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Abstract 

We  present  a mechanical model of the plant cell wall viewed as anisotropic two dimensional soft 

matter, where a dilute dispersion of cellulose fibrils of variable orientations are uniformly 

distributed on a curved deformable viscoelastic matrix membrane. The plant cell wall model 

integrates the elastic energy of the curved membrane, the nematic Landau-de Gennes fiber 

orientation energy, and competing curvophilic and curvophobic interactions mediated by the 

membrane geometry and the fibrils’ orientation. The selected membrane geometry is a straight 

cylinder of variable cross-section, whose shape varies from a circle to a sharp super-ellipse as in 

many cell specimens, and whose size increases as in plant cell wall growth. Model predictions 

indicate that due to curvature-orientation couplings, the fiber orientation display three modes: (i) 

line (along the cylinder axis), (ii) helical (oblique to the axis), and (iii) ring (normal to the axis), 

where the former arises under large curvature and the latter under small one.  In addition to 

aligning the fibers in the line mode, high curvature also promotes the order of the fibrils. The 

predicted fiber structure is validated with fiber structures in the cell wall of tracheids. The 

structure-properties relations for super-elliptical membranes with gradient curvature are 

established and its role in cell growth shape is predicted. The principal mechanisms are the role of 

fiber orientation and order on bending stiffness: (a) orientation along the axis has no stiffening 

effect, (b) orientation along the azimuthal direction produces maximal stiffening, and (c) fiber 

randomization softens the membrane. The largest fiber stiffening effect is found when the 

membrane length scale (radius of curvature) and fiber length scale (curvophobic/curvophilic 

energy ratio) are equal. It is found that super-elliptical shape invariant growth and expansion is 

preferred for cells with sharp/ soft corners and straight/stiff sides. Otherwise growth promotes 

shape changes. Lastly, master plots that categorize fiber structures by the number of multimodal 
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regimes (line/helix, line/helix/ring) that arise in super-ellipses, are used to relate shape and size to 

domain structures that affect toughness and modulus. 

1.  Introduction  

Two dimensional anisotropic soft matter exhibits a combination of long range in-plane 

orientational order of filament inclusions and deformable membranes (or interfaces), that interact 

through novel surface phenomena such as curvophobic and curvophilic effects.  Examples of these 

materials include: (a) liquid crystal interfaces and films1 of interest to the display industry2 and 

online stress field measurements3 due to their optical properties, (b) nematic shells of interest to 

biotechnological and pharmaceutical researchers owing to their structural similarity to vesicles4, 

and (c) graphite foams for novel heat transfer applications in electrical devices5.  In addition, 

biological structural and functional materials including fiber-laden membranes such as plant cell 

walls6 and protein containing lipid-bilayers7, are 2D anisotropic membranes of interest to 

researchers in biophysics and biomimetic materials development. Two dimensional self assembly 

and orientational order of rods, fibers, and filaments on soft deformable thin substrates remains 

partially understood despite its biological and biomimetic relevance. In this work, the delicate 

interplay between membrane geometry and embedded fiber order in biological fiber-laden 

membranes is explored using a model that integrates membrane elasticity and liquid crystal fiber 

ordering.  

Biological fiber-laden membranes are conveniently classified as:  

a) Hard fiber/soft membrane: the orientation of the fibrous fillers is fixed and the 

membrane adapts to the fiber structure by modifying its shape. A class of proteins called 

membrane-curving proteins such as clathrin adaptor protein complexes and BAR domain proteins 
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that provide scaffolds for spherical and cylindrical membrane curvature are a well-known example 

of this case8;  

b) Hard membrane/soft fiber: the membrane shape and size are fixed and the fiber 

orientation adapts to the membrane geometry by changing its conformation. An example of this 

case is antimicrobial peptides adsorbed onto microbial cell membrane resulting in cell lysis. It has 

been reported that the effectiveness of antimicrobial activity of these peptides depends strongly on 

concentration, orientation and degree of insertion of these peptide filaments onto the membrane7;  

c) Soft fiber/soft membrane: the membrane shape and the fiber orientation are coupled and 

hence adapt to each other dynamically by simultaneously varying fiber structure and membrane 

shape. The plant cell wall, a structural element in the order of nanometers that surrounds every cell 

of a plant is an example of this class. This generic class reduces to case (a) when the fiber 

orientation is fixed, and case (b) when the membrane geometry is fixed.  The generic class (c) is 

well represented by the plant cell wall and is the focus of this paper.  

The plant cell wall is a multifunctional, dynamical structure that is made of sequentially 

deposited layers of different thickness, chemical constituents and composition, and structural 

organization9.  The primary cell wall is the first layer to be laid down after cell division and its 

formation coincides with cell growth9. When the cell reaches its final size, three layers of 

secondary cell wall are laid over the primary cell wall in the inward direction; see Figure 3 below 

for details. The central layer, called secondary layer 2 (S2), comprises about 80–90% by volume of 

the entire cell wall. Towards the lumen (a cavity left by the cell after shrinkage and death of the 

cell) is the secondary layer 3 (S3). At the other side of S2, there are the secondary layer 1 (S1) and 

the primary cell wall9. Growing cells are surrounded by primary cell wall and lack secondary cell 

wall layers. The primary cell wall has the following functions: it supports the cell membrane 
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against the turgor pressure contained within the cell; it undergoes an enzyme controlled expansion 

under turgor pressure and regulates the direction of expansion contributing to growth and form of 

a plant; it cooperates with adjacent cells under turgor pressure to build a three-dimensional tissue. 

The secondary cell walls provide additional mechanical strength to the tissue and in some seeds 

perform energy storage. The shape of these membranes depends on the types of the cells. For 

example, compression wood cells of spruce are cylinders of circular or elliptical cross-section, 

while normal wood cells of spruce are often cylinders with super-elliptical cross-section10.  

The plant cell wall can be considered as a reinforced biological membrane consisting of 

cellulose microfibrils of high tensile strength embedded in a matrix of polysaccharides and 

structural glycoproteins9. These cellulose microfibrils in the extracellular matrix are oriented in 

strategic directions to generate commonly observed textures such as line, ring, helix, crossed helix 

and helicoid11. The orientation of cellulose microfibrils in secondary cell wall layers
 
governs the 

physical properties of wood and that in primary cell wall controls the shape of the cell and 

contributes to the morphology at the tissue and organ level12. The mechanisms by which the 

microfibrils are orientated in a specific direction are not well understood 13. In an earlier attempt to 

understand this mechanism, a mechanical model based on force balance on an open fiber 

reinforced cylinder representing reinforced biological membranes concluded that the fiber 

orientation angle with respect to the long axis of the cylinder should be 54.7° at maximum volume 

of the cylinder and the volume of the cylinder will diminish towards zero at lower and higher fiber 

angles14. For a closed cylindrical membrane of constant volume, the system can change its cross-

sectional shape from a circle to an ellipse depending on the system volume, while maintaining the 

fiber orientation angle with respect to the long axis of the cylinder at 54.7°. This theoretical 
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prediction is in contradiction with experimentally observed microfibril angle in plant cell walls 13 

that can range from 0° to 90°. 

