 35 

demonstrate clearly that the web at the end region of the bea~ bucklés. 

The deflection curves for Nades 1" 7, 22 and 29 become asymptotic when 

they are approaching the ultimate load of 890 lb (408.2 kg). This 

may be interpreted as,a failure of the flange and web due to local 

bending. Actual1y the deflection curve for Node 15 also becomes asymptotic. 

However, in this case it indicates a' failure due to loî'lgitudinal bending 

of the beam rather than a sign of local crushing as occurred in.the 

previous problem. All these indications of collapse should become clearer 

wh~n reference is made to Figs. 58 and 59. The vertical deflection at 

Node l fram the experimental test in Ref. 262 is also reproduced in the" 

\ 
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figure. This experimental curve was on1y/reported for th~ lower load region 

and hence a direct comparlson becomes rather difficult. However, Judglng 

by, the trend of the curvé, the difference between the two investlgatlons 

~s probab1y substantial. \ 

1 

Figs. 54 and 55 show the distortion of the section at·midspan and 

ât the end of the beam. Figs. 56 and 57 exhibit the longitudinal def1ectlon 

profile along the center of the top flange and a10ng the center of the web. 

Initial yielding was detected in Element l at a load of 530 lb 

(240.4 kg). The yieldtng area of the beam is shown in Flg. 58 at a load 

level of 730 lb (331.1 kg) and 890 lb (403.7 kg). It is seen that 

the plastificatidn in this case is quite different from that of the previous 
1 

beam with the vertical, webs. In this problem, the beam yie1ded malnlyat , 
the center portion of the top flange and web where a,maXlmum bendlng 

stress 1s reached due to the large local deformations for each plate 

component (see Fig. 54). Note that full yielding at the ridge as shown at 

a load of 890 lb (403.7 kg ) is actual1y due to the longitudinal bending 

of the beam as mentioned previously. This point is further clarified in 

Fig. 59 where both top and bottom fiber stress "are shown in compression 

and hàve reached yield. This suggests that local cruShing ~as not fully 

developed in this particular problem. Again, in Fig. 59, the distribution 

of longitudinal stress along the center 1ine of the first transverse row 

of elements is plotted at 530 lb (240.4 kg ), which r~presellts the highest 

load level when the beam was still elastic, and at 890 lb , the ult~mate 

load. The forms of distribution are similar to those of the previous 

problem. The substantial difference between the two extreme fibre stresses 
, . 

at lhe center of the top fl~nge and web is due to the large local deformation. 
L 
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Defining failure is rather eas,y for thiS.Jsectlon Slnce the oeam 

obviously failed by web buckling, which lS in agreement with the preVlOUS 

experimental observations reported in Ref. 261. Referrlng to the deflectlon 
\ 
\ curve for Nodes 28 and 35 as shown ln Flg. 53, lf the lnflection p01nt of 

the curve is chosen to represent the buckllng load, the failure Joad of 

the pre~ent study lS approximately 500' lbs (226.8 kgs). Accordlng to 

Clause 9.4 of CSA-S190-l968, the buckling load predicted by the code lS 

equal to 375 lb (170 kg ) which is qU1te conservative. The fallure loads 

reported from two previous tests are respectively 475 lb (215.5 kg ) and 

52,3 lb (237.3 kg ). 

For either the beam with vertical webs or that with sloplng webs, 

the comparison in terms of deflection and stra1n betweeh the present 

investigation and the test results reported in Ref. 262 lS not very 

satisfactory. A few of the more important factors as descrlbed ln Ref. 
) 

262 are summarized in the following to explain the reasons for such a 

di screpancr 

(1) The initial imperfections in the specimens were numerous. The 

imperfections were not only due to the initial crookedness of the 

aluminum sheet, but also due to sagging because of 1he high 

thinness ratio of the plate elements as well as due to inexact 

manbfacture in the dimensions and the radii of the bends. The 

effect due to imperfections was so great that, for the same two 

tests at the same location, the strain gauge readings for one 

test might be several times greater than the other test ev en 

with a reversed sign for certain cases. 

, 
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(2) The beam did not rest on the b~aring_plate evenly and did 

not really deform symmetrically. " 

, (3) Deflection at thé ridge was not measured directly but rather 

through the interpretation of measurements at other locations. 

(4) Lateral restraint using fixed steel angles only prevented the 

outstanding lip from moving outward but,not inward. Further, . 
rit 

it WdS not cle~r whether the upper or lower tlp of the IIp , 

was really against the steel angle. 0 This type of boundary 
J , 

condition c~nnot be exactly s;\ulated in a computer program. 

'On the other hand" the present study analysed an ideal and perfect 
1 \------- -~ ~ 

structural member and hence the initlal imperfections which'reduce the 
1 
1 

strength of the member significantly was not taken lnto account. 

Therefore, the current theoretical invest1gation always shows a stiffer 

member tnan the test ,specimen. 
q 

J 

V.~ Channel-Section Beam Subjected to Combined Bending and Torslon, 

c Elastic-perf~stlY Plastic Material 

Although studies of thin-walled open-section beams subjected to 

combined bending and torsion for the linear' elastic165 and nonlinear • 

elastic71 cases have p~eviously been attempted, studies considering 

material nonlinearity are lacking. In this section, a compr~te investi­

gation cons1dering both geometrical and material nonlinearities lS 

presented. 

An unl_ipped channel section (Fig. 60) was chosen for the -test. 

The load (P) was applied uniformly to the top,of the beam and in the 
[, 

plane of its web. It thus created"a uniform torque of T = Pe on the beam. 

J 

c 

" , 
-~ ... :-.t .. -

, 1 , 
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where e (.65 in) isthe distajce from the shiar center to the center 

line of t'he web. The material was assumed to be an a1um;)num a110y 

6061-T6\WhOSe ultimate stress is very close to its yield stress and 

hence strain hardening is neglecteç and its stress-strain re1atlon is 
. . 

simplified to elastic-perfectly plastic. The beam was simply supported 

but restrained from tw)sting at both ends (i .~. at Nodes 3, 4, 5 and 6). 

Due to symmetry, only ha1f span was ana1ysed. 
q 

The results are shown in Fig. ,61 in a relation between the 
&.,,, 

'" 

appJied load/torque and the angle of twist at the midspan cross-section. 
, ~ 

It was f'ound from computer,print out that the angle of twist at different 

, locations (nodes) in the midspan section were a1most identical except 
o 

that slight differences arose at the ~lange tips. This indi~ated that 

in the midspan region the beam def1ected and rotated without any prono~nced 
,J' 0 

local deformatton of each plate component' in this partijcu1ar prob1em. 

Fig. 6) shows that the curve quick1y f1attened when it approached its 

ultimate load-ot 7~ lb lin (13.93 kg/cm). Simi1ar curves were a1so 

obtained in Fig. 62 where the resu1t is expressed in terms of load and 

vertical deflection at midspan. Deflections at both f1ange tips and both 

flange-web junctiORs are p1o~ted. Deflections at other nodes which 

include Node 44, whose curve lies between that of 'Nodes 43 and 4~. and 

Nodes 46 and 47, who se curves lie between that of Nades 45 and 48, were 

ornritted for clarity. 

Figf 63 shows the variation of angle of twist along the\\,10ngitudin.a1 

\section at different l~cations. For the top half cross-section of the 

heam, tbe ,twisting'angles incr,ease monotonically an(jJ are only slightly 

different in magnitu?e at.~if~érent sections. 
l ' 

\ 

They àre given in Fig. 63a, 
(]) 

..",LJ"",,,&S_ .. ,,,,,,œ,,...u,,,,,,,"""· =rno"""';'.';",,', '',., ... -.----
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> 
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where the 10ngitudjna1 section is ~aken at~one inch above the center-

line of the web. Fig. 63b describes the varlation for a section one 

,inch ~e10w the center1ine of the web and Fig. 63c at the junction of 

the web and the bottom flange. The variation of twisting angle at the ~ 

bottom f1ange tip is similar to Fig. 63c (but different in magnitude), 

and hence is omitted. A study of Fig. 63b_ani 63c reveaTs that the ~ 
bot tom half cross-section of the beam in the region close to the end 

supports experienced a rotation in a reverse direction \WhlCh later 

decreased and tended to recover toward the same rotational direction as . 

the rest ot' the beam when the applied load was further increased. 

This is obvious1y due to the fact that the web'plate, which is under the 
- - -=-. --=--=------ -" --

direct compression of the applied load on the top, is also sublected ~o 

higher fhear stresses adjacent to the end support. Thus 10ca11y, the 

web plate eventuall.y buckled'elastically toward the exterior side of 

the web plane. When the applied load was further increased toward its 

ultimate load, the effect due to tristing predominates over the effects 

due to compression and shear. Hence the dent created by local elastic 

buckling g~dually disappeared and the rotational direction reversed to 
, 1 

that of the applied torque. 
\ The distortion of the beam is drawn aIt various transverse 

sections shown in Fig. 64. It is an alternative »resentation describing 

the behaviour previously discussed in Fig. 61,62 and 63. 
-

The deflections along the span of the beam are plotted in Fig. 

65,66, and 67. Fig. 65 shows t~e vertical deflection at the top and 

bottom flange tiPS\. The deflection at the bottom flange tip is 
@ ~ Q 

considerably less than that of the top flang~ tip in t~e region close to 
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the end supports. This is caused by a' signiflcant amaunt of the 

downward deflection at the bottom flange tip due ta bending and twisttng 

being cancelled by the effect of local buckling of the web WhlCh 
, • \ ... ' -'~"T 

caused t~e bottom flange tip to mave upward. Fig. 66 shows'-'the lateral 

(horizontal) deflection of the web plate. Longitudinal sections are 

taken at each third depth point. Again, in the region adjacent to the 
; 

end supports, the deflection ;n the reverse directio~ for the upper 

longitudinal sectlon (represented by solid lines) and the greater 

deflection than its deflection in the midspan region for the lower 

longitudinal section (represented by dotted lines) are due ta local 

buck1ing of-the web. Fig. 67 indicates the vertical deflection at bath 
1 

the top and bottom junctions of web and flange. The top junction deflects 
, 

more than the bottom because the deflections due ta bending and twisting 

at the top junction are both downward and are summêd. However, the 

deflection due to twisting at the bottom junction is upward and is 

substracted from its def1ect~on due to bending. 

The longitudinal stresses which are averaged throvgh the plate 
f 

. thickness are plotted in Fig. 68 and 69 at an applied load of 68 lb/in 
. 

(12.14 kg/cm) which is the load leve1 a't which the beam remains fully 
• 0 

elastic 'but is just prior to initial yielding and at the ultimate load 
~ 

of 78 lb/in (13.93 kg/cm). Fig. 68 shows the distrib~tion of longitudinal 
\)0 \ -

stress along the centerline of each transverse row of e1ements except,1 
. , 

the last section (Fig. 68f), which. is ~aken through the midspan 'section 

(18 in from the support) by ext;apolating the stress~s to the midspan 

section. It is seen that the stress distribution at those sections near 0 ~ 
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the support is more nonlin~ar than the distribution at the section near 

midspan due to local buckling. Once the yield stress lS reached, 

the maximum stress spreads to the adjacent areas as shown ln Fig. 68e 

and 68f. Fig. 69 shows the distribution of longitudinal stresses along 

the centerline of each longitudinal row of elements. It is again 

-indicated that the longltudinal stresses cease ta grow when the yield 

stress is reached. 

Fig. 70 shows the plastic area in the beam at the ultimate load. 

A final ~est was ta perform an elastic analysis based on small 
\ 

deformation theory on the channel section' and investigate the ~ifference 

between linear and,nonlinear analysis.~ If the longitudinal stress is 

considered ta te caused by bending only and conventional simple bending , 

theory is applied. the load which causes the flanges ta reach yield stress 

is found to be equa1 to 194.5 lb/in'(34.73 kg/cm). This;s 2.5 times 

greater than the ultimate loa~ using nonlinear analysis. If the 10ng{tudlna1 

stresses due to both bending and torsion (warping stress) are consldered, 

the calculatian fOl1awing the procedure suggested in Ref. 165 indicates 

that the load level which caus~s initial yie1ding at t~e'flange-Web 
junction is equa1 to 105 lb/in (18.75 kg/cm). This i5 1.35 times greater 

than the ultimate load by nonlinear analysis. However, a comparison 

bet~een the load which causes initial yieldi9g and the load which causes 

member failure is rather inconsistent. The ratio gf ultima~ lpad to 

i!'litial yielding load using the nonlinear- theory is equal to 1.13. If 
~-

the same ratio is used-J~r-tnê-~ase of linear analysis to pr~dic\ the 

approximate load level which causes total collapse of the ~ember, the 

ultimat"e load so eval~ated ,is equal to 119 lb/in (21.25 kg/cm) which is 

1.53 times gre~ter th~n tha~ using nonlinear analYsi~. 

.-

f , , 
1 

, 1 
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V.6 A Z-Section Bearn Under Uniform Vertical Load"Elastic-Perfectly 

Plastic ~1aterial 

An unlipped z-section beam is formed by simply movlng the top 

flange of the previous,channel section to the other side of the web. 

~ All other data including dimensions, material properties, boundary 

conditions" loading and idealizati0'1 (see Fig. 71) remain the same. 

In this case, since the vertical loJd is applied in Ahe plane of the 

web which is inclined with respect to the principal axes, the beam is 

subjected to unsymmetrical bending. Hence, the beam deflects -Tâterally 

(horizontally) as well as vertic'lllly. Due to its l,ateral deflection 

and the local deformation of the plate elements, the.applied loads are 

no longer in the same plane as' the reactions at the ends and consequently 
( 

1 

'the beam also twists about its longitudinal axts. The results are shown 
1 -

,in a format similar to that of the previous investigation fOr,/ the 
1 

channel section 50 that a detailed ex~lanation of each figure can be 

omitted to avoid repetition. 

Figs. 72 and 73 show the twisting and the transverse deflection 

of the midspan of the beam. NoJle that in Fig. 73, the curves foli" Nodes' 

46 and 47 are lateral (horizontal) deflections while all other curves 
\ 
represent vertical deflections. The two figures clearly indica,te that 

\ 
\ 

initial buckling occurred at a load of approximately 24 lb/in (4.3 kg/cm). 

Fig. 74 shows the di~tribution of t~isting angle along different 10ngi-, 
\ 

tudinal sections. Fig. 75 indjcates the ~istortion of the ~eam. Two 

cross' sections,' one at 6 in from the end and one at midspan, ,which exhibit 

the largest defonnations are sh6wn. Buckling o'f the web i cleArly seen 

1 • 

~ \ 
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in \this figure and is buckled\ in the different direction for the two 
\ ~ 

'cross sections. Fig. 76 to 78 show the transverse deflections at 
r 

different location along the span of the beam. The prbnounced buckling 

of both flanges. are shown in Fig. 76. In the present case, contrary to 

the previous channel section, the difference of vertical deflection 
• between the top flange-web junction and the bottom flange-web junction 

is negligible. This is, of course, because twisting plays a less important 
, 

role in the z-section. Consequently, only one set of c~rves is plotted 

in ~i9. 78 which represents the vertical deflection profi~e of the beam, 
\ 

at different load levels. 
\ 

The computer program detècted that the tangent sti ffness matri x 
1 

çec~me non-positive-definite\at a load level of 48 lb/in (8.6 kg/cm). After 
... ~ 

reducing the step size and restarting from the preceding step, the highest 

load which could be reached with the matrix still remaining positive-

. definite was 47.7 lb/in (8.5 kg/cm~. This indicates that a secondary 

bifurcation point had been encountered (see further discussion in Section 

, 

., 

1 
., 
• 

IV.4.B). A close look at the above-mentioned figures. supports this'" point. '#" 

Foriexample, the curves for Nodes 43 and 45 in Fig. 72 and Nodes 43 and 

49 in Fig. 73 show a tendency to .reverse their direction of deformation 

in the region of 48 lb/in (8.6 kg/an). This is ev en more pronoun'ced in 

Fig. 74a and 74b where a ~ever~al in b~ckJing form has clearly been 

initiated in the center of the beam. The evidence is further demonstrated 

~y the deflection curve .for the top ~lange tip in Fig. 76. It. is seen 
\ - - -

that, in the center 'region of the beam, the deflection was originally 

decreasing after initial buckl\ing but later increased again at higher 

loads. 

~4'. " .... p _ .Af.:"i''" M.t;.d.~,,..... , ........ _______ _ 

, \ 
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Usinga smaller step size and restarting from the previous step 

as was done for the case of initial buckling seemed insufficient to 

bypass this secondary bifurcation point indicated byr~he illconditioning 

in the stiffness matrix. Actual1y, the problem cou1d be'continued by 

further increasing Ithe load and temporarily disregarding, the non-posi...ive­

definiteness of the tanget stiffness matrix. It would eventua11y converge 

to \~ts secondary path withi n a few 10ad steps through a "snap through" 
1\ 

type of buckling, providing a secondary path inde'ed exists and the applied 

load step size is small enough. Applièation of an iterative tech~ique 

;s preferred in this case. However, the "snap through" 

occurs with a dynamic disturbance and is unacceptab',le 

a tructural memb~r in \erVice. Computation was consequently terminated 

and it was cancluded that the beam failed due ta elastic instabi1ity. 

The-distribution of average longitudinal stresses corresponding 
L 

ta the failure load of 47.7 1ti/in (8.5 kg/cm) is shown in Fig. 79 and 80. 

I~ Fig. 79, the stress is plotted at a s"ection through the cente~ of the 

last transverse.row of erents adjacent to the midspan section. > The 
, 1 '. "" 

variation is almost entirely linear and ;s mainly due to there being no 

material-non1inea.rit:t involved. It is seen that the stresses in the flanges 

vary from compression ta tens·i on or vi ce versa, and are di fferent in \ 

magnitude. This indicates that the effect of lateral bending is significant. 

Fig. 79 and 80 show that the stress in the beam is still mainly cont~11ed 
by vertical bending as expected. 

According to the CSA Standard (Clause 9.2 of CSA S190-1968), the 

gross cross-section of the beam may be u~ed for the calcïlation of 

def1ection in \the working range. Bas~-ôn such an assumption and following 

. . ~ 

\ f 
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the approximate solution method suggested in Ref. 264, the vertical 

def1~ction of the beam is ca1culated and plotted as a dotted lin~ in 

Fig. 78. The error at the center of the beam, compared to the non-linear 

,analysis, is about 15%. 

In this Z-section beam, the maximum stress occurred at the flange­

web junctions. If the ,gross cross-section is considere~ fully effective 

in carrying loads (i.e. the effect due ta local buckling is ignored), a 

lin~~r ~lastic ana1ysis based on Ref. 264 shows that yielding will occur 

at a load of 97.2 lb/in (17.4 kg/cm). If local buçkling is considered 

by employing the effective section in accordance with Clause 12.4 of 

CSA S190-1968, the a 11 owab 1 e load whi,ch causes the maximum a 11 owab 1 e 

stress of 19.0 ksi (1335.8 "kg/cm2) as specified by the code, is found 

to be 32.8 lb/in (5.86 kg/cm). When this load 1s multiplied by a ratio, 

o~ the yield stress of 35"ksi (2,460 kg/cm2) to th~ allowable stress, the 

yield load as predicted by the Standard becomes 60.4 lb/in (10.8 kg/cm). 

It should be nated that these linear elastic analyses based on Ref. 264 

do not include the effect due to tw1sting. Fur\thermore, these loads are 
i 

the failure loads çarresppnding ta the yielding of the beam whereas, the 

47.7 lb/in (8.5 kg/cm) load Qf the present study is the failure load 
~ . 

defined by the secondary bifurcation point (elastic instability) of the 

member. 
\\ 

~ 
( 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

VI.l Summary 

The definition and methods of fabrication of thin-walled members 

and the problems associated with two types of nonlinearity lS first 

introduced. A comprehensive survey of published literature on the geometric 

and/or material nonlinear behaviour and the ultimate 'strength of thin-walled 
\ 

. structures has been -attempted with particular emphasis on the post-bu21ing '1 

aspects of the problem. After identifying sorne of the inadequacies ot- 1 

available methods of analysis, a finitJ\elemen; displacement model is 

proposed as the most promising vehicle for a comprehensive study of '\ 

nonlinear problems. 

The general technique of using the finite elemeAt method to solve 

nonlinear problems is summarized and presehted in a simple conceptual 

manner. The different available coordinate systems for, SICh a formulation 

are described and different methods for handling nonl inear terms are 

introduced and examined. All the current commonly used solution procedures 

. have been classified and briefly described. The references relevant to 

nonlinear fin~te element analysis are also cited. 

The present fonnulation is then develop~d in detail based on the 

principle of virtual work and the related variational 'principle of potential 

energy. The element selected:;s à flat rectangular element with six 

degrees of f~~edom per no de which can b~ i~entified as physical quantities 

(i.e. linear displacements and rotations) and transfor~ed as vector 

components. The present fonmulation differs ~om others pu~lished recently, 

-1'37-
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in that the degrees of freedom chosen permit the analysis of non-pl anar 
, 

structures involving slope discontinuities. T\he strain-displacement 

relations and the incremental theory of'plasticity which incorporate\ 

geometric and material nonlinearity resp~ctively, are described briefly. 

Both the equilibrium équations and the incremental ,equilibrium equations 

have been developed. The equations which are for.mulated based on the 

principle of virtual work and the principle of stationary potential energy 
1 

are proved to be identical. Fina11y, the Modified Cholesky Decompositian 

Scheme in tridiagonal form and in'matrix notation are presented in 

detail . 

A computer program is then developed to incorporate the above 

mathematical formulation. The computer program has the following main 

feâtures: 

1. No limitation on the size of the problem: All the Dimension 

Statements in the computer program are written with va~iable 

arguments. Only one-dimension statement card in the main 

program needs to be changed to incorporate the problem size. 

Hence the storage used will be neither insufficient nor wasteful. 

2. Matrix transformation only performed at non-coplanar joints: This 

permits saving of storage required and computing time which may 

be significant, particularly for larger s;zed problems. 

3. Choice of number of integrating points: The number of Gaussian 
\ 

points and layers alf read into the computer as input data. Hence, 

the user may choose the preferred accuracy for each problem. 

, , 
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4. Restart faci 1 ity: The di sp1acements, stresses and strai ns after 

each step are stored on disks so that they can be read as input 

data for a subsequent run, if the' ana1ysis is to be contlnued further 

or if the program ha~,' for some( ';eason (e.g. insufficient time, 

computer breakdown, etc.), termi nated before the requi red load 1 eve 1 

i s reac'hed. 

5. Variable load increments, maximum number of iterations. and a110wable 

error tolerance: All these quantities are treated as input data, 

thereby permitting complete flexibility to al10w the user to control 

the problem. The structure may be loaded either by specifying forces 

or displacements. 

