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ABSTRACT 

Intramuscular fat levels of pork affect the flavor of pork meat. In the pork industry, two 

quality attributes namely intramuscular fat (IMF) content and marbling score (MS) are 

used to represent intramuscular fat levels of pork meat. Conventional determination 

methods are not suitable for the current requirements of the pork industry as they are 

either destructive or subjective. This study investigated the use of hyperspectral imaging 

in evaluating intramuscular fat content and marbling score of pork. Intramuscular fat 

distribution along the longissmus muscle and the influences of freezing, thawing, and 

image pattern analysis on prediction capacity were also considered.  

Near infrared (NIR) hyperspectral imaging technique from 900 to 1700 nm was 

used for prediction of IMF content and MS. Fresh pork at the 3rd/4th last rib was imaged. 

Pattern analysis techniques of Gabor filter, wide line detector (WLD), and an improved 

grey-level co-occurrence matrix (GLCM) were studied and different image features, i.e. 

spectral, texture, and line features, were extracted. Key wavelengths were identified. 

Multiple linear regression (MLR) was used to develop prediction models. For 

determination of marbling score, the MLR model, using the first derivative of Gabor 

filtered mean spectra, performed best with a prediction accuracy of 0.90 at wavelengths 

of 961, 1186 and 1220 nm. For intramuscular fat content, prediction accuracy of 0.85 was 

obtained using the raw mean spectra at 1207 and 1279 nm. The distribution map of IMF 

content in pork was developed. The results showed the possibility of rapid and non-

destructive evaluation of intramuscular fat level of pork using NIR images.  
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Regarding marbling as a visual index, a method for objective evaluation of pork 

marbling score using red-green-blue (RGB) images was developed by applying WLD-

based linear models. 

The possibility of non-destructive prediction of IMF content and MS using frozen 

and frozen-thawed pork was studied. Prediction accuracy of 0.90 for MS was achieved 

for frozen pork. Prediction accuracy of 0.82 for IMF content and accuracy of 0.91 for MS 

were realized by frozen-thawed pork. The potential of frozen and frozen-thawed pork for 

assessment of marbling score and frozen-thawed pork for the assessment of intramuscular 

fat content were demonstrated. 

Besides the effects of freezing and thawing, the variation of IMF content and MS 

across the last seven thoracic longissmus muscle was studied. Relationships between IMF 

content and MS at the last rib and the corresponding attribute at other ribs and the whole 

section of the loin were determined. The relationship between NIR images of rib end and 

the IMF level of pork at the six last thoracic ribs was investigated. Close relationships 

were indicated, especially between the images of rib end and IMF levels at the 2nd/3rd last 

ribs and the 2nd last/last ribs. 
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RÉSUMÉ 

La teneur en matières grasses du porc affecte la saveur de la viande de porc. Dans 

l’industrie porcine, la graisse intramusculaire (GIM) et la cote de persillage (CP) sont 

deux propriétés qui déterminent la teneur en gras du porc. Les méthodes conventionnelles 

de détermination ne sont pas adaptées aux besoins actuels de l'industrie car elles sont 

destructrices ou subjectives. Cette étude porte sur l'utilisation de l'imagerie hyperspectrale 

dans l'évaluation de la teneur en graisse intramusculaire et du persillage du porc. Les 

effets de la répartition de la graisse intramusculaire le long du muscle Longissmus, de la 

congélation, du dégel et de l'analyse de la forme pour le traitement de l’image ont été pris 

en compte. 

Une technique d’imagerie hyperspectrale proche infrarouge (IR) allant de 900 à 

1700 nm a été utilisée pour prédire le GIM ou la CP. La viande fraîche au niveau de la 

3ème/4ème côte du porc a été utilisée pour recueillir les images hyperspectrales. Des 

analyses de la forme fondée sur les techniques du filtre de Gabor, du détecteur linéaire à 

large spectre (WLD) et de la matrice de cooccurrence de niveau gris améliorée (GLCM) 

ont été étudiées et les propriétés de l’image, i.e spectre, texture et propriétés des lignes, 

ont été extraites. La régression linéaire multiple (RLM) a été utilisée pour développer des 

modèles de prédiction. Pour la cote persillage, le modèle de RLM utilisant la moyenne de 

spectre filtrée pour la première dérivée de Gabor a le mieux performé avec une précision 

de calibration de 0,90 aux longueurs d'onde de 961, 1186 et 1220 nm. Pour le GIM, une 

précision de calibration de 0.85 a été obtenue avec un spectre moyen de base à 1207 et 

1279 nm. La distribution du contenu de GIM a été illustrée. Les résultats démontrent la 
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possibilité d’utiliser les images hyperspectralces proche IR pour évaluer rapidement et de 

façon non-destructive le taux de gras intramusculaire du porc.   

En ce qui concerne le persillage en tant qu’indice visuel, une méthode objective 

d’évaluation de la cote persillage utilisant des images rouge-vert-bleu (RGB) a été 

développée en appliquant un WLD basé sur un model linéaire au canal vert.  

La possibilité d’un contrôle non-destructif du GIM et de la CP utilisant du porc 

congelé et décongelé a été étudiée. Une précision de la prédiction de 0.90 pour la CP a été 

réalisée avec du porc congelé. Une précision de la prédiction de 0.82 pour le GIM 

découle du porc décongelé. Le potentiel du porc congelé et décongelé pour l'évaluation de 

la cote de persillage et du porc décongelé pour l'évaluation de la teneur en gras 

intramusculaire a été démontré. 

Outre l'effet du gel et du dégel, la variation du GIM et de la CP à travers les sept 

derniers muscles thoraciques Longissmus a été étudiée. Les relations entre le GIM et la 

CP à la dernière côte et les propriétés correspondantes aux autres côtes et au filet ont été 

déterminées avec précision. La relation entre les images de proche IR à l’extrémité et le 

niveau de GIM du porc six dernières côtes thoraciques a été étudiée. Des relations étroite 

ont été déterminées, en particulier entre les images de l’extrémité de la côte et les taux de 

GIM aux 2eme/3eme dernières côtes et la 2eme dernière côte. 
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I. GENERAL INTRODUCTION  

1.1       Background 

Pork is very popular due to its unique characteristics in terms of nutritional quality, 

distinct flavor, and palatability. Along with the beef and poultry industries, the pork 

industry is a multi-billion dollar business worldwide. Global pork production was over 

100 million metric tons in 2012, with roughly 2% increase from the previous year 

(Foreign Agricultural Service, United States Department of Agriculture (USDA), 2012). 

Pork companies produce different types of pork products ranging from fresh, frozen, 

smoked, and canned meats to sausage. Pork and pork products comprised about 70% of 

processed meats in Canada (Agriculture and Agri-Food Canada, 2011). The large amount 

of pork and pork products did not only go to Canadian markets, but were exported 

worldwide. Therefore, the quality of pork should meet the requirements and high 

standards of different markets. 

The demand for pork of high quality is increasing dramatically. Together with the 

current need for improving quality, the pork industry is faced with a number of challenges, 

including the maintenance of high-quality standards along with a demand of reduction in 

production costs. Meeting these challenges has become crucial to the development of the 

pork industry. Intramuscular fat (IMF) content is closely related to pork palatability and 

thus to pork quality. The intramuscular fat content of pork must be identified and 

quantified to classify pork. Ineffective fat inspection can lead to lost revenue for the pork 

industry. Pork companies and suppliers have sought to devise efficient and low-cost 

quality inspection methods to enable them to meet stricter pork quality standards, thereby 
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raising their competitiveness and expanding their market share. 

Either marbling score or intramuscular fat content represents the intramuscular fat 

level of pork. Conventional determination methods for intramuscular fat content are based 

on chemical fat extraction, which is tedious, time-consuming, destructive, potentially 

imprecise, costly, and environmentally harmful. Consequently, the pork industry has 

sought to implement non-destructive rapid-detection methods and devices to determine 

the intramuscular fat content of pork. Traditionally, pork marbling is scored subjectively 

from 1 to 6 and 10 according to National Pork Producers Council (NPPC) charts (NPB, 

2002). Besides being unrepeatable and labor-intensive, this conventional method is not 

suitable for online inspection of pork quality. Therefore, fast, real-time, and non-chemical 

detection technology is necessary to assist the development of the global pork industry. 

For this purpose, pork producers and processors are seeking ways in which new 

technologies, such as hyperspectral imaging, can improve and speed up the fat inspection 

of pork meat.  

To overcome the limitations of regular machine vision techniques and 

spectroscopic technology, hyperspectral imaging was recently introduced for the quality 

control of food. Hyperspectral imaging provides a means of visualizing spatial 

distribution and capturing spectral information of an object over the visible (390-700 nm) 

and near-infrared (NIR) spectral regions (700-2500 nm) (Bannon, 2009). Recently, the 

technique has become more and more popular due to its non-destrictive characterstics and 

the challenges of market segmentation.  

Most published studies on hyperspectral imaging of pork have focused on pork 

qualities such as drip loss, pH, and color, whereas very few studies have reported the 
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application of hyperspectral imaging in assessing the intramuscular fat content of pork. To 

classify marbling levels, Qiao et al. (2007c) analyzed hyperspectral images using grey-

level co-occurrence matrix (GLCM) method. Using a type of GLCM measuremen, i.e. 

angular second moment, the authors were able to determine pork marbling scores ranging 

from 3.0 to 5.0 (±1), but they were not able to distinguish the score level of 10.0. To assist 

the analysis of hyperspectral images, and draw on data from Qiao et al. (2007c), Liu et al. 

(2012) used wide line detector (WLD) for the objective assessment of pork marbling 

score. Line pattern analysis was applied in pork quality control for the first time. 

Predictive accuracy of 99% was achieved. However, this study did not include validation 

using independent pork samples. Reflecting the valued potential of NIR hyperspectral 

imaging for prediction of fat levels in meat, Kobayashi et al. (2010) applied NIR 

hyperspectral imaging for intramuscular fat detection in beef.  

Research activities have not fully explored the relationship between hyperspectral 

images and the marbling score or IMF content of pork. Given the success of above-

mentioned studies, an investigation of hyperspectral imaging for intramuscular fat levels 

of pork may be equally successful. Pattern analysis techniques performed well in pork 

quality detection using hyperspectral images in the 400-1100 nm range (Qiao et al., 2007c; 

Liu et al., 2010; Liu et al., 2012). It is therefore of great interest to study the efficiency of 

pattern analysis methods, such as Gabor filter, grey-level co-occurrence matrix, and wide 

line detector in the processing of hyperspectral images.  

Since the marbling score is assessed subjectively, the study of digital images of 

pork has the potential to provide greater convenience for the evaluation of marbling 

scoreg. For example, if a model using red-green-blue (RGB) images could be developed 
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with good predictive and descriptive ability, a normal RGB camera could be implemented 

in the real-time inspection systems of pork, and portable detecting instruments could be 

developed. Therefore, RGB imaging presents an intersting means of determining pork 

marbling score. 

Conventional evaluation of pork marbling is performed on fresh pork at the 3rd/4th 

last ribs, according to the standard charts of NPPC (NPB, 2002), while determination of 

IMF content is focused on the five last ribs (Fortin et al., 2005; Rincker et al., 2008; Lo 

Fiego et al., 2010; Lakshmanan et al., 2012). Different anatomical locations were used 

due to the large variation of IMF content across the longissimus  muscle. Hence, it is of 

interest to study the variation of IMF content and marbling score along the longissimus  

muscle and to see if hyperspectral imaging could assist the correlation study. 

Hyperspectral images of frozen and frozen-thawed pork were collected to study their 

influence on non-destructive measurements of IMF content and marbling score. 

1.2       Hypothesis 

Based on the foregoing discussions, the hypothesis in this study is that hyperspectral 

images of pork could provide accurate information about the intramuscular fat content of 

pork; application of pattern recognition techniques could elevate the accuracy of 

prediction results; the intramuscular fat content of pork at several last rib locations could 

be correlated; pork in different states (namely fresh, frozen and frozen-thawed) could be 

used for non-destructive determination of pork intramuscular fat content and marbling 

score using hyperspectral imaging. 

1.3       General objective 

The general objective of this study was to assess the intramuscular fat content and 
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marbling score of pork using non-destructive hyperspectral image analysis. The outcome 

is anticipated to enhance the evaluation of intramuscular fat content and support modern 

pork production. The knowledge will be critical in pork processing resulting in improved 

pork products and efficient pork production. 

1.4       Specific objectives 

To contribute to the overall objectives, the specific objectives for this project are: 

1. To develop a regression model to determine the marbling score of pork 

using hyperspectral imaging augmented with pattern recognition techniques. 

2. To predict the marbling score of fresh pork using standard RGB images of 

pork. 

3. To quantitatively evaluate intramuscular fat content and describe the 

distribution map of intramuscular fat content in pork using hyperspectral 

images. 

4. To assess the influence of freezing and thawing on the capacity of NIR 

hyperspectral images for prediction of intramuscular fat level of pork. 

5. To study the correlations between intramuscular fat content and marbling 

score of pork at the last rib and the corresponding attributes of pork at 

several ribs anterior to the last rib. 

6. To explore the use of hyperspectral images of rib end for non-destructive 

characterization of intramuscular fat content and marbling score of pork at 

the several last ribs. 

 



  6

II. GENERAL LITERATURE REVIEW  

2.1       Pork and pork quality 

Pork is commonly defined as the edible postmortem components of the slaughtered pigs, 

including tissue, muscle fiber cells, fat and connective tissue, even bones that are 

originated from hogs (Miller, 2002). Usually pork is considered as a type of red meat due 

to its level of myoglobin being higher than in poultry or fish. The structure and 

composition of pork meat determines its unique flavor. For centuries, pork and its derived 

products including bacon, sausage, pork chops, minced pork, and ham have made or 

constituted some of the most important foods consumed in many countries worldwide. 

Hence, pork has been used widely as one of the main food source of the human diet, in 

ways of raw meat, by-products or an essential ingredient in other food products. Showing 

worldwide consumption of meat by species, Figure 2.1 indicated that pork is the most 

popular meat. The specific market of pork varies. In 2012, the greatest pork imports went 

to China, Russia, the Ukraine and Mexico. China is currently making efforts to upgrade 

the quantity and quality of their pig production. The United States and Canada are two of 

the major producers and exporters of pork and pork products. Exports of pork bring in 

profits of at least $1 billion per year for those two countries. Pork produced in Quebec is 

famous in the industry for its high quality. Global pork production increased by almost 35 

million metric tons from 1996 to 2012 (Figure 2.2, Food and Agriculture Organization of 

the United Nations, 1996-2012). There is an increasing trend of global pork production is 

observed despite the current larger market share of pork compared to other meat. World 

production and consumption of pork is predicted to continue increasing over the next few 
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years (Foreign Agricultural Service, United States Department of Agriculture, 2012).  
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Figure 2.1   Global meat consumption by species (million metric tons, Source: 

http://www.fas.usda.gov/dlp/pubs.html). 
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Figure 2.2   Global pork production from 1996 to 2012 (Data obtained from:  

http://www.fas.usda.gov/dlp/pubs.html). 

Along with the growing market and increasing production, keeping or enhancing 

pork quality is essential for the pork industry to maintain this upward trend. The quality 

of raw pork covers the distinctive traits, characteristics, capacities, or virtues that make 

the meat acceptable to consumers. In the market, food quality includes external factors 
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such as appearance (size, shape, color, gloss, juiciness, and consistency), texture, and 

flavor; and internal factors such as chemical, physical, and microbial activity. In the pork 

industry, pork quality can be assessed by determining several technological attributes 

including intramuscular fat content, water holding capacity, marbling score, tenderness, 

and sensory attributes like flavor, chewiness, and juiciness. Pork quality standards are 

coordinated with the development of social acceptance of the food.  

2.2       Challenges for the pork industry  

The pork industry represents one of the major components of the food industry. It 

includes producers, processors, retailers, packing companies, advertisers, the transporting 

industry and other segments. The objective of producing pork is to provide a high quality 

product for consumers. During meat production, the quality and safety of raw pork are 

evaluated using either objective or subjective techinques. The meats are classified to 

different levels of quality and are assigned to targeted markets. Along with the 

development of the world economy, the pork industry is facing several challenges.  

Over the past two decades, the pork industry has changed a great deal due to 

massive hyper-consolidation in terms of merging of players in the pork industry. The 

number of processors has declined but the scale of operation has exploded (MacDonald 

and William, 2009). The high concentration of the industry has led to high 

competitiveness and an expansion of market shares. Therefore, pork related companies 

are facing a high pressure to make improvements in every possible aspect of meat 

production. Along with efforts towards enhancement of industrial efficiency, the industry 

is seeking to lower production costs to the greatest extent. The value of pork production 

fluctuated within a relatively narrow range from 1970 to 2011 (USDA Economic 
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Research Service). Hence, the low increase in value has proved to be a challenge for pork 

producers. More economical and efficient quality control methods should be developed 

equivalent to support the development of the industry.  

On the other hand, consumers today have become more discriminating regarding 

food quality. People have begun to focus on the nutrition level of pork. Some people even 

associate pork fat content with chronic diseases such as cancer and heart disease, which is 

still controversial. The consumers expect meat products that are labeled with fat content, 

fat compositions, sodium, calories, and cholesterol and other quality attributes. 

Requirements for meat products are changing as well. Leaner meat is preferred by North 

American today while fatter meat is preferred by Asian consumers. Therefore, to win in 

the food market, it is critical that the the pork industry enhance pork quality to meet the 

demand of consumers. In addition, governments have begun to pay greater attention to 

food quality and safety control. Standards that are more rigorous are applied to domestic 

meat production and international meat imports by different governments.  

Therefore, to meet these challenges, effective detection methods and technologies 

would enable the pork industry to tailor pork products for the changing appetite of 

consumers and the increasing requirements of governments. Features of objective, 

chemical-free, rapid, non-destructive, and real-time are amongst the most important ones 

for technologies that will be applied in modern the pork industry.  

2.3       Longissimus muscles 

Pork muscle is an unpredictable product due to the complex body structures of animals 

and the various factors that could affect the quality of the meat, such as varieties, feeding 

resources, time of aging, chilling rate, post-mortem age, way of slaughter, pre-slaughter 
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handling, storing status, and method of dissection. After slaughtering, muscles from 

animals become meat. Some principal muscles are sold as meat such as muscle from belly, 

legs, back, shoulder, and legs. These are sold as products such as loins, rib chop, rack 

joint, leg joint, shoulder joint, and mince. The Longissimus dorsi muscle (as shown in 

Figure 2.3) is one of the most popular and major products selling on the market. The 

longissimus muscle is part of the erector spinae muscle groups (sacrospinalis) along the 

back of the pig. The erector spinae muscles run parallel to the spine from the base of the 

skull to the base of the spine. The longissimus muscle represents approximately 4% of the 

live animal, 7% of the carcass, 12% of all carcass muscles, and 51% of the back muscles 

(Kauffman, 2012). These values vary by breed, genetic types, diet, rearing, slaughtering, 

and other factors. 

Thoracic rib 
loin

Lumbar 
vertebra loin

Longissmus dorsi

 

Figure 2.3   Pork cuts (Source: http://www.kristom.com/products.php). 

The lumbar loins are the lower of the Longissimus muscles, which run along the 

lumbar vertebra. The thoracic rib chops are the upper portion of the longissimus muscles, 
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which run from the top first to the last thoracic vertebra. Thoracic loins with ribs or 

without bones, also known as center cut loin, are popular as main constituents of many 

meals. The thoracic loins are the muscle material studied in this thesis. 

2.3.1     Composition 

Longissimus muscle usually refers to the meat that is surrounded by connective tissue and 

surrounding fat. Muscle mainly consists of lean meat and fat droplets (adipocytes) 

between leans. The constituents of muscle include water, protein, and lipid, along with 

carbohydrates, non-protein nitrogenous substances [creatine and creatine phosphate, 

adenosine triphosphate (ATP), adenosine diphosphate (ADP)], free amino acids, anserine, 

and carnosine), minerals, and vitamins. Water and protein are the two largest constituents 

of muscle, and are mainly stored in lean (Huff-Lonergan, 2010). In living tissue, water 

plays an important role in thermoregulation, as a medium of cellular processes, in the 

transport of cell-related nutrients and in the vascular system. Protein plays a range of 

functions in living tissue, as there are many types of proteins. Muscle proteins help to 

maintain the muscle structure, organize the muscle and muscle cells (a bundle of muscle 

fibers), assist in contractile movement of muscle, regulate the interactions between 

different classes of proteins, process cellular signals, metabolize enzymes, and assist the 

protein degradation (Huff-Lonergan, 2010).  

Little lipid is found in the lean while most of the lipid is stored in fat droplets 

between leans. Although there is a small amount of lipid in longissimus muscle, lipids 

play an important role in living animals. Lipids are involved in energy metabolism, 

membrane structure, and various other processes such as immune responses and cellular 

recognition pathways (Huff-Lonergan, 2010). The lipid in connective tissue (cell 
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membranes) inside lean helps in the movement of muscle.  

At the postmortem stage, there are many changes in the composition of muscle. 

As living tissue is converted to meat muscle, energy is gradually depleted. Proteins are 

oxidized and gradually nitrated (Rowe et al., 2004; Huff-Lonergan, 2010). Metabolism 

shifts from being aerobic to anaerobic, resulting in a decline of pH value. Ionic strength is 

raised along with the levels of calcium, sodium, and potassium. Those postmortem 

changes of composition during the storage of meat have a number of influences on the 

meat quality, particularly with regard to fat content, fat composition, water holding 

capacity, and tenderness. Leaner pigs (low lipid content) can exhibit poor capillarization 

of muscle fibers, and thereby result in pork of reduced quality. 

2.3.2     Structure 

In the living animal, the longissimus muscle is a type of skeletal muscle, which is 

connected to bones. Skeletal muscle has a complex structure, which transmits energy in 

the myofibrils to the entire muscle, perform the actions of the limb, and ultimately affects 

meat quality. The lean muscle visible to the naked eyes includes many muscle fascicles, 

which are enclosed and connected by several layers of connective tissue. Fat deposits can 

be found between groups of muscle fascicles. Each muscle fascicle (bundle of muscle 

fibers) contains a different number of muscle fibers (muscle cells), which are bound up by 

a layer of membrane, the sarcolemma. The sarcolemma is connected by continuous 

connective tissue, the edomysium (Bailey and Light, 1989). The muscle fiber has a 

cylindrical shape, and can be up to a few centimeters in length. Histochemical and 

biochemical properties of a muscle fiber, such as fiber type composition, fiber area, 

oxidative and glycolytic capacities, and lipid contents, are factors that have been found to 
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interactively influence meat quality. 

Inside a muscle fiber are sarcoplasma and plentiful myofibrils (Figure 2.4). 

Sarcoplasma contains the red muscle pigment myoglobin, which absorbs oxygen and 

reserves oxygen for contraction of muscle myofibrils. Myofibrils make up about 70% of a 

muscle fiber's volume. Myofibrils are made up of two major types of filaments, thin and 

thick filaments, whose main components are the proteins actin and myosin, respectively, 

and a third type of filament composed primarily of the protein titin (Ma et al., 2006; Huff-

Lonergan, 2010). Myofibrils have a striated appearance due to the alternation of dark (A 

band) and light (I band) bands within each myofibril. The bands are created by the 

alternating hexagonal arrangements of thick and thin filaments. Each hexagon is a 

Muscle 
fiber

Myofibril

Dark
A band

Light
I band Z line Z line

Thin (Actin) filament

Thick (Myosin) filament

Thick (Myosin) filament

Thin (Actin) filament

Sarcomere

Z line Z line

 
Figure 2.4   Structure of muscle fiber (Source: 

http://humanbiologylab.pbworks.com/w/page/67318721/How%20Does%20a%20Mu

scle%20Contract_Kayley%20Mikolajczyk). 
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functional unit of muscle, i.e. sarcomere. The whole band of thick filament including the 

overlapping band of thick and thin filaments in a sarcomere results in a dark band, while 

only thin filaments exist between two sarcomeres, the resultant band is light band. The Z 

line in the center of a light band is a cytoskeletal disc connecting parallel thin filaments, 

and the region between two such Z lines is termed a sarcomere. The protein titin acts to 

stabilize the integrity of the sarcomere and improve the spring of the muscle. 

The muscle contraction results from the interaction between thin and thick 

filaments. In living muscle, when ATP is hydrolyzed, energy is liberated for myosin to 

pull the thin filaments toward the center of the sarcomere. The myofibril is then shortened, 

resulting in the contraction of muscle. When a new molecule of ATP is bound to the 

myosin head, the myosin and actin disassociate, which results in the relaxation of muscle. 

In the postmortem stage, muscle becomes stiff because the supply of ATP is depleted, 

resulting the irreversible form of actomyosin (Huff-Lonergan, 2010; Kauffman, 2012).  

2.4       Intramuscular fat 

2.4.1     Definition of intramuscular fat and marbling 

Fat in muscle is an important factor in terms of meat quality. Fat in pork supplies the 

essential fatty acid linoleic adic (contains 18 carbon atoms and 2 unsaturated bonds), 

carries fat-soluble vitamins, and provides protection and insulation for the energy 

molecules. Fat in pigs can be classified to intramuscular fat, intermuscular fat, and 

subcutaneous fat according to its position (Figure 2.5). Intramuscular fat appears as 

cellular structure within muscle. In pork muscle, intramuscular fat is stored as droplets 

not only within intramuscular adipocytes, but also within myofibril and connective tissue 
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within muscle. Intramuscular fat content in longissimus muscle varies according to breeds, 

individuals, diets, and even cuts of the animal. Intramuscular fat is different to 

intermuscular fat, which refers to the fat located between different muscles in a same cut. 

Subcutaneous fat is the fat, which lies immediately under the skin.  

Intramuscular
fat

Subcutaneous
fat 

Intermuscular
fat 

A muscle

 

Figure 2.5   Fat in meat. 

Triglycerides and phospholipids are the two main kinds of lipid found in 

intramuscular fat of pork, with triglycerides being around 80% of the total (Huff-

Lonergan, 2010). Phospholipids can be found in cell membranes while triglycerides are 

the main forms of energy reserves. The lipid in intramuscular fat contains a wide variety 

of saturated and unsaturated fatty acids (Figure 2.6). C-H and C-C are the main chemical 

bonds in intramuscular fat in pork, while smaller numbers of C-O, C=O, O-H, C=C, and 

N-H could be found. As a type of complex, fat can change to other substances due to a 

series of reactions of bonds. The unsaturation levels of the principle fatty acids are 

correlated to the melting point of a fat. Lipids with more saturated fatty acids have higher 

melting points. Intramuscular fat is more saturated than intermuscular fat and 

subcutaneous fat, thus intramuscular fat has a higher melting point (Romans et al., 2001). 
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The profile of fatty acids is correlated to the quality of pork, such as firmness, color, and 

health. There is an effort to improve fat quality by changing fatty acids in pork fat, such 

as reducing saturated fatty acids since they are said to increase the risk of cardiovascular 

diseases. 

        
(a) Saturated     (b) Unsaturated 

Figure 2.6   Typical molecular formulas of fatty acids (Source: http://cccmkc.edu.hk/ 

~sbj-chemistry/.htm). 

Marbling refers to the visible white flecks of intramuscular fat, i.e. adipocytes 

among bundles of muscle fibers (muscle fascicle). Marbling only refers to the visible 

intramuscular fat between muscle cells, while intramuscular fat refers to fat that is 

distributed not just between muscle cells but in the muscle cell as well. The amount, 

structure, and distribution of marbling in muscle vary by species, individuals and cuts 

(Kauffman, 2012). Compared to marbling in beef, marbling in pork is less visible due to 

the light color of pork lean and the relatively low amount of extractable lipids in pork. 

However, consumers are still able to distinguish pork with marbling at low (1%), medium 

(2.3%), and high (3.5%) levels. Since marbling level can reveal the IMF level of pork 

muscle, some countries such as the United States, include marbling levels in pork grading 

systems. Marbling levels were even regarded as the same as IMF levels in some 

laboratory studies (Witte et al., 2000; Teye et al., 2006; Rincker et al., 2008; Hocquette et 

al., 2010).   
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2.4.2     Development of intramuscular fat 

The development of IMF in pork occurs early in the life of hogs and develops during 

growth of the animal. The ways of either form of adipocytes or accumulation of adipose 

is linked to uptake, synthesis and degradation of fatty acids. The intramuscular adipocytes 

are derived from the stem cells of an animal. The postnatal adipocytes are formed along 

with depot of the budding embryonic cells and fetal adipose cells. During the growing 

stage of fetal and postnatal, lipids are first stored within muscle fibers. After then, when 

the energy cannot be metabolized immediately in muscle fiber, they will be stored in 

adipose tissue for later synthesis of fatty acids, which will be released as a later energy 

supply (Azain, 2004; Hausman and Richardson, 2004). As a result, the fat is deposited 

and intramuscular adipocytes grow in size and numbers (Gondret and Lebret, 2002; 

Hausman et al., 2009). Hence, adipocytes are developed at a lower rate than the growth of 

muscle fiber, resulting in increased concentration in the later life of an animal. Thus, over 

the life of an animal, IMF develops in three stages: constant, linear increase, and plateau. 

2.4.3     Influence of intramuscular fat content on pork quality 

Intramuscular fat helps in the organization of muscle structure and contributes to the 

unique flavor of pork. As the intramuscular fat is deposited in and around the muscle 

fascicles, the structure of the endomysium is disintegrated, which results in the 

dissolution of collagen in muscle, the collapse of muscle structure, and the increase of 

raw meat tenderness and juiciness. When pork is cooked, the melting fat produces oil that 

lubricates the muscle fibers and increases the juiciness and tenderness of cooked pork. 

The lipid oxidation products produced by fat give rise to the aroma of cooked pork. 
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It is accepted that IMF content is correlated to pork quality parameters such as 

flavor, juiciness, tenderness, and the overall acceptability or palatability of pork. A very 

low amount of intramuscular fat in muscle leads to an inferior meat, being dry and 

unpalatable (Warriss et al. 1996). A number of studies have revealed that better sensory 

quality was the result of increased amounts of intramuscular fat in the pork meat (Rhodes, 

1970; Kemspter et al., 1986; Rincker et al., 2008). However, other studies reported that 

significant enhancements on sensory traits of pork were observed only when a threshold 

level of intramuscular fat was applied.  Levels of 1.5, 2, and 2.5% were suggested by 

Fortin et al. (2005), Fernandez et al. (1999), and Barton-Gade and Bejerholm (1985), 

respectively. Van Laack et al. (2001) reported that there was a positive linear relationship 

between IMF level and tenderness in the high-fat Duroc pig breed, whereas the 

relationship was not noticeable in the low-fat Landrace and Berkshire breeds. Another 

study by Lonergan et al. (2007) demonstrated that intramuscular fat has limited effect on 

pork tenderness and texture when the pH value remained the same level.  

The perception of pork quality including intramuscular fat level by consumers 

differs due to their cultural and social background, and even individual health cognition. 

For instance, Canadians and Americans prefer leaner pork. Due to the preference for low-

fat pork, the production system in the US was modified to produce less fat in meat. 

Furthermore, fatty acid composition of fat is considered to affect pork quality as well as 

fat quantity (Wood et al., 2008). The composition of lipids affects the oxidative stability 

of lipid during processing. A high level of lipid oxidation would produce rancid odour in 

meat (Scollan et al., 2006). The conjugated linoleic acid (essential polyunsaturated fatty 

acid) is important to human nutrition, as it must be ingested from food since it cannot be 
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synthesized in the human body. An increase of linoleic acid in pork fat would be 

beneficial to human health. Some studies have implicated the consumption of fat in health 

issues such as obesity, cancer, or coronary heart disease (Azevedo et al., 1999; 

Beauchesne-Rondeau et al., 1999). To meet the demands of different markets, efforts 

have been made to modify IMF levels, and even compositions. 

2.4.4     Modification of intramuscular fat 

The swine industry has been making effort to modify IMF content by choosing gene types, 

choosing gender, changing feed intake amounts, changing compostions of diet and other 

approaches. Generally, breeds that mature earlier will produce a fatter carcass than breeds 

that have a later maturation time. Intramuscular fat proportion increases with increasing 

carcass weight, since the deposited rate of intramuscular fat in earlier maturing breeds is 

faster than later maturing breeds. The Duroc breed of pig has higher intramuscular fat 

content than the British Landrace breed (Cameron and Enser, 1991). An increase in intake 

by pigs or in male pigs generally have higher intramuscular fat content as they have 

matured earlier than female pigs (Moloney et al., 2002). Feeding pigs with high-energy 

(high fat and/or low fiber) feed will increase intramuscular fat content. Excess protein in 

the diet of pigs will result in a muscle with low intramuscular fat content.  

Some efforts have been made to modify the composition of intramuscular fat, i.e. 

fatty acids, by choosing breeds or changing diet. Generally, genotypes with higher IMF 

content are associated with more monounsaturated fatty acids. However, an exception has 

been reported by Cameron and Enser (1991) that the Duroc breed, which provides fatter 

muscle than the British Landrace breed, had higher saturated and monounsaturated fatty 

acids proportions in intramuscular fat than the British Landrace breed. Dietary fatty acid 
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composition influences the profile of fatty acids in intramuscular fat in meat (Verbeke et 

al., 1999; De Smet et al., 2001). Incorporation of oilseeds (e.g. tallow, rapeseed, linseed, 

safflower, soybean) or increased supply of polyunsaturated fatty acids in the diet of pigs 

can raise the concentration of polyunsaturated fatty acids in intramuscular fat in meat 

(Riley et al., 2000; Sheard et al., 2000; Kouba et al., 2003). Eggert et al. (2001) 

demonstrated that inclusion of the linoleic acid in the diet of pigs increased the 

concentration of the linoleic acid in pork.  

Hogs are raised to achieve different levels of fatness and different fatty acid 

compositions. Variation in IMF content differs substantially between countries, which 

places pressure on producers to determine IMF rapidly, so as to assist in market allocation. 

2.5       Evaluation of the intramuscular fat content of pork 

2.5.1     Conventional methods 

The IMF level in pork is indicated by two attributes, i.e. intramuscular fat content and 

marbling score. Marbling, as the visible intramuscular fat in the surface of pork, is 

traditionally assessed visually by comparing to standard charts. Different countries may 

use different standards. The most used standards are those launched by the National Pork 

Board Council (2002), in which there are seven levels of marbling from 1 (low marbling 

level) to 6 and 10 (high marbling level). To practice subjective evaluation, assessors 

should be trained by an intensive training program. This would raise the pressure on the 

pork industry by adding the costs of training and employing graders. In addition, different 

specialists may give different scores for one sample and one standard since human error is 

inevitable. As such a method is time consuming, labor intensive, and costly, traditional 

marbling assessment cannot be applied in real-time inspection systems and will not suit 
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the modern pork producing industry.  