In a later mesogenic self-assembly model, based on the observed structural similarity 

between the helicoidal texture and chiral nematic liquid crystals and defect patterns characteristic 

of chiral self-assembly observed in secondary cell wall of some plant species, it has been 

hypothesized that these structures arise through liquid crystalline self assembly15. According to this 

hypothesis, when the concentration of the microfibrils exceed Onsager’s critical fiber 

concentration threshold, the interaction between these microfibrils result in the alignment of 

microfibrils in a specific direction as an attempt to minimize the  excluded volume of the 

microfibril16.  A review supporting this hypothesis by analyzing it from the aspects of anatomy and 

developmental biology has emphasized on the necessity of characterizing the nature of the forces 

inducing this self-assembly17. It is also known that the cellulose microfibrils extracted from plant 

cell walls by acid-hydrolysis self-assemble to form chiral-nematic phases in vitro18,19. Despite 

scant in-vivo experimental evidence and/or data, this hypothesis is strongly supported by theory 

and simulations based on well established liquid crystal theory. This is evident from the recent 

review that emphasizes the continuum Landau-de Gennes theory that yields testable and verifiable 

predictions of thermodynamical, textural, and rheological phenomena observed in biological 

systems20. For an extensive review of mesoscopic models employed to quantitatively describe  

biological liquid crystalline phases and processes see reference [20]. Recently21, a mathematical 

model based on the Landau–de Gennes theory of liquid crystals has been used to simulate defect 

textures arising in the domain of self assembly due to the presence of secondary phases. This study 

concludes that the defect patterns observed in some plant cell walls are those expected from a truly 

liquid crystalline self-assembly process, supporting the above hypothesis21.  
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In the present work, we use theory and simulation to investigate the possibility that the 

fiber cellulose microfibril orientation is imparted by the interaction between membrane curvature 

and embedded fiber order, when cellulose microfibril concentrations is less than that of Onsager’s 

critical limit, and partially validate the model predictions through available experimental 

observations.  An example of the possible effect of membrane curvature on microfibril orientation 

in plant cell walls is found in the abrupt changes in microfibril angle in the S2 and S3 layers at the 

corners of juniper tracheid plant cells14. The existence of membrane curvature-driven fiber 

orientation is further supported by the transient nature of helicoidal pattern in primary plant cell 

walls of mung bean, owing to drastic change in cell curvature during the deposition of primary cell 

wall22.  

In an earlier attempt to estimate the influence of membrane curvature on embedded fibers, 

a theoretical model based on continuum elasticity theory for anisotropic membrane inclusions in 

lipid membranes was developed23. The model neglected interactions between the inclusions and 

was able to predict line and ring orientation modes23. Recently24, an integrated mechanical model 

describing nematic liquid crystalline self-assembly of rigid rods on an arbitrarily curved membrane 

has been presented and relative predictions of cellulose ordering and orientation in the plant cell 

wall are presented. In this model24, the mechanics of the fluid membrane is described by the 

Helfrich bending-torsion membrane model, the fiber self-assembly is described by the 2D Landau-

de Gennes quadrupolar Q-tensor order parameter model, and the fiber-membrane interactions 

(inspired by an extension of the 2D Maier-Saupe model to curved surfaces) include competing 

curvophilic (curvature-seeking) and curvophobic (curvature-avoiding) effects. An integrated shape 

and nematic order equation developed in this work24 gives a complete model whose solution 

describes the coupled membrane shape and fiber order state. The analytical solution of the model 
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for a cylindrical membrane of circular cross-section can predict line, ring and helical modes 

observed in some plant cell walls24. The model when integrated with the Gibbs- Duhem equation 

can describe the role of temperature and adsorption on membrane shape and fiber order25. A 

viscoelastic model that integrates the statics of anisotropic membranes developed in this model 

with the planar nematodynamics of fibers and the dynamics of isotropic membranes has been 

developed to study dynamic remodeling of plant cell wall during growth and morphogenesis26.  

The main issue considered in this paper is self-assembly of rigid fibers representing 

microfibrils on a soft deformable non-planar 2D membrane . The membrane average (deviatoric) 

curvature is H (D) 27,28; see section 2.1. The fiber orientation is defined by the director n and exists 

when the scalar order parameter S is non-zero; see section 2.2.  We consider a flat membrane 

(H=D=0) with a random assembly of rigid rod fibers of length L and diameter df. When the fiber 

volume fraction  is such that Lp/deff < C, which according to Onsager 3D model gives C 4 , the 

fibers on a flat surface should be in the isotropic state29,30,31
 (S=0); Lp is the fiber persistence length 

and deff is the effective diameter of the fiber. The phenomena we wish to describe is how under 

sufficient curvature (H 0, D 0), a 2D nematic state with a specific director orientation n and 

non-zero scalar order parameter S may arise through curvature-mediated interactions. The main 

concept is that introducing mechanical bending and torsion to the membrane creates a curvature 

field that then may generate a 2D nematic ordering with a particular director orientation. The 2D 

soft deformable, fluid membrane under consideration in this paper is described by the Helfrich 

model32, and contains bending and torsion elasticity. The fibers interact with each other through 

excluded volume. The fiber and membrane interactions are mediated through the membrane 

curvature, such that both curvophilic and curvophobic effects are included; in the former (latter) n 

seeks to align along high (zero) curvature directions33.  Thus the process to be described is the 
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 membrane curvature gradients fiber organization gradients bending stifness gradients

coupling of planar nematic liquid crystal self-assembly and membrane shape selection under the 

action of a pressure differential. Curvature-mediated interactions have been previously discussed 

in the literature33,34. 

The second important motivation of this paper is the understanding and characterization of 

spatial heterogeneities in fiber-filled membranes. Since many biological and synthetic membranes 

have variable curvature ( )s sH 0, D 0     , the fiber response to curvature gradients is likely to 

produce heterogeneous fiber distributions.  Restricting this comment to cylinders (H=D, the 

relation between fiber orientation and membrane curvature n=n(H) leads to the expectation that 

smooth curvature gradients sH  will result in fiber orientation gradients. For dilute fiber system, 

where gradient elasticity is small or insignificant, the fiber orientation gradients will be sharp. 

Hence it is expected that smooth curvature variations may lead to orientation domains along the 

membrane. Similar considerations apply to the order S of the fibers.  

The third motivation of this paper is the quantitative characterization of mechanical 

bending stiffness of membranes partitioned by domains of different fiber orientation and fiber 

order. In this 2D analysis, the bending of the membrane refers to changes in curvature in the cross-

sectional plane of the cylindrical membrane and not along the cylinder axis, resulting in cross-

sectional shape change while preserving its cylindrical shape. It is expected that curvature 

gradients that lead to orientation domains will results in gradients in the membrane bending 

modulus. For example, when the fibers are aligned along a cylinder axis, no stiffening effect is 

expected. On the other hand, when the fibers are along the azimuthal direction, a maximum 

stiffness is expected.  In this paper the integration of these three motivations: 
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is pursued in the context of cellulose-filled plant cell membranes, where it is assumed that fibers 

adapt and respond curvature. Once the bending stiffness profile is known, shape changes during 

growth can be predicted, as stiffer section will not bend to accommodate expansion. In partial 

summary, the specific objective of this work is to investigate the curvature-induced microfibril 

orientation in plant cell walls by solving an integrated micromechanical model developed for fiber-

laden membranes. The knowledge gained is then extended to cylindrical membranes of super-

elliptical cross-section (relevant to plant cell walls) in which the membrane curvature varies 

smoothly around the circumference of the membrane resulting in spatially graded fiber orientation.   

The organization of this article is as follows. Section 2 presents the characterization of 

membrane geometry, the Lame’ curves used to characterize the super-elliptical membrane cross-

section, the 2D quadrupolar nematic order parameters Q used to characterize the fiber structure 

and the effective bending modulus used to characterize the bending stiffness of fiber-laden 

membranes. The average H and deviatoric D membrane curvatures used to characterize the 

membrane shape in this paper is derived in appendix A. Section 3 introduces the Helmholtz free 

energy density of the membranes, the 2D Landau-de Gennes nematic liquid crystal homogeneous 

energy of the planar fiber interactions, and the membrane-fiber coupling energies. The fiber 

structure plot depicting the fiber orientation regimes and their transitions is presented and 

validated. The Helmholtz free energy density in terms of fiber angle , fiber order S, and 

membrane curvatures H/D is derived and minimized to obtain the preferred fiber orientation and 

ordering modes in appendix B. The role of fiber structure on effective bending modulus of the 

fiber-laden membranes is also presented. The fiber and membrane contributions to effective 

bending modulus of the fiber-laden membranes is derived in appendix C. Section 4 utilizes the 

validated fiber structure plot to investigate fiber orientation modes for a set of super-elliptical 
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membrane of variable curvature around the circumference of the membrane. Phase maps for fiber 

orientation modes and uniformity of fiber orientation distribution are also presented. The effective 

bending modulus plots presenting typical elastic inhomogeneities arising in super-elliptical 

membranes systems and their characteristic deformation mode are discussed. Section 5 presents 

the conclusions. 

