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ANALYSE NON LINEAIRE DE SECTIONS A PAROIS MINCES PAR LA'
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Le comportement aprés flambage et la résistance ultime A%s
éléments 3 parois minces debatiments est étudié 3-1'aide de la méthode
des éléments finis. 'A 1'aide des concepts de travail virtuel”ét
d'énergie potentielle minimuﬁ, des formulations basées sur le principe
des variations et sur le principe des variations par incréments sont
developpées. Les matériaux considérés sont elastiques et parfaitement

plastiques, élastiques et subissant un &crouissement lineaire, et

élastiques et subissant un écrouissement non-1inéaire. Des matrices

 lineaires et non-linéaires sont derivees de fagon explicite jusqu'au

niveau précédant 1'intégration numérique. Des méthodes de solution du
type de celle de Newton-Raphson par itération et du type graduel avec
vérifications d'€quilibre sont utilisées et comparées. |

La formulation est d'abord utilisée pour étudier une variéete
de problEmes concernant des plaques. Les ;ésu]tats se comparent de
fagon favorable avec des solutions théoriques et expérimentales déja
publiéesdansla littérature technique. La m%thoae proposée est ensuite
appliquée & un nombre de profilés & parois minces non plan. Les résultats
de flexion, de contrainte et.de plastification sont &tudiés en déﬁail.

Des comparaisons avec les résistances ultimes obtenues d'autres sources
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ABSTRACT

> /

The post-buckling behaviour and the ultimate strength of thin-
walled structural elements is studied using the finite element method.
Formulation$ baﬂed on the variational principle and the incremental

variational principle are developed using ‘the approaches of virtual
3

“ work and of minimum potential energy. Material treatéd as elastic-

. ' . perfectly plastic, elastic-linearsstrain hargening, and elastic-nonlinear

} ’
strain hardgning are conﬁﬁdered. Linear and nonlinear matrices are

derived explicitly up to the level prior to numerical ihtergration.

- i ' /
Solution procedures of the Newton-Raphson iterative technique and the i

' step by step method with equilibrium check are employed and/iggparéﬁf/¢jf/?

The formulation is first used to study a vari ty¢5f plate’ /
/

problems. - The results compare favourab]l h theoretical and‘experimental

solutions already published i e technical literature. The proposed
technique is t%

sgg;ieng’ﬁ?:h slope discontinuities. Results in terms of deflection,
- ’ /

¢/,/,////f»f””/fd:;ress and plastification are studied in detail. Cbmparisons with
: ultimate strengths from other sources are also made whenever possible.

plted to a number of thin-walled non-planar structural

' %
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CONVERSION FACTQRS

) facy

.

The following is a list of the conversion factors for all

imperial units (English system) used throughout this thesis to the

"Metric sysiem" and the "S.I. system"..

i

o \
1 Foot -

1 fil
1 Inch
1 in
1 in3 i
1 in?

1 kip-fo;ce

1 kip/in? (ksi)

1 Pound-farce
Pounéiiorce/inch
‘T:Pound-force in.

1 Pound-force\;;om

1 Pound-force/ft? \{\\ \\\\\

1 Pound-forée/inzﬁ(psi)
. B 2]

n

it

H

I

'30.48 centimeters
.09290304 meter? ™
2.54 cm

6.4516 cm’
16.387 cn
41.623 cm’
453.6 kilograms force = 4448.2 Newtons

6.895 Mega-Pascal
{ 1 Pascal =1 Newton/mz)

453.5923 grams-force = 4.4482 Newtons
178.5796 gr/cm

0.112985 Newton-meter

1.355818 Ne;ton-meter

4.88242 kg/m?
6894l*ﬁmgxg§§{fwz

6.895 Kilo-Pascal

70.3069 gr/cm® . -



CHAPTER I
INTRODUCTION

I.1 Thin-Walled Members

|
|
!
|
Metallic thin-walled members are widely used in variousfindustriés.

|

There is a long history involving the use of thin-walled members ﬁn ship

building and aircraft manufacturing. In fact the investigation Ef thin- -

~

walled members was initiated in these industries and then extendéd to cover

other applications. Ihin-waf1hd members are now used extensively in the

)

construction of car bodies, rajlway coaches, water tanks, culverts, barriers,

.shell and tubular structures of many shapes, as well as various ypes of

equipment.
Thin-walled members are fabricated by extrusion, cold-forming or

by welding their component elements together. They are generally assemblages

of curved or flat plates and their cross-sections can be either closed
(tubular) or opéﬁl(prﬁfile). Thin-walled members are distinguished from
conventional compact members not simply because of .the thinness|of ﬁheir
walls but rather, more importantly, due to’th;ir different behaviour in areas
which include “ocal instability, post-buckling strength and torsional-warping.
The classification as thin-walled members also 9epéngs on the Joading

overning

|

configuration since external forces play an 1mp9rtanf role in
the behaviour of the member. |

The application of co]d-formethhin-Ja11ed members in building
construction is presently very popular. Standardized prefabricated
buildings, entirely or partia]]y_constructed using cold-formed members,

are already on the market. Shapes such as I-sections, hat sections,

T

—

R =




channels, and1es or any combination of these, with or without stiffening

lips, are commonly used'as roof purlins, wall girts or studs. Various ¢

o

/
) sections are also used in open web steel joists and space frames. Although

these members may be individually unstable due to their configuration and
dimensions, their stability and hence their load-carrying capacity is
greatly increased once they are connected to other pa?ts of the ztructure
such as roof decks, wall panels, etc.. Corrugated shapes are generally
used as roof decking, floor decking, wall sheathing and siding. Thin-
walled members are also used in the construction of folded plate and =
hyﬁerbo]ic paraboloid roofs and may provide a pleasing appearance. 'In o
addition to carrying normal loads, these members may also form a diaphragm
which resists inplane shear deformation, ﬁransfers lateral forces (wind
and/or earthquake), and provides 1aﬁera1 bracing for indiyidual menbers in

a steel framed building.

The advantages of using cold-formed metal members are:

s

(1) Economy: High strengthﬁweight ratio, mass produciion and
pre-fabrication, ease in transportation and erection,
high durability and reusability, all contribute to

substantial savings.

(2) Multi-purpose applications: These members are often able to
fulfill mor; than one purpose. For example, wa]i
panels, while providing structural strength, may also be
architecturally desirable. Floor decking, wh%éh
creates a composite structural membér in combinétion with
concrete, serves as the form during construction and dlso

i
provides utility conduits in the finished floor.
o

il Dotz

p—,
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Today, various specificatioﬁs and code; applying to thin-walled
members are being used by designers andiare under constant review in
North America and Europe]'G.c The analysis and design of such members -
have recently been the subject of books by several authors including Yu7

and WalkerB‘

[.2 The Problem

Thin-walled membersfgghave nonlinearly, that is, the relationship
. «

between the applied loads and the resulting response of the members 1s m_,__,/”/’——

wnonlingar. Nonlinearities encountered are due to two effects:
. . ,

(1] Gébmet;ical Nonlinearity: / / /

When a member deflects signifidant]y,??e effect of chahg)ng
geometry on equilibrium must be taken into account and ‘the
stretching of the middle plane of the plate must be included
in the analysis. Fhese effects lead to an increase in:
bending stiffness of the member, eveﬁ though the stiffness:
of resistance to axial compression decreases. PThis type
‘\//~\7ﬂi22611nearity is introduced by adding higher order terms
in ain-displacement re]apigns arid/or by updating the

i
. . geometry of the member using a step-by-step approach. o



g

4 4

[2] Material Nonlinearity: . s

‘At high load levels some portion of the member mé& yield, and
based on its nonlinear constitutive relation, start to respond
inelastically. This "softening" of the material due to

o plasti%ication reduces the stiffness,of the member and causes

< its f1na1 collapse. This type of non11near1ty 1s introduced

rd
through the stress-strain relation ( p{as;f;1ty
1
\ « _ Ihese nonlinearities play an extremelxligportant role in the -
beliaviour of thin-walled members. It is well-known that the utilization

of post-buckling strength is the prime advantage associated with_thin-
walled membergg The investigation of behaviour above cr}tical 16ads aﬁd
the prediction of ultimate strength demand the inclusion of both of these
tWP types of n5n11near1ty These nonlinear chayracteristics of thin-
walled mémbers have not yet been thorough:y treated. o

Th; analysis of thin-walled members is inherently difficult since
if involves thé problems of stability and warping.  Furthermore, the
inclusion of nonlinearities makes the analysis extremely complex gnd it’
cannot be solved in closed f;rm. So far, attempts have been limiked to \
simple problems such as plates or tubes under compression. Ever’ in such
simple cases an ad hoc apprbach was often adopted so that assumptions could
be made to simplify the complex mathematics involved, although the final
results still had to be obtained numerically. These eafligr'works have
provided some imﬁof&ant contributions towards solving the problem.

However, they are by no means complete, exact or general, and hence their

0
appquations are limited.

Y
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Exact theoretical treatments of thin-walled flexural members
are scarce. A recommended way for calculating the deflection of thin-

walled beams, based on the effective section of the member, which i5 a
function of the stress'1eve1)andﬁtherefore varies along the span of the

beam, is tedious. .Further simplification by using only the least

) effectivaﬁgfction (the location with the maximum moment) causes the

calculated deflection to be conservative and approximate.  Previous
investigations ihvolving more coﬁp]icated problems such as thin-walled
members under torsion, or combined bending and torsion, with consideration
of nonlinearities, are virtually nonexistant. Thi; explains why the
present codes, and specifications, wherever nonlinearities must be taken
into account, such as in post-buckling strength and web cripp}jng, are
based mainly on the resu]ﬁg;of experiments. In these expériments,
”obviously, 11mitatioﬁ§ on the shape and dimensions of sections, loading
configurations, boundary conditions and typgs o; materials used, cannot
be avoided. However, the results, in spite of the limitations, are
applied for general use. ’ .
This evidence reflects the fact that theoretical work must be
promoted, since the prozress of theoretical work falls far behind
experiments. Also, no qatter how satisfactory the experimental work
proves to bé, ideally thesé results should be theoretically justified
and a marriage of experimental and theoretical results should be set as

the final goal. Further, even though experiments may prpvide'ansWers

_ to definite questions (e.g., ultimate load), a propér undersfénding of

the behaviour of the member by a detailed study of stress distribution
. . . o
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patterns and the chronological 5preading of plastic zonés, which can
be convenientﬂy obtaimed by theoretical methods, 1s likely to be
impractical by experiment. Using a theoretika] study which includes
nonlinearities, a better-understanding of the behaviour and the strength
of“thin—walled membeés and furthé% improvement of present‘specifications
and codes are possible. This, 1in turn, promotes greater economy-

through lower margins of safety in the use of thin-walled members.

1.3 Previous Work

Classical treatments on the bending, torsion and buckling of
thin-walled members %ollow small deformation theory and assume that éhe
material 1s fully elastic. This type of treatment has been, extensively
studied and documented in numerous references in many well-known

10'13. This linear, elastic analysis 1is not the topic offth%‘present

books
study and hence a review on these works is not warranted. In this
section, previous stuq;es-thai considered only gedmet;ical or material
nonlinearity are presented first. Works considering combined non-
linearities follow. They are presented in chronological ofder, The
object is to present a historical background and an up-te—date state-of-

the-art review. Thin-walled sections with curved plates (shells) are

s

excluded.
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[.3.1 Géometrical Nonlinearity - Elastic Plates and Thin-Walled Sections

\

/;;) with Large Deflections
) Even though the first treatment of plates with large deflections

dates back to Kirehhoff (]877)9,1t was Von Karman]4 who derived the
presen@ large“deflection .compatibility and equilibrium equations of plates
in 1910. 5, and Marguerre and Trefftz]6

Timoshenko] were among the earliest

in the nineteen thirties to investigate plates with large deflections

/
where they used the energy method to obfain approximate solutions. Way]7
used the Ritz method to study a clamped rectangular plate under uniform

18,19 using finite differences,

2]‘23 (

1aterai loads which was later studied by Wang
1942)
was able to reach an "gxact“ solution usfqg double Fourier series’ for

simply supported or clamped plates under uﬁﬁform lateral load, in-plane
load, or combined lateral and in-plane 10@5._ On the uniformly compressed,
simply supported plate he constrained the unloaded edges to remain straight.

24

This was extended by Hu, Lundquist aid Batdorf™  to include®initial

imperfection effects, by CoanzS to consider unloaded edges free to move in

its plane, and by Yamaki26 to cover various boundary conditions. In his

doctoral thesis of 1945, Koiter27 initiated a perturbation technique to
investigate immediate post-buckling bghaviour and imperfection sensijivity
of plates. ~Berger28 proposed an approximéte approach which simplified
the nonlinear equations by neglecting the second invariant of the membrane

strain. using power series.

30

Post-buckling was later studied by Stein?’

Change of the buckling form of a plate was investigated by Stein™, Supple

31-33

and Chilver For details on plates with large deflections,

references 13, 34 and 125 can be consulted.
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wﬁa]ker and others

« using perturbation techniques. Alternatively, Rushton

Recent workkpn plates is inclined towards numerical approaches

due to the rapid growth of the storage capacit¥ and speed of computers.

35'38xstudied the post-buckling of compressed plates

39-42 ced the

method 3? dynamic relaxation. Rhodes and Harvey43'45 used the Ritz
method and solved Von Karman's compatibility equation "exactly". Finite,
46,47

difference. methods were used by Chaphan et al. on plates under

transverse load and under combined transverse and in-plane loads. A

48 and by Bieniek49 also

review on post-buckling by Hutchison and Koiter
provided information on plates.

Studies of large deflection, elastic plate behaviour using
finite elements arexnumerous.. Early works mostly used a step-by-step
meihod with the linéér incremental equilibrium equation with inclusion
of geométric stiffness being formulated and solved for a piecewise :
linear épproximatfon of the true solution. Among them, Murray and

50,51

Wilson studied large deflection and post-buckling of plates with¢

incremental equilibrium equations formulated using the principle of
virtual work. The unbalanced residual forces are calculated and
jteration is then performed within each increment. Lang and Hartzsz‘
later<coupled a finite element formulation with a general energy
perturbation approach to éfudy post-buckling of plates. Roberts and

\ 1

AshweH53 proposed a (Newton-Raphson) corrector and (mid-increment

k]
|
stiffness) predictor solution procedure to investigate laterally loaded i
square plates and the post-buckling of an imperfect plate. Kawai and
Yoshimura54 employed energy formulations and reached a force-displacement

relation where nonlinear terms are interpreted as -additional nodal forces
\ .




which are functions of unknown nodal displacements and are solved

jteratively. A sample problem of a clamped sqﬁare plate under lateral

l
loads using rectangular elements was given.\‘ Kawai55 further combined

the finite element .method for the analysis 8# in-plane stress fields and
Rayleigh-Ritz's procedure for plate bending problems tg study bending and
buckling of rectangdﬁar plates. Vos and Vann56 studied buckling and
post-buckling of plates utilizing a tensor formulation. nBergan57
investigated b%nding and post-buckling ofﬁplates using £he Marguerre
shallow shell theory where equilibrium and incremental equations for
general Rayleigh-Ritz type solution methods are derived from the Variational
Principle of total potentiallenergy. Ya"958'62 extended the incgemeﬁta]
iformuiat%én initially introduced by Mallett and Marca1]8] to investigate °
rectangular flexure plate behaviour on an elastic foundation with support
at the edges only being treated as a special case. The behaviour with
initial dekaction and the buckling and postjbuckl;ng,prob]em was treated

as well. Also, varijous types of boundary conditions were considered.

63

Recently Bagchi and Rockey ™ used a rectangular plate element to investigate

a web plate under partial edge loading. - Works by Schmit et'al.64

66 68

, Brepbia

and Connor®?, Tezcan et a1.%, Gallagher et a1.%"s

, Bergan and CloquGg.

and Gass and Tabarrok70 also included applications to flat rectangular plates.

On thin-walled sections, B]ack7] used Galerkin's method to

study beams subjected to bending and torsion. Soltis and*Christiano72

employed finite difference and Newton-Raphson iterative methods to inve§ti-
gate sections under biaxial loading. Ghobarah and Tso73’74 dé%iyed

.
nonlinear differential equations using the minimum potential energy
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A method using successive elastic approximations

- ]O_ * o
princibfe for thin-walled beams and a pe(turbation“process was carried
out to obtain gblutions for the.beam problem with non-uniform torsion.
Mikhail and Gura]m‘ck75 also applied the minimum potential energy
principle with a Rayleigh-Ritz method to a folded-plate type beam which
76

was later studied by Khan and Harris'~ using finite elements. Rajasekaran

: and Murray77 used finite elements and adopted "augmented stiffness" and

"alpha constant" techniques to the solution of beams and beam-columns.
Jr»

1.3.2 Material Nonlinearity - Elasto-Plastic Plates and Thin-Walied Seetions

Due to the difficulty in treating thgoretica]]y the elasto-

plastic plate in bending, the extremum principle of p]asticity78’81 is

generé]]y applied to obtain upper/and lower bounds for the true ultimate
load. In this respect, the well-known 1imit analysis method is pre-
dominantly used. However, this simplified method assumes that the ’
material is perfectly plastic and hence the strain hardening effect is

neé]ected. Alternative approaches have been proposed by several

82 83

investigators. Massonnet”“ and Cornelis - used a finite difference

method with an incremental procedure for solving the plate bending problem.

84

Ang and Lopez ' attacked the problem by treating a plate as a grid system.

85 was also attempted .

86,87 1o applied

previously. Work on rectangular plate problems by Lin
an analogy concept to reduce the analysis of a plate with plastic strain
to the analysis of an identical plate with an additional set of lateral

loads and edge moments, is worth noting.

{
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Probably the approach most actively adépted in recent years
is that using finite elements which not only provides a bounded value

/ »
for the true solution, but also describes the stress distribution and the
N N J- 4

. progress of plastification in the plate. Among previously published
work on the initial strain method, Marcal and Maﬂett88 investigated a

centrally loaded and simply supported square plate using triangular

89,90

elements, Armen et al. employed both rectangular and triangular

elements on various plates subjected to lateral loads and to combined

91

lateral and in-plane loads, and Whang” adopted a shallow rectangular shell

element to uniformly loaded clamped and §imp1y supported square plates.

92 studied uniformly

93,94

For the tangent stiffness method, Bergan and Clough
1Jaded plates using refined quadrilateral elements, and Wegmulier
studied clamped square plates using a rectangular element. i Using the
initial spress method, Barnard and Shar‘man95 recently adopted a hybrid
p1ate-béﬁding element to simply supbd}ted and clamped square plates under
uniform loading. |

Investigation of thin-walled sections considering only material

nonlinearity is based on the assumption that the deflection is comparative]y”
| . .

!

' small and hence geometrical nonlinear effects can be neglected. ~This is
unlikely to hold true for thin-walled members and studies under such
assumptions are very rare. On the other hand, the limit analysis metho&
(plastic design) for conventional compact sectioﬁs has been well-established
and is of little interest in the present study. However, it is worthwhile
to point out that the finite element method has recently been applied by
Rajaskaran and Murrangto investigate elasto-plastic p]ated-sectioﬁs, and
Lundgren"w’98 recent]y.studied thin-walled bgams under torsion assuming

J

the material is nonlinear elastic Sr elastic-perfectly plastic.

|

\
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I1.3.3 Ultimate Strength of Plates and Thin-Walled Sections

- Investigation of the ultimate strength of p1ates and thin-wai]ed
sections requires the consideration of both geometrié%ﬂ and materijal
nonlinearities as at this final stage of its loading history, the membér
has glready deflected a significant amount and parts of the member have
yielded. Because of its ®xtreme mathematical complexity in theoretical
treatment, closed-form solutions do not exist. There are two approaches
most commonly used to predict the u]timateﬂstrength and’both are semi-
empirical in nature. ‘-fhe first approach is to propose a simplified formula
where ultimate stréngth is expressed as a func?ion of the member's critical
stress and tﬁe yield stress of the material being used. The necessary
factor terﬁ ahd exponent term in the fgrmu]a is chosen by comparison with
the experimenfa] data. For the thin-walled section the ultimate strength
is evaluated by summing the weighted strength of each plate element based
on its cross-sectional argaf The second approach is to use ghe effective
width concept where post-buckling strength is considered to be u?iform]y
carried by longitudinal str%ps along the stiffened edges of the plate so
thdt the_stress\resultant of the plate remains the same. It simplifies

AN

the nonlinear stress distribution along the plate width to uniformly
oo

. distributed stress blocks and the formula for effective width is genegally

based on experimental resu]ts.\ Consequently, the strength of thin-
walled sections is evaluated using a reduced effective section.
Schuman and Back99 tested rectangular plates under edge compression

with un]oadéd edges supported in V grooves. They noticed that, because

L aeEe
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the center part of the plate buckled most, the post-buckling load is

mainly carried by strips along_the unloaded but supported edges, and

the capacity of the plate was not raised significantly by increasing

100 (

the plate width. Von Karman 1932 was the first to use the effective

-

width concept and had derived an approximat;\?ermu]a for simply supported

platesw™ Various expressions for the effective width were proposed by

many researchers thereafter. Early works were conducted by Sech]er]O]

102,103 104,105

who tested steel piates and by Cox and Marguerre et al.

| who used the energy method and also included khe effects due to initial

]106

Jimperfecﬁion. Stowel used the deformation theory of _plasticity to

study rectangular plates with one unloaded edge simply supported and
remaining straight, and the other unloaded edge totally free. This was
simulated experimentally by testing cruciform columns where, due to symmetry,
only torsional buckling occurs and the center line of the column (repre-
senting the supported edge of each flange) provides no restraint on rotation
but remains straight. ?Bod agreement between theoretical results and

107 attempted an approximate

test data was obtained. Méyers apd Budiansky
theoretical solution using the energy method with the Rayleigh-Ritz
procedure on simply supported square plates where unloadgd edges remain
straight. Deformation theory was adopted and the plate was treated as
consisting of only two,stréss-carrying faces (sandwich-1like). Results-

, coﬁgared fairly well with experimental data but failed to show load
shedding.

108

Heimer] tested extruded sections and proposed semi-empirical

formulas for ultimate stress. App]yinglthe same formulation to formed

. '
[RPS LTI
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sections, Schuette]09 found consistent discrepancies and pointed out
that the ultimate stress for formed sections depended on the width-

3 { ////
10 proposed his ultimate stress

thickness ratio. Later, Needham
formulas for formed sections to take this parameter into account. He
further suggested that a formed member consisting of a series of flat

plate elements can be treated as a series of angle segctions by "cutting”

through the center line of each stiffened plate element since that region

is Teast rigid and hence less sensitive regarding the prediction of

ultimate strength. After having reviewed previous investigations,
Ger*an"d”]’”2 combined the formulas for extruded sections and formed

sections into one and made further extensions to cover general shapes and

stiffened panels. This work was mainly for the member whose effective

slenderness ratio is small and hence the member fails due to local crippling

rather than to overall column buckling.
Perhaps the most jmportant work is due to winter'”3’”4 who
performed a series of tests on cold-formed steel sections. His results

formed the basis for the'main contents of the AISI4 and other codes

Chﬂver”5 has investigated Tipped and unlipped channel sections of cold-

* formed steel. Work on post-buck]iné behaviour of ﬁlates was reviewed by

116 117

Jombock and Clark '~, and by European reseérchers

Research in the last ten-years has been extensive. Dwight and .
119-122

118

Ractliffe tested steel and aluminum alloy plates. Graves-Smith

used the Ritz method with a rigorous mathematical formulation to
. .

investigate rectangular tube columns and later square box beams. Massonnet]23

proposed a solution using the iterative finite difference method.

1,3,6
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He employed the Prandtl-Reuss equations of plastic flow thebry With the

assumption that the plate perform§ a. sudden transition froi elastic to

I
fully plastic behLvioyr oncé the plastic moment is reached. Reiss and

124

ote

Chilver pointed out that, for some sections, the assumption that the

ultimate strength of a compressed section is the linear summation of, the

-

individual strengths of the component plates assuming it is simp1¥ supported

along the longitudinal edges, may be in error on the unsafe s ide. Bulson]2

126 re-examined the effective width

!
N

of plates within the elastic range including the case where unloaded J C

summarized Qrevious work. Abdel-Sayed

edges are free to move in their planes. Rhodes et'exl.]27’]63’]64 used\
a semi-energy method on lipped channel beams subjected to end moments and

on e&centrical]y loaded plates with initial imperfections. Sherbourne

128-130

et al. studied plates and tubes by using the energy method to

L2
~

formulate an elastic loading (post-buckling) line and a-rigid-plastic
unloading (mechanism) line. Their prediction for ultimate strength by
considering the intersection of two lines overestimaped the real capacity

131 proposed

of the p]pte and may be considered as an upper bound; Wang
a numerical method to predict post-bucL]ing behaviour of thin-walled
continuous beams where nonlinearities are accounted for by the non11ne7r
moment-curvature relations of a section derived with the aid of the

effective width concept. Rockey et a1.132']34 investigated experimentally

it s,

the ultimate strength of thin-walled members under patch loading and under N

combined patch loading and bending. They demonstrated that the method
')

can be used to predict the failure loading of 1?ght gauge girders with a

good dedgree of accuracy. 1 Venkatar‘amaiah]35 tgsted channel columns. . 1

/ ld




~the ultimate load of thin-walled members. Murray and Wilson
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Equipped with reviews of formulas previously proposed for light gauge

steel design and incorporated with éhe spirit of 1imit state design,

136-138 proposed a simple expression for effective width using

139

Lind et al.

a statistical approach. Lin et al. studied plates using finite

140

difference and special iteration technidhes. Walker et al. analysed’

t

plate mechanisms and predicted the untoading path of simply supported ,

plates 16 cbmpression. - t

Agaiﬁ, the finite element method has been employed to investigate
141 adopted
triangular elements and developed an approximate formulation which was

tested on plate bending problems. Mar‘caﬂ42 used triangular elements to

C 143

study a simply supported square plate under uniform pressure. Ohtsubo

- also used trianguiar elements on square plates under uniform pressure or

Jn&er edge compression. He adopted the Ritz procedure with the aid of

the finite element method and had plastic analysis based on an initial

d144—148

strain concept. Crisfiel used the Ilyushin and the modified

\

[1yushin yield criterion with rectangular elements fdrlthe plate subjected

to- edge compression or to shear force. He later exténded/g)s work to

cover eccentrically stiffened plates. Extensive stress analysis using

149

fﬁnite elements has been performed by Armen et a1.173. Arai used

,"refined triangular e]emgpts to study various problems where the theory of

plasticity was not fully taken into account and hence his formulation can

150

be considered as an approximation. Murray and Rajasekaran presented a

set of differential equilibrium equations for thin-walled openisectionf

beams. Since the formu]at%gn was based on the principle of virtual work,

< the equations are valid for inelastic behaviour. However, the work is

L
B
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_buekling after the compression flange had buckled locally. Jombock

¥
o

lTimited to qualitative results. Stiffened plates have recently been

151,152 here triangular elements

)
investigated by Soreide, Bergan and Moan
were adopted. They have developed two computer progr#s based on the

Lagrangian formulation and moving coordinate formulation respectively.

If3,4 Overall Buckling of Thin-Walled Sections in the Post-Critical Range
. :

Thin-walled columns with intermediate slenderness ratios may fanl

]

by overall buckling in the post-critical range. In this case the column
may or may not yield depending upon its slenderness ratio. \ Study of

this failure mode requires consideration of the interaction of post-

buckling strength and the column deflection. Bijlaard and Fisher]53

reached approximate solutions using the energy method where -formuyations

were derived specifically for H-sections and square tube columns. The

{
possibility of genera]ization to other sections was claimed. Cherry]54”

has analysed'and tested I- and T-section beams which failed by lateral
J -

]]6’]5§ used the effective width concept to account, for post- ©~

119-122

and Clark

buckling nonlinear effects. Graves-Smith performed a rigorous

mathematical derivation including plasticity effexts for rectangular tube

sections and obtained good agreement with tests on Wluminum tubes.
156

o

suggested an empirically derived interactibn eduatiop to treat
157 '

Bulson

158

this problem. Ghobarah ‘and Tso investigated channei columns.  Sharp

159

provided a simple empirical formula. Wang proposed a numerical method

and adopted'effebtive width concepts to the investigation of rectangular

)

&
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: ‘ . 160-162 . ..
tube columns, Recently, Winter et al. presented a semi-empirical

effective width approach incorporated with the tangent modulus of the

<

o
material to account for inelastic effects. This work was extended by

161

De Woilf to the case of overall torsional column buckling.

x

1.4 Objective of Present Study .

1

w The literature review reveals that mostoprevious work has beéen
limited to platee and tubes which are generally treated as plates. -Work
on other sections is almost all limited to-loading %ases of axial com- ~
pression and the analysis is either empirical or semi-empirical. There .,
is very little theoretical work-on non-planar thin-walled open sections.

This work, which includes only one type of nonlinearity, cannot be cen-

sidered complete. Without geoﬁetrical nonlinearity, the behaviour cannot

be investigated correctly and without material nonlinearity,thé ultimgte

o

strength cannot be accurately predicted. Previous nonlinear analysis. of

three- d1menslonal thin- walled members such as those shown in Fig, 1 with

var1ous load1ng and boundary cond1t1ons, to the writer's knowledge, is

v1rtually non -existent. The aim-of the present study is therefore to
~ {
perform complete nonlinear 1nvest1gat1ons of this type of thin- walled

& ™

member under various conditions of loading, boundary constraint and material.

It is hoped that, by’tracing the load history and response from initial

loadrng to final collapse a better understandkpg of nonlinear behav1our

«--‘,. ‘ <

can be a&h1eved. It is the aim of the present study to make avelgn1f1cant.

I

advance in the theoretical treatment of thin-walled members .
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1.5 Proposed Approach

Since obtaining a closed-form solution is practically impossible,

a numerical approach is suggested. Among the many different methods, it

. is due to its simplicity and versatility that the finite element method

appears té be the most appeating. A finite element displacement method
using the tangent stiffness is proposed:‘ Strain displacement relations
(ééometrica] nonlinearity) are established by‘addﬁting'the Lagrangian
formulation and stress-strain relations gmateria] nonlinearity) by the flow

theory of plasticity. » The Prandt]-Eédss\ng]ation and its associated
Von Mises yield criterion is used and subsequent yieiding is governed by
an isotropic hardening rule. Solution of the equﬁlibrium quaLions is

based on the modified Cholesky decomposition procedure.

1.6 Scope of Present Study

The present study only investigates thin-walled members which

are composed of flat plates yut the members can be“of any shape and dimension.

~Even though the member beha&es with large displacements, the strain remains
small. The problem of large displacements and large strains is beyond the
scope of the present study. No Timitations on loading configuration and
boundary conditions are required except that they must be‘consistent with
the degrees of freedom used in the present finite elemgnt analysis. The
material can be treatgd as elastic-perfectly plasticf é]astic-linear
hardening, and elastic-nonlinear hardening.’  Members are presumed to be

initially stress free and the strain hardening of material due to cold

e T &

g - «
o TSR

g

Selis Rl e

—

P
o,



-20-
forming is not considered. Also, members are subjected to static
_conservative loads only. However, unloading and reloading in the post-

yielding stage is allowed.
It is the intent of.Chapter II to preSent the "state of the art"
of nonlinear analysis using the finite element method. The general

technique of attacking nonlinear problems is reviewed|from two different

perspectives. The first is to consider the formulation based on different

coordinate systems. The second is to discuss the different ways of

.

treating nonlinear terms in the governing equations. One important

- feature of nonlinear 5ha1ysis is the solution procedure. There are quite

a number of available solution procedures which are briefly desgribed as
the final part of this chapter.

~ Chapter III is devoted to the detailed mathematical formulation.
iThe variational principle is introduced first. This is followed by a
description of the element selected for the present study. ° Geometrical
gnd ma%eria] nonlinearity are treated separately at the beginning, and
incorporated with strain-displacement equations and, stress-strain equations
in matrix notation. With the application of the vgriathnal principle,
nonlinearities are stibsequently combined and the tangént stiffhess matrix

is farmed. The method of\generating the tangent stiffness matrix, which

vitally affects the computing cost s extremely important in nenlinear

finite element analysis, is considered to be efficient. The Chapter is
ended by introducing the modified Cholesky method of solving simultaneous

» b -
linear equations. é— E f
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In Chapter IV the computer program developed, based on the
mathematical formulation of Chapter III, is desc#1bed. Investigations
primarily on square and rectangular plates which represent the early
part of the study, arefpre§ented. Test examples cover various loading
‘dbnfigurations, boundary conditions and material properties. Results
are compared against the published values conducted by other researchers
using either the finite element method or other means. Problems such
as convergence, step size, and other miscellaneous items are_glso discussed.

Applications to three-dimensional (nen-coplanar) thin-walled L
members are presented in Chapter V. On the basis of one test for each

different shape, most types of commonly used sections are considered.

a
4

Again, different types of loading configurations, boundary conditions, K
and material properties are involved. BeHaviour is investigated in \
,detail and comparison of results with exberimeqta] values and with present
Canadian Standards is made whegeber possible.

{he work is concluded in Chapteﬁ VI. Recommendations are made
for possible future work using the present program. _ The issue of

computing costs which is a key obstacle to nonlinear 3na1ysis is also

discussed. 3

T
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. thorough derivations on each particular method are attempted. The

CHAPTER II°

S
K3

INTRODUCTION TO NONLINEAR FINITE ELEMENT ANALYSI
!

In this chapter it is intended to present a brief, but overall,
look at the possible methods of attacking the nonlinear problem. No
purpose is to provide a philosophical view, in'qua]itative terms, and
to present the current "state of the art“ of nonlinear finite element

methods.

II.1 Some Notes on the Finite Element Method

Two approaches are generally employed to formulate structural

engineering problemslsﬁ.

The first approach is to form differential
equations which govern the behaviour of a typical, infinitesimal region

of the structure. The differential equations are solved using methods

such as finite differences in a discrete manner. The second approach is

to apply the principle of variations to minimize a functional (e.g. the‘
potential energy of the structure) which is defined by suitable integra-
tion of the unknown quantities over the whole domain of the structure. .
The variational approach using the finite element method, which is now
recognized as a variant of the Ritz proééss, has the structure "physically"
discretized prior to the mathematic formulation. The derivation based on
assumed displacement functions (or stress functions or a combination of

two types of functions) for the "elements" leads finally to the solution \

‘of a set of algebraic equations. Actupally the two approaches are essentially

{
equivalent as they can be transformeg'from one form to the other through -
/
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the calculus of variations. The d%ffefence really lies in the solution
procedures. A method of combining the two approaches by adopting a
finite element formulation and a finite difference solution technique is
possible and appealing]97. )
_Alternatively, the finite element method ‘can be formulated directly
from differential eqhations without refeﬁring to the variational princip]es

This is the well known method of weighted res1dua]s]66 167 where the 1ﬁtegrai\

of the residuals tgroughout the region of the structure due to the 1ntroductlon 3

of trial functions into the governing differential equations are minimized. \L</

This method has certain advantages particularly for nonstructural problems
when ;)functional tan;ot Je formed. Within the range of this method thé -
Galerkin process of having the shape functions of thF e]ement‘play tHe role
of weighting functions is commonly used.

Even within the domain of the finite element method, there are
many possible ways to solve the same structural problem as several va;ia—

¢
tional pr1nc1p1es]68 1169

are available to follow. The basis of the
variational formulation is the principle of virtual work (principle of
virtual disptacement) which is based on the variatio® of strain and
displacement. There also exists another impor;ant variationa]“p&incip]e,

the principle of complementary virtual work (principle of virtual foqge)
which is based on the variaéion'of stress and force. From these two //
basic princip]es,‘severél other variational principles can beederived;

such as the principle of stationary patential energy, the principle of .

stationary comp[emen}ary energy, the Hellinger-Reissner variational

principle and the very general Hu-Washizu variational principle. Among

[N
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these principles the principle of virtual work, including its
subsequently derived principle of stationary potential energy (generally
referred to as the displacement method), represents the main-stream of

the various formulations in finite element analysis and is employed in

the'qreseﬁt study. Hence only this variational principle will be further ~--

referred to, investigated and discussed.

0
°

I1.2 Methods on .Solving Nonlinear Problem

When nonlinearity is encountered, the problem is basically solved
using iterations and/or increments of loading where each iteration or
each increment is a linear process. This was pointed out in the first

]70 The .

non]1near (geometrical) finite e]ement analysis by Turner et al
methods of treating the nonTinear problem can probably be c1a551f1ed
separately from two different points of view. For each point of view,

there are three distinct methods]avai1ab1e:

The first view is generally relevant to the first stage of the
analysis of the problem (i.e. derivation and formulation of governing
equations). The different possible methods of formulation is due to sthe
occurance of geometrical nonlinearity. The three methods of formu]ation49
are respectively based on a convected coardinate system, a Lagrangian
(material) coordinate system and an Eulerian (spatial) coordinate system.

Anothxr JJew has more connection with the %econd stage of the
ana]ys1s of the problem (i.e; solving governing equations). The different

methods were in¥§ial]y developed for treating the problem of material

~ \ o
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1

|
nonlinearity. However, the concepts of handling nonlinear terms are -

also applicable to the problem of geometrical nonlinearity and of
combined nonlinearities. These may be best explained by using s6lution
]procedures as examp]es The three methods are respectwve]J the method )
of tangent stiffness, the method of pseudo force, and the method of
combining tangent stiffnesses and pseudo forces. |

These methods are discussed in the following sections.

Y

11.3 Formulation Based on Different Coordinate Systems

II. 3.1 Convected ¢oordinate Formulation

|

The convected coordinate formulation was overwhelmingly used at

an early stage of the development of geometrical nonlinear analysis

173-175

and is still employed by researchers at the present time for

|
'combined nonlinear problems, even though it is becoming less favoured.

In this formulation”6

. 170-172

—\___

, the problem is solved, using a step by step technique,

by incrementing the total loads. The coordinate system is updated for the

changed geometry after each load increment. Suppose it is desired to
solve the problem for load increment n+l. The coordinate system after
lpad increment n is considered as the "undeformed" position for, and only
for, load increment n+l, remembering that the position o; load increment‘

n may be substantially different from its real initial configuration of

load increment zero. Later the position of load increment n+l is used

for increment n+2 etc.. It is seen that within each increment the formulation

’ !
is a Lagrangian one. The incremental stresses and strains are, respectively,

the Kirchhoffstresses (2nd Piola-Kirchhoff stresses) increment and Green

strains increment. However, +the Fotaﬂ stresses at the end of each
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1

increment, which provide the initial stresses for the next increment,
{

must be retained and transformed at each increment due to the movinQ

of coordinates anp are, therefore, the Eulerian stresses]68.

) For/{he
same reason as the updating of the coordinate system, the revfg%on of
the transformation matrix of 1oca1—gléba] coordinates at each step 1s
necessary. 'The formulation based on a:convected coq?dinate system
has'also been named the incremental moving coordinate formulation or
1ncremen§§1 combined Eulerian anq Lagrangian formulation and is only
valid for small strains. ’ (

The variational principles may now be &pplied in order to obtain
the governing equations. Nonlinear terms in the strain-displacement
re]atfons are initially included. However, the higher order terms in
the energy eipression or in the incremental strain expression, which
introduce nonlinearity into the stiffness matrix of the system, are
deleted. This is justifiable since the geometry 1s.kept updated. The
final incremental linear equilibrium equations can bL expressed
)th -

symbolically at the (n+] increment as

; ([k,1 + [k )(aq} . =(apY ;% (F) (2.1) I
where {aAq} are the incremental displacements and {ap} are the incremental
applied loads. [Ko] is the conventional linear elastic stiffness matrix of
the system. [K]] is a function of the existing stress level of the system at

. 4
the ®nd of the nth increment and is considered as the initial stress for the

(n+1)Fh increment. Also the merging of the [K]]Jnatrix is due to the
}
/\\\

Y
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geometrical effect, as the individual terms of this matrix can be

expressed in terms of geometrical parameters. Hence, it 1s often

170-172 177,178

called the initial stress matrix or geometric matrix

{f} is the unbalanced residual forces at the end of the nth increment
and is added to improve the results. To continuously solve Eq. 2.1,
a piecewise linear approximation of the true solution is obtained.
Further iterations can be performed within each increment to reduce

the unbalanced forces to within any 1imit of tolerance, and in this

350,51.

case the [K]] matrix can either be retained or droppe The

inclusion of the [K]] matrix is essential and often sufficient for

solving the stability problem]67’]7g’2]6.

s

11.3.2 Lagrangian Coordinate Formulation

v

_The"Lagrangian coordinate formulation is a more popular method
tbday. It is often called the Total Lagrangian coordinate formulation
to emphasize its difference from thf previously discussgd convec?ed
coordinate formulation. As its namé implies, this formulation is totally
based on the initial coordinate system of an undeformed configuration at
load increment zero. Hence, no transformation of stresses, updating of
geometry, and revision of the local-global coordinate transformation matrix
is required. This formulation is valid for small strains éslwell as large.
Further improvement is possible by accounting for changes in the direction

180

6? the loads during incremental changes in the deformation This can

Le done by transformation from deformed to gfoba] direct{ons, whereas, it

is inconsistent with the total Lagrangian formulation]76.

