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Abstract

We review the aspects that uniquely characterize magnetoencephalography (MEG) amongst

the techniques available to explore and resolve brain (dys)functions. While its specific strengths

in terms of millisecond source imaging are emphasized, we also identify and discuss current

practical challenges, in particular in signal extraction and interpretation. We also clarify some

disadvantageous perceptions of MEG, including the misconception that the technique is re-

dundant with electroencephalography (EEG). Overall, MEG uniquely contributes to our deeper

comprehension of both the regional and large-scale brain dynamics: from the functions of on-

going neural oscillations and the nature of event-related brain activation, to the mechanisms

of functional connectivity between regions and the emergence of modes of network commu-

nication in brain systems. We explain how MEG is bound to play an increasing and pivotal

role in the elucidation of these grand mechanistic principles of cognitive, systems and clinical

neuroscience.
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After 45 years1–3 of developments and utilization, we shall reflect on the position

of MEG amongst the techniques available to explore and resolve brain (dys)functions.

This review focuses on the aspects that, in our opinion, uniquely characterize MEG. We

emphasize the specific strengths of the modality, such as its source imaging capabilities.

We also identify and discuss current practical challenges, in particular in signal extraction

and interpretation.

Because MEG and electroencephalography (EEG) are apparent sister electrophysiological

techniques that are both sensitive to the electrochemical current flows within and be-

tween brain cells, MEG is sometimes assimilated to be equivalent to EEG, with limited

scientific added value. We clarify these misconceptions and explain how distinct physical

principles make these two modalities complementary in many respects, rather than purely

redundant. In particular, we argue that MEG is the modality with the best combination

of direct and noninvasive access to the electrophysiological activity of the entire brain

with sub-millisecond temporal resolution, and ability to resolve activity between cerebral

regions with often surprising spatial, spectral differentiation and minimum bias. Indeed

and relatively to EEG, the accuracy of MEG source mapping is immune to the signal

distortions caused by the complex layering of head tissues, with highly heterogenous con-

ductivity profiles that cannot be measured with precision in vivo.

We explain these notions herein in details and conclude that MEG, used independently or
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in combination with other brain imaging techniques, uniquely contributes to our deeper

comprehension of both the regional and large-scale neural dynamics of the brain: from

the clarification of the nature of spontaneous and event-related brain activation, to the

elucidation of the mechanisms that yield functional connectivity between regions and the

emergence of modes of network communication in brain systems. As the functional role

and dynamical principles of the signal components present in the dense and intricate MEG

data volumes are getting clarified and better understood, we explain how MEG plays an

increasing and pivotal role towards the elucidation of the grand mechanistic principles of

cognitive, systems and clinical neuroscience. To this end, we shall emphasize that MEG

is particularly equipped to bridge human data with animal and computational models of

electrophysiology in health and disease.

We also review the principles of MEG signaling and the state of the art of the technology,

with a perspective on innovations on the horizon. We then highlight key MEG contri-

butions to neuroscience and discuss translations to the clinical practice. Along the way,

while we put forward actual limitations, current difficulties and uncertainties associated

with the technique, we also wish to clarify some disadvantageous perceptions of MEG.

Measurement principles and instrumentation
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The basic principles of MEG are simple; the sophistication lies in the sensing technol-

ogy involved and the methodology required to extract relevant signal information in the

widest variety of experimental contexts. Fundamentally, any electrical current produces

a magnetic induction (often popularly assimilated to a magnetic field4), whose strength

can be measured remotely from the current source e.g., with a pick-up coil. The mag-

netic flux across the coil surface induces an electrical current in the coil wiring material,

whose amplitude is instantaneously proportional to the magnetic induction’s and readily

measurable.

Basic signal origins

In MEG, the electrochemical currents circulating within and between neurons gen-

erate the magnetic induction. Post-synaptic potentials (PSPs) are considered the main

generators of these ionic currents3,5. There is also convincing evidence, though limited

in volume, that fast, 500–1000-Hz range ripples present in MEG signals could be related

to cell discharges6,7. Yet, they may also be explained by large spike components of PSP

activity due to voltage-dependent channel conductance8 (Fig. 1). The useful frequency

band of MEG signals is within [0.5-1000] Hz, with [1-80] Hz being the most typical9. We

discuss below the possible functional roles and interdependence across this wide spectral

range of brain signals10.
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Instrumentation: innovations on the horizon

In practical terms, the magnetic signal produced by neural currents in the nano-

Ampere (10−9A) range is formidably weak. The extracranial magnetic inductions are

indeed typically measured on a scale of femto-Teslas (10−15T), about ten to hundred

million times smaller than the Earth’s static magnetic field. This reality imposes to resort

to superiorly sensitive sensor technology. The present industry standards rely on pick-up

coils coupled with super-conducting interference devices (SQUIDs)2,3. SQUIDs imple-

ment the principles of quantum physics for the detection of small electrical currents, like

those induced by weak magnetic signals, with high sensitivity and large dynamic ranges.

State-of-the-art commercial systems feature coil magnetometers arranged in whole-head

arrays of about 300 independent channels, sampled at up to 30 kHz simultaneously. Mag-

netic induction travels through the air: MEG sensors are not attached to the scalp as the

entire sensing equipment is embedded in a 70-100 L thermally insulated tank, called a

dewar, filled with liquid helium. Superconducting temperatures minimize thermal noise

and therefore optimize data quality. Consequently, subject preparation times are greatly

reduced with respect to EEG as the contact-less and gel-free sensors do not need to be

positioned and carefully verified manually.