 

2.  Geometry, order parameters and elasticity 

2.1  Membrane shape characterization 

In this paper, the geometry of an arbitrarily curved membrane is characterized by the 

curvature tensor b which can be decomposed into a trace and a deviatoric curvature tensor: 

s=H D+b I q  (see Appendix A), where H is the mean surface curvature and D is the deviatoric 

curvature. For cylindrical membranes of circular cross-section, the mean surface curvature H is 

equal to deviatoric curvature D and the curvature is constant throughout the surface and hence D = 

H= −(1/2R), where R is the radius of the membrane. As the cross-section of the cylindrical 

membrane deviates from that of a circle to an ellipse or a super-ellipse, the curvature varies 

smoothly around the circumference and is a function of polar angle θ. In this work, the cross-

sectional shape of the cylindrical membranes is represented by a family of super-ellipses. This 

family of curves is mathematically described by Lame’ curves35,36,37: 

 
x y

1
a b

 

+ =                    (1)  

The shape parameter η is any rational number that selects the shape of the membrane. The size 

parameters a and b correspond to the intersections of the curves with the x and y axes respectively 

and determine the size of the membrane. In this work, we consider only the subset of Lame’ 
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curves, where η ≥ 2 and a=b. When η = 2, eqn.(1) represents a circle and for η >2, the curve 

becomes a super-ellipse until it becomes a rectangle for η → . The curvature of a cylindrical 

membrane of super-elliptical cross-section at a given polar angle θ is given by:35 

( )( ) ( )

( )

2

3
2 2 2 2 2

1 xy x y
H D

2 x y

−  

− −

− +
= = −

+

                  (2) 

where ( ) ( )
1/ 1/

x b / 1 tan and y b tan / 1 tan
 

 = +  =  +  . In this work, the variables x,y and the 

parameter b are non-dimensionalized by scaling with the bare length scale of the model 0 , 

discussed in section 3.2. 

2.2  Fiber structure characterization  

 The characterization of microfibril structure in the membrane is given by the 22 

symmetric traceless quadrupolar tensor order parameter Q38,24: 

sS
2

 
= − 

 

I
Q nn                     (3) 

where S is the scalar order parameter that measures the microfibril alignment along the director n, 

and n.m=0.  The range of S is 1 S 1−   , when S<0 the microfibrils are aligned along m, and 

when S=0 the microfibrils adopt an isotropic disordered state. In this paper we focus on non-

negative values of S. Since the curvature b has a trace (H), the energy-coupling with nematic order 

involves a non-zero trace 2×2 symmetric tensor S with non-zero eigenvalues:  

s S 1 1 S
= +  

2 2 2

+ −   
= +   
   

I
S Q nn mm                  (4) 

2.3  Membrane bending elasticity  

The elasticity of the fiber-laden membrane can be characterized by the effective elastic 

bending modulus that determines the rigidity of the fiber-laden membrane. The effective bending 
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modulus kc,eff, which is necessarily positive, is defined as the free energy cost to deform a 

membrane from its intrinsic curvature to some other curvature and it is given by the second 

derivative of the total free energy  ( )Â  with respect to the mean surface curvature H: 

( )2

c,eff 2

ˆd A
k

dH


=                     (5) 

 The free energy of the fiber-laden membranes ( )Â  in eqn.(6) is discussed in section 3.1.  

 

3  Model and predictions for curvature-induced fiber ordering  

In this section, the free energy of the fiber-laden membrane system is formulated and the 

resulting planar fiber orientation regimes are presented. The reader is referred to [24] for details. 

The model focuses on curvature-driven competing interactions, and does not account for spatial 

gradients. 

3.1  Free energies and fiber orientation regimes  

The total free energy per unit area Â  is posited to be: 

( ) ( ) ( )membrane fiber coupling
ˆ ˆ ˆ ˆA A ,H,K A , A , =   +  +  Q b S       (6) 

where  is the density and  is the fiber mass fraction; in this paper   is fixed and will be omitted 

in what follows. The Helfrich free energy per unit area widely used to describe the elasticity of 

membranes reads39,40: 

( ) ( )
2

membrane o c o cÂ H,K 2k H H k K =  + − +                                     (7) 

where kc is the membrane bending elastic moduli, Ho is the spontaneous curvature of the 

membrane, ck is the torsion elastic moduli of the membrane; the effect of fiber concentration on kc 
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and ck is neglected in eqn.(7). The fiber contribution is given by the Landau-de Gennes 

expansion38,41: 

( )
21 4

fiber

a a
Â : :

2 4
 = +Q Q Q Q                  (8) 

where a1 is a function of microfibril concentration and 1 4a 0,a 0   indicating that if nematic 

ordering arises at all, it is only through the fiber order-membrane curvature coupling; we note that 

this paper is restricted to dilute fiber suspensions for which 1a 0 .  The fiber order- membrane 

curvature coupling contribution up to second order terms in S is: 

( ) ( )
23

coupling 2 5

a
Â : a a   :

2
 = +  +b S S S b S                     (9) 

For a2 >0 (a2<0) the first term ( )2: a  b S promotes fiber alignment along the principal e1 (e2) 

direction; the same holds for a5, and hence they are denoted curvophilic. For a5>0, the second term 

( )5: a  b S S promotes nematic ordering when the fibers are oriented along the principal axes 

(curvophilic). For a3>0, the third term ( )
2

3a : /2 b S promotes fiber orientation away from the 

principal axes (curvophobic). In biological fiber-laden membranes, curvophobic interactions may 

arise as an attempt to minimize the non-attachment penalty, the elastic energy cost associated with 

the rigid fibers not completely supported by the membrane when they are aligned in the direction 

of maximum curvature. On the other hand, curvophobic interactions may originate from any of the 

following mechanisms :(i) the fibers exhibiting preferential orientation over corrugated grooves on 

the membrane surface known as Berreman anchoring42, (ii) intrinsic nanoscale coiling of 

biological fibers predominantly modeled by Helfrich elastic chiral filament model or Kirchhoff 

elastic theory of rods43, (iii) membrane curvature induced by soft-mode instability of membranes 

caused due to the adsorbed fibers44. Other mechanisms applicable micron-ranged inclusions due to 
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capillary process have been characterized by Stebe and co-workers45,46. The balance between these 

curvophobic and curvophilic competing interactions is modified by the ambient curvature b, since 

the power dependence is linear for (a2, a5) and quadratic for a3. The nature and meaning of the a2 

and a3 terms has been previously discussed47, but the role of the curvophilic a5 in creating nematic 

order was not. 

For a given geometry, the preferred fiber orientation () and fiber order (S) is found by 

minimizing the Helmholtz free energy density Â . By setting ( )Â / S 0   =  and ( )Â / 0   =  

the following three equilibria states of fiber orientation arises: (a) orientation along major 

curvature or ring mode, =0; (b) along the minor curvature or line mode, / 2 =  ; and (c) oblique 

or helical mode, 2

2 4cos / 2 = −   as depicted in figure 1.   

 

 

 

 

    =/2               R2                       0<</2           R1                       =0                  Radius 

Figure 1. Schematic of curvature-induced fiber orientation (thick line segment) on a cylinder of increasing radius R. 

At small (large) radius, the fibers align along the axial (azimuthal) direction. At intermediate curvatures, the oblique 

state minimizes the free energy (eqn.(13)). Adapted from [24]. 

The expression of the free energy in terms of S, α, H and D, the minimization of the free energy, 

the conditions under which the three orientation regimes occur and their transitions radii (R1, R2) 

are discussed in Appendix B.  

3.2  Fiber structure-curvature  relations 
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Next, the equations for fiber orientation regimes and their transitions (Appendix B) are 

solved for typical values of dimensionless energy coefficients  ia ; we scaled the parameters with 

a1 and use the same symbol for brevity. From the free energy we find the bare internal length 

scale o associated with the fiber orientation: 

3
o

2 5

a curvo phobic energy

a a curvo philic energy

−
= =

+ −
               (10) 

Hence the characteristic radius of curvature or radius of the cylindrical membrane (R) is scaled 

with the bare internal length scale o  such that the dimensionless radius R* that controls the fiber 

orientation is the ratio of the external length scale to the internal length scale: 

*

o

external length R
R

 internal length
= =                                    (11) 

The selected dimensionless energy coefficients are  ia ;i 1 5= − = [1, 1, 1, 10, 0.4].  The large 

selected a4/a1 value reflects the fiber concentration condition close to the order/disorder transition, 

where a1 vanishes.  The similar magnitudes in a1, a2, a3, and a5 reflect a condition of similar 

ordering and curvophobic and curvophilic effects for dilute fiber concentrations below the nematic 

transition.   