Intramuscular fat content is conventionally determined chemically. For this type 

of method, fat is extracted from raw meat by chemical solvent to determine the amount of 

fat (AOAC, 1990; AOAC, 2000). The traditional measurement of intramuscular fat 

content is objective, with no need to consider the type, size, or color of pork. However, 

the chemical method has the disadvantages of being invasive, environmentally-harmful, 

labor-intensive, and time-consuming. To overcome the challenges that the pork industry is 

facing, a better detection method, one that has the advantages of being non-destructive 

and rapid, should be developed to replace the traditional one. 

2.5.2     Computer vision 

Recently, novel techniques have been investigated for their usefulness as indicators of 

IMF level of pork, including computer vision, nuclear magnetic resonance (NMR), 

spectroscopy, and hyperspectral imaging. NMR offers a non-invasive access to fat 

distribution and amount of intramuscular fat in pork (Monin, 1998; Brøndum et al., 2000). 

However, the prohibitive cost of this method would not meet the criterion of low costs in 

pork production.  

Computer vision integrates devices for non-contact optical sensing and data 

processing to interpret an image automatically by constructing meaningful information 

from digital images of physical objects (Ballard and Brown, 1982). Computer vision 

seeks to simulate human vision by electronically perceiving and processing images. 

Normally, digital images are generated with three channels (red, green, and blue). The 

core of computer vision is image analysis, which aims to perform a predefined visual task. 
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Image analyses involve a series of image operations such as region segmentation, edge 

detection, image re-shaping, and feature extraction. Computer vision generates precise 

descriptive data of an image objectively, rapidly, consistently, automatically, and easily. 

The data can be recorded permanently for further analysis. All the benefits of computer 

vision make it attractive. Computer vision has developed dramatically since its origins in 

the 1960s and has been applied in diverse fields, including character or fingerprint 

recognition, product assembly, medical diagnostics, vehicle guidance, and food quality 

analysis (Gerrard et al., 1996; Zhou and Huang, 2003; Brosnan and Sun, 2004; Liu et al., 

2007; Li and Nigel, 2008; Chen and Qin, 2008). 

Recently, computer vision was expanded to pork quality assessment due to the 

ease of use (Lu et al., 2000; Tan et al., 2000; O’Sullivan et al., 2003; Tan 2004; Faucitano 

et al., 2005; Huang et al., 2013). Most studies have focused on color grading. Faucitano 

et al. (2005) applied computer image analysis to measure pork marbling characteristics. 

Marblings in three genotypes of pigs, namely Large White, a Meishan-derived dam line, 

and Synthetic Genex 3000, were studied. To enhance the contrast between lean and fat in 

pork, oil red-O was used to stain pork for several hours to enhance the contrast between 

lean and fat in the pork image. The analysis demonstrated that marbling fat was finer and 

better distributed in the Synthetic Genex 3000. Positive effect of marbling on pork 

tenderness was observed, indicating the contribution of marbling to pork eating quality. In 

addition, a significant correlationship between IMF content and pork marbling was 

demonstrated in the same study. Although computer vision is non-destructive, a chemical 

was involved to enhance the image quality of pork. This study indicated the limits of 

computer vision for fat detection in pork. Huang et al. (2013) successfully applied 
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computer vision for the assessment of marbling score of pork by involving pattern 

analysis technique of wide line detector. 

Normal computer vision is effective when quality attributes are evidently related 

to the extrinsic characteristics of an object such as color, size, and shape, but it becomes 

less effective or ineffective when quality attributes are mainly determined by the intrinsic 

properties of an object, such as IMF content. Due to the low contrast between fat and lean 

in pork, the limited spectral information (three channels of red, green, and blue) provided 

by normal computer vision makes it a challenge to detect intramuscular fat and marbling 

in pork. In addition, the heterogeneous distribution of intramuscular fat and marbling in 

pork presents another dilemma for normal image analysis.  

2.5.3     Near-infrared spectroscopy 

Spectroscopic methods here refer to photonic spectroscopy, which provide detailed 

spectral fingerprints of objects using the interaction between electromagnetic wave and 

the detected material. The spectral region covered is usually used to characterize the 

spectroscopic technique, such as visible (VIS) region (350-800 nm), near infrared (NIR) 

region (800-2500 nm), and mid-infrared (MIR) region (2500-25000 nm). Among types of 

spectroscopies, NIR spectroscopy has been accepted among researchers as a means for 

non-destructive sensing of food samples since the 1970s (Blanco et al., 2002). NIR 

spectroscopy records spectra of samples without sample preparation and the spectra 

contain both physical and chemical profiles of the matter.  

The absorption bands in NIR region mainly correspond to overtones and 

combinations of fundamental vibrations of molecules. The vibration of molecules could 
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be explained by the electron transitions between different energy levels ( E ). Eq. 2.1 is 

usually used to calculate the energy level produced by vibration of molecules (Blanco 

et al., 2002).  
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where   is the vibrational electron number, h is the Planck constant, k is the force 

constant, u is the reduced mass of the bonding atoms, v is the fundamental vibrational 

frequency, and y is the anharmonicity factor.  

When 1 , the electron transition between contiguous energy levels yields 

absorption bands known as fundamental vibrational frequency, which are mainly located 

in the MIR region. The fundamental frequency of the bond, i.e. the wavelength of the 

band, can be calculated by Eq. 2.2 (Blanco et al., 2002). When 1 , the transition 

between non-contiguous energy levels yields absorption bands known as overtones, 

which appear in the range of 780-2000 nm. The absorption band of the bond can be 

estimated by Eq. 2.3 (Blanco et al., 2002). Interaction of multiple vibrational modes can 

cause concurrent transitions of energy states, which result in combination bands. The 

combination bands appear in spectral range of 1900-2500 nm. The NIR bands mainly 

arise from hydrogen atoms and hydrogen-related bonds of C-H, O-H, N-H, and S-H. 

Other bonds such as C=O, C-C, and C=C contribute much less in the spectral intensity. 

With regard to intramuscular fat, the main bands of lipid in the NIR region are located at 
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1208, 1416, 1724, 1760, 2190, 2304, 2348, and 2380 nm, whereas C-H bonds are mainly 

responsible for absorption patterns (Shenk et al., 1992; Blanco et al., 2002). With regard 

to water, the main bands in NIR region are located in 1400-1500 nm, whereas O-H is 

mainly responsible for the absorption (Vasko et al., 1971). On the other hand, movement 

of atoms could reflect the information regarding crystal structure, by which the physical 

properties of samples could be distinguished by NIR spectra.  

Due to the close relationship between components in food and NIR spectra, NIR 

spectroscopy is widely employed for composition analysis of food. The development of 

instruments has encouraged the expansion of NIR spectroscopy in food quality control, 

such as the recent application of this technique in pork quality assessment. Several studies 

have been conducted to evaluate of IMF content in pork using NIR spectroscopy (Forrest 

et al., 1997; Brøndum et al., 2000; Prevolnik et al., 2005; Barlocco et al., 2006; Savenije 

et al., 2006; Prieto et al., 2009). Correlation coefficient (R) between measured and 

predicted values was widely used to evaluate the performance of built models in above 

studies. Brøndum et al. (2000) used NIR spectroscopy to predict the IMF content of pork 

with predictive linear correlation coefficient of 0.70. Savenije et al. (2006) applied 

reflectance spectrophotometer in determination of the IMF content of pork. Meat from 

three breeds of pigs was used as samples. The second derivative of reflected spectra was 

used to build prediction models. Linear correlation coefficients of calibration (Rc) 

between measure and predicted IMF content varied from 0.70 to 0.86, and correlation 

coefficients of validation (Rv) varied from 0.63 to 0.76. The NIR study on IMF content 

has recently been extended by applying NIR spectrum on both minced and intact pork 

meat (Prieto et al., 2009). Prediction results between 0.84 and 0.99 were obtained, while 
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calibrations were less accurate for intact than for minced meat.  

Due to the limited detection field, some studies have indicated that the minced or 

ground meat produced more accurate results than intact muscle when determing IMF 

content using NIR spectra (Isaksson et al., 1992; Rodbotten et al., 2000; Prevolnik et al., 

2005; Barlocco et al., 2006). Rodbotten et al. (2000) suggested higher repeated numbers 

of NIR scans on intact meat samples to improve the prediction accuracy for intramuscular 

fat in meat. Research conducted by Wold et al. (1999) suggested that NIR spectroscopy in 

conjunction with imaging indicated better prediction for fat content of meat. These 

studies implied the limitation of spectroscopic techniques for evaluation of intramuscular 

fat in intact pork. Intramuscular fat is distributed in pork heterogeneously. However, 

spectroscopic techniques only measure the light feedback from a specific point of a 

sample instead of the whole surface. It would expand the ability of NIR spectroscopy and 

thereby improve the predictive ability of the technique if the detected field of view could 

be enlarged.  

2.5.4     Hyperspectral imaging 

With the development of instruments featuring improved spectral and optical components, 

a hyperspectral imaging (HIS) technique was proposed combining computer vision and 

spectroscopy. HSI overcomes the limits of spectroscopic techniques and traditional 

machine vision techniques. It was initially applied in remote sensing. Recently, HSI has 

received considerable attention for non-destructive inspection of meat quality. 

Hyperspectral images could provide detailed spectral information covering VIS and NIR 

spectral regions while providing spectral measurements over the entire surface area of the 

imaged product. Hence, HSI could be effective in the case of pork quality control, where 
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both extrinsic, like appearance (e.g. size, marbling, color), and intrinsic (e.g. IMF content, 

drop loss, tenderness) properties could be captured. No specimen preparation is needed 

for detection using HSI. Multiple constituents in the objects could be measured 

simultaneously. The data could be stored permanently. As HSI is non-destructive and 

efficient, it is well suited for potential determination of IMF level of pork. 

The use of HSI for rapid prediction of IMF level of pork meat has been 

successfully demonstrated in a few applications. Qiao et al. (2007c) applied VIS/NIR HSI 

for marbling grading of pork. Image parameters were calculated from images at 661 nm 

and were used to estimate marbling score of pork. Prediction was moderately successful 

with a small error between predicted and referenced marbling scores. Liu et al. (2009) 

reported the use of NIR HSI on evaluation of the IMF content of pork. Line features were 

extracted from NIR images of pork to predict the IMF content of pork. A promising 

prediction accuracy of 0.91 was obtained in this study. Although limited studies were 

reported regarding prediction of fat content in meat muscle, the promising results in the 

studies discussed above indicated the great potential of HSI for determination of pork 

IMF content. 

2.6       Hyperspectral imaging  

2.6.1     Fundamentals of hyperspectral imaging 

As a combination of spectroscopy and computer vision, the HSI technique is based on the 

principles of spectroscopy and computer vision. Hyperspectral images consist of 

numerous spatial images of an object at successive wavelengths. The data cube is 

achieved through the superimposition of the spatial images at continuous wavelengths, 
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thus creating a three-dimensional data cube called hypercube. At each wavelength, the 

image of the sample is formed from the responsed lights of all points in the surface of the 

sample. The spectrum of each pixel in the image can be extracted from the hypercube. 

The spectra are derived from the changes of molecular energy levels in the sample. 

Images of samples are indicative of the physical and external properties of samples, while 

spectra of samples represent chemical characteristics (Sun, 2008). Spectra or images from 

the data cube of different samples can be compared. Similarity between the image and 

spectra of two samples indicates similarity of physical composition or chemical features.  

2.6.2     Configuration of hyperspectral imaging system 

The hypercube usually can be constructed in three ways: area scanning, point scanning, 

and line scanning (Gowen et al., 2007). Due to the presence of conveyor belts (for in-line 

inspection) in most food processing plants, line scanning (or pushbroom) is the preferred 

method of image acquisition. The hypercube of line scanning is acquired by composing 

several whole lines of an image instead of a single pixel at a time, and it is stored in the 

format of Band Interleaved by Line (BIL). In the BIL format, the current line along with 

the other previous lines are available and can be composed to form images. HSI system 

can be operated either in reflectance or transmittance modes. Most studies were 

conducted in reflectance mode (Gowen et al., 2007). In transmittance mode, thin sample 

sizes are usually used to allow light to travel through the sample. Meat muscles are 

usually inspected in reflectance mode. 
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Figure 2.7   Configuration of a hyperspectral imaging system. 

A typical hyperspectral imaging system is comprised of hardware and software. 

The specific configuration varies on the object to be assessed. Most hardware platforms 

for hyperspectral imaging share common basic components (Figure 2.7): an illumination 

to provide a light source; light controllers; a camera to collect spatial resolution; a 

spectrograph to collect spectral resolution; a zoom lens to adjust the field of view; a 

platform fixed to a conveyer to hold and transport the sample; a support enclosure; and a 

computer with software to control the camera and the conveyer, and compose and store 

the hypercube. Light sources are placed at different positions according to the used mode. 

In the reflectance mode, the light source and the camera are placed at the same side of the 

sample. In the transmittance mode, the light and the camera are placed at two sides of the 

sample. 
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For the detector of hyperspectral imaging system, there are three basic choices of 

cameras, including Silicon (Si) based charge-coupled device (CCD) or Complementary 

Metal Oxide Semiconductor (CMOS) camera, Indium Gallium Arsenide (InGaAs) camera, 

and Mercury Cadmium Telluride (HgCdTe) camera. The choice of the camera in 

hyperspectral imaging system depends on the required wavelength, the quantum 

efficiency (QE), and the cost. A higher QE of a camera indicates greater sensitivity. Due 

to limitation of technical development, CCD camera covering 400-1000 nm and InGaAs 

camera covering 900-1700 nm are those mostly applied systems in practice. The average 

QE of CCD cameras is around 30% at 400-1000 nm, while the average QE of InGaAs 

camera is around 60% at 900-1700 nm. An InGaAs camera, i.e. NIR hyperspectral 

imaging at 900-1700 nm is more recommended than a CCD camera considering the 

sensitivity. At present, the CCD camera (400-1100 nm) is the most widely used detector 

in food quality and safety analysis. The development of advanced instrumentation 

enabled the application of InGaAs cameras in food processing. Increasing interest has 

been shown in the application of NIR hyperspectral imaging, particularly in meat 

products due to the strong relationship between NIR spectra and meat quality.  

2.6.3     Hyperspectral imaging for pork quality evaluation  

The application of hyperspectral imaging in food analysis ranges from contaminant 

detection, defect identification, constituent analysis, and quality evaluation. The explosive 

number of scientific articles published on hyperspectral imaging for food quality control 

since 2005 (Figure 2.8) proves the growing interest in hyperspectral imaging for food 

quality control.  
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Figure 2.8   Number of papers published on application of HSI in food. 

Application of HSI was initially focused on fruit and vegetables, but has recently 

expanded to meat products (Gowen et al., 2007; Sun, 2010; ElMasry et al., 2012a). 

Looking at the many studies published on the use of HSI for pork quality assessment 

(Table 2.1), more studies have used VIS/NIR hyperspectral imaging (400-1000 nm) than 

NIR hyperspectral imaging (900-1700 nm). Drip loss, pH, color, quality classification, 

and total visible count were the main attributes that were studied. The only three studies 

on prediction of intramuscular fat content and marbling of pork were conducted by Qiao 

et al. (2007c), Liu et al. (2009) and Liu et al. (2012). According to Liu et al. (2012), the 

low contrast between lean and fat in pork raised the difficulty of detection of marbling 

score in pork. Application of line pattern analysis technique, wide line detector, solved the 

problem by producing an accurate prediction result of 0.99. Validation with independent 

samples was not conducted in this study. Although few studies were reported on 

assessment of IMF level of pork using hyperspectral imaging, the promising results 

demonstrated the strong potential of hyperspectral imaging as a powerful detection 
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technique for assessment of the IMF content of pork. 

Table 2.1   Summary of wavelength region, analyzed quality attributes, studied 

image processing techniques employed in papers published on reflectance 

hyperspectral imaging of raw pork. 

Application of NIR spectroscopy on evaluation of intramuscular fat content in 

pork suggested that NIR hyperspectral imaging has a great potential for detection of 

intramuscular fat in pork. Due to the deep penetration of NIR illumination, reflectance 

mode in NIR hyperspectral imaging could be considered as a combination of transmission 

Wavelength 
region (nm) 

Quality attributes Image processing Author, Year 

900-1700 
Color, drip loss, pH, sensory 

characteristics 
Thresh holding (TH), 

averaging spectra (AS) 
Barbina et al., 2012a 

900-1700 Quality classification TH, AS Barbina et al., 2012b 

900-1700 
Identification of pork, beef, 

lamb 
TH, AS, Kamruzzaman et al., 2012a

900-1700 Intramuscular fat content 
Accumulation of images, 
Wide line detector (WLD)

Liu et al., 2009 

400-1100 
Tenderness, Escherichia coli 

contamination 
TH, AS, Lorentzian 
distribution function 

Tao et al., 2012a 

400-1100 Total viable counts (TVC)
TH, AS, Gompertz 

function 
Tao et al., 2012b 

400-1000 Marbling scores WLD Liu et al., 2012 

400-1000 
Total volatile basic-nitrogen 

(TVB-N), pH, color 
TH, AS, Lorentzian 
distribution function 

Li et al., 2011 

400-1000 Quality classification TH, AS, Gabor filter Liu et al., 2010 

400-1000 TVC TH, AS Peng et al., 2008 

400-1000 Drip-loss, pH, color TH, AS Qiao et al., 2007a 

400-1000 
Quality classification, color, 

texture,  exudation 
TH, AS Qiao et al., 2007b 

430-1000 
Quality classification, 

marbling score 
TH, co-occurrence matrix Qiao et al., 2007c 

400-1000 Drip loss, pH TH, AS Qiao et al., 2005 
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inside the deeper samples and reflectance on the surface. NIR hyperspectral imaging not 

only collects surface information of samples but the inside characteristics as well. In 

addition, the NIR region ranging from 900 to 1700 nm is derived from overtones of 

hydrogen-bearing moleculars such as C-H and O-H while the main bonds of lipids are C-

H (Benson, 1993). This indicated the potential ability of NIR hyperspectral imaging for 

characterization of intramuscular fat in pork. The successful application of NIR 

hyperspectral imaging on assessment of marbling and fat content of beef, lamb, and pork 

also increased the interest on the application of hyperspectral imaging on pork fat 

(Liu et al., 2009; Kobayashi et al., 2010; Kamruzzaman et al., 2012a, 2012b, 2012c).  

Therefore, NIR hyperspectral imaging was adopted as the main detection 

technique in this study. Furthermore, nearly all the studies regarding application of 

hyperspectral imaging in pork quality control were conducted on fresh pork. The inherent 

features of intramuscular fat would not be modified dramatically by proper processing 

like freezing and thawing. There are many benefits if frozen or frozen-thawed pork could 

be used for image acquisition. Determination of IMF content could be expanded to each 

samples even at the retail stage. Waste of fresh pork could be reduced, by which cost of 

determination could be reduced evidently.  

2.6.4     Pattern analysis techniques in processing of hyperspectral images 

After the hyperspectral imageries of objects are acquired, the data are analysed following 

the procedure illustrated in Figure 2.9, where Io is the raw obtained image, and Ib and Iw 

are obtained when the camera is covered by a cap and when a standard reference is used 

as object, respectively, and I is the corrected reflected percentage image. Pre-processing 
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such as threshold segmentation is useful to separate the interested part of the product 

image from the background and other nonrelevant parts. Post processing is used to 

remove objects too small to be of interest or to smooth the edge of a selected region of 

interest (ROI). The main purpose of image pre-processing and post processing is to raise 

the ratio of signal to noise. After the image pre-processing, different methods can be used 

to describe the feature of images or spectra (which represents the quality traits of food) 

from ROI. In most studies, algorithm of averaging spectra was adopted. Pattern analysis 

techniques including wide line detector, Gabor filter, and co-occurance matrix, were 

recently applied to extract image features (Devijver and Kittler, 1982). Image or spectral 

parameters from hypercube are obtained to input the model as independent variables. 

Therefore, the measured/ observed value of quality traits would be the dependent variable 

of image parameters. By data analysis, a prediction model is built based on the image or 

spectral index and quality traits of food are measured. During the validation of the built 

model, statistical indices of the model are calculated and evaluated according to specific 

criterion. If the performance of the model is not very good, the calibrated images could be 

re-analyzed to exploit further information and enhance the efficiency of prediction. 

Image processing is a key step for data analysis in hyperspectral imaging. The 

interposition of image analysis techniques capable of effectively processing the 

information contained in NIR images has facilitated the expansion of hyperspectral 

imaging in pork quality control. Effective technique helps improve the efficiency of 

assessment using hyperspectral images. Amongst different methods, pattern recognition 

techniques of wide line detector, Gabor filter, and co-occurrence matrix were applied 

successfully on quality control of pork (Table 2.1). In pattern analysis, information about 
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Figure 2.9   Flow chart of application of hyperspectral imaging in food quality control. 

intramuscular fat and marbling are considered as texture, line or other features of images. 

Image features are represented by different statistical values that are derived from 

processed images using different methods. In a study undertaken by Qiao et al. (2007c), 

the pattern recognition technique of grey-level co-occurrence matrix was used to assess 

the marbling score of pork. The predicted marbling scores in the study were able to 
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distinguish the marbling scores of standard charts except the score of 10.0. The same 

group (Liu et al., 2009) applied another pattern recognition technique of wide line 

detector to process NIR hyperspectral images for evaluation of intramuscular fat content 

of pork. Prediction model for intramuscular fat content was moderately successful with 

correlation coefficients of 0.91. In research of Liu et al. (2012), wide line detector was 

extended to assessment of marbling score. Hyperspectral images of pork at red-green-blue 

channels were used to predict marbling score of pork samples. Seven levels of marbling 

in NPPC charts were discriminated fully by features extracted using wide line detector. 

The results implied the potential of wide line detector for marbling detection of RGB 

images as well. Liu et al. (2010) developed a Gabor filter-based hyperspectral imaging 

system to grade pork sample into the same four classes of quality (red, firm, normal 

(RFN), pale, soft, exudative (PSE), pale, firm, normal (PFN), and red, soft, exudative 

(RSE)). By combining principal components from hyperspectral images with combining 

principal components from Gabor-filtered images, the authors reported classifying 

accuracy of 84 ± 1%, which was an increase of 4% over the result of Qiao et al (2007c). 

It is of interest to adopt such methods for processing of NIR images for fat assessment of 

pork. 

2.6.4.1   Gabor filter (GF) 

Texture analysis is an important branch of image processing. Texture of the image refers 

to smoothness, roughness, color changes, direction of changes, rotation, scale, translation, 

and other aspects of an image. For texture extraction of images, several algorithms are 

applied to images to obtain meaningful statistical terms (Tuceryan and Jain, 2010). These 

calculated values are used to describe the texture characters of the image. As a type of 
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texture analysis technique, Gabor filter has been promoted for its powerful properties in 

image processing.  

Gabor filter is a transformation of elliptic Gaussian and sinusoidal waves, which 

are applied on all the receptive fields in the image. It provides tunable orientation and 

radial frequency bandwidths, tunable center frequency and allows optimal achievement of 

joint resolution in spatial and frequency domain (Clausi and Jernigan, 2000; Liu et al., 

2010). According to Liu et al., (2010), Gabor filter is similar to the recognition pattern of 

human vision by extracting the important spatial characteristics including spatial 

localization and frequency simultaneously. Two types of two-dimensional Gabor filters, 

i.e. isotropic (Eq. 2.4) and oriented (Eq. 2.5, Ma et al. 2002) are used. After Gabor 

filtering, grayscale images are created, from which surface texture expressions are usually 

calculated for further data analysis.  
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where (x, y) is the coordinate of pixel in each NIR image, f  represents the frequency of 

the sinusoidal wave,   is the standard deviation of the Gaussian function, and   is a 

vector which controls the orientation of the filter. Usually the parameters of Gabor filter 

are defined by trail-to error. 

For its superior ability of extracting texture feature, Gabor filter has been applied 

in various fields including digital signal and image processing, iris and face recognition, 

textile manufacturing, identification of stem cells, characterization of biological cells, and 



  38

automatic document processing (Tang et al., 1996; Samantaray et al., 2005; Moon and 

Javidi, 2007; Bowyer et al., 2008; Ngan et al., 2011; Kurita and Masuda, 2012). Recently, 

Gabor filter was introduced for the image analysis of food (Zhu et al., 2007; Ngadi and 

Liu 2010; Liu et al., 2010; Liu and Ngadi, 2012). Ngadi and Liu (2010) and Liu et al. 

(2010) extracted Gabor features of hyperspectral images of pork for quality classification. 

Pork from four quality groups were well graded. The successful application of Gabor 

filter on pork by Liu et al. (2010) indicated the potential of Gabor filter to facilitate the 

prediction of pork intramuscular fat content. Extremely limited research regarding Gabor 

filter-based hyperspectral image analyses was executed for pork quality control, and even 

for food quality inspection. Therefore, it is of interest to investigate the effectiveness of 

Gabor filter for evaluation of intramuscular fat level of pork.  

2.6.4.2   Wide line detector (WLD) 

Wide line detector was proposed by Liu et al. (2007) for detection of palm lines. It 

demonstrated strong ability for detection of lines with pre-defined length, width, and 

contrast to neighbored pixels.  

The procedure of WLD-based segmentation of line features are given as follows: 
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where ),( 00 yx is the center of the circular neighborhood, ),( yx is any other point within 

the neighborhood, I is the intensity of the point ),( yx , r is the radius of circular mask, t is 

the intensity contrast threshold, L is the extracted isotropic line by WLD, s is the 

normalized weighting comparison based on the measure of similarity between the center 

point and any other point in the circular neighborhood, and m is the mass of the 

neighborhood center ),( 00 yx , g is the geometric threshold. A global threshold (l) was 

applied on the output of the WLD to segment objects with lower responses. Using the 

WLD-produced mask, lines with defined width, length, and luminance are obtained.  

Wide line detector was introduced to hyperspectral image processing of pork by 

Liu et al. (2012). In the research of Liu et al. (2012), classification model was developed 

from wide line detector processed digital images of seven standard charts. Seven levels of 

marbling score in standard charts were graded accurately. Wide line detected line features 

from VIS/NIR hyperspectral images at three channels of red, green, and blue were used to 

grade pork marbling levels. To our knowledge, no other study has been conducted on 

wide line detector-based hyperspectral imaging for food quality control. The promising 

result and lack of application of wide line detector in other studies implied the necessity 

to investigate the power of wide line detector-based hyperspectral imaging for prediction 

of intramuscular fat level of pork. 

2.6.4.3   Grey-level co-occurrence matrix  

Regular grey-level co-occurrence matrix (GLCM) is a commonly used algorithm for 
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texture segmentation. Grey-level co-occurrence matrix is an image analysis technique, 

which specifies image texture information by accumulating frequencies with two 

neighboring pixels separated by a distance in the defined window (Haralick, 1979). In the 

window, a multi-scale GLCM matrix is derived from each image. For instance, Figure 

2.10 shows how an 8-level GLCM matrix is calculated from a 6×5 matrix (i.e. 6×5 

image). As shown in Figure 2.10, if east (0°) is used as the offset direction and 1 is used 

as the offset distance of two pixels, there will be two instances that two neighbouring 

pixels have the values 1 and 3. Hence, the element {1, 3} in the GLCM contains the value 

2. The size of the generated GLCM matrix depends on the number of grey scales 

considered. Usually, eight scales were considered, which means the formed GLCM 

matrix was an 8× 8 square matrix.  

 

Figure 2.10   Principle of GLCM matrix. 

Different sets of scales, offset directions, and offset distances could be applied to 

form the GLCM matrices. The image texture information could be evaluated by different 

measurements of GLCM matrix according to Eq. 2.10 to Eq. 2.13. The measurement of 

the angular second moment was denoted as ASM. 
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where (i, j) is the coordinates of the pixel of interest, D is the given distance between two 

pixels,   is the offset direction of the pair of pixels over an image, ,DM  is the obtained 

GLCM matrix, ),(, jiM D   is the value in element },{ ji  of ,DM , ( i , j ) are the means 

in the row and column direction in ,DM  and ( i , j ) are standard deviations in the row 

and column direction of ),(, jiM D  . Besides Gabor filter, the obtained measurements of 

GLCM could be used as another type of image texture features in understanding of 

images.  

When applying regular GLCM, the subjective selection of a regular shape (e.g. a 

circle area) is usually used to select the appropriate processed area. However, bias will be 

introduced by manual interference especially for heterogeneous objectives such as meat 

products. For practice of GLCM, improvements should be made to avoid the effect of 

subjective region selection. 

Computation of grey-level co-occurrence in hyperspectral image cubes has been 

conducted for nondestructive determination of prediction of some quality attributes of 
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strawberry, pork, beef, apples, and lamb (ElMasry et al., 2007; Qiao et al., 2007c; 

Naganathan et al., 2008a; Naganathan et al., 2008b; Mendoza et al., 2011; Kamruzzaman 

et al., 2012a, 2012b, 2012c). Qiao et al., (2007c) applied GLCM for pork marbling 

detection. More work was suggested as there was an error of one between the predicted 

values and actual values of marbling score. Three beef tenderness categories were 

classified with a 96.4% accuracy and a 77% accuracy using statistical textural features 

derived from GLCM of VIS/NIR and NIR hyperspectral imageries, respectively 

(Naganathan et al., 2008a; Naganathan et al., 2008b). Kamruzzaman et al. (2012b) 

conducted textural analysis based on GLCM to determine the correlation between textural 

features and drip loss of lamb. A correlation below 0.30 was obtained. Ability of GLCM 

for processing of hyperspectral images has not yet been sufficiently studied. 

Comparatively limited studies of GLCM were conducted with respect to image analysis 

of pork. More studies of GLCM could be done to assist the assessment of intramuscular 

fat level of pork using hyperspectral imaging. 
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CONNECTING TEXT 

A comprehensive review of literature showed that marbling is a very important quality 

attribute, which is visible intramuscular fat in pork. The need for further studies regarding 

the objective inspection of marbling score of pork was demonstrated. It was noted that 

inspection of marbling score is challenging because of the low contrast between lean 

muscle and fat in pork. Chapter 3 addresses the first objective of the thesis, i.e. assessing 

the marbling score of fresh pork using NIR hyperspectral imaging. The effect of image-

processing techniques such as Gabor filter and wide line detector were assessed. 

This chapter was presented at Northeast Agricultural and Biological Engineering 

Conference in 2012. A paper based on this chapter has been submitted to Applied 

Spectroscopy. The manuscript is co-authored by my supervisors Dr. M.O. Ngadi and Dr. 

S.O. Prasher, a research associate Dr. L. Liu, and a researcher Dr. C. Gariépy from 

Agriculture and Agri-Food Canada. The format of the original manuscript has been 

modified to remain consistent with the thesis format. All the literature cited in this chapter 

is listed in Chapter 10 (General references). 
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III. NEAR-INFRARED SPECTRAL IMAGE ANALYSIS 

FOR PORK MARBLING SCORE DETERMINATION 

3.1       Abstract 

Marbling is an important quality attribute of pork. Evaluation of pork marbling level 

usually involves subjective scoring, which raises efficiency costs to the processor. In this 

study, the ability of near-infrared hyperspectral imaging for measurement of pork 

marbling and the effective image processing techniques was studied. A hyperspectral 

imaging system ranging from 900 to 1700 nm was developed to assess pork marbling. 

Near-infrared images were collected from pork after marbling evaluation according to 

standard chart. Samples were grouped into calibration and validation sets. Spectral 

features, i.e. mean spectra of non-filtered images (MR), and image texture features, i.e. 

mean spectra of Gabor filtered images (MG) were obtained from a segmented region of 

interest. The corresponding 1st derivatives of spectral features (DMR) and image texture 

features (DMG) were calculated. Spectra based line features were also extracted from 

near-infrared images using the wide line detector, a line pattern technique. Wavelength 

selection was performed on calibration set by stepwise regression procedure. Prediction 

models of pork marbling score were built using multiple linear regressions based on 

derivatives of mean spectra and line features at selected wavelengths. The results showed 

that the derivative of texture features produced best result with calibrated correlation 

coefficient of 0.91 and validated correlation coefficient of 0.90 at the wavelengths of 961, 

1186 and 1220 nm, while the line feature based model produced calibrated correlation 
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coefficient of 0.79 and validated correlation coefficient of 0.77 with wavelengths 

selection of 961, 1119 and 1162 nm. The results indicated the great potential of Gabor 

filter-based near-infrared hyperspectral imaging as an effective and efficient objective 

evaluation technique for pork marbling.  

Keywords: Pork; Marbling Score; Near-Infrared Hyperspectral Imaging; Gabor Filter; 

Wide Line Detector 
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3.2       Introduction 

Pork marbling, which is defined as the amount of the visible fat within the Longissimus 

dorsi (LD) muscle, has a great effect on buyers’ acceptance of pork in the market. In the 

pork industry, marbling is evaluated and graded to different scores to meet the various 

requirements of different markets. Grading of pork marbling plays a significant role in 

allocating markets. In practice, evaluation of pork marbling is usually performed 

subjectively by human inspectors according to grading standard (NPPC) (NPB, 2002). 

The visual grading of marbling assessment makes it labor consuming and difficult to 

maintain repeatability. These features make the standard method not suitable for a fast-

paced online process. Therefore, efficient objective technology for evaluation of pork 

marbling would be beneficial to the pork industry. 

Among the various objective techniques for food quality inspection, spectroscopic 

and imaging techniques are two methods with great potential to predict food quality (Vote 

et al., 2003; Kumar and Mittal, 2010; Quevedo et al., 2010; Pallottino et al., 2010; 

Ritthiruangdej et al., 2011). The near-infrared (NIR) spectrum cover broad bands from 

780 nm to 2500 nm. The NIR spectrum is composed of overtone and combination bands 

which are mostly generated by stretching vibrations of functional groups like O-H, N-H, 

and C-H bonds (Osborne and Fearn, 1986). The main components of meat constituents 

include O-H, N-H, and C-H bonds. On the other hand, the NIR region of electromagnetic 

waves enables high penetration that leads to good capacity of probing deep and collecting 

internal characteristics of food (Bellon et al., 1994; Cozzolino and Murray, 2004; 

Alishahi et al., 2012). Thus, NIR spectroscopy has been widely applied as a rapid and 

effective tool to determine the concentration of food constituents such as moisture, fat, 
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and protein (Prevolnik et al., 2005; Barlocco et al., 2006; Savenije et al., 2006; Prieto et 

al., 2009). Considering that fat is the major constituent of pork marbling, there exists 

great potential in application of NIR spectroscopy for assessing pork marbling. However, 

spectroscopic techniques are not able to provide spatial information about the detected 

object due to the limited spatial field of view of spectroscopy. Considering that meat is a 

heterogeneous material, adequate spatial information is necessary for effective marbling 

determination. 

Imaging techniques are capable of providing superior spatial information. 

