Spatio-temporal evaluation
of entropy-based source localization
in magnetoencephalography

Tanguy Hedrich
Master of Engineering
Biomedical Engineering Department

McGill University
3775, rue University, room 316. Montréal, QC H3A 2B4 Canada
2013-12-13

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Engineering

(©Tanguy Hedrich 2013



ACKNOWLEDGEMENTS

I would like to express my very great appreciation to Dr Christophe Grova,
my supervisor, for his patient guidance, enthusiastic encouragement and useful
critique of this research work.

I am particularly grateful for the assistance given by Dr Jean-Marc Lina. His
willingness to give his time so generously has been very much appreciated.

My grateful thanks are also extended towards Dr. Eliane Kobayashi and Dr.
Marcel Heers for sharing their clinical knowledge to help me with this project.

I would also like to thank my colleagues and friends Ms. Rasheda Chowdhury,
Ms. Kangjoo Lee, and Mr. Alexis Machado, for their help, their advice and their
moral support, which helps me to work in the best conditions.

I wish to thank my parents for their tremendous contributions and support
both morally and financially towards the completion of this project.

Finally I also show my gratitude to my friends and all who contributed in one

way or the other during the course of the project.

il



ABSTRACT

For 30% of patients affected by focal epilepsy, a surgical intervention is
considered to remove the zone of the brain triggering the seizures. Interictal spikes
are transient epileptic discharges, occurring between seizures. During presurgical
investigation of patients affected by focal epilepsy, magnetoencephalography
(MEG) source localization is used to detect the brain region where interictal spikes
occur.

The estimation of the size of the brain region generating the epileptic dis-
charge may be a useful piece of information for the estimation of the resection
area. Moreover, the interictal spike may propagate along the cortical surface. It is
crucial during presurgical investigation to detect propagation pattern to identify
the onset of the epileptic discharges.

Maximum entropy on the mean (MEM) is a source localization method which
allows one to introduce a reference distribution containing prior information about
MEG data. This reference distribution is based on the assumption that the brain
is divided into parcels of generators that can be considered as active or not. It
has already been demonstrated that this method is sensitive to the spatial extent
of the source. Coherent MEM (¢cMEM) is a version of MEM adding a spatial
smoothness constraint within the parcels. In this thesis, MEM and cMEM were

compared to a standard source localization technique: the minimum norm estimate

(MNE).
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The first objective of the thesis was to test the performance to estimate
the time course of a simulated epileptic spike. We simulated interictal spikes
propagating along the cortical surface. Real MEG background data were used
to corrupt noise-free simulations, thus providing realistic simulated data. We
demonstrated that MEM and cMEM provided excellent spatial detection scores
and a similar temporal accuracy to MNE.

We then evaluated the spatial accuracy of the source localization methods
using the resolution matrix, which can be seen as the set of all the point spread
functions of the source localization methods. MEM and cMEM resolution matrices
were estimated using Monte Carlo simulations. The results showed that MEM and
cMEM have higher theoretical spatial resolution than MNE.

Finally, a method was proposed to obtain a map of activation based on a non
parametric statistical analysis. The map was performed using a bootstrap-based
analysis in the time-frequency domain. We found that the results varied with
the spatial extent of the source. However, the variance of the estimate of the null

distribution seemed to be underestimated as the statistical map lacked specificity.
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ABREGE

Pour 30% des patients touchés par une épilepsie focale, une intervention
chirurgicale peut étre envisagée en vue de réséquer la zone du cerveau provoquant
les crises d’épilepsie. Les pointes intérictales sont des évennements épileptiques
transitoires, se produisant entre les crises d’épilepsie. Pendant la prise en charge
préchirurgicale de ces patients, la localisation de source en magnétoencéphalo-
graphie (MEG) est utilisée pour détecter la région du cerveau ou les pointes
intérictales se produisent.

[’estimation de la taille des décharges épileptiques peut étre une information
utile pour 'estimation de la zone a réséquer. De plus, une pointe épileptique peut
se propager le long de la surface corticale. Il est crucial pendant I’exploration
préchirurgicale de localiser un tel circuit de propagation pour s’assurer d’identifier
la zone initiale des décharges épileptiques.

Le maximum d’entropie sur la moyenne (MEM) est une technique de locali-
sation de source qui permet d’introduire une distribution de référence contenant
des informations a priori sur les données MEG. Cette distribution de référence est
basée sur I’hypothése que le cerveau est divisé en parcelles de générateurs qui peu-
vent étre considérées comme actives ou non. Il a déja été prouvé que cette méthode
était sensible a 'extention spatiale de la source. Le MEM cohérent ( coherent MEM
- ¢cMEM) est une version du MEM qui ajoute une contrainte de lissage spatial

a l'intérieur des parcelles. Pour ce mémoire, MEM et cMEM ont été comparés a



une technique de localisation de source standard : I'estimation de norme minimale
(minimum norm estimate - MNE)

Le premier objectif de ce mémoire est de tester la performance de I'estimation
du décours temporel d'une pointe. Nous avons généré des simulations de pointes
interictales se propageant le long de la surface corticale, entachées par du bruit
de fond réaliste. Nous avons montré que MEM et cMEM obtenaient d’excellents
scores de détection spatiale, ainsi qu'une précision temporelle similaire au MNE.