6. Automatic change of step size and number of iterations: The error 
t::=/ 

of the result is compared against the a~llowab1e tolerance at each 

iteration and at each step. When the comparison is favourable, the 

computing is immediately shifted to the next load step with a 1esser 

number of iterations being performed. The step size ;5 a1so adjusted 

to be greater, the same, or smaller in accordance with the resu1t of , 

the comparison. If the error suddenly grows and becomes ra'ther high, 

the analy~is will be terminated automatically for investigation. 

7. Detection of ill-conditioned stiffness matrix: The character of 

positiv'e-definiteness in the tangent stiffness matrix of the structure 
\ . 

is always checked and assured throughout the analysis. 

The computer program was used to analyse a v~riety of plate 
< 

problems and when compared with other published solutions, good agreement 
l , 

was found in a11 cases. In, sorne cases, the analysis was continued beyond 

the load for which other solutions were available. The agreement with 

\\ 

j 
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experimental results. wh en available. was also found to bd very good. 

A c:omparison of CPU -time was attempted whenever possible, which lndlcated 

that the present computer program is quite effic1ent. 

Finally, a few of the most commonly useQ thin-walled sections 

were analysed from zero load up to failure. Members were loaded as 

col~mns ~s well as beams. Different types of material with respect to 
\ . 

their stra'in hardening characteristics were i1nvolved. Comparisons with 
1 

experiments ca~ried out by others were good in some cases. However, ln 
1 

other cas~s, some discrepancjes did exist. The reasons for such 

discrepancies were explained. In a few problems,"a comparison of thé restJlts 

wit~ the current Canadian Standard for Light Gauge Aluminum and with 

conventional linear elastic analysis have also been made. 

VI.2 General Conclusions 
\ / 

The structures analysed in Chapters IV and V amply demonstrate 

the feasibility as well as the reliability of the present formulation 
1 

in representing the nonlinear behaviour and the ultimate strength of 

thin-walled planar and non-planar structures. The choic~ of the finite 
1 

element method as the m~thod of analysis permits the program ta handle \ 

arbritary loading, cross-section geometry, boundary conditions and material 

properties. \/ 
Comparing the results with other solutions indicates that the 

present results are sometimes stiffer and sometimes more flexible. This 

is actually the character of the ACM eJement225 ,226 which is employed as 

the bending part of the preseht element. In~most cases, the present 

element g\ves results somewhat on the stiffer side. 

; 

! 
1 



l '. 1 

( 

Il 

-141-

() 

As for the solution procedure, experience from the present study 

indic~tes that the Newton-Raphson method is more favourable in the 

elastic range. Even though this method requlres the regeneration of the 

stiffness matrix, actually the extra computing time is paid pack by 

rapid convergence and with better accuracy. It is recommended that the 

Newton-Raphson method should be use~ as far as possible. For the type 

of problem where the structure fails imnedïately after inltiai yielding. 

the Newton-Raphson method can be used\ throughout the entire loading 

history without difficulty. However, for problems where the structure 

only fails after heavy yielding, the Newton-Raphson method generally will 

encounter convergence pr9bJems due to severe plastification prior to 
" 

the coll apse of the structure. In thi s case, the stri ct step-by-step 
\.-

procedure should be applied instead and oftenJone is forced to use a 

smal1er step size and a higher error tolerance. It is felt that the 

problem has not really been solved but rather avoided by a sacrifice in 

'the computing cost and ~ the accuracy of the 

\ i; needed to attack this pr:obl~m which should 

for further research. 

results. Some technique 

be a challenging topic 

~ Another problem is the lack of general agreement on ~hich terms 

'*' (displacements, stresses, or ethers) sheuld be used to evaluate the 

accuracy of the results' and how they ~hould be evaluated. It is hoped 

that a ,conclusion whicb is acceptable to all researchers can be found 

in the near future. 

, 
~ 
1 
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VI.3 Behaviour and Ultiœate Strength of Thln-Walle~ Sections 

Owing to the large variety of shapes and sizes in WhlCh thin-

walled sections are produced~ lt is rather difficult to draw general 

conclusions. The emphasis in this dissertation has beèn on developing 

a computer program such that particular sltuations could be studied 

in detail. However, the following observations, although, stric'ttly 

applicable to the types of st~uctures analysed in the last chapter, 

may be of more general interest. 

The ultimate ~trength of the structure, in addition to celng 

affected by thel boundary cond\itions, seems also to \be somewhat affected 

,\ by the loading conditions, When the member is load:~, as a column, the 
" 

stress distribution is simpler. The main stress lS the longitudinal 
{ 

stress in the direction of loading while the transverse stress and shear 
-' 

stress remain comparatively low. Each cornponent plate does not seem 
" 

to be influenced appreciably by the presence of adjoining plates. The 

member generally fails quickly after initial yielding. On the other 

hand, if the member is loaded as a beam, the stress dist~ibution is more! 

complicated. The influence f~om a9jacent plates is significant and the 

transverse stress and shear stress ~ay also become high. The member, 
~ " 

then, generally seems able to carry a somewhat higher load after initial 

yielding. 
.... 

The inclusion of strain hardening may significantly increasè 

the ultimate strength of the structure. 

Tfe initial local buckling load often has no marked significance 
"-

as far as the growth of deflections and stresses are concerned. 

The strength of webs loaded locally may be ~ignificantly under-

lestimated by the existing CSAjStandard formula. _ 'II 
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\ " . The calculation of deflecti"ons lat working loads on' the basi s 

of beam theory using the gross cross-section as permitted by the CSA 
o 

Standard may be quite inaccurate. Since it is'àlmost_certain that 

" l~C~l buckling will al"YS~~~wâÎl~~ons. a calculation\ 
, . (~ --

based on an effec't-ive-section would be more reasonable. 
_-----' -' l' ---

~_~'~ -- The ul,~imate strength ~f .thi n_-wa lled sectiohs i s genera l \r 
~each~d \onlY well after initial elas~ic buckling. At the stage of 

-

c~ 

,\ 
\ 

() 

ultimate load,.the structure is ~ften greatly deformed. Consequently, 

the ser",iceCl.bilityof the structure becomes doubtful prior to reaching 

the ultimate lQad. Hence, a close êxamination of servicability may 
, 1 ~ • 

be mor~ meanrngful ~han the blind u~e of the full extent pf post-buckling 
\ 

strength up to' the yielding or'ultimate strength of the structure. 

, $econdary·buckling whkh ~ay be encoun,tered in ~hin-walfed 

members is not cons~dered in the present CSA code. Current' 1iterature 
o ., '1 ~!... 

has dealt with this problem in qualitative tenns only drYd furtre~ . . t 

~ investlgatton and understanding of tbis problem for thin-walled sections 

is needed: J 

'The conventional linear elastic· analysfs over~estimates the " 
• 
strepgth of thin-walled section greatly and may not eve~~sefuT 

o ..-

approximatwn. ' ' ~~ 
\ 

Finally~\ it should b;lnoted that many pt' the aspects noted above 

such as the distortion of the cross-section, the effect of lateral 
~ , 

, . 
restraints,·the detennination of deflections fn'ttie post-buckling range . , , 

, " 

and the progress of the Yi)eldin~. area, ca~ nO,t bè ana(ysed satisfactorily 

by other met~ods. Furthermore, although thin-wal1ed sections have been 

\ 
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th~ main topie of interest in this dissertatio~, the program dev~oped 

o herein should be applicable to a mueh wider range of problems involving 
. JI 

.. 

geometric and/or material nonlinearjties. 

0\ 

VI.4 Reeommendations fat Future Work 

The following recommendations are suggested to extend the scope 

of the computer program deve l oped herej n for the purpose of more genera l 
/ -usage. 

1. Consider the material to be anistropic: The treatment of 

anisotropy in the theory of plasticity can be found in ~ef. 

234. The relevant work done by Pifko et al~73,253 is worth 

consulting. 

;. Jake' account of strain hardening dU~ to cold-.forming: 

Advàntage ~f using higher yield stresses i~ the cOld-bended 

~ , 

J" 

regions is eurrently per~~tted in the design of cold-formed 

steel members. This provision might lead the prese~t program 

to be more realistic when applied to cold-formed structures. 

3. Provide a feature to inelude initial stress: One of the most 

c~on t~s of initial stress ~: ~~~ residual stress generated 
~, ~ -.=;-.-

4. 

due to welding. With this f~ature, the present program can be 

applied to thin-walled plate girders whicD are widely used in 

bridge and- industrial building eon~tr:u~tion. Work by crisfield144 )145 

can be consulted . 

Develop a subprogram to generate the stiffness matrix using 

triangular elements: The'9.eoln~try of\thin-'wal1ed sections in 

the present study 15 l1mited ta the folded-plate'type. With 

.} 
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the facility of tria~gUlar elements being available, the present 

program could be used to analyse a larger variety of thin-walled 

s t ructure,~ such as spheri cal s he 11 s, cyl i nbers, etc.. .. 

5. Carry out a systematic study of :thin-walied members: Parameters 

such as the geometry·of lips, the optimum width of comp~ssion 

flanges, and the geometry of spacing of stiffeners should be 

investigated. This could be achieved, for example, 'by starting 
L 

, with a simple rectangular plate and adding lips of varying sizes 
" ~ 

(or shapes) and lQadihg them in axial compression or simple bending. 

VI.5 inear Anal SlS 

Even tho~gh finite elements to solve 

)'either geometric or material nonlinear probl~ms has been condutted 

extensively during the las~ frft~en y,ears, work on com~ined nO~linear 
probl~ms has been rare. T~e most important reason is obviously due to 

r 
the high comfuting cost. ""It~js not unçommon t:or many researchers to 

) 

prefer to perform experimental tests in their investigations simply 

because it is less expensive. However, it should be remembê'red that 

almost all these exp~riments are conducted within university laboratories 

and the main cost is the test specimen~ which are relati~ely inexpensive. 
1 

It is doubtful that p'comparison between the material cost in the 

one case and the computing cast in the ~ther is fair. If the same 
\ 

experimental work were performed by an industrial consulting firm, the 

salaries paid for technici~ns and others working on the project may 
( 

perhaps ~e as much,"or even more, than' the computing costs. In that 

sense, computing costs are not as high as is generally believed. 
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furthermore, a theoretica1 analysis provides a number of advantages l' 
1 
II 

over an experimental investigation. In addition to its avai1ability for 

the detailed study in defJection, stress, strain, ylêldtng, etc., as 

preVrUS_1Y pointed out in c~aPte,r 

The results, whi~h can be obtained 
"\ o' 

can o~ly be achieved by performing 
î;> 

weeks. \ 

,Î 

l, another important factor is time. 

from a computer in a matter of minutes 

experimental tests in days or even 

! 
Due to the necessit~ of ite~ative procedures in solving nonlinear 

o 

problems, computing costs are always higher than for llnear elastic 

analysis no matter whether the ,finite element or ~ny éther ~ethod is used. 

\ This must be accepted as a fa ct as long as a nonlinear analysis has to be 

\ 

-
Iperformed. It is felt that it should not be a question of ~hether a 

theoretical analysis is to be conducted or not. Theoretical analyses 
• , 1 

should always be encouraged.' It is re,allY a matter o~ how, to develop 
ri , \"' .......... __ ' ~ ~ 

new techniques to further reduce the computing cost in both software 

and hardware. Other ideas such as using a less accurate formulation but 

having the advantage of a considerable saving in computer time should 

also be promoted. Crisfield144 , who proposed an "area approach" 
') " \ 

formulation using an approximate Ilyushin yield criterion Da similar 

method using finit.i'! differences was 'proposed by Massonnet 123} provides 
/ 

a good example. In conclusion, more research should be conducted on 

the,improvement of effic~ncy in the formulation and solution procedures 

to reduce unnecessary computing ta a minimum. 
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Figur:e l Sorne Common Shapes of Thin-Walled Mernbers 
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-?>~-Tjl) '(1-11) 

.:1(1+'> = & 
-1>(~ cn, (1-211-'0(",11) 

-3Th 
-3 T .:.L. 
-\0 4a. 
4a.

1 
(1+3,) 

.(1"'''') ,(IPl) 

.J...t,+{} 
-l)(~ ,\)4 b~ 

l ,(1+311) 

-t ( - t-SIL 
0('1,') 2.,,- -D(q,ll) 

31]1) 

-0(~15 )-IX5,1')-t>{~ 24) 

-~(HJ 
-PC,", ;)'(I-Z'7 -D(~,s-r-

-3171
) 

..L. 
4ct 

-O<1,[S) (1-;p 
o( 1+"'1) 

1 
_D{S,:,)4b(I-O 

'(1+317) , 

-D(", 3 )~O(", ",)~D("/5 ) 

Explicit Form of [D] Matrix in Normalized Coordinate 

ft 

-"IWèi~ n ; 7 _ m t ..,----

t ~'-,r~~ ~ f'~ Il -~ ~~~'t tctiirr tr~~ '. 

If 

1 
N 
W 
0_ 
1 

<j 

~ 

-
Il 



( 

1 1) 
1 

-(' 

1 • 

K = 
cr 

-231-

A-4 

r 

• 

\ 

( 



9 ~j'. 
i~ -:7".-:~----"~ 

/-' 
A ...-.... 

-
'" 

-- --- -- - - - -- ----- - - ---~- - -----,- -- - ~--

>t' . 

A-5 
\....; 

"' "" -
~-

KL = ft KL dZ .' ro-
, 

J 

E11.. E13 E'-3 E12 En E12 2E,3' .. .. 
.. E33 .. E33 E23 E13 E23 2E33 .. .. .;,." 

, E33 E23 
E13 E23 2E33 

~ ; II ... ... 
~ .. z x 

E22 
E12 E22- 2E23 .. " , 1 ... ... N .... W 

.... N .. 1 
"- ... 

'-:...1 
"-.. '----,-- "'" ... 

~ , 
.' E

11 E12 2E 13 
sym. .. ... ... 

2 
... E

22 2E23 l.x " ... ... 
NOTE: Eij's in this·matrix are components 4E33 

... 
of elasto-plastic matrix [E] 

~ 

~ 

1 

~ 

~ 
,.. 

:/ .. 4 ...... ;~yi' ....... ~ .. """ ~ -+ ~ ~'*"'-~.i~~ 



-
') 

~= 1 1 

~ .. n .,,,>:"t' _ ~ ~~ 

("1 --
,.. 

A-6 

'" 

E11 E12 
E12 ... ... 

'E
33 E33 l 1 

1 E~i 
2E33 

--~--

NOTE: 

.... 
" .... 

E33 
" 

-----
sym. 

~ '-, 
E •. '5 in 
lJ 

... 
..... 

E22 
" .... 

..... 

" ..... 

---
.. 

..... 

... 
.... 

f 
Z x 

'--------,- -~ , .. 
this matrix are components 

of conventiona1 elasticity matrix Z2 x 
~ 

[Ee] 

2E33 

E12 E22 

"-flY~2---~ __ 
, .. 

" 
E22, 

" .... 

4E33, 

(This matrix is only for elastic layers, simplifîed from Appendix A-5) 

<! 

J, 

'"" 

'g 1tnrtr .. r:e~"-- -~~tiI!1rtflr1trt,mMtruë~~·_~r-:..l-~~"~4~r 1"t~",~ __ .,;-_.-d~"!Ir!:';:;"-':.M."",,"_';~~~"'--"'~~"~ 

1 
N 
W 
W 
1 

-
~ 

-
4 

i:' 



~. 

CA -

'Kl= f~ dZ =_ 

...... E
11 

.... 
...... E33 

tx 

E33 

" . 
...... E33 

sym. 

..... ...... 

A-7 

E12 

, 

E22 
... 

' ... 

; 

~-
...... 

" .... 

J 

----------~ 

t 3 

T2 x 

o 

...... E
ll 

E
12 

" " ... E22 
" ... 

" 
4E33 

(This matrix is for the case trat a11 layers through thickness are elastic, simplified of 

fram Appendix A-6) 

1 

" 

~!, .. \ ... _ 'ri .. ......... -~ ..... - -~d~"'- __ _ .. ",-,~:;..~J. -

/""" 

1 
N 
W 
.J:­
I 

--

~ 

.... 

.. 



,~ 

-
~= 

NOTE: 

• 

sym. 

Eij's in this matrix are 
~ 

components of elasto-
plastic matrix [E] 

J$.jJ'~::." ..'. {, il 2 il nr p 1 F 5' • '~--

.---
"...... 

"" -
KN = ft KN dZ 

aw aw 

l En ax E12ay 
+ + aw E aw ~ E13ay ~ 13ax 
aw E33ay 

aw EJ3ax 
+ + aw _ E13dx 

aw E23ay 
aw E33ay 

aw 
E33âX 

+ + aw E13ax 
aw E23ay 

aw E
12ax 

aw E22ay 
+ + 

aw E233y 
" aw E23ax 

E (aw)2 
11 ax E 2{~~)( aw) l ay 

+ 
( aw)2 + (aw) (3W) E33 ay E33 ax ay 
+ 

+ E (aw),z 
2E13{~~)(;;) 13 ax ' 

+ E (aw)2 
23 ay 

ew)2 E2-2- ay 
+ 

(aw)2 
E33 ai 

+ 
2E23 (~~)(~;) 

'\ 
. . 

-~~~':1'~~~~,.E_'" 

, 
" 
-

A-8 

• 
( 

t 

1 
N , w 
V1 
1 

aw E aw aw 
Ella; ,l2ax 2E33ay 

+ + + aw aw aw E133y E23ay 2E13ax 

LX 

l aw 
aw aw E12ay E22ay 2E33ax 

+ + + aw aw aw E13ax E23ax 2E23ay 
,. 



,~ 

"-

K ="' 
:N 

" 

.' 

-. 

NOTE: 

~ __ "" _____ -._.~ ........ 4~__ au .... _ .. ~ 

(""", 
, ---' 

A-9 
., 

sym. 

âW E11ax 

âW E33ay 

âW E33ay 

aW 
'~12ax. 

E (âW)2' 
11 ax 

+ 
E (aw)2 
33 ay 

E. .1 S in th; s mat'rix 
lJ 

'ar~ components of 1 

conventional elasticity 
matrix [Ee] 

r­
\ 
\ 

âw E12ay 

âW E33ax 

âw E33ax 

aw E22ay 

E12(~~)(~~) 
+ 

E (âW){dW) 
}3 dX ay 

'E (aw)2 
22 ày 

+ 
E (aw) 2 
33 ax 

--.-

Il 

(f 
r-

âw E11ax 

Z . x 

aw E12ay 

, 

(This matrix is only for elastic layers, simplified from Appendix A-8) 

.,~ --
~-----:--=­; ~H !"" 

-- '0 ~ 

..... 

-' ~ 

l, 

âw âw E12ax 2E33dy 
1 

N 
W 

rI 
(]\ 

1 

--

aw E22ay 
aw 2E33ax 

-1 

.. 

• 

\, 



J /"" 

tJ> A-10 

rÉ, aw aw 
,El1ax E12ay .--

ôW 
E33ay 

ôW 
E338X 

aw 
[33ôy 

" aw E33ax 
~ 

aw aw E12ax E22ay 

( aw)2" E12{;~)(~~) -E11 ax . 

A -

tr KN= ft KN dZ = t x 

+ + 
aw 2 (aw) aw) 

~I E33 (ay) E33 ax (ay 

"\ 

Jo 
E (aw)2 

22 ay 
/ + 

sym. / ./ 
E (aw)2' 
33 ôx 

~---~~)-
1 

(This matrix is for the case that a11 1ayers through thickness are elastic, simplified 
from Appendix A-gr--

,.;~ t ... ~~~ 

..... 

1 
N 
w 
--...1 
1 
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Appendix B Computer Program 

o 
q!v·' '\I! 2.1) MAIN OATE .. 77154 Il,122/15 AELEASE 2.0 

• 
MAIN O~E • 771S4 Il /22/35 

c 
C 
C 
C 
c: 
c 
~ 

C 
: 

"U'LIC'T AE""-" 'A-H,O-l', l''T!G!!"R.2 O.NI 
• "T!G~" 01.101 NT .N"AAT ,NOI'lP, NEI.EII,lmMcn .. , NBJu .. , NI.OAO.IIIGAu5S. "LAYEQ. 

'" N,~~€R.III~REI!.NfOTAI. ••• A~.MT.ICE.NREAD,NWRITE 
or~EIIISIO" 1IOO~(~950t,NROOK(4~51 

OISK '1 FOIt S1 
0'51( '2 FOA ST 
DISoC,_) FOR ST 
DI'ioC 'A FrA 0 
OI'iK '11 FOA RESULT STORAGE 
DJ'io( '12 FOA RI!SULT STOAAGE 

IJnoC '11 INSURANef' OISoC --==-=-

~F.JI~.IO' NJOIIIIT.~~&~f.IIIELE •• ~~OP.N~OUIII, .. LOAn.IIIOISP'''GAUS~. 
• Nl.AY~lwDEA,NAE&O.INIT.NSTEP.NITER.SI!E.TOl.NCE 

10 FJ~~ArI141·.2~~ 
~r~F.F·6 

.. T=I~IT.NSTE~ 
IIITnT&L·~FOEE·"JOINT 

~ 
1'" C A 1.1_ cru"" ( .. JOIN T ...... A'H .11101 S<>.IIIELE" .NO"'CO~.N"OUN. "LOAn. NG AUSS. 

"LAYER. ''l''PEA. NFAEI!:. ~TOT Al.. 
• Il.12.1-3-..L •• IS.16.J7,1,,.19.110,111.11?.111.IU.115.116. 
• .II. J2 • .I3 • .140 oiS • .16, .1 1. J '\ • .1 9. J 1" • .1 Il • .1121 

CAI.L 'NPVT'NJ~JNT,NPA7T.~ELE".III}nU ... NLnAo.INIT,NOISP.NFAEE.FLAS.V. 
• SYIFl.O.NHAAO.F.XPO .... ~07,ET,ITOT~_.~~AX ... ~WICE .... TOTAL. 
• ftn!'K'I".~rrKII., ... ~nKIISt.nroKII~I ... ~nKlf61.~00~llql. 

• 
• 

NB!)3«.I1 h """'0< 1 .I21.N1101( .1." ..... nOI«J.,. 
~OO~(J~'.~n~r~(J~t.~ApOK(Jll.NnnnI(IJql.NHOCj(IJql. 

NHOO': C JI 0'. ~'\OOI( ( J Il II 
1 17zI16.M~A •• M.'X 
CALL.. TA ...... SC.-.JOINf.""ELE"" ..... n ... CA', ... ' ... :JEQ.f100K( 13 • • Q{lOK( rs •• I,OCK( 16'. 