Another distinctive property of MEG is that magnetic induction is a vector signature
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of electrodynamics. What this means concretely is that MEG signals depend on the

location and orientation of the pick-up coils with respect to neural sources, which vary

between system manufacturers, and are relative to the participant’s head position in the

helmet. This represents a clear practical difference with EEG, who measures differences

of scalar electrical potentials between electrodes attached to the scalp. Although the

head’s shape and size obvisouly vary between individuals, the standardization of elec-

trode montages scaled to the individual anatomy and with a common nomenclature11

has greatly contributed to streamline the dissemination and comparison of EEG results

between instruments, studies and individual participants, including patients. In MEG,

both the monitoring of head movements during data acquisition and the registration of

head positions between participants are therefore important factors of data quality and

comparison, respectively. Besides online video monitoring of subjects, all MEG systems

feature real-time measurements of head position. Limited offline software solutions for

head movement compensation are available and can be necessary with special popula-

tions, such as infants12. Creative hardware solutions have been recently proposed, using

adjustable head casts to warrant consistent repositioning of the subject within and be-

tween sessions with millimeter accuracy13.

Also contrarily to EEG, MEG measures are reference-free: magnetic induction values are

not relative to a common measure. To measure absolute physical quantities is sometimes
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appreciated as a strong asset for MEG. In principle though, EEG datasets can always

be re-referenced with respect to their instantaneous arithmetic mean as a form of stan-

dardization14. Further, the dependence of MEG signal strength on head position tampers

with the advantage of collecting reference-free quantities. We shall see below that source

imaging obliterates the limitations attached to sensor data analysis, and asserts one spe-

cific strength of MEG with respect to EEG.

Overall, the MEG sensing technology is very mature but its sophistication and main-

tenance impose substantial capital and operating costs. Fortunately, emerging oppor-

tunities for more cost-effective solutions bode well of the long-term sustainability and

greater affordability of MEG as a research tool.

Helium-based cryogenics are constantly threatened by a looming shortage in natural

resources. Hence the development of alternative sensing and instrument technology is

vital to MEG, and other high-end instruments such as MRI scanners. Practical onsite

helium recycling solutions have emerged and approach 90% efficacy. They reduce weekly

refill interventions and costs to that of one or two cycles per year. Still, thermal insulation

affects negatively the sensitivity of the instrument: sensors are separated from the head

surface by a distance of at least 2 cm. Recent integration of SQUID sensors in a partially

adjustable helmet is a true breakthrough to improve signal strength, and to encourage
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developmental neuroscience MEG research15.

New disruptive sensing technology is becoming mature and is about to be ready for

prime time. Cryo-free HyQUID detectors with equivalent noise performance than tradi-

tional SQUIDs are now proposed in a commercially available system. Similarly, optically-

pumped magnetometers16 (OPM) based on radically different sensing physics principles

also represent an alternative to SQUID-based technology. Although less sensitive, OPMs

can be positioned directly onto the scalp surface and therefore pick up stronger field

strengths as they are brought closer to the brain neural sources17. OPMs are very cost-

effective, which also bodes well for easier access and therefore, greater adoption of MEG

methods by more neuroscientists.

The extreme sensitivity of present and future MEG sensing technology is challenged by

multiple sources of electromagnetic nuisances. Any moving metal object (e.g., car traffic,

elevators, carts and hospital beds) or electrically-powered instruments generate magnetic

inductions that are orders of magnitude stronger than the brain’s. Their influence can

be reduced by combining magnetometers to emphasize brain signals with respect to

environmental noise. Such gradiometers, arranged either in a radial or tangential (planar)

fashion with respect to the head surface, improve greatly signal quality but still require

magnetic shielding from the environment. The best solution remains the installation of a

heavy (20 tons) and multilayered shielding room to host the MEG instrument. However,
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this represents about a quarter of the investment cost and can be difficult to site. Lighter

and slightly more compact shielding solutions based on the active shielding technology

also used in MRI installations are possible alternatives.

Finally and remarkably, the MEG sensing technology can be used to detect magnetic

resonance phenomena at ultra-low fields (in the 10 to 100 mT range). In addition to

specific MR-related special advantages, there are potential benefits in resorting to such

all-in-one hybrid imaging technology: combined MRI and MEG can be obtained simul-

taneously, thereby limiting registration errors18. Yet, the lower magnetization induces

weaker signal strength and imposes longer MR acquisition times. It remains unclear

whether this research will truly penetrate neuroscience applications eventually.

Distinct capabilities for electrophysiology and imaging

MEG as a method for electrophysiology

By featuring channels arrays around the head and sensor signals originating from brain

physiological currents, MEG and EEG are sister techniques of noninvasive electrophysiol-

ogy. This apparent similarity has fueled a certain amount controversy about the actual

scientific and clinical added value of MEG. Some EEG scientists consider that the tech-

nology is simply redundant and not worth the extra cost19,20. This misconception has
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been entertained by the fact that to obtain measurable markers of brain activity, early

and still many current MEG studies have resorted to the signal extraction techniques of

EEG, by averaging multiple trials of sensor signals, time-locked to specific stimulus or

behavioral events11. The fact that both the timing and spatial properties of the result-

ing event-related fields (ERF) are only partially consistent with the extensively studied

nomenclature of event-related potentials (ERP) cannot be interpreted in favor of or

against MEG or EEG. If we imagine that ERFs were entirely concordant with ERPs, shall

we conclude that MEG is simply redundant with EEG? If ERF counterparts of ERPs are

absent, does this mean ERPs are actually artifactual? This apparent discordance is also

true for the power and spatial distribution of sensor signals in the typical frequency bands

of electrophysiology (δ, θ, α, etc.; Fig. 6a).

To understand why MEG and EEG are actually different and complementary tech-

niques for observing the electrical activity of the brain, we need to go back to the physics

of Maxwell electrodynamics4,5. These rules show that the spatial topography of mag-

netic induction and electrical potentials created by the same current source depend very

differently on key factors. Foremost, EEG signals are primarily and strongly affected by

the substantial difference in electrical conductivity between the scalp, skull and other

biological tissues. Magnetic permittivity, the magnetic equivalent of conductivity, is ho-
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mogenous and identical across all compartments, including the air between the scalp and

sensors. Consequently, the spatial topography of MEG sensor data is visually and quan-

titatively less smeared and distorted than that of EEG electrical potentials, produced by

the same physiological brain sources. This, to a certain extent, contributes to a clearer

interpretation of MEG sensor topography in terms of the putative anatomical locations

of its underlying brain sources. This also helps separate the contributions of brain sig-

nals from ambiguous physiological contaminants, such as ocular micro-saccades21 and

muscular artifacts22,23, which can be confounded with high-frequency brain signals in

EEG, but are more clearly identified from their distinctive sensor topography with MEG.