-

N



By applying the variational principle and retgining all the
higher order terms, the final nonlinear equilibrium equations can be

expressed symbolically as

(K, 1 + [k*]) {aq} = {p} (2.2)

where [K*] is a nonlinééﬁ"stiffness matrix.to account for the nonlinear
effects. {q} and {p} are displacements and applied loads respectively.

Eq. 2.2 can be cgnverted into an initial value prob;em by taking
the total derijvative of the equations with respect to a load parame;er,
A, which is a scalar to denote the intensity of loading (i.e. let gp} =
A{p}), resulting in:

([KO] + [KNL]) {q} = {p} (2.3)°

where {?}is the derivative with respe¢t to » and {p} are the generalized
lodds. ’ -

The incremental linear equilibrium equations can be generated in

many ways such as using a first order Taylor's series expa%sion of Eq. 2.?,

taking a simple Euler forward difference of Eq. 2.3, or formulating directly.

168

through the incremental variational principle It can be written as

([Ko] * [KNLJn){Aq¥n+1 ={Ap}nﬂ ¥ {f}n (2.4)

where [KNL] is the incremental nonlinear stiffness/maékix evaluated

using the knéwn values of displacements, stresses and strains at the end

of the nth increpent. ’
When only geometrical nonlinearity is involved {this represents

the stage of initial loading up to, and just prior te, first yielding

v feate

e
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of the structure), the nonlinear stiffnessimatr1x is only a function
of displacements. Formulations are often derived by minimizing the
total potential energy of the system. Mallett and Marca]ls] presented
an appealing formulation which is expressed as: .

in total potentia? energy:

o =0 (G IKD 4 AT+ Lind) - ) (o) (2.5)

7

3

in equilibrium equations:
1 1 -
([Kyd + 5 [N + 3 [ND) {q} = (p} (2.6)
in incremental equations:

(LK1 + I T+ N1 0a) g = (o) (2.7)

where [N]] includes all the first order nonlinear terms (first order
geometrical matrix) and [N2] the second order nonlinear terms (second
order geometrical matrix). Either of the three ‘equations can be used

to solve nonlinear problems. Eq. 2.5 is solved by a direct search for

64,182

the minimum potential energy Eq. 2.6 can be solved iteratively

using either the direct iteration method, the Newton-Raphson method,
or the modified Newton-Raphson method. Further explanation will be
—givenllater. Solving Eq. 2.7 using a step-by-step technique is straight-

forward. ‘ . -
- ' - ////
Alternate formulations also based on-the Lagrangian reference frame’ |
1183 this formulation i€’ !

e

can be typified by the work by Stricklin et a

S

“essentially the same as the previous one except it differs in the form

~

of expression. Following the same routine of decomposing the strains

-,

into linear and nonlinear parts and applying the Yapiéfional principle,
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'the equilibrium equations can be written-as o

| -~}

)
oIk ) ¢ (—hk gy = qp) (2.8)

aq

and in incremental form

NL. _
i ([Ko] + [‘561"563']n) ﬁAq}n+] = {Ap}n+] + {f}n (2.9)

J -
where ¢NL represents the part of the potential energy due to nonlinear

terms. , /

°

The above menﬁioned incremental equilibrium equations have often

been written in an"alternate form as: i |

(K1 + Ky I + TKGL,) €aady g = (apd oy + 1F) - (2.10)
where [K]]/is the aforementioned initial stress matrix and [KZ] 1s
referred to as the initial disp]acement‘matrix and covers all other

o

noplinear terms which were dropped in the convected coordinate formulation.

When material nonlinearity has to be included (this represents
the 3oading stage of post-yielding), no strain energy ?unction exists,
which is uniquely defined by the current displacements in the flow theory
of plasticity. Such a function would dedénd on\previous Toads and the
deformation history. A formulation based on the incremental variational
principle derived by using virtual work is, therefore, preferred. This ~

is because the virtual work formulation is more general and does not

involve the stress-strain relation; hence, it is independent of material

properties. The loads, of course, have to be applied in increments in

this case. The incremental equilibrium equation can now be written in

|

1

— e v am
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another, form, by explicitly separating the geometricalsand material
nonlinear parts: ‘ / &

([KOJ" + [KNL(G)]H + [KNL“))]H) {Aq}n+] = {Ap}m_] +;{f}n[ (21])
. [ / .

where subscripts G and P represent the terms due to geometrical non-

i

linearity and material nonlinearity, respectively. ¥

-
ki

,[ Despite the difference in appearance due to the different ways
of arranging the nonlinear terms, these equations are essentially the
same if thk same order of displacement functions were used. In any

case the«7ﬁzrementa1 equi]jbrfum equations can be written in short as
/ PN
(UKl (ealy g = Lol + () - (2.12)

where [KT] is called the tangent stiffness matrix or incrementa]rstiffness
matrix. The tangent stiffness matrix is originally referred to in the
Newton-Raphson iteration so]utiqn procedure. However, the féngent
stiffness!matrix and the incremental stiffness matrix are really the same.
This can be-seen, for example, by noting that both the Newton-Raphson
iteration and the generation of incremental equilibrium equations employ

the first order Taylor's series expansion of the basic nonlinéar equilibrium

equations? Eq. 2.12 is the"well-kﬁown incremental method with a one

step Newton-Raphson iteration. " -

I1.3.3 Eulerian Coordinate Formulation _
. - : )
 The formulation based on the Euler coordinate system has very

limited application because of its disadvantages in formulation and
computation. It is there?ore not .discussed here. References 49, 184

and 185 can be consulted for details.

i it 5 -
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11.4 Sofutidn Techniques Based on Differing Ways of Handling the

Nonlinear Terms

Weainifiate our discussion by considering the material nonlinear
p&ob]em, remembering that the loads are now applied in increments- due to
the consideration of the flow thébry of plasticity. Write the stress-strain

relation in a very generil form]66, . 0

{a} = [E] ({e} - {eo}) + {0.0} \ (12.\13)

where the parameters

[E] = a matrix defining the constitutive relation for a

multi-stress field | /,
{eo} = init%a] strain in the system ¢
{go} = initial stress in the System )

By adJust1ng one or more of. these parameters to satisfy the previously

d1séussed equilibrium equations, a so]ut1on can then be found. ° ;

»

II.4.1 Tangent Stiffness Approach

P J;én parameter [E] is adjusted in Eq. 2.13, the nonlinearity dJ:

to plasticity is 1ntroduced directly into the stiffness matrix. This

?pproach 1s called the tangent-modulus method]‘86 ]dp in finite e]ement

elasto- p]ast1c analygis. It is seen that in this method the stlffness

matrix is revised at each-load increment and hence varies. i "
When this approach is applied to the problem of geometrical non-

lineari@y,\or of combined nonlineartties by retaining the non]ineag terms

within the stiffness matrix on the left hand side of the governing equations,

it is called the tangent stiffness method. The stiffness matrix {or at least
4

the nonlinear part of the matrix) is recalculated cbntinuous]y to take

@
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into account the lTatest nonlinear effects. The extra computing cost

of evaluating and inverting the stiffﬁess matriL iS\paid back by faster
convergency and usually better accuracy. Al1l equations given in

Section Ii.3 were presented in forms representing the,tangent stiffness

approach.

I1.4.2 Pseudo-Force Approach

We refer again to Eq. 2.13 for the problem of material nonlinearity.
If the plastic part oT the/étrains is interpreted as initial strajﬁl
/
{ey}s which s kept adjusted and treated as external pseudo-forces, it

7 -

is called the initial ‘strain method]77’]9]']94.\lﬁn alternative is to
find the difference between the stresses, based on elastic analysis and
the subsequent stresses after relaxation due tg plastification. This
st}ess difference is considered as an initial stress, {oo}, and is also
treated as pseudo-forces. It is called the initial stress methodlgs.

Itvmay be seen that either the initial strain method or the
initial stress method retain the original constant (elastic) stiffness
matrix but convert the‘nonlinear effects into external pseudo-forces.

An iterative process is then applied until the pseudo-forces vaqish.

This pseudo—fo;ce approach can be generalized to cover geometrical
Wén]inearity and combined nonlinearities Ey‘having the nonlinear terms
formulated in the form of a force vector ana transferred to the right ~
hand side of the-governing equations. In this case, the updating and
inverting of the stiffneés matrix is avoided. This advantage, however,
is compensated for by the slower convergence-&hd possible numerical

instability in certain cases.]36 The pseudo-forice method can be written

LA
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in a typical form as
[k,] (g} = {p) + Q) ‘ ’ (2.14)

where {QNL} arg the pseudo-forces to account for geometrical nonlinearity,

or material nonlinearity, or both.

I1.4.3. Combined Tangent Stiffness and Pseudo-Force Approach

On the prob]em“of combined nonlinearities, the nondinear tangent
‘ ) \ ,
stiffness matﬁix consists of two parts, the geometrical nonlinear part

and the material nonlinear part, which can be explicitly separated]97.

Similarly, the pseudo-force due to nonlinearity can also be decomposed
into two parts. However, the pseudo-force approach in the incremental

form is less appealing, since, the pseudo-force of the geometrical nonlinear

part may cause numerical instabi]ityzoo’zoz.

The alternate is to include geometrical nonlinearity within the

tangent stiffness maprix but treat material nonlinearity as a pseudo-

force. This can be &ritten in incremental form as

| (TR T+ Doy (6) b ) (20 pe = {Ap}mf‘{AQNL(P)}

|

n ¥ {f}n (2.15)

”

Armen et a]]73']75 have used this approach by employing a convected

coordinate system so that the initial stress matrix, [K]], has been used

&

to replace [KNL(G)]‘

TS s
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I1.5 Numerical Solution Procedures

' .
A number of solution procedures have been tried and reported in
the Nterature. Detailed descriptions and discussions of the merits and

i

shortcomings of most of these procedures are available in some excellent

210 ]97-202. In

papers such as thoge by\Gallagher and by Stricklin et al
th}s §ection, only the main feature of each solution procedure is_fresented
and briefly discussed. The presentation foilows the works by Stricklin et
al, hence their’terﬁino1ogies are used as much as possible. The procedures

- will be{desc¥ibed in both the form using the tangent stiffness and the form

| using pseudo-forces to further demonstrate the difference and the applica-

bility of the two approaches. ’
We rewrite the fundamental nonlinear equilibrium equations for the
(:é tangent stiffness method and pseudo-force method respectively as
= ‘ F ‘ |
(f(x,q)} = AP} - ([K 1 + [K*]) {a} (2.16)
= NL
{f(x,9)} = A {P} + {Q "} - [KQ] {q} (2.17)

all terms in these equations have been previously defineq. The clakiifica-
|
tion of solution procedures into three catagories by Stricklin et aljwill

R

be employed in the following demonstration. . --~ — s

II.5.1 Exact Solution Procedure - {f} =0 N y
\\ \ A

1 In this class, an exact solution is sought through iterations to

l -

reduce the force unbalance, (f}, to zero. At a given load, r{p}, and

\

based upon some initial estimate of fq}n, a first order Taylor's series

e

i
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expansion of the force unbalance about point {q}n and setting f(A,qn + 4q)

of Eq. 2.16 to zero, yields the well known Newton-Raphson method

]

>

[ \
The correction, {Aq}n+], is added to the approximate root, {q}n, to

(KD + [Ky 1)) (8Q) = (F3 (2.18)

obtain a more nearly correct {q}n+i approximation. Eq. 2.18 clearly
shows that the Newton-Raphson method is a taqgent stiffness approach.
Convergency difficulties have previously been reported by using the
Newton-Raphson method on problems involving material non]inearityzoz.

If tth] in Eq. 2.18 were kept constant by avoidi?g further
updating, after first iteration or after the first severai‘iterations,
the so called modified Newton-Raphson metpod is obtained. An advantage
is.gained by elimination of further re-evaluation of the tangent stiffness
matrix. Of course, the convergency rate bgromes slower as, a consequence.

If [KNL] is set to zerg, a recurrence formula can be obtained

from Eq. 2.16 and 2.17 by setting {f} = 0. - \

- 25 - NL (2.19)
(K] {adq = AP} - [K¥] {q} = A{p} + {Q )

' "
This is the direct iteration (successive approximation) method and is a
pseudo-force approach. It can Qe seen that the iterative process of each

ingrement for the aforementioned initial strain method and initial stress

method is essentially Eq: 2.19. The initial étrain method may encounter

numerical instability for perfect-plastic mgteri@llgﬁ.

"

) : | . :
In this class, even tho%gh the solutfon can be accomplished in a

one-stép operation for a full load on occasion for less severe geometrical

/

\
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nonlinearity, it is possible that a non-unique solution may arise and
i \

the physically unimportant one may be obtained. Hence, it is gener&lly
better to proceed by incremeﬁting the load and obtaining theasélution
for each increment as for matériél nonlinearity. The size of increments
is important as the increment can be comparatively large for geometrical
nonlinear problems, whereas it has to be kept small when material non-

linearity 1s involved. : (s

I1.5.2 Initial Value Procedure - (f} = 0 '
G ,
This class is based on the asgumption that the first derivative

of the force unbalance with respect to load parameter, A, is zero. It

leads to the type of solution procedﬁre which moves -along thé 1oad-disp1acement]
path incrementally without iterations. Both the tangent stiffness method

and the pseudo-force methad are applicable. Differentiating Eq. 2.16 and

2.17 with respect to A and setting to zero, we may obtain, with the aid

of chain rule: ) .
([k,J + [Ky 1) (@) = (P} o (2.20)
(k3 @ =+ @y (2.21)

Eq. 2.20 and 2.21, which are first order differential equations, together

YUY
.
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Usingan Euler forward difference expression for {q)} and a backward
difference formula for {QNL}, Eq. 2.20 and’ 2.21 become the conventional
incremental forms:

(Ck, 1+ Cky 1) €aq) ,y = aa(p} : (2.22)
[Ko] (aq}, 4y = NP} +{AQNL}n ’ (2.23)

Another solution procedure which is included in this L]ass is the

203-206

weli-kquk perturbation technique At a known equilibrium point

on the load displacement path, the derivatives of this path may be used

to predict a further point. Expanding the displacements in a Taylor series *

about some known load-displacement state (g,A) yields

Qg () = 0,000 + 4 (0 + 3 6 (0) (4)°

-—

) F

where 1 refers to the qegree of freedom. Solve Eq. 2.20 or 2.21 for qi.

G0 (a4 L ' (2.24)

Further differentiation of these equations repeatedly will yield si%i]ar”
sets of simultaneous equations which may be solved sequent%a]]y for qi,ﬁ\
4, etc.. SubstitJ!ing the knowd value of q; and of derivatives into Eq.
2.24, the displacement at (A+AA)3WS then obtained.

The method is limited to problems with a moderate degree of
nonlinearity such as the study of initial po§t-buck11ng response, but
may not be suitable for extensjon far into the post-buckling range since
the Taylor's series expansion éﬁbloyed is strictly valid only in an
asymptotic sense iat the bifurcation point. The solution then tends to

drift away from the true equilibrium load path due to the accumulation of

\

|
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errors at sdcceeding load steps. Also, a considerable amoudt of
Do T |
mathematical manipulation is redliired if a significant number of path

[
derivatives must be calculated at each load step. To overcome these

limitations, the method is often used in conjunction with other
techniques. It involves the use of the perturbation metﬁod to yield
|

a higher order predictor formula, and the employment of an iﬁeqat1ve |

'

formula, such as the Newton-Raphson fonnufa} as a correctorzq4. In

this manner the perturbation tecﬂnique may be extended for usk on
’ |

High]y nonlinear portions of load-displacement curves. Recently the
method has been used for solving the combined nonlinear prob]em207.
It has been riported that the p§eudo—force approach under the

class of {f} = 0 may encounter numerica]linstabiiity in geometrical

| ) :
nonlinear prob]emszoo’zoz. ’ | |

‘11;5.3 Self-Correcting Solution Procedures,

This class of solution procedure is a natural extension of
[4

previous classes. Its main function is to provide a suitable correctjng

term to prevent the incremental approximate solution from drifing away
.4 v,
from the true load-displacement path, as often occurs in the aforementioned

second class solution proceure. This class is composed of two sub-
classes. .

>

(3) The first order self-correcting solution procedure is characterized
by )
(fr+ zifr=0 ‘ (2.25)

where z is an amplification factor. Substituting Eq. 2.16 and 2.17
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and their first derivatives with respect to load parameter, A,
into Eq. 2.25, yighds the self-correcting first order differential
equations:

([k,D + [k Diad + 2([k ] + (K1) (@} = (422) (), (2.26)

[k,] ({a} + z(q}) = (Bsza)(pl + z@"1 + @™y (2.27)
Applying an Euler forward difference for {q}n and a batckwards difference
NL
}n

formula for {Q , the equations result in incremen;a][equi]ibrium .

equations with correcting term:

(L, T+ [Ky 1) €aa, = ax(p) + z(an) {f} T (2.28)
- NL o
[K,J (89}, 7 = AP} +{aQ "} + z(8r) {f} _ (2.29)

| * !
If we set z(ax)=1, the equations become the incremental ggfution procedure

with a one step Newton-Raphson correction whigh is currently actively

employed by researchers.

(b) Second order Felf-correcting solution procedure characterized by

1

{f} + c(f} + z{f} = 0 ~(2.30)

where ¢ is also an arbitrary scalar quantity. Eq. 2.30 is identical
to a siﬁp]e harmonic motion. The variab]g ¢ is analagous to the
damping factor and the square root ®f z rep}esents t&e undamped
natural frequency of the system. This simulation provides some
insight into the selection of these quantitiesz Solving Eq. 2,30

by employing iexact integration:

LB e
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« ¢cs/2 n P .
(f(s)} = e L1 cos A5 s + (B) sinP2E" 51 (2.31)

where s ié a variable fon/the load increment such that at the beginning =
of each load step, s is set equal to zero, and at the end of the step

s is equal to ax. {A} and {B} are constant vectors to be determined using

the "initial" value of {f(0)} and {f(0)}. The displacement vector at

the end of the increment is then obtained. By Tearranging Eq. 2.16 and

2.17, the expressions defining the force unbalance, yields

(LK T + [K*10) tadyy = A q1BY =(F) (2.32)
: | |
[ (@hyy = Ay B+ @Y - (), 2.33)

I i

where'{f}n+] is obtained from Eq. 2.31. The second order self-correcting
procedure has not been widely accepted because of its high dependence
on the analyst's familiarity and experience in choosing the step size as

well as the parameters within the formula. o

I1.6 Closure
A survey of finite element nonlinear analysij has been conducted

by many researchers]76’180f 08"2]]. Most of the recently pub®ished finite
element books]66’2]2'2]4 éﬁig cover, more or less, the fundamental treat-
ment of nonlinearities. Qdenm5 has devoted an entire book to this subject
and has a wide range of nonlinear applications to physical problems.

These references can be consulted for further details. The formulation

and the #o]ution procedure of the present study is based on the total

methods will be further investigated. The convected coordinate formulations
| .

and pseudo-force solutions are excluded. ' U

Lagrangian coordinate system and the tangent stiffness method. Only these ////’/*
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CHAPTER III

MATHEMATICAL FORMULATION OF THE PkOBLEM

III.1 Principle of Variations

III.1.1 Principle of Virtual Work

4

The following derivation employs the Lagrangian description and

the reference coordinate system to be used is rectangular :cartesian. //“///
Let X be the codrdinates oq an arbitrary point of a continuous body in //////
its initial undeformed state and let Xi be the coordinates of that erial

point after deformation. The equation of equilibrium can be ressed

aS217

(kjk 5;?—),k+ p; = 0 (3.1)

. (.
where o¢. jk is Kirchhoff stress tensor (an,P/bla Kirchhoff stress tensor)

and is symmetric. P; is the bodyy/prf//per unit volume of the initial
configuration. The acce]eriﬁ}eﬁ/ierm in Eq. 3.1 is dropped because only
static equilibrium will k€ considered in this study. ;
To deriv e principle of virtual work, we integrate the proauct
kf the equkﬁﬁ??f;t:quat1ons and the corresponding dISp]acements, “i’
over-the initial volume of the bodyl68 ' 9
///// oKy - ) K '
- fv [(ojk 3;; ),k su, + pidui] dv = 0 &(3.2)
su: is an arbitrary, infinitesimal, and kinematically admissibfé viriual
disdecement field. For simplicity, the body force term is now dropped.

Applying integration by parts‘on Eq. 3.2, resupts in:

42+ . . |
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/// DX,i DX]-
- S (oJk Y éui) K dv - s (UJk 3_)(3- GUi ,k) dv = 0 (3.3)

Employing Gauss' divergence theorem to convert the volumetric

integration to a surface integration, the first term of Eq. 3.3 can ‘be

written as
aXi
J (ojk 5?7'6“i),k dv =/ T.éu.ds = s T 6u, ds (3.4)
‘ v J. .S .S, o
where s represents the body surface which can be considered as consisting '

of two parts; s where the surface tractions are prescribed ?nd Sy where |
Y] 4 .
) / -
displacements are prescribed. Ti are the prescribed surface traction

forces per:unit.of surface area. Eq. 3.4 denotes the external virtual work
and is non-zero only in the S part. °

The secoﬁd term of Eq. 3.3, after manipulations (which can be done,
for example, by expﬁicit]}’&??tting down all terms, regrouping them and

then applying the strain-displacement relations), represents the internal

virtual work of the body.and iS‘Nritten as

PR
s ) dv = s, 04588454V . (3.5)

v'ajk X 6ui,k
J
where eij is the Green strain tensor.

Substituting Eq. 3.4 and 3.5 into Eq. 3.3, we obtain the well-known

equation for virtuJ] WONK: |

1

fv U]-J-

II1.1.2 Principl ationary Potential Energy

When the body remains elastic, there exists a state function “(eig)

l )

which does not depend on the loading path but only on final strains.

This function is perfectly differentiable such that 198 :

.
hY
“ . \
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W
— = g,. (3.7)
‘ an 1]

The state function, w, is called the strain energy function defined

per unit volume of the reference body. Substituting the strain energy

function into the first term of Eq. 3.6,the principle of virtual work
is then specialized to the prinkip]e of stationary potential, energy
as:

§ fv m(u.i)d,v - IS

: Tjduids =0 (3.8)

5

where the strain function w(ui) is written in terms of u;, by the use

. |
of the strain-displacement relations. Eqg. 3.8 is very useful in

application to elasticity pfob]ems in which external forces are not

derivable from potential functions. If the applied external forces are

constant or conservative, that is they are derivable from potential
functions, w(ui), such that

; - sy = - Tidui (3.9)

substituting Eq. 3.9 into the second term of Eq. 3.8, we obtain:

8(/, wdv + S wds) = 0 (3.10)
\ - v 0
or, in short: . 1
. 1 atr
s(U + V)= 8(¢) =0 (3.11)

where U, V and ¢ are respectively the strain energy, the potential

énergy due .to external fqrces, and the total potential energy within

the domain“of the body under consideration.
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The above edﬁations of fhé principle of the stationary potential
energy state that, for equilibrium to be ensured,'the total potential
energy, ¢, must be stationary for variations of admissib]g displacements.
Limiting the Erinciple to small digp]acemEnts only, it can be shown that
the étationary state is a minimum potential ‘energy state. However, in
large displacement theory, the energy does“not necessarily attain ; minimum

%
for the stationary conqitionzss. i

i ' I o
II1.2 Incrementaﬁ Variqtiona] Principle . ‘ W
III1.2.1 Virtual Work Approach . |
A A Lagrangian reference frame i; again employed in the following

derivation. The formulation of the incremental theorie§233 begins by
d}viding the loading path of the solid body prab]em into a number of
equilibrium states. It'is assumed that all the state variables such as
stress, strain and displacement together Qith the loading history, are

th

known up to the n*" state. 6ur problem, then, is to formulate an

incremental theory for determining all state variab%es in the (n+])th

state, under the assumption that the (n+1)th’state is incrementally close

to the nth

state and g]] thé gove(gjhé equations may be linearlized with
respect to the incremental quantitjes. We denote the stress, strain,
disp]acemqpts, and external forces acting on S, in the nth and (n+1)th_
states respectively by

e.., i u. T,

%4 i’ i

ij’ ij
+Aoij), (eij+Aeij), (¥1+Aui),‘ (Yi +~AT1)

1

iJ

. aﬁng‘

PN S

o Sikiaiaan,
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It is known that the‘Green\sffain tenisors at the ntrqand (n+])th
states are respectively defined by]68’2]8’2]9
-] . '
. . ]
a4nd\ (eyratyy) = 7 [lugreug) 5+ (ugraug)
. - v |
- \\ +luron) 5 (ursuy) ] (3.13)
. i )
We readjly obtain from Eq. 3.12 and 3.13 that
B ] .
= tegy = g L8y +uy Jauy 5+ (85 +uy oy
+ X . . .
Agk,1Auk,J] (3.14)

‘ff;ﬁg?s is linearized with .respect tohAuk, then \

i
|

-

. _ ]n l o s | o

»

‘The princip]é of virtual work for the (n+1)th state is nck\expressed
.b ¥
- by . e
" | =
fv(oi;onij) 5(eij+Ae1j)dV ISG(T1+ATi) ) (ui+Au1) ds = 0 . ;
A (3.16)

'

Applying’ the re]ations:given by Eqs. 3.12 through 3.15 to the above,

equation and q&ting that the varigfion is taken with respect to Bus s

Eq. 3.16 (after some manipulatfbns and neglecting the higher order \

terms) ‘can be written as168

) 1 :
+ (fv 613§Ae1j dv - fso TidAuids) =0 . (3.17)

[

ERERNS SR Y30 SO Y

T tmmn, L,
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Thé last part, which is enclosed by parentheses,ﬂin the above equat¥%on

represents the uni’]énced residual forces in the nth state. It will

s
vanish if equilibrium is achieved. However, the nth state may not be
in complete equilibrium in this kind of incremental theory due to neglect
‘of the higher order terms and computational inaccuracies. Conseqyently

these force unbalances are retained in Eq. 3.17 for an equilibrium check.

II1.2.2 Potential Energy Approach ) \ \

Similar to the last section, the incremental governing equatiofs

can be form?]ated using the minimization of the incremental potential

'

energy of_the system (A¢).
6(a¢) = 0 (3.18)

where Ap = ¢(u.+Au.) - ¢(u.) (3.19)
»

|
The variation of A¢ is mathemat1ca1]y equ1valent to the variation of

. ¢(u.+Au.) with respect to Au sinﬁe ¢(u ) is independent of AU sa It can

Y
be found that the derivation, u51ng the potent1a1 energy approach to

obta1n the governing equat1ons,\1s likely the same procedure as that from
N

Eq. 3.1§ to Eq?&B.l? in the virtual work approach. The dgta1]s are left

> to sectign II1.8.2 where the explicit formulation is demonstrated in

matrix notation. : . . o

L1

e

——
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III.3 Choice of Elements

A simple non-conforming (discontinuity in the normal slope
betwee& two adjacent elements) flat rectangular element with six degrees
of freedom (d.o.f.) at each node is used in this study. The definition
of axes and d.o.f. aée shown in Fig. 2 where x-y represent 10c§1
coordinates and ¢-n normalized coordinates. u and v are in plane
displacements and w is the transverse displacemént.

Jhe choice of the e]emenf)geometry is largely influenced by the
shape of the st#ucture to be ana]y%ed andwthe rectangular element is
found perfectly suitable and sufficient he purpose of the present
study. Compaxison with other shapés such as triapgu]ar elements, the
rectangular element generally produces better results with less effort
on input data. There is also a corrétponding reduction in the total

) w
number of degrees of freedom in the structure and hence a reduction in

computer time required| for solving the system of equations. /ot

The -use of a curved element is obviously unnecessary as most
) .

curved elements require the shell to possess continuous curvature or

atdleasg continuous slopes. The type of structures considered in this

¢

study (see-Fig. 1) does not admit either of these conditions. Further-

more, the present formulation and sdﬁution is based on the undeformed

£l

configuration of the elements which were initi%l]y plane and has
Yu.

demonstrated that the use of a curved element is unnecessary. For the
case where large initial imperfections 'are introduced through nodal

. coordinates, the four nodes of a rectangular element do not remain
coplanar. A transformation matrix for each node; which was derived
with respect to a plane passing through that node, and the two most

r

adjacent ones, may be employed for better accunpcy.ﬁ
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The choice of a "simple” or a “"refined" element is again a
221,222

matter of judgement. The refined elements may eliminate the

problem of nonconformity and qroduce comparable accuracy. However,

[

this is traded off by genérating higher order d.o.f. for which the corres- }

ponding force terms Qlack physical interpretation and/or by using other
techniques such as'satic condensation which increase the\time of

calculation. Even though the refined elements have been used in nonlinear

57,149

ana]ysi; , it is generally agreed, -particularly for the case pof

223,224 4

z

combipéd noniinearifies, that the-simple element is preferréd
S
due 'to its economy in computing cost.
One attractive conforming rectangular bending element is that

developed by Bogner et 21220 89,90

and it has been used by others in non-
linear analysis. This element requires one more d.o.f. than the one\
employed in this study. At first glance, it would seem that adding one
more d.o.f. at each node 1is not a big increase. However, when this

is applied to a three dimensional strﬁctutal member where quite a number
o} elements are required, the increase beco%e§ very significant. Further,
this additi9nal d.o.f. (%;gy), although it does not give difficulty in

the present case, may prove awkg@wd when a coordinate transformation is

needed for more general structures thus preventing the possible extension .

. ) |
of the current approath in future. Hence, even though the element by
1 .

Bogner et al provides~the merit of conformity, it was not adopted.
The proposed,elemeﬁ? has three components of translation (u,v,w)

and three of rotation (ox,o ,0_). These d.o.f.'s are first order tensor

el
quantities and obey the simp]e\law of vector transformation. The poly-

nominal terms corresponding to each displacement function are

/

P

»
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o : o
u: 1, x, y,Eiy T
vi o1, x, ¥, Xﬂk xy, 2, %Py, x3y

w: 1, x, ¥, x2, XY, y2, X?, xzy, xy2 y3. x3y, xy3

|

14

It can be seen that the bending part of the element 1s %ctua]]y the ACM

225,226

element Even/though non-conforming, it has shown good convergency

226-228 ]44’229 analysis. Note that

in practice in linear and nonlinear
for the membrane part, the v displacement varies linearly in the y direction
but cubicly in the x direction fo achieve the same degree as the w displace-
ment and it has also been préviously emp]oyed230. This is due to the
combatibi]ity requirement between v and w for the neighbouring elements
which are joined at non-zero angles along their common a*}%.(fee Fig. 3).
This causgé a preferential orientation by setting the xlaxeg of J%th the
global and local coordinate systeﬁs parallel to the longitudinal direction .

of ‘the member. However, in practice, this disadvantage does not create

)

any inconvenience at all. On the contrary, advantages have been gained

by using these higher order polynominal terms in the v displacement function.

It improves the accuracy of the results which is reduced in the case of

a large aspect ratio for an element which often has to be used for reasons

.of economy. The sixth d.o.f. 162), which is created because of introducing

higher order terms, also serves another purpose which is to provide in-
plane rotational stf?fness to avoid a singular matrix when neighbouring

elements connecting to a node are all coplanar. Hence, the emp loyment

166

of a fictitious set of self-equilibrated moments or ahy other means

are not requirﬁf(‘ ¢ \

RN Fe i -




- middle plane of the»plate where the z-axis is normal to the plane. wu and
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The displacements at any point within\ the elemépt can be

expressed in terms of nodal digp]aLements as:

| {u} = [N] {q} (3.20) 3
or in incrementa\,form \\
' \
| {au} = [N] {aq} , [ -—(3.21)

op .
The explicit form of the shape function, [N], and of 'Eq. 3.20 is\shown

in Appendix A-1 and A-2. The explicit form of Eq. 3.21 is similar\to

that of Eq. 3.20. \

IIT.4 Strain-Displacement Relations for Thin Plates

I11.4.1 Total Strain-Displacement Relations’

Rl S ais o

\ Let X; be a set of rectangular cartesian coordinate axes and let}

uj be the components of the displacement vector along these axes. The

4

L gl

Greenfs strain tensor eij is defined in the Lagrangian frame by Eq. 3.12.
| Forxplates, it is common to replace the tensor subscript notation
1

R R P

by the more familiar nota%ion X, ¥, z for X1s Xps Xg and u, v, w for Uqs

Ups Ug respectively. The x and y axes are perpendicular axes in the

v are in-plane displacement comboneq}s and w indicates transverse deflection
of the plate. ' - J

The Kirchhoff theory of thin plates* assumes
. /
(a) Normals to the unstrained middle plane remain straight

and normal -to ;he strained middle surface after deformation.

B

* for details of theories of plates, see Love23]

who also extended
" Kirchhoff's hypothesis to shell o y
{ / )
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(b) The distance of any point of the plate from the middle
surface remains unchanged by the deformation.

The first assumption sets shear-sﬁrain components of egz and eyZ equal
¥

to zero and the second assumption sets the normal strain:component of
, SN

. . N
e, equal to zero. Hence, only three non-zero strain components, € x?

eyy’ and exy are left in Eq. 3.12. The simplified equations\Begome

i

U L2 (22, (@wy2y |

exx = ax T 7 L X ™
| .
\ | )
™~ eyy ay‘+ 2 [(ay) + (ay) + (ay) ] } (322)

U U AV BV . W 3w
( + + )]

®xy * ?'[ ax 39X 2y  8X 3y = ax 3y

[t is seen that the original three df;ensional problem has been reduced
to a two dimensional one. Eq. 3.22 is valid for the general ﬂfrge .
def]ectlon ]arge strain problem However, ]for the type of prablems to

be conkgderéd in this study, ‘the strains remain small compared to unity
and the squaré§ of the der1vat1ves of the in-plane displacements are ‘
small compared\to other terms and may be neglected. This‘jusg}jies

W and ——u among thé higher

retaining only the r?tat1ona1 contributions, X 5y

order terms, resulting in:

au
pr 2 ( )

AW, 2
€ 7—(5~ (3.23)

- \ e——
PY [ =~ 3y ‘
§!_+ §!_+ oW oW }

pxy 3y X 09X oy .

l‘ . t N o II
\// . ’ .- 1
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Note that in Eq. 3.23 the components are engineering strains and not
tensor compon&nts as in Eq, 3.12 or Eq. 3.22.Q The subscript p indicates
the in-plane or middle surface strains. This strain-displacement
relationship is rendered nonlinear in the displacement géadients by
the presence of quadratic terms (%%Jz, etc.. .

For the flexural ‘strains, the Kirchhoff h}pothesis implies that
the higher order correcting terms due to shear deformation on strain
components, can be jgnored. Hence, strains vary linearly from the middle

surface. With further simplification by de]eting’higher order terms in

the expression for cur‘vaturem9 th? strains can theP be kr]tten
€ Zy -ziﬂl
bx w XX 3% 2
32w
{ € = -2y = -z (3.24)
| by wil 3y2 ‘
] 2w
) \bey “Zhyy 255Gy

|

where b indicates strains due to bending} @xx etc. are the curvatures

along the x and y axes, and z is the distance from the middle surface

-’

along the normal. N ]
Combining Eqs. 3.23 and 3.24, thd total strains at any point in

|

the plate are:

u , 1 daw,2 32W o
€ =+ 5 (=) - 22—
X axX ? ax2
. - 2‘
(e = et 51(3“)2 224 (3.25)
| Wy [ OW 22w
“xy \ ax ay + 5K )( b 223y
o= 3

e
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o
B Eq. 3.25 leads to the formulation for the deformation of thin plates

proposed by Von Karman]4

-

hypothesis employed herein deals only with kinematic relationship

. {t is worthwhile noting that K?rchhéff's
does not include any assumptions abeyt the properties of material
of the plate. Thus it is equally applicable to erials which obey
Hooke's law as well as those which dq;gotf

. Each strain component o —Eai)3.25 may be decomposed into linear
and ﬁon]inear parts and an be expressed in a way similar_to that of

*  Rajasekaran agg/Murray232 as 1
7
P
€ © 6'17 * E:‘“L
]
= Ay (6} + 5 .G, [H]; (G} (3.26)
=] ll ‘ » . ‘ ” M
where; €5 (1=1,2:3? denotes=e , sy,\and €xy respectively <

: + A, is a vector and is defined by

r

L>

n
[}
r

o

o

o
d
(=]

o
o

U

N

o
[

w
N
~
N

\ v
[H]i's are 9 x 9 symmetrica]\matrices where all the coefficients of
the matrices are zero except for H1(5,5) = H2(6,6) = H3(5,6) = H3(@,5) = 1.

{G} is a vector representing displacement gradients
T _  au 3u v av ow oW 22w 3%w 3%W (3.28)

{G} vt autnud g tay? ’ ’
C X 3Y'oax sy ox oy 3x2 ayz oXay r




poem

Substitute Eq. 3.20 into Eq. 3.28 and, after mathematical manipulations,

it can-be written as

{G} = [D] {q}-

[D] is shown explicity in Appendix A-3.

3.26, and denoting
By = LA (o]

L
LBNJ i 564 [H]i[D]
S

Substituting Eq. 3.29 into Eq.

|

(3.29)

(3.30)

(3.31)

Eq. 3.26, after combining all three cases of i = 1,2,3, becomes

t

|

(e =((8"1 + 5 18"1) 1o

(3.32)

If we take the gAriation of Eq. 3.26 with respect to displacements
|

561- = “‘A"'i § {G} + % ‘5LG_,1[H]1 {G}+

1

|
b

7L

6. [H], 6(6)

(3.33)

Note that the second and the third terms on the right hand side are

equal and can be combined:

1

Substituting Eq. 3.29 into Eq. 3.34

1

e, = 4AJi;a{G}+ 6.[H]; 616)

combining all three cases of i = 1,2,3, we obtain:

ey =([8"1 + [8"]) " stq)

43
i

4

(3.34)

seil= (AL [D] sf) + (6,[H1.[D] 6(q} *  (3.35)

(3.36)

|

|
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II1.4.2 Incremental Strain-Displacement Relations

When strain-displacement relations are expressed in incremental

|

3.14 to thin p]aqe and adding flexural strain terms, we may write

form, a procedure similar to that above can be employed. App]ykng Eq.

incremental nonlinear strains in the L?grangian frame explicitly as

re a(au) , ow afaw) L1 [gjggl]z _232 AW
l X X X 93X 275 X 1x2
| , ' ‘
iy 2 alav) o, oaw alaw) 1 ra(aw)42 \ 22 (aw)
= [ A = ( LA0X) 4 W + oz U
theb = 0 %¢y oy tay ey t2 By | i
re p(av) o oafau) . ow afaw) o ow 2(Aw) +[ngAw2 a(Aw)] » 37 (aw)
Xy X oy X oy oy X aX 9y 47¢% axay,
> |
(3.37)

Note  that Eq. 3.29 is now written in incremental form as: 0

(AG)'= [D)(nq) (3.38)

where the cgomponents of {/\G}T are %ncrementa] displa%ement gradients,

%xAu~, etc.. Each component of the increment®l strains in Eq. 3.37 is

decomposed into linear and nonlinear parts and is expressed as
'

Aei = Aei + Aei / |
| ‘
(LAin {nG} + G [H]}. {aG}) + (%_ G, [H]i{AG}) ‘

!
‘

fl

(A [0] + (G, [H],[DD)(eq) + <%~L«GJ [H].[0])(aq)

\ oy
A

»

(1841 + (8" 1) s + %[ABNL]{AQ} (3.39)
|
with similar definitions for ey and 0. We also define

P {3 P ) I (3.40)

i

or {ae}

Here,we'define Aei (i =1,2,3) for Aex”Aey’ and Aexy respectively

~ R
P S, v TS TU n
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Taking the variation of Eq. 3.39 with respect to the incremental displace-

ments, results in: M
s{ae} = &{Aae} + §{a6}
| -
= (8] + [8™7) staq) + [28™] s(aq) (3.41)
I 1\\\»_ -2.4\, 1}}
Dropping higher order terms in Eqs. 3.39 and 3.41, we obtain the linearized
incremental strains b
- L NL - '
{ae} = ([B"] + [B""]) {aq} (3.41a) =
< staer = ([B"1 + [BM1)s(aq) (3.41b)

III.5 Incremental Theor} of Plasthity

There are tho major plasticity theories, namely, the total,

235 236,237

. or deformation theory and the incremental, or flow theory

The\ deformation theory assumes that a uniqTe relation between

total stresses and total strains exists. The total strain components 4
are functions of the current state of stress and are independent of the
loading path. This is in contradiction with the experimentally determingd
properties ofﬁmater&a]s, and hence its use is limited?34. On the other
hand, in the flow theory only incremental stresses and strains are re]atqd.
The incremental plastic strain components at any insta?t of loading are !
assumed to be p}oporfiona] to the corresponding instantaneous deviatoric
stresses. Plastic deformations are,traced by integrating the plastic

strain increments over the previous loading history. Incremental and

*a
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deformation theories coincide in the case of proportional loading in

which the stress vector remains fixed in direction. In some engineeWing
l\
problems where the loading path is not far from proportional loading,

252

the deformation 'theory can be employed provided that, when unloading

occurs, the problem is separated into two parts: * the loading part and

the unloading part, which are governed by different 1aw$§5’234 However,

the incrémenta] theory is widely accepted and is adopted in this study
due to its mathematical and physical consistency. -

The plastic beh?viour of a maferia¥ in a multiaxial stress state
can be described by specifying the following three parts which make up

the content of the incremental theory of p]asticity245.

