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Abstract 

 

 Organic and medicinal chemistry research contribute extensively to the discovery, 

optimization, and ton-scale production of numerous small molecules, such as novel drugs that treat 

life-threatening diseases. This research can be put in the context of the COVID-19 global 

pandemic, which has claimed many lives, shut down the entire planet, and made humanity reliant 

on chemistry (amongst which organic and medicinal chemistry play a key role) and biochemistry 

research to come up with innovative solutions in a short amount of time. A major hurdle in organic 

and medicinal chemistry research is the production of these complex life-saving small molecules 

and the tedious and time-consuming syntheses they require. To offset this, these two fields of 

chemistry make use of a different branch of chemistry, namely computational chemistry. Over the 

years, computational chemistry has become a trusted partner of experimental chemistry and has 

significantly contributed to the discovery of novel drugs. However, computational chemistry often 

requires expertise in both chemistry and coding, the latter of which most experimentalists do not 

possess. As such, in this thesis I seek to develop and interface computational tools with organic 

and medicinal chemistry to improve the molecular discovery rate. The majority of the tools that 

we have developed have been implemented in our drug discovery platform FORECASTER and in 

our asymmetric catalyst design platform VIRTUAL CHEMIST, to enable chemists to use powerful 

software developed by chemists for chemists. In only a few clicks, the user can interact with our 

platforms without the need for expertise in computational chemistry. 

 This thesis begins with a short but comprehensive introduction (Chapter 1) into 

computational chemistry and its various applications. Following this, I developed a computational 

protocol that allows the accurate modeling of nucleoside conformations (Chapter 2), which in turn 



iii 

 

enables the synthesis of only those nucleosides that exhibit desirable properties. This work was 

done in relation to the current methodology of developing nucleosides, which entails the synthesis 

of multiple analogues until one with desirable properties is found, since this contributes to an 

increased cost, waste production and energy expenditure. Then, using this protocol, I quantified 

the various effects that contribute to the different nucleoside conformations, and we were able to 

provide plausible explanations of why non-natural nucleosides behave in certain ways (Chapter 

3). As a change of pace, I turned my attention to Cytochrome P450-mediated drug metabolism and 

toxicity, which constitutes one of the main interests of medicinal chemists (Chapter 4). In this 

chapter I developed a novel tool based on quantum mechanics, docking and machine learning that 

enables the identification of Cytochrome P450 inhibitors in silico. This allows medicinal chemists 

to test whether a compound or drug of interest presents inhibitory activity against a Cytochrome 

P450 isoform before attempting synthesis. Finally, we provided organic chemists with a 

computational platform – VIRTUAL CHEMIST – that allows them to undertake an asymmetric 

synthesis project virtually from A-Z (Chapter 5). Such a platform facilitates organic chemists to 

test thousands of molecules at the click of a button and to select only those catalysts that show 

excellent stereoselectivity and reactivity. The thesis then concludes with the overall obstacles I 

have overcome in my research, as well as possible future avenues for research.  
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Résumé 

 La recherche en chimie organique et médicinale contribue largement à la découverte, à 

l'optimisation et à la production à l'échelle de la tonne de nombreuses petites molécules, telles que 

les nouveaux médicaments qui traitent des maladies mortelles. Cette recherche peut être placée 

dans le contexte de la pandémie mondiale COVID-19, qui a fait de nombreuses victimes, a fermé 

la planète entière et a rendu l'humanité dépendante de la capacité de la recherche en chimie 

(organique et médicinale) et biochimie à trouver des solutions innovantes en peu de temps pour 

ceux qui en ont besoin. L'un des principaux obstacles à la recherche en chimie organique et 

médicinale est la production de ces petites molécules complexes qui sauvent des vies et le 

développement des synthèses fastidieuse qu'elles nécessitent souvent. Pour y remédier, ces deux 

domaines de la chimie font appel à une branche différente de la chimie, à savoir la chimie 

computationnelle. Au fil des ans, la chimie computationnelle est devenue un partenaire de 

confiance de la chimie expérimentale et a contribué de manière significative à la découverte de 

nouveaux médicaments. Cependant, la chimie computationnelle requiert souvent une expertise à 

la fois en chimie et en programmation, cette dernière n'étant pas du ressort de la plupart des 

expérimentateurs. C'est pourquoi, dans cette thèse, nous cherchons à développer et interfacer les 

outils informatiques avec la chimie organique et médicinale afin d'améliorer le taux de découverte 

moléculaire. La majorité des outils que nous avons développés ont été intégrés dans notre 

plateforme de découverte de médicaments FORECASTER, et dans notre plateforme de conception 

de catalyseurs asymétriques VIRTUAL CHEMIST, pour permettre aux chimistes d'utiliser des 

logiciels puissants développés par des chimistes pour des chimistes, qui peuvent être utilisés en 

quelques clics seulement, sans avoir besoin d'une expertise en chimie computationnelle. 
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 Dans l'ensemble, cette thèse commence par une introduction complète mais concise 

(Chapitre 1) à la chimie computationnelle et à ses diverses applications. Ensuite, nous présentons 

un protocole de calcul que nous avons développé et qui permet la modélisation précise des 

conformations de nucléosides (Chapitre 2), qui à son tour permet la synthèse des seuls nucléosides 

qui présentent des propriétés souhaitables. Ce travail a été effectué en relation avec la 

méthodologie actuelle de développement des nucléosides, qui implique la synthèse de multiples 

analogues jusqu'à ce qu'un seul présentant des propriétés souhaitables soit trouvé. La synthèse 

d'analogues multiples contribue à augmenter les coûts, la production de déchets et la dépense 

énergétique. Ensuite, grâce à ce protocole, nous avons quantifié les divers effets qui contribuent 

aux différentes conformations des nucléosides, et nous avons pu fournir des explications plausibles 

sur les raisons pour lesquelles des nucléosides non naturels se comportent de certaines manières 

(Chapitre 3). Par la suite, nous avons porté notre attention sur le métabolisme et la toxicité des 

médicaments par les cytochromes P450, qui constituent l'un des principaux intérêts des chimistes 

médicinaux (Chapitre 4). Dans ce chapitre, nous avons développé un nouvel outil basé sur la 

mécanique quantique, l'arrimage et l'apprentissage machine qui permet l'identification in silico des 

inhibiteurs de cytochromes P450. Cela permet aux chimistes de tester si un composé ou un 

médicament d'intérêt présente une activité inhibitrice contre une isoforme des cytochromes P450, 

sans avoir besoin de synthèses coûteuses ou d'acheter des kits de test. Enfin, nous nous efforçons 

de fournir aux chimistes organiciens une plateforme de calcul - VIRTUAL CHEMIST - qui leur permet 

d'entreprendre un projet de synthèse asymétrique virtuellement de A à Z (Chapitre 5). Une telle 

plateforme permet aux chimistes organiciens de tester des milliers de molécules en un clic et de 

ne sélectionner que les catalyseurs qui présentent une excellente stéréosélectivité et réactivité. La 
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thèse se termine ensuite par les obstacles que nous avons surmontés dans nos recherches, ainsi que 

les développements futurs de nos travaux.  
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Chapter 1 – Introduction 

1.1. Computational Chemistry – A Brief History. 

 

 Computational chemistry is a branch of chemistry that uses computer simulations to solve 

complex chemical problems. Rooted in quantum mechanics theories developed since the 1920s, 

computational chemistry rose to prominence only in the 1950s when chemists became interested 

in obtaining quantitative information about molecular systems.1 The first journal specifically 

dedicated to computer-aided chemistry was the Journal of Chemical Information and Computer 

Sciences, which launched in 1960.2 Nevertheless, it was not until the late 1960s and 1970s that the 

field of computational chemistry started expanding at a rapid rate. During those formative years 

several breakthroughs were made in terms of hardware (reasonably fast computers accessible to 

chemists) and software (accurate basis sets and efficient quantum chemistry packages such as 

Gaussian703). These improvements gave rise to a plethora of applications that quickly became of 

interest to chemists and non-chemists alike. Among these applications is the rationalizing of 

reaction mechanisms, of which a famous example is the [3+2] cycloaddition step in the Sharpless 

asymmetric dihydroxylation,4 as well as the first protein dynamics simulation (bovine pancreatic 

trypsin inhibitor – BPTI), which revealed its fluid-like interior.5 The impact of such applications 

and of computational chemistry as a whole has not gone unseen; in fact, two Nobel Prizes have 

been awarded to computational chemists: in 1998 (Walter Kohn and John Pople)6 for fundamental 

developments of computational chemistry and in 2013 (Martin Karplus, Michael Levitt and Arieh 

Warshel) for the development of multiscale methods for characterizing complex systems.7 
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1.2. Computational Techniques – An Overview. 

 

 To understand how computational means can be applied to complex chemical problems, 

we must first take an in-depth look into the different available computational methods. Depending 

on the system under scrutiny, as well as on the desired accuracy, several methods can be used. For 

example, one can use methods that only describe the positions of the nuclei but not of the electrons 

(i.e. molecular mechanics), those that depict both nuclei and electrons with various degrees of 

accuracy (i.e. quantum mechanics) or those that encode molecules as a series of numbers (machine 

learning). In this chapter we will take a closer look at these available techniques and will discuss 

their applications in various fields of chemistry, including organic and medicinal chemistry. 

1.2.1. Molecular Mechanics (MM). 

 

 The simplest way to describe a chemical system consists of only considering nuclei and 

disregarding electrons. In this method, termed molecular mechanics (MM), the atoms are treated 

as “points” interconnected through “springs” (covalent bonds), which contain partial charges (for 

Coulombic interactions) and resemble soft spheres (for van der Waals interactions). This 

approximation is essential since MM uses classical mechanics to compute the potential energy of 

a system. To aid in the evaluation of this energy, MM uses sets of pre-computed parameters 

(atomic masses and charges, atom types, equilibrium bond lengths etc.) and energy functions that 

comprise a force field (FF). Amongst the common FFs are the AMBER,8 GAFF9 and OPLS310 

FFs, which are used in most simulation programs that employ MM methods. Since FFs are an 

integral part of any MM method, we shall take a closer look at their particularities and inner 

workings. 
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1.2.1.1. MM – Force Field Energy Terms. 

 

 In modern FFs, in order to evaluate the energy of a system, contributions from both 

covalent (bonds, angles, torsions and out-of-plane (oop) angles) and non-covalent (van der Waals 

(vdW) and electrostatic) terms must be accounted for (Eqs. 1.1 – 1.9 and Figure 1.1).11,12  

Etotal = Ecovalent + Enon−covalent                                     Eq. (1.1) 

Ecovalent = Ebonds + Eangles + Etorsions  + Eoop       Eq. (1.2) 

Enon−covalent = EvdW + Eelectrostatics                             Eq. (1.3) 

Ebonds = kr (r − req)                                                             Eq. (1.4) 

Eangles = kθ (θ − θeq)                                                          Eq. (1.5) 

Etorsions = ∑
Vn

2

N

n=1

[1 + cos n(φ −  δ)]                           Eq. (1.6) 

Eoop = kω (ω − ωeq)                                                            Eq. (1.7) 

EvdW = ∑ εij [(
Rmin,ij

rij
)

12

− (
Rmin,ij

rij
)

6

]

pairs i,j

              Eq. (1.8) 

Eelectrostatics = ∑
qiqj

4πε0rij
pairs i,j

                                           Eq. (1.9) 

Equations 1.1-1.9: kr – bond stretching force constant; req – equilibrium bond length; kθ – angle 

bending force constant; θeq – equilibrium angle value; Vn – amplitude of cosine function; φ – 

torsional angle value; δ – torsional angle phase; kω – oop angle bending force constant; ωeq – 

equilibrium oop angle value; εij – energy well depth; Rmin,ij – radius at which interatomic potential 

is 0; rij – distance between atoms; qi – point charge on atom i; ε0 – vacuum electric permittivity. 
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 As can be seen in Eqs. 1.1, 1.4 and 1.7 the bond and angle contributions to the potential 

energy are approximated as harmonic oscillators that depend on only two terms: bond 

stretching/angle bending force constants and the equilibrium bond length/angle value. It is 

essential to note that these terms control the local covalent atomic environment.12 In the case of 

the torsional terms (Eq. 1.6), the harmonic oscillator approximation cannot be used due to the 

presence of several minima on the potential energy surface (PES).  

 

Figure 1.1. Molecular structure: Clobazam.13 Arrows: orange – bond stretching; black – angle 

bending; yellow – torsional rotation; green – electrostatic interactions; blue – vdW interactions; 

oop angle bending not shown for clarity.  

As such, these terms are modeled as a sum of cosine functions with different multiplicities (n) and 

phases (δ). Generally, the phases δ are constrained to either 0° or 180° to ensure that the PES of 

achiral molecules is symmetric.12 The change in energy of a system is highly sensitive to rotations 

around the central bond in a torsion, and as such it highly influences the conformational energetics 

of the system. Therefore, having an accurate description of torsional terms is paramount for the 

usability of a FF. 
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 When considering non-covalent terms, both the vdW and electrostatic terms are functions 

of distance between atoms. In the case of the vdW interactions (Eq. 1.8) the energy contribution is 

described as a Lennard-Jones (LJ) 12-6 potential, with the atomic repulsion term decaying as 1/r12 

and the atomic attraction term decaying as 1/r6. The electrostatic terms (Eq. 1.9) are treated in 

terms of interactions between fixed atomic partial charges i.e. through a Coulomb potential. The 

usage of fixed partial charges brings about an important caveat of using the Coulomb potential for 

assessing electrostatic interactions, namely it precludes the introduction of polarizability into the 

system. Moreover, the Coulomb potential is known to be problematic due to the decay of the 

Coulomb function (1/r) that makes the calculation of the Coulomb contribution computationally 

expensive.12 

 While the descriptions above refer to fairly simple FFs, it is also worth mentioning that 

more complex terms (e.g., Taylor series approximation of a Morse function in MM3) or additional 

terms (cross-terms in MM3) may be used by more advanced, though more time consuming FFs 

(e.g., MMFF94, MM3, CFF). These FFs may also use complex terms to describe non-covalent 

interactions, such as a buffered LJ 14-6 potential in MMFF94 and dipole-dipole interactions in 

MM3. 

1.2.1.2. MM – Force Field Atom Types. 

 

 In order to distinguish between atoms in different chemical environments, the most 

common FFs (including the ones described in section 1.2.1.) rely on so-called “atom types”. For 

example, a sp3 hybridized oxygen atom (i.e. in a hydroxyl group) would have a different atom type 

than a sp2 hybridized oxygen (i.e. in a carbonyl group). Each atom type has a different set of 

parameters associated with it to better describe the chemical system under scrutiny. Nonetheless, 

it is important to understand that, due to the relative size of the entire chemical space, it is 
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impossible to cover all the possible atom types. As such, the currently used atom types are valid 

only for local environments but do not consider distant functional groups. Such an example would 

be an aromatic carbon atom (e.g. in benzene), where irrespective of the nature of the substituent 

attached to it (i.e. electron-withdrawing or electron-donating) the atom type would be the same as 

for an unsubstituted aromatic carbon (Figure 1.2).11 

 

Figure 1.2. The atom type assigned to the aromatic carbon depicted in red would be the same for 

all three cases, irrespective of the substituent nature.  

One way to avoid the pitfalls of using atom types is to discard them entirely. This is the philosophy 

behind two novel methods – H-TEQ11 and SMIRNOFF14 – that use basic chemical principles (i.e. 

electronegativity and hyperconjugation) and direct chemical perception to develop generic 

parameters for any molecule. While these methods are fairly new and still in the development 

phase, they have been shown to reach accuracies comparable to GAFF (a widely used, AMBER-

compatible FF for small molecules) which has been parametrized on thousands of molecules.11,14 

1.2.1.3. MM - Applications. 

 

 MM methods have been widely used to assess the properties of systems ranging from small 

organic molecules to proteins and large materials (e.g. zeolites). For example, MM is the basis of 

some docking programs, which are essential tools in drug discovery. Docking predicts the 

preferred orientation of a ligand inside the active site of a target molecule and as such can be used 

to distinguish good or weak binders from non-binders in the search for new drugs.15 MM is also 

the basis of molecular dynamics (MD) simulations, which are used to observe how atoms interact 
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with each other over time.16 For example, MD simulations have been used to describe protein 

folding17 or to assess the stability of complexes obtained after docking.16 Docking and MD will be 

discussed in-depth in section 1.3. In addition to these examples and to many others, as will be 

described in Chapter 5, MM methods have also been used in asymmetric catalysis to predict 

stereoselectivities with excellent results.18  

1.2.1.4. MM - Limitations. 

 

 Despite the widespread use of MM methods, there are several limitations that must be 

considered. First, as described in section 1.2.1, MM methods rely on FFs to compute the potential 

energy of a system. The FFs are usually parametrized using high-level quantum chemical data or 

experimental data (i.e. 1H nuclear magnetic resonance - NMR) on a representative set of molecules. 

Importantly, metals are notoriously hard to parametrize due to the difficulty of accounting for 

oxidation and spin states, which affect the energetics of metal-bound complexes significantly. As 

such, metals are not extensively described in most common FFs. Moreover, even though a 

representative molecule set is used for parametrization, it will not be enough to cover the entirety 

of the chemical space. As described in section 1.2.1.2, FFs rely on atom types to distinguish 

between atoms in different environments. It is generally accepted that the more atom types a FF 

contains, the more accurate it is.12 Nevertheless, combined with limited parametrization, the usage 

of atom types restricts the transferability of parameters between molecules within a FF.12 Thus, 

there will be molecular systems that will not be properly described with the existent 

parametrizations.  

 Second, as mentioned in section 1.2.1.1., the electrostatic terms are described by a 

Coulombic potential that does not account for polarizability. There have been several attempts to 

correct this behaviour. For example, the Atomic Multipole Optimized Energetics for Biomolecular 
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Applications (AMOEBA)19 FF has been specifically designed to include polarizability in its 

treatment of electrostatic interactions through computed atomic multipole moments and an 

empirical atomic dipole induction model. While initially developed for water, AMOEBA was 

extended for small organic molecules, proteins, and nucleic acids. Nonetheless, the majority of 

commonly used force fields do not account for polarizability.  

1.2.2. Quantum Mechanics (QM). 

 

 To improve on the limitations of MM and to obtain more accurate chemical results, it is 

important to use methodologies that concomitantly describe both nuclei and electrons. Amongst 

these methodologies is quantum mechanics (QM), which has seen widespread use in 

computational chemistry, especially for small organic molecules. It is important to note that 

through the treatment of electrons, QM methods are several orders of magnitude more 

computationally expensive than MM methods. Some of the most important milestones in QM 

method advancement were the development of the Roothaan-Hall equations (1951),20 the Kohn-

Sham equations (1965),21 and the intermediate neglect of differential overlap (INDO) method 

developed by Pople (1970),22 which gave rise to a plethora of QM techniques currently in use 

today. Amongst these, the most important are Hartree-Fock methods (section 1.2.2.1), 

semiempirical methods (section 1.2.2.2), and density functional theory (section 1.2.2.3).  

1.2.2.1. Hartree-Fock (HF). 

 

1.2.2.1.1. HF - Background. 

 

 Experimental chemists have found it useful to describe the behaviour of electrons in 

relation to orbiting nuclei and residing in orbitals. In computational chemistry, this concept is 

known as the Hartree-Fock (HF) approximation.23 Developed in the 1920s, HF became popular in 

the 1950s with the advent of powerful computing methods. In short, HF is an ab initio (i.e. from 
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first principles) method that aims to determine the wavefunction of a system and its ground state 

energy by using several approximations including the Born-Oppenheimer approximation (i.e. 

nuclei are fixed and only electrons are moving). HF computes the molecular orbitals (MOs) of a 

molecule in terms of a linear combination of atomic orbitals (LCAO). Atomic orbitals (AOs) can 

routinely be built using the numerous basis sets available in the literature.24 

 To determine the ground state MOs, HF makes use of the self-consistent field (SCF) 

algorithm. In this algorithm, the Roothan-Hall equation (Eq. 1.10) is used as a substitute for the 

time-independent Schrödinger equation and is solved iteratively until self-consistency is achieved 

and the energy has converged (i.e. the change in energy between two consecutive iterations is 

smaller than a predetermined threshold).  

FC = εSC                                    Eq. (1.10) 

Equation 1.10: Roothan-Hall equation used for solving the SCF algorithm. F – Fock matrix; C – 

MO coefficient matrix; ε – diagonal matrix containing orbital energies; S – overlap matrix. 

The Fock matrix in Eq. 1.10 is built at every iteration using the one-electron core Hamiltonian 

(containing the nuclear attraction and kinetic one-electron integrals) matrix and the Coulomb 

(electron repulsion) and exchange matrices obtained from calculating the two-electron integrals 

(Eq. 1.11). 

F = H + 2J − K                        Eq. (1.11) 

Equation 1.11: Obtaining the Fock matrix. H = Hamiltonian; J – Coulomb contribution of two-

electrons integrals; K – exchange contribution of two-electron integrals. 

The computation of the J and K matrices used to build the Fock matrix represents the most 

computationally intensive step of calculating the Roothan-Hall equation. The Fock matrix is 

diagonalized and a new set of MOs is obtained at every iteration. Once convergence is achieved, 
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the MOs represent an accurate description of the wavefunction and can be used to calculate any 

molecular property within the HF framework. Because the computational cost associated with HF 

is relatively high for standard desktop PCs, this method has been routinely used only for relatively 

small systems (< 200 atoms).  

1.2.2.1.2. HF - Limitations. 

 

 While HF represented a major breakthrough for quantum chemists, it soon became 

apparent that a major pitfall of the method involved the neglect of electronic correlation. In brief, 

electron correlation measures how much the movement of one electron is influenced by all the 

others. This neglect is one of the major reasons why HF is incapable of describing dispersion 

interactions (London forces contributing to vdW interactions), which are of paramount importance 

in biomacromolecules and biological systems. Nonetheless, it is important to mention that several 

methods have been developed based on the HF formalism (post-HF methods) that account for 

dynamic electron correlation (i.e. Møller-Plesset perturbation theory (MPn, n=1-4), configuration 

interaction (CI), quadratic configuration interaction using single and double excitations (QCISD), 

QCISD including an estimate of triplet excitations (QCISD(T)), etc. However, these methods are 

even more computationally intensive than HF and are thus only applicable to small organic 

molecules.  

1.2.2.1.3. HF - Applications. 

 

Despite these drawbacks, HF and post-HF methods have been successfully used in the 

determination of barrier heights in reaction mechanisms i.e. Diels-Alder reactions25 and 

intramolecular hydrogen transfers, of which we mention the case of 2-pyridone (Schemes 1.1-

1.2)26, to name a few.  
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Scheme 1.1. Diels-Alder reaction between butadiene and ethylene, formaldehyde and 

thioformaldehyde. Activation energies show that these reactions can take place at room 

temperature, with the thioformaldehyde addition being the fastest.25 

 

Scheme 1.2. Keto-enol tautomerism of 2-pyridone in the ground state. The major tautomer was 

computed to be the enol tautomer, with a barrier of tautomerization  of ~ 50 kcal/mol at the HF/6-

31G** level of theory.26 

1.2.2.2. Semiempirical Methods (SE-QM). 

 

1.2.2.2.1. SE-QM - Background. 

 

 Since even two decades ago HF methods were too computationally expensive to apply on 

large systems (i.e. biomacromolecules and proteins), chemists started looking into alternatives that 

would be more accurate than MM but computationally cheaper than HF methods. One answer to 

this problem was the development of semiempirical QM (SE-QM) methods. Based on the HF 

formalism, SE-QM methods are less computationally expensive than HF through their 

approximation or omission of electronic interactions (J and K matrices in Eq. 1.11). To account 
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for the electronic interactions, SE-QM use empirical parameters that are fitted to reproduce 

experimental data.27 Moreover, the most common SE-QM methodologies use specially optimized 

Slater-type minimal basis set approximations to ensure fast and relatively reliable calculations. 

Several SE-QM have been developed, such as AM1,28 PM3,29 PM6,30 and RM1,31 which have 

been extensively used in conjunction with large systems (i.e. water clusters, nucleic acids, 

proteins).24,32 Several important developments to SE-QM methods have been made to accurately 

depict the non-covalent interactions found in biological systems, including dispersion, hydrogen-

bonding, and halogen-bonding corrections.24  

1.2.2.2.2. SE-QM - Limitations. 

 

 Several limitations plague SE-QM methods, as they did in the case of the “parent” approach 

(HF). First, as was the case with HF, correlation is generally not described. Moreover, when using 

SE-QM methods on small organic molecules one must be careful, as qualitatively and 

quantitatively wrong results will be obtained for molecules that are dissimilar from the molecules 

used to parametrize the methods.24 Another limitation stems from the use of the minimal basis set, 

which leads to the underestimation of intermolecular polarization and affects non-covalent 

interactions.33 In addition to this, the majority of SE-QM methods only consider valence electrons. 

1.2.2.2.3. SE-QM - Applications. 

 

 One of the most widely used SE-QM methods is PM6, which has been successfully used 

in generating optimized protein structures and determining several protein properties, such as 

secondary and tertiary structures. Moreover, PM6 has been used to model the formation of a 

tetrahedral intermediate in chymotrypsin (Scheme 1.3).34 
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Scheme 1.3. Formation of a tetrahedral intermediate in chymotrypsin.34 Distances for the transition 

state (TS) are given in Ångstrom. New covalent bond between O-C in the tetrahedral intermediate 

is shown in red. R and R’ can be any substituent. The TS was verified to contain only one negative 

frequency.34 

 Another interesting application of SE-QM methods is the prediction of host-guest binding 

affinities in supramolecular chemistry. In a study by Muddana and Gilson,35 the PM6-DH+ method 

developed by Korth36 (DH+ represents dispersion and hydrogen bonding corrections to the PM6 

method) was used to calculate the binding affinities of 29 guest complexes in conjunction with 

cucurbit[7]uril. The authors found a strong correlation between computed and experimentally 

determined binding free energies, showcasing the versatility of SE-QM methods.  

1.2.2.3. Density Functional Theory (DFT). 

 

1.2.2.3.1. DFT - Background. 

 

 While HF and SE-QM methods are useful in certain circumstances, there are times when 

the system under scrutiny requires computing with a high degree of accuracy, such is the case for 

predicting molecular properties of organic molecules, breaking/forming covalent bonds or 

computation of stereoselectivities. For these purposes, density functional theory (DFT) was 

developed in the 1960s by Kohn and Hohenberg and later by Kohn and Sham. DFT differs 
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fundamentally from HF and SE-QM methods by only requiring the electron density to determine 

the molecular properties of chemical systems. Moreover, unlike HF methods, DFT uses functionals 

(i.e. a function of another function) to approximate the exchange-correlation energy, thus 

providing more accurate results than HF methods. It is interesting to note that although DFT has 

been used in computational physics since the 1970s, it only gained traction in computational 

chemistry in the 1990s through the seminal work of Becke and others in the area of computing the 

exchange-correlation term, which led to the creation of the famous B3LYP functional.37-39 Ever 

since, functional development has become one of the most active areas in computational chemistry, 

along with the development of several highly efficient quantum chemistry packages such as 

ORCA40 and GAMESS.41,42 

 To obtain the DFT ground state energy, one must follow the same path as for HF methods, 

i.e. solving Eq. 1.10 through the SCF algorithm. The Fock matrix, by contrast, described in Eq. 

1.11 has a different form, which includes the exchange-correlation term – Eq. 1.12.  

F = H + 2J − αK + VXC                        Eq. (1.12) 

Equation 1.12: Obtaining the Fock matrix in DFT. H = Hamiltonian; J – Coulomb contribution of 

two-electrons integrals; K – exchange contribution of two-electron integrals; VXC – exchange-

correlation matrix. 

It is important to note that the exchange-correlation matrix VXC in Eq. 1.12 is computed using 

numerical integration on a grid. Moreover, the α scaling factor in Eq. 1.12 is functional dependent 

(i.e. some functionals use exact exchange from HF theory in addition to the exchange-correlation 

computed with DFT in their formulation. As such α ≠ 0 in the case of these functionals.). 
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1.2.2.3.2. DFT - Limitations. 

 

 Although DFT methods account for the correlation term, they still suffer from the same 

inability as HF methods to describe intermolecular interactions, especially vdW forces.43 

Nevertheless, major advancements have been made in this area through the work of Grimme with 

his DFT-Dn(n=1,2,3,4) schemes44 that allow a correct treatment of long-range interactions. Most 

importantly, these schemes are easy to implement and very fast to compute, making them a must-

have for any DFT calculation. Grimme has also been the proponent of several low-cost composite 

methods for the accurate description of large systems (i.e. biomacromolecules or proteins) 

including the PBEh-3c and B97-3c methods.45,46 These methods use relatively small basis sets but 

include corrections for basis set superposition error (BSSE) and long-range dispersion interactions, 

which makes them highly appealing for biological systems.  

 Another major limitation of DFT is the self-interaction error (SIE). When describing the 

correlation energy using an exchange-correlation functional, the interaction of an electron with 

itself is taken into account. This behavior is wrong and is evident primarily in systems with 

unpaired electrons. This leads to quantitively and qualitatively wrong results, as is the case for the 

dissociation of carbocation radicals, which often give large errors when computing binding 

energies.47 Moreover, due to the SIE, DFT encounters issues with describing some transition metal 

complexes, including spin states and binding free energies.48 

1.2.2.3.3. DFT - Applications. 

 

 As outlined above, DFT is highly useful for describing properties of organic molecules and 

chemical phenomena such as breaking/forming of covalent bonds and computing 

enantioselectivities. These will be discussed in depth in section 1.4 but we will highlight some 

examples in this section as well. For instance, DFT (B3LYP/6-31+G** level of theory) has been 
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successfully used to assign vibrational frequencies and normal modes of flavonoid derriobtusone 

A using predicted and experimental IR and Raman spectra (Figure 1.3).49  

     

Figure 1.3. Structure of derriobtusone A (left). Comparison between the experimental and 

predicted Raman spectra (middle) and IR spectra (right) for derriobtusone A. Spectra taken from 

reference 49. 

In addition to molecular properties and vibrational spectra, DFT has been used to rationalize 

numerous reaction mechanisms. Among the most interesting ones we mention the mechanism of 

the first selenium organocatalyzed syn-dichlorination of alkenes.50 In the original paper, Cresswell 

et al.50 proposed PhSeCl as the active catalyst. However, a DFT study by Fu et al.51 at the 

B3LYP/6-311++G** level of theory showed that using PhSeCl as the catalyst leads to an 

endergonic reaction (Figure 1.4), while using PhSeCl3 as the active catalyst led to a very favourable 

exergonic reaction (Figure 1.5).  
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Figure 1.4. Reaction mechanism in acetonitrile of the selenium organocatalyzed syn-

dichlorination of 2-pentene using PhSeCl as the active catalytic species. The reaction is endergonic 

by ~ 17 kcal/mol. Figure reproduced from reference 51. 

  

Figure 1.5. Reaction mechanism in acetonitrile of the selenium organocatalyzed syn-

dichlorination of 2-pentene using PhSeCl3 as the active catalytic species. The reaction is exergonic 

by ~ 45 kcal/mol. Figure reproduced from reference 51. 
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Fu et al. also showed that the rate-limiting step of the reaction has a barrier of only 13.9 kcal/mol 

for PhSeCl3
 (TS1-2, Figure 1.5), which agrees with the experimental data that the reaction happens 

readily.  

 Beyond the ability of rationalizing reactions mechanisms, DFT has also been used to 

develop new organocatalysts. In a study by Fleming et al.52 a highly active urea catalyst was 

developed for addition reactions to epoxides (Scheme 1.4).  

 

Scheme 1.4. Reaction scheme for the indole addition to styrene oxide in the presence of a urea 

catalyst. Scheme reproduced from reference 52. Catalyst shown in blue. 

This catalyst was selected based on structural optimization at the B3LYP/6-31G* level of theory 

in the presence of the styrene oxide. The hydrogen-bonding interactions between the catalyst and 

epoxide were deemed crucial for the catalyst reactivity (Figure 1.6).  

 



Chapter 1 

 

19 

 

Figure 1.6. Hydrogen bonding interactions between the urea catalyst and styrene oxide. Key 

interactions are shown with dashed red lines. Figure reproduced from reference 52. 

1.2.3. Quantum Mechanics/Molecular Mechanics (QM/MM). 

 

 As outlined in the previous sections, MM methods are very useful at describing entire 

proteins or large biomacromolecules, while QM methods are useful at describing organic 

molecules with the occasional application to larger systems. However, in some cases, it is highly 

desirable to combine the two methods – QM and MM – to study important aspects of chemistry, 

such as stereoselective and/or regioselective protein catalysis. The main idea behind this hybrid 

approach – QM/MM – is the treatment of a small number of atoms using highly accurate QM 

methods (generally the ligand of interest and key amino acids in the active site of the protein) while 

treating all the other atoms with MM methods. This approach allows the computation of long-

range electrostatic terms and steric effects that contribute to enzyme reactivity while accurately 

describing the bond breaking/formation process between the ligand and active site residues.53 The 

QM/MM approach has been used, for example, to propose a credible mechanism for the 

regioselective chlorination of tryptophan (Trp) in the biosynthesis of pyrrolnitrin (Scheme 1.5), an 

antifungal antibiotic, by the Trp-7-halogenase.54  

 

Scheme 1.5. Transformation of Trp to pyrronitrin. 
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The QM/MM study showed that two aminoacids, K49 and E346, played a major role in stabilizing 

the intermediate products formed during the reaction between hypochlorous acid (HOCl) and Trp 

(Scheme 1.6).  

 

Scheme 1.6. Proposed regioselective mechanism from reference 54. 

 In addition to studying stereoselective protein catalysis, QM/MM methods have also been 

used for docking. For example, a QM/MM algorithm developed by Chaskar et al.55 overcomes 

some of the FF limitations described in section 1.2.1.4. (polarization effects and metal-bound 

complexes). This algorithm was tested on three different sets that included zinc and iron 

metalloproteins and compared to classical docking studies. As expected, compared to classical 

docking, the QM/MM algorithm showed a significant improvement due to accounting for 

polarization and correctly treating oxidation and spin states using QM.  

 While QM/MM methods are extremely valuable tools and provide accurate results when 

used correctly, it must be emphasized that they too suffer from drawbacks, some more serious than 

others. First, QM/MM calculations are computationally demanding, and as such extended 

simulations on large systems can be performed routinely on standard desktop PCs only using SE-

QM methods for the QM region. If computational resources allow (i.e. access to supercomputers 

and parallel computing), QM/MM calculations can employ either HF or DFT for the QM region. 
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Second, QM/MM simulations are not “black box” calculations – significant work must be put into 

generating a correct starting system. As is the case for any molecular dynamics simulation, several 

important steps must be undertaken before the simulations can be run: the correct protonation state 

must be assigned to all ionizable amino acids in the active site, MM parameters have to be 

generated in case they are missing from the FF used in the simulations, and the number and 

placement of water molecules near and around the active site must be carefully assessed.56 Third, 

when performing a QM/MM calculation, a decision has to be made with regards to counter ions 

and charge neutralization. Currently, there is no consensus as to whether to add counter ions to the 

system to neutralize the charge due to charged buried groups.56 However, a popular approach is 

that after deciding on a pH at which to run the simulation and assignment of protonation states, the 

total charge of the system is kept as is, while others propose that the decision to add counter ions 

should be made depending on the system at hand.57 

1.2.4. Machine Learning (ML). 

 

 In the previous sections we have described how computational methods use the information 

from nuclei and electrons to compute properties and rationalize various chemical principles. In 

this section we will focus on methods that use chemical patterns, including complex combinations 

of functional groups and patterns that govern molecular properties to describe and rationalize 

various aspects of chemistry.58 Among these methods we will mainly focus on machine learning 

(ML), a field of artificial intelligence that uses extensive training sets to gain knowledge from them 

and use it for predicting properties of new data.  

1.2.4.1. ML – Background. 

 

 ML has seen an impressive surge of interest in chemistry in the past decade due to several 

factors: 1) increased computational power available even for a non-specialist user, 2) availability 
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of open-source data sets necessary to create predictive models and 3) development of several easy-

to-use software packages and libraries used to create ML models. A recent review by Cova and 

Pais58 explored the exponential growth of publications involving ML models in chemistry over a 

10-year timeframe (2008-2018), and showed that the number of publications skyrocketed from a 

few hundred in 2008 (counted from 1970 onward) to over 8000 in 2018. This significant increase 

was prevalent in fields such as quantum, organic and medicinal chemistry, where ML methods 

were used to improved existing methodologies and to aid in the design and synthesis of new 

molecules.58 To better understand ML techniques and their applications, we will take a closer look 

at the most popular models that have had widespread success in chemistry applications: artificial 

neural networks (ANNs) and Random Forest (RF) models. 

1.2.4.2.  ML - Artificial Neural Networks. 

 

 Artificial neural networks (ANNs) are ML models that can fall under two categories. The 

first category is that of supervised learning, meaning they require training data in order to learn 

and infer the parameters of the function described by the ANN architecture. These parameters are 

then used to describe novel data (or testing set). The second category is that of unsupervised 

learning, meaning that the ANNs look for patterns in non-labeled input data. ANNs resemble a 

biological neural network (Figure 1.7), with the basic unit being the artificial “neuron” connected 

to other “neurons” through “synapses”. Neurons (or nodes) can be of three types: input nodes 

(which takes numerical data presented as input), hidden nodes, and output nodes. The input data 

is presented in the form of activation values i.e.  each node has an input value made of a series of 

numbers (often normalized in the [0,1] range) that describe molecules. As such, the ANN must 

understand the molecular description (i.e. its simplified molecular-input line-entry system 

(SMILES) classification),59 and molecular properties and convert them to usable numbers. It is 
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important to mention that the higher the input number, the greater the activation. As can be seen 

in Figure 1.7, the activation values are passed through the neural network by the means of hidden 

nodes. The activation values are weighted before reaching the hidden nodes. Each hidden node 

can receive several activation values, which it then sums up. However, before a meaningful output 

can be delivered by the ANN, the information passing through the network must be translated by 

a transfer function. This is done at each node that receives activation values by the means of 

common transfer functions such as sigmoid or Gaussian. Depending on the task at hand, several 

layers of neurons may be required to produce the required output. The first application of ANNs 

in chemistry dates back to 1973, when Hiller et al.60 used an ANN to predict the bioactivity of 1,3-

dioxanes. Ever since, pharmaceutical companies and academic groups alike have used ANNs to 

improve the drug discovery rate. For example, Jaen-Oltra et al.61 used ANNs on a series of 111 

quinolones (molecules with antibacterial activity) in order to build a model that would predict the 

minimum inhibitory concentration (MIC) of quinolones. 
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Figure 1.7. Description of a simple ANN containing an input and output layer along with neurons 

and synapses. 

 Out of the 111 quinolones with experimentally determined MICs, 70% were randomly 

selected as the training set with the remaining 30% as testing set. As inputs for their ANN, the 

authors used a series of 62 descriptors, including the number of heavy atoms, double and triple 

bonds and carbon atom type (primary, secondary etc). The correctness results obtained for three 

categories of MICs (≤ 0.05, ≤ 0.10 and ≤ 0.20 μg/ml) were ~ 100% for the training set and > 80% 

for the testing set, which shows the predictive power of the ANN. In addition to being used for 

quantitative structure-activity relationships (QSAR) studies, ANNs have been extensively used in 

predicting absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of 

drug molecules.62 For example, a highly accurate software package using ANNs to predict 

cytochrome P450 (CYP450)-mediated sites of metabolism (SoMs) is XenoSite,63 which was 

trained using quantum, atomic and molecular descriptors and applied to 680 CYP450 substrates 

across 9 isoforms. The results showed that XenoSite is extremely accurate across all isoforms, 

with an average accuracy of 87% using the top2-metric (predicted metabolite is correct if it is 

ranked in the top 2 predictions).63 

1.2.4.3. ML - Random Forest Models. 

 

 RF models are part of the supervised learning category of ML. More specifically, RFs are 

classification models that contain an ensemble of N decision trees trained on different randomly 

selected subsets of the training set. The decision trees will then provide N predictions that will be 

counted towards the final prediction, which will be made using the “majority rule” (i.e. the most 

frequent prediction made by the N decision trees will be selected as the final prediction). Decision 

trees have several advantages over ANNs and SVM models: they can be used to describe highly 
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dimensional data, they can discard irrelevant descriptors, and can be interpreted easily by 

chemists.64 As such, RF models have been highly sought after in the drug discovery field. For 

example, an essential molecular lipophilicity descriptor used in drug discovery is the octanol/water 

partition coefficient logP. A highly lipophilic molecule (logP > 5) will be poorly soluble, and as 

such will have low bioavailability. In contrast, a lightly lipophilic molecule (logP < 2) will be 

soluble and highly bioavailable.  