Artifact components can be eliminated or corrected when good-practice guidelines are

respected24.

The laws of physics however, impose a different set of challenges to MEG. MEG’s signal-

to-noise ratio (SNR) decreases faster with source depth, i.e. the distance between neural

generators and external sensors. Hence the belief that MEG cannot see deep in the

brain.This shall rather be interpreted as decreased sensitivity with depth, not as a plain

inability to detect activity from medial cortical or subcortical brain regions, as we review

further below. MEG is also relatively less sensitive to neural current flows with a radial

orientation, i.e. aligned along a virtual radius of the head, from its center to the scalp

envelope. Here too, the conception that MEG is entirely blind to radial sources would
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actually be valid only if the shape of the head were a perfect sphere5.

For all these reasons, and if we assume that brain activity, including the sources of event-

related components, involves regions presenting a variety of depths and current flow

orientations, there can be only and at best, limited correspondence between MEG and

EEG sensor data. We also simply need to bare in mind that these modalities actually

measure different, non-redundant physical quantities. Consequently, direct comparison

studies between the femto Teslas of MEG and the micro Volts of EEG sensor data can

prove more challenging than initially thought. The appreciation of converging or com-

plementary evidence between the techniques can actually be best conducted by assessing

their respective ability to resolve the physiological currents at their source, as discussed

below.

Yet, we also need to acknowledge that many neuroscience questions may not require

brain mapping: there is established and continued scientific interest and clinical signifi-

cance for MEG sensor data analyses, in their ability to discriminate between experimental

conditions, including with spatial-filtering25 and decoding techniques26, and to correlate

with or predict behavior27. They also suggest simple and practical new disease mark-

ers28. We shall however re-emphasize that the anatomical interpretation of scalp signals

remains ambiguous, even in MEG. The cross-talk between sensors due to signal smearing

represents a source of severe confounds, especially to functional connectivity measures29
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applied on scalp data. Source imaging can alleviate these issues.

MEG as an imaging modality

Relatively to EEG, the advanced sensing technology involved in MEG has attracted

the continued interest and expertise of the physics and electrical engineering community.

This influence manifests in approaching source localization and imaging as inverse model-

ing, a category of problems common to many subfields of applied physics and biomedical

imaging5.

Indeed, one truly distinctive advantage of MEG is arguably in producing time-resolved

maps of neural currents that are considerably less prone to modeling approximations than

EEG. There is strong evidence that EEG source models suffer from uncontrolled biases

caused by inevitable approximations in defining the head shape30, especially the skull

bone31. The presence of blood vessels also affects EEG source imaging32. More gener-

ally, the conductivity of head tissues remains non-measurable practically in vivo33,34, and

the approximated values used also impose a localization and amplitude bias on estimated

EEG sources35,36 (Fig. 2). Further approximations in modeling the electrode size and

drifts in skin-contact impedances also play a similar negative role37.

Ground-truth direct-comparison studies of MEG and EEG source localization, using elec-

trical sources implanted in realistic skull phantoms38,39 confirmed the greater sensitivity
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of EEG to model approximations. Localization errors of up to 25 mm were produced by

EEG source modeling, while the maximum MEG localization bias was limited to about a

centimeter, under the same experimental circumstances. Multimodal comparison studies

taking fMRI as reference tend to show lesser differences40, especially when simultaneously

recorded MEG and EEG data is processed jointly to yield, in principle, a superior, su-

peradditive joint source model of cortical generators41,42. Therefore, whenever possible,

a good-practice guideline is to record from at least a few EEG electrodes simultane-

ously with MEG. This augments the chances of obtaining converging evidence about the

underlying brain processes.

The sources of bias that are proper to MEG are well identified and controlled. The

sensitivity and therefore the spatial resolution of MEG source imaging are indeed uneven

across the brain: for instance, superficial cortical sources produce MEG signals up to 100

times stronger than deeper, subcortical structures at equivalent current strengths43,44.

However, there is both modeling45 and increasing experimental evidence that with op-

timized paradigm designs and signal extraction techniques, brain regions as deep as the

insula46, thalamus47, hippocampus48, amygdala49–51 and brainstem52,53 can be resolved

with MEG.

Concerning the influence of current flow direction, brain regions in sulcal walls (tangential

current flow) produce MEG signals that are stronger than sources along gyral crowns (ra-
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dial current flow). We shall also emphasize that, SNR differential effects notwithstanding,

the orientation of primary currents affects positively the spatial resolution of MEG source

imaging: recent empirical results in the visual cortex indicate that the activity of cortical

locations separated by about 1⁄2 mm can be resolved, if the angle between their respec-

tive current flow is at least 45◦, a range compatible with typical cortical gyrification54.

These results confirm simulation studies that demonstrate the sensitivity of MEG signals

to minute changes between cortical layers55 and at the sub-millimeter scale of cortical

columns56.

All these factors influencing the sensitivity of MEG source imaging are fully characterized

quantitatively from the physical forward model of an individual’s anatomy. SNR can also

be estimated routinely using empty-room recordings, i.e. when no participant is present

under the sensor array. This is another distinctive advantage of MEG with respect to

EEG, for which actual skin contact of the electrodes is required.

Nevertheless, with substantial operating costs and a capital investment that com-

pares to that of an MRI scanner, a research organization needs further sound reasons

to back up the initiation and development of an MEG program. The comparison with

MRI is relatively unfair though: in the early years, a crucial factor that facilitated the

development of MRI neuroimaging research was the fast-growing installation of clinical

scanners that were also made partially available to researchers. Hence, scientists were not
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primarily required to cover the platform’s operating costs. The clinical recommendation

and recognition for MEG, although growing57, have not been sufficient yet to increase

dramatically the number of clinical MEG units to a level that would facilitate access to

the broadest research community (see Box). Hence, the decision to initiate and maintain

an MEG program is a matter of institutional research strategy. The initiative needs to be

supported by a sufficiently large and diverse critical mass of investigators intrigued by the

unique assets of the technique. Financially, a clear plan needs to be laid out upfront so

that operating costs can be assumed by a combination of fees for access and institutional

funds.