1.\ a yield criterion which defines the elastic limit
of the material in a multi-stress state |
2. a hardening rule which specifies the changes in.

shape and orientation of the yield surface for

‘ 4
‘ subsequent yield from a plastic state.

3. a flow rule which provides the constitutive relations °

between incremental plastic strains\gnd current state
T~

lof stress'

The basis of these three parts are discussed in the following section.

a

Details of the derivation are available in several well known plasticity

78-81,85,2?4,240,241

books and will not be repeated here.

\
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A yield condition can generally be described in the form

flggss k) =0 (3.42)

where %5 j are stress cohponents and k are parameters such as plastic
strains or hardening parameters. In this study it is assumed that the
plastic behaviour of a material is independent of time and temperature.

Eq. 3.42 can be expresséd in an alternate form:
- ‘\\
j)=¢ (3.43)
) €
where ¢ represents some yielding parameter which is a constant for the ’

&
(o,

case of initial yielding and is a function of the complete previous

stress and strain history of the material and its hardening properties for
the case of subsequen% yie]ding from a plastic state. _If the material 5
is elastic-pérfectly plastic (non-hardening) c remains a constant.

The function f of Eq. 3.42 is termed a yield function in the case
of initial yielding and is,réfe}fed to as a subsequent yield*function or*
goading fhnction in the case of subsequent yielding. This function
represents a hypersurface té bound-all the accessible étates whicg can
be achieved inhaq actual material element by some program of stresSingBl.
By temporarily fixing k as a constant at-an instantaneous time, the |
hypersurface cap be projected onto the Stress space and is called the
yield surface. The yield surfacé, similar to the hypersurface, boundg
the elastic region in. the s}ress space for a pariicu]arlstress-strain‘

histery (k). Yield surfaces generated by changes in k during ‘a stress

program are referretho as the subsequent yield surfaces or loading

&

* surfaces.

L, -
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- Among *any proposed yield criteria, the Tresca criterion

¢ B -

and the V8n Mises crjterion239 are the two most commonly used for

metallic materials. The Tresca criterion assumes that yielding w111

- -

,occur at-a.point when-'the maximum shear stress*réacﬁes the value of °

<

. the maximum shear stress in ass1mp]e tens1on sIate (i~e. half the y1e1d
stress obtained from a uniaxial tensile test). When' reduced to the
° twondiQEnsional plane stress case, the )ﬁb1d surface postulated by
Tresca is seen to be a six-siqed po]yﬁon. The .Tresca yield criterion f \
- is ]ess widely used than\the Von Mises criteripn.because of a few . \?ﬁ
, ’ ) ﬁmanacks. "First]y, experiments have shown that test points generally \
\}%1T\closer1to the Von Mises yield condi?ion’thé, to Tresca's. Secondly, .
_ the Tresca ériterio; is expressed in terms of pr?;e}ual stresses a;d .
.(_e,'g Lﬂ;_;e ce the maximum and m1n1mum pr1nc1pa1 ‘stresses have to e known in é

Lo advance. The cont1nuous ca]culat1on and check1ng of the rel\t{xe\s1zes

a

/
. -of the pr1nc1pa1 stresses is necessary and 13 tedjous. Thirdly ~

= w

. «;“\ con51derat10n of the associated flow rules indicates that the d1scont1nu1t1es

. at corners of the Tresca yleld surface are dlff1cu1t té handle and 'can -

‘. be avo1ded by the Von Mises- &r1ter1on since the slope of the yield surface

~ .

postu]ated by Von Mises 1s always continuous. It can be seen that by
, reduc1ng to }he twé«d1mens1ona1 plane stress case, the Von Mises y1e1d ‘

surface becomes an e111pse (See Fig. 4). In the light of these‘advantages,
S %
the Vbn Mises criterion and its assoc1ated f]ow rule are employed in this
o# {

. . study. v .
N M ) ,
. . 'The Von Mises yield criterion %ssumes that yielding’ begins, when
O . the distortion enelr;gym2 equals the distortiod ehergy at yield in simple
of A ‘ I‘ AN %" :
Fa rv ' :‘&' °
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v |
tension. Since;the internal energy due to distortion can be expressed
in terms of the octahedral shear stress or the second invariant of the

)s 243 two a]ternate ways of statxng the

deVIatorlc stress-tensor (92
criterion are respective}y; (1) Yielding begins when the octahedral
shear stress exceeds a certain \limit (i,ei the octahedral shear stress
in simple tehsioglL,IThe octahedral plane is re;erred to the principal
stress directions. And (2) Yielding b gin;s when J, reaches a critical
value (i.e. the value\of J, 11 simple tensifgn). Of the threg forms of
expression, the one dsihg J2 is’most:eommonay used. Intreducing the

critical value of J, in a uniaxial tensile test,, which ﬁs>e&ua1 to
& ) . N/ .

%-002, the Von Mises yield criterion is written as 5 %» N
y . a g \
1 2 ’ .
J, =39, (3.44),
. N ' '
where 00 is the initial yield stress in a un1ax1a1 tensile test, and the
- .. X
second dev1A¥or1c stress 1nvar1ant is def1ned by . .
\ - -4
5 b © ‘\
¢ JZ =\2 Uij “ Y-

or J, = %'[(°x°°y) (0\¥0 )" #o,-0 )ZX 6(x )+T§$;4T;i2)]

Y * \

‘ |+ (3.45)
in which the deviatoric stresses are\defined by
8 . \ ’ ‘
U_ij = .ij Q" "3' q k 6 (3-4?)

k
' where 5ij den%}es the Kronecker de]ta,\ .

W
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~us-otress state is moying on the yiel

ﬂ’/

¢

Introducing another term which is called the eguivalent stress and

is defined by, - \\ ) ;‘ \
. 0g VI T, e (3an
Eq. 3.44 can be efpressed a; ’ ) \
% T 9% 4 ' (3.48)

Eq. 3.48 is a special form of Eq. 3.42 or 3.43.

For a plake which is a two dimensional case &f plane stress, reduction

of o, leads from Eq. 3.48 to an explicit form as: | )

9

2 2 . 24172 -
{((1x - UXU¥ + uy + 3 Txy ) =, (3.49)

B3

i o 4 ' ) L
I11.5.2~ ﬁ%rdening Rule .

When the stggss state of the material lies on tHeryield surface
(i.e. Lq. 3.42 or 3.43 is satisfied), \the departure froi the plastic
state due to a further load increment may rggg]t\in three different

[

loading conditions for strain hardening material ’

i

- - > \ .//k/"\
] ‘()f . l": \
. Loading \ df §5§5 doij >0

K}

Neutral Tcading df = Sj’f* do.. =0 (3.50)
' R o P 1J \
ij \ o
. of
Unloading Fyom doij < 0

The first case‘of df > 0 means the streds state js moving out from the yield

surface and plastic flow is occurping. The -second case of df=0 indicates the

disurface and Fepresenté perfectly plastic

-

v
L e R

S
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behaviour, The third case of df < 0 means the stress state is meving
into the élastic regjon from the yield surfa&e and is ent%re]y an
elastic behaviour. ,

In the easétdf a perfectly pfastic material, the case og df > 0
does not exist. Plastic flow occurs during’ the case of df = 0. Elastic

é% un]oading of df < 0 is the same as for Herdening materia] |
When loading occurs, a hardening ru]e is requlred to d/;crlbe
< the manner in which the yield surface is modified as a resuﬁ//of plastic

.deformation. As a material is physical]y dnab]é\to maintain a_gtress
state outside its yield surface, this modification is neceisary to keep

®he stress state on the subsequent yield surface and to héve rqaterial

capable of maintaining a higher stress state due to work hardening.

o
-

Man& hardening rwles have been proposed Such as the 1sotrop1c harden1ng

234, the/ Kinematic hardenlng rule244 245

248

rule the mechan1ca] sublayer \

modelzaﬁ’z and the Mroz theory A discussion and comparison of these

. .
- ) models§ is ava1lab]e/elsewhere]73’]75. Of these various models, the

1
3
3
;
i
!

isotropic hardening rule is most w1de1y use& and is emp]oyed in th1s
studx due to its simplicity and economy in com?utation. This mode]
¢ ) assumes plastic deformatjon to” be an isotropic process. The subsequent \
yield surface is unifgnmly éxpanded from its initial yie]& sur aee and
o A hence it retains the same shape as or1glna11y (Fig. 4). The disadvantage
of us1n§ the 1sotropﬁc model is the lack of consideration of the
° Bauschinger effect whlch_1s taken into account in other hardening rules

w

such as -the kinematic model. However , “since cyc]ie 1oadipg is of no

\

intere%t in the present Btudy, this is not considered a serious drawback. )
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We now replace the %, of Eq.”3.§8 by o ;0 represent the .
\ subsequent yield stress on tHe st}ess-strain curve‘fbr uniaxial tensile \
and to account for previous p]ast@c deformation. There are two hypo-
theses85 éften used to%measure gﬁé amount of hardening.
(a)\ Work-hardening hypothesis i \
// In this hypothesis, plastic work (shaded area in FiE. 5) is

used for measurement, so & is a function of the plastic wdrk done

. on the material a
; -
{ , P . p
i \ . w / oij deij
P P ° o
or W i % dee - (3.51)
( , where the equivalent plastic strain increment is defined by

// e | | 4P = /%-(dep qeRyl/2 (3.52)

e 1J 1\] ‘q‘"w-,“

JE , .. \‘.‘:
] \ »  the loading function becomes L - \ \
> S o = F(wP) o (3.53)
e . . \
- \- (b) Strain-hardening hypothesis S g '
> \/

In this aypothesis;the equivalent plg;tic strain is used for !

-—

measurement, so 5-is-a function of the recorded equivalent plastic

| ®

. is defined by: .
l ] . strain and is ef1nep bv
eP = s de \ © (3.54)
o | * ,
- :', \1 D e
v —
.o "‘; - — \
L B — o " 1 P - \ . !
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o~

® |
the loading function_becomes

0 = H(eb) (3.55)

For the case of the Vo Mises criterion assuming isotropic -
) 249

»

hardening, the two Vypotheses are equivalent In general, howevgr,

¢ |

they need not be equivalent because of anisotropy and the Bauéchinger

effect. Eqs. 3.53 and 3.55 are spetial forms of Eq. 3.43 and can’be

©

obtained from the experimental results of a dniafial stress-strain

test. S " \
1 Ey

- &
I11.5.3 Formd‘Zs for Uniaxial Stress-Strain Relation

In this study both perfect]y4p1a§ZXc and hardeningf65ﬁerials

® - ®

('3 are considered. Two cases of hardening material are treated: linear
hardening and nonlinear hardening. These two uniaxial stress-strain

curves are shown in Fig. 5. =\ \ .

For the linear hardening materia],the formula to express the

3

stress-strain equation is unique. The strain which is composed of

elastic and plastic parts can b# written as ' ) \

| :

[ -
€ =

. \“

1-m n
— - 3.56
*oE (o cﬁ) ~ o ( %

mja

where m = Er/E, Ep i; the tagge&t mpduld§ and E is Young's modulus. ~
" , For the nonlinear hardening mgterial, numerous stress-strain
formulas have been prdpoéedgs. \Among them, the Ramberg-0sgood form?30
is iost widely used in which the total strain is expressed as

(3.57)

e = %_+,BE (=2 )n—l
% %0.7
s, B * \ :
= i




~ . \
4 - 6 -
. ) o
( | . ¢
\\\ where n is an exponent and % 5 is the secant yield stress at 0.7E
(see Fig. 5). These two values can be obtained from experimental data ;

& n
by nonlinear curve fitting or by any other meLns.

A -

An alternative form (e.g. see Ref. 118) which is appealing can

\ be\written as:

\ } 1 . : o -0 ‘
‘ oyn | (3.58) e
o .
\ | -~
\ \yhere‘oz is the specified 0.2 per cent prJof stress. There are threg//////

\ | P N
requirements for Eq. 3.58: (a) It should be tangent to ti:fflg;pff
line at o o o, (b) The plastic strain should equal 0.002 o = o,
and (c) The plastic strain shéu]d equal\eﬁ

at ¢ = g.7(u denotes

ultimate). The first two re&hirements are satisfied automatically. ‘,
\ g

—

"0, and n in Eq. 3.58 are adjusted so as to satisfy the third requirement.

n is selected empirically thus

02 \ 5 k
\ . n=10-%-15 (3.59) o
Ty (e
n u & \ R ;
9 i§ then given by ) ' \
\ Q - Gu 02 )
0. =0, = (3.60
° 2 (500 P)'/M - o ]
111.;&.4 Flow Rule § . 4 e
Drucker's Postulate25] of stabf}ity leads to the following two
consequences:\ . . .
o . . ¢ ;
k 1. The initial yield sur%?te)and all subsequent loading o
Voo . . |
(Z) ' surfaces must be convex (cqpvexity). ) \
< _~’/(' & 1 ’ \\“
L S : ‘
- \ 8
! " ¥ ¢

L Y
~
-
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////;///// o
;/// 2. The plastic strain increment vector de?j must be °

- normal to the yield or loading surface (normality)

~

i.e. | Toa } 1

(3.61)

-~

where di is the non-negative constant which varies
. N '
throuﬁhout the loading histo#y. The loading function, -

( f, plays the same role as a plastic potential. ‘

It is assumed that the relation Hetween infinitesimals of plastic strain
’l

and stres$ is linear. THMs linearity can be established by showing da

to be/indépendentfof all compohents of doij”except the componewt in the.

direction\of the normal séi—, then240 " \
> \ °ij
k 2 o vof .
. dr = g 3°ij d°ij ) (3.62)

"

where g is a positive scalar dependiqg on the stress, strain, and the

ﬁ%sto;y of loading but is indepehdenf of doij' Substituting Eq. 3.62 into

Eq. 3.6],then into Eq. 3.52, we obtain, with the aid of Eq. 3.62,

2 dep" ’
= [3 e
BCIRNS (20 (3712 (3.63)
90 J 90 j
Substituting Eq. 3.63 into Eq. 3.61, the general plastfc stress~strain
relation becomes85 ‘ '( of Y N
: p =\/'3' P04 4cP
) /@513 N? af v, af 41/2 e
/ LG5 i) .
ije ijla 3 L \
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L or (25 ‘
B Y E b L d (3.64)
ey = 5 o
ij 2 vpy of af"y41/2 e :
( H' [(o =) (50 '
AN
\

whe¥e H' = dae/dsz is the slope of the uniaxial stress-plastic strain

A ‘ ?
curve at the current value of g When substituting Von Mises yield

i

function into Eq. 3.64, the associated f?ow rule of the Prandtl-Reuss

s

Yelatiqn is obtained.

deP . ',
ij og i

it
| Lo
:Ei

a

M-

3 e ' :
or 7 Oe 01J . (3.65)

\\ .

Eq. 3.65 states that the plastic strain increment at any instant of loading

is proportional to the instantaneous stress deviation. Eq. 3.65 can be

P -
3

LY

written in matrix notation

wh = dha? : (3.66)

"

- i

af

. where, —— = %- A for t?e Von Mises yie]? criterion.

DaU.iJ- Ce

K ks

III.B.S Increme&ta] Total Stress-strajn Relation ) N

” &
The theory of plasticity assumes that the incremental total [

strain can be decomposed intg elastic and plastic components.
»,

. \ ", {ds}=‘{dee} + {deP) s ., (3.67)
13 @ .
Since .only the elastic part of the strain is associated with the change
of stress:, . ‘ -
1 %i “/ \ . -
) ) Py 4 . ///
| N N L “

T it

JE

ey .
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«C

o} = [E,] de®} = [E,] ({de} - (dcP)) (3.68)

where [E ] is the conventional elasticity modulus matrix. Premul{iply

f

£q. 3.68 by &L . and get:

ng' (do} = 3 [E.] ((de}- dePr)  — (3.69)

The left hand side of Eq. 3.69 represents the change of khe loading
funTt1on and is equal to the differential of the equivalent unax1a{§
Stress, do for the Von Mises y1e]d criterion. 'Substituting do = H' deg

into the left hand side and Eq. 3.66 int? the right hand side, Eq. 3.69

4
becomes : |
|y f ,
| p. Af 3y p
(;‘ H ?ee 50, [Ee] ({de} gaofdee) (3.70) ,
) :
- or, rearranging terms: ,
| | aF e 7
de? = Loy € {de} (3.71)

/ f e if ii _a.i -
/ : AR LIRS R

—

. \
W The equ1va1ent p]ast1c strain- 1ntrement of Eq. 3.71 is evaluated at thé

stress and plast1c stra1n level at the end of the previous lﬁad step.

Subst1tut1ng Eqs 3.7 into Eq. 3. 66 and ﬁhen into Eq. 3.68, the final

incremental stress-strain relation in the plastic region is obtamed%H

J

e

afy '
, ' [Ee]{ﬁ ao [E ]
(LEE]- nr 5 (e 10 ){de}
L0y e a0

° . {dO?

N
n

- [Eg,] (de} - 7‘ (3.72)

v
%
?
2
V

——_
et Reahni i
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When the material is elastic, the second term inside the parentheses

K

vanishes. Eq. 3.72 is then reduced to the generalized Hooke's Tlaw. )

Eq. 3.72 has also been developed.in an alternative form by Pifko et

253 254

%1 and in an explicit form by Yamaéa et al .~ However, the explicit

¥

gform does not prqvide any advantage for computatipn.

?II..G Equilibrium Equations

II1.6.1 Virtual Nork Approach

We now wﬁute the p$1nc1pfe of virtual work (Eg. 3.6) in matrix /

notation and with the implication that the finite element method is
. . \

employed.

\ f& (e} (o} dv = &g}’ {p} (3.73)

N

Substituting Eq. 3.36 into Whe above equation, we obtain:

i

C g, (8 Y DT o) av = () :

y, ] ;

Qr = :
, (F} = (p} - 7, (st + M) oy v -1(3.74)

Eq. 3.74 is the basic equilibrium equation and is convenient to use for

the equilbrium check when the stresses and displacements become known
! i k & i
values. ‘

When the stresses can be uniquely expressed in terms of strains,

/. -

Eq. 3.74 becomes :

s, (0841 + B DT [E] (o) dv i @iy

=
A2
.,I

.
»
¢
BT
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For simplicity, [E] is substituted for\[Ee] in Eq. 3.75 with the
understanding that the material is elastic. $ubstituting Eq. 3.32

into the above equation, results in:

| ] |
r L0085+ YD LET8Y + J M) an ca) = ()

(3.76)
|
Regrouping, .

(sp t [M0LEICED an + 5y e(CBMTrEIRL] 4 T etreare™y.

| v 3 B et o) @) = (o) I
\ .
([k,1 + [k*1) ta} = (p} (3.77) :

\ -

II1.6.2 Potential Energy Approach

-
P SN

An alternate formulation based on the principle of stationary
/

potential energy is to irst éxbress the potential energy by
. 43

s
H
%
7
i
>

S SR T LR W TR LTS
/
/ »

=1y %‘{E}T[E] {e} dv’'- {q}T {p}— ’ k3.78)
\“ : \
Taking the variation of pote?tial energy with respect to displacements j

and s%;tfng gqua] to zero: ‘
s¢ =1, e} [EMe} dv - 6(q)T (p} = 0 ,di.«rg) ;

Aftgy gubstitutjngEEq. 3.32 and 3.36 1ntoﬂEq.w3.79, Eq. 3.76 is\reached.

The rest of the formulation is identical to that showh abové by %sing the
' \ /

Béincip]e of virtual work and will not be repeated here. ' | /
3 < \

L . / . :
| v ! b \
o *

i
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IIT.7 Element Tangent Stiffness Matrix

The nonlinear equilibrium equations derived in section I11.6
are’ often solved using an iterative process. Aﬁéng the available .
approaches, the Newton-Raphson method,is“;he most\widély used. We
consider the principle of variation as applied to the element to

formulate the element tangent stiffness ﬁétrix:\‘\

Let the force unbalance {f}n be that correspéhdjng to the nth

iteration for the displacement {q?n. Expanding {f}n+] in a first order \

»

Téy]or's series about {g} = {q}n for the improved displacements {q}n+],
- - \

2q; n i

= : = .9_._ =
Flgq = (F} 4 §(f}, = {f) + {f} 6q. =0 (3_§0)
\ /
‘ j
Substituting Eq. 3.74 into the above equation, results in: !

-

(s([8 ]+[BNL] ) (o) + ([B }~[BNL] [E]5 (:})-8v = (f) E
. (3. 81)
Noting [B ] is indeperident of the displacement and using Eqs. 3.29, 3.31

and 3.36, Eq. 3.81 becomes
ﬂ

\ ,
, (1R ][D] + ([8 ]+[a”L1> (e (08 1+08" 1)) v siqy = (),

- (3. 82)

<

- 3 . . . . ]
where}[Kc] = 12] [H]i a5 U?'(1=],2,3) denotes G Oyr Tyy respectlvely. .

Now mu]tip]y out the second term of “%q. 3.82 /
sy LE0ITLR 3000 + [8437CEICBYT S
(" et 1+ [B-eare™y + [B“LjEEJ[BNLJ)Jav s(g) = {f),
|
. - ; ¢ (3.83)

-
e Ry B el g e

R S

N
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. . ' =73~
S Using Egs. 3.30 and 3.31 and with a large amount of manipulatjon, Eq
3.83 can be finally written as: \ ’

’ 4 ;‘?y) !
ry (IR (0 + [OY'TR 107 + [01'[R,100]) v st} = (F);
s < v | o ) (3.82;)
-
; Note that [D] is independent Of z, the normaH axis of the element, so
— \\\ }
X let , N
Q . [R1= 7, [R1%
.7 2 g,
(k1= s, [R] de \ .
s , ' [KN] = ft [KN] dz AN " (3.85)
l\ ’ . / -
Eq. 3.84 now becomes N ’ N
.‘» ¥ . \ =
Loy (0IT(R T + [R 1+ [R1IDI)AAT-6iqh= (F))] (3.86)
- A o L N AN T n e
or, in short, '
[KT] s{ql = {f}n
where [KT] is the tangent stiffness matrix whith is used to efine

» N
recursive formula:

" . (a4 = {a}, + siq} ,(3.88)\\\\\ ,

) 2 N T A
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II1.8 Incremental Equilibrium Equations

There are several ways of putting the nonlinear equilibrium
equations into a linear incremental form. Methods have been proposed

by many researchers including Mallett and,Marqaﬂ]8],6a11agher2]o,

]76’]83’198-202. The most common methods

and particularly Stricklin et al
using a first order Tay]or’s series expansion, an 1nitial value problem
formulation plus a simple Euler éifference application, and self-correcting
so]ufion hrocedures also linked with an Euler difference formla, have
already been discussed in Chapteg¢11. In this section, however, the
increwenta] equilibrium equation will be formulated by a direct

application of the incrementai variational principle.

Q

IIT1.8.1 Virtual Work Approach )

<

We now write Eq. 3.17 in matrix notation with some manipulations:

s, [stae)Ttao) + s0a6)T [K_1(o6I] dv - saq) (ap)
T T ]
v (s, se) Tl - staqt (p)) =0 (3.89)

A1l terms have been defined previously. Substituting Eqs. 3.38, 3.41a,

3.41b and 3.72 into the above equation, results 1n:

staqt’ (s, L(B- 38" D) TLED ([83+8™Y) teq) + (007 [R IIDD (oa)] av

ey - ey -, (08 4 BV DT ) =0 (3.90)

|

Again, for simplicity, we use [E] tdﬁ}epresent [Ee] for the elastic case
\

and to representéEFep] for the plastic case. The quantities within ;he

3
e
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j

L3

last brackets of Eq: 5.90 represent the unbalanced residual forces
at the end of the previous increment (see Ed. 3.74). Eq. 3.90 is
thenvsimplifiéd'to: |

L7 (D01 R J000 + ((8“ 108" )T TeD (18t 3+8™ 7)) avicng) *

= {ap] + {f} . (3.91)

1
The integral within the square brackets of Eq. 3.91 is the incremental

stiffness matrix. Comparing this matrix with the tangent stiffpess
matrix shown in Eq. 3.82 of section III.?, we find that the two are
\the same. Further work'is referred to in the previous section and is
omitted here. We simply conclude the formulation by writing the fihal
form of the increme;ta] equilibrium equation as:

[K;1 {aq} = {ap} + alf) (3.92)

Note thaf a factor dgnoted_by a* is aned to Eq. 3.92 so that the magnitude
of the force unbalance can be flexibly adjusted. « is generally kept as
unity. However, when the solutioh is numerically stable, a value greater
than unity (say 1.3 or 1.4) can be used to increase the rate of convergence.
On the other hand, if numerical instability is encountered, a value less

than unityshou]d be used.

|
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I11.8.2 Potential Enerqgy Approach

. To formulate the incremental equilibrium equations using the
minimization of potential energy of the structure is rather trivial.
It is simply a pure mathematical exercise 1n formulation procedures.
To reach the (n+])th loading state from ag%vep nth loading state&of

equilibrium, the incremental potential energy can be written as:

a o= 5,5 Lnell Lao) dv + s (ae}! (o) dv - (aq) (peap) - (g (ap)

-

= s, % (oe)! [E] {ac) dv + 7 (el (o) dv - (aq)] (ptapl-1q) (ap)
W
(3.93) .
Taking the variation with respect to the incremental displacements
and setting equal to zero, results in: ‘ §
. . I
( SAp = IV(; G{AG}T [E] (a¢)+ %— {AePE [E] &f{n}) dv 3
’ -
+ 7, stoel’ {a) dv - s(aa) (p) - siaq) [ap) =0

(3.94)

Substituting Egs. 3.39 and 3.41 into the above equation and neglecting

R the higher order terms so generated wnphinpthe'parentheses of Eg. 3.94,
" ' . .
we obtain: ' L y -

T

fv;é(Ac}T [E] Hae} dv;?{i 8{ne}

{G} dv + f 6{A0) (5)
- : * - 6{Aq} {p} - 6{Aq) {Ap} '! 3. 9%)
and, with the aid of Eq. 3.39 throéaﬁ<§’;]b ’ i

g
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csta) (s, L8 3+8M DT 1] ((813+08™ 1) ceq) + [01'IR J[01C00)] v
- tap) - Tepy - 7, ([B'1[BM )T (odav])= 0+ (3.9) ~
Eq. 3.96 is identical to Eq. 3.90 and this formulation is therefore

not carried any further.

I11.9 Commen?s on the Tangent Stiffness Matrix

The integration of matrices through the thickness of the element
(Eq. 3.85) has'been evaluated exactly in advance when the material is
e]astjc. When the materia% is in the plastic region, three basic
techniques have been proposed to incorporate the effects of the variation

’ 175

of stiffness through the thickness. Levine et al gave a detailed

discussion of the’ subject which is briefed as follows:

The first technique is termed the layered approach. The plate

thickness is divided -into several layers. Plastic strains and stresses

. are evaluated for each layer &t a specified number of po1nts;along the

surface of the element (i.e. at nodes or Gaussian points). The stiffness

matrix fs then obfa{nfd by numerically integrat}ng‘the properties

through the thickness at each represen@atiJe pgint and then over the

element surface. This'apprdach does not add any additional degree of

freedom to tﬁL system but requires plasticity calculations to be Performed

at each integration point (layer) through the thickness. |
The secqnd approach is to assume -a var?@tion (often a linear

variation) of plastic strain through the thickness. In this case, at
e ,
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most, only four points need te mbnitored for plastic strains, the
top and botfom surfaces and two possible elastp-plastic boundary
locations through the thickness. The determination of the location
of the elasto-plastic boundaries is re]ative]ylsimpYe because of the
Kirchhoff assumption 'of a linear variation of total strains. Disadvantages
of the method are that it is only approximate and for unloading and
reversed loading the total plastic strain distribution is no 1ongér
nearly linear. Neverthe]esg, for mongtonic loading 'with, at most,
simple isolakéd instances of unloading, it is efficient.

.The third possibility is through the usé of a moment resultant/

stress resultant interaction curve. The advantage of this method 1s

that no monitoring of points through the thickness is required. On

o

the 'other hand, it is only approximate in nature and requires moment
curvature tests for each structure considered. This explains why the
method has pot been widely accepted and it; reduction in computing costs
compared to other methods needs further investigation. This method

would appear to have its most uEefu] application with hybrid elements

Ve

where the moment and stress resultants are the actual degrees of freedom

of the problem and are calculated directly.
This study employs the layered method as it provides some advantages.
In this method, because the stresses are monitorea at points, they m?y
vary arbitrarily through the thickness. Conventional stress yield
criteria may be used and reversed loading, unﬂoading and cyclic loading

present no special problems. Only standard tensile stre§s-strain data

are required for the plasticity calqﬁﬁation.

. .
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l

Several numerical integration schemes have been used to integrate
the tangent stiffness through the thickness. These include trapezoidal
integration, Simpson's rule and Gaussian quadrature. Si%pson'§ rule 4s
preferred because it converges faster than the trapezoidal rule and
includes as integration points thg top and bottom plate-surfaces where
plasticity must be initiated first due to the Kirchhoff hypothgsis.

On the other hand, even though Gaussian quadrature has been used by some
researchers, 1t~ 1is not used in this study. Gaussian quadrature requires
the stress at 1nteripr points within the thickness to exéeed the yield
stress before any contribution is obtained: Hence, it is not able to
detect ear{y yiejding at ﬁhe &pper or lower surface. Most impoltantly,
the Gaussian quadratﬁre formulas assume the existence of continuous higher
order derivatives for the plastic strain distribution. Physically, it

1s known that this is not necessarily the case. This inconsistency

in the mathematical model could prove important for a complex distribution
of plastic strains, particularly through the thickness of the e]ement]76’197.

Other comments on the tanget stiffness matrix are that all

matrices used to form the tangent stiffness (Eq. 3.86) have been

explicitly formed (see Appendices A-3 through A-10). T D] matrix

is a constant matrix and only needs evaluation opce at the initial load

/

increment. It is then sotred for use in the/rest of the load increments.-
Hence, the only matrices which have to be rfevaluated are the 9 x 9

IS A . .
matrices of [KO} and [KN] where the merits\of symmetry and sparseness
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1

are provided. The advantage of avoiding the multiplication of zero

)
13

coefficients in the matrices has been taken into account during the

development of the computer program. If the three parts which compose

the tangent (fncreménta]) stiffness matrix were evaluated separately,

they are respectively (from 1ef§ to right as shown in Eq. 3.86) ,
initial stress matrix, conventional elastic small displacement matrix,

and initial displacement matryx. For elastic large displacement

analysis, the total stress ?@n be expressed in terms of strain and

then in terms of disp]acemeni gradients. Combining’the initial stress

matrix and the initial disﬁ]acement matrix and rearranging the coefficients,

the so called N] and Nzwmatrices as explicitly given by Mallet and
181 ‘

—
. =
s = 3
&) Trde

Marca can be formed-.

[IT.10 Assemblage of Elements

The variatjonal principle has been applied to a subdomain of the
14

structure for deriving the individual element stiffnesses in the previous
sections. To qbtain the stiffness re]ation?hip for the total structure,
the prf;ciplegis applied to the whole domain by jntegrating ovey the
entire structure. This i$ done by assembling the e]emen£s together to
form an jdealized structure using the topological conditions. Mathematically i
it is achieved by transforming the equilibrium equations for the elements ,

)

to a common coordinate systemland'summing the corresponding element

”

stiffness terms. The final equilibrium equations for the entire structure -

i

are'then'solved using any of the avaitable solution procedures. y
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II1.11 Choice of Numerical Solution Procedure
The solution procedures used in this study are the Newton-Raphson
method (including Modified Newton-Raphson method) and the incremental

method with unbalanced force correction. The Newton-Raphson method is

mainly used in the elastic range ?ﬁ\fhe loading history. Due to its

fast convergence and hence large step>§i;e, the Newton-Raphson method

has proved to be more economical in computing costs and it provides a
more accu}ate so]utjon. The methodlcan'be extended to the initial post-
yielding stage when material non]inearityuis still not very severe.
However, the rate of convergence bebins to pe retarded quickly while the
step size has to be continuously reduced and the method becomes expensive.
It finally reaches a point where the iﬁcrementél method must be u§éd

for the rest of the loaaing increments. The correcting term of force
unbalance is added to the incremental equilibrium equation to prevent

thé solution from drifting from the true load-displacement path. The
three methods are demonstrated graphically for the case of a single degree
of freedom in Fig. 6. N

111.12 Modified Cholesky Decompositibn Method

In the finite element displacement method, regardless of which
type of formulation and solution procedure is'being used ﬂor the nonlinear
analysis at each iteration or ;t egch load step, equations of the
following form must be solved:

| (K] {q} = {p} (3.97)

v N

R, i




in which [K] is the symmetrical, positive-definite stiffness matrix,
and {q} and {p} are as defined previously. Eq. 3.97 herein 1s assumed
to be the final form after the {htroductipn of the kinematic¢ constrainés

into the stiffness matrix.
The two most popular-ways of solvirig Eq. 3.97 dilectly ar e

~

Gauss elimination method and the Cholesky decamposition method. Compared
to Gauss elimination, the Cholesky algorithm is Tess accurate, mainly

due to its:process errors in forming the square roots. Despite this

defficienc}t the Cholesky method does have important data storage
‘ deantages.

256,257 method

This study employs a modified Cholesky decomposition
whjch avoids taking square roots and hence retains the good features of
(.‘ both Gauss elimination and Cholesky decomposition. The algorithm 1s
to decompose the stiffness matrix as follows:

[K] = [L][DJ'] [L]T . (3.98)

where [L] is a ]o&er triangular matrix, [D] is a diagonal matrix with

element bii equal to diagonal elements of L.., and\[L]T is tﬁe transpose
of [L]. The stiffness matrix, [K], is assured of being positive-definite
by checking that the diagonal elements of [D] aregreater than zero.v It

is seen that only the [L] matrix has to be evaluated using the formula

I | L ¢ L .
Lo, = K,. - 5 D (ynere i < §)- (3.99)
1J 1J n=1 Lnn '

Substituting Eq. 3.98 into Eq. 3.97, results ﬁ

\: 2

[L] (Y} = (P} . (3.190)

o |
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) (3.101)

Eq. 3.100 is first solved for {Y} using forward substitution. {q} is
then obiained by soiving Eq. 3.101 using backward substitution. w

The above algorithm proceeds with one équation at a time and
thus requ1re$ only one row of the matrix to be jn the core of the
computer. éhis reduces the reqﬁ1red core size to a minimum but 1t
significantly increases'the [/0 time and may not necessarily be more
economical. "

A common alternative technique. is to partition the stiffness

matrix into a tridiagonal form*. Eqs. 3.97 and 3.98 can now be

written as
A Bl ] D
1A 4 1
) T
(K] {q} = B, A, B Q[ = )Pyl (3.102)
S | ;
By Ay B3 a3 P3
By Ay | \% Py
- T 10 T - TT LT
(A, B L, D; Ly M
T -1 T
B, A, By o 0; Ly M$
T]® -1
B, A3 B3 My L3 Dy ] L3
i Bs Al L - MLy} Dg- | L
) (3.103)
#‘ BN
B Lo
¢

The case using the conventional Cholesky algorithm is described in
Ref. 253. '
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For clarity, all the blocked submatrices will be represented by a
capital letter without brackets. Now, at any timé: 1t has one diagonal
and one off-diagonal block retained in the core. The space can be
used for pther purposes, when equation solving 1s not executing, as a

dynamic storage area.

The procedure’to obtain submatrices Li<and Mi is as fallows:

Ay = L0y S R

B, = M, D7 L] N My = By() 7D,
”‘_fﬁgjiliﬂu¥lﬂl FLly Ly, 'Ly=hy-ty0; ] |

B, = M,05'L] N M, = B,(L))7" D, (3.104)

Ay = mDolml v LDl 1303 Li=A, = .05 T3]

By = M3D;'L] R My = B,(L3) 7 D,

etc.

These equations are used to determine L], M], L2, M2 etc. to obta19
each diagonal block By the mqpified Cholesky decompo%it{on a]gorithm
and each ofgldiaggna] block by solving the corresponding equations.,

The "forward" solution for Eq. 3.100 can be expressed ds

L 7 0y . P,
MLy Ya Pal
My Ly Yy = Py (3.105)
_ Myl Yy Py
which leads to 7
LY, = P A
LY, = Py - MY, 1\ (3.106)
L3¥3 = Py I MY
etc. §

w2
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, These equations are solved for Yis Yo, Yq, etc..

-+

The "backward" solution for Eq. 3.101 is now expressed as:

= T W
D, LM a B
; -7 T T
JDy Lo M . ap Yo
- T .7 - (3.107)
D L3 M3 a3 Y3
-1 T
. L Pal L L. % s
F 1 | )
AT 1T . )
by by 4 7 -
: AT 1T
Dy'ly DM, a2 2l
= B = (3.108)
Dy'ly D3My | )ag Y3 ‘ .
: 21,00
'E 9 | D4 L4- q4 Y,4
(f, which leads to ,
" '., T —-
(O 'Lg) ag =Yy
-1, 7T 3 -1,T : )
(03't) ag = v5 - 0j'Miq, L 3a09)
|

T T ;.
(Dy-Lp) @ = Yp* - Dy Mgy S

K etc.

1

Solving Eq. 3.109, the displacements q; are obtained in reverse order.

|
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- CHAPTER IV

' TEST EXAMPLES -

'

computer program (see Appendix B) using FORTRAN language (Gl

‘Qs <
and H leviel) was developed. Prior to the application to thin-walled

structura)l members, examples of beaTs and plates were tested and the

results a

)

presented in this Chapter. Examp]es/were chosen so that

different $hapes, different loading patterns, various boundary conditions

| .
and different material properties can be tested. Direct comparisons with

published results, using either the finite element method, an alternative

coe

theoretical approach,-or experimental work, are made.
The stiffness matrix is evaluated numerically using Gaussian
quadrature over the plane of the elements and Simpson's rule through the

. %
thickness. The numbér of integrating points is left to the user as input.

-

It is judged that 2 x 2 Gaussian points probably will not be able to
provide adequate accuracy and a 4 x 4 scheme is too, expensive; hence a
3 x 3 Gaussian quadrature is consistently used for all &est examples.

Either nine or eleven points (layers) are used through the thickness .

except for the first test of a restrained beam where seventeen are chosen
L] } v

insteédd. Seven layers may possibly give satisfactory results but has
-

not been tried. ¢

The transforﬁation of the stiffness matrix and the displacement
and load vectors between Tocal and global coordinate systems are performed

only for certain joinis where non-coplanar elements meet and the local

=]

coordinate systems of these non-coplanar elemehts are different from the

global. For those cases where an initial imperfection of the member is

\
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introduced thrdugh joint coordinates, the four node transformation

matrix as discussed in Section III.3 is employed.

strains ara evaluated at integrating points.

In this Chapter,only half the beam is analyzed due to symmetry

and only a quarter of each plate is anaNyzed due to double s}mmetry.

. The mesh idealizations are shownin their corresponding figures. \\l

" The tést'examp]es serve the followlng purposes:

1. To verify éﬁe mathematical formulationlof the last chapter.

-

4, qTo study the accuracy and the cohvergency of the results with
- _respect to the step size and fineness of the finite element
idealization.

. ~ ¥
5 -
"

iy ) ~ : ’ b
IV.i Resfra1ned S1mp1y Supported Beam Elastic-Perfectly Plastic Mater1a1

»

-

Jf One of the earliest finite element applications considering combined

geometrical and material nonlinearity was due to Armen, Pifko and Levine89
who tésgeP a restrained beap and a simply supported circular arch. The
beam,qwbiph is simply supborted under uniform lateral loads with its edges
restrained from moving toward each other, was chosen for compar1son because

more deta11ed results were avallable Results of two cases of investigation

5" .

are shown in Fig. 7 and 8.

” -




The difference is probably due to severa] causes. Firstly, it is attributed
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The previous investigation used beam,e]ementq, included  material
nonlinearity &?’using the initial strain met;od, and ;ssumed a linear:
variation of plastic strain and of elastic-plastic boundary w1thintthe
element. ‘The present study uses a plate element, the tangent stiffness
method and the layered approach. Henfe the method and the elements used
foh the two cases of 1nvestigationraré Quite different.