Imagings techniques have been applied for quality assessment of beef or pork (Shiranita 

et al., 2000; Yoshikawa et al., 2000; Toraichi et al., 2002; Tan, 2004; Faucitano et al., 

2005; Yang et al., 2006; Jackman et al., 2009; Girolami et al., 2012). The combination of 

simplicity, speediness, and little or no sample preparation makes the imaging technique 

attractive. However, normal computer vision usually provides images with limited 

spectral information.  

Hyperspectral imaging overcomes the limitation of spectroscopic and imaging 

techniques. It simultaneously obtains both spectral and spatial information to assess meat 

quality (Qiao et al., 2007a, 2007c; Liu et al., 2010). Research works related to marbling 

evaluation of pork using hyperspectral imaging have been reported mainly in VIS/NIR 

area (400-1100 nm) (Gowen, et al., 2007; Qiao et al., 2007a; Liu et al., 2012). Qiao et al. 

(2007c) applied VIS/NIR hyperspectral imaging (400-1100 nm) combined with texture 

pattern technique (grey-level co-occurrence matrix (GLCM)) to assess marbling scores of 

pork. Results showed that GLCM processed hyperspectral images could distinguish 

marbling scores of standard charts except the level of 10.0. Meanwhile, there was an error 
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around 1.0 between subjectively obtained and predicted marbling scores of practical 

samples. Liu et al. (2012) applied a line based pattern analysis technique named wide line 

detector (WLD, Liu et al., 2007) to assess pork marbling automatically and objectively. 

The proportion of marbling (PM) was obtained from digital images of NPPC standards by 

WLD and used as indicator of marbling score.  The results showed that the built linear 

regression models could separate the seven levels of NPPC standards accurately. 

Comparing results of Qiao et al. (2007c) and Liu et al. (2012), it indicated that effective 

image processing techniques could lead to a better result for assessment of pork marbling. 

GLCM is a common pattern recognition technique for image texture feature. Recently, 

Liu et al. (2010) classified pork using another texture based pattern recognition technique, 

i.e. Gabor filter which was designed to imitate human vision to capture salient visual 

properties of images. The results showed that a significant improvement was achieved by 

applying Gabor filter. This strongly indicated that an advanced texture analysis tool like 

Gabor filter might lead to a better result for prediction of pork marbling.  

In addition, NIR images of meat contain less interference from muscle pigments 

and water (Ritthiruangdej et al., 2011). ElMasry et al. (2012b) studied the possibility of 

predicting colour, pH and tenderness of fresh beef using NIR hyperspectral imaging. 

Results with coefficients of determination of 0.88, 0.81, 0.73 and 0.83 for CIE color scale 

lightness (L*) and one color-opponent dimension (b*), pH and tenderness were obtained, 

respectively. Barbina et al. (2012) applied NIR hyperspectral imaging to classify pork to 

three quality grades (PSE, RFN and dark firm dry (DFD)). An overall classifying 

accuracy of 96% was achieved. Promising results of studies demonstrated that near-

infrared (NIR) hyperspectral imaging could aid in the quality control of meat.  
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The main motivation of this study was to investigate the potential of NIR 

hyperspectral imaging (900-1700 nm) for prediction of pork marbling. Gabor filter and 

WLD were employed to extract image texture features and line features, respectively. The 

performance of spectral features from hyperspectral images, texture features from Gabor 

filter, and line features from WLD were compared.  

3.3       Materials and methods 

3.3.1     Samples and scoring of marbling 

A total of 53 fresh boneless pork loins from a commercial packing plant in Quebec, 

Canada were obtained. At 24 h post-mortem, the muscle Longissimus dorsi (LD) was 

dissected and sliced to chops with thickness of 2 cm. Blooming of the lean color was 

allowed by exposing the chop to air for a minimum of 15 min. The chops were labeled for 

subjective assessment of marbling. Marblings of both sides of the labeled chop were then 

scored by trained panel according to the NPPC marbling standards (NPB, 2002) and the 

average value was used as the marbling score of the chop. After the subjective assessment 

of marbling, the slices were vacuum packed and then transported to the Hyperpsectral 

Imaging Laboratory, McGill University, Montreal, QC, Canada for NIR image collection. 

3.3.2    NIR hyperspectral imaging system 

The NIR hyperspectral imaging system (Figure 3.1) consisted of a spectrograph 

(Headwall photonics, USA, 900-1700 nm), an InGaAs camera, a conveyer (Donner Mfg. 

Corp., USA), two 50 W tungsten halogen lamps, and supporting frame. The system is a 

line-scan pushbroom system with a spectral resolution of 4.8 nm, which scans the sample 

line by line and forms a data cube with two spatial axes and one spectral axe. Thus, 
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within the data cube obtained by this NIR hyperspectral imaging system, individual NIR 

images at spectra from 900 to1700 nm could be obtained as well as spectrum of each 

pixel corresponding to the specific position of sample characterized by chemical 

components. 

 

Figure 3.1   Illustration of NIR hyperspectral imaging system (Qiao et al., 2007c). 

3.3.3     Image acquisition and correction 

To correct the camera’s dark current error, a dark image (about 0% reflectance) was 

obtained by covering the lens with a cap. In order to ensure uniform the reflectance, a 

white image (about 99% reflectance) was obtained by scanning a standard white reference 

(Spectralon, Labsphere, North Sutton, NH, USA) before the image acquisition of samples. 

The original images of samples were calibrated using dark and white images according to 

equation in Liu et al. (2010). 

One pork chop was unpackaged every time and put on a dark panel to collect the 

hyperspectral data individually. Both surfaces of each chop were imaged for subsequent 

analysis. The obtained images were stored in a data cube called a hypercube, composed of 
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two spatial coordinates and one spectral coordinate. NIR spectra of each pixel in the 

image or NIR image at each wavelength could be extracted from the 3D hypercube. 

3.3.4     Image pre-processing 

Figure 3.2 shows the flow chart of image processing and data analysis. In image 

processing, feature extraction was performed on pre-processed images to extract useful 

spectral features and image parameters (texture features and line features) for the 

following data analysis. All operations of image processing and data analysis in this study 

were performed using MATLAB 7.3.0 (the MathWorks, Inc., Mass., USA). 

 

Figure 3.2   Flow chart of data processing. 

The loin area in pork images was selected as the region of interest (ROI) from 

which spectral information and image features were extracted. The ROI was segmented 

automatically by a method presented in Liu et al. (2012) which combined a threshold 
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technique and an edge detection algorithm together. Due to the low signal-to-noise ratio 

in the two ends of spectral range, only spectral images from 940-1650 nm were used for 

image analysis.  

3.3.5     Spectral features 

After image pre-processing, the mean reflectance spectrum of non-filtered ROI (MR) 

were extracted. Spectral responses of two sides of each pork slice were generated and the 

average spectrum was used as final spectral features. In comparison to NIR spectroscopy, 

there were over 50,000 pixels in every ROI, which reduced the influence produced by 

manual selection of detected spot in spectroscopy. The first derivative of the non-filtered 

mean spectrum (DMR, )( iD  ) was calculated according to Eq. 3.1. 
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where i  represents the number of wavelengths,  i  = 1, 2, 3, … 148 (the wave range/ the 

spectral resolution of system). The first derivative of mean spectrum was a 1×148 vector. 

1iM  and iM represents the value of mean reflectance in MR at wavelength 1i  and i , 

respectively.   

For each sample, the used waveband was 940-1650 nm and the resolution of NIR 

system was 4.8 nm, thus the mean spectrum of the sample was a 1×149 vector ((1650-

940)/4.8+1) and the first derivative of the mean spectrum was a 1×148 vector. 
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3.3.6     Image analysis 

Two different pattern recognition techniques, i.e. the Gabor filter (Liu et al., 2010) and 

the wide line detector (WLD, Liu et al., 2007), were adopted in this section to extract 

image features from NIR hyperspectral images. 

3.3.6.1  Gabor filters and image texture features 

Gabor filter, which is a sinusoidal modulated Gaussian transformation in the spatial 

domain, is able to extract representative visual characteristics of images including spatial 

localization and frequency, and orientation selectivity (Clausi and Jernigan, 2000). 

Considering marbling as texture pattern, an oriented two-dimensional Gabor filter 

described in Liu et al. (2010) was applied to pork images at different wavelengths on the 

purpose of extracting texture features. The oriented Gabor filter (G) was defined as 

follows (Ma et al., 2002):  
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where  yx,  is the coordinate of pixel in the image, f  is the frequency of the sinusoidal 

wave,  is the standard deviation of the Gaussian function, and   represents the vector of 

orientation.  

The mean reflectance spectra of Gabor filter-based ROI (MG) representing the 

texture features of pork images were extracted. Images of both sides of samples were 

adopted and the average spectrum was calculated. The first derivatives of the two types of 

mean spectra (DMR and DMG) were calculated according to Eq. 3.1.  
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3.3.6.2  Wide line detector and line features  

The image indices called proportion of marblings (PM) of pork samples were derived 

from ROI using wide line detector (WLD) which is able to extract the thickness and 

distribution of lines in the targeted image (Liu et al., 2012).  

There were three parameters involved in the WLD: r as the radius of circular 

mask, t as the intensity contrast threshold, and thresh as the global threshold. Firstly, lines 

(marblings) with thickness of r and intensity of t were detected. After the detection of 

lines, global thresholding was applied to the detected results to remove the small objects 

whose areas in pixel were lower than thresh (Liu et al., 2012). The thresh parameter 

controls the noise level in the detected marblings. A binary image with same contour of 

original selected ROI was generated by thresholding. There were open pixels (area of 

marblings) and closed pixels (area of non-marblings) inside the contour. With the 

obtained binary image, the image parameter PM by WLD was defined as Eq. 3.3. PM of 

images from 940-1650 nm was calculated and a PM plot ranging from 940 to 1650 nm 

could be formed from continuous PM values at 940-1650 nm. The algorithm of first 

derivative was not applied to PM plot since it was generated as an image parameter 

without involvement of mean spectrum.  

 
 contourtheinsidepixelsallarea

pixelsopenarea
PM   (3.3)

3.3.7     Feature selection and wavelength optimization 

The relationship between marbling scores and extracted feature indices (MG, MR, DMG, 

DMR, and PM) of pork samples was calculated over the wavebands of 940-1650 nm by 
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Pearson’s correlation. For each feature, the parameter set provided highest correlation 

coefficient was determined as the best parameters for the corresponding feature. The plots 

of correlation coefficient between marbling score and the extracted features were 

performed to decide the features to be used for modeling. The features with maximum 

absolute correlation coefficient of over 0.6 were selected to do the regression analysis.  

Wavelength selection was performed to optimize the obtained features to a lower 

dimensional linear space and select the wavelengths that were used for establishing 

prediction models. All pork samples (n = 53) were grouped randomly to calibration set 

(n = 36) for developing prediction models and the remaining 17 samples were grouped as 

validation set. The wavelength selection was performed on calibration set. Stepwise 

regression procedure (Draper and Smith, 1998) was adopted for wavelength selection. 

Stepwise regression procedure identifies the appropriate wavelength combination by 

establishing regression models, in which the predictive variables are selected 

automatically as sequence of F-test. Coefficient of determination (R2) has been used 

widely as criterion in F-test. The higher the R2, the better the model. Firstly, all the 

wavelengths were used separately to establish regression models, and the single 

wavelength with the highest R2 was chosen as the variable providing most information 

about pork marbling score. Secondly, each remaining wavelengths were in conjunction 

with the chosen wavelength separately to build regression models, and the wavelength 

combination with the best R2 would be used as the best group of wavelengths. The second 

step was repeated until no significant improvement could be produced by joining of new 

wavelength. All the chosen wavelengths would be regarded as the optimal combination. 
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3.3.8     Modeling  

The selected features of calibration set were used to build the prediction models of pork 

marbling scores using the multiple linear regression (MLR) as defined in Eq. 3.4. The 

extracted features of validation set were then input into the MLR model to evaluate the 

practical prediction ability for marbling in the case of independent pork samples. The 

correlation coefficient (R) and p-value (P) for Pearson's correlation between the predicted 

and measured marbling scores of the calibration (Rc, Pc) and validation (Rv, Pv) sets 

were employed as evaluation of prediction models. The model, which produced best 

result, i.e. highest Rc and Rv, Pc and Pv, was exploited to determine the proper image 

processing technique for NIR hyperspectral images.  
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where Y  is the marbling scores of pork samples, n is the number of selected wavelengths, 

iaa ,0. are the regression coefficients, iX is the vector of feature at selected wavelength.  

3.4       Results and discussion 

3.4.1    Image preprocessing of pork sample 

A total of 53 pork loin chops were collected. The description of the quality attributes of 

samples are listed in Table 3.1. Coefficient of dispersion was calculated by dividing 

standard deviation by mean value. The high coefficients of dispersion in Table 3.1 

indicated that sample in the experiment covered a wide range of quality (a*-one color-

opponent dimension).   
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Table 3.1   Quality of the total samples. 

Quality attributes Mean ± Standard deviation Minimum Maximum Coefficient of dispersion (%)

Marbling score 2.60±0.90 1.00 5.25 35 

L* 52.37±2.71 45.68 58.83 5 

a* 4.82±1.23 1.90 8.01 26 

b* 7.09±1.04 5.07 9.90 15 

Drip loss (%) 4.28±2.70 0.33 11.05 63 

Obtained NIR hyperspectral images of a pork sample at different wavelengths are 

shown in the grey-level images in Figure 3.3(1). The shown three wavelengths, 961, 1220, 

       
(a) 961 nm                            (b) 1220 nm                            (c) 1455 nm 

(1) NIR images  

       
 (a) 961 nm     (b) 1220 nm                                    (c) 1455 nm 

(2) ROI of the NIR images  

Figure 3.3   NIR images of a pork sample at different wavelengths and 

corresponding ROI. 
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1455 nm were close to water absorption peak at 975 nm and 1460 nm (Burns and 

Cuirczak, 1992), and fat absorption peak at 1200 nm (Osborne et al., 1993). The 

absorption peak of water at 975 nm was much lower than the one at 1460 nm (Burns and 

Cuirczak, 1992). Compared to images at 961 and 1455 nm, the image at 1220 nm showed 

better contrast between fat and non-fat area. The high absorption of fat and low 

absorption of water at 1220 nm raised the gap between the reflectance spectrum of fat and 

lean, which resulted in the high contrast between marbling and lean. Comparing with the 

image at 961 nm, low clarity of picture was observed at 1455 nm. This could be resulting 

from the big difference in absorption intensities of water at 961 and 1455 nm. Figure 

3.3(2) shows the corresponding segmented ROI, i.e. the representative loin eye areas, 

using auto selection algorithm. The representative loin eye areas were selected as ROI.  

3.4.2     Mean spectra and texture features from Gabor filter 

The Gabor filter with parameters of f = 7,   = 10, and   = π/4 was applied to all the 

ROI of pork samples at wavelengths from 940 to 1650 nm. The parameter set was 

determined by trial-to-error. The mean reflectance spectra of non-filtered ROI (MR) and 

filtered ROI (MG) were obtained afterwards, as shown in Figure 3.4. The typical 

derivatives of the two types of mean spectra (DMG, DMR) were also calculated and 

shown in Figure 3.5. The plots of MR and MG as well as DMG and DMR showed high 

similarity in shape. Larger difference in magnitude was observed in overall plots of MR 

and MG, while larger difference of DMG and DMR was observed at 961 and 1220 nm, 

respectively. DMG appeared to be smoother than DMR, which may result from filtering. 
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Figure 3.4   Typical mean reflectance spectra of non-filtered ROI (MR) and filtered 

ROI (MG). 

 

Figure 3.5   Typical first derivatives of mean reflectance spectra of non-filtered ROI 

(DMR) and filtered ROI (DMG). 
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3.4.3     Line features from WLD 

The WLD (Liu et al., 2012) was applied to all the ROI of pork samples and proportion of 

marblings (PM) was calculated representing the image line features. The parameters used 

for WLD were set to: r = 15, t = 4, and thresh = 0.3. Figure 3.6 shows the plot of PM and  

 

Figure 3.6   Calculated PM and referenced marbling score (MS) at 961 nm. 

referenced marbling score (MS) of all 53 samples at 961 nm where high similarity 

between PM and MS was observed.  

3.4.4     Spectral and texture features based correlation coefficient 

Figure 3.7 shows the correlations between marbling scores and MR where all the 

correlation coefficient was lower than 0.50, with maximum of 0.48 at 1310 nm, while the 

highest correlation between marbling scores and MG is observed with 0.57 at 1315 nm. 

Similar feature of plots were observed for MR and MG. Figure 3.8 shows the correlation 

between marbling scores and DMG and DMR, where the best correlation of -0.78 at 

1186 nm and 0.74 at 1220 nm were found, respectively. The best correlation coefficients 

between marbling score and DMR and DMG were 0.21 and 0.26 higher than MR and 
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MG, respectively. It was suggested that the algorithm of first derivative improved the 

accuracy of marbling quantification. The direct spectra MR and MG contained 

interference caused by surface toughness or broad absorbing components like O-H (Owen,  

 

Figure 3.7   The correlations between marbling scores and MR, MG. 

 

Figure 3.8   The correlations between marbling scores and DMR, DMG. 
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1995). The derivative analysis presented the direct spectrum in a new way, which reduced 

the interference and exploited the feature which were implied by the data, hence the result 

was improved.  

Although the maximum absolute values of correlation between marbling and 

DMG and DMR were located at different wavelengths, the feature of correlation plots 

showed high similarity, both having peaks at 1186 and 1220 nm and a lot of overlap in 

shape. The wavelengths of 1186 and 1220 nm were close to the major absorption band of 

lipid around 1200 nm (Osborne et al., 1993).  

Because of the low correlation coefficients between marbling scores and MR and 

MG, the linear regression models were only built based on the DMR (denote as MLR-

DMR) and DMG (MLR-DMG). According to stepwise procedure, the optimal 

combination of wavelength for DMR based MLR model was 961, 1186, and 1220 nm, as 

same as the optimal wavelengths for DMG. Table 3.2 lists the statistic values for DMG 

and DMR at the selected wavelengths. Although the magnitude of DMG at 961, 1186, 

and 1220 nm is lower than DMR, the mean value and standard deviation amongst three  

Table 3.2   Statistic values of spectral feature (DMG) and texture feature (DMR) at 

selected wavebands. 

Features
Wavelength 

(nm) 
Mean ± Standard 

deviation 

961 (2.62± 0.58)×10-2 

1186 (2.94± 5.79)×10-4 DMR 

1220 (6.04± 1.90)×10-3 

961 (2.23± 0.52)×10-4 

1186 (-4.12± 8.29)×10-6 DMG 

1220 (7.58± 2.58)×10-5 
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wavelengths of DMG and DMR showed similar changing trends. For both DMG and 

DMR, larger variety at 1186 nm and low variety at 961 and 1220 nm are shown. 

3.4.5     Line feature based correlation coefficient 

The extracted PM at different wavelengths was calculated when the line features of 

images were extracted. Correlation coefficients between PM and marbling scores of all 

the samples are shown in Figure 3.9, with maximum correlation of 0.70 at 961 nm and a 

relatively high correlation of 0.67 at 1162 nm. The optimal wavebands of 961, 1119 and 

1162 nm were selected for data analysis using stepwise regression procedure. The statistic 

results for PM at selected wavelengths are listed in Table 3.3.  

 

Figure 3.9   The correlation coefficient between marbling scores and PM. 

 

Table 3.3   Statistic values of line feature (PM) at selected wavebands. 

Features 
Wavelengths

(nm) 
Mean ± Standard deviation 

961  (3.81± 1.00)×10-2 

1119 (6.77± 1.23)×10-2 PM 

1162 (7.47± 1.17)×10-2 
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3.4.6     MLR models 

The data set of 53 samples was divided to calibration and validation sets. For all the 

features, the range of marbling score in validation set was made sure to be covered by the 

range of the test set, assuring the appropriate distribution of the samples for modeling.  

The regression coefficient of each model and the corresponding prediction results 

are listed in Table 3.4. It is observed that spectra based and texture feature based models 

produced better prediction results with at least 9% higher accuracy than line feature based 

model. In this study, Rc of 0.79 and Rv of 0.77 were obtained for MLR-PM, while in the 

study of Liu et al. (2012), accuracy of 99% was obtained for marbling prediction based 

on RGB images of standard charts. The WLD was proposed and defined based on visual 

characteristics of RGB images, which may influence the application of WLD on marbling 

extraction in NIR images. 

Table 3.4   Regression coefficients and prediction results of models based on DMR, 

DMG, and PM. 

Model Wavebands (nm) 
Regression coefficients 

(a0, a1, a2, a3) 
Rc Pc Rv Pv 

MLR-DMR 961, 1186,& 1220 1.773, -0.367, -1.488, 2.236 0.88 <1×10-5 0.86 <1×10-5

MLR-DMG 961, 1186 & 1220 1.114, -15.093, -68.713, 103.918 0.91 <1×10-6 0.90 <1×10-6

MLR-PM 961, 1119 & 1162 0.647, 116.386, -43.879, 7.041 0.79 <1×10-3 0.77 <1×10-3

Between MLR-DMG and MLR-DMR, the Gabor filter-based model of NIR 

images had slightly higher Rc and Rv than non-filter based model (MLR-DMR). 

Amongst three models, MLR-DMG produced the best prediction results with Rc of 0.91 

and Rv of 0.90. It was indicated that the first derivative of mean spectra of Gabor filtered 

NIR images were more closely related to pork marbling score. Marbling score was 
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obtained based on human sense of sight and sensation. Gabor filter has good ability of 

orientation selectivity and efficient reduction of instability in images, which is similar to 

the human visual and sensory system (Fogel and Sagi, 1989; Fan and Zhang, 2006). The 

similarity in visual aspect may improve the marbling prediction ability of Gabor filter. In 

addition, the derivative spectroscopy based on mean spectra of numerous pixels in ROI 

raised the signal to noise ratio (O'Havers, 1982), which allowed more useful information 

to be captured by image processing.  

Comparing the prediction results of three MLR models, all of the models created 

good prediction of pork marbling score. It was observed that wavelengths around 

1200 nm were covered in all three models. The explanation would be that marbling is 

visible fat, and the absorption peak of fat was located at 1200 nm (Osborne et al., 1993). 

These results indicated that hyperspectral images at NIR range had good explanatory 

power for pork marbling. Meanwhile, Gabor filter-processed NIR hyperspectral images 

may be more powerful than WLD-processed and direct hyperspectral images. The success 

of non-destructive detection of pork marbling made it possible to develop a rapid and 

accurate on-line system to assess pork marbling score. 

3.5        Conclusion 

This study was conducted to investigate the aptitude of NIR hyperspectral imaging and 

the proper image processing technique for prediction of pork marbling score. To 

accomplish this purpose, multiple linear models based on non-filtered NIR images, Gabor 

filtered images, and WLD-based images at optimal wavelengths were built and compared. 

The experimental results suggested that Gabor filter-based NIR hyperspectral imaging 

was efficient as an objective assessment method for pork marbling. The possibility of 
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developing an objective and accurate real-time system to assess pork marbling was 

demonstrated. Comparing different techniques of feature extraction, the direct mean 

spectra and Gabor filter showed stronger ability for evaluation of pork marbling than 

WLD, while the Gabor filter performed better than the first derivative of raw mean 

spectra. Moreover, in contrast to direct mean spectral response of images, the first 

derivative transformation of Gabor filtered images enhanced the accuracy of marbling 

prediction greatly. Prediction result of Rc = 0.91 and Rv = 0.90 was obtained at 961, 1186, 

and 1220 nm by the first derivative of Gabor filter-processed hyperspectral images.  

Further work will focus on improving the predictive accuracy, building industrial 

instruments for objective marbling evaluation and exploring the potential of NIR 

hyperspectral imaging techniques for prediction of intramuscular fat content in pork. 
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CONNECTING TEXT 

In Chapter 3, textural, spectral, and line features of NIR hyperspectral images of pork 

were extracted. Linear regression models between different image features and pork 

marbling scores were built and compared. The performance of Gabor filter based model 

was better than the wide line detector based model. The wide line detector is proposed 

based on digital pictures from red-green-blue camera. Considering the visual evaluation 

procedure of pork marbling, it will be prudent to see if wide line detector is capable of 

overcoming the challenge of low contrast between fat and lean in pork image at visible 

region. In Chapter 4, line pattern analysis technique of wide line detector was used to 

predict marbling score using digital red-green-blue images, and the independent effects of 

red, green, and blue channels were also considered. 

This chapter is based on a paper that is published in Food Control. The 

manuscript is co-authored by my supervisor Dr. M.O. Ngadi, a research associate Dr. L. 

Liu, and a researcher Dr. C. Gariépy from Agriculture and Agri-Food Canada. The format 

of the original manuscript has been modified to remain consistent with the thesis format. 

All the literature cited in this chapter is listed in Chapter 10 (General references). 
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IV. PREDICTION OF PORK MARBLING SCORES USING 

PATTERN ANALYSIS TECHNIQUES 

4.1        Abstract 

Marbling is an important quality attribute of pork. Its assessment usually corresponds to a 

subjective score being given by trained panelists based on the marbling standards charts. 

The purpose of this study was to investigate the objective determination of pork marbling 

using different pattern analysis techniques. A line pattern recognition technique called the 

wide line detector (WLD) and a texture extraction technique based on an improved grey-

level co-occurrence matrix (GLCM) were employed and compared. Fifty three fresh pork 

loin chops from the Longissimus dorsi (LD) muscle were collected and their marbling 

scores were assessed in a plant. Red-Green-Blue (RGB) images of these chops were 

acquired using a digital camera. The loin eye area was selected as the region of interest 

(ROI) of the pork images. Marbling was extracted from the ROI by either GLCM or 

WLD. Proportion of marbling (PM) obtained from WLD or image texture measurement 

from GLCM (GI) was formulated as indices of the marbling score. Linear regressions 

based on the PM and GI were carried out at the red, green, and blue channels as well as 

the combined RGB channels. The results of WLD and GLCM based models showed the 

effectiveness of pattern analysis techniques for pork marbling assessment. The 

comparison indicated that the WLD based models had stronger predictive ability for pork 

marbling score determination than GLCM. The green channel was demonstrated to have 

the best explanatory power for pork marbling assessment no matter which pattern analysis 
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technique was used. High correlation coefficients of calibration and validation (Rc = 0.94, 

Rv = 0.94) of the WLD based linear model at the green channel strongly indicated the 

great potential of pattern analysis techniques especially the line pattern recognition 

methods for the accurate and real-time evaluation of pork marbling.  

Keywords: Pork; Marbling; Wide line detector; Multiple linear regression; Grey-level co-

occurrence matrix 
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4.2        Introduction 

Marbling is a visual attribute of meat that influences acceptability and palatability of pork 

in the market and is defined as the amount and spatial distribution of the visible fat within 

the Longissimus dorsi (LD) muscle. In the pork industry, the evaluation of marbling 

mainly relies on subjective comparison with pork marbling standards or pictures such as 

those from the National Pork Producers Council (NPPC) (NPB, 2002) and is carried out 

by an experienced employee. The NPPC marbling standards comprise seven scores from 

1.0 (devoid) to 6.0 and 10.0 (abundant). The visual assessment leads to inconsistencies in 

pork quality of different companies, increases the labor cost, has low repeatability, and is 

easily influenced by the environment. Therefore, a more efficient and objective 

evaluation methods for pork marbling determination would be useful for the the pork 

industry.  

In the past decade, research work related to marbling assessment of either beef or 

pork using machine vision approaches have been reported (Gerrard et al., 1996; Shiranita 

et al., 2000; Yoshikawa et al., 2000; Toraichi et al., 2002; Tan, 2004; Faucitano et al., 

2005; Yang et al., 2006; Qiao et al., 2007a, 2007c; Chen and Qin, 2008; Liu et al., 2012). 

In comparison with beef, evaluation of marbling in pork is more challenging not only due 

to the much more variable color of pork but also due to the paler color of the lean part and 

the attenuated contrast between lean and fat (Sun, 2008). In order to enhance the color 

contrast between pork marbling and lean, a chemical pre-treatment was used in Faucitano 

et al. (2005) so that computer image analysis (CIA) was able to be conducted on the 

digital color pictures (i.e., Red-Green-Blue images) of the pre-processed pork samples. A 

group of CIA marbling variables was calculated and some of them (such as proportion of 
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marbling fleck area (%), the density of marbling flecks / pieces/cm², the number of 

marbling flecks / cm², total length of marbling flecks (cm), and total marbling fleck area 

(cm²)) were significantly correlated with intramuscular fat (IMF) content. Hyperspectral 

imaging technology was firstly introduced by Qiao et al. (2007c) to evaluate pork quality 

and marbling scores. In the work, a texture pattern analysis technique called grey-level 

co-occurrence matrix (GLCM) was applied to assess pork marbling levels at the 

wavelength of 661 nm where a significant contrast image was obtained. A measurement 

of GLCM named angular second moment (ASM) was exploited as the texture index of 

marblings. ASM (Energy) gives the sum of squared pixel values in GLCM. Results 

showed that the sorted marbling score based on the ASM value was about 1.0 higher than 

the subjective marbling scores. In addition, ASM differentiated samples in the range of 

marbling scores less than 5.0 but could not segregate samples with scores from 5.0 to 10.0. 

Liu et al. (2012) regarded pork marbling as a line pattern and applied a line pattern 

recognition technique called the wide line detector (WLD) (Liu et al., 2007) for the 

marbling extraction. The proportion of marbling (PM) was obtained using the WLD on 

digital color pictures of NPPC standards and formulated as indices of marbling scores by 

multiple linear regression models. Experimental results demonstrated that the established 

multiple linear models successfully differentiated the marbling levels of NPPC standards 

over the entire range. Although leave-one-out cross-validation was used to assess the 

generalization of the predictive models in practice, model validation on an independent 

sample set with the reference data from fresh pork samples was absent in the work.  

The overall objective of this work was to investigate the applications of different 

pattern analysis techniques for pork marbling evaluation. The specific objectives were to 
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collect digital RGB images of fresh pork loin samples; to extract different image features, 

i.e. line pattern and image texture, using the WLD and the improved GLCM, respectively; 

to establish prediction model based on extracted image features; and to compare the 

performance of the WLD- and the GLCM-based models for prediction of pork marbling 

scores. 

4.3        Materials and methods 

4.3.1      Samples and image acquisition 

Fresh boneless pork loins (n = 53) were obtained from a commercial packing plant in 

Quebec, Canada. A 2 cm thick chop was sliced from the mid portion of the longissimus 

muscle and was exposed to air for a minimum of 15 min at 10°C to allow blooming of the 

lean color. Marbling scores of the chop were assessed subjectively by two trained 

employees of the plant using the NPPC marbling standards (NPB, 2002) and the average 

value was used as the marbling score of the chop.  

Following the subjective assessment of marbling, the RGB digital images of the 

chops were obtained using a NIKON D5000 digital camera with a predefined condition 

under a uniform environment. The spatial resolution of the camera was 300 dpi (dots-per-

inch) × 300 dpi. Both surfaces of each chop were imaged for subsequent analysis.  

4.3.2      Image preprocessing 

The main task of image pre-processing was to select the region of interest (ROI), i.e. the 

loin eye area in this study. The loin eye area of each image was automatically selected by 

applying the image segmentation method presented in Liu et al. (2012). However, 

reflection points which were produced by the residual water on the chop surface were 
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found in ROI and could affect the analysis results. In order to control the error caused by 

reflection points and keep the research as a single-factor study, the reflection points were 

removed from the ROI manually. The final ROI used in this study is the loin eye area 

without reflection points. All operations of image processing and data analysis in this 

study were performed using MATLAB 7.3.0 (The MathWorks, Inc., Mass., USA).  

4.3.3      Feature extraction 

After image preprossessing, image features were extracted from three channels (red, 

green, and  blue) of RGB images for pattern analysis and measurement. In this study, two 

different feature extraction methods, i.e. the wide line detector (WLD) (Liu et al., 2012) 

and the grey-level co-occurrence matrix (GLCM) (Qiao et al., 2007c), were employed to 

detect line patterns and image texture, respectively.  

Wide Line Detector. The WLD segmented marblings from ROI in each channel of the 

RGB image by detecting lines as  
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where ),( 00 yx is the center of the circular neighborhood, ),( yx is any other point within 

the neighborhood, ),( yxIc is the intensity of the point ),( yx in the channel c,  r is the 

radius of circular mask, t is the intensity contrast threshold. s is the normalized weighting 

comparison based on the measure of similarity between the center point and any other 

point in the circular neighborhood, and m is the mass of the neighborhood center ),( 00 yx . 

g is the geometric threshold and was set  to 0.5 in this study. The output of the WLD was 

the isotropic line response L with the range of 0-0.5. A global threshold was used for 

image post-processing to remove objects with lower L. Therefore, three parameters 

involved in the WLD based feature extraction, i.e. the radius of circular mask (r) which 

determines the maximum width of marblings that can be detected, the intensity contrast 

threshold (t) which defines the minimum visibility of marblings that can be detected, and 

the global threshold which controls the noise level in the detected marblings.     

  The proportion of marblings (PM) was used as image feature index to measure 

marbling scores, which was defined as  
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(4.5)

where area(marbling) is the total number of pixels of detected marbling, and area(ROI) is 

the total number of pixels of the corresponding ROI. The principle behind the calculation 

of PM is comparable to human vision scaling marbling with respect to the lean 

background. 

Improved GLCM. The image texture indices of pork samples were derived from the grey-

level co-occurrence matrix (GLCM) which was created from each channel of the RGB 

image. GLCM is an image analysis technique which specifies image texture information 
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by relative frequencies with two neighbouring pixels separated by a distance in the 

calculation window (Haralick, 1979). This technique is widely used in food engineering, 

food quality and safety control to extract image texture characteristics of an object of 

interest (ElMasry et al., 2007; Naganathan et al., 2008a, 2008b; Mateo et al., 2010). In 

application, a sub-region with a regular shape (e.g. a rectangle area) is normally selected 

from the object of interest (such as meat, vegetables and fruits) as the ROI by hand to 

conduct GLCM texture analysis. However, such manual ROI selection could introduce 

error to the analysis and result in a biased conclusion.  

  In order to eliminate the influence of manual selection, an improved GLCM was 

used in this study to extract image texture features from the irregular-shaped ROI. The 

improved GLCM, ,DP , was defined as a square matrix with elements ),( ji specifying 

how often the two grey levels i and j occur between two pixels (pixels in the ROI) 

separated by a distance D along a given direction  over an image. A total of 8 grey levels 

were used to scale the gray-scale values in each channel of the pork sample image. The 

image texture information was evaluated by different measurement of GLCM, i.e. 
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where ( i , j ) and ( i , j ) are the means and standard deviations of the value of element 

),( ji  in the row and column direction in the improved GLCM, respectively. In the 

GLCM-based feature extraction, the measurement of GLCM obtained by Eq. 4.6-4.9 

were used as image texture feature indices (GI) to estimate the marbling scores of pork 

samples.  