Ensuite, nous avons évalué la précision spatiale des méthodes de localisation
de source en utilisant la matrice de résolution, qui peut étre vue comme l’ensemble
de toutes les fonctions d’étalement de point des méthodes de localisation de
sources. Les matrices de résolution du MEM et du cMEM ont été estimées en
utilisant des simulations de Monte Carlo. Les résultats ont montré que MEM et
cMEM avaient une meilleure résolution spatiale théorique que MNE.

Finalement, nous avons proposé une méthode visant a obtenir une carte
d’activation se basant sur une analyse statistique non paramétrique. La réalisation
de la carte statistique s’est faite avec une méthode utilisant le rééchantillonnage
bootstrap dans le domaine temps-échelle. Nous avons trouvé que les résultats
variaient avec I’extention spatiale de la source estimée. Cependant, la variance de
I’estimation de la distribution de ’hypothése nulle semblait étre sous-estimée, étant

donné que la carte statistique manquait de spécificité.
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Chapter 1
Introduction

Epilepsy affects 1% of the population in Canada [91|. About two third of the
patients have their symptoms controlled by long-term drug therapy. The other
third is resistant to treatment with anti-epileptic medication. Among them, the
patients with focal epilepsy (i.e. where the seizures are triggered by a limited brain
region) are potential candidates for epilepsy surgery. The part to be resected is
determined after a thorough presurgical investigation, which includes, besides
clinical exam and seizure semiology ! , electrophysiology and neuroimaging studies
as well as neuropsychological evaluations.

Epileptic events are mainly due to an excessive and sudden activation of
pyramidal cells, a type of neuron located on the cortical surface and in the
hippocampus and the amygdala. Interictal spikes consist of rapid neuronal
discharges (lasting a few hundred milliseconds) that are not associated with any
clinical manifestation; the patient is unaware of having them. One can record and
detect these spontaneous abnormal discharges from scalp electroencephalography
(EEG) or magnetoencephalography (MEG) only when a spatially extended portion

of the cortex is involved during the generation of the discharge. Scalp EEG is

1. Semiology is the study of signs and symptoms.



a standard exploration technique using electrodes on the surface of the head to
record neuronal bioelectrical activity, whereas MEG detects the corresponding
magnetic fields. Both modalities are used in the presurgical evaluation to localize
the source of the interictal spike: the so-called irritative zone. In this thesis, MEG
was considered because of its higher spatial accuracy. Indeed, magnetic fields

are not distorted by the skull as electrical fields are, leading to a higher spatial
resolution for MEG.

Estimating the spatial extent of the source could help the neurosurgeons to
remove the right volume of the brain without causing functional loss. On the other
hand, an interictal spike may propagate rapidly in the brain along the cortical
surface. The region of interest is the onset of the epileptic discharge. Without
information on the temporal behavior of the source, the propagation zone may
be mistaken for the spike onset zone. Therefore, one needs a source localization
technique able to accurately assess the spatio-temporal evolution of the underlying
generators.

MEG source localization is an inverse problem aiming at reconstructing the
neural activity producing the MEG data. Different localization approaches have
been proposed [38, 77|. Distributed source localization, which is discussed in this
thesis, is based on the assumption that the MEG signal is produced by a set of
evenly distributed generators on the cortical surface. The problem is ill-posed: an
infinite number of configurations of the generators inside the brain can give rise to
the same MEG signal outside the head. Therefore additional information should

be added to find a unique solution. Our laboratory developed a source localization



technique entitled Maximum Entropy on the Mean (MEM) which assumes that the
brain is acting as a set of parcels that can be active or not |2, 36]. This method
was proven to be sensitive to the spatial extent of the source of epilepsy in EEG
[36] and in MEG [16].

The objective of this master’s project was in direct continuity with the work
of Rasheda Chowdhury, a former Master student and current PhD student under
the supervision of Dr Grova. Her master’s thesis [15] and her published article
[16] aimed at evaluating the ability of distributed source localization methods to
localize accurately spatially extended sources of brain activity in MEG. Assessing
the size of the brain region involved in the generation of the interictal spike is
of great interest during the presurgical investigation of patients with epilepsy.
She showed, based on simulated data, that the maximum entropy on the mean
technique (MEM), a source localization technique developed in the laboratory
[2, 36|, was sensitive to the spatial extent of a source. MEM source reconstruction
depends on a spatial clustering of the brain: Chowdhury proved that the size of
the parcels of the clustering did not affect the spatial performance of the MEM
reconstruction.

The present master’s project is organized in three parts. The goal of the
first one was to evaluate the accuracy in estimating the time course of underlying
sources in MEM source localization with realistic simulations of interictal spikes.
The second part aimed at characterizing the spatial resolution of the MEM

operator, by estimating its resolution matrix. Finally the last part consisted in



proposing a statistical method dedicated to the implementation of a statistical
map of activation.