• ~ ROCtt (1 7.. ...~"nl( ( J. , ...... ..,,.,nl( (J-:') • 

C-t.LL SET« NELfw .... ~4Y'=l,"("",..\.I~c;,.rNlr.,.,r'1T ... 1... EL4-;.V .. 
• SY 1 ~1.0,.NH ... qO.f ~"()N,~, 1.F T .t<r>Q l"-r. Exx. Flt Y. [TT. F ll. 

• !!')"<II~'.,.nO<II~I.·1J<I'I"'.":Jll(llll'.'100KIII]I. 
• ftonKIIIAI.I'IOOI((II')I. N!lnOIC(JI2I,N~f41») 

1 .. (~ql!''''O.F.O.II' .... 'UT(:&12 
1~1 .. ~-r40.fQ.,ZI .... ~'Tfsll 
DJ ~OO ISTFO-I .. ,T ... T 
00 700 ,TCQ"&I.III, TEA 

,Fel "'c<>.ro.I"IT.nl'l.,STE".E.l ... r.(}Q.NITER.lt;:.21 Gf) TO 151) 
1~IIT~AA.EO.I.A"O.fqAQA.lf.TO_ .. CEI GO Ta 620 

15" '''II'·,J 1 
..... SI' .1 N:) 2 

' .... 1 N'l' 3 

q~. "." • 
~f"IN'" ~t. 

1. 1 ISJtP.·'f.l.np.ITE" ...... e.II <I<':WINO N~EAO 
1-(' ~TEP.l.r.(/NIT • .,.ANO."'IT!A.~O.11 GO Tn zoo 
l ... t'·.rr~.rO.INIT •• '1!).ITE~ ... L.E.21 GO T') 200 

17q 1::a1l.~(\O 

"",. AC" .... A /T f 
.... 01' ,: ~I t 

ZC, 'J ~:1 l.=I.~ELEM 

... 

K '''14+llt-1 
KZ"'I S+I.K-J 
K3 z I6+LK-1 
Llz.lS+L~-1 

C~LL AEADY(N~OINT.NELEN.NO~CO~.N~AUSS:NLAY~R.~FQ~c.L~ •• ,rvoF~. lr.i;P 
• oINlT\NTOT.t.1. .NReAO.'l~q ITE.'1'10K( 17)."lQ~ ('III.' J~<I Il ". 

* AOO« 114' .~~JI((, ISI ."nnnoCl JI' '''100< f H 1."I']t::n~('.1 ,. 
• NBOOKIJlll.trEA41 1 

---c;ALL 01 SGAO( NGAUSS.f ~TEP.INrT.LI(.BO(,}"'( JI'. [l'j{lIC(,..?,. qflf).-(W" 1'. 
.' BODI(l fl61.ITE"RAI 

00 500 IlzI.NGAUSS 
on 500 JJ;I.NGAUSS 
IYIEI.O=O 
'FI ISTEP.EO.I."NO.rTEq".FO~1I ::;1 TJ 0"1) 
CALL 5 TRA 1 NI NGAUS S ."11. A"E" • .JJ. 1 1. BC'm< 1 ~ l , • 'Jr..,1< l'Ill • [inr~ 1 Il!' 1. 

• 800KII161"STE".I",r.ITE~.' 

• • 
CALL STPESS'N~AUS~.NL.YEQ.JJ.rl.LK.ELAs.~yrfLo.·4~4RO.E.~14.s:?, 

Exx.E~f.EYY.~lZ.IYI:Lo.rsr~p.r~IT.H~Q,Nf.·&~I'E • 
BOOK ( Il 1 • (lOnK 1 Il Z 1 • [IOO~ C , 1 ] 1. rno" l , 1 • l ,n~r,! 1 151. 

• NAOOKI.llll.~T.ITEq41 

300 C4LL TAUEPT(NGAUSS.NL"YFR.JJ.II.nr.n<fl~'r"'J~(<(II.":::1~('?I. 
• flO:')cIK31.AJOo(IIIH.IST;:P,I·,IT.fTf"n41 

.00 IFIISTEP.EQ.NTI roo TO 5JJ 

.SO C_LL STrFF(~GAU~S.~L4YF~.JJ.tl.IS,~p.l~rll).E~ •• ~.Y,f~Y.fll. 
• l'IOOl<(l71.AOOo(( 11/."'100(1< Il.'100<1<21.11O')>(1 ... 31.1''IJ,C Il'1. 

• ITE~AI 

500 CONTINUE 
IFINBctOl<ILII.N!'.OI CALL AOTlNJ1INf.NfL ..... '''-rr''.NT.L<.n'1«pl. 

• N60JI(I JI'. "'1'10.: ( J41, ",'1"1( (~ Il. W)·'C,,-> .... 1" H Q. 

• 
• 
• 

• 

1 NI T" T"<>AI 
Ire 15TEP.NE.t-~T» CAL'" STOtlF(~3 .. ./'r .r.J L~"'."~F''''C.Lft ... " .. ~."'T.rr..e- .~., ..... .,( 1 

16' .... 00('1<. (Jl'.~ (J 1 •• N~'1'11( (;4» , ... 'lf""'I"'t .... , J">'. 
~~I«JIOI .... I)TAL.I 

,FClSTCP.EO.INIT.ANO.,TF<l"."".1I (.0 Tn 6'-
C 41. L SU.I NJ OINT. N FL E ..... n. r [. 'l T) f 4L • n: J q 1 11 J • '< n,.: 1 JI 1 .',3 '1G", 1 J' l , 

LlCt 
600 CONTINUE' 

• 
• • 

IF(ISTEP.t:n.lNIT.",....D.'TF o 4.F.:O.I' Gn T(1 6Z: 
CAL.L AF..SCNJOrNr.P.IL1AO .... F~€E."'4)rS,.,. IIjJ=p,f~4JT.·.'.'Srzr:.~'.,l(r~J. 

BOOK ( IC,) • flOO.c. ( Il Ol ,11"« 112 '."".IRO .... 'f JI) •• .. A~I"J .. ( J'J" 
NHOOft (Ji' • NorV11C ( JI t,. 4 fl)T 4l ,"''II'''f1 T r .. ~~ - 4'l,"" rç,..l.1 TF 1J.c.. 
TCllNC"[.I'JISC;"p.EQAOQ. 'L"VF~ 1 

IF( 15'E"P.LT.CNr-')."Nn.rT€~".~T.?~ .... n~ .. -RP~)'.LT.rnL,.",r) ~,'J TC .oI!";"') 

620 CAlL NEw(NfLEM.NlOAD.NC.AU'SC;,"-' ... "'f'-'.Nf=lfE,,,.rarA_. tC;T~", l 'IT,-,,", 
• NI TfQ. 1 rF~A .N"~ t TE. ";f l E. x Le v r l .fl 'nK ( 1 ~, • AOl~'" ( 1 l 1 » • ,- r ') ... ( 

• 1121.tlOIlKI Il JI ."00<1 1101. '10"<111"'.,<111<1 J'II,', 'J'J." J121. 
• N"fAO,FIl"O'l.TOV":EI ----

650 CAL 1. FIX 1 NP"" T • N IJ 1 <; P • NF Il F f • "J'H. '" f rH & ~ ...... ( • Il T • 1 CF. ~ 1 1" • '111) ~ l , 1 l , 
• APOl< Il 1210 .. 'In.: ( 1\ 61 • 
• NROl1K ( .J~ , • ,,.1\00-< ( J 11 • ~ 1 JOli' ( .JI,' , PltFt11tC. ( J 1 1 1 , J" L k" 1 

CALL SOLVFC,..;('lINr.'.p • .,f ..... rtf')Cl'.NF""' ... F ....... X.'TnrAl .... rrn:.l.·. J.~. 

110 OK ( 110 1. "''1< , ( 1 Il • tfJlY ( Il', l, • l J< ! 1 1 71 • 
• Pl6AnOI((Jt'.Nflnnl((J?,,..'3rI"'lK(J'J'.()rC;[ ...... ,'f~ ... ~J 

IF( 'SfEP.FO.INIT.N4iO.'TFn .... FO.I. Ci' T() ,CC 

~*~':" ,::",)) 0 ,"\. J~ ~ "-.u~yœe "oz'?! YM":jh.r:M'!r.#iiœtftitihe,* ...... ~ "-~ 

1 
Iv-
W 
co 
1 

lA 

..... 



n 
- . ../ 

Ilne4se z.Q .AIN OATE • 77154 Il;'Z2;'3~ 

1~(ISTEP.EO.(NT-IJ.ANo.ITeIlA.GT.2.AND.FRAOA.LT.TOLNCE) GO Ta BOO 
700 CONTINUE 
SelO CONTINUE 

Srf)o 
EH:> 

!~FECT. ~~~FIl~.IO.ESCOIC.SOUQCE.NOLIS'.NODE~.LOAO.NO~.P.NOTEST 
cFFEC~* N4~E. MAIN • LINEC .. T ~ S6 

S)UACE ~TATEMENTS '. 64.PAOGAA~ SIlE. 63120 
~O 'fAGNOST,CS GENEPATeO 

, 
-

~ 

( " 

y 

~ \ 
l 

~ 

('""", '- ""'-,/ 

RELEAse 2.0 COUNT 04TE 771~. Il ;'2Z/3'5 

C 
C 
C 

SU81lOUTlNE COUNT(NJOINT.NPAAT.NOISP.NELFM.Nn~co~.N6nuN.NLOAJ. 
• NGAUSS.NL4YFA.NIMPER.NFRFE.NTOTlL.II.I?13.1 •• I~. 
• 16.17.rl!.I~.II,.III.IIZ.llh'I •• IIS.116. 
• Jt.J2.J3.J4.JS.J6,.J7.JR,JQ,.I10.Jll,JI2. 
I_LICIT l'''TEGEP*2 II-NI ' 
.,..TEGER NJO INT,"oIPAR T,Nor SPI ""FL.::' .... NONC"OP. ""Anu ..... NL OAO. t.GAUSS ..... L ""'e;;l' • 

* NIMPEA.NF~EE.NTOTAL.WAXO 

Il z 1 
12 2 1l ."'GAUSS 
1 3:1 2."'GAUSS 
1':13.WAXOI3.NJOINT.J.J·~L4YE~1 
15=14.NELEM 
I!>=IS.NELE~ 

17"11;. NFLEi04 
IF(",Or.cop.EO.OJ NONCOP"I 
18=' H3 0 Jo"''''PEAONONCOP 
IF(NLOAO.fO.OI "'LOAO:I 
19=1 e.I\F"E,EoNLOAD 
IFINOISP.EO.OI NDISP:I 
110=19.~~REF.NDISP 

J Il = Il 0 .... TO JAL 
112 s lll.",TCTAL 
IIJ=112'3.NLAYéR 
Il'=IIJ'J.NLAYFQONG4USS.NG4U~S 

115= Il.'HL A'I'~R.NG4USS.NGAU~S 
rI6=W.'OII15').2.NGAUSS.NG4USS.112+NTOTAL) 
~:J~ F AL =, l6+ MA XO( JltMA. X." T Wf CE. q. ?" .. Nr,4U'S~. NGAU'SS' 
MMAX:(~AX. NO. OF JTS 
THE SA~f PARTITION). 
JI "'1 
JZ=Jl+NJ"'pn 
Jl=Jl'."PAAT 
J"'ZJ3.NPAAT 

..,5-=J_.".NFLt: ... 
J6.s.JS+ ""FLE'" 

J7"J6+NTOTAL 
JIl=J7. "'POV., 
Jq=JA ..... ,.~EE 
JI OsJ9.~LOAD 

J II=JIO.NELEM 
JI 2'" JII • .,01 SP 

IN ONÇ PAQTI·IONl06-1~~.aF Ft<ED ~.~.F. IN 
Mr.ICE=2·~~A' 

C NOINTE=JI2'NLAYEA.NGAUSS*NGAUSS 
AEJURN 
END 

=FFfCT. NOTEA~.IO.EBCDIC.SOURCE.NOLr~r.~QD~CK.LOAO.NOM&P.~nTfcT 
[FFECT. N4MF' CnuNt • LINFC"T " ~I; 

SaunCE S~ATE~fNTS • 16.PROGRAw SilE = 17.? 
NO' DIAGNOSrlCS GENERATEO 

-a 

... 

fr,~~~f.t%A ~ J th r t 1i'*tJ'(dI·"....---~ ........ -.., -~....-:.d_~~~...Ë,.,~ .... ~:. 

1 
N 
Vol 
v:J 
1 

lA 

è-..... 

.. 



-----.....,-----------------..... ------------------_ .. y-.- . -, 

,t) 
---.. , 

J_ 

== 
'" 

'te 
o 

1 
_1 ,...... 1 ---.. 

1 

'~." 

~ 

') 

7 
.ELf.SE 2.0 fNPUT DATÉ - 77154 t 1'22'15 RE\.EASE 2.0 INPUT OATF " 1715. tI/Hile; 

\-

jJ 

J 

c 
C 
-c 

" SU~AOUT,NE r~TC~O'NT.NPART.~ELE~.~OUN.NLQ'O. IRIT.NOt~P. 
• N~qEE .ELAS. v.!i'l' , ELD ,NHARO. EX l'ON. S07. ET. 'TOT .\l., 
• NNAX.NTWICE.HTQTAL. 
• COORO.TH'CK.XC.VC.pL~AD.UOISP, 

• INOIC.1flJ1 • ( , 
, .. ~tCtT A~ __ ." CA-H.O-l'. Ùf~GER.2 tl-NI 

• r~NAR.~FJ~S~.NLAST.HO~RAHS.NREAC.NF.NB.LF. 

INTEGER "~OINT.N~AR~.Hnl'p.H~LfM.HONC~P.N .NLOAO,HGAUSS.Hl AVER. 
• NINOtA.~FPf!.~T'T.~.~~'K •• T.rr.e 
DI MENSI Qft COQ~Cl ,".10'"'' ·.THICI{ (t'EI..E>4I.xC IHELEN) • YCINELEII4 1. 
~ NUINOrSPI.PLn'OC~FA~F./NLO'D'.UOISp(NFRee,NOISp'. 
• NFIDSTCNP'ATI.NLASTI~DA~T'.NnD( •• NELENI.NTRANSINEI..ENI. 
• ~ACI '" rl'AL 1 .HFJ HLOlO'. ~81"'FAEE 1 .LF( NLOlD ,. IN'> le C NELE'U 
• .1"l~""I".ID"HI 

-"AD rN INpuT QATA 

op '. ~ 1-" NJ1U NT -
12 RE'DI5 •••• ~.CCOOAOCJ.~'.J •• ,lJ.rPr..N .. A(K' 

00 16 'a"MPART 
.&. 'IEAIU$.26. K ..... r.RSTtK ....... A5TCKI 

00 20 ·Ia,. ""LE'" 
20 AEAOI§,2" K.CNOOfJ.K'.JzI.~I.HTRAHSlkl.THICKIKI.xe(KI.yCCKI. 
_. u"OICC., ! 

00 21 I-I .... 'OTAL 
.21 ~&EAell'.~ • 

00 2] 1 * .. 11180UN 
.CAOI~.l~' .. FCI'.(~SCJ,.J*I .... FAEEI 
te.' '<F (1, ... ..-1, ."FPEE ' 
OJ 2l "' ..... FREE 

2] .. ReACIK+J'*NBC.r1 
IYOTAL*O 
."A·~3 
O~ ." tat.NPAAT 

"" 
J·'~FIASTCI'-II·"'FPEE.1 
K.~LASTII'·NFREE If." -

'1:10 SO L-J. ~ . 
. (,. PI~! A( Cl.) .[0.01 GO TD 50 ...... , 
"' .... ACU. ,Z" 

$1) Co",Tr .. vE 
I,-C .... " •• L1'.~J ......... .. 
1 TnTA'-:' TOTAL'" 

'0 ('1'" , .. U[ 
"·tIIIC!'·2'·".AX 
0':) ~ .. l'' •• NL&AD 

"-

l8 OFAH'I.lO' i.FClJôCP\.OAOIJ.It.J*'."FAE€' 
DJ li' 1"-4.NOI5" 

12 R(A~I'I.JO' ~cr,.cùOt~~IJ.r,.J.I.NrQCE' 
~(A~I~.1e' .. LAS.V.sYIFL~.NHAOO.!.PoN.sn7.EI ''F ( 1 •• , .... ,..E ." Rf''' UA .... 

1.1'3"· .. ,111,0.3",(1 • ., ..... &71 
~z ~OOM&T(~.~.1r".O.J~._ 

------- ----

J 

'" 

~'t..\?~.,~t,4i .4 .. _" , • .m ..... ,..--"" 
E~~l~~'--' ~ ..... " ~~ r _ .... \1. ;~' ... 

c 
C 
C 

26 FORMATC7IS.6F7.0' 
JO FORMATIIIO.6FlO.OI 
36 FORMATI3FIO:O.110.JFI0.01 l' 

ECHO INPUT DATA AT F10ST RU'" 0""'" C 

70 WA(TEI6.621 
DO ft4 Izl ... JOIHT 

84 WRITFI6.!!61 ,.ceOOROIJ. Il • .1=1.31. IPL ..... AII 1 
WRITEI6.901 ~ 
00 IJl 1=I.oIIpAR1 

92 WRITEI .... 9., I.NFIRSTCI,.NLASrll' 
1IIRlliEI6.9'" 
DO 1 00 1 =1 • fE LE N'- 1 

'00 WAtrEI6'.lp21 loINOOIJ.I,.J"' •• '.NT'U"SIII.Tlirroqll."e(ll.yell~. 
- INOICIII 
"AlrEI6.1061 
DO 1 12 1 =1 • Nf! CUH 
K-CHFCr,-t'-NFREE 
00107.J .. ,.NFAf'E 
loi." J j=NAEACIK.JI 
IFI ... BIJ,.NE.Ot NRIJt,.~ 

10 7 CO"lTl"lUE 
112 "RlfFI6.1DIlI NFIII.IPLNARINFIIII,.IN8IJ,.J=I ... FI>C'EI 

IFI"'LOAO.EO.I,ANO.LFCHLO .. OI.EO.O' GO TO ~l~ 

WAtrE16.1161 
00 1 1 fi l '" 1 • HLOAD 

118 lfRlrF16.1201 LFCIIoIPLN .. RILFIIII.I .. LO.DCJ.II.J=I .... FAEEI 
tI9~IFINOISP.FQ.I ... NO.NU(Nn'SPI.EO.'1 GO TC 12\ 

WA 1 f F 16. 1171 
00 1 \ S (. 1 • NO r 51' 

tl5 "Rlfr16,120 1 Nvl r t.IPLN_AI".UIIII.(vO I~Df J,II.J='.NFAE(I 
121 WRITEC6.ll01 FLAS.V.S'l'I(LO."HA~D 

IFINHAAO.EO.ll w"I'~16.112' F(~] ... S07 
1~("H"QO.EC.1I wRITE(6.1341 ET' 

82 F:J"'-'A'C"-,TIO.'JOINr N"·.T)O.·)(-nqOI,..,ATL·.T~O.·Y-OQDJ~ .... ,TE· .T.,O.·Z 
'-OP~lNA'E·.T~Q.·COP~AN~R oq ~O~-CÔPL~~lq Jn~'.I.· ·.~]S.·' '~·.l 
.'x.'GLnAAL·.J3 ... ·SySTE .. ,. _''-lt.'C L = CnOL ....... !) ,JOrNT·.' ... • '.rQ),' 
-5 t NON-('OPLAhAA JOINT \' .'" 

86 F~~~.TC· ·.TIO.15.Tl~.~F~O.~.T100 •• 2) 
90 FO~~AT(·_·.Tl0.·PA~T'~tO~ Ll~E ~O·.'~:.·Fl~;T J~l~T 1~ ~HE Lt~r·.T 

.70. 'L"ST .101 ... 1' IN TH!: ll"E'1I.,,, 
9. FOR~"T(' ·.Tl~.IS.~4S.IS.TtS.ISI 
98 FOR-.AT ('-; .~, T2. 'ELE:Nf:"'fT NO'. TI~.·, • _ T21 .' J' ,T2ft.' J(' ,r 11~" T .. ~, ',,",0 

.. N'C-QPl..ANAO f:.l.EW'ENT NO. "' •• """'.' THf'CKt.,.o;S" ""'6. 'lte '. "'1':4 •• y" •• ·1 lS 
.f'I::rFJAST r~ A :fU.',I',' ',,"11\,,'( t" .,r.~,c; cnp! ".~ ... q J! .. rl1~,·?=L .. ;1 
-IN ... nOIlll" ,,',' •• Tll~.·01:1,..Tt-.:t'ooll~ )lATP:',/I" 

102 FO~~"IC' ·.r7.rI2 •• IS.r.h.I~.f;~.3~1~.~.TI?O.r~1 
lC6 r-ORlAATI'-'.·JOIN1 "O"'1-2.·COO''lI·.~H·.T4· •• rn".OlI'/V C'''OITt~ .. ·./. 

.' '.Tt2,,'(L=LC"CAL'.Tll'\.'fO ~ FItt:En. 1 = f",.l'=.F " 'ClJve)'.I,' '.1"13 • 
• "G=C;LIlf"AL) • • 1/' J 

IOR FrH""ATf' ',(').T\III\,""."" ('H 
ll6 FOR'"''''t·-·,T~ .. ·jnl ... , ..... f).,'2').·~'r1')flt .... T[·._TbO.· .. 'r,'-4t .. 'r~ ..... F , .• ,. l 

~ • n Ar)' • , .' '. r 20. ' ( l-=Lf"'C AL' • T 'r:t •• 'II: -1 " ... f)' .--y:;;) •• y -1 ,."',,, ,) .. , • , - ... - ;, ~ •• f ..,. 
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1I~t.!U! Z.O 1 tIPU~ D.tTE • 77154 Il'22.1 J5 IIELEASE 2.0 TlUNS DATE" "154 Il,zU1S 

1 
.~J.·x-MnME"T·.T98.·T-MO~MT·.TIIJ.·,-MOMENT·.' •••• TZ1.'GaGLOA4LI' SUBROUT INE TRANS (NJO INT .NEU;"'. N·) ... CO ...... ' .. PER. cnOQD. XC. '(C .... WJn. -.", 

II? ~~~~A'I·-·.'5.'JOI~T NO'.T20.'COORnrNArE'.T60.'MAGN~TUOf OF UNIT 0 
-rsp,.,.· '.T20.'CLat.OCAL'.TJ!.'.-015P'.T5J •• Y-0ISP •• T68 •• Z-0rSp •• T 
."J. ·X-ROTAT,,', 1911.· Y-If ° TA n.,. Til J •• Z-ROTA TN· ., ~--"-. T2? • G=GLORAL ,. 
-,_" 1 0 ' 1J. 