4.3.3      Modeling and evaluation of models 

The relationship between marbling scores and image feature indices (PM or GI) 

of pork samples was calculated over three channels by Pearson’s correlation coefficients. 

All pork samples (n = 53) were divided into two sets, the calibration set (36 samples) and 

the validation set (17 samples). The multiple linear regression (MLR) algorithm was 

employed on the calibration set to establish the prediction models for pork marbling 

scores based on different image feature indices derived from each channel of pork sample 

images. The MLR model was defined as  
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where Ŷ is the vector of predicted marbling scores, cX ( bgrc ,, ) is the vector of image 

feature indices (PM or GI) of the calibration or validation set at the channel C, 0a  is the 

constant term and ca  is the regression coefficient on the channel C.  
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The predictive ability of the MLR models was evaluated by four parameters, i.e. 

the root mean square error of calibration (RMSEc), the root mean square error of 

validation (RMSEv), the correlation coefficient between the predicted and measured 

marbling scores of the calibration (Rc) and validation (Rv) set. A good model should have 

low RMSEc and RMSEv, high Rc and Rv, and a small difference between RMSEc and 

RMSEv.  

4.4        Results and discussion 

4.4.1      Image of pork sample 

Fifty three pork loins were used. The mean marbling score of all samples was 2.60. 

Minimum and maximum values were 1.00 and 5.25, respectively. All pork loin chops 

were imaged in RGB format on both sides and the ROI of each image was segmented in 

image pre-processing. Figure 4.1 shows an example of the RGB images of a pork loin 

chop on both sides. The segmented ROI of side A (Figure 4.1(a)) is shown in RGB image  

    

 (a) Side A                           (b) Side B  

Figure 4.1  Images of pork loin chops at two sides. 
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in Figure 4.2(a), as well as in grey-level images at the red, green, and blue channels, 

respectively. In grey-level images, both green and blue channels produced a better 

contrast between lean and marbling fat than the red channel, since the color of lean is red. 

                        

(a) RGB image               (b) Red channel              (c) Green channel         (d) Blue channel 

Figure 4.2  ROI (marked as non-black pixels) of pork sample at different channels. 

4.4.2      Proportion of marblings based on WLD 

The wide line detector defined by Eq. 4.1-4.4 was applied to extract marblings from the 

ROI at red, green, and blue channels of the digital color image of pork sample. Figure 4.3 

shows the marbling detection results of the RGB images at each channel using the WLD 

where the intensity contrast threshold t is 4, the radius of circular mask r is 30, and the 

global threshold l is 0.3. The parameters of the WLD were determined based on trial and 

error (the parameter set providing the highest correlation coefficient to referenced 

marbling scores was selected as the optimal parameter set) and the same values of 

parameters were used for all channels.  
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(a) Red channel               (b) Green channel                (c) Blue channel 

Figure 4.3   Extracted marbling of pork at different channel. 

Proportion of marblings (PM) was calculated for all pork samples according to 

Eq. 4.5 and the results are listed in Table 4.1. Pearson’s correlation coefficients between 

PM and marbling scores of all the samples were 0.90, 0.93, and 0.92 at the red, green, 

and blue channels, respectively. The high correlations obtained (R > 0.9, P << 0.001) 

showed the strong relationship between PM and marbling scores  This was consistent  

Table 4.1   Statistics of PM for all samples and different sets. 

Parameter Set Channel Maximum Minimum Mean 
Standard 
deviation 

Red 0.055 0.008 0.022 0.010 

Green 0.096 0.029 0.055 0.016 

Blue 0.095 0.032 0.056 0.015 

All 
samples 

RGB 0.096 0.008 0.044 0.021 

Red 0.055 0.007 0.022 0.011 

Green 0.096 0.030 0.054 0.016 

Blue 0.095 0.033 0.056 0.015 
Calibration

RGB 0.082 0.023 0.044 0.021 

Red 0.044 0.009 0.023 0.011 

Green 0.087 0.029 0.055 0.016 

Blue 0.087 0.032 0.056 0.015 

PM 

Validation

RGB 0.073 0.023 0.044 0.021 
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with the result obtained by Faucitano et al. (2005) where the proportion of marbling fleck 

area (%) was significantly correlated with marbling score (R = 0.60, P < 0.001). The 

much higher correlation coefficients obtained in this study indicated the effectiveness of 

the wide line detector for processing of RGB images for the prediction of pork marbling 

scores.    

Three linear regression models, i.e. WLRr, WLRg, and WLRb, were developed 

using the PM values at the red, green, and blue channels, respectively, while one multiple 

linear regression model WMLR developed based on PM of all three channels. The 

regression coefficients and the corresponding prediction results of each model are listed 

in Table 4.2. The high correlation coefficients (Rc and Rv) and low RMSEc and RMSEv 

from all established models showed the strong explanatory and predictive capability of 

PM for determination of pork marbling scores, and thereby indicated the effectiveness of 

the line pattern features for pork marbling prediction. The WLRg model established at the 

green channel outperformed the models at the red (WLRr) and the blue (WLRb) channels 

on both calibration and validation sets, which was consistent to the correlation results  

Table 4.2   Regression results of the WLD based LR and MLR models, p << 0.001 for 

each R value. 

Regression coefficients Prediction results Channel Model 

0a
 ra  ga

 ba
 

Rc RMSEc Rv RMSEv 

Red  WLRr 0.84 80.95 0 0 0.90 0.42 0.94 0.33 

Green WLRg -0.41 0 56.32 0 0.94 0.33 0.94 0.36 

Blue WLRb -0.68 0 0 59.46 0.93 0.34 0.92 0.37 

RGB WMLR -0.62 -17.63 70.40 -2.91 0.94 0.33 0.93 0.37 
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between PM and marbling scores of all pork samples. The WMLR model based on all 

three channels produced the same Rc as the WLRg model (0.94) and a slightly lower Rv 

than the WLRg model (0.93 vs. 0.94).  

Figure 4.4 shows the plots of measured and predicted marbling scores from PM 

using the two models. The very high similarity between the two plots indicated that the 

PM obtained from the green channel had the most predictive power, and the multiple 

linear regression model WMLR could be replaced by the simple linear regression model 

at the green channel (WLRg).  

 

       

(a) the WMLR model              (b) the WLRg model 

Figure 4.4   The measured and predicted marbling scores of calibration and 

validation sets based on WLD. 

4.4.3      Image texture features based on the improved GLCM 

The improved GLCM-based image texture feature extraction method was applied on the 

ROI at all three channels of the pork image to obtain the image texture feature index (GI) 

of pork sample. Four directions (   135,90,45,0 ) and 13 steps (  60:5:5,1D ) 
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were used to calculate ,DP  and four measurements (Contrast, Correlation, ASM, and 

Homogeneity) were evaluated for each ,DP .  

Pearson’s correlation coefficients between GI and marbling scores of all samples 

were calculated for all parameter combinations at three channels. The best correlation 

coefficients along each direction are shown in Table 4.3. The green channel produced the 

highest correlation coefficient in each direction and the overall best correlation coefficient 

between GI and marbling score (R = 0.69) was obtained in the horizontal direction 

(  0 ) with the distance of 25 pixels when the measurement of Contrast was used. The 

statistics of the corresponding GI (denoted as 0GI ) are listed in Table 4.4.  

Table 4.3   Best correlation coefficients ([R;G;B]) between marbling score and GI 

along different directions. 

Direction Measurement
Step 

(pixels) 
R ([R;G;B]) 

0 º Contrast 25 [0.53;0.69;0.56] 

45 º Contrast 15 [0.50;0.66;0.55] 

90 º Homogeneity 10 [-0.49;-0.60;-0.55] 

135 º Homogeneity 10 [-0.48;-0.59;-0.54] 

 

Linear regression models based on the 0GI  listed in Table 4.4 were developed at 

the red (GLRr), green (GLRg), and blue (GLRb) channels as well as the combined RGB 

channels (GMLR). The regression coefficients and the prediction results of the four 

GLCM based linear regression models are listed in Table 4.5. The multiple linear model 

based on the combined RGB channels (GMLR) outperformed the three simple linear 

models (GLRr, GLRg, and GLRb). Among the three simple models, the model at the 
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green channel (GLRg) produced the best prediction results which had the same Rv as the 

GMLR model (0.79) and a slightly lower Rc than the GMLR model (0.72 vs. 0.73).  

Table 4.4   Statistics of GI0 for all samples and different sets. 

Measurement Set Channel Maximum Minimum Mean 
Standard 
deviation 

Red 1.924 0.869 1.222 0.197 

Green 0.943 0.510 0.661 0.105 

Blue 0.977 0.432 0.649 0.105 

All  
samples 

RGB 1.281 0.604 0.844 0.303 

Red 1.640 0.890 1.207 0.169 

Green 0.867 0.510 0.648 0.087 

Blue 0.963 0.432 0.643 0.102 
Calibration

RGB 1.157 0.611 0.833 0.293 

Red 1.924 0.869 1.255 0.248 

Green 0.943 0.521 0.689 0.134 

Blue 0.977 0.469 0.661 0.115 

Contrast 

Validation

RGB 1.281 0.620 0.868 0.326 

 

Table 4.5   Regression results of the GLCM based LR and MLR models, p < 0.01 for 

each R value. 

Regression coefficients Prediction results Channel Model 

0a
 ra  ga

 ba
 

Rc RMSEc Rv RMSEv 

Red  GLRr -1.24 3.06 0 0 0.52 0.84 0.69 0.61 

Green GLRg -2.91 0 8.28 0 0.72 0.68 0.79 0.71 

Blue GLRb -0.93 0 0 5.27 0.54 0.83 0.70 0.56 

RGB GMLR -2.77 -0.61 9.61 -0.41 0.73 0.68 0.79 0.72 

 

Plots of measured and predicted marbling scores from 0GI  using the models 

GMLR and GLRg are shown in Figure 4.5. A similarity between the two plots was 

observed, which showed that the 0GI obtained from the green channel was most 
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explanatory and the simple linear model at the green channel could replace the multiple 

linear model based on the combined RGB channels.  

        

 (a) The GMLR model                  (b) The GLRg model 

Figure 4.5   The measured and predicted marbling scores of calibration and 

validation sets based on the improved GLCM. 

4.4.4      Discussion 

Both the wide line detector and the grey-level co-occurrence matrix are pattern analysis 

techniques. In this study, the WLD extracted marbling as line patterns with position and 

thickness information, while the GLCM measured marbling as the texture of the pork 

image. Comparing the prediction results based on the two techniques as shown in 

Table 4.2 and 4.5, the WLD produced much better prediction than the GLCM on both 

calibration and validation sets for all simple linear and multiple linear models. One 

possible reason is that image texture features extracted using the improved GLCM 

included information not only from marblings but also from the lean of the pork, which 

could limit the ability of GLCM to predict pork marbling scores. This indicated that line 

pattern appears to be more effective than the image texture for pork marbling prediction.  
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This study showed the promising potential of the WLD for pork marbling 

assessment. Regarding marbling as line pattern, the pork sample image with thick lines 

detected in a few positions could have the same PM values as the pork sample image with 

narrow lines detected in many positions according to Eq. 4.5, which would result in the 

same predicted marbling scores for both pork samples even though they have different 

measured marbling scores. This indicates that besides PM (the proportion of marbling 

area), the distribution of marblings (eg. the number of marbling flecks / cm² which was 

used in Faucitano et al. (2005)) should also be taken into account for marbling score 

assessment. Comparing the prediction results of three simple linear models, both the 

WLD and the GLCM based models created the best prediction of pork marbling score at 

the green channel. This indicated that the image feature extracted in the green channel 

had the best explanatory power no matter which pattern analysis technique used. The 

prediction results at the green channel are almost same as the results based on all three 

channels in Table 4.2 and 4.5. This made it possible to develop a rapid and accurate 

system to assess pork marbling scores.  

4.5        Conclusion 

In this study, the barriers produced by the low contrast between marbling and lean for 

objective and fast marbling assessment were overcome by application of effective pattern 

analysis techniques, i.e. the WLD and the GLCM. The results demonstrated the superior 

capacity of the WLD for objective assessment of pork marbling even though the 

predictive accuracy could be further improved. Both WLD and GLCM based models 

showed the green channel had the strongest prediction ability for pork marbling 

assessment, which indicated that simple linear model at the green channel, could replace 
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the multiple linear model which was established based on all channels. This made it 

possible to develop an objective and accurate system to assess pork marblings in a real-

time way. Further work will focus on building proper industrial implementations for 

marbling evaluation and exploring the potential of predicting the intramuscular fat 

content of pork by applying pattern analysis techniques.  
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CONNECTING TEXT 

In Chapter 4, marbling scores of pork at the 3rd / 4th last rib were evaluated using red-

green-blue digital pictures of fresh pork. The effectiveness of wide line detector in the 

visible light range was demonstrated. Green channel showed the most powerful predictive 

ability. The success of objective and non-destructive evaluation of pork marbling score 

using image analysis indicated the possibility of evaluation of total intramuscular fat 

content of pork using image analysis. Chapter 5 addresses the third objective of the thesis, 

i.e. investigating the non-destructive measurement of the intramuscular fat content of 

pork. Hyperspectral imaging was introduced to explore the determination of the 

intramuscular fat content of pork. Effective image processing techniques were 

investigated. In addition, the method of mapping the distribution of intramuscular fat 

content in pork was studied. 

The manuscript in this chapter has been submitted for publication to Talanta. This 

chapter is co-authored by my supervisor Dr. M.O. Ngadi, a research associate Dr. L. Liu, 

and a researcher Dr. C. Gariépy from Agriculture and Agri-Food Canada. The format of 

the original manuscript has been modified to remain consistent with the thesis format. All 

the literature cited in this chapter is listed in Chapter 10 (General references). 
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V. HYPERSPECTRAL IMAGE-ASSISTED NON-

DESTRUCTIVE QUANTIFICATION OF 

INTRAMUSCULAR FAT CONTENT OF INTACT PORK 

5.1        Abstract 

Fast and non-invasive assessment of the intramuscular fat (IMF) content of pork chops 

would benefit the pork industry in terms of saving time and cost of determination. Thus, 

developing an accurate, non-destructive and rapid method to determine the IMF content 

of pork would be advantageous to the pork industry. This paper reports on the use of near 

infrared (NIR) hyperspectral imaging technique for predicting IMF content in intact pork 

loin and the efficiency of texture pattern techniques for processing of hyperspectral 

images. Pork samples were collected and their IMF contents were determined using a 

conventional solvent extraction method. Hyperspectral images of the samples were 

acquired using an NIR hyperspectral imaging system. After the region of interest (ROI) of 

each spectral image was segmented, the raw spectral characteristic was obtained by 

averaging the spectra within the ROI of the non-processed image. Texture-based spectral 

characteristics were extracted by a pattern recognition technique called Gabor filter (GF), 

and texture information was extracted by a pattern recognition technique called the 

improved grey-level co-occurrence matrix (GLCM). The first derivative of the spectral 

curve was obtained as well. Full waveband partial least squares regression (PLSR) and 

cross validation were employed to determine the optimal parameters of GF and GLCM, 
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and to select featured wavelengths for IMF prediction. A stepwise procedure was applied 

to the select wavelengths to optimize the wavelengths again and multiple linear regression 

(MLR) models were built. Compared to raw spectral information, Gabor filter performed 

better than GLCM. Averaging ROI and Gabor filter yielded similar predictive ability to 

IMF content, while the first derivative of Gabor filter showed a slightly better result than 

the raw mean spectra of ROI. Only the MLR model using raw mean spectra at 1207 and 

1279 nm were selected as the final model. A correlation coefficient of calibration (Rc) of 

0.87, cross validation (Rcv) of 0.86, and prediction (Rp) of 0.85 were obtained for the raw 

mean spectra-based model. The model was applied to the spectrum of each pixel in ROI, 

and the distribution map of IMF content in pork was obtained. These promising results 

indicated the great potential of non-destructive prediction of IMF content of intact pork 

using NIR hyperspectral imaging.  

Keywords: Pork; Intramuscular Fat content; Gabor filter; Grey-level co-occurrence 

matrix; Partial least squares regression; Multiple linear regression; Prediction map 



  90

5.2        Introduction 

Intramuscular fat (IMF) content is defined as the mass of fat within the meat muscle. Pork 

IMF content influences the cooking quality (flavor and juiciness, etc.), eating satisfaction 

of consumers, even health issues. Thus, different levels of IMF content lead to different 

acceptance levels from consumers (Brewer et al., 2001; Bryhni et al., 2003). Non-

invasive and rapid determination of IMF content in pork chops would allow commercial 

cuts to be classified, screened, and assigned to a proper retail spot according to different 

targets of the markets, thereby enhancing their market allocation and reducing handling 

costs. Unfortunately, at present, extraction of lipid based on chemicals is involved in the 

assessment of pork IMF content. Extraction of fat by chemicals is time consuming, labor 

intensive and harmful to the environment. Since fat extraction-based IMF prediction is 

not suitable for fast and non-destructive measurement, random sampling are typically 

used to evaluate the IMF content of pork products, which leads to non-optimal grading of 

pork cuts. Therefore, it would be beneficial for the pork industry to develop a non-

destructive, real-time, rapid, and accurate method for predicting the IMF content of pork. 

Some studies have been conducted to detect the IMF content in pork with 

spectroscopy techniques (Brøndum et al., 2000; Prevolnik et al., 2005; Barlocco et al., 

2006; Savenije et al., 2006; Prieto et al., 2009). Savenije et al. (2006) applied a near 

infrared (NIR) reflectance spectrophotometer to determine the IMF content of pork 

muscle. The second derivative of the reflected spectra was used to build prediction 

models. Three breeds of pigs were used as samples. Correlation coefficients of calibration 

(Rc) between the measured and predicted IMF contents were from 0.70 to 0.86, and the 

correlation coefficients of validation (Rv) were from 0.63 to 0.76. Prevolnik et al. (2005) 
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and Barlocco et al. (2006) suggested that for IMF measurement by NIR spectroscopy, the 

minced samples produced more accurate result than intact muscle. This indicated a 

shortcoming of spectroscopic technique for IMF prediction in pork. Due to the confined 

detected area of the spectroscopic system and the heterogeneous distribution of fat in pork 

muscle, limited information was obtained when applying spectroscopic technique to 

intact muscle. To obtain adequate data from a pork sample, either homogenizing of the 

sample or enlargement of the field of view of the evaluation system would help. 

With development of technology, an advanced technique called hyperspectral 

imaging was exploited to inspect pork quality (Gowen et al., 2007; Qiao et al., 2007a, 

2007c; Liu et al., 2010; Barbina et al., 2012a, 2012b). By integrating both conventional 

spectroscopy techniques with imaging techniques, hyperspectral imaging overcomes the 

limitation of spectroscopy. It identifies spectral details of different chemical components 

at specified spatial locations in a product. The obtained spectral and spatial information is 

stored in a three-dimensional (two spatial dimensions and one spectral dimension) data 

cube called a hypercube, from which image parameters or spectra can be extracted and 

analyzed for measurement of chemical attributes or physical properties of tested object. 

Information of multiple chemical constituents can be extracted from one hypercube 

simultaneously. In addition, no sample preparation is needed to apply hyperspectral 

imaging. Considering the great potential of the technology, there has been rising interest 

in application of hyperspectral imaging in pork quality control (ElMasry and Sun, 2010).  

Qiao et al. (2007c) introduced visible (VIS)/NIR hyperspectral imaging to 

classify pork quality and assess pork marbling objectively. Grey-level co-occurrence 

matrix (GLCM) was adopted to evaluate pork marbling. The predicted marbling scores in 
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the study were able to distinguish the marbling scores of standard charts except the score 

of 10.0. Four classes were involved in the study (Reddish pink, firm and non-exudative 

(RFN), pale pinkish gray, soft and exudative (PSE), pale, firm and non-exudative (PFN), 

and reddish, soft and exudative (RSE)). Classification results of 75-80% were reached. 

Liu et al. (2010) developed a Gabor filter-based hyperspectral imaging system to grade 

pork samples into the same four classes of quality (RFN, PSE, PFN, and RSE). The work 

reached a classification accuracy of 84 ± 1%, which improved on the earlier result of 

Qiao et al (2007c) by 4%. It was implied that effective pattern recognition techniques 

would enhance the ability of hyperspectral imaging for inspection of pork quality. 

Barbina et al. (2012a) analyzed NIR hyperspectral images to classify pork quality. 

Classification accuracy of 96% was obtained with only three quality grades (RFN, PSE, 

dark purplish red, firm and dry (DFD)) involved. The authors did not consider the PFN 

and RSE grade which typically tend to be the most difficult grades to classify. Promising 

results in these studies emphasized the capability of hyperspectral imaging for prediction 

of pork attributes. 

The appearance of NIR spectroscopy for IMF content prediction indicated that 

NIR hyperspectral imaging might produce better results than the one in VIS area. 

Furthermore, Kobayashi et al. (2010) applied NIR hyperspectral imaging for control of 

fat content in beef. Compared to beef, the low contrast between fat and lean in pork 

makes the application of hyperspectral imaging a challenge. Liu et al. (2009) reported the 

use of hyperspectral imaging techniques to predict the IMF of pork. The reflected images 

in a wavelength interval were accumulated to enhance the contrast between the fat area 

and the non-fat area. A feature detection method named the wide line detector and a 
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thresholding method were combined to detect fat flecks of pork. A prediction accuracy of 

0.91 was obtained by linear regression modeling. This study indicated the possibility of 

rapid assessment of the intramuscular fat content of pork using NIR hyperspectral 

imaging. The authors indicated that more samples need to be studied and wavelengths 

need to be optimized. 

The spectra of lipid and water, which are the main constituents of IMF, have 

many overlaps in the NIR region (Murray and Williams, 1987; Shenk et al., 1992), which 

may cause difficulty for wavelength identification. The processing of large volumes of 

data provided in a hypercube encourages the involvement of effective data mining 

techniques as well. In the presentation of Liu et al. (2009), the application of the image-

processing technique of wide line detector enhanced the efficiency of IMF content 

prediction. It was indicated that an effective image processing technique may help to 

extract useful information from the data. 

The aim of this study was to investigate the potential of NIR hyperspectral 

imaging (900-1700 nm) for prediction of IMF content in pork. For this purpose, normal 

averaging of spectra and two texture pattern techniques including Gabor filter and the 

improved GLCM were investigated for processing of NIR spectral images. The specific 

objectives were: (1) extract spectral features from raw hyperspectral images and calculate 

the differential of spectra, (2) extract texture features using Gabor filter and grey-level co-

occurrence matrix (GLCM), respectively, (3) identify optimal wavelengths using partial 

least squares regression (PLSR) and cross validation in the whole wave, (4) identify 

optimal wavelengths according to the regression coefficient, (5) use stepwise procedure to 

reduce the dimension of optimal wavelengths further, (6) build multiple linear regression 
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(MLR) models based on different types of features at key wavelengths, and (7) visualize 

the distribution maps of the IMF content of pork using the built MLR model. 

5.3        Materials and methods 

5.3.1      Sample collection and determination of IMF content 

In this study, pork samples from longissimus thoracis muscle were collected from 83 pig 

carcasses raised on a local farm. No differing treatment was applied to the animals. To 

increase the variability in IMF content in the longissimus muscle, carcasses with big 

difference in back fat thickness between the 3rd/4th last ribs were selected for dissection. 

At 24 h post-mortem, thin pork slices at the 3rd/4th last thoracic rib of the 

Longissimus dorsi (LD) was collected for determination of IMF content. Meanwhile, loin 

chops with 2 - 2.5 cm thickness were dissected from the same site (the 3rd/4th last thoracic 

rib), and wrapped in vacuum packs individually and transported to the Hyperspectral 

Imaging Laboratory, McGill University, Montreal, QC, Canada for image acquisition. 

 Peripheral fat and surrounding muscle were removed from the thin pork slices. 

The remaining trimmed muscles were ground. The IMF content of the minced fresh pork 

was measured using ethanol and dichloromethane-based Soxtec extraction (Association 

of Official Agricultural Chemists (AOAC), 1990) and the results were used as referenced 

IMF content. The obtained fat content was based on a wet weight.  

5.3.2      NIR hyperspectral imaging system 

The NIR hyperspectral imaging system was used to capture NIR images of pork.  The 

system consisted of an InGaAs camera, a spectrograph (Headwall photonics, USA, 900-

1700 nm), a conveyer (Donner 2200 series, Donner Mfg. Corp., USA), a real-time control 



  95

motor (MDIP22314, Intelligent motion system Inc., USA), two 50 W tungsten halogen 

lamps, supporting frame for the system, and a computer. The incident illumination was 

placed with an angle of 45° to the sample. Software for data acquisition and control of 

conveyer was installed on the computer (Hyperspec, Headwall Photonics Inc. USA).  

The system is a line-scanning pushbroom system operated in a reflected mode. As 

the conveyer moves on with a predefined constant speed, the sample was scanned line by 

line and the reflected light from samples was dispersed into different wavelengths ranging 

from 900 to 1700 nm by the spectrograph. A three-dimensional hypercube was formed by 

combining spatial information from the InGaAs camera and spectral information from the 

spectrograph. The spectral resolution for the system was 4.8 nm while the spatial 

resolution was 0.6 mm. The spectral dimension covered 167 bands. The number of pixels 

covered by the spatial dimensions was determined by the morphological size of the 

detected object. The produced hypercube was saved in a band-interleaved-by-line (BIL) 

format, from which NIR images and spectra of each pixel could be extracted easily.  

5.3.3      Image acquisition and calibration 

Hyperspectral images were obtained from the 2 - 2.5 cm thick loin chops. Before the 

image collection of samples, dark and white reference images were captured to correct 

error caused by dark current of the system and to transform the reflected light intensity to 

reflectance. The dark (D, its reflectance is ~0%) image was obtained by covering the lens 

with an opaque cap. The white reference (W, its reflectance is ~99%) was obtained by 

adopting a reference tile as photographed object. Original NIR images (N0) of samples 

were collected by placing sample on a dark board whose reflectance was about 0%. The 

speed of image acquisition was around four seconds per sample. For each hypercube, the 
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minimum interval along spectral dimensions and spatial dimensions were 4.8 nm and 0.6 

mm, respectively. Corrected NIR images (N) were obtained by algebraic calculus (Eq. 5.1) 

of the light intensities of each pixel {i, j} in dark (D(i, j)), white (W(i, j)) and original 

NIR images (N0(i, j)). The reflectance of pixels in the calibrated NIR images ranges from 

0 to 1. Subsequent image analyses and data analyses (As shown in Figure 5.1) were 

conducted using the corrected hypercube.  
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5.3.4      Image processing 

Figure 5.1 outlines the whole procedure of spectral averaging-based and pattern 

technique-assisted image processing, followed by multivariate statistical analysis. 

Because the images at 900-935 nm and 1655-1700 nm were too noisy, only images from 

940-1650 nm were used for image analysis at the stage of image preprocessing. 

Accordingly, the term ‘whole waveband’ in this study refers to wavelengths from 940 to 

1650 nm. All operations of image processing and multivariate statistical analysis in this 

study were performed using MATLAB 7.3.0 (The MathWorks, Inc., Mass., USA).  
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Figure 5.1   Flow chart of data analyses. 

5.3.4.1  Image preprocessing 

In image preprocessing, the region of interest (ROI) was segmented from which the 

spectral and texture features were extracted. ROI segmentation with an aim of isolating 

the targeted lean and IMF part from other portions is an important basis of image 

processing, as the selected ROI will affect all the analysis afterward. The peripheral fat, 

surrounding muscle, shadow and other backgrounds were removed and replaced by a 

homogenous black background. ROI segmentation in this study was conducted according 

to the method presented in Liu et al. (2012). The threshold values of different samples 
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were different. The threshold value was set automatically according to the mean 

reflectance and standard deviation of each image. 

5.3.4.2  Extraction of spectral feature 

The mean spectrum of non-filtered ROI (MR) was extracted after image preprocessing. 

MR of each sample was a 1×149 (the wave range/ the spectral resolution of system+1) 

vector. Average spectra of the two sides of each pork sample were used as final spectral 

features. There were over 40,000 pixels in the selected ROI. Hence, the error introduced 

by limited area of view was reduced compared to spectroscopy. To raise the ratio of 

signal to noise, the first derivative (Eq. 5.2) was applied to the obtained non-filtered mean 

spectra and the first derivative of mean spectra (DMR) was obtained for data analysis as 

well as MR. DMR of each pork sample was a 1×148 vector (the wave range/ the spectral 

resolution of system). 
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where i  represents the number of wavelengths,  i = 1, 2, 3, … 148. i  represents the thi  

wavelength. There was an interval of 4.8 nm between i  and 1i . 1iMS and iMS  stand 

for the value of spectral response at thi )1(   and thi  wavelength, respectively. Di stands 

for the first differential of mean spectrum at thi wavelength.  

5.3.4.3  Extraction of texture spectrum by Gabor filter 

A type of texture pattern technique called Gabor filter was applied to extract texture 

feature of NIR images. The two-dimensional Gabor filter is a transformation of elliptic 

Gaussian and sinusoidal waves, which are applied on all the receptive fields in the image. 
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Gabor filter is capable of extracting the important spatial characteristics including spatial 

localization and frequency from images. It was proposed as an imitation of human visual 

sense (Clausi and Jernigan, 2000; Liu et al., 2010). Considering IMF as spatial 

characteristics in pork images, an isotropic Gabor filter (GF1) and an oriented Gabor filter 

(GF2) was used on the pork images at wavelengths ranging from 940-1650 nm. The 

functions of Gabor filter were defined as follows (Ma et al., 2002):   
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where (x, y) is the coordinate of pixel in each NIR image, f  represents the frequency of 

the sinusoidal wave,   is the standard deviation of the Gaussian function, and   is a 

vector which controls the orientation of the filter (  = 0°, 45°, 90°, 135°). Since GF1 is 

an isotropic function,   was not considered as a parameter for GF1. After filtering, the 

mean spectral response of the Gabor filtered ROI was obtained. To reduce the influence 

of heterogeneity of pork sample, the average spectrum from two sides of each sample was 

obtained and used for following analysis. Mean spectrum from GF1 and GF2 was denoted 

as MG1 and MG2, respectively. The first derivatives of MG1 and MG2 were calculated 

according to Eq. 5.2 and denoted as DMG1 and DMG2.  

5.3.4.4  Extraction of texture features by improved GLCM 

Another texture pattern technique call grey-level co-occurrence matrix (GLCM) was 

investigated for processing of hyperspectral images. GLCM gives the information about 
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how often the pixel intensities occurred between two pixels distributed by a specific 

distance and direction. Features derived by GLCM were used in texture analysis for food 

quality and safety control (ElMasry et al., 2007; Naganathan et al., 2008a, 2008b; Mateo 

et al., 2010). To applying GLCM, subjective selection of a regular shape (e.g. a circle 

area) is usually used to select the appropriate ROI. To avoid the effect of subjective ROI 

selection, an advanced GLCM was applied on whole irregular-shaped ROI of pork in this 

study.  

Eight scales, four offset directions (As shown in Figure 5.2, 0°, 45°, 90°, 135°), 

and 11 offset distances of 1 and 3 to 30 pixels with a stepsize of 3 pixels were applied in 

this study. The limitation of the scale was defined ranging from the minimum and the 

maximum of the intensities of the inputted image. The range was divided into eight equal 

levels. For each image, 52 (4 directions × 13 steps = 52) different matrices were formed. 

The image texture features (GI) including 4 measurements (Contrast (GIt), correlation 

(GIn), angular second moment (ASM, GIa), and homogeneity (GIh)) were calculated 

from obtained GLCM, by which 208 (52 × 4 = 208) plots with different parameters could 

be obtained for each image. The obtained 4 measurements of GLCM were used as 

another type of image texture feature indices to estimate the IMF content of pork.  

90°
45°

D

0° (θ )

    Interested pixel

135°

 

Figure 5.2   Distribution of pixel pair. 
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5.3.5      Multivariate data analysis 

In determination of optimal parameters for GF and GLCM and optimal wavelengths for 

modeling, partial linear square regression (PLSR) was employed to build full waveband-

based calibration models. As a common data analysis method, PLSR is widely used to 

reduce the dimension of predictor variables and random noise, and it proved to be 

efficient (Prieto et al., 2009). All the earlier extracted features at the defined whole 

waveband were used as the predictor variables of PLSR (X). The measured IMF content 

of pork samples was used as the response variable (Ym). Eq. 5.5 describes function of 

PLSR.  

EBXYm  , (5.5)

where B stands for the obtained regression coefficient, and E represents the noise term for 

the model. When Ym and X are fixed, there will be many models, i.e. many matrix B and 

corresponding E, that will match the equation. By getting the solution of matrix B when 

E reaches the minimum, the relations between matrices X and Ym is built. In practice, the 

essential step of PLSR analysis is selecting the number of the main PLS principal 

components (PLS-PC) which explain the maximum fundamental relations between Ym 

and X. After quantification of PLS-PC, the PLSR model is build. The parameters of GF 

( f ,  ,  ) and GLCM (D,  , measurement), which provided best prediction results, 

were used as the optimal parameters. The corresponding regression coefficient was used 

to select optimal wavelengths. 

In this study, features at all waveband (940-1650 nm) were used for the PLSR 

analysis. The total 83 samples were divided into two sets, including calibration sets (56 
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samples) and prediction sets (27 samples). PLSR models of different features were built 

using calibration sets. Numbers of PLS-PC were determined when the root mean square 

error of calibration (RMSEc) reached the minimum value. The calibration models with 

determined PLS-PC were validated by leave-one-out cross validation to check the 

robustness of the models. Considering the prediction ability of models for real samples as 

well, data in the prediction sets were input into the calibration models for testing. After 

the numbers of PLS-PC were determined, parameters of GF-based or GLCM-based 

models produced best results were shown in results with corresponding optimal 

parameters of feature extraction. The efficiency of PLSR models were assessed by 

following statistical values of calibration sets, cross validation sets, and prediction sets, 

respectively: the correlation coefficient in calibration (Rc), cross validation (Rcv), and 

prediction (Rp), the root mean square error of calibration (RMSEc), cross validation 

(RMSEcv), and prediction (RMSEp). Models with greater values of Rc, Rcv, and Rp, and 

lower values of RMSEc, RMSEcv, and RMSEp would be better than models with opposite 

values. The smaller the differences between RMSEc, RMSEcv, and RMSEp, the better the 

model. 

The most valuable wavelengths for each feature were selected according to the 

plot of regression coefficient. The wavelengths with peak coefficients were selected. 

Stepwise procedure was used to further explain the key wavelengths. The variables at key 

wavelengths were input into MLR model (Eq. 5.6), the performance of calibration, cross 

validation, and prediction was compared, and the best and practical model was selected 

for prediction of IMF content in intact pork. 
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where 0b and ib are the regression coefficient, iX  is the variable at thi wavelengths, n  

represents the number of used wavelengths, i.e. variables. 