Strategically, MEG imaging represents a strong and unique scientific asset in the

neuroscience portfolio of a resarch intensive institution: it is directly sensitive to neural

electrophysiology and therefore independent of a signal transduction model. The mil-

lisecond temporal resolution of neural signal dynamics across the entire brain is obviously

another landmark of MEG compared to functional MRI (fMRI), positron emission tomog-

raphy (PET), or optical techniques58. We have seen that multiple factors expose EEG

imaging to uncontrolled sources of localization bias. Other electrophysiological methods,

such as intracranial stereotactic EEG (SEEG) and electrocorticographic implantations

(ECoG) have obvious limitations in terms of invasiveness and coverage of the cerebrum

to a limited number of disease-prone regions.
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Other practical advantages over in-bore scanning with PET and fMRI include a safe,

quiet and open environment inducing minimal claustrophobic stress, especially in special

populations, with posture adjustable anywhere between upright to supine. Ferromagnetic

elements used in dental works and implants can cause complex artifacts59 but, contrarily

to MRI, do not pose safety concerns.

MEG also offers remarkably versatile concurrent signal acquisition and analytic com-

bination opportunities for the realization of genuine multimodal studies, with high-density

scalp EEG60,61, intracranial local field potentials62–64, deep-brain65,66 and scalp67,68 cur-

rent stimulation devices, all kinds of peripheral measures to study their coupling with

brain activity (eye tracking and pupil diameter, heart rate, skin conductance, muscle

electrophysiology and motion capture, behavioral equipment, etc.), and real-time neuro-

feedback69,70.

Reduced analytic complexity for greater adoption

One recurrent bottleneck to the broader adoption of MEG has been the perceived

intricacies of its data workflow. The reasons are multifaceted (Fig. 3).

First, MEG signals are rich and complex: we will review in the next section how this

is presently a matter of active research. Still, this also remains a source of uncertainty to

MEG users. They therefore need to be offered the best possible guidance to define the
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signals of interest in their data, and navigate the plethora of signal extraction measures

available. A constructive stance is to encourage investigators to formulate their re-

search hypotheses in terms of electrophysiological markers (e.g., event-related responses,

oscillatory components, cross-frequency interactions, inter-regional coherence, etc.) of

mechanisms related to a theoretical framework. Exploratory MEG studies are essentially

bound to fail, considering the volume of data and the analysis dimensions enabled by

MEG’s mass electrophysiology.

Another element that has somewhat negatively affected MEG’s development is that,

akin to EEG, the physics principles underlying source imaging are fundamentally ill-posed.

This means that an infinite number of source models can fit the sensor data equivalently

well. Such manifestation of mathematical ill-posedness is very common in many fields of

physics, signal detection and estimation theory, and can be addressed with sound method-

ological principles5. Nevertheless, this has originally given room to too many methods

presenting non-verifiable evidence of claims to excellence, aggravated by a lack of sharing

with the community following journal publication. This did not contribute to building

confidence amongst potentially new users of MEG.

Fortunately, this phase has recessed: the methods have grown mature and pragmatic,

with now high-quality commercial and academic software packages that have tremen-

dously augmented users access to training, productivity and their deeper understanding
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of methods and their limitations71.

Opportunities for machine-learning and big-data neuroscience

New approaches to MEG signal analysis have recently spun off from the tremendous

developments and growing availability of data classification and feature extraction tech-

niques, based on the principles of machine learning (ML)72. These methods emerged only

recently in the MEG arena, although already demonstrating very significant potential in

augmenting the scientist’s toolkit. Relatively simple implementation of ML decoding

techniques for multidimensional signal classification showed impressive applications in

identifying early components of visual object categorization73, in tracking the temporal

organization of spatial patterns of brain activity74, or that of a mnemonic template in the

context of perceptual decisions75. The fact that these methods are, for now, relatively in-

dependent of signal models make them an attractive complement to MEG researchers for

rapid evaluation of their data e.g., to assess the presence and spatio-temporal topography

of effects between experimental conditions or cohorts. Such approaches were recently

and beautifully extended to joint multimodal processing of MEG and fMRI data76: a form

of ML-based conjunction analysis of similar representations of features in both datasets

resulted in fMRI voxel clusters being animated with MEG’s millisecond temporal reso-

lution. Representations similarity analyzes of a similar kind were also extended to the

joint processing of MEG data with the outputs of a deep neural network, respectively
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obtained from and trained on the same visual categorization task77. This highly innova-

tive, multimodal approach promises to take the best advantage of neuromimetic models

to refine, and maybe discover, new mechanistic principles of brain functions, potentially

generalizable to other functional systems and patient populations.

The present renaissance of artificial intelligence methods is also boosted by access to

high-availability computing and large data storage resources. More generally, resorting to

big-data tools and methods is becoming increasingly strategical in neuroscience research

involving brain imaging: analysis pipelines have grown in sophistication tremendously,

and data volumes have inflated concurrently with the augmented spatial and tempo-

ral resolution of instruments. There is also a growing scientific motivation to combine

multiple data types (genotypes, imaging and behavioral phenotypes, clinical data, tissue

samples, etc.), which transforms every research participant’s record in a big-data vol-

ume. In parallel, community awareness is now growing towards expanding the curated

value and lifetime of data collections in public research: the increasing number of open

data-sharing initiatives emphasizes and incarnates stronger educational, economical, eth-

ical and societal values in science78. For the neuroimaging community, this represents

a vital opportunity to validate methods more thoroughly, and to overcome the limita-

tions of small-sample, low-powered and consequently, poorly reproducible studies, that

are eventually detrimental to the credibility of the field79.
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Until recently, MEG was lagging behind the MRI community in that respect80–82.