In previous studies from our group, only spatial accuracy at the peak of the
simulated spike was considered. The evaluation of the spatial extent was based on
the area under the receiver operating characteristic (ROC) curve (AUC) at the
peak of the signal, which is a detection accuracy index. My first objective consisted
in evaluating the ability for the MEM technique to reconstruct the time course of
a propagating interictal spike. If an interictal spike propagates along the cortical
surface, the estimation of the propagation pattern is needed to identify clearly
the onset of the propagation. Assessing the accuracy of temporal time courses
reconstructed within the MEM framework is actually far from trivial. Most source
localization techniques, as explained in Section 3.2.1, can be viewed as linear filter
converting data from the sensor space to the dipolar generator space. However
since they are linear, the temporal behaviour is usually reflecting the time course
of the signal selected for source localization. On the other hand, MEM is nonlinear,
which makes the estimation of the time course more challenging, since MEM
estimation is done for each time sample independently.

We were wondering if MEM approaches were able to estimate the spatial
extent of a source. To do so, assessing the spatial accuracy of the MEM operator
per se was an important issue. One way to address this issue is to analyze the
resolution matrix, which describes how well sources can be estimated [62|. An
analytical formula to compute the resolution matrix exists for linear source

localization. However, for MEM technique, such a solution is not available.



However it is possible to estimate the resolution matrix, by calculating the point
spread functions for each dipole along the cortical surface.

The third part of my Master’s project consisted in the development of a
statistical map of active generators. So far, the result of the MEM techniques was
a map of estimated current densities of the generators on the cortical surface along
time. Since we have demonstrated that MEM was sensitive to the spatial extent of
the source, our objective was to provide an estimate of the actual spatial extent of
the underlying generators. The method proposed in this thesis aims at defining a
test statistic for each generator, using a non-parametric resampling approach.

Chapter 2 introduces the state of the art in the domain of electrophysiology,
epilepsy and MEG source localization. Chapter 3 presents the study of the tem-
poral and spatial accuracy of the MEM techniques. The MEG source localization
technique is compared to a standard technique, the minimum norm estimate (MN)
[38], with realistic simulation of interictal spikes which propagate along the cortical
surface. The resolution matrices of MN and MEM are compared in Chapter 4. Our
goal was to quantify the spatial resolution of both source localization techniques.
In Chapter 5, a new bootstrap-based statistical analysis is proposed and discussed.
We aimed at estimating of map of activation base on the reconstructed amplitude
of the generators. Finally, a global discussion and conclusion are presented in

Chapter 6.



Chapter 2
State of the art of source localization with magnetoencephalography in
the context of epilepsy

2.1 Electrophysiology of the human brain

Neurons are brain cells that convey information via electrical or chemical
signals. There are about 50-100 billion neurons. As depicted in Figure 2-1, a
neuron is typically composed of dendrites which receive information from other
neurons: the soma where the electrical inputs are processed, and one or several
axons which represent the output structure of the cell. Very often, the axon is
covered by a myelin sheath which facilitates the transmission of the electrical
signal along the axon.

One can distinguish between different types of neurons. The most important
ones for EEG/MEG recordings are the pyramidal cells. They are found within
the layer V of the cortex, as well as in the hippocampus and in the amygdala.
They play important roles in numerous cognitive functions. They are denoted as
pyramidal because of the triangular shape of their soma (see Figure 2-2). They
are composed of multiple dendrites and a single axon, both dendrites and axons
branch extensively. They are more often excitatory, i.e. when activated they
provoke a depolarization in efferent neurons.

The information communicates between neurons through the synapses.

There are around 100 trillion synapses in the nervous system. A synapse is a
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Figure 2 1 Components of a neuron. Taken from [82]

Figure 2-2 — A pyramidal neuron in the hippocampus. Taken from wikipedia.com



junction between two neurons, most of the time from an axon to a dendrite. The
function is unidirectional: the information only goes from the so-called presynaptic
neuron to the postsynaptic neuron. In most cases, the transmission of information
in a synapse is assured by chemical messengers called neurotransmitters and

the principle of a synapse activation is explained in Figure 2-3. A synapse is
composed of a presynaptic terminal, the end of the axon of the presynaptic
neuron; the postsynaptic terminal, where the afferent neuron will receive the
neurotransmitters; and a gap between the two, called the synaptic cleft. The
neurotransmitters are stored in the presynaptic terminal, in vesicles inside the

cell. The release of the neurotransmitters is done when an action potential, a
neuronal event caused by the soma, depolarizes the presynaptic terminal. The
change of polarity of the membrane cell activates the voltage-gated calcium ion
Ca?* channels. The Ca?* channels open, which causes a movement of calcium ions
into the neuron. The Ca?* inside the presynaptic terminal induces the fusion of
the vesicles with the neuron membrane - the neurotransmitters are then released
into the synaptic cleft. These chemical agents bind with the receptor molecules in
the postsynaptic membrane, which cause the opening and closing of different ion
channels (mainly Na™, C1~ and K* ions). This produces a displacement of charges:
the postsynaptic potential (PSP). A PSP can be either excitatory or inhibitory,
depending on whether the exchange of ions between the cell and the extracellular
medium creates a depolarization (for excitatory neurons) or a hyperpolarization