5.3.6      Prediction map of IMF content in pork image 

The mapping of IMF distribution would help to analyze the IMF content of pork since 

pork is an heterogeneous material. One advantage of hyperspectral imaging is that it 

provides spectral information of each pixel in pork image, which means the IMF content 

of each pixel could be predicted by inputting the spectrum into a prediction model. The 

spectral information from hyperspectral imaging includes external information of the 

objects of interest as well as internal due to the deep penetration ability of NIR spectra, 

which makes hyperspectral imaging more suitable for prediction of IMF content since the 

IMF is distributed not just in the surface of pork, but also in the whole pork sample. 

Application of hyperspectral imaging helps to recognize the IMF distribution in a whole 

pork sample. Reference data of IMF content of each pixel is required to build an accurate 

prediction model. However, it is not possible to obtain the IMF content of a pixel. To 

overcome this challenge, the best MLR model constructed based on mean spectrum or 

image parameters in previous step was applied to the spectrum of each pixel to predict the 

corresponding IMF content of each pixel in pork image. By showing the pixel-based IMF 

content, the prediction map of IMF content in pork was then generated. It would help 

understanding the IMF distribution in pork and conducting detailed study at pixel level.  
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5.4        Results and discussion 

5.4.1      IMF content and ROI of hyperspectral images 

A total of 83 pork loin chops were collected in this study. IMF content of each pork 

sample was measured and used as the referred IMF content for corresponding sample. 

Statistical description for IMF content of total pork cutlets, calibration set (n = 56), and 

prediction set (n = 27) is presented in Table 5.1. Wide variability is observed in total 

samples, calibration set, and prediction set. The range of prediction was covered by 

calibration set and the standard deviation (STD) of all three groups was in the same level. 

This helps to build a stable and reliable calibration model. 

Table 5.1    Statistical description for IMF content of all the pork, calibration set and 

prediction set. 

Total  Calibration  Prediction 
Trait 

Mean STD Min Max  Mean STD Min Max  Mean STD Min Max 
IMF 

content 
(%) 

1.86 1.01 0.51 5.8  1.82 1.01 0.51 5.8  1.77 0.85 0.58 3.62 

 

The conformation of hypercube (940-1650 nm) obtained by hyperspectral 

imaging system and corresponding ROI segmentation was described in Figure 5.3(a). A 

typical NIR image and the spectra of a surrounding fat pixel, an IMF pixel, a lean pixel, 

and a black board pixel were extracted from hypercube as an example. The reflected 

spectra of fat and lean showed different scales of intensity but similar features: reflected 

peak around 1100, 1300, and 1650 nm, and valley around 1250 and 1450 nm. The main 

constituent of fat and lean was lipid and water, whose peak absorption bands have a lot of 

overlapping (Osborne et al., 1993). Besides, each hyperspectral image was not just  
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(a) Raw hypercube, hyperspectral images, and spectra of black board, visible IMF, surrounding fat, and lean 
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 (b) ROI and spectrum of homogeneous background pixel 

Figure 5.3   Construction of obtained hypercube and segmentation of ROI. 

composed of the external information of sample, but also the internal information. Muscle 

fibers in pork are structured in lines along the longissmus muscle. Pork was cut cross the 
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grain. Hence, each layer parallel to the cutting surface of pork included information of 

several muscle fibers. Since pork is a heterogeneous object, spectrum from one pixel may 

contain information of lean and fat in different layers simultaneously. This would explain 

the similar spectral characteristics between lean and fat. The spectrum of a black board 

pixel was shown as well. It is obvious that the reflectance of black board was very close 

to zero but not totally zero. To screen the board and surrounding fat from the image, 

automatic ROI segmentation was conducted. A binary mask was obtained and applied to 

each NIR image at the waveband 940-1650 nm. The resulted data cube was shown in 

Figure 5.3(b). The reflected values of non-ROI area were set to zero as described by the 

exampled background pixel. 

5.4.2      Spectral response from raw ROI and Gabor filtered ROI 

Figure 5.4 illustrated the raw ROI and the corresponding Gabor filtered ROI with 

parameters of f  = 0.1,   = 10. ROI in each image was filtered by an isotropic GF1 and 

four oriented GF2 (  = 0°, 45°, 90°, 135°). The resulting typical mean spectra of raw 

ROI (MR) and Gabor filtered ROI (MG1 and MG2), and the corresponding responses of 

first derivative of spectra (DMR, DMG1 and DMG2) were shown in Figure 5.5. The 

mean spectra of raw ROI and filtered ROI showed different magnitude. All types of mean 

spectra showed similar features: steep peak around 1087 nm, another peak around 

1279 nm, and one valley around 1207 nm. In Figure 5.5(a) to (e), the response of first 

derivative of mean spectra showed similar features as well: gradual peak around 1217 nm, 

and one steep valley around 1130 nm. MR, DMR, MG1, MG2, DMG1, and DMG2 of 

samples were used for multivariate data analysis. 
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GF1

GF2, 45°GF2, 0° GF2, 90° GF2, 135°

 

Figure 5.4   The raw ROI, GF1, GF2, and the corresponding Gabor filtered ROI. 
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(a) MR and DMR                                                      (b) MG1 and DMG1  

      
(c) MG2, 0° and DMG2, 0°                           (d) MG2, 45° and DMG2, 45° 

   
(e) MG2, 90° and DMG2, 90°                          (f) MG2, 135° and DMG2, 135° 

Figure 5.5    Typical mean spectra of raw ROI and Gabor filtered ROI and 

corresponding response of first derivative. 
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5.4.3      Texture curve by GLCM 

Typical 8-level GLCM matrix of each ROI was formed and the resulted four GLCM 

measurements (GIt, GIn, GIa, and GIh) were obtained as illustrated in Figure 5.6, where 

offset distance D  is 9, and direction   is 0°. The minimum reflectance and maximum 

reflectance of each ROI were chosen as the first and last level of GLCM matrix. The 

range was divided into 8 parts, while each portion was regarded as a level. GLCM matrix 

at each wavelength resulted in 4 measurements (contrast, correlation, ASM, 

homogeneity). As depicted in Figure 5.6, GLCM index (GI) was expressed as curves, 

which resulted from measurements at different wavelengths. Peaks around 1100 nm is  
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Figure 5.6    Formation of GLCM matrix and corresponding texture curve. 
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observed in typical curves of GIt and GIh, which is similar to features of MR and MG, 

while GIt and GIh showed another peak around 1300 and 1400 nm, respectively. 

Different measurements were used as variables of multivariate data analysis.     

5.4.4      Multivariate data analysis 

Features from ROI in calibration set were input into Eq. 5.5 and regression matrices (B) 

were obtained. Models were cross validated and tested by independent samples in 

prediction set. The results of calibration, cross validation and prediction of all the features 

are listed in Table 5.2. The optimal parameters of Gabor filters and GLCM were selected 

based on the performance of PLSR models. When the algorithm-based PLSR models 

performed the best, the corresponding parameter sets were used as the optimal parameters 

for the algorithms:   = 10, f  = 0.1 for GF1,   = 10, f  = 0.1,   = 0° for GF2, D  = 9,  

Table 5.2   Results of full waveband-based PLSR models using spectral and texture 

features. 

Parameters Calibration Cross validation  Prediction 
Features 

σ f θ 

Number 
of latent 
variables Rc RMSEc Rcv RMSEcv  Rp RMSEp

MR 7 0.90 0.44 0.84 0.55  0.81 0.52 

DMR 

   

7 0.90 0.44 0.84 0.55  0.82 0.52 

MG1 10 0.1 8 0.90 0.43 0.83 0.56  0.82 0.51 

DMG1 10 0.1 
 

7 0.90 0.44 0.83 0.56  0.82 0.52 

MG2 1 0.5 0° 7 0.90 0.44 0.85 0.55  0.83 0.52 

DMG2 1 0.5 0° 7 0.90 0.44 0.84 0.56  0.82 0.53 

 Measurement D θ         

GI Contrast 9 0° 3 0.80 0.65 0.76 0.70  0.79 0.75 
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  = 0°, measurement = ‘Contrast’ for GLCM. The raw mean spectra and Gabor filtered 

spectra showed high similarity in PLSR analysis, while MG2 performed slightly better 

than the other features. The prediction of IMF content by GI was not as strong as mean 

spectra of raw ROI and Gabor filtered ROI or first derivative of mean spectra.  

As shown in Figure 5.7, plots of regression matrices (regression coefficients) for 

models in Table 5.2 were used to select the optimal wavelengths related to the IMF 

content of pork. Wavelengths corresponding to the first few peak regression coefficients 

were selected as potential variables, as listed in Table 5.3. The optimal wavelengths of all 

the mean spectra covered 986, 1044, 1116, and 1207 nm, while the wavelengths of all the 

first derivative of mean spectra covered 1025, 1193, and 1217 nm. Wavelengths 1044 and 

1400 nm were used for GLCM as well as all types of mean spectra. Wavelengths around 

960 and 1200 nm were both used as optimal wavelengths for all types of mean spectra 

and first derivative of mean spectra. The tight relationship between IMF and NIR spectra 

at 1200 nm is because of the absorption peak of the C-H bonds for fatty acids (Shenk et 

al., 1992, Forrest et al., 1997). The absorption peak of water around 960 nm would be the 

reason that the band was used as optimal wavelength for most of the spectral features 

(Shenk et al., 1992, Forrest et al., 1997).  
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(a) MR       (b) DMR 

      
(c) MG1        (c) DMG1 

      
(d) MG2       (e) DMG2 

 
(f) GI 

Figure 5.7   Regression coefficients from the models with optimal number of PC for 

all the features. 
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Table 5.3   Optimal wavelengths selected from PLSR models of spectral and texture 

features. 

Features Key wavelengths (nm) 

MR 958, 986, 1044, 1116, 1135, 1207, 1279, 1457 

DMR  962, 1025, 1116, 1140, 1193, 1217, 1318, 1375 

MG1 953, 986, 1044, 1116, 1135, 1207,  1270 

DMG1 1025, 1121, 1150,  1193, 1217, 1375 

MG2 958, 986, 1044, 1116, 1140, 1207, 1279 

DMG2  962, 1025, 1121, 1150, 1193, 1217, 1318, 1375 

GI 1044, 1140, 1174, 1308, 1400 

To reduce the influence of water and lean further, stepwise regression was 

adopted to simplify the variables at selected wavelengths at Table 5.3 and effective 

wavelengths were further optimized. The resulting optimal wavelengths, regression 

coefficients, and results of MLR based on stepwise selected key wavelengths are listed in 

Table 5.4. Only 2 key wavelengths were selected for most of the features except DMR. 

The few and precise wavelengths would help the development of an online determination 

system for IMF content in intact pork. Comparing to full waveband-based PLSR, key 

wavelengths-based MLR of MR, DMR, MG, and DMG produced similar results, while 

performance of DMG1 was the best, with Rc of 0.89, Rcv of 0.89, and Rp of 0.86. The 

performance of GIt was not as good as the other features. However, the MLR model of 

GIt based on key wavelengths performed better than full waveband-based. Considering 

the complexity of application in practice, mean spectra of raw ROI is suggested as the 

processing technique of IMF content prediction using hyperspctral imaging. In this 
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study, raw mean spectra-based MLR model produced correlation coefficient of 

calibration (Rc) of 0.87, cross validation (Rcv) of 0.86, and prediction (Rp) of 0.85, 

respectively. The prediction result of raw mean spectra-based MLR model is shown in 

Figure 5.8. It is observed that IMF content of both calibration and prediction set were 

predicted well. The result is comparable to the result of Rc = 0.88 and Rp = 0.91 that was 

reported in presentation of Liu et al. (2009). 

Table 5.4   Results of MLR models of spectral and texture features. 

Regression Coefficient Calibration Cross validation  Prediction 

Features 
Key wavelengths 

(nm) 
b0 bi Rc RMSEc Rcv RMSEcv  Rp RMSEp

MR 1207, 1279 0.408 -84.682, 79.259 0.87 0.52 0.86 0.53  0.85 0.55 

DMR 1193, 1217, 1375 -0.063 
-405.682, 274.427, -

144.927 
0.88 0.49 0.88 0.50  0.83 0.58 

MG1 1207, 1270 0.538 -3030.206, 2740.172 0.87 0.50 0.86 0.51  0.85 0.53 

DMG1 1193, 1217 -0.350 -22904.719, 38033.205 0.89 0.44 0.89 0.44  0.86 0.51 

MG2 1207, 1279 0.414 -1210.504, 1125.226 0.87 0.51 0.86 0.51  0.85 0.53 

DMG2 1193, 1217 0.376 -6034.862, 5736.390 0.88 0.49 0.88 0.49  0.85 0.52 

GIt 1140, 1400 0.787 2.779, -2.998 0.82 0.64 0.81 0.65  0.78 0.76 

    
 (a) Calibration      (b) Prediction 

Figure 5.8   Regression result from the MLR model of mean spectra of raw ROI. 
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5.4.5      Prediction map of IMF content 

The MLR model based on raw mean spectra was used to obtain the distribution map of 

IMF content in pork. For spectrum of each pixel within a selected ROI, only reflectance 

at 1207 and 1279 nm was input into MLR model to generate IMF content of this pixel, i.e. 

only images at 1207 and 1279 nm were needed. IMF contents of all the pixels the ROI 

yield the prediction map of IMF content. Therefore, the loin portion selected by ROI 

would affect the profile of the prediction map. Images of two sides of one sample were 

used to generate a prediction map for the sample. Figure 5.9 depicted maps of two sides 

of two samples with different measured IMF contents. ROI of each side corresponds to 

one map, which showed how IMF content was distributed in ROI. The prediction maps 

show how IMF contents vary drastically between different areas of the same sample. 

Large variation is observed between two ROI of the same sample. Total IMF contents in 

each image were generated by averaging the IMF contents in each pixel within the 

relative prediction map.  IMF content in ROI of two sides of one sample was used as the 

IMF content from prediction maps. The comparison of IMF content resulted from raw 

mean spectrum of ROI, distribution map, and referred IMF content are listed in Table 5.5. 

The error between IMF content from map and measured value is slightly larger than the 

one between IMF content from raw mean spectra and measured value. The prediction 

model for mapping was built using IMF content measured from the intact pork sample. 

Utilization of referenced IMF content from several small portions of the intact pork 

sample may help to enhance the prediction accuracy of distribution map of IMF content. 
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(A-1) ROI at 1207nm

(A-2) ROI at 1279nm

(B-1) ROI at 1207nm

(B-2) ROI at 1279nm

(A-3) Prediction map of IMF 
content

(B-3) Prediction map of    IMF 
content

IMF content= 1.54 IMF content= 1.74

 

(a) Two sides of sample 1, average IMF content from map = 1.64 

(A-1) ROI at 1207nm

(A-2) ROI at 1279nm

(B-1) ROI at 1207nm

(B-2) ROI at 1279nm

(A-3) Prediction map of IMF 
content

(B-3) Prediction map of    IMF 
content

IMF content= 3.48 IMF content= 3.54

 
 (b) Two sides of sample 2, average IMF content from map= 3.51 

Figure 5.9   Prediction map of IMF content of two pork samples. 
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Table 5.5   Measured IMF content and predicted IMF content from map and raw 

mean spectra. 

Predicted value 
Trait 

Sample 
ID 

From map From raw mean spectra 
Measured value 

1 1.64 1.51 1.25 
IMF content (%)

2 3.51 3.93 3.95 

 

5.5        Conclusion 

This study investigated the potential of NIR hyperspectral imaging technique for non-

destructive, fast, and objective prediction of IMF content in intact pork. To exploit 

features from the numberous data of spectral images, pattern analysis techniques, i.e. the 

Gabor filter and the GLCM, were applied. Conventional feature extraction including 

averaging of spectra and first derivative were applied as well. PLSR, stepwise procedure 

and MLR were combined in a data processing procedure to select effective key 

wavelengths and establish MLR models. Wavelengths 1207 nm and 1279 nm were 

selected as featured wavelengths. The spectral dimension of hyperspectral data was 

reduced drastically from 167 bands to 2 bands. The first derivative of Gabor filtered mean 

spectra produced best results with little enhancement to the raw mean spectra. GLCM 

does not appear to be as effective as Gabor filter. Considering availability in practice, raw 

mean spectra is suggested as the best feature for prediction of IMF content of intact pork, 

with result of Rc = 0.87, Rcv = 0.86, Rp = 0.85. Prediction map of IMF content using the 

corresponding MLR model indicated great potential of detailed IMF inspection in the 

pork industry.  

The promising results demonstrated the great value of NIR hyperspectral imaging 

technique in helping to locate the key wavelengths of IMF content prediction, which 
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would lead to implementation of a detection component in a fast online inspection system 

of IMF content. More work should be conducted to explore more effective image 

processing techniques for hyperspectral images and to improve the predictive accuracy 

for IMF content of intact pork. 
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CONNECTING TEXT 

In Chapter 5, NIR images of fresh pork at the 3rd /4th last ribs were collected and the 

intramuscular fat content was characterized by spectral features from NIR images. It was 

established that hyperspectral imaging could be effective in evaluating intramuscular fat 

content. Chapter 6 focuses on the fourth objective of the thesis, i.e. to investigate the 

potential of hyperspectral imaging of frozen and frozen-thawed pork for prediction of 

intramuscular fat content and marbling score of fresh pork. The sampling site was the 

3rd /4th last ribs. Fresh pork before freezing and thawing was studied as well to compare 

with the results of frozen and thawed pork. 

This manuscript will be submitted for publication to Journal of Food Engineering. 

The chapter is co-authored by my supervisor Dr. M.O. Ngadi, a research associate Dr. L. 

Liu, and a researcher Dr. C. Gariépy from Agriculture and Agri-Food Canada. The format 

of the original manuscript has been modified to remain consistent with the thesis format. 

All the literature, cited in this chapter, is listed in Chapter 10 (General references). 
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VI. PREDICTION OF INTRAMUSCULAR FAT CONTENT 

AND MARBLING SCORE OF PORK USING NIR IMAGES 

OF FROZEN AND FROZEN-THAWED PORK  

6.1        Abstract 

The aim of this study was to evaluate the potential of NIR hyperspectral imaging of fresh, 

frozen, and frozen-thawed intact pork loin as a fast and non-invasive method for 

quantifying intramuscular fat content and marbling score of pork loin. Spectral and 

texture features were obtained by averaging spectral data of raw and Gabor filtered pixels. 

The algorithm of the first derivative was applied to both raw mean spectra and Gabor 

filtered mean spectra. Effective wavelengths were selected using stepwise procedure. 

Multiple linear regression (MLR) models between reference data from fresh pork and 

image features from NIR images of fresh, frozen, and frozen-thawed intact pork at 

optimal wavelengths were built, cross-validated and tested with independent data sets, 

respectively. Predictive results of 0.87 and 0.88 for intramuscular fat content and 

marbling score were yielded by the first derivative of Gabor filtered mean spectra from 

images of fresh pork. Predictive results of 0.63 and 0.90 for intramuscular fat content and 

marbling score were obtained by the first derivative of Gabor filtered mean spectra from 

NIR images of frozen pork. In the same vein, predictive results of 0.82 and 0.91 for 

intramuscular fat content and marbling score were obtained using the first derivative of 

Gabor filtered mean spectra from NIR images of frozen-thawed pork. While there was 
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slight variation but still comparable performance in the MLR models developed from 

acquired images of frozen and fresh pork samples, the MLR models developed from 

images of frozen-thawed and fresh pork samples were similar in performance. The 

current study therefore demonstrated that the NIR images of fresh, frozen and frozen-

thawed pork could be utilized to assess intramuscular fat content and marbling score of 

fresh pork loins. 

Keywords: Intramuscular Fat Content; Marbling Score; Gabor Filter; Multiple Linear 

Regression; Frozen-thawed Pork; Frozen Pork 
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6.2        Introduction 

Pork is considered as one of the most popular red meats. Many quality features influence 

the acceptance of pork to consumers. Among the quality attributes, the total abundance of 

intramuscular fat (IMF) in pork, i.e. IMF content, and the visual abundance of marbling, 

i.e. marbling score (MS), are considerably important due to their perceived influences on 

eating flavor and therefore acceptance of customers (Brewer et al., 2001; Bryhni et al., 

2003; Fortin et al., 2005; Wood et al., 2008). Pork with high IMF content and marbling 

score can be expected to have improved palatability or flavor (DeVol et al., 1988; Ellis 

et al., 1996; Resurreccion, 2004). Hence, IMF content and marbling score are used as 

important indicators of pork quality in the pork industry.  

Commonly used method for determination of the IMF content of pork is derived 

from lipid extraction (AOAC, 1990; AOAC, 2000) in which chemical extraction of lipid 

taken place. In this method, lipid of pork samples should be extracted using solvent for 

more than 3.5 hours. Chemical measurement is labor-intensive, time-consuming, non-

economical, invasive, and unsuitable for the automatic inspection of pork.  

Beside the importance of IMF content, the visual distribution of fat flecks in pork, 

i.e. marbling, contribute to the eating quality of pork as a type of IMF and affect the 

judgments of customers more directly (Ferguson, 2004). Marbling in pork is 

conventionally scored according to standard charts (NPPC, 2002). This method is 

subjective and labor intensive. Both the subjective assessment of marbling and chemical 

determination of IMF content are unsuitable for the objective inspection of pork.  
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A non-destructive, fast and objective method that could evaluate the IMF content 

and the marbling score of pork would help pork producers to classify pork into different 

groups and consequently to allocate pork to targeted markets. Hyperspectral imaging, a 

combination of computer technologies and spectroscopic techniques, was proposed as one 

such method. This technique has been evaluated for the assessment of pork quality 

(Gowen et al., 2007; Qiao et al., 2007c; Liu et al., 2010; Barbin et al., 2012a; Barbin et 

al., 2012b; Liu et al., 2012). Qiao et al. (2007c) pioneered the early works using VIS/NIR 

hyperspectral imaging (400-1100 nm) to quantify the marbling score on the surface of 

pork chop. The grey-level co-occurrence matrix (GLCM)) of extracting texture features 

was exploited to distinguish marbling levels of pork. The marbling scores of standard 

charts were able to be distinguished except the standard level of 10.0. Moreover, an error 

of around 1.0 between referenced and estimated marbling scores was observed in the 

testing data set. Liu et al. (2012) applied a line pattern analysis technique called the wide 

line detector for the objective assessment of pork marbling. Hyperspectral images of pork 

taken at the red-green-blue channels were used to predict the marbling score of pork 

samples. The seven levels of marbling corresponding to the NPPC standards were 

discriminated well by the wide line detector. Promising results in previous studies 

indicated the potential of hyperspectral imaging for fat assessment in pork. Regarding the 

absorption peaks of lipid in the NIR region, it is of great interest to study the possibility of 

evaluating the IMF content and the marbling score of pork using NIR hyperspectral 

imaging. 

Fresh pork chops were used in almost all the studies regarding inspection of pork 

quality using non-destructive assessment technologies. For image analysis, pork loins 
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were imaged right after loins were dissected from 24 h post mortem swine carcass. In 

case of a large number of pork chops from meat procedures, rapid inspection is required 

to avoid pork from oxidation or other chemical change. It would be beneficial and much 

more practical for meat processors if frozen or frozen-thawed pork samples could be used 

to collect images. The pork could be stored in a freezer. The IMF content of pork could 

be analyzed later after 24 h post mortem. The successful prediction of fat attributes of 

fresh pork using frozen or frozen-thawed pork would allow hyperspectral images to be 

much more valuable for effective fat evaluation of pork. 

The aim of this study was to investigate the potential of NIR hyperspectral images 

of fresh, frozen, and frozen-thawed pork chops for objective assessment of IMF content 

and marbling score of fresh pork chops. To achieve this goal, specific objectives are to: 

apply averaging algorithm and Gabor filter to NIR hyperspectral imaging of pork in three 

different storage conditions; calculate the first derivative of mean spectra; build models 

using multiple linear regressions (MLR); and compare the performances of models based 

on fresh, frozen, and frozen-thawed samples. 

6.3        Materials and methods 

6.3.1      Sample preparation 

Forty-eight hogs of the same breed were slaughtered at a local commercial slaughterhouse. 

A wide range of variation of fat levels along Longissimus dorsi was obtained by detecting 

the thickness of pig back fat using ultrasound. At 24 h post-mortem, forty-eight loins 

were obtained by excision of Longissimus dorsi muscle between the 3rd and 4th last ribs. 

The obtained loins were further cut into 2.5 cm thick pieces and a thin piece was used for 
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chemical determination of IMF content. The IMF content of the thin pork pieces were 

analyzed according to modified protocol by AOAC (2000). The marbling of two surfaces 

of 2.5 thick pork pieces was assessed subjectively according to NPPC (2002). The mean 

value of marbling measured from two surfaces of each piece was used as the referenced 

marbling score of the corresponding piece of pork. After marbling assessment, the pork 

pieces were vacuum-packed, shipped to the Hyperspectral Imaging Laboratory, McGill 

University, Montreal, QC, Canada and put in a fridge at 4℃ and later a freezer at-80℃ 

for image acquisition. 

6.3.2      NIR hyperspectral imaging system and image acquisition 

The hyperspectral system used in this study consisted of a spectrograph (Headwall 

Photonics Inc. USA), an InGaAs camera with integration time of 2 ms, a conveyer 

(Donner Mfg. Corp., USA), two tungsten halogen lamps (50 W) as the light source, a 

sample holder, and an enclosure. The system covers 167 wave bands from 900 to 1700 

nm with a spectral resolution of 4.8 nm.  

The NIR hyperspectral images of two surfaces of each pork chop were captured 

on a black background and were saved in a three-dimensional data cube. The same 

exposure time and focal length were used for all the samples. For each pork chop, a cube 

of 320 bins ×approximately 300 bins ×167 wave bands was obtained and saved in the 

image Band Interleaved by Line (BIL) format. 

Fresh samples were first frozen, then stored in a freezer at -80℃ for 48 hours. 

Images of frozen samples were captured. Then samples were thawed in a fridge at 4℃ for 

another 24 hours, after which images of frozen-thawed samples were acquired.  
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To remove the effect caused by unevenness of illumination intensity and the 

intrinsic current of the camera, images in each data cube were calibrated. Values in all 

pixels were transformed to percent reflectance by dividing the subtraction between 

reflected light intensity and dark image and the subtraction of referenced light intensity 

and dark image over whole wave band. Consequently the values in all pixels within each 

image ranged from 0 (No reflection) to 1 (Full reflection). The corrected images were 

used for the subsequent image analysis. 

6.3.3      Image analysis 

It is a challenge to develop a proper image analysis procedure that is capable of 

automatically extracting the fat information from a NIR hyperspectral data cube. In this 

study, different image processing methods including image segmentation, spectral 

averaging, Gabor filter, and the first derivative of raw mean spectra and filtered mean 

spectra were developed and compared. All operations of image processing and further 

multivariate analysis in this study were performed using programs implemented with 

MATLAB R2008a (The MathWorks, Inc., Mass., USA).  

6.3.3.1  Image segmentation 

Hyperspectral images captured by the system are inevitably subject to background, 

surrounding fat and connective tissue of pork. The capture of these parts could not be 

avoided. However, the image analysis is supposed to be based on the loin eye part only. 

The captured raw images would provide incorrect information if no image pre-processing 

was applied. In order to improve the quality of pork images and make the proposed 

method practical in online detection, an automatic operation of region of interest (ROI) 
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selection described in Liu et al. (2012) was employed as a tool for non-loin part removal 

in pork images. In this method, different thresholds were defined according to different 

data cube, respectively, which suggested high fitness of thresholds for different data 

cubes. Accordingly, a self-defined binary mask was obtained for each data cube. The 

segmentation of loin part could be achieved by applying the mask to each NIR image in 

the original data cube over whole wave band 900-1700 nm. Since there were intensive 

noises at the two ends of the wave band, which would degrade the image quality, only 

wave band 940-1650 nm was used for consequent extraction of image features. 

6.3.3.2  Characterization of IMF content/ MS 

The non-filtered reflected mean spectra (MR, 149 ×1) of two surfaces of fresh, frozen, 

and frozen-thawed pork were obtained by averaging the reflectance value of all pixels in 

the raw ROI. In total, 48 mean spectra (940-1650 nm) were recorded from each type of 

samples. The first derivative of the non-filtered mean spectra (DMR, 148 ×1) was 

calculated by subtracting the reflectance values of neighboring wave bands. 

To facilitate the evaluation of pork IMF content and MS, texture analysis 

technique Gabor filter was exploited to extract the texture features of pork images. In this 

work, an isotropic Gabor filter and an oriented Gabor filter (Ma et al. 2002) derived from 

Gaussian function were used to characterize IMF content and MS in pork. For the 

isotropic Gabor filter, algorithm parameters of f  representing the frequency of the 

sinusoidal wave,   representing the standard deviation of the Gaussian function were 

involved, while parameters of f ,  , and  controlling the orientation of the filter were 

involved for the oriented Gabor filter. Different sets of parameters were tried in initial 

image processing and were optimized by following correlation analysis. The average 
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mean spectra of Gabor filtered ROI of two surfaces from each pork and the first 

derivative of Gabor filtered mean spectra were calculated and denoted as MG (149 ×1) 

and DMG (148 ×1), respectively.  

In total, four image features including MR, DMR, MG, and DMG characterizing 

the IMF content and MS were extracted from the masked fresh, frozen, and frozen-

thawed NIR images. 

6.3.4      Statistical analysis 

For imaged samples under different conditions, each group was separated to calibration 

set (Nc = 36 samples) and prediction set (Np = 12 samples). The Pearson’s correlation 

coefficients between the fat characteristics from fresh, frozen, and frozen-thawed samples 

in calibration set and the value of IMF content and marbling score assessed by traditional 

methods were computed. Optimal parameters of algorithm Gabor filter were determined 

when maximum correlation coefficients were generated. Better image features amongst 4 

image features were selected according to the correlation coefficients. Based on the above 

preliminary results, stepwise procedure was used to narrow broad wave band to several 

vital wave bands. Multiple linear regression (MLR) technique (Eq. 6.1) was applied in 

data at selected key wavelengths in calibration set for further analysis to understand and 

explain the linear relationship between selected image features from images of fresh, 

frozen, frozen-thawed pork (independent variables) and referenced attributes of IMF 

content and MS (dependant variables). Leave-one-out cross validation was applied on 

built calibration MLR models to test the stability of models. To test the predictive ability 

of built MLR models for independent samples, the data in prediction sets were input to 

build MLR calibrated models.  



  129







ni

i
ii XaaY

1
0.

ˆ , (6.1)

where Ŷ  is the estimated IMF content or marbling scores of pork, n is the number of 

selected wave bands, 0.a and ia are the regression coefficients, and iX is the vector of 

selected spectral feature at selected wave bands.  

The performances of built MLR models were evaluated by statistical values 

including correlation coefficient (R) and root mean square error (RMSE) between 

measured values (Y ) and estimated attribute values (Ŷ ) of IMF content or MS. The R of 

calibration (Rc), R of cross validation (Rcv), R of prediction (Rp), RMSE of calibration 

(RMSEc), RMSE of cross validation (RMSEcv), and RMSE of prediction (RMSEp) of 

MLR models based on images of fresh, frozen, and frozen-thawed pork were calculated. 

The performance of different models was compared. A model is considered to perform 

well if it produces a high Rc, a high Rcv,  a high Rp, a low RMSEc, a low RMSEcv, a low 

RMSEp, and small differences between Rc and Rcv, Rc and Rp, RMSEc and RMSEcv, and 

RMSEc and RMSEp. 

6.4        Results and discussion 

6.4.1      Referenced IMF content and MS 

The description of measured values for IMF content and MS of total 48 samples, 

calibration and prediction sets are listed in Table 6.1. Coefficient of dispersion was 

calculated by dividing standard deviation by mean value of the quality attribute. The large 

variability was indicated by high coefficients of dispersion for three data sets, which 

implied that samples used in the experiment covered a wide range of quality. Large 
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variability and wide range of referenced attributes would help improve the stability of 

established predictive models.  

Table 6.1   Statistics of IMF content and MS for different data sets. 

Parameter Set Maximum Minimum Mean
Standard 
deviation 

Coefficient of 
dispersion (%) 

Total samples 5.80 0.63 2.26 1.05 47 

Calibration set 5.80 0.63 2.23 1.02 45 
IMF content 

(%) 
Prediction set 5.32 0.82 2.36 1.19 53 

Total samples 5.25 1.00 2.49 0.86 35 

Calibration set 5.25 1.25 2.54 0.86 34 MS 

Prediction set 4 1.25 2.46 0.81 33 

6.4.2      NIR hyperspectral image analysis 

6.4.2.1   Images and ROI of fresh, frozen, and frozen-thawed pork 

Figure 6.1 showed the original NIR images and ROI of fresh, frozen, and frozen-thawed 

pork at 1200 nm and corresponding segmented ROI. High reflectance was observed in 

frozen sample due to the ice crystals in the frozen pork. Images of fresh and frozen-

thawed sample showed high similarity visually at 1200 nm. Automatic selection of ROI 

was accurately conducted by closing non-loin part (set the reflectance to zero) and 

keeping loin part open (remain the reflectance values). Background, surrounding fat and 

connective tissue of pork were removed to enhance the accuracy of further analysis. 
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(a-1) NIR image                                                         (a-2) ROI 

(a) Fresh pork 

           
(b-1) NIR image                                                             (b-2) ROI 

(b) Frozen pork 

           
 (c-1) NIR image                                                        (c-2) ROI 

(c) Frozen-thawed pork 

Figure 6.1   Typical images of fresh, frozen, and frozen-thawed pork. 
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6.4.2.2   Mean spectra and the first derivative of mean spectra 

The mean MR, DMR, MG, and DMG of pork samples at three storage conditions are 

presented in Figure 6.2, where the oriented Gabor filter with f  =10,   = 0.1, and   = 0° 

was adopted. Similar features were observed between MR, MG, DMR and DMG of 

fresh and frozen pork, respectively, with a baseline shift of 30 nm along the wavelengths. 

Comparing to fresh and frozen-thawed sample, highest reflectance was observed for both 

MR and MG of frozen pork, which is corresponding to high reflection of frozen water in 

samples. Relatively lower reflectance was observed for both MR and MG of frozen-

thawed pork comparing to fresh sample. Lowest changes were observed for DMR and 

DMG of frozen samples. Almost same features were observed between MR, MG, DMR 

and DMG of fresh and frozen-thawed pork, respectively. The reflection of water crystal 

may be the reason of the inflexion in mean spectra of frozen pork. The loss of drip juice 

in frozen-thawed sample caused the loosening of pork tissue and the alteration of water 

distribution, which resulted in the different mean spectra of fresh and frozen-thawed pork 

samples (Ballin and Lametsch, 2008). The amount of enzymes was increased in pork after 

freeze and thawing due to damage of cell compartments especially for mitochondria and 

lysosomes, which may result in the difference of mean spectra of frozen-thawed pork and 

fresh pork (Ballin and Lametsch, 2008). Correlation analysis was further performed to 

study the difference of mean spectra of samples at three statuses. The changes of DMR 

and DMG of fresh samples along wavelengths were similar to the one of frozen-thawed 

samples. Slight differences of DMR and DMG of fresh and frozen-thawed pork were 

observed around 1040 and 1140 nm.  
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(a) MR       (b) DMR 

      
 (c) MG       (d) DMG 

Figure 6.2   MR, DMR, MG, and DMG of fresh, frozen, and frozen-thawed pork. 