12? ~OP~Ar(· •• T5.IS.T1S.A2.TJO.6~'5.51 
130 FOR~Arj·-·.~s •• ~L.S'ICITY ~~OULOS·.T5~.·:·.~20.~./.' ·.~5. 'POfSS 

*;:''1 PATII:" IN "'LASTIC RA~.oT55. • .. ·.FZ~.5.' •• ·.To;. 'INITfAL U"'IA~J 
.'L rlELO S'RF.5S·.T55.···.F2'.5.'.· ·,TS,·H.qOEN1NG PROPERTr OF STR 
-!SS-';f~AIN tURy,,' ,T55.· .. • oI101~ -

IJZ ~",l .. ATI' ·,T'.·".PO"ENT USEO FlR STRE5S-ST~AIN ,!QUATION'.rt5,."'.F 
.zc.~" •• • .T'.·SR"NT Ylfl.O SfR!SS AT 0.7E' .,"55.'='.1'20.5.'1 

Il6 lIi~q"A'f' _·..&~T~.·T"NGE'N' ",.,nULUS FOR LtNeAA "'AR:lE~ING'.T~5.·.z'.F20.5 
.1l"W.-~ -. 

,... 1ft.' .,.cu. 
E"l \.. 

j 

"'~~·e;CT. ...crC:-.lo.EeCOlc.SOUACE.NoL Isr ."OOECK.LIlJlo. NO''''<>' NOTE5T' 
~""EC~. "'AV: .'INPUT • LIHECNT • 56 

S~U.CE ST~TFM"NT5 • 8,.PAOGRAM SilE. 5764 
~ ,r.,~o$~rès GE~ERATEO 

.' 
~; .0 

-' 

C 
C 
C 

• NtRA"SI' ~ 

IMPLICn REAL_II (A-H.O-ZI. IN'Et;ER~ (I-N' 

-
rNTEGER ~JO'NT.NELEM.Nr"PEA.NONCOp-r ? , ' 

O'''ENS 1 ON COORO( 3. NJO l 'l TI .l( C (~FLEN'. ye 1 NE_ fIC 1." 1 1. l..NI"'':Q. 'l~ '<&""',' 
.NOOI4.~I.NrRAN5(NFLF"1 

TRANSFORMATIO .. "ATRIX 

00 165 LKal.NELEN 
IF(NTAANSIL~I.EQ.OJ CO ro 165 
LLaNTRANSILICI 
H ( t" 1 • t • LL , ':. 1 • 
H( 1.2.' .LL J~O~. 

tHI.3.I,lLI=O. l' 

Hl 2 • 1 • 1 • LL ) =0. 
HI 3.1.1 .LL1=O. 
rAsCOOAOC2.NOOI4.LK"-COOAOC2.NOOII.LKII 
l"·COOROCJ.NOOI4.LK.,-COOROIJ.NOO(I.LKII 
OEN(I=OSQAT 1'( A-T A. 7A*Z JI 1 
H(Z.Z.I.I.LI:YA'OENÙ 
Hf2.1.I.LLI·ZA/OÉNU' 
HI1.Z.I.lLla-H(2.1.I.LI.' 
H(3.3.I.LL,=H(2.2.I.LL' 

165 cml1'lNuE -
RFTUlfN 
e;NO -==-

EFFECT. NOTÇR ... IO.e8COIC.SOUACe.NOLI5r.NOOFCK._OAO.N,WA<>.NOTF~T 
EFFECT_ N"~E z TRANS • LINFCNf = 56 

SOU~CE STATEMFNr5 • 22.PAOGR",. SIlE a 1127 
NO OrA~OST'CS GENERA'fO 

~ 

.; 

~ta ... 4~, J'l',e.' ,nt 1* f~·"'-'~M J ' > 

---, .. ' 

'\. 
i.fI' 

/' 

y 

1 
N 
+:­...-
1 

~ 
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1t[(,EASE l.O S~T DATE. 77154 "'2Z'35 A!LE"SE 2.0 REAOY IlATE .. 771.S' Il "'Z"'" 

.., 

SUeqOUTINE SET NEL!M.~LAYEA.NGAUSS.INIT.NTOTAL. 

e ELAS • v .• S'fI ELO. oiHAltO. E. PON .50 7. ET. HPA lM!:;. EXX. EXY. 
• tfY~ !lZ .PT" ... T. WGT.P.UTOTAL. STRES. PLA!R." TOTSqN. 
• IC'!EP .... AE AO, 

.MPLle'T REAL.~ (A-H.O-l,. INTEGEAe2 CI-N' 
INT!GI;A N\.."YER.NGAIJ'SS ... TOTAL.NAEAO,"ELFM , 
OIMENSIO~ X"PTC ••• ,.l"eGT( ••• ,.~TINTINr.AIJSSI.WGTfNGAUSSI,~NTÔTAl:, 

• .UTOTAL(NTOT.LI. 
e 

• 
• 
• 
• 

OATA XYPT 

STIt~S(3'''LA,,!~.NG'USS.''GAUSSI.T~TSqNI1.2.Nr.AUSS~NGAU\S1. 
PLATQN(NLATFq.~G.IJSS.NGAUSSI,KFEP(NLATER.NGAIJSS.NGAU$S) 

, C •• O •• Oe! O •• -~.~77]50?Eq'896. O.~1'J5026q1816. 
O •• c •• -O.'7.~9~~~q2.t~. O •• O.77.59h~69?l5. O •• 
-0.~61Il~31159.1. -0~3399~IO.358'~, O.339Q~IO.~~~'8. 
O.~611]6]IIS~4( , 

otT' XVeCT , 2 •• O •• O •• O •• 1 •• ,:. o •• o •• ~.5S5SSS~S55S~6. 1 

• O.~~I'I"'I"."""!I"9 •. 0.5"i5S555SSS5S6. 0 .. 0.3'7~S.'l.5IJ7S-
• • O.~S21.51~41'1625. 0.6521451548625, O.J.7~S.".5Il7S , 

15!1 00 \60 1-I.NCAU0;5 0 

pr'~TC'.·.YPT(f.N~4USS' 

'11'>0 OLGTI 1 '''.''WCTI I.NC"US!' 
1~I"HAR'.EQ.ol HPRI.f_o. 
IFI~~ARO.EO., 1 HPItIME"'ETaFLAS'IELAS-ETI 
":EL4S"I.-Va ", ..... , 
[".,,,Ta,, 
E"""T 
Ella"ae I,-V"2. 
IFe I,.IT ,"E." AETURN 

65 ~O 57 lal.NTOTAL 
.. , llaO. ., 

6' UTO~ALrr J.O. 
"~.I-" N~I"O 
.Qrrr I"QEAOt UTQTAL 
')~ ''''0 ri" 1 .NGAUS5 
~ 180 ~~"I.NG4USS 
'l~ 1.9 .~'I.NLAYER 
PL_Tq~,aK.~.rrl·O. 

eE ", (ICC • .lJ." '''-0 

;( 

97' 

$U8~OUTINE REAO"INJOINT.NELEN.N'NcnD.Nr.AIJSS.N_AYER.NFDEE.LC.~IN~.~ 

• .JSTEP.INrT.~TOTAL.NRrAO.N.RI'~.H.uTOTAl.ST~ES. 

• PLATAN.TOTSQ-N. IPLNAR.I'.OO.1...L.KEFP. 'Tf!:),a, J 
'''PLle'T REA~a8' l''-H.O-l', INTEGFR*Z II-NI 
INTEGER NJO!NT.NfLFN.NONCOP.NINP(R,Nr.AUSS.NL4YfQ,,,TOT.~.~F~EE. 

• NREAO.NWRITE 
01 Meto.lS ION UTOTALCNTOT AL). ~C l.~. N 1 JiIIIPEQ. "'ONC"l" J ...... ,,.,C .. ,"ELc-"" • 

• STRESC l.t.fLAYEA.NGAUC;S.".H;AUSS) .PL4TR~Ht.1 Ay'"J) .... ~"'JSS.,.H'; .. J'i 
• 5'. TOTSRII( J.?"GAU<;S,t<r.AU<.5S 1 .K~E:>I·'LAY"R,,,,r.AU~S ... r;AU<;S 1 

COM"ON SKTl2.,Z.I.SIZAI,wIZ4"DGI91."KI('h241.SIIJI 
tNTEc.eRa2 IPL"'.<>INJOINTJ..LnCA.,,,' L" 
DO 971 1 =1.2. 
$111=0. 
00 971 J=! .ze 

IFIt P.EO,I.ANI>.ITFqA.EO.11 RET'RN 
IF .NfO.1I GO TO 200 -

SlC~( JI=O. 

~ IF TEP.EO.INIT .. &ND.fTEAA.EO .. tl GO Tf) 100 
RF" (NRfAOI 
W''ITE INwRI TE' UTOTAL 
GO TO 200 

100 AEtO INREAOI UTOTAL 
200 1021 

00 70 '''1._ 
IF(NIMPER.EQ •• , IO='=::::' 
L"'I 1-\ UNFREE 
K=INOOI'.LItI-llaNFREE 
IFILL.EO.O.OR.IPLNARI ... OOC r.LKI'.FO.LIXALI GO TO 'i0 
00 _0 ~=1.2 

l4"'l.IJ-t 1-3 
N·,c.(J-II-J 
00 lO Il'' 1.3 

_ Tt =0. 
DO 20 Jlzl,l 

20 TI =THH( 1 I.-'I.IO.LLI.UTOT.LIN.~I 1 
JO WI'UIII:rt 
40 COIITlNUf 

GO Ta 70 
on I.~ Jal.' 
1-,~I(.GT.21 GO TO le9 
,~t~~~CJ.KK.JJ.II)·O. 

1.9 ST~~SI.l.lCK.J.I.III~O. 
, .. ., C:J"TI"UF 

C:J ~." • al. N!',LE" 
2::0 .:>ITF 1'."fAD~ STAES.PLAT,!"'.TOTSRN.ItEEP " 

~ 
o 60 .Jzl.NFAEE 

W(L.J'=UTOYALCK.J' 
70 CO,<T INUE 

.IIEAO INREAOI STRES.plAUN.TOTSRN,KFEP 
R"'URN 
ENn 

/ aL!:"tLaO. L. 
.qlr~ I~QfAOI p.XLEVFL 0 

q:TU~~ ~ J 
1'-';:' ~ 

rccc:... .",'. =~ ... r "')..,. ~4CO' C. «;t1VACF • ""0\.1 Ci • NC"OECK .. LOAO. "'O'tAP • .-..OT F$' 

.. ;FFEC~. NOT~A~.IO.E8COIC~SOUACE.HOLIST.NnDEC~.LOAD.~nNAD.~rTF~T 

EFFEcr* N4~E" RFAOY • LINfCNr z ~h 

SDURCe STATEWENT! '" Jq.PROGRA~ "llF • 2"C~ 
NO O'ACN05TICS GENERATEO 

~rF~,T· ., •• ~ z srt • Lt~fC~' : se 
~,~~C~ ST4T~-~"TS a J~.PAOGRA~ 511f • 1'176 

~~ ~I'~~~~'IC~ ~F~(Q.,[O 

~ ~ 

~~"j, ". " 1' ... ":".' "'_ • -; ,-9 Jr : --- -----..X% -~ r) Il 1 n t t t'libeve'"""'· .. ,,·······"'· .,~ <.. ,: '. " ... âllilÏd",.i:;.'>:,..!/i,ÎiIJ'IiiiIl""'W -~--- .' •• ~ . 
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~ 

N 
1 

~ 
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""" 

It~l'SE Z.O O'~1tO DATE. 77154 Il'22'35 RELEAS!!: ~ OISCRO DA TE 

SU~ItOUTIN~ DISGRD« NGAUSS.ISTEP.1NIT.LK.PTINT.XC.YC.O.ITERAI 
IMOLfelT ItEAL.~ (A-H.O-Z'. INTEGERa2 ('-N' DC".IZ.JJ.tl,zA*XZ*.S/AZ 

''''rGEI> NGAUS; ~" 

~ OIN~HSION PTINTfNGAU!51.0f9.1,.NCAUSS.NGAUSSI 
IFClSTEP.f'o.fNrr .ANO.ITERA.EO.\I GO TO 10 
qEAO «., D 
RETU"N 

10 ~o 15 L~I.~CAUSS 
DOIS ,,- I.NCAUSS 
00 15 ,/al.24 
00 15 1-1.9 

15 :)( 1 .:I.K.LI-O. 
•• XC.I'2. 

I!.Y'':'~. 

A"z'." 
41a" .... 
.2*",.e .. 
Al= •• ", 
9t ..... q 

'Ji ... " •• ~ 
"la'.", 
no ~?O II-l.NGAUSS 
~~ soc :I:I-'.NGAUSS 
".gr INT(:I:I' 
Y ... T,,.TIIII 
·'=l.-x 
X"al •• X 
Jela.I.-l._. 

•• -1.·3.*" 
115- C lal<l. 
y .... ,.-y 
TI=I •• ,. 
Y]=-l.-J.·Y 
V.'l •• l.·V 
TSar'_Y2 

@;o 

0« 1 • 1 • .1 .1 • 1 1 1 .. -y 1 , '" 1 

-'1 

011.7' • .1.101 r )a-Ol 1.1 • .1.1.11' 
011 \,J • .J:I.I ".Yl'AI 
OC 1 • 1 f • .1 J. 1 1 1 --0 C 1. 1 3 • .1:1. Il ) 
012., • .1:1.11 ' __ JI, '81 
nc 2. 7 • .J.I. ri ,z-X2/AI 

?'2 •• ,.:lJ.I'I.-O~Z.7.JJ.I't 
DI2.ll.JJ.II'.-Oll.I.J.J.111 
Ofl.2.JJ.II'a-Q.375.xsaYl'. 
n'~.6.JJ.III·-.I.x'.YI'~. 
'1·.~.JJ.II'·-0IJ.2.JJ;'I' 
01 '-12.JJ.11 ,0-Il2aIl3ey,,,,. 
1 1 1 • 1 •• J,,-.-r, 1 • o. , 75 .lIS. y .. , '" 
~. 1. 1!t.JJ.' J J"-.' •• l.y~,". 
'l( J.?) .JJ.II' :-D~ 1. t4 • ..1..1. t Il 
"H 1.~~.JJ.II.=-xJ •• 4."""". 
'lC~. ' • .IJ.II "-".'I.C;>'.""~2 
nl •• ~.JJ.11 "-A.xl. y ",,,,, 

"lr'.'i.JJ.rl'.:-.Z ... ?el?_.""~ 

" " 

Cl .. 

~ 

\ 

\ 

" " 

mrSH nte. 't ~~ ......... , ---...,-~.., 

a -

-----

o ( 4. 14 • .1.1. t l ,,, -0' 4. e. J.I. l , , 

OI •• I~.JJ.il'2-0( •• 12.JJ.II' 
014.20.JJ,II'=-014.2.JJ.III. 
0' •• 24 .,JJ .. 'I)~"-O(4.6.JJ. t Il ,..-
015.3.JJ.II'2-YlaI3'*'5-Y*Y2'/"'2 
0IS.4 • .IJ.II'=-B*y,oYS/AZ 
01 5 • S • .1 J • 1 l '=-0 ( J. b • .1 J • 1 l , 
0(').9.J.J.II':-0(,,;.).JJ.111 
O( S. 10.;1-.1.11' =-D( S ••• .I:I.I 1 1 
0(S.II.JJ.III=-0(3.IZ.J.I.I" 
O( S.15 • .JJ., J .=Y24(J •• lSf.ve'Y'I'/AZ 
OIS.16,./J.II'=-F!*Y7*YS/A., 

0IS.17.:lJ.II'=-0IJ.I'I.JJ.III 
0(S.21.JJ.III=-015.1!>.JJ.III 
OIS.22.JJ.ltl--D(S.16.JJ.111 
015.21 • .1 J. 1 l ,,, - 0 1 ). ;> •• JJ. 1 1 , 
OC 6.,] • .JJ.I 1 ,-=-x '* (-xe X2 +) •• Y'S'/B2 
O(6 ••• JJ.Ir"=-'IOYl.y./q. 

01 6. 5.>4J-. Il '''-01, .6.JJoIlI ."J,~ 
0(6.9.JJ.1 l '=-X2o( ,o'I.J.o~'/JZ 
0(6.tO.JJ.IIJ=X2*YI·Y4./(-l!.J 
Dl 6. , 1 • J J. 1 1 , = ... 0« ". J 2. J.J. ri' 
o ( 6 • 15 • J J • ( 1 ) =-0« 6 • 9 • J J. 1 1 ) 

0Ifo.16.JJ.II, .. -x2*YZ.Yl,e. 
016.17'.JJ.II'=-0(6.II.JJ.III 
O( 6. Z .. JJ.I Il =-016. 'JoJJ.111 
Df6.22.JJ.IJJ~-Xl·Y2.V3'~ • 
DI 60-2l.JJ.1 1,'=-OCt..S.JJoI fi • 
0(7'.J.JJ.III=0.7SUOYI/Al 
O( 7.!>.JJ.II':",.')'YI /42 
0(7.9.J~.II'=-O(7.3.J.J.II' 

OI7.II.JJ.II' .. -7.*X •• YI/AZ 
O(7.1~ • .J,J.II)s;-"O.7'5.x.Yl/"'1 

017.11.~J.III .. -z.ex.aY2'AZ 
011. Z, • J.J 1 1 l' =-017'. 1 'h J J. III 
Ol7.2J.J.I.111=2.0"JOY;>/4;o 
or'l.] • .lJ.11 '~O.1";.'I.Ynn 
O(fIII.' • .JJ.II':-2 •• XI.Y)/Ft~ 
OC 8.(} • .J.J.11 ):O.75*.1.2.Y/ft'1 

01 Il.10,.1.1.11' &-2 ••• 2 OY1"12 
Dt Il.15. JJ, 111"'-018.9. J.Jd Il 
Ote.16.JJ.II'=2.-.2·V"/",? 
OlA.2t.J.J.ll'.:-OCR.l,JJ.i.) 
D(ft.22.JJ.I(,s?.Xl·r.~A2 

or q. J • .1.1.1 1 1 ~ 1 O. ";-Il 1 370;0 •• l(- O. J 75* Y. YI ... AB 
01 'l ••• JJ.III=YI .'H/A? 
019.5.:lJ.II,=-xla'&"'17 
OCQ.q.JJ,II.=-Ot9.,;Ti. Il' 
O(Q.It").JJ.t')=-O(9.4 • .,J,J.", 
n.(q.ll.J,J.It.'=-J{Z·xl/nz 
DI '1.10;. JJ.III =01 9. J.:JJ.III 
OPI.16.JJ.I' 1=-Y2.~;> 
DC 11). t 7. J J. r r) =-0 (9.11. JJ. J" -

77'154 

-, 
~J 

Il '22'1" 

1 
N 
+=­
W 
1 

A 

!C 
-~ 

• 

~ 

~ 

J 



l''t! 

.~ 
--...-!-

tte;J,.I!ASI! 2." 0ISGRf> 

~Cq.21.~J.lfl.·DCq.J.JJ.II' 
DI~.22.JJ.[r~(q.16.JJ.II' 
OC9.21.JJ."I-·O(q.s.JJ.rr, 

seo CQ'f~ tHVI! 
.~IfE (41 D 
RE TUR ... 
FNO 

OATE • 77154 

11 

\ 
!~·~CT. ~OTEA •• IO.EftCOIC.SOUACE .... OLI5T.NOOECK.LOAO.NOM4P.NOTEST 
!F-ECT. ~.~E. 015ÇAO • LINEC"'T • 56 

~luttC! ~TAT,ENEHTS • IIS.PRDGAAN SilE a 7280 
~ ~IAGNOSTICS GENfRATED 

~ 

-

Il'22'35 

-\: 

au __ ._ ... ____ _ 

o ---

• 

RELEASE 2.0 STRAIIC DATE. 771'54 Il '12,.)'5 

--:, 

SueROUTIHE STAArN(NGAUSS.NLAYER,JJ.II.TH.STRAN.TOTSAN.O,'STfP.I~'T 
• .ITEPA' 

INPLICIT AEAL*S (A-H,n-l'. l'fTEGFR*2 ('-NI 
INT-EGER NGAUSS.NLArER 
OINEN~ION STAANI1.NLAYER,.0(~,~4.Nr.AUSS.NGAUSS'.TOT5A~I).2,~GAJC~, 

" HGAUSS'.AIlI J,2'''.'I1I ).2.' .AT! J.2.' 
CaNNON SKT(24.24,.SI24'.lfI241.0GI91.SOCI(9.;o.,..511]' 
~QU J VALFNCE (..r;K 1 ( 1. 1 , .'11;)' 1. l' , • ( SIC. 1 ( I.?) • al ( 1.1 ••• 1 

• 15KIII,171.F1TIl0I1I 
80 Da 100 1 = 1. 9 

DGIII=O. 
DO 100 J= 1 • 24 

100 DÇ(II~OGIII+OII.J.JJ.III."(JI 
IFITSTEP.Ea.r"'IT.A~O.ITE~"'''O.11 R':TURN 
A=OGIS"2. 
B=OGI61'2. 
DO 200 .1=1 ... " 
8011.J'=0(I.J.JJ.r" • A.DIS.J.JJ.rr, , , 
Il:l12.J'=014.J.JJ.11I • A.OI~.J.JJ.III 
80C].J.=O(2.~.JJ.fr).D(3.J.JJ.lr'+A.O(S.J.JJ.II'.4.Df~.J.JJ.fl' 
tUII.JI=OI7.J.JJ.II' 
8IC2.J'=DIS.J.JJ.II' 

zoo SI(].JI=2.eO(Q.J.JJ.II' 
DEL T .... =TH/( NLA.YEA-I' 
"'ZNLA'tFA-1 
Na 1 
00 SO~ 121.NLAYER.N 
IFII.EO.NLAVERI "a2 
la-TH/z •• II-I'.OELTAH 
DO 400 Kal.l 
AaTO~SRNCK.M.JJ.II' 

TOTSRNIK.N.JJ.lr,.O. 
DO JOO J= 1. 24 
ATIK.J'=RO(K~JI-l.BIIK.J' 

lOO TOTSPNIOC.N.JJ.tll=TOTSRN(K.N.JJ.III+8TIOC.J' •• IJ' 
400 5TRANIK.I'=TOTSRN(K.~J.III_A 
500 CONTINUE 

00 601) Is2.N 
l=-TH'2 •• C~'·OFLTAH 

ffj 

no 600 K21.J '( , " 600 5TRANIK.II=!STRANIK.NLA~FRI-5TRAN(K.III*(z+r '2.I'TH.ST~.NIK.11 , 
DO "00 .J~1.24 ,..t 
ROfl.J'=O(1.J.JJ.rr'.DG(~'.O(5.J.J~.rrJ 

AO 12 • JI =01 ". J. JJ. Il) +0<;1 6' -OC 6. J. J J • 1 J 1 
eoo BOIJ.J'=012.J.JJ.II'+011.J.JJ.III+OGI6'*OI'5 J.JJ.II'.OGI~I'?I'.J. 