. The step size used in the previous 1investigation was reported
as 30 1b (13.61 kg). In the present study; it varies from 120 1b |
(54.43 kg) to 240 1b (108.86 kg) in th? elastic range and is, after

initial yielding, graduj}%y\PeQEsengE

of 95 1b/in (16.96 kg/tm). In order to speed up the investigation, the

0 1b (13.61 kg) at ‘a load level

step size is again increased to 90(1b (40.82 kg) at a load level of 154

Ibpin  (27.5 kg/cm) and is maintained the same throughout the rest of the

analysis. No iteration is performed during the coursé of the study.

F1g 7 and 8 show very good agreement between the two studies up
to a load Ievel of about 150 1b /in (26.79 kg/cm). After that, the
differences become more pronounced. The present results shdw that the
bedm is st1ffer than that of the prev1ous investigation and also shows

that the soften1ng of a ‘member at the final stage-of loading is slight.

>

-

to the inclusion of a force unbalance at each increment and also the
greater step size hsed in the present studyf Secondly, even though the
beam is softening due to plastification, its bending stiffness is-increasing
due to geometrical nonlinearity. The ingyease in bending stiffness by

using‘%he present element is probably greater than that of the previous

«
5 A
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one. Thirdly, the previous investigation is a beam analysis, whereas

the present study 1s agp}ate analysis. Ore only involved 1n singleﬁstress
field while the other involves a multi-stress field. Hence, a s]ig%t
difference may arise through computation, particularly in the plastic
region where the theory of plasticity is used.

,0n the other hand,‘the solutions using different numbers of efements
in the previous investigation (see Fig. 7) indicate a trend that the solution
of the two i1nvestigations get closer when more elements are used. Hence
it is believed that when the jdea]ization of the present study is further
refined, the difference betweén the two investigation§ should be even |
smaller. Furthermore, both results show identical progression of the
plasticization pattern which initigted at the bottom and penetrated through
tHe thickness toward the top of the beaﬁ, with only a smal] discrepancy
at the edges (Element #\é in Fig. 8). This was because stresses were
presumably evaluated at the nodal joints 1n the previous invest1§ation
but at the centroid; of the elements,which is also one of the integration
points, in the present study. ’

‘ One interesting phenomenon observed during the analysis was that
the longitudinal unbalanced forces gradually fincreased and oscillated
along with the progression of the elastic-plastic boundary until it
passed through prroximate1y two-thirds of the depth of the beam and then
started to aiminish again (this phenomenon did not occur in later test

examples: of plates when the edges are free to move in the"plane of the

‘member). The larger longitudinal unbalanced forces are apparently due

to very high membrane stresses generated due to the beam be%ng restrained
‘. | >
from moving in that direction. These unbalanced forces, even though

higher than those in the transverse direction, remain small compared to

[
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the total membrane force. However, it is felt necessary to reduce these .
unbalanced forces. Due to phe slow improvement but rapid increase in . /
computing cost, choosing a smaller step size is considered uneconomical.
Therefore, it was felt best' to reduce the magnitude of the unbalanced forces,
| which are used as correcting térms within the equilibrium equations for
the next load step. The first attempt was an under-relaxation on unbalanced
forces by letting o < 1 (see Eq. 3.92). This was not very successful
because it was found that the proportionality constant, «, is not necessarily
the same for all unbalanced force components. Judging the character of
the oscillation of these unbalanced forces, the method of generating. th
unbalanced forces used in tve second-order self-correcting s%1ution‘pféiedure
és discu;sed in Chapter II is adopted to provide a better pred:ctiog§for

these ‘correcting terms. %
%

After a few trials, it is found that the value of parameters s‘i?d

z of Eq. 2.31 can be besf/ xpressed as: ' .
a I ' - \\\\

‘ " I

bvVz : o !

where a and b are scalar quantities, Ap is the current load increment, and

C

p is the cumulative applied load. Similar forms were previously used in

Refs. 199, 201, and 202 except that the exponents for each parameter were

A 5 RN,

different and a and b were maintained as constants. In the present study,
Ay
it was found that better results can,%e obtained by gradually adjusting
()
the value of "a" from 13 to 2.5 and "b" from 1.8 to 0.2. The unbalanced

forces are indeed gradually reduced to small values again and it is believed
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that the improvement is partially due to the application of the second-.

order self-correcting procedure and pawtially due to 1ts own nature’ of

decreasing the residual forces at later stages of the analysis.

IV.2 Simply Supported Square Plates Beyond the Buckling Load

The post-buckling behaviour of simply §2Pported'square plates was
. -
25, and Yamaki26 using a double Fourier

51-57,61,144,149,229 .
i

stuaied previously by Levy21, Coan
series approach and recently by many investigators
using the finite element method. Yamaki's classical solution is generally
agcepted as th£ most exact. Three problems were tested under this category
and involve different width-thickness ratios, different materials, and
different idealizations. In order to initiate a lateral deflection,
imperfections are introduced as single half-sine waves in both dtrections

with maximum magnitudes of ten percent of the thickness at the center of

the plate:

m

W, = 0.1 t sin %? sin T¥ )//
The plates are uniformly compressed in one direction by mposing specified “-J/
displacements along the loaded edges. The unloaded edges are free to move
in the plane of the plates. The magnitudes of the required in-plane loads

"

can be evaluated later_by integrdting the element stresses or by calculating

L3

the reactions er so]viﬁg\th equilibrium equations. The two a§e always

in good agreement.

b
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IV.2.A Width-Thickness Ratio = 192, Elastic-Perfectly Plastic Material

An identical plate 48" x 48" x 0.25" (122 cm x 122 cm x 0.635 cm)

7 5

with E = 10" psi (7.03 x 10 kg/cmz) and » = 0.316, which was previously

229

tested in the elastic region by Khan et al was retested as the first

test exampte of a plate in the current study. Results are shown in Fig.

5

9 where Yamaki's elastic solution is also plotted for comparison. The

" study of the elastic post-buckling behaviour of simply supported square

plates has also been conducted by many other investigators whose results
are not demonstrated in Fig. 9 for clarity.
In this particular test, Khan et al used a rectangular plate with

five degrees of freedom and employed artificalkstiffness coefficients
. 166

for these coplanar

v

elements. These artificial 3tiffness coefficients were not required in

corresponding to 8, as proposed by Zienkiewicz

the presenﬂ study since 0, itself is a degree of freedom.

Because the plate has a hiéh width-th1ékness ratio which implies
a small initial buckling load but large post-buck#i;g strength, the
analysis was mainly in the post-buckling range where the behaviour was

highly nonlinear. Consequently, the step size should be small and the

growth of stresses in the element was slow. In addition, the ultimate,

strength of this test plate was not comparable since both Yamaki's and .

Khan et al's work considered geometrical nonlinearity only. For thegé
reasons, the yield stress of thé‘material was set to a lgglva}he (10 ksi
(703 kg/cmz)) S0 that the test could be terminated sooner.

Fig. 9 shows that the present result lies between the two previous

investigations. After initial yielding, the increase in stiffness of the
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plate due to large deflections is gradually more than compensated by

the decrease in stiffness-due to plastification. Probably due to the
severe nonlinearities and the small step sizes that are used, the response
of both loads and deflections were sluggish in the region of the

ultimate load. The test was terminated when the loads ceased to grow.

.

IV.2.B Width-Thickness Ratio = 150

Case a: Elastic-Perfectly Plastic Material

& Ara1]49 used refined confokming triangular elements with three

)

kg/mm2 and oy = 25 kg/mm2 (v was not reported). One coarse mesh of

sub-elements to tejt a plate 600 mm x 600 mm x 4 mm with E = 2.1 x 104

" eight elements and one fine mesh of thirty-two elements were tested. An

|
identical plate was retested using twenty-five rectangular e]ements and

setting v = 0.31
Comparing the results against Yamaki's26 classical elastic sofution

*in the pre-buckling and pbst-bdckling region respectively, Fig. 10 shows
that Arai's results changed from being on the stiff side to slightly on
“the flexible side. The present test almost coincides with Yamaki's bq‘
later becomes too stiff. The differeﬁcq probably can be attributed tb the
following reasons:
1. The present study considers unloading even though it very rare]y

occurs in this test problem. In general, had unloading occurred,

the stiffness would be eQaluated based on the elastic properties

of the material until yielding is reached again. Hence, the effe;t

of unloading is essentially to stiffen the member.

A0 R oy weupE” 5
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2. [t.seems that Arai covered material non]ine§r1ty by simply setting
the stiffnes§ té‘iero for the plastic portion of the member without
further reference to the theory of plasticity. This may be the
reason for his results being on the flexible side.
3. The present non-conforming rectangular element is too stiff i1n this
particular problem. ' “

Experimental results conducted by Arai are also reproduced in Fig. 10.
No description of the work indicating how the loads were applied or how
the boundary conditions were set was given.

Fig. 11 shows the history og the stress distribution néar the
loaded edge and near the centerline of the plate. It may be observed
that the stress quickly drops toward the center of the plate after initial
buckling and the ultimate strength is reached when the maxim&m stress at
the edge yields and starts to decreasé. This confqrms*with the Eoncept
of effective width initiated by Von,Karman]OO. Note that the differences -
between the two tests dre pronounced in Fig. 1la. The stress distribution
pattern of the current study agrees with the classical solution (e.q. see
Coanzs) whereas Arai's result is actually closer to the case where the
unloaded edges were kept straight. However, this is in conflict with his
own choice of using Yamaki's so]ﬁtion for comparison (shown in Fig. 10)
which implies that the unloaded edges were free to mpve in the plane of
plate.

Figs. 12 and 13 compére the results on lateral deflection and

extension of the plastic area. Generally speaking, the results of the

i
i

two tests are similar.
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Computing dosts are also compared in Table 1. It is not certain
that the co%puting time can bg directly compared as Arai did not clearly
define his computing time of 140 seconds, nor did he mention any attempt
at iterations in each loading step. The time of 32 seconds 1in the present
test is an ayverage CPU time per iteration using H level Fortran language.
Two or three iterations were used for each lqaﬁggg step depending on the
step size. In most parts of tggﬁana1ysis, two iterations were more than

adequate.

Case b: Elastic-Linear Strain Hardening Material

The same plate as Case (a) was retested using a different mesh
and different maie;ial properties. The purpose is to compare results with
different fineness of idealization\and to check the computer subprogram
for material with strain hardening. Fig. 10 shows that the degree of
improvement on the result from a 3 «x 3 coarse mesh to a 5 x 5 finer mesh is
not proportional to the amount of extra computing cost required and this

is quite a common conclusion in finite element ana]ysﬁs. However, the
plate does have a higher strength due to strain hardening. |

»~

IV.3 Restrained Simply Supported Square Plate Under Uniform Pressure,

LSRN

, Elastic-Perfectly P]ast1c Material

he classical elastic solution of this problem was previously found

°

2

by Levy™" who'used double Fourier series to solve von Karman's]4 large

142

deflection equation. Marcal attacked the same problem using triangh]ar

elemepts at the earlier stage of development of combined nonlinear finite

143

\ : . .
element analtysis. Ohtsubg later adopted the Ritz procedure with the

-
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aid of the finite element method with the plastic analysis based on the

initial strain concept. These works are compared with the presenﬂ‘study

\

& o
for a plate 24 in x 24 in x 0.25 in (61 cm x 61 cm x 0.635 cm).

Fig. 14 indicates that the presgnt study results indicate a less
stiff plate thaﬁ those of previous investigations. The Newton-Raphson
procedure was employed up to the load level of pa4/Et4 = 334 and 1t took
twelve steps to reach this level. The number of iterations.were varied
fro$ two at the beginning to twelve at the twelfth step\where convergency
became eitre&ely slow due to severe p1astifi€t§£pn. Thelrest of the ;tudy
was then carried out by strictly following the step by step procedure
with a small incremental size. ;§¥f§ observed that both Ohtsubo's and
Marcal's invespigations terminat;;\at an earlier stage comparing to the
present study.

Crisfield 44

has recently used a rectangular element with five
degrees of freedom to sq]ve the nonlinear plate problem. He considered
only geometrical nonlinearity in this particu]a} problem and compared his
fesdlt against Levy's classical solution. The elastic part of the solution
of the present study is now added to this comparisoq and is shown in Figs.
15 and 16. It can be seen that, de§pite the coarse mesh being used in

the present study, stresses are still in fairly good agreement.

‘Since it is the tptal stress calculated by the present cogputer

program, the membrane and bending components are not explicitly %eparable
after yielding. The post-yielding stresses are then presented in an
alternate form as shown in Fig. 17 which shows the progression of plastifi-

cation in the plate. It is clearly seen that yielding initiated along

il P I3
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the diagonal of the plate which is in agreement’ with Yield 1ine theory.

However, due to the restraint along the edges of the pl\te which cduses
membrane stretching, the yielding zone, instead of being Yocalized along

the diagonal and through the thickness, gradually spread gver the whole

d beam presented

in Section IV.1. The test was terminated at a load level of pa4/Et4= 723

plate in a manner similar to the one dimensiongl restrai

because the stored data (stresses, strains, digplacements,: etc) were
unfortunately destroyed due to a human error. Note in this test that

the in-plane unba]anced.forces again increase at high load levels due to
thg building up of sizaLle membrane, stresses. It is believed that a better
prediction of the unba]anced forces which are used as correcting terms
_in the incremental 4qu111br1um equations, using the second order self-
correcting procedgré of Section IV.1, should be helpful if the continuation
of loading up to the p]astificaéion of the entire plate had been carried
out. ( ,/ h

iV.4 Simply Suppo;ted Rectangular Plates Beyond the Buckling Load
v ; N ¥

Two rectangular plates of different aspect ratios and different
material properties were tested in this section. Again;ythe inttigl
imperfection is introduced through the nodal coordinates using a sinusoidal
curve. The plates are uniformly compressed in one direction by imposing

specified diﬁp]acements along the loaded edges. |

|

IV.4.A Aspect Ratio (a/b) = 0.875, Width-Thickness Ratio (b/t) = 80,
\

Elastic-Perfectly Plastic Material

Even though the behavieur of this plate, 222.25 mm x 254 mm x
' |

3.175 mm, is ;imilar to that of the square‘b]ate and the buckling form

T s AR AR i MR L -t
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involves only a single half wave, it was tested because a direct

144,145

comparison with the results by Crisfield is possible. Crisfield

has used the Ilyushin yield criterion and a modified I]yuihln criterion
to test this plate. He employed a rectangular element with five degrees
of freedom at each node.

A single half sine wave 1s used 1n both directions for introducing
an initial imperfection with a maximum amplitude of W, T 0.001 b = 0.254 mm
at the center of the p)ate. It took a, total of seven steps to reach the
ultimate strength prior to entering the region of load shedding. Within

each increment, two iterations were used in the elastic range and three

<
to four iterations in the range of post-yielding. Figs. 18 and 19 show

excellent agreement between the two investigations which is probably due

to the fact that a similar type of element was used in the two investiga-

tions. Moxham'srnSnfinjxe-element ana]}sis, referred to by Crisfield,

o 144,145

is _also reproduced from Crisfield's report in Figs. }8 and 19.

0N
Y .

Crisfield has also provided:information on his co@gdtiﬁg time.
The computing times for the present study are added to Cr{sfie]d's in
Table 2 as additional information. It should be noted that the computing
times shogld not be éompared directly because they depend on the computér
model being used. Further, Crisfield used the Modified Newton-Raphson
solution procedure, whereas Ehe present study employs the unmodlfied

~ " ,;\‘ N .
Newton-Raphson method. Hence, thé number of iterations listed in Table

2 should not be compared directly either. q/

.
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IV.4.B Aspect Ratio (a/b) = 3.7, Width-Thickness Ratio (b/t) = 49, o

Elastic-Linear Strain Hardening Material
’ 18

Dwight and Ractliffe have conducted a series of experimental
tests on steel plates and aluminum alloy plates to investigate the ultimate
strength of plates under uniaxial compression. Thex have also performed
theoretical calculations to predict the plate|strengths.: Their theoretical
development (not a finite element method) was based on the analysis of a
quadrant of a square plate using a few assumptions. One of the assumptions
is that the strain in the y-direction (i.e. the direction parallel to t@at
of the applied loads) varies only with x. The Tresca yield criterion washﬁ
employed. The plasticity was checked at asnumber of points around the edge )
and corrections were made on the basis of appropriately reduced stresses
in the plastic zones.

Among the specimens tested by Dwight and Ractliffe, one was arbitrarily

chosen for re-analysis using the presently developed finite element program.

The chosen specimen was a simply supported aluminum rectangular plate

Mty

45.5" x 12.225" x 0.25" (115:5 cm x 31.0 cm x 0.635 cm). The stress-strain

relation of the aluminum a]loy;wd% linearized to elastic-linear hardening

according to Dwight and Ractliffe., The initial imperfections were| set in

1 i

accordance with the formula - \
= ; Xy ein (Y
W, ,0.03 t sin (%;O sin (a/4)

i

T P

In this test the unloaded e“§é§ were allowed to move in the plane ;
of the plate but must remain straight. This can usually be achieved by ,f
adding to the unloaded edges the rigid bar e]eme;ts with two degrees of /’
freedom’ (in-plane translation and rctatio%) at each node. In the present /

|

! |

study, the in-pTane"rotatiyn (ez) is a d.o.f. and can be restrained” / g
{

© . -
| . {
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accordingly. The restraint of translation was imposed by adding a large

value to the corresponding coefficients of the stiffness matrix. Hence,

no additional elements were actually added.

F1g?}20 shows the load-plate shortening response and the two
/
investigations are in excellent agreement. Dwight and Ractliffe's

" “theoretical result and their experimental results on the same plate but .

of different width are reproduced in Fig. 21 to further demonstrate the
agreement between the two investigations. Fige 22 shows the Toad-lateral
deflection curves for the plate, where®Nodes 9 and 25 are the locations

pf maximum magnitude of initial imperfection but in opposite directions
and Node 33 regresents the Center of the plate. Since only a quarter of
the plate is analysed, the boundary conditions at the center of the plate
i.e. Nodes 33 through 36) has been set by restfélnlng‘jhe Tongitudinal
slope at these nodes. This actually ruled out the possible anti-symmetric
buckling modes. Fig.. 23 clarifies this point by showing that the plate
does Suckle into three symmetrical halfnwaves even tfough four half waves

were initially introduced through initial imperfections.

E»)

The maximum load obtained in the present test is equal to an average

compressive stress of 8.26 T/in2 (1300 kgfcmz). Beyand that stress, %FE

tangent stiffness matrix was detected as non-positive—de%inite which
implied that the plate became unstable at a secondary point of pifurcation.
This is also seen in |Fig. 22 which demonstrates Epat the plate was
stiffening in the initial post-buckling raﬁgé but the stiffness of the
plate later gradually decreased. This post-initial-buckling, stable,

.and rising equilibrium Path is referréd to as the primary path and is

finally discontinued at the secondary bifurcation which imb]ies either a

e

~,
>
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possible change in buckling pattern-or a further instability phenomenon
after the initial buckling. The post-branching behaviour is very

complicated and has not been fully understood so far.. Studies have been

conducteﬂ by several reséarcher~30333 258,259

\
s;ructura] model with two degrees of freedom to investigate the existence

in general terms using the

. v

-

" and the stability of the secondary equilibrium path which represents a

hébher buckling mode, and the coub]ing equilibrium path which branches

from the primary path into a secondary path. Such coupling occurs in
specific ways depending on the properties of the system, .boundary conditions
and methodq%f control on applied loads. It 1s also imperfection sensitive.

These properties are reflected in the topology and in the stability of

" the goup]ing paths. Stable coupling paths ensure a gradual statical

5 - ’ '
transition between buckling modes while on unstable paths this transition

o

This complicated mode coupling and bifurcation§ from the primary

paths require somewhat more refined, post-critical load analysis than those

s

which can be simulated usin%<: single degree of freedom. It requires

¥

?ssentially an eigenvalue analysis and an investigation of the possible

existance of a coupling path to connect thf buckling modes. If such a

transitipn curve exists and if the plate ig compressed by controlled .
loading, the transitiondcurve is unstable and the secondary bu&k]ing is
of the snap through type. Th1s is achieved in finite element ana1y51s

by adding loads 1ncrementa]]y above the b1furcat1on load and applying a

[
uewton 1terat1ga at each load level. The iteration eventually will

»‘P'

converge to the secondary path when, the load is increased above snap-"~

through load. -On the other hand, xf the plate is coTprgssed by controlled

Wi . %
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’
7/

shortening, the transition curve is stablé and ipdicateé a gradual

but rapid-drop in loading befofe the stable and rising secondary

path is reached. In this case the imperfection perturbation technique
should be introauced in order to get the plate into the transition
state.

In any case, the analysis after the secondary bifurcation is
considered to be a purely academic exercise. The post-secondary-buckling
§treng§h can only be obtainéd through a dynamic disturbance or through
a period of load shedding which is not acceptable for a practical
struétura] member. In fact, the exweriments (e.q. Fid. 20) would not
show a higher’ buckling mode unless artificial restraints were introduced.
Furthermore, there is always a possibility thaﬁ the secondary bifurcation
may indicate the total instability of .the system and imply that no
coupling path is avai]able‘to link the primary path to the secondary
path. Hence, theﬂﬁeak load of 5.26 T/in2 (1300 kg/cmz) is justifiably
considered to be the ultimate strength of the plate. At this ultimate
]oad,‘yielding has deen detected at a %ew integrating pgints on the |

l .
surface of the plate. This indicates that the plate is approaching its

ultimate strength due 'to yielding in any case.

IV.5 Discussion

P
Miscellaneous items, which were encountered during the course-
of testing specific examples and are general to all problemg, are

discussed under this section.

.k e
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The merit of successive runhing of a problem

It is not recommended that a problem be completed 1n one computer
run. Using the present computer program, successive running of one
problem is possible and the resulting displacements, stresses, and strains
are stored. This is preferred because it permits the user to have better
control of the problem. The user can examine the results at an earlier
stage of thenana1ysis and can either terminate and restdrt the solution
or make the necessary corrections if mistakes have been detected. In )
this way, he can take a close look at the results as well as study the
progress of the analysis. Results which are unsatisfactory can be
disregarded and re-run at the extra expense of that particular step only.
The number of steps, step size, and maximum allowable number of iterations
are all left as input data for each run and hence it is Qery convenient
and flexible for the user. ) 4

N

Choice of step size

Step size'is not néces;arin kept the.same throughout the ‘analysis
of a Trob]em. Numerous simple agorithms can be incorporated into the \
computer program which chang¥ the step size automatically. For example,

a criterion of tolerance tan be set and the step size increased or
decreased in accordance with a comparison of errors in the results against
theuabfawable tolerance. A simple scheme is used in the present computer
program such that the step size is automatically doubled when the error
~becomes less than ten per cent of the allowable tolerance and the step size

is reduced to half when the error becomes greater than five times of thp

et e e TV
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allowable tolerance. If the error becomes ten times greater than the
allowable tolerance, the computation is terminated for investigation
before further eontinuation to the next load step. Besides, the criterion
of telerance is problem dependent and a different user may prefer a
different accuracy. Hence, the value of the tolerante 15 treated as
input data rather than a fixed value within the compd%er program.

Maximum economy of coimplting time is obtained, particularly .
in the elastic range, by keeping the step size as large as possible and
having the required accuracy achieved with iterations. In other words,
the Newton-Raphson method is more economical than the step by step method.
Of course, tﬁe step siize +is also subject to certain limitations which |
depend o; the-kipe of problem being anaiyzed. In general, the step size
should be kept small at the initial step and in the vicinity of a buckling
load. However, it can be large.in the pre- and post-buckling range where
the structure is stable. The step size should g}idually beareduced to a
small value after the member Starts to yie]d?,to'éomp1y witﬁ the concept

-

of the flow theory of plasticity and to copé'with the slower convergence.
: \

ST A
Choice of "single or double precision A }

&

" ‘ o
Double precision is used in the present computer program (half

word for integers). Single precision was attempted, which gave good
accuracy for displacements but not for stresses, and was therefore

Aabandoned. This further confirmed the conclusion previously reported,

by Melosh?>7. The Modified Gholesky Decomposition method was adopted
|

for solving the equilibrium equations, which should have improved the

a

accuracy of the results. However, it was still not adequate to warrant

the use of single precision in the present study.

:
,
.
e I
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Interpretation of accuracy of results (convergence)

The Euclidean norm, defined by

n = ({A}T{/\})”2

in which (A} stands either for the iterative displacement chanées, the
l

total displacements, the unbalanced residual forces, or the total applied
loads, is used a; a basis for ‘determining convergence in the present computer
program. The.errors are defined as the ratio of the Euclidean norm of

the iterative displacement changes to the Euclidean norm of Ehe total
displacements, and as the ratio of the Eué]idean norm of the unbalanced
residual forces to the Euclidean norm of the total appliied loads. JThe

\‘A
allowable tolerance for the error is usually set at one percent. When

the plate is well into the plastic range and the ;olution procedure is
performed using the incremental method without iterations, the error is
evaluated only in terms of unbalanced residual forces and an error of five
percent is generally considered tolerable.

. In general, it is found that, in the prg;buckling range, errors
calculated from unbalanced residual forces may be small while those from
diSplacemenEs are considerably larger. Hence, displacements 1nste;d of
residual forces should be used for {nterpretation of accuracy. On the
other hand, in the post-yielding range the opposite is true mainly because
of the smaller séep‘size being employed. In the range between post-
buckling and pre-yielding, errors calculated in both displacements and
residual forces respond very well and hence either one is reliablé and can
be used. In conclusion, the consistent use of only one parame?gr, displace-
ment or residual force, to interpret the accuracy of resufts may be

1

misleading in some range of the analysis.’ Of course, the best accuracy

e i
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can be obtained by having the error calculated from both parameters and
have both tolerance allowances satisfied simultaneously. Apparently
this will be compensated by higher computing costs and may not be worth-
while. Probably a good practice is to use the most reliable parameter
for calculation of the e;ror in the corresponding region and switch the

term motivationall} as i3 necessary during the course of analysis. This 1

can be done very easily when the problem is analyzed successively.

/ [ 2

It should be noted that the above discussion of errors and coAvergence
Coe
is subject to the important question of the reliability of using the

unbalanced residual forces to estimate the accuracy of the resu]§557.

Many in%eﬁtigators suggest that this residual check is unreliable. [t .
is well{khown that to solve a set of simultaneous a]geSraic equations
numerically, it is possible for an entirely erroneous solution to have

a very small res{ﬁual and it is possible for the-frore exact of two.

approximate solutions to have the larger residual particufarly w%en the

260

equations are not well conditioned Similarily, in finite elément

analysis, a satisfactory residual check may Qe obtained with’ stresses that

are considerably in error or vice versa2]4. /For example, if a support

reaction Ri;is computed by summing kijqj’ it may be nearly exaft but

displacements qj may haye appreciable error. If Ri is computed from

element stresses, it is conceivable that stresses may be satisfactory

while Ri is erroneous, since stresses at the element corners are less

reliable than elsewhere. :
Furthermore, the in-plane forces, transverse forces and moments )

may all be of different Grder. A beam or a plate which is laterally

Toaded and is restrained from movement in its own plane is a good example
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to demonstrate this point. Consider the beam case which was tested in
Section IV.1, where the 1T-p1ane forces were quickly built'up and

remained high in the plastic range. We may pick any node and evaluate

the in-plane force at that node. Since there is no applied external

force in the longitudinal direction, the tw; Ja]ues of %n—p]ane force
computed from the stresses in adjacent elements on either side of the

node should be equal and of opposite sign if the equilibrium condition is
to be exactiy satisfied.o If not, the difference of the two values 1s

tpe unbalanced residual force-in that direction. This residual force

is very small compared to the in-plane force but may be big when compared
to the transverse incremental loading or the residual forces in other
directions. The situation now Frises that the Euclidean norm of the
residual forces is contributed tb mostly by residual forces in the

. longitudinal direction while the Euclidean norm of the total applied load
is entirely due to the transverse loading. AThe two are neither in the
same direction nor are the forces in the two directions of the same order.
Hence, in this case, to use the ratio of the two Euclidean norms to measure
the accuracy of the results may be érroneous. Consequently, some
investigators simply use displacements to determine the conve}genﬁe? This
may be adequate for a non-]jnear elastic analysis but it is doubtful that
checking on displacements alone will‘}ully reflect the accuracy of stresses
when material nonlinearity is involved. Ii is felt that the unba]dnceq
residual forces are still worth checking as long as it is handled with

caution. This is the reason for checking both displacements and residual

forces in the present study.

-
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It is worthwhile repeating that problems of convergence have
been reported by several investigators when the Newton-Raphson procedure
is used well into the plastic range. The present study also experienced
slower convergence in the post-yielding stage along with the progression
of p]&stification and the Newtoq-Raphson procedure was finally replaced

©

by an incremental procedure not only because of slower convergence but

202 pointed out that since all

also for reasons of economy.* Stricklin et al
the convergence proofs for the Newton-Raphson procedure assume a continuous
first derivatjve, the stiffness matrii which takes account of plasticity,
[Kp], can have discrete discontinuities when unloading occurs, hence it

can destroy any assurance of convergence when theré is a possibility of
elastic unloading. Furthermore, under such conditions, there is no unique

263 stressed

solution for the deflections. On the other hand, Davis et al
the importance of studying the sign of the rate of plastic work and making
the necessary modifications to maintain a positive rate of work in all
plastic areas. A negative rate of plastic work imglies a physically ’
impossible .situation and should be removed by assuming that the plastic
elements are elastic (elastic unloadingl. ‘It is felt that information

is limited and further investigation of ﬁethods for ﬁmproving convergence’
in the plastic range is required.

o

* Prediction of computing cost and behaviour of member

In addition to the method of analysis and efficiency in programming,
it is clear that the cost of computing time is also highly dependent upon

" the type of prob]ém and the member geometry. For example, compare a

~
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o \ \

laterally loaded beam or plate where edges are free to move 1n the plane
of the member to the case where edges are restrained. The former will
reach jts ultimate strength shortly after its initial yielding and only
a small portion of the member will have yielded while the rest of the
member remains e}astie& However, the latter case will not reach its
ultimate strength until the whole member has yielded. Apparently the
latter is more costly than the former.

" Consider the classical problem of the uniformly compressed, simply
supported square or rectangular plate as the second example. A plate
with a high width-thickness ratio (thinner plate) will cost much more than
the same plate witﬁ a lower width;thickness ratio (thicker plate).’ This
is because the thinner plate ha§ a smaller buckling load but a greater
post-buckling strength. Hence most of the analysis is in the post-buckling
range where nonlinearjty is severe. Ultimate strength 1s not immediately
reached after initial yielding but only after a significant range of gradual
reduction in member stiffness. Even the load shedding part of the analysis
performs in tﬂe same manner of slow and gradual decreasing. This implies
thaf a smaller step size and more iterations are required and hence
results in higher computing costs. On the other hand, the thickeg plate
has a greater buck]%ng load and a shorter post-buckling range.‘ U]timawe
strength is reached very quickly after initial yielding and abrupt load
shedding immediately follows.

Based on these considerations, an approximate prediction of

combuting costs and the behaviour of the plate may be attainable in advance.
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CHAPTER V

. APPLICATIONS TO THIN-WALLED SECTIONS

| A L

o It is to be noted that a 3 x.3 Gaussian point integrating

scheme over the element surface and 9 1a§§?s through the element .

thickness am®™used for all the problems treated in this Chapter.

1

V.1 A Cruciform Section Under Uniform Compression, Elastic-Nonlinear

Strain Hardening Material

Similar to conventional hot rolled members, it is not uncommon
for a thin-walled section to have an unstiffened‘f1ange which is
supported by the web plate along one longitudinal edge with the other
longitudinal edge free of support. To represent such an unstiffened .

106 chose a cruciform section loaded axially (Fig. 24).

f]ange,'Stdwell
The dimensions were chosen in such a way that the individual flanges
will buckle well befora\the Euler load for the entire cdlumn is reached. .
The co]umn thus undergoes a torsional mode of bucﬁl1ng as the middle
cross-section rotates about the 1ong1tud1nal axis with respect to the
end cross-sections which are restrained from moving in their own planes.
\Sfowellloﬁ has investigated several sections with diffe;ent
dimensions and the results were presented in a form of axial shortening é

A
: . s . | .
vs maximum rotation except for one section whose results were presented in

- .
terms of stress distribution and strain distribution. The latter section
was chosen for the present study using the finite element method. The reason

for this choice was because in using the finite element displacement method,

-110-
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a comparison of the two tests in terms of deformations might result

in very good agreement while the compar1;on in terms of stresses may

be substantiaily less so. By comparing stresses, the maximum difference
between the present investigation and that of Stoweld could then be >
obtained, It may be noted that Stowell used the deformation theory of
plasticity, whereas the present study employs the flow theory. Hence

the two are quite different.

Due to symmetry about the two axes, each flange of the crué1form \
section defdrms identically. Mathematically, the problem is thus reduced
to two dimensions as a single flange could be 1solated and analysed.
Further advantage of symmetry on a flange can be taken and hence only
‘half of a single flange was actually investigated. The half flange is
idealized by a mesh with 8 (rows) x 3l(columns) (Fig. 24). Actually a
mesh of 8 x 2 will give a better aspect ratio (i.e. éhe ratio 1s closer
to one) for each element. However, it was felt that a minimum of three
elements across the width of the flange was necessary in order to faith-
fully dgscribe the stress and"strain distribution patterns. The mesh

A

8 x 3 was therefore chosen with the understanding that the accuracy may
possibly be reduéed due to higher aspect ratid in ;Be elements.

The material for the section was aluminum alloy 24S-T4 whose
stress-strain relation, which was used in the present study, is shown
in Fig. 25. This stzgss-strain curve is expressed by a nonlinear formula
ysing Eq. 3.58. Initial imperfections were introduced by applying a
uniform lateral pressure of 0.03 psi (0.002 kg/cmz). The column was

compressed by controlled axial displacement.

. s
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The load-deformation relations Xor the cruciform section are

shown in Figs. 26 and %7' No results are wresented in these forms by

Stowell for direct comparison. Fig. 26 demongtrates the relation between
the axial stress and axial elongation whifh indicates the sluggish

response in the ultimate load region ayfd no pronounced load shedding

was obtai‘ed. It 15 interesting to note that a similar behaviour also

occurs n the case of axially compressed cincular cylinders as shown

in Ref. 175 where a differént finite elepent scheme was used and the

nonlinear hardening was incorporate g the Ramberg-0sgood equation

(Eq. 3.57). In Fig. 27, the absciss resents the maximum rotation

which occurf at the middle cross-sect¥on qf the column. The axial strain

at torsional buckling, according to Stowell's theoretical formula, ﬂ
{

equal to 2 x 10'3 and is in excellent agreement with the present investi- =

gation. The present result is slightly lower due to 1ntroduc}ng the
initiil imperfection. : ;

Fig. 28 compares the axial strain and axial stressudistributions
from the two investigations. Stowell did not specify on which cross-
Eection the strain and stréss distributions were plotted. However, he
mentioned that these distributions hold over the greater part of the
flange where bending is negligible. The distributions of the present
study are Phe results from a cross-section passing through the centroid
of Elements 13, 14 and 15 (ﬁig; 24) which are some distance from the end
and from the center of the flange. Hence, it represents the greaiér part
of the ﬁange.° It is seen (Fig. 28.b) that, even though the maximum

average stresses from the two investigations are close (32.4 ksi in the

~

I

-

e AR it cobad o

————

- s et e vt



-113-

present study and 32.1 ksi by Stowell), the differeqce between thg\
two distributions becomes greater when the stress level increasgs.\\
Compared to Stowell's, the stress in the present study grows faster \
near the supported edge wﬁi]e, at the same time, it also drops faster \
near the free edge. The result is that the increased amount of stress )
is cancelled by the decreased amount of stress thus explé%n1ng why

the average s%resses, which integrate to give the magnitud¥\of the

i

applied axia} load, remains close. Fig. 28.a shows a subst@ntial -
difference between the two strain distributions. This is e3511y explained
by noting that when the matéria] has yielded, the stress-strain curve

is quickly flattened out (Fig. 25), hence, a small difference 1in

|
stress may give a significant differencein strain.

V.2 A Short Square Tube Column, Elastic-Perfectly Plastic Material

A square or rectangular, tube column has generally been treated
by considering each of its plate components as a simply supported rektangu]ar
plate under compression. Previous tests indicated (Fig. 34)'fhat, when
expressgd in a non-dimensional form, the strength of a squa%é tube is
close to that of a rectangular plate with unloaded edges supported in V
grooves. Graves-Smith”9 has studied both short and long rectangular
tube ‘columns with rigorous mathematical analysis. The main thrust of.
his work involved the application of a variational principle and plasticity,
and solving the Von Karman equations for the plate. Recent research]E’9

]on rectangular or square tube columns has applied the effective width

concept to take into account the nonlinear effects due to locally buckled

T e a RO it 5
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plate components. In this section, a square tube column is analysed
using an alternative approach, namely the finite element method.

Since the analysis of the uniformly compressed, s1mp]y suppo‘ted
rectangular plate has already been demonstrated in the previous chapter,
the whole section of the tube will be analysed Eo take full account of
the possible interaction between plate “components. ‘The mater{al properties
an@ the dipensions of the tube are chosen in aécerdance with GraVés-Sm%th‘s
so that a direct comparison of the two investigations is possibTe. Due |
to symmetries, only one-eighth of the tube is analysed and 1ts idealization
is shown in Fig. 29. At the initial step, a lateral load of four pounds
was applied on those dodes that lay on the center line (in the longitudinal
direction) of each p]afe component. The lateral loads were applied ip
the opposite direction at eaeh alternate node so that a wave-form for the
initial imperfection is generated. The maximum magnwtude S0 generated
was. found to be equal to 0.00la, where “ar is the width of the tube. The
tube was compressed by controlled end d1sp1acements

Fig. 30  shows the response in terms, of average axial. stress vs.
axial shortening and Fig. 31 in terms of axial- stress vs. out of p]ane
deflection. Both curves indicate excellent agreement with the results
of Graves-Smith except tha; tbe ultimate "strength q? the present investi-
gation is slightly lower. Fig. 32 shows the growth of the buckling form
of each plate component and is rather straightforward. Fig. 33 shows
the yielded zones at u]iimate load dand demonstrates clearly that the tube
fails once its edge”has fully yielded. It should be noted that, along

the longitudinal center line of each plate ﬁomponent, those areas being

[
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. the unloaded edges frge to move in their own planes but restrained in the

! -1154

denoted as partially yielded have only yielded very slightly at the

[

" surface of the p]aﬁe due to bending. This point can be easily seen

by studying both Fig. 32 and Fig. 33 which indicate that the yielded
areas adjacent to the Tongitudinal center line always gorrespond to
the locations of maximum out-of-plane deflections. This surface yielding

3 R .
due to bending has not yet been reached for the region close to the
, .

mid%]e of the column where the curvature at maxiinum deflection is smaller

PR SUN
KN ~

than at other locations (Fig. 32).

A §ummary'of previous work on simply supported plates and square

“tubes under cg@pressign, which is available from Refs. 107, 111, 119,

s reproduced in Fig. 34 on a log-log scale. The present study, using

" finite e]ementsg which ifAclude four problems of square'or rectangg]ar

) . . 5
plates in Chapter IV and the square tube in this Section, were added to ,

this figure for comparison.u ¢f we con¥ider the Mayers-Budiansky's]07

curve where the unioaded edges were kept straight for an gxtreme upper
limit, and the experimental curve for V-groove plates which had the
un]padéﬁ eJEZE neither ‘restrained from movement in ifs own plane nor
‘fully res%raf&ed in the transverse direction as a 1o;er limit, it is
found that the present stéMy (denoted by points A, B and C)‘yhich @ave

0

transverse directions indeed fall between the two extremes. The present

a

investigation of a rectangular plate with the un]oa&ed edge kept straigkt

\ (denoted by point D) has a strength slightly higher than‘Mayers-Budiansky'#

but in very good agreement. It should be poted %hat the thepry’of Mayers-

Bﬁdiansky was unable tp:describe the region of load shedding. Thus the

;1
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average compressive stress at a-strain of 0.01 was taken as an indication

of failure. Compared to Graves-Smith's result,the strength of a square

tube column in the current study (denoted by point E) is in closer agreement

to previous experiments. S

=t
™

V.3 Hat Sections Under Compression, Elastic-Linear Strain Hardening
F

Material

In this seé%ion,<the assumption o} a linear strainjhardening
type of material is assumed fér two three dimensional thin-walled members.
Two hat sections under compression were chosen f%r the testﬁ\~Ln the
first case, the column was loaded concentrich]y and a high value of
linear hardening with a tangent modulus equal to 15% of its Young‘é
modulus was used. In the second case, the column was loaded eccentrically
and a low value of linear hardening with a tangent modulus equal to 1.5%
of its Young's modulus- is assumed. All the data including member
dimensions and finite element idealizations are,s;own in Fig. 35.