(for inhibitory neurons) of the membrane cell. The neurotransmitters which did



not bind to the postsynaptic neuron are taken up by the presynaptic cell, and new

vesicles are created.
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Figure 2-3 — Functioning of a synapse. Taken from http://www.answers.com/
topic/synapse

Excitatory postsynaptic potentials (EPSPs) last from 10 to a few hundred
milliseconds with an amplitude of 10 mV. If several EPSPs are involved in a short
period of time, the PSPs are summed and the change in the membrane potential
would therefore be larger. If a neuron receives two EPSPs from synapses that are
near each other, their postsynaptic potentials are added together. The resting

membrane potential is -70mV. If enough EPSPs are engaged, and the membrane



potential reaches a threshold around -55mV, an action potential (AP) is created.
An AP is an event lasting a few milliseconds, of high amplitude which propagates
along the axon. On the other hand an inhibitory PSP provokes a hyperpolarization
of the membrane below -70mV, which limits the production of APs.

EEG and MEG sensors are mainly sensitive to the PSP of the pyramidal cells
located in layer V of the cortex |67]. The PSPs provoke a difference of electric
potential between the apical dendrite and the soma of the cell. This induces a
movement of ions within the dendrite trunk, and therefore a current, which is
called the primary current. Others currents with direction opposite to the primary
current will flow in the extracellular medium to ensure the conservation of electric
charge. Those are called secondary currents or volume conduction. If a large
population of pyramidal cells (at least 100,000 neurons) is recruited synchronously,
the current dipoles generated by all dipoles with similar orientation (perpendicular
to the cortical surface) sum up, and create a signal of sufficiently large amplitude
that could be recorded from the scalp using EEG or MEG. (Figure 2-4).

The post synaptic currents create both an electric field and a magnetic field,
which can be recorded using EEG and MEG respectively. The two fields are
orthogonal to each other: the magnetic field rotates around the main direction of
the current (see Figure 2-5).

2.2 Epilepsy

An epileptic seizure, according to the definition proposed by the Inter-

national League against Epilepsy and the International Bureau for Epilepsy, is

“a transient occurrence of signs and/or symptoms due to abnormal excessive or
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Figure 2-4 — Generation of the EEG or MEG signal. Left: the primary current on
a pyramidal cell is due to the appearance of excitatory post synaptic potential on
the dendrite of the cell. The law of conservation of energy tells us that other cur-
rents must flow in the direction opposite to that of the primary current to obtain a
closed current loop. While the primary current is intracellular, the secondary cur-
rents flow through the volume conductor. Centre: the pyramidal cells are located
on the cortical surface and are all oriented normal to the cortical surface. Right: a
large population of neurons is necessary to obtain an EEG or MEG signal. Taken
from [3]
synchronous neuronal activity in the brain”. Epilepsy “is a disorder of the brain
characterized by an enduring predisposition to generate epileptic seizures and by
the neurobiological, cognitive, psychological, and social consequences of this con-
dition. The definition of epilepsy requires the occurrence of at least one epileptic
seizure” [29].

Epilepsy is not a disease, but rather a condition of the brain where a sudden

and abnormal neuronal discharge could occur, provoking a seizure. This disorder

can be caused by different factors, which is the reason why some researchers in the
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domain prefer the term epilepsies. Seizures can be due to anatomical anomalies,
malformations of cortical development, brain lesions, tumours, central nervous
system disease, post-traumatic scar or other abnormalities (whose cause may not
be known or identified) [27].

There are three main features characterizing an epileptic seizure [29]:

— It is demarcated in time, delimited by a clear onset and termination.
Typically, a seizure lasts a few minutes, but can be as short as a few
seconds. On the other hand, a long-duration case of epileptic seizures, called
status epilepticus, can last days or weeks.

It provokes clinical manifestations. Those clinical signs are various, depend-

ing on the location of the brain areas involved during the generation and

12



propagation of the seizure. Epileptic seizures can involve loss of conscious-
ness; interruption of memory; sensory, visual or auditory hallucinations;
motor automatism such as jerking; change of emotional state, etc. Not

all seizures affect all of these factors and patients can experience seizures
causing different clinical signs.

It is caused by an abnormal synchrony of overexcited neurons in a region of
brain. This excessive and unpredictable discharge is often due to a decrease
in local inhibition on a population of pyramidal neurons. These abnormal
neuronal discharges gave rise to changes in electro-magnetic activity in

the neurons, that can most of the time be detected remotely by measuring
differences of electrical potentials using scalp electroencephalography (EEG)
and variations in magnetic field with magnetoencephalogaphy (MEG).

This concept is developed in section 2.1. It is worth noting here that some
epileptic events provoke long-lasting abnormal discharges detectable by
EEG, but without causing any clinical signs. These types of events are

called electrographic seizures.