Reasons include the lack of a standard file format for MEG raw data, and the large

volume occupied by high-density recordings (typically >100MB per minute). Fortunately,

these bottlenecks are gradually, and at least partially, being overcome by the increasing

availability and versatility of software readers of most native data formats. Storage

capacity, especially in the cloud, has now become ubiquitous and more affordable.

The Human Connectome Project was first to distribute MEG data at a large scale,

from a subsample of its cohort, along with extensive multimodal MRI, behavioral and ge-

netic data83. With about 150 data volumes available, the Open MEG Archives (OMEGA)

is the second largest repository of resting-state MEG data, and contains the T1-weighted

MRI volumes of participants84 (Fig. 4a). The recent CAM-CAN initiative features data

from about 650 healthy participants within the 18-88 age range, combined with multi-

modal MRI and extensive cognitive testing85.

We shall rejoice that more of these initiatives are presently on the horizon, as they will

with no doubt increasingly contribute to improving data integrity and consistency across

sites, reproducibility of research results, and the development and benchmarking of new

analysis methods that were statistically too low-powered with smaller data cohorts (Fig.

4b).

Finally, flexible statistical inference methods based on non-parametric approaches have
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been designed to adequately handle the multiple dimensions of MEG data (space, fre-

quency and time, typically), and efficiently control for multiple comparisons in hypothesis

testing86,87.

To conclude, MEG occupies a unique, strong position in the landscape of human

neuroscience techniques. Conceptually and effectively, it plays a privileged and scientifi-

cally significant role in bridging human electrophysiology with other imaging signals and

modalities. Importantly, the access the technique provides to large-scale neurodynamics

is a tremendous opportunity to bridge the study of human brain activity with the mecha-

nisms identified and readily testable with animal and disease model electrophysiology, as

we shall see in the next section.

A window on large-scale neurodynamics

Many researchers that are new to MEG find themselves puzzled, if not frustrated

by the sheer volume and complexity of experimental data produced. What is signal?

Is this noise? How to implement a test to detect signal changes between experimental

conditions? How to measure functional connectivity? These interrogations are actual,

very active research topics in MEG. They participate to the broader objective of compre-

hending and exploiting how brain activation, in terms of regional and large-scale neural
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dynamics, is expressed in electrophysiology88. Yet, many potential users of MEG enter-

tain the perception that the field is not mature enough, or that the technique is too

complicated altogether. All things considered, these are questions that actually con-

cern all electrophysiology and imaging methods: the apparent simplicity of fMRI data

and of some widely-used analysis pipelines for instance, should not screen their intrinsic

limitations89,90 and the share of fragility in their methodological sophistication91.

MEG signals: rich and complex

Event-related components such as ERFs represent only a small fraction of the wealth

of information present in MEG signals. One key scientific objective presently, is indeed to

understand how transient or tonic responses emerge from and reshape the busy resting-

state activity of the brain92,93. This represents a conceptual, and somewhat disruptive

shift from the classical tradition of considering spontaneous, ongoing brain activity as

“neural noise”. It is necessary though, to comprehend the rich expressions of distributed

and interdependent neural dynamics available in MEG signals, and use the most of the

modality’s imaging capacity. Electrophysiology is not the only domain of biology presently

going through a similar change of paradigm, exploiting the higher-order statistics of

experimental measures beyond the traditional trial or group average.

Bridging with other imaging modalities and animal electrophysiology contributes to
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a deeper comprehension of the nature of brain signals observed with MEG imaging94.

For instance, the explosion of interest in fMRI resting-state and task-based connectomics

prompts for the identification of equivalent signaling mechanisms in neural electrophys-

iology95,96. Counterintuitively, there is little correspondence between MEG and fMRI

resting-state networks (RSNs), when MEG source signals are extracted in the frequency

bands that showed the strongest correlation between electrophysiology and fMRI, namely

γ97,98, but also slower oscillatory ranges such as δ and θ99.

In fact, MEG time series in the [15-35]-Hz β range, when processed with fMRI-like

data-driven resting-state pipelines, were first to reveal RSNs compatible with fMRI’s to-

pography100. Studies had shown indeed that β-band LFP signals were weakly negatively

correlated, with blood-oxygen dependent (BOLD) traces99. γ and the slower BOLD-

correlated frequency bands (δ through α) were later shown to also form an electrophys-

iological scaffold for RSNs101, when combined using cross-frequency coupling measures

translated from animal and intracranial human electrophysiology102 (Fig. 5 and Fig. 6b).

Bringing everything together: polyrhythmic mechanisms of brain

functions

Taken together, and although seemingly complicated, these observations are actually

mutually compatible when considering a mechanistic construction. Here we propose one
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possible model of polyrhythmic integration to reconcile published reports that are seem-

ingly disparate across the frequency spectrum of electrophysiological signals. Our purpose

is essentially to propose a roadmap to guide future research, including the formation of

testable hypotheses for scientists interested in MEG.

At the mesoscopic regional scale, slower rhythms (δ through α) mark the phase of relative

excitability of cell assemblies10,103. γ bursts tend to occur in volleys nested at certain

phases of these slower rhythms, a well-studied phenomenon of coupling across frequencies

captured by e.g., phase-amplitude coupling (PAC)104,105 measures (Fig. 6b). There is

increasing evidence106 that γ cycles could represent timed opportunities for neural rep-

resentations of e.g., incoming stimuli to be registered by cell assemblies and propagated

further downstream in a bottom-up fashion. β oscillations so far have not been found to

pace γ bursts, and do not seem to be driven directly by co-localized slower rhythms in

the human resting-state101. According to computational models and nascent experimen-

tal data107, they are rather thought to signal top-down modulations from higher-order,

executive regions in brain networks (Fig. 6c & 6d).

A global roadmap for MEG to build on these recent and still relatively sparse advances

would ideally consist in:

1. further clarifying the physiological principles structuring the local-to-global dynamics

of neural oscillations,
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2. defining measures of regional activation and inter-areal communication in brain

systems that are driven by these biological principles,

3. using these measures to survey the dynamical repertoire of the resting brain, which

remains largely uncharted,

4. understanding how sensory inputs interact with this repertoire, enabling functional

integration, and eventually behaviour.