In Figs. 36 and 39, the response of the two columns are plotted
in terms of axial stress vs. axial shortening. In the first case (Fig.
36), it is seen that, even though the stiffness of the column is greatly
deéreased after yielding, the assumed high strain hardening character
is adequate to provide sufficient stiffness to carry higher loads although
at a'greater rate of deformation. Since constant linear hardening is
assumed ' to last indefinitely in this study, t%e computation is terminated
at a 1oad of 16.0 kips (7,257 kg ) which gives an average axial stress
of 25.9 ksi (1,821 kg/cmz) and is close enough to the yield stress of
the material .(26.0 ksi). This load-deformation curveycan be Towered if

\ ° . - 3
a tri-linear stress-strain relation were assumed by adding a third section
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of straight Tine representing zero strain hardening (a horizontal Tine)
to halt the growth of strain hardening. In the second case (Fig. 39)
where the assumed Tower value of tangent modulus represents the .amount
of stain hardening usualTy possessediby the common aluminum alloys, the
curve eventually flattens out at an ultimate load of 14.4 kips (6,531.7 ’
kg ) even though it does not show load shedding as it did in several:
previous investigations with perfect plastic material.

In Figs. 37 and 40, the profiles of lateral deflection along the
longitudinal center line of‘the flange which is also the center Tine
of the column -are presented for both cases. The loads which cause local
buck}ing in the flange are respectively 9.2 kips (4,173 kg ) and 9.9 kips
(4,490 kg ). The familar buckling Qattern in wave-like for&s are clearly
developed. A close look at the last d%f]ecfion profile corresponding 5.
to the highest Toad level in these two figures indicates that overall |
column buck]iﬁg has also been initiated. The column in the second case
bﬁck]es in the opposite direction with respect to the column buckling of
the first case and is due to the eccentricity of the aﬂb]ied 1oaé.

Figs. 38 aid\4] show the yielded areas on the members at the
higgest Toad levels. Plastification is seen to be widely spread and is
extremely severe for the first case (Fig. 38): The column being dble to

sustain such heavy yielding is due to the aforementioned reason for high

values of strain hardening. Note that tHh half inch wide lips play an

e e A L Lt

ipportant role iqﬁ%tiffaning thg member. This is seen by noting that the \
web and the 1ip are heavily yieided when compared to the flange,

particularly to its center portion.

*
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V.4 Short Span HatrSection Beams Under Local Loads on the Webs, Elastic-

{
Linear Strain Hardening Material -

Local Toads on webs is a common problem in the design of light
gauge metal products. A theoretical analysis of this problem is extremely
complex since it invoives a combination of non-uniform stress distribution,
elastic and plastic instab1]it}, Tocal yi1elding in the immediate region
of load application, aéd, furthermore, the bending produced\by eccentric
application of the load caused by the curved transition froﬁ the web to the

1,4

bearinq/flange. In view of this analytical complexity, the codes rely

almost exclusively on experimental eviﬁeqce. The purpose of the present
study is to demonstrate the capability of\using the finite element method
to perform a theoretical analysis on such a éomp]icated phenomenonf The
failure due to web crippling is investigated'and the results are examined
in.the 1ight of the current codes on light gauge products3 and compared
against the previous ‘experimental tests.

Previous experimental tests on short span, thin-wa]leg aluminum
beams were reported in Ref. 261 and 262. Two specimens, one &ith vlrtica]
webs and one with sloped webs, were chosen for the present theoretical
analysis. The dimensions of the two beams are sLown in Figs. 42 and 52.
The material was aluminum alloy ALCAN 57S-H34, whereas the yield stresses
cited for the two previous tests were different. The one in Ref. 262 is
herein employed. The strain-hardenfng, whicﬁ was not reported previously
is also considered by assuming a linear variation. \

According to Ref. 262, the beams were freely placed on 3/4 1n

(1.91 cm) wide steel bearing plates at each end, which left the beams

* with a clear span of 9.25 in (23.5 cm). The beams were loaded through

R S
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a 1.5 in (3.81 cm) wide, x O.%S . (0.635 cm) thick steel bar at the ,
center. Laterally (horizontally), in order to simulate the effects of
adjacent material extending in both directions as would be the case for
a metal roof deck, a steel angle was placed against each outstanding
Tip. The steel angles were fixed to prevent the lips from moving
laterally outward. However, no means was used to prevent them from
moving inward. -
Results of the present study for the two secCtions are now discussed

separately.

V.4.A Hat-Section with Vertical. Webs
' Considering the symmetry in both directions, only one quarter
of the beam was analyzed. The finite element 1dealiz$tion is shéwn
in Fig. 42. In order to take into account the radiused bends between the
webs and the flanges, a ]oﬁgitudina] row of elements was introduced at the

web-flange junction. It was understood that this row of elements, with

their smaller size and higher aspect ratio compared with adjacent rows

" of elements, might reduce the accuracy of the results. To improve this

situation, the mesh could have been refined. This was not done after
considering the substantial increase in computing costs that would result.
The beam was restrained vertically at Nodes 55 and 63 and laterally along
the bottom flange-lip junctions (i.e. Nodes 57-64). The load was applied
at Nodes 17, 18 and 19. | w -
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The deflections in the direction normal to their‘b]ate elements
at the center of the beam are plotted against the load in Fig. 43. This

means that the curves for those nodes in the flanges (Nodes 1, 17 and 49)

are vertical deflections while those for nodes in the web (Nodes 33 and 41)

are lateral (horizontal) deflections. The curve for the déflection at
the center (Node 1) does not indicate any clear local buckling phenomenon
at the top flange. However, it does indicate that the top flange was
initially stiffening due to the effect of the large deflection and that
the stiffness, after a load level of approximately 550 1b (249.5 kg ),
gradually decreased due po the influence of plastification in nearby
regionsf The decrease in stiffness was exhibited even more strongly on
the defiection curve for Node 17 where the stiffness st;rted%to decrease

due to the yielding of the material at a load level of approximately 500

b (226.8 kg) and the rate of decrease was faster than that of Node 1.

Thisfobvious]y demonstrates the phenomenon of local crushing in the region

of Node 17 which is directly under the applied load. It seems that the

center and lower~portion of the web, which is represented by the deflection

curves for Nodes 33, 41 and 49, has not been affebted by local plastifica-

tion in the flange-web junction and remains stiffening. The vertical
deflection of Nodes 1 and 17 of the exberimentai test reported in Ref.
262 is reproduced in Fig. 43 for c?mpar1son It may be seen that there
is a substantial d1screpancy between the experimental and theoretical
investigations. This point will be discussed at the end of this section.

Simi]é??y; the deflections for those nodes at the end of the beam
are also plotted against the load in Fig. 44. This figure exhibits

[

the interesting phenomenon of reversing the buckling form in both flange
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and web. The change’of buc;:?hg form was initia;ed at the top f]énge‘
at a load level of 2%0’1b (113.4 kg) and was later followed by the‘
web at 500 1b (226.8 kg). After the‘reversa1 of the buckling form,
the deflections at both flange and web increased very quickly. This
implied that the stiffness was diminishing rapidly at a higher load.
Figs. 45 and 46 show %he subsequent distortion of the cross-section

at midspan and at the end of the beam. These dﬂstortfons are of the

262. Fig. 46 clearly

same form as those gbserved in the experihenta] test
demonstrates the aforementioned rapid growtﬁ of deflection at the end
of the beam at higher loads. Figs. 47 and 48 show the longitudinal
profiles of the vertical deflection along the\center of the top flange
and of lateral deflection along the center of the web, where the deflectidﬁ
at the center of the web is obtained by averaging the deflection along
nodal lines 33-40 and 41-48. Both figures exhibit the change of buckling
form in the region near the end of the beam.

A comparison of the lon$itudin;] strain on the interior face of
the web between the theoretical and experimental investigations i$ presented
in Fig. 49 at load levels of 200 1b (90.7 kg ) and 400 1b (181.4 kg ).
For the prerimenta] test, strain gauges were placed at 0.25 in, ’(0.635 cm)
from the miqspan. " In the present study, strain was evaluated through
the center of the first transverse row of elements 0.1875 in fron\midspan.
The difference‘lp location for the measurement of%train is negligible ‘
and hence the strains can be compared directly. It is seen that the
general form of strain distribuiion for theptwo investigations dre similar
a%d*the strains in the upper and lower poFtion of the(web‘are in fair

agreement. However, the strains at the denter’' of the web, where the web

deflection is a maximum, are significantly different. " \

.
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The initial yielding is detected in Element 15-at a load as
Tow as 340 1b (154.2 kg ). The analysis is terminated at a load of
790 1b (358.3 kg ) which is believed to be well gfter local crushing
of the web. Between the initial yielding and final termination, the
yielding area in the region directly under the applied load is shown
at four different load levels in Fig. 50 to demonstrate the progression
of p1astificatign.

It had ak;éady been observea in Ref. 261 during the prevjous
experimental tests that the local deformation and yielding proceeded
with increasing load, but the maximum load representing the longitudinal
bending strength was only reached well after conspicuous local crushing
had taken place. This behaviour r?iséd the problem of defining failure.
Consequently, each tes% was judged individually upon the degree of
damage which represented failure being a severe permanent indentation
in the specimen. It was pointed out that the possible variation in load
which could be obtained by varying the opinion of severe damage might
have been as high as fifteen percent. The same problem o% defin%ng failure
is encountered in the present theoretical analysis. Judging from the
load-deflection curve, the distortion of the section and the yielding
area, it is believed {easbnable to say that the crushing load in the prese%t
study is somewhere between 600 1b (272 kg ) and 700 1b (317.5 kg ).

| The present Canadian code for the design of light gauge aluminum

i

\
products (Clause 9.4 of CSA-S190-1968) controls local loads on webs by

two criteria: the load which causes the elastic buckling of the web and

the Toad which causes the yielding of the web due to direct bearing.




-123-

The‘Faximum permi&sib]e load for a member should be the lesser of thesg
two. Applying the code to the current hat-section beam, it is found that
the maximum load is controlled by web buckling. After multiplying by
a“safety factor of 2 as used in the code and assuming that the web and
flange were connected perfectly wffﬁout a curved transition area, this
failure load due to buckling is calculated to be 832 1b (377.4 kg ).

If an inside radius of bend’equal to 1/8 in. is taken into account, the

failure load is then reduced to 507 1b (230 kg ).

For the previous experimental tests where the specimen had 1/8 in.
radiused bends, the ultimate load reported in Ref. 262 was 691 1b
(313.4 kg ), and the failure load due to 1oca1\crushing reported in Ref.
261 was 740 1b (335.7 kg ). Note the yield stress of the specimen in .
Ref. 26T was reported to be 37 ksi (2600 kg/cmz) which\was higher than the
yield stress of 29 ksi (2624 kg/cmz) used in the present study. Reducing
the Tload in accq;é;nce with the ratio of the twé yield stresses, the
approximate crusﬁing Toad would then become 580 1b (263.1 kg ).

In Ref. 261, Marsh also suggested a semi-empirical formula to
predict the failure load due to local crushing. He useq a simple idealiza-

tion of a possible collapse mechanism for a point load to obtain a lower

bound solution. Following this formula and after considering radiused

bend,the failure load of the current beam appears to be 425 1b (192.8 kg ).

’ ft is seen that the present prediction of failure load is higher
than that of the previous test results. One of the most %mpOﬁtant reasons
is obviously because the present study analysed an idea],‘perféct member,
whereas the real specimens were by no means physically pérfec;j; The init{a1

imperfection of the member affects its strength very significantly, an1

<
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will be further discussed later. Also, the prediction of failure load
based on the current code and based on Marsh's fgrmdla are less than the
present one and hence are on the safe side. Whether these values are too’
conservative or not, requires further jnvestigation. As a final note,
the experience gained through the present study supports a conclusion
drawn previously in Ref. 261 and 262 that a larger bend radius at the web
J]ange junction does not reduce the member strength significantly.
%herefore, the current code which suggests a reduction of allowable load
by 10 R/t per cent, where R is the inside radius of the bend and t the
wall tqickness, is considered to be excessively conservative.

Finally, the distribution of the longitudinal stress along the

center line of the first transverse row of elements adjacent to the mid-

»

span is plotted in Fig. 51. The Stress is plotted at two different load

levels. First, at a load of 340 1b (154.2 kg ) when the initial yielding

has justubEen detected and hence the beam basically is still elastic at
this stage.‘ Second, at a high load of 720 b (326.6 kg ) when local
crushing has bgen fully developed. At this load~level, in addition to
the average stress through the wall thiéknessf the two extreme fiber
stresses are also plotted to demonstrate theii substantial differences.
These differences are due to the local deformation as well as to the
effect from the transverse bending stress which causes local yie]ding.l
Note that the highest stress has already reached yield, which implies

that yielding at the top flange due to longitudinal bending of the beam

has a]reagy started.

B S R L A W

B



e -125-

V.4.B Hat-Section with Sloping Webs / »

The idealization is shown in Fig. 52. Again, only a quarter
“of the beam is analysed. 90% of the Jload is applied to the ridge
(Nodes 15 and 16) and 10% directly to the top flange (Nodes 8 and 9).
The beaﬁ is vertically supported at Nodes 41 and 48, but for the lateral
restraint, two different caseg are initially investigated. In the first
case, restraint is applied at thq\bottom flange-11ip junction (i.e: Nodes
43-49) and in the second case at the bottom flange-web junction (i.e.
Nodes 36-42). No radiused bends are considered in this beam.

Similar to the previous problem, the deflections i1n the normal »
direction are p]ottgd against loag in Fig. 53 for the midspan section
and end section. It is seen that, for the two different lateral restraint
conditions, tfe behaviours of thg bé;m are almost 1dentical. Consequently,
the case with restraints along Nodes 36-42 is terminated at a 1oaduof
420 1bs (190.5 k?s) and only the case with restraint along Nodes 43-49 is
carried further. NLte that the deflection curves for Nodes 28 and 35 '
demonstrate clearly that the web at the end region of the bea% buckles.
The deflection curves for Nodes 1, 7, 22 and 29 become asymptotic when

they are approaching the ultimate load of 890 1b (408.2 kg ). This

may be interpreted as a failure of the flange and web due to local

bending. Actually the deflection curve for Node 15 also becomes asymptotic.

However, in this case it indicates a' failure due to lTofigitudinal bending
of the beam rather than a sign of local crushing as occurred in the
previous problem. Al1l these indications of collapse should become clearer
when reference is made to Figs. 58 and 59. The vertical deflection at

Node 1 from the experimental test in Ref, 262 js also reprodhced in thgf"

T e dtmeadaia et e




~126-
\
| I
figure. This experimental curve was only/?eported for thé ]owef load region
and hence a direct comparison becomes rather difficult. However, Jjudging

r

by, the trend of the curve, the difference between the two investigations
is probably suhstantial. N
Figs. 54 and 55 show the distortion of the section at-midspan énd
at the end of the beam. Figs. 56 and 57 exhibit the longitudinal deflection
profile along the center of the top flange and along the center of the web.
Initial yielding was detected in Element 1 at a load of 530 1b
(240.4 kg ). The yielding area of the beam is shown in Fig. 58 at a load
tevel of 730 1b (331.1 kg ) and 890 1b (403.7 kg ). It is seen that
the plastificatidn in this case is quite‘different from that of the previous

|
beam with the vertical-webs. In this problem, the beam yielded malnly at

oo

the center portion of the top f]ange and web where a. maximum bend1ng '

- ®

stress is reached due to the large local deformations for each plate
component (see Fig. 54). Note that full yielding at the ridge as shown at
a load of 890 1b (403.7 kg ) is actua]ly due to the longltud1na1 bending
of the beam as mentioned previously. This point is further clarified in
Fig. 59 where both top and bottom fiber stress ‘are shown in cohpression'
and have reached yield. This suggests that local crushing was not fully
developed in this particular problem. Again, in Fig. 59, the distribution
of longitudinal stress along the center line of the first transverse row
of elements is plotted at 530 15 (240.4 kg ), which represents the highest
loaa level when the beam was still elastic, and a{ 890 1p , the ultimate
load. The forms of distribution are similar to those of the previous

problem. The substantial difference between the two extreme fibre stresses

at ‘the center of the toﬁ‘flqnge and web is due to the large local deformation.

[
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Defining failure is rather easy for this.section since the beam

obviously failed by web buckling, which 15 in agreement with the previous

experimental observations reported in Ref. 261. Referring to the deflection

\curve for Nodes 28 and 35 as shown 1n Fig. 53, 1f the inflection point of
the curve is chosen to represent the buckling load, the failure load of
the present study 1s approximately 500 1bs (226.8 kgs). According to
Clause 9.4 of CSA-S190-1968, the buckling load predicted by the code 1s
equal to 375 1b (179 kg ) which is quite conservative. The failure loads
reported from two previous tests are respectively 475 1b (215.5 kg ) and

L

523 1b (237.3 kg ).

For either the beam with vertical webs or that with sloping webs,
the comparison in terms of deflection and strain between the presént
investigation and the test results reported in Ref. 262 1s Hot very
satisfactory. A few of the more important factors as descqlbed n Ref,

&

262 are summarized in’the following to explain the reasons for such a
(1) The initial imperfections in the specimens were numerous. The
imperfections were not only due to the initial crookedness of the
aluminum sheet, but also due to sagging because of %he high
thinness ratio of the plate e]emenis as well as due to inexact
mantifacture in the dimensions and the radii of the bends. The
effect due to i&perfections was so great that, for the same two
tests at the same location, the strain gauge readings for one

test might be several times greater than the other test even

with a reversed sign for certain cases.

AP N on
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(2) The beam did not rest on the bearing plate evenly and did
not really deform symmetrically. .

(3) Deflection at the ridge was not measured directly but rather
through the interpretation of measurements at other locations.

(4) Lateral restraint using.fixed steel angles only prevented the
outstanding 1ip from moving putward but.not inward. Further,

&
it was not clear whether the upper or lower tip of the llpé

‘4’
was really against the steel anglg. > This type of boundary

- condition cannot be exactly simulated in a computer program.

, {
On the other h§nd, the present study analysed an ideal and perfect

structural member and hence the initial imperfections whichireduce the o
strength of the member significantly was not taken into account.
Therefore, the current theoretical investigation always shows a stiffer

member than the test .specimen.

f

°

V.5 Channel-Section Beam Subjected to Combined Bending and Torsion,

e E]astic-Perf%gﬁly Plastic Material
Although studies of thin-walled open-section beams subjected t6
combined bending and torsién for tﬁe 1inearre1astic]65 and nonlinear .
elasticy] cases have p?evious]y been attempted, studies considering '
material nonlinearity are lacking. "In this section, a compTéie investi-

gation considering both geometrical and material nonlinearities 1s

presented.
An unlipped channel section (Fig. 60) was chosen fof‘the test.
The load (P) was applied uniformly to the top’of the beam and in the

L
plane of its web. It thus created-a uniform torque of T = Pe on the beam,
: s
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whgre e (.65 in) is.the distance from the shqrr center to the center
]ine of the web. The material was assumed to be an aluminum a]]oy
6061~ Tﬁgwhose u1t1mate stress is very close to its yield stress and e
hence strain hardening is neglected and its stress-strain relation is
éimp]ified to e]astic-ﬁerfect]y plastic. The beam was simply supported ‘
but restrained from twisting at both ends (i.e. at ﬁodes 3, 4, 5 and 6).
Due to symmétry,vgn1y haLf span was analysed.

The results are shown in Fig. 61 in a relation between the
applied 1oad/tora;; and the angle of twist at the midspan cross-section.

3

It was found from computer}priﬁt out that the angle of twist at different

» locations (nodes) in the midspan section were almost identical except

that slight differences arose at the flange tips. This indicated that
o N \1
in the midspan region the beam deflected and rotated without any pronounced
A .
Tocal deformation of each plate component: in this particular problem.

Fig. 61 shows that the curve quickly flattened when it approached its
ultimate load of 78 1b /in (13.93 kg/cm). Similar curves were also

o

obtained in ng. 62 where the result is expressed in terms of load and
vertical deflection at midspan. Deflections at both flange tips and both

flange;web Jjunctiomns are p]oited. Def]ect{ons at other nodes which

50>

include Node 44, whose curve lies between that of'Nodes‘43 and 45, and

Nodes 46 and'4], whose curves lie between that of Nodes 45 and 48, were

Al

omitted for clarity.

\
Fig. 63 shows the variation of angle of twist along thgtlongitudinal

&

\sectibn at different locations. For the top half cross-section of the

[+

heam, the twisting-angles increase monotonically and are only slightly

different in magnitude atAdifﬂérent sections. They are given in Fig. 63a,
> i ' : . @

S
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-inch below the centerline of the web and Fig. 63c at the junction of
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% \\
where the longitudinal section is taken at one inch above the center-
line of the web. Fig. 63b describé; the variation for a section one
»
the web and the bottom flange. The variation of twisting angle at the -
bottom flange tip is similar to Fig. 63c (but different in magnitude),
and hence is omitted. A study of Fig. 63b_and{63c reveals that the ~
bottom half cross-section of the beam in the region close to the end
supports experienced a rotation in a reverse direction which later
decreased and tended to recover toward the same rotational direction as -
the rest of the beam when the applied load was further increased.
This is obviously due to the fact that the web'p]ate, which is under the
direct compression of the applied load on the top,_{$;;T;; sugfeét;d to
higher ishear stresses adjacent to the end support. Thus locally, the
web plate eventually buckled elastically toward the exterior side of
the web plane. When the applied load was further increased toward its
ultimate load, the effect due to t%istiﬁg predominates over the effect§
due to compression and shear. Hence the dent created by local elastic
buckling gradually disappeared and the rotational direction reversed to
that of the applied torque. \

The distortion of the beam is drawn ﬂt various transverse
sections shown in ﬁig. 64. It is an alternative presentation describing
the behaviour previously discussed in Fig. 61, 62 and 63.

‘ The deffections along the span of the beam are plotted in Fig.
65, 66, and 67. Fig. 65 shows the vertical deflection at the top and
bo%:an flange tips. The deflection at the bottom flange tip is

L) . )
considerably less than that of the top flange tip in the region close to
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the end supports. This is caused by a'signif1cant amount of the
downward deflection at the bottom flange tip due to bending and twisting
being cancelled by the effect of local buckling of the web which
caused tbe bottom flange t1p to move upward Fig. 66 shows “"the 1atera]
(horizontal) deflection of the web plate. Llongitudinal sections are
taken at each third depth poiht. ﬂAgain, in the region adjacent to the
end supports, the dgf]ection in the reverse direction for the ;pper
longitudinal section (represented by solid Tines) and the greager
deflection than its deflection in the midspan region for the lower
Tongitudinal section (represented by dotted lines) are due to local

buckling of -the web. F1g 67 indicates the vertical deflection at both

the top and bottom junctions of web and flange. The top Junct1on deflects

more than the bottom because the deflections due to bending and twisting
at the top ;unction are both downward and aré summéd. However, the .
deflection due to twisting at the bottom junction is upward and is
substracted from its deflection due to bending. A VT
The longitudinal stresses which are averaged through the plate
- thickness are plottéd in Fig. 68 and 69 at an applied load of 68 1b/in
(12.14 kg/cm) which is the load level at whicp the beﬁm remains fu]]yl
elastic 'but is just prior to initial yielding and at the ultimate load
be 78 1b/in (13.93 kg/cm)‘ Fig. 68 shows the d1str1b@t1on of longitudinal
v stress along the centerline of each transverse row of elements except/’
the last section (Fig. 68f), which is Faken through the midspan‘section

(18 in from the support) by extfépolating the stresses to the midspan

sectioﬁ. It is seen that the stress distribution at those sections near .

2 2
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the support is more nonlingar than the distribution at the section near

midspan due to local buckling. Once the yield stress 1s reached,

the maximum stress spreads to the adjacent areas as shown 1n Fig. 68e

JR———

and 68f. Fig. 69 shows the distribution of longitudinal stresses along

the centerline of each longitudinal row of elements. It is again

-indicated that #he Tongitudinal stresses cease to grow when the yield

stress is reached.

Fig. 70 shows the plastic area in the beam at the u]timate<]oad.

A final test was to perform an elastic analysis based Pn small
deformation éheory on the channel section and investigate the Hifference
between 1inear and ,nonlinear analysis.. If the longitudinal stress is v
coqsidered to be caused by b;nding only and conventional simple bending
theory is applied, the load which causes the flanges to reach yield stress
is found to be equal to 194.5 1b/in(34.73 kg/cm). This is 2.5 times '
greater than the ultimate load using nonlinear analysis. If the longitudinal
stresses due to both bending and torsion (warping stress) are considered,
the calculation foi]owing the procedure suggested in Ref. 165 indicates
that the load level which causés initial yie]ding’at tAe*f]ange-web
junction'is equal to 105 1b/in (18.75 kg/cm). This is 1.35 times greater
than the ultimate load by nonlinear analysis. However, a comparison
bet%een the load which causes initial yielding and the load which causes
member failure is rather inconsistent. The ratio ﬁf ultimate l1pad to
ipitial yielding load using the nonlinear theory is equal to 1.13. If
the same ratio is usedﬁfor/tﬁé/gésé of linear analysis to predicﬁ the
approximate load level which causes total collapse of the member,lthe
ultimate load so evaluated is equal to 119 1b/in (21.25 kg/cm) which is |

1.53 times greater than that using nonlinear ana]jsig.
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V.6 A Z-Section Beam Under Uniform Vertical Load, Elastic-Perfectly

Plastic Material

An unlipped z-section beam is formed by simply moving the top
flange of the previous channel section to the other side of the web.
A1l other data inq]udiAg dimensions, material properties, boundary
conditions, loading and idealization (see Fig. 71) remain the same.
In this cdse, since the vertical 104d is applied in‘ﬁhe plane of the !
web which is inclined with respect to the principal axes,‘the beam is
subjectea to unsymmetrical bending. Hence, the beam deflects Taterally
(horizontally) as well as vertically. Due to its lateral deflection
and the local deformation of the plate elements, thegapplied loads are

no longer in the same plane as the reactions at the ends and consequently

3 1
the beam also twists about its longitudinal axis. The results are shown

in a format similar to that of the previous investigation fog/the

4
channel section so that a detailed explanation of each figure can be

omitted to avoid repetition.

Figs. 72 and 73 show the twisting and the transverse deflection
of the midspan of the beam. Noie that in Fig. 73, the curves fon\Nodei
46 and 47 are {atéral (horizontal) deflections while all other curves
represent vertical def]ect{ons. The two figures clearly indicate that
initial bugkling occurred at a load of approximately 24 1b/in (4.3 kg/cm).
Fig. 74 shows the distribution of twisting angle along different longi-
tudinal sections. Fig.‘75 indjcates the distortion of the\beam. Two ,
cross sections, one at 6 in from the end and one at midspan), which exhibit

\ .
the largest deformations are shown. Buckling of the web i c]e;rly seen

o o, #X X,
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in this figure and is buck]ed\in the different direction for the two
Ccross sections, F%g. 76 to 78 show the transverse deflections at
different location along the span of the beam. The prbnounced buckling
of both flanges.  are shown in Fig. 76. In the present case, contrary to

i

the previous channel section, the difference of vertical deflection
between the top flange—wgl Jjunction and thgﬁpottom flange-web junction
is negligible. This is, of course, because twisting plays a less important
role in the z-section. Consequently, only oae set of cyrves is p]ottéd ‘
in &ig. 78 which represents the vertical deflection profi}e of the beam.
at different load levels. \
The computer program detected that the tangent stiffness matriﬁ
became non—positive-definite\at a load level of 48 1b/in (8.6 kg/cm). After

reduciﬂb the step size and restarting from the preceding step, the highest

Toad which could be reached with the matrix still remaining positive-

. definite was 47L7 1b/in (8.5 kg/cm). This indicates that a secondary

bifurcation point had been encountered (see further discussion in Section
IV.4.B). A c{ose look at the above-mentioned figu%es supports thi;/point.
Fbriexaﬁple, the curves for Nodes 43 and 45 in Fig. 72 and Nodes 43 and

49 in Fig. 73 show a tendency to reverse their direction of deformation

in the region of 48 1b/in (8.6 kg/cm). This is even more pronounced in
Fig. 74a and 74b where a heversal in buckling form has clearly been
initiated in the cénter of the beam. The evidence is further demonstrated
Py the deflection curve for the togrf]ange tip in Fig. 76. It is seen
éhat, in the center ?egiongof tﬁé beam, the deflection was originally

decreasing after initial buck]ﬁng but later increased again at higher

loads. ' 1
\




O

-135-

Usinga smaller step size and restarting from the previous step
as was done for the case of initial buckling seemed insufficient to
bypass this secondary bifurcation point indicated by the illconditioning
in the stiffness matrix. Actually, the problem could be'e;ntinued by
further 1ncreasing}the load and temporarily disregarding the non-posi.ive-
definiteness of the tanget stiffness matrix. It would eventually converge
to %ts secondary path within a few load sﬁeps through a "snap through“
type of buckling, providing a secondary p;th indeed exists and the applied
load step size is small enough. Application of an iterative techpique

within each step is preferred in this case. However, the "snap through"

type of buckling occurs with a dynamic disturbance and is unacceptable K7
for aNstructural member in service. Computation was consequently te;minated %
and it was concluded that the beam failed due to elastic instability. 3

The*distribution of average longitudinal stresses corresponding o ;

to the failure load of 47.7 1b/in (8.5 kg/cm) is shown in Fig. 79 and 80. L
In Fig. 79, the stress is plotted at a section through the centei of the \j
last transverse .row of e?mjé?ts adjacent to the midspan section. The SN

variation is almost entirely linear and is mainly due to there being no ;
material-nonlinearity involved. It is seen that the stresses in the flanges

\

magnitude. This indicates that the effect of lateral bending is significant.

¥ e b

vary from compression to tension or vice versa, and are different in

Fig. 79 an& 80 show that the stress in the beam is still mainly cont#p]]ed
by vertical bending as expected. ’

According to the CSA Standard (Clause 9.2 of CSA S190-1968), the
éross cross-section of the beam may be used for the ca]cv]ation of

deflection in 'the working range. Baseﬁaén such an assumption and following

TN
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the approximate solution method suggested in Ref. 264, the vertical

pos

deflection of the beam is calculated and plotted as a dotted ling in

Fig. 78. The error at the center of the beam, compared to the non-linear

. analysis, is about 15%.

In this Z-section beam, the maximum stress«OCCUrred at the flange-
web junctions. If the gross cross-section is considereq fully effective
in carrying loads (i.e. the effect due to local buckling is ignored), a
linear elastic analysis based on Ref. 264 shows that yielding will occur
at a load of 97.2 1b/in (17.4 kg/cm). If local buckling is considered
by employing the effective section in accordance with Clause 12.4 of
CSA S190-1968, the allowable load which causes the maximum allowable -
stress of 19.0 ksi (1335.8”kg/cm2) as specified by the code, is found
to be 32.8 1b/in (5.86 kg/cm). When this load is multiplied by a ratio
of the yield stress of 35°ksi (2,460 kg/cmz) to thé allowable stress, the
yield load as predicted by the Standard becomes 60.4 1b/in (10.8 kg/cm).
It should be noted that these lihear elastic analyses based on Ref. 264
do not include the effect due to twksting. Furﬁhermore, these loads are
the failure loads corresponding to the yie]ding\of the beam whereas, the
47.7 1b/in (8.5 kg/cm) load qf the present study is the failure load
defined by the secondar;ﬁgifurcation point (elastic instability) of the

member. *

4
3




CHAPTER VI

SUMMARY AND CONCLUSIONS |

- |

VI.1 Summary )
The definition and methods of fabrication of thin-walled members

and the problems associated with two types of nonlinearity 1s first
introduced. A comprehensive survey of phblished literature on the geometric
';nd/or material nonlinear behaviour and the u]timate‘strength of thin-walled
- structures has been -attempted with particular emphasis on the post—bué ling %
aspects of the problem. After identifying some of the inadequacies éif
available methods of analysis, a finité\elemen£4disp]acement model is

\

proposed as the most promising vehicle for a comprehensive study of

nonlinear problems.

The general technique of using the finite element method to solve
nonlinear problems is summarized and preseéhted in a simple conceptual
manner. The different available coordinate systems for sufh a formulation
are described andldifferent methods for han&ﬂing non]inéar terms are
introduced and examined. All1 the current commonly used solution procedures

“ have been classified and briefly described. The references relevant to
nonlinear finﬁte element analysis are also cited.

The present %ormulation is then developed in detail based on the
principle of virtual work and the related variational -principle of potential
energy. ‘The element sélected 4s a flat rectangular element with six
degrees of fﬁ?edom per node which can be identified as physical quantities~
(i.e. linear displacements and rotations) and transformed as vector "

components. The present formulation differs X{;nlothers published recently,

-137-
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in that the degrees of freedom chosen permit the analysis of non-planar
structures involving slope discontinuities: The strain-displacement
relations and the incremental theory of’plasticity which incorporate
geometric and material nonlinearity respectively, are described briefly.
Both the equilibrium eguations and the incremental equilibrium equations

have been developed. The equations which are formulated based on the

principle of virtual work and the principle of stationary potential energy

|
are proved to be identical. Finally, the Modified Cholesky Decomposition

Scheme in tridiagonal form and in 'matrix notation are presented in
detail.
A computer program is then developed to incorporate the above
mathematical formulation. The computer program has the following main
|

features:

1. No limitation on the size of the problem: Al1 the Dimension

Statements in the computer program are written with vafiable
arguments. Only one-dimension statement card in the main
program needs to be changed to incorporate the problem size.
Hence the storage used will be neither insufficient nor wasteful.

2. Matrix transformation only performed at non-coplanar joints: This

permits saving of storage required and computing time which may

be significant, particularly for larger sized problems.

3. Choice of number of integrating points: The number of Gaussian
\ .
points and layers aﬂf read into the computer as input data. Hence,

the user may choose the preferred accuracy for each problem.

e et T
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4. Restart facility: The displacements, stresses and strains after

each step are stored on disks so that they can be read as input

data for a subsequent run, if the ana1y51s is to be cont1nued further
or if the program haﬁ for some, veason (e.g. insufficient twme,
computer breakdown, etc.), terminated before the required load level

is reached.

5. Variable load increments, maximum number of iterations, and allowable

error tolerance: All these quantities are treated as input data,

thergby permitting complete fliexibility to allow the user to control

the problem. The structure may be loaded either by specifying forces
& \
or displacements.

T 6. Automatic change of step size and number of iterations: The error
S

( of the result is compared against the allowable tolerance at each

iteration and at each step. When the comparison is favourable, the
computing is immediately shifted to the next load step with a lesser
number of iterqtions being performed. The step size is also adjusted
to be greate}, the same, or sma}]er in accordance with the result of
the comparison. If the error sddden]y grows and becomes rather high,
the analy}is will be terminated automatically for investigation.

7. Detection of ill-conditioned stiffness matrix: The character of

positive-definiteness in the tangent stiffness matrix of the structure
is always checked and assured throughout the analysis.
The gomputer program was used to analyse a variety of plate
problems and when compared with other published solutions, good agreement
was found in all cases. In some cases, the analysis was cohtinued beyond

<f' the load for which other solutions were available. The agreement with

Y




\ . -140-

experimental results, when available, was also féund to be very good.
A comparison of CPU time was attempted whenever possiblie, which indicated
that the present computer program is quite‘effic1ent.

Finally, a few of the most commonly u§ed thin-walled gections

were analysed from zero load up to failure. Members were loaded as

L

columns as well as beams. Different'types of material with respect to

: |

their stralin hardening characteristics were involved. Comparisons with
experiments caﬁried Jut by others were good in some cases. However, 1n
other cases, some disgrepancjes did exist. The ;easons for such |
discrepancies were explained. In a few problems, a comparison of thé results
wit% the current Canadian Standard for Light Gauge Aluminum and with
conventional linear elastic analysis have also been made.

\

VI.2 General Conclusions

/
The structures analysed in Chapters IV and V amply demonstrate

the feasibility as well as the reliability of the present formulation

{
in representing the nonlinear behaviour and the ultimate strength of

thin-walled planar and non-planar structures. The choice of the finite
|

element method as the method of analysis permits the program to handle

-

arbritary loading, cross-section geometry, boundary conditions and material
properties. , . \ \
Comparing the results with other solutions indicates that the

. present results are sometimes stiffer and sometimes more flexible. This

225,226

is actually the character of the ACM element which is employed as

P ey,

the bending part of the preseht element. In_most cases, the present

element gyves results somewhat on the stiffer side.

4
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As for the solution procedure, experience from the present study
1nd1c$tes that the Newton-Raphson method is more favourable in the
elastic range. Even though this method requires the regeneration of the
stiffness matrix, actually the extra computing time is paid pack by
rapid convergence and with better accu}acy. It is recommended that the
Newton-Raphson method should be used as far as possible. For the type
of brob]em where the structure fails immediately after inltia% yielding,
the Newton-Raphson method can be used th}oughout the entire loading
history without difficulty. However, for problems Qhere the structure
only fails after heavy yielding, the Newton-Raphson method generally will
encounter convergence problems due to severe plastification prior to
the collapse of the structure. In this case, the striet step-by-step
procedure should be applied instead and oftenaéhe is forced to use &
smaller step size and a higher error tolerance. It is felt that the

problem has not really been solved but rather avoided by a sacrifice in

‘the computing cost and \gﬁthe accuracy of the results. Some technique

is needed to attack this pnob]em which should be a challenging topic
for further research. v l

{:f Another problem is the ;ack of general agreement on Jh1ch terms
(displacements, stresses, or others) should be used to eva]uate the )
accuracy of the results: and how they ﬂrould be evaluated. It is hoped

that a .conclusion which is acceptable to all researchers can be found

in the near future.
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as far as the growth of deflections and stresses are concerned. . el
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VI.3 Behaviour and Ultipate Strength of Thin-Walled Sections ’ ‘

Owing to the large variety of shapes and sizes in which thin-
walled sections are produced, 1t is rather difficult to draw general
conclusions. The emphasis in this dissertation has been on developing
a computer program such that particular situations could be studied
in detail. However, the fo]]owiﬁg observations, a]though‘strictﬂy
applicable to the types of stéuctures analysed in thé last chapter, ]
may be of more general interest. ‘

The ultimate Ltrength of the structure, in addition to ueing

affected by the\boundary condvtions, seems also to\be somewhat affected

by the Toading conditions. When the member is loaded as a column, the

-

stress distribution is simpler. The main stress 1s the longitudinal

stress in the direction of loading while the transverse stress and shear
stress remain comparatively low. Each component p?ate doeéynot seem

to be influenced appreciably by the presence of adjoining plates. The
member generally fails quickly after initial yielding. On the other
hand, if the member is loaded as a beam, the stress distribution is more/
complicated. The influence from adjacent plates is significant and the
transverse stress and shear stress hay also become high. The member,
then, generally seems able to carry a somewhat higher load after initial
yielding. “ )

LY - R
The inclusion of strain hardening may significantly increase

s KU AF N g

the ultimate strength of the structure.

The initial local buckling load often has no marked significance ﬁ

The strength of webs loaded locally may be significantly under- - - |

lestimated by the existing CSA/Standard formula. \\ o

+
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The calculation of def]ect{bns\@t working loads on the basis
of beam theor} using the gross cross-section as permitted by the CSA

Standard may be quite inaccurate. Since it i$ almost certain that

local buckling will a]wayslgifgj;jﬂ/lh' -walled sections, a ca]cu]ation\

; P e
based on an effective section would be more reasonable.
TR ¥

I

L The ultimate strength of thin-walled sectionhs is generalwy

-reached 'only well after initial éﬁasﬁ}c buckling. At the stage of

ultimate load, the structure is often greatly deformed. Consequént]y,
the serufceabi“ty‘of'the structure becomes doubtful prior to reaching :

the ultimate lgad. Hence, a close éxamination of servicability may

¢ \ v 1
" be more meantngful ghan the blind use of the full extent of post-buckling

. \ :
strength up to the yie]ding or‘ultimate strength of the structure.
. Secondary-buckling wh1ch may be encountered in ﬁhln -walled
members is not cons1dered in the present CSA code. Current literature

has dealt with this problem in qualitative terms only and furthér ot

o

investigation and understanding of this problem for thin-walled sections

El

is needed. J \

*The convent1ona1 linear elastic- ana1ysfs over- est1mates the

ﬁ

strength of thin-walled section greatly and may not evgf/gg/a/usefuT

o et

approximation. . AN

\

F1na1]y,[1t should be noted that many of the aspects noted above .

o

such as the d1stort10n of the cross-section, the effect of lateral
restraints; the detqrmination of deflections fn‘tﬁe post-buckling range
and the progress of the yfe]din%-area, céq not be analyséd satisfactorily
by other methods. _Furthermore, aléhough thin-walled sections have been
- | \\
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the main topic of interest in this dissertation, the program dev@ﬁoped

herein should be applicable to a much wider range of prob]ems‘;nvolving

#

geometric and/or material nonlinearities.

|

V1.4 Recommenaations fo® Future Work

N

The following recommendations are suggested to extend the scope

of the computer program developed herein for the purpose of more general

st
//

usage. . - ]

1.