 

Figure 1.8. Decision tree describing whether a drug candidate would be kept or discarded based 

on its logP value. 

 During QSAR or virtual screening (VS) studies, a decision tree like the one in Figure 1.8 

can be built and integrated into a larger RF model to determine whether a molecule would be 

suitable for synthesis and testing. In addition to QSAR and VS studies, RF models have also been 

used in docking to improve scoring functions. For example, Wang and Zhang65 developed a new 

protein-ligand binding scoring function based on RF using a highly accurate training set containing 

over 3000 experimentally-determined binding affinities and over 3000 computer-generated 

decoys. Their RF model was built using 20 descriptors and exhibited a Pearson coefficient R = 

0.73, which was shown to be superior to the best classical scoring function tested (R = 0.64). 
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Moreover, as was the case with ANNs, RF models can be used to accurately predict SoMs. 

Recently, a method developed by Finkelmann et al.66 used an RF model built with atomic 

descriptors related to both the electronic and steric environments of atoms in molecules. The model 

was tested on the XenoSite dataset and led to an average accuracy of 90.9% using the top2-metric. 

1.2.4.4. ML – Limitations. 

 

 While ML models are generally robust and provide accurate results, they are not without 

drawbacks. First, ML models are only as accurate as the data used for training them. While several 

datasets (SoMs, protein-ligand binding affinities etc.) have recently been made available for QSAR 

and VS studies, the data might not necessarily be uniform. For example, when it comes to SoM 

determination, there are several assays that can be used to determine which CYP isoform is 

responsible for substrate oxidation. Depending on the assay and conditions employed (which might 

differ between laboratories) non-uniform data will be collected, which will ultimately impact the 

ML models that predict SoMs.27 Second, a high-quality dataset must also be large enough for 

training as well as highly diverse. If the dataset is small the model will be poorly predictive due to 

overfitting of parameters. Moreover, if the dataset is not diverse enough, the RF model can only 

be used to predict properties of similar molecules (similar to SE-QM methods discussed in section 

1.2.2.2).27  

1.3. Computational Tools in the Context of Medicinal Chemistry and Drug Discovery. 

 

 In the previous sections we have discussed the background of the most important 

computational methods currently in use in chemistry and some applications and drawbacks of 

each. In this section we will expand on the usage of these methods in drug discovery and 

development, a field tightly entwined to medicinal chemistry. Moreover, we will highlight the 
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requirements that medicinal chemists have when it comes to the application of these methods in 

terms of usability and underlying methodologies. 

1.3.1. Computer-Aided Drug Design (CADD). 

 

 It is well known that drug discovery is a highly tedious and expensive endeavour. Overall 

it takes approximately 9 years on average to bring a drug to the market with a total development 

cost of ~$2 billion.67,68 To shorten the required time to bring a drug to the market and to reduce 

the associated costs, medicinal chemists have advocated for the introduction of  computer-aided 

drug design (CADD) techniques in the drug discovery pipeline. Indeed, it has been proposed that 

using CADD tools in this process could lead to an overall cost reduction of 50%.69 However, to 

streamline the usage of CADD tools in drug design, medicinal chemists require 1) user-friendly 

software in a “black box” environment, 2) accurate and reliable software that is ideally contained 

within one drug design platform and 3) simple and easy to read output that can be visualized if 

necessary (i.e. protein-ligand interactions). These requirements are paramount because medicinal 

chemists often have no expertise in computational chemistry. Moreover, to complement the 

experimental tools that medicinal chemists have at their disposal and to ensure that the correct 

computational tool is used in the drug discovery process, CADD methods have been divided into 

two subcategories: structure-based drug design (SBDD) and ligand-based drug design (LBDD).  

1.3.1.1. Structure-Based Drug Design (SBDD). 

 

 SBDD is a category of CADD that uses the 3D structure of a validated biological target 

(enzyme or receptor) in order to develop high-affinity ligands or inhibitors.70 In this method, the 

emphasis is put on the interactions between the target and ligand, including binding poses, 

conformational preferences and reaction mechanisms.27 Generally, the target structure is 
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determined through either NMR, X-ray crystallography or homology modelling. Amongst the 

most important techniques in SBDD are molecular docking, VS and MD simulations. 

1.3.1.1.1. SBDD - Molecular Docking. 

 

 Molecular docking is an essential tool in the repertoire of medicinal chemists. In short, 

docking is a method that explores the behaviour of a ligand inside the active site of a target. Often 

the underlying theory behind docking is MM-based, although rule-based docking methods exist as 

well. The docking procedure consists of two distinct steps: conformational search and scoring.  

To perform the conformational search, several algorithms can be employed. For example, 

the docking program FITTED
71

 uses a highly efficient genetic algorithm to find the best ligand poses 

inside the active site of the target. If during the conformational search the parameters of the ligand 

and protein (bond lengths, angles, and torsions) do not change, the docking technique is called 

rigid-body docking. This technique is a direct consequence of the “lock and key” mechanism of 

enzyme-ligand interactions, which assumes that only the right ligand will fit inside the active site 

of a target enzyme. It has been shown that rigid body docking has a far greater accuracy if the 

crystal structure was co-crystallized with a ligand rather than in its apo structure.72 If the 

parameters change during the docking process to account for variations in the ligand and protein 

conformations, the technique is called flexible docking. Flexible docking was developed as a 

consequence of the “induced-fit” theory introduced by Koshland,73 where an enzyme can change 

conformations to accommodate an incoming ligand. It is worth noting that flexible docking is more 

computationally demanding than rigid body docking due to the sampling of different side chain 

and/or backbone and ligand conformations.  

 When the conformational search is complete, the binding poses are scored to determine the 

most likely conformation of the ligand inside the active site. While scoring functions differ 
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between docking programs, they generally involve MM-based energy terms such as electrostatics 

and vdW interactions between ligands and target along with more complex terms.  

 Over time several docking programs have been developed – AutoDock,74 Glide,75 GOLD,76 

FITTED – and successfully used in the drug discovery process. Importantly, these docking programs 

all have somewhat easy-to-use interfaces that allow medicinal chemists to undertake their own 

docking studies. Moreover, at the end of a docking run, it is possible to visualize the preferred 

binding poses inside the active site of the enzyme target. This visualization is important because it 

gives medicinal chemists the opportunity to assess the structural integrity of the protein-ligand 

complex, as well as to visually assess if the desired interactions between enzyme and ligand are 

fulfilled. In addition, a medicinal chemist could use their chemical intuition to elicit changes in the 

ligand to improve the binding affinity and then dock the improved compound and compare to the 

original to test their hypothesis. Success stories that involved molecular docking include the in 

silico development of Zanamivir (influenza drug),77 the first neuraminidase inhibitor to be 

commercially developed, and the rationalization of nelfinavir HIV-1 protease resistance, which 

lead to the development of more potent analogues.78 

1.3.1.1.2. SBDD - Virtual Screening. 

 

 At the onset of any drug development project a decision must be made with respect to 

which type of compounds should be pursued. Knowledge and information about the biological 

target are paramount, as well as that of key interactions in the active site of the target that should 

be fulfilled by a possible drug. Therefore, the question is: what is the starting point for developing 

a new drug?  

 Thankfully, sustained efforts by several pharmaceutical companies and academic groups 

have led to the creation of large commercially available small-molecule libraries that cover a large 
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area of the available chemical space. Databases such as ZINC79 and Chemspace80 have proven to 

be invaluable when it comes to providing a suitable starting point for a drug design project. These 

databases can then be screened to obtain a series of drug-like molecules that can be docked into 

the target enzyme to assess their suitability as ligands or inhibitors or used in LBDD methods. The 

top compounds can then be selected as lead compounds, synthesized, or purchased and biologically 

tested. As such, obtaining a hit compound can be done exclusively in silico and the first stage of 

the drug development process (i.e. hit discovery) can be resolved in a matter of days or weeks. 

This entire approach is known as virtual screening. To enable medicinal chemists to undertake 

their own VS studies without proficiency in software development or command line environments, 

drug discovery platforms such as FORECASTER
81 have been developed. FORECASTER was 

developed by chemists for chemists, and it provides inexperienced users with a graphics user 

interface (GUI) that automates the process of running a VS study without the need to know the 

underlying theories. VS has become standard for drug design and has led to several success stories, 

such as finding novel inhibitors for DNA methyltransferase (involved in cancer)82 and a potent 

drug candidate against tyrosine phosphorylation regulated kinase 1A (involved in Down 

Syndrome).83  

1.3.1.1.3. SBDD - MD Simulations. 

 

 As described in section 1.3.1.1.1, docking is an essential tool in drug discovery. However, 

docking only provides a static picture of ligand-enzyme interactions. At times, it is desirable to 

observe the effects of these ligand-enzyme interactions over time to better understand the processes 

that take place while the enzyme is performing its biological function. One method of tracking 

these interactions and changes in enzyme structure is through MM-based MD simulations. 

Through the usage of modern computing facilities, simulations of more than 100000 atoms are 
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now routine84 and the timescales on which MD simulations can be run range from picoseconds to 

milliseconds.17 Moreover, depending on the level of detail required for the simulations, MD can 

be performed at either the atomistic level (each atom is represented individually) or using coarse-

grained representations. For example, if one is interested in observing bond breaking/formation 

during protein catalysis, it would be advisable to use MD simulations at the atomistic level. This 

approach is, however, computationally demanding, and it should only be employed if the protein 

of interest is relatively small and the timescale of simulation relatively short. On the other hand, if 

one is interested in protein folding, which occurs on a long timescale (micro to milliseconds), a 

coarse-grained MD simulation can be undertaken. In the coarse-grained representation, entire 

functional groups or amino acid residues are represented by “beads” in order to speed up the 

simulations and to reduce the computational cost.85  

 To perform an MD simulation, several steps must be undertaken prior to starting the 

simulation. First, a good initial structure for the enzyme is required. This structure can either be 

taken from X-ray crystallography, NMR, homology modeling, or cryogenic electron microscopy 

(Cryo-EM). Then, hydrogen atoms must be added to the crystal structure to prepare it for the 

simulation and the correct protonation state must be assigned to the ionizable amino acids. Once 

the structure is ready for simulation, the overall enzyme charge may be neutralized through the 

addition of counter ions, followed by the placement of the enzyme in a box of solvent (water, 

methanol etc.) to obtain a realistic solvent effect. While this adds complexity to the system, it 

allows a more accurate description of entropic effects (i.e. hydrophobic effects).84 Next, as 

described in section 1.2.3, a decision has to be made whether charge equilibration should be 

performed or not. Once all these steps have been fulfilled, the simulation can be run. The steps 

described above are non-trivial and are in fact largely inaccessible to medicinal chemists.84 As 
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such, developers of MD software packages such as NAMD86 have spent considerable time in 

providing a comprehensive and user-friendly GUI that automates these steps, hiding the underlying 

theory for easier use. These developments have led to several successes in the application of MD 

simulations to drug discovery, such as identifying cryptic binding sites.87  

 In one example, a novel trench-like binding site was identified for HIV-1 integrase, which 

led to the discovery of raltegravir, the first FDA-approved drug for this enzyme.88 Another 

application of MD in drug discovery is the accurate computation of ligand binding energies. For 

instance, a series of azoles were optimized as potent anti-HIV agents starting from inactive 

scaffolds through free energy perturbation calculations.89 Based on these calculations, two 

compounds were selected and tested in vitro where they exhibited high nM activity (300-800 nM 

range). To improve their potency, they were subsequently modified based on the ligand binding 

energy calculations to improved compounds with low nM (10-20 nM range) activity.  

1.3.1.2. Ligand-Based Drug Design (LBDD). 

 

 In contrast to SBDD, LBDD is used when 3D information about the biological target of 

interest is unavailable. Active compounds such as drugs must be developed indirectly by carefully 

studying the known substrates and/or inhibitors of a target.90 The most popular approaches in 

LBDD involve QSAR studies and pharmacophore modeling, which will be discussed below. 

1.3.1.2.1. LBDD – QSAR. 

 

 When compounds (substrates or inhibitors) are known for a biological target, it is desirable 

to map the relevant features (key physicochemical characteristics) to understand their activity and 

the relation between their structure and activity (structure-activity relationship). Then, analogues 

with improved potency and/or drug-likeness can be designed while maintaining the core features 

that afford activity. This is the underlying theory behind QSAR, a computational method used for 
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quantifying the relationship between the structural features of a molecule and its biological 

activity.90 To maximize the biological activity of subsequent analogues of a compound of interest, 

a mathematical model is built using molecular descriptors of these compounds (such as logP, pKa, 

and molecular weight) and the stability and robustness of the model is verified against biological 

activity. The paramount aspect of QSAR is the selection of descriptors - only those descriptors that 

affect biological activity should be chosen. This can be done using several statistical methods, such 

as linear regression, principal component analysis or partial least square analysis.90 Some QSAR 

models (comparative molecular field analysis - CoMFA91 and comparative molecular similarity 

indices - CoMSIA92) use 3D descriptors to build models that relate to biological activity. The 

advantage of applying such descriptors is that they use both steric and electrostatic molecular 

features to relate to biological activity. However, these 3D descriptors are highly dependent on the 

conformation of the compound of interest. Generally, such compounds are optimized using MM 

or QM techniques to obtain the lowest-energy conformation, which is then assumed to be the 

biologically active one. This assumption might not always hold, and as such a major pitfall of 3D 

QSAR techniques is building erroneous models based on the wrong active conformer. 

Nonetheless, 3D QSAR methods - CoMFA and CoMSIA - have been applied successfully to 

various aspects of drug design, chiefly the optimization of mercaptobenzensulfonamides as HIV-

1 integrase inhibitors93 and the design of 1,4-dihydropyridines as calcium channel blockers.94  

1.3.1.2.2. LBDD - Pharmacophore Modeling. 

 While pharmacophore modeling has generated interest in drug discovery only in the past 

few decades, the concept of a pharmacophore was introduced as early as the beginning of the 20th 

century.95 Across the decades, medicinal chemists have offered different definitions for a 

pharmacophore, including a highly popular one given by Schueler96 in 1961: “a molecular 
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framework that carries (phoros) the essential features responsible for a drug’s (pharmacon) 

biological activity.” To unify the existing definitions, the International Union of Pure and Applied 

Chemistry (IUPAC) provided an updated description of a pharmacophore in 1997: “a 

pharmacophore is the ensemble of steric and electronic features that is necessary to ensure the 

optimal supramolecular interactions with a specific biological target structure and to trigger (or to 

block) its biological response”.97 A pharmacophore is comprised of structural features such as 

hydrogen-bond donors/acceptors and hydrophobic, halogen or aromatic moieties that contribute to 

a molecule’s biological activity (Figure 1.9).  

 

Figure 1.9. Structure of Clobazam13 (left) and its pharmacophore (right). Red – halogen moiety; 

blue – aromatic moiety; green – hydrogen bond acceptor; purple – hydrophobic moiety.  

 In drug discovery, a pharmacophore model is usually generated on a training set made of 

compounds that are known to be active on a specific target. The molecules have their 

conformations sampled through various algorithms, followed by molecular alignment and 

assembly of their pharmacophore features.98 Sampling algorithms have to account for ligand 

flexibility, which is one of the main challenges of pharmacophore modeling. This can be achieved 

by pre-generating multiple conformations for each ligand and saving them in a database, or 

computing them on-the-fly during the generation of the pharmacophore model. Regardless of 

method, the sampling of the conformational space must ensure that all biologically-relevant 

conformations have been considered.98  
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 Apart from ligand flexibility, the alignment of various ligands represents a different 

challenge. Molecular alignment can be carried out in two different ways: atom-by-atom mapping 

and mapping based on molecular features. For structures with similar atomic environments, atom-

by-atom mapping represents a good choice. However, for highly dissimilar ligands, mapping based 

on molecular features is more advantageous because it precludes the usage of pre-defined anchor 

points necessary for atom-by-atom mapping.98 Another challenge of pharmacophore modeling is 

represented by the choice of training set; it has been shown that depending on the training set, 

completely different pharmacophore models can be generated for the same target using the same 

software.99-101  

 Despite these challenges, pharmacophore modeling has seen widespread use in the drug 

discovery community. A study by Ren et al.102 used pharmacophore modeling in conjunction with 

VS to find potent in vitro and in vivo inhibitors of transforming growth factor-β Type I receptor. 

In a different example, pharmacophore modeling combined with docking led to the discovery of 

potent compounds against human leukotriene A4 hydrolase and the human nonpancreatic secretory 

phospholipase A2.103 In another study, successful virtual activity profiling was achieved on a set 

of 100 antiviral compounds and several antiviral targets using a novel pharmacophore-based 

parallel screening approach.104  

1.4. Computational Tools in the Context of Organic Chemistry. 

 

 In the previous section we described how computational tools are used to improve the drug 

discovery process and the overall molecular discovery rate. Nevertheless, these tools have far-

reaching implications in many other fields, such as organic chemistry and more specifically 

organic synthesis. For example, ML methods have been used with some success in retrosynthetic 

analyses and synthesis design.105-107 Nonetheless, these methods have several drawbacks. One 
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drawback is that it does not consider stereochemistry changes during reactions, and it also provides 

reaction pathways that are either too long or unfeasible.108 These current drawbacks preclude the 

implementation of these tools in wet labs, but do provide an important stepping stone in the overall 

endeavour of using computational tools in organic synthesis. Moreover, the area of reaction 

prediction and design is still under active development and will likely yield successful 

methodologies for experimentalists to use. Apart from the usage of ML methods for synthesis 

design, other computational tools have been widely used in organic synthesis to rationalize 

reaction mechanisms, chemical reactivity and stereoselectivities of various organic and metal-

based catalysts. The usage of these tools, along with relevant examples and success stories will be 

discussed below.  

1.4.1. Reaction Mechanisms. 

 

 The breaking and formation of bonds occurs on an attosecond timescale.109 Experimental 

measurements of such phenomena require incredibly complex equipment, and is beyond the means 

of most organic chemists. As such, computational chemistry has taken over the role of explaining 

how chemical bonds form and break. Among the most widely used tools to explore reaction 

mechanisms is DFT, because of its low computational cost in comparison to post-HF methods and 

its relatively high accuracy. DFT is particularly well suited in describing the ground state 

geometries of reactants and products, as well as exploring the reaction PES, locating TS structures, 

and predicting side products. Increasingly, experimental chemists have collaborated with 

computational chemists to rationalize experimental observations. Furthermore, due to significant 

advancements in the development of user-friendly, highly efficient and accurate QM packages, 

experimental chemists have slowly started running their own DFT studies.110  
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 To understand the necessity of DFT in elucidating reaction mechanisms, we will first refer 

to the famous example mentioned in section 1.1: the Sharpless asymmetric dihydroxylation.4 To 

understand how important DFT was in this case, we will take a closer look at the possible reaction 

mechanisms proposed before theoretical studies were conducted, and how DFT was used to 

differentiate between them. The Sharpless asymmetric dihydroxylation of alkenes (Scheme 1.7) 

proceeds through an osmium-based catalyst and leads to the formation of chiral diols. This reaction 

is of exceptionally high value in organic synthesis because it allows the introduction of chirality 

in non-chiral compounds. Since its development, the Sharpless asymmetric dihydroxylation has 

been extensively used in the total synthesis of natural products.111 

 

Scheme 1.7. Sharpless asymmetric dihydroxylation of alkenes. 

When the reaction was first described, Sharpless proposed that the mechanism went through a 

[2+2] cycloaddition step that led to the formation of a 4-membered ring osmaoxetane (Scheme 

1.8a), which would undergo ring expansion to convert to a 5-membered ring TS.112 Later, Corey 

proposed that the mechanism actually proceeded through a [3+2] cycloaddition step that led to the 

direct formation of a 5-membered ring TS without proceeding through an osmaoxetane 

intermediate (Scheme 1.8b).113 These proposals sparked a decade-long debate between Corey and 

Sharpless, with both producing experimental evidence for their respective mechanisms.  
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Scheme 1.8. Proposed mechanisms for the Sharpless asymmetric dihydroxylation. 

 It was not until 1997, 17 years after the Sharpless asymmetric dihydroxylation was first 

described, that the mechanism of the reaction was established. Using ammonia as the ligand to 

chelate osmium (L in Schemes 1.7 and 1.8), and using ethylene and propene as model alkenes, 

Houk and Sharpless4 located TS structures for both mechanisms at the B3LYP/6-31G* level of 

theory. Importantly, they showed that the TS energy for the [3+2] cycloaddition step was in the 

range of 3.1-3.4 kcal/mol, while the [2+2] cycloaddition had a prohibitive barrier of ~ 40 kcal/mol 

for the formation of the osmaoxetane and a barrier of ~30 kcal/mol for the ring expansion. 

Moreover, they obtained theoretical kinetic isotope effects that could be compared to 

experimentally determined ones. In the case of the [3+2] cycloaddition step, 80% of the 

experimentally determined kinetic isotope effects matched the theoretically determined ones 

within one standard deviation, while the ones for the [2+2] cycloaddition step did not match at all. 

This data was then used to conclude that the rate limiting step of this reaction was indeed a [3+2] 

cycloaddition step, and that the reaction proceeded through a stepwise mechanism.  

 In another example that showcases the effectiveness of DFT in elucidating reaction 

mechanisms, Tomberg et al.114 studied the formation of epoxides versus hydroxylation products 
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in CYP450-mediated aromatic oxidations using the PBE0 functional and a custom built basis set. 

This oxidation takes place through a radical mechanism. Using a simplified heme model along 

with bromobenzene and phenol as model substrates (Scheme 1.9a), Tomberg et al. showed that 

the nature of the intermediate (radical or cationic) played a major role in the resulting product 

(Scheme 1.9b). Moreover, the authors were able to show that the spin density during the reaction 

resides primarily on the iron if the resulting product was a hydroxide, while residing primarily on 

the aromatic ring if the product was an epoxide. The elucidation of this mechanism is of high 

importance in transition-metal catalysis, as well as in enzyme catalysis, where CYP450 have been 

often used.  
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Scheme 1.9. a) Simplified heme model used as reactive species in the reaction mechanism, along 

with bromobenzene and phenol used as model substrates for the reaction. b) Reaction mechanisms 

that lead to the formation of either epoxide or hydroxide.114 

1.4.2. Chemical Reactivity. 

 

 The effectiveness of DFT studies is not only limited to the study of reaction mechanisms. 

In fact, a whole new field of study built around DFT has emerged in the past few decades – 

conceptual DFT (cDFT). cDFT has been successfully used in providing the theoretical basis of 

qualitative chemical concepts, such as hardness, softness, electronegativity, chemical potential, 

electrophilicity, and nucleophilicity.115 For example, the chemical potential μ of a molecule 

represents the tendency of electrons to escape from a system in a state of equilibrium.116 Within 

the DFT framework, μ can be computed as the sum of the energy of the lowest unoccupied 

molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) (Eq. 1.14).115 In 

another example, to explain why acid-base reactions proceed in a set direction, Pearson introduced 

the concept of “hardness” and “softness”, as well as the hard-soft acid-base (HSAB) theory.117 The 

HSAB theory states that a hard nucleophile will preferentially react with a hard electrophile, while 

a soft nucleophile will preferentially react with a soft electrophile. Within the framework of DFT, 

the chemical hardness can be expressed as the difference between the energies of the LUMO and 

the HOMO, while the softness is just the inverse of hardness (Eqs. 1.15-1.16). 

μ =
1

2
 × (εLUMO + εHOMO)               Eq. (1.14) 

η =
1

2
 × (εLUMO − εHOMO)               Eq. (1.15) 

S =
1

2η
                                                    Eq. (1.16) 
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Equations 1.14-1.16. Description of the global parameters chemical potential, hardness, and 

softness.  

The softness of a molecule relates to its polarizability, with a larger molecule being softer, thus 

more polarizable. Once hardness and chemical potential were introduced as concepts, Parr et al.118 

developed an electrophilicity index ω that makes use of them (Eq. 1.17). 

ω =
μ2

2η
                                                    Eq. (1.17) 

Equation 1.17. Description of the global electrophilicity ω. 

 

This index is an excellent description of the energy stabilization obtained when the molecule 

receives an additional electronic charge from the environment.115 Importantly, these indices only 

provide information about molecular reactivity and stability. However, sometimes it is useful to 

determine exactly which atom(s) within a molecule will react. To this end, local atomic reactivity 

indices (LARIs) have been developed to account for the reactivity of individual atoms. 

 Among these, the most important are the Fukui functions.119 Based on Kenichi Fukui’s 

seminal work on the role of the HOMO and LUMO orbitals in chemical reactions,120 the Fukui 

functions (or coefficients – FC) relate the atomic electronic density in the HOMO and LUMO 

orbitals to the propensity of an individual atom to undergo nucleophilic (f+), electrophilic (f-) or 

radical attack (f0) (Eq.1.18-1.20).115 

f+ = ρLUMO                                       Eq. (1.18)  

f− = ρHOMO                                      Eq. (1.19) 

f0 = 
1

2
 ×  (ρHOMO + ρLUMO)        Eq. (1.20) 

Equations 1.18-1.20. Description of the Fukui functions for nucleophilic, electrophilic, and 

radical attacks. 
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The Fukui functions have been applied extensively within the cDFT framework to explain local 

atomic reactivity patterns. For example, the reactivity of lignin precursors p-coumarol, coniferol 

and sinapol (Figure 1.10) was investigated in order to explain the formation of lignin, an aromatic 

polymer present in the walls of wood cells.121 

 

Figure 1.10. Structures of p-coumarol, coniferol and sinapol. 

Since the formation of lignin involves a radical mechanism, the f0 values were computed and it 

was shown that for p-coumarol and sinapol the β-carbon is the most reactive site, while for 

coniferol the most reactive site is in the carbon-oxygen bond region of the hydroxyl group attached 

to the γ carbon. In another example, Mendez and Gazquez122 looked at the reactivity of three 

enolates: cyclohexanone, phenacyl and butyrolactone (Figure 1.11) using Fukui functions and the 

HSAB theory. 

 

Figure 1.11. Structures of the enolate ions of cyclohexanone, phenacyl and butyrolactone. 

To understand the difference in reactivity between the different reactive sites, Mendez and 

Gazquez computed the f- values for the three enolates. These values showed that the highest values 
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for the electrophilic Fukui function resided on the carbonyl oxygen atom in all three cases, 

followed by the enolate carbon. Moreover, they showed that depending on the substituents on the 

enolate, the reactivity order can shift between the enolate carbon and carbonyl oxygen, effectively 

changing the reactive site. This can occur if the reagent and solvent is kept constant. However, 

changing the solvent can lead to a change in reactivity in the same enolate, which is supported by 

experimental evidence.122 Overall, these examples serve as a validation of the usage of cDFT in 

organic chemistry, and as proof of the ability of cDFT to aid chemists in their understanding of 

chemical reactivity. 

1.4.3. Catalyst Design, Screening and Enantioselectivity Computations. 

 

 Apart from rationalizing reaction mechanisms and chemical principles, computational 

tools can also be used to design new molecules or new reactions. For example, of high interest in 

organic chemistry are chiral molecules. To synthesize such molecules one could use biocatalysis 

or a chiral pool; however, these methods have numerous drawbacks, such as the relative stability 

and specificity of biocatalysts and the reduced number of chiral molecules available in the chiral 

pool.18 An alternative to these methods is asymmetric synthesis, which allows one to synthesize 

chiral molecules in high yield and purity. To allow for efficient asymmetric syntheses, cheap, 

green, selective catalysts must be employed. Most commonly used catalysts in asymmetric 

syntheses are metal based, which suffer from poor availability, high cost, and relative toxicity. To 

avoid the usage of metals in catalysis, one can explore the organic catalysts for the required 

chemical transformations. However, these catalysts must be designed and synthesized, a tedious 

process if done only experimentally. Thus, screening and designing new catalysts computationally 

has started gaining traction in the organic chemistry field.  
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 To enable the design of selective catalysts, one must first have an accurate method to 

compute the stereoselectivity of the catalysts. To this end, several methodologies for designing 

catalysts and computing stereoselectivities have been developed, including MM,123,124 QM,125-127 

and QM/MM128 techniques. For example, Du et al.126 used DFT to predict the reactivity of 

supported metal oxide for the selective catalytic reduction of nitrogen oxides with ammonia. In 

their study, they used several DFT descriptors – LUMO, hydrogenation and HOMO energies – to 

establish the oxidizing ability and acidity of potential oxide catalysts. In their search they separated 

the potential catalysts in three categories: active components, promoters, and inactive 

components/support. Those catalysts that exhibited strongly negative hydrogenation energies 

(high oxidizing ability), combined with low LUMO energies (high acidity) and high HOMO 

energies (possibility for reoxidation) were the active components of the reaction. These were 

experimentally tested and found to correlate accurately with the theoretical study, providing an 

excellent example about the usage of DFT in obtaining new catalysts.  

 However, while DFT has been used in catalyst screening and design, it suffers from several 

drawbacks. First, the computation times of optimizing ground state geometries, finding TS 

structures, and computing enantioselectivities might be prohibitive for organic chemists, especially 

when libraries of potential catalysts must be screened. Second, it has been shown that popular 

integration grids used for computing the exchange-correlation energy provide quantitatively wrong 

results for computed stereoselectivities due to their lack of rotational invariance.129 Thus, due to 

these drawbacks and to ensure a fast, efficient, and accurate screening of libraries of potential 

catalysts, several academic groups have been working on providing user-friendly computational 

platforms that use MM methods. Among the most comprehensive platforms are VIRTUAL 

CHEMIST
18

 and CatVS.130 
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 VIRTUAL CHEMIST, developed in the Moitessier research group at McGill University, is a 

state-of-the-art computational platform that allows an organic synthesis experiment to be simulated 

from start to finish. Specifically designed for asymmetric synthesis, the platform was validated on 

four different types of experiments: one-by-one design, library screening, hit optimization and 

substrate scope evaluation. The platform was designed with the necessities of organic chemists in 

mind and includes modular workflows that allows experimentalists to create their own experiments 

through a few clicks. Most importantly, the underlying methodologies are hidden from the user 

and using the platform does not require any computational expertise. When the platform was 

developed, three main aspects were given special consideration: 1) preparation of libraries of 

catalysts, 2) predicting stereoselectivities, and 3) evaluating catalytic activity.  

 The most important program in the VIRTUAL CHEMIST platform is the Asymmetric Catalyst 

Evaluation (ACE)123 package. Based on the MM3 FF, ACE uses the Hammond-Leffler postulate 

(Figure 12 top) to construct the TS as linear combination of reactants and products. The forming 

bonds are considered as a combination of covalent bonds, present in the products, and non-covalent 

interactions present in the reactants (Eq. 1.21). 

ETS = (1 −  λ)ER +  λEP                   Eq. (1.21) 

Equation 1.21. Description of the linear combination of reactants and products used by ACE to 

construct the TS.  

 To ensure that the TSs are properly described, a Lamarckian genetic algorithm to optimize 

and perform an exhaustive conformational space search of TS templates was implemented. After 

the TSs for a given reaction have been optimized, ACE computes the stereoselectivities of a given 

catalyst (in either vacuum or solvent) using the Curtin-Hammett principle (Figure 1.12 bottom). 

 Although ACE uses an MM-based FF for the conformational search, TS optimization and 
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stereoselectivity computation, the accuracy of the program is within 1 kcal/mol when compared to 

experimentally determined stereoselectivities (tested on 350 reactions from 7 reaction classes).18 

The accuracy and ease-of-use makes the overall platform highly attractive for organic chemists.  
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Figure 1.12. Top: Hammond-Leffler postulate: the TS resembles the reactants (A) if it is an early 

TS and the products (B) if it is a late TS. The step λ controls whether the TS is late or early in the 

ACE computations. Bottom: Schematic depiction of the Curtin-Hammet principle. 

Stereoselectivity of a catalyst can be computed by converting the difference in energy between 

TS1 and TS2 (i.e. ∆∆G‡) to an enantiomeric excess (%ee) ratio.  

The underlying theory, auxiliary programs, drawbacks and extensive testing and validation of 

VIRTUAL CHEMIST will be discussed in greater detail in Chapter 5. 

 Another important computational platform in the field of asymmetric synthesis is CatVS, 

developed by Rosales et al.130 This platform is based on the quantum guided molecular mechanics 

method (Q2MM),131 which allows the development of transition state force fields (TSFFs)132 using 

QM data obtained for small model systems of a reaction’s TS. This methodology has been 

validated on several reactions, such as metal-catalyzed oxidations and hydrogenations, P450 

oxidations, and stereoselective additions to aldehydes.130 To explore the conformational space of 

the possible TSs, CatVS uses the Monte Carlo routines available in Macromodel,133 while the 

computation of stereoselectivities is done using Boltzmann-averaging of the energies of the 

conformations that lead to a specific stereoisomer. To explore the applicability of CatVS to a 

reaction of chemical interest, a library of ligands was screened for the Rh-catalyzed asymmetric 

hydrogenation of enamides on two substrates (Scheme 1.10).  
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Scheme 1.10.  Overall scheme for the Rh-catalyzed asymmetric hydrogenation of enamides 

(left).130 Substrate with a conjugated α-substituent (middle) and substrate with a non-conjugated 

α-substituent (right). 

 To differentiate between screened ligands (L in Scheme 1.10), Rosales et al. set a threshold 

of 96% for the enantiomeric excess. In the case of the substrate with a conjugated α-substituent, 

CatVS was able to identify four correct ligands and one false positive. In the case of the substrate 

with a non-conjugated α-substituent, CatVS found two highly selective ligands and failed to 

identify one false negative. Despite these successes, CatVS presents drawbacks, such as the 

inability to consider highly flexible or highly charged TSs, as well as the inability to model solvent 

effects. Nonetheless, if the TSs of the reaction of interest are rigid and experimental data available 

to compare to predictions, CatVS can be highly useful. Moreover, the VS study presented above 

was performed on a standard PC in less than 12h per ligand, which makes it highly attractive to 

organic chemists due to low computational requirements and fast turnover rate.  

1.5. Conclusions. 

 

 In this chapter, we presented several computational tools and methodologies, each with 

their associated background, limitations, and applications. Among the most interesting tools are 

MM, QM, and ML methods, which have seen widespread use in various fields of chemistry. Most 

importantly, we described the usage of these methods in the context of drug discovery/medicinal 

chemistry and organic chemistry research.  

 Within drug discovery, computational tools are of extreme importance due to their ability 

to shorten the time a drug requires to reach clinical trials, and to potentially reduce the failure rate 

(reduced toxicity). Using computational tools in the drug discovery pipeline enables researchers 

to test hypotheses much faster than they would experimentally (for example changing various 
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functional groups on drug candidates and observing the interactions with a biological target 

through docking or MD simulations), and allows them to obtain a hit compound in mere days or 

weeks. This compound can then be tested for toxicity in silico. For example, computational tools 

to assess the potential SoMs can be used to verify whether the lead compound could be metabolized 

into harmful reactive metabolites. If this is the case, in silico structural changes can be made to the 

compound to remove the possibility of reactive metabolite formation even before attempting 

synthesis. This process ensures that only promising molecules are synthesized, which contributes 

to a lower cost of the overall drug discovery process.  

 Within organic chemistry, computational tools can be used to rationalize reaction 

mechanisms and chemical reactivity, but also to design new molecules and reactions. Throughout 

the years, reaction mechanisms for highly synthetically relevant reactions, such as the Sharpless 

asymmetric dihydroxylation and P450-mediated oxidation of aromatic compounds, have been 

explained. Moreover, significant advancements in understanding chemical reactivity have been 

made through the application of cDFT to chemical principles such as hardness, softness, chemical 

potential, and electrophilicity. These examples showcase the power and utility of computational 

tools when applied to problems of organic chemistry. In addition to this, we described the ability 

to design and screen numerous catalysts in silico in a matter of days with user-friendly 

computational platforms. These platforms are designed especially for experimentalists to allow 

their manipulation with limited computational expertise. Most importantly, these tools allow 

organic chemists to design and perform experiments in silico and to make any necessary 

adjustments and changes to their hypotheses and reagents. Indeed, these tools enable scientists to 

effectively remove tedious aspects of experimental chemistry and to focus on high-level problem 

solving and experimental design.  
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1.6.Thesis Objectives. 

 

 This thesis develops computational tools and protocols to improve the molecular discovery 

rate in organic and medicinal chemistry. Overall, the thesis will address the advancements we have 

made in this field, by considering three separate but interconnected examples. Chapters 2 and 3 

will discuss the development of a computational protocol to accurately model the conformational 

preferences of clinically-relevant nucleosides (historically used as drugs against diseases such as 

HIV, cancer and herpes), and thereby enable the design and synthesis of those nucleosides with 

desirable properties. Chapter 4 will present integration of QM, docking, and ML methods for 

CYP450 inhibition prediction in the drug discovery pipeline, while Chapter 5 will focus on 

improving the current tedious, costly process of developing asymmetric catalysts by delivering a 

computational platform that has been experimentally validated by organic chemists for catalyst 

discovery.
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Chapter 2 – Accurately Modeling the Conformational Preferences 

of Nucleosides – Methodology 

Preface.  

 

 Existing computational methods are useful in enabling the synthesis of compounds with 

highly desirable properties, yet in some cases these methods need to be developed for special 

classes of molecules. This is the case of nucleosides, which have historically been used as drugs 

against diseases like cancer and HIV. Nucleosides are notorious for their modeling difficulty 

because their conformations are highly sensitive to solvent and intrinsic stereoelectronic effects. 

Since they owe their activity to their conformation, the ability to predict these conformations is 

significant. Currently, experimentalists rely only on the synthesis of various nucleoside analogues 

to improve on existing drugs. However, this approach is very iterative and costly, since it requires 

a high number of analogues to be synthesized and tested. The work presented in Chapter 2 focuses 

on facilitating the synthesis of only desirable nucleosides by developing a computational protocol 

that is able to accurately predict the conformational preferences of these nucleosides in solution. 

This approach will likely reduce the cost associated with developing new nucleoside-based drugs. 

This chapter is based on the work published in the paper: 

Burai Patrascu, M.; ‡ Malek-Adamian, E.; Damha, M.J.; and Moitessier, N. J. Am. Chem. Soc., 

2017, 139, 39, 13620-13623. 

‡ first author 

 MBP developed the computational protocol, compiled the training and testing sets and 

performed the calculations and data analysis. EMA performed the wet lab experiments and MBP, 

EMA, MJD and NM contributed to writing the manuscript.  
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Abstract.  

 

 Sugar puckering of nucleosides impacts nucleic acid structures, hence their biological 

function. Similarly, nucleoside-based therapeutics may adopt different conformations affecting 

their binding affinity, DNA incorporation, and excision rates. As a result, significant efforts have 

been made to develop nucleoside analogues adopting specific conformations to improve 

bioactivity and pharmacokinetic profiles of the corresponding nucleoside-containing drugs. 

Understanding and ultimately predicting these conformational preferences would significantly 

help in the design of more effective structures. We developed a computational protocol based on 

hybrid QM/MM umbrella sampling simulations that allows the accurate prediction of the sugar 

conformational preferences of chemically modified nucleosides in solution. Moreover, we used 

these simulations in conjunction with natural bond orbital (NBO) analysis to gain key insights into 

the role of substituents in the conformational preferences of these nucleosides. 
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2.1. Introduction. 