• JJ.IJI 
RETURN • 
ENO ,i 

FFFECl'. 
f'FFEcr. 

NOTERN. J D. EFICOIC. SOUDCF, "nL 1 <;T. '1'lO! CI(.1 DAO •• ,1')'''". "CTf., T 
NANC," STRAI" • LINFCN' " ';,. 

S'1~CE STAT~"ENTS a 4 •• PWQG~A~ S"F a 11' ... 
NO 0lAGN05rrC5 GFNERATFO 

1 
N 
.;:-. 
.;:-. 
1 

lA 

...... 

• 

1> 

~ 

~'" ;lI ;:;;;,>, .':;;.;1 :-,;.FC "~ ': ' ;' • l' JlUN!! 1:r'I"_~-
~ .. - '- _ .... - ~~IIiQ.,et:ntxt·"ti",h,j~,,,""'~"'~ ..... ) 



'0 r o '''-' -.. 

1 

Ra..EASE Z.O STRESS DAT! .. 77154 I1I'Z2'35 

_-0 

c: 
C 
: 

· Sun~OUTINE STRESS(NGAUSS.NLAYE~.JJ.II.~K.E~_S.SYIELO.NHA~O.EXPON. 
• S07.Exx.EKy.:yy.EZZ.IYIELO.ISTEP.INIT.HPRIME. 
• ""PI TF. E. S"'AI'" ST RES. t>t.AT RN. rOTS RN.K EE:>. NT. 1 TERI. 
• '-,. 1 

IMOLICIT REALes (A-H.D-ZJ. INTEGER*2 CI-N' 
'NrEGeR NGAUSS.NLAYER.~.~ITe 
DIMENSIoN 5TRA~(3.NLAYeR,.STRES(3.NLAYEA.Nr.AJSS.NG_USS,.E(3.~.~LAY 

e ERI.TFwg(l •• S~LT_C". XC3'.-- PLATRNCNLAYEA.NGAUSS.NGAU 
SS •• KEEPCNLT.EQ,NC4J5~,~CAUSSI,TJTSRNC3.2.NG4USS,NG4USSI 

FOR NHAROwO CPERFECT\PL4srIC ~ATFRIAL' 

• 

lZ0 ~-1000 IItcal,NLAYEl> 
IF(<<EEPfCx.JJ.lr •• E~.O' IP~I 

IFC~!EP(Ktc.JJ.111.~E.O' IP-Z 
DO !l00 ""IP,l j .,rr 

.~~ CALL WOOULI(STA~5(I,KK.JJ"".STAF5(2.KK.JJ.III,S\AESC3.KK,JJ.II'. 
e KFEPCKX,JJ.I".5YIELO.HPMIME.ExX.EXy.ETy.EZZ. 

. • ECI,I.XK'.eC I.Z.KK •• EII.3.KKI.FCZ.t.KK,.(C2.2,KK,. 
• !CZ.3.KK •• EI1.I.KK,.EC3.2.KKI,Ef3.3.Ktcl.Sx.ST,OEN. 
• Il CIl. XC ZI • X ( J" 

110 ÎFCI5TFA.EO.INIT.A~0.ITE~A.EQ.I' G~ TO ASO 
IFCN.CE.l' G~ Tn ~SO 
50LTA(IJ&Exx*sr~ANtl.KKI.FxT.srRANC~.KK' 

S~LTACZ'-E.Y·5TR.NCI.KK'.EYY·STRANI2.KK' 
SDLTAI3J·Ell*STRA~CJ,KKI 

l~f<~!Pf.K.JJ.III.FQ.OI Gn ro 550 
FO~LTA·] •• (0.S.'X*SOLTAII'.0~S·SY.SOLT'121.STqES'3,KK.J~.'II.SOLTA 

• C1IJ'Sy,tLO 
IFCF~tLTA.~T.O •• GO TD 480 

450 ~O SO~ 1=1.3 

st''' 

• hO) 

S::n. f AC. 1 '-.0..-
00 'I~:l J-I.] 
5~TA(IJz~DLTACIJ+E(I.J.KKJ.STAAHCJ.KK'_ 

')l4fooOlcl.l 
TF"·' CI'" <;fllESf 1. Kte", JJ.l r, 'foL TA CIl 
ST~- 'S-'I.~ •• JJ.IIJ.O • 
CO'] ,q ....... 

" 

.de KEE"(K •• JJ.lllae 
5"0 

"'~, 

loS/) 

65' 

0" "1.'0 ':l.l 
'·~"(11·5'UFSCI.KK.JJ,II) 

S'~rS(I.~~.JJ,III.ST~SCI.KK.JJ.III+SOLTACI' 