S

bridge and industrial building construction. Work by Crisfield

Consider the material to be anistropic: The treatment of

anisotropy in the theory of plasticity can be found in Ref.

234. The relevant work done by Pifko et a1173,253 )

consulting. -

¥

_Jake account of strain hardening dué to cold form1ng

Advantage of using higher yield stresses in the co]d ﬂended

Pl

regions is currently perqﬁtted in the design of co]d-formed‘
steel members. This provision might lead the present program
to be more realistic when applied to cold-formed structures.

o

Provide a feature to include initial stress: One of the most _

common t}bes of initial stress is the residual stress generated
& ‘tw

due to welding. With this feature the present program can be

appiied to thin-walled plate girders which are widely used in

144,145

Develop a suhprogram to generate the stiffness matrix using - Y

can be consulted.

tr1angu]ar e]ements The’ geghetry of\th1n -walled sections in

the present study is limited to the folded-plate-type. With

g N [
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the facility of tria*gular elements being available, the present .
program could be used to analyse a larger variety 6f thin-walled

structure% such as spherical shells, cy]ingers, etc.. \ 1§

5. Carry out a systematic study of thin-walled members: Parameters

such as the geometry.of lips, the optimum width of comp§?ssion

flanges, and the geometry of spacing of stiffeners should be

investigated. This could be achieved, for example, by starting ks

> with a éimple rectangular plate and adding lips of varying sizes
- » - N
(or shapes) and loading them in axial compression or simple bending.

%L inear Analysis

VI.5 Discussion of Computing Cost in Jé
: ) .

Even though research on the use

of finite elements to solve |

seither geometric or material nonlinear probléms has been conducted

Y

extensively during the 1as£ f?fteen years, work on comgined nonlinear
prob]éms h?s been rare. Theﬁmost important reason is obviously due t%
the high com?uting cost. It is not uncommon for many researchers to |
prefer to perform experiméntal tests in their investigafions simply
because it is less eipensive. Howevé},njt should be remembéred that
almost all these experiments are conducted within university 1aborat6§igs
and the main cost is the test specimen% which are relatively inexpensive.
It is doubtful that,;'comparison between the material cost in the

one case and thg computing cost in the gther is fair. If the same
experimental work were perfofmed by an industrial consulting firm, the
salaries paid fo; technici@ns and others working on the project may

perhaps be as much, or even more, than the computing costs. In that \

sense, computing costs are not as high as is generally believed.
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Furthermore, a theoretical analysis provides a number of advantages ;
over an experimental investigation. In addition to its avai]abiiity for H
the detailed study in deflection, stress, strain, yiélding, etc., as
previously pointed out in Chaﬁter I, another important factor is tiﬁe.

The results, whigh can behobtainéd from a computer in a matter of minutes
Y

can only be achieved by perfotging experimental tests in days or even

}{
weeks. \w

Due to the necessity of itefative procedures in sol;iné nonlinear
problems, computing costs aﬁe always higher than for linear elastic
analysis no matter whether theifinite element or @ny other method is used.
This must be accepted as a fact as long as a nonlinear analysis has to be
/performed.‘ It is felt that it should ﬁot be a question of whether a
theoretical‘anal&;is is to be conducted or not. Theoéetica% analyses
should always be encouraged. It is rga]]y a m?ttef oﬁ hoﬂzto d?vé1op
new techniques to further reduce the computing cost 1A‘BBEh'softQare
and hardware. Other ideas such as using A less accurate formulation but
having the advantage of a considerable saving in computer time shduld
also be proﬁoted. Cr{sfield]4§, who proposed an "area approach"
fonnu]étion using an approximate Ilyushin yield criterion (a similar ,

123

method using finitg differences was proposed by Massonnet “~) provides
¢ /

a good example. In conclusion, more research should be conducted on o e

the improvement of effic®ency in the formulation and solution procedures

to reduce unnecessary computing to a minimum.

|
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Some Common Shapes of Thin-Walled Members
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. 3 Exs -1 B3 Epz 2Es3
~. -,
i t33 Ea3 . i3 Ep3 233
i = \‘\ Z b'e .
“ B2 . Eip By 2By
"By By 283
sym. .
| L - “E.. 2E
22 22 23
NOTE Eij‘s in this-matrix are components 4E33\
of elasto-plastic matrix [E] h -
- y |
. )
X /f’ -

7St

AN A



) = A-6 ——
En F12 B By
i E E 7 2E
, | 33\ 33 // 33
~ U /»
E33\ . / 2E33
K = B2 - z x| B2 Fa
\\
sym. T - —1»_-::; ——————— N —
& I At SN S
NOTE: Eij's in this matrix are components ﬂ\liz I
) of conventional elasticity matrix AND S E22\
(E,] 4E33
L —J
(This matrix is only for elastic layers, simplified from Appendix A-S)
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tx

L

E12
r
E33
T Ey3
Eon
sym.
%

A-7

o

h)
IH‘
H

—
[a®)

(This matrix is for the case that all layers through thickness are elastic, simplified g

. from Appendix A-6)
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EN =

NOTE:

sym.

Eij's in this matrix are

componentg of elasto-
plastic matrix [E]

ra

= 7, Ky dZ
1 A— awW
E11ax 125y
+ +
W m
133y & 133X
W aw
E33ay E33z)x
gw +3W
Ei3ax Ex3dy
oW 3
3oy E33
+8W +3W
Ey3ox Eogsy
oW T oW
E125x Exoay
+ +
oW - ow
Eossy Eo3ox
B (AW (2w
ll(ax) E] )(ay
BW oW
33(3 ) 33(ax) Y
(22
]3( )( ]3 aX
E23(3__V-)
W\ 2
. Ezg(_ay)
+
E 3(—;’-”1)2
3<3”)(3”>
%

A A A s R B 8 9

e

e

123y
+

l3ax

A-8

223y

233x

2E

2E

oW

335x

23ay

e A



NOTE:

-are components of

sym. o

E..'s in this matrix
1]

5k,

A-9

ow
E1rax

ow
E3ssy
oW
Essy

W

E4y

+

W, 2
E33(5y)

conventional elasticity

matrix [Ee]

Wy 2
(5;)

O

&

oW
by

o
E3s5n
20ty “

£, (&
3305 53
22(35)2
33(g¥)2

/‘\
\

(This matrix is only for elastic layers, simplified from Appendix A-8)
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115x

w
123y

oW
Eo3x

223y

335x

1 =9t~



(This matrix is for the case that all layers through thickness are elastic, simplified

N’

A-10
oW w -
EETI"S)T B3y
ow oW
E3357 53353?
oW oW
E33gy E333x
W oW
Eioax Eaosy
) ELAYA Wy (3W
Ell(ax) E]Z(ax)(ay)
+ +
AW, 2 AW, ,OW
E33 (E-_Y—) E3_37(_:§() (57)
W, 2
522(590
+
AW, 2
E33(5%)

from Appendix A-9)—

A XA



‘ Appendix B Computer Program

.

FELFASE 2.0 MAIN DATE = 77154 11722738 ,RELEASE 2.0 MAIN - DATE = 7715%s V11/,22735
DL ICTT REAL®B (A-M,0-2Z), INTEGER®Z (] ~N) KizfasLw- £
ENTEGER NIDINT oNPART (NDTSP, NELEM, NONCOIP, NBIUN. NLDAD s NGAUS S o NLAYER, K2=[5¢LK-}
. ' NIMBERGNFREE (NTOTAL (MMAX s MTWICE JNREAD NWR T TE K3zJ6eLK-1 @
DIMENSION BDOAXK(6950) , NROOK (985) LIz gSeLx—g
c CALL READY(NJOINTNELEMoNONCOR  NSAUSSINLAYT R NEREE LK, HINOFT, [STCP
< DISK €1 FOR SY . s clNIY\NTDTAL.NREAD.V‘Q!YE-ROOK(l7).“10'(!!!)”13((II‘D.
¢ DISX ¢2 FOR ST . . BOO((HH.“’JJK(HS)-'ﬂnﬂK(Jl).N’)OO'(J&!.N‘!'ZQ‘('.!)- .
< OISx . #3 FOR ST . N * NBOOK( J12),ITERA )
c DISK #4 FOR O - - TTTALL DISGRD( NGAUSS.!GYEP-IN!Y.L(.BOG‘(Il).BDUK(V2|.QDA'('1).
[ DISK #11 FOR RESULT STORAGE .- BOOK{116), ITERA)
[+4 015 712 FNAR RESULT STORAGE R 00 S00 11=1,NGAUSS
[4 OISK #13 INSURANCF DISx ’ - D0 S00 JJ=1,NGAUSS
- o IYIELD=0
IFATSe10) NIDINTNPART (NELEM, NONCOP . NAOUN «NLOAD . NOE SP o NGAUSS IFCISTEP.EQe1 o ANDLITERALFO QL) 37 T) 450 '
. MAYER NI UPER (NREAD, INIT , NSYEPNITER.SIZE. TOLNCE CALL STRAININGAUSS s NLAYEQ . JJel 1.8ONKIK] J,I0PKIT12) 4870k (]15),
10 FIRAMAT( JAl=,2F8.0) - BOOK( 116}, 1STEPINIT,ITERA)
NFIEF2E CALL STRESSINGAUSSNLAYER SJo Tl LK ELAS ,SYTELD. “HAAD,E557 4057 7, '
MY I TONSTED . EXK.E’X'.EVY.’ZZ.IV!ELD-ISI"D-INIT.H”QIHE.-.:HVE. -
— NTOTALEAFOIEESNJOINT . - Bnnx(tJ).nonx(nu.anounn.mannu.nﬂ"'tns».
103 CALL COUNTINIOINT NPART ,NDI SO NELEM, NONCOP « NAGUN« NLOAD . NG AUS S , . NBOOK(J12)eNT,ITERA)
- NLAYER (NI MPER, NFREE, NTOT AL . 300 CALL TRUEPT INGAUSS e NLAYFR, JJu 11 DGNKIT2 )50 (<13, AZ0w (72 ),
. T30 02034040051 6017¢18.19:510e1110012.113.1144115,116, . BODCIKIYAJORII1I)ISTEO, INIT, I YFRA) 1
. © 10 J20030U0840500603740%.39,J100J11,912) 400 IF(ISTEP.EQ.NT) GO TGO §33 [ .
caLy INPUY(NJQINT.N#A?'.NELEN.N)"UN.NL"AD.]NIY.NDISP.NFREE.FLAS.V- 450 CALL SYlfF(NGAUSS-NLAYF?.JJ.Il-lS'EP.I'(El).E’l.ClV.FVV-EII- :;
. SYIFLD.NnAQD.ExPDV.ROT.EV.lTOTQ_.UGAK.M’IICE.VTQYAL. . . HOOKLT2) 4 RO0OKET 31470 1,IN0C (K234 319K (I 1,300l [~y 1
. BOOKEL 3 e BOOK(14) . A7NKITIS) DBOOKL 61 BONKIIB ) «BNOK( 19) o d ITEAA)
- . NBOIK {1 NABIOCLIZ I yNIIOKC JI) NANOK( J4) o S00 CONT INUE
- NAOOK( S5 oNOYOK(I5) s NROOKEI 71 o NODOK { JA ) o NHOCK( JT § 4 TFI(NBOOK(L1)oN5,0) CALL ROTINITINT o NELEMGISTED  NT LK ,Pr<(f7),
. NBOOXKEJ10 D, N330K(J11)) ’ NBODKE J1)eNIDOK{ JA) o NRBIIK(L 1) 4 HANC G NV IR,
(1721 L60MUA XS MNAX . INIT, 1 TFRA)
CALL TRANSINJOINT SNELEV, NONCAS, NIMIER ,A00KL T3 «R00KI 15) ,300K{16] o ITCISTEPANELHT ) CALL STOUF(NDAIT (1l LFY, NF I r Lo LF s MUA X M Ta[CE g na( |
- . ROCKLLTY e NAANK( Je ) NINAK (IS ) ) . 16) s NBODK( J2) o M388K (J3) oNIIK (S0 ) o NACAN( g5 ), s
. CALL SET ¢ NELEMNLAYE 2, NGRUSS, INIT,NTITAL, ELAS.V, . NANTIKLJI0 D, NTITAL) .
L SYFELDWNHARD s EXDONLSI7 oF T JHAN [ ME L EXX, FXY, EYV 4 E 22, TFOISTEPLEQ.INIT.ANDLITFRALEN, 1) GO YN g0=
. BICLITIaRNOKIT2),33IK(L19),93IK(018) LANOK(I1 3D, caLL SUMINJOINT sNFLEMNFREE,NTITAL «B2IKE T17) 4N IIKE J1) 4% 36K Ja 1,
- BOCK(114) 4ROOK([15), NONDIK(J12), NQREADY . L)

THINREADEQW11) NwlTO2)2
FFINREADLFOL12) NWIITE=]]

600 CONT INUF
N FFCISTEP.EQINITLANDLITFRALEQ.L) GNP TO §223

02 300 ISTEFO = INIT .NT CALL RESINJOINT JMULIADSNFIEE . ND L SP, ISTEP o NI T oY eSTZF .47 (] ~),
DO 700 ITERAZI.NITER . BOOK (19} +HOOKLELO} ,30IK( 1121, NBONC(J1 ) NBAON( ),
77(1sl:o.co.lnlv.nn.vs¢s=.Ea.vr.nn.uxren.Ls.zJ GN YO 150 . NHOOK (S5 1 oNBNTIKT I 1), dTOTAL ,MaHT T7 yNI"AD M TE, [ TEUE,
IFIETARALENLL o ANDSERRQRLLE +TO.NCE) GO TO 620 . TOLNCO oD ISERR,ERROA, xLVE, )

150 2=wind g . . TFISTEP LT aINT- 1 ) ANN I TERA ST .2, ANDLTRPIILTLTOLNCF) 49 TR 459

T meagnd 2 620 CALL NEWINFLEMINLOADINGAUSS N AT ED  NFIFE NTOT A EST 2, [ 4fTors,
2F 4N 3 . NITER, [TFRANWILTE S ZEXULEVEL o INKLE A o BOSK(I11 ) orr Nn(
Qre sy o . F12)eR00KELI135,000<118),70 K E15),83II<0I7),%23( 412) ,
ICEIND NERETE . NREAD ,FRANZ, TAOLNZE ) T
12 CISTERNEL1OP  ITERALNEL 1) IEWIND NIEAD v 650 CALL FIXUINPARY JND ISP NFREE.NJMA, NTOT AL (MMAX  UTaICF.S12€,390K( 1],
IFLISTEPSLF o (INITHI)LANDNITER.EG1) GO TO 200 . BONK(112)eRNNK(116),
lt(l",l’(ﬂ.fn.(NlT,AND.lYEDI.LE.ZI GO 3 200 . NROOK(J?!.NI\OO&(J").V'\)O'(Jﬁl.NR‘l“((JIIl.!'(_fvll

v 179 13.3€1D i CALL SOLVFUNICINT o 1PRART s OISO NFREF (MAAX, [ TATAL yNTOT AL, ) a8,

SAVADANQITF & . BOOKEI101,AINC(IEE) o INOVET17H ), VI3<(T17),
aviTszy ] NANOK{ I3 oNBINDK{J2) e NBPOKESL) (DISER «, JTER L]

209 T3 A2 LK ] JNELEM lF(ISTEP.FQ.INIV.ANO.ITF“A.FQ.Ib G T rco

O v N




RELEASE

reo
aco

FEFECTS
€FFECTe

SIURCE STATEMENTS '= 64 JPROGRAM SIZE « 63120
NO DFAGNOSTICS GENERATED .
: 4
-~
.
3
- A
.
- ¥
L
9 A\

2.0 ° RAIN DATE = 77154 11/722/3%

lF(lSYEPaEO.(NT-II.ANO.ITERA.GY-2.ANO-FRQOH-LT.TDLNCE) GO TO 800
CONT INUE

CONT I NUE

Stne

END

NO'FRU-lDoEBCO!C-SOU”CE-NOLIST-NODECK'LOAD.NUMAP.NOYEST
NANE = MAIN o LINECNT = 56

RELEASE 2,0

nnan

ZFFECTs
EFFECT s

SOURCE STATEMENTS =

LS
COUNTY DATE = 77104 11722735
SUBROUTI NE COUNT(NJDINT-NDART-NDISP-NELFN-NﬁMCOD.NSGUN.NLOAJ-
. NGAUSS yNLAYER(NIMPERJNFRFE JNTOTAL o 11412 403,080,115,
. 16017 1A 1911001141125, 014,115+116,
Jl.Jz.JJ.JA.Js.Jb.J?.Ja.JQ,Jlo.Jll-JIZ)
IMPLICIY INTEGER®2 (1-N)

INTEGER NJDINY NPART (NI SP o NFLE 4, NONCOP s NAOUN, NLOAD, 1GAUSS «NL AYER o
- NIMPER NFREE o NT OT AL, MAXQ
11=1 -

12201 +NGAUSS .

13=1 26NGAUSS

IA=T3¢MAXO (IO6NJOINT 383N AYER)
IS=IAeNELEM

I8=IS+NELEM

I7=1 66 NFLEM

IFINCNCOPLEQ.0) NONCDP=L

18=1 7¢ 3% 34 1] MPERS NONCOP
IF(NLOAD.EQ+0) NLOAD=1

1921 8¢ AFREESNLOAD

IFINDISP .EQ.0) NDISP=] - N
I10=19sNFREFENDISP
FE1=010eNTOTAL
112111 ¢NTCOTAL
F13=112¢2eNLAYER
I18=113¢34NLAYEQ®NGAUSSENGAUSS R
TISTT1A¢N_LAYERINGAUSSONGAUSS
(16=2MAX0LTIS+IN24NGAUSSINGAUSS, I 124NTOTAL )

NIRFAL=T 1 64MAXO(MMAXANTUI CE. 8 P2ASNGAUSSANGAUSS )

MMAX={MAXs NGe OF JTS IN ONF PAATITION) $6~(3.0F FIXED N.D.F. [N
THE SAME PARTITION)e MTWICE=2¢MuMAX

Jt =1
J2TILENJOINT
JI=J2¢NPART
JAZ I3 NPART
IS =TI cASNFLENM
6T 4S54 NFLE M
JTEIEENTOTAL
JB= 37y NPOUN o
J9= JReNFHEE

JIO= 9 ¢rLOAD

JEIZJIOCNELEN

JI2=J1 1 +NOD ISP

NOINTE=JI2¢ NLAYERONGAUSS*NGAUSS
RETURN

END

-

NOTERM. ID+EBCOIC: SOURCE ¢ NOLIST s NODECK, LOAD, NOMAP , NATEST
NAMF = COUNT o LINFCNT = 56

36 .PROGRAM SI2f = 1742

NO: OTAGNOST ICS GENERATED
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——
i ) . ° Ny
-, o . \ 3 Twal* Q
N e <
-~ - i ¢ § Q 8
e 1 6) " ' 13 - -~
o LA .
- - ra 'y )
3 @ R ° °
- . ’ 7 ’
i -, .~ L -] < ?
NELERSE 2.0 tNeuUT DATE = ?715%s 11722718 RELEASE 2,0 INPUT [ OATF = 77154 11722735
‘ i - . © . .
- ., SUBRDUT INE INPUT(NJOINT ,NPART . VELEMe NIOWUN. NLOA DS INIT,NDISP, s, 26 FOAMAT(71S.6F7.0) N
L] NFREE ZELAS Vo SYTELD NHARDIEXPONeSOToETL ITOT il 30 FORMAT(I10:,6F10.0)
. . - R MMAX,NTWECE JNTOTAL, 36 FORMAT(IFIO.0+110,3F10.0) 3
. €O0R0, THICK o XC +YC s PLOAD,UD ISP, < -
. IPLNAR,NFIISR, NLAST,ND TRANS NREACe NF, NB,LF, c ECHO INPUT DATA AT FIRSY RUN ONLY ¢
, . INOIC.NUY . c - -
. IMPLICIY REAL A (A-1,0-2), LWPEGER®2 ([~N) 70 WRITE(64+82)
INTEGER NJOINT  NPART (NDIEP  NELEN (NONCHE o N +NLOADSNGAUSS.NL AYER, DO A4 1>1,NJOENTY
. - NIMOER qNFREE JNY ITAL (UMAX  MTWICE 84 WRITF(6+86) Lo {COORD(Ss 11sI=143), IPLNAR(I]) .
DIMENSIQN COCRO(IZNJOTNTYI \THICK (NELEM) o XCINELEM]  YCINELEN ], WRITE(6490) ? . N
L y NUINDISR) 4 PLDAD(NFREE (NLOAD) +UDT SPINFREE +NOISP) o DO 92 [=[,NPART R
. NFEIRST{NFART) ,NLASTINPART) ,NND{ &, NELEM) , NTRANS (NELEN) o o 92 WAITE(6.94) I.NFIRSTEIV(NLAST(E) R
N . * ——N“ACUQT:!'AL'oNF]NLDlDl.‘JB(\IFREED.LF‘(NLOAD).INI)|C(NELEM) ° WRITE(6.94) :
- . e IPLNARINIOINT) i - PO 100 I=1.,NELEN 1
[4 . . 100 WRITEC(E:102) l-(NOD(J.I)-J=l.‘).N1RANS(l)-TNIfK(!l.XC(I).YC(lr‘
[ ®READ N INPUT DATA , N L INDIC( )
R N - —~— . WRITE(6.106)
- 00 12 i1=)  NJOINY \ BO 112 t=1.NACUN o
12 READIS . 18) Ry ICOORDI JoK) o I=L 3] o IPLNARCK) K=(NF(§)~1)ONFREE °
DO 16 I=1eNPARY - DO 107 J=l JNFREE
. .16 AEAD(S.28) K NFIRSTEK) , NLAST(X) “ . NA(J)INREACIX$J)
. 00 20 Ix)eNFLEM . IFINB(J)NE.O} NR(JI=E
20 READ(5,22) x.(naotJ.xl.4-1.gl.uﬂu:nscxv.rulcx(x).xC(x).vc(x). 107 CONTINUE
7 — ENDIC LK) - 112 WRITFL6.108) NFCI D)o IPLNARINFIT} Lo (NBI 1hed=1aNFREEY
. DO 21 1=1.NYOTAL IFI{NLOAD.EQ:1sAND.LFIM . OAD).EQ.Q} GO TO L9 -
.21 NREACIII=) . . WRITE(G64116) . . ¢
00 23 1x=1.NBOUN DO 118 I=1.M0OAD
l RTAD(%,426) NF(I’-(NO(J)-J'I.NFEEEI 118 WRITE(64120) LFUU) L IPLNARILF{111,(PLOADCJo11,1=1,NFREE}
KetUNE(LI»1 ) ONFREE LE9 TFINDISP.FO.teANOCNUINDISPILEQ.23 GO TO 124 -
03 23 U= 1NFREE - ! - WRIFE(6.117) . e
- 23 NREACIKEIIzNAL( ) . . 00 115 Ix1.NOESP ' .
1YOTAL =0 ¢ & . ; 11S WRITE(6G4120) NULL ) IPLNARINUC T 14 (UD ISP Sl } s J=1 NFREE)
A uMAXED . 121 WRITELS4110) FLAS,VoSYIELOWNHATD o
DD 40 12} NPARY rw o . . IFINHARD +FQe2) WRITENG,1312) EXDIN.SO7
JRENFIRSTC 1)~ JONFREESL B IF{NMARDLEC. 1) WRITE(S,134) ET
1 REaNLAST( ) ONFREF p——— * B2 FORMAT{® 1%, T10,JOINTY NT* T30, ' X-02DINATE® , TS0, ¥-0OUDINATE® ,T70,2
Ll L - S~ORDINATE? o TH0,? COPLANAR R NON-COPLANAR JIVIRT *, /7, ¢+ +T35% 1 N0
DY S0 Lagex , TIN POLORAL ¢ 13X, "SYSTEM 1§10 T3] ,°C¢ L = COPLANAPR JNINT® (/¢ ¢ .70,
. FF(MICACILILEC.O0) GO YO 30 \ 5 = NON-COPLANAR JOINT 1% ,7/)
weMe g s . 86 FORMATL® *eT10:85:T1MeIF2045¢T100,A2) M
NRFACIL Yaw s PQ FOOMATL =8 4T10,°PARTITION LINE NO®«TAT,¢FI?ST JIINT IN "HE LINF*, T
N 50 COWTINVE ‘ - . #70,*LAST JOINT IN THE LINET,.//7)
. EFEMWAY LT R} MRAXKEM - ¢ Q4 FORMAT(® * T15,15:745:15.,775,15)
[TOTALSITOTAL oM N 98 FORMAT( ~0s T2 "FLEMENT NOCoTH602 094721 ,°J¢2T26,° K" 4TI, LT 5, 'N0
e 9 o _
40 CIITINUE tuécﬂn\_uun FLEMENT NOD, “t 'Nss.'vnlcxnr SY,TAG., 'KCP,TITALAY I, LS
T CERIeMMAX - Py *1IFIRST IN A VWt /" *,T1A, r MEANS COPLASLAT ) ,T1|S,°2=4 3T
e . o2 24 I=|.N&9AD SN A ROW® o7, '.T\\S-‘DthTv'Q'l')IA?F'-/I!
28 IFAI5,I0) LFLIIQ(PLOADIJel Do Jxt e NFREED . . 102 FURMAY(® 2, 17,T12.4F5:T46412,T58,351A,5.T120,05)
DI 32 1=4.NDISP . 106 FORMAT (=% * JOINT NDS,T12,%CONI I ATE ', TA~, *ATUIDANY CANDITING 4/,
. 32 QEAD(S 30} NUTTI S (UDISP(Jal e et NFRCED . ‘ $F taTI20ML=LOCALY ) TINGP IO = FIRED. 1 = FAEE 17 MOVE)'./o® '.T1 3
IEAIS, 18] ’LAS-V-s‘l'LQ.NHAHO-ElﬁﬂNqSO7.E!l ° » SYGIGLORNALYY 4/ /)
TFLLNIT o nELl ) RFTUSN 108 FORMATES $,.05.71%.,4A2.A10)
" 18 FORVAT(110s 3F 10,05 ANLA2) - 116 FORAAT (® =3 s TS UNINT ND* o T20, ¢ " INROINATE TG0y *MAGNT YY" F Y L
L 22 FOOMAT(E19.3F 19,0150 s SOADS 47 4% *aT20+* (L=LOCAL ¢ T Y3, X[ NANT (TS, 0¥t AN, Tr=y®?2a_"a%t T
- /k N . [ ! i
e . -] : o
v
"r‘.ie-m B3 ORI SN . " s T T T e e ot i 8 & Sasie £s .- Ve - . -

[

-0%¢-



RELEASE 2,0 IweyY DATE = 7715 11722735

.53-'X-MDlENT'.TQOc'V-NO"ENY'-flIJ.'!-‘ONENT‘wI-' 'oTZZ."G!GLOGAL)'
e rs) -

117 FORMAT(® =0, TS, ¥ JOINT ND‘oTZOo’CDORDINlYE'.TQS.'MAGN&YUDE OF UNIT D
SISPYaset ¢ 472040 (LELOCAL® 4 T38, *K=DISPY ;T53,4Y=DISO®, 168, ¢ Z-01SP s, T
'43.'!-RO\‘ATN‘,YQB.'V-RDYATN’.YllJo'l-NOYATN‘.Ii/‘.?Z?.'G:GLORAL)'
€, /7% ° . o

1292 FORvAT (" TSl SeT25,A2,730,6F15,.5)

130 FORWAT (-t r8, 'ELISYlClYl a'4:ll)ULlJ$'-YSS-'!—" w¥200%e/4* *,75, *pPOrSS
DN RAYIC IN ELASTIC PAN@?"'.TSS-"'-FZO-.’MI-‘ *eTS, *INFTIAL UNTAXT

¢ AL YIELD S'PES$'¢7550’*'-FZO.S'Ic' P TS5, 'HARDENING PROPERTY OF STR
SESS-STRAIN CURYF® (TS5,0 20 ,110) ) .

132 FOPCATL® *,T9,'FXPONENT USED FIR STRESS~STIAIN SQUATION® (185,030 ,F
$2Cs5e/0t T TS, SSECANT YIELD STRESS AT 0.7E®oTSS.024,£20.5.79

138 FERNNATL _'_..Y{-'TANGENY MIDULUS FOR LINEAR MARDENING® ¢TSS . 'x? (£20,5

L 2 S s T -

~ Y48 revyan ' .
. €N \»

(s
! FFFECTs NOTE %o 104 EBCOIC SOURCE uNOL IST s NODECK . LDAD, NOMAP . NOTES T
T SEFECTS  NAWT 2 INPUT . LINECNT = 58
STURCE STATFMENTS = 87 .PROGRAM SIZE =

NO JTAGNOSTICS CENERATED

1

5764

*
. 2

s

TRANS

RELEASE 2.0 DATE = 77154 11722718
SUBROUTINE TRANS(NJOINToNELfE".N'lNCOP.NINPER'CHOQD- XCo YCoHMsNID,
L] NYRANS) ’ -

IMPLICIT REAL®S (A~H,0-Z), INTEGERﬁZ (1=-N}
INTEGER NJOINT,NELEM,NIMPER,NONCOP - s

DIMENS [ON COORO(3 o NJOINT } o XCINFLEMY s YCUNE_EW ) o H( Jo ILMNIMIZTA, 4T NENDY
b4 eNOD (A NELEM) NTRANS(NFLFM)

TRANSFORMATION MATRE X

[aNa el

DO 165 LX={,NELEM
IF(NTRANSILK).EQ,0) GO TO 165
LLENTRANS (LK)

Hltelololli=1,

MOl v2.14LL)=0Q%

' H{le3s1,LL)=0, )t
H{2eletalLD=0, .
HE3.1a1.LL)=0,

YAZCONBRO(2 4 NOD(A LK) }~COORD(2,NOD( 1,LK) )

ZAzCONRDE 3NOD(4.LK) }-COORD (3 ¢NOD(T +L.K) )

DENU=DSQRT (YARYASZASZA)Y

HM{24241.LL)=YA/DENU

HE2+301.LLYXZA/DENY

HE3e2014lL)x=H(243.1,0L0)

HU3.301.LL)=H{2. 241,000

1685 CaNTINUE

: REFURN .

END s e
EFFECTS NOTFRM, 1D EBCOIC, STURCEWNOL ISTo NODFCK oo OAD s NIMAB s NOTE ST
EFFECT® NAME = TRANS ¢ LINFCNTY = 56

SOURCE STATEMENTS = 22,PROGRAY SIZE =

NO DIAGNOSTICS GENERATED

132>

%

3

-1%e-

-



>

N - - P4
RELEASE 2.0 SET DATE = 771Ss 11722738
SUBROUY INE SETY  ( NELEM, NLAYERNGAUSS ¢ INIT,NTOTAL »
. - ELAS V.o SYIELD o NHARDVEXPONGSOT . ETy MPR [ME ; EXX o EXY o
L :vv&szz.ovavr.'cf.P.uTorAL.srnes.pLAInu.ToTsnu.
s KEEP (NREAD)
° IPLICIY REAL®S {A-H,0-2), INTEGER®2 ([-N) .
INTEGER NUAYERGNGAUSS JNTOTAL JNOEAD, NELEM .
¥ DIMENS ION XYPT(444) e XYAGT(4.4) s PTINTINGAUSS) s WGTINGAUSS) , PTNTOTALY
Ld SUTOTALI(NTOYAL),
. 8YQ€S(J-MLAYER-NGAUSS.VGAUSS).Y)YSQN(3.2.N6AUSS?N6AU§§’-
. PLATRN{NLAYFRJNGAUSS ' NGAUSS ) , KEEPINLAYE R, NGAUSS s NGAUSS )

rﬂﬁc?.
TEESCTS

.

DAYA X¥PY / Oes oo Ocs Ous =D.5773507691896, 0.5773502691896,
. Ose Cos =~0.7745955592415, Oos 0774596569415, O..
- ~0.A8611363115941, ~04339931043584R, 0.3399A1 CA3%nan,
- 0eR6113631159a1 7 i .
DATA XY8GY 7 2449 Oos Oss Oeo lee oo Oee Oss D45555555555556, R
0.88A498R89339489, 0.5%55555555555, 0ee¢ 0.3479548451375-

. s 0.6521451540625, 0.6521451548625, 0.347854 4451375 7
158 DO 160 I=1.NGAUSS ~

PYINT{IISRYPTLIL NGAUSS) -
180 GT(I)SXYUGTL1NGAUSS ) . :
° (FINHARD LEQ.O) MPRINE=O, °
IF(NHARD EQel } HPRIMEZET SFLAS/(ELAS—ET )
T=ELAS/L Lo~VeV)
ryxxa?v
Exyx=Yeay
Evy=? -
E22=Ts(1,~-VV/2, . * -
IFLINIT oNELl) RETURN
N0 %7 1=1,N70TAL
et(1130,
UTCTAL(T T20.
REAIND NIEAD
SAITE (NREAD) UTOTAL
77 1m0 1%} ,NGAUSS
N0 180 JJ42) JNGAUSS ‘ -
DD 169 xXxl , NLAYER N
. PLATANIx K+ JJs 11 )20, i
CECI(KA L JJull )20 ¢
00 183 Uwi,
1E{<X.CT.2) GO TN 149 B
TITSANC JeKKaJdv il )20,
149 STOSSL Sk aJdall)=0, “ - .
1e8 CONY INUF '
GO 203 Kal,NTLEM . -
SMTE (NAEADY STRES.PLATAN, TOTSRN,KEER

- .
ALEviL =0, \
B N

‘e

—

53

[-34

"R]TE (NREAD) P, XLEVFL >
RETYIN
FNO

BT ISU LI N F ACOTC, SOURCF ,NOL TS
MAwE T SFY + LINFCNT = 56

SILICT STATENENYS = JALPROGRAM S 7€ = 2876

DIAGSTSTICS GENERATED .

e NDDECK.LOAD NOMAP ( NOTFST

SFFECTe
EFFECT»

2

RELEASE 2.0 READY L DAYE = 77154 11722735
SUBROUTINE READY (NJOINT ¢ NELEMININCNP NGAUSSeNCAYER NFREE LK 4N [MDED
- sISTEPINITCNTOTAL eNRFADNWRITF sH,UTATAL 4 STRES,
£y PLATRNeTDVTSANe [PLNARMNODLL ¢KEEP L ITEDA)
IMPLICIT REAL®B: (A-MD=~2)e INTEGFR®2 (=N}
INTEGER NJOINT NELFM NONCOP NIMPER, NGAUSS NLAYED NTOTA_ (NF2EE,
« NREAD ¢NNR [ TE .
DIMENSION UTOTALINTOTAL ), HE3s 3o NIMPERGNONCIZ I NIN(AIELFW),
. STRES{IJHLAYERNGAUSS ¢NGAUSS) o PLATRN( KL AYER NSAYSS yNGA LS
. S)eTOTSRN{ I 2 NGAUSS e NGAUSS ) (KFEI(MLAYFR NGAUTS,NGAUSS )
- COMMON SKT{28,24) +S{24)W(24),0G(9),5K1(9,24).51(3)
INTEGER®2 IPLNAR(NJOINYRLOCAL/® L'/ .
DO 971 I=1,24
S(1)=0.
o0 971
71 SKT(
{F(1
1¥

J=l.2€
J)=0.
P.EC.1 «ANDL[TFRALEQ.1) RETERN
WNE.1) GO TD 200 — .
IF TEPJEQ.INITLAND.ITERALEQG.1 Y GO TN 100
REA (NREAD)
WRITE (NWRITE) UTOTAL
G0 TO 200
100 RELD (NREAD) UTQOTAL N
200 1D=1
0O 70 I=1.4 .
IF(NIMPER,EQ. 4) ID=[—""
L=(1-1 )¢NFREE -
X=(NDD(1,LK}~1)$NFREE
TF(LL.EC.O.OR.IPLNAR(NOD( [+LK)).FO.LOCAL] GO TO 50
DO 40 J=1,2 . :
MzLe(J-1)03
NxKe(J-1)%)
00 30 I1=1,3
~T1=0.
. 0O 20 J1=1.3
20 TI=T16HII1oJl alDoLL) SUTOTALINGSY }
30 w(Meltd=TL .
40 CONTINUF
6N TO0 70
0 60 Jxi . NFREE :
60 WL+ NDTUTOTALIKS D) >
70 CONY INUE @
-READ (NREAD) STRES.PLATAN.TOTSRN,KFEP
RETURN
END .