 

2.1.1. Chemically Modified Oligonucleotides.  

 Chemically modified oligonucleotides have widespread biological applications: while 

classically used as chemical probes due to their specific binding of an intended target,134 they have 

been shown in recent decades to become promising therapeutic agents following the advent of 

small interfering RNA (siRNA) and antisense oligonucleotide (ASO) technologies. This fact has 

been reinforced by the FDA approvals of three ASOs, namely Vitravene (1998), Kynamro (2013), 

and more recently Defitelio (2016) for the treatment of cytomegalovirus retinitis, homozygous 

familial hypercholesterolemia, and severe hepatic veno-occlusive disease, respectively.135 All 

these therapies had to be chemically modified at the nucleotide level in order to increase their 

stability, bioavailability, and overall pharmacokinetic properties. Thus, despite recent successes, 

there is still much work to be done to improve upon the current technologies, and ideally do all 

this and more with intelligent design.136  

2.1.2. Nucleoside Reverse Transcriptase Inhibitors (NRTIs).  

 Over the past decades, nucleoside analogues have also been successfully developed for the 

treatment of viral infections and cancer (Figure 2.1). Examples are Zidovudine (AZT),137 

Lamivudine (3TC),138 and Emtricitabine (FTC),139 three inhibitors of the HIV’s reverse 

transcriptase. Other viruses have been targeted by structurally similar inhibitors including hepatitis 

B virus (Telbivudine140), Ebola virus (BCX4430141), and herpes simplex virus (Vidarabine142). 

Cancer has also been targeted by nucleosides such as Gemcitabine, which, when incorporated into 

DNA, leads to a DNA strand that can no longer be processed by the DNA polymerase.143 
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Figure 2.1. Nucleoside analogues used as drugs. 

2.1.3. Nucleoside Conformation.  

 It is well established that enzyme inhibitors and other small molecule drugs often owe their 

activity to their shape (i.e. conformation) and chemical features (e.g., hydrogen-bond donor, 

hydrophobicity). In the field of inhibitor design, high throughput computational methods to 

investigate and/or guide the design of this class of small molecule drugs, such as docking 

methods,144 are often considering drug flexibility. In the field of chemically modified 

oligonucleotides, the problem is much more complex since a subtle structural change in a 

nucleotide may have a profound effect on duplexes’ shape and stability. In addition, the size of the 

systems is such that identifying the preferred conformations requires significantly more time-

consuming methods.145 Nucleoside building blocks can be tailored to adopt different sugar 

conformations (often referred to as the sugar pucker), which, in turn, affect duplex structure, 

pairing affinity, and, ultimately, biological activity.146 The puckering can be described with the 
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pseudorotational circle (Figure 2.2a), the pseudorotational angle P, and the puckering amplitude 

Φm (Figure 2.3 and Equations 2.1 and 2.2).147  

 In general, sugars that adopt the C3’-endo conformation (also referred to as North, Figure 

2.a) demonstrate increased binding affinity towards complementary RNA strands.148 For example, 

the substitution of a natural nucleoside by a conformationally restricted nucleoside such as locked 

nucleic acid (LNA, Figure 2.c)149,150 dramatically improves binding affinity within duplexes due 

to the increased pre-organization and resulting reduced entropic cost for duplex formation. There 

are, however, synthetically fewer challenging approaches to favor a desired conformation. 

Electronegative 2′-substituents, such as 2′-OMe, 2′-methoxy-ethyl (MOE), 2′-F (Figure 2.b), 

impart stereoelectronic effects that favor the North conformation.146  

 

Figure 2.2. a) Conformational characterization of the ribose puckering;151 b) 2′-F,4′-OMe-rU 

(2.8)152 and clinically-relevant nucleoside analogues. 



Chapter 2 

 

56 

 

 These specificities render these structural modifications attractive for use not only in ASO 

and siRNA, but also for modification of the guide RNA (gRNA) in the CRISPR/Cas9 system due 

their ability to resemble RNA structure.153,154 In contrast, the 2′-FANA modification has been 

shown to favor the South/East conformation, but it has still been shown to increase binding to 

complementary RNA targets, confer nuclease resistance, and is well tolerated by the cellular 

machinery needed for gene knockdown.155-157 Notably, the North and South preference of a 

nucleoside analogue can also be harnessed to design more effective antivirals and 

chemotherapeutics: nucleosides with a sugar pucker in the South range of the pseudorotational 

circle are preferentially phosphorylated by kinases, while North type nucleosides are preferentially 

incorporated by polymerases.158-160 These conformational considerations allow for more effective 

designs with an intended target in mind.  

 

Figure 2.3. Definition of dihedral angles used to calculate the pseudorotational phase angle P in 

Eqs. 2.1 and 2.2. R = any substituent. 

tanP =
(v4 + v1  ) − (v3 + v0)

2v2 (sin 36 + sin 72)
                   Eq. (2.1) 

ϕm =
v2 

cos P
                                                          Eq. (2.2) 

Equations 2.1-2.2. Description of the formulas used to compute the pseudorotational phase angle 

P and the puckering amplitude Φm. 
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2.1.4. Computational Methods.  

 Nowadays, several computational methods are available at the drug design and discovery 

stage, from ligand-based (e.g., QSAR) to structure-based (e.g., docking). However, while these 

methods are commonly used (and validated) with enzymes or receptors as drug targets, the 

problem at hand with nucleic acids as described herein, are very different. Current methods 

developed for small drug molecules binding to proteins can be retrained (and validated) with 

nucleic acids or new strategies can be envisioned. In the field of nucleosidic building blocks or 

drugs, the biological activity is directly related to the puckering of the ribose (or deoxyribose) ring. 

This puckering is, for a large part, controlled by hyperconjugation effects.  

 On one side, one can consider MM-derived methods, although their accuracy for this class 

of molecules must be demonstrated and/or improved.161 On the other side, one can envision QM 

techniques, although, investigating the dynamic equilibrium between the different conformations 

and the conformational ensemble may be time-consuming. With this in mind, we set out to filter 

through all the existing methods and find a suitable computational technique that would accurately 

and quickly describe the conformation of nucleosides such as the ones in Figures 2.1-2.2 in 

solution. Ideally, the method would properly describe the hyperconjugation effects including the 

anomeric effect and potential intramolecular hydrogen bonding effects governing the sugar 

puckering and would be able to assign North/South ratios consistent with experimental data e.g. 

derived from 1H NMR spectroscopy. Such a method would be an asset since it would allow the 

design of numerous nucleosides and nucleoside analogues that can be tested computationally prior 

to synthesis, with the only cost being central processing unit (CPU) time.  
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2.2. Benchmark Study.  

 Many computational methods have been used to determine the sugar puckering of 

furanosides, from QM (primarily DFT) to more time-efficient MM approaches. A close look at the 

reports revealed somewhat conflicting information. On one side, pure DFT calculations were used 

to determine the sugar puckering of α- and β-D-aldopentofuranosides.162 On the other hand, Roy 

and co-workers163,164 reported the use of a special MD technique - umbrella sampling – used in a 

pure MM fashion along with the GLYCAM parameter set165 for carbohydrates, advocating for its 

use as a principal method of investigation of sugar puckering in mono- and oligosaccharides. 

Another report by Roy and co-workers164 on mono- and oligosaccharides showed that when 

compared to a QM/MM approach using semi-empirical methods such as SCC-DFTB, the 

GLYCAM approach yielded results close to experimental data, while SCC-DFTB did not. By 

contrast, Naidoo and Barnett166 showed that between various semi-empirical QM methods tested 

on ribose and glucose, SCC-DFTB was the one that produced sugar (ribose and glucose) puckers 

close to those obtained by high-level calculations. Moreover, a study by Huang et al.167 claimed 

that commonly employed semi-empirical methods such as SCC-DFTB fail to properly describe 

sugar puckering, while proposing their own method of correcting their flaws. While some methods 

arrive to contradictory results, the system under scrutiny plays a major role in the effectiveness of 

these methods. For example, electron-withdrawing substituents on sugar rings such as fluorine 

affect sugar puckering due to hyperconjugation effects. While these effects can be described by 

QM methods, MM methods are not properly parametrized to take them into account.161 In this sea 

of possibilities, one can only make an informed decision by testing all possibilities and choosing 

the one that yields the most accurate results for that particular system, especially when 
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experimental data is available. Therefore, we decided to run our own benchmark study to assess 

the suitability of various methods.  

2.2.1. DFT Calculations.  

 To start off our benchmark study we set our sights on nucleoside 2.8 (Figure 2.2)152 for 

several key reasons: 

1. we had access to high quality experimental data to which we could compare our 

predictions; 

2. the methoxy substituent at C-4′ alters the stereoelectronics and subsequently the sugar 

conformation; and 

3. oligonucleotides containing this nucleoside analogue exhibit favorable binding properties, 

increased nuclease resistance, and perform well in RNAi gene knockdown experiments. 

Therefore, we decided to start our benchmark study with DFT calculations focused on several 

envelope conformations that 2.8 could adopt in solution. We optimized these conformations using 

an implicit solvent and the energies we obtained for each conformation are given in Table 2.1. As 

seen in Table 2.1. our computed data suggested a significantly large North (N) preference with an 

energy difference well above 3.5 kcal/mol relative to the South (S) conformer, hence a N/S ratio 

greater than 100:1. However, the experimental N/S ratio obtained by NMR experiments at 303K 

for 2.8152 revealed a preference for the N conformation in the ratio 87:13 (ΔE(N/S) = 1.15 kcal/mol). 

 To explain such a deviation, one must look at the underpinnings of DFT. First, although 

DFT can describe the hyperconjugation effects, it only provides static conformations of the 

molecule, meaning that the dynamic behavior of sugar puckering would not be described fully. 

Moreover, the solvent (water) used in DFT-solution phase calculations is implicit. 
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Table 2.1. Data obtained for different envelope conformations of 2.8 at the M06/def2-TZVP level 

of theory.  

Envelope 

Conformation 
P* (°) ϕm**(°) 

Pucker 

Type 

Energy 

(kcal/mol) 

1E 303 26.11 C1’-endo 7.40 

2E 168 38.20 C2’-endo 3.64 

3E 23 33.71 C3’-endo 0.00 

4E 234 41.90 C4’-endo 10.42 

1E 124 43.88 C1’-exo 5.84 

2E 350 34.59 C2’-exo 7.66 

3E 199 32.51 C3’-exo 5.77 

4E 56 45.37 C4’-exo 6.65 

*P = pseudorotational phase angle; **ϕm = puckering amplitude 

As continuum solvation does not consider individual water molecules, the possibility of hydrogen-

bonding between the sugar hydroxyls and water is non-existent. Utilizing explicit water molecules 

would add a high degree of complexity (e.g., location, number, placement and orientation of water 

molecules), and CPU time to the calculations, thus making the calculations intractable. Poor 

placement (and estimate on the number) of water molecules will likely yield incorrect results. 

Therefore, we reasoned that the cause of this inaccurate prediction of the N/S ratio likely resides 

in the improper computation of intermolecular hydrogen bond strengths, as well as the lack of 

explicit waters which would modulate the stereoelectronic effects.  

2.2.2. MM Study. 

 Recently, Roy and co-workers163 suggested umbrella sampling simulations with the 

GLYCAM parameter set were suitable for describing furanosides, and thus we turned our attention 

to this approach in our study as well. Such simulations allow the description of the system of 

interest in a dynamic fashion, at a desired temperature and pressure. However, the major advantage 
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of using umbrella sampling simulations is that it allows one to overcome high free energy barriers 

for conformational changes, thus effectively ensuring that the full conformational landscape is 

evenly (or nearly evenly) explored. Nonetheless, such a simulation requires a specific reaction 

coordinate in the context of which sugar puckering can be analyzed. Roy and co-workers showed 

that the rotation about the exocyclic C4-C5 bond (Figure 2.4c) occurs on a faster time scale than 

sugar puckering, thus making the analysis of puckering in the context of an exocyclic torsion 

reasonable. We decided to use the same exocyclic torsion as our reaction coordinate. Another 

advantage of using umbrella sampling simulations was the significantly lower CPU-time 

requirement (since they rely on MM), which enabled the use of explicit solvents that we believe 

may be critical for optimal predictions. The free energy (also known as Potential of Mean Force – 

PMF) of sugar puckering as well as average sugar pucker population distributions could be easily 

obtained from our simulations and the data is shown in Figure 2.4a.   

 Although this method was able to identify two distinct minima, it assigned the global 

energy minimum for 2.8 (and the most populated conformation) to the S conformation. This is 

contradicted by experiment, which assigns the N region as the most populated one, thus rendering 

the pure MM approach with the GLYCAM parameter set unviable. A closer look at the previous 

study shows that the systems previously treated with the AMBER/GLYCAM approach focuses on 

mono- and oligosaccharides lacking strong electron-withdrawing substituents in the 2′ and 4′ 

positions (such as -F and –OMe present in 2.8). It is known that MM methods are not explicitly 

parametrized to describe strong hyperconjugation effects such as the anomeric or gauche effect; 

because the GLYCAM parameter set does not have specific fluorine parameters, generic 

parameters (the ff99SB force field) were applied to our system. Since these electronic effects play 

a major role in determining sugar puckering, it is reasonable to assume that the failure of this 
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method stems from this improper description of these effects. As an additional limitation, since 

MM methods explicitly consider nuclei but not electrons, most commonly used force fields used 

in MM (including the ff99SB force field used for these calculations) are non-polarizable and thus 

molecular polarizability is not taken into account for any given system. 

a)

 

b) 

 

c) 

 

d)

 

Figure 2.4. a) PMF curve along the pseudorotational phase angle for 2.8 using GLYCAM. Inset 

shows the sugar pucker distribution. (blue – N, green – S). b) PMF curves obtained using the RM1, 

PM3 and PM3CARB1 semi-empirical methods. c) Exocylic C4-C5 bond rotation was shown to 

be on a faster time scale than sugar puckering.163 d) PMF curve of 2.8 using SCC-DFTB. Inset 

shows the sugar pucker distribution (blue – N, green – S). 
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2.2.3. QM/MM Calculations.  

 Since DFT and MM calculations proved to be unsuitable for this type of system, we turned 

our attention to hybrid QM/MM umbrella sampling simulations. The main advantage of using such 

methods is that they give the possibility of analyzing the system of interest in a QM fashion, while 

the explicit solvent is treated with MM. We decided to test various semi-empirical methods for the 

QM region, namely RM1,31 PM3,29 PM3CARB1,168 and SCC-DFTB.169 Time-wise, this approach 

performed similarly as the pure MM approach while employing the same computational resources. 

 A comparison between the PMF curves obtained with RM1, PM3, and PM3CARB1 is 

provided in Figure 2.4b. Interestingly, none of these first three semi-empirical methods correctly 

distinguished between two distinct minima. Moreover, while RM1 and PM3CARB1 correctly 

described the global minimum in the N region, PM3 failed to describe this minimum altogether. 

The inability of these methods to model the dynamics of these sugar structures has also been 

described by Naidoo and Barnett,166 who argued that these semi-empirical methods produce sugar 

rings having inaccurately low conformational free energy barriers. However, this is not the case 

when using SCC-DFTB (Figure 2.4d). In the past few years, this method has proven to be fast, 

reliable, and accurate when describing various systems, including sugar-containing molecules.166 

 As can be seen in Figure 2.4d, SCC-DFTB correctly assigned the global minimum in the 

N region, while simultaneously finding a local minimum in the S conformation. As we reported in 

a previous study152 the calculations yielded two distinct energy minima, one at a pseudorotational 

phase angle PN=58.5° (puckering amplitude ϕm = 42.9), corresponding to the global minimum in 

the N/E conformation and one at PS=168.5° (puckering amplitude ϕm = 31.2), corresponding to a 

local minimum in the S conformation (Figure 2.5). The difference in energy between the N and S 

conformation was computed to be ~1.15 kcal/mol, and the integration of the distribution in Figure 
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2.4d lead to a N/S ratio of 84:16, which is remarkably similar to the experimental N/S ratio of 87:13 

(Figure 2.5). 

 

Figure 2.5. Structural information for the N and S minima obtained for 2.8.152  

 These accurate N/S ratios provided us with confidence in the computed structural 

information using this approach. However, testing this method on one compound was not enough 

to make assertions about its accuracy, thus we assembled a set of various nucleosides published in 

the literature that could serve as a validation set (Chart 2.1). Moreover, we also assembled a set of 

modified monosaccharides (Chart 2.1) to perform a comparative study between the method used 

here and the various methods used in the literature.  

2.3. Validation of the Method on a Set of Nucleosides and Monosaccharides.  

 Our literature search focused on a variety of monosaccharides,162-164 as well as on 

nucleosides with various substituents (or lack thereof) affecting the sugar puckering; moreover, 

we decided to include in our set well-known nucleosides, such as AZT.170 Obviously, we restricted 

our set to compounds which have an experimentally determined N/S ratio to which we could 

compare our theoretical predictions. Furthermore, we chose only those nucleosides that had their 

N/S ratios determined in D2O, since our method uses water as a computational solvent. Although 
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isotope effects might play a very subtle role in sugar puckering, we believe that choosing water as 

our solvent would not affect our predictions. Following our search, we settled on the compounds 

presented in Chart 2.1, as well as on some of the nucleosides in Figures 2.1 and 2.2. 

2.3.1. Application to Monosaccharides Investigations.  

 We first focused our efforts on monosaccharides 2.9-2.17 (Chart 2.1). Since various 

methods have been proposed to study such systems, we thought to verify if the QM/MM approach 

using SCC-DFTB would yield N/S ratios and conformers close to experimental ones. The data 

computed for monosaccharides 2.9-2.17 is presented in Table 2.2. Crystal structure data171-173 was 

available for some monosaccharides and thus we were also able to compare our lowest-energy 

conformations to those found in the crystal structures. Before any claims about the accuracy of 

SCC-DFTB on monosaccharide puckering can be made, it has to be mentioned that the 

experimental N/S ratios obtained for monosaccharides 2.9 (entry 1) and 2.11-2.17 were obtained 

using the program PSEUROT174 from NMR spectroscopy data. Thus, the available experimental 

data is indirect and is the result of some computations with the associated error. Henceforth the 

experimental data obtained with PSEUROT shall be referred to as pseudo-experimental data. This 

program requires starting N and S conformations (a two conformation system), which are then 

optimized; over multiple runs involving various starting N/S conformations the N/S ratio as well 

as the puckering parameters (P and ϕm) are determined and the set of conformers that best replicates 

experimental 3JH,H
 data is selected. However, it is important to note that more than one set of 

conformers can replicate the experimental coupling-constant data and thus a decision has to be 

made with regards to choosing one over others.162 Moreover, the data obtained between each run 

may differ significantly162 which might introduce an inherent error vis-à-vis the pseudo-

experimental N/S ratios. Interestingly, in the case of monosaccharide 2.9 (Table 2.2, entries 1, 2 
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and 3), we found conflicting reports concerning the pseudo-experimentally determined N/S ratio, 

with one report162 claiming that the S pucker was preferred while the other claiming the opposite.164 

 Overall, the data in Table 2.2 suggests that SCC-DFTB performs well when predicting the 

N/S ratios. Moreover, we found that, when compared to the crystal structures conformers, all our 

computed structures had a heavy atom position root-mean square deviation (RMSD) less than 1Å 

(Figure 2.6). As can be seen in Figure 2.6, the computed conformers for 2.9 and 2.11 are very 

similar to the ones obtained in the crystal structure (RMSD = 0.57 and 0.32Å respectively). For 

2.12, 2.15, and 2.16 our predicted conformers differ slightly from the ones found in crystal 

structures (RMSD = 0.60, 0.69 and 0.80 Å respectively). 
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Chart 2.1. Compounds subjected to QM/MM umbrella sampling simulations (2.1 and 2.8 are 

shown in Figures 2.1 and 2.2). 
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Figure 2.6. Superposition of the crystal structures and lowest-in-energy predicted conformers of 

2.9, 2.11, 2.12, 2.15 and 2.16 (pink – computed structure, green – crystal structure). 

 The computed structures, with the exception of 2.15, show no intramolecular hydrogen 

bonding, which is consistent with the crystal structure data.171 Moreover, we posit that the 

differences between the computed and crystal structures arise from a strong intermolecular 

hydrogen bonding network present in the crystal structure but broken in solution.152 Having 

analyzed the differences between the computed lowest-energy conformers and available crystal 

structures we turned our attention to the N/S ratios predicted with SCC-DFTB. 

  



Chapter 2 

 

69 

 

Table 2.2. Comparison between the N/S ratios obtained for monosaccharides. 

Entry 
Monosacch. 

Pseudo-

Experimental 

N/S ratio162-

164 

Crystal 

Structure171-

173 Conformer 

Method 
Predicted 

N/S ratioa 

Predicted 

Conformer 

N-S 

1 

2.9 

39:61 E4 DFTc,162 ndd E4 - E1 

2 
83:17b  GLYCAM164 79:21 nd 

3 
83:17b  SCC-DFTB164 91:9 nd 

4 
  our method 53:47 E4 - 

2E 

5 
2.10 

83:17b nd GLYCAM164 84:16 nd 

6 
  our method 49:51 

3T2 - 
4TO 

7 
2.11 

87:13 1T2 DFT162 nd E2 - 
4E 

8 
  our method 64:36 

1T2 - E3 

9 
2.12 

65:35 3E DFT162 nd 
OE - E3 

10 
  our method 56:44 

3T4 - 
2E 

11 
2.13 

77:23 nd DFT162 nd E2 - 
4E 

12 
  our method 70:30 

3T2 - 
4T3 

13 
2.14 

0:100 nd DFT162 nd E4 - 
2E 

14 
  our method 39:61 

3T4 - E1 

15 
2.15 

86:14 E2 DFT162 nd 
1E - 4E 

16 
  our method 61:39 

3T2 - 
2E 

17 
2.16 

0:100 2E DFT nd 
3E - E1

 

18 
  our method 48:52 

3T4 - 
OE 

19 
2.17 

78:22 nd DFT162 nd E2 - 
4E 

20 
  our method 58:42 

3T4 - 
4T3

 

a For our method - at 303K based on the Boltzmann population distribution. b Not determined with 

PSEUROT. c The DFT predicted N/S conformers are determined in solution using a solvent model. 

d nd: not determined. 
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 As mentioned earlier, the analysis of the computed N/S ratio for 2.9 (Table 2.2) proved to 

be difficult, since the pseudo-experimental data is conflicting. Nonetheless, the fact that our 

computed lowest energy conformer (Appendix A) matched that obtained in the crystal structure 

gave us confidence that our ratios were accurate. Furthermore, this assertion was supported by the 

data in Table 2.2 which showed good agreement between the pseudo-experimental and computed 

data with a few exceptions (monosaccharides 2.10, 2.14, and 2.16). The computed ring pucker 

distribution for 2.10 (Appendix A) showed a concentrated ring population in the SE/S region, on 

both sides of the W pucker (SW and NW), as well as in the N region. This behaviour was also 

described by Evdokimov et al.172 in their furanoside crystal structure analysis where they showed 

that furanosides preferentially adopt conformations where the ring substituents have nominal 

eclipsing, namely in the SE/SW (P=160°-200°) and NW/N (P=340° - P=20°) areas and avoid 

regions of maximum eclipsing (P=90° and P=270°). In the case of 2.14 and 2.16, the puckering 

distributions (Appendix A) revealed a three-state system, with important ring populations in the 

NE, E and SE conformations. Taking all this into account, we believe that our computations are 

dependable and supported by crystal structure studies.  

2.3.2. Application to Nucleosides Investigations.  

 After validating our method on monosaccharides, we turned our attention to the 

nucleosides in Chart 2.1. The computed N/S ratios are shown in Table 2.3; this data indicates that 

our method predicts the conformational preferences of nucleosides, with a few exceptions 

(nucleosides 2.28-2.31, entries 13-16), with ratios close to those derived from experimental NMR 

spectroscopy data. For every nucleoside in Table 2.3, we recorded the puckering parameters 

(pseudorotational angle P and the puckering amplitude ϕm – Appendix A) as well as the values of 

all the relevant angles for each North and South structure (Appendix A). Moreover, since we 
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wanted to understand why our method worked on some but not on all nucleosides, we decided to 

run a natural bond orbital (NBO) analysis on all the nucleosides in Table 2.3. Such an analysis 

allows the quantification of the anomeric and gauche effects and the accurate computation of the 

energetic contribution of these effects towards the overall puckering. Furthermore, the NBO 

analysis allows the computation of the molecular orbitals of every nucleoside, effectively offering 

important insight into potential intramolecular hydrogen bonding.  

Table 2.3. The predicted N/S ratios obtained for the nucleosides in Chart 2.1. 

Entry Nucleoside 
Experimental 

N/S ratio 

Predicted 

N/S ratioa 

Predicted 

N/S ratiob 

1 2.1 50:50175 55:45 58:42 

2 2.8 87:13152 84:16 86:14 

3 2.18 100:0 175 80:20 91:9 

4 2.19 80:20176 81:19 86:14 

5 2.20 75:25175 60:40 58:42 

6 2.21 100:0177 100:0 -c 

7 2.22 54:46178 56:44 53:37 

8 2.23 37:63175 41:59 44:56 

9 2.24 39:61175 43:57 45:55 

10 2.25 85:15175 66:34 76:24 

11 2.26 87:13175 58:42 70:30 

12 2.27 58:42175 48:52 56:44 

13 2.28 37:63179 60:40 72:28 

14 2.29 77:23179 1:99 0:100 



Chapter 2 

 

72 

 

 

 

 

a At 303K; based on the Boltzmann population distribution; b At 303K, based on the differences in 

energy between the North and South minima; c For entry 6 only one minimum in the North 

conformation was observed; d according to our own calculations based on the data provided in the 

reference. 

2.3.3. Nucleosides – Stereoelectronic Effects. 

 We started with compound 2.8 (entry 2) by performing NBO analysis on the lowest energy 

structures for the North and South conformations (Figure 2.7). The anomeric effect (nO4′ → σ*C4′O) 

in the case of the North pucker is more pronounced than in the South pucker (with a computed 

difference in energy of 1.9 kcal/mol) due to the position of the anomeric oxygen (above the plane 

for the N conformation and within the ring plane for the S conformation). Nonetheless, the 

anomeric effect is not the sole contributor to the sugar puckering preference – several gauche 

effects also play an important role in this respect. For example, the σC3′H → σ*C4′O
 and σC3′H → 

σ*C2′F
 gauche effects are more prevalent in the North conformation (with a computed energy 

difference of 2.7 and 2.4 kcal/mol respectively), while the σC3′C4’ → σ*C2′F
 and σC2′H → σ*C3′O

 

gauche effects are more predominant in the South conformation (with a computed energy 

difference of 2.3 and 1.8 kcal/mol respectively). Moreover, we investigated the possibility of 

stabilizing intramolecular hydrogen bonding and found that three hydrogen bonds were observed 

for the North conformation and only one observed for the South conformation. It is also important 

to note that SCC-DFTB was shown to somewhat underestimate hydrogen-bond strengths,181,182 

and thus the effects of the intramolecular hydrogen-bonds might be far greater than presented here.  

15 2.30 46:54175 61:39 69:31 

16 2.31 91:9180(76:24)d 68:32 68:32 
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Figure 2.7. Anomeric and gauche effects observed after the NBO analysis for 2.8. Relative 

energies are given in kcal/mol. 

 Following this analysis, we set out to understand why computations with compound 2.28 

(entry 13) failed to yield a theoretical ratio close to the experimental one. For almost all our 

nucleosides (except entry 6), we expected a 2-state equilibrium (with 2 minima distinguishable in 

the North and South regions). However, a report by Watts and Damha183 showed that 2′-

fluoroarabinonucleosides can adopt a n-state (n=2, 3 and 4) equilibrium – with potential minima 

in the N, NE, SE, and S regions of the pseudorotational circle. While the conformational analysis 

of 2′-araF-T (nucleoside 2.28) has only been described once (using the program PSEUROT, which 

can only describe 2-state equilibria), it is not unreasonable to assume that it may in fact adopt a 3- 

or 4-state equilibrium in solution. 

 To understand whether compound 2.28 could indeed adopt such an equilibrium, we plotted 

the PMF curve and puckering distributions (Figure 2.8). While Figure 2.8 does not show a 

significant minimum in the E region, the low energy barrier (~0.5 kcal/mol) for the N-E transition 

advances the possibility of a 3-state equilibrium. Moreover, a closer inspection of the inset of 

Figure 2.8 reveals that significant puckering populations are present in the NE, SE and S regions 

of the pseudorotational circle, thus making the 2-state equilibrium hypothesis unreliable.  
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Figure 2.8. PMF curve for nucleoside 2.28. Inset shows the sugar puckering distribution along the 

pseudorotational angle P.  

 The NBO analysis we performed on compound 2.28 revealed that the anomeric effect nO4′ 

→ σ*C4′O was more pronounced in the NE conformation (ΔE= +0.3 kcal/mol). The gauche effects 

were overall prevalent in the NE conformation, although the energy differences were somewhat 

small. However, the σC3′C4’ → σ*C2′F effect was significantly larger for the NE conformation (ΔE= 

+4.0 kcal/mol), most likely allowed by the better orbital overlap when compared to the SE 

conformation. Moreover, the molecular orbital analysis revealed no intramolecular hydrogen 

bonding that could affect the overall structure of compound 2.28. 

 We then turned our attention to nucleoside 2.29. Compared to all the other nucleosides in 

Table 2.3, compound 2.29 contains a sulfur atom, instead of the ring oxygen, which changes the 

stereoelectronic effects governing the sugar puckering. Moreover, the introduction of a sulfur atom 

at the 4′ position pushes the conformation of the nucleoside to the North region. However, our 

method predicts an overall 1:99 N/S ratio and suggests a primarily South conformation. This 

computed data is dissimilar to the experimental value and therefore it is important to understand 
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the reasons behind this failure. Interestingly, a report by Petraglia and Corminboeuf highlights the 

inherent flaw of sulfur atoms in the SCC-DFTB method.184 According to their study, non-covalent 

interactions are poorly described by the current SCC-DFTB parametrization of sulfur, thus leading 

to qualitatively wrong results. As can be expected, along with stereolectronic effects, non-covalent 

interactions (especially polarization effects) play a significant role in sugar puckering. Thus, the 

failure of our method in this case could likely be attributed to the poor accuracy of SCC-DFTB 

method with sulfur-containing molecules. 

 In the case of nucleoside 2.30, the apparent discrepancy between the experimental and 

theoretical values cannot be explained by an intrinsic flaw in the method. Although, as pointed 

earlier, experimental data is only indirect and may be inaccurate in some instances, we decided to 

further investigate this case to identify any potential limitations of our methods. When compared 

to nucleoside 2.22, the two nucleosides only differ in the identity of the base. Nonetheless, the 

molecular orbital analysis of both 2.22 and 2.30 showed a pronounced intramolecular hydrogen 

bonding network (Figure 2.9). In 2.30, the base when in the North conformation has one carbonyl 

oxygen oriented towards the sugar, which allows for the formation of hydrogen bonds with the 2’-

OH and H3’ atoms (Figure 2.9); these stabilizing interactions contribute to the overall puckering 

shift towards the North region. Moreover, the NBO analysis revealed that the anomeric effect is 

very slightly in favor of the South conformation (ΔE= -0.1 kcal/mol), while all the 

hyperconjugation effects are more dominant in the North conformation. The results are very 

similar to 2.22, where the anomeric effect is also more dominant in the South conformation (ΔE= 

-0.6 kcal/mol) while the gauche effects are more predominant in the North conformation.  
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Figure 2.9. Intramolecular hydrogen bonds for the North pucker (a) and South pucker (b) for 2.30. 

a) hydrogen bonding between C=O-H2′ and C=O-2′-OH. b) hydrogen bonding between O5-

H(base). 

 The last nucleoside that presents a deviation from the experimental value was nucleoside 

2.31 (entry 16). The introduction of an electron withdrawing substituent in the 4′ position is 

expected to shift the sugar puckering towards the North conformation, due to the more pronounced 

anomeric (nO4′ → σ*C4′O) effect. Moreover, the experimental data available for this nucleoside 

suggests an almost fully North conformation (N/S-91:9), while our prediction, based on a distinct 

equation, is different (N/S-68:32). To understand where this discrepancy comes from, we decided 

to verify the experimental results associated with this nucleoside in the reported supplementary 

information. According to our calculations (based on the data provided in the SI of this original 

report180), the N/S ratios are closer to our predictions, namely 66:34. This is in line with our 

expectations, since the lack of a strong electron withdrawing substituent in the 2′ position affects 

the N/S ratios in favor of the South conformation (see nucleosides 2.18, 2.23 and 2.24). This 

expectation is also met by the NBO analysis, which shows a significant hyperconjugation effect 

(σC2’H → σ*C3’O) in favor of the South conformation (ΔE= -3.5 kcal/mol).  
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2.4. Conclusions. 

 Throughout these investigations, we have observed that neither pure DFT nor pure MM 

methods we tested could reproduce the conformational behavior of non-natural nucleosides in 

solution. While DFT accounts for hyperconjugation effects, solvent effects such as hydrogen bonds 

in water can only be reproduced by MM techniques (explicit solvent molecules). Thus, a hybrid 

QM/MM method (nucleoside treated by SCC-DFTB) and water (treated by MM) was the solution 

to investigate the conformational preferences of a variety of nucleosides and modified 

monosaccharides. The hybrid method yielded reliable structures that closely matched the crystal 

structures for the modified monosaccharides, as well as N/S ratios close to experimental ones for 

both the monosaccharides and nucleosides. Moreover, our method provided key insights into a) 

the role of the substituents on the sugar ring of nucleosides and b) the finely tuned control of sugar 

puckering by hyperconjugation effects and intramolecular hydrogen bonding. However, the 

method we described here also has some limitations, such as improper sulfur parametrization and 

underestimating the strengths of hydrogen bonds. Nonetheless, we believe that if the system of 

interest is a non-natural nucleoside, one can obtain reliable structures and N/S ratios (if only for a 

qualitative description of one’s system before attempting synthesis) by using a QM/MM approach 

involving SCC-DFTB. Moreover, if resources permit, one can attempt the analysis of a non-natural 

nucleoside with DFTB3181, which appears to describe hydrogen bonds better.  

2.5.Methods. 

 

2.5.1. Initial DFT Study.  

 Initial DFT calculations on 2.8 were performed in water (COSMO solvent model)185 at the 

M06L/def2-TZVP186,187 level of theory using ORCA v.3.0.3.188 Eight idealized envelope 

conformations were built and subjected to restrained geometry optimizations (where one dihedral 
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angle would be constrained in order to maintain the envelope conformation) and frequency 

calculations to ensure the geometries were energy-minima. The pseudorotational phase angle P 

and puckering amplitudes were determined with the program PROSIT.189  

2.5.2. QM/MM/MD Study.  

 All calculations were carried out in AMBER12190, using SCC-DFTB169 for the QM region 

(ligand) and the ff99SB force field191 for the MM region (solvent). Compound 2.8 was initially 

optimized using GAMESS-US42,41 at the HF/6-31G* level of theory in order to generate the 

electrostatic potential, which was subsequently used to generate the restricted electrostatic 

potential (RESP) charges in AMBER12. The system was then constructed by solvating 2.8 in a 

pre-equilibrated rectangular box of TIP3P192 water molecules (dimensions 10 x 10 x 10 Å). 

Following this step, the topology and coordinate files for the system were generated. Visual 

inspection of the final system was undertaken to ensure its integrity. With the solvated system in 

hand, 2000 steps of energy minimization were performed (500 steps of steepest descent energy 

minimization, followed by 1500 steps of conjugate gradient energy minimization). Then, an 

equilibration run of 200ps was performed (NPT, 303K) using a Langevin thermostat,193 with a 

collision frequency γ = 2.0 ps-1 and a step of 2fs. The SHAKE194 algorithm was used in order to 

fix all the hydrogen-containing bonds to equilibrium values; periodic boundary conditions were 

used, with a cut-off of 8Å for non-bonded interactions (including the QM method/TIP3P 

electrostatic interactions). The particle mesh Ewald (PME)195,196 method was used to control the 

long-range electrostatic interactions. The equilibration run was followed by a production run of 

500ns (NVT, 303K, 1atm) where the same conditions as above were applied. System integrity was 

ensured at the end of each step described above.  
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 The structure of 2.8 obtained after the production run was used to generate starting 

conformations in which the dihedral angle O4′-C4′-C5′-O5′ had values of 60, 120, 180, 240, 300 

and 360°. The structures for each angle were subjected to the same protocol described above. The 

angles were restrained by applying a harmonic biasing potential, with a force constant of 200 

kcal/mol/rad2. For each structure, the angle distribution was plotted to ensure that the dihedral 

angle was restrained at the correct value. 

2.5.3. Umbrella Sampling Simulations. 

 The reaction coordinate for the umbrella sampling simulations was chosen to be the 

exocyclic torsion angle O4′-C4′-C5′-O5′.Using the above described structures 73 windows were 

built (window width of 5° each) to cover the 0-360° range for the O4′-C4′-C5′-O5′ dihedral angle– 

each window was subjected to a slightly modified protocol than the one describe above: the 

parameters were identical to the ones described above but the equilibration run was 100ps and the 

production run was 1ns, leading to a total of 73ns of production runs. Once the simulations were 

finished, the systems were visually inspected to ensure integrity was maintained. Data obtained 

from umbrella sampling simulations can be readily analyzed by using the weighted histogram 

analysis method (WHAM),197
  which provides the free energy of the reaction as a function of a 

chosen reaction coordinate (also known as potential of mean force or PMF) and average population 

distribution for the chosen reaction coordinate. Thus the PMF and average distributions for the 

pseudorotational phase angle P were obtained using the WHAM software.198 For the 

pseudorotational angle P, a force constant of 0 was used to unbias the angle, since no biasing was 

applied in the first place. The lowest-energy structures were obtained by clustering the 

conformations during the 73ns simulation, and extracting the most representative conformation for 

both North and South. 
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2.5.4. Natural Bond Orbital (NBO) Analysis. 

 The 2 minima obtained following the QM/MM calculations for 2.8 were subjected to an 

NBO analysis using ORCA v.3.0.3188 and the NBO6 program199,200 at the M06L/def2 TZVP186,187 

level of theory. The threshold for the E2 energies (hyperconjugation and anomeric effects) was 

0.05 kcal/mol. 

2.5.5. Molecular Orbital Analysis. 

 The molecular orbitals were built for the North and South conformations of 2.8 using the 

Molekel201 software. The molecular orbitals used in building the maps were obtained following 

the natural bond orbital analysis described above. 

 Note: the same protocol was applied to all the other compounds studied in this report.  

2.5.6. Crystal Structures. 

 Crystal structures were obtained from the CCSD with the following codes – 

monosaccharide 2.9 (CCSD112946), 2.12 (CCSD112951), 2.15 (CCSD112949) and 2.16 

(CCSD112950). The crystal structure for monosaccharide 2.11 was taken from the SI of 

Evdokimov et al.171
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Chapter 3 – Accurately Modeling the Conformational Preferences 

of Nucleosides – Applications 

Preface.  

 As described in Chapter 2, QM/MM umbrella sampling simulations can be used to provide 

accurate N/S ratios of nucleosides in solution. However, these simulations are also useful in 

providing predicted lowest-energy structures that closely resemble crystal structures, which can 

help explain phenomena such as atypical fluorine-hydrogen bonds, as well as providing important 

insight into the effects of ring substituents on sugar puckering. In this chapter we will explore the 

applicability of the methodology developed in Chapter 2 to novel nucleosides that show interesting 

properties. 

This chapter is based on the work published in the papers: 

Malek-Adamian, E.,‡ Burai Patrascu,M.; Jana, S.; Montero-Martinez, S.; Moitessier, N.; and 

Damha M.J. J. Org. Chem., 2018, 83, 17, 9839-9849. 

EMA designed and performed the wet lab experiments. MBP designed the computational 

experiments and performed all the calculations and data analysis. SJ obtained crystal structures. 

All authors contributed to writing the manuscript. 

O’Reilly, D.;‡ Stein, R.; Burai Patrascu, M.; Jana, S.; Kurrian, J.; Moitessier, N.; and Damha 

M.J. Chem. Eur. J., 2018, 24, 61, 16432-16439. 

DOR and RS designed the wet lab experiments. DOR performed the wet lab experiments. 

MBP designed the computational experiments and performed all the calculations and data analysis. 

SJ obtained crystal structures. All authors contributed to writing the manuscript. 

 

‡ first author 
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Abstract. 