Epileptic seizures can be classified into two main categories. If the seizure

onset zone is a delimited brain region, the epilepsy is referred to as focal or partial

epilepsy. On the other hand, generalized seizures involve extended brain regions

over both hemispheres. Focal seizures can be simple or complex, depending on

whether they are associated or not with a loss in consciousness and memory

[30]. Focal seizures can propagate through all the brain and become secondary

generalized events.
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One type of generalized seizure is absence seizure, which is characterized by a
brief loss of consciousness along with staring spells lasting seconds. On the other
hand, tonic-clonic seizures are generalized seizures which involve an impairment
of consciousness following stiffening (tonic activity) and rhythmic jerking (clonic
activity) of the limbs.

Epilepsy affects 1% of the population in Canada |91|. Epileptic seizures can
be controlled through long-term drug therapy. Medication does not cure epilepsy
but helps to reduce or stop the occurrence of seizures. The type of medication
prescribed to the patients depends on the type and the frequency of the seizures
and the patient’s age and condition. However, 30% of the patients are drug-
resistant, meaning that medication has no or little effect on the symptoms. For
those patients, other forms of treatments are considered. Patients with focal
epilepsy may undergo surgery to resect the brain region responsible for the seizures
while avoiding any important functional loss.

Table 2 1 reports the definition of all the regions of interest in the brain in the
context of epilepsy. The epileptogenic zone is the part of the brain epileptologists
need to identify. There is no direct measure to detect this zone. However, it is
possible to detect areas in the brain which are involved in epilepsy and related to
the epileptogenic zone.

EEG and MEG allow the detection and localization of the generators of the
interictal spikes and seizures, which correspond to respectively the irritative and
ictal onset zone. An interictal spike is a transient event characterized by abnormal

neuronal discharge. The interictal spikes can become visible on scalp EEG and
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Table 2-1 — Brain areas of interest in partial epilepsy. Taken from [27]

Brain area Definition Measure
I[rritative zone Area of cortex that generates interictal spikes EEG
Ictal onset zone  Area of cortex that initiates or generates seizures EEG

Epileptogenic
lesion

Symptomatogenic
zone

Functional
deficit zone

Epileptogenic
zone

Structure pathology of the brain that is the direct
cause of seizures

Portion of the brain that produces the first clini-
cal symptoms

Cortical area producing nonepileptic dysfunction

Total area of the brain that is necessary to gener-
ate seizures and that must be removed to abolish
seizures

CT, MRI, tissue
pathology

EEG, behavioral
observation

Neurologic
exam, neuropsy-
chology, PET,
SPECT

Unknown
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MEG as soon as they involve an extended portion of the cortex in order to
generate a signal of sufficient amplitude to be detected from ongoing background.
The interictal spike is not associated with any clinical manifestation; the patient
is not even aware when the discharges occur. In practice, it is more frequent and
convenient working with interictal spikes: they happen more frequently than
seizures. Also, patients move during seizures, provoking motion artifacts. This
makes the analysis of the data of EEG or MEG more challenging. Both the
wrritative and ictal onset zones are believed to be very close to the epileptogenic
zone.

When epileptic seizures are likely to be generated by an underlying lesion, the
area of the lesion may be detected with brain imaging techniques such as Magnetic
Resonance Imaging (MRI) [9, 83| and computed tomography (CT) or with the
analysis of tissue pathology. These techniques reveal the epileptogenic lesion, whose
resection is often enough to abolish epileptic seizures.

Sometimes, patients with epilepsy may have a deficit in cognitive functions.
The location in the brain of those malfunctioning functions (the functional
deficit zone) can help to localize the epileptogenic zone. For this, neurological
and neuropsychological exams are used to help to define the impaired cognitive
functions. They can also be localized using neuroimaging techniques following
brain metabolism and perfusion such as position emission topography (PET) [50]

and single-photon emission computed tomography (SPECT) [88].
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2.2.1 Localization of the generators of interictal spikes

EEG and MEG interictal spikes are large amplitude spontaneous discharges
that can be detected from background EEG/MEG activity only when the under-
lying generators correspond to the synchronization of the discharges of a spatially
extended area. Studies have suggested that a cortical area of at least 4cm? should
be active to be detected in MEG [86]. Similar studies have suggested an area of 6
to 10cm? is needed to be able to detect a spike in scalp EEG [72].

To detect interictal spikes, expert epileptologists examine EEG/MEG record-
ings and identify abnormal events following the criteria outlined by Walczak et al.
[90]:

1 The waveform should be clearly distinguished from the background activity.
2 It should be a spike, i.e. there must be a abrupt and rapid change in polarity.

3 It should last between 30 and 200 milliseconds.

4 Tt should be physiologically plausible, unlike EEG artifacts. Practically, it
means that if the spike is recorded by more than one electrode, it must have

a voltage gradient across the scalp.

It is worth noting that these criteria were proposed for EEG. So far, no
equivalent has been proposed for MEG recording.

