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Abstract
Objective
To test for somaticC9orf72 hexanucleotide repeat expansion (HRE) and hexanucleotide repeat
length instability in the spinal cord of amyotrophic lateral sclerosis (ALS) cases.

Methods
Whole and partial spinal cords of 19 ALS cases were dissected into transversal sections (5 mm
thick). The presence of C9orf72 HRE was tested in each independent section using Repeat-
Primed PCR and amplicon-size genotyping. Index measures for the testing of mosaicism were
obtained through serial dilutions of genomic DNA from an individual carrying a germline
C9orf72 HRE in the genomic DNA of an individual without a C9orf72 HRE.

Results
None of the sections examined supported the presence of a subpopulation of cells with
a C9orf72HRE. Moreover, the C9orf72 hexanucleotide repeat lengths measured were identical
across all the spinal cord sections of each individual patient.

Conclusions
We did not observe somatic instability of the C9orf72 HRE in disease relevant tissues of ALS
cases.
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease characterized by rapid and progressive loss of motor
neurons.1 Although germline mutations in several genes
have been identified, the C9orf72 hexanucleotide repeat
expansion (HRE) is currently one of the most prevalent
and penetrant cause of ALS.1 In the general population,
C9orf72 contains less than 30 GGGGCC repeats in the first
intron, whereas in ALS cases the number of repeats ranges
between hundreds to thousands.1 Because it is difficult to
precisely size the repeat length above 30,2 many aspects of
C9orf72-related ALS have not been thoroughly
investigated.

Somatic mutations have been hypothesized as a possible
cause of ALS in cases who do not have germline mutations
in genes known to be associated with the disease.3 Repeat

sequences are particularly of interest for somatic mutation
analysis because their emergent secondary structures can
lead to expansion or contraction of repeat lengths.4 It is
also notable that the C9orf72 HRE can lead to cell-to-cell
transmission of dipeptide repeat proteins,5 and as such, it
is conceivable that a small population of C9orf72HRE cells
nested in the nervous system could potentiate ALS.

Recently, somatic recombination of APP has been demon-
strated to occur in Alzheimer’s disease neurons.6 Because
somatic expansion of C9orf72 hexanucleotide repeats is
a potential mechanism for ALS pathogenesis and because
routine blood DNA testing would not identify such somatic
events,2 we tested DNA extracted from finely sectioned
spinal cords of 19 patients with ALS for low levels of the
C9orf72 HRE.

Table Description of the ALS patient cohort

Individual No. sections Age Sex Site of onset Germline mutations

ALS01 108 50 M Left hand None

ALS02 75 69 F Right hand None

ALS03 96 62 F Bulbar None

ALS04 70 79 M Right leg None

ALS05 118 78 M Bulbar NEK1 p.P318L

ALS06 78 58 F Right hand None

ALS07 78 Left foot None

ALS08 88 Left hand None

ALS09 82 Right foot None

ALS10 22 66 M None

ALS11 28 62 M None

ALS12 30 61 M TBK1 p.L306I, CCNF p.E396D, SPG11 p.R1992Q

ALS13 17 57 M None

ALS14 38 66 F None

ALS15 11 78 F Bulbar None

ALS16 21 62 M None

ALS17 31 71 M None

ALS18 22 69 F None

ALS19 31 67 F SPAST p.R221C

Abbreviation: ALS = amyotrophic lateral sclerosis.
Site of onset refers to the initial location of ALS symptoms, Sections refer to the number of;5 mm spinal cord samples generated from each spinal cord. A
total of 1,053 unique sections were tested.

Glossary
ALS = amyotrophic lateral sclerosis; HRE = hexanucleotide repeat expansion; RPPCR = repeat-primed PCR.
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Methods
Samples
The spinal cords from 19ALS cases were included in this study.
DNA obtained from prior blood samplings of these cases
established them all to be negative for the C9orf72 HRE.
Samples were collected from 3 institutions: the Montreal
Neurological Institute and Hospital in Montréal, Québec; the
Sunnybrook Health Sciences Centre in Toronto, Ontario; and
the ALS Clinic at the London Health Science Centre in London,
Ontario. Average patient age at donation was 65.9 years, with
a male-to-female ratio of 1.29. A targeted sequencing approach7

was used to test for rare (minor allele frequency < 0.001) protein-
altering germline mutations in genes known to be ALS risk fac-
tors. Information regarding the ALS cases is listed in table.

Standard protocol approvals, registrations,
and patient consents
All participants signed an informed consent form that was
approved by the ethical review boards of institutions that
contributed the material.

Tissue sectioning and DNA extraction
Spinal cords were manually portioned into transverse sections
of approximately 5 mm thickness. Sections were then separated
along the coronal plane into dorsal and ventral halves, with only
the ventral areas being used in the present study. Each ventral
portion was separated into left and right ventral horns. Geno-
mic DNA was extracted using standard salting-out methods
from approximately half of both the left and right ventral
portions of every section available from each spinal cord.