,'C' .. EO.:!! C;J TO 800 C 
S~.)SQHTISTRESCI •• K.JJ.I').S'A~~CI.KK.JJ.I"-STqES'I.fCK.~~."'*STq 

FSfZ.«K.J~.II'.STRESC2 •• K.JJ.11'.STIlE5C?c<.J~.(I'.1 •• STIlES(~. 
• ~·.~J.,r'·STO~S'l •• K.~J.tl" 
Ir,~c.L,.<;.I~LO' rD TO 150 
.,~ 660 1-1.1 

~~~ &1"·ST~r5'I.KK.JJ,'I'-TfwP", 
&-Xfl.·'III-.II'·.(?".C~I·.12'.J •• X(ll'.(J' 
.,:. ~ ... " t 1 ,. ft- "pc 1 J -li t 1). rf"'''( Z' - •• 2' .y! IIiIIPC 1 ,.? • Je. (2 J. tEMPe 2 J .6 •• Je ( l .J. 'f=vn( '1 

c· T' ''''c 1 lOI r "AC 1 '-T ~"P( Il. TE""C ZI+ H:"" ( ~, • Tf ''''1 Z 1 • 1. * TF."P 1 " * TF"" 1 
·'.-<;YI~l~*cYlrLO 

RELEASE 2.0 ~TAESS 

T-fJ.B-4.. *A-c 
IFU .GEoil-rl GO ra 1170 
TaO. 
GO TO 675 

670 T-OSQllr(T' 
TI-I-8+T"(Z.*A' 
T2=(-8-T"12.*A' 
IFI OA'I<;( TII.LE .0.851 TZ" T-TI 
IF(DAHSIT2'.Lf,OA8~IT1" TaT2 

675 DO 6~O 1=1.3 
6110 ST"FSI'.KK.~J.II.zTEM"C(J+lClIl*r 

JF(KE'EPI"K.JJ.rI,.r~E.OI CO Ta S'l" 

001<)01.'.3 

DATE. 77.54 

790 STQ~NI I.I<K'=STRANII,KK'*I 1.-04,5ITI, 
KEF"IKK.J~.II'-I 

1100 CONTI"UE 
150 IF(KfEPIKK.J~.111.NE.O' IYIELO:I 

1000 CD~T'mJF 

Il'22;]5 

IF( 'STEA.EO.'NIT .ANO."EIU.E'O.II AFTUIl'l 
,FIJJ.FO.NGAUSS.AND.II.EO.NGAUS<;I .AITEIN.QITE' ~TPE5.PL&T~~. 

• T~r~A~.~~EP 

~F(I~TEP.NE.NTI IlETUAN 
IFCITERA.NE •• ' RErUAN 

40 IF(LK.NE.,.np.J~.NE.l.0R.fl.NE.t) GO TO 89~ 
wAIfEI6.o;O 1 

50 FO~"AT (' O' .1'".' O'. TS,' ELE .. ENT Nt'", T20,' LeC .. T la'" ( 1 NT F"';<I A '11)', ""l 

*INTS ".TS5.'LAYER NO'.T78.'CUI4ULATEO ST<lESS::S 1 .. LOCAL CO'lQ') 1 '''TE 
••• TI2-' •• O=E ...... STIC·.'.I • fl27.~ .I..I(X)' .T3~.·' 1 ('F t· .T70. 'II: -

~T90.·Y - NORNAL·.TJ10.·S~AR STqFSS·.Tt24.·I=PL.~r,c·.", 
1190 DO 1200 KKZ1.NLAYEA 
900 IFIKK.C~.I' CO TO 'lJ~ 

IF(KK.EO.~LAYEA.OIl.KFEPCKK.JJ,ll'.~F.OI GO T~ ql)~ 

NI)RMAl.' • 

(FIK~EPIKK-I.J~.II'.EQ.O.ANO.KEEPIKK.I.JJ,III.f).'" GO T') 1201 
90S w"ITFI6.'lIO' K",(STRE'i(I,KK.~J.II'.(:I.l,.","r'I<'.J.J,111 
'llo ~ATI' '.T'jS.IS.T6Z.3,)20.S.~1?7.1?1 ~ 

GO TO 'ZOO 
930 IFIJJ.FO ••• ANO.II.FO.l' GO ro ~71) 

_RI TE(6.QSO' J.J.II.K~.l=S-TQE~II, KK.J.J" 1 I.I-I.J'. '''"CPfKK • .IJ,II' 
950 FDRMATC '0','27 •• 1.T1A., 3.T'SS.r'-;.lh2'.30;JoO.5. TI27.12) 

GO TI) 1200 
~70 wRITEI6.Q80t LK,JJ.I',I(I(,(STRE'HI.oror,JJ.II'.I=I.f"KE":I>C"",JJ,II' 
~80 FOU"Ar(·0·"~.15.TZ7. Il.TJ~.ll.T~~.15.Th2.3DZO.S.TIZ7.17' 

IZOO C:O>oTI"UE 
Rf'TVA" 
ENO 

!:FFECT* 
FFFECT* 

NOTE POI.l-!}. ERC OIC. SOUACE. 'IOL 1 5 T, N[lOf CK .L OA O. ,,')WAI>, ,,"OTE';· 
N401E : STRESS • LINECNr z ~h 

SOUOCE ~TAT~.ENTS _ 1'8.P~OGf)A" CIZE !>~16 

NO OIAQNn~TICS GFNEOATEO 

.'" 

~ 

1 
N 

-~ 

""' 

+' . 
Y'~ 

.... 11 

r 

" 

1 \.'t ~ ~~~'.2.§t.j!hPl •• lt7 'CI ----"-" ..... r-"'-"'. - ..... ~ ..... ' IIiiii'i'$1ZM&t ,t ut 5 zr *1 f if.1l1 fairt'i- ~Si 



Q ("', r-, 

" 
ç 

,;J 
.........,; 

RELUSE .t.O M<DIA.. O"TE • l'71~. II '22'35 

SUS~OUTINE MObuLI~rft.C.~.SS"R.HPRIM~.EKX.EXY.EYY.ElZ.EI1.FI2.EI3. 

• E21.e2Z.E23.ell.E32.E3J.SK.SV.OEN.OI.02.03/ 
'''PLIClT RE"." (A-H.O-llo 'l'ITeGER*2 (1-1'11 
.~(~.EO.O' GO TO zeo 
GI-I"+I!I'/3. 
S"s"-GI 
Sy.~-~ ) 
Dlal.S-Cf",.·Sx.exv·SvI,S"AQ 
02·I.S·(f.Y·S •• ~VyoSV'/S3'R 
03·'.*EZZOC/SftAq 
OE~aMPRI~E.4.S·(O.5.ExK.S"*Sl.E"Y.SK.SY.O.5~.SV*sv.z.oe ZlOC*CI' 

*IS,,"P-Sl"Aql 
ell:~.K-Ol*OI'OEN 

EI~a~KY-OI_02'OE" 

el,a-Ol·"UD~" 

fll'EIZ 
El2aeVY-02·D~~EN 

~-f'2l"-020D]'OEN 

Ell"'E13 
El:! -ell 
E 11'''ll-ol*OJ/DEN 
AET J"~ 

zeo EII =ElI2L­
~IZa,.U-­

El ]"0. 

, , 

E2,af_V K 
E22-fTV-
EZ.,,,O. 

~ '. -e. 
!!3:1'aO. 
f]~·fZl 

.. "TU"'" 
",:> 

<. ""Et'· ·"l'~"". lD.E8CDIC:.SO~CI!' • ..01. .sr. ~ODECIt.LO"O.NO"AP. NOTEST "'-

-

RELe"SE 2.0 TAUEPT OATt: a 77154 11/22,1'5 

~-

SV8~OUT1Ne TRuePTCNGAUSS.NLAYf~.JJ ••••• GT.TH.XC.rc.STA~S.ISTtP. 
• IN IT •• TI,q"", 

INPLIC1T RE"Loe (A-H.O-ZI. 'NTEGER.1 "-NI 
INT EŒR NGAUSS. NLAYER '" 
D'_ENS'O~ STRES(3.NL.YFq.NGAUSS.~G"USSI.S2IJI •• GTINGAUSSI. 

o eOI3.241.BI13.24' , 
CO"_PH SKT(24.241.t;(Z41.W(Z41.0GI91.SKlf9.?41.S'()1 
EOUIVALCNCE ISI(II,.II.ROII.I'I.It;l(lf I.<)I.BIII.II' 
00 ICO 1-=1.3 
SIC 11=0. 

100 S2( 1'''0. 
N=NLA'f'ER-1 
DEL TAH.,TH/N 
11=-TH/2. 
00 .00 I(I(=I.N.Z 
lZ=11+OFLTAH 

,. 

1. 

Z3"12+0ELT"H / _ 

00 ZOO IsI.3 / . 
Slf.,=S\III+SfRESCI.KK.JJ •• I,,( •• STRESI •• K<.,.JJ.II,.t;Tg"t;f'.~~.'. 

• .1.1.111 
l"IISTFP.l:O.,NIT.AHO.ITEAA.EO.I) ,GO TO ;>00 
S2C f ) = S?( 1 J +Z '.,STRES( r .IC.K • .JJ.' t ). Z,. ••• *STRF"i( 1 .I(IC .. t • .J J. t 1 1+Z3- ST:JF 

• SII.I(I(+2 • .1J.1I1 
zOO CONTINUE 

ZI =13 
400 CONTINUE 

PO 4~0 1= 1.3 
SIIII-SIIII·OELTAH'3. 

450 S;>I""SZII'.OELTAH/J. 
rF(,STEP.eO.IH,T.ANO.ITERA.EQ.I 1 R~TUR .. 
00 600 1=1.2. 
1' 2 0. 
00 500 .1=1.3 

SOO f=T.eOIJ.II.SII..I,-f\IIJ.Il"SZt.n ,; 

·!.~EC·· ~.u~. -COIA.I • LINEC"T • 56 
600SI'I=SI" •• GTfJJ/-WGTlrr,·T 

IFIJJ.HE.NGAUSS.OR.II.NE.NGAUSS' RETUQN 
AB=XCoYC'4. ~ 

..,. 

~~.-tE ~TATrMF.NfS • ll.oROGR" .. SilE. 144Z 
"01 'lIA .. -..JS"ICS GENERAlEO 

:.-::==:::::= 4. ) 

00 700 I=I~? 
7QO 5C11=$(l1*.8 

'00 ~ETU"N , "fol,) 
EFFEC T * NCTE PN'; 1 D. EOeOI C. SOUPCE .1'101. 1 ST. ~OD'·CI(.1. OAO. ""'''.'> ... OT FS' 
EFFECT_ N"ME. tR~EPT • LINÉeNT • 5& 

SOUQCE StATe_EfoITS • J7.PQQGqA_ SilE 2 ~060 

NO O'AGHOSTIC~ ~EHERAtEO 

l' 

'----tt' .!! 'ftiU" .... ;: ,? ri =-~ ......... ~., 

1 
N 
.ç.. 
0\ 
1 

~ 

..... 

• 



~ 'J 

,KC:::;", 
':-:~J, 

.... ' 

r-. 
1 , ........., 

"El.f!4SE 2. C) STU'" DATE • 1715. 11'2UJ5 

.C 
C 
C 

: 

'0 

SU~.auT'HE 'Tt""INGA~S.NLAYE~.~J.".tS'!P.tYtELO.EXX.EXY.EYY.EZ7. 
• ~T.~.~.xC.YC.O.,TERA) 
'.~'CIT REAL_" 'A-H.O-l'. INTEGfAa2 II-NI 
INT!GfR HG"USS.HL"Y!A 
OI~EhSION WGTeNGAUSS).OC9.2 •• ~G"USS.NGAUSS •• E(3.J.NLAYEAI.EEIJ.JI. 

• ' E!ZC3., •• !EZZCJ.J,.SKeQ.9' 
CO~~N SKTIZ •• Z ••• SIZ ••• W(2.,.OGI91.SKI19.?41.S1131 
I~IIYIELO.EO.I' GO TO lOO 

'yJ!L:l-O "ULLY ELAS'IC TH~U TH~CKNFS5 

100 SKll.I'.THeE •• 
SJC.( 1.2'*0. 

Hj~ 

'·0 

.lI! 0 

sc 1 1 .1 1-0-. - , 

S'ClI •••• 'H.!!." 
'1.CZ.Z.·,. ... ·P'lZ 
~.I 2.1'-.SKe 2.2. 
SCf?.'·O. 
SCCl • .l."sclZ.Z. 
SKI',.,_" 
!'<I ••• ':?H.!!:'Y 
~1.''''·U'.hVI2. 

'Sil 1 '.,.. .. ~I.! •• 
SC 1 1'.'1 .-Fla!'"y 
SKe th'" -$KI7,"1 
SIC PI." '.F laEYY 
S-I~.9J·.,·"I*EZZ 
,,, •• STItP.fCE.I.OA.l TEIlA.NI!. t'J 
00 1~:I '-•• 6 
DO 150 ~.5.~ 
SCI'.J'a1).O 0 
GO TO 2110 
SK'I.~'.TM.E.xaOG'S' 2 
SCCI.6 •• lHeE.,aOGI61 
SCI2.~I.rHa~llaOGI6' 

.... ll.~, ... THa.,ZlaOGI~' 
"·tlJ''''-$C'2.5. 
~I ' .... ,·"'(2.6' 

( 
~cf •• ~I .. T".f.'aOC'5' 
ScC •• 61~'P"aEyyaor.C6' 1 

S,,(~.SI"Tt"I" ••• OGC"lloOG(S'+"ll.OGC6,oOGI6' 1+511 t'~ 
$.IS.6's~".CIE.Y.Ell'*OG'5,aOGC6".$113' ' 
~.C~.~,a~H.CEYY.DGC61.0G(6'+Ell.OGC5'.'GC51'.St(2' ~ 
",,~ ",. ' 

'" ln lllO " 

J 

---------, -.. ----, ----------- ---,-

I!LEASE 2.0 

DELTA_TtVN 
ZI--TH'2. 
00 1.0 KK a l.N.2 
l2=lltOEl. TAH 
l3=l?+OELTI.H 
on J20 1 al.3 
on 320 .1=1.3 

/ 

STfFF 04 TE • 7715. 

Efl(.J'=EEII.JI.ECi.~.KKI+ •• OEI ,.J.KICtl'.EI,.J.KK+21 

/'""'-

1I/2?'~'3 

EEl CI. J I=EE1I 1 • .1 1 +Z 1 aF. l , • J. KIC, t Z 2a •• ae: CI. J. 'OCt J '+ll 0 F CI. J .1(1(+ 2 J 
320 EEll CI. JI"F.Ellll • JI+11'oZI-EC I.J .KY 1 +Z2*Z20, •• ~« 1. J.'(J( +1' .Z10Z ]OCC 

o I.J.KI(+2' 
li "'1 ~ 

l40 CONflNUE 
00 J.S 1"".3 
00 3.S .1=1.3 
F.FI I.JI=~fC 1.~laOELTAHI'J. 
EElC,.J'=F.Flll.J~ELT4H,3. ,.5 FfZZ'I.J'=EEllll.J,oOELTAH/3. 
51( ( 1 • J 1 =r E CI. Il 
SKII .ll-Ffl J. 31 
SKCI.lI:FECI,J' 
51«( 1.' I:EEe 1. 21 
SKI 1.5'-EEI J .llaOGI51+FEII,,,oOGI6' 
SKCI.6I a EEII.2IaOGI."EECI.3,oOGCS, 
SKII.7I "'EElC 1 ... 
SIC 1 1.11 Ja(FlI J ,21 
SKI J .9I a 2.oEElli .l' 
SIC' l. 2':EEI :Ji-:n-
SKI2.31=EFI3.3' 
SKC 2.41=EEI2.1J 
SKI2.SI=EE'3.]'·OGI~'·EFCI.l,o~r.I~' 

SKI~.6'-Ef(J.3'.OGI5J'E~12.3,O)GI~1 

SKI?7IsFflCl.JI 
"KI 2.S,sEEZC 2. JI 
S~(2.91.2.oF.FZIl. 

01'1 150 J=l.9 
'50 SK~1.JI=~KI2.JI 

SKI4.4'=EEC 2,2' 
SK( •• S''''EE(I.2IaOCC51.,fC2.1,a~r.I( 1 
SKI4.6'=fEI2.2'.OGC61'~E(2.3J.~G(~1 
SICI •• 7'=fEIC 1.21 
SKC4.",aEEIC2.?J 
SK(4.9'=2.tfFZC2.l' 
SK 1 $.51 =EE 1 1 .1 .a DCI 5 

• OC(61'SIII' 

-------' ---' ,/ 

" 

C 
( 

JYIELDai YIF(OED 4T 4' LE4ST ONE 1~'F.Rr,R"TING por~T THAU THICKNfSS 
':. , -Or.( 6 t +FE ( 1 • .1,. Dt;, CS ,-OG( ~. +EF ( 2. 11. 

~/ 

let' "le 110 '-'.1 
..." lI') J=l.] 
-f't '.J, .. C'. 
r~lt 1. j ,":~. 

'10 01:"'1 C .~ •• c. 
.... "L.Yt"-J 

y 

" . 

~»( ~!:A; ~ i ~ ~ i !.... ... » E 

( 

- --- tttt:éZ"'~Dilr~~-' 

SKI5.9'=l •• lfF1C3. 
S(1\.6)::.Ff(2.?J-OG.'-6'."C(61.rFf 1.'l •• rJ,(S'-')GCc:.J.7.-' f (/. ' •• î(.CC:'­

toC f., 1 • <; 1 ( ? , 

SKC6.7.=fFICI.?,aOG(6J.Er71 I.JI.)~I~J 
SKC6.III-EE1C2.?J.nGI~"E',(z.}I.n~I~' 
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"aE4se 2.0 STIl'l' DATE. 771S4 

SKf6.q)·2.·I~~l(l,ll.OG(5.+EEZC2.3'*OGf6" 
SeC7.7'affZles •• , 
~~17.8'aEEZZ(I,2' 
So<C7.9 '.2.-EeZl( '.:" 
SKI~.8)·EEZZf2,2l 

So<C a.9lz2.~ElIC 2.1' 
Sc C 9.JJ-'''4 .*EfIZU.l' 
Kt') 

l80 DO l'li!) 'a?K 
L-'-' .-
rY'I J,o~ .Ia,.L 

3.a SO<CI.J •• ~Jt(J.'. 
00 4.20 .- •• 9 -. no 4... J"I, 24 ..... /' 

tFI •• Gr.J. GO ln 404 
IFC'~rELD.EQ.0.A~O.r.GE.7' GO TO 4,e 
,FC"al;0.2. GO 10 "02 
Kla] 
OC7a .. 
GO TI'! .~a 

.C2 t(1~' 
.:1." 
GO Te'40a 

.c •• '''5 

'i; 

'F'fYJELD.EO.O.AHO.'.GE.7.A~.f.L~.8' KI_7 
IFC'VlELO.EO.0.ANO.I.fO.9. Claq 
0<2·. 
IFr'YICLC.EO.O.ANO.I.~F.6l ~~s6 

'Ç(IYIE~O.€O.O.AHO.'.Ge.7.A~.I.LE.8J KZ*S 
408 S<IC I.J."O. o., _'0 .. a"I,"2 
10.0 S~IC I.J.'SKICI.J'tSKf"",OOCK.J.JJ,III 

C· C".!:O,6' ".0 
418 c.",rr'<ut 
.:0 Ct·.T ..... U!" 

l-L-' 
01'1 440 f "1.24 

L:"-"-LL-" 
.... "1. L 
01" 43" ;1-'-;2 • 

~ 

..... c ,J., '-"".6 
(FCL.GT.l' GO TO ~?4 
fFU .• Ea.2' GO Ta '22 
IlI*J 

C?=4 
GO Té"ll! 

427 "'''.1_ 
"2.Z' 
:j,(' TC' .;t .. 

41'A ''l'~ 
<:".:9 
IF(IYI~~n.[C.~.ANO.M.~E.3"~2.6 

;:... 

-<; 

ri --~ ( 
.J 

11/221'35 RELE.'!! 2 • ., STII"F DATE • 771~" 

_28 '·0. 
00 AlO l(aKI,IC2 

'JO T=1'+OI K. f.JJ.III*SICI (K.JI 
SKTIJ.JI.,KTII.JI.r*wGTIJJI*WCTCJII 

1,J6 
438 

IF(M.EG.6' WMzMM+1 
CO/n'Nur: 
IFIL.EO.61 LLzLL+' 

.40 CONTINUE 

'", 

460 IFIJJ.NE.NGOUSS.OR.II.NE.NGAVS5' ~ETUON 
AR::XC.YC~4. 

DO 4KO 1=1.24 

00 480 J=f ,2' 
.80 SKT~I.J'=SKTII.J'.A8 
&90 AETlIRN 

END' 

~ 

-... 

Il 1'2ZI' 1"; 

FFFECfe HOTERM,IO,FBCOIC.SOURCF,NOLISf,NOOECIC.lOAO.NO ... O,HOf[ST 
~FFECT. NA ME • STIFF 

SOJRCE STATEMENTS • 
• LINECNf ,. 56 

16S.PROGR4W SIZE z 

NO DIAGNOSTICS GENERATEO 

\v 

"" 

., 

"io192 

if 

_§lJ@:M~?I:tsf'-;:-_ PI n 
~~,'I.Wtû 'rh rt·~*1tè, 1 Mtii'- N Uh' nt: ". ' w.- - " -.. n.l:i1t l; willPP Il''111 lil le illf! l'tH' tn -. sUI:·'" 
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~L~"SI!: Z.O ROT OATI! • 77154 Il,I2V''35 

C , 
c 
c 

5U8ROUTI~E RO"NJOIN~.N!~E~.IStep.Nt.~K.H.fPLNAA.NOO.LL.NONCOP. 
• HI~PEA.rNfT.tT!qAt 

I~PLICIT A!AL.~ tA-H.O-ZI, INT~GER.2 cr-NI 
rHrl!:GI!:~ N~OINT.HeLE~.NO~OP.N1MPER 

Or~EN$(OH H(3.,.NI~~Eq.~OP).NOD( •• ~LEM •• C(3) 
r~T!GF.D.2 I~~ADC~~O'N~,.LOCAL" L" 
C1~~n~ 5KTI2 •• 2.,.~12_,.wI2.,.OG(9).SKllq.l"I.SI(J' 
EoutV4LENCE CCIII.SIIIII 

r~A~SFOAN ELEMENr srlFFHESS MATAIK ANO AfSnUE FORCE VECTOA FPOM 
LOCAL TC GL08'L CO~qOINATE FOR THO~E N~N-COPLANAA JOINTS 

I,-t / 
IFflsrcp.Eo ... T, GO ro 650 
3" 650 Il "'1.& 
00 6':0 .I.J..s Il • .-
1)0 5eO 17'"1.2 
Il'6011+~.Ji'-8 

00 5e~ ."'~I.z 
rF(~.FO.~J.ANO.12.Gr.J?1 GO TO 500 
JI .~"'.J.I. ~ • .141-8 
IF(I"'~NAHI"'CQCJ ... LK'I.f'O.LOC"LI GO TO 250 
1~1"'''Pf'''.EO,''l 100"...1 
'FIII.NC,JJ.OR.lz.Nf.J2' GO TD 50 
01) .. ~ f -2.' 
":,., 1-1 
1(1(&1-1 
.,~ _: 1(&\'. __ 

""''' • .11 -1 
., SKTlw.NI_SKTCN.N, 
5' DO ~o~ 1-1.3 • M.'.' t-, 

00 le~ ".'.'3 
CI JI.~. 
DO te, tt"I.3 
"att+JI-1 

ICO C'JI.CIJ'.SCTCM.MI.~IK.~.IO.L~I 
00 ~oo ""1.3 
·I.&' J. JI ~ 1 

~e, 5KTt~.~I:CC.l1 

~~O '~I,P~~A~C~OO(II.LttJJ.fO.LOCALI GO TO 500 
I~( "'1"PFID.EO •• ~al r 
00 .el) JSI.' 
....... .11-\ 
DO 31l~ J s 1. J 
Cf n",. 
1)" 11'0 '~l. 3 

..... 

1 

~ 

=~ce 

.... K.ll-1 
CCI)·C'JJ.~t~.I.IO.LL'·SKT( •• ". 
oc .00 .#t." 

'JO 
">CO 

".I.II-~I_-

... ~''' ... , .. ( 1 Il 
r.~ ... 'PI·.l.F 

"\::) '3".1"I·H"· 

(\ -

AELEA5E 2.0 AOT 'lArE. 7715" 
.y/ 

IFI ISTEP.EQ.(HIT .ANO.(TERluEQ.ll lIF;l'URM 
650 00 900 1'''1.'' 

IF CI''''MPFP.Ea ... 1 1 D= Il 
I~(IPLN'R(NOD('I.LK)I.EQ.LOCALI GO TD 900 
DO '100 1:1=102 
11=6-.1+3012-8 
00 100 1=1.1 
CII'=O. 
00 7001<=1.3 
"'21(+ 11-1 

100 (,,{JI=CC U+HIK.I.JO,LL'.SCN' 
00 800 1"1.3 
,. ••• r 1-1 

800 sou =C( 1) 

qOO CONT 'N'JF 
950 R!:TVAN 

END 

!FFECT- NOT~RN.IO.E8COIC,SOVA(E.NOLlsr'''OOECK.LOAO.NOMA~.NOTEST 
EFFECT- NAME = ROT • LINEC"T _ 56 

SOURCE STATE~ENTS .. 66.PROG~AM ~IZE = ?75~ 

NO OIAu..OSTICS GENEAArEO 

--'1 

~ pH 
"1' .,fI.~ ~ - .. ~ù 17 i11IGtitstm' rtetrZ& 'ioF,h,~.l~ ............. -'~,.w ~ 
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AELEASE 2.0 STORE Dllff • 7715& Il /22/15 

SV3QOUTINE SfORF.r~OART.~LeN.NFRFE.LK.NNAX.NTWJCE.5T.NFTRST.NLA5f. JzCLL-I'._IIEE 
• ~o. NAEAC.I~otC.NTOTALI 

IVPLICtT REALes l''-H.O-Z'. INTEGER.Z II-NI 
INTEGEA NPARf.NELI!N.NFqEE.HTQfAL.~NAX.NfWICE.KREAn.~WRlfE 
O'~EN510N 'N~EX(.). ST(NNAK.NTWIC(i.NFlq5f(NPA~TI.NLAST(~PART'. 

• ---- NOD( •• NELE.,.I~nrCIN~_ENI.N~EAC(HfOTALr 
CO~NON 5XTIZ •• Z.I.SIZ.'.W~Z.'.DGlql.SKllq.24,.SI131 

c 
c 

,C 
STORE STIFFNE5S MATRI. INTO C~OESPONOING PAQTITION ON OISK 

" 

IFIINOICILx'.NE.I •• NO.I~DIC(L<,.NE.IZ' GO TO 450 
IFrLx.~E.II ~o Ta 300 
IP.r,'Hl.q' 
I:>A""'Z=2 
<A('4OS1 
~."I Tf! =2 
c;a '1) .50 

100 ,~.~11~'P.AT1.1 
1 .... tT2= .... Rl'Z.1 

.50°00 50~ KKal •• 
'>05 l"'O".C~xl.O 

"10 SJO .IL.'.2 
,«Q"""":~j.1 

?O 5Z7 Kka, •• 
,F'INnEXlxx,.EO.I' GO 1'0 521 

.. 

')0510 ..... I ... "TI.I ... "T2 \ 
IF C '1"01 "1( .LI( 1 .GE .,.,.. AS" N'l' • ANO.'NOOr ICI(. LK 1 .LE .HL AS Tf 141411 

'>10 CO"T l''Mf 
SIS IrINAOU~D.NE.11 GO 1'0517 

IF(LX.EG.t, GO Ta 516 
IFI'N"IICILKI.EO.I.ANO.JL.F.O.2, GO TO 516 
',..1 '"'')(CII.''' .E~.IZ •• NO.JL .E().~t GO TI) 516 
~EA!) ( .. RF"O ..... NI. 1 «ST, 1(1 .K21 .1(2-KI. NII.KI =1."'1 1 
:'0 rc "ln • • 

... 516 .... f.*" ... ' 
1'(~".EO,~".ATI NN%"" 
:,)0 &,.::: "."".AlN 
.~~LAS'C '~I"'~REE 
")0 •• ~ L=I.x 
..... ~<.-L. 1 
IFC .... EAc;.C .. KI.NE.OI GO Ta .55 _ 

.... 0 ("('INr '''''f 

.~ .. IF(II.~~."141 "'s~"F.CI~1(1 

IF( 1 C .t-o ...... N'~ .. "" .. C' .. Kl ... 1 
..... 0 co""r P ... JE 

IF( ...... t"() .... ~ART) 

oc. 11~ lt'St.N1 
'1 .... l7~ Latc.."'-' 

• 7S 5"'" ,1. 1 sI) • 

';Iq I~'''·~'''' 

.. ,~ .. t 

'1' 

'j.17 1((·.,1!tJNO •• ~:l.~."'HO."'''.'''~.IPAIlT' GO '0 5Z~7 __ 
I...-t--""II;"-l» ..... ..-A"EE 
n~'i?~ \...L"' •• 

1 r l'al"H K .... LIt) .GT • NOD 'LL .lJe" GO TO 525 

«' 

GO TO 515 

DO 523 Nlst.NFREE 
"' .. I=NAEACCCNQOCKK.LKI-tl*NFRFE."" 
IF( .... I.FO.OI GO TO 52l 

fi .. = 1"" 
00 5 .. 0 NJ'" '.NFREE 
NH.I="RE"C((NOOILL.L~I-I,*NFREE.NJI 

IFINNJ.EQ.O' GO Ta 520 
JF(IPAAT.EO.IPAPTI.AkO.NOOfLL.~~J.GT.N~AÇT(IPA~Ttl' N~J%~NJ.Ml 

IFI"MI.Gr.NNJ' GO Ta 520 
.J ... Js,J ..... .1 

IFC, .. I.GT.JNJ. SKTlIMI.JNJ'=SKTlJNJ.'''I' 
STe "'41 • N".1 J -S TC .... '. HN.I' .5 KT ( , .. , • JN JI 

520 CONTINUE 
523 CONTINUE 
525 CON' IN\.IE 

INOêIll:CKK'.::1 
.. "OUN;) :hPOVNO.l 

IFC"'POUND.GT.l' GO Ta 5J~ 
527 CONT \N\JE 
S3S IFII~OIC(LI(,.NE.2 •• No.rNDIC'I.KI."F~ GO Ta ~2~ 

tFILK."E.NELE~."ND • .IL.NE.11 CO TO 52ft 
wAITE (3' ~1.Nt.«ST(Kl.~2).<2~~1.~1'.K.~I.~I' 

'GO ~o 5)0 
528 .RIT~(K.AITE' A41.NI.((ST( .... 1(2.~J(2::;"I ..... l'.trl-:.:I.1lll'1 J 
530 CONT\NUf 

IF(LI(.EO.I' GO Ta 600 
IFI [N01CCL .. ,.EO.I.OP.tNOI CIL~' .CO.12' r.o TO 5CO 
IFCLK.EO.NELEN, RETURN 
BACKSPACE IC.A'!:40 

500 8ACK5PAtf I(RfAO 
600 ~AC<SPACE K_~ITE 

IFIINOICCLK,.EO.2.0R.INorCCLK,.eO.12' r.o ro 7~~ 

""CIt SPACf KWq IfE 
700 XI( ",.U'E.AD 

XREAO:KWP 1 TE 
I(.~I TE-KI< 
AFT'JJ>N 
ENO 

"FFECT_ NOTE A ... I D.EACOI C. SOUACF .NOL IST. NonECK; L QM' .~O" A:>. NOT r 5 T 
FFFEcr.- N""F '" STORE • UNECNT = 5" 

50UQ Çf. SfATE"ENTS a ~S.PQOGQA" SIlE '" J~.A 

NO OIAr.~nSTICS GEHE"ATEO 

I;.~'"'''' 1 ,;,t,.."·"",,,;' 
~";.;.fI ..... :!o,.~lt..~.,.\.~'-:.~~.( ·r.f'~· ~:~ .. ~ Ir 'X# ... < nià,t.I'il! j~',~-'.~ -?.f>-' ,,".l.Pf~~~.w J':: ""'-w_~~\. ........ ,~'~l_J- ".1' .... ~ "':;: '""' -~~ ~ 
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R!!L!!AS~ 2.0 s"" __ _ OAT" • 7715_ 11'22'35 RELEASE 2.0 RE.S DATE. 77154 Il'22/15 

~ ---C.­
C 

SU~RCU'I~f SUM(NJO'~TIN~EMINFRfE.NTOTALoU.IPLNARINOOILK) 
I~~ICIT, REAL*. (A-H.o-ZI. INTECER*2 ('-NI 
INTEG!!R NJOINT.~ELEN.~FREE.NT3r.L 
OI~«NSirN UC~TOTALI.NOOC4.NELENI.rPLNAqCNJOINTI 
CO.~O~ SKrC14.Z4'"SI141.WCZ4,.OGI9,.SKII9.24,.$ICll 

CALCUl.ATE TRUE FORCE 

'FIL~.~E.a. GO ~O 532 
100 00 le, I=I.NTOTAL 
18001'11"0. 
532 00 ~.o '-1.' 

~aC~rOCI.LKI-1J*NFAeE 

00 515 J.I.NFAEf 
535 UI.'JI=UfKoJ),SCC'-J,*NFREEoJJ 
\." CO'.T '''''JE 

t" 1 LI(. '.t • NEl.f .. , ""'Ulf~ 
.RITfI6 .... 0S' 

~. 

~cs FO~~ATI·_·.TS."JOI~T NO·.T20.IC~OROI~.TE".T60.' TRuE ~ORCES 

• 0 1", 'oT20. I 'LaLOCALo.T3a.·.-LOAO·.TS3.·Y-LOAO'.T6ft.·Z-LOAO·.T 
.~l.·.-wCWEhT·.TQa.'Y-NONENT·.TII].'Z-MONENf"',· '.T22.'C*CLce'L" 
•• //1 

30 507 I-I.~JOINT 

Kall-I'*MFAfEo' 
KI-l*~FPfE 

""7 ~rTfC6.ll0J I.IPLNAAC".(UIJ).J:K.KI) 
120 FnA~"'~ '.TS.IS.TZS.A2.T12,60IS.5' 

q!'U~N 

E"O ~ 

:F~~C'· "'Ol~A_.10.ERCOIC.SOURCE."'3LIST:NOOECK.LO'O.NON'P.NOTEST 
'FF::;C'* MA"';. SUIt" ~ LIN!!CNT • S6 

S'Jl;IC" "iTATENFNTS ,. 23.1>1101011 ... SIlE ,,~ 1232 
~3 ~IAGNOSTICS GE~ERATFD 

r 

"Î 

" 

"" 

SU8~OUTINE RESIHJOINT.NLO~O,~F~~E.NDISP. ISTEP,I~IT.NT.~IZE.PLn.O. 

• UOI SP.u. p. 1 PLNAR. !lIfAEAC .LF. NIJ. NTOT AL.. • .. "q 1 T E. ".QE~;). "'Ill TEQ. 
* ITE~A.TOLNCE.OISF~Q.E~~OR •• LEVEL' 

IMPLICIT RE'L.S (A-H.O-l'. INTECEA'2 If-N' 
INTEGOR NJOINT.NLOAO.NF~FF.NOISP.NTOTAL.N.~ITf.NqFAO 
OI~~SION PLOADINFAEF.NLOAOI.A("'TOr6L).U(N'OT'L~E'CI~rJT'LI. 

..-- LF (NLO.O'. NUl NO' SP,. UOI SPI NF PEE ."01 SPI. 1 PL"'AA( 'UO l'''T 1 
160 00 ISO I=I.NTOT~L 

180 AIl )=0. 
FNOR~=O. 

IFINLO'D.EO.I.ANO.LF(NLOAO,.EQ.~I GO T~ 20' 
"""IITEI6. 350 1 

350 FO~M'T(·-'.T5,'JOINT NO·.T20 •• COOPo' .... rE·.T~0.'CUMUL.TfO APAL'EO F 
*OR(e./.1 •• T20 •• tL=LOCAL'.Tl~.'.-LOAO •• T~3.'Y-L~40'.T6~.'I-L~AO'.T 
.83 •• X- MOMFNT- • T98 .' Y-NOIlllE'-'Y' • r 1 1); •• Z-"-ON[N" •• '.' '. T 22 •• G= GLC3AL •• 

*./1 ) 

00 185 I=I.NLOAO 
K- ILFI' 1-1 "NFREF 
00 182 J=I,NFREE 
PI •• J)=PL~OtJ.I)·.LEVEL 

le2 FNOR~:FNORM.PIK.JI.PIK'JI 
K:O(+I 

_ KI =LFI "'NFAFE 
las "~lcTfI6.1..2C' LF(',.IPLNARILFCI".IPI.H-..r-".KI' 
200 (FfNOISP.EO.t ....... O.NU(HOIC;Pl.F:O.OI GO TO 3'lt:: 

DO 250 1=1,"OISP 
K"INUII )-1 "MFPEE 
DO 250 J=I.NF~EE 
IFIOAqSluOISPCJ.II'.LT.O.OOOOOCII GO Ta 2~C 

FNnp~=FMOA~+UCK.JI·UIK.JI 

UI K. J, =0. 

250 CONTI NU€ 
lOO RNI)II~,.O, 

DO SAS I=I.NTOTAL 
IFCN"EACII'.EQ.OI GO to 'S'", 
PC Il :PII '-UC 11 
RMO~~:RNO~~.PCII·p(r, 

ses CONTINUE 
~NO~MzO~O~TIFNO~ 

RNORN"OSCRTIPNORNI 
~FSEPQ="NORM'FNORM 

"1'1111:(6.605' 
r 

605 FCQNATI'-',TS.'JOINT NO'.r20,'COO~O,NATE·.T6~.· PESIO)AL ",,,ucS 

• • ./ •••• T(1?. (L=LOCÂL,.·'.Tl ... • ':-lnAO·,TtSl. '''-L040'. '6~.·Z-LC:'~' ,T 
."3, • X- "'O"-ENTI' • T98.' Y-MOME'Nf' • Till •• l-"nwfNT' .'.' ' .. T 12.' G,=GLL 3Al , • 

-.'" 1 \ -
on 4 "'07 1 _1 .~.JOI NT "\.~, 
K"C 1-\ ' .... ,...EE+ \ ~ 
KI='·"fREE 

607 ''RlfH601?01 loIPLNARI",(PIJ'.J=K.KI' 
l20 FOQ'4ATC' •• T"i.J'S.t211j,"".TJ~,~f')' 1),.'1, 

.fJJr('6.1~O) ANOR".FNOD~.ArSFQ~ 

~ . ~ 

l!)O FoaJl!ATC' .,'RESIOUAL FOQCE Nf)R'" 2:'.020.5./.' '.'AP~LJ[) rno"'· 
• :'.020.5.;".' '. 'RAflO OF MESI'UAL FUQ(f: "~~11111 T') APPL'~J JoC')l-~ -.'::1oJ 

iC'~y'1·f'F·..--""':'~!""'---~-...,.,------------~ -_ .... r ... ioiir.""""&l"tt':I:wrtr..r st ~..:1'0.-" __ ... ,. /-.'!~, 
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q!;I..l!"Sl! z.e Al!~ DATE. 7715" 11.1'22.1'3'5 

.~ ••• F10.5. 
W'H TE 1 N.cH TF: , ".)CUonL 
WPITF-16,,40' NWRITE 

.'.0 "'Q"~.TI· •••• 1..1.. Oo\"A"UP TO THIS STEP STOREO ON orSK .',/:l) 
ERR~R.OV"X'CAE'5EAR.OISERR' 
IFC~ITfP.~E.lt GO TQ 420 
IF(fRROR.LT.I~.*T~H~e, ~o TO 700 
• "ll Tft t.4' 01 

"'10 '''(l''' .... T 1 "'. ·pAOGR .... TER"'''''' TE) DUE TO HIGH E'l'l()q. REOUCE El THER ST 
.~D SIl' CR '1'0 BE AOOEO qf~IOU"L FORCES') 
5'0' ~ 

_20 tF'ISTFP_LT.(NT-I).A~~.,TEqA.GT~2 •• NQ.e~ROA.LE.TOLNCE' GO TO SOO 
IFIITER".~O.21 GO TO "'5' 
IFI~'TeR.Eo.l.A~O.PE~ERq.LE.f.RROLOI CO TD 450 
fF'LR~CA.LE."'RROLOI GO T~ .~o 
"",TEI6 ••• 01 

•• , t~Q~ATC~C·.·~IV~QGENCE o~ NON-~ONOTONIC CONVERGENCE OCCUR. us~ ~NA 
~Lfl:l STI:P-$"1?f" 

5'1'0" 
.~O ERR)LO:EARO~ 

IFt!TFRA.~F.I) aETUQ~ 

~=, 'FI-?qjQ.GF.~.O.T~~CEI S!tEzSllE.I'2. 
... ~() l"I--:"QoQ'.Le .. ~.I.TOL"'CI!' srlE-=2 •• c;rl~ 

'u:rJQIIioI 
f"O 

-"'-~cr- ~orER ... ln.EèCDIC.SOVACF.HOLlsr.~OEc~.1..0Ao.~a~AP.NOTEST 
~"':-=-C''''. ~Il"!:. folF:t; • LINEC"'T ~~ 56 

S3U~C~ STATt~fNrs • 66.P~OGRA~ SIZE .. 36.4 
... .1 Ol"'''''''''rc!. Gf:N!IiAreO 

1~ 

" 

" 0, 

"Z_ 

'J( 
'l" .1 ... l-

~ 

RELEA5E Z.O 3w I)ATE " 77154 11/2Z/1"l 

c 
C 
C 

c 
C 
C 

SU8AQJT litE ~EW (~fLE!4. "'LOAO.HGjlU'i~ .HLAYCA.Nf"QEF ... "OTAl. I-:;"F". l'II T. 
.. NT.HITER.ITERA .... w~I"E.SllE.xLF.VEL.PLOAO.Jr~TaL.p. 
• STRES.PL.TA'-".T:JTS~N.LF'''~EP.~~EA) .EA~{"'p.1'nL~.C!') 

l''PLleIT RE..4L*e IA-H.O-LI. I~TEG"R." 1 1-.;\ 
INTEGER NELEN.NLOAO.NGAUSS.NL~YER.~FR~f.NTnT'L.~.RITE.H~FA~ 
DIMENSION PLOAOINFPFE.~LQ40,.U""T4LINT"TALI.PINTQTALI.S"~~SI1'''LA" 

* fR. NGjlUSS. "'GAUSS 1 .PL" TFI'II "'La YFII. ";"'U"~. "' •• U~<; 1 • .. .. TQTsn'H.3.2 • ~u .. us i. N"'.AU'iS ).L;::' "iLOA 0' .I(Ef:P( '~LAl"~~A 
USS.NGAUSSJ 

STORE RESULTS TO INSURANCE OISK WHrN EUROR lESS TH"'" TOLERANCf 

IFIISTEP.EO.IN,T.ANO.ITEA4.EO.11 GO Ta 6C~ 
IFIITEAA.Nf.~o Ta 620 
'FI HITER.EQ.I.A"'O.-J-srEP.Nf' .NT! GO '1'0 "01 
IFIERROR.GT.TOL ... CEI co Ta 600 
REIIINO NVRITE 
RF.I"") 13 
REAO INWRlfEI urOTAL 

"" 1 TEl '" UT OT AL 
00 100 1~I.NCLEII4 

RE.~ (N.Rlre, STRE~,PLArRN.TOTSR~.~ffP 
.R!Tr 113' ST~FS.PLATRN.TOTSQN.KF.fP 

100 CCNTI"VE 
RE~O (N_RI TEl P!)(LEVFL 
.RITE 1131 p.xLEVEL 
WI:IITEI6.?001 

200 FOR~AT(·O·.·RESULTS STOREO ON 1 NSURANCE orSK _IJ" 
600 IFlrSTEP.EO.NT, STOP 

609 

60r 

'199 

610 
621 
6:1'0 

622 

SUN CURRENT 1..0AO INCAEAMENT AND RF~IOU.L F~RÇE~ 

1~(JSTEP.EQ.l.ANo.lrEA4.EQ.ll A4CK~PACE NP~AO 

IFI I~TEP.EO.INIT.ANO""ER4.FQ.I' PEAD l''REAOI p.XI..EVFL 
IFINLOAD.rO.I.A"'C.LF(NL04DI.EO.OI GO T1 6?1 
DO "199 IO:I.NTQTAL ' 
P( 101=0. t opc 101 

00 610 '~l,"""O"'O 
K=(LFI 11-1 , • .,FRfE 
00 610 J"'I."FAfE 
P(IC.JI=PIK+JI+PLOAO( J.ll.SllF. 
XLEvFL"~XL.EVE"L·SIIE 

WR.'t:(6.62ZJ rSTEP.S'Zt:.XLEVFL,rTFQ4 

FOQ~~T"l·.'TS.'STfP ~·.I-;,T10.·C\JP"1ENT STE~ SilE .' • 
• FfO,5.TRe.·CU"'VLArCO STEP ~llE 1XLf"VELt ~·.Fl0,.,./,., '.T5 • 
• 'ITfPA1t"ON ,:',15,//' 
RfTUU~ 

FND 

EFFEcr a ~orFR". 1 O. tIOtCO' C. SOURCt'. NOL! ST. -,oor CIC. LOAO. "n,"" .N'lTE ST 
C;FFFCTa N."L '" "f'l: • ~INfC"'T • ',', 

S1UACf ~r'T~NrNls ~ '5.PROG~A~ ~I/E = 271 f"; 

... :1 DIAGNOSTlC.S r.E~F".TE() 

r 

J ' ~-~~~edt {dtzJ~*t (.4.._ 

1 
N 
VI 
N 
1 

"'" 

.. 

.. 
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( 
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~ 
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c 
c 
: 

$Uq~OUT'~~ FIX(N~AQT.NDr$p.~Re~.NUMo.HTOrAL.NMAx.~T.rCE.SIZE. 
~ UDI5P.P.5T'~~'~ST.~L4ST.~RFAC.Nu.rTF.~A) 
1~~~rCJ~ RfAL-! IA-H.n-l'. INTEGFR*2 II-NI 
tNTfGER ~APT.ND'SP.NF~~F.NTOTAL •• ~AX.~T~'Cf 
DI"e NS 1 [lN PCNTOTAL" 5'" '~"AX ,"T.' CF! • NF' ~ST' NPART 1 • NL AST ("P"RT 1. 

.. NUI 010 1 SPI.VO' SPI NFRE" .010 1 SPI .NRF.ACI NTO rAU 

f~rQOOVCE AOPLIED OlsPLACENE~T5 

"E.'ND 
"f.1 NO ;1 

"!Jv~.o LI 

00 670 •• ~I.NPART 

"FA') (JI "r.~loI'STlI.JI.J .. r.I\jI"'~l.1C1I 
"'.I~IRSf'KkJ-II.NFREE'1 
"J:"LA<;H"·O·Nf'~I'E ' 
00 6M I= ....... J 
IF(~~EAC(fJ.EO.O) 
D(~oE"C("I:Ofll 

~20 CC-.q"UF 

COD TO 620 

,( 

------
,'(-'orsp.Eo.l."ND.~I"OI5PI.E2.0' GO TO 660 
IFI·H':(~OrS"".LT.NFIR5TII(I(It CO TO 660 
00 o!»o~ ''''.l'IIIO'C;P '-
Il'I-9'UIJ I.LT ••• FI~~T(I(",.nA.".}/f).~A~'I'(I(I(" GO TO 650 
~.(·"H f'-I"',F"F! 

'>: 640 J'J.~~e 
IFIOABSIVOISPfJ., ".L'.O.OOOOOOI\ GO TG 6.0 
''.l'''OFAC'''.J) 
"i0J'" ".N~wR. J _ 

·~T(~J.~J'a'Tf~J.MJJ ••• OO.t2 
~lvJ'·5'INJ."JJ.VO'5P(J.I'·Slle 
IF( ITEI>A.,.e.1 1 PII'JlsO. Il ? 

~"O C"""".JF 
~50 C::-"''''lJE 
~60 "-.c::\f'.' 

I.Lz""~~1 

~ 

.... ,r'! Cil .. t .... t...!(STII • .II • .I"I."'.,oI .. ' ... \},IPIlI.'''I.1I411 
IF( 0( OC.EO ........ RT' "~fuAo,\ 

·.~ITF Cit 
6"0 (''!1 .. T'NUE" 

,",!TUiilN 

E"" 

«eST (1 • .1) ,1 "1.'" ).J"~". "1) 

~F"-=C"· 
..... r!c,.· 

o ~ 
~~~!Qw.rO.e~COI'.srUACE.NOLIST.~OOECK.LOAD.~~AP.NOTEST 
"'4V!' .. FI" • L 'N.EC.N1' • 56 

~~~~C! <TATCw~~TS • 3T.PROGA4~ SIlE a ?l'IO 
' .. ,., ;)1 ... " .. .,,,rICo; t"_e" .. T@'O 

F~-

-----

",-... / 
,---. 

-

RELEASE 2.0 SOLIIF D .. TI' . 771 'j~ 11/22/"S 

$Uf\AOUTt ME SOLVEt ... .JOI NT. NP-.RT .... OI5f> .... FPEE. "' ...... (.,. Of AL. NTf1T AL,'w J"'~. 
• U.vrOTAL,AIIe.l".1 PL"'AR.t~Fr-:lC;r.N:;'E""C .0 JSt:"QR', r rrQ", 

1Il4Pt..ICIT AEAL-S rA-H.O-I'. INTEGEA.? fI-N' 
INTEGeR NJ01~T.NPART.N6ISP.NFAEF.~~AX.NTOTAL 
Of ..-eHSION UTOl'A.LC NTOTAL l .ut NTor JIiL 1. AhII( ... • ... .", ~Â.). q .. ( ......... , ...... ",). 

• NFIRST(NPAQT, .N~E.(' ~TOT"L'.I PL"J~\.1(NJ'lI~Tt, 
• F(210,.~FI2101.0ISf~1~'.C!2161 

CON~ON SKT('2 •• 2,,'.<;f2.,.lllf2.,.')r.r'lI.So(llq.2',.~111' 
E OV 1 V.!\L E Ne E 1 <; ocT l , , • FIl 1 1 • (; ~ r r :> 1 1 1 • TF ( 1 1 1 • ( ~ ( r ( .2 1 1 • .., l';! l , , • 

• 1 SK li Il .C ( l " 
IlE.'N!) 1 
IlE.'''O 2 
OFJ"O. 
00 )00 LL:I."PAQT 
AEAO (1' ... N." ... ht(I.Jt • .J=r .... '.I=.l.NJ.(F. tl.ral .... , 
tF(LL.EQ,I' GO Ta 150 
DO 100 1::1 .... 
1'" 1) =l'III-TFIII 
00 100 J=I. loi 

100 A .. II. JI =A .. n. JI-B"( J.J 1 
150 CALL CHOLES.~.A~.LL.OET._~A~) 

DO 250 (=I.N 

015111=0.0 
00 250 ;"1." 
IFII.l>r.J' A .. II.J''' .... IJ ... 

250 015Ir,-0,5111 + A"/I.JI • l''JI 
'IF ILL .FO,,,,,,,,,,QTI GO Ta J50 
AEAO (lI f(fH~C •• J).I=I."'J.J='.N' 

.. ql'" 121 ....... " ...... II.;I • .I"' ... '.I=I."'/.(FIII.I=' ... '. 
• 'teN(' .. J.J.f;aI ......... ==l.N. 
00 ;>RO 'sI.'" 
TFII'=O.O 
0("1 280 .J=I." 

2110 'F'U ,,'1'1"11,. Il''IJ.II. n'SIJI 
00 2115 1='." 
00 282 ;",.'" 
CIJ/ = C.O 
00 2"2 1(:1.14 

2152 ((J' li CIJ' .AMfl.~(J."M(K • .I' 
~OO 285 J= I.N 

2115 ..... 1' .JI" CIJ) 
on 295 Izl .... 
00 :>QO J=t .... 
CfJ) ;a; o.n 
DO 290 Klill. If 

290 CIJI z CIJW +B .. I •• II.A~II(.JI 
00 :0"5 Jal.N 

295 ~"I J.II=<:-I JI 
:JOO CONflNUE 
l50 141=r TQTAL-M 

OO~I'I":! 1;1." 

&00 Uf"ltll=DISIII 
NA:..,P ... RT-I 
01) ... OGl,lL.I ....... 

" 

~T.IfIIP5' !&..~:.:. ;~4q.-

1 
f;., 
VI 
W 
1 

~ 

~ 

'il 

. , 



.J 

" 

,t 

o· 

... 

. ' 

/\}.. .;~;. ) " 

~.:::;-~-- . '-. ___ ! J. __ c 

r- ~ .... l ,.-... <) , 
1 

t .. ~-I 
ç Ct ~ .. 

'-v \. 

---- ... 

.~LE.SE ,2.e SOLVE 

r 
'1ACI($PACE 2 
rF(L~.FO.1 Î GO Ta 620 
9.CIC5PACf 2 

" 

DATE. 77156 

o " 

620 ~FAO C21 M.N. (CA"t , •• ".Jalololl •• I-I.IoII'.tF( 1'., .. ,.'4', 
,(Ololl(,.J •• '·I ..... Jal.N' • • 

"'1·"1-" <>' 
00 .0;0 1=1." 
n~ .50' J: •• 1ii 

650 Ftl'. Ff" - 8NCI.J' • ors(~, 
00 550 J"I." • 
T!''''aO.O 
00 500 .1" 1.I0Il -=­
(FCI.GT • .I' A"CI.~~(.I.I' 

seo Tt .. ~='f~P.A .. C' • .I •• F(J. 
Dl:; 1 Il :Tf'"'' 

5~0 ul""" " 'EN~~ 
5~O co~rl~~~ , • ~ 

1 F ( '4:>, SP.I\Ié. 0' OET*DET-DFLOAT INU"".IZ' , 
WAlr[(~.650' DE' 

r 

111'2;>1'35 

<. 

~':-

650 ~~q'4ATf' ·.T$.·OE~~"INANT LO~10(OET,.·.'60.D25.1].I";' 
l'l"'llA .. "e. .. 
-:'*.YOTAL '. 

'-

, 
'" 

,," , 
~ 

Rf:LEAS E idi! 
~.,,' 
'-y 

CtOLES 
/ 

D'iTE 
"fil 

71154 , 

c 
C 
C 

, 

~ 

SUOROUTINE CHnLES(N.A.LL.DET.N~ •• ' 
t.PL ICtT ~EAL.a (A-H.n-z,. ,I\jTCGEIU2 (I-N' 

'INTEGER 118A. 
OINf~ION AINNAX.N"~XI 

DECOMPOSITION. DETERNINANT AN~ (~V!'RSI'N 

00 20 ':2.N 
0jL-20 J .. '.N 

.K la 1-1 
00 10 K-I.KI _ 

10 AII.JI=AII.J'-AIIC.I·~I( • .I"AIIC.KI 
IFII.eO • .I.ANO.AII.JI.LE.O.' GO rn JO 

20 CONTINUE 
DO 25 I=I,.N 

(70ETanET+DLOGIOIAII.III 
25 "'I.II=I.'AII.I' 

IlsN-1 \ 

00 1 1= 1.11 
.II al.' 
00 1 .I-JI.N 
SUN "0.0 
KI.!'J-' 

" 

f 

Il'22~1'i 

, 

\. 

~O 700 J=I.~TOTAL 

.I .. ~TOTAl.I-I 

IF(~REACIJI.fQ.OI GO TO 700 
UTOTAll.1'=UTOTALI.I' • .1iO 

<: 
~, 

~ 
00 .... Kal.KI 

za SUN~= SUN - A(K.II.AIIe.JI 
AIJ,II • SU"'AI.I.J' 

"-

t 

" 

'O~O~N:O~ORN.UTO'ALI.I"U'O'''L'J' 
t(tK-t 

7('0 Ce .. T , ..... !' 
D"CA".D~~RT(O~ORN' 

.~ 1 TEl 6. 720. • 
"lO F00'4 AT" -' .1'$.' .la INT" NO' ,. T20. 'COO~O rNATFi. T60. 'CUII\A..A Tf DI TO'''L 1 01 

-S' ••• '.' '. T 20.' C LaLt"CAL' • T3"' •• '( -01 SPI .1~J.t Y~DI SpI, '6ft.· Z-O (S'P' • T 
~ .~1.·.-R~TA ••• f9a.·Y-PQTA ••• T113.ll-~OTA. -" •••• T~I.IG.CLOa.L" 
-,II' 1 
n~ ~]1 1~1.~JOINf 

7~~ .~tT:'b.~20' r.rPLNA~(I,.lu,nf.L(.I, • .I:K.KII 
,~: FOU~ATt' '.f$.15.T2~.A!.fl2.6~15~~' 

.01 '''f ?'»!>CI 00;(' •• " 
~~~ rJW~AT" '.·D'~PL"CF.ENf NOR~ s·.020.~J 