 In this chapter, we show that the protocol developed in Chapter 2 can be applied to a variety 

of nucleosides that exhibit valuable properties. In the first part of this chapter, we explore the 

conformational preferences of nucleosides containing various hyperconjugation acceptors at key 

positions on the sugar ring. We show that we can obtain accurate N/S ratios for these nucleosides, 

as well as compute structures that excellently resemble crystal structures, with heavy atom RMSDs 

< 0.8Å in all cases. In the second part of this chapter, we delve into the nature of elusive fluorine-

hydrogen bonds, and we provide computational and experimental evidence of its existence in a 

non-natural nucleoside. Overall, this work highlights the application of computational, 

crystallographic, and solution-phase NMR experiments in the investigation of stereolectronic 

effects and their role in sugar puckering, as well as C−H···F hydrogen bond formation. The 

complementarity of these techniques offers invaluable insight into the nature of these effects, and 

interactions that are present and play a role in stabilizing nucleic acid structures. Our study opens 

the possibility of designing new nucleosides analogues that utilize these subtle but important 

interactions to favour diverse conformations and tune their biological activity. 
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3.1. Introduction. 

 Nucleoside analogues have been used predominantly as small-molecule therapeutic agents, 

as well as for oligonucleotide modification in gene silencing146,202 and, more recently, gene editing 

applications.203 In this context, the therapeutic and off-target effects are primarily determined by 

the conformation of the nucleotide components. This conformation is also a major factor in 

defining the binding affinity toward the target RNA or ssDNA. One of the nucleotide components 

that significantly contributes to the overall conformation of nucleosides in solution is the sugar 

ring.147 Over the years, multiple modifications to the sugar ring have been proposed: 

electronegative substituents at C2′ in the ribo (α) configuration204 such as methoxy (-OMe),205 

MOE,206 and fluoro (-F)207 promote the sugar pucker toward the C3′-endo (N) conformation, while 

electronegative C2′-β-substituents (e.g. 2′-F) drive the sugar toward the S/E conformation (see 

Chapter 2, Figure 2.2). It is important to understand that different sugar puckers lead to the usage 

of nucleosides in different ways. As described in Chapter 2 nucleosides that prefer the N 

conformation are widely used in RNA targeting applications (e.g. siRNAs and AONs)208 while 

those that favor the S/E conformations have been shown to confer nuclease resistance and excellent 

tolerance by the cellular machinery needed for gene knockdown.155-157 

 Generally, to experimentally determine the ratio between N and S conformations in solution 

various nucleoside analogues bearing different EDGs or EWGs are synthesized and then subjected 

to NMR experiments to obtain 3JH1′‑H2′ coupling constants. These constants are highly sensitive to 

the H1′-C1′-C2′-H2′ dihedral angle and thus reflect the type of sugar pucker (Figure 3.1).209  
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Figure 3.1. Definition of J coupling constants used in experimentally determining N/S equilibrium. 

 A 3JH1′‑H2′ value in the 0-3 Hz is consistent with a sugar pucker predominantly in the N 

conformation, while a 3JH1′‑H2′ value in the 6-9 Hz is representative of a sugar pucker in the S 

conformation.209 These coupling constants are then used to obtain the N/S ratio (Eq. 3.1).152,210  

% North =  100 –  10 x 𝐽(H1′‑H2′)                      Eq. (3.1) 

Equation 3.1. Experimental determination of %N populations.  

 This approach allows chemists to determine the overall sugar puckering preferences 

enabled by these substituents, but they do not allow any quantification of the amplitude or nature 

of their stereoelectronic effects. Moreover, several analogues bearing various combinations of 

these substituents must be synthesized and tested to obtain a nucleoside with the desired N/S ratio. 

To overcome this, in Chapter 2 we developed a highly robust computational protocol to determine 

the sugar puckering of non-natural nucleosides in solution. This methodology also proved effective 

in quantifying stereoelectronic effects induced by sugar ring substituents and allowed us to gain 

insights into their impact on the sugar puckering. Moreover, this computational protocol allows 

the screening and characterization of numerous nucleoside analogues prior to synthesis. This 

approach will contribute to reduced synthetic costs and waste production, since only nucleosides 

with desired characteristics would be synthesized.  

In this chapter, we present our efforts to further our understanding of sugar puckering induced by 

various substituents and combinations thereof, and to uncover new evidence for possible 
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intramolecular interactions provided by these substituents that contribute to the overall sugar 

conformation. 

3.2. Effect of Fluorine and Methoxy Substituents on Nucleoside Puckering. 

 In previous studies, we and others have shown that modification at the 4′-position (Figure 

3.1) can have a strong effect on the sugar pucker preference.152,158,176,210 More specifically we 

showed that 2′-F,4′-OMe-rU also adopts a more N conformation (∼9:1 N/S) and that siRNAs 

containing several 2′-F,4′-OMe-rU units in the sense or antisense strands triggered RNAi-mediated 

gene silencing with efficiencies comparable to that of 2′-F-rU.152 Furthermore, the C4′-α-OMe 

moiety conferred increased nuclease resistance due to the close proximity between the 4′-OMe 

substituent and the vicinal 5′- and 3′-phosphate groups. Guided by these results, we report herein 

the analysis of the conformations of several new 2′,4′-modified arabino- and ribonucleoside 

analogues (Chart 3.1) via computational methods. Moreover, we will draw comparisons to the 

conformational analyses of 2’,4’-modified analogues that have been previously reported either by 

us or by others. Where appropriate, we will also refer to the NMR and X-ray crystallography 

analyses, although they do not represent the main focus of this chapter. 

3.2.1. NMR Spectroscopy. 

 With our set of nucleosides in hand (Chart 3.1), we began to analyze their sugar 

conformations by NMR spectroscopy (experiments performed by our collaborators in the Damha 

group at McGill University). The percentage of N and S conformers of each ribonucleoside in 

solution was calculated by applying Eq. 3.1. (Tables 3.1). Table 3.1 summarizes the percentage of 

the N conformation for the nucleosides in Chart 3.1 in D2O. Substitution of the 4′-H for 

electronegative substituents 4′-F and 4′-OMe resulted in a larger N bias in all 2′,4′-substituted 

nucleosides relative to their corresponding 2′-substituted nucleosides. This effect was more 
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pronounced in the case of 4′-fluoro substitution, in agreement with a fluorine being a better 

acceptor of hyperconjugation than a methoxy group,211 thus providing stronger 4′ anomeric and 

gauche effects. 

 

Chart 3.1. Structures of nucleoside analogues studied in this work: (A) 2′-OMe-modified 

ribonucleosides, (B) 2′-F-modified ribonucleosides, (C) 2′-F-modified arabinonucleosides. The 

structures colored in blue are analyzed here for the first time. 

Table 3.1. JH1’-H2’ coupling constants in D2O obtained at 298K and %N populations. 

Nucleoside JH1’-H2’ %N 

3.1 4.0 60 

3.2 2.8 72 

3.3 1.3 87 

3.4a 1.5 85 

3.5a 1.3 87 

3.6b 0.0 100 

3.7 6.0 40 

3.8 2.0 80 

3.9c 2.0 80 
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a Data obtained from reference 152. b Data obtained from reference 158. c Data obtained from 

reference 176.  

With the experimental N/S ratios in hand, we turned our attention to computational analysis to 

quantify the stereoelectronic effects governing the sugar puckering.  

3.2.2. Predicted N/S Ratios and Lowest Energy Structures. 

 We applied the protocol developed in Chapter 2 to the nucleosides in Chart 3.1 to quantify 

the stereoelectronic effects and gain more insight into the origin of their conformational 

preferences. Predicted N/S ratios determined by either Boltzmann population distribution analysis 

or energy differences between the N and S conformations were in close agreement with the 

experimentally determined N/S ratios (Table 3.2). The overall mean unsigned error (MUE) for the 

%N populations determined through Boltzmann population distributions was 10.6%, while the 

MUE for the %N populations determined through energy difference between lowest energy N and 

S structures was 6.9%. This further confirmed the accuracy of the method, and the generated 

conformations could now be further analyzed. 

Table 3.2. Computed N/S ratiosa for the nucleosides in Chart 3.1. 

Nucleoside %N exp. %Nb %Nc 

3.1 60 ndd ndd 

3.2 72 66 73 

3.3 87 71 76 

3.4 85 58212 70212 

3.5 87 84212 86212 

3.6 100 80212 91212 

3.7 40 ndd ndd 

3.8 80 79 85 

3.9 80 81212 86212 
a In H2O at 303K. b Based on Boltzmann population distributions. c Based on energy differences 

between the N and S minima. d not determined. 

 Since we were mostly interested in the novel nucleosides 3.2, 3.3, and 3.8, our subsequent 

structural analysis was only performed for these three nucleosides. For each stable conformation 
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(i.e. lowest energy conformations in the N and S conformations – Figure 3.2), we determined the 

pseudorotational phase angle P and the puckering amplitude Φmax (the maximum degree of pucker) 

(Table 3.3). 

 

Figure 3.2. Computed lowest energy structures for A. N conformations: left – 3.2; center – 3.3; 

right – 3.8 and B. S conformations: left – 3.2; center – 3.3; right – 3.8. 

These parameters would be helpful in comparing the computed structures to X-ray crystallography 

data. Once these parameters were collected, we proceeded to analyze the hyperconjugation and 

anomeric effects that contribute to sugar puckering. 
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Table 3.3. Puckering parameters obtained for the lowest energy conformations in Figure 3.2. 

Nucleoside Conformation P (°) Φmax (°) 

3.2 
N 60.54 29.98 

S 168.48 41.52 

3.3 
N 55.63 36.09 

S 158.60 28.16 

3.8 
N 47.24 22.06 

S 146.11 17.03 

 

3.2.3. Quantifying Stereoelectronic Effects. 

 Anomeric and hyperconjugation effects through the means of NBO analysis were evaluated 

as described in Chapter 2. The anomeric effect nO4′→σ*C4′OMe/F (Figure 3.3A) favors the N 

conformation except for 3.8; the strength of the anomeric effect followed the order 3.3 (P = 55.6°) 

> 3.2 (P = 60.5°) > 3.8 (P = 47.2°) (values for the anomeric and hyperconjugation effects in 

kcal/mol given in Appendix B). Several factors seem to influence the strength of the anomeric 

effect: (a) the puckering amplitude of the sugar ring, with a weaker effect observed for lower 

amplitudes for both N and S conformations, (b) the hyperconjugation-accepting ability of the 4′-

substituent, and (c) the P angle, with deviations from ideal envelope conformations associated with 

weaker anomeric effects. 
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Figure 3.3. Stereoelectronic effects in 3.8: (A) depiction of the nO4′ → σ*C4′OMe anomeric effect, 

(B) depiction of the σC3′C4′→ σ*C2′H hyperconjugation effect, (C) depiction of the σC3′H3′→σ*C4′OMe 

hyperconjugation effect. 

 In the case of 3.8, a plausible explanation for the S conformation exhibiting a slightly larger 

anomeric effect is that the N conformation (P = 47.2°, φmax = 22.1°) deviates from an ideal envelope 

conformation (P = 54°, φmax = 25−45°). This leads to a poor overlap between the lone pair on the 

anomeric oxygen and σ*C4′OMe due to orbital misalignment. However, 3.8 was shown to be 

predominantly in the N conformation, and as such, another electronic effect apart from the 

anomeric effect should be the driving force behind the observed conformation. Indeed, the data in 

Appendix B suggest that the σC3′H3′ →σ*C4′OMe hyperconjugation effect (Figure 3.3C) is the most 
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pronounced computed electronic effect (with an energy difference of ∼1.9 kcal/mol in favor of the 

N conformation), similar in strength to that of 3.2 (∼2.0 kcal/mol) and 3.3 (∼3.1 kcal/mol). 

Interestingly, this effect is exhibited in conjunction with a σC3′C4′ → σ*C2′H hyperconjugation effect 

(Figure 3.3B) (∼0.8 kcal/mol in favor of the S conformer) that is significantly lower than that 

observed for 3.3 (∼3.5 kcal/mol) and 3.2 (∼2.2 kcal/mol), most likely afforded by the orientation 

of the fluorine in the arabino configuration. As such, the loss of an important hyperconjugation 

effect favoring the S pucker (σC3′C4′ → σ*C2′H), coupled with a strong hyperconjugation effect 

favoring the N pucker (σC3′H3′ →σ*C4′OMe), contributes to the observed N conformation of 3.8. 

3.2.4. Comparing Computed and Crystal Structures. 

 The structures of 3.2 and 3.3, first described in this study, were unambiguously confirmed 

by X-ray crystallography. Additionally, we obtained the crystal structures of previously reported 

3.5 and 3.6.212 These were compared to their predicted conformations by computational analysis, 

and the superposition of these are shown in Figure 3.4. 3.3 was crystallized in its most stable 

conformation (P1 = 22.4°, Φ1, max= 34.1°, P2 = 21.2°, Φ2, max= 33.8°). In the case of 3.5 (4′-exo), two 

slightly different conformations appeared in the asymmetric unit crystal (P1 = 62.3°, Φ1, max = 36.6°, 

and P2 = 60.5°, Φ2, max = 37.1°). However, the orientations of the base and the 3′- and 5′-hydroxyls 

differ from the computational data. In contrast, 3.2 and 3.6 were crystallized in the S conformation 

(P = 163.2°, Φmax = 39.5°) and the E conformation (P = 74.7°, Φmax = 35.4° 28), respectively. It is 

important to note that the conformations in which these nucleosides were crystallized do not 

necessarily represent the conformations in solution. As discussed in Chapter 2, crystal packing and 

intermolecular hydrogen bonding interactions between molecules in different unit cells likely 

affect the conformation of the nucleoside in the crystal.213 However, although the positions of 

hydrogen-bond accepting/donating substituents on the ring differs between solution and crystals 
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due to intermolecular hydrogen bonding with solvent/other molecules in the crystal unit, the core 

5-membered ring has the same puckering.  

 

Figure 3.4. Superposition between the predicted conformation (green) and the crystal structure 

(pink): (A) 3.2, (B) 3.3 (left) unit 1 and (right) unit 2, (C) 3.5 (left) unit 1and (right) unit 2, (D) 

3.6. 
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 Overall, the computed structures are in excellent agreement with the crystal structures. One 

of the key features to account for when comparing the structures is the heavy atom RMSD. 

Importantly, the heavy atom RMSD for all four nucleosides is < 0.8Å (Table 3.5). Moreover, as 

can be seen in Figure 3.4, the sugar pucker in all four cases is nearly identical between the 

computed and the crystal structures. The major differences that arise between the structures are the 

orientations of the substituents, which can be explained through the intermolecular hydrogen 

bonding interactions existent in different crystal cells, which affect the orientation of the 

substituents containing hydrogen bond acceptors and donors. Nonetheless, in this section we have 

shown that the protocol described in Chapter 2 provides invaluable insight into hyperconjugation 

effects affecting sugar puckering and highly robust structures that excellently resemble crystal 

structures for non-natural nucleosides.  

Table 3.4. Heavy atom RMSD between the computed and crystal structures described in Figure 

3.4. 

Nucleoside Unit Cell Heavy Atom RMSD (Å)  

3.2 
1 0.47 

2 - 

3.3 
1 0.82 

2 0.82 

3.5 
1 0.51 

2 0.59 

3.6 
1 0.59 

2 - 
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3.3. Atypical Fluorine-Hydrogen Bonds and Their Effects on Nucleoside Conformations. 

 One of the most important substituents used in controlling ring conformations is fluorine. 

Due to its electronegativity, fluorine is an excellent hyperconjugation acceptor (Figure 3.5) and 

can thus be used to modulate ring conformations.214,215 Interestingly, fluorine can not only be used 

as a hyperconjugation acceptor to modulate conformations, but also as a hydrogen-bond acceptor. 

It has been debated for decades whether organic fluorine-hydrogen bonds exist, especially due to 

the fact that fluorine rarely accepts hydrogen bonds.216 Moreover, different definitions of what 

constitutes a hydrogen bond contribute to this debate – these definitions range from a pure 

electrostatic nature of hydrogen bonds, to a combination of electrostatics and polarization effects 

as well as a significant covalent bond character.217-219 Irrespective of these definitions, fluorine-

hydrogen bonds can help modulate sugar conformations and thus represent an interesting 

component to designing new nucleoside-based drugs. 

 

Figure 3.5. Top. Hyperconjugation in fluorinated pyranose rings. Bottom. Hyperconjugation in 

fluorinated furanose rings. The hyperconjugation acceptor (σCF*) is depicted in blue while the 

hyperconjugation donor (nO) is depicted in red. 

 Due to the increasing usage of fluorine in medicinal chemistry applications, several key 

pieces of evidence have been found in favour of the existence of fluorine-hydrogen bonds in small 

molecules and nucleic acid-based systems.220-222 These recent developments have led IUPAC to 
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establish guidelines for defining fluorine-hydrogen bonds (Figure 3.6), although different 

variations of these parameters have been proposed.223 

 

Figure 3.6. IUPAC guidelines for what constitutes a fluorine-hydrogen bond. 

 Experimentally, fluorine-hydrogen bonds in nucleosides can be observed by NMR through 

scalar JHF coupling.220 This however requires the synthesis of a nucleoside of interest. A cheaper, 

more attractive alternative is the computational modeling of nucleosides in which fluorine-

hydrogen bonds are possible. As such, we posited that the protocol developed in Chapter 2 would 

be suitable for analyzing nucleosidic fluorine-hydrogen bonds in solution. 

3.3.1. Nucleosides That Can Potentially Exhibit Fluorine-Hydrogen Bonds. 

 It is currently understood that C-F∙∙∙H hydrogen bonds are present in oligonucleotides and 

can offer additional stability to the overall structure.183 For example, the hybridization of 2′-F-

ANA oligonucleotides with complementary RNA strands results in the formation of close C-F∙∙∙H 

contacts.224 Evidence for these bonds arises from C-F∙∙∙H contacts observed through nuclear 

Overhauser effect (NOE) experiments, conformational analysis, and theoretical calculations of 

binding free energies.225 On the other hand, 2′-F-araA (Chart 3.2, 3.10) is also hypothesized to 

have a C2′-F∙∙∙H8-C interaction based on 1H-NMR and deuterium exchange studies.224 Several 

nucleosides,226,227 and more recently, 6′-F-tricyclo-thymidine (6′F-tcT),228 have been proposed to 

engage in a similar interaction (Chart 3.2, 3.15). Methods for detecting these interactions in non-

nucleic acid based systems are well developed.220 However, it is less well understood why these 
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weak intramolecular interactions form and how they influence nucleoside and nucleic acid 

structure and stability. 

 

Chart 3.2. Fluorinated nucleosides in which fluorine-hydrogen are hypothesized to occur. The 

fluorine and hydrogen atoms between which a hydrogen bond is possible are highlighted in red. 

Herein, we examine nucleosides 3.10-3.14 via NMR, X-ray crystallography, and computational 

studies. Understanding whether C-F∙∙∙H hydrogen bonds play a role in the conformation and 

stability adopted by these systems is important and could lead to the design of new modified 

nucleosides that incorporate these interactions. 

3.3.2. Analysis of Nucleosides 3.10-3.13. 

 In D2O, 2′-F-arabinonucleosides (3.10-3.13) exhibit similar sugar conformations, with a 

N/S pucker ratio of approximately 2:3 in all cases (Table 3.5). Moreover, since these nucleosides 

are in a N/S equilibrium, they pass from one conformation to another through the E conformation 

(Figure 2.2). Experimentally, the E conformation is most clearly established through H1′-H4′ NOE 
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contacts and can cause reduced 3JH1′-H2′.
155 Evidence for the existence of the E conformation shows 

that; for example, 3.12 exhibits stronger H1′-H4′NOE contacts than 3.13, and thus exhibits a 

stronger preference for the E conformation.155 The calculations of these contacts, along with 1H-

19F two-dimensional heteronuclear NOE (HOESY) NMR experiments, show that for nucleosides 

3.10-3.13 the distance between the fluorine and hydrogen depicted in red in Chart 3.2 varies 

between 2.4 – 2.7Å (Table 3.5, Figure 3.7 – computed lowest energy structures and predicted 

distances for nucleosides 3.10 and 3.12).  

Table 3.5. Experimental and predicted N/S ratios along with experimental and predicted distances 

between the fluorine and hydrogen atoms. 

Nucleoside Exp. N/S Pred. N/Sa HOESY Distance 

(Å) 

Predicted Distance 

(Å) 

3.10 41/59 47/53 2.5 2.7 

3.11 41/59 48/52 2.4 2.7 

3.12 38/62 45/55 2.7 2.9 

3.13 40/60 60/40212 2.7 2.7 

3.14 70/30 60/40 2.3 2.3 
a based on Boltzmann population distributions. 

 

Figure 3.7. Lowest energy conformations for 3.10 and 3.12. C-F∙∙∙H-C distance shown with 

dashed line. θ is the value of the F∙∙∙H-C angle. 

 As can be seen in Table 3.5, the N/S ratios are in very close agreement between 

experimental and predicted values. Moreover, the predicted distances between the fluorine and 

hydrogen atoms are within 0.1-0.3Å of the experimentally determined ones. To probe whether 

these distances were short enough to enable fluorine-hydrogen bonds for compounds 3.10-3.13, 
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we examined the splitting of 13C signals of the purine/pyrimidine bases by fluorine (Figure 3.8). 

The purine C8/C4 and the pyrimidine C6/C2 carbons are four bonds away from the 2′-F. If the 

interactions were purely long-range in nature, similar 4J2’F-C coupling values would be expected. 

However, in 3.10, only the C8 shows significant splitting (4 Hz) from 19F (Appendix B). All other 

13C signals showed a splitting of 0.5 Hz or less. The same was true for 3.11. For 3.12 and 3.13, we 

compared the C2 and C6 signals; splitting of only the latter was observed. 

 

Figure 3.8. Interactions between fluorine and C8/C6 in purine bases, and between fluorine and 

C6/C2 in pyrimidine bases. 

 In addition to the 13C NMR splitting, we explored the signals of H8 and H6 using 1H NMR. 

For nucleosides 3.10-3.13, a small splitting of 1.5 and 2.5 Hz was observed, which may suggest 

hydrogen bond-mediated coupling with fluorine as previously proposed for nucleosides, duplexes, 

and quadruplexes.229,230 To verify whether the protocol we established in Chapter 2 was capable 

of identifying these potential hydrogen bonds in compounds 3.10-3.13, we employed our NBO 

analysis protocol on the lowest energy structures obtained following our umbrella sampling 

simulations. The F∙∙∙H-C angles for the four compounds were 86°, 54°, 75° and 76° respectively, 
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which fall outside the typical range of 110-180° necessary for fluorine-hydrogen bonding to occur 

(Figure 3.6). However, due to the nature of hydrogen bonding, we posited that electrostatic 

interactions might still be possible due to the short distance between the fluorine and hydrogen 

atoms. Our NBO analysis however revealed no attractive interaction between the two atoms. 

3.3.3. Analysis of Nucleoside 3.14. 

 Next, we turned our attention to nucleoside 3.14. This nucleoside is analogous to the 

previously reported branched nucleoside 3.16 (Figure 3.9),231 which was predicted by DFT 

calculations and MD simulations to engage in a weak intramolecular C(sp3)-H∙∙∙F bond between 

the hydrogen atom of the 4′-C-CH2 group and F2′.231 Given their similarity and the greater 

electronegativity of O vs N, 3.14 was expected to exhibit the same interaction. 

 

Figure 3.9. Analogue of 3.14 that is hypothesized to show a C(sp3)-H∙∙∙F bond. 

 After synthesizing 3.14, we managed to obtain its crystal structure. This compound 

crystallized in its most stable N conformation (P=49.5º). The puckering angle was in very close 

agreement with the one obtained for the lowest energy predicted structure of 3.14 (P=52.1º). 

Overlay of the two structures revealed a heavy-atom RMSD of 0.78Å (Figure 3.10), while an 

analysis of the predicted N/S ratios shows very close agreement to experimentally obtained ones 

(Table 3.5).  
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Figure 3.10. Left: Superposition of crystal structure of 3.14 (green) and predicted structure (pink). 

Right: 2D representation of the N conformation for 3.14. Predicted distance (green) between 2′F-

H6′ is 2.3Å, while the C6H6′-2′F angle (purple) is 125.4°. 

 Importantly, several conclusions can be drawn after analyzing the experimental and 

predicted data. First, the predicted lowest energy structure is in excellent agreement with the crystal 

structure of 3.14, which gives us confidence that the orientation of the substituents is correct in the 

predicted structure. Second, the parameters established in Figure 3.6 are fulfilled when considering 

the predicted structure, which shows a H6′-2′F distance of 2.3Å, and a C6H6′-2′F angle of 125.4°. 

Combined, these conclusions allow us to posit that a C6H6′∙∙∙2′F interaction is indeed possible. To 

verify this, we plotted the electron density and molecular orbitals for the N conformer (Figure 

3.11). 
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Figure 3.11. Top: 2′F-H6′ electron density overlap observed in the N conformation of 3.14. 

Bottom: Attractive orbital overlap between 2′F-H6′ in the N conformation. 

 As can be seen in Figure 3.11, it is clearly visible that an attractive interaction between 2′F 

and H6′ exists. As such we proceeded to quantify this interaction through NBO analysis, which 

yielded a strength of 0.74 kcal/mol for the C6H6′∙∙∙2′F hydrogen bond. Given the relatively weak 

interaction quantified by NBO, we were interested in determining the nature of this bond. To 

achieve this, we employed quantum theory of atoms in molecules (QTAIM) analysis. Briefly, 

QTAIM explores the idea that chemical bonds can be expressed in terms of the topology of the 



Chapter 3 

 

102 

 

molecular electronic density. More specifically, the space occupied by a molecule is divided into 

“basins” (or atoms), which are connected through interatomic surfaces (IAS). If these basins 

interact through an attractive force, a bond critical point (BCP) in the electron density can be found 

and the two basins are said to be connected through a bond path (BP).232 Moreover, at the BCP, 

the gradient of the electron density is 0. Importantly, QTAIM can be applied to any system in 

which both covalent and non-covalent interactions occur. In 1995, Popelier established that the 

existence of IAS, BCP, and BP between a hydrogen-bond donor and acceptor were sufficient to 

assert the existence of a hydrogen bond.233 We analyzed the N conformation of 3.14 and we 

identified a BCP, BP, and IAS (Figure 3.12), confirming that between C6H6′∙∙∙2′F there was indeed 

a hydrogen bond that was most likely electrostatic in nature.234  

 

Figure 3.12. QTAIM BCP (yellow balls) and BP (dashed lines) showing the attractive interactions 

between atoms.  

 To verify whether the predicted C6H6′∙∙∙2′F hydrogen bond could be distinguished 

experimentally, we subjected nucleoside 3.14 to [19F-1H] heteronuclear multiple bond correlation 

(HMBC) NMR experiments. These experiments showed that the JH6′ -F coupling was in the range 

of 1Hz, and that it primarily occurred through-bond rather than through dipole-dipole interactions. 
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3.4. Conclusions. 

 In the first part of this chapter we focused on three novel nucleosides containing electron-

withdrawing substituents in key positions on the sugar ring: 2′,4′-diOMe-rU, 2′-OMe,4′-F-rU, and 

2′-F,4′-OMe-araU. Conformational analyses of these nucleosides and comparison to other 

previously reported 2′,4′-disubstituted nucleoside analogues make it possible to evaluate the effect 

of fluorine and methoxy substitution on the sugar pucker, as assessed by NMR, X-ray diffraction, 

and computational methods. We found that in all cases the electronegative substituents promote 

the N conformation of the sugar puckers. Moreover, we were able to quantify the anomeric and 

hyperconjugation effects that arise from the excellent orbital overlaps afforded by the N 

conformation when using good hyperconjugation acceptors (-F, -OMe) at key positions (2’ and 4’) 

on the sugar ring. 

 In the second part of this chapter we directly probed the existence of fluorine-hydrogen 

bonds in nucleosides using NMR experiments and computational modeling studies in a series of 

C2′-fluorinated nucleosides. Specifically, QM/MM analysis and [19F-1H]-HMBC NMR 

experiments provided important support for a C-H∙∙∙F hydrogen bond in a 2′-F,4′-C-α-

alkylribonucleoside analogue. This interaction was also supported by QTAIM and NBO analyses 

which suggested that a C-H···F interaction (0.74 kcal/mol) indeed exists. In contrast, while 

conformational analysis and NMR experiments of 2′-deoxy-2′-fluoroarabinonucleosides indicated 

a close proximity between the 2′-F and the nucleobase’s H6/8 protons, molecular simulations did 

not provide evidence for a C-H∙∙∙F hydrogen bond. 

3.5. Methods. 

 MD simulations were performed according to the protocol described in Chapter 2. Relevant 

angle values and bond distances were calculated in Avogadro v1.2.0. 235 as well as the plotting of 
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molecular orbitals. Visual QTAIM analysis was performed in Avogadro using wavefunction files 

obtained with Gaussian16236 at the M06L/def2-TZVP level of theory. Quantitative QTAIM 

analysis was performed using the AIMALL237 program on the same wavefunction files used for 

visual QTAIM analysis. NBO analysis was performed using the NBO6200 program. Electron 

densities were plotted using Molekel,201 while the lowest energy conformation figures were 

rendered with Discovery Studio 4.5.238 
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Chapter 4 – Predicting Cytochrome P450 Inhibition and 

Metabolism at the Drug Development Stage 

Preface.  

 Drug design and discovery is a tedious and costly process. In some cases, after a drug has 

reached the market, it shows signs of idiosyncratic toxicity, which culminates with drug 

withdrawal from the market. This type of toxicity, along with adverse drug reactions, is a major 

hurdle in drug discovery and contributes significantly to the costs associated with bringing a drug 

to the market. These adverse drug reactions and toxicity primarily arise from phase 1 metabolism, 

where metabolic enzymes – Cytochrome P450 enzymes (CYPs) – are responsible for the 

metabolism of 75-90% of xenobiotics. Adverse drug reactions enabled by CYPs can result from 

two major routes: CYP inhibition and reactive metabolite formation after CYP oxidation.  

 Currently, expensive laboratory experiments are necessary to determine these types of 

toxicity. Importantly, these experiments can be undertaken only after a compound has been 

synthesized or purchased. To reduce the number of drugs that are withdrawn from the market and 

to allow the synthesis of drug-like molecules that lack CYP toxicity, we set out to use QM 

calculations, docking and ML models to build a tool capable of distinguishing between potential 

inhibitors and non-inhibitory molecules before synthesis is even attempted. Moreover, we aimed 

to improve our SoM prediction tool IMPACTS to better describe the oxidation products obtained 

following a drug’s metabolism by CYPs.  
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Abstract. 

 Adverse drug reactions (ADRs) and toxicity are major causes of the high attrition rates 

observed in drug discovery and development programs. These adverse reactions generally occur 

after phase I metabolism, where cytochrome P450 enzymes (CYPs) metabolize approximately 

90% of xenobiotics. Often, these xenobiotics can either inhibit CYPs, or be metabolized into 

reactive metabolites that can further interact with DNA and proteins. Experimentally determining 

whether a xenobiotic metabolized by CYP enzymes can be toxic/an inhibitor is expensive and 

time-consuming. Most importantly, it requires that the xenobiotic be already synthesized. 

Computational prediction of CYP toxicity constitutes a viable and more time-efficient alternative. 

We have developed a computational tool that relies on QM calculations, docking and ML models 

to predict CYP inhibition at the drug development stage. Moreover, to better describe the binding 

of drugs to CYPs and identify whether a xenobiotic can be metabolized into a reactive metabolite, 

we made significant improvements to our SoM prediction tool IMPACTS. 
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4.1. Introduction. 

 Adverse drug reactions (ADRs) and toxicity are major causes of the high attrition rates 

observed in drug discovery and development programs. Severe and even fatal toxic effects have 

resulted in drug withdrawals, resulting in an enormous financial burden despite huge investments 

in toxicology and clinical trials. Although the primary causes of toxicity could be very different, 

the first pass bioactivation by metabolic enzymes such as CYPs is often the initiating step. The 

produced reactive metabolite further reacts with biomolecules such as proteins, DNA, or 

glutathione, leading to hepatotoxicity or DNA mutations causing cancer. Similarly, the co-

administration of drugs with one inhibiting the CYP(s) involved in the metabolism of the other(s) 

may lead to the accumulation of the unmetabolised drug(s) resulting in severe toxicity. This 

process is known as drug-drug interactions (DDI). Medicinal chemists have relied on “structural 

alerts”: functional groups known to possess high toxicity potentials, to flag potentially toxic drug 

candidates. Computational prediction of reactive metabolites and DDIs constitutes a viable and 

more time-efficient alternative. 

4.2. Drug Metabolism, Bioactivation and Toxicity. 

 Most of the administered drugs are metabolised in the liver to be more efficiently excreted 

from the organism. In phase 1 metabolism, the molecules are modified by a set of enzymes, 

primarily oxidases and hydrolases. Numerous drugs currently on the market are metabolized by 

one of the 57 human CYPs. Out of this set of oxidases, six (CYP1A2, 2C9, 2C19, 2D6, 1E2, and 

3A4), expressed mainly in the liver and in the gut, are responsible for more than 90% of this 

oxidative metabolism and represent the main focus of medicinal chemists and 

pharmacologists.67,239,240 The oxidative metabolism of drugs by CYPs occurs by the means of 

heme-mediated oxidation (Chapter 1, Scheme 1.9).  
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In phase 2 metabolism, the drug (or the metabolite from phase 1) is conjugated to water soluble 

moieties (e.g., glucuronic acid), which facilitates its detoxification from the body. The metabolites 

produced in this process have their intrinsic pharmacologic effect and toxicity that may differ from 

the parent drug. More specifically, they can have longer periods of persistence in the CYP as 

inhibitors due to significant intrinsic chemical reactivity, which may result in cell damage. They 

can also exhibit high reactivity leading to hepatotoxicity and/or cancer and are referred to as 

reactive metabolites. The impact of reactive metabolites and ADR on drug toxicity and drug 

withdrawal has been extensively discussed in the literature.241,242 About 75% of the drugs 

withdrawn due to ADRs were in fact activated into reactive metabolites.27  

 While there are several medium throughput techniques available, access to higher 

throughput techniques would enable medicinal chemists to make more informed decisions at early 

stages of the drug design and development process.243 For instance, predicting the site of 

metabolism (SoM), binding mode of small molecules in the CYPs and inhibitory activity of drugs 

and their metabolites could be useful to (1) flag potential in vitro hits, (2) help prioritize 

experiments, (3) provide key insights enabling the design of compounds with modulated half-life, 

(4) predict potentially toxic metabolites, (5) predict potential CYP inhibitors or even (6) predict 

the effect of CYP polymorphism (i.e., inter-individual variability).244 A number of computational 

approaches have been developed to tackle the challenges associated with drug metabolism and 

these include both LBDD and SBDD methods.245-247 Among these approaches is IMPACTS (In-

silico Metabolism Prediction by Activated Cytochromes and Transition States), a fully automated 

program developed by the Moitessier group at McGill University, which combines molecular 

docking, ligand reactivity estimation, and transition state (TS) structure prediction to predict the 

SoMs of drugs metabolized by CYPs. IMPACTS has been shown to accurately predict the SoMs of 
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over 600 drugs spanning 4 major CYP isoforms.248 Moreover, its implementation in the drug 

discovery platform FORECASTER (also developed by the Moitessier group) makes it highly 

appealing to medicinal chemists. However, at this current stage, IMPACTS is unable to predict 

whether a drug or its metabolites can inhibit CYPs or not. 

4.3. CYP Inhibition - Background. 

 The co-administration of drugs may result in DDIs, due to the ability of a drug to inhibit a 

CYP isoform involved in the metabolism of another drug. This leads to the accumulation of the 

unmetabolised drug(s) in the human body, causing potentially fatal side effects. CYP inhibition 

can either be reversible, quasi-irreversible and irreversible, with the most prevalent form being 

reversible inhibition.249 Usually, reversible inhibition occurs when the so-called Type II ligands 

(typically molecules containing basic nitrogen atom(s))250 coordinate to the heme iron (Figure 4.1). 

An important example of such a ligand is ketoconazole, an antifungal compound that inhibits 

CYP3A4 (Figure 4.2). In the case of quasi-irreversible and irreversible inhibition, at least one 

catalytic cycle is required for the formation of reactive metabolites that will then interact with the 

heme moiety.249 

 

Figure 4.1. a. Reversible CYP inhibition. b. Quasi-irreversible CYP inhibition (MC = metabolic 

intermediate complex). c. Irreversible CYP inhibition (RM = reactive metabolite). 
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Quasi-irreversible CYP inhibition requires the formation of a metabolic intermediate complex 

(MC), which can be displaced by in vivo incubation with compounds that have high affinity for 

CYP enzymes. Examples of drugs that inhibit CYPs quasi-irreversibly are erythromycin and 

lapatinib.251,252 For irreversible inhibition, a reactive metabolite (RM) can either alkylate the heme 

(for example by adding to the double bonds – see Figure 4.1c) or interact with key residues in the 

CYP active site i.e. acylation of a critical lysine residue by chloramphenicol is well documented.253 

Both these mechanisms inactivate the protein, which is then incapable of performing its biological 

function. To restore enzyme function, biosynthesis of new enzymes is required. 

 

Figure 4.2. Reversible CYP inhibition of CYP3A4 by ketoconazole. Protein Data Bank (PDB) 

code: 2V0M. Active site snapshot. Ligand carbons are shown in purple; heme iron is shown in 

orange. 
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 CYP inhibition is a major topic in drug discovery and has been the focus of several 

inhibition prediction studies. While quasi-irreversible and irreversible inhibition can be predicted 

through SoM methods (by identifying the formation of potential RMs), reversible CYP inhibition 

must be treated separately. To understand the importance of reversible CYP inhibition, one can 

refer to the study by Vitaku et al.254 that showed that 84% of FDA approved drugs contain at least 

one nitrogen atom, with 59% containing at least one nitrogen-containing heterocycle. Thus, there 

is a possibility that some of these drugs are Type II ligands that can inhibit CYPs.  

 Although there are several approaches reported in the literature for predicting reversible 

CYP inhibition, particularly based on ML algorithms,255,256 these do not offer insight on the heme-

ligand binding profiles and are not generally transferable (i.e. their quality depends on the chemical 

space explored for the training set). In addition to ML methods, docking has also been used to 

investigate reversible CYP inhibition. The main advantage of docking methods over ML methods 

in this particular case is the ability to visualize the interactions between the ligand and the heme, 

which would allow medicinal chemists to undertake any changes necessary to a potential drug to 

modulate its binding to CYPs. Moreover, docking allows an isoform-specific description and 

visualization of CYP inhibition. For example, it is known that CYP1A2, which accounts for 

approximately 15% of the total CYPs, preferentially oxidizes aromatic hydrocarbons and 

heterocyclic and aromatic amines due to its narrow active site.243 Such information is highly useful 

when developing an inhibition model, since it captures essential enzymatic properties.  

 The key to determine heme-drug binding energy in docking is to appropriately evaluate the 

iron-ligand binding process (coordination). Most commonly used docking programs do not model 

the heme-nitrogen coordination explicitly and are thus unsuitable for predicting CYP inhibition 

for Type II ligands. To the best of our knowledge, EADock is the only program which has been 
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trained to predict heme coordination, although the accuracy of 62% (31/50 heme structures that 

exhibited iron-nitrogen coordination) remains low.257 Therefore, a framework to predict iron 

coordination and displacement of water when localized within a heme is required (in the CYP 

resting state there is a water molecule that acts as a distal heme ligand). Herein we set out to 

develop a novel predictor of reversible CYP inhibition and implement it in the drug discovery 

platform FORECASTER. This tool combines accurate high-level QM calculations on model systems 

with the predictive power of the docking program FITTED. Moreover, to complement these tools, 

we sought to build an artificial neural network (ANN) capable of analyzing thousands of data 

points and to provide accurate predictions on whether a drug or its metabolites can be a reversible 

CYP inhibitor. To understand the power of this approach, a drug design and design project such 

as the one presented in Figure 4.3 can be undertaken completely within FORECASTER, without the 

need for costly HTS. 

 

Figure 4.3. A typical drug design and development project that can be undertaken in FORECASTER. 
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It is important to note that the time-consuming QM calculations need only be performed once for 

the development of the model, which will be described in detail below. The entire in silico part of 

the workflow presented in Figure 4.3 can be resolved in a matter of weeks starting from a library 

of > 500,000 molecules, which could tremendously speed up the development process of a novel 

drug. 