Figure 2 depicts the fiber orientation modes in terms of cosine of equilibrium fiber 

orientation angle with respect to azimuthal coordinate (cos ) and equilibrium fiber order in terms 

of scalar order parameter (S). At low membrane radius, for 0<R*<0.1847, the curvophilic free 

energy is negligible and the curvophobic free energy is minimized, thus the fibers are aligned in 

the axial direction resulting in the line mode. At intermediate membrane radius, for 

0.1847<R*<0.3867, the competition between the fiber interactions and curvophilic free energy 

aligns the fibers at an angle between 0-90°, resulting in the helical mode. At high membrane 
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radius, for R*>0.3867, the curvophobic free energy is negligible and the curvophilic free energy is 

minimized, thus the fibers are aligned in the azimuthal direction resulting in the ring mode. At low 

membrane radius, the fibers are more uniformly aligned in the axial direction. As the membrane 

radius increases, the fiber order S decreases until a local minimum (cusp) is reached, due to the 

cancellation of free energy contributions from curvophobic and curvophilic interactions. At the 

onset of the ring mode, the fiber order S starts increasing until a local maximum is reached 

promoted by curvophilic interactions. At high membrane radii, the fiber order vanishes 

asymptotically as the membrane curvature vanishes resulting in random fiber orientation.  

 

 

 

 

 

 

 

 

 

Figure 2. Fiber structure plot for cylindrical membranes of circular cross-section. The three possible modes are:                 

l – line mode, h – helical mode, r – ring mode.  The order parameter displays a typical V shape and the orientation a 

step-like response as the radius increases. The inset semi-log plot shows fiber order vanishing asymptotically as 

R*→∞. 

3.3  Model validation for fiber orientation regimes  

Although the present model does not take into account temporal variation of cellulose 

microfibril concentration during different stages of cell wall deposition, the predicted fiber 

l h r

i

n

g 
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orientation (see Figure 2) is in qualitative agreement with the experimental observations for the 

orientation of cellulose microfibrils in cell walls of trachieds of conifers based on field emission 

scanning microscopy48. The progressive changes in the orientation of cellulose microfibrils in 

primary and secondary layers of these plant cell walls are shown in figure 3(a). A schematic of cell 

wall deposition process and corresponding changes in membrane shape are depicted in figure 3(b). 

The initial layers of primary cell wall are deposited at the onset of cell growth when the membrane 

radius is small, resulting in line mode (Figure 3(a)-1, 3(b)-1). The final layers of primary cell wall 

are deposited towards the end of cell growth, when the membrane radius is large as the cell reaches 

its maximum size (Figure 3(b)-2). Consequently, the layers deposited in this phase exhibit ring 

mode (Figure 3(a)-2). This result is in agreement with experimental observations showing the 

orientation of microfibrils changing from line to ring mode in different plant species48-50. When the 

cell growth ceases the secondary cell wall layers are deposited from the inner side and the cell 

starts shrinking to become a lumen. As the radius of the membrane decreases due to the cell wall 

deposition, the fiber orientation changes to helical mode in the S1 layer and the fiber angle with 

respect to azimuthal direction progressively changes from 0-90°46. The S2 layers deposited at 

further smaller membrane diameter exhibits further steeper fiber orientation closer to the line mode 

and show high fiber order45 (Figure 3(a)-3, 3(b)-3). The discrepancy between the experimentally 

observed helical or crossed helical modes and the model based prediction of line mode in S3 layer 

might be attributed to lignification of the S3 layers before completion of cellulose microfibril 

alignment, as S3 is the innermost layer deposited towards the end of the cell wall deposition 

process. This reasoning is further supported by wide variations in observed microfibril orientation 

in innermost layers of S3 among different tree species48. As the fiber structure of S3 layer is 

determined by the duration of deposition and the rate of change in orientation of microfibrils prior 
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to lignification, modelling the temporal dynamics of fiber orientation might be able to resolve this 

discrepancy.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) A model for the orientation of cellulose microfibrils viewed from the lumen side in the cell walls of 

tracheids of conifers. P – Primary cell wall, S1, S2, S3 – Secondary cell wall layers 1, 2, 3, Lu – Lumen. Adapted from 

[48]. (b) A schematic of cell wall deposition process and corresponding changes in membrane shape. Lu – Lumen. The 

changes in curvature correspond to different fiber orientation and order, as per Figure 2. 

3.4  Effective bending modulus of cylindrical fiber-laden membrane of circular cross-section  

 To gain insight into the role of fiber structure on the elasticity of fiber-laden membranes, 

the effect fiber orientation and fiber order on the effective bending modulus of the fiber-laden 

membrane cross-section is investigated. In this 2D analysis, bending denotes changes in curvature 

in the cross-sectional plane and not along the membrane axis. The effective bending modulus of an 

arbitrarily curved fiber-laden membranes kc,eff has contributions due to membrane bending 
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elasticity, kc,membrane¸ and membrane curvature induced nematic ordering of fibers, kc,fiber. For 

cylindrical membranes in which the fiber order is induced through coupling between fiber order 

and membrane curvature, ( )H D 1/ 2R= = − , and fiber orientation,  and order, S are functions of 

the dimensionless radius of curvature of the membrane R*: 

* * * * *

c,eff c,fiber c,membranek (R ) k (R , (R ),S(R )) k (R )=  +                  (12) 

The expressions for kc,eff in the three fiber orientation modes are derived in Appendix C.  

The effective bending modulus of the fiber-laden membrane system kc,eff is plotted as a 

function of the dimensionless radius of the membrane R* in figure 4. The effective bending 

modulus of the fiber-laden membrane system results from competing interactions between 

curvophobic and curvophilic interactions, and bare membrane bending modulus. It is evident from 

figures 2 and 6 that the effective bending modulus is sensitive to fiber order S when the fibers are 

oriented in ring mode and is independent of fiber order when the fibers are oriented in line or 

helical mode. Depending on the role of fibers on the bending elasticity of the fiber-laden 

membranes, three distinct regions have been identified, as follows: 

(i) Pure membrane regime, 0<R*<0.3867, region (i) in Figure 4: In this region, the effective 

bending modulus kc,eff is almost equal to the bending modulus contribution from the membrane 

kc,membrane, as the fiber contributions kc,fiber are negligible (i.e., c,eff c,membrane c,fiberk k ,k 0  ). This is 

due to a lack of resistance to change in membrane curvature when the fibers are oriented in the line 

or helical mode. The addition of fibers neither strengthens the membrane nor destabilizes the 

membrane shape. The bending elasticity of the fiber-laden membranes is not influenced by the 

presence of fibers.   

(ii) Membrane hardening regime, 0.3867<R*<4.175, region (ii) in Figure 4; for R*>0.3867, the 

fibers oriented in ring mode offer resistance to change in membrane curvature proportional to the 
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magnitude of fiber order parameter S. The theoretical maximum effective bending modulus, which 

is the value obtained when the fibers are oriented in ring mode and the fiber order parameter S 

equals 1, is never realized as the maximum observed fiber order (Smax) in ring mode for the typical 

values of energy coefficient used in this work is 0.439 at R*=0.913. The corresponding maximum 

effective bending modulus for the fiber-laden membrane system under investigation is 6.071. As 

R* is increased from 0.3867 to 0.913, *

maxdS / dR 0 and S S →  and hence the fibers oriented in 

the ring mode become more ordered resulting in gradual strengthening of the membrane by the 

fibers, against deformation through change in curvature. For R*>0.913, gradual randomization of 

the fibers begins ( *dS / dR 0 ) as the membrane curvature diminishes asymptotically. This results 

in the steady decrease in effective bending modulus at values of R*>0.913. For 0.913<R*<4.175, 

the curvophobic interactions dominate over curvophilic interactions, resulting in finite positive 

fiber bending modulus contribution (i.e., c,fiber c,eff c,membranek 0, k k  ) and the fibers continue to 

strengthen the membrane against deformation through change in curvature.  

(iii) Membrane elastic softening regime, R*>4.175, region (iii) in Figure 4: At R*=4.175, the fiber 

contribution to the effective bending modulus vanishes as the curvophobic and curvophilic 

interactions cancel each other and hence the effective bending modulus of the fiber-laden 

membranes is that of a pure membrane (i.e., c,eff c,membranek k= ). At values of R*>4.175, the 

curvophilic interactions dominate the curvophobic interactions, resulting in finite negative fiber 

bending modulus contributions (i.e., c,fiberk 0 ) and fibers tend to destabilize the membrane shape. 