Approaching future MEG research with this plan would open further considerable

perspectives, for instance by verifying that aberrant repertoire phenotypes are expressed in

diseases. This would enable a new generation of electrophysiological markers of pathology,

and eventually new forms of interventions.

Contributions to neuroscience

Research productivity

Our bibliographic survey (source: Web of Knowledge) indicates that in volume, the

yearly production of scientific publications concerning MEG has been increasing over the

past 25 years. About 750 indexed journal articles and conference proceeding entries are

published on an annual basis (Fig. 7a). However, although fMRI and PET were devel-
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oped more recently – fMRI some 20 years after MEG – their respective volume of research

production approaches 3 (for PET) to 8 (for fMRI) times that of MEG’s. The historically

oldest technique of all, EEG, remains the leading integrative neuroscience tool, with fMRI

as close runner-up. In addition to continued scientific pertinence, EEG’s longevity and

preeminence are supported by its relative affordability, which facilitates access in most

research organizations, and the emergence of low-cost, consumer-grade EEG products

for an updated range of applications such as brain-computer interfaces and biofeedback

explorations108. One particular distinction of MEG with respect to EEG’s considerable

volume of research is source imaging and modeling as a particular topic of interest. This

concerns only about 6% of all EEG research, compared to at least a third in MEG. We

also note that since the turn of the 2000’s, the research output of all techniques has been

slowly declining relatively to fMRI’s (Fig. 7b).

MEG presently contributes 5% of the neuroscience research resorting to the techniques

surveyed, although with increasing impact (Fig. 7c). As of 2015, about 10,400 articles

cited published MEG research, with an average of 8 citations per MEG article. Fur-

ther, the geographic distribution of the community shows healthy diversity (Fig. 7d) and

growing stamina: at the turn of the 1990’s 52 organizations had researchers publishing

with MEG. This number grew tremendously around the year 2000 with 433 contribut-

ing institutions, and is now reaching above 1,000 research organizations involved in or
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collaborating on MEG research over the past 5 years.

Highlights

We have already reviewed the unique contributions and potential of MEG to study the

large-scale dynamics of brain activity. This truly represents he strongest scientific asset

of the technique.

More thematically, MEG users have been investigating the principal topics of systems

and behavioural neuroscience, with greater representation from systems, cognitive and

clinical research studies, the strong presence of methodological developments, and emerg-

ing themes such as resting-state brain research (Fig. 7e). Excellent topical reviews are

available to dive into each subfield in details: methods109, the integrative neuroscience

of language110, consciousness111,112, and translational aspects to clinical neuroscience,

including epilepsy113,114, autistic spectrum disorders115, movement disorders116, etc.

We wish to highlight an experimental approach that is not specific to the modality,

but which has gained significant momentum in MEG. It consists in entraining neural

systems with steady-state sensory stimulation, or to detect brain activity that is tem-

porally coherent with behavioral or peripheral measures, such as movement parameters.

Such experimental paradigms take great advantage of the temporal resolution of the

technique and enhance SNR by “tagging” neural responses with stimulus-imposed or
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-induced frequencies of interest. A body of compelling work has grown in audition117,

including prosodic features of natural speech118,119 and music120 perception, vision121,122,

attention123,124 and motor system125 research using such methodology.

The reader may refer to our commented bibliography and other recent reviews9,126

for more detailed highlights of MEG contributions to neuroscience.

Conclusions

We have reviewed MEG as a neuroimaging modality in its own right, for the widest

range of integrative neuroscience research topics. Although its scientific presence is quite

strong, MEG could attract a larger and broader community of scientists. Mature advances

in research methods and practical tools are now available to make MEG more accessible.

Although the signals are complex, their extraction and interpretation can be facilitated

by the emergence of testable mechanistic frameworks of interdependent neural dynamics.

Akin to MRI and PET, initiatives to share large MEG data repositories openly are now

well underway: this is beneficial to establishing normative and disease-specific variants

of electrophysiological activity, and to the reproducibility and generalization of research

methods and results.

Commercial entities could presently better manage the expectations of practitioners

to avoid misconceptions about MEG as a routine clinical modality. Further and looking
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forward, they could deliver stronger efforts towards the integration of research tools in

certified analytic pipelines. This would with no doubt increase the yield of MEG in the

epilepsy clinic, and see the modality penetrate more subspecialities of neurology and

neuropsychiatry.

We shall also emphasize that MEG is a technique that readily bridges with other

measures and methods such as electrophysiology (intracranial LFP and scalp EEG), blood

flow and oxygen metabolism (NIRS), brain stimulation (tDCS, tACS), which can all be

performed concurrently with MEG. This offers researchers tremendous opportunities to

cross-validate findings between techniques, between human and animal bodies of work,

and to build on the super addition of jointly processed multimodal data volumes.

To conclude, the sensitivity of MEG to a large spectrum of fast, oscillatory brain

signals, combined with its superior ability to map their anatomical origins, makes it a

powerful tool to verify predictions from theoretical frameworks concerning brain functions,

the mechanisms of directed connectivity in brain networks127,128, and more generally

perception and behavior as biological expressions of predictive inference129–131.
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Box: Towards increased clinical adoption?

The actual value of clinical MEG for epilepsy is now well documented and argued,

with large-volume retrospective studies reporting on the level of agreement between

the noninvasive test and standard-of-care approaches (e.g., invasive EEG) in severe

cases113,132,133. Yet, retrospective studies are also limited by design: if MEG is

concordant with invasive tests, then it is deemed equivalently good as the latter;

if it is discordant and points at other possibly epileptogenic brain regions, results

need to be carefully assessed depending on whether the standard procedure actually

led to long-term seizure-freedom. Ideally, multi-centre prospective trials of MEG

predictions would need to be conducted, with intracranial explorations guided in part

by MEG source imaging, followed by surgical resections, to fully assess the unique

insight provided by MEG.

Other practical limitations include the very duration of present MEG tests, typi-

cally hour-long recordings, essentially to minimize cost and maximize patient comfort.