B

NOTERM 1D EBCDICT SOURCE .NOLIST yNODECK, LOAD s NIMAD . NOTE QT -
k-1 — N
2

NAHE = RFAOY L]
SOURCE STATEMENTYS =
NO DIAGNOST ICS GENERATED

LINECNTY =
JO,PROGRAM SIZF =

o



DN SOC JIRFLNGAUSS

X=aF INTI{JIJ)

YaPvINTCIL)

Xiz] =X

- LT EIRY S @

XX} o= 08X

Kax] ,03,8%

XSzxlex2, l
— Y1) o~V '

¥2=laeY

Y32] o=J 4y

YAzl ¢ 3,0y -

¥Szry ey —

Oflsteldalldn=v]ral

DUl aTeddsllde=Dlloledtall)

DUL 13edsel1duy2 rag -

AREE R NP RS LY. TRPEE NIFRE T RY

. LIESR PN IY S S TS T2 1)

DL2.7. 4. 11 )==x2/B1
(2, '!OJJ."“‘O‘\?."JJQ‘I’
Dl?.l’.JJ.lll'-Dl?-l-JJ-ll)
D(]-E-JJ-!Ill-Q.J?5OISOVlIA
DE3c8ssdelliz-XloXanYLse,
DI‘oﬁcJJ-llIS-D(J.Z-JJJII)
Ol Ve 1204Jall)s=x20x30v)rp,
M0 T 30,1750 x50y 274
3(lvlﬂ-lJ.!l)l-l’OIUOVPIH.
ﬂ(l.?:-JJ.!(l*-D{lolQ-JJ.lli
M Ie20cd)elil=mx])oxa0yIsn,
"l*-’cJJcll)--ll‘ll‘(?-tll’ﬁ?
NMasbedaelldz-asxiorasy)
RIARLTWNTY § R ERS F TP ETE IRy

~

% gt ST

v e e O A o

o~
f i
e’ . . .
. | J
" .
=y
v ! °
RELEASE 2.0 O1SGRD DAYE = 77184 ___ 11722738 RELEASE 250 D1SGRD DATE = 77154 1172271
—_—— SUNROUT INE DISGRO( NGAUSS-ISYED‘lNlY.Lx.Dflnr,‘c,vc,D'[TEQA) D812, 55.11)=AX20XS/A2 -
R JUDLICIT REAL®S (A-4,0-Z), INTEGER®2 (]~N) O(8s14.J4el1)=-D(8e8edJel )
- INYZGER NGAUSS Y OCaetB o Sl )=~D(a412,5J,11) . -
- OI MTNSION PYINTINGAUSS) D928 ,NGAUSS , NGAUSS ) D(8:20edJelI)=-D(4,248J,11) .
lr(lsvsp.so.lulr.A~Di}7:ﬂn.£0.l) GO 10 10 D424 40Je11)==D(4+6.3J,11) o -
READ (a) D ' - B D(Se30dIall)2-V]0(3.0X5-YeVY2) /A2
RETURN D(Se8sJJy 11 )==B2Y19YS/A2 o
10 20 1S L=1,NGAUSS O(SvSeddeli1)=~D(3s6.dJs11)
- DO 15 Xx§,NGAUSS B(549¢ e 11)=-005:d,43.01)
DD 15 Jsie2a O(Se10eT3Jel 1) ==D(Seas0,11)
D0 1S Is1,9 D(Se11eJJel11==-DUI12,44,11) °
1S 2MleduKel)=0. R DUSelSedIaTII=Y20(3,¢XS5éVeVL) /A2 -
A=XC /2. ‘ D(Ss16eJJe 1 1)=-R*Y? 2aY5 /A2 .
3x¥l/2. . DUSe17¢J0s113=2-D(341R,0J.11) - ’
ABzAwd DIES+21,300e11)2-D(S5, 15,340,111} A
Alz3oen ~ ' 0(S5.:22.dJe1132-D(5,16,4J,11}
A2z8,04 - v D(5:2340Jel11=-D(3 280040 11) , N
N Alzaeh ~. D¢6.3-JJ-Il)=—xl‘(-x0120]-0751102
- Sixza.®a ' — O(6e80 33011 )=-X10Y10varA,
. S2=n, e DU6eSs el 1)=-Dl4sb2dSel1) 2 ) -
3Jz3en —_ - - @ - D(649eJIelld=~x28(XOX]¢3,0¥%) /32
00 590 II=3,NGAUSS T K D{6+10sJssl0)=x20YI0Yas(~a,)

DE6es1ledJall1=+D(As12433.010)
D(6+15¢0Jel)==D(6.9vJIell)
DUGs16.JJslT)z=X28Y20Y3/8,
D64l TedJde 1 1)z=DU61LsS2al)
DU6:2150Jel1T)=~Dl6sTVaddell) = .
Dl6+224JJ0lThs=X10Y20Y3sa,
Dlbe23e e 1) 2=DE6:Se2I.1T)
D(7e3,J4el15=0.TS0Xx8Y]/AY
D(7o5e¢dJel§)=2,8x30Y] /A2
DU7e9¢JJel1d=-D(703034,0101) .
DUTslladdell)=-2,8Xa0Y /A2

DI(7:15:4JJe 11123075 8xev2/43

DUT417:0d,11)=2-2,0X08Y2/A2

DUE7421e3Js 1110l Te1Seddekl)

DU7e230dJelld=2,8X38YD /0>

D(Ae3.susel1)=0.759x10Yv/87Y

DIA A IS I N==2,¢x18YI/R2

DlBsDedSall)=0.7TSex20Y /a3

DUB.10¢JSsll)2-2,0x20V3/R2 .
D(a.lS.JJ.!l!:-D(B-Q.J).!II

DIB.16eJJel1)=2,8x2074/R2 . -
D(ARe 204 JJelL)==DC(RLI I TT) -
D(B.224JJsll)x2,8x)0vArB2 R
Dl{9¢30JJel11=(0.5-Nu37SexeX=0,3758Yey) /AB
DITededdslldI=Vlovasay
D(9:SeJJelt)z=xltxa/0)
O(9:494J0el1)=-DUl9.35dJSs 1)
DI9iNsJJeT1)==D(9.80tIsl V)

{9t edde TLIZ=X20x3/ 12
DC9415:0Je11)3009¢300Jd,s11)

D(91beJss tT)==Y20¥3 /A
DUO:17444e1113-0(9¢11434s11)

e

-the-



RELEASE 2.0

O1SGRD

D(9¢21004211)2=D(93,J0.11}
D(3¢2243J:1812-D(9,1843J,111
0(9.23e0de [T 12-0(9S 0 sl 1)

SCO CONTENUE
w¥ITE (4) D
RETURN -
FND

IFEECTS HO’Eﬂl-ID-EHCDIC'SOUHCE-NOLISToNODECK'LOAD'NO'Aﬂ
SFFECT® NAME = DISGRD LINECNT = s6
SIURCE STAVEMENTS =

N NIAGNOSTICS GENERATED

11S.PROGRAM SI2E =

OATE = 77154

7280

1172273S

-

RELEASE 2.0 STRAIN DATE = 7715a 11722735
SUBROUTINE STRATNCNGAUSSoNLAYER , 3J, 1, TH,STRANCTOTSANCD I STEP o INIT
- s ITERA)
IMPLICEIT REALSS (A~H,0-Z), INTEGFR®2 ([-N)
INTEGER NGAUSS.NLAYER
DIMENSION STRAN(IJMLAYER) DI ,24 (NGAUSS s NGAUSS ), TOTSENT 3, 2, NGAJST,
. NGAUSS) ¢A9( 30240,31( 3,241 ,8T(3,24a)
COMMON SKY(24,28)25(24).¢(281,06(9)+5K1(9,24%:s51(3)
EQUIVALENCE (SKI(l-l).ﬂﬁ(l.l‘)-(SKl(l-Ol'Bl(t'lll-t
. (SKI(L.27).AT(1,1))
80 DO 100 1=1,9
DG(1)=0, o - :
D0 100 J=1,24
100 DGCI)I=DG(E)+0(TeJettel1)%a( ) N -
- IF(TSTEP.EG.INTTLAND.ITERALFQA. 1) RTTURN
AZDG(S5) /2, -
8=06(6)/2, -
00 200 J=i.24
BOU14JI=DU1vdedIall) & ASDIS,d0dI001) <
BI(243)=0(00JedIell) ¢ RAID(Sesedtell) 4
80(3.JD=D(?-J'JJ-II)OD(J-J.JJ.Illbn‘D(S.J.JJ.II)OA.D(G.J-JJ.II)
BL(L+J)=D{Tededde 1)
B81(2.31=D(B,JsdIuil) e
200 81(3.44)=2,2D(90S¢JJs 1)
DEL TARM=TH/{NLAYER~])
NZNLAYFR~1 -
Nz
00 S00 I=1.NLAYER,N
IF{I +EQ. MLAYER) mM=z2
22~TH/Zo ¢l 1-1 JPOELTAM -
00 400 x=1,3
AXYOTUSANIK ¢Mea I ) - L]
YOTSRNIKeMeJ eIl )=0,
00 300 J=1,24 . \
BY(KeJ1zB0{KGJI~ZSB1(K,S)
300 TOTSHN(KeNeJIeFT)=TOTSANC( KoM dJ T1)+BT(KeS)ow( )} '
400 STRAN(K, I)=TOTSRNIK eMsFdo [T 1~A
500 CONTINUE
DO 609 1z2.N . .
Zz=TH/2,¢(1=1)¢DFLTAH
NO 600 K=i,) ' .
600 SYRAN(K‘Il:(SYHAN(K.NLAVFR)-SYWAN(K.\I)G(ZOV 723 /7THISTRAN(K, 1]
DO A0D J=1,24 -
RO(I.Jl=0!loJoJJ.IIIODG(5)‘D(5'J'JJ.II)
A0L(2¢J)=D1843¢J0, [1)40G(6)®DI6e Jedloll)
800 BO(34S)=0(2¢deddell)eDUI0Ie Il I +DGIBI®DISh It 111eDGISIONCF. T,
. 4411
RE TURN - [
END ot

-9~

* .
A

FFFECT NOTERM. 1D+ ERCDICs SOURCE s NALT ST NINE CK el OAD . HOMAD RCTF ST
FFFECT®  NAML 2 STRAIN o LINFCNT = 54 _
STURCE STATEMENTS = A4 . FPROGHAM SIJF = yam
NO OIAGNOSTICS GENERATED



—-- S
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[ ]
. L
RELEASE 2.0 STRESS DATE = T71Sa 11722738 RELEASE 2.0 STRESS OAYE = 773Sa 1172273%
. SUNROUTINE STRESS (NGAUSS e MLAYERL JJ, 11 LK ELAS, SY IELDsNHARD « E XPON T=BeB~a, sASC
. SOTeEXX sEXY oI VYEZZ I YIELD I STEPLINIT ,HPR [ME, ®  IFIT.GE+D+) GO TO 670 —
\\\_f . NWRITF e EoSTRANSSTRES PLATRNG TOTSAN.KEES o NT o ITERA T=0. .
- . T ] GO 1O &75 .
IMOL ICIT REAL S {A-H,0-Z)s INTYEGER®2 (I-N) 670 T=DSQRT{(T)
INTEGER NGAUSSyNLAYER NWwR [ TE - TI1=(-B¢TI/7(2.%A) N
DIMENS [ON STRANUIJMLAYERD (STRES (34 MLAYERINGAJUSSINGAUSS ) E( 30 JoNLAY T2=(~8-T1/(2.24)
. ER) ¢ TFMOL 1) SOLTALTY, X{3),—— PLATRN{NLAYER, NGAUSS s NGAU IF(DARS(T1).LE.DABS{T2)) Ta=Ty
. SS) KEEPINL YER NGAISS NGAUSS ) s TITSANI 34 24 NGAUSS . NGAUSS ) IF{DABS(T2) JLE.DABS(TL)) TaT2 . N
9 . 67% DO 6A0 1=1,3
c FOR NMARD®0 (PERFECT|PLASTIC MATFRIAL) 680 STRFS{IeKKsJIel} IZTEMBIT)4X(T)ST
z . TFI{KEEP{KK.JIaIT).HELO) GO TQ 899
. 120 DO 1000 KK=f,MNLAYER - DD 790 Iwl.3 =
. IFUCEEPINK e SIolT)EDD) [Pa} 790 STRAN(I+KK)I=STRAN(TKK)®{1.-0A3S(T)) . .
: IFIKEEP (UKo ISo 11T NELOY [0x2 . KEFP XKy JIs 2T D=1 N -
‘ DO 300 A=IP,) s - 800 CONTINUE . ’ '
429 CALL VODULI(;YRES(S'KK-JJ.Il).STRFSIZ.KK-JJ.ll)-S\RES(S.KK.JJ-II)- 450 IF(KEEPIKKGJIeTI).NELO) IYIELD=1
. - KEER(KNe 2o LT 1o SYLELOGHPRIME EXXeEXY s EYY L EZZ, 1000 CONTINUF
- . E(t.l.ut».scl.z.xxn.stl.s.xxl.flz.l.xx).ztz.z.xxi. VFUISTECLEQINIT oAND < ITERALEO.1) RFTURN
L Etz.jgxxl.e(1'1.KK).EIJ.Z.KKI.El3-3.xxl.sx.sv.osu. TFLJI.FOLNGAUSS AND, T1.EG.NGAUSS!} WRITEENWRITE) STRES.PLATEN,
- XE1beX{23,X(3)) . TOTSRN,x2E€P
— 810 TFUISTEP.EQ.INIT . AND.ITERA.EQ.1) GN TO RSO AFCIRTEP.NE . NT) RETURN - .
IF(N.GEL3) GO TN Aas) IFUITERALNEL] ) RETURN « [ &)
N SOLTA(I):EII.SYQ‘N(I-KK)OFKV.SYRAN(Z.KK) 40 IFILKoNEa1oaDPLJINEC1.CRITWNE.1] GO TD 892 £
. S TAL2)=EXVYESTRANG]L KX ) +EYYSSTRAN(2 KK ) WRITE(6.50) ‘f -
SOLTA{IIZEZZeSTRANLIY KK } 50 FORMATI®0®4/7/74°0% s TSe*ELEMENT NC®,T20.°LOCATION ( INTESGRAT [0y 29 T
IFCLEEP IV, 1J.11).FQ.00 GN TO S50 CINTS 1,755, LAYER NO'.T78, 'CUMULATED STRESSES [N LOCAL CONRIIMATE
. FDELtAss.-co.s-sx.songgg|.q,5-sv:soLtA(z)ostnss(:.xx.JJ.:l)-soLTA B aTI24, 0 0=ELASTIC o/ o® * gF27 02 J0(XI* T30, LI (V)" 4TT0,°K ~ NORMAL ¢,
Ld €3¥) /SYSELD BT90, %Y ~ NORMAL®,T110,°S AR STAFSS® oT1244*1=PLASTIC®,//)
IF(FNELTALLT 0.} GO TO 480 B90 DO 1200 KK=z] (NLAYER .
45C 00 309 1=1,3 - 900 IF(KK.CU.1}) GO TO 930
. SO TACII=n TFUKKoEQ. NLAYER, OR.KEEP (KK JJs [T oHFE DY GO TH 995 :
D3 573 Jy=j,3 : TFIKEEP (KK =1, 9Js J1)eE0.0e ANDLKEEPIKK4L v JJs1T1).F3.0) GO T3 1207
N SC% SOLTACIIZSOLYACT JeE( 1o JoXKK)SSTRANE JoKK ). L 905 WRITF{6.910) KK (STRESIIeKRKodSo (1Dol=10V) cCFI(<raddoll)
33 a6l 51,3 N Q10 FORMAT(® *,T55.1%5:762,3720.5.,T127,12) -
: YFiﬂllt=§!g§$(l.<K,JJ-ll)ogbLflllD GO T0 1200 . '
. 460 ST S{l 0K 50l f)C, - 930 JFUJIFO.1.ANDIT.FOLL) GO T 970 |
81 10 gmg WRITE(64950) JJelleKKeESTYRESITaXK oS dofl )alx1eI )y CEPERKe Il ‘
43C REEM (KXo IIall )20 9SO FORMAT( 0%, T27413,738¢13.T55,55,762.3020.5.7127,12) .
S50 O™ 400 1=1,3 GO TO 1200 -
TEUOL L) STHESL §oRKeJ Il T} 970 WRITE(6+4980) LK JIol 1 okKKo(STRESII P ¥ oI 0al 1) ol =1 o4} aXECP(XFoIIall) AL
[ 4 srasS(l.«t.)J.ljgserﬁsu.‘&,JJ,['|.SDL1A(|) 80 FOHMAT (0 ,¥5,15,T27, [3eT38,13,798,(5,762,3020.5,7127.121 I
1FC4.EQCe2) &I TO 800 B P 1200 CONTINUE
659 SE‘)SOHY(SYRES(I.KK-JJ.Il)OSTHEK(I.KK‘JJ-II)—STRES(I-KK.JJ,II)‘S!& RETURN } -
» FS(Z.“-JJ-II)OSVﬂEslznll-JJ.II)OSYFESI?-‘<.JJ.II)'J.‘SYNES(I. EnO )
KM U EI)eSTORS (Y kKD SulT) . s -
FFES=WLY.SYLISLD) €O YO 850 - EFFECTS  NOTEPM: 1D, EBCDICeSOURCE HOLIST 4 NODECK oL NAD, "4 IMAD , HOTES ®
T, 853 30 860 131,) - s - FFFECT® NAME = STRESS o LINECNT = 56
S5% XIIIESTAFSITonKedIo FTI=TEMP(L) SOURCE STATEMENTS = 78 .PQ0GAAN S[2E = 5316
5 Asxll)o-n)-n|)ol(?)0!(2)‘!12)03.:1((3!0:((]) ND DIAGNNSTICS GFNERATED -
d=2.a!%l)-1>U0¢I)~x|:)Ovrin(zt-x(z)ttsuP(l)OP-OK(Z!OYE~9(2106.tK(3
. € jeTIonng g -
CIY‘V“ll}-lt'Pll)-"~°(l'-'E'"IZ!OYElat?)'TE'°(Z)0!.-'EMP(3)chun( -

*X)-SYIFLLeRYIFLD - —

o S w




RELEASE 20

2Ce

LFFECTS
tésTEcTe

-

SIINLE STATEUENTS =

NQD UL OATE = 77154 11722735

-~

SUBROUT INE MODUL I LA NaCo N SBAR, HPRIMEJEXX JEXY EYYL,EZZENL F12.,E13,
. E214E220E23¢E314E32,E3345X«SYeDENDID2+D3)
INPLECTT REA SR (A-H.0-2Z1:; INTEGER®2 (i-N)
IFIN.EQ.0) GO TO 2C0
GCi={Asn)/ 3, -
SX=A=G1
SY=3-G1 % -
DIzl SO{EXKSSXIEXY*SYI/SARAR
D221 Se{FRVESKeFYYSSY )/ SIAR
DIz, SEZI8C/SHAR
OENI PR (VE ¢4, S2{ 0 SEEXXNSKESXIEXYESXISY+ 0. SFEVYS SYSSY2.8E2Z0CeC)/
s{SHapeSRAR)
E1i=Exx~-D10D1 /DEN
EL2=ERY-D1 D2 7DEN N -
€13x=01203/DEN
E213F12 -
E223:EYY-028D2/DEN °
TE23=~D2e03/DEN
E31=€4]
E32:223 [
€33:F12-DI*NI/DEN
REY PN
EVISERR._
Fl2=FXY
€13z0,
E2i=ExY
E22 =EYY—
£2320,
AL =0,
E€32x0, T
E33sE22
<STYUIN
END

NITERN. 10 EBCDIC SAURCE (NOLLI STy NONDECK oL O AD « NOMAP , NOTEST =
NAME B MCOWLE o LINECNT = %56

31 .PROGRAM SIZE = 1462 -

'NT HMALNISTICS GENERATED

-

RELEASE 2.0

100

]

TRUEPY OATE = 77154 11/72273%
SUBROUTINE TRUEPTINGAUSS NLAYER s JJs [T o WGT ¢ TH XCos YCoeSTRES, [STEP,
INET, ITEQM

IMPLICIT REAL®S (A-H,0-2), INTEGER®2? ({1-N}

INTEGER NGAUSS.NLAYER

DIMENSION STRES{INLAYFR,NGAUSS,
BO{3.24).B1(3.24) .

COMMDBN SKY(ZA-ZQ)-5‘24).‘(20).06(9).SKI(Q.?A).S!(S) ! °

EQUEVALENCE (SKI(1a10sBO{1a1)2s(SK1(1eD)eS51(14s1)) ¢

00 100 =13

S1{ti=0.

S$2t1)1=20.

NEZNLAYER-} .

DELTAR=TH/N

Zi==TH/2,

DO 400 XK=l eNe2

Z2=Z1¢DFL TAH '

GAUSS) «S2(3) «WGT I NGAUSS ),

~

Z3=Z2¢DELTAN P -

00 200 I=1.3 "/z/ -

SLOP)=STUIIOSTRESIT KK I LI DAE o 0STRES (TR +10JJo ITDOSTRIS(T ,KKeD,
Jdeil) .

IF(lSTFP-EO.lNIT;lND-ITERA.EO-I),GO TOo 200
S2C1)1=S2{1 V1 +Z18STRES{T KK oIS [1)142284.STRFS(T XKt qgllell1eZ30ST3F
StleXKe2,5Jek1)

200 CONTINUE

400

450

500
600

rT00
200

EFFECTs
EFFECTS*

SOURCE STYATEMENTYS =

21=23 =

CONTINUE

00 450 I=1.3

SI(LI=SI(L)*DELYAN/S,
S201)=S2(1)%0ELTAM/Y,
IFCISTEP.EQeINIT,AND.ITERALEQ.L )} RETURN

DO 600 I=1.24

=0, N

DO 500 J=1.3 -
T=T¢80CJ+130S1(J)~AllJelI"S2( 1 B
SCE)=SUE)ewGT{ DY OWGTLE )T

IFLJIoNE NGAUSSORL T L «NE JNGAUSS) RETUAN
AB=XCSYC /4.

00 700 I=1,24 <
S{E)=S(1)san

REYYAN

END

MCTERM,ID.EBCOTIC, SOURCE «NOLIST ¢ NODF CR o LOAD MW AD ,NOTEST
NAME = TRUEPY ., LINECKY = 56

37.PROGRAM SIZE = 2960

NG DIAGNOASTICS GENERATED
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RELEASE 2.0

-

an'n

ico

150

. 249

280

"N

3ce

10

IRPLICIT REALSA (A-M,0-2),
INTEGER NGAUSS,NLAYER
DINENS [ON WGY (NGAUSS ) (0( 9, 28, VGAUSS s NGAUSS) .E( 3, 3. NLAYER} +EE(3,3),

INTEGER®*2 ([-N)

. EEZ(3.3).EE2Z(3.3).5K¢€9,9) -

CORON SKTI2‘.21!-5(2!’.'(2‘!.06(9!.S(I(Q-?C)-Sl(3)
IFCI YIELD.EQ.1) GO TO 300

IVIELD =0 FULLY ELASTIC THARU YHLCKNFSS

SKLL ot )xTHeEXX

SX{1.21=0,

Sx(le3tm0e —

SKtlea)nTHOEXY

SEt22)xTHrE22 N
L 2e3)25K(2, 23 -
Sx(?,4)30,

SKC 3430 25K(242)

SK{VYes 1=, N -

<8, 0)zTHOEYY h
Elalmatpetnsi2, )

SHU T, TIaE g AN

SK{7,3 I=FLeEXY
SK{B.T)=SK(7,m)

SK{ N, R j=F)sEYY

SHIF V240t OELZ
IF{ISTEP.NEL1.0RITERANELT) 50 TO 2
00 150 (=16

DO 150 J=S5,8

SK(1.4020, O O

G0 TC 280 :
SKEL 5 1=THEEXXSDG(S) g
sx{1.6)=treExvencie)
SKI2.%)=TNeE27eDGI6)
SE(2,412THEC2Z4DG1%)
SKE3e5)1ISK(2,95)

S VD InCN(2,6) ! -
SKLQ 5 )xTNSEXYSDG(S)

SK({4.8)xYHeEYVENG(H) )
sx:s.s):rn-:e:x-oo¢5)ouc(s)OrzzooG(a|-nc(ol)051(1)k
SKES,61=x MO {(EXYIEZZ)ISOGISI®NGI6) IoSI(3) N
;;ts.s)aéqocevvooc:g;coc«o:oezz-oct5)‘96«5))051(21 ™
Kxo L’ L N

GO 10 3mg v

IvYIELD=)

4

L

YIFLDED AT AT LEAST ONE INTERGRAY ING POINT THRUY THECKNESS

2T 310 jap,.)

™ 317 J=1.3 - e
~Flf.90=C, o2
FE2t1es3=Da
EET?(L a 410
SENlLAYED -}

% Pt — —~~
K . - ‘{\.—" -
1 ] o
‘ - o . .
e .
- ==
_ rd -
STIFP DATE = 77154 11722735 ELEASE 2.0 STIFF DATE = T71%a 117227
o
SURROUT INE srtr#(ncauss.NLAvsa.JJ.|(.tsvzn.IVIELo.exx.exv.svv.szr. DELTAM=TH/N )
= WGTo€u THOXCoYC o 00 TERA) Z1==THr2. — .

D0 340 KXz} 4Ny2
Z2=Z 1+DELTAN
23=22+DELT AM
on 320 1=x1.3
oD 320 J=1,.3 .
EFCI 2 J)=EEC oI SELL s JuRKKI4AGOE( T JoRKKI1DSE (T odeKK$2)
EEZ( 1o JI=EEZ{Ie)oZ10E(T ¢ JoRK)+22€800E( Lol XKG1DSZ30F{ [o)onxs2]}
320 EEZZU1 2 IISECZZIN 4 JICZIOZUIRECT oI oKV ) 07282200, ( [0 JoKNO1 )82 302 0L
. TedokKe2)
Zi=z
340 CONTINUE
DO 345 [=1.3
DD 345 J=1,3
EECI.S)=CEC L, JI9DELTAN/ 3,
EEZ(1,J)=EF2( 4, ) 8DELTAN/ T,
345 FEZZC1,J)=FEZZ(1¢JIODELTAN 3,
SKOL I P=FECL, 1)
SK{1.212FE( 1, 3)
SK(143)=FE(1,3)
SK{1+8)=FE(1,2)
SK(l-S)*EElI;Il'OC(Sl*FE(I-!)‘DG(b)
SKC1O6ITEE( L. 2)%0G{BI+EE(L.3DeDG(S) ///’/
SK{1sTISEEZ(L 1) —
SK(1sA)=EEZ(1,2) e
SK(l-QlSZn'EEZII-3) <
SK(2,2)=FE( 33T .
SK(2,3)=EF(3.3)
SK(2.4)=EE{ 2, )
SK{2.SITEEL3.3)%0G(A) ¢EF(1,3)187G1S) p
SKE2,6)=EE(3,3)90GISISEE( 2.3)¢71G(4) -
SKE2 o 7TV2FEZC(1 +3) "

SKE2,8)EE2Z( 2.3} .
SKl2.9)22,8EFZ(343) .
00 13S0 J=3,9
350 SX({3.4)=SK{244)
SKUAAV=EE(2,2)
SKIASI=EE(1.2)DCISI4EE(2,3)eIG(C ) .
SKUALE)=FE(2,2)%DCLEICEE(2,3380G(%)
SK(A PY=EEZ(1,2)
SK{AA)SEEZ(2,2)
SK(A.9)=22,0F2({2.,. 1)

* DGL6YeSIL 1Y
SK{S+6) ={EE(L +2)¢EE(D S31DGI6 I4FELL «3IPDG(SISOGISIIEF (2, T s
. DGIAI*DGIE)+ ST

SKESTISEEZ(L o1)9DG{S)I¢ERZ(1,3)*D016)
SK‘%-S—}SEEIII'Z"DCSSiOtFZl2.\0'06!6!
SKUSe9)=2.v(EF7I3, Y SOCTHDIOEEZ (T4 IVONG(5))
SKA6)=FFI2,21%D016)18NGLEIsFFI 1,105 ( 51 =G ) 02405 ¢ (/y Y1OALLE 1o
. [ S R -0 ]
SKEG6sTIZEFZL 1.2V 0DGC(BIPELZ(),31%30(5%)
SKI6BISEEZ(2.,2)1%DG(6IIEFZ(2,3)1806(5)
£

2
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RELEASE 2.0 STYIFF DATE = 77158 11722735 RELEASE 2.9 STIFF DATE = 77154 t172273%

SKCGIIR2,S(EEZII(IVSDGISIIEEZ(2:3)*0G(6)) 428 Ts0.
SKCT.TISEEZZ{L 1) 0D 430 KsK),K2
SKITLAISEEZ2IL L 2) . 430 T=T4D(KeTadJellIOSKI (Ko}
SX(T7:9 )2, 0EE22( 1.3} SKYUToJ)=SKTIT,3)eTowGT{IIIOWGT(IL])
s . SK(B.B8ISEEZ2L2.2) .= 136 IF(MEQe5) NMaMM+] N .
SK(8,9)x2.5CEZZ( 24 - 438 CONTINUE e
SR )x8 ,SEEZ2(I3) - IF(LLEQ.6) LL3LL#1 I
xx9 o 440 CONTINUE
- 380 DO 393 “ll7.l B60 IFLUI.NEJNGAISS ORI I NENGAUSS D‘IJEYUDN
LEflet AB=XCeYC /A&,
N1t 393 JA=xf.bL DO A0 I=1.2a
390 SK(leJd=tx{Jol) B DO 480 J=1.24
OO 429 I=1,9 480 SKTA1.J)=SKT([eJ)%a8
[ 3] 490 RETYURN
™ NO 418 J3l.2e END' '
Mxus ) - a
IF(%.GT.3) GO TO 404 : FFFECT* NOTERM. I10.ENCDICs SQURCF s NOLI ST, NODE CKoLOAD s NOMAD . NOTEST
IFLIVIELDL.EQ.0.AND. [.GET7) GO TO 418 SFFECTe NAME = STIFF e LINECNT = s6
IFLe.E0.2) GO 1D 402 SOJRCE STATEMENTS = 165,PROGRAM SI2E = 5792 .
- Xi=3 JR—— NO DI AGNOST ICS GENERATED
K2=a «
, G3 TN a8 ‘
402 <=1 %
KZ=? . v -
- GO Y0 a08 . .
4C4 x1x9% f
TFCIYIELDEQaOeAND.T oGE7 . AND.T .LE, 8} Kix7 — )
IFCIY IELDeEQe0sANDe[o€GaD) KizQ - '
K229 B R
L TFLIVICLO WEQ 0 JANDL T LF.6) X2=6 9
IFLEYIELDLEC. 0o ANDL ] oGE o7 ANDL I .LE.8) K2x8 :
. 408 S<i{1«I170. > '
D} 410 xsKi.x2 y
- 810 SK1CTedIaSKICTedIOSHIT KIEO(KeS  JI LT
[E(N,£0,6) M=0 :
: a8 CONTINUE
470 ClnY INUE®
LL=Y
DN 487 [x1.24 -
L3(1eti=LL o6 h
"ot L
- or a3a Jzi.2a
“ Ml o) )-Muos f«
TFIL.GYeI) GO TO 424
IF(L «£Q+2) GO TO 422
' » Kt} —
[ k] .
G0 YC'a28 . = ;
e22 <132 i .
K22 R
S0 TC Ale
424 x} =8 ’ .

a

-8ht~

— <2=9

N
TFUIVIELN EC.O ANDJMLE o3 ) K256 —




RELEASE 2.0 ROT DATE = 77154 11/2273%

SUBROUT INE ROTENJOINT NELEMGISTEP NToLKsH s IPLNAR,NOD JLL NONCOP,
» NIUPERLINIT,ITERA)

IHPLICIY REAL®S {A~M0-2)4 INTFGER®2 (I~N)

INTEGER NJOINT o NELEM, NONC 0P, NIMPER

DIVENSION H{3eJeNIMTERNINCOP) ¢ NODEASNELEM) 2 C L 3)

INTEGER®2 [PLNARINIOINT) JLOCALZ® L°/

CINMOY SKT{24026345024) 00 (283 DGID)SKIL9.24),81( )

’ EIUT VALENCE (C(Lt STL1DY

c
[ 4 TPANSFORM ELEMENTY ST IFFNESS MATRIX AND RESDUE FORCE VECTOR FROM
< LICAL YO GLOBAL COMRDINATE FDR THOSE NON-CDPLANAR JOINTS

\ <

IDe1 / , -
IF{ISTEP.EQuNT) GO TD 550
3% 690 1ixi.8 Vs
DY 650 JJxlle.n
50 500 1221.2 )
. fis601(s3052-8 N

DD SC2 2231,2
TFUML.FRed)eANDL2.6T442) GO TO 500
IR FFIRIPFEL -
IFUIPLNARINGD(ISQLK) D .FOLLOCALY GO TO 250
- ITINIPDER,EQ.4) 10x)y
EFULINELI)ORLT2.86,132) GO 1O SO
03 a9 (22,3
“zlrlt=1
Kx=f-i
N0 AT KEigKN
NIK e UL -1 v
Q89 SKT{M N)SSKTE(N,M)
50 DO 203 t=1+3 o
Mz=ieit~1t
DO 1C3 13=1,43 !
- Ctar=s., _—
. DO 100 xk=x},3
Nsxe 31t
$C0 CUIIIC(I)+SKTIMNISHIKe JoIOLL)D
- 0D 200 J=1,3
N Mz Jedit=-1}
2C3 SKT{M.A)CLID
290 IFLIP NARINOOCIT.LK}I.EQ.LOCALY) GO TO SO0
. IFINTYPFR,ECA Y TORL !
DO Al Jxi,.3 ~
NE Je g1 -t
DD 382 1s5t.3 e
Ctir=2.
D™ I K2t ,3
Nz iy~
¥CS CUII=CEiEIoriRal «IDLLI*SKT(MM)
oc 899 11,3
wztoti~g

-

330 S TEMNICLLDY
SLO LUNTLNLF
53D 7OV INuF

RELEASE 2.0 ROT DATE = T731%4
. o
IF(ISTEP.EQ.INITANDJITERALEQ. L) RETURN
650 DO 900 If=1,4
IFI(NIMPEPR.EQ8) 10=11 .
IF(IPLNARI(NCO(S I +LX) ) 2EQ,LOCAL) GD TO 900
. DO %00 (2=1,2
11=69{14¢3¢12-8
00 700 I=1.3 -y .
Ct1¥=0, _
DO 700 K=1.3
MEKe XL~
TOO CLTI=CEA)*MIK I+ IDsLLIOS(M)
D0 800 13143
Mxlert-1 .
800 SimM)=C(1)
900 CONT INUF
950 RETURN
END
EFFECT® NOTERMGID,EBCOIC s SOURCE ¢NOLIST ¢ NCOECK L OAD s NOMAD , NOTEST
EFFECT® NAME = ROT o LINECNT = 56 R
SOURCE STATEMENTS = 66 4 PROGRAM SIZE = 2715%2 —
MO DIAGNQSTYICS GENERATED
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v

SRR W S - -

11722718
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. RELEASE 2,9 sYoRe DATE = 77154 11722735 RELEASE 2.0 STORE DATE = 77154 117227138
SUIQIOUTINE STORE [ ASART,NELEM NFRFE (LK, MMAX s MTW ICE« ST NFTRST,NLAST, JE(LL~ L )ENFREE
s NODs NREAC.INOI{C.NTOTAL] DO 523 M1z 1.NFREE
ITWDLICTY REAL®S (A~H,0-Z), INTEGER®2 (I-N) . MMI =NREACT (NODIKK LK )~1 ) ¢NFRFE¢M] )
INTEGER NRART ,NELEM, NFREE ;NTOTAL MMAX MTWICE sKREAD JKWRITE IF{vMI .FG.,0) GO TQ 521
DIMENSION TNDEX{4), ST{MMAX MTWICE) oNFIRST (NPART J o NLAST(NPART ), IME=1eM1
. NODTANELEM) INDICINI_ENMI NIEAC(NTOTALY 00 520 Ni= L NFRFE
COMMON SKT{26,241,S(28) ¥ {24),0GI91:5K1(9.24),51(3) —_ NNJ=NREACTINOD(LL LX)} -1 )*NFREE®NJ)
c IF{NNJ.EQJD) GO TQ S20
< STORE STIFFNESS WATRIX INTO COAQESPONDING PARATITION DN DISK TFUIPARY ,EQIPART Lo ANDNODILL 4 LX) o GT NLASTIIPADT I} ) NNJ2NNJeM]
€ IF(MMTIGT,NNI) GO TO 520 .
. TFCINDICILK) s NEol «ANDLINDTICILK ) o%Ee12) GO TO 450 - INJEIONY
IFLLX.NELT) S0 TO 300 © IFLIMTLGT A INSY SKTEIME L INII=SKTE INISTHE)
IPART YIS ! STUMME KHII=ST (MMIsNNII ¢SKT LM ¢ INI)
12aaT2=2 . §20 CONTINUE
KREADxY 523 CONY INUE
. YW VE =2 * $25 CONTINUE
. GO TN a50 . INGEX(KK =Y

30 17ARTV Il PARTL ¢}
nl°l"Y?==l°AR‘l20‘l
450 20 50% KKst.s —_

NRIOUND =NPOUND e )

IFINPOUND.GT+2) GO TO 534

527 CONTINUE

S5CS [NSFX{vK)mO - v 838 IFUINDICILK DNEL2.ANDLINDICILK) .NFLTZ) GO TO 528
. N0 32 UL =Eia2 IF(LKRNELNELEMGAND.JLLNE,TI) GO 70D 528 ,
- N N ND= ) - - WRITE (3) MINEs({STIKI K2} K22 NLl)eK1x].M1)

20 527 Kumi.4 "0 Y0 530
IFLINDEXIKK DI €Qal) GO TO 527 S$28 WRITE(KWRITE) MI NBe((ST(KI K2} K22K14NE)oX1F) o] )
20 S10 “vs[|PAATL, IPARY2 , N $30 CONTINUF
[FINPDECK LK) oGE s NFERST (NM) s AND.NODUKKs LK) JLE(NLAST{MM}) GO TO 515 IF{LK.EQ,1} GO YO 600

S40 CONT INUF - EFUINDIC (LX) cEQal «OR,INODIC(LK), CO.12) O TO SCO

~06¢-

S15 IFINAROUKDJNEL L) GO YO 5317

IF(LK .EQ.NELEM) RETURN

IF(LK.EC.2} CQ YO 516
IFCINIICILK) o €D 1ANDLILLECe2) GD TO S16

BACKSPACE KREAD
500 BACKSPACE XREAD

IFEINDICILK) sEQeL24ANDJL +EG22) GO TD S16
READ (RREAD) MEGNIo{(ST(KL (K2) oK22K1, N1} oK1=1 M1 )

600 AACKSPACE KwRITE -
IFEINDICILK) JEQe2.0R, INDICILK}LEQ.12) GO 1O 703

30 12 5t9 BACKSPACF KWRITE N
~ 516 Nfexusey 700 KKZXREAD
IF LR LEQNOART ) NNTMW - KREAD=KWRITE =
30 AaAZ [T aMM,NN \ KR TE=KK
XZNLASTULL benFree | RFTAN
0 46D LF1eK END - —
NKzZK -4} &~
IF(NREAGINK ) JNELO) GO TO 455 - IFFECT® NOTERMID.EBCOIC: SOURCF ¢NOLIST NODECK LOADN (NOVWAD (NOTFST
440 CONT {NUE . FFFECT® NAMF x STORE ¢ LINECNY = 54
ASS (Flll.Fn2.uM} MIENRFACINK Y SOURGE STATEMENTS = 88, PROGRAM SIZE = Isan

IFCL L eQante) NIZNREACINK) sN)
450 CO%NT Ut
fFUEMYM e Q. NPART) NiTu)y
DU 179 K2t M
e N LTS LKA » R
175 STiR,L)3N, 5 .
519 1223 zun @
317 IFL UND el el e ANDMMLNF L SPART) GO YO S22
, VEESx-13eNFREE N
N S2% LLTies
. IFIHMDIIRR LK) GToNODILL 4L K)) GO YO 525

NO DJAGNOSTICS GENERATED

- pon .. a0 s
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RELEASE 2.0

CFFECT ™
TFFECTs

SUN ~ )

DATE = 7715s 11722735
SUSROUTINE SUMINJOINT (NELEMoNFREE(NTOTAL o Us [PLNAR ¢ NOD (LK)
IM2LICTIY REAL®S (A-H,0-2Z)¢ INTEGER®2 ([~N)

IN"ECEE NJIOINT s NELEM,NFREE,NTIT AL

DIVENSION UINTOTAL) o NOD (A o NELEM) o IPLNARINJOINT)

COMMON SKT (24,24)45(24).w{24),DG(9),5K1(9,24) S

CALCULATE  TRUE FNRCE

n}\n

IF(LX.NEsl} GO YO 532

100 00 189 =1 +NTOTAL - b

180 S( 1130,
$32 DO 540 [=],4
K2 (NOD(] LK)~ 1) SNFREE
DO 533 J=]| ,NFREE
535 U reJ)I=UIKe J) ¢S] ~1)eNFREESY)
340 COMT INUE '
IFILX o HEJNELENM) RETURN
¥RITE(6,585)

5C5 FOQ'IY€'-'-TS-'JOINY NO'.TZO-'C“ORDINAVE‘.760.

TRUE FORCES

- Tofs® *HT200(LELOCAL Y e T38:° X~LOAD® ¢ TSI *Y-LOAD® (THEAL* Z~LDAD® 4T
OR3P N-VOMENT? s TOB P Y-MOMENT? (T 13,9 Z-MOMENT 0./, ¢,722,9G=GLOBAL )"
® /7

20 S07 1= ,0401NT

Kx{f-L)sNFREEG]
X$ = ONFREE
S27 ERITEC6e 420) T2 IPLNARIII o (U( D)4 J3K, K1)
120 FORMAT (Y 'oTS.l5.725.12-732.6015.sl
QETUAN
END

. &

NO!ERN.IO.EECOIC-sounce.MDLlst:NUDECK.LOAD.NonAP.Noresr
NAVE = SUM W LINECNT = s6
SIJRCE STATEMFNTS 3 23,PROGRAY SIZE = ~

1232

M3 DIAGNOSTICS GENERATED

4

)

St .2 s

v
| -
Ki .
RELEASE 2.0 RES NDATE = T7154 11722735
SUBRDUTINE RES(NJOINToNLOAD JNFRIEESNDISPe ISTEPINTTeNTSIZELPLOADY
b - UDISPoUs P IPLNARINREACSLF o NI NTOTALGNYRLTELNAREADNETER,
[ ITERATOLNCE DI SFRRJERROR «XLEVEL)

(MPLICKIT REAL®8 (A-H.D-Z), [NTEGERe2 ([-N)
INTEGER NJOINToNLOAD NFIEE NDISP,NTOTAL +NWPITE JNAFAD
DIMENS ION PLOAD(NFREF JNLDAD) ¢ P(NTOT ALV cUINTOTAL T NREACKNTITAL ),

- LFE(NLOAD) s NUTNDTSP) yUDI SPINFREE sNDISP) o I PLNAR(INJIOINT)
160 DO 180 I=1,NTOTAL
180 PC1)=0. -

FRORM=0,

IF(NLOADFQ 1l eANDLLF(NLOAD).EQ.72)
WRITE(6,350)
350 FDHMAY('-'.TS.'JOIN' NO'.120.‘CﬂnPOINAYE'.YﬁO.‘CU'ULATFD ADOLIEN F
SORCY o7 P eT204*IL=LOCAL e T3R,* X~LOAD®* , TS3.°Y-LDJAD®+T692,"Z-LLAD,T
‘BIS.'X-MOMENT‘-TQG.'V—NOlENT'-TllJ.'Z-VOMEN"./.' $ eT22,'G=GLCIALY"
., /7)) .
00 185 [=1.NLOAD
Kx(LFU(I)~1)*NFREF
00 182 J=1,NFREE .
PIX$J)=PLOADL Jo 1) oXLEVEL -
FNORNZFNORM+4P {KS J)eP (K¢ S)
=Kil- .
_ KI=LF(1)eNFRFE
185 WRITE(6412C) LF(I)JIPLNARILF(I} 1 o204 d=K,Kl)
200 IFINDISP,EQ.1 .AND.NU(HD(%Dl.FO-Ol GO THO 3Inn
DD 250 I1=1,ADISP -
K=(NU( T}~ )ENFREE ™
0N 250 J=1,NFREE
IF(DARS{UDISP(Js1)1eLT.0,00000C1) GO TO 250
FNORM=FNORVMIU(KSJISULIKs D) .
UiKs J)=0C.,
250 CONTENUE .
300 RANARMZQJ,
DO SRS [=1.NYOTAL
IF(NREAC(1).EQ0.0) GO 1O SAan
PLLY=P(L3~ULL) . -
RNORVM=RANCRMSP (1 )8P( 1)
588 CONTINUE
ENDRM2DSORT(FNOAM}
RNORMZDSCAT( PNORM ) F/
RESERA =MINORM/FNORM i
WRITE(G6 605}
605 FORMAT(*~2,T5,% JOINT NO®,T20,° COOROINATE® o T60," RESINJAL rnorrs
. P 4/et P T?0, {L=LOCAL © T IR, 1 X~LNAD* TSI, 9Y-LOAD?, T6R,52-LC20%,
0&3.'x-MOvENﬂ'.YQB.'Y-HOHENT'.Yl!J"l-vnuFNT'./.' '.T??."‘GLLBAL)'

LT EA - q
DN 607 1=x1 NJOINT ~— -
Kx{[~-1)*rFREE+] %L.
s} e NFREE - %
607 WRITE{6+120) 1o IPLNAR(IS +(PLJ)es=KeK])
L20 FORMAT S ¢ T5,15,T25,A2,732,4D15.51) =
WRITC{6, 1500 RNORM,FNORY, RESFRY

150 FODRAMAT{® * ,*RESIODUAL FNRCE NIORM =',D20.9¢7.:% *L*APDLIE) FRO7" » -
® =¢,N20.%e7e% PL'RATIO OF HRESIOUAL FURCE NNAN T) APPLIED #C7F

Gn 10 209

182

o - " Cp . P

_‘[ gz..