This destabilizing effect induced by the fibers is compensated by the membrane bending modulus 

contribution, thus maintaining the effective bending modulus of the fiber-laden system positive 

(i.e. c,eff c,membrane0 k k  ). This competing interaction between the fiber and membrane 
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contributions at values of R*>4.175, helps sustaining the shape stability of the fiber-laden 

membrane system, but results in membranes of low effective bending modulus that are more 

susceptible to deformation. This elastic softening observed at values of R*>4.175 is attributed to 

the bilinear coupling between the order parameter and curvature, and is commonly observed in 

systems with one order parameter (such as Q) coupled to strain (such as b) or systems with 

multiple order parameters51. For the selected parametric data, as the fiber order asymptotically 

vanishes ast R*→∞, the effective bending modulus of the fiber-laden membrane system stabilizes 

at 1.084. 
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Figure 4. Effective bending modulus plot for cylindrical membranes of circular cross-section. l – line mode, h – 

helical mode, r – ring mode. The inset semi-log plot shows region (i) pure membrane regime kc,eff= kc,membrane, (ii) 

Membrane hardening regime kc,eff >kc,membrane, (iii) Membrane elastic softening regime kc,eff <kc,membrane. The maximum 

stiffening occurs when the membrane radius R is nearly equal to the internal length scale o .   

Figure 5 shows the bending stiffness phase plot in terms of radius of curvature of a circular 

membrane (R) as a function of the bare internal length scale of the material ( o ), identifying the 

i ii iii 
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three membrane elasticity regimes (i-iii) discussed in Figure 4. For any fiber-filled circular 

membrane the bare internal length scale ( o , eqn.(10)) is fixed and the membrane displays growth-

induced bending variability as a result of changes in membrane radius (R). The maximum 

stiffening of the membranes occurs on the dotted line in the plot, when the membrane radius R is 

nearly equal to the internal length scale o . For given material, increasing R first generates no 

fiber effect, subsequently the fibers stiffen the membrane, and eventually the fibers soften the 

circular membrane.   

 

 

 

 

 

 

 

 

 

Figure 5.Bending stiffness phase plot in terms of circular membrane radius (arbitrary units) as a function of the 

internal length scale of the material (eqn.(10)). Region (i) pure membrane regime, (ii) membrane hardening regime, 

and (iii) membrane softening regime. The dotted line represented the line of maximum membrane stiffness. 

In partial summary, fibers have the strongest effect in increasing bending stiffness of the 

cross section when they are strongly mutually aligned (high S) and with an average orientation in 

the azimuthal direction (region ii in figure 4) and this occurs when the membrane radius R is 

essentially equal to the internal length scale of material o . When the fibers are disordered they 

promote elastic softening (region iii in figure 4), and when they are axially oriented they have 
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essentially no effect.  During cell growth, the variation of bending stiffness can serve as a shape 

lock-in mechanism (hardening regime) or conversely allow shape change through the softening 

effect. 

 

4. Curvature-induced fiber ordering in cylindrical membranes of super-elliptical cross-

section 

 In this section, the fiber structure (Q) in cylindrical fiber-laden membranes of super-

elliptical cross-section is analyzed based on the fiber orientations and their transitions predicted in 

section 3.2. The key issue is to characterize the effect of membrane curvature gradients 

( )s b inherent in super-elliptical shapes on the fiber order parameter gradients ( )s Q , using the 

circular shape as reference. 

4.1  Effect of shape parameter on fiber structure 

As stated in section 2.1, the membrane cross-sectional shapes observed in plant cell walls 

has been represented by Lame’ curves. The fiber structure plots for η≥2 and b=1 for the typical 

values of energy coefficient used in section 3.2 are presented in figure 6. The intercept of the 

curves on x and y axes are fixed by setting the size parameter b equal to 1 while varying the shape 

parameter (η), resulting in a set of curves shown in figure 6(a). The curves being symmetric, 

calculating the fiber structure for a quadrant of the membrane is sufficient.  

At η=2, the general equation for the Lame’ curves represents a circle of constant curvature 

around the membrane’s circumference. Planar self assembly of fibers driven by membrane 

curvature in these membranes results in microfibrils aligning in a specific direction at a uniform 

fiber order throughout the membrane. The resulting fiber structure has unimodal fiber orientation 
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and uniform fiber order. The fiber orientation and order are dictated by the fiber structure plot in 

figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Fiber structure plot for cylindrical membranes of super-elliptical cross-section. (a) Lame’ curves for 

η=2,3,5,10 and b=1, (b) Fiber structure plot for η=2 and b=1, (c) Fiber structure plot for η=3 and b=1, (d) Fiber 

structure plot for η=5 and b=1, (e) Fiber structure plot for η=10 and b=1. Increasing and localizing curvature produces 

sharp and localized fiber structure changes. 

For η=2 and b=1, the fibers are aligned in ring mode (Figure 6(b)).  For η>2, the cross-

sectional shape transforms the circle into a family of super-ellipses resulting in curves with flat 

sides of large characteristic radius of curvature and corners of small characteristic radius of 

curvature. As η is progressively increased, the variation in radius of curvature between the sides 

and the corners becomes increasingly pronounced and results in heterogeneous fiber orientation. 
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For η=3 and b=1, the gradient in radius of curvature is not large enough to induce different fiber 

orientations. As the result, the fibers are aligned in ring mode throughout the membrane but the 

fiber order varies smoothly around the membrane circumference as a function of membrane 

curvature (Figure 6(c)). The resulting fiber structure has unimodal fiber orientation and non-

uniform fiber order. For η=5 and b=1, the gradient in radius of curvature induces a ring mode in 

the sides of larger radius of curvature and a helical mode in the corners of smaller radius of 

curvature (Figure 6(d)). The resulting fiber structure has bimodal fiber orientation and non-uniform 

fiber order. For η=10 and b=1, the gradient in the radius of curvature induces ring mode in the 

sides of larger radius of curvature, line mode in the corners of smaller radius of curvature and 

helical mode in the regions of intermediate radius of curvature (Figure 6(e)). The resulting fiber 

structure has trimodal fiber orientation and non-uniform fiber order. 

These numerical predictions are consistent with abrupt change in fiber angle in S2 and S3 at the 

corners reported in plant cell walls of juniper tracheid. The fiber orientation angle in the corners 

measured with respect to azimuthal coordinate (α) is 15 to 25° greater than in the sides14. 

4.2 Effect of size parameter on fiber structure 

For a given cross-sectional shape of a plant cell, the size of the membrane increases during 

growth and decreases during secondary cell wall deposition. The effect of varying the membrane 

size on the fiber structure, while fixing the membrane shape is investigated in this section. The 

shape of the membrane is fixed by setting the shape parameter η equal to 5 while varying the 

intercept of the curves on x and y axes (b), resulting in a set of curves shown in figure 7(a). As b is 

progressively decreased, the radius of curvature of the corners decreases drastically in comparison 

to that of the sides resulting in a greater curvature gradient between the corners and the sides. This 
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difference in curvature might result in different fiber orientation modes in the sides than the 

corners.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Fiber structure plot for cylindrical membranes of super-elliptical cross-section. (a) Lame’ curves for 

b=2,1,0.5 and η=5, (b) Fiber structure plot for η=5 and b=2, (c) Fiber structure plot for η=5 and b=1, (d) Fiber 

structure plot for η=5 and b=0.5. 

For η=5 and b=2, the gradient in radius of curvature is not large enough to induce different 

fiber orientations. As a result, the fibers are aligned in ring mode throughout the membrane but the 

fiber order varies smoothly around the membrane circumference as a function of membrane 

curvature (Figure 7(b)). The resulting fiber structure has unimodal fiber orientation and non-

uniform fiber order. For η=5 and b=1, the gradient in radius of curvature induces ring mode in the 

sides of larger radius of curvature and helical mode in the corners of smaller radius of curvature 
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(Figure 7(c)). The resulting fiber structure has bimodal fiber orientation and non-uniform fiber 

order. For η=5 and b=0.5, the gradient in radius of curvature induces ring mode in the sides of 

larger radius of curvature, line mode in the corners of smaller radius of curvature and helical mode 

in the regions of intermediate radius of curvature between the sides and the corners (Figure 7(d)). 