The correlation coefficients between MR, MG, DMR and DMG of fresh and 

frozen pork, and the correlation coefficients between MR, MG, DMR and DMG of fresh 

and frozen-thawed pork along wavelengths are depicted in Figure 6.3. Comparing to fresh 

and frozen-thawed samples, tighter correlation between means spectra, i.e. MR and MG 

of fresh and frozen pork was indicated by Figure 6.3(a) and Figure 6.3(c). Low 

correlation coefficients of mean spectra of fresh and frozen-thawed pork were observed 

over the whole wave band. In Figure 6.3(b) and Figure 6.3(d), the first derivative of mean 

spectra, i.e. DMR and DMG of fresh and frozen pork showed similar maximum 

correlation coefficient to the first derivative of mean spectra of fresh and frozen-thawed 

pork. However, the peak correlation coefficients were observed at different wavelengths 
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including 1050, 1100, and 1190 nm. In frozen pork, biochemical reactions were very slow, 

but became active again during freeze-thawing, which may cause the difference between 

fresh and frozen or frozen-thawed pork (Downey and Beauchene, 1997). The low 

correlation coefficients between fresh and frozen-thawed pork indicated the potential of 

hyperspectral imaging for discrimination of fresh and frozen-thawed meat. 

        
(a) MR              (b) DMR 

      
 (c) MG       (d) DMG 

Figure 6.3   Correlation coefficients between MR, DMR, MG, and DMG of fresh and 

frozen, and fresh and frozen-thawed pork along wavelength, respectively. 

6.4.3      Statistical analysis 

6.4.3.1   Correlation coefficients 

Based on trial and error, the oriented Gabor filter was used for both MG and DMG due to 

its better performance than the isotropic Gabor filter. The parameter sets of Gabor filter 

used for different status of pork and different attributes are listed in Table 6.2. It is 
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distinct that parameter set of   = 10, f  = 0.1, and   = 0° were used mostly. The low 

frequent Gabor filter using this parameter set captured more useful information and at the 

same time extracted extract less noise. 

Table 6.2   Parameters used for MG and DMG for prediction of IMF content and MS. 

(a) IMF content 

  MG DMG 

  σ f θ σ f θ 

Fresh 10 0.1 0° 10 0.1 0° 

Frozen 15 0.1 0° 10 0.1 0° 

Frozen-thawed 15 0.1 135° 15 0.1 0° 

(b) MS 

  MG DMG 

  σ f θ σ f θ 

Fresh 10 0.1 0° 10 0.1 0° 

Frozen 10 0.25 135° 10 0.1 45° 

Frozen-thawed 10 0.1 0° 10 0.1 0° 

 

Figure 6.4 shows the correlation coefficients between different image features of 

fresh, frozen, and frozen-thawed pork and IMF content/ MS. In Figure 6.4(a) to (d), for 

all four-image features, fresh samples indicated highest correlation to IMF content 

comparing to frozen and frozen-thawed samples. MR and MG of frozen samples 

indicated tighter correlationship to IMF content than frozen-thawed samples, while DMR 

and DMG of frozen samples indicated poorer correlationship to IMF content than frozen-

thawed samples. In Figure 6.4(a) and (c), plots of correlation coefficients in between IMF 

content and MR and MG of three types of pork show similar features with peaks at 960, 

1150, and 1300 nm. As shown in Figure 6.4(b) and (d), plots of correlation coefficients 

between IMF content and DMR and DMG of fresh pork show features with peaks at 970,  
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(a) MR-IMF     (b) DMR-IMF 

       
(c) MG-IMF    (d) DMG-IMF 

      
(e) MR-MS     (f) DMR-MS 

        
(g) MG-MS     (h) DMG-MS 

Figure 6.4   Correlation coefficients between image features of fresh, frozen, and 

frozen-thawed pork with IMF content/ MS. 
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1190, and 1220 nm, and broad peak around 1300-1400 nm, while plots of DMR and 

DMG of frozen pork show features with peaks at 1050 and 1150 nm. Peaks at 1090, 1200, 

and 1250 nm were observed for correlation coefficient plots between IMF content and 

DMR and DMG of frozen-thawed pork.  

In Figure 6.4(e) and (g), MR and MG of fresh pork implied best correlationship 

to MS, followed by frozen-thawed pork and frozen pork. Peaks at 1150 and 1300 nm 

were observed for all six plots. In Figure 6.4(e) and (g), correlation coefficient plots 

between MS and DMR and DMG of fresh and frozen-thawed pork show peaks at 1090, 

1190, 1210, and 1350 nm, while utmost at 1220 and 1290 nm was observed in plots 

between MS and DMR and DMG of frozen pork. Wave band around 1200 nm indicated 

strong potential for prediction of IMF content and MS for all three types of pork. It is due 

to the energy absorption or release of chemical bond C-H, which is the main bond of lipid 

(Murray and Williams, 1987).  

The maximum values of correlation coefficients between MR/ MG of all three 

types of pork and attributes were obviously lower than the one between DMR/ DMG and 

attributes. Hence, DMR/ DMG of fresh, frozen, and frozen-thawed samples were used 

for following MLR analysis.  

6.4.3.2   Models and performance 

To reduce the dimensions of hyperspectral data cube and eliminate redundant 

wavelengths, stepwise regression was employed to reduce the 149 wave bands to several 

key wavelengths. The selected wavelengths that were used for DMR and DMG of fresh, 

frozen, and frozen-thawed samples for prediction of IMF content and MS are listed in 
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Table 6.3. Among several different key wavelengths used in Table 6.3(a), wavelengths of 

1212 and 1217 nm and wavelengths in range of 1300-1400 nm were used in almost all the 

MLR models for prediction of IMF content. Reflections around 1200 nm are due to C-H 

second overtone in lipid. Reflections in 1300-1400 nm are due to C-H combination in 

protein, and reflections in 1400-1500 nm are due to O-H first overtone in water (Osborne 

and Fearn, 1988; Kim et al., 2007). Since the compositions of intramuscular fat are lipid, 

protein, and water, it is reasonable to use related key wavelengths to build prediction  

Table 6.3   Key wavelengths selected by stepwise for MLR modeling.  

(a) IMF content 

Samples Image features Key wavelengths (nm) 

DMR 1198, 1212, 1366, 1548 
Fresh 

DMG 1217, 1342,1486,1514 

DMR 1006, 1178, 1217, 1366, 1548 
Frozen 

DMG 1054, 1159, 1193, 1212, 1236, 1370, 1548 

DMR 1082, 1207, 1217, 1241, 1313, 1342 Frozen-
thawed DMG 958, 1082, 1193, 1217, 1236, 1318 

(b) MS 

Samples Image features Key wavelengths (nm) 

DMR 1082, 1188, 1217, 1236, 1452 
Fresh 

DMG 1082, 1188, 1236, 1346, 1380 

DMR 1217, 1236 
Frozen 

DMG 1217, 1236 

DMR 1169, 1255 
Frozen-thawed 

DMG 1078, 1174, 1226, 1346, 1433 

 



  139

MLR models of IMF content in pork. Comparing to fresh and frozen pork, wavelengths 

over 1500 nm were not used for frozen-thawed sample. In Table 6.3(b), wavelengths 

around 1200 nm were used for MS assessment, due to the relationship between NIR 

spectra and C-H bonds in fat. The results are reasonable since fat is the major constituent 

of pork marbling. The models of DMR, DMG of frozen pork and DMR of frozen-thawed 

pork did not use wavelengths over 1300 nm. One explanation could be that the frozen 

status of water and the change of water holding capacity had a positive influence on 

evaluation of MS. 

Samples were ranked according to actual values of IMF content and MS. For each 

four samples, three samples were used for calibration, while the fourth sample was used 

for prediction. Based on the obtained explanatory matrixes and dependent vectors, MLR 

was implemented to analyze the linear relationships between the image characteristics, i.e. 

DMR and DMG and IMF content or MS. The formulated MLR models were built and 

cross-validated. The predictive ability of built MLR models was tested using independent 

data in prediction set. The built 12 MLR models and results of calibration, cross 

validation, and independent validation are listed in Table 6.4.  

In Table 6.4(a) and Figure 6.5(a), MLR models using DMG of three status of 

pork produced better results for prediction of IMF content than models using DMR. MLR 

model using DMG of fresh pork performed best with Rc of 0.85, RMSEc of 0.52, Rcv of 

0.83, RMSEcv of 0.65, Rp of 0.87, and RMSEp of 0.57. The performance of MLR models 

for prediction of IMF content using frozen-thawed pork was comparable to the 

performance of fresh pork, followed by MLR models of frozen pork. More work is  
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Table 6.4  MLR models based on key wavelengths and performance of MLR models.  

(a) IMF content 

Calibration 
Cross 

validation 
 Prediction 

Samples 
Image 

features 
Regression 
coefficients 

Rc RMSEc Rcv RMSEcv  Rp RMSEp

DMR 
-0.0146, 123.957, 
321.225, 324.994, 

4959 
0.82 0.63 0.79 0.70  0.65 0.87 

Fresh 

DMG 
0.287, 22488, -6515, -

117400, 129100 
0.85 0.52 0.83 0.65  0.87 0.57 

DMR 
1.003, -285.049, -
50.038, 379.648, -
73.052, 464.904 

0.76 0.64 0.72 0.78  0.55 0.99 

Frozen 

DMG 
2.704, -7920, 4540, -

13558, 84698, -
150660, -6336, 43711

0.82 0.56 0.78 0.75  0.63 0.98 

DMR 
3.183, -121.764, -
1302, 1914, -2475, 

530.123, -1239 
0.81 0.58 0.77 0.72  0.81 0.67 

Frozen-
thawed 

DMG 
0.363, -7639, -34807, 

-40226, 39652, 
104150, 35289 

0.82 0.57 0.78 0.71  0.82 0.67 

(b) MS 

Calibration Cross validation  Prediction 
Samples 

Image 
features 

 Regression 
coefficients Rc RMSEc Rcv RMSEcv  Rp RMSEp

DMR 
2.435, -12.666, -

665.906, 629.310, -
846.691, 5765 

0.85 0.43 0.83 0.55   0.91 0.39  

Fresh 

DMG 
1.806, 36012, -

70524, -761.786, -
21492, 17545 

0.88 0.40  0.86 0.50   0.88  0.43  

DMR 
3.416, 500.663, -

456.432 
0.84 0.45  0.83 0.50   0.90  0.35  

Frozen 

DMG 
2.958, 47348, -

41573 
0.86 0.43  0.85 0.47   0.90  0.33  

DMR 
1.025, 502.546, 

3121 
0.82 0.47  0.81 0.53   0.89  0.40  

Frozen-
thawed 

DMG 
0.722, 84052, 
10017, 48846, 
32699, -48129 

0.89 0.38  0.87 0.49   0.91  0.36  
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(a-1) DMR of fresh pork    (a-2) DMG of fresh pork 

  
(a-3) DMR of frozen pork    (a-4) DMG of frozen pork 

 
(a-5) DMR of frozen-thawed pork   (a-6) DMG of frozen-thawed pork 

(a) IMF content 
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(b-1) DMR of fresh pork    (b-2) DMG of fresh pork 

 
(b-3) DMR of frozen pork    (b-4) DMG of frozen pork 

 
(b-5) DMR of frozen-thawed pork   (b-6) DMG of frozen-thawed pork 

(b) MS 

Figure 6.5   Performance of fresh, frozen, and frozen-thawed pork-derived MLR 

models for prediction of IMF content/ MS. 
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necessary to enhance the predictive accuracy of model using frozen pork. Image 

characteristics from three status of pork were linearly correlated with measured IMF 

content, especially image feature DMG. It was indicated that NIR images of fresh, frozen, 

and frozen-thawed pork have great potential to predict IMF content of fresh pork. 

In Table 6.4(b) and Figure 6.5(b), MLR models using DMG of three status of 

pork implied slightly stronger explanatory ability for MS than models using DMR by 

performing better than the models using DMR. MLR model using DMG of frozen-

thawed pork performed best with Rc of 0.89, RMSEc of 0.38, Rcv of 0.87, RMSEcv of 

0.49, Rp of 0.91, and RMSEp of 0.36, followed by DMG of fresh pork with Rc of 0.88, 

RMSEc of 0.40, Rcv of 0.86, RMSEcv of 0.50, Rp of 0.88, and RMSEp of 0.43. The 

performance of MLR models for MS assessment using frozen or frozen-thawed pork was 

comparable to the performance of fresh pork. It was implied that MS characteristics from 

all three kinds of pork were linearly correlated with measured MS. NIR images of fresh, 

frozen, and frozen-thawed pork revealed great potential to predict MS of fresh pork. 

6.5        Conclusion 

By correlation and MLR analysis, promising relationships were found between the image 

characteristics captured by hyperspectral imaging from fresh, frozen and frozen-thawed 

pork and chemically extracted intramuscular fat content and subjectively measured 

marbling score. For all three types of pork, the first derivative of Gabor filtered mean 

spectra from hyperspectral images revealed strongest predictive potential for non-

destructive and rapid evaluation of IMF content and MS. It can be concluded that the first 

derivative of Gabor filtered mean spectra from hyperspectral images of fresh, frozen and 

frozen-thawed pork could be used to predict the IMF content and MS.  The results 
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confirmed that the Gabor filter technique could extract the features of IMF and MS 

automatically and objectively. More samples should be investigated to improve the 

predictive accuracy using image features of fresh, frozen, and frozen-thawed pork. 

Quantifying IMF content and MS of fresh loin cuts using frozen and frozen-thawed pork 

would enhance economic opportunities for pork producers and processors dramatically.  
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CONNECTING TEXT 

In Chapter 6, the possibility of using frozen and frozen-thawed pork for determination of 

intramuscular fat content and marbling score of pork was studied. The relationship 

between textural and spectral information of frozen and fresh pork, and frozen-thawed 

and fresh pork was presented. Predictive ability of hyperspectral measurement of frozen-

thawed pork was found to be comparable with ability of fresh pork. In Chapter 7, effect of 

anatomical location was considered for prediction of pork fat attributes. There is large 

variation of intramuscular fat content and marbling score along the thoracic longissmus 

muscle. Conventional methods were used to assess intramuscular fat content and 

marbling score of pork at the seven last ribs. The distribution of intramuscular fat content 

and marbling score along the longissmus muscle was thus obtained. The fat attributes at 

the last ribs was used as a predictive site to predict the corresponding attributes at the 

anterior ribs along the thoracic longissmus muscle.  

The manuscript of this chapter will be submitted for publication to International 

Journal of Food Science and Technology. The chapter is co-authored by my supervisors 

Dr. M.O. Ngadi and Dr. S.O. Prasher, a research associate Dr. L. Liu, and a researcher Dr. 

C. Gariépy from Agriculture and Agri-Food Canada. The format of the original 

manuscript has been modified to remain consistent with the thesis format. All the 

literature cited in this chapter is listed in Chapter 10 (General references). 
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VII. PREDICTING INTRAMUSCULAR FAT CONTENT 

AND MARBLING SCORE OF PORK ALONG THE 

LONGISSIMUS MUSCLE BASED ON THE LAST RIB 

7.1        Abstract 

Intramuscular fat (IMF) and marbling are widely regarded as two important quality 

attributes indicating the fat level of pork. Pork loins at the five last thoracic ribs were 

usually collected as studied samples representing IMF content and marbling score (MS) 

of the whole loin. Uniformity is necessary for determination of pork intramuscular fat 

content. For this purpose, loin chops at 7 sampling sites along posterior side of the 

thoracic Longissimus dorsi were collected. Linear and quadratic regression models were 

built to predict IMF content/ MS of each loin chop from the 2nd last to the 7th last thoracic 

rib and the mean of IMF content/ MS of the 7 sites using IMF content/ MS at the last rib, 

respectively. Cross validation was adopted to analyze the efficiency of models. The IMF 

content/ MS of loin between the 2nd last and the 7th last rib and the mean value of the 

whole loin were regarded as the dependent variables, while the IMF content and MS at 

the last rib were regarded as independent variables of regression models. Random dataset 

were used for analysis of variance (ANOVA). The results of cross validation implied that 

IMF content and MS at the last rib showed good predictive ability for IMF content and 

MS at the other ribs and the whole section of loin, respectively. For both IMF and MS, 

linear regression and quadratic regression had similar performance. The best mean 
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correlation coefficient of calibration (Rc) of 0.91 and validation (Rv) of 0.88 were 

obtained for linear regression model of IMF content of the whole loin, while Rc of 0.90 

and Rv of 0.88 were obtained for quadratic regression model of MS of the whole loin. For 

IMF content at each rib from the 2nd last to the 7th last separately, the IMF content at the 

4th last rib was more related to the IMF content of the last rib, i.e. linear regression with 

mean Rc of 0.90 and Rv of 0.88. MS at the 6th last rib was more related to MS of the last 

rib than MS at other ribs, i.e. quadratic regression with mean Rc of 0.90 and Rv of 0.84. 

The results indicated that IMF content and MS at the last rib had great potential for 

prediction of IMF content and MS at the other ribs and the mean value of the whole loin. 

Keywords: Pork; Intramuscular Fat Content; Marbling score; Located sites; Cross 

validation; Regression analysis 
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7.2        Introduction 

Fat levels of pork include the visible fat (e.g. Marbling) and non-visible fat (e.g. 

Intramuscular fat, IMF). Intramuscular fat (IMF) content, which is defined as the total 

concentration of intramuscular fat in meat, is regarded as one of the most important 

quality traits of meat (Wood et al., 2008; Suzuki et al., 2005a). Marbling is defined as the 

visible fat in loin. Fat proportion of pork influences the consumer liking for pork (Brewer 

et al., 2001; Bryhni et al., 2003), which affects the consumption frequency. Pork with the 

same levels of IMF content and marbling may receive different acceptance in different 

markets due to the different perception of fat level. Wood (1990) suggested a minimum of 

1% (Fresh weight basis) IMF fitted the UK market. For Canada market, Fortin et al. 

(2005) proposed IMF content of 1.5% as a thresholding level to ensure the eating quality 

of Canadian pork. In the American market, the National Pork Board of US recommended 

IMF content of 2% ~ 4% to the pork industry in US (Meisinger, 2002). It is important for 

the pork industry to assess IMF content and marbling levels efficiently in order to classify 

pork to meet the targeted quality levels of different markets.  

For determination of IMF content, samples were generally collected along the 

longissimus muscle. There are usually around fourteen pairs of ribs along the longissimus 

muscle of the pig, i.e. there are around fourteen different sampling sites available for 

determination of IMF content for each pig. Different sampling locations including the last 

rib (Fernandez et al., 1999; Bahelka et al., 2009; Lo Fiego et al., 2010), the 10th rib (Witte 

et al., 2000; Lonergan et al., 2007; Rincker et al., 2008), the 3rd /4th last ribs (Sather et al., 

1996; Suzuki et al., 2005b; Fortin et al., 2005), and the 2nd /3rd last ribs (Lakshmanan 

et al., 2012) have been adopted in different studies. It is readily obvious that different 
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sampling sites were adopted in studies and most sampling sites located amongst the five 

last ribs. The non-uniformity of sampling site could cause discrepancy in results of pork 

quality studies. Different sites were adopted in different studies since standardization of 

the representative anatomic site on the Longissimus dorsi is still going on. On the other 

hand, labor work was necessary to count the number of ribs from the sections anterior to 

the last rib. Comparing to the other anatomical locations, the sampling sites at the last rib 

of the Longissimus dorsi could lower the labor depletion. Hence, it is of interest to study 

the relations between the IMF content at the last rib and the IMF content measured at the 

other ribs, including the mean IMF content of the whole loin. The establishment of this 

relation will assist in provision of IMF content at a demanded location and will help to 

reconcile the IMF assessments for both laboratories and the pork industry.  

As a type of visible IMF, marbling was closely associated to IMF content (Van 

der Wal et al., 1992). For marbling, an evaluation of the marbling indicated by marbling 

score (MS) was usually performed subjectively according to NPPC (NPB, 2002). The 

sampling site at the 3rd / 4th last ribs is representative in commercial application. Same as 

IMF content, the sampling sites at the last rib of the Longissimus dorsi could reduce labor 

counting. It is of interest to study the variation of MS along the longissimus muscle, and 

establish the relationship between MS at the last rib and the other ribs. 

Carpenter et al. (1961) observed extreme variation of IMF content and marbling 

at different loci of thoracic ribs from pig carcasses. Faucitano et al. (2004) studied the 

distribution of IMF content and marbling at different ribs along longissimus muscle and 

reported a high variability of IMF content and marbling as well. The IMF content and 

marbling score from the 3rd last lumbar vertebra to the 5th thoracic rib was correlated to 
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the average total IMF content/ marbling score of the whole longissimus muscle. The IMF 

content and marbling score at or near the 3rd /4th last rib were suggested as prediction site 

for mean IMF content and marbling score because of the high coefficient determination 

with mean IMF content and marbling score of the whole thoracic loin and lumbar.  

To our knowledge, no quantitative relationship between IMF content/ marbling 

score of loins at different ribs and the last rib or the average IMF content/ marbling score 

of the whole loin and the last rib was studied in other researches. The objectives of this 

study were to examine the quantitative distribution of pork IMF content and marbling 

score at different ribs; to investigate the possibility of using IMF content and marbling 

score at the last rib of pig to predict the IMF content and marbling score from the 2nd last 

to the 7th last ribs and the average IMF and marbling score of each Longissimus dorsi.  

7.3        Materials and methods 

7.3.1      Sample collection and assessment of marbling 

In this study, 24 pigs composed of both female and male were raised and slaughtered at a 

local commercial abattoir. The pigs of the same genetic background were fed with 

different levels of flax seeds to obtain a large variation in IMF content and marbling 

levels of the loin along the longissimus muscle. At 24 h post-mortem, the Longissimus 

dorsi (LD) in the same sides of thoracic region were removed from pig carcasses, packed 

in refrigerated boxes and transported to Hyperspectral Imaging Laboratory, McGill 

University, Montreal, QC, Canada for further assessment and analysis of IMF content and 

marbling scores.  
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Considering that previous studies were on the 7 last ribs, the wider range of the 7 

last ribs were used in this study. The loins chops at the 7 last ribs were removed starting 

from the posterior end of Longissimus dorsi and were sliced to 7 pieces along the ribs. 

Each piece is 2 cm thick approximately. The cutting was conducted perpendicular to the 

longitudinal axis of the loin chop (Faucitano et al., 2004). Table 7.1 shows the dissection 

scheme of the cut loin chop from the last thoracic rib (L1) to the 7th last thoracic rib (L7), 

the assigned name of loin slices, and the corresponding symbols for IMF content and MS. 

In total, 167 loin samples (Only six loins were obtained from one pig, 24×7-1 = 167) 

were collected. Samples was classified to 7 sets (Li, i = 1, 2, 3 …7) according to 7 

sampling sites, with 24 samples in each groups (23 samples in one group). The average 

value of IMF content/ MS from loin joint (L1 to L7) was grouped as a set (Li, i = 0). In 

total, 8 groups were obtained. The adhering fat as well as the connective tissue was 

carefully removed from each loin slice. The trimmed loin samples were then assessed by 

a technician according to the NPPC charts (NPB, 2002) and establish marbling scored 

from 1 (Devoid) to 6 and 10 (Abundant). Thus, marbling scores (MS) of two sides of each 

slice were obtained and averaged. The mean value of MS at two sides (i.e. MLi, i = 1, 2, 

3 … 7) was used as the referenced value of MS for corresponding analysis. The average 

Table 7.1   Dissection scheme of the Longissimus dorsi. 

 Thoracic (rib number) 

Actual rib 
number 

The last -
7th last 

The 7th 
last 

The 6th 
last 

The 5th 
last 

The 4th 
last 

The 3rd 
last 

The 2nd 
last 

The last

Assigned ID 
of loin 

L0 L 7 L 6 L 5 L 4 L 3 L 2 L1 

Assigned ID 
of IMF content 

FL0 FL7 FL6 FL5 FL4 FL3 FL2 FL1 

Assigned ID 
of MS 

ML0 ML7 ML6 ML5 ML4 ML3 ML2 ML1 
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of MS at all 7 ribs was calculated and used as the MS of each whole loin chop (ML0). 

The assessed samples were then packed and stored in the deep-freezer at -80  for 24 ℃

hours for the subsequent IMF content determination.  

7.3.2      Determination of IMF content 

IMF content of each loin from the last to the 7th last rib (FLi, i = 1, 2 … 7) was measured 

and the mean value of IMF content of the whole loin chop was calculated (FL0). 

Frozen samples were freeze-dried prior to fat extraction, using a laboratory 

freeze-dryer (Thermo Savant Modulyod-115, NY, USA) for 96 hours with drying 

temperature of -50℃ and operating pressure of 120 MPa. Freeze-drying removed 

moisture from fat by transferring frozen water molecules to vapor directly as well as 

keeping the characteristics of fat as much as possible. 

Dried pork samples were ground using a coffee grinder (Bodum 5678-57, C-

MFLl, USA). IMF content (Dry weight basis) of freeze-dried samples was then 

determined following the protocol of Soxhlet extraction (Association of Official 

Agricultural Chemists, 2000). Samples of 3 g were measured as initial dry mass (Wi). 

Crude fat (Regarded as intramuscular fat) of ground samples were extracted by Solvent 

Extractor (SER148, Velp Scientifica, Usmate, Italy) using petroleum ether as the solvent 

for intramuscular fat. The samples were immersed in the solvent for 40 minutes, and then 

washed for 60 minutes recirculating by solvent. The dissolved fat in the resultant fluid 

was allowed to be detached from solvent for 30 minutes. The extracted fat was weighed 

(Wf) and the percentage of IMF content was determined as the fraction of fat to the initial 

dry mass (i.e. Wf/Wi×100%). The whole process of fat extraction took approximately 
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three hours for each set of samples. There were four samples in one set. Two replicates of 

intramuscular fat extraction was performed and the average value was used. 

7.3.3      Data analysis 

Regression models including linear regression (Eq. 7.1 and Eq. 7.2, linear model of FL1-

FLi and ML1-MLi) and quadratic regression (Eq. 7.3 and Eq. 7.4, quadratic model of 

FL1-FLi and ML1-MLi) were proposed to explain the relationship between the IMF 

content and MS of L1 and L0 and L2 to L7. Cross validation was applied to explore the 

possibility of using linear regression model and quadratic model. Cross validation 

analysis was performed on MATLAB 7.3.0 (The MathWorks, Inc., Mass., USA).   

110 FLaaFLi  , i = 0, 2, 3 … 7, (7.1)

110 MLaaMLi  , i = 0, 2, 3 … 7, (7.2)

2
210 11 FLaFLaaFLi  , i = 0, 2, 3 … 7, (7.3)

2
210 11 MLaMLaaMLi  , i = 0, 2, 3 … 7, (7.4)

 For each model, the 24 samples were separated to two subsets: calibration set (16 

samples) and validation set (8 samples, there was 7 samples for L7 since only the six last 

loins were obtained from one pig). There were 16
24C  (735471 = 

!8!16

!24


 = 

24×23×22×21×20×19×18×17/(8×7×6×5×4×3×2×1), note: 16
23C  = 245157 for L7) 

unrepeated subsets available for cross calibration sets. Ten thousand subsets of data were 

selected randomly for cross validation of linear and quadratic regression models. The 

efficiency of models was assessed by the following criteria: correlation coefficient (Rc) 
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and p-value (pc) of calibration, standard deviation (STD) of Rc and pc, correlation 

coefficient (Rv) and p-value (pv) of validation, and standard deviation of Rv and pv. The 

higher the Rc and Rv, the lower the pc and pv, and the lower the standard deviation of Rc, 

pc and Rv, pv, the better the model.  

After models were identified, subsets of data were chosen randomly to build 

models for statistical analysis. The IMF or MS at L1 was used as independent effect in 

the regression models, while the IMF or MS at Li (i = 0, 2 … 7) was used as the 

independent variable, respectively. The regression analysis of variance (ANOVA) test 

was performed in order to check the effectiveness of the built models. ANOVA tests were 

carried out at the 5% probability on SAS Version 9.2 (SAS, Institute Inc., Cary, USA).  

7.4        Results and discussion 

7.4.1      IMF content and marbling score 

Measured values for IMF content and MS of pork cutlets are presented in Table 7.2. 

Coefficient of dispersion (unit: %) was calculated by dividing mean value by STD. It is 

shown that the samples provided data with a great variation. Distribution of IMF content 

(i.e. FLi, i = 1, 2, 3 … 7) and MS (i.e. MLi, i = 1, 2, 3 … 7) along the Longissimus dorsi 

is shown in Figure 7.1. High variation of IMF content along the Longissimus dorsi was 

observed, while MS showed variation which was not as great as IMF content. Both IMF 

content and MS showed increasing trend from L1 to L7, while graph of IMF content 

showed steeper slope than MS. The highest value of IMF content was located at L7 with 

FL7 = 9.48%, while the lowest IMF content was located at L2 with FL2 = 5.89%. The 

trend of IMF content agrees with the finding of Faucitano et al. (2004), who 



  155

recommended that IMF content and MS increased from the last rib (end) of longissimus 

muscle to the anterior sites. High IMF content was recorded at L6 and L7, which was 

included in the middle section of the thoracic muscle as of study of Faucitano et al. 

(2004). Low IMF content was recorded around L1 and L2, while Faucitano et al. (2004) 

identified similar section of near the end of the thoracic section. On the other hand, the 

highest MS was located at L6 of ML6 = 3.22, while the lowest MS was recorded in L1 of 

ML1 = 2.79. This agrees with the result of Faucitano et al. (2004) as well, who suggested 

that the high MS located in the middle of the Longissimus dorsi which includes L7 in this 

study, while low MS located near the end of the Longissimus dorsi (Faucitano et al., 2004) 

which corresponded to the L1 to L3 in this study. 

Table 7.2   Statistics for IMF content and MS of loin slices are presented. 

Trait Mean STD Minimum Maximum
Coefficient of 
dispersion (%) 

IMF content (%) 7.38 3.48 3.06 21.84 47.15 

Marbling score 3.01 0.98 1.00 6.25 32.58 
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Figure 7.1   Distribution of IMF content and MS along the Longissimus dorsi. 
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7.4.2      Correlation coefficient between FL1 and FLi, ML1 and MLi 

The correlation coefficients (R) between IMF content or MS at L1 and Li (i = 0, 2, 3 … 7) 

are shown in Table 7.3. The IMF content and MS at the last rib showed a tightest 

correlation (R(FL1, FL0) = 0.91, R(ML1, ML) = 0.88) with the average IMF content 

(FL0) and MS (ML0) of the whole measured loin chop, respectively. Thus, the locations 

L1 could be exploited as a possible predictive site for its reasonable correlation with the 

mean IMF content and MS. From location L2 to L7, tight correlation was observed 

between FL1 and IMF content of loins at other ribs, while highest correlation was 

obtained between IMF content at L1 (FL1) and L4 (FL4), as well as L1 (FL1) and L5 

(FL5). The best correlation for marbling score was found between ML1 and ML6, while 

other high correlation coefficient was found between ML1 and ML5, and ML1 and ML7. 

Table 7.3   Correlation coefficients between IMF content or MS of loin at the last rib 

and other ribs and the average value of whole loin joint. 

Trait L1-L2 L1-L3 L1-L4 L1-L5 L1-L6 L1-L7 L1-L0 

IMF content (%), FL 0.85 0.84 0.90 0.90 0.85 0.83 0.91 

Marbling score, ML 0.76 0.64 0.75 0.83 0.85 0.82 0.88 

 

7.4.3      Cross validation of linear and quadratic models 

The results of cross validation based on 10000 different subsets were listed in Table 7.4 

and Table 7.5 in terms of mean, standard deviation, minimum (min), and maximum (max) 

of Rc and Rv, respectively.  
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Table 7.4   Cross validation of regression model based on IMF content (FL1-FLi, 

i = 0, 2, 3 …7). 

 (a) Linear regression model 

Model Trait Mean STD Min Max 

 Rc 0.91 0.05 0.63 0.98 

FL1-FL0 pc <0.0001 <0.001 <<0.0001 <0.01 

 Rv 0.88 0.10 0.04 1.00 

 pv <0.05 <0.05 <<0.0001 <0.5 

 Rc 0.87 0.12 0.01 0.98 

FL1-FL2 pc <0.01 <0.05 <<0.0001 <1.00 

 Rv 0.86 0.14 0.07 1.00 

 pv <0.05 <0.5 <<0.0001 1.00E+00 

 Rc 0.88 0.07 0.60 0.98 

FL1-FL3 pc <0.001 <0.001 <<0.0001 <0.05 

 Rv 0.81 0.14 0.02 1.00 

 pv <0.05 <0.1 <<0.0001 <0.5 

 Rc 0.90 0.04 0.69 0.98 

FL1-FL4 pc <0.0001 <0.001 <<0.0001 <0.01 

 Rv 0.88 0.09 0.17 1.00 

 pv <0.05 <0.05 <<0.0001 <1.00 

 Rc 0.89 0.06 0.54 0.97 

FL1-FL5 pc <0.001 <0.001 <<0.0001 <0.05 

 Rv 0.86 0.12 0.02 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.83 0.09 0.25 0.97 

FL1-FL6 pc <0.01 <0.05 <<0.0001 <0.5 

 Rv 0.81 0.16 0.20 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.84 0.11 0.25 0.94 

FL1-FL7 pc <0.01 <0.05 <<0.0001 <0.5 

 Rv 0.76 0.19 0.02 1.00 

 pv <0.05 <0.5 <<0.0001 <1.00 
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(b) Quadratic regression model 

Model Trait Mean STD Min Max 

 Rc 0.93 0.05 0.64 0.99 

FL1-FL0 pc <0.0001 <0.001 <<0.0001 <0.01 

 Rv 0.86 0.13 0.02 1.00 

 pv <0.05 <0.05 <<0.0001 <0.5 

 Rc 0.87 0.13 0.32 0.98 

FL1-FL2 pc <0.01 <0.05 <<0.0001 <0.5 

 Rv 0.87 0.14 0.01 1.00 

 pv <0.05 <0.05 <<0.0001 <0.5 

 Rc 0.82 0.08 0.45 0.97 

FL1-FL3 pc <0.01 <0.01 <<0.0001 <0.1 

 Rv 0.78 0.17 0.01 1.00 

 pv <0.05 <0.5 <<0.0001 <1.00 

 Rc 0.90 0.04 0.67 0.98 

FL1-FL4 pc <<0.0001 <0.0001 <<0.0001 <0.01 

 Rv 0.81 0.16 0.18 1.00 

 pv <0.05 <0.5 <<0.0001 <1.00 

 Rc 0.91 0.05 0.53 0.98 

FL1-FL5 pc <0.0001 <0.0001 <<0.0001 <0.01 

 Rv 0.81 0.16 0.03 1.00 

 pv <0.05 <0.5 <<0.0001 <1.00 

 Rc 0.86 0.09 0.32 0.98 

FL1-FL6 pc <0.01 <0.01 <<0.0001 <0.5 

 Rv 0.79 0.16 0.21 1.00 

 pv <0.05 <0.1 <0.0001 <0.5 

 Rc 0.84 0.11 0.30 0.98 

FL1-FL7 pc <0.01 <0.05 <<0.0001 <0.5 

 Rv 0.75 0.21 0.01 1.00 

 pv <0.5 <0.5 <<0.0001 <1.00 
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Table 7.5   Cross validation of regression model based on MS (ML1-MLi, 

i = 0, 2, 3 …7). 