’ : . :
RELEASE 2,0 RES DATE = T715e 11722735 RELEASE 2.0 DAYE = 77154 tt/72273%
U 201050 * SUBROUT INE NEW(NELEM NLOAD(NGAUGS eNLAYLR,NFREENTOTAL ¢ 15TF2, LT,
WRITE (NWRITE) P XLFVEL . NT NI TERITERANWRITE,SI2E,XLEVEL. PLOAD . JTNT AL B,
WRITE{G4140) NWRITE . STRES(PLATRNGTITSRINLF . KEEP JNREAD dERRCP, TOLNCE )
140 FORUAT(S o v agg DATA .UP TO THIS STEP STORED ON DISK &%,12) IMPL ICEY REALSS (A-H.0-21. INTEGFRe®2? (1-N}
ERRIR=OMAX {(RESERR,DISERRY ) INTEGER NELEMsNLOAD:NGAUSS NLAYER NFRFE (NTNTAL NWRETE  NIFAD
[FINITER.NE. 1Y GO TN 820 DIMENSION PLOADINFRFE(NLOAD) JUTNTAL(NTOTAL), P{NTOTAL ), ST2ES{ I, NLAY
IF(FRRORLLT.I10.,*TOLNZE) CO TO 700 . ER S NGAUSS NGAUSS) PLATRUINLAYFR sNTAUSS s NGAUSS T ,
. wRATFLE.010) . TOTSRNE3.2 s NGAUS 5a NGAUSS ) oL 7 (NLOAD) ¢ SEEP (' ILAYE R, MGA
W10 FOPUAT( 134, ¢BR0CRAN TERMINATED DUE YO HIGH EIIOR, REOUCE EITHER ST hd USS.NGAUSS)
$IP S12F CR TO BE ADOED RESIOUAL FOPCES®) [4 ;
sto> . < STORE RESULTS TO INSURANCE DISK WHEN EWROR LESS THAN TOLERANCFE
820 IFLISTEP LY (NT~) ’-ANQ-IVEQA.GT‘.Z.AND-EPROQ.LE.TQanE) GO TO BOO C
IF{ITEA.€G+2) GO TG 439 : IFCISTEPEQINIT,ANDLIYERAL,EQ.t} GO TO 6CY
TFUNIVERCEDS2 1 ANDLRESERQLLE,FRAOLD) GO TD 450 IF{ITERANE.1Y GO YO 620
IF{ERACALLE.FRROLD) GO TN 4%0 Y IF(NITER.EQ.1.AND.FSTEP.NE.NT} GO TO 601
WRITE(G,040) - IFLERRORGT .TOLNCE] GO TO 600 -
843 EDIVAAT(CC® ¢ *DIIVERGENCE D NON-VONOTONIC CONVERGENCE OCCUR. USE SMA REWIND NWRITYE
SLLER STEP STZE*) - . RFCIND 13 - i
sTop . . READ (NWRITE) UTOTAL
s00 ERR)LD:EQQUR—\ B WRITE {13) UYOTAL o
- !FHYFH_A.NF.!) REYUAN DU 100 I=],NCLEM
P22 IF{TIRDV.GF .S Qs TOLNCE D) SI2€ExSI2ZE/2. READ (NERITE) STRESPLATAN, TOTSANSKFEP
o0 1F(IPADYLLEL 5. 1S TOLNCE) S[26=2.%S12E o R WRITE (§3) STRES,PLATRN, TOTSRN,KEEP
qEraan 100 CONTINUE
€0 READ (NWRITE) P,XLEVEL - .
. WRITE (13) PoxLEVEL
TFEECTY  NOTERM.ID. EBCOIC, SOURCE oNOL IST , NODECK s LOADs NOYAD e NOTEST WRITE(6,200)
SEFICTe  NAWE ® RES s LINECHT = 56 ' 200 FORYAT('0', ‘AESUL TS STDRED ON I NSURANCE DISK #13¢)
3IUACE STATEMENTS x 65, PROGRAY SIZE = 3844 600 IF(ISTER.EG.NT) §TQR .
NJ DIAGNISTICS GCENEFATED c
[ SUM CURRENT LOAD INCREAMENT AND RFS JOUsL FIRCES
o [
609 IF(ISTEPLEO.1eANDITERALEQ.1} RACKSPACE NRFAD
IF(ISTEPEQG.INIT,ANOSITERALFQ.1 ) PEAD (NREAD) P, XLEVFL
601 IF(NLOADGEO.1+ANCWLF(NLOAD) £Q0.0) GO T7 621 '
Lo - DO 999 10=] NTOTAL
- -— - 999 PLLO1=D .10 1O} .
"f\> . DO 610 I=x1,rCAD
. « = . K=(LF{ L)-1)*NFREE
- 00 610 J=1 JNFRFE
. 610 PIK+II=P(K+I)4OLOADC J,()0S12E B
. 8§21 XLEVFU=XLEVEL+SI2E :
' 620 WRITE(6.622) ISTEP.SIZF . XLEVFL I TERA
622 FOQAMAT(* 1% TS 4*STEP =*,15,730,° CURTENT STE> SIZE =',
. *FF0, 5 TAC, *CUMULATED STEP SQIZE (XLFVEL) =*,Fi0.5¢/7+° *oT5.
. . ’ S LTERAT(UN =00 154/7)
RF TUKN
- ’ END
T EN — - EFFECT® NOTFAMe 1D, EBCDIC, SOURCE ,NOLEST, YNDF CKeLOAN NDMAR (NATEST
~ — Ao CFFFCT®  NAML = Af s LINECNT = £h
STURCE STATEMINTS = IS.PROGAAM SI1/E = 272¢
N DIAGNOSTICS GENFQATED K
,*3;‘ .
v -
* . ,
’ o
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FELEASE 2.0 ”ix DATE = 771%a
. f
suqaaurlue FIXINDART GNDTSP NFREE, NUMD, NTOT AL (MMAX MTWICE, SEZE
- UDISPe P ST NFIRSToNLAST NREAC ,NUL I TERA)
|u=Llc1v REAL®*S (A~H,D=71, INTEGER®2 (]-N}
INTEGER NRAPY 4 NOISPoNFREF  NTOTAL «MMAX  MTWICE
DEIMENSION PIMTOTAL) o STEUMAXSMTWICE) JNFIRST (NDART ) . MLAST (NPART )4

—_— . o NUINDISPIJUDISPINFREFL JNDISP) ,NREACINTOTAL)
-
c INTRODUCE APSL IED DI SPLACEMENTS
4
RECIND 1
SE4IND 3
NYwIO " ’
DO 670 KK31 NPART
IEAD (1) MINI(ISTIT o) o dmloNT )l =1 oML}
MEz{NFIRST(RK J-1 } SNFREE ¢ ] -
NJINLAST(KK) SNPREE © e
OO 8§23 I=MI.NJ .
1F(VEACCE)E0Q,0) GO TO 620
P(NOEACIT) I=PAL) -
220 CONTINUF z*
% IF{NDISPeFEQs 1 e ANDJNUINDISP) E2.0) GO TO 660
IFLUINDISR) LT NFIRSTIXKKIY GO YO 660
00 553 I=1.NDISP —
IF (UL T NFIRSTIKK) .OR.NULT D GEFRLAST(KK)) GO T 650
K {H%U( §)~1L ) o FRFE 4
D5 640 Jx) AFRFE T .
t IF{DABSIUDISPIJ.1}).LT.0.0000001) GO D 6Ad
MITNBFAC RS JY - "
W vl N VA } ” < .}
CRT UM IV IIISTIMIeMII L 200082
VDIV SIRSTIMILMIISUDISP( o] ) $SIZE
IFUITERAMME,L) P(¥J120. D 9
£40 CONTEINUF
( 550 CCNT INUE N
460 VM=wis} .
. LLaNg~ul T .

WRETE (1) MUl o C{STOR AN o I=Ta™M1) e i31oeMIYoUPIT)oT21,4N1)
IFIKK,LED,NCART ) RETURN
TURITF (1) CAST UL 33,0 %3 oML Do MN, NY) -
70 (DNT INUE
HETYURN < ~
END

. &
TFEELTe  NUTCAVLI0L.EACOIC o SOURCE s NOLT SToNIDECK L OAD « NOMAP  NOTEST
TEFECTY  MNAME x FIX » LINECNT = s6
SILICE STATEMENTS = 37,000GRAM SIZE = 2190
N DIAGNIST ICS CENERATED .

RELEASE 2.0 SOLVF DAYF = 77154 1172275

f
SURBROQUTINE SOLVE(NJDINT (NPART ,NDISP NFREE M YAX o [TOTAL(NTATAL, v ¥ 3,
- UeUTOTAL (AN IM I PLNARNFIIST yNREACDISTRR, I TFOAL
{MPLICIT REALAB (A-H,0-1), INTEGERS? ([-N)

INTEGER NJOINT NPART (NDISP (NFREF MMAX,NTOTAL

OIMENSION UTOTALINTOTAL)I . UINTOT AL ). AM{MUAXY , QUAX )}, BM(VMAY , NUATY ),
* NFIRSTINPART) ¢ NREAC(NTOTAL) ¢ IRPLHANINIDINTY,
- F(210)+TF{210),0158{21N0)1,C(216}

COMMON SKT{28e¢24)4S{24)wi28),2G(9)5K1(D,2A),51(3)

EQUEVALENCE (SKTIIIoF{1) 1 a{SKT{210)sTF (11}, (SCT(821)470%C10 T,

- (SKIE1).CO1))
REWIND 1}

REWIND 2

OFT=0.

DO 300 LL=1,NPARY .

READ (1) M N (EAMIT 3 ed=ToeM), Izt M) (F(T)elzlsN)
IFILL.EQ,2) GO TO &S0

DO 100 1=1leM

FLI)=FLI)=TFL ()

DD 100 J=I.M

100 AMIT ) =AMLT . J)~BIM{ I}

150 CALL CHOLES(M,AM,LL+DETMMAX)
DO 2S00 I=1.M
DISt1)=0.0
DD 250 J4x).™
TF{1eGTad) AM(EoJIZAM(J,])

250 DIS{I)=DISEI) + AM(L.+J) * F(J)
‘IF(LL.FO.NPART) GO 1O 350
READ (1) (L(AME e J)s Il oMo d=1N)

WRITE (2) MeNel(AMIToS) s SFT oMl oI =1 aM) o (FLI)ol=)om),

. * ((BM(Tes) s E38gMIeUZT14N) -
DO 280 I=1.N

TF(1)50,0

DD 280 J=1.M

2680 TF(L) <TF{I) & BMIJ.I) & DISLI)
D0 285 I=1,M
00 282 Jri.N
CtJ) = C.0 -

00 2RA2 Kzl .M

282 C(J} = CUJ) $AMELKI*AM{K.JS

- DO 28% J=1.N -

285 ANET s J) = COH)

DO 295 1=x1,N
DO 290 Uzf N
ClJs) = Oad ~
DO 290 K=l .M
290 ClJ) = C(J4) +BM(XKIT) ¥ AM[K,J)
DO 205 J=l.N

295 8M(Jof 1=CLJ) o

300 CONTY INUE "

350 Mi=1TOTAL~M
D0 4N (=1 eM

400 UCMI+T)=DISI])
NAINPART =}

NN 600 LL=xteNA
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PELEASE 2.0 . soLveE . DATE = 77154 11722735 RELEASE 2.0 CHOLES DRTE = 77138 11722715 . —
- » 4
YACKSPACE 2 ) v i coe ; SUBROUTINE CHM_ESIN.AeLL +DET MMAX) . ° R
IFCLL.FO.1} GO TO a20 - s ° IMPLICIT REALSA CA-H.0-Z), INTEGER2 (1-N) R
. ® BACKSPACE 2 - B TINTEGER MMAX N
420 RFAD (2) I.N-HA'HhJ).J-!.“hl-l.'ﬂ-lF(l).l’!-ﬂ)o . ~ DIMENS INN A{MMAX,MYAX) . ' . * ,
L CUBMIL o JYa =t oMY, xt 4N) » C . —
) LI TR » ) - c DECOMPOS 1T [ON, DETERMINANT AND [NVERSIAIN
DO 450 [=],% v . c , ) .
A 03 450 Jz1.8 . i . ’ 00 20 TE2,N
450 Flldx F(1) - BRIT.+J) & DIS(S) - s DO 20 J=xteN ) 3 . X
, . OO0 550 f=1.4 : s 0= ' -~ § ~Kix f-1 ) ° .
- - TEN230,0 - . DO 10 K=1,K)
DD 500 Jxi.m b 10 A(I»JD‘AH-J)—A(K.IW/”K.J)/A((.K)
TFEEaGTod) AMCIodTEANMCIo 1) : . IFU1+EQaJeANDLAtTI+J) LELO.) GO 0 30 )
o SCO TENIZYEWPsAML[,J)eF(J) ‘ 20 CONTINUE
DISt 1) =TENP ) ' - . . DO 28 (=j1,.N 3
’ ., %50 UtM1+l) = TEMPT - £7 DETZDETNLOGIO(A(T 1))
* 439 CONTINTE R 2s AtTol)=terattet) . - R
TF (D] SP.NELO) oeuoev-onoumuunuz) - : 11=N-1 N - ’
WRITE(A.6%0) DEY 4 k 00 I 131,11 N
650 FIAUAT(? * (TS, 'OETERMINANT LOGLOIDET)=*,Ta0.025.13,/7/) . Jizlen <,
NApAvae, . 00 1 J=J1.N .
vElTOTAL . ' . ' SuM =0.0 - .
D0 700 J=1.NTOTAL ‘ . : Xix -1 U
JENTOTAL ¢ =] ' < . I 00 2R K=l ,x1 b
IF{NREAC(J).EQ401 GO YO 700 T 28 SUM3E SUM = ATKsF)SALK, ) X —
UTOTALTJ) 2UTATAL( J) +FIK) 1 AL 1) = SUMSA(J, ) . [
- "DNOINZ DNORMIUTOTALL JISUTOTALIJ) - B, 00 A0 r=1.n
Kax~1 . 00 80 J=leN ' / " 2
709 CONT InuE ' - - . SuUM=0, o7 - 4
- DNCRUZDSORT (ONORN) DO 6% K= J¢N N \ . 5
wALTE( 6, 720) - 69 SUMISUMEAT KT )SA(KyS)7A(K,K) . . i T
M 23 soﬂurt--.'5.'aul~" No'-Yzo.'cnoaomnsi.voo.-cu-u.nsm YOTAL) DI 80 All, s)asUM & - N
L P -.rzo.-u.z\.r'cnu.rsn.-x-msn-.153.-v(-msp'.ren.-z-olst--.v RETURN o
ATt X-RITAy YoTOB ' Y=ROTA. $oT113,92-RATA, *¢/,¢ *eT214°GCLOBAL ) 30 WRITF(6+40) LLeBedsACTed) .
: R ' © T @0 FOQMATE® 0% 4///e% "L STIFFNESS MATREX [S NOT POSITIVE DEFINITE, ©yug
: D1 733 Izl.NJOINT . SHOUT INE CHOLES FAIL AT PARTITIIN® IS4/ e® *,*Q0w? oIS 10X *CA* 15,1
3 IO WAL TI(6,420) 1 JIPLNAREI I o (UTATAL(J) o J2K, K1) o — SOX,'ALE,J)3%,020.5) = ) .
: AZT FOSNATEY ¢TS5, 15,T25,A2.732,8715L5) ; stoe \
. WOLTE(p,M5C) DNOPM _ - s ) , S
AER FORMAT(® ¢, 'DISPLACEMENT NORM =4.020.%) 2 — . . '
- I17¢1TERALEQ.Y) GO TN ary ° ' "EFFECTe NOYFRH'ID-EECOIC'SDUQCE.NDLIST-'JUDE(‘K.LDA'}-HOIA"’.N"!YF'Y
- ISERI=CABSI (NNORM-DTSOLO' /DONIN) FEFECY® - NAME = CHOLES ¢ LINECNTY = 56
¢ LI'UJ—He.MO) DISER® , . SOURCE 5TATEMENTS 2 JA PROGRAY S[IZF = 1899 , 'x{‘, -
: 302 £N0NAT(r 0, eqATITD OF DIEFERENZE OF DISP. NOHM TQ NORM DF TOTAL DIS NO DIAGNOSTICS GENERATED
A L em. 30,F15,.4) ‘ s N N
\ 63 19 gup | ot - N P
" ar) nrszaasa, / ‘. A . ¢ ~—
' aa3 nrsinzpnoem — .
T LR NIV \
a ' Fuo ’ N \ -
' ©° N - J\
EETCTe  NITEM [0 ,ERCDIC . SOURCE s NOLIST s NODECK L OADs NOMAP s NATEST .
Felote -amMc = SOLVE o LINECNT, = .50 N 4 ° . . - \
€% sov eva¥gvenTn = 7 m.nnnanu S12€ = as70 o -
: Y OBIALNISTICS GENEDATED - - ; © . o
. ° )
. , . , .
. . i > ,
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RILEASE 2.0 TQANS' - DATE = 77354 V1722738 RELEASE 2.0 TRANS DBATF = #71%a
e . - .
, SUARDJUTINE TRANS(NJOINT .NELEM, NONCOP ¢NIMPER (COORM o XC o ¥C oM oNOD o 11 Pla DSORT((AISe2) o (BTve2V s (Cres2))
- - NTRANS) Hltalefoll): =  DrL/sOL
y . IMOLICIT REAL®S (A-H,0-2), JNTEGER®2 (1-N) . ML 24 8eLL) = ., EE/O1
<t " INTEGER NJOINTINELEM,NIMNPER {NONCOP ) M HI143s0eLL) - Fizon
v DINENS ICN COQROL 3.NJCINT) olC(NFLFN!oVClNELE‘)-N(!oJ:NlNPER-’wm) HE2,1.10L00 = R 7 21 N
‘ . +NOD (& s NELEM) o NTRANS { NEL EM )y XEf 32 3) - MU2,2400L) = St s o1y -
e j i’ ¢ . M(2.3.14LL) =  T1 7 21
c FOUQ NODES TRANSFORMATION MATRIX , THI3ulelll) = Al 2 Py
c s 7 . “ H 3203t ) = a1 7 P} "
DO 165 LK=1,NELEM . . LRI 30D = €1 7o)
‘ - IFUNTRANSILK).E0.0) GO Tn g5 , Dl 2= CONRDCLIINODI2,LK))=COORI( T NID(Iol ) )
- LLENTRANS (LK) -~ - ’ . €EE = COnPO(Z{NODIz.LK3)-CUﬂQO(Z-NnD‘(J.LKg) ¢
i - XCLLXIn0. 7 Fl = CODPD(J-NOD(Z-LK')-COORD('!-NDD('!-LK))
DO 1 I=x3.a ~ o1 = DSORTC(DIe*D) & (EE*2*2) » (.FI"Z))
IFCl.NEe 1) GO YO 2 a R N . Dl 2 COOPDCINOOL14LK))I~COORI(1 +NOD(4,LK) )
650 5 Jx143 ' : g EE = COOND(2,NUDILLK))=CONRDL2,NODE 4o LK })
F XF(1eJ) = COORDEJINOD(E 44.%)) S F1 = COORDI I NOD(1:LK}})~COORDL Y NODLALK) ] .
XE€E{2+Jd) = COQHD(J.NOD(Z.LK“ .~ . Q2 = DSORT{(D1%¢2) ¢ (EEws2) » (Flree2)y
5 XT( V441 = COOMPUILNADIA LKD) ) ) . YCILK)I=1014G2) /2.0 .
ca TO 10 - - 165 CONTY INUE . .
o 2 ITt1uNE, 2) GO TO & - : RETURN : < ~
—— 03 3 J=1.3 s " . END e
DO 3 K=zl o3 N A oo . -
® 3 x6(xud) = COORD(INGO(K LKD) ¢ EFFECT®  NOTERM, ID. EBCOICSOURCE sNOL T ST o NODECK oL OAD +NOMAD s NOTES T
60 TO 1¢ = EFFECT® NAME = TRANS: o LINECNT = 56 i
4 IF( I.NE, 3) GO TO @ B SOURCE STATEMENTS °= 68,PROGRAM SI1ZE = 612
* [ 00§ .J31.3 NO DIAGNOSTICS GENERATED -
2 e | XE(1e43 = COCRADLJ.NODIALLKD) ¢ ‘ - 3 ; -
) e XE(2eJ) = COOROIILNADIINLK)) g t @
s ) 6 xE{3.3) = COOADCINODIE, L)) ? ¢ : - ’
. GO TC 30 ' '
.. 8 N0 7 5=1.3
XECLed), = COOROLILNODIALLKY ) .
\ (2441 = CCOFDIJINODII L)) A = . s .
FERELTed) = COIRDE JaNADLL4LKY ) B - . g
- 1O Alm AXEC202)-XE(1 02900 XE(3.30-XEML 3D 1= (XECIL2)~XE(1, 2)) #(XE(Z0I) AN .
. * —xEf1. 1)) ' ~ ' - o !
‘ ax:-rét$¢<l%::£cx.xi)-(xets.:)—xst|.3!) | - .
. ®  ACXFUX T REC 1. 1) JOUKE(2, V= XE( L+ 3)) i ) . , ) . <
€t % {XE(241)-XECEe1) I (XECI2I-XE(L2)) v, “ . ~ / e
> ¢ —UXECI L)-XECLo1}ISINE(2,2)-2E(1,2)) i ) - , . -
¢ 1.1fs 2) _ GO TO 9 . . ' :
T Ay 2 - A . ' " ! J- ) .
. 81 2 - M - ' .
® €t = = €1 ¥ — ‘\ - _ - - >
o v 3 Diz FFE240) - XECLLL1Y}  _ ‘ ot R
° FEx XE(J+2) ~ XEL1,2) - \
~ Fla XE£(2.3) - XE(1.3) N [ ' .
' - 91 = DTQATI(NI*E2) + (EES42) ¢ (Flos2)) ¢ | .
. xCiLx CtLx1e0i/78,0 | | .
. . A1 = VIeF] = CleFg e ! \ - )
St = CieDl ~ AgeFy . 9 \ .
Tl 3 AleEE - RleD) b N - .
21 = DSOHY ((H1se2) + (Sise2) or(tlgs;L» | B '
.
- . - : ' U v . -
kel - . f\ - 2
i . Ie o . °
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STRES§ DA:E = TTr1Sa 11722735
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e
SUBRODUT INE STRESSINGAUSS ' NLAYER ¢ JJe I 1oL K ELAS, SYTELD NHAPD ,EXPON,

. : J SOTeEXX e EXY.EYY JEZZIVIELD ASTEPJINIT HPRINE, -

« ° - NIRITE:E-STRAN-SVRES.DLAfﬂy.YDTSRN.KFEP.NY.!TERA
. ]

IV3LICTIT REAL®S (A~H,0-2). INTEGER®2 ([-N)

INTEGER NGAUSSoNLAYER NWRITE *
OIMENSION STIAN(INLAYER) ¢ STRZISII,NLAYERNGAUSS NGAUSS) +E(3,3 sNLAY
Ly ER)TEMP{3),SDLTAII), X(3), PLATRNINLAYER NGAUSS sNGAU
s < SS).XEFP(NLAYER JNGAUSSNGATSS ) o TOTSRNI 3.2, NGAUS S NGAUSS)

' v

FOR MASD=1 (LINEAR MARDENING MATFRIAL)

B e . .
DO 1090 KK=l o KLAYER ™7~ .
IF(KEEP(KKeJIe111.50.0) [P=}
IFIRESP(RKeIIell}eNEO) IBa2
00 300 N21P, Y -
EF{PLATENKX 4 JJo 1 1) oEQ.0.) SAAR=SY TELD
TFIOLATANIRK e JJe 1 1) eNELO.) SBAIZDASSIPLATRN(XKK ¢ J S [1)) SHPRIME +
aSYIELD ¢
arg CALL ™MCD

t2n

lf.svnFS(z.xx.JJ.tl).svnsstx.xn.Jﬁ%lxl.

T)oSBAR HPR IME L EXX EXYLEYV . EZ2,E( 12 oKK )y

EL12uKK)oF (1 e3ekK) oF (201 KK sE(2e2.KKILE(203aKK ),

eta.l.xnle(J.z.<<}.§(3.3.&gb.sx.sv.osu.x(|).x(2».x(3|

s .

LECISTEP.EC.INIT SANDLITERRLEQL.1) G TO

1F(N.E2,3) GO YO 850 N )

SOLRAL I IZEXXOSTRANC ] oXKK ) ¢EXYRSTIANL 2,XK )

SOLAALZIZEXYSSTRANIL JXKISEVYESTRANL? , KX )

SOLTALII=EZZeSTRANI I, XK )

IFIKFEPIXK . J30113.EQ.01° GO TO 350

FOFLTA=342(0.505X9SDLTAL1)40.505Y#SDLYAL2}+STRES(IKK,JJ1T)eSDLTA
T t31)/5BAR

IF(FOELTALLT.0.) GO TD 480

D3 SC0 I=1.3 -0 o

SOLTAC1)=0.

00 500 J=1.3

SOLYAC I J=SOLTACT I ¢EL] o JeKXISSTRANI J o ¥K)

PO 460 1=143

STIFSITIARK e JIe U1 ISSTRES(T oKKyJJo 1) ¢SDLTALT)

T2 "

D7 700 1=1,3 y

TTeX{ I FoSTPANC( LoRK)

DDLYAs V/DEN

PLATENINK G JJ T )IPLATRNEXK eSS, U1 F¢POLTA

GO Tr kCO

AY HEEO(aK ISl )20

70 5CC 12143, B

TECI( P I=STRESC LeRKe I 11}

STPES(1avXoJ el I} aSTAFSIT kKIS 1) 0SOLTALLD,

IFIN.EL.") 60 TO ang .

50

I

.

&

*o

.

el <:=)°24'(§YW5S(1-!RcJJ-IIDOS'QES(I.KK.JJ-II)-S'QE%(\-KK134¢Il)‘SYR

. FS(j.".JJ-‘Il‘%'aril?.&KoJJ‘ll)‘ﬁ'ﬂES(Z-IK'JJ.IIl'} ‘Sfﬂts()q
- KKeJIoiIIOSTRFSIVI KIS0 11)) .
FlSF.L 1.,5RA2) GO T2 8s0

¢

RELEASE 2,0

bbcﬂi(IiﬁsfﬁFs(chK'JJoll’-tE‘P(l)

—

Q

670

a7s
680

790
A00

450
1000

’

40

S0

890
200

90s
9?10
‘930

IS0

\

70
980
1200

o

EFFECTe
FFEFFCTs

—_—

STYRESS’ DATE = 77156 1172273

D0 660 I=31,3.

A!!(l'.!(lI—X(l)‘x(?)0!(?)‘!(2)0!.'!(3)‘!(‘l
332“1(I’.TEﬂp(l)-l(ll‘T&"p(Z)-X(ZI‘YE“PII|02.‘l(2)"E“°(Z)OG.UI(Sﬁ -
S)STEMP(]) !
C'YEUD(l"TEMP(ll—TE“P(l)'TEID(?)OTEND(Z)Q'FNP(Z’b!."F"(fl‘YE‘D(
63 )-SBAR*SDAR

TzA®A~-4, ¥asC

1F(T.GE.0.) GO TO w70 . - -
T=0.

/ T
6o tn 65’

T=DSORT(T)

Ti2(-AeT)/(2.%A)

YT22(-H-T)/ (2.8A) ° -
IF(DADSITI}.LELOABSIT2)) T=T) - PN )
IF(DABSIT2).LE.DABS(TL}) Tar?

00 8A0 1=1,3

STRES(1eKKsJIoIE)=TEMP( L) ox( [ )o@ -
DO 790 f=x1,3 -

STRANCI KK ITSTRAN{ KK ) #{ 1 . ~DARS(T) )

KEEP(XK¢JIol]) =1 - .
CONT INUE

IFIKEEPIXR 4 JJoll) oNELO) IYIELD =1
CONT INUE
TIF(ISTER.EQuINIT.ANG. ITERA.E0.1) RETUON N
[FJ2.EQNGAUSSAND LTI EO,NGAUSS) WRITE(NWATTE! SYRES.PLATAN,
TOTSoN,xZg>

—A

—_—

_ggz_

: ~_

IFCISTEP.NELNT) RETURN
IFIITERALNELL) RETURN
FEFILRGNE S 1 oORL I oNFalaOR I ToNELT )
WRITE(6.50) - A
FARMAT(€0%0///74°0" s TSetELENENT NNY o T205LNCATION ( INTERSQAT (v 20
BENTS 10, TS5J0LAYER NO'YT7A SCIMULATED STRESSFS [N LOCAL COJADINATE
PPl I24, 0 0=ELASTIC s /a® V2700 00X) " aT VB EI(Y)® sV P70, 1x ~ 6 UAL",
ST90, 'Y —  NOPMAL®.T110, SHFAR STOFSS® Y128, ¢ 1=0LASTICY, s/ )

D0 1200 Kx=l,NLAYER

JAFUKKGEQL1) CO TO 930 :

FROKK L EQuNLAYERLOR KEFPIKK,JJ 110, %E,0) GO TN 975 )
lF(KEEFCmdkl.JJ.ll).Eo.o.ANO.(EFo(x(ol.JJ.||p.+q.c) 63 Ty 1224
WRITEL6e910) KK (STRESIT KXo JUol T} ol oY) onFEPIRK S IIoll)

FORMAT §° ¢ o155, 15.T62,3620.5.T7127,12}

GD YO 1200 B

IF(JJFO.1.AND.IL.FO.1) GO TO 970

WRITEC6.9S5C) JIeTl o KK {STRESE] oxivTI 11Dy 121,30 KEEP KRGS I} -
FOAMAT (20 e T 270 [ 3.T I8 1 3, 7RSS, [S, T62,372".5,7127.12)

GO YC 1200 .

WRITEC6.9A0) LKool loRKoCSTAESILakKad s ll) ol o)) oKEEP (<K 1Jall)
FORMAT (0 TS, 15.T27403uT39.13,755,15.762,1723.5,%127,171

CONT INUE ' .

RF TuRN J -

END

G0 TN Aa90
-

-

NOVrRN.lD'GRCD!C-QﬂUDCF-NﬂLIST.NﬂDPCK-LOAD.Nﬂ’A”.NOYFGI
NAMF = STRESS o LINFCNT = EL)
)

A3
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RE_EASE 240

SOURCE SYATEMENTS =
NGO DLAGNOSYICS GENERATED

i

Yol

»

&

"

———

SYRESS

834 PROGRAM SIZE =

.
- 2
.
.
*
!
.
.
’
PR

1 TE e Sy

DATE = TT7158

7304

5
11722735 RELEASE 2.0 » SYREPS DATE = 77194 W72273s

SUBROUTINE STRESSINGAUSS,NL Re33efFalKeELAS,SY IELD.NMAD, FrDnN,

. SPLEXX, W EYY L EZ2  IYIELNLISTEPLINI T DA [weE,
L] NURITE «F o STRANSTYRES+PLATEON , TOTSRNF FED,NT, ITERA
: * « IDEX) :
= - TMPLICIT REAL®S (A-H.C-21. INTEGFRS2 {}=-N)
é INTEGER NGAUSS.NLAYER NWR(ITE

DIMENSION SYRAN(!cNLAVER)oSYRES(J.NLAVgﬂ.NGAUSS-NGAUSS).E(J-J.NLAY
ERITEMPLI) o SONOWTE 30+ SOLAST( 3} PLATANINLAYER (AT AUSS JNEMY
SC) JMEEPINLAYER ,NGAUSS s NGAUSS 1 TATERNT 3. 2. NGAUSS. NGAUES)
X1 3)

A )

FOR NHARD=2 (QUN-L!NFAR HARDEMING MATFR1AL)

[aNaXal

\¥ FIRz(SYIELD-SPL) ¢ ¢EXPONSO. 002

X 120 DO 1000 KK=1,NLAYER
ﬁ\\\\..\__‘,/'” 130 00 150 I1x1.1
150 SOLAST(I)=0.
PDLASY=0, i ‘ .
IF(KEFPIKK JSo11),€ECe0) P2}
IFIXEEP(XRK . JJn ) oNELO) [P22 s
0O 200 N=1f,3
IF(N.EQe3) GO TO 360
IF(PLATRNIKKeJIo T 11 aNFa0L 0 0RKEFPIKKSISLITILNELAY GO TO 160
SRAR=TSPAL - s L]
GO TN aQQ0
. @ 160 TF(PLATRN(KK I I101aNELO.O) GO TO.1mO _* 3 -
SBAR=1,001 #SPL -
GO TO 360
180 TaDARSIPLATRNIKK, JJ.11))*F TR N
SHARZDEXP(OLAGIY } 7 EXPON) +SOL .
380 IH(XFEPR(KK, J3IF).EQ.0) GO TO 400
360 HPRIMEZFTR/(EXPONS{SAAR-SPL)*e{ FXPON=1,1}
—_ 400 CALL MODULICESTRESC I a¥ Ko SJeT ) e STACS(2e7¥ 23,101 STRES(3.¥Ke3J011),

., = KEEP (KN 4 JSs LI SART  HORIME ,C XX EXY ,EYYE2Z2,FE1,1,rxX1,
. . ECLle2eMXIoF (Ko3aMR) oF (2l oxN}Fl242.KKPLEL2,Va¥u},
" . E{30boKK Do F{302eKXIaFTIIaDeNN o eSY  DENGX(1VeX(2) 411 ™)
- )
IF(ISTEP.S0.INIT.AND. ITERA.EQ 1) GO TQ as0 .
HFUNLEO. 3. AND KEEPIKK 2111V .FD.") GO TN Ren
. TFINJFOLTILANDUKEEPIKK Sy 11D aNF L1 7Y 10 450
SONDWE J)=EXXSSTRANI] «XR)$F XYESTRAN(? k¥ ) - —_—

SONOwWl 21=EXYSSTRANIT XK I+EVYYESTDANT 2.XK ) o
- SONNWI 3} =EZ20SYRANIY . KK )
IF(REEP(KK,JIeI1) 0.0 GO TI %552
| FDELVACJQO(O.SOSIOSQNnu(I)oo.SLQYnanr-l?)o5'nF=4!.x(.JJ.ll|'§3~~(
L (Y1 1/50AR \

IF(FDELTALT.0.) GO TN, aRG
~ 450 00,500 (=1,3 R -

SDNUW(1) =0, ’ b

DO %00 41,3

s00 %nuovtll:ﬁo@inll{t(I.J.le-:rnAV(J-VID

-
DD 510 1=21.1
STRESE 1K I [EI=NTRFSIT oK, S50 11D 4SOl )I-SO_AST(E}

510 SOLAST(II=SONOwWl )

P N

AT A

4



().:I

QRELEASE

. . \\\\\\x

2.0 STRESS DAYTE ="77154 1172273%
T=0, .
DO 7CO 31,3 )
T2ToxXC I OSTRANCE o KK ) - °
PONOws T/OEN .
PLATANIKK s JJo 1! ) TPLATRNE KK ¢ JJo 1 1) ¢PONOW-POLAST
BDLAST=PONCH
. 58a% -.—ss - o »
GO YC 800
KFED (KK JJel] )n0
0D 6C0 I=1.3
TEUD (] )2 STRESTF oK RoJJel 1)
SYR§§II.KK.JJ.!II=SYRE$(l.KK.JJ-l!)OSDNp'(!l
tFtMN.EQ.2) GO TO BOO
SE:DSQ&Y‘SYEESlloKK‘JJ,IIDOSTQES(I-KK.JJclII-STRES(I-KK-JJ.lIt‘STR
- ES{2KNo JIelT1)STRES(2 ,KKeJIeET) $STRES (2 oKKe JIo T1)43.8STRES LI,
* KN IS TTISSTRESII KK SIo 1)) - =2
T80 IF(SS.LT.5RA2) GO YO aso 3
855 DO 669 1=1.3 .
66D RUTVRSTOESLIWKK s JJ2IU)=-TEMP(])
, AsXC I oxE1d=-XU1Iex{2Vex(2)8X{ 20438 X{V)*X(3)

V32, ¢ (1 ISTEMPIL ) ~X(1I*TEMP(2)~X{2) STEMD (| Lo, @X(2)STEMP{2) 46, ¢x( 3

sIe¥ENI () :

SETIMILIATEMPIL) ~TEMP(I}STEMR(2)¢TENP(219TFUP(2)4 1o «TEMTA 3) TEMP(

* 1) -SRAR® SAAR < ’

TxBe8.4 ,sA0C -

70

480 -

559
__ 33
<3

859

IF(Y.GE.Ce) GO TO &TO \ - f
%0 R ¥
€O Te 2= { .
&7 YaDSCRr{(v) -
TITU-3+T}/(2.%A) B f
. T23(=3=T)/7(2.0A) = .8
- IF{DAAS({ YL}, LE.DABSIT2)) Tavi p
IFLINIS(T2)LE.DABS(TEY) T=T2
=875 A0 580 fxt.d ° b /
580 STACS{TKKeIIoITIRVENP(I IoX(IaT .=
20 P90 =1, - . .
797 SYIAN( I XK )=STAAZ(TKKI( 1a-DAISIT)) }/
KECOINK,SSall)m -
RCO COANT INUE - a
A0 IF(KEEPIRKeIIel1) JNELO) IYIELDS , ‘ —_—
129 CONTINyS . ©
TFTISTEP EQ.INIT ANDJITERA,EQ.1 )} RETURN
IFUJJ.FOANGAUSSAND. 11 .EQ.NGAUSS) WRITEINNPITEY STRESTPLAVTRN,
. TOTSAN.KEED
TF{1ISYFP.NE NT) RETURN
IFLITEFRALNELL ) RETURN -
8 1F LI RaANF ol ePRJJNELT,ORLTTLNELL) GO TO ASC >
"HITEL6.50) ° - o
SO FOMAT{IO /7743 TS,V ELEMENT NO®,T20,*LOCATION ( INTERGRATION PO
S ®INTS )P, PSS CLAYER NO®,T78, "CUMULATED SYRESSES IN LOCAL COORDINATE
. ".’l?O;'C=ILAS'IC'-I"”'9727.'JJ(11'.TJB.'II(Y]'.Y7O.'I - NMNRMAL®*,
v ST, 'Y = NIAMAL * V110, *SHEAR 5'3223'-1124.'|tPLASY!C’.IID

A0 L 1AM KKzl NLAYER ‘
1IM IF{XK.EN0et) GO YN 930 o

RELEASE 2,0

90s
210
GO YO 1200

9s0

GO YO 1200
70
980
1200

FORMATI g TS, 15,
CONT [ NUF -
RETURN

END

EFFECTS
EFFECT® NAMF = STRESS
SOURCF STATEMENTS =
NO DTAGHNNSTICS GENERATED

NO DIAGNOSTICS THIS STER

STRESS

WL TELS,980) LKedJefl KK (ST

NOYEﬂN-ID-EBCDIC.SOURCE.NDLIST

LINECNT =

"1 004 PRAGRAN SIZE =

~

lrtxx.eo.:b;aQSTEB.xeep(xx.JJ.lx».NE
LF(RFEP(RAC14Jdull).EC.

YRITF(6.,910) KKe (STRFS(
FORMAT(® ¢, T58,15,762,3£20.5,T127,12)

\
TF{JJEQ.1.AND.T1.EN.1) GO D 970
WRITE(6,950) I oKK U STRES(N oX Ko dJell Dot
FORHAY('O"727-l3-T38.l30755-l5-YB?.JFZO

DATE = 771sa

«®) GO TD 9n
O.ANO.KEEP(KKOI.JJ-Ill.EQ-Ol G YO 1209
loKK.JJ-ll)-lcl-J'oKFFP(l1oJJcII)

S

¢

tirz22713%

S1ed ) e REFPIXK,II,1)
«5:,T127,12)

v

Y
ES(l-(KcJJ.ll,-l=lo],-KFEP(("JJ-lll
727-11-738-IJ-T%S.l5.762.3F?C-S.Tl27-l2)

N

55
4052

¢ NODECK ,LOAN NOMAD (NOTEST

-8GC~