The resulting fiber structure has trimodal fiber orientation and non-uniform fiber order.  

An experimental investigation supported by analytic and computational predictions on the 

mechanical advantages of having graded fiber orientation in man-made fiber-reinforced composite 

materials has concluded that under tensile stresses induced by indentation, a composite material 

with linearly graded fiber orientation exhibits greater resistance to microcracking52. In addition to 

fiber orientation, the fiber orientation distribution is also known to influence all the elastic moduli 

of composite materials53 and hence the uniformity of fiber orientation distribution is a crucial 

factor that determines the elastic homogeneity and hence the modulus of the composite material. In 

biological fiber-laden membranes, shape fluctuations arising due to elastic inhomogeneities are 

known to induce local change in bending rigidity and spontaneous membrane curvature54 and play 

a crucial role in morphogenesis in biological systems55. Hence, an understanding of deformation 

modes in cylindrical membranes of super-elliptical cross-section due to spatial variation of 

membrane bending modulus is crucial. 

 To gain insight into the effect of membrane geometry on these factors influencing the 

mechanical efficiency of fiber-reinforced composites, a fiber structure phase map is developed in 

section 4.3. The spatial distribution of the effective bending modulus in cylindrical fiber-laden 

membranes of super-elliptical cross-section and their characteristic deformation modes are 

presented in section 4.4. 
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4.3  Fiber structure phase map for cylindrical membranes of circular and super-elliptical 

cross-section 

As illustrated in sections 4.1 and 4.2, in plant cell walls, multimodal fiber orientations 

resulting in graded fiber orientation may arise both in radial and azimuthal directions due to 

curvature gradients between the sides and the corners induced by the shape of   plant cells and 

change in its size during cell growth and secondary cell wall deposition. To characterize the 

number of coexisting modes and the degree of heterogeneity we collapse all the computational 

results into master plots that summarize the impact of size and shape on these important indices. 

Figure 8 shows a phase diagram in terms of the shape parameter as a function of the size 

parameters indicating the number of coexisting modes on a given cross-section. The unimodal (a) 

domain might correspond to fibers oriented in either ring, helical or line mode, the bimodal (b) 

domain corresponds to fiber structures with coexisting ring and helical modes or helical and line 

modes, and the trimodal (c) domain corresponds to fiber structures containing the three modes. 

 

 

 

  

 

 

 

Figure 8. Phase map for fiber orientation modes in cylindrical plant cell walls of circular and super-elliptical cross-

section. a – Unimodal, b- bimodal, c- trimodal fiber orientation modes 

Figure 8 demonstrates that an increase in mode coexistence is attained through either membrane 

size reduction or by deviation from membrane constant curvature. 
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The uniformity in fiber orientation distribution is characterized using the following non-

uniformity index U:  

/2

0

dS
U d

d



= 
 .            (13) 

When η=2, the fiber order is uniform and the non-uniformity index is U=0. In the range of 

2.25<η< 10, 0.05<b<4 explored in this work, the maximum value of U is 3.7710-2, which 

corresponds to η=9 and b=0.05.  We introduce the following index classification: (i) high 

uniformity: 0 <U< 110-2, (ii) intermediate uniformity: 110-2 <U< 210-2, and (iii) low 

uniformity 210-2 <U< 3.7710-2.  Figure 9 shows the uniformity index phase diagram in terms of 

shape  and size b parameters. 

 

 

 

 

 

 

 

Figure 9. Phase map for uniformity in fiber orientation distribution in cylindrical plant cell walls of circular and super-

elliptical cross-section. a – high uniformity, b- intermediate uniformity, c- low uniformity 

Figure 9 shows that low uniformity is promoted by size reduction and variable curvature.  Under 

sufficiently small size, even modest deviations from circular shape create large heterogeneity.  

As mentioned above a composite material with linearly graded fiber orientation exhibits 

greater resistance to microcracking52, while the uniformity of fiber orientation distribution is 

known to influence all the modulus of the composite materials53.  Based on these facts, we may 
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expect that region “c” in Figure 8 have better resistance of microcracking.  In figure 9, we may 

expect region “a” to have higher modulus due to homogeneous membrane elastic properties.  

Transferring the rules of man-made composites to our biological system52,53, the phase maps 

indicate trade-off between microcracking resistance and strength in plant cell walls of super-

elliptical cross-section. Obviously, further experimental characterization and simulation is needed 

to put these claims on firm ground but they highlight potential mechanical optimization 

mechanisms in plants.  

4.4  Effective bending modulus of fiber-laden membranes of super-elliptical cross-section 

It is evident from figure 4 that the effective bending modulus *

c,effk (R )  is a function of the 

dimensionless radius of curvature R*. As the membrane curvature varies smoothly across the 

circumference of super-elliptical membranes, the effective bending modulus is spatially 

inhomogeneous. As mentioned above under stress, the softened section with low bending elastic 

modulus deforms while the stiffened sections with high bending elastic modulus remains intact 

resulting in membrane shape distortions. In this section, the effective bending modulus of 

cylindrical fiber-laden membranes of super-elliptical cross-section is computed for typical values 

of shape and size parameter, and their potential deformation modes under further expansion are 

analyzed.  

Figure 10 shows the effective bending modulus *

c,effk (R )  as a function of the polar angle 

θ  for three distinct super-elliptical membranes (a) corresponding to: (i) η=2 and b=0.5 (b), (ii) η=4 

and b=0.75 (c), and (iii) η=6 and b=3.5 (d). The polar angle is measured by θ  from the x-axis. 

Below we make reference to the corners which are at 0θ 45= +  and to the midpoint of the sides 

which are at 0θ 0, 90= + .   
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Figure 10. Effective bending modulus plot for cylindrical membranes of super-elliptical cross-section. (a) Lame’ 

curves for, (i) η=2.5 and b=0.5, (ii) η=6 and b=3.5, and (iii) η=4 and b=0.75 (b) Effective bending modulus plot for 

η=2.5 and b=0.5, (c) Effective bending modulus plot for η=6 and b=3.5, (d) Effective bending modulus plot for η=4 

and b=0.75 

Case (i): For η=2.5 and b=0.5, the effective bending modulus plot shown in figure 10(b) 

has soft sections of low bending modulus in the corners of the super-elliptical membrane 

( o34 <θ<56o ), where the fibers oriented in helical mode does not influence the membrane elasticity 

and stiffened sections of high bending modulus on the sides ( 0,90 = ) where the fibers are 

oriented in ring mode contribute to strengthening of the membrane. This bending stiffness 

variation is compatible with growth and inflation with invariant shape, since the softer corners can 

change curvature (increase its radius) but the stiffer and more straight sides remain unchanged. 
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Case (ii): For η=6 and b=3.5, the effective bending modulus plot shown in figure 10(c) has soft 

sections of low bending modulus in the sides ( o o0 <θ<32 and o58 <θ<90 ), where the fibers 

oriented in ring mode promotes elastic softening of the membrane as discussed in section 3.4 and 

stiffened sections of high bending modulus in the corners ( o o32 <θ<58 ), where the fibers oriented 

in ring mode contribute to strengthening of the membrane. This bending stiffness variation is 

incompatible with growth and inflation with invariant shape and the initial super-ellipse can only 

grow distortions of the sides.  Case (iii): For η=4 and b=0.75, the effective bending modulus plot 

shown in figure 10(d) has weakened sections of low bending modulus in the sides ( o o0 <θ<13 and 

o o77 <θ<90 ), where the fibers oriented in ring mode promotes elastic softening of the membrane, 

and the corners of the super-elliptical membrane ( o o37 <θ<53 ), where the fibers oriented in helical 

mode does not influence the membrane elasticity, and stiffened sections of high bending modulus 

in the regions between the sides and the corners ( o o13 <θ<37 and o o53 <θ<77 ) where the fibers 

oriented in ring mode contribute to strengthening of the membrane. Growth and expansion produce 

maximal shape change since the contour now has two weakened sections. 