This is often very short to capture canonical epileptiform events such as interictal

spikes and even more rarely so, seizures, which are still considered of highest value

for clinical diagnosis. Tests are also often performed as outpatient procedures, with

patients on medication, which further reduces the yield in terms of paroxystic epilep-

tiform events.
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Considering the premise that a patient brain is constantly the siege of a neuro-

logical or neuropsychiatric disorder, clinical MEG research needs to point at other

possible markers of aberrant ongoing or stimulus-response brain activity as alterna-

tive expressions of disease. A considerable body of work in autistic spectrum disorder

indicates that simple MEG measures, easily implementable in the clinic, of delayed

early auditory responses are indicative of the syndrome’s severity28,115, are concor-

dant with MR tractography, and predisposing gene dosage134.

Altered expressions of background brain rhythms represent another source of electro-

physiological MEG markers that remains relatively uncharted. This is an opportunity

for MEG clinical research to verify the promises of animal research and diseases mod-

els, in the greatest variety of insults and disorders that affect the human brain135–137.

As we discuss and illustrate elsewhere in this review, such research can only benefit

from the consolidation and growing availability of large databanks of control MEG

volumes, to help identify how these new disease markers deviate from normative

variants84 (Fig. 4).

MEG is clinically prescribed and reimbursed in a few countries for specific in-

dications such as pharmacologically intractable epilepsy, and presurgical functional

mapping of brain tumors. We note in passing that the clinical recognition, including

reimbursement procedures of fMRI tests is still vastly lacking as well. In principle,

clinical demand shall boost the number of installations, and improve access to re-
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searchers, eventually and virtuously closing the loop back to more clinical indications

for MEG tests. This wishful scenario has not entirely happened yet: MEG clinical

programs typically see anywhere between a dozen to a maximum of a couple of hun-

dred epilepsy cases annually. This situation can pose challenges in terms of financial

sustainability if not complemented by a critical mass of funded research studies or

intramural institutional commitment. Brain tumor cases are rarely seen because of

MEG analysis pipelines that remain time-consuming. This is a factor typically incom-

patible with the time pressures of clinical decision-making and surgical interventions

in neuro-oncology. It is the present reality that so far, MEG vendors have delivered

beautifully crafted instruments, without investing enough resources to develop truly

efficient software analysis pipelines to serve the special needs of clinical practitioners.

Productive MEG clinics are those who have invested in the brain power to make up

for commercial lacunas.

34



References

1. Cohen, D. Magnetoencephalography: evidence of magnetic fields produced by
alpha-rhythm currents. Science 161, 784–786 (3843 1968).
The first demonstration of brain magnetic fields measured outside the human scalp.
The core principle of using a specially-designed multilayer magnetically shielded
chamber is introduced. Signal averaging reduced environmental magnetic noise
and revealed modulations of alpha rhythms related to eyes open/closed.

2. Cohen, D. Magnetoencephalography: detection of the brain’s electrical activity
with a superconducting magnetometer. Science 175, 664–666 (4022 1972).
The seminal demonstration that SQUID superconducting detectors grealy im-
proved the sensitivity of MEG. Also features simultaneous EEG and MEG record-
ings with the first discussion concerning their respective merits. Also first recording
of MEG patient data.
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Figure 1: Cellular origins of MEG signals – (a) For the sake of simplicity, let us consider
the cortical pyramidal neuron as the epitome of elementary cellular generator of MEG
signals. All physiological currents from all cell types generate a magnetic induction; the
elongated morphology of the pyramidal neuron makes the net primary current circulation
relatively constrained along the cell, which is a factor of signal strength in comparison
to more stellate cellular morphologies. The primary current results from an imbalance in
electrical potentials between the apical dendritic arborescence of the cell, and its soma
and more basal dendrites. The magnetic induction isolines in orange are perpendicular to
the primary current flow and can be picked up outside the head. The source origins are
twofold: 1) the post-synaptic potentials (PSP), including fast, large-amplitude sodium
spikes (see text) and 2) axonal discharges (action potentials, AP). The slower components
of the PSPs are substantially smaller in amplitude than the APs. (b) At the scale of cell
assemblies, the mass effect of slower PSPs is stronger than that of APs, due to their
greater overlap in time without requiring rigorous synchronization. Computational models
and empirical evidence show that a minimum of 10,000 to 50,000 cells are required to
produce a signal detectable with MEG8. It is possible, in principle, that fast PSP spiking
activity, and possible shadows of APs, be detectable in MEG.51