One of the advantages of EEG and MEG is that they provide a map of
activity of the whole cortical surface. Also, they are non-invasive, meaning that no
electrodes are implanted inside the head. Invasive recordings, such as intracranial
EEG, are used in epilepsy if non invasive studies do not succeed in giving a

clear location of the epileptogenic zone. One can use either a grid of electrodes
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placed on the cortical surface or depth electrodes that can reach deeper structures
(such as hippocampus or amygdala). As in situ invasive recordings, intracranial
EEG recording allows one to acquire data with excellent signal to noise ratio.
However they only give an indication of a local area in the brain. Indeed, due

to the invasiveness of the procedure, only few intracranial electrodes can be
implanted, thus limiting the spatial coverage. This is why EEG and MEG should
be considered to guide the implantation of invasive electrodes, to make sure
placing them near the irritative zone [84].

Interictal spikes are spontaneous events that, besides involving an extended
brain region, can also propagate. Several studies have investigated the propagation
of interictal spikes, especially for temporal lobe epilepsy [47, 85, 5|. Different
patterns have been identified: for example from mesial to a lateral temporal
location [24], or from anterior to posterior temporal region [26]. It is commonly
accepted that the propagation is due to the activation of a neural network by the
group of cells triggering or propagating a spike. The delay between the two spikes
along the propagation depends on the level of myelinisation of the track connecting
the populations. The speed of the connectivity can vary from 1m/s to 40m/s [26].

An accurate characterization of the propagation patterns is required during
the presurgical evaluation of patients with epilepsy, because the detection of
the first region where the spike is generated allows the neurosurgeons to better
estimate the brain region to resect. Accurate characterization of the propagation
patterns of interictal spikes are related to the good outcome of epilepsy surgery

because the irritative zone, i.e. the onset of the interictal spike, is more likely to be
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identified correctly [85, 56, 40]. In Lantz et al, 2003[56], the authors warn the users
of EEG and MEG source localization algorithms that not taking into account spike
propagation can lead to wrongly localized results.

Several studies have shown that MEG has a better ability to detect propaga-
tion than EEG [40, 42, 85|. This can be explained by a better spatial sensitivity of
MEG and a higher signal to noise ratio (SNR) in the lateral temporal and frontal
cortex. The superior spatial accuracy of MEG is due to the influence of the skull
on the electric fields generating the EEG signal. The low conductivity of the skull
tends to distort the electric fields, thus reducing the spatial accuracy of EEG [6]
while the skull has almost no impact on MEG data.

2.2.2 Other modalities for localization

All the localization techniques can be classified according to their temporal
and spatial resolution. For example both EEG and MEG have the advantage of
a very high temporal resolution (about 1ms) but a poor spatial resolution (5 to
20mm after source localization, depending on the brain area). As shown in Figure
2-6, most, other non invasive modalities offer a better spatial resolution.

Whereas EEG and MEG directly measure neuronal activity, i.e. neuronal
bioelectrical activity, other modalities indirectly estimate brain activity.

The principle of functional Magnetic Resonance Imaging (fMRI) consists of
detecting the changes in blood oxygenation and flow that occur in response to neu-
ral activity. Since hemoglobin is diamagnetic when oxygenated (oxyhemoglobin)
but paramagnetic when deoxygenated (deoxyhemoglobin), one can observe small

changes in the magnetic resonance signal depending on the level of oxygenation.
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Figure 2 6 Spatiotemporal resolution and invasivity of brain functional imaging
modalities. Taken from [34]
The underlying theory is that an active brain area consumes more oxygen. There-
fore, the blood-oxygen-level dependent (BOLD) signal recorded by the fMRI
correlates with neural activity [71]. It is also possible to record simultaneously
EEG and fMRI. Then, EEG is used as a trigger for studying epileptic activity:
once an epileptic discharge is detected in EEG data, the hemodynamic response is
inspected few seconds afterward [33].

Positron emission tomography (PET), as well as single photon emission
computed tomography (SPECT), focus respectively on the glucose consumption
and the cerebral blood flow (CBF), both indirect indicators of neuronal activity.

These techniques are slightly invasive because they require the injection of a
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radioactive tracer. SPECT can be used during an epileptic seizure (ictal SPECT)
to measure CBF during the first moments of a seizure. The goal is to inject
radioactive tracer as soon as the first signs of a seizure appear [51].

Similarly to fMRI, near-infrared spectroscopy (NIRS) measures local changes
in hemodynamic activity, exploiting specific absorption spectra of oxy- and deoxy-
hemoglobin in the near infra-red, using optic fibers placed on the skin [10]. EEG
is used to identify the epileptic discharges, while NIRS is used to monitor local
fluctuations of oxy- and deoxyhemoglobin elicited by the discharge |60].

Most of the time, noninvasive methods are sufficient to evaluate the patients
before surgical resection. However, if these techniques do not detect the epilepto-
genic zone accurately enough, intracranial EEG investigation is considered |70].
Different techniques exist; the choice of the type of electrode to implant and its lo-
cation depend of the type of epilepsy of the patient. Hence, a specific implantation
planning has to be tailored on a case by case basis.