A schematic representing the shape of the fiber-laden membranes resulting from 

deformation of membranes shown in figure 10(a) is presented in figure 11.  
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Figure 11. Shape of the fiber-laden membranes resulting from expansion of super-elliptical membrane: (a) η=2.5 and 

b=0.5 leads to shape invariant growth, (b) η=6 and b=3.5 leads to growth with weak shape change, (c)) η=4 and 

b=0.75 leads to   growth with large shape change. Stiff sections between sides and corners lead to large shape changes. 

S – side, C – corner 

Figure 11 shows that fiber-driven stiffness regulation results in three characteristic growth modes 

in super-ellipses: (i) shape invariant growth (stiff sides) (Figure 11(a)), (ii) growth with weak 

shape change (stiff corners) (Figure 11(b)), and (iii) growth with strong shape change (stiff 

sections between the sides and the corners) (Figure 11(c)). 

 

5.  Conclusions 

 In this work, the curvature-induced cellulose microfibril orientation in plant cell walls at 

dilute concentrations is investigated by solving numerically an integrated micromechanical model 

developed for fiber-laden membranes. The model was formulated using a Helmholtz free energy 

that integrates the Helfrich bending/torsion membrane energy (eqn.7), the nematic Landau-de 

Gennes fiber orientation energy (eqn.8), and competing curvophilic and curvophobic interactions 

between the membrane and microfibrils (eqn.7). The influence of membrane curvature on the fiber 

structure in cylindrical membranes of circular cross-section was characterized (Figure 2), showing 

that as the radius increases a sequence of line, helical, and ring fiber orientation modes emerge. 

The fiber order is maximum at low membrane radius and asymptotically vanishes to zero as the 

membrane grows infinitely large.  

The model predictions are validated by comparing the predicted microfibril orientation 

(figure 2) with experimentally observed orientation in cell wall of tracheids48 (figure 3(a)). The 

primary cell walls deposited during growth of plant cell from a small radius to a large radius, show 

progressive change in fiber orientation from line mode to ring mode (figure 3(a)-1 & 3(a)-2). The 
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deposition of secondary cell wall layers results in decrease of membrane radius and consequently 

helical and line modes are observed in S1 and S2 layers, respectively (figure 3(a)-3). The 

discrepancy between the observed helical or cross helical mode and predicted line mode in S3 layer 

might be resolved by modeling the temporal dynamics of fiber orientation. 

The role of fiber structure on the elasticity of the fiber-laden membranes is investigated by 

analyzing the effective bending modulus of the system as a function of dimensionless radius 

(Figure 4). The analysis shows that the bending elasticity of the fiber-laden membranes is not 

influenced by the presence of fibers oriented in line and helical mode irrespective of the magnitude 

of the fiber order, while the fibers oriented in ring mode can either strengthen or weaken the 

membrane. The role of fibers oriented in ring mode on membrane bending elasticity is influenced 

by the magnitude of fiber order and is a result of the interplay between pure membrane elasticity, 

curvophobic, and curvophilic interactions. The maximum stiffening occurs when the membrane 

radius R is nearly equal to the internal length scale o (Figure 5). 

With the aim of characterizing graded fibrous structures, the model was then extended to 

cylindrical membranes of super-elliptical cross-section in which the membrane curvature varies 

smoothly around the circumference of the membrane. The cross-sectional shape of the membranes 

is represented by Lame’ curves. The effect of varying the shape and size parameter of Lame’ 

curves on the fiber structure were investigated. Multimodal fiber orientations resulting in graded 

fiber orientation may arise both in radial and azimuthal directions due to curvature gradients 

between the sides and the corners induced by the shape of the plant cells and change in its size 

during cell growth and secondary cell wall deposition (Figure 6 & 7). This prediction is supported 

by the observation that the fiber orientation angle in the corners measured with respect to 

azimuthal coordinate (α) is 15° to 25° greater than in the sides14. 
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Phase maps of fiber orientation modes and uniformity of fiber orientation distribution were 

developed to gain insight on the effect of membrane geometry on fiber structure in fiber-laden 

membranes (Figure 8 & 9). Assuming that the mechanics of synthetic composites apply to plant 

cell walls52,53,  the phase maps indicate a trade off between microcracking resistance and strength 

in plant cell walls of super-elliptical cross-section, but further plant-based experimental evidence is 

necessary. The super-elliptical membranes have a spatially inhomogeneous effective bending 

modulus (figure 10), which lead to different growth modes. Three distinct spatial inhomogeneity 

patterns in effective bending modulus of membranes and their characteristic growth modes are 

analyzed (figure 11). The shape invariant growth through membrane stretching predominant in 

plant cell walls are predicted to arise when corners sections have low bending modulus and the 

sides have stiffened sections of high bending modulus. 

The coupling between in-plane fiber orientation and order and the curvature of the 

membranes demonstrated by plant cell walls in nature has the potential to open up a novel venue to 

control two dimensional anisotropic soft matter with tailored functionalities56.  
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Appendix A  

Geometric characterization of a curved surface 
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The purpose of this Appendix is to derive the average H and deviatoric D membrane 

curvatures used throughout the paper.  

The geometry of an arbitrarily curved surface is characterized by the mean surface 

curvature H and the deviatoric curvature D given by27,28 

( ) ( )
1 2 1 2s s s s

1 1 1 1 1 1
H , D

2 2 2 2 2 2
= −  = = −  =  +  = =  −.k b : I  I : k b : q 

 

    (A.1a,b) 

where 
s .s = I  is the surface gradient, 

s = −I I kk is the 2×2 unit surface dyadic, k is the unit 

normal, I is the 3×3 unit dyadic, b is the 2×2 symmetric surface curvature dyadic, and {
m m, e }, 

m=1,2 are the eigenvalues and eigenvectors of b. The principal curvatures ( )
1 2
,   define the 

principal radii of curvature ( mr ) of the surface:
m m1/r = − . The magnitude of the deviatoric 

curvature D is a useful non-sphericity index, since for a sphere D=0. For a cylindrical surface, the 

average surface curvature H and deviatoric curvature D are equal.  

The four independent basis surface tensors are1,57: 

 1,  ,  ,  s s s= I q ε q q ε                                                                                                           (A.2) 

The matrix representations of the basis vectors in the principal frame are34,58: 

1

1 0 1 0 0 1 0 1
  ,  , ,

0 1 0 1 1 0 1 0
s s s

       
= = = =  =       

− −       
I q ε q q ε               (A.3)      

where s is the surface alternator tensor. The tensor basis orthonormality yields the following 

results: 

1 1: : : : 2s s s s= = = =I I q q ε ε q q , 1 1 1: : : : : : 0s s s s s s= = = = = =I q I ε I q q ε q q ε q , 

1 1 1 1 1, , , , ,s s s s s s s s =  =  =  =  =  =I q q I q q I ε ε q q ε q ε q q ε q                  (A.4)     

Any 2×2 tensor Z can be expanded as: 



 38 

( ) ( ) ( ) ( )1 1

  off-diagonal

1 1 1 1
= : : : :

2 2 2 2
s s s s

trace diagonal traceless antisymmetric symmetric

+ + +Z Z I I Z q q Z ε ε Z q q                                                  (A.5) 

where the subtext identifies the nature of the tensor. A symmetric 22 tensor diagonal in the 

principal coordinate frame simplifies to: 

( ) ( )
1 1

= : :
2 2

s s +Z Z I I Z q q            (A.6)  

Using eqn.(A.6), the curvature tensor b can be decomposed into a trace and a deviatoric curvature 

tensor: s=H D+b I q  

 

Appendix B 

Free energy minimization of fiber-laden membrane and selected orientation modes 

 The purpose of this Appendix is: (i) to derive the Helmholtz free energy density in terms 

of fiber angle , fiber order S, and membrane curvatures H/D, and (ii) to obtain the orientation and 

ordering modes that result from the free energy minimization.  These results are used in Sections 

3.1 and 3.2 

Using the principal curvature frame (e1,e2), parametrizing the director with n=(cos, sin), 

where  is the fiber orientation angle with respect to azimuthal coordinate of the cylindrical 

membrane (cos=n.e1)  the free energy fiber coupling
ˆ ˆA A + becomes: 

2 4

fiber coupling o 2 4
ˆ ˆρA +ρA =β +β cos α+β cos α                                                                    (B.1a,b,c,d) 

( )( ) 2 2 45 3 5 31 4
o 2 2 5 3

a a a aa a
β = a + + H H- a +a D+a HD S+ + H+ D S + S

2 2 4 2 2 16

    
    
    

 

( ) 2 2

2 2 3 3 5 4 3β =2 a +a H a DS+a DS,  β =2a D S−                                                            



 39 

This energy (eqn.(B.1)) vanishes for flat isotropic states: D=H=S=0. The quartic contribution 

( 4

4 cos  ) is necessary to observe fiber alignment away from the principal axes.  The form of the 

free energy is identical to that describing the interfacial tension of nematic-substrate interfaces47. 