4.4. CYP Inhibition – Model Development – Preview. 

 Since the model we proposed has three distinct phases – QM calculations, docking and 

ANN development – we outlined the protocol required for each phase (Figure 4.4). 

 

Figure 4.4. Protocol for developing a reversible CYP inhibition model to be implemented in 

FORECASTER. 

As can be seen in Figure 4.4., each of these phases is comprised of multiple steps which must be 

tackled sequentially to ensure a robust model is built. 
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4.4.1. CYP Inhibition – Model Development – QM – Step 1. 

 A significant percentage of FDA approved drugs contain nitrogen heterocycles which 

could be capable of coordinating to the iron atom of the heme moiety. We proposed to compile a 

list of nitrogen heterocycles bearing various substituents and nitrogen hybridizations that cover as 

much of the chemical space as possible (Chart 4.1). This chart was also built based on the data we 

acquired from the PDB (Table 4.1) for CYP isoforms with resolution better than 2.5Å. These 

heterocycles represent our model systems for Type II ligands.  

Chart 4.1. Set of nitrogen-containing heterocycles used as model systems for Type II ligands. The 

binding nitrogen atom is depicted in red.   
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Table 4.1. Data acquired from the PDB for CYP isoforms with resolution better than 2.5Å that 

contain iron-coordinating nitrogen ligands. 

Entry PDB Code Resolution Isoform Fe-Coordination Nitrogen Hybridization 

1 1e9x 2.10 CYP51 yes sp2 

2 1ea1 2.21 CYP51 yes sp2 

3 1pha 1.63 CAM yes sp2 

4 2fdw 2.05 2A6 yes sp3 

5 3e6i 2.20 2E1 yes sp2 

6 3ibd 2.00 2B6 yes sp2 

7 3mdr 2.00 46A1 yes sp3 

8 3mdt 2.30 46A1 yes sp2 

9 3mdv 2.40 46A1 yes sp2 

10 3nxu 2.00 3A4 yes sp2 

11 3qoa 2.10 2B6 yes sp2 

12 3r9c 2.14 164A2 yes sp2 

13 3swz 2.40 17A1 yes sp2 

14 3t3q 2.10 2A6 yes sp2 

15 3t3r 2.40 2A6 yes sp2 

16 3t3z 2.35 20 yes sp2 

17 3tbg 2.10 2D6 yes sp2 

18 3tjs 2.25 3A4 yes sp3 

19 4d75 2.25 3A4 yes sp2 

20 4eji 2.10 2A13 yes sp2 

21 4fia 2.10 46A1 yes sp 

22 4k9w 2.40 3A4 yes sp2 

23 4uhi 2.05 CYP51 yes sp2 

24 4xrz 2.40 2D6 yes sp2 

25 5ese 2.20 CYP51 yes sp2 

26 5esf 2.25 CYP51 yes sp2 

27 5esh 2.15 CYP51 yes sp2 

28 5hs1 2.10 CYP51 yes sp2 

29 5irq 2.20 17A1 yes sp2 

30 5k7k 2.30 2C9 yes sp2 

31 5tz1 2.00 CYP51 yes sp2 

32 5uys 2.39 17A1 yes sp2 

33 5vce 2.20 3A4 yes sp2 

34 6bcz 2.23 3A4 yes sp2 

35 6bd7 2.42 3A4 yes sp2 

36 6bd8 2.38 3A4 yes sp2 

37 6bdh 2.25 3A4 yes sp2 
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 As can be seen in Chart 4.1, the set is comprised of a combination of five and six membered 

rings, both aromatic and aliphatic. In the case of six membered aromatic rings, we were interested 

in studying how different substituents affect the binding nitrogen reactivity, and, as such, we 

ensured that these rings contained both EWG and EDG in the ortho, para, and meta positions. In 

contrast, in the case of five membered aromatic rings, we wanted to study whether different 

heteroatoms in the heterocycle would enhance or decrease nitrogen binding to iron and so we 

looked into various combinations of heterocycles containing two, three or four heteroatoms.  

4.4.2. CYP Inhibition – Model Development – QM – Step 2. 

 Because the iron-nitrogen coordination process is highly dynamic and requires 

consideration from both steric and electronic effects, we decided to capture the energetics of this 

process using QM calculations. Several aspects were considered before the start of the PES 

calculations for the ligands in Chart 4.1 and are outlined further. a) Since docking is a static process 

and the mobility of the heme moiety cannot be modeled with FITTED, we decided to undertake all 

our QM calculations with a pre-optimized truncated heme moiety that would not be further 

optimized during the iron-nitrogen coordination process of the ligands in Chart 4.1. The carboxylic 

acid, methyl, and terminal ethylene chains were removed to reduce computational cost. This 

approach eliminates heme mobility as a variable from developing a new MM potential for the iron-

nitrogen coordination process. b) To obtain an optimized heme structure that was suitable for the 

coordination process of all ligands in Chart 4.1, we used the most sterically hindered ligand (4.18, 

Chart 4.1) in the optimization process. This ensures that the heme structure used during the iron-

nitrogen coordination process of the ligands in Chart 4.1 sterically allows all ligands to bind. The 

optimized heme structure used in all PES calculations is shown in Figure 4.5. c) To determine 

what level of theory was suited for the PES calculations, we used compound 4.14 as a benchmark 
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ligand. For this purpose, we tested several methods (see section 4.6 for full description of 

methodology) and we observed that a PBE0(D3BJ)/def2-SVP/ LANLDZ(Fe) level of theory 

offered the most accurate and cost-efficient approach.258 d) Once steps a-c) were completed, we 

investigated the computational conditions necessary for obtaining relevant PESs for the iron-

nitrogen binding process. Since we were interested in the formation of the iron-nitrogen bond, we 

decided to perform unidimensional PES scans where the coordinate used in the scan was the iron-

nitrogen bond distance. The distance was varied from 10Å – where there is no interaction (or very 

little) between the ligand and heme – to 1.6Å – where there is a repulsion between the iron and 

nitrogen – in increments of 0.2Å, thus obtaining 43 unique structures across the PES. At every 

point on the PES, the ligand was optimized while the heme was kept frozen at the pre-optimized 

geometry. 

 

Figure 4.5. Left) Optimized heme-4.18 complex. Ligand carbons shown in purple. Right) 

Optimized truncated heme moiety used in obtaining the PES scans. Hydrogens omitted for clarity. 

Cysteine residue is represented by -S-Me. Iron atom is shown in orange. 
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 For each of the ligands presented in Chart 4.1 the protocol described at point d) was carried 

out. As an example, the full PES scan of ligand 4.1 is presented in Figure 4.6 along with snapshots 

of the binding process at 10.0 (no interaction), 2.0 (minimum) and 1.6Å (repulsion) (purple dots). 

The PES scans of the other ligands in Chart 4.1 are given in Appendix C.  

  

Figure 4.6. PES scan showing the binding process of ligand 4.1 to heme. Snapshots are given at 

an iron-nitrogen distance of 10.0, 2.0 and 1.6Å. Ligand carbons are colored in purple. Hydrogens 

omitted for clarity. 

Importantly, the PES scans revealed that for compounds 4.7, 4.8 and 4.30 the binding process is 

unfavorable. In all three cases, the binding process led to highly distorted ligand structures, which 
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contributed to the instability of the final complex. These compounds were not considered in the 

development of the new MM potential. 

4.4.3. CYP Inhibition – Model Development – Docking – Step 1. 

 With the QM data in hand, we thought to develop a new MM potential to be implemented 

in FITTED. Since van der Waals (vdW) interactions are described in FITTED using a Lennard-Jones 

12-6 (LJ(12-6)) potential (see Equation 1.8), the first step was to obtain the FITTED energy profile 

for the same 43 unique structures used in section 4.4.2. An overlay of the energy profiles obtained 

with QM and FITTED for compound 4.1 is given in Figure 4.7 (orange curve). 

 

Figure 4.7. Overlay of QM and FITTED energy profiles obtained for compound 4.1. 

 As can be seen in Figure 4.7, the LJ(12-6) potential is unable to describe the iron-nitrogen 

coordination process. As such, the development of a new LJ potential, similar to the one we had 
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previously developed for zinc coordination, was necessary. In this context we decided to verify 

whether two of the most commonly used LJ potentials (8-4 and 6-3, Equations 4.1 and 4.2) could 

be able to describe this process better than the LJ(12-6) potential. As can be seen in Figure 4.7, the 

LJ(6-3) potential (green curve) describes an energy minimum (~ 37 kcal/mol) that is too low in 

energy compared to the QM minimum (~ 28 kcal/mol). Moreover, the iron-nitrogen distance at 

which this minimum occurs is offset by 0.4Å when compared to the QM minimum (2.4Å vs 2Å).  

EvdW(8−4) = ∑ εij [(
Rmin,ij

rij
)

8

− (
Rmin,ij

rij
)

4

]

pairs i,j

              Eq. (4.1) 

EvdW(6−3) = ∑ εij [(
Rmin,ij

rij
)

6

− (
Rmin,ij

rij
)

3

]

pairs i,j

              Eq. (4.2) 

 

Equations 4.1-4.2. LJ(8-4) and LJ(6-3) potentials for computing vdW interactions. 

 In contrast, the energy minimum (~ 31 kcal/mol) described by the LJ(8-4) potential is very 

close in energy to the QM one. However, the minimum described by the LJ(8-4) potential was also 

offset by 0.2Å when compared to the QM minimum (2.2Å vs 2Å). To verify whether incorporating 

the offset in the computation of the LJ(8-4) potential would improve the energy profile described 

by FITTED, we plotted the potential containing the offset in Figure 4.7. Interestingly, this led to an 

excellent overlap between the QM and FITTED energy profiles, with an overall MAE of 0.63 

kcal/mol between the two curves. The necessity of using an offset was not a singular occurrence; 

in all cases, we observed that the LJ(8-4) potential required the inclusion of this offset to properly 

described the binding process. This led to the implementation of the modified potential shown in 

Equation 4.3 into FITTED for describing the iron-nitrogen binding process. Importantly, the overall 
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MAE across all compounds used in the development of the new potential is 0.66 kcal/mol, which 

suggests that FITTED would now be capable to describe the iron-nitrogen binding process with QM 

precision at an MM cost. 

EvdW(8−4)−FITTED = 
4εσ8

(r − 0.2)8
− 

4εσ4

(r − 0.2)4
              Eq. (4.3) 

Equation 4.3. Modified LJ(8-4) potential implemented in FITTED. ε – energy minimum obtained 

after subtracting the original FITTED profile from the QM profile. σ – distance (in Å) at which there 

is repulsion between the iron and nitrogen (in all cases σ = 1.6Å). 

4.4.4. CYP Inhibition – Model Development – Docking – Step 2. 

 In FITTED, users can select two different docking modes depending on the nature of the 

protein (normal protein or metalloprotein).259 Depending on the mode of choice, FITTED uses 

different conditions for preparing and processing the crystal structures for docking, as well as for 

performing docking (different scaling terms for non-covalent interactions, including different LJ 

potentials for vdW interactions). Thus, the new LJ(8-4) potential was implemented only in the 

metalloprotein mode of FITTED. Afterwards, we assembled a representative set of CYP-ligand 

complexes from the PDB in order to perform a self-docking study for both protein and 

metalloprotein docking modes. This set is comprised of 85 diverse crystal structures (see Appendix 

C for full list), with and without iron-coordinating nitrogen ligands. Briefly, self-docking assesses 

the ability of a docking program to dock a ligand extracted from a crystal structure to that same 

crystal structure and compare the RMSD between the docked pose and original crystal structure. 

Generally, an RMSD less than 2.0Å between the predicted and crystal structure is considered to 

be adequate.  
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 The results of the self-docking study in both docking modes are given in Figure 4.8. 

Interestingly, when using the 2.0Å threshold for success of self-docking, there is a minimal 

difference between the docking modes (63.5 vs. 61.2% accuracy). This seems surprising, 

considering that the original LJ (12-6) did not properly describe the iron-nitrogen coordination 

process. However, before any conclusions can be made about the difference in accuracy between 

the two docking modes, we must take a closer look at the failures and differences in results and 

best binding poses between the two. 

 

Figure 4.8. % accuracy of protein vs. metalloprotein mode in the self-docking of heme proteins. 
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 One of the most striking differences in results is for the crystal structure with PDB id 3CZH 

(CYP2R1 in complex with Vitamin D2, non-iron coordinating ligand). In the case of the protein 

mode, the RMSD was 0.54Å, while for the metalloprotein mode it was 9.45Å (Figure 4.9). As can 

be seen in Figure 4.9, vitamin D2 is a large ligand that spans a significant portion of CYP2R1’s 

active site. However, although large, vitamin D2 is rigid, containing only 5 rotatable bonds. This 

in turn should allow docking to perform well, as evident from the protein mode RMSD. One 

possible explanation for the inability of the metalloprotein mode to obtain a better RMSD lies in 

the stochastic nature of the docking process. FITTED relies on a genetic algorithm where, at the 

beginning of the docking process, an initial population of 100 conformations is generated 

randomly. If the ligand is large and/or flexible, then the number of initial conformations should be 

increased to explore the conformational space thoroughly. If the number of initial conformations 

is too small, then it is likely that a suitable conformation is not found. However, in the interest of 

speed vs. accuracy, as well as to be consistent with our previous self-docking studies, we decided 

to use 100 initial conformations for all the crystal structures assembled for this self-docking study, 

irrespective of the ligand size.  

 Another example in which the protein (RMSD = 6.30Å) and metalloprotein (RMSD = 

0.69Å) modes differ significantly is in the case of the crystal structure with the PDB id 4EJI 

(CYP2A13 in complex with an iron-coordinating nitrogen ligand – Figure 4.10). While in the 

protein mode the best docked pose suggests the nitroso group to be close to the iron, in the 

metalloprotein mode the pyridine nitrogen is correctly bound to the iron. Importantly, the N-Fe 

bond length in the crystal ligand is 2.05Å, while the bond length in the best docked pose in 

metalloprotein mode is 2.07Å, suggesting that the new LJ(8-4) potential can properly describe 

iron-nitrogen coordination.  
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Figure 4.9. Self-docking results for 3CZH – active site snapshot. Green – crystal ligand; Orange 

– protein mode; Yellow – metalloprotein mode. Oxygen atom in ligands are colored red. 

 

Figure 4.10. Self-docking results for 4EJI – active site snapshot. Green – crystal ligand; Orange – 

protein mode; Yellow – metalloprotein mode. In the ligands, nitrogen atoms are colored in blue, 

while oxygen atoms are colored in red. 
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 Overall, as can be seen in Table 4.2, there are 37 instances (43.5%) in which the protein 

mode shows a lower RMSD than metalloprotein mode, while there are 48 instances (56.5%) in 

which the metalloprotein mode shows a lower RMSD than the protein mode. Moreover, in 91.8% 

of the cases the metalloprotein mode provides an RMSD < 5.0Å, while the protein mode can 

provide an RMSD < 5.0Å in 88.2% of the cases. When considering only the cases in which ligands 

are coordinating to the iron (50/85), the protein mode shows a lower RMSD than metalloprotein 

mode in 21 instances (42%), while metalloprotein produces a lower RMSD in 29 instances (58%). 

Out of the 29 instances when metalloprotein mode has a lower RMSD than protein mode, 20 (69%) 

have an RMSD < 2.0Å, while 15/21 (71.4%) are below 2.0Å in the cases protein mode provides a 

lower RMSD than metalloprotein mode. The detailed RMSD data from this study is provided in 

Appendix C. 

Table 4.2. Statistics from self-docking study. 

Condition 
% Accuracy (Total) 

 n=85 

% Accuracy (sp2) 

n=50 

RMSD (Protein) < 5.0Å 88.2 86.0 

RMSD (Metallo) < 5.0Å 91.8 92.0 

RMSD (Protein) < 2.0Å 63.5 68.0 

RMSD (Metallo) < 2.0Å 61.2 68.0 

RMSD (Protein) < RMSD (Metallo) 43.5 42.0 

RMSD (Metallo) < RMSD (Protein) 56.5 58.0 

RMSD (Protein) < RMSD (Metallo) 

and RMSD (Protein) < 2.0Å 
67.6 71.4 

RMSD (Metallo) < RMSD (Protein) 

and RMSD (Metallo) < 2.0Å 
63.8 69.0 

 

 The data in Table 4.2 suggests that the novel LJ(8-4) implementation provides an 

improvement for the metalloprotein docking mode compared to the protein docking mode. 

However, further optimization is necessary to improve the overall self-docking accuracy and a 

larger, more diverse set is needed to draw statistically relevant conclusions. Some avenues that 
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could be pursued include the development of optimized heme force field parameters, along with 

optimized scaling factors for non-covalent interactions specifically designed for heme proteins. 

4.4.5. CYP Inhibition – Model Development – ANN – Steps 1 and 2.  

 As discussed in Chapter 1 and in one of our recently published reviews,27 an ANN is only 

as good as the data used to train it. For CYP inhibition, this is especially true. It is important to 

mention that there are several types of assays used to determine CYP inhibition, including 

luciferase-based assays260 or LC/MS/MS-based assays261 to determine whether a compound 

inhibits a specific CYP. One important characteristic of these assays is that they indiscriminately 

detect inhibition, whether it is reversible or irreversible. These assays also measure different 

parameters such as AC50 (half maximal activity) or IC50 (half maximal inhibitory concentration) 

and have different thresholds for inhibition. Thus, it is paramount to account for different assays 

when assembling a training and testing set for determining the accuracy of an ANN. If possible, 

the set should contain thousands of data points (both inhibitors and non-inhibitors) and be built 

using data obtained with the same type of assay. Ideally, this data should be obtained from one 

source, since this would ensure that the data was gathered in the same manner and the systematic 

errors would be consistent throughout the assay.  

 To this end, we built a relevant set of CYP inhibitors that could be used as training and 

testing sets for our ANN. Following our literature search, we selected the AID-1851 CYP450 panel 

bioassay published on PubChem by the National Center for Advancing Translational Sciences as 

the source of our set.262 This is a luciferase-based assay that determines the AC50 of ~17000 

compounds in five major CYP isoforms: CYP1A2, 2C9, 2C19, 2D6, and 3A4. Briefly, the assay 

measures the dealkylation of various pro-luciferin substrates to luciferin, which is then measured 

using luminescence after a luciferase detecting agent has been added. Inhibitors limit the 
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production of luciferin and decrease the measured luminescence. According to the assay, 

compounds with AC50 equal or less than 10 μM are considered active. 

 As it is the case with most publicly available datasets, we had to curate it to obtain a usable 

set of drug-like compounds. Briefly, we initially filtered the 17000 compounds for atoms 

commonly found in drugs (C, N, H, O, F, Br, Cl, I, Si, S, P) and then subjected the set to filtering 

based on Lipinski’s rule of 5 (molecular weight < 500 Da, hydrogen bond acceptors < 10, hydrogen 

bond donors < 5 and a logP < 5). Then, we split the full set into two subsets for each isoform 

comprising active and inactive compounds. The final number of compounds per set per isoform is 

given in Table 4.3. 

Table 4.3. Breakdown of sets per isoform. 

Isoform Activity Number of Compounds 

Number of compounds containing a 

nitrogen atom capable of coordinating 

to the heme iron 

1A2 
active 4453 3330 

inactive 6132 2835   

2C9 
active 2708 1764 

inactive 7823 4333 

2C19 
active 4111 2526 

inactive 6580 3535 

2D6 
active 1905 934   

inactive 9953 5862   

3A4 
active 3118 2182 

inactive 6932 3657 

 

 For all isoforms, the active and inactive sets were then converted from 2D to 3D using our 

program CONVERT and prepared for docking using SMART. SMART is also capable of assigning 

atomic and molecular descriptors to compounds, including molecular weight, number of hydrogen 

bond donor and acceptors, number of rings and stereocenters, logP (a measure of hydrophobicity), 

logS (a measure of solubility in water), topological polar surface area, and number of heteroatoms 

(N, O and S). We believed that these descriptors could be as important as the docking data since 
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they provide essential information about the compounds. As such, after the docking process was 

complete, for each active and inactive a detailed breakdown of various energy terms from the best 

docking run (vdW, electrostatic, hydrogen bond energy etc.) and a breakdown of descriptors was 

output to be further used in the development of the ANN. 

4.4.6. CYP Inhibition – Model Development – ANN – Step 3. 

 There are many flavors of ANNs available in the literature. Amongst these, one of the most 

common ones is the supervised ANN using a “back-propagation” algorithm.263 Developed in 1986 

by Rumelhart, Hinton, and Williams,264 back-propagation quickly became the algorithm of choice 

for ANNs developed in chemistry.  

 

Figure 4.11. A schematic depiction of the back-propagation algorithm. Reproduced from 

reference 263. 

 Briefly, as depicted in Figure 4.11, the input data is delivered through the layers of neurons. 

If an ANN has multiple layers, the output data from layer n becomes the input data for layer n+1. 
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The main goal of such an ANN is for predictive output data to be delivered by the final layer. 

However, in the case of back-propagation, this is not the case in the beginning. The final layer will 

predict output data, which will then be compared to an expected value, which is known beforehand 

(experimental data coming with the dataset). The next step involves computing the error between 

the expected and output values by the final layer, which is then used to correct the data from the 

final layer using a conjugate gradient method. Subsequently, the weights from the penultimate 

layer are corrected with respect to the final layer. This process occurs layer by layer until the input 

layer is reached. Thus, the error is propagated backwards from bottom to top and is used to correct 

the weights in each layer. The main goal of this algorithm is to minimize the error in the output 

layer.  

 We believed that an ANN using a back-propagation algorithm was robust for our needs, 

and thus we implemented it in our drug discovery platform FORECASTER and connected it to our 

docking program FITTED. To remove the need for manual intervention in building the training and 

testing sets, we decided to automate this aspect as well (although the user can still select the 

training:testing set ratio). Afterwards, we opted for a single hidden layer, which would take as 

input both the docking and ligand data obtained in section 4.4.6. After building the ANN, we set 

out to identify the most appropriate descriptors for evaluating CYP inhibition and we found that 

out of 25 distinct descriptors a combination of docking-based energy values (vdW, electrostatic, 

hydrogen bond energy, metal coordination, Score and MatchScore) and ligand-based descriptors 

(number of rotatable bonds, net charge, number of hydrogen bond donors and acceptors) was 

optimal. The Score output by FITTED after docking describes how favorable the electronic 

interactions a ligand makes with the amino acids in the active site are, while MatchScore describes 
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how well a ligand fits inside the active site of an enzyme.265,266 Once these tasks were completed, 

we proceeded to assess the accuracy of our ANN in distinguishing inhibitors vs non-inhibitors. 

4.4.7. CYP Inhibition – Model Development – ANN – Step 4. 

  Several aspects must be accounted for when training a ANN. First, the accuracies of both 

the training and testing sets must be compared to ensure overfitting did not occur. Second, 

important insight into the behaviour of the ANN can be obtained if one computes the specificity 

and sensitivity, along with the positive and negative predicted values (PPV and NPV). The 

specificity of an ANN in the context of CYP inhibition describes the proportion of molecules 

predicted to be inactive among those that are experimentally inactive, while the sensitivity 

describes the proportion of molecules predicted to be active among those that are experimentally 

active. The PPV describes the probability that a predicted active is experimentally active while the 

NPV describes the probability that a predicted inactive is experimentally inactive. In our case, we 

computed all these parameters for each specific isoform (Table 4.4).  

Table 4.4. ANN results. 

CYP Accuracy Sensitivity Specificity PPV NPV 

1A2 
94.6 91.1 97.2 95.9 93.8 

80.6 75.1 84.7 78.2 82.3 

2D6 
89.3 36.0 99.5 93.7 89.0 

85.1 27.4 96.2 57.8 87.4 

2C9 
93.5 76.9 99.3 97.3 92.6 

79.9 49.4 90.5 64.3 83.8 

2C19 
89.3 79.8 95.2 91.2 88.3 

78.3 65.9 86.0 74.8 80.1 

3A4 
91.6 76.7 97.1 90.8 91.9 

80.2 54.4 89.8 66.3 84.2 

 

 As can be seen in Table 4.4, the accuracy of the ANN for the training set is excellent. 

However, the accuracy of the testing set is lower in all cases, indicating that overtraining has 
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occurred. Moreover, in the case of CYP 2D6, our ANN performs poorly in terms of sensitivity in 

both the training and testing set cases. The same holds true for 2C9 and 3A4 in the case of the 

testing sets. It is clear from these results that more work is needed to improve the ANN and to 

avoid overfitting. To put the results in Table 4.5 in context, we have assembled data from three 

different publications that use the same bioassay to develop machine learning methods that 

discriminate between inhibitors and non-inhibitors. These results are given in Table 4.6 and show 

that throughout the literature the problem of overfitting seems apparent. Nonetheless, the 

foundation of our unique docking-ligand-ML approach to discriminate between inhibitors vs. non-

inhibitors is laid, and further improvements are expected in the future. 

Table 4.5. Comparison of our ANN with literature. Accuracies are given for testing and (training) 

sets. 

Reference 1A2 2C9 2C19 2D6 3A4 

Sun et al.267 
0.79 

(0.93) 

0.77 

(0.89) 

0.86 

(0.89) 

0.90 

(0.85) 

0.73 

(0.87) 

Cheng et al.268 0.73 0.87 0.81 0.88 0.76 

Li et al.269 
0.97 

(0.89) 

0.86 

(0.86) 

0.81 

(0.84) 

0.89 

(0.88) 

0.89 

(0.85) 

Our ANN 
0.81 

(0.95) 

0.80 

(0.94) 

0.78 

(0.89) 

0.85 

(0.89) 

0.80 

(0.92) 

  

4.5. SoM Prediction – IMPACTS 2.0 – Background. 

 

 For many years, we have been developing accurate software for drug discovery and 

development. For instance, in 2012, we developed IMPACTS, a tool outperforming experts in the 

prediction of SoM of xenobiotics by CYPs.248 IMPACTS was developed based on the understanding 

of the CYP-mediated drug metabolism mechanism. Briefly, IMPACTS, is a hybrid method based on 

both ligand docking and ligand activation energies. Prior to docking of a drug-like molecule, the 

atoms that could potentially constitute SoMs are assigned pre-computed activation energies, 

obtained following the reaction of a set of representative fragments with the active CYP450 species 
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responsible for oxidation. Then, IMPACTS docks the molecule using routines derived from our in-

house docking program FITTED, creates the likely transition states, and uses the collected 

information to decide which SoM will be preferred (Figure 4.13). The original version of IMPACTS 

showed an accuracy of 77% across 4 isoforms (CYP1A2, 2C9, 2D6 and 3A4).  

 With the implementation of our CYP inhibition prediction tool into FORECASTER and 

expansion of our drug metabolism-related predictive software, we sought to revisit IMPACTS 

through a fresh look at CYP-mediated drug metabolism mechanism in hopes of improving its 

accuracy.  

 

Figure 4.12. Automated IMPACTS protocol. 

4.5.1. SoM Prediction – Improving IMPACTS – Approach. 

 As with many enzymatic reactions, the rate of CYP oxidation is driven by 1) stabilization 

of the transition state by the enzyme, 2) proper positioning of the reacting partners, 3) substrate 

reactivity, and 4) modified kinetics (e.g. first order in enzyme, second order in solution) of the 

chemical process. To tackle this problem, the original version of IMPACTS was modeling the 

transition state (#1) of the substrate enzyme complex using routines from our docking program 
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FITTED (#1 and #2) considering the reactivity of each potential reactive SoMs of the substrate from 

DFT calculations of fragments (#3) and assuming similar effect of the kinetics on every substrate 

(#4). While all these factors were considered, we believed that there was space for improvement. 

Over the years, we have found that water molecules and protein flexibility could be critical for 

optimal binding mode prediction. We are also aware of the impact of the basis set and functionals 

in DFT calculation on the accuracy of the resulting predictions. At this stage, our research focused 

on the following factors: 1) an improved docking program (FITTED’s accuracy has improved 

throughout the years) including a more accurate consideration of protein flexibility, 2) higher-level 

calculations of fragment energy of activation, and 3) additional consideration of steric effects. 

 The first step of our study consisted in assessing the accuracy of the current version of 

IMPACTS on the training set used in 2012. The accuracy values presented throughout this chapter 

are average values obtained over five different runs to ensure reproducibility (including standard 

deviations). The detailed data obtained from these runs can be accessed in Appendix C. As can be 

seen in Figure 4.13, the overall accuracy of IMPACTS has not changed significantly (within 2% 

overall). This small variation in accuracy can be attributed to significant changes made to the way 

molecules are prepared for docking (correctly treating aromaticity in molecules, proper resonance 

structure attribution and improved charging scheme) as well as to the docking process itself 

(improved convergence parameters and the nature of the stochastic process of docking). Moreover, 

we checked whether reducing the number of available SoM’s prior to docking would improve the 

accuracy of IMPACTS. As such, we allowed only the top 5 activation energies to be considered in 

the docking process. However, this adjustment did not change the accuracy dramatically (Figure 

4.13). 
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Figure 4.13. Accuracy using the current version of IMPACTS compared to the one determined in 

2012. 

With these results in hand, we investigated the different aspects presented in our approach to see 

whether IMPACTS could be improved. 

4.5.2. SoM Prediction – Improving IMPACTS – Ligand Reactivity. 

 In the past few decades, several developments have been made in the field of chemical 

reactivity. Amongst these are chemical reactivity descriptors – computed values that can be used 

to determine whether a molecule or an atom in a molecule is reactive.270 Molecular reactivity 

descriptors offer information across an entire molecule (i.e. chemical softness, hardness etc.) but 

provide no usable information about local sites of reactivity. For example, the HSAB theory 

developed by Pearson states that a hard molecule will preferentially react with a hard molecule as 

opposed to a soft one.117 In contrast, LARIs have been developed to account for reactivity of 

individual atoms. Amongst these are the Fukui coefficients developed in the context of frontier 

molecular orbital (FMO) theory. These coefficients offer information about nucleophilic, 
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electrophilic, and radical attacks and have been discussed in Chapter 1 and thoroughly throughout 

the literature. To help with our efforts in the field of drug discovery, we implemented FCs as well 

as other LARIs and molecular properties (global hardness, softness, nucleophilicity, 

electrophilicity etc.) in the context of both HF and DFT in our QM program QUEMIST (for a 

detailed description of the development and implementation of QUEMIST see Chapter 5). 

 Since the CYP oxidation mechanism proceeds through radical attack on the SoM, we 

investigated whether FCs could be used in conjunction with or as a substitution to our activation 

energies to provide a more accurate description of the radical attack on potential SoMs. 

Preliminary results showed that computationally demanding atom-condensed FCs from Hirshfeld 

atomic charges can increase the accuracy of IMPACTS by no more than 2% overall.271 In addition, 

a major drawback of this approach is that it requires three separate QM single point energy 

calculations for the neutral, anionic, and cationic molecules to obtain the FCs. Moreover, these 

coefficients showed a high dependence on the type of atomic charges used (i.e. Mulliken, Hirshfeld 

etc.). To offset these drawbacks and to reduce the computational cost associated with computing 

FCs, we turned our attention to a method that allows the quantification of atom-condensed FCs 

directly from only one QM energy calculation performed on the neutral molecule.272,273 The QM 

information (molecular orbitals, orbital energies and overlap matrix) is easily obtained using 

QUEMIST. The FC’s are then normalized in the 0-100 range and used automatically within IMPACTS 

itself. A comparison between the accuracies obtained in 2012 and 2019 (with and without FCs) is 

given in Figure 4.14. 
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Figure 4.14. Accuracy using the current version of IMPACTS with and without FCs. 

 As can be seen in Figure 4.14, the usage of FCs (computed at the HF/def2-SVP level of 

theory) did not provide the expected accuracy improvement for IMPACTS. A detailed analysis of 

the results shows that across all sets the FCs have the highest values on aromatic carbons, which 

is consistent with aromatic rings being electron rich. However, this disfavors potential SoMs 

represented by sp3 carbons, which generally have a low FC. This fact is particularly evident for 

the 2D6 set, which exhibits a high decrease in accuracy due to 72% of SoMs being comprised of 

sp3 carbons. 

4.5.3. SoM Prediction – Improving IMPACTS – New Activation Energies. 

 After assessing the usage of FCs in the prediction of SoMs, we posited that the approach 

developed in 2012 to assign activation energies could be improved. As such, we embarked on a 
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journey similar to that expanded in SMARTCyp 3.0274 and decided to improve the assignment of 

activation energies through the following protocol: 

 1. Survey the literature and collect fragments of interest found in drug molecules (i.e. 

styrene, thiophene etc.) 

 2. Design and implement a fragment-matching algorithm that could efficiently 

identify fragments of interest in any given drug molecule.  

 3. For the fragments of interest – obtain TSs at the ωB97X-D3//def2-SVP 

(geometrical counterpoise correction - gCP)/def2-SVP (zero-point energy - ZPE) for the reactive 

atoms using a methoxy radical model. 

 4. Assign activation energies during IMPACTS based on the fragment-search protocol. 

If the fragment is not found, the activation energy is assigned based on the old protocol. Our 

approach led to a set of 156 fragments and over 450 TSs (e.g. o,m,p-substituted aryl fragments 

were counted as separate TSs). For the QM calculations, our choice of ωB97X-D3//def2-

SVP(gCP)/def2-SVP(ZPE) level of theory was based on functional quality, speed, and accuracy,275 

while the choice of methoxy radical was based on our previous work and that of others.248,276 While 

we expected comparable accuracies to the original activation energies, we were surprised to see a 

major drop in accuracy (almost 13% overall), especially for 2D6 (Table 4.6). We attributed this to 

the relatively small basis set we used to compute the energies, as well as to the fact that due to the 

vastness of the chemical space we probably did not cover enough fragments to assign them 

properly.  
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Table 4.6. Accuracy of IMPACTS when using the new activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 66.4 68.6 69.3 68.6 65.0 67.6 1.6 

2C9 70.5 69.0 67.3 67.4 69.8 68.8 1.3 

2D6 47.1 48.4 49.7 45.9 51.0 48.4 1.8 

3A4 67.2 67.2 65.9 66.9 66.2 66.7 0.5 

 

Moreover, the choice of a methoxy model, while the fastest in terms of speed, precludes the 

description of the possible radical spin transfer to the heme iron during the oxidation process. 

4.5.4. SoM Prediction – Improving IMPACTS – Steric Effects and Ligand Accessibility. 

 In our quest to improve the accuracy of IMPACTS we were set on improving the activation 

energies obtained in 2012. However, from the investigations described above, the activation 

energies were reliable and multiple efforts to further improve them proved to be unfruitful. As 

such, we turned our attention to the other aspect of the CYP metabolism, namely sterics. While 

the docking routines are considering some of these effects, precluding some unrealistic binding 

modes, the intrinsic accessibility of the SoMs was not being addressed. To expand on this, we 

decided to “pre-filter” the potential SoMs using a very simple sterics descriptor – solvent 

accessible surface area (SASA). We implemented the Shrake-Rupley277 algorithm for computing 

SASA in FORECASTER and developed an equation (Eq.4.4) to integrate the sterics descriptor within 

the activation energies: 

Corrected Eact = Eact − ∆ × SASAatomic              Eq. (4.4) 

Equation 4.4. Corrected activation energies for IMPACTS. ∆ is a correction factor that has an 

optimized default value of 0.1. 

This approach would ensure that both intrinsic reactivity and accessibility would be accounted for 

at the moment of docking with IMPACTS. The results of this approach are presented in Figure 4.15. 
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Figure 4.15. Accuracy using the current version of IMPACTS with and without SASA. 

 Figure 4.15 shows that the accuracy for each isoform increases significantly when adding 

the SASA correction. Overall, the accuracy of IMPACTS increases by almost 5% to when compared 

to the data in Figure 4.13 (80% overall). The decision to limit the number of SoM’s for docking to 

5 proved to be an inspired one in this case, since this condition shows the highest accuracy overall 

(Figure 4.15).  

4.5.5. SoM Prediction – Improving IMPACTS – IMPACTS 2.0. 

 To test whether the data in Figure 4.15 was consistent across different sets, as well as across 

different isoforms that were not involved in the initial testing procedure, we assembled new sets 

for CYP1A2, 2C9, 2C19, 2E1, and 2D6 totaling 1125 drug molecules. The results in Figure 4.16 

show that our SASA correction approach improves the accuracy of the overall set by 3%. 

Importantly, the use of SASA correction brings all isoforms over 70% accuracy. 
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Figure 4.16. Accuracy using the current version of IMPACTS on external sets. 

In the case of the external sets, limiting IMPACTS to 5 SoMs did not have the same effect as for our 

internal sets i.e. the accuracy with 5 SoMs is roughly the same as the one using all SoMs. 

4.5.6. SoM Prediction – Improving IMPACTS – IMPACTS 2.0 – Protein Flexibility. 

 To verify whether protein flexibility played a major role in the results we had obtained so 

far, we decided to run IMPACTS on both the development and external sets in the flexible protein 

docking mode. For this purpose, we chose the best conditions we had determined during our study 

i.e. running IMPACTS on 5 SoMs using the SASA correction. To ensure that flexible docking is 

possible, we assembled a set of crystal structures from the PDB for each isoform except 1A2 and 

2C19 (only one crystal structure available). This mode does not significantly affect the accuracy 

for most CYP isoforms. However, the accuracy in the case of 2C9 drops with both sets indicating 

that the selected protein structure in rigid mode is likely the one preferred by most substrates. As 
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observed with our previous version, adding flexibility to the protein is only adding noise to the 

calculations (Figures 4.17 and 4.18). 

 

Figure 4.17. Accuracy using IMPACTS 2.0 on external sets with SASA correction in both rigid and 

flexible protein docking mode. 2C9-5 refers to all five selected isoforms used in docking; 2C9-3 

refers to three representative isoforms used in docking. Same holds true for 2D6-5 and 2D6-3. 
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Figure 4.18. Accuracy using IMPACTS 2.0 on development sets with SASA correction in both rigid 

and flexible protein docking mode. 2C9-5 refers to all five selected isoforms used in docking; 2C9-

3 refers to three representative isoforms used in docking. Same holds true for 2D6-5 and 2D6-3. 

Overall, we thoroughly studied different avenues in which we could improve IMPACTS and 

managed to obtain a significant gain in overall accuracy for a very small computational cost. 

4.6. Conclusions. 

 In this chapter we explored the expansion of our predictive drug metabolism software 

available in our drug discovery platform FORECASTER. First, we employed a unique QM-docking-

ML approach to discriminate between CYP inhibitors vs. non-inhibitors. To this end we developed 

a novel LJ(8-4) potential to describe nitrogen-iron coordination and we implemented it into our 

docking program FITTED. We tested the accuracy of this novel implementation on a set of 85 CYP 

proteins assembled from the PDB by performing a self-docking study using both the protein and 
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metalloprotein docking modes available in FITTED. Overall, we observed that the metalloprotein 

docking mode with the novel LJ(8-4) performs slightly better at describing nitrogen-iron 

coordination than the protein mode. Afterwards, we assembled a set of experimentally determined 

inhibitors and non-inhibitors using a publicly available bioassay for five major CYP isoforms 

(1A2, 2C9, 2C19, 2D6, and 3A4), followed by subsequent docking to each specific isoform and 

the development of a back-propagation ANN. This ANN contains a single hidden layer and takes 

as input both docking energy terms and ligand properties. After training and testing our ANN, we 

observed that overfitting had occurred and that more work was needed to improve its accuracy 

across all five tested isoforms. Compared to existing ML methods trained on the same bioassay 

data, our ANN performs similarly. It is worth noting that overfitting had occurred in the other 

reported methods as well. Further studies are ongoing in our research group to further improve the 

current ANN methodology, including the usage of specific interactions with key residues for each 

of the isoforms, reducing sensitivity to poorly balanced sets (i.e. 2D6), evaluating the use of 

multiple hidden layers and optimizing the fitting parameters.  