Figure 2: An example comparing MEG and EEG – Synthetic data was generated by
impressing a simulated uniform current density within a 1-cm2 patch of cortical surface
(shown in green panels b and c). The cortical surface and the other tissue compartments
(scalp, skull bone, cerebrospinal fluid) were that of the ICBM152 template, available in the
Brainstorm open-source application138. The corresponding, ground-truth MEG data was
simulated on the sensor configuration of a 275-channel CTF (axial gradiometers) system.
The 256-channel EEG sensor configuration was that of Electrical Geodesics. The refer-
ence head model was derived using the OpenMEEG boundary element method139 (BEM)
with default parameters, also available in Brainstorm. (a) Resulting MEG and EEG sen-
sor topographies for the simulated cortical source. (b) Estimated cortically-distributed
currents using the weighted-minimum norm estimator available in Brainstorm, with de-
fault parameters (amplitude thresholded above 50% of maximum): the EEG source map
has a localization bias pointing at the gyral crown lateral to the actual source loca-
tion. This bias is emphasized when using a more typical electrode density of 64 channels
(Brain-Product montage). (c) Source estimates obtained using approximations of the
head model: three-shell concentric spheres adjusted to the scalp surface, and altered
conductivity values (+25% for scalp, -25% for skull bone). As predicted from physics
of magnetic induction, the MEG source map is immune to geometric and conductivity
approximations, relatively to the EEG’s. This latter has considerably lower-amplitude
than the actual current strength (note distinct color scales for MEG and EEG).
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Figure 3: Major steps imposed and possibilities offered by MEG analytics – Akin to other
brain imaging modalities, MEG requires that several important procedures are followed
in data analytics. 1) The preprocessing steps are crucial to assure that data quality is
optimal at the time of collection, and before engaging sophisticated signal extraction
procedures. Data segments contaminated by artifacts need to be identified and rejected
or attenuated. 2) The modeling stage for MEG imaging requires that a few important
options for parameters selection be considered carefully (e.g., template vs. individual head
shape, noise definition, image reconstruction parameters). 3) Signal extraction usually
depends on the design of the experimental paradigm and is very versatile in MEG. 4) The
set of possible measures is immense, because of the multidimensional components of the
data (space, time, frequency). 5) The final statistical steps can either include inference
and hypothesis testing, or statistical learning techniques for signal classification, and other
derivatives.
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Figure 4: Towards big-data MEG? – (a) Illustrative example of the outcome of an MEG-
imaging database (data from OMEGA84): 96 healthy participants were scanned in the
resting-state during 15 minutes with their eyes open. MEG imaging of their cortical
activity was performed using the same method as for Fig. 2. The average distribution of
the magnitude of ongoing brain rhythms (from δ to γ) found in the cohort are registered to
and represented on the Colin27 brain template cortical surface. (b) Large data repositories
such as OMEGA can be used to establish normative and patient variants of any analytic
measure taken from MEG source signals. This is illustrated here where for each measure
and each brain location, the values obtained in a tested individual or group dataset can
be assessed with respect to their empirical distribution in the databank. (c) Practical
summarizing and visualization solutions can reveal the anatomical locations where e.g.,
a single or cumulated measures from the individual data from one patient deviate from
those observed in the reference normative repository. Here for instance, the colored
brain locations indicate where abnormal strengths of oscillatory brain activity have been
detected in the resting state and in multiple frequency bands, in an epileptic patient.
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Figure 5: Frequency-dependent expressions of inter-regional connectivity – a) Illustration
of frequency-dependent functional connectivity measures. MEG source imaging of 5-
min resting-state (eyes open) data in typical α, β and γ frequency bands was obtained
using the same methodology as in Fig. 4 (not shown here; data sample from OMEGA84).
Coherence in all frequency bands of interest between every pair of cortical source locations
was extracted and thresholded above the 90th percentile. Virtual white-matter tracing
yields convenient and anatomically compatible representations – here only for illustration
purposes – of such complex, multidimensional connectivity data (Sebastien Dery: Baillet
Lab). b) RSNs obtained with MEG imaging – Regions that demonstrate similar dynamics
of phase amplitude coupling fluctuations over minutes of resting-state MEG recordings
segregate in networks that are similar to those found in fMRI. The first four principal
spatial modes of connectivity found across 12 subjects are shown. See (Florin & Baillet,
2015)101 for details on the approach.
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Figure 6: A possible mechanistic framework of polyrhythmic brain activity – (a) A typical
power density spectrum (80-s resting-state data from a 55-year-old healthy adult [eyes
open]; Welch’s method, 2-s windowing) shows the distribution of power averaged across
all 275 channels of a CTF MEG system. The nomenclature of typical brain rhythms is
reported – note the prominent peak in α power in the [8–12]-Hz range. (b) These rhythms
are coupled and interdependent, which can be revealed by measures of cross-frequency
interactions, such as phase-amplitude coupling (PAC). Here, PAC analysis of MEG traces
obtained in the resting-state (10 minutes) of a healthy 40-year-old adult (eyes open) shows
that the amplitude of gamma activity is modulated by the phase of slower oscillations.
Each insert indicates i) the average of ongoing MEG source time series epoched on a
[-0.5 - 0.5] s time window about the trough of the local slow oscillation the most coupled
(PAC) with fast γ activity in the [80-150]-Hz range. ii) the average time-frequency
decomposition of the power of the MEG source signal indicates how it is modulated
with the phase of the underlying oscillation [see (Florin & Baillet, 2015) for details]. The
colored dots on the cortex indicate the locations where the sample signals were extracted.
(c) The slower δ to α rhythms mark the net excitability of cell assemblies consisting of slow
and fast inhibitory (SI and FI) and excitatory (E) cells. Possible theoretical frameworks
on the organization of brain rhythms, such as the model of synchronized gating 101 and
others140,141 consider that brain network formation and communication is enabled by
the phase alignment of these cycles between regions. This can be facilitated by the
mechanism of dynamical relaying 142 via the thalamus or cortical hub regions. While γ
bursts could contribute to bottom-up signalling (blue arrows), β bursts could manifest
top-down modulations of upstream regions (magenta arrows), and thereby contribute to
the implementation of contextual predictive inference of input signals (INPUT). (d) Such
dynamical scaffold, among others possible, helps formalize testable hypotheses from MEG
signals. For instance, the occurrence of a stimulus (INPUT) interferes with the ongoing
E/I dynamics in a primary sensory region. This may provoke the resetting of the phase of
local E/I cycles and trigger the temporal prediction of the next stimulus occurrence via an
afferent volley of β oscillations. This process repeats and paces the net inhibition of the
local cell assembly according to the next anticipated stimulus occurrences. Such model
predicts that input signals to a brain network would fall optimally at the phase of maximum
net excitability of the input node. One consequence would be to maximize the perceptual
processing of the stimulus, by facilitating the relaying of its neural representation further
downstream106.
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Figure 7: Snapshots of MEG science – (a) Annual volume and (b) proportion of published
articles and conference proceedings concerning the major techniques for measuring brain
actively non-invasively. (c) Impact of MEG on published research, measured in terms
of citing articles and citations per MEG article, on an annual basis. (d) Geographic
distribution of published MEG articles per million people. Inserts indicate the Top-4
countries with highest rate of publication per capita, and the number of institutions
whose scientists have co-authored a MEG-related publication over a period of 5 years,
circa the years indicated. (e) Main topics covered by MEG research so far: data is from
the over 10,000 MEG-related indexed publications (Source of bibliographic data: Web of
Knowledge).
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