l=flTE"~.EO.1l GO TO Il7') 0 ' 

.., ~ISEA~ =lh',I$I' o ... OAN-nl SOLa', Inl\jll"., 
•.• 1J~t:.!'f>0, DISfRO ~ 

--------
l' 

------

1t:) ,..,0 ... ". '. '''ATIll OF o,~rFREN:: '01" 01 .. p. ,NO~II Ta NOAII OF TOTAL 015 
ep •••• rl?->' 
r.:l Tt') P"~ 

"7J O,S~O-l~ q., ors,t.')=o·.O~" 

o~"u"'''4 

"lO , 

1 
1 

. , 
~ 

c' &;"'~ C"'. ..... 'Yf""". 1 fi. ["r·c ole. snUPCF. ~C"Lr ST. "'(lOFeK .LOAD. N014AP. ""' .... TESf r." cr. ",A"" = SOLVE .. L INfC .. " = 56 
C;"l '-:. !,. .. tt"J'Nf ... ':. ---- 49 •• "ttOGIiIAJiII SilE a .6~10 

t' 

~. 01 a ..... ·"15r .es c.Cf'4E""· .. 'FD " 

--=- ?; 

00 I\n .... I.N f. 
00 1\0 .1-10" 
SUM=O. 
l'In 65 IC=J." 

65 "iUN:'<;UN+AIK.II.AIK.J.,A(K.K' 
ao "II.J'-SUN b 

RE1'UAN 
JO .~ITFI6.401 lL.I.J.A( 1 • .1,' 

( 0 

60 FnqN"TI·O'."I,~ '.'STrFFNE~S NATRIX rs NOT POSITIVE OEFI~ITr. ~u9 

."'OUfINf' CHC"l..ES FAIL AT PAqfIT1J ..... '.t5.',. '.'QO",.15.,O.,·C"lL.',tc;.s 
eo ... • A( 1. J. 'SI ,020.5' ~ 

STOP 
END 

'rFFECT. NOTFR~.IO.ERCOIC.S~JQCE.NnLIST.~OD[CIC.LOA~.~QII.~.~~Tf·T 

FFFEC'* ,NA'4E z CHOLfS • LINEC~' : Sb C 

SOURCE STArE~EN1'~ a ] •• P~OGR.V ~11F " 189~ 
ND OJAGNO~TICS GENEAATED 

------"\ 

~ 

Ir 

...---, 

--~~--. 

------~~lIî>i':,J',,; • • '.1 --,q:" SV; m fi, 
. K .... '"'1~ .... 1 ... -,; ... "" L~h\l :!..r ~ .. (~""" 

-"'~w.,..,,,-• ...,~ 

~ 

"" 

• 

, 
N V1 ______ 

~ 
1 

j,. 

(" 

\ 

~ 



~ 

/' 

',-

JI 

" 

"'" 

i· 

0'-', .. "'(_.Il 

'" -
~I ~. lA --- '" 

0, ... 
1 -... ' , --- ~ 

.. ---~~\.I!'A!I! 2.0 TAANS .- DATf: • 77'54 Il'72'15 "FoL!:AS!' 2.0 

• 

/ 

'0 C 
C 
C 

~ 

-0 

b 

#f 

-~ 

5UÀ~~UTJ~1! TAANS(NJOINT,NP.LI!~,NONCOP.HJNPI!R,COORD,.C,YC,H,NOO. 
• - N~A~1 

'''01. ,cn REAL-Il (A-H.O-ZJ-, JNTI!:G!A.2 (I-HI 
", l'ITrGÈR HJOINT.'HI!L~ .. ,HIN"EA,HO .. COP • ~ 

OI~~NSJCN COOROCJ,HJOrHT,.XC(H~L~N',VCfNELI!~I.H(l.l.NIMPER~OP' 
- .NODlt .N~t.E .. , o"~RA"S 1 NELEN Jo X~f l.l' 

FOuq NODES TRA~SFOR"A~IOH NArRlx 

00 165 LKzl~"FLE" 
IF(~TRA~~ILkl.EO.OJ GO TO 165 

1 • 
LL.~'RANSCLKI /,1 
aceLlS.-Ô, _ I.I 
00 l ,s to.' 
IFet.:'!f. 11 GO Ta 2 OC! 

1':0 5 J-I,'l 
% li .. c I.JJ "' COOROIJ,NOOCl ,4..1('1 

ICECZ,J' : CO~ROCJoHOOC2.LK" 
S .=",J' c'COO.,IJ,~0(4.LK" 

GO rD ',0 
2 J"CI.~!. 2' GO Ta 4 

OJ l .1: J'. l 
Da,' KZ:lol 

, . 

/' 
I~ 

TAA"5 

Il PI- OSOR~"AI •• 2' 
HI 1 • 1 • , • LL' , 
HH.2,I.LL' ... 
HII.l.I.LL' 
H12. 1. J. LL , 
HI2..201.LLI 
1'112.1.1.1.1.' 

• IlfTié;>,f + 
OI,QI 

""'01 
l'l'Ill 
AI ;' li 
SI , li 
TI ;' II 

-HI1~.I.LL' AI' PI 

aATF .. 171 '14 

ICI·t21t 

HI l • 2 ..l-i::1... 1 tH , P l '1 
IHIJ.l.l.lLI CI' PI 

DI .. COOPOII,NOOI2.LI<II-COOA)II, .. aOI1.lK'1 
EE " conpOI2.NOO(2.LKt'-COOAOlz.~nO~1.Lt()1 
FI • coo~nCl.NOOIZ,lKII-coo~nl,.~OOI,.L~'1 
01 " osonTI'OI.o;>, • IEE."Z' + Ifl".Z" 
DI • COOPOII.NODII.U<lI-COOR:l(I.~OOI4.LI(II 
EE a COOnOI2,NOOII.lK11-COORQI2.NOOf_.Lxll 
~I "COOlolOI1--;NOOfl.lKII-COOROI,.",nOI4.LICII 
02 • OSOR~IIDI •• 2' • IEE".Z' • 1~1 •• 2It 
YCILKl a I0I'Q21/2.0 

165 CONTINU!" 
AETU"'H 
ENO 

1. ... 