2.3 Electroencephalography (EEG)
2.3.1 History of EEG

Electroencephalography was first recorded in human by the German physi-
ologist Hans Berger [37|. He did his first experiment on his son, described alpha
and beta rhythms in the brain and invented the term ‘electroencephalogram’.
Hans Berger was able to record signals to the order of microVolts with a string

galvanometer. The first EEG recording are shown in Figure 2-7.
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Figure 2—7 — The first reports of the human EEG from the first publication from
Hans Berger. Top: top line represents beta wave activity, related to normal waking
consciousness; the middle tracing is the ECG and the lowest tracing is a generated
10 Hz sine wave. Bottom: top line shows what is known now as alpha rhythm
which happens when the subject’s eyes are closed. The lowest tracing is a gener-
ated 10 Hz sine wave. Taken from [8]

2.3.2 Instrumentation for EEG

EEG records brain electrical activity by placing electrodes along the scalp. In
a modern EEG system, the electrodes are connected to an amplifier and the signals
are then digitized and stored on a computer. Signals measured by EEG sensors
have an order of magnitude in the range of a few V.

A standardization electrode placement scheme, the 10-20 system, was pro-
posed by Jasper in 1958. It has permitted a congruence among the laboratories
around the world and helped the development of this technique. This system is
based on 10% or 20% proportional distances along a longitudinal line of the head
between two anatomical landmarks (nasion and the inion) as well as along a trans-

verse line of the head between the left and right pre-auricular points. The nasion
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is the intersection of the frontal and two nasal bones of the human skull, and the
inion is the most prominent projection of the occipital bone at the posterioinferior
(lower rear) part of the skull. The standard recording array for adults consists of
21 electrodes plus a ground electrode, as seen in Figure 2 8(A,B). Each electrode
is specified by a letter name related to the general underlying cortical region or
lobe (frontopolar - Fp; frontal - F; temporal - T; occipital - O; parietal - P) and

a subscript reflecting its position relative to the midline. Even and odd numbers
refer to the right and left hemispheres respectively, and the z (zero) refers to an
electrode placed on the midline. When recording a more detailed EEG with more
electrodes, extra electrodes are added in the spaces between the existing 10-20 sys-
tems (Figure 2-8(C)). Nowadays, most research protocols use 19 to 64 electrodes,

but can reach as many as 512 electrodes.

A B Nasion

i Preaurical
point

Inion 10%

Figure 2-8 — The international 10-20 system seen from (A) left and (B) above the
head. A — ear lobe, C = central, Pg — nasopharyngeal, P — parietal, F — frontal,
Fp — frontal polar, O — occipital. (C) Location and nomenclature of the interme-
diate 10% electrodes, as standardized by the American Electroencephalographic
Society. Taken from |81]
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2.4 Magnetoencephalography (MEG)
2.4.1 History of MEG

The first human magnetoencephalography signal was measured by Dr David
Cohen in 1968 [17|. MEG signal was recorded using a single copper induction
coil at the University of Illinois. To avoid environmental noise (such as electrical
devices, elevators, cars, or even the Earth’s steady field), the MEG was recorded
in a shielded room. The signal to noise ratio increased drastically thanks to
the invention of superconductive quantum interference device (SQUID), an
ultrasensitive detector of magnetic flux, developed by Dr Zimmerman [96|. Figure
2 9 shows the signal of the first MEG recorded with SQUID in Massachusetts

Institute of Technology.
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Figure 2-9 — First MEG signal recorded with a SQUID in May 1971, in a shielded
room in MIT. One can clearly see the apparition of alpha rhythm when the subject
closes his eyes. Taken from [18|

From the first single-sensor recording, the number of sensors has progressively
increased to reach around 300 MEG sensors organized within a helmet for MEG
devices available nowadays. In present-day systems, all the sensors are placed in a
helmet for a faster and a more efficient recording. Figure 2 10 shows a picture of a

MEG system.
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Figure 2-10 — A MEG system. Taken from wikipedia.

2.4.2 Instrumentation for MEG

The neuronal signal recorded by MEG is of very low amplitude. The magnetic
fields corresponding to brain activity are of the order of femto (107'°) to pico
(107'2) Tesla. For comparison, the Earth’s magnetic field is of the order of
10=* Tesla. All electronic, as well as cars and elevators produce a field of order
of microTesla. For these reasons, in order to record MEG data, one needs the
combination of three main elements:

— Ultrasensitive detectors. To detect magnetic fields, induction coils are
generally used. A variation of magnetic flux through a coil composed of one
or several loops will generate an electric current in the coil: the principle
is called magnetic induction. However, the detection of brain magnetic
field with a regular coil is almost impossible; one would record almost

nothing, as all the energy would be dissipated in heat due to the inherent

25



resistance of the coil. This is why we use a supraconductive environment to
reduce at the maximum the resistance of the materials. For that reason, the
induction coils used to detect fluctuations of the magnetic field are coupled
with superconducting quantum interference devices (SQUIDs) which are
very low noise, ultra high gain, current-to-voltage converters. To allow
supraconductivity, the coils and the SQUIDs are placed in liquid helium, at
a temperature of 4° K (-269° C).