 (a) Linear regression model 

Model Trait Mean STD Min Max 

 Rc 0.88 0.04 0.62 0.98 

ML1-ML0 pc <0.0001 <0.001 <<0.0001 <0.05 

 Rv 0.87 0.10 0.01 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.75 0.08 0.32 0.94 

ML1-ML2 pc <0.01 <0.05 <<0.0001 <0.5 

 Rv 0.73 0.17 0.01 0.99 

 pv <0.1 <0.5 <<0.0001 1.00 

 Rc 0.63 0.08 0.22 0.87 

ML1-ML3 pc <0.05 <0.05 <0.0001 <0.5 

 Rv 0.66 0.15 0.02 0.99 

 pv <0.5 <0.5 <<0.0001 <1.00 

 Rc 0.73 0.08 0.03 0.92 

ML1-ML4 pc <0.01 <0.05 <<0.0001 <1.00 

 Rv 0.74 0.16 0.01 0.98 

 pv <0.1 <0.5 <0.0001 <1.00 

 Rc 0.83 0.05 0.52 0.94 

ML1-ML5 pc <0.001 <0.01 <<0.0001 <0.05 

 Rv 0.82 0.12 0.24 0.99 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.84 0.05 0.49 0.96 

ML1-ML6 pc <0.001 <0.01 <<0.0001 <0.1 

 Rv 0.83 0.12 0.21 0.99 

 pv <0.05 <0.05 <<0.0001 <1.00 

 Rc 0.81 0.05 0.54 0.92 

ML1-ML7 pc <0.001 <0.01 <<0.0001 3.08E-02 

 Rv 0.80 0.12 0.03 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 
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 (b) Quadratic regression model 

Model Trait Mean STD Min Max 

 Rc 0.90 0.04 0.61 0.98 

ML1-ML0 pc <0.0001 <0.001 <<0.0001 <0.05 

 Rv 0.88 0.10 0.01 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.77 0.08 0.37 0.95 

ML1-ML2 pc <0.01 <0.01 <<0.0001 <0.5 

 Rv 0.72 0.17 0.01 0.99 

 pv <0.1 <0.5 <<0.0001 <1.00 

 Rc 0.66 0.08 0.23 0.90 

ML1-ML3 pc <0.05 <0.05 <<0.0001 <0.5 

 Rv 0.65 0.15 0.04 0.98 

 pv <0.5 <0.5 <0.0001 <1.00 

 Rc 0.79 0.08 0.09 0.93 

ML1-ML4 pc <0.01 <0.05 <<0.0001 <1.00 

 Rv 0.76 0.16 0.01 0.99 

 pv <0.1 <0.5 <<0.0001 <1.00 

 Rc 0.86 0.05 0.52 0.96 

ML1-ML5 pc <0.001 <0.01 <<0.0001 <0.05 

 Rv 0.83 0.13 0.30 1.00 

 pv <0.05 <0.1 <<0.0001 <1.00 

 Rc 0.90 0.05 0.57 0.98 

ML1-ML6 pc <0.001 <0.001 <<0.0001 <0.05 

 Rv 0.84 0.13 0.30 1.00 

 pv <0.05 <0.05 <<0.0001 <1.00 

 Rc 0.83 0.05 0.57 0.94 

ML1-ML7 pc <0.001 <0.01 <<0.0001 <0.05 

 Rv 0.79 0.12 0.30 0.99 

 pv <0.05 <0.1 <0.0001 <1.00 

 

7.4.3.1   Cross validation based on IMF content 

In Table 7.4(a), all the mean of Rc for linear model was equal to or higher than 0.83, and 

almost all of the mean of Rv was higher than 0.80 except Rv in model of FL1-FL7, which 
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was between 0.75 and 0.80. The linear model between FL1 and FL0 produced the best 

result in cross validation, with Rc of 0.91 and Rv of 0.88, which indicated the strong 

predictive ability of FL1 for the mean IMF content of the whole loin. Linear models of 

FL1-FL0, FL1-FL2, FL1-FL4, and FL1-FL5 gave good results with both Rc and Rv 

higher than 0.85, while linear models of FL1-FL3 and FL1-FL6 produced results with 

Rc and Rv higher than 0.81. All the mean of pc and pv for linear model was lower than 

the confidence level of 0.05, which implied that the built linear models FL1-FLi (i = 0, 2, 

3 …7) were significant in confidence level of 0.05. This demonstrated that the IMF 

content at the 2nd last to the 7th last ribs and the average of IMF content of the whole loin 

chop could be predicted from the IMF content at the last rib by linear regression. FL0, 

FL2, FL3, FL4, FL5 and FL6 could be explained well by FL1.  

STD of all the models was lower than 0.15, while most of the models gave STD 

of Rc lower than 0.10, except model FL1-FL2 (STD (Rc) = 0.12) and FL1-FL7 

(STD (Rc) = 0.11). The STD of Rv in linear models of FL1-FL0, FL1-FL2, FL1-FL3, 

FL1-FL4, and FL1-FL5 was lower than 0.15. The results of STD (Rc) and STD (Rv) 

suggested that linear models FL1-FL0, FL1-FL2, FL1-FL3, FL1-FL4, and FL1-FL5 

showed good robustness, amongst which model FL1-FL0 and FL1-FL4 had the best 

robustness. The STDs of Rv in models of FL1-FL6 (STD (Rv) = 0.16) and FL1-FL7 

(STD (Rv) = 0.19) suggested that the repeatability of linear model for FL6 and FL7 

should be improved.  

In Table 7.4(b), the mean of Rc for all the quadratic models was higher than 0.80 

as well as linear model, while the Rv for models FL1-FL0, FL1-FL2, FL1-FL4 and 

FL1-FL5 was higher than 0.80, the Rv of models of FL1-FL3, FL1-FL6, and FL1-FL7 
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scattered between 0.75 and 0.80. The quadratic model of FL1-FL0 presented best result 

in cross validation of quadratic models, with mean Rc of 0.93 and mean Rv of 0.86, while 

model of FL1-FL2 performed well following with both Rc and Rv equaled to 0.87. All 

the mean pc and pv for quadratic model was lower than 0.05, which indicated that the 

established quadratic models were appropriate in confidence level of 0.05. These results 

implied the possibility of using FL1 to predict FL0 and FL2 to FL7 based on quadratic 

model. FL1 showed strong explanation ability for FL0, FL2, FL4, and FL5 in quadratic 

model as well as in linear model.  

The STD of Rc in quadratic models was not larger than 0.08 with exception of 

FL1-FL2 (STD (Rc) = 0.13) and FL1-FL7 (STD (Rc) = 0.11). The STDs of Rv in 

quadratic models of FL1-FL3, FL1-FL4, FL1-FL5, FL1-FL6 and FL1-FL7 were higher 

than 0.15. It was suggested that quadratic models of FL1-FL0 and FL1-FL2 showed 

good robustness, while the stability of other models need to be improved. 

Both linear model and quadratic models performed well. As shown in Table 7.4(a) 

and (b), the IMF content in the grading sites L1 and L2 showed the best and the most 

stable correlation coefficient with the mean IMF content of the whole loin in both types 

of models. In addition, FL4 was more related to FL1. These results indicated that the 

IMF content at the last rib could be considered as reliable predictor for mean IMF content 

of the whole loin. The IMF content at the last rib could be considered as possible 

predictive sites for the IMF content at the other ribs. In the study of Faucitano et al. 

(2004), IMF content at the 3rd /4th last rib was recommended for predicting sites for the 

average IMF content of loin from the 5th thoracic to the 4th lumbar ribs.  
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Comparing linear models to quadratic models (Table 7.4(a) and (b)), the overall 

differences between mean Rc and corresponding Rv of most models in Table 7.4(b) were 

similar to the one in Table 7.4(a). This implied that the linear model had similar stability 

with quadratic model. The robustness of models suggested that linear model has better 

repeatability than quadratic model especially at L3, L4, and L5. The quadratic model 

FL1-FL2 was slightly better than linear model FL1-FL2. Because the linear model is 

more practical, the linear model was recommended. 

7.4.3.2   Cross validation based on MS 

In Table 7.5(a), the linear models of ML1-ML0, ML1-ML5, ML1-ML6, and ML1-ML7 

performed well with both mean Rc and Rv higher than 0.80. All the mean pc of linear 

models was lower than 0.05, while the mean pv of models of ML1-ML2 and ML1-ML4 

was slightly higher than 0.05, and pv of ML1-ML3 was higher than 0.10. This indicated 

that the linear models of ML1-ML0, ML1-ML5, ML1-ML6, and ML1-ML7 were 

appropriate considering the results of cross validation. The STDs of Rc in linear models 

of ML1-ML0, ML1-ML5, ML1-ML6 and ML1-ML7 were lower than or equal to 0.05, 

while the STD of mean Rv was lower than or equal to 0.12. This indicated that the linear 

models of ML1-ML0, ML1-ML5, ML1-ML6, and ML1-ML7 had good repeatability. It 

was indicated that there was linear relationship between ML1 and ML0, ML5, ML6, and 

ML7. More work is needed to improve the predicting ability of ML1 for ML2, ML3, 

and ML4. 

In Table 7.5(b), the quadratic models of ML1-ML0, ML1-ML4, ML1-ML5, 

ML1-ML6, and ML1-ML7 performed well with both Rc and Rv higher than or equal to 

0.79. All the mean pc of quadratic models was lower than 0.05, while the mean pv of 
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models of ML1-ML4 was slightly higher than 0.05, and pv of ML1-ML2 and ML1-

ML3 was around 0.10. This suggested that the quadratic models of ML1-ML2, ML1-

ML3, and ML1-ML4 were not stable. All the STDs of Rc in quadratic models were 

lower than or equal to 0.08, while the STD of Rv in models of ML1-ML0, ML1-ML5, 

ML1-ML6, and ML1-ML7 was not larger than 0.13. Considering the significance and 

robustness, the quadratic models of ML1-ML0, ML1-ML5, ML1-ML6, and ML1-ML7 

were appropriate for MS prediction at different ribs. 

As shown in Table 7.5 (a) and (b), both linear model and quadratic models based 

on ML1 performed well for prediction of ML0, ML5, ML6, and ML7. Besides ML0, 

ML6 showed stronger relationship to ML1. This indicated that the MS at the last rib 

could be used for prediction of mean MS of the whole loin and MS at L5, L6, and L7. 

Both linear and quadratic regression models of ML1 for ML2, ML3, and ML4 need to 

be improved to get better accuracy and stability especially for ML3 and ML4. L3 and L4 

are the main sites that are used to assess marbling. In the study of Faucitano et al. (2004), 

the correlation coefficient between MS at different ribs and the mean MS of the whole 

longissimus muscle from the 5th thoracic to the 4th lumbar ribs was lower than the 

coefficient for IMF content as well as in this study. It was revealed that the MS at the 3rd 

/4th last rib was proper as a predicting site for the average MS of the whole loin. 

Comparing each pair of Rc and Rv in linear and corresponding quadratic 

regression model at the same rib sets (Table 7.5 (a) and (b)), both Rc and Rv in quadratic 

model were higher than corresponding linear model for ML1-ML0, ML1-ML4, ML1-

ML5, and ML1-ML6. Increase of ≥0.02 of Rc and decline of 0.01 of Rv were obtained in 

quadratic models to linear models of ML1-ML2, ML1-ML3, ML1-ML4. Almost all the 
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mean pc and mean pv of quadratic models were lower than the ones of corresponding 

linear models. It was implied that for ML5 to ML7 and ML0, quadratic model performed 

better than linear model for prediction of marbling score using ML1.  

7.4.4      Regression analysis 

Both linear and quadratic regression models for prediction of IMF content and MS were 

tested by ANOVA. The subsets for calibration and validation were selected randomly 

from the 10000 sets of cross validation. Table 7.6 shows the result of ANOVA of the  

Table 7.6   ANOVA test of regression models based on IMF content of loin at the last 

rib (FL1-FLi, i = 0, 2, 3 …7). 

(a) Linear model 

Depandant variable a0 a1 Rc2 Rv2 Source Pr > F (p-value) Significance 

FL0 -0.535 1.293 0.85 0.84 FL1 <0.0001 Significant (S.S.)

FL2 1.662 0.753 0.81 0.83 FL1 <0.0001 S.S. 

FL3 -3.171 1.815 0.91 0.84 FL1 <0.0001 S.S. 

FL4 -1.114 1.427 0.86 0.84 FL1 <0.0001 S.S. 

FL5 -1.105 1.535 0.83 0.81 FL1 <0.0001 S.S. 

FL6 0.901 1.389 0.87 0.82 FL1 <0.0001 S.S. 

FL7 -0.478 1.478 0.83 0.75 FL1 <0.0001 S.S. 

 

(b) Quadratic model 

Depandant 
variable 

a0 a1 a2 Rc2 Rv2 Source 
Pr > F  

(p-value) 
Significance

FL0 6.72 -0.862 0.135 0.93 0.80 FL1×FL1 <0.01 S.S. 

FL2 7.382 -1.091 0.126 0.81 0.89 FL1×FL1 <0.01 S.S. 

FL3 2.611 0.085 0.108 0.95 0.90 FL1×FL1 <0.05 S.S. 

FL4 4.108 -0.223 0.111 0.91 0.92 FL1×FL1 <0.05 S.S. 

FL5 6.367 -0.567 0.120 0.88 0.85 FL1×FL1 <0.05 S.S. 

FL6 9.943 -1.622 0.186 0.87 0.87 FL1×FL1 <0.01 S.S. 

FL7 12.000 -2.137 0.229 0.84 0.83 FL1×FL1 <0.01 S.S. 
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linear (Eq. 7.1) and quadratic (Eq. 7.3) regression models of IMF content at 2nd to 7th rib 

and the whole loin chop. Determination coefficients of calibration (Rc2) and validation 

(Rv2) were listed. It was indicated that the built linear models of IMF content at L0 and 

L2 to L7 based on IMF content at L1 were significant. 

Terms of proposed linear (Eq. 7.2) and quadratic models of MS (Eq. 7.4) 

prediction at 2nd to 7th rib and the whole loin chop were analyzed by ANOVA and the 

results were listed in Table 7.7. Table 7.7(a) showed that the ML1 significantly (P < 0.05) 

affected the variation of ML2 to ML7 and ML0, i.e. the MLi (i = 0, 2, 3 …7) could be 

predicted by ML1 and the built model was appropriate. The models of ML1-ML2 and 

Table 7.7   ANOVA test of regression models based on MS of loin at the last rib 

(ML1-MLi, i = 0, 2, 3 …7). 

(a) Linear model 

Depandant 
variable 

a0 a1 Rc2 Rv2 Source Pr > F (p-value) Significance 

ML0 0.172 1.049 0.83 0.74 ML1 <0.0001 S.S. 

ML2 0.631 0.885 0.77 0.70 ML1 <0.0001 S.S. 

ML3 1.425 0.61 0.62 0.57 ML1 <0.0005 S.S. 

ML4 0.068 1.153 0.74 0.70 ML1 <0.0001 S.S. 

ML5 -0.068 1.268 0.83 0.78 ML1 <0.0001 S.S. 

ML6 -1.192 1.308 0.82 0.82 ML1 <0.0001 S.S. 

ML7 0.177 1.171 0.81 0.76 ML1 <0.0001 S.S. 

 

(b) Quadratic model 

Depandant 
variable 

a0 a1 a2 Rc2 Rv2 Source 
Pr > F 

(p-value) 
Significance

ML0 2.502 -0.531 0.258 0.91 0.80 ML1×ML1 <0.05 S.S. 

ML2 2.622 -0.582 0.248 0.68 0.64 ML1×ML1 <0.5 N.S.S. 

ML3 -0.956 1.527 -0.092 0.66 0.45 ML1×ML1 <0.5 N.S.S. 

ML4 4.968 -2.848 0.634 0.86 0.85 ML1×ML1 <0.05 S.S. 

ML5 3.752 -1.663 0.527 0.84 0.83 ML1×ML1 <0.05 S.S. 

ML6 3.213 -1.269 0.410 0.83 0.83 ML1×ML1 <0.05 S.S. 

ML7 4.535 -2.305 0.570 0.82 0.78 ML1×ML1 <0.05 S.S. 
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ML1-ML3 showed lower accuracy than other models. In Table 7.7(b), the quadratic 

models of ML1-ML2 and ML1-ML3 were not significant in confidence level of 5%, i.e. 

the predictive ability of these two models was not strong. Significant quadratic models of 

ML1-ML2 and ML1-ML3 could be obtained with low accuracy of Rc and Rv around 

0.58 could be obtained. More work should be conducted to establish models of ML1-

ML2 and ML1-ML3 with better predictive ability. 

7.5        Conclusion 

In this study, the aptitude of intramuscular fat content or marbling score of the loin at the 

last rib for prediction of corresponding attributes of loins at the other located sites, and the 

whole section of loin was investigated. The linear and quadratic regression analysis and 

cross validation were conducted on prediction of IMF content as well as MS. The results 

indicated that both linear regression and quadratic regression based on IMF content at the 

last rib showed strong explanation for IMF content at the 2nd last to the 7th last rib and the 

whole loin, while both linear regression and quadratic models performed well for all the 

measured sites. It was indicated that intramuscular fat content of the loin at the last 

thoracic rib of pig was efficient as a predictor for IMF content of the whole loin chop and 

loin at other ribs, ranging from the 2nd last to the 7th last. For prediction based on the MS 

at the last rib, both linear and quadratic models performed well for prediction of MS at 

the 5th last, the 6th last, the 7th last rib and the whole loin. Both linear and quadratic 

regression models based on the MS at the last rib did not show strong explanation ability 

for MS at the 2nd last, the 3rd last, and the 4th last rib. The explanation accuracy and 

repeatability for MS at the 2nd last, the 3rd last, and the 4th last rib need to be improved. It 

was concluded that marbling score of the loin at the last thoracic rib of pig was efficient 
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as a predictor for marbling score of the whole loin chop and loin at the 5th last, the 6th last, 

and the 7th last rib. 

Although there was a great variation of intramuscular fat content and marbling 

score along the Longissimus dorsi of pigs, there is great potential to predict the IMF 

content and MS of the whole loin and the ones at specific location using the IMF content 

and MS of the loin at the last rib.  

Further work will focus on improving the predictive accuracy for MS at the 2nd 

last, the 3rd last, and the 4th last rib, exploring efficient and non-destructive method for 

evaluation of IMF and marbling of the loin at the different ribs in pigs. 
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CONNECTING TEXT 

The results in Chapter 7 indicated that intramuscular fat content and marbling score of 

pork at the last rib was closely correlated to the fat attributes of pork at the anterior ribs, 

including the 3rd /4th last ribs. The intramuscular fat content and marbling score in 

Chapter 7 were determined using conventional methods. The potential of hyperspectral 

imaging for non-destructive detection of fat attributes of pork was demonstrated in 

Chapters 3, 5, and 6. It is of interest to study the variation of intramuscular fat content and 

marbling score of pork using NIR images of rib end instead of the conventional methods. 

Chapter 8, which serves as an extension to Chapter 7, deals with the sixth objective of the 

thesis: to investigate the possibility of using NIR images of rib end to non-destructively 

evaluate intramuscular fat content and marbling score of pork loins at different ribs along 

the longissimus muscle. 

This manuscript has been submitted for publication to Food Control. This chapter 

is co-authored by my supervisor Dr. M.O. Ngadi, a research associate Dr. L. Liu, and a 

researcher Dr. C. Gariépy from Agriculture and Agri-Food Canada. The format of the 

original manuscript has been modified to remain consistent with the thesis format. All the 

literature cited in this chapter is listed in Chapter 10. 
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VIII. ASSESSMENT OF INTRAMUSCULAR FAT 

CONTENT AND MARBLING SCORE OF PORK USING 

NIR HYPERSPECTRAL IMAGERIES OF RIB END 

8.1        Abstract 

The purpose of this study was to investigate the possibility of rapid and non-destructive 

determination of intramuscular fat (IMF) content and marbling score (MS) of pork of the 

6 last ribs using hyperspectral images of rib end. Near infrared (NIR) hyperspectral 

imaging system (900-1700 nm) was used for image acquisition of rib ends. NIR image of 

round rib-end of the loin was acquired. Pattern analysis techniques including Gabor filter, 

grey-level co-occurrence matrix (GLCM), and wide line detector (WLD) were applied to 

process hyperspectral images. Image features including spectral feature, texture-spectral 

feature, texture feature, and line feature were extracted. The first derivative of raw mean 

spectra and Gabor filtered mean spectra was studied as well. The first derivative of Gabor 

filtered mean spectra from image of rib end showed strongest predictive potential for 

attributes at all 6 ribs. The first derivative of Gabor filtered mean spectra was selected as 

the optimal feature for prediction of both IMF content and MS at different ribs. Multiple 

linear regression (MLR) was exploited to build prediction models. Leave-one-out cross 

validation was used to test the robustness of established models. All the 12 MLR models 

showed good performance with correlation coefficient of calibration (Rc) ≥ 0.90, 

correlation coefficient of cross validation (Rcv) ≥ 0.87, correlation coefficient of 
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prediction (Rp) ≥ 0.81 for IMF content at all 6 ribs and Rc ≥ 0.94, Rcv ≥ 0.88, Rp ≥ 0.89 

for the marbling score at all 6 ribs. The model for IMF content at the 2nd/ 3rd last rib led to 

the best prediction result with Rc of 0.96, of Rcv of 0.95, Rp of 0.83, and with root mean 

square error of calibration (RMSEc) of 0.65%, root mean square error by cross validation 

(RMSEcv) of 0.93%, and with root mean square error of prediction (RMSEp) of 0.79%. 

The model for marbling score at the last/ 2nd last rib led to the best prediction result with 

Rc of 0.99, Rcv of 0.99, Rp of 0.96, RMSEc of 0.08, RMSEcv of 0.18, and RMSEp of 0.04. 

These promising results indicated the powerful potential of pattern analysis technique-

processed hyperspectral images of rib ends for detection of IMF content and marbling 

score of pork of the 6 last ribs. 

Keywords: Rib end; Intramuscular Fat Content; Marbling Score; Sampling Locations; 

Pattern Analysis Technique; Gabor Filter; Multiple Linear Regression 
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8.2        Introduction 

The fat level in fresh pork mainly refers to technological quality attributes of 

intramuscular fat (IMF) content and marbling score (MS). Intramuscular fat (IMF) 

content is defined as the total amount of scattered flecks of fat within the meat muscle. 

Marbling is the visible intermingling of fat with lean in a muscle (Qiao et al., 2007c). Fat 

level of pork influences the cooking quality of pork (flavor and juiciness, etc.) and eating 

satisfaction of consumers, even health issue. Different levels of IMF content and MS of 

fresh pork lead to different acceptance from consumers in specific destinations (Brewer 

et al., 2001; Bryhni et al., 2003; Fortin et al., 2005). Non-invasive and rapid detection of 

fat levels in pork would allow commercial cuts to be classified and assigned to the 

retailers or further processors exactly according to the specific markets, by which 

handling costs could be saved.  

Unfortunately, the conventional measurement of pork IMF content involved 

extraction of lipid using chemical solvent, which is time consuming and harmful to 

environment. Since fat extraction-based IMF prediction is not suitable for fast and non-

destructive detection, random sampling would be necessary to evaluate the average 

intramuscular fat level of pork products, which makes it impossible to measure large 

amount of samples. An efficient and non-destructive assessment system is urgently 

needed for the pork industry to determine the IMF content effectively. 

Marbling of pork is normally scored subjectively by visual assessment of size, 

number and distribution of fat flecks and it is parameterized as marbling score (MS) 

(Jeremiah, 1998).The traditional assessment of marbling score is carried out with 
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marbling standards from National Pork Producers Council (NPPC) (NPB, 2002). 

Subjective evaluation of MS is labor intensive and not suitable for real-time detection. It 

would be beneficial for the pork industry to develop an objective, accurate and 

economical method for predicting MS of pork. 

Previous studies have emphasized the capability of near-infrared (NIR) 

spectroscopic methods for prediction of IMF content/ MS of pork (Prevolnik et al., 2005; 

Barlocco et al., 2006; Savenije et al., 2006; Wang and Paliwal, 2007; Prieto et al., 2009). 

However, the limited spatial field of view provided by spectroscopic technique would 

affect the result easily by the selection of detected areas, especially when IMF is scattered 

in the whole piece of pork heterogeneously. As an upgrading of spectroscopic method, 

hyperspectral imaging technique can provide spectral information of each pixel within an 

image as well as spatial information of the pictured objects (Gowen et al., 2007). 

Promising results in previous studies (Gowen et al., 2007; Qiao et al., 2007c; Liu et al., 

2010; Barbin et al., 2012a; Barbin et al., 2012b) indicated the potential of hyperspectral 

imaging to replace conventional determination method of pork quality. Due to the closed 

relation between fat and NIR spectra (Murray and Williams, 1987; Shenk et al., 1992), it 

is advantageous to use NIR images as they offers information that is more detailed 

compared to images in the visible range. 

The sampling location of referenced IMF content/ MS and collection site of 

hyperspectral image are the prerequisites in prediction of IMF content/ MS using NIR 

images. The 3rd /4th last ribs was suggested by Faucitano et al. (2004) as a representative 

grading site as of analytical determination of IMF content in pork and was adopted in 

several studies (Sather et al., 1996; Suzuki et al., 2005a; Fortin et al., 2005). However, 
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besides the 3rd /4th last ribs ribs, other sites amongst the 5 last ribs, including the last rib 

(Fernandez et al., 1999; Bahelka et al., 2009; Lo Fiego et al., 2010), the 2nd /3rd last ribs 

(Lakshmanan et al., 2012), and the 10th rib (Witte et al., 2000; Lonergan et al., 2007; 

Rincker et al., 2008), were used in previous studies as well. The large variation of IMF 

content along the Longissimus dorsi makes it necessary to investigate the non-invasive 

assessment of IMF content at the 5 last ribs. For image analysis, the 5 last ribs along the 

Longissimus dorsi should be used as the imaging site for IMF content prediction. 

However, the dissection of loin joint for determination of IMF content would increase 

labor requirement in the process With contrast to the other anatomical sites, imaging 

using rib end of the Longissimus dorsi would be easier, and increase the labor work of 

counting, therefore increases the practicality of image-based assessment of IMF content. 

Hence, to evaluate IMF content along the Longissimus dorsi using hyperspectral image of 

rib end is indeed a big step towards real-time quality control of pork. 

As of marbling score, the sampling site of subjective marbling assessment is 

confined to be the 3rd / 4th last ribs by NPPC (NPB, 2002). Huang et al. (2012) exploited 

pattern analysis techniques to analyze digital RGB images to predict MS at the 3rd / 4th 

last ribs. Technique wide line detector (WLD) obtained determination accuracy over 0.90. 

However, the loss of the loin at the 3rd / 4th last ribs in practice will still introduce waste 

for the pork industry even the evaluation was conducted by non-destructive RGB 

photographing. The success prediction of MS at the different last ribs using image of rib 

end will make it possible to render individual determination for each loin. On the other 

hand, aligning with the pork industry’s current processing practices, the assessment of 
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IMF content and MS could be carried out simultaneously using only NIR images of one 

rib end, which would raise the efficiency of quality inspection of pork dramatically. 

Despite the comprehensive potential of hyperspectral imaging for food quality 

control, proper image processing technique should be applied to extract useful 

information as enormous data is provided by hyperspectral images (Geladi et al., 2004; 

Gowen et al., 2007; Williams et al., 2009; Prats-Montalbán et al., 2011). Recently, 

pattern analysis techniques become more and more popular in analysis of hyperspectral 

image and were demonstrated to be effective for application in pork quality control (Qiao 

et al., 2007c; Liu et al., 2010; Liu et al., 2012; Barbin et al., 2012a). Texture pattern 

recognition techniques including grey-level co-occurrence matrix (GLCM) and Gabor 

filter were used for marbling assessment (Qiao et al., 2007c) and pork quality 

classification (Liu et al., 2010), respectively. Liu et al. (2012) applied line pattern 

recognition technique wide line detector (WLD) in pork marbling evaluation. Different 

levels of marbling were classified successfully. Effective image processing techniques 

could enhance the prediction ability of hyperspectral images (Grahn and Geladi, 2007). 

Based on the introduction above, the aim of the present study was to study 

whether pattern analysis techniques-processed hyperspectral images of rib ends could be 

used to determine IMF content and MS at the several last ribs. Specific objectives are to: 

 (1) study which pattern analysis techniques amongst GLCM, Gabor filter, and 

WLD is the most effective technique for analysis of NIR hyperspectral images (900-

1700 nm) for prediction of IMF content and MS at the 6 last ribs along the Longissimus 

dorsi, 
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(2) identify the key wavelengths linked to IMF content and MS at different 

sampling locations, 

(3) build multiple linear regression (MLR) models for quantified determination of 

IMF content and MS at different ribs using hyperspectral image of rib ends. 

8.3        Materials and methods 

8.3.1      Sample preparation 

In this study, 24 pigs were slaughtered at a local commercial slaughterhouse. A wide 

range of variation for IMF content and marbling levels along Longissimus dorsi was 

approached by feeding pigs with different levels of fat resources. The loin joint of 

Longissimus dorsi at 24 h post-mortem was dissected from pigs, packed in refrigerated 

boxes and transported to laboratory of Hyperspectral Imaging, McGill University, 

Montreal, QC, Canada. To cover the interested location of the 5 last thoracic ribs as 

mentioned in above, the whole loin joint numbered from the 7th last thoracic rib to 

posterior (rib end) (Figure 8.1(a)) was sliced along ribs to six rib chops as shown in 

Figure 8.1(b).  Each loin was then fabricated into boneless pork loins. The trimmed loin 

was packed in vacuum plastic bag right away for image acquisition and analytical 

measurement. Pork chops at different sampling sites were denoted as L1, L2, L3, L4, L5, 

and L6 correspondingly as described in Figure 8.1. In total, 144 loin samples (24 pigs×6 

chops = 144 loins) were collected. There were 6 groups (Li, i = 1, 2, 3 …6) of samples 

with 24 samples in each group.  
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 (b) Dissection scheme of the rib chops 

Figure 8.1   Dissection scheme of the Longissimus dorsi. 

8.3.2      Hyperspectral imaging system and image acquisition 

A hyperspectral line scanning system was built, which is composed of following 

components: (1) a spectrograph (Headwall Photonics Inc. USA), (2) a cooled InGaAs 

camera with extremely short integration time of 2 ms, (3) a conveyer (Donner Mfg. Corp., 
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USA), (4) two tungsten halogen lamps (50 W) which were placed at angle of 45° to 

provide illumination, (5) a sample holder with a wood board above, (6) and an enclosure. 

The system covers wavelengths from 900 to 1700 nm with a spectral resolution of 4.8 nm. 

Hence, 167 wave bands ((1700-900)/ 4.8 = 167) were obtained for each sample.  

Pork sample at L1 was placed on the wood board with rib end upward toward the 

camera. The object distance between the lens and rib end being imaged was set at 21 cm. 

When the conveyer moved on with a trial-to-error defined speed, the pork entered the 

camera's field of view, i.e. frame, and rib end was scanned line by line. The captured lines 

were dispersed into the spectral and spatial matrices and then were projected onto InGaAs 

camera. Images of every 8 frames were averaged for calculating the output signal. After 

scanning on a rib end, an output hypercube of 350 pixels× 320 pixels× 167 wave bands 

(spatial dimension (x) × spatial dimension (y) × spectral dimension (λ)) was constructed. 

From this hypercube, NIR image at wave band 900-1700 nm or NIR spectrum of each 

pixel within the image could be obtained. 

Image correction using a bright field reference and a dark image was applied on 

raw hyperspectral images. The dark image was used to remove the effect of dark current 

produced by the InGaAs camera. The reference image and dark image were used to 

transform the raw reflected light intensity to percent reflectance so that the difference of 

light intensity could be eliminated. Thus, the pixel values within each image range from 0 

to 1. The calibrated images were the basis for the subsequent image analysis. 
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8.3.3      Analytical determination of IMF content/ MS 

Marbling scores (MS) of pork chops were assessed by technicians using NPPC standard 

charts (NPB, 2002). The assessment was held at room temperature (19-24 ℃). MS of two 

surfaces of each pork slice was evaluated. The average MS value of two surfaces was 

used as the referenced MS value of the corresponding loin. MS at six different slice 

locations (Li, i = 1, 2, 3 …6) from one loin joint were denoted as MLi, i = 1, 2, 3 … 6. 

 

Figure 8.2   Protocol of conventional determination of IMF content. 
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Right after evaluation of MS, the samples were then packed and stored in the 

deep-freezer at -80 ℃ for 24 hours for the determination of IMF content. Total lipid of 

each rib end was extracted and purified with petroleum ether (solvent) following the 

procedure illustrated in Figure 8.2. IMF content of each rib site (FLi, i = 1, 2, 3 … 6) was 

expressed as percentages of total crude fat content in dry weighted potk (Eq. 8.1).  

%100
)(

)()(
(%) 




gWm

gWcgWcf
FLi , (8.1)

 

8.3.4      Pattern analysis technique-assisted image processing 

The corrected images were used for image processing and multivariate analysis 

(Figure 8.3). All operations of image processing and multivariate analysis in this study 

were performed using programs written and run in MATLAB 7.3.0 (The MathWorks, Inc., 

Mass., USA).  