Il ri 1-' 1~ 

t~-

:1"," 

3 .~( •• JI = COORO(J.~QDCK.LKI) 
GO TO le EFFECT. NO~ER ... ID.EBCOIC.SOURCE.NOLIST."OOECK.LOAO.~ONAn.NO~EST 

E~FECT* NANE a TAANS' • LINECN~ .. 56 • II'I '.NE. l' CiO TO e 
00 ~ ,.lat ,1 SOU~CE STATE"~TSoz 68.PROGRAN ~11E " l~IZ 

~ DIAGNOSTICS GENERATEO .!,t.J' : COURQ(J.NOD(4.LK', 
X"l2.J' ~ COOROIJ • ..,œOCJ.LK" 

6 'lli l'3.JI - CreRDI J,NOO(~ .LK" 
GO ro le 

(1 'l0 1';' Jsl .1 

~ 

""II • .JJ,s COOADC .... NOnC.~LKII ~ 
~"f?Jl .. CCOiOOCJ.NDOI1.LK)) ~ --=. 

..., 

~'.E(l.JI : CO~~CJ.NnoCI.LK" , 
10 A'. (Xt IZ.;!I-xl:':ll .2d_loC XIL11.1,-"tU .:JII-CXE(:J.2'-ICEI I

l
.2'' 0IXEIZ.l. 

-.(~.lJJ 
31"-1 .11-.EC1.I".I.Efl,]'-XEfl.~I' 

• tl"lIr(lol - ECI.III0CXE(2.1'-XrCI • .11J 
CI " 'XfCZ.II-xECf.I'10IXEC1.2'-XEfl.Z'1 

• -(llEI3.II-Xf'I.IJ •• CXE(Z.2'-.ECI.ZJI 
lEI I.Lf_ II _ GO TO 9 
AI " - A'I 

91" A' ~ 
CI CI; 

.J 1)1& OFI .. .&_)- - XEtI.11 
~E. aE'2.?J - .~tl.1. 

Fla .(I~.l' - XEII.l' 

--" 
'li' :)!Q;jTClOI** .. , • Cf:E .... ',. Cl'r •• 2111 
.CILk~IL.I.OI".O 1 

~I : ~1.Fl - CI.~E / 
< 

SI 
·1 
11 

Cl-ni - "'-FI 
s AI-Ef: - KI-Dl L 

DSr:14TII"I •• 2' • (Sloo;n .,ffl~ 

1 

~: 
1 " 

-' 

:/, 

\ 
1. 
1 

--., 
~., 

\ 

.. 

""L_ 

---.. n· '~ ... -tciIIil'lsi.. . a _~-liJ~ .. "'~"'~," --

.. 

r' 

'''-, 

-c 
~ 

''=' 

_4' 
J, 
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SU8~OUTINE STAESSINGAUSS.~AYEA.JJ.II.LK.FL.S.5YIELD.NHAPD.E~PON. 
• , S07.EXX.I!XY.~YY .Ell,IYleLO.ISTEp.INIT.HPAI"E. .. 

'" 0 • NWAlrE.F-.STA.N.STRES.PLAT~.TOTSAN,KF~P,NT.ITEAA 

• t r~oL1CIT ReAL*S 'A-H.O-l'. INTEGF-A-2 fI-N' 
I~·ECEA NGAUSS.NLAYFp.~WMI'1! 
01"E~510N ST~.~'J.~LAYE~l.STqESIJ.NI.AYER.NGAUSS.NCAUSS).e(J,l.NI..Y 

.- Éa 1. TEMP( J) .SDI. TAI J,. X, J,'. PL ATAN{ NLAYE .... jG.USS .NGAU 
_ - ~. 55'.1(""". Nt. AVEIl.NCAUSS. NGAllss,. TOT SA'" .,. Z. NGAU<;S. NGAUSS' 

C. l' 

C FOA 'NotA,sO=a (LI ~EAA H.AOENINC" MATFAIAI.' 
cà- '-

,,.,, 00 tet)o t(Kal""'LAVEQ~~-~/ 

,5> 

IF(~ÈEP(KK.JJ.II,.EO.O' Ipsi 
IF(I(E~P(.K.JJ.II,.NE.O' /pa;f 
1)0 "'00 Nalp.l 
r"l "L'--tf":, Kil. JJ, Il , • fO.O,' 15 ""h'lY (fLO 
IFI3LAT4~IKK.JJ.II'.N~.0., SRA~aDA~S,PLATRN(KK.JJ,II"·HpAIME+ 

----
*SVI Et..b 

.KO(. J~I 1. STRF SI Z.K K. JJ.II 1. STAESI J,KK. d.1 Il. Aro CALL 

• FPI KI(. '3':r:1"'r ) .S"Aq. HPA l''f:. EXX. E XV. EYY, Ell. El 1.1 .KK ,". 

* -
EII.2.KK,.FI i .J.KK; .FI2.I.KK) .Ef2.2.KK,.F-12.1.KK'. 
EI].I.KKhEI J,2.K<~.~IJ. J.ICK..,.SII.ST.OEN.III 1,.1I12'.x( l' · , \ . 

l"IIS-Tep.Eo.INIT~ANO.ITEA".EO.iI COo'l ID "SO 
IF(~.~~.JI GO T~ 8S0 
SOL~AII'=F.Xll.STAANII,I(I('+EXT.STq.NI1.KI(I 
C~l~A(ll=EXV.~TA"~ll.~Kt.fYY*$Tq.N(?KK) 

S~T.(J':Ell*STAAN(l.K<' 

1"1 o(FEP(~K • .I ... II,."O.01" Gt' TO 5$0 
FOF~=3.*(O.5_SX.SDLTA(II.0.S-SY.snLT"I?I.STRF5IJ.I(K.JJ.11'-50LT. 

• • 1 JI' 'sa." . 
IFIFOELT •• LT.O.I GO Tn .80 

45:1 DO .. co ral.l /0 

'Sr, 

At, 

<;/)1. TAI 1'=0. 
00 500 .. =\.l 
5C~TAIII=SOLTAI".E(I • .I.KKJ.STRANIJ •• K' 
f'0 460 lal.l 

( 7~' 
',p!, 51 1 • IIK. JJ.II , -STAES, 1 .ICIC, JJ. , • , ."Ol T" ( , , 
T .. O. ' 
C\' '00 1=1 • .1 
Ta' +a, 1 r.STpAN' I.KK' 

.,t 

./ 

J 
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~~o == 
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) ')~ ": 

"Dl. T~. T7QEN 
PLAreNlk".JJ.rllàPLAtAN,~I(.J.I.,rl+PDLTA 

GO TI' l'CO 

""l" 1 .. ". '.1.1.11 1=0 
~o ~ce I=I'~I f 
TF .... ( 1 1=<;rr.ES( I.KK. J.I.II' 
.. to~ <;( 1 ."0( ."J.r 1) .STAF$C 1 .KK.JJ.II'.C;O~( l', 
IFI ... !:..,I (.l'l Ta "'''0 / 
c=,.l ~~." l 'i rD: S Cl • III(. JJ. Il '*S"IlE ~ ( 1. I<K ,J J. Il ,-$ Tq E ~ l , • KK~'~ CIl 'STA 

FloC.,' •• " .JJ.I 1 J .<;TR'-SI 1.KK.JJ. III. "TAESI 2 ." •• JJ. 1 l '.;' 0 S~RE"I 1. 
<K.JJ.tl'·STQ~S(1.~C.J~.11)' 

",-

,(' 

lleLI!ASI! l.O STpESS' 

00 660 I-I.J. 
660-XII'.STaFSII."K.JJ.III-TE~P(I' 

OATE a 771S4 

A.XI IIOXI II-x, II_XI ?'.Xl?'*XI 21+ loa.1 11'XI'1 

Il,il,,''i 

9 a2 ... xC ". TEIOPC 1 , -x 1 1 1 *T~ "P( 2 1 -x, 2 1 aTE ~P( 1 ) +2. -x (2 ,_TE""( 2 '+6 ••• ( 3' 
.'.TfIOPll' 
C·TE~P(II.TE"p(l'-TEIOPII'.TE~PllJ+r"NP(ZI!~F"PI21+l •• ·F'~lil.~~'~1 

-J'-SeAwaSOAR 
T _1\ .A-•• riA.C 
IFIT.GE.O.I GO Ta ~70 
T=O. 
Gl't"~ 

670 t.O'iORT(TI 
tl=l-fl+TI,12.*A, 
T2=I-It-1'"IZ •• A, 
IFlDAOSlfl'.LE.O.eSIT211 T.rl 
,FIOAO'>lT2,.I.E.DA8S"", TaTl 

615 on 6AO '~I,) 
680 ST~"SII«Kk.JJ.lfl.tENPIC'+XII' •• 

00 790 ''''I.l 
790 5TRAN(I.KII'~5TR~NII.KKlall.-nAAsIT'Y 

KEEPIO(K.JJ.II'=I 
"'00 CO ... , INve 
850 IFIKEEP(KK,JJ.III."E.O, IYIElD"1 

1000 CONTINUE 
iF' 1 C;TE~.EQ.I"'IT.ANo-.,TEq-&.EO.,) AI:TUDPIoj: 

IFIJJ.EO,NGAUS5.AND.II.Ea~NGAU5SI WAITcIN.~ITEI 

• 
, ---IFIISTCP.NE.NT' RETURN 

IFI tTE"A."E.11 "ETUAN 
.OIIF(LIC.fI;E.I.OQ • .,I,J.NF.I.OR.II.NE.t, ~o TO "90 

'il"E 'i.I>L ATAN. 
TOT'lD ... <~E'" 

-Al 

-= 

1 
N 
\JI 
Q\. 
1 

1 WRITnf>.'1~ .. = 
50 FnR"'AT( ·O·.,".·O·.TIIIj,.·ELF. .. ~ .... J f'irp .T20~nCATIO·f l~rfQ.qAr Ir .... ,pt') 

_INTS l'.T'I'I;·LAVER NO·.T7~.·CJ"ULATFO ~TPF5cFS 1" LoéAL CO)qOINATE 
.·.T 124, 'OzfLAST,C', ,,, '. T21.'.JJ( x.·.r ,,,,"1 CYl' .T70. 'X - • .. nC;:"'AL· • 
• T90.'Y' -~ NOPI4 .. 4...·.TI10.·SHF ... R STt)FSS .... 124.·laDL.C;TIC-·.'/' 

890 00 IZOO KKz';NLAYED 
900 ,IFI.K.Ea.1 1 CO "0 930 

IF(KK.EO ... '.AYfR.nR.kCFPIKK.JJ.III·.·.f:.O, Gr Tt) q,'l 
IFIl(f,F.PCI<>4'\-I,JJ, III.EQ.O .ANO.«'''IKO(+I. JJ. 111.~'l.el G'l T) l'''~ 

905 .Q'TJ:(6.QIOJ ICK.CSTRf'~lr.I( •• J.J.I' •• ':1.1'tIl'FEP(ICI( • .J.J.111 
9'0 FnA"" Ar t' • "~S.I'S.T62'.lE20.5. TI '!'7. 12. 

GO TQ Il'OO 
'9l0 IFIJJ.FO.I.A~O.lr.rn.11 GO T~ 970 , 

wA 1 TE 1 6. 9'1C 1 .. .1 ,1 l,lU. 15 TI'E'i fi • K*r;f'J. 1 1 /. 1 ... J , • 0( f[P 10(" • J J. 1 1 1 
:J50 FO"'NATI·Q·.T27.ll.T']~.I].T'I5.IS.rt,;>.,~;>".'I.'127.1,.' 

'COTe 1200 0 

:J70 wAIT,.(6.9f110. Ltc. • .J.J.rl.I(J(.(SrQES(l.I(K.J:J.III.I~I.".K["EP«K~JJ.II) 
... 0 FOQu.f,IO· .r5.15.T?7.rl.T]~.'].TIj5.15.T~1 • .,')2~."j.~127.1:-. 

!lOO CONT l"uE 
"fTU"N 
ENO 

J 

EFFECT. ~OTrR".' O.tACOt c. C;r'lURCF • NOl. ,s r. ~not- CK.l. OAO. ,. .. 1"1'1&''', ~"f F 'j,f :'.'--- GO Til 8"i0 
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Rf'LEASE 2,0 STRt5~ DATE z 771'J' Il l'2ZI' 1"> 

c 
c 
c 

~ 

, -
Sll8AOuTrNl!. ST~~c;.('-'CAUS~ .. NL_~II. J..i. , J .'-1( .EL&C;.~" 1 ELO.iou . ..I:». F" DON. 

• SPlLeEXX.fiI'IJ.:t'V.El', IV 1 El.. n III ISTr:"' ... INtT.ti::llQI"c:-, 

• • 
~.R'T~.f.STQAN.~RES.PLATP~.ro'~p~.~FED.NT.I'FQA 

• IOFX' 
'~PL'CIT REALee lA-H.O-II. IN~EGFR~2 (I-NI 
INTEGER NCAUSS",NLAYEA.NWAITE 
()I "E .. 5 1 QI< STRA .. () ,NLAYE RI, SYRE ~ 1 _1. "LAYE'''' NvALlS fi. ~GAIISS 1 .E 1]. ]. "lAY 

• 
e 

fP,.TE~l.l' .50NOWt 1'. SOLASTr J).PLATA ... ' ~LAYEP'''''';.UC;5 • .."C.I'..I 

SS,.K€EPtNLAY~R.NGAU;S.NGAUSS~.TnT~ANC 1.2.~~~~~.~~~J~S) 

e '''13' , 
FOR "HARO,,~ INr)"-ll"FAR HAROE'IING WI.'fRIALI 

FTRz(SYIElO-SPLIOOEXPON'0.Q02 
IZO DO 1000 KK.I.NLAYER 
130 00 150 1.'.~ 
150 SOlASTI (1=0. 

POLI.STzO. \ 
lF(KEFPIKK,JJ,III.fO.OI IP~1 

rFIKEEPIKK.J~III.~e.o, IP-2 
DO ~OO N~lP.::S 

IFIN.ED.]' GO Ta 360 

, , 

'FIPLA'RNIKK.JJ, 1 Il.NF.O,O.OR.<E(P(K''.·J.J.III.'''E.~)I GO Ta 160 
SR"q2'~PL 

GO lO "00 
i-

160 IFIPLI.TAN/K •• JJ.III.NE.O.OI GO ~O.I~O 
~BAR=l~FOI.§PL 

GO TO 360 
leo TaO.aSIPLATRNIOCK,JJ.III.eFTR 

S~AA20E.P(OLOG(TI'E~I+SPL 

350 I~IKFEP(KK.J.J.II',EO.O' CO TO .00 

; 

360 HPRIME~FTR/IFXPON.4SRA~-SPLI •• (F~PON-I." 

~ 

.CO CAL~ NOOULJISTRE~CJ.~K.~J.rIJ.srpC5(2.~~.JJ.I.J.~TPES(].WK.~J.fl'. 

" 

450 

500 

510 

KFEP(~.~J.I(,.~n~~.HPPIME.r.X.E ••• fY •• Flt.rtl.t.~~l. 
• E(I.~.kKt.~(~.1.~K'.FC1.1 •• ·'.Ff2.1.KCI.E(?'.~~' • 

• E (3. 1 .IC " ,. f: ( l. 2.11(1( , 11 f« l. II fi" KI. e lI". S Y. l!!"". xc l' • xC 2' • J( ... 

1,.. 
IFIISTEP.6Q.r .... T.I.NO.ITE'U..EO.11 <",0 TO "">0 '.F"' .... EO.l.ANO.KFEP("" • .I .. il".f"I).f\) C"''''I' ,, .. l'''t 

"t, (N.FO.1 ... "-O .... FEP.KI(.JJ, , r •• '4F."45') 1j'1 Ir') 41:.JO 

SONI'I'II' Il "t: lYOSTRANl1 .'(lC). F .",oSflHN'? Kr 1 
SONO.' 21 =f'I:Y e!CiTA AN(, .1(K'+ (VY_Sf'o ....... ?K'C.) 0-

SON~wC3.~E12·STPAN('.KK. 

IF( 0( (EPI K K, J." III .fO.O 1 GO T'J ")':>0 
Fl)fL lA.J',. (1).505 •• '4!'''(,,W( 1 I.O.5"-<;'YO!nNr.I?I.5.ItF~~ 1.KI(. JJ, 

e ('II'S~&A 

IFIFDELTA.lT.O.1 GO TO.~RQ 

00 ,") 00 1 = 1 • J 
SDNO.' 1 ) :zO. 
on ~oo .1.,.] 
o;O"O"III:';O~W(II+U 1,.1.1(1( l.cr"~·I(J.Y.' 
on SI 0 1 z-j • J ~ --

.. 
SfQE5C 1 •• o(.JJ. If ~:'V~II .I(K.",J. ri J .SO· ... t}1I11 '-$0_ A.ST( l~ 

'iC')\.. .. STt Il,-;0,.'0'''11) "'--

= 

r f ) .. C;.,"~II 
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fi' 

~ 
Q!L!:4SE 2.0 STIIESS DATE .'77154 "'22']5 

T-t-. 
00 7CO lal.3 

~700 'aT+X(flaSTRANII.~Kt 

4"0 
550 

.-b" 
r.:, 

DO"o- T'DEN 
PL4Tp~IKK.~~.II,zPLATRHiKK.~J.II'.PDNO.-PDL4ST 
-Dc..AST"PONC. 
SOA"~E, 
CiQ TC 800 
I(l"ED(.U .•. iJ.n 1-0 
00 6CO '''1.] 

.' 
---

TF~DIIIs~TQEslr.KK.~J.rrl 
S'R~SII.KK.JJ.llt&STRE~I(.KK.~~.lll+SONp.('1 
'FIN.EO.ZI CiO TO 800 -

= 

JO 

.50 SEaOS~TCSrQESCI.~~.JJ"'t.5T"E511.~~.JJ.'lt-STRES(I.K~ • .IJ.III-STR 
- E512 .KK • .1.1 .11) +STRESIZ .~~ •. I.I. (f 1 aSTRES C2 ,KK • .1.1. J J 1+3 .aSTRESC,', 
a KI(.J.I,II'-SrRESI3.KK.JJ.lltt -",,:/ 

7eo IFC~c.LT.s~lqt CiO TO ft50 2 
~5S 00 66' 1=1.3 
6~0 XI1'.S'DESII.K<.JJ.II'-TEMPCII 

4a lCI1I-Xll'-XC'; •• C2'+X(2I a 'C2'.3._IIC".ICC]) 
'.2 •• C(I'.TE.PI"-X(I'-TE.P'21-.12'-TE.P(l~.J(C2,aTEMP'2'+6.-.1] 

·.·..,.e\l~("1' ~ 

:s'~~~fll.TE~DI11-TE~DC1"TEMDCZ'+TE~PC21.Tf.DC2,+, •• TEM~C31.TEMPI 
·H-SR"A.~dAR , 
TaS-e-",s"se 
.,.C, .~E.C'.' GO Ta "70 ! 
TaO. , 
('"0 T('_oZ" ( 

.73 T-OSCRrIT, • 
"t!C-~.T"C2 •• "1 1 
rZ·I-~-T"C2 •• '" i 

rFC~"~SI'I,.LE.DA8SCT7" T.T' ( 

~7~ ~n ~~G I&I.J • 
CFC'A1SCTZ,.LE.04SSITl" T-T2 1 

., 

SSO S'~~S'I,I«,JJ,(11-TE~PCII.~CI}.T 

:):) ~q~ l '" • :1 1 
.. r~, ... c 1,.o.o'=S, .. ""II.KIII.I 1,.-04"<SITI t 
< .... "'CICI(.JJ.II la, 

70., 

"t'O en ... , t"UE 1 
.~~ IFC~~EPC.oI(.JJ.III.N~.O' IYIFLO-. 
I-~' eONTI~u~ -

IFtl«TEP.fO.I~I'.AND.ITF.QA.EO." RETURN 
IFf~J.FQ.NGAUS".ANO.II.EQ''''CiAU''SI .~ITF(NWPITEJ STACSTPL4'AN. 

• TOT5QN.KEE5 
IFCI~TfP'''E.NTI Q~'URN 

IFIIT~PA.N(.I' QE'V~N 

• .,. t~CIJt ... ~.I.('1R.JJ .... ~.I.('\A.rr.Nf'.I' CiO Tt' "qe 
.... ITEU •• o;C' ~ 

$0 , "">IOA,,,,,·."'.·,)·.T5.~El..fItENT Hn'.T20.'L('\C4TfON C INTERGA4T'Ofoi PO 
sl~Ti '·"~S.·LAYE~ NO·.T'S.'CUIOUL4'CO ST~ESSES IH I..~C&L COOROIN4TE 
.·.·17&.·C=(LA~TIC·./.·~·.T21.·~~C.'·.T38.·rr(Y.·.Y70. '1 - ~"Q~AL' • 
• ,.,: •• ., - "'OA~AL -,TlI0.'S ... ,.-'1I s't:J,=~s' .T1Z ... ·1 sPL4SfIC' .1'" 

",eC ')t,.. 1 ,.,,"" I(lC.sl.~AYED- ~ 

.5~ IF(~K.fQ.I' GO Tfl ~3~ 

, 

,. 

o ~ , 

,... 

1t!L,E4SE 2.0 STRESS O""E: • 771Oj6 

~~ 

91)5 

910 

9JO 

950 

1 1'22' lOj 

IF(IIK.EO.~.I(EEPCKK.JJ.II ' .... 'E.I9' Gt) rD 9"'5> 
IF'IIEEPC~~I.JJ.irl,Eo.o."HO.II~EPC~I(.,.JJ.'II.F~.OI GO Ta 120' 
W~ITFC6,9101 KK.CSTAFSII,KI(,.IJ.III.'al,Jt,kFFPCKK.JJ,II' 
FOR~4T(' '.T55,15. T62.1E20.5,TI27.12' 
GO Ta 1200 \ 
fF(JJ.EQ.t.A~O.II.E~.ll Gn TO 970 ~ 

't 

"'A 1 T FI 6. Q';O 1 .1.1. r r ,101:, C STRE sc r • <". J J. rIt, r = l ,31 .1( EFP 1 KI(. J J. 1 1 1 
FOA~ATC'O.,T27,13,TJA.13,TS5,15,T6?,lF20.s,TI27,121 
CiO TO 1200 / 

910 "'''1 TE(6.980) LK.JJ.( 1,I(I(.CST'lESC 1,I(K.JJoI Il,1=1,11,KfEPC<I( • .1.1.1/1 
980 FOR~ATr·O •• T5.1~.T27.rl.f38.r].T~S.15.T62.1F2C.~.TI27. 12' 

1200 CONTINUF 
"'ETURN 
Elooo 

EFFECT. HorEA~.lo.E8COIC.SOURCE.NOLIST.NaOECI(,LO&n.NO •• D,NOTEST 
EFFEcrs HAMF" STRÈSS ,lINECNT ~ 5~ 

SOURCF !HArEMENTS'" --IOO.PROGRAIO SIlE = "052 
NO ~G'40STICS l>ENER&TEO 

NO DI4GNOsr/CS ~(S STEP 
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