 For a given geometry, the preferred fiber orientation () and fiber order (S) is found by 

minimizing the Helmholtz free energy density Â  : 

( )34 1
5 2 3 5 3

ˆ a aA
S a H S a a H a a DScos 2 Dcos 2 0

S 4 2

  
 = + + + + + +   = 
  

         (B.2a,b) 

22

4

Â
cos sin cos 0

2

 
 = +    = 
  

                         

where the second equation is re-written in a more revealing format.  In terms of the fiber director, 

there are three equilibria states: (a) orientation along major curvature, =0; (b) along the minor 

curvature, / 2 =  ; and (c) oblique, 2

2 4cos / 2 = −  , as follows.   

 (a) Orientation along the major curvature.  Here n=e1 and the scalar order parameter S satisfies a 

cubic: 

( )3 24 1
5 3 2 3 5

a a
0, S a H a D S a D a HD a D 0

4 2

 
 = + + + + + + = 

 
            (B.3a,b) 

 The necessary conditions are 

( )( )
( )

2 5 3
2

2 2 3 3 5

4 3

a a a H D S
0,                2 a +a H-a DS+a DS 0

2 2a D S

+ + −


=   = 


         (B.4) 

Since 4 20 , 0    the minimum energy corresponds to orientation along the largest principal 

curvature (=0).  For a cylinder, this is the azimuthal direction. 

(b) Orientation along the minor curvature.  Here n=e2 and the scalar order parameter S satisfies a 

cubic: 
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( )3 24 1
5 3 2 3 5

a a
/ 2, S a H a D S a D a HD a D 0

4 2

 
 =  + + + − + + = 

 
            (B.5a,b) 

The necessary conditions are 

( )( )
( )

2 5 32
2 2 3 3 5

4 3

a a a H DS
0,                2 a +a H-a DS+a DS 0

2 2a DS

+ + −
=   = 


          (B.6) 

Since 4 20 , 0     the minimum energy corresponds to the orientation along the smallest 

principal curvature (=/2).  For a cylinder this is the axial direction. 

 (c) Oblique orientation along the minor curvature.  Here n=e2 and the scalar order parameter S 

satisfies a cubic: 

( )2 5 3 32 32 1 4
5

4 3

a a a H a DS a a
cos , a H S S 0

2 2a DS 2 4

+ + −  
 = − = − + + = 

  
         (B.7a,b) 

 The necessary conditions are 4 2 42 0, 0−                      (B.8) 

The ordering under oblique conditions is the result of a competition between the Landau-de 

Gennes terms (a1, a2) and the curvophilic a5 term.  

Next, we discuss transitions and assume without loss of generality that all the energy 

coefficients are positive  ia 0 . For 4>0, orientation transitions from oblique to principal 

curvature directions occurs for D 0  as follows.  (a) Oblique-major curvature (e1) transition: as 

2 42 , 0− → →   . In this case 2 becomes sufficiently negative to balance 4. At the transition 

when 0 →  the curvatures obey: 

( ) ( )1 5 2 5

4 3

2a 4a H a +a
D +H 0

a a

+
− = −                 (B.9) 

This transition will occur at sufficiently small curvatures so that the effect of a2 and a5 prevail (see 

discussion below eqn.(B.10)). 
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 (b) Oblique-minor curvature (e2): as 2 0, / 2 → →  . This transition to orientation along the 

minimum curvature occurs as the tension introducing cos2 in the free energy vanishes (see 

eqn.(B.1c)) and this can happen only at sufficiently large H and D. At the transition the curvatures 

obey: 

( ) ( )1 5 2 5

4 3

2a 4a H a +a
H-D

a a

+
− = −           (B.10) 

  Next we demonstrate an application of these results (eqns.(B.9, B.10) for the case of a 

cylinder of radius R, when ( )D H 1/ 2R= = − , relevant to plant cell walls of cylindrical cells with 

circular cross-section. Using (eqns.(B.9, B.10), we find that the critical transition radii R1 and R2 

for oblique/major curvature and oblique/minor curvature, respectively, obey: 

( ) ( )
( )

5
1

13 3
1

2 5 4 2 5

a
2 a

Ra a
R 1 1 S

2 a +a a 2 a +a

  
 − 
  

= + − = + 
 
 
 

                                               (B.11)  

( ) ( )
( )

5
1

23 3
2 1

2 5 4 2 5

a
2 a

Ra a
R 1 1 S R

2 a +a a 2 a +a

  
 − 
  

= − − = − = 
 
 
 

     (B.12) 

where we used eqn.(B.7b) for S.  Figure 1 shows the stability regions for line, helix and ring 

modes as a function of the radius for a cylindrical membrane. A small cylinder radius induces axial 

orientation while larger radius induces azimuthal orientation, and the interval over which the 

intermediate oblique state exists is: 
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( )

5 5
1 1

1 23
1 2

2 5 4 4

a a
a a

R Ra
R R

2 a +a a / 2 a / 2

    
 − −   
    

− = + 
 
 
 

              (B.13) 

 

Appendix C  

Effective Bending Modulus of a fiber-laden membrane 

The purpose of this Appendix is: (i) to derive the effective fiber modulus of a fiber laden 

membrane in terms of fiber angle , fiber order S, and membrane curvatures H ,and (ii) to 

establish the relations between bending stiffness and fiber orientation and order.  These results are 

used in Section 3.4 

The effective bending modulus of an arbitrarily curved fiber-laden membranes kc,eff has 

contributions due to membrane bending elasticity, kc,membrane¸ and membrane curvature induced 

nematic ordering of fibers, kc,fiber. The fiber contribution to effective bending modulus, kc,fiber is 

given by the second derivative of the fiber and coupling free energies 
fiber coupling

ˆ ˆA A +  with 

respect to mean surface curvature H:  

 

( ) 

( ) ( ) ( ) 

2

fiber coupling 2 2 2 2 2 4

c,fiber 32

2

2 5 3 3 3

2 4

2 5 3 3 2 5 3 5 3 3

ˆ ˆd ( A A )
k 1-2S S 4Scos 4S cos 4S cos a

dH

cos
a +a +2a H 2a HS 4a HScos 4Ssin

H

S
a +a +2a H 4a HS 2cos - a +a +2a H + a +2a H S 8a HScos

H

 +
= = + +  −  + 

 
+ − +  




+ −  + 



  (C.1) 

The three fiber contributions to bending stiffness include the bare curvophobic effect ( )3a , the 

director effect ( )/ H  , and the order parameter effect ( )S / H  . As shown below maximum 
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fiber reinforcing effect is obtained as expected when =0 and order is high. For 0<R*<0.1847, the 

fibers are oriented in line mode and eqn.(C.1) simplifies to: 

( ) ( )*

2

c,fiber 3 3 3 2 5 50 R 0.1847

S
k 1-2S S a 2a HS-2a H-a -a +a S

H 


= + +


    (C.2) 

For R*>0.3867, the fibers are oriented in ring mode and eqn.(C.1) simplifies to: 

( ) ( )*

2

c,fiber 3 3 3 2 5 5R 0.3867

S
k 1 2S S a 2a HS+2a H+a +a +a S

H


= + + +


    (C.3) 

The derivates S/ H, (cos ) / H      in eqn. (C.1), (C.2), and (C.3) are evaluated numerically using 

central difference method at each value of R*. The membrane contribution to effective bending 

modulus, kc,membrane is given by the second derivative of the membrane free energy 
membraneÂ  with 

respect to mean surface curvature H:  

( )2

membrane

c,membrane c2

ˆd A
k 4k

dH


= =         (C.4) 

In this work, the dimensionless membrane bending modulus kc is set equal to 1 representing 

similar magnitudes of membrane elasticity and membrane-fiber interactions. 
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