8.3.4.1   Image segmentation 

The precision of image segmentation would affect the subsequent data analysis, as it is 

the basis of image processing. The main purpose of image segmentation was to isolate the 

interested meat part from the background and the residual adhering fat as well as the 

connective tissue after bone removal. The selected loin part was defined as the region of 

interest (ROI). In this study, ROI segmentation was operated automatically using the 

method described in Liu et al. (2012). For each hypercube, a binary mask was produced, 

in which value 1 corresponds to interested meat area, while value 0 corresponds to the 

abandoned other parts. By multiplying each pixel in the mask and corresponding pixel in 

NIR image in hypercube, the ROI of each rib end was isolated from original image. There 
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were over 50,000 pixels in every ROI, which reduced the random error caused by limited 

field of view in contrast to normal spectroscopic detection. In the selected ROI, the 

relative reflectance of each pixel was recorded at wavelength from 900 to 1700 nm. Only 

 

Figure 8.3   Procedure of data processing.  
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spectral images from 940-1650 nm were used for image processing, because of the low 

signal-to-noise ratio in the two ends of spectral range. Spectral properties, texture 

properties, and line properties of each rib end were extracted from ROI by following 

image processing. 

8.3.4.2   Mean spectrum and the first derivative of non-filtered mean spectrum 

The non-filtered reflectance mean spectrum (MR) was determined by averaging the 

reflectance value of all pixels in the raw ROI of rib end. The mean spectrum of each rib 

end was a 149 ×1 vector (Wave range/ spectral resolution + 1 = (1650-940 nm)/ (4.8 nm) 

+ 1 = 149). In total, 144 mean spectra (940-1650 nm) representing all the imaged rib ends 

were recorded for attributes prediction.  

The first derivative of non-filtered mean spectrum (DMR) was calculated 

according to Eq. 8.2. 

ii
ii MRMR

ii

MRMR
DMR 




 


1
1

)1(
, (8.2)

where i  represents the  thi  wave band,  i  = 1, 2, 3, … 148 (the wave range/ the spectral 

resolution of hyperspectral imaging system). 1iMR and iMR represents the value of mean 

reflectance in MR at thi )1(   and thi  wave band, respectively. The first derivative of 

mean spectrum was a 148×1 vector. 

8.3.4.3   Gabor filter (GF) and first derivative of filtered mean spectra 

Surface texture of rib ends refers to smoothness, roughness, bumpiness, tenderness, and 

color changes, etc. In the context of grey level images of rib end, texture is defined as the 

spatial variation in pixel intensities in grey level, which is represented by several statistics 
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(Tuceryan and Jain, 2010). Texture analysis has been used for measurement of the 

sensory, physical or chemical properties of pork using hyperspectral imaging (Qiao et al., 

2007c; Singh et al., 2008; Liu et al., 2010; Elmasry et al., 2012a). In this case, an 

isotropic Gabor filter (GF1, Ma et al. 2002) and an oriented Gabor filter (GF2, Ma et al. 

2002) modulated by Gaussian function were used to extract useful texture information to 

facilitate the prediction of pork IMF content and MS. Mean spectra from GF1-processed 

and GF2-processed ROI were recorded and denoted as MG1 and MG2, respectively. The 

first derivatives of MG1 and MG2, i.e. DMG1 and DMG2, were calculated according to 

Eq. 8.2. For GF1, parameters f  representing the frequency of the sinusoidal wave,   

representing the standard deviation of the Gaussian function were involved, while f ,  , 

and  controlling the orientation of the filter were involved. MG1, MG2, DMG1 and 

DMG2 include texture and spectral information of images simultaneously. 

8.3.4.4  Advanced grey-level co-occurrence matrix (GLCM) 

Another widely used texture analyze tool is GLCM (Haralick, 1979). Normally GLCM is 

applied in regular-shaped processing area, in which limited information could be used and 

manual error would be introduced. To overcome this barrier, an improved GLCM was 

applied on the whole irregular-shaped ROI of rib end in this study. Texture index (GM) 

including contrast, correlation, energy, and homogeneity (Eq. 8.3-8.6) are derived from 

the advanced GLCM-produced co-occurrence matrix. This matrix is an eight-level square 

matrix, in which each entry ( ),( jiP ) corresponds to the occurrence frequency of the pixel 

pairs with offset of a certain direction (  = 0°, 45°, 90°, or 135°) at a given distance (D).  
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where (i, j) is the coordination of the interested pixel in yield co-occurrence matrix ,DP , 

i , j , i , j  are the means and standard deviations, respectively, along the rows and 

columns in ,DP . The determined GMs were used to express image texture for estimation 

of pork IMF content and marbling score.  

8.3.4.5  Wide line detector (WLD) 

WLD described in Liu et al. (2012) was applied to the ROI of hyperspectral images. The 

aim of WLD was to extract useful and helpful image line information from images of rib 

ends. There were three parameters of r, t, and thresh to define line features in ROI. Firstly, 

initial flerks with width under parameter r , and contrast to neighbor pixels above t were 

detected. Then, pixels in initial lines with value under thresh  were set to 1 and the others 

were set to 0. A binary mask was generated finally, in which channel 1 represented 

detected lines, while channel 0 represents other parts. The proportion of lines (PL) in the 

image was defined by Eq. 8.7. 
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where area(lines) is the total number of pixels in detected lines in a rib end image, and 

area(ROI) is the total number of pixels in the corresponding ROI.  

8.3.5      Multivariate analysis 

To develop prediction models between extracted image features (149 wave bands, i.e. 149 

variables) and measured IMF content/ MS at different ribs (FLi, MLi, i = 1, 2, 3 … 6), 

multivariate regression analysis was applied to select optimal image feature and vital 

wavelengths for modeling and to build the calibration model and validate the built 

calibration model. For each rib, 24 samples were separated to calibration set (Nc = 18 

samples) and prediction set (Np = 6 samples). 

Since four types of image features, i.e. spectral, texture-spectral, texture, line 

features, were extracted from NIR image of rib ends, selection of optimal image feature is 

necessary to determine the best feature for establishment of prediction models. Pearson’s 

correlation coefficient described in Eq. 8.8 was applied to evaluate the linear dependence, 

i.e. correlation between different image features ( X , 149×Nc matrix) and IMF content/ 

MS ( Y , 1×Nc vector) at each rib (Rodgers and Nicewander, 1988). The calculated 

correlation coefficients (R, 149×1 vector, or 148×1 for first derivative of mean spectra) 

range from -1 to 1. It is redundancy and not practical to compare each single plot of R to 

select the optimal features and corresponding parameters of algorithms. Hence, maximum 

value of absolute correlation coefficient was adopted as a criterion of feature selection. 

For each feature, different parameter sets resulted different maximum values. Firstly, the 

peak of absolute correlation coefficient over 940-1650 nm between each feature and an 
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attribute at each rib was calculated for each parameter sets (max(|R|rib, feature, parameter)). 

Following, the maximum value of correlation coefficient between each feature and the 

attribute at each rib (max(|R|rib, feature)) were selected to represent the feature for the 

corresponding rib. The corresponding parameter set of the feature was used. Finally, for 

each rib, the maximum value of each feature was used to compare with maximum values 

produced by other features at each rib. The feature produced the highest value (max(|R|rib)) 

was selected as the optimal feature for prediction of IMF content/ MS at the 

corresponding rib.  
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where   is wavelength, )(R  is the calculated correlation coefficient at wavelength 

 , iX is a type of image feature for thi  sample, i.e. a 149×1 vector, )(iX is the image 

feature value at wavelength  , iY  is the measured IMF content/ MS of thi  sample. )(X  

is the average value of image feature of all n samples at  , and Y  is the mean value of 

IMF content/MS of all n samples. 

After features and corresponding parameter sets were decided for prediction of 

FLi/ MLi (i = 1, 2, 3 … 6), regression analysis should be applied to build prediction 

model. However, there were 149 variables available for modeling. The high dimensional 

data space from hyperspectral imaging may include influences of noise and useless 

wavelengths with no or little contribution in prediction, while prevent the application of 

the regression models from implement in multispectral imaging systems of pork. Thereby, 
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to find several key wavelengths that are most essential on the attribute prediction, 

stepwise regression procedure described in Draper and Smith (1998) was carried out to 

identify optimal wavelengths. 

Only features at the selected effective wavelengths ( XK ) were used for 

subsequent multiple linear regression (MLR) modeling (Eq. 8.9). MLR models were built 

using data from calibration sets. Leave-one-out cross validation was applied to fitted 

calibration models to test the robustness of built models. Once the regression model was 

determined, i.e. regression coefficients, were determined, the equation was used to 

evaluate data in corresponding prediction set.  


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ki

i
ii XKaaY

1
0

ˆ , (8.9)

where k is the number of identified wavelengths, 0a and ia  are the regression coefficients, 

and Ŷ  is the predicted IMF content/ MS at a specific rib. 

To quantify the predictive ability of the models, statistical values including 

correlation coefficient (R) and root mean square error (RMSE) between measured values 

( Y ) and estimated attribute values ( Ŷ ) of IMF content/ MS were calculated. The 

performance of MLR models were evaluated by following statistical values: R of 

calibration (Rc), R of cross validation (Rcv), R of prediction (Rp), RMSE of calibration 

(RMSEc), RMSE of cross validation (RMSEcv), and RMSE of prediction (RMSEp). A 

good model should have a high Rc, a high Rcv, a high Rp, a low RMSEc, a low RMSEcv, 

a low RMSEp, and small differences between Rc and Rp, and RMSEc and RMSEp.  
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For a set of images from rib ends, there were 6 sets of IMF content/ MS (Y ) 

which can be explained, i.e. 12 models could be built simultaneously. The success 

establishment of linear relations between image feature from rib ends and IMF content/ 

MS at different ribs would enhance the efficiency of assessment of pork fat level 

effectively. 

8.4        Results and discussion 

8.4.1      Measured IMF content and MS 

Measured values for IMF content (i.e. FLi, i = 1, 2, 3 … 6) and MS (i.e. MLi, i = 1, 2, 

3 … 6) of total 24 pork loins at each rib location are depicted in Figure 8.4. Both IMF 

content and MS along the Longissimus dorsi showed increasing trend from L1 to L6 

variation, while IMF content showed greater changes along the Longissimus dorsi. The 

range of values was wide for both IMF content and MS at each rib. The L3 showed 

widest range for IMF content while L5 showed widest range for MS. Larger variability 

presented in the reference data affect the robustness and stability of predictive models 

positively. 
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(a) IMF content                                                                  (b) MS 

Figure 8.4   Description of measured intramuscular fat (IMF) content and MS along 

the Longissimus dorsi.  
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8.4.2      Spectral features 

The typical image of rib end, defined mask and corresponding ROI are shown in 

Figure 8.5. Surrounding fat and connective tissue were removed to insure the interested 

loin part was selected. Values in pixels in Figure 8.5(a) remains unchanged if the 

corresponding pixel in Figure 8.5(b) is marked white; otherwise, it is set to zero. By 

opening useful pixels and closing other pixels, the ROI of each image in hypercube was 

obtained as depicted in Figure 8.5(c).  
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(a) Hyperspectral images              (b) Mask for ROI                 (c) ROI 

Figure 8.5   The hyperspectral images, mask and ROI of a rib end. 

Each ROI was filtered by isotropic GF1 and four oriented GF2 along 0°, 45°, 90°, 

and 135°. Different parameters would be selected for IMF content/MS at different ribs by 

subsequent data analysis. Therefore, only one set of parameters of f = 0.01,   = 10 was 

used to show typical figures of filtered ROI (Figure 8.6). Typical curves of spectral 

reflectance characteristics and the first derivative of mean spectra from raw ROI and 

Gabor filtered ROI, i.e. MR, MG1, MG2, DMR, DMG1, and DMG2, were depicted in 

Figure 8.7. The extracted reflectance curves and first derivatives of mean spectra of rib 

end were rather smooth across the entire spectral region. Both non-filtered and Gabor 
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filtered spectra had one small reflectance peak around 1270 nm in addition to two high 

reflectance peak around 960 and 1060 nm. A small reflectance valley around 1200 nm is 

observed as well. Gabor filtered spectra had smaller scale than raw spectra. All the first 

derivatives of mean spectra had a small peak around 1040 nm and a large peak around 

1140 nm. Inflections were observed at 1100 nm for all the plots of first derivatives of 

mean spectra, which were the results of reflectance peaks in plots of mean spectra.  
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135°
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Figure 8.6   The ROI and Gabor filtered images. 
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(a) MR and DMR                                             (b) MG1 and DMG1 

   
(c) MG2 and DMG2, 0°                                           (d) MG2 and DMG2, 45° 

   
(e) MG2 and DMG2, 90°                                         (f) MG2 and DMG2, 135° 

Figure 8.7   Typical curves of mean spectra and the first derivatives of mean spectra. 

8.4.3      Texture features from GLCM 

Since different parameters of GLCM were used for different ribs, only result by offset of 

D = 3 and   = 45° is shown in Figure 8.8(a). The 8-level matrix was generated from 
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image at 1230 nm of one rib end. The format of this image is 8-bit unsigned integer, i.e. 

the values in all pixels in the image were amongst 0 and 255. The range between the 

minimum and the maximum values was divided by eight. Each element in the GLCM 

matrix indicated the number of pairs of pixels in ROI existing amongst the corresponding 

two orthotropic levels. The mean values of four statistical measurements in different 

directions are depicted in Figure 8.8(b). Higher variation is observed for measurements 

contrast and correlation than energy and homogeneity along 4 directions. This could be 

explained by intrinsic characteristics of heterogeneity of pork meat. Mean contrast and 

correlation of rib ends were lower than the other two measurements, which indicated that 

measurement contrast contains low local variations in all directions and the tested rib 

ends had rough texture. 

1 0 164 623 421 233 90 8 3

16
164 1896 2874 518 112 40 17 7

31
623 2874 16484 6663 1351 348 88 21

46 421 518 6663 5116 939 222 44 9

61
233 112 1351 939 186 82 22 7

76 90 40 348 222 82 38 4 3

91
8 17 88 44 22 4 2 0

106
3 7 21 9 7 3 0 0

1 16 31 46 61 76 91 106

Intensity of the second pixel

In
te

n
si

ty
 o

f 
th

e 
fi

rs
t 

p
ix

el

     

0

0.2

0.4

0.6

0.8

1

0° 45° 90° 135°

Direction

E
xt

ra
ct

ed
 v

al
u

e

Contrast

Correlation

Energy

Homogeneity

 

(a) GLCM matrix        (b) Mean values of four measurements along 
different directions 

Figure 8.8   An example of GLCM matrix and mean values of four measurements 

along different directions. 



  193

8.4.4      Line features from WLD 

The WLD was applied to all the ROI of rib ends and proportion of lines (PL) was 

calculated representing the line features of rib ends. Typical WLD response with r = 15, 

t = 2, and thresh = 0.3 of one rib end is shown in Figure 8.9. Low variation amongst wave 

band 945-1380 nm is observed, while high variation amongst wave band 1380-1650 nm is 

observed. The WLD was proposed for VIS image, which may affect its ability of 

extracting line features in NIR image. Larger differences between extracted line features 

in NIR images may be obtained by improving WLD to NIR region in future, which would 

affect predictive ability positively. 

 

Figure 8.9   Typical calculated PL of one rib end. 

8.4.5      Feature selection 

For each rib, Pearson’s correlation coefficients (R) between IMF content/ MS and 

different features from rib ends over whole wave band were calculated. Maximum values 

of correlation coefficient between IMF content/ MS and different features from rib ends 

are listed in Table 8.1. In Table 8.1(a), maximum correlation coefficients 

(max(|R|rib, feature)) between FLi (i = 1, 2, 3 … 6) and feature DMG2 obtained good result 
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with minimum value of 0.87 and average value of 0.905. DMR, and DMG1 indicated 

promising prediction ability with max(|R|rib, feature) > 0.80 for FLi (i = 1, 2, 3 … 6). MR, 

MG1, and MG2 indicated lower predictive ability for FLi (i = 1, 2, 3 … 6) with 

max(|R|rib, feature) <0.80. GM of rib ends revealed good prediction ability for FLi at L3-L5 

with max(|R|rib, feature) > 0.80, while PL at L3 and L4 produced max(|R|rib, feature) > 0.80. 

The result of PL indicated improvement of WLD for NIR image. It was indicated that 

DMG2 extracted from rib ends has the best prediction ability for FLi (i = 1, 2, 3 … 6).  

In Table 8.1(b), possibility of prediction of MLi (i = 1, 2, 3 … 6) using rib end 

image was revealed only by DMG2 (Minimum max(|R|rib, feature) = 0.68), while all the 

other feature gave correlation coefficient to MLi lower than 0.60. Considering the results 

in Table 8.1, DMG2 was determined as the optimal image feature for prediction of IMF 

content/ MS at different ribs.  

Typical plots of correlation coefficients between FLi/ MLi (i = 1, 2, 3 … 6) and 

feature DMG2 are shown in Figure 8.10. Smooth plots were obtained for R between FLi 

(i = 1, 2, 3 … 6) and DMG2 in 940-1300 nm, while few noise is observed in 1300-

1650 nm. Similar pattern is observed for all correlation coefficient between FLi (i = 1, 2, 

3 … 6) and DMG2 with highest correlation coefficient around 1220 nm (R≈ 0.90) at all 6 

ribs and correlation coefficient around 0.60 at 1120, 1200, and 1300-1400 nm. For R 

between MLi (i = 1, 2, 3 … 6) and DMG2, peaks are observed around 970, 1070, and 

1250 nm for all 5 ribs except ML3. Peaks around 1070, 1250, and 1480 nm are observed. 

Tough plots of R between MLi (i = 1, 2, 3 … 6) and DMG2 are observed which 

suggested that image preprocessing techniques could be applied for MS prediction in 

future.  
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Table 8.1   Maximum values of correlation coefficients between different features 

and IMF value/ MS at different ribs. 

(a) IMF content 

 

(b) MS 

Feature 
 
 

IMF content 

MR DMR MG1 DMG1 MG2 DMG2 GM PL 

ML1 0.26  0.38  0.22 0.48  0.33 0.76  0.53 0.42 

ML2 0.29  0.36  0.18 0.62  0.35 0.71  0.58 0.39 

ML3 0.25  0.40  0.23 0.61  0.34 0.68  0.56 0.44 

ML4 0.18  0.37  0.31 0.57  0.48 0.72  0.51 0.48 

ML5 0.29  0.29  0.22 0.54  0.40 0.75  0.56 0.42 

ML6 0.24  0.32  0.32 0.49  0.48 0.69  0.53 0.45 

 

 

Feature 

 

IMF content 

MR DMR MG1 DMG1 MG2 DMG2 GM PL 

FL1 0.62 0.88 0.64 0.89 0.68 0.92 0.77 0.62 

FL2 0.60 0.90 0.62 0.90 0.68 0.92 0.77 0.70 

FL3 0.63 0.86 0.67 0.87 0.75 0.90 0.91 0.85 

FL4 0.64 0.90 0.68 0.90 0.75 0.92 0.90 0.82 

FL5 0.51 0.84 0.58 0.86 0.66 0.90 0.81 0.70 

FL6 0.55 0.80 0.61 0.83 0.69 0.87 0.77 0.68 
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(a) IMF content 

 
(b) MS 

Figure 8.10  The correlation coefficients between IMF content/ MS at different ribs 

and DMG2 extracted from rib ends. 
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8.4.6      MLR models 

8.4.6.1   Key wavelengths 

For each rib, the texture-spectral feature DMG2 which provided highest correlation 

coefficient to IMF content/ MS were used as the variables for prediction of corresponding 

attributes. Stepwise procedure was applied to the feature using optimal parameter set to 

simplify the independent variables to several vial wavelengths. The used key wavelengths 

for prediction of FLi and MLi (i = 1, 2, 3 … 6) are listed in Table 8.2.  

The ability of the NIR spectra-based feature for predicting fat levels in pork is 

based on the vibrational responses of chemical bonds including in the NIR region. Since 

composition of IMF in pork is lipid, the NIR spectra produced by the C-H stretch second 

overtones for fatty acids in 1100-1400 nm would explain the adoption of wavelengths in 

this range (1164, 1178, 1198, 1212, 1217, 1222, 1231, 1279, 1289, 1298, 1313, and 

1346 nm) in Table 8.2(a) (Shenk et al., 1992, Forrest et al., 1997). Wavelengths around 

1200 nm were used for prediction of IMF content at different ribs, i.e. 1217 nm was used 

for prediction of FL1 by DMG2, 1212 nm was used for prediction of FL2 by DMG2, 

and 1222 nm was used for prediction of FL3 to FL6 by DMG2. Wavelengths around 

1600 nm including 1596, 1610, and 1625 nm were used as key wavelengths for FL2, FL3, 

FL4, and FL5. The characteristically spectra around 1600 nm region include main affect 

from the first overtone of C-H bonds, which are the main bonds in lipid molecule (Murray, 

1986; Miller, 2001). 

The main composition of marbling is lipid. The wavelengths selected around 

1200 nm (1164, 1183, 1198, 1236, 1246 nm) in Table 8.2(b) could be explained by the 
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tight relationship between lipid and NIR spectra. More wavelengths were selected for 

prediction of MS at most ribs comparing to IMF content. It is observed that wavelengths 

around 1400 nm were identified for all 6 ribs. Wavelengths 986 and 982 nm was used for 

ML2 and ML5, respectively, which is due to the major absorbance bands of O-H bond at 

970 nm (Murray and Williams, 1987).  

Table 8.2   Optimal parameter sets of DMG2 and selected key wavelengths by 

stepwise. 

(a) IMF content 

Parameters 
FLi 

σ f θ 
Key wavelengths (nm) 

FL1 5 0.1 0° 1178, 1217, 1514 

FL2 15 0.25 90° 1010, 1212, 1447, 1596 

FL3 3 0.1 0° 1198, 1222, 1289, 1610 

FL4 10 0.2 90° 1222, 1289, 1298, 1313, 1529, 1625 

FL5 10 0.1 135° 1164, 1217, 1222, 1610 

FL6 10 0.125 135° 1222, 1231, 1279, 1346, 1462 

 

(b) MS 

Parameters 
MLi 

σ f θ 
Key wavelengths (nm) 

ML1 15 0.125 45° 1044, 1087, 1102, 1198, 1370, 1375, 1433, 1442 

ML2 10 0.2 45° 986, 1006, 1140, 1183, 1294, 1322, 1346, 1500 

ML3 15 0.125 90° 1164, 1246, 1414, 1519, 962 

ML4 15 0.125 0° 1260, 1294, 1423, 1505, 1620, 1625, 1644 

ML5 15 0.125 135° 982, 1073, 1102, 1270, 1433, 1462, 1524, 1577 

ML6 15 0.1 45° 1058, 1236, 1246, 1418, 1538 
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Different wavelengths were identified for IMF content and MS. The differences 

could be attributed to the basic differences between the conventional measurements of the 

two quality attributes (i.e. more chemical and more visual based). 

8.4.6.2   Models and performance 

The selected key wavelengths in Table 8.2 were used to build MLR models between the 

first derivative of Gabor filtered mean spectra at these wavelengths (XK) and the actual 

values of the attributes (Y). The training sets were used to develop the MLR models, after 

which the built models were cross validated. The predictive ability of models on 

independent samples were test by data in the prediction sets. Twelve optimal MLR 

models were obtained for evaluation of IMF content/ MS at the 6 last ribs. The built 

models and the corresponding performance of models are listed in Table 8.3. The 

accuracy of the MLR models are shown in Figure 8.11.  

In Table 8.3(a), high correlation coefficients between predicted IMF content and 

measured IMF content in calibration set with Rc not lower than 0.90 are observed for all 6 

ribs. Models for FL2 and FL6 performed well in training comparing to the other ribs, 

with Rc of 0.96 and 0.98, and RMSEc of 0.65% and 0.67%, respectively. Models for FL3 

and FL4 produced good calibration results with Rc of 0.97 and 0.97, and RMSEc of 

0.89% and 0.85%, respectively. The good robustness of calibration models for FLi 

(i = 1, 2, 3 … 6) was demonstrated by the good results of cross validation with Rcv ≥ 0.87 

for all 6 ribs. Best cross validation result is observed for FL2 with a high Rcv of 0.95 and 

a low RMSEcv of 0.93%. The test results by prediction sets, i.e. Rp ≥ 0.81 for all 6 ribs, 

indicated that built MLR models have great potential to predict IMF content of future 

independent samples. MLR model for prediction of FL3 produced best validation result 
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with a high Rp of 0.90 and a low RMSEp of 0.92%, while MLR model for prediction of 

FL2 showed good accuracy with a low RMSEp of 0.97%.  

As indicated by both Table 8.3(a) and Figure 8.11(a), IMF content at all 6 ribs 

could be predicted accurately and rapidly by the first derivative of Gabor filtered mean 

spectra which were extracted from the NIR hyperspectral image of rib ends. Considering 

the results of both correlation coefficient and root mean square error, MLR models for 

prediction of FL2 and FL3 showed best predictive ability and stability, while cross 

validation result of FL2-predicted model indicated best repeatability. This is attributed to 

the effective wavelength identification and the alleviation of colinearity and overfitting in 

MLR models. Considering that sampling sites of the 5 last ribs were used in previous 

study, the successful prediction of IMF content at the 6 last ribs using image of rib end 

indicated the promising future of Gabor filter-assisted NIR image of rib end for real time 

and economical detection of pork IMF content in practice. 

In Table 8.3(b), minimum valued and maximum value of 0.88 and 0.99 are 

observed in range of Rc, Rcv, and Rp, which suggested the great predictive ability of 

DMG2-based MLR models for prediction of MS at different ribs. Stable MLR model 

with best predictive ability and best robustness is observed for prediction of ML1 with 

high Rc, Rcv, Rp of 0.99, 0.99, 0.96, and low RMSEc, RMSEcv, RMSEp of 0.08, 0.18, 

0.04, followed by ML3, with Rc, Rcv, Rp of 0.95, 0.94, 0.97, and RMSEc, RMSEcv, 

RMSEp of 0.18, 0.25, 0.13. As shown in Figure 8.11 (b), all the models showed high 

predictive accuracy as the estimated MS value and actual MS value scattered along the 

ideal prediction lines compactly. The promising result of ML3 suggested the great 

potential of using Gabor filter-processed image of rib end to measure MS of pork instead 



  201

of using the pork at the 3rd / 4th last rib. In addition, MS at the other sampling locations 

beside L3 could be assessed rapidly and non-destructively as well if there is a need in 

practice. 

 
(a-1) FL1                                                            (a-2) FL2 

  
(a-3) FL3                         (a-4) FL4 

    
(a-5) FL5        (a-6) FL6 

(a) IMF content 
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(b-1) ML1       (b-2) ML2 

 
(b-3) ML3        (b-4) ML4 

 
(b-5) ML5         (b-6) ML6 

(b) MS 

Figure 8.11  Measured and predicted IMF content/ MS for calibration and 

prediction sets at different ribs. 
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Table 8.3   MLR models and performance for predicting IMF content/ MS at 

different ribs. 

(a) IMF content 

Calibration 
Cross 

validation 
 Prediction FLi 

(%) 
Regression coefficients 

Rc RMSEc Rcv RMSEcv  Rp RMSEp

FL1 
1.644, -3546.759, 121452.949, 

104983.968 
0.90 1.10 0.87 1.56  0.81 1.32 

FL2 
3.239, -49717.124, 377044.241, 

324159.829, 70668.465 
0.96 0.65 0.95 0.93  0.83 0.97 

FL3 
5.127, 24306.020, 30441.751, 

21282.249, 134283.443 
0.97 0.89 0.97 1.64  0.90 0.92 

FL4 
2.021, 674650.929, 396847.337, -

5995.125, -105822.737, -775471.098, 
249241.775 

0.97 0.85 0.96 1.41  0.87 1.45 

FL5 
2.402, 181417.035, 88613.303, 
399690.64361794, -598401.836 

0.95 1.21 0.93 1.65  0.90 1.16 

FL6 
7.686, 384278.539, 200272.139, 

435340.141, 184927.366, -209025.877
0.98 0.67 0.97 1.09  0.88 1.78 

 

(b) MS 

Calibration 
Cross 

validation 
 Prediction 

MLi Regression coefficients 
Rc RMSEc Rcv RMSEcv  Rp RMSEp

ML1 
5.963, -320465.293, -135753.453, -

52484.877, 235174.305, 95137.834, -
106568.543, 174179.817, -97110.456 

0.99 0.08 0.99 0.18  0.96 0.04 

ML2 
3.268, -174998.243, -71824.478, -

46859.179, 163841.090, 81380.519, 
98142.759, -89884.792, -27562.161 

0.96 0.19 0.92 0.42  0.96 0.17 

ML3 
1.115, 25008.233, 107444.322, -

205818.339, -149799.576, -123895.113
0.95 0.18 0.94 0.25  0.97 0.13 

ML4 
2.625,163123.945, -

26289.098,172041.651, 196623.896, -
270188.539, -384056.000, 118384.726

0.98 0.14 0.98 0.25  0.89 0.17 

ML5 
2.561, 74522.337, 118505.930, 

25947.971, 53611.476, -111959.963, 
110308.529, -487133.034, -104220.799

0.94 0.30 0.88 0.59  0.91 0.21 

ML6 
3.841, -161129.006, 104052.211, -

154670.725, -191408.998, -96293.245
0.95 0.30 0.93 0.43  0.94 0.20 
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In both Table 8.3 and Figure 8.11, the MLR models produced promising 

performance for prediction of both IMF content and MS at the 6 last ribs, i.e. 2 attributes 

at 6 different sampling locations along the Longissimus dorsi could be evaluated by 

several NIR images of one rib end.  

8.5        Conclusion 

This study investigated the possibility of using pattern analysis technique-processed NIR 

hyperspectral images of pig rib end for non-destructive and fast prediction of IMF content 

and marbling score at the 6 last ribs. Pattern techniques Gabor filter, GLCM, and WLD 

were applied and compared. The first derivative of Gabor filtered mean spectra of rib end 

was suggested as the optimal feature for prediction of both IMF content and MS at 

different ribs. MLR models were established between the first derivative of Gabor filtered 

mean spectra at selected key  wavelengths and the measured IMF content/ MS at different 

sampling sites amongst the 6 last ribs along Longissimus dorsi. All MLR models showed 

good performance with Rc ≥ 0.90, Rcv ≥ 0.87, Rp ≥ 0.81 for IMF content at all 6 ribs and 

Rc ≥ 0.94, Rcv ≥ 0.88, Rp ≥ 0.89 for MS at all 6 ribs. The first derivative of Gabor filtered 

mean spectra of rib end showed strongest predictive ability for IMF content at the 2nd/3rd 

last rib, while it showed strongest predictive ability for MS at the last/ 2nd last rib. The 

MLR models demonstrated big potential for prediction of both IMF content and MS at the 

last 3rd/4th rib, which was suggested as the sampling location for conventional 

determination of corresponding attributes. 

The promising results in this study make it possible to identify fat levels of pork 

using the images of rib end instead of pork chops along Longissimus dorsi. More samples 
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would be studied to validate the predictive accuracy for IMF content and marbling score 

at different ribs using Gabor filter-processed NIR images of rib end. 
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IX. GENERAL SUMMARY AND CONCLUSIONS 

9.1        General summary and conclusions 

Research conducted previously demonstrated the promising potential of hyperspectral 

imaging in inspection of quality and safety of food. However, as for the intramuscular fat 

level of pork, limited research work was found. In this thesis, two fat attributes of pork, 

i.e. intramuscular fat content and marbling score were evaluated using hyperspectral and 

digital image analysis. The variation of intramuscular fat content along the longissimus 

ribs was studied. The effect of freezing and thawing on image-based prediction of 

intramuscular fat level of pork were also investigated. The studies demonstrated the 

potential of measuring pork fat level non-invasively and rapidly through image analysis. 

The near-infrared spectral image analysis of pork at the 3rd / 4th last rib was 

conducted for pork marbling detection. Comparing to wide line detector, image-

processing technique Gabor filter appeared to be more effective in characterizing 

marbling score from NIR images of pork. The application of wide line detector in NIR 

area was indicated to be limited. 

An extended study was conducted to predict marbling scores of pork by 

extracting representative textural or line features from RGB images. The performance of 

wide line detector in RGB images was drastically enhanced compared to NIR images. It 

was concluded that pork marbling could be detected successfully as a line pattern from 

RGB images. 

The NIR hyperspectral image-assisted quantification of intramuscular fat content 
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of intact pork at the 3rd /4th last ribs indicated that algorithm of averaging spectra was 

effective as Gabor filter on the evaluation of the intramuscular fat content of pork. Based 

on the conclusion, the distribution map of intramuscular fat content in pork was 

developed using mean spectrum of each pixel in NIR image of pork.  

In another study, determination of intramuscular fat content and marbling score of 

pork using hyperspectral images of frozen and frozen-thawed pork was executed. The 

following conclusion was drawn from this study: the reflective images of frozen-thawed 

pork had comparable predictive ability as fresh pork, while more work should be 

conducted to reduce the effect of freezing on NIR images of pork. Frozen-thawed pork 

was implied to be applicable in the determination of fat level of pork. 

The variation study of intramuscular fat content and marbling score or pork along 

the longissimus muscle indicated the uniformity of the fat assessment procedure. The last 

rib on the longissimus muscle was identified as a predictive site for intramuscular fat 

levels of pork at anterior ribs.  

Furthermore, a study assessed the potential of NIR images of rib end to evaluate 

intramuscular fat level of pork at different ribs along longissmus muscle. The Gabor 

filtered hyperspectral images of rib end were found to be more effective in determination 

of marbling score and intramuscular fat, making it possible to measure the fat level of 

different portions of the thoracic loin without slicing the thoracic loin chunk into pieces. 

9.2        Contributions to Knowledge 

This study of the non-destructive evaluation of the intramuscular fat content of pork using 

hyperspectral imaging has resulted in the following original contributions to knowledge: 
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1.      To the author’s knowledge, this study represents the first attempt to apply different 

novel pattern recognition approaches, i.e. Gabor filter, wide line detector, and 

grey-level co-occurrence matrix to NIR images of pork to characterize the 

intramuscular fat content and the marbling score of pork; 

2.     The marbling scores of pork were predicted by line features from digital RGB 

images of pork; 

3.    For the first time, image features of frozen and frozen-thawed pork were 

determined to characterize intramuscular fat content and marbling of pork, and 

compared to a similar analysis of fresh pork. The results can be scaled up for 

application in the rapid detection of quality attributes of meat in the meat industry; 

4.    A protocol for mapping the distribution of intramuscular fat content in pork was 

designed, which provides a visual image of the variation of intramuscular fat 

content in a piece of pork; 

5.    The variation of intramuscular fat level of pork along the longissmus muscle was 

evaluated by NIR hyperspectral images. Rib end was indicated to be effective as a 

sampling site for the determination of the IMF content in pork. 

9.3        Recommendations for future work 

There is a need for further investigation into how rib end of frozen loin can be used for 

non-invasive evaluation of the intramuscular fat content of pork, how RGB images could 

be implemented in online detection system for pork marbling assessment, and if 

distribution maps of marbling score and intramuscular fat content of frozen and frozen-

thawed pork could be generated.  
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