4.7. Methods. 

 All QM calculations for obtaining the PES profiles for the nitrogen heterocycles were 

performed with ORCA v.3.0.3.188 As exemplified in the main text, we considered different 

computational methods to obtain the PES profiles (option c) was eventually chosen based on the 

results and cost vs. accuracy comparison): 

a) B3LYP + def2-SVP + D3BJ + LANLDZ(Fe) 

b) B3LYP + def2-TZVP + D3BJ + LANLDZ(Fe) 

c) PBE0 + def2-SVP + D3BJ + LANLDZ(Fe) 

d) PBE0 + def2-TZVP + D3BJ + LANLDZ(Fe) 

e) SCS-MP2 + def2-SVP + LANLDZ(Fe) 

f) SCS-MP2 + def2-TZVP + LANLDZ(Fe) 
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The ANN was written from scratch in C++ and implemented into our drug discovery platform 

FORECASTER. The SASA correction algorithm was written from scratch in C++ and implemented 

into our drug discovery platform FORECASTER. Self-docking study was performed with 

FORECASTER subversion 5815. IMPACTS study was performed with FORECASTER subversion 5764. 

The internal and development sets for testing IMPACTS will be available for download at 

http://moitessier-group.mcgill.ca/software.html.  

 

http://moitessier-group.mcgill.ca/software.html
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Chapter 5 – From Desktop to Benchtop – A Paradigm Shift in 

Asymmetric Synthesis 

Preface.  

 In Chapter 1, we introduced some aspects of asymmetric catalysts, including different ways 

to obtain chiral molecules and presenting several drawbacks related to transition-metal catalysis 

and biocatalysis. Recently, it was established that small organic molecules, such as proline (a 

naturally occurring amino acid), could catalyze reactions and induce enantioselectivity. This 

sparked the beginning of organocatalysis, which soon started gaining momentum. The benefits of 

organocatalysts are appealing: they are cheaper, have lower toxicity, greater availability when 

compared to metals, a higher substrate scope, and better stability when compared to enzymes. 

Many of these catalysts could be synthesized from enantiopure starting materials, usually natural 

products which are available in enantiopure form. Although several efficient asymmetric 

organocatalysts have been synthesized and reported for different chemical transformations in the 

past 20 years, progress in the field has been slow. This is mainly due to the difficulty in predicting 

how active and selective a catalyst would be before designing and synthesizing it.  

 When developing a new organocatalyst, a popular method for testing catalytic activity and 

selectivity relies on high throughput library screening (HTS). This method entails the synthesis or 

purchase of a vast amount of potential catalysts, which make up the library, and screening of their 

performance as enantioselective catalysts of a given reaction. This approach is not only costly, but 

also tedious and is, in general, a relatively low success rate process. The same basic HTS process 

has been applied in drug discovery. However, recent advances in computational chemistry tools 

have enabled the use of software which could predict the binding ability of a molecule to a known 
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target, thus reducing the number of molecules that need to be synthesized experimentally. Yet, 

very little work has been successfully done for enantioselectivity prediction of organocatalysts by 

computational tools. These tools are mostly used nowadays to help rationalize observations such 

as selectivity post facto rather than for design. The complexity of developing such tools requires 

the use of time and resource-intensive computations and a deep understanding of computational 

chemistry.  

 To streamline the process of catalyst design and to improve the overall molecular discovery 

rate by allowing chemists to synthesize only active, selective catalysts, we have focused our efforts 

to develop the VIRTUAL CHEMIST platform. This platform allows organic chemists to simulate an 

entire asymmetric synthesis project from start to finish, without the need for computational 

chemistry expertise. 

This chapter is based on the work published in the paper below with a more detailed description 

of the program QUEMIST: 

Burai Patrascu, M.;‡ Pottel, J.; Pinus, S.; Bezanson, M.; Norrby, P.O.; and Moitessier, N. Nat. 

Catal., accepted, 2020. 

NM developed ACE and the UI for the VIRTUAL CHEMIST platform. JP and NM developed the 

CONSTRUCTS software. MBP developed QUEMIST and implemented it in the VIRTUAL CHEMIST 

platform. MBP and SP performed the VS studies. PON developed Q2MM. All authors contributed 

to writing the manuscript.  

 

‡ first author 
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Abstract. 

 The organic chemist’s toolbox is vast with technologies to accelerate the synthesis of novel 

chemical matter. The field of asymmetric catalysis is one approach to access new areas of chemical 

space and computational power is today sufficient to assist in this exploration. Unfortunately, 

existing techniques generally require computational expertise and are therefore under-utilized in 

synthetic chemistry. We present in this chapter our platform VIRTUAL CHEMIST that allows bench 

chemists to predict outcomes of asymmetric chemical reactions ahead of testing in the lab, in just 

a few clicks. Modular workflows facilitate the simulation of various sets of experiments, including 

the four realistic scenarios discussed: one-by-one design, library screening, hit optimization, and 

substrate scope evaluation. Catalyst candidates are screened within hours and the 

enantioselectivity predictions provide substantial enrichments compared to random testing. The 

achieved accuracies within ~1 kcal/mol provide new opportunities for computational chemistry in 

asymmetric catalysis. 
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5.1. Introduction. 

 Organic chemistry research is vital to the discovery, optimization, and ton-scale production 

of numerous small molecules, such as novel drugs that treat life-threatening diseases. It contributes 

to the design of innovative materials comprising modern electronics and low power consumption 

organic light-emitting diodes (OLEDs), and to the development of novel agricultural practices, 

cosmetics, textiles, inks, and paints, to name a few. Unfortunately, a major hurdle in the production 

of these complex small molecules is the challenging syntheses they often require. Although several 

research groups are focused on the development and optimization of new methodologies, they are 

often reaction-specific and universalizing them for mainstream wet lab chemistry requires 

substantial work.  

 For the design of novel organic synthetic methodologies to access novel compounds, 

chemists often make use of the vast organic chemistry toolbox at their disposal; chemists routinely 

incorporate NMR, mass spectrometry (MS), and chromatography. These complex scientific 

technologies are largely accessible without expert knowledge of their inner workings. For 

example, synthetic chemists run standard 1H, 13C, and various 2D NMR experiments without 

necessarily understanding and/or manipulating the magnetic pulse sequences. In contrast, 

computational chemistry remains largely inaccessible to the experimental chemistry community; 

complex theoretical calculations are neglected since coding/programming knowledge – sometimes 

advanced experience – is often a prerequisite. The omission of computational techniques from the 

larger toolbox is regrettable since interpreting unexpected observations278 and proposing new 

reaction mechanisms,279,280 have been attributed, in part, to computations.  

 With the rise of QM – HF and DFT – and MM methods – docking, MD simulations – 

organic chemists have caught a glimpse of the power and utility of such computations. 
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Computational experts frequently collaborate with experimentalists to rationalize the observations 

of the organic chemists. However, rather than only offering post facto theories, computational 

chemistry could prospectively hypothesize and screen organic chemistry transformations. We 

remain sanguine at such a possibility upon consideration of a similar successful implementation 

of computer simulations in drug discovery.88,281 After the pioneering development of DOCK—a 

structure-based drug discovery tool—in 1982, an entire field of research emerged. In fact, many 

computational techniques including ML, MD simulations,282 molecular docking,283 and 

pharmacophore modelling284 are now commonplace, addressing research challenges in drug 

discovery. Theoretically, analogous computational techniques could tackle synthetic chemistry 

challenges; already, robotics285 and synthetic planning computational tools286,287 have been 

reported and will likely be incorporated into many chemistry laboratories soon.  

5.2. Asymmetric Synthesis and Stereoselectivity Prediction. 

 Among synthetic methodologies are asymmetric transformations. While biocatalysis and 

the use of the chiral pool are common approaches for the synthesis of chiral molecules (e.g., chiral 

drugs and chiral materials), their application is limited (substrate specificity and stability of 

biocatalysts, limited available chiral molecules). Asymmetric synthesis is an attractive alternative 

to generating chiral molecules in high quantity and purity. In practical terms, cheap, selective, 

synthetically accessible, and green asymmetric catalysts are highly desired to shorten synthetic 

routes to complex small molecules. The vastness of the chemical space suggests that many 

organocatalysts or transition metal catalysts exist, but their discovery is challenging, tedious, and 

physically intractable using solely traditional experimental techniques.288 The exploration of the 

chemical space can, however, be more efficient when performed computationally. Furthermore, 
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virtually applying identified and selected catalysts to predict stereoselectivity for a specific 

reaction is within reach.289  

 Several groups have focused on the prediction of stereoselectivity of asymmetric 

transformations.125,290,291 Among the proposed approaches are statistical models,292,293 ANNs,294,295 

DFT, 125,290,296-303 QM/MM,128 and MM-based methods (Q2MM124,131 and ACE
 123,304), with DFT 

being the most widely used. However, despite the demonstration of their feasibility, it was not 

until 2009 that the first use of DFT for screening a small sized set of asymmetric catalysts and 

substrates was reported, 305 with little communicated thereafter. ANNs are newer on this scene but 

require a plethora of data and may not be appropriate to discover novel catalysts. Generally, most 

software in this domain has been plagued by poor usability and time inefficiency, although some 

research groups have been making progress in these aspects (i.e. CatVS described in Chapter 1). 

We posit that organic chemists should be able to truly screen potential asymmetric catalysts 

computationally. More broadly, we aim to continue to shift the organic chemistry paradigm to 

consider virtual asymmetric catalyst discovery and design as a complement to traditional and 

automated asymmetric catalysis. We present herein our efforts to develop a platform (VIRTUAL 

CHEMIST) that integrates all the tools, accessories, and automation required to be moved to organic 

chemistry labs for designing experiments rather than rationalizing data.  

5.3. Challenges and Methodologies. 

 To deliver this technology to the hands of organic chemists, the accessibility aspect must 

be addressed without sacrificing accuracy. Regarding accessibility: this technology should not 

require large computational resources, should ideally be useable on a standard desktop computer 

(Windows, Linux, MacOS), and should be substantially faster than the experiments being 

simulated. We believe that this software should bring knowledge complementary to that of 
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chemists, taking advantage of complex calculations (machine) and years of expertise (human). For 

example, chemists should be able to interact with this technology instructing the software for 

specially desired properties (e.g. protecting groups, water solubility, and commercial availability 

of chemicals). Regarding accuracy: a difference of only 1 kcal/mol between diastereomeric 

transition states can distinguish highly from weakly stereoselective catalysts. To put this margin 

of error in context, in the drug discovery process, one often investigates molecules hitting a target 

with reasonable binding affinity. In this case, an accuracy of a few kcal/mol can differentiate 

between strong, weak, and non-binders (e.g., 4 kcal/mol would differentiate between a nanomolar 

and a micromolar enzyme inhibitor). As such, accuracy is a major challenge in asymmetric catalyst 

screening. The ultimate objective of this endeavour is to deliver software simulating an entire 

organic chemistry project from A to Z. Consider a general guide toward the development of a 

novel Diels-Alder organocatalyst to illustrate such a project (Figure 5.1). 

 In this scenario, we would need software to virtually (1) prepare libraries of potential 

catalysts and to understand chemistry concepts such as chirality, functional group compatibility 

(chemoselectivity) and similarity, (2) evaluate the catalytic activity of the potential catalysts, and 

(3) evaluate the enantioselectivity induced by these catalysts. 
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Figure 5.1. Top: Organocatalyzed Diels-Alder reaction. Bottom: Workflows undertaken by wet-

lab chemists vs. those undertaken by computational chemists. 

 Ideally, a common platform would seamlessly execute all three actions without user 

intervention. Chemists should also be able to instruct the software through sketches using a 

program they are familiar with (e.g., ChemDraw). To run the gamut of simulations mentioned 

above, several transformations and computations must be automated and concealed from the user; 

herein lays an often forgotten, yet major challenge of this platform. We built on and expanded our 

drug discovery platform FORECASTER GUI to create a new platform, VIRTUAL CHEMIST. This new 

UI contains a 2D sketcher for drawing input catalysts and substrates and an easy-to-use 3D 

graphical interface for visualizing the calculated output TS structures (Figure 5.2). Additionally, 

resulting data is summarized in the UI (e.g., TS structures' potential energies, predicted 

enantioselectivities). Finally, we made strides toward universal application by enabling the 

creation of modular workflows. 
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5.3.1. Preparation of Libraries of Catalysts.  

 Previously reported programs SELECT (searches for analogues or dissimilar compounds, 

optimizes library diversity) and REDUCE (filters chemical library for presence of functional groups 

such as secondary amines for organocatalyzed Diels-Alder cycloaddition)81 are accessible in 

modular workflows. A library of synthetic analogues can also be generated using previously 

developed and reported searching and combinatorial tools, FINDERS and REACT2D.306 In contrast 

to other virtual combinatorial library tools,307 these programs consider stereochemistry change 

during a reaction (e.g., in a Mitsunobu reaction), ensuring that the asymmetric catalysts virtually 

screened are truly synthetically accessible. 

5.3.2. Predicting Enantioselectivities. 

 Generally, for each catalyst candidate, the software must compile a TS, parameterize that 

system, and then compute energies. First, where does a TS come from? As an example, consider 

the diethyl zinc addition to aldehydes previously investigated with Q2MM.308 TSs were provided 

as supporting information using a common ‘xyz’ Cartesian coordinate format. These structures 

(text files) could be used as a starting point for screening asymmetric catalysts without any GUI 

or QM training. As shown in Figure 5.2, provided Cartesian coordinates yield TS templates that 

are subsequently used to assemble realistic TS structures for a series of catalysts and substrates. 
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Figure 5.2. Screening catalysts for diethylzinc addition to aldehydes. A) From reported Cartesian 

coordinates and drawn catalysts and substrates to accurate TSs. B) Workflow corresponding to the 

tasks shown in A. 

5.3.2.1. Preparing the TSs for Enantioselectivity Computations. 

 All the steps described above were successfully integrated into a single program 

(CONSTRUCTS - Converting and Orienting Native Structures on Templates of Rotatable and 

Unoptimized Chemical Transition States). Briefly, CONSTRUCTS uses simple text files (TS of 

simple models) and 2D sketches of substrates and catalysts (Figure 5.2A) to build reasonable 3D 

TS structures. The sketches of catalysts and substrates are converted into 3D structures using the 

program CONVERT
81 integrated into CONSTRUCTS and geometrically optimized using MM routines 

developed for this purpose. CONSTRUCTS then assembles the obtained 3D structures of catalysts 

and substrates into a TS structure by superimposing corresponding atoms onto a previously-stored 

template. This template is based on reported TS structures which are generalized and stored within 

the program for any given asymmetric reaction. Once the 3D structures are built, they are 

processed by SMART,81
 also integrated into CONSTRUCTS, which assigns atomic charges and atom 
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types, identifies rings and flexible bonds. The entire process of generating 3D TS structures for a 

given reaction is exemplified in Figure 5.3 using the proline-catalyzed aldol reaction. 

 

Figure 5.3. (a) Proline-catalyzed aldol reaction. (b) Sketches used as input. (c) Automatically 

generated 3D TS structure after SMART (4 different TSs are possible in this reaction but only one 

shown here as example). (d) The scheme of the TS is given in 2D for clarity. 

5.3.2.2 ACE. 

 As described in section 1.4.3, ACE is the software which predicts stereoselectivity of 

reactions using the Hammond-Leffler and Curtin-Hammett principles. The underlying theory of 

ACE has been described in detail in section 1.4.3. In this section we will focus on the applications 

and limitations of the software. Being an MM-based method, ACE inherits all the limitations 

associated with MM, and more specifically with FFs. For example, the MM3 FF has no parameters 

for metals, and as such transition-metal catalyzed reactions (i.e. the Sharpless asymmetric 

dihydroxylation of alkenes – Scheme 1.7) cannot be modeled. This limitation is significant given 

the popularity of transition-metal catalysis and the importance of searching for cheaper transition 

metal catalysts or repurposing of existing ones. Another limitation refers to the necessity of 

knowing the mechanism of the reaction beforehand, in order to build proper TSs that can later be 

optimized. If the mechanism of the reaction is unknown ACE cannot be used in a predictive way.  

c) d) 
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 To expand the usability of ACE, we decided to add the option to use Q2MM-derived TSFFs 

(described in Chapter 1). This decision has two-fold consequences: it improves the usability of 

Q2MM, which requires external MM packages and routines to perform conformational searches 

(now taken care of ACE) and it gives ACE the opportunity to use FFs developed for Q2MM for 

important reactions such as diethylzinc addition to aldehydes,308 Sharpless asymmetric 

dihydroxylation of alkenes,309 and rhodium-catalyzed hydrogenation of activated alkenes.310  

5.3.2.3. QUEMIST. 

 One way of parametrizing metals in a FF is using on-the-fly QM calculations on model 

systems that can describe a reaction of interest. However, these calculations require computational 

chemistry expertise and the usage of external QM packages to obtain the parameters. To offset 

these drawbacks, we implemented our own QM package – QUEMIST (QUantum Energy of 

Molecules Inducing Structural Transformations) – in the VIRTUAL CHEMIST and FORECASTER 

platforms. QUEMIST is a cross-platform software written in C++ capable of performing HF, MP2 

and DFT single point energy calculations as well as computation of HF gradients (analytically), 

geometry optimizations, and Hessian matrix calculations (numerically) necessary for generating 

parameters for ACE.  

 QUEMIST is capable of using a variety of basis sets (Cartesian for the Windows version and 

Cartesian and spherical for the Linux/MacOS versions) obtained from the Basis Set Exchange.311 

The linear algebra routines necessary to perform the highly demanding computations use the 

efficient Eigen3 library.312 The Linux/MacOS versions of the program use the highly efficient 

LIBINT integral engine313 as well as the LIBXC library for exchange-correlation functionals (in the 

case of DFT).314 The pseudocode for the single point energy and geometry optimization/Hessian 

calculations routines available in QUEMIST is given in Appendix D. 
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 To generate FF parameters for ACE we implemented the Seminario algorithm, which is 

used to compute parameters following a Hessian matrix calculation.315 The Hessian matrix is a 3N 

x 3N matrix (where N is the number of atoms in the molecule) that contains the information about 

the change in energy with respect to changes in atomic coordinates (x,y,z). In short, this algorithm 

allows the computation of bond and bond-angle force constants from the eigendecomposition of 

the Hessian matrix in terms of atomic pair-wise interactions. For example, if one requires to 

compute the force constant of the C-C bond in ethanol (Figure 5.4a, blue bond), the Hessian 

submatrix corresponding to the interactions between the two carbons must be first extracted from 

the complete Hessian matrix (Figure 5.4b). 

 

Figure 5.4. (a) Structure of ethanol. C1-C2 bond subjected to force constant computation is shown 

in blue. C1-C2-O2 angle subjected to force constant computation is shown in green. (b) Hessian 

submatrix extracted from the complete Hessian matrix depicting the interactions between the two 

carbon atoms in the x,y and z coordinates. 

 This submatrix is known as the interatomic force constant matrix and its analysis allows 

the determination of the nature of the interaction between atoms (in this case, the two carbon 

atoms). The three eigenvalues and eigenvectors associated with this submatrix can then be used to 

compute the force constant of the bonded interaction through the relationship described in Eq. 5.1. 
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kC1C2 =  ∑λ𝑖
C1C2

3

i=1

 | u⃗ C1C2 ⋅  v⃗ C1C2 
i |                       Eq. (5.1) 

Equation 5.1. Description of the formula used to compute the bond force constant according to 

the Seminario algorithm. 

 A positive λi value corresponds to a reaction force on carbon C1 due to the displacement 

of carbon C2 that is in the same direction as the eigenvector v⃗  
i. If the bond between carbons C1 

and C2 is not in the direction of any of the eigenvectors v⃗  
i, the force constant kC1C2 can have 

contributions from multiple eigenvalues. These contributions are proportional to the projection of 

the eigenvector v⃗  
i onto the unit vector u⃗ C1C2. If all three λi eigenvalues are positive, it follows that 

for any displacement occurring on carbon C2, there will always be a restoring force on carbon C1 

that seeks to maintain the equilibrium bond length. According to the original Seminario algorithm, 

this necessarily means that atoms C1 and C2 are pairwise stable, equivalent to describing the atoms 

as being bonded.315 Importantly, Eq. 5.1 allows the computation of force constants for atoms 

involved in bonds that are not covalent in nature (i.e. strongly polarized dative bonds found in 

transition-metal catalysis).  

 The Seminario algorithm also allows for the computation of bond angle force constants. 

For example, one might want to compute the force constant for the C1-C2-O angle in ethanol 

(Figure 5.4, green). The first step is identical to the one used in computing the force constants for 

bonds i.e. extracting the Hessian submatrices for the C1-C2 and O-C2 bonds and computing the 

eigenvectors v⃗ C1C2 
i and v⃗ OC2 

i and eigenvalues λ𝑖
C1C2 and λ𝑖

OC2. Once this is done, unit vectors u⃗ PO 

and u⃗ PC1 perpendicular to the C1-C2 and O-C2 bonds are built. These unit vectors represent the 

displacements of atoms C1 and O when the angle opens or closes. The unit vectors, eigenvectors, 
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and eigenvalues, along with the bond lengths RC1C2 and ROC2, can then be used to assemble Eq. 

5.2, which gives the bond angle force constant. 

1

kθ
= 

1

RC1C2
2 ∑ λi

C1C2
3
i=1  | u⃗ PC1 ⋅  v⃗ C1C2 

i |
+  

1

ROC2
2 ∑ λi

OC2
3
i=1  | u⃗ PO ⋅  v⃗ OC2 

i |
              Eq. (5.2) 

Equation 5.2. Description of the formula used to compute the bond angle force constant according 

to the Seminario algorithm. 

 Recently,  Allen et al.316 proposed a modified Seminario method for computing bond angle 

force constants to account for the geometry of the molecule and the number of angles the central 

atom in an angle is part of. For example, the bond force constant computation of angle C1-C2-O 

now changes to account for the presence of atom C2 in the angles C1-C2-H1 and C1-C2-H2. This 

is shown in Eq.5.3.  

1

kθ
= 

1 + 
∑ | u⃗ PC1 ⋅  u⃗ PC1 

i |
2𝑁

𝑖=1 − 1
𝑁 − 1

RC1C2
2 ∑ λi

C1C2
3
i=1  | u⃗ PC1 ⋅  v⃗ C1C2 

i |
+  

1 +
 ∑ | u⃗ PO ⋅  u⃗ PO 

i |
2𝑀

𝑖=1 − 1
𝑀 − 1

ROC2
2 ∑ λi

OC2
3
i=1  | u⃗ PO ⋅  v⃗ OC2 

i |
              Eq. (5.3) 

Equation 5.3. Description of the updated formula by Allen et al.316 used to compute the bond 

angle force constant. 

The N and M variables in Eq. 5.3 are the total number of angles in which C2 is the central angle 

and that involves the movement of the C1-C2 (N) and O-C2 (M) bonds. The updated formula for 

computing the bond angle force constants was shown to reduce the error in the force constants by 

6% on a set of 70 representative molecules.316 We have thus decided to use the implementation of 

Eq.5.3 in our program. One drawback of the original Seminario algorithm is related to the 

computation of dihedral angle force constants. Because of the nature of the definition of the 

torsional angle term in the MM3 FF (see Eq.1.6), force constants for dihedral angles cannot be 
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determined because of the lack of V1, V2 and V3 terms in the original algorithm. As such, all 

dihedrals force constants are set to 0. 

 Of course, the theory and equations described above are somewhat tedious and may not be 

of interest to an organic chemist. Thus, we automated the generation of these parameters and 

concealed the underlying theory and equations to allow the development of parameters in a user-

friendly manner. At the end of any Hessian calculation, QUEMIST will analyze the Hessian matrix 

for imaginary frequencies to ensure the optimized structure is a minimum on the PES and will 

write out a customized FF file containing the atoms, atomic charges, hybridization and atomic 

coordinates, along with the bond and bond angle force constants in the units used in the MM3 FF. 

If a negative or imaginary force constant is found, a warning message will be output in the FF file 

for the respective bond/bond angle. This file will then be automatically loaded into ACE during the 

enantioselectivity computations, thus making user intervention obsolete. An example of the 

customized FF parameters obtained for ethanol at the HF/6-31G* level of theory is given in Figure 

5.5.  
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Figure 5.5. Customized FF parameters obtained for ethanol at the HF/6-31G* level of theory. 

 In the case of a new reaction being implemented in ACE, FF parameters have to be derived 

for both reactants and products (i.e. geometry optimizations followed by Hessian matrix 

calculations have to be undertaken separately for both reactants and products, generating different 

customized FF parameters). However, it is essential to note that once the FF parameters have been 

determined for a model system of a reaction of interest, they are stored and re-used every time. As 
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such, every reaction of interest need be parametrized only once. For example, a workflow for 

implementing the Sharpless asymmetric dihydroxylation of alkenes is presented in Figure 5.6. 

 

Figure 5.6. Workflow for implementing the Sharpless asymmetric dihydroxylation of alkenes in 

ACE. R1=R2=Me; L=NMe3. 

Importantly, the protocol shown in Figure 5.6 can be applied to any reaction of interest as long as 

the mechanism is known. Moreover, all the steps for obtaining the FF parameters are clearly 

outlined in the GUI and require little to no user input since the default parameters for the geometry 

optimizations and Hessian matrix calculations have been optimized over multiple reactions and 

substrates.  

5.3.3. Evaluating Catalytic Activity. 

 While ACE can accurately compute the stereoselectivities of potential catalysts, it is unable 

to determine whether a catalyst is reactive or not (i.e. if it would catalyze a reaction or not). To 
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offset this limitation, we implemented several global and local reactivity parameters in QUEMIST 

(Figure 5.7) in the context of HF and cDFT frameworks.270,272,273,317,318  

 

 

Figure 5.7. Top: Global reactivity parameters for ethanol at the HF/pc-1 level of theory. Bottom: 

Local reactivity parameters (Fukui functions) for the oxygen atom in ethanol at the HF/pc-1 level 

of theory.  

 We embedded QUEMIST into SMART to allow the computation of these parameters along 

with multiple other descriptors such as molecular properties and presence of functional groups. 

These descriptors are essential when screening a library of catalysts to ensure that only desirable 

catalysts are selected for CONSTRUCTS and ACE. For example, depending on the reaction of 

interest, one could filter possible catalysts by a global parameter such as electrophilicity (in the 
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case of Shi epoxidation) or by a local parameter such as the nucleophilic Fukui function on an sp3 

nitrogen atom (as is the case of the organocatalyzed Diels-Alder reaction). 

5.4. Validation of the Platform. 

 To assess the applicability of the tools presented above, we envisioned four different 

realistic scenarios:  

1. A chemist may draw catalysts one by one and test the potential stereoinduction.  

2. A chemist may screen a large database of chiral molecules to identify novel chemical 

series.  

3. A chemist may search for analogues as part of a lead optimization of a hit molecule (with 

analogy to drug discovery).  

4. A chemist may assess the substrate scope of a specific catalyst.  

5.4.1. Scenario #1 – One by One Design. 

 A chemist may want to test one catalyst at a time and virtually identify the most promising. 

In this scenario, each catalyst may be drawn using the provided sketcher; TS templates are either 

available directly or may be built from literature data, as described in the sections above. We tested 

this scenario on over 350 reactions from 7 reaction classes (Figure 5.8, complete set given in 

Appendix D) and compared the results from random predictions to assess the accuracy of the 

methodology (Figure 5.9). 
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Figure 5.8. ACE-optimized TS structures for selected reactions. General reaction schemes are 

drawn, followed by 3D and 2D representations of transition state models. 
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 To evaluate accuracy, we first visualized the TS structures (Figure 5.8). As previously 

observed,123,304 ACE-generated TS structures resemble those previously proposed (see Appendix 

D for references). We then investigated whether the stereoselectivity predictions were accurate. 

The error of the prediction of 𝛥𝛥𝐺⧧ between the major diastereomeric TS’s was computed and 

compared to a random assignment (Figure 5.9). We note that none of the FFs used by ACE in these 

tests have been trained specifically on these reactions. Since Q2MM TSFFs have been derived to 

complement MM3* and ACE is using MM3, the accuracy presented herein may underestimate the 

accuracy of the TSFFs. 

 

Figure 5.9. Left: Mean unsigned error for 𝛥𝛥𝐺⧧ (kcal/mol) between the predicted and 

experimentally measured reactions for each catalyst/auxiliary-substrate pair; 1 to 7 refer to seven 

reaction types using ACE; 8-10 refers to three reactions using ACE and reported Q2MM-derived 

TSFFs. The black dots refer to the error should we select a random value from -4.12 to 4.12 

kcal/mol (i.e., maximum stereoselectivity of 1000:1). In red is shown the average of the unsigned 

error over the set of catalysts/auxiliaries used for each reaction type. Right: Predicted vs. observed 
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𝛥𝛥𝐺⧧ for a set of 51 asymmetric catalyst/substrate pairs (epoxidation reaction). Positive 𝛥𝛥𝐺⧧ 

represents one enantiomer, while negative 𝛥𝛥𝐺⧧ represents the other enantiomer. 

 As can be seen in Figure 5.9, the overall average error ranges between 0.94-0.97 kcal/mol 

(over five runs). This ~1.0 kcal/mol value, often referred to as chemical accuracy, is the gold 

standard in quantum chemistry and catalysis.319 With this accuracy, the platform can distinguish 

poor asymmetric catalysts (0% ee, 𝛥𝛥𝐺⧧ ~0 kcal/mol) from good asymmetric catalysts (90% ee, 

𝛥𝛥𝐺⧧ ~1.4 kcal/mol) and good from excellent asymmetric catalysts (99% ee, 𝛥𝛥𝐺⧧ ~2.8 

kcal/mol). It is noteworthy that some of the catalysts used in this set have been reported producing 

various enantioselectivities depending on conditions (e.g., acid co-catalyst, solvent and 

temperature, see for example 320). Although, ACE considers solvent (implicit model) and 

temperature (Boltzmann population), manipulating the two parameters did not improve accuracy. 

The nature of the acid co-catalyst in the Diels–Alder reaction was not considered.  

 ACE produces a similar average mean unsigned error (within 0.2 kcal/mol) whether using 

the original MM3 implementation or the Q2MM-generated TSFF. A closer look at the Shi 

epoxidation reaction (Figure 5.9 right), revealed that most weakly stereoselective catalysts (e.g., 

𝛥𝛥𝐺⧧ <1.0 kcal/mol) were predicted to be weak, while most strongly stereoselective (e.g., 𝛥𝛥𝐺⧧ 

> 2.0 kcal/mol) were predicted to induce strong stereoselectivity. We then investigated the false-

positives and false-negatives that, in large part, result from poor parameters in the MM3 force field 

rather than intrinsic problems in the methodologies. For example, sugar derivatives such as 6, 

conjugated systems (aniline nitrogen and axial chirality) such as 3, sulfonamides (5), silylethers 

(4), polycyclic compounds (8, 9) and complex phosphine ligands (10) are not well parameterized 

in MM3 (Figure 5.10). In particular, phenyl sulfonamides have a very specific torsional energy 
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profile (although MM3 parameters for alkyl sulfonamides have been reported 321), while 

phosphines can adopt different cone angles.322  

 

Figure 5.10. Example of substrates and catalysts which resulted in 𝛥𝛥𝐺⧧ errors of 2 kcal/mol or 

more. 

Overall, the data demonstrated that this platform can be used to retrospectively evaluate 

asymmetric catalysts through interaction with the chemists and prompted us to start a larger virtual 

screening study. 

5.4.2. Scenario #2 – Novel Chemical Series. 

 A chemist may be looking for a new chemical series as catalysts for a known reaction. To 

exemplify this scenario, we chose the Shi epoxidation and organocatalyzed Diels-Alder reaction. 

The two well-characterized reactions are chosen here due to the existence of few known, highly 
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selective catalysts. As a result, we expect to generate decoys from library filtering and attempt to 

recover the known molecules embedded in this list. 

 A library of ca. 140,000 chiral amines was assembled from the ZINC database323 for the 

Diels-Alder reaction and the workflow shown in Figure 6A was assembled. Molecular descriptors 

were computed for these molecules and used to extract only those of interest (MW<500, uncharged 

compounds, only secondary amines, aldehydes, and other reactive functional groups removed). 

Then any molecules too similar to known catalysts (e.g., proline methyl ester in organocatalyzed 

reactions) were removed since the objective was to discover “new chemical series”. At this stage, 

nearly 10,000 potential catalysts were selected. SELECT was used to remove analogues and pick 

the most diverse molecules (for optimal computing time). To ensure that no duplicates were left, 

our program DIVERSE was applied. 1,307 candidate catalysts remained for screening. 

 The evaluation of the 1,307 chiral secondary amines was carried out in two steps. A second 

workflow (Figure 5.11B) filters molecules for their reactivity. It is well established that some 

amines are more reactive (basic and/or nucleophilic) than others.324 In this workflow, various 

reactivity parameters were computed using QUEMIST. Subsequently, REDUCE filtered molecules 

predicted to be less reactive than proline methyl ester (a known catalyst for the Diels-Alder 

reaction) based on the nucleophilicity indices computed with QUEMIST. CONSTRUCTS processed 

the remaining 798 molecules to assemble the TS structures that are finally used by ACE to compute 

stereoselectivity. These calculations were completed in 10 days using a single core. Six known 

catalysts were added to the library to assess the accuracy of ACE to recover them (Figure 5.11C). 
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Figure 5.11. A) Workflow for selecting most diverse molecules for screening with description of 

the actions on the right. B) Workflow for screening molecules with description of the actions on 

the right. C) Ranking of predicted catalyst enantioselectivity by ACE in the Shi epoxidation and 

Diels-Alder reactions. The red lines in the bar indicates the ranks of known stereoselective 

catalysts. The graph indicates the portion of known catalysts vs. the portion of molecules from the 

ZINC database. 
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 The same overall process was applied to the search for Shi epoxidation catalysts starting 

from chiral ketones (very few in available chiral chemical databases) complemented with chiral 

secondary alcohols converted into chiral ketones using our program REACT2D. 18 known 

stereoselective catalysts were added to the library (Figure 5.11C). Most of the known 

stereoselective catalysts are ranked high, shown in Figure 5.11C (Area Under Receiver Operating 

Curve (AUROC): 0.79 for Shi Epoxidation and 0.92 for Diels-Alder).  

 The evaluation of the program in this second scenario suggests that our platform can 

virtually screen numerous chemicals and discover novel chemical series of asymmetric catalysts. 

In addition, the options to use these programs in workflows enable chemists to guide the platform 

towards novel chemical series with specific features and to reduce chemical compatibility issues.  

5.4.3. Scenario #3 – Virtual Analogue Search. 

 A chemist may have a hit molecule (e.g., from Scenario #2) and will look for analogues 

with improved selectivity. We used a detailed study by Gerosa et al.325 to simulate this scenario. 

In this report, chiral pyrrolidine derivatives were synthesized and tested as organocatalysts for the 

Diels-Alder cycloaddition after the core scaffold was identified as a promising candidate. As 

shown in Figure 5.12, this research project can be simulated within a single workflow. Imines are 

synthesized and subsequently reacted with a chiral dipolarophile to make three potential 

diastereomers. These pyrrolidines are then assessed in both endo-Diels Alder and exo-Diels Alder 

cycloadditions. In practice, each reaction step requires extensive experimental work to isolate and 

characterize the stereoisomers. 
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Figure 5.12. Optimization of asymmetric organocatalysts for Diels-Alder cycloaddition. Top: 

Workflow. Bottom: Predicted and experimentally observed enantioselectivity obtained with chiral 

pyrrolidine derivatives. Orange: endo adduct, blue: exo adduct. Insert: mean unsigned error (blue: 

each substrate, red: average, black: random). Positive 𝛥𝛥𝐺⧧ represents one enantiomer, while 

negative 𝛥𝛥𝐺⧧ represents the other enantiomer. 
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 As seen in Figure 5.12, this virtual lead optimization had a mean unsigned error as low as 

0.33 kcal/mol. The most stereoselective catalysts predicted by ACE were the best (endo) and 

second best (exo) experimentally. This study was completed in just a few days on a standard 

Windows PC and could be extended to hundreds of analogues.  

5.4.4. Scenario #4 – Catalyst Substrate Scope. 

 A chemist may evaluate the potential substrate scope of a given catalyst. This last set of 

calculations was done using (DHQD)2PHAL, a now commercially available catalyst for the 

Sharpless asymmetric dihydroxylation of alkenes. This catalyst has been virtually (and previously 

experimentally) applied to 25 substrates and compared to experimental data (Figure 5.13). 

 

Figure 5.13. Substrate scope study with (DHQD)2PHAL.  Insert: mean unsigned error (blue: each 

substrate, red: average, black: random). Positive 𝛥𝛥𝐺⧧ represents (R) and (R,R) isomers, while 

negative 𝛥𝛥𝐺⧧ represents the other isomers. 
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 Overall, this last simulation suggests that the catalyst would be highly enantioselective 

(≥97%ee) on ca. 25% of the substrates and on ca. 20% it would be poorly selective (≤40%ee), in 

excellent agreement with the experiments. However, we observed a poorer reproducibility for 

dihydroxylation (large standard deviation over multiple runs) than with the other reactions (Figure 

5.10, Table 5.1). This can be explained by the significantly larger size and flexibility of the 

catalysts used in dihydroxylation (Figure 5.10) and suggests a limitation of the approach. More 

time and computational resources may be required to adequately search the conformational space 

of such systems. Three substrates are consistently poorly predicted (over 5 runs). One of these 

failures can be attributed to the poor parameterization of sulfur-containing groups (tosylate in this 

case). The other two are a cis olefin (the FF parameters were developed using a trans olefin) and 

a naphthalene derivative which contributes significant π-π interactions with the catalyst. 

Interestingly, the predicted average enantioselectivity varies from 67 to 76%ee over 5 runs while 

it is 73.6%ee experimentally with an overall good correlation with experiments. 

5.5. Reproducibility. 

 Because ACE relies on a stochastic method (genetic algorithm with random generation of 

conformations to start from), we ran the same experiments 5 times with different seed numbers 

(affecting the random number generator) to evaluate the reproducibility of the method for scenarios 

#1, #3 and #4 (Table 5.1). As can be seen in Table 5.1, the accuracy on all the reaction sets is highly 

reproducible. However, when looking at individual results, dihydroxylation seems to be less 

reproducible likely due to the significantly large size and flexibility of the systems. 
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Table 5.1. Reproducibility of ACE on scenarios #1, #3 and #4. 

Entry Reaction MUE 𝜟𝜟𝑮⧧ (std dev.) 

  Whole seta Average individual a 

1 Diels-Alder with chiral aux. 0.93 (0.00) 0.93 (0.01) 

2 Aldol reaction 0.94 (0.02) 0.94 (0.07) 

3 Organocatalyzed Diels Alder 0.99 (0.03) 0.99 (0.10) 

4 Epoxidation 0.44 (0.02) 0.44 (0.05) 

5 Dihydroxylation 1.14 (0.03) 1.14 (1.30) 

6 Dihydroxylation (TSFF) 1.39 (0.15) 1.39 (1.25) 

7 Et2Zn addition 0.83 (0.01) 0.83 (0.09) 

8 Et2Zn addition (TSFF) 1.07 (0.05) 1.07 (0.23) 

9 Hydrogenation 1.42 (0.04) 1.42 (0.21) 

10 Hydrogenation (TSFF) 1.44 (0.05) 1.44 (0.25) 

11 Lead optimization study 0.32 (0.01) 0.32 (0.02) 

12 Substrate scope study 0.96 (0.08) 0.96 (0.62) 

a Whole set: MUE is average over the whole set of catalyst/substrate systems for each seed and 

average and standard deviation for these 5 overall accuracy values are measured. Average 

individual: the standard deviation is computed for each catalyst/substrate systems and averaged 

over the set. 

5.6. Conclusions. 

 Our efforts to interface computational and organic chemistry have led to the creation of the 

VIRTUAL CHEMIST platform, which aims to shift the paradigm of pursuing asymmetric synthesis 

projects. This platform is user-friendly (designed for organic chemists) and highly customizable 

through the introduction of modular workflows. The power of these modular workflows and of the 
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individual programs making up the VIRTUAL CHEMIST software suite (free for academic use) has 

been demonstrated through the in-depth analysis of four realistic scenarios which could comprise 

various asymmetric synthesis projects. We believe that every computational approach carries its 

own caveats.  

 Here, we acknowledge that the methodology presented requires a mechanism-based 

transition state to study—much like docking potential drug molecules requires a target structure. 