C9orf72 HRE reactions
C9orf72 HRE genotyping8 was performed on blood DNA
samples (or sampling of the cervical area of the cerebellum if

blood was not available) to accurately size germline hex-
anucleotide repeat alleles. Repeat-primed PCR (RPPCR)9 was
performed on all sampled sections of each patient to assess for
the C9orf72HRE and to estimate the lengths of C9orf72 alleles
in each section. GeneMapper v4.0 (Applied Biosystems) was
used to visualize and estimate reaction fragment sizes. Lengths
of C9orf72 hexanucleotide repeat amplicons were measured
using GeneMapper compared to the GeneScan-500 LIZ Size
Standard (Applied Biosystems). Peaks from the RPPCR pro-
files were chosen based on the genotyping method results to
representC9orf72 alleles, which were plotted to assess variation
within normal-length C9orf72 hexanucleotide repeat lengths.

HRE mosaicism index measures
Genomic DNA from a patient previously established as
a C9orf72 HRE carrier was diluted in genomic DNA from
an ALS patient without the HRE to generate a percentage
of HRE within a sample (0%, 5%, 10%, 20%, 30%, 40%,
50%, and 100%). These dilutions were index measures for
the testing of C9orf72 HRE mosaicism within a section;
their RPPCR profiles enabled us to assess the sensitivity of
the method for each HRE dilution. RPPCR fragment length
profiles were visually compared between every spinal cord
section and the mosaicism index measures.

Data availability statement
The authors confirm that the data necessary for confirming the
conclusions of this study are available within the article and its
supplementary material. Raw data is available upon request.

Results
Mosaicism detection
Varying proportions of the C9orf72 HRE diluted in wild-type
DNA displayed unique profiles on RPPCR fragment sizing

Figure 1 C9orf72 HRE mosaicism RPPCR profiles

Genomic DNA from an individual with germline C9orf72 HRE was diluted in genomic DNA from an individual without germline C9orf72 HRE at various
percentages. HRE = hexanucleotide repeat expansion; RPPCR = repeat-primed PCR.
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(figure 1). We were able to detect as low as 5% mosaicism
based on the profiles generated by our assay.

Spinal sample testing
A total of 1,053 individual sections were tested by RPPCR
in the spinal cords of patients with ALS. No section showed
evidence of C9orf72 HRE at or above a 5% mosaicism level
in any of the spinal cords tested. All sections from the same
spinal cord showed the same profile of RPPCR fragments,
and RPPCR peaks (chosen by the amplicon genotyping
method sizing) showed that repeat sizing did not signifi-
cantly change across a spinal cord (figure 2).

Discussion
Because of the high penetrance of the C9orf72 HRE and the
accumulation of repeat RNA fragments and dipeptide
proteins,1,9 its pathologic mechanism must have a strong (albeit
time-dependent) effect. Therefore, there must be a threshold or
concentration at which the products and effects of C9orf72HRE
are toxic to cells and tissues. It is possible that low levels of
C9orf72 HRE not detectable by germline testing could be suf-
ficient to cause disease through accumulation of products.

Our study did not find evidence for C9orf72 HRE somatic
expansion in the spinal cords of patients with ALS. This does
not preclude the possibility that very low levels of expansion
may exist in patients with ALS. However, as we were able to
detect the levels of mosaicism at or above 5%, lower-
frequency somatic mutations would have had to occur late in
neural tissue development.

The lengths of C9orf72 hexanucleotide repeats across all
sections of the same spinal cord were identical. This result
confirms that C9orf72 hexanucleotide repeats are stable
when in the normal range10 and that if instability does occur,
it is restricted to expanded alleles.2 In C9orf72 expression
vectors, the number of hexanucleotide repeats has been
reported to contract or expand above a critical number of
repeats.4 Changes in C9orf72 hexanucleotide repeat length
might occur more readily in artificial systems, and in human
neural cells there may be a mechanism to prevent frequent
alterations. Very large C9orf72 HRE can exhibit a range of
repeat lengths across tissues of an individual10; however,
these pathogenic expansions likely occur in most or all cells
of an individual and the exact number of repeats triggering
the disease remains to be established.

Figure 2 RPPCR fragment sizes in the spinal cord sections of patients with ALS

RPPCRpeaks representing themeasuredC9orf72HRE alleleswere chosenbasedon the results of the amplicon genotypingmethod. ALS = amyotrophic lateral
sclerosis; HRE = hexanucleotide repeat expansion; RPPCR = repeat-primed PCR.
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Our study is limited by sample size, as it is difficult to acquire
large numbers of spinal cords from patients with ALS. Based
on our results, if somatic expansion occurs at the level de-
tectable by our assays, it is likely that it does not account for
a large proportion of ALS cases, not occurring in large clusters
of neuronal cells. However, as we sampled exclusively from
the ventral spinal cord, our assay did not test for somatic
events in dorsal neurons or glial cells, which could be sources
of pathogenic protein seeding.

Study of the C9orf72 HRE remains difficult because of the
technological limitations of sequencing GC-rich and re-
petitive regions of the genome. Techniques such as single
cell and long-read sequencing may allow detection of very
low-level somatic events and precise measurement of the
C9orf72 HRE length.
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Montréal, QC,
Canada

Author Design and concept
of study;
interpretation of the
data; and drafting or
revising the
manuscript for
intellectual content

Guy A.
Rouleau, MD
PhD, FRCPC

McGill University,
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