Additionally, the MM-based computations suffer from current FF limitations, although efforts are 

ongoing to overcome this obstacle. Last, large catalytic systems provide a challenge for 

conformational searching in transition state optimization and can lead to simulations trapped in 

local energy minima. Notwithstanding these obstacles, we demonstrated the reliability and 

accuracy of our platform, which can distinguish weak from good, and good from great asymmetric 

catalysts with chemical accuracy in most cases. With this platform, chemists could now test ideas 

in a matter of hours, a fraction of the time needed to synthesize and test novel catalysts. We believe 

that our computational approach will lead to a more efficient catalyst discovery, as our simulated 

experiments allow a broader exploration of the chemical space than experiments allow, in a shorter 

amount of time. Moving forward, we hope that computational chemistry will have the same impact 

on organic chemistry as NMR, MS and chromatography had at the time of their incorporation into 

the chemists’ toolbox or as structure-based design software had in medicinal chemistry.
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Chapter 6 – Conclusions and Future Work 

 Looking back over the last 60 years of computational chemistry development, it is evident 

that the current state of the field has surpassed the expectations of its pioneers. With the advent of 

increased computational power for even a simple user, along with the development of highly 

efficient and user-friendly computational tools, the usage of these tools within the experimental 

community has become widespread. This, in turn, allows experimentalists to provide essential 

feedback to the computational chemistry community, which drives the computational development 

efforts forward. There is a plethora of applications of computational tools in experimental 

chemistry, but, in this thesis, we have focused on nucleoside modeling, cytochrome P450 

inhibition prediction and the development of a virtual asymmetric catalysis platform. 

 To begin with, in Chapter 1 we gave a brief overview of computational tools and their 

applications in organic and medicinal chemistry. These tools range from fast and less accurate 

methods such as molecular mechanics (MM) to accurate, time-consuming, and computationally 

expensive quantum mechanics (QM) methods. One can also combine these two methodologies to 

run QM/MM simulations or can move away from these methods to focus on machine learning 

(ML) methods. We showed that MM is widely used in fields ranging from protein dynamics and 

folding to docking and catalyst design while QM methods are useful in explaining reaction 

mechanisms, describing chemical reactivity and predicting drug sites of metabolism (SoMs), as 

well as designing catalysts. To describes events such as bond breaking/forming in enzyme 

catalysis, MM and QM methods must be combined to yield accurate, cost, and time-effective 

calculations (QM/MM calculations). Due to their cumbersome setup which requires expertise in 

computational chemistry, QM/MM simulations are generally less accessible to medicinal 

chemists, but efforts are continuously made to make these simulations more user-friendly. The last 
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class of computational methods we discussed was ML, which has become widespread in 

computational chemistry, and has led to some very interesting applications, particularly in 

medicinal chemistry. For example, several ML tools have been proposed for predicting the SoMs 

of drug-like molecules. These tools are fast and easy to use when setup in user-friendly 

environments (i.e. standalone programs or webservers) but are highly dependent on the quality of 

the data they have been trained on.  

 Following the introduction to computational tools in Chapter 1, in Chapter 2 we focused 

our attention on nucleoside modeling. Generally, nucleosides preferentially adopt two different 

conformations that are in equilibrium in solution: North and South, determined through the 

computation of the pseudorotational phase angle P. The distinction between these conformations 

is important, since nucleosides with a sugar pucker in the South conformation are preferentially 

phosphorylated by kinases, while North type nucleosides are preferentially incorporated by 

polymerases. To establish the North/South equilibrium, each nucleoside must be synthesized and 

subjected to NMR experiments. This methodology involves significant synthetic cost, waste 

production, energy expenditure, and time. To expedite the process and reduce the cost associated 

with synthesizing nucleosides, we developed a medium-throughput computational protocol based 

on hybrid QM/MM umbrella sampling simulations that allows the accurate determination of 

North/South equilibrium in silico. This approach allows the design and North/South ratio 

determination of hundreds of nucleoside analogues with the only cost being CPU time. In our 

study, we observed that our approach yields accurate North/South ratios for a range of non-natural 

nucleosides and low-energy structures that are comparable to crystal structures in the case of a set 

of carbohydrates. However, this methodology is not without fault. For example, we discovered 

that sulfur-containing nucleosides are not properly described by our simulations due to the lack of 
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specific parameters for sulfur-containing rings in SCC-DFTB, the semiempirical model used for 

the QM part of the simulations. Future work would thus involve the development of more accurate 

parameters for heavy atoms such as sulfur. Moreover, it would be interesting to benchmark the 

duration of the simulations at which a North/South equilibrium convergence arises. For now, our 

simulations run for 73 ns, but this time could be shortened depending on the results of the 

benchmark (in real time 1 ns of simulation takes on average 12-14 hours on 12 CPUs; however, 

having supercomputers at our disposal allows us to run the simulations in parallel, which means 

that all 73 ns of simulation can be run at the same time). In addition, the current methodology is 

fairly involved and requires some computational expertise in setting up the simulations. Thus, it 

would be essential to explore the implementation of a user-friendly way to setup the simulations 

and analyze the results, which could make it highly attractive to organic and medicinal chemists.  

 Taking advantage of the methodology developed in Chapter 2, we decided to apply this 

tool to non-natural nucleosides that exhibited valuable properties as described in Chapter 3. In this 

chapter, we focused on two different situations. First, we determined the conformational 

preferences of nucleosides containing various electronegative substituents at key positions on the 

sugar ring. These substituents are excellent hyperconjugation acceptors and are known to modulate 

the sugar conformations. Using our methodology, we demonstrated that we could obtain both 

accurate North/South ratios for these nucleosides and computed low-energy structures that are 

close to crystallographic ones, with heavy atom RMSDs < 1Å. Second, we explored the nature of 

nucleosidic fluorine-hydrogen bonds, and we provided evidence (confirmed by experimental data) 

of their existence.  

Further work. From this work, we gained invaluable insight into how non-natural nucleosides 

with different electronegative substituents behave in solution, which opens the possibility of 
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designing novel nucleosides that make use of subtle interactions. Further work in this area is 

underway. We have recently started a collaboration with Prof. Jack Szostak’s laboratory at Harvard 

University in which we are using our methodology to establish the origin of RNA life. The RNA 

world hypothesis proposes an early stage in the evolution of life in which RNA was responsible 

for both catalysis and genetic inheritance. Before the evolution of protein enzymes, a replicase 

made of RNA (ribozyme) may have catalyzed RNA synthesis. A more challenging problem is how 

these ribozymes could have emerged from a non-enzymatic process of chemical RNA replication. 

Currently, the chemical copying of RNA is not able to produce RNA products of the length and 

complexity necessary to sustain ribozyme evolution. An essential component in this process is a 

primer, which is added by an enzyme to the RNA template to be copied. Thus, we aim to study the 

effect of the sugar conformation of the terminal residue of the primer on the rate of chemical RNA 

copying. Moreover, we are further working on establishing a protocol for describing RNA-RNA 

and DNA-RNA duplexes involving oligonucleotides comprised of non-natural nucleosides, which 

would give us important information into how oligonucleotides would behave in macromolecular 

complexes.  

 Another area of interest for organic and medicinal chemists is the xenobiotic metabolism 

by Cytochrome P450 enzymes, which was discussed in Chapter 4. As part of phase 1 metabolism, 

six CYP isoforms metabolize up to 90% of drugs currently on the market. Depending on the nature 

of the drug, CYPs can metabolize it either to harmless or toxic metabolites. Moreover, if a patient 

is concurrently taking multiple drugs metabolized by the same CYP isoform, the metabolism of 

these drugs is altered, giving rise to drug-drug interactions. These drug-drug interactions can also 

arise if one of the drugs metabolized by a CYP isoform is an inhibitor of that isoform. Most 

commonly, inhibition by these drugs is reversible and takes place if a drug contains a basic nitrogen 
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atom with an available lone pair that can coordinate to the heme iron (so-called Type II ligands). 

Currently, CYP inhibition and toxicity is assessed using expensive experimental assays. To offset 

this, we proposed a novel predictor comprised of QM, docking, and ML to enable the detection of 

potential CYP inhibitors in silico, without the need to synthesize compounds of interest. Using 

QM on a set of representative Type II ligands, we obtained QM energy profiles which we used to 

develop a novel LJ(8-4) vdW potential in FITTED that could describe nitrogen-iron coordination. 

Our self-docking study performed on 85 CYP crystal structures assembled from the PDB showed 

that the novel potential can describe the nitrogen-iron coordination. Then, we developed an ANN 

that could distinguish between inhibitors and non-inhibitors, and we determined its accuracy on a 

set of five major CYPs using curated sets of compounds obtained from experimental bioassays. 

While our ANN proved to be accurate for the training set, we observed that overtraining had 

occurred, which affected the accuracy on the testing sets. In addition, we worked on improving 

our SoM prediction tool IMPACTS, a hybrid method comprised of both QM-derived activation 

energies for possible SoMs and docking. Our work focused on different areas, such as reactivity 

indices for SoMs or new activation energies. In the end, it was a fast-to-compute SASA correction 

for SoM accessibility that provided the best overall increase in accuracy (~5%). The work 

presented in this chapter will be valuable and aid medicinal chemists in the drug design and 

development process.  

Future work. Efforts are ongoing in our research group to improve the CYP inhibition tool: 1) we 

are extracting key interactions between isoform-specific residues and the ligands and including 

them into the ANN input; 2) we are trying to balance out the sets to improve sensitivity; 3) we are 

evaluating the use of multiple hidden layers as opposed to only one currently in use; 4) we are 

optimizing hyperparameters such as dropout rate and conjugate gradient parameters; 5) we are 
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currently testing a variety of ML methods, including SVM, and Random Forest models, to see 

which one performs better in the task of predicting CYP inhibition. 

 In the last chapter (Chapter 5) we described a unique computational platform – VIRTUAL 

CHEMIST – designed for organic chemists to undertake an asymmetric synthesis project from A-Z, 

using only a few clicks. This platform was designed with the needs of experimentalists in mind, 

meaning that no computational chemistry expertise is needed to use it. Moreover, we implemented 

a user-friendly GUI that makes the entire process streamlined and easy to use, along with modular 

workflows, which allows users to create their own customized projects. We validated VIRTUAL 

CHEMIST on four different realistic scenarios. In the first scenario, we validated ACE on over 350 

reactions from seven well-known reaction classes, obtaining an overall average mean unsigned 

error (MUE) of ~ 1kcal/mol. Due to the inclusion of metal-catalyzed reactions in this set, as well 

as the lack of parameters for metals in the MM3 FF used by ACE, we resorted to developing our 

own QM program QUEMIST, which can optimize model systems involving any type of atom and 

obtain customized FF parameters that can be used by ACE. In the second scenario, we determined 

the recovery rate of known catalysts for the Shi Epoxidation and organocatalyzed Diels-Alder 

cycloaddition reactions. Using VIRTUAL CHEMIST, we curated libraries for both reactions starting 

from several hundred thousand molecules, and we seeded the libraries with known catalysts. Then 

we computed the enantioselectivities with ACE and ranked the compounds in terms of their %ee, 

obtaining an AUROC of 0.79 for Shi Epoxidation and 0.92 for organocatalyzed Diels-Alder 

cycloaddition. In the third scenario we reproduced a study from the literature in which chiral 

pyrrolidine derivatives were synthesized after the identification of a promising core scaffold. Using 

VIRTUAL CHEMIST, we prepared the necessary customized workflow and assessed the derivatives 

in both endo-Diels Alder and exo-Diels Alder cycloadditions, managing to find the best (endo) and 
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second best (exo) analogues that had been determined experimentally. In the fourth scenario we 

determined the substrate scope of (DHQD)2PHAL, a commercially available catalyst for the 

Sharpless asymmetric dihydroxylation. Our predicted average enantioselectivity varied from 67-

76 %ee over 5 runs while it is 73.6 %ee experimentally, showing that our platform can be used 

reliably in such a scenario.  

Future work in this area is currently underway. We are set to improve the performance of our 

predictive software, as well as to improve the GUI. Based on the invaluable feedback we have 

received from the organic chemistry community, we are working on implementing new features 

to improve the accuracy and usability of the platform and post-calculation data processing. For 

example, we are working on providing users the ability to potentially obtain improved %ee’s by 

running single point DFT energy calculations using QUEMIST on the lowest-energy transition states 

that ACE produces and using these energies in the stereoselectivity computations. This approach 

would have the added advantage of including electrons and more accurate dispersion corrections, 

which play a significant role in large catalytic systems. Moreover, we are committed to providing 

VIRTUAL CHEMIST users the ability to automate AUROC computations, as well as a streamlined 

processing of results in the case of thousands of screened molecules. 

 Overall, the work presented in this thesis aims to aid organic and medicinal chemists in 

their endeavours. We have made all efforts to provide detailed descriptions of the hypotheses, 

study designs, results and limitations for each chapter. Moreover, we are committed to keeping all 

the software we develop free for academic use, and are fully transparent in our validation studies, 

with all our results being available for download. 
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Appendix A 

Table A1. Angle information on the lowest energy North conformations for the nucleosides used 

in this thesis.  

Entry Nucleoside V0 (°) V1 (°) V2 (°) V3 (°) V4 (°) γ (°) χ (°) 

1 2.1 14.93 -8.05 27.84 -36.52 31.78 21.72 -136.57 

2 2.8 -28.57 2.62 21.89 -40.15 42.31 112.01 69.20 

3 2.18 -21.63 -0.53 21.33 -34.03 35.30 114.17 -122.12 

4 2.19 -15.04 -5.96 23.31 -32.10 29.38 113.66 42.59 

5 2.20 -0.25 -9.59 16.34 -17.56 10.83 46.03 -112.44 

6 2.21 -2.25 -32.50 53.43 -56.79 35.76 -33.62 -168.66 

7 2.22 -7.41 -3.18 11.63 -16.17 15.08 120.85 35.72 

8 2.23 -16.89 1.80 13.51 -24.13 26.00 156.95 -123.16 

9 2.24 -8.37 -2.43 12.86 -18.32 16.35 156.58 -165.26 

10 2.25 -17.62 -3.26 21.71 -31.66 31.57 175.19 75.60 

11 2.26 -27.42 5.82 16.72 -34.06 38.13 -132.54 70.57 

12 2.27 -26.35 -0.02 24.83 -41.64 41.17 -88.80 63.29 

13 2.28 -18.47 -3.23 22.08 -33.24 31.65 123.31 67.31 

14 2.29 -24.91 5.61 23.12 -39.95 39.09 163.86 -2.37 

15 2.30 -11.54 -5.40 19.07 -25.38 23.35 131.15 58.72 

16 2.31 -4.83 -15.91 31.73 -34.48 24.76 109.19 55.99 

 

Table A2. Angle information on the lowest energy South conformations for the nucleosides used 

in this thesis.  

Entry Nucleoside V0 (°) V1 (°) V2 (°) V3 (°) V4 (°) γ (°) χ (°) 

1 2.1 -12.78 32.56 -38.88 31.75 -12.48 96.23 -127.14 

2 2.8 -15.88 29.15 -30.58 21.60 -3.87 59.28 -142.56 

3 2.18 -19.25 34.39 -35.61 22.89 -1.53 58.64 -114.31 

4 2.19 -23.59 24.70 -18.47 5.04 11.85 -68.32 -133.62 

5 2.20 -11.19 26.16 -31.23 24.93 -7.56 108.37 -120.33 

6 2.21 - - - - - - - 

7 2.22 -19.68 30.46 -31.51 19.82 -0.08 151.07 52.86 

8 2.23 -12.20 17.96 -18.28 10.66 1.22 116.75 -143.97 

9 2.24 -15.34 22.64 -23.07 14.72 0.30 125.43 -119.38 

10 2.25 -7.78 21.93 -27.35 22.40 -9.60 -55.30 179.87 

11 2.26 -25.75 41.19 -42.47 26.42 0.39 95.89 -125.28 

12 2.27 -6.76 9.49 -8.89 4.81 1.41 -110.09 -123.60 

13 2.28 -27.74 33.13 -25.94 8.30 12.47 -97.86 -144.34 

14 2.29 -20.94 42.86 -50.19 33.67 -7.08 161.64 -31.60 

15 2.30 -14.69 22.22 -22.52 13.73 1.07 133.92 -145.11 
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16 2.31 -9.89 26.79 -34.23 28.98 -11.62 153.75 56.80 

 

Table A3. Puckering information obtained for the nucleosides following the umbrella sampling 

simulations 

 

 

 

 

 

 

 

 

 

*P = pseudorotational phase angle; **ϕm = puckering amplitude;  

  

Entry Nucleoside PN* (°) ϕm**(°) PS* (°) ϕm**(°) 

1 2.1 41.3 37.0 179.5 38.9 

2 2.8 58.5 43.0 168.5 31.2 

3 2.18 54.0 36.3 165.1 36.9 

4 2.19 44.5 32.7 135.5 25.7 

5 2.20 20.7 17.5 177.1 31.3 

6 2.21 20.8 57.1 0.0 0.0 

7 2.22 44.8 16.4 162.7 33.0 

8 2.23 58.9 26.1 159.8 19.5 

9 2.24 45.7 18.4 161.7 24.3 

10 2.25 49.3 33.3 181.6 27.4 

11 2.26 64.0 38.1 162.6 44.5 

12 2.27 55.0 43.3 154.8 9.8 

13 2.28 49.7 34.1 140.8 33.5 

14 2.29 57.0 42.5 171.5 50.8 

15 2.30 43.1 26.1 160.7 23.9 

16 2.31 26.3 35.4 182.1 34.3 
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Table A4. Data obtained following the NBO analysis carried out at the M06L/def2-TZVP level 

of theory.  

Entry Nucleoside 

ΔσC3’H – 

σ*C4’R 

(kcal/mol) 

ΔσC3’H – 

σ*C2’R 

(kcal/mol) 

ΔσC2’H – 

σ*C3’R 

(kcal/mol) 

ΔσC3’C4’ – 

σ*C2’R 

(kcal/mol) 

ΔσC1’2’ – 

σ*C3’R 

(kcal/mol) 

ΔnO4’ - 

σ*C4’R  

(kcal/mol) 

1 2.1 +1.8 +1.5 -4.7 -2.5 +1.8 +1.8 

2 2.8 +2.7 +2.4 -1.8 -2.3 +0.2 +1.9 

3 2.18 +5.2 +2.3 -3.4 -3.3 +2.2 +7.7 

4 2.19 +2.8 -0.3 +0.3 +2.2 +1.3 +5.0 

5 2.20 +2.1 +0.3 -1.6 +1.1 +1.2 +1.1 

6 2.21 +2.8 +2.5 0.0 +0.1 +5.8 +7.5 

7 2.22 +1.2 +0.8 +0.5 +1.2 +1.0  -0.6 

8 2.23 +0.4 +0.3 -0.8 -0.3 +0.4 +3.6 

9 2.24 +1.8 +0.7 -1.4 -0.6 +1.1 +2.2 

10 2.25 +1.9 +2.2  -2.3 -2.1 +1.37 +1.1 

11 2.26 +1.8 +3.1 -2.9 -2.3 +1.5 +1.5 

12 2.27 +1.9 +2.0 -1.1 -1.0 +2.2 +1.2 

13 2.28 +0.8 +0.0 +0.3 +4.0 +1.9 +0.3 

14 2.29 +3.3 +1.4 +0.5 +1.8 +1.4 +2.2 

15 2.30 +0.9 +0.2 +0.4 +1.7 +1.6 -0.1  

16 2.31 +3.7 +0.0 -3.5 +1.3 +1.8 +0.8 

 

The values in Table A4 are presented as energy differences of the stereoelectronic effects found in 

the North and South conformation (a + value denotes a stereoelectronic effect dominant in the 

North conformation, while a – value denotes a stereoelectronic effect dominant in the South 

conformation). 
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The molecular orbitals depicting intramolecular hydrogen bonding (wireframe) for the North and 

South conformations were determined using the molecular orbitals obtained following the natural 

bond orbital analysis. The structures were built in Molekel, using an isosurface value of 0.01. 

 

Figure A1. Intramolecular hydrogen bonds for the North and South puckers for 2.22. Left – North 

conformation – hydrogen bond between C=O and C5’-OH. Right – South conformation – 

hydrogen bonds between C5’-OH-C=O and C=O-C2’-OH.  

 

Figure A2. Intramolecular hydrogen bonds for the North pucker for 2.25. Hydrogen bonds 

between C5’-OH-O4’ and C=O-H2’ and C=O-H3’.  
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Figure A3. Intramolecular hydrogen bonds for the North pucker for 2.27. Hydrogen bonds 

between C5’-OH-C3’-OH, C2’-OH-C3’-OH and C=O-C2’H.  

 

 

Figure A4. Intramolecular hydrogen bonds for the North pucker (Left) and South pucker (right) 

for 2.31. Left – hydrogen bonding between O5-H5-N(base). Right – hydrogen bonding between 

O5-H5-N(base).   
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The puckering distributions and PMFs were obtained using the weighted histogram analysis 

method. For an optimal resolution 73 bins were selected for constructing the graphs and curves.  

 

Figure A5. PMF curve for 2.1 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation.  
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Figure A6. PMF curve for 2.18 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A7. PMF curve for 2.19 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A8. PMF curve for 2.20 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A9. PMF curve for 2.21 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation. 
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Figure A10. PMF curve for 2.22 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A11. PMF curve for 2.23 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A12. PMF curve for 2.24 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A13. PMF curve for 2.25 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A14. PMF curve for 2.26 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A15. PMF curve for 2.27 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A16. PMF curve for 2.29 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A17. PMF curve for 2.30 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A18. PMF curve for 2.31 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A19. PMF curve for 2.9 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A20. PMF curve for 2.10 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A21. PMF curve for 2.11 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A22. PMF curve for 2.12 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A23. PMF curve for 2.13 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A24. PMF curve for 2.14 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A25. PMF curve for 2.15 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A26. PMF curve for 2.16 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A27. PMF curve for 2.17 along the pseudorotational angle P. Inset shows the puckering 

distribution around the same angle. Blue – Northern conformation, Green – Southern 

conformation. 
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Figure A28. E4 conformer – monosaccharide 2.9.  

 

Figure A29. 4TO conformer – monosaccharide 2.10.  

 

Figure A30. 1T2 conformer – monosaccharide 2.11.  
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Figure A31. 3E conformer – monosaccharide 2.12.  

 

Figure A32. 3T2 conformer – monosaccharide 2.13.  

 

Figure A33.  E1 conformer – monosaccharide 2.14.  
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Figure A34.  3T2 conformer – monosaccharide 2.15.  

 

Figure A35.  OE conformer – monosaccharide 2.16.  
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Figure A36.  3T4
 conformer – monosaccharide 2.17.  
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Appendix B 

 

Figure B1. PMF and distribution for 3.2. Experimentally determined N/S ratio is 72:28; predicted 

N/S ratio is 66:34 (based on Boltzmann population distribution). Ratio by energy difference: 73:27. 

Table B1. Dihedral angle data obtained for the lowest energy structures of 3.2 in Figure 3.2. The 

dihedral angles are described in Chapter 2. 

Conf. V0 (°) V1 (°) V2 (°) V3 (°) V4 (°) χ (°) γ (°) 

North -21.39 3.03 14.74 -26.68 29.22 -147.16 -55.87 

South -19.83 37.71 -40.68 27.58 -4.44 -136.14 102.10 
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Table B2. Hyperconjugation and anomeric effects obtained for the lowest energy structures of 3.2 

in Figure 3.2. Energies given in kcal/mol. 
Conf. σC3’H3’ – 

σ*C2’OMe 

nO4’ – 

σ*C4’OMe 

nO4’ – 

σ*C2’OMe 

σ C2’H2’ – 

σ*C3’OH 

σ C3’H3’ – 

σ*C4’OMe 

σC3’C4’ – 

σ*C2’OMe 

σC1’C2’ – 

σ*C3’OH 

σ C3’H3’– 

σ* C2’H2’ 

σ C2’H2’ – 

σ* C3’H3’ 

North 1.95 10.47 0.06 0.74 2.15 0.54 1.34 0.71 0.93 

South 0.00 9.88 0.52 3.63 0.10 4.08 0.08 0.24 0.35 

Δ +1.95 +0.59 -0.46 -2.89 +2.05 -3.54 +1.26 +0.47 +0.58 

 

 

Figure B2. PMF and distribution for 3.3. Experimentally determined N/S ratio is 87:13; predicted 

N/S ratio is 71:29 (based on Boltzmann population distribution). Ratio by energy difference: 76:24. 
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Table B3. Dihedral angle data obtained for the lowest energy structures of 3.3 in Figure 3.2. The 

dihedral angles are described in Chapter 2. 

Conf. V0 (°) V1 (°) V2 (°) V3 (°) V4 (°) χ (°) γ (°) 

North -22.81 0.08 20.38 -33.73 35.07 -130.03 10.57 

South -17.84 27.09 -26.21 14.94 1.63 -129.18 -79.39 

 

Table B4. Hyperconjugation and anomeric effects obtained for the lowest energy structures of 3.3 

in Figure 3.2. Energies given in kcal/mol. 
Conf. σC3’H3’ – 

σ*C2’OMe 

nO4’ – 

σ*C4’F 

nO4’ – 

σ*C2’OMe 

σ C2’H2’ – 

σ*C3’OH 

σ C3’H3’ – 

σ*C4’F 

σC3’C4’ – 

σ*C2’OMe 

σC1’C2’ – 

σ*C3’OH 

σ C3’H3’– 

σ* C2’H2’ 

σ C2’H2’ – 

σ* C3’H3’ 

North 2.00 14.12 0.00 0.09 3.63 0.00 1.48 0.47 0.35 

South 0.00 11.13 0.29 2.97 0.49 2.23 0.00 0.29 0.44 

Δ +2.00 +2.99 -0.29 -2.88 +3.14 -2.23 +1.48 +0.18 -0.09 

 

 

Figure B3. PMF and distribution for 3.8. Experimentally determined N/S ratio is 80:20; predicted 

N/S ratio is 79:21 (based on Boltzmann population distribution). Ratio by energy difference: 85:15. 
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Table B5. Dihedral angle data obtained for the lowest energy structures of 3.8 in Figure 3.2. The 

dihedral angles are described in Chapter 2. 

Conf. V0 (°) V1 (°) V2 (°) V3 (°) V4 (°) χ (°) γ (°) 

North -11.40 -3.17 14.98 -20.98 20.64 54.97 -34.78 

South -13.92 16.47 -14.14 6.35 5.19 55.25 -139.92 

 

Table B6. Hyperconjugation and anomeric effects obtained for the lowest energy structures of 3.8 

in Figure 3.2. Energies given in kcal/mol. 
Conf. σC3’H3’ – 

σ*C2’H2’ 
nO4’ – 

σ*C4’OMe 
nO4’ – 

σ*C2’H2’ 
σ C3’H3’ – 

σ*C4’OMe 
σC3’C4’ – 

σ*C2’H2’ 
σC1’C2’ – 

σ*C3’OH 
σ C2’F – σ* 

C3’H3’ 

North 1.10 12.60 0.00 3.23 0.22 1.40 0.11 

South 0.50 12.74 0.11 1.36 0.99 0.73 0.21 

Δ +0.6 -0.14 -0.11 +1.87 -0.77 +0.67 -0.10 

 

 

Figure B4. Portion of the 13C spectrum of 3.10 in DMSO-d6 showing the region where the C8 and 

C4 signals appear. 
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Appendix C 

PES scans for the ligands in Chart 4.1. 

 

Figure C1. PES Scan for ligand 4.1. Red – QM. Blue – new potential developed in FITTED. 
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Figure C2. PES Scan for ligand 4.2. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C3. PES Scan for ligand 4.3. Red – QM. Blue – new potential developed in FITTED. 
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Figure C4. PES Scan for ligand 4.4. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C5. PES Scan for ligand 4.5. Red – QM. Blue – new potential developed in FITTED. 
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Figure C6. PES Scan for ligand 4.6. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C7. PES Scan for ligand 4.9. Red – QM. Blue – new potential developed in FITTED. 
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Figure C8. PES Scan for ligand 4.10. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C9. PES Scan for ligand 4.10a. Red – QM. Blue – new potential developed in FITTED. 
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Figure C10. PES Scan for ligand 4.11. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C11. PES Scan for ligand 4.12. Red – QM. Blue – new potential developed in FITTED. 
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Figure C12. PES Scan for ligand 4.13. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C13. PES Scan for ligand 4.14. Red – QM. Blue – new potential developed in FITTED. 
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Figure C14. PES Scan for ligand 4.15. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C15. PES Scan for ligand 4.16. Red – QM. Blue – new potential developed in FITTED. 
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Figure C16. PES Scan for ligand 4.17. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C17. PES Scan for ligand 4.18. Red – QM. Blue – new potential developed in FITTED. 
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Figure C18. PES Scan for ligand 4.19. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C19. PES Scan for ligand 4.20. Red – QM. Blue – new potential developed in FITTED. 
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Figure C20. PES Scan for ligand 4.21 – axial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 

 

Figure C21. PES Scan for ligand 4.21 – equatorial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 
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Figure C22. PES Scan for ligand 4.22 – axial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 

 

Figure C23. PES Scan for ligand 4.22 – equatorial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 
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Figure C24. PES Scan for ligand 4.23 – axial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 

 

Figure C25. PES Scan for ligand 4.23 – equatorial conformation of N-Me. Red – QM. Blue – new 

potential developed in FITTED. 
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Figure C26. PES Scan for ligand 4.24. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C27. PES Scan for ligand 4.24a. Red – QM. Blue – new potential developed in FITTED. 
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Figure C28. PES Scan for ligand 4.25. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C29. PES Scan for ligand 4.26. Red – QM. Blue – new potential developed in FITTED. 

-25

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15

En
er

gy
 (

kc
al

/m
o

l)

Fe-N Distance (Angstrom)

QM

LJ(8-4)+MM

-25

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15

En
er

gy
 (

kc
al

/m
o

l)

Fe-N Distance (Angstrom)

QM

LJ(8-4)+MM



Appendix C 

 

235 

 

 

Figure C30. PES Scan for ligand 4.27. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C31. PES Scan for ligand 4.27a. Red – QM. Blue – new potential developed in FITTED. 
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Figure C32. PES Scan for ligand 4.28. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C33. PES Scan for ligand 4.28a. Red – QM. Blue – new potential developed in FITTED. 
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Figure C34. PES Scan for ligand 4.28b. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C35. PES Scan for ligand 4.29. Red – QM. Blue – new potential developed in FITTED. 
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Figure C36. PES Scan for ligand 4.31. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C37. PES Scan for ligand 4.32. Red – QM. Blue – new potential developed in FITTED. 
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Figure C38. PES Scan for ligand 4.33. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C39. PES Scan for ligand 4.34. Red – QM. Blue – new potential developed in FITTED. 
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Figure C40. PES Scan for ligand 4.35. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C41. PES Scan for ligand 4.36. Red – QM. Blue – new potential developed in FITTED. 
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Figure C42. PES Scan for ligand 4.37. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C43. PES Scan for ligand 4.37a. Red – QM. Blue – new potential developed in FITTED. 
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Figure C44. PES Scan for ligand 4.37b. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C45. PES Scan for ligand 4.38. Red – QM. Blue – new potential developed in FITTED. 
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Figure C46. PES Scan for ligand 4.39. Red – QM. Blue – new potential developed in FITTED. 

 

Figure C47. PES Scan for ligand 4.40. Red – QM. Blue – new potential developed in FITTED. 
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Table C1. Data used to build the new MM potential in FITTED (see Equation 4.1 in Chapter 4). 

Inhibitor 

(FITTED atom 

type) 

A  B  
ε 

(kcal/mol) 

σ 

(A) 
Offset 

QM 

Min. 

(A) 

MM 

Min. 

(A) 

MAE  

(kcal/mol)* 

1(nb) 6066.2118 925.6305 35.31 1.6 +0.2 2.00 2.00 0.63 

2(nb) 6323.9098 964.9521 36.81 1.6 +0.2 2.00 2.00 0.62 

3(nb) 6607.3776 1008.2058 38.46 1.6 +0.2 2.00 2.00 0.74 

4(nb) 6004.3642 916.1933 34.95 1.6 +0.2 2.00 2.00 0.54 

5(nb) 6238.0105 951.8449 36.31 1.6 +0.2 2.00 2.00 0.61 

6(nb) 6416.6811 979.1078 37.35 1.6 +0.2 2.00 2.00 0.63 

9(n2) 5952.8246 908.3289 34.65 1.6 +0.2 2.00 2.00 0.43 

10(n2) 6871.9476 1048.5760 40.00 1.6 +0.2 3.00 3.00 3.38 

10a(n2) 4782.8756 729.8089 27.84 1.6 +0.2 2.20 2.20 0.33 

11(n2) 5129.9089 782.7619 29.86 1.6 +0.2 2.20 2.20 0.48 

12(n2) 6871.9476 1048.5760 40.00 1.6 +0.2 2.60 2.60 0.54 

13(nb) 5576.5855 850.9194 32.46 1.6 +0.2 2.00 2.00 0.69 

14(nb) 6012.9542 917.5040 35.00 1.6 +0.2 2.00 2.00 0.63 

15(nb) 6294.7040 960.4956 36.64 1.6 +0.2 2.00 2.20 0.37 

16(nb) 5463.1984 833.6179 31.80 1.6 +0.2 2.20 2.20 0.40 

17(nb) 7038.5924 1074.0040 40.97 1.6 +0.2 2.20 2.40 0.88 

18(nb) 5021.6757 766.2469 29.23 1.6 +0.2 2.40 2.40 0.86 

19(nb) 5755.2561 878.1824 33.50 1.6 +0.2 2.20 2.20 0.49 

20(nb) 5478.6603 835.9772 31.89 1.6 +0.2 2.20 2.20 0.54 

21-ax(n3) 6871.9477 1048.5760 40.00 1.6 +0.2 2.60 2.60 0.42 

21-eq(n3) 6871.9477 1048.5760 40.00 1.6 +0.2 3.00 3.00 0.48 

22-ax(n3) 9105.3307 1389.3632 53.00 1.6 +0.2 2.60 2.60 0.77 

22-eq(n3) 9105.3307 1389.3632 53.00 1.6 +0.2 3.00 3.00 0.87 

23-ax(n3) 8589.9346 1310.7200 50.00 1.6 +0.2 2.60 2.60 0.62 

23-eq(n3) 858.9935 131.0720 5.00 1.6 +0.2 3.00 2.80 2.20 

24(n2) 5382.4530 821.2972 31.33 1.6 +0.2 2.00 2.20 0.36 

24a(n2) 4781.1576 729.5468 27.83 1.6 +0.2 2.00 2.20 0.32 

25(n2) 5081.8053 775.4220 29.58 1.6 +0.2 2.00 2.20 0.37 

26(n2) 5056.0355 771.4898 29.43 1.6 +0.2 2.00 2.20 0.39 

27(n2) 5567.9956 849.6087 32.41 1.6 +0.2 2.00 2.20 0.33 

27a(n2) 3980.5757 607.3876 23.17 1.6 +0.2 2.00 2.20 0.36 

28(n2) 4191.8881 639.6314 24.40 1.6 +0.2 2.00 2.00 0.35 

28a(n2) 6012.6542 917.5040 35.00 1.6 +0.2 2.20 2.20 0.65 

28b(n2) 4810.3633 734.0032 28.00 1.6 +0.2 2.60 2.40 0.46 

29(nb) 6016.3902 918.0283 35.02 1.6 +0.2 2.00 2.00 0.50 

31(n3) 6871.9477 1048.5760 40.00 1.6 +0.2 3.00 3.00 0.74 

32(n2) 5239.8601 799.5392 30.50 1.6 +0.2 2.00 2.00 0.45 

33(n2) 5325.7594 812.6464 31.00 1.6 +0.2 2.00 2.20 0.62 

34(n2) 6098.8535 930.6112 35.50 1.6 +0.2 2.00 2.00 0.58 

35(n2) 4552.6653 694.6816 26.50 1.6 +0.2 2.00 2.20 0.85 

36(n2) 5669.3568 865.0752 33.00 1.6 +0.2 2.00 2.20 0.85 

37(n2) 3951.3699 602.9312 23.00 1.6 +0.2 2.00 2.20 0.85 
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37a(n2) 4123.1686 629.1456 24.00 1.6 +0.2 2.20 2.20 0.95 

37b(n2) 4466.7660 681.5744 26.00 1.6 +0.2 2.20 2.20 0.75 

38(nb) 5904.7210 900.9889 34.37 1.6 +0.2 2.00 2.00 0.45 

39(nb) 5995.7743 914.8826 34.90 1.6 +0.2 2.00 2.00 0.49 

40(nb) 5995.7743 914.8826 34.90 1.6 +0.2 2.00 2.00 0.38 

 

Table C2. Set used for self-docking along with docking results for both docking modes. 

Entry Protein Resolution CYP 

Isoform 

Fe-

Coordination 

Nitrogen 

Hybridization 

Reference 

Ligands 

RMSD 

(Protein) 

RMSD 

(Metalloprotein) 

1 1e9x 2.1 51 yes sp2 1 0.554 0.55 

2 1ea1 2.21 51 yes sp2 1 0.43 0.376 

3 1nr6 2.1 2C5 no x 1 0.498 0.545 

4 1pha 1.63 CAM yes sp2 1 2.303 2.326 

5 1r9o 2 2C9 no x 1 1.237 0.269 

6 1z11 2.05 2A6 no x 1 0.299 0.303 

7 2bdm 2.3 2B4 yes sp2 1 1.025 1.006 

8 2fdw 2.05 2A6 yes sp3 1 5.464 5.453 

9 2nnj 2.28 2C8 no x 1 4.629 4.653 

10 2p85 2.35 2A13 no x 2 1.006 2.615 

11 3czh 2.3 2R1 no x 1 0.54 9.449 

12 3e6i 2.2 2E1 yes sp2 1 0.134 0.172 

13 3ebs 2.15 2A6 no x 1 1.526 1.681 

14 3ibd 2 2B6 yes sp2 1 0.257 1.401 

15 3mdr 2 46A1 yes sp3 1 0.742 0.934 

16 3mdt 2.3 46A1 yes sp2 1 0.604 2.449 

17 3mdv 2.4 46A1 yes sp2 1 0.723 0.744 

18 3n9y 2.1 11A1 no x 1 0.859 0.859 

19 3n9z 2.17 11A1 no x 1 0.44 0.431 

20 3na1 2.25 11A1 no x 1 0.527 0.354 

21 3nxu 2 3A4 yes sp2 1 4.469 3.937 

22 3qoa 2.1 2B6 yes sp2 1 1.858 1.65 

23 3r9c 2.14 164A2 yes sp2 2 1.08 0.879 

24 3swz 2.4 17A1 yes sp2 1 0.412 0.297 

25 3t3q 2.1 2A6 yes sp2 1 0.337 0.383 

26 3t3r 2.4 2A6 yes sp2 1 0.373 0.317 

27 3t3z 2.35 2E1 yes sp2 1 0.482 0.483 

28 3tbg 2.1 2D6 yes sp2 2 0.686 0.477 

29 3tjs 2.25 3A4 yes sp3 1 8.222 7.606 

30 3ua1 2.15 3A4 no x 1 0.774 0.548 

31 4d75 2.25 3A4 yes sp2 1 3.117 4.168 

32 4dvq 2.49 11B2 no x 1 0.529 0.526 

33 4ejh 2.35 2A13 no x 1 5.572 5.471 

34 4eji 2.1 2A13 yes sp2 2 6.304 0.687 



Appendix C 

 

246 

 

35 4ejj 2.3 2A6 no x 1 4.473 4.462 

36 4fia 2.1 46A1 yes sp 1 2.506 3.013 

37 4i91 2 2B6 no x 1 2.659 2.63 

38 4k9w 2.4 3A4 yes sp2 1 8.177 3.617 

39 4key 2.05 BM3 no x 1 0.467 0.484 

40 4kpa 2 BM3 no x 1 1.17 0.934 

41 4nz2 2.45 2C9 no x 1 0.582 1.795 

42 4rql 2.1 2B6 no x 1 3.595 1.54 

43 4rrt 2.2 2B6 no x 1 3.499 3.501 

44 4tt5 2.18 119 yes sp2 1 0.526 0.479 

45 4uhi 2.05 51 yes sp2 1 0.544 0.884 

46 4wmz 2.05 51 yes sp2 1 0.404 0.447 

47 4wnu 2.26 2D6 no x 1 0.397 0.448 

48 4wnv 2.35 2D6 no x 1 6.194 2.236 

49 4wpd 2 119 yes sp2 1 0.515 0.502 

50 4xrz 2.4 2D6 yes sp2 1 0.366 0.367 

51 4zdz 2.3 51 yes sp2 1 1.379 1.389 

52 4ze0 2.2 51 yes sp2 1 1.389 1.387 

53 4ze3 2.2 51 yes sp2 1 1.213 1.757 

54 4zv8 2.24 2B6 no x 1 2.857 2.862 

55 5a1r 2.45 3A4 no x 1 3.756 3.558 

56 5a5i 2 2C9 no x 1 1.978 2.292 

57 5e58 2.4 2B35 yes sp2 2 1.481 1.542 

58 5ese 2.2 51 yes sp2 1 0.715 0.692 

59 5esf 2.25 51 yes sp2 1 0.798 0.697 

60 5esh 2.15 51 yes sp2 1 1.185 1.355 

61 5hs1 2.1 51 yes sp2 1 1.397 1.376 

62 5irq 2.2 17A1 yes sp2 1 1.513 1.44 

63 5k7k 2.3 2C9 yes sp2 1 2.444 2.556 

64 5l92 2.1 109E1 no x 1 1.045 1.033 

65 5l94 2.25 109E1 no x 1 6.342 6.299 

66 5tz1 2 51 yes sp2 1 1.202 0.92 

67 5uap 2.24 2B6 no x 2 0.597 0.526 

68 5uec 2.27 2B6 no x 2 3.619 3.682 

69 5uys 2.39 17A1 yes sp2 1 0.484 0.368 

70 5vce 2.2 3A4 yes sp2 1 6.037 4.226 

71 5vcg 2.2 3A4 no x 1 1.045 0.964 

72 5w0c 2 2C9 no x 1 2.493 2.706 

73 5x23 2 2C9 no x 1 4.716 4.664 

74 5x24 2.48 2C9 no x 1 3.32 3.509 

75 5xxi 2.3 2C9 no x 1 3.272 3.207 

76 6a16 2 90B1 yes sp2 1 1.022 0.299 

77 6a17 2.3 90B1 yes sp2 1 0.294 0.287 

78 6bcz 2.23 3A4 yes sp2 1 2.086 3.104 

79 6bd7 2.42 3A4 yes sp2 1 2.536 5.327 
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80 6bd8 2.38 3A4 yes sp2 1 6.084 3.13 

81 6bdh 2.25 3A4 yes sp2 1 4.855 4.505 

82 6f85 2.05 260A1 yes sp2 1 4.676 4.641 

83 6jo1 2.1 102A1 no x 1 0.713 0.838 

84 6m7x 2.1 11B1 yes sp2 1 0.484 0.556 

85 6ung 2.3 3A4 yes sp2 1 8.103 7.615 

 

Rigid Docking. 

 

Table C3. Accuracy of Impacts 2019 over 5 runs using all activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 77.4 77.4 77.4 73.7 74.5 76.1 1.6 

2C9 76.0 80.6 79.8 80.6 78.3 79.1 1.7 

2D6 70.1 74.5 73.9 71.3 75.2 73.0 2.0 

3A4 74.7 74.7 74.4 73.7 73.7 74.2 0.5 

 

Table C4. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 77.4 78.1 77.4 74.5 78.1 77.1 1.3 

2C9 76.0 79.1 78.3 79.1 76.7 77.8 1.3 

2D6 70.1 72.0 71.3 70.1 72.0 71.1 0.9 

3A4 72.7 72.4 70.3 71.0 72.0 71.7 0.9 

 

Table C5. Accuracy of Impacts 2019 over 5 runs using all activation energies and FCs. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 73.0 72.3 70.8 75.9 72.3 72.8 1.7 

2C9 70.5 72.9 70.5 73.6 73.6 72.2 1.4 

2D6 63.1 68.2 61.1 61.1 63.1 63.3 2.6 

3A4 67.2 67.6 66.9 68.6 67.2 67.5 0.6 

 

Table C6. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies and FCs. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 73.7 74.5 70.1 71.5 70.8 72.1 1.7 

2C9 74.4 72.1 70.5 73.6 72.1 72.5 1.4 

2D6 56.1 56.1 56.7 58.6 58.0 57.1 1.0 
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3A4 67.2 66.2 67.2 68.6 70.6 68.0 1.5 

 

 

Table C7. Accuracy of Impacts 2019 over 5 runs using all activation energies and SASA 

correction. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 81.0 83.9 81.8 81.0 79.6 81.5 1.4 

2C9 81.4 84.5 82.2 84.5 85.3 83.6 1.5 

2D6 77.1 77.7 75.8 77.1 76.4 76.8 0.7 

3A4 75.4 75.4 72.2 74.4 75.8 74.6 1.3 

 

Table C8. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies and SASA 

correction. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 82.5 83.2 84.7 86.1 83.2 83.9 1.3 

2C9 84.5 86.8 83.7 86.0 83.7 84.9 1.3 

2D6 75.2 76.8 75.2 75.8 74.5 75.5 0.8 

3A4 76.8 75.4 76.1 77.1 77.5 76.6 0.7 

 

Table C9. Accuracy of Impacts 2019 over 5 runs using all activation energies, SASA correction 

and FCs. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 78.8 78.1 77.4 77.4 78.1 78.0 0.5 

2C9 75.2 79.8 76.0 76.7 76.0 76.7 1.6 

2D6 74.5 73.9 74.5 77.1 75.2 75.0 1.1 

3A4 67.2 70.3 70.0 70.4 67.9 69.2 1.3 

 

Table C10. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies, SASA 

correction and FCs. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 81.0 81.0 81.8 81.0 80.3 81.0 0.5 

2C9 79.1 80.6 80.6 79.8 80.6 80.1 0.6 

2D6 70.1 68.8 70.7 69.4 70.1 69.8 0.7 

3A4 71.3 71.7 71.7 72.0 72.0 71.7 0.4 
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Table C11. Accuracy of Impacts 2019 over 5 runs using all activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 66.4 68.6 69.3 68.6 65.0 67.6 1.6 

2C9 70.5 69.0 67.3 67.4 69.8 68.8 1.3 

2D6 47.1 48.4 49.7 45.9 51.0 48.4 1.8 

3A4 67.2 67.2 65.9 66.9 66.2 66.7 0.5 

 

Table C12. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 63.5 63.5 65.0 63.5 63.5 63.8 0.6 

2C9 64.3 65.1 65.1 65.1 66.7 65.3 0.8 

2D6 43.3 43.3 42.7 42.7 43.3 43.1 0.3 

3A4 63.1 63.1 64.8 62.8 64.2 63.6 0.8 

 

Table C13. Accuracy of Impacts 2019 over 5 runs using all activation energies. 

Isoform Run 1 
Run 

2 
Run 3 Run 4 Run 5 

Overall 

Accuracy 

Std. 

Dev. 

1A2 (270) 78.1 79.6 80.0 79.6 78.1 79.1 0.8 

2C9 (225) 72.0 73.3 74.7 75.1 73.3 73.7 1.1 

2C19 (218) 69.7 69.7 70.6 70.6 71.1 70.3 0.6 

2D6 (270) 70.4 68.5 70.7 67.7 68.5 69.2 1.2 

2E1 (142) 65.7 66.9 70.4 66.2 66.9 67.2 1.7 

Total molecules: 1125 

Table C14. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 81.1 80.7 80.0 80.6 80.4 80.6 0.4 

2C9 71.6 72.4 74.2 74.2 71.1 72.7 1.3 

2C19 70.6 72.9 72.9 69.3 70.6 71.3 1.4 

2D6 70.4 69.6 70.0 69.3 69.3 69.7 0.4 

2E1 67.6 68.3 68.3 70.0 68.3 68.5 0.8 
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Table C15. Accuracy of Impacts 2019 over 5 runs using all activation energies and SASA 

correction. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 80.7 78.1 80.4 81.1 80.4 80.1 1.1 

2C9 73.3 76.0 74.6 73.8 73.8 74.3 0.9 

2C19 76.1 75.7 75.7 77.1 76.6 76.2 0.5 

2D6 75.5 74.4 77.4 77.0 74.8 75.8 1.2 

2E1 70.0 70.4 70.4 72.5 70.4 70.7 0.9 

 

Table C16. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies and SASA 

correction. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2 80.4 81.9 81.9 80.7 80.7 81.1 0.6 

2C9 75.1 72.4 74.2 74.2 75.1 74.2 1.0 

2C19 75.7 74.8 73.9 76.6 76.6 75.5 1.0 

2D6 73.3 73.7 73.0 72.2 73.0 73.0 0.5 

2E1 67.6 72.5 69.0 72.5 73.2 71.0 2.2 

 

Flexible Docking. 

To run flexible docking one must ensure that the population size used for selecting suitable 

individuals for docking is large enough. As such, the population size used for flexible docking is 

increased to 200 (in comparison to rigid docking – 100) and the maximum number of generations 

is increased to 100 (in comparison to rigid docking – 50). 

Table C17. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies, SASA 

correction and flexible docking – initial sets. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2a 82.5 83.2 84.7 86.1 83.2 83.9 1.3 

2C9b 77.5 76.7 77.5 76.7 77.5 77.2 0.4 

2C9c 76.7 76.7 76.7 74.4 76.7 76.2 0.9 

2D6d 72.6 75.2 75.8 76.4 73.9 74.8 1.4 

2D6e 75.2 73.2 74.5 75.2 73.9 74.4 0.8 

3A4 74.7 76.1 76.1 75.4 74.1 75.3 0.8 
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a results from rigid docking, isoform does not have multiple crystal structures to allow flexible 

docking 

b results obtained using 5 crystal structures: 1R9O, 5K7K, 5XXI, 4NZ2, 5A5J 

c results obtained using 3 crystal structures: 1R9O, 5K7K, 5XXI 

d results obtained using 5 crystal structures: 3QM4, 3TBG, 4WNU, 5TFT, 2F9Q 

e results obtained using 3 crystal structures: 3QM4, 3TBG, 4WNU 

Table C18. Accuracy of Impacts 2019 over 5 runs using the top 5 activation energies, SASA 

correction and flexible docking – external sets. 

Isoform Run 1 Run 2 Run 3 Run 4 Run 5 
Overall 

Accuracy 

Std. 

Dev. 

1A2a 80.4 81.9 81.9 80.7 80.7 81.1 0.6 

2C9b 72.7 71.8 71.8 71.8 71.8 72.0 0.4 

2C9c 72.9 71.6 72.0 71.1 70.7 71.7 0.8 

2C19a 75.7 74.8 73.9 76.6 76.6 75.5 1.0 

2D6d 74.1 74.4 75.9 74.8 74.8 74.8 0.6 

2D6e 74.1 75.2 74.4 75.2 74.4 74.7 0.5 

2E1 72.5 73.9 71.1 73.2 71.8 72.5 1.0 
a results from rigid docking, isoform does not have multiple crystal structures to allow flexible 

docking 

b results obtained using 5 crystal structures: 1R9O, 5K7K, 5XXI, 4NZ2, 5A5J 

c results obtained using 3 crystal structures: 1R9O, 5K7K, 5XXI 

d results obtained using 5 crystal structures: 3QM4, 3TBG, 4WNU, 5TFT, 2F9Q 

e results obtained using 3 crystal structures: 3QM4, 3TBG, 4WNU 
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Flexible Docking – PDB Codes. 

 Flexible docking requires several crystal structures to ensure mutations across isoforms 

and active sites, with the aim of accurate docking. To this end we have assembled several PDB 

files/isoform (where available). The crystal structure PDB codes are given below: 

CYP1A2 

• 2HI4 (original, used in rigid docking) – 1.95Å resolution 

• N/A – no other crystal structures are available for this isoform 

CYP2C9 

• 1R9O (original, used in rigid docking) – 2.00Å resolution 

• 4NZ2 – 2.45Å resolution 

• 5A5J – 2.90Å resolution 

• 5K7K – 2.30Å resolution 

• 5XXI – 2.30Å resolution 

CYP2C19  

• 4GQS (original, used in rigid docking) – 2.87Å resolution 

• N/A – no other crystal structures are available for this isoform 

CYP2D6 

• 3QM4 (original, used in rigid docking) – 2.85Å resolution 

• 3TBG – 2.10Å resolution 
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• 4WNU – 2.26Å resolution 

• 5TFT – 2.71Å resolution 

• 2F9Q – 3.00Å resolution 

CYP3A4 

• 3NXU (original, used in rigid docking) – 2.00Å resolution 

• 1W0E – 2.80Å resolution 

• 2J0D – 2.75Å resolution 

• 4D78 – 2.80Å resolution 

• 5TE8 – 2.70Å resolution 

CYP2E1 

• 3E6I (original, used in rigid docking) – 2.20Å resolution 

• 3T3Z – 2.35Å resolution 

• 3GPH – 2.70Å resolution 

• 3E4E – 2.60Å resolution 
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Appendix D 

All ACE and CONSTRUCTS calculations were performed with subversion 5679 of the 

ACE/FORECASTER platforms. The Windows/Linux/MacOS subversion can be requested from 

Nicolas Moitessier: nicolas.moitessier@mcgill.ca. 

Single point energy calculation using QUEMIST within the HF framework– pseudocode: 

void function quemist – single point energy calculation { 

 set molecule and determine number of alpha and beta electrons 

 initialize LIBINT variables (if Linux/MacOS versions used) 

 create basis set as per user instructions 

 compute overlap integral matrix - S 

 compute kinetic integral matrix - T 

 compute nuclear attraction integral matrix - V 

 compute Hamiltonian = T + V 

 orthogonalize basis set using canonical orthogonalization { 

  compute eigenvectors and eigenvalues of overlap matrix S 

  define diagonal ortho matrix = eigenvalues of S on the principal diagonal 

  for (i = 0 to number of basis functions) { 

   if (absolute value of ortho(i,i) less than 1e-08) { 

    ortho(i, i) = 0.0 

   } 

   else { 

    ortho(i, i) = 1.0 / square root of ortho(i, i) 

   } 

  } 

  define unitary matrix U = eigenvectors of S 

  calculate the transformation matrix: 

   X = U * ortho 

  calculate the transpose of the transformation matrix: 

   Xp = XT 

 } 

compute initial guess density matrix using the superposition of atomic densities in the minimal 

basis  STO-3G 

 project orbitals in actual basis set and obtain true guess density matrix 

 compute Schwarz boundaries for performing the Cauchy-Schwarz inequality when 

computing electron       repulsion integrals 

 initialize DIIS  

 for (iteration = 0 to max number of iterations requested by the user) 

 { 

  initialize Fock matrix F = Hamiltonian 
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  compute 2e integrals and the Coulomb (J) and exchange matrices (K) and add them 

to F: 

   F = F + J - 0.5 * K 

  compute electronic energy of the iteration 

  add nuclear repulsion energy to the electronic energy 

  obtain the difference in energy between iterations by subtracting the previous 

iteration energy from the current iteration energy 

  obtain DIIS error matrix 

  if (iteration larger than 2) { 

   extrapolate Fock matrix using DIIS 

  }  

  

  diagonalize the Xp * F * X matrix 

  obtain orbital matrix C = X * (eigenvectors of Xp * F * X matrix) 

  obtain orbital energy matrix orbenergy = eigenvalues of the Xp * F * X matrix 

  check if orbitals are orthonormal 

  obtain new density matrix using the occupied orbitals from the orbital matrix C 

  obtain convergence density matrix as the difference between the new density matrix 

and the previous density matrix 

  compute rms and maximum absolute error of the convergence density matrix 

  assign current energy to the last energy variable 

  if (difference in energy less than energy threshold OR rms less than density 

threshold OR maximum absolute error less than density threshold OR DIIS error less than DIIS 

threshold) { 

   convergence flag is true 

   failure flag is false 

  } 

  

  if (convergence flag is true) { 

   save current energy 

   save current orbitals 

   save current rms 

   save current maximum absolute error in the density matrix 

   save current DIIS error 

   exit for loop 

  } 

  else { 

      if (iteration less than 2) { 

    Current density matrix = (1 – damping factor) * new density matrix 

+ damping factor * current density matrix; 

       } 

       else { 

    Current density matrix = new density matrix 

       } 

  } 
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  if (reach maximum iterations AND convergence flag is false) { 

   failure flag is true 

   print failure message 

  } 

 } 

 If (failure flag is false) 

 { 

  print convergence details 

  print orbitals and orbital energies 

  print details of the convergence iteration 

  print Mulliken population analysis 

  print Mayer Bond Order Analysis 

  print Mayer Free Valence Electrons 

 } 

} 
 

Geometry optimization / Hessian calculation using QUEMIST and generation of FF 

parameters – pseudocode: 

void function quemist – geometry optimization { 

 set molecule and determine number of alpha and beta electrons 

 initialize basis set 

 determine redundant internal coordinates 

 determine degrees of freedom 

 determine energy at initial point (see void quemist – single point energy) 

 save xyz coordinates from the initial energy evaluation to coordinate file 

 initialize trust radius to 0.5 

 for (i = 0 to max number of geometry optimization steps requested by user) 

 { 

  run single point energy of the coordinates at iteration i 

  compute gradient (g) of coordinates at iteration i 

  save gradient of the iteration in gradient vector 

  determine norm of the gradient 

  if (i equals 0) { 

   initialize initial Hessian with the unit matrix 

   diagonalize initial Hessian to obtain eigenvalues 

   check if Hessian is positive definite based on eigenvalue values 

   obtain augmented Hessian (aug.Hessian) using the gradient and initial 

Hessian 

   diagonalize augmented Hessian 

   obtain minimum value (mvaug) in augmented Hessian 

   obtain new search direction (sd) = - inverse of (aug.Hessian -  mvaug * 

identity matrix) * gradient 

   save new sd in sd vector 
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   if (norm of sd > trust radius) { 

    scale sd components so that the norm of the sd is equal to the trust 

radius 

   } 

   else { 

    accept norm of the sd as the length of the step 

   } 

   obtain new coordinates (nc) = coords. at initial point + sd 

   save current hessian in hessian vector 

  } 

  else { 

   update hessian at current iteration using the information from the hessian, 

gradient, and sd from the previous iteration (BFGS formula) 

   diagonalize hess to obtain eigenvalues 

   check if Hessian is positive definite based on eigenvalue values 

   obtain augmented Hessian (aug.Hessian) using the gradient and initial 

Hessian 

   diagonalize augmented Hessian 

   obtain minimum value (mvaug) in augmented Hessian 

   obtain new sd = - inverse of (aug.Hessian -  mvaug * identity matrix) * 

gradient 

   save new sd in sd vector 

   if (norm of sd > trust radius) { 

    scale sd components so that the norm of the sd is equal to the trust 

radius 

   } 

   else { 

    accept norm of the sd as the length of the step 

   } 

   obtain new coordinates (nc) = coords. at initial point + sd 

   save current hessian in hessian vector 

  } 

  obtain max. error (fmax) and max rms (frms) in gradient 

  obtain max. error (dmax) and max rms (drms) in atomic displacements 

  check if thresholds have been met: 

• If energy difference between iterations is < 0.0005 

• If fmax < 0.0003 

• If frms < 0.0001 

• If dmax < 0.0020 

• If drms < 0.0040 

  if (4 of 5 conditions are met) { 

   signal convergence  

   print orbital data, Mulliken Population Analysis and Mayer Bond Order 

data 

  } else { 

   continue optimization until convergence is reached 



Appendix D 

 

258 

 

         save coordinates at this step in xyz file 

         if (convergence is reached and Hessian flag computation has been found) { 

    compute true Hessian numerically by using finite differences and a 

step increment of 0.005 

    if (Hessian contains negative eigenvalues) { 

     print warning message that the geometry is not minimum 

    } 

    compute the force field parameters using the Hessian matrix and 

Seminario algorithm 

    create parameter file named 

molfilename_customized_ff_parameters.txt  

   } 

  } 

 } 

} 
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Datasets. 

Chart and Table D1: Dienophile and dienes set used in the Diels-Alder reaction using chiral 

auxiliaries (endo adducts only). 
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Entry Auxiliary Dienophile Diene 
Temp. 

(oC) 
Observed d.e. (%) Ref. 

1 1 a 21 -100 86 (R) 326 

2 1 a 22 -100 66 (R) 326 

3 1 b 21 -100 90 (2R,3S) 326 

4 1 b 22 -100 68 (S,S) 326 

5 1 c 21 -22 86 (2S,3S) 326 

6 1 e 21 -22 50 (nd)b 326 

7 2 a 21 -100 90 (R) 326 

8 2 a 22 -100 90 (R) 326 

9 2 a 23 -100 >99 (R) 326 

10 2 b 21 -100 94 (S,S) 326 

11 2 b 22 -30 88 (S,S) 326 

12 2 b 23 -30 98 (S,S) 326 

13 3 a 21 -100 90 (S) 326 

14 3 b 21 -100 96 (2S, 3R) 326 

15 3 d 21 -78 64 (nd) 326 

16 4 b 22 -100 33 (S,S) 326 

17 5 b 22 -100 58 (S,S) 326 

18 6 a 22 -30 98 (S,S) 326 

19 6 b 21 -100 99 (2R,3S) 326 

19 6 b 22 -30 >98 (S,S) 326 

21 6 c 21 -100 >99 (S,S) 326 

22 7 a 22 -30 94 (S,S) 326 

24 7 b 21 -100 99 (2R,3S) 326 

23 7 b 22 -30 94 (S,S) 326 

25 7 c 21 -100 >99 (S,S) 326 

26a 8 a 21 -78 95 (S) 327 

27a 9 - 21 -78 97 (R,R)b 327 

28a 10 a 21 0 47 (R) 328 

29a 11 a 21 0 64 (R) 328 

30 12 a 21 -78 96 (S) 329,330 



Appendix D 

 

261 

 

32 12 b 21 -78 97 (2S,3R) 329,330 

33 12 c 21 -22 98 (R,R) 329,330 

34 13 a 21 -78 81 (R) 331 

35 13 b 21 -78 >99 (2R,3S) 331 

36 13 c 21 -22 >99 (S,S) 331 

37 14 a 21 -78 >95 (R) 331 

38 14 b 21 -78 >99 (2R,3S) 331 

39 15 a 21 -78 82 (S) 332 

40 15 b 21 -22 94 (2S,3R) 332 

41 16 a 21 -78 80 (R) 333 

42 16 b 21 -78 89 (2R,3S) 333 

43 17 a 21 -78 87 (S) 334 

44 17 c 21 -22 63 (2S,3R) 334 

45 18 a 21 -78 92 (S) 330 

46 18 b 21 -78 94 (2S,3R) 330 

47 18 c 21 -78 94 (R,R) 330 

48 19 a 21 -78 98 (R) 330 

49 19 b 21 -78 98 (S,S) 330 

50 19 c 21 -78 98 (2R,3S) 330 

51 20 a 21 -78 89 (R) 335 

52 20 b 21 -78 96 (R) 335 

a Me2AlCl is used in place of Et2AlCl. b does not match with the template with CONSTRUCTS. 
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Chart and Table D2: Catalysts and alkenes set used in the epoxidation reaction. 

 

Entry Catalyst Substrate Temperature (oC) Observed e.e. (%) Ref 

1 47 66 25 29 (R) 336 

2 47 67 25 56 (R,R) 336 

3 47 68 25 76 (R,R) 336 

4 47 69 25 69 (R,R) 336 

5 47 70 25 18 (1R,2S) 336 

6 47 71 25 73 (R,R) 336 
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7 47 72 25 22 (R) 336 

8 47 73 25 83 (R) 336 

9 48 68 25 54 (R,R) 336 

10 49 68 25 86 (R,R) 336 

11 50 68 25 83 (R,R) 337,338 

12 51 66 25 48 (R) 339 

13 51 68 25 93-95 (R,R) 337,339 

14 51 69 25 82 (R,R) 339 

15 51 73 25 98 (R,R) 339 

16 51 75 25 3 (R,R) 339 

17 52 66 25 2 (S) 338 

18 52 68 25 64 (S,S) 338 

- 52 72 25 8 (S) 338 

19 53 67 25 70 (R,R) 340 

20 53 68 25 86 (R,R) 340 

21 54 67 25 22 (R,R) 340 

22 55 67 25 0 (R,R) 340 

23 56 67 0 88 (R,R) 341 

24 56 68 0 94 (R,R) 341 

25 56 69 0 59 (R,R) 341 

26 56 74 0 43 (R) 341 

27 57 66 25 19 (S) 342 

- 57 68 25 81 (S,S) 342 

28 57 72q 25 7 (S) 342 

29 58 77 -10 93 (2S,3R)a 343 

30 59 76 -10 92 (2S,3R)a 343 

31 60 66 -10 15-24 (R) 344 

32 60 67 -10 88-95 (R,R) 344,345 

33 60 68 0 95-98 (R,R) 344,345 

34 60 69 - 91-98 (R,R) 344,345 

35 60 70 - 12-32 (1S,R) 344 

36 60 71 - 92-95 (R,R) 344,345 
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37 60 72 - 20-28 (S) 344 

38 60 73 - 92-96 (R) 344,345 

39 61 66 -10 15 (R) 346 

40 61 67 -10 87 (R,R) 346 

41 61 68 0 88 (R,R) 346 

42 62 66 -10 31 (R) 346 

43 62 67 -10 88 (R,R) 346 

44 62 68 0 89 (R,R) 346 

45 63 66 -10 24 (S) 346 

46 63 67 -10 77 (S,S) 346 

47 64 66 -10 14 (R) 346 

48 64 67 -10 46 (R,R) 346 

49 64 68 0 66 (R,R) 346 

50 65 67 -10 38 (R,R) 346 

51 65 68 0 72 (R,R) 346 

a Substrates containing 2 double bonds, CONSTRUCTS cannot differentiate double bonds by 

reactivity and will simply react the first one it finds. These substrates cannot be considered. 

  



Appendix D 

 

265 

 

Chart and Table D3: Dienophile and dienes set used in the organocatalyzed Diels-Alder 

reactions. 

 

Entry Catalyst Substrate  Observed e.e. (%) Ref. 

1 1 20 exo 3-17 (2S) 347 

2 1 20 endo 0-9 (2R) 347 

3 2 20 exo 3-36 (2S) 347 

4 2 20 endo 0-36 (2R) 347 

5 3 18 exo 66-89 (2R) 347 

6 3 18 endo 57-83 (2R) 347 

7 3 19 exo 68-84 (2S) 347 

8 3 19 endo 58-60 (2S) 347 

9 3 20 exo 69-72 (2S) 347 

10 3 20 endo 45-58 (2R) 347 
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11 4 18 exo 90 (2R) 347 

12 4 18 endo 95 (2R) 347 

13 4 19 exo 89 (2S) 347 

14 4 19 endo 90 (2S) 347 

15 4 20 exo 85 (2S) 347 

16 4 20 endo 93 (2R) 347 

17 5 18 
exo 

86 (2R) 
347,34

8 

18 5 18 
endo 

90 (2R) 
347,34

8 

19 5 19 
exo 

93 (2S) 
347,34

8 

20 5 19 
endo 

93 (2S) 
347,34

8 

21 5 20 
exo 

79-86 (2S) 
347,34

8 

22 5 20 
endo 

90-96 (2R) 
347,34

8 

23 6 19 exo 88 (4S) 349 

24 6 19 endo 97 (4S) 349 

25 7 18 exo 11-22 (nd)a 350 

26 7 18 endo 10-24 (nd)a 350 

27 7 19 exo 37-57 (nd)a 350 

28 7 19 endo 36-66 (nd)a 350 

29 8 18 endo 83 (2S) 351 

30 8 19 exo 78 (2R) 351 

31 8 19 endo 93 (2R) 351 

32 8 20 exo 66 (2R) 351 

33 8 20 endo 90 (2R) 351 

34 9 19 exo 90 (2R) 352 

35 9 19 endo 82-88 (2R) 352 

36 9 20 exo 81 (2R) 352 

37 10 19 exo 48 (2R) 348 

38 11 19 exo 59 (2S) 348 
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39 12 19 exo 57 (2R) 348 

40 13 19 exo 74 (2R) 348 

41 14 19 exo 9 (R) 353 

42 14 19 endo 15 (R) 353 

43 15 19 exo 38 (S) 353 

44 15 19 endo 27 (R) 353 

45 16 19 exo 53 (R) 353 

46 16 19 endo 39 (R) 353 

47 17 18 exo 88 (S) 353 

48 17 19 exo 72-92 (R) 353 

49 17 19 endo 68-91 (R) 353 

a Absolute stereochemistry not assigned. 

  



Appendix D 

 

268 

 

Chart and Table D4: Catalysts and aldehydes set used in the organocatalyzed aldol reaction. 
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Entry Catalyst Substrate Observed e.e. (%) Ref. 

1 1 37 59-73 (R) 354 

2 1 38 77 (R) 354 

3 2 37 76 (R) 355,356 

4 2 38 96 (R) 355,356 

5 2 40 77 (R) 355,356 

6 3 37 86 (R) 355,356 

7 3 38 94 (R) 355,356 

8 3 40 88 (R) 355,356 

9 4 37 73 (R) 355,356 

10 5 37 78 (R) 355,356 

11 6 37 62 (R) 355,356 

12 7 37 95 (R) 357 

13 7 40 95 (R) 357 

14 8 37 81 (R) 357 

15 9 37 61-92 (R) 358 

16 10 37 44-87 (R) 358 

17 11 39 72-93 (R) 359 

18 12 37 84-94 (R) 359 

19 12 39 54-93 (R) 359 

20 12 40 81 (R) 359 

21 13 37 37 (R) 360 

22 14 37 45 (R) 360 

23 15 39 15 (R) 360 

24 16 39 27 (R) 361 

25 17 39 75 (R) 361 

26 18 37 22-35 (R) 361 

27 19 37 77-85 (R) 361 

28 20 37 46 (R) 362 

29 21 37 33 (R) 362 

30 22 37 48 (R) 362 

31 23 37 52 (R) 362 



Appendix D 

 

270 

 

32 24 37 49 (R) 362 

33 25 37 44 (R) 362 

34 26 37 64 (R) 362 

35 27 37 69-93 (R) 362 

36 27 38 98 (R) 362 

37 27 40 84 (R) 362 

38 28 37 15 (R) 363 

39 29 37 72 (R) 363 

40 30 37 15 (R) 363 

41 31 37 87-99 (R) 363 

42 31 38 >99 (R) 363 

43 31 39 99 (R) 363 

44 32 37 17 (R) 363 

45 33 37 67 (R) 363 

46 34 37 96 (R) 364 

47 35 37 60 (R) 364 

48 36 37 95 (R) 364 

49 36 40 96 (R) 364 
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Chart and Table D5: Catalysts and substrates set used in the dihydroxylation reaction. 

 

Entry Catalyst Substrate Observed e.e. (%) Ref. 

1 1a 1 97 (R) 
365,36

6 

2 1b 1 97 (S) 
365,36

6 

3 2a 1 80 (R) 365 

4 3a 1 99 (R) 365 

5 3b 1 97 (S) 365 

6 4a 1 98 (R) 365 
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7 4b 1 96 (S) 365 

8 5a 1 96 (R) 
366,36

7 

9 5b 1 93 (S) 366 

10 6a 1 80-92 (R) 366 

11 6b 1 79-85 (S) 366 

12 7a 1 87 (R) 368 

13 8a 1 60-74 (R) 
369 

368 

14 8b 1 54 (S) 369 

15 9a 1 78 (R) 368 

16 10 1 93 (R) 370 

17 11 1 21 (S) 371 

18 12a 1 89 (R) 372 

19 12b 1 85 (S) 372 

20 14 1 76 (R) 367 

21 1a 2 94 (R) 365 

22 1b 2 93 (S) 365 

23 2a 2 69 (R) 365 

24 3a 2 96 (R) 365 

25 3b 2 92 (S) 365 

26 4a 2 94 (R) 365 

27 4b 2 94 (S) 365 

28 5a 2 93 (R) 366 

29 6a 2 72 (R) 366 

30 8a 2 33 (R) 369 

31 12a 2 82 (R) 372 

32 1a 3 >99.5 (R,R) 373 

33 1b 3 >99.5 (S,S) 373 

34 5a 3 99 (R,R) 367 

35 7a 3 98 (R,R) 368 

36 8a 3 
85-88 (R,R) 

99 (R,R) 

369 

368 
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37 8b 3 78 (S,S) 369 

38 9a 3 99 (R,R) 368 

39 10 3 99.5 (R,R) 370 

40 11 3 40 (S,S) 371 

41 14 3 92 (R,R) 367 

42 8a 4 65 (R,R) 369 

43 8b 4 55 (S,S) 369 

44 10 4 97 (R,R) 370 

45 11 4 19 (S,S) 371 

46 12a 4 92 (R,R) 372 

47 1a 5 42 (1R,2S) 
365,37

4 

48 2a 5 35 (1R,2S) 
365,37

4 

51 3a 5 20 (1R,2S) 365 

50 4a 5 53 (1R,2S) 365 

51 11 5 12 (1S 2R) 371 

52 12a 5 63 (1R,2S) 372 

53 1a 6 64 - 

54 1b 6 66 - 

55 2a 6 92 - 

56 2b 6 87 - 

57 3a 6 59 - 

58 3b 6 65 - 

59 4a 6 67 - 

60 4b 6 73 - 

61 7a 6 79 (R) - 

62 8a 6 44 (R) - 

63 9a 6 79 (R) - 
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Chart and Table D6: Catalysts and substrates set used in the diethylzinc addition to aldehyde 

reaction. 
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Entry Catalyst Substrate Observed e.e. (%) Ref. 

1 1 41a 90 (S) 375 

2 1 41c 78 (S) 375 

3 1 41d 88 (S) 375 

4 2 41a 97 (R) 376,377 

5 2 41c 95 (R) 376,377 

6 2 41d 88 (R) 376,377 

7 3 41a 85 (R) 376,377 

8 3 41d 78 (R) 376,377 

9 4 41a 67 (R) 376 

10 5 41a 98 (S) 378 

11 5 41b 90 (S) 378 

12 5 41d 61 (S) 378 

13 6 41a 24 (R) 379 

14 7 41a 75 (S) 379 

15 8 41a 24 (S) 379 

16 9 41a 68 (R) 380 

17 10 41a 81.8 (S) 320 

18 11 41a 99 (S)a 381 

19 11 41c 99 (S)a 381 

20 11 41d 80 (S)a 381 

21 12 41a 84 (S) 382 



Appendix D 

 

276 

 

22 13 41a 58 (R) 382 

23 14 41a 99 (R) 382 

24 15 41a 78 (R) 383 

25 16 41a 48 (R) 383 

26 17 41a 80 (S) 383 

27 18 41a 31 (R) 384 

28 19 41a 36.7 (S) 384 

29 20 41a 57.9 (R) 384 

30 21 41a 87.5 (R) 384 

31 22 41a 81 (R) 385 

32 22 41c 93 (R) 385 

33 23 41a 66 (S) 386 

34 23 41b 70 (S) 386 

35 24 41a 28 (R) 386 

36 25 41a 26 (R) 386 

37 26 41a 79 (R) 386 

38 26 41b 69 (R) 386 

39 27 41a 96.7 (R) 320 

40 28 41a 95.9 (R) 320 

41 29 41a 36.1 (R) 320 

42 30 41a 61 (R) 387 

43 31 41a 91 (R) 387 

44 32 41a 36 (R) 388 

45 33 41a 80 (S) 388 

46 34 41a 80 (S) 388 

47 35 41a 86 (R) 388 

48 36 41a 98 (S) 389 

49 36 41b 93 (S) 389 

50 36 41c 98 (S) 389 

51 36 41d 92 (S) 389 

52 37 41a 50 (S) 390 

53 38 41a 24 (S) 390 
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54 39 41a 97 (S) 390 

55 40 41a 29 (R) 390 
a This catalyst features an aziridine which does not match with the template used in Constructs. 

Chart and Table D7: Ruthenium ligands and substrates set used in the hydrogenation reaction. 
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Entry Catalyst Substrate Observed e.e. (%)a Ref. 

1 1 11 29 (S) 391 

2 2 11 30 (S) 391 

3 3 11 87 (R) 391 

4 4 11 86 (S) 391 

5 5 11 37 (R) 391 

6 6 11 74 (S) 391 

7 1 12 67 (S) 391 

8 2 12 78 (S) 391 

9 3 12 36 (R) 391 

10 4 12 94 (S) 391 

11 5 12 82 (R) 391 

12 6 12 60 (S) 391 

13 1 13 30 (S) 391 

14 2 13 17 (S) 391 

15 3 13 82 (R) 391 

16 4 13 96 (S) 391 

17 5 13 80 (R) 391 

18 6 13 88 (S) 391 

19 1 14 49 (S) 391 

20 2 14 55 (S) 391 

21 3 14 22 (R) 391 

22 4 14 95 (S) 391 

23 5 14 75 (R) 391 

24 6 14 53 (S) 391 

25 1 15 18 (S) 391 

26 2 15 8 (S) 391 

27 3 15 71 (R) 391 

28 4 15 65 (S) 391 

29 5 15 57 (R) 391 

30 6 15 81 (S) 391 

31 1 16 54 (S) 391 
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32 2 16 24 (S) 391 

33 3 16 24 (R) 391 

34 4 16 78 (S) 391 

35 5 16 72 (R) 391 

36 6 16 67 (S) 391 

37 1 17 56 (S) 391 

38 2 17 45 (S) 391 

39 3 17 79 (R) 391 

40 4 17 95 (S) 391 

41 5 17 82 (R) 391 

42 6 17 80 (S) 391 

43 7 17 98 (S)b 392 

44 1 18 49 (S) 391 

45 4 18 96 (S) 391,393 

46 5 18 95 (R) 391 

47 7 18 99 (S)b 392 

48 8 18 21 (R)b 394 

49 1 19 83 (S) 393 

50 3 19 95 +(R) 393 

51 4 19 95 (S) 393 

52 5 19 91 (R) 393 

53 7 19 99 (S)b 392 

54 8 19 15 (R)b 394 

55 4 20 55 (S) 391 

56 5 20 0 391 

57 9 20 96 (R) 310 

58 10 20 98.2 (R) 310 

59 9 21 96.2 (R) 310 

60 10 21 97.5 (R) 310 

61 9 22 85.1 (R) 310 

62 10 22 96.8 (R) 310 

63 9 23 96.8 (R) 310 
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64 10 23 97.2 (R) 310 

65 9 24 99.0 (R) 310 

66 10 24 98.6 (R) 310 

67 9 25 96.2 (R) 310 

68 10 25 98.6 (R) 310 

69 9 26 95.0 (R) 310 

70 10 26 98.4 (R) 310 

71 9 27 98.2 (R) 310 

72 10 27 98.6 (R) 310 

73 9 28 93.7 (R) 310 

74 10 28 98.0 (R) 310 
a Stereochemistry inverted when assigned by CONSTRUCTS. This results from the presence of 

Rhodium in the TS where the product will have a hydrogen. b These substrates do not match with 

the template used in CONSTRUCTS. 

Chart and Table D8: Substrates set used in the substrate scope study with (DHQD)2PHAL.a 
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Entry Substrate Observed e.e. (%) Ref. 

1 1 79 (R) 365 

2 2 84 (R) 365 

3 3 63 (S) 365 

4 4 64 (R) 365 

5 5 88 (R) 365 

6 6 97 (R) 365 

7 7 99 (R) 365 

8 8 78 (R) 365 

9 9 94 (R) 365 

10 10 97 (R,R) 365 

11 11b 98 (R) 365 

12 12 35 (1R,2S) 365 

13 13 15 (1R,2S) 365 

14 14 42 (1R,2S) 365 

15 15 64 (1S,2R) 365 

16 16 63 (S) 372 

17 17 40 (S) 372 

18 18 63 (S) 372 

19 19 99 (2S,3R) 372 

20 20 94 (S,S) 372 

21 21 44 (R) 372 

22 22 99 (R,R) 373 

23 23 97 (2S, 2R) 373 

24 24 >99.5 (R,R) 373 

25 25 77 (S) 373 

26 26 91 (S) 373 
a (DHQD)2PHAL is catalyst 1a in Table D5. b the two double bonds cannot be distinguished by 

CONSTRUCTS. This substrate was discarded. 
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