There are two types of MEG sensors: magnetometers and gradiometers.
The magnetometer consists in only one coil placed as close as possible

to the head of the subject (see schema in Figure 2-11 (a)). It offers the
advantage of being very sensitive to the magnetic field, however it is also
sensitive to environmental magnetic noise. The gradiometers are made

of two magnetometers or more wound in an opposite sense separated by

a certain distance. The gradiometers measure the difference of magnetic
fields recorded by the two coils. There exist different configuration of
gradiometers, and the most commonly used is the radial gradiometer as
illustrated in Figure 2 11 (b). As we can assume the ambient noise is the
same on both coils, gradiometers cancel out those distant sources of noise.
On the other hand, gradiometers are less sensitive to deep sources than
magnetometers.

A shielded room. To get rid of the environmental noise (including the

Earth’s magnetic field), the MEG is placed in a shielded room, which
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is generally constituted of nested layers of aluminum and mu-metal, a
nickel-iron alloy.

— Reference sensors. Even in a shielded room, there are still magnetic fields
interfering with the MEG signal. They may be due to some remaining envi-
ronmental noise, instrumental noise and activity coming from the body of
the subject himself. The heart, for instance, produces a magnetic fields 1000
times stronger than brain activity. To remove this noise, which is considered
identical within the whole room, some MEG devices are equipped with ref-
erence sensors that consist of magnetometers and gradiometers centimeters
away from the head of subject. Those sensors record ambient noise while
taking into account the fixed geometry between the reference sensors and
the sensors of interest.

2.5 EEG and MEG source localization

Both EEG and MEG consist in scalp recordings, offering thus very weak
spatial resolution. The goal of source localization for EEG and MEG modalities
in the context of epilepsy is to localize the generators of the electromagnetic fields
measured at the time of neuronal epileptic discharges. The physics of these fields is
described by Maxwell’s equations.

The first step of source localization is to solve the forward problem. This

consists in computing a model that describes how a dipolar current source in the
brain will contribute to the signal measured outside the head using EEG electrodes

or MEG sensors.
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Figure 2 11  Commonly used MEG sensor configurations. (a) magnetometer (b)
1st order gradiometer. Taken from [41]

The solution of the forward problem is needed to solve the inverse problem,
the actual goal of source localization, that is to say finding within the brain the
generators of some specific activity measured using EEG and/or MEG. The
forward and the inverse models are illustrated in Figure 2—-12.

2.5.1 The forward problem

In order to compute the EEG and MEG signals generated by a known
distribution of sources, it is necessary to choose a head model and to make some
assumptions and simplifications about the source and volume conductors. The
forward model is then solved using Maxwell’s equations, which describe how
electric charges and electric currents act as sources for the electromagnetic field.

Since the useful frequency spectrum for electrophysiological signals in MEG and
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Figure 2-12 — Forward and inverse models for MEG data. Taken from http:
//neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel

EEG is typically below 1kHz, the electromagnetic field is calculated within the
quasi-static approximation of Maxwell’s equations.

The head geometry can be modeled as a set of nested concentric homogeneous
spherical shells representing the brain, the skull, the scalp and possibly the
Cerebro Spinal Fluid (CSF) compartment of a human head. This simple geometry
allows one to reduce the Maxwell’s equations to provide an analytical solution
to the problem, thus easier to compute [78]. EEG studies have shown that such
simplified models cannot produce satisfactory results [13] since the electric fields
are very sensitive to the anatomy of the skull. Indeed the skull is very resistive
compared to the surrounding tissues (the skin and the cortex), therefore the
electric fields tend to smear spatially. This is the reason why one needs to model
the skull accurately enough to take this phenomenon into account. MEG data
analysis is much less impacted by this simplification [45] since magnetic fields

are not affected by the resistivity of the skull. In spite of that, the spherical head
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model is still routinely used in most clinical and research applications for EEG and
MEG source localization.

More accurate solutions to the forward problem use anatomical information
obtained from high-resolution volumetric brain images obtained with MRI. The 3D
representation of the brain, the skull and the scalp are extracted from the images.
A boundary element method (BEM) can be used for the calculation of the forward
solution, which takes into account only the surfaces between the regions, assuming
homogeneity and isotropy within each region [54, 65]. A more accurate method
is the finite element method (FEM), which considers all the volume and can deal
with local inhomogeneities [92]. Both BEM and FEM are very powerful approaches
to solve the forward problem but are very time consuming |3].

The main difficulty for EEG is to initialize the conductivity values of the
brain, the skull and the scalp. Indeed, the estimation of these values might be
erroneous, as they are done in animal studies, or post mortem.

Since MEG is less affected by the conductivity, the computation of the
forward model for MEG is easier. For this work, we will use a 1-layer BEM
model, modeling only the inner surface of the skull, assuming that the magnetic
permeability is the same for the skin, the skull and the brain. BEM offers a good
trade-off between the realism and the complexity of the model. The forward
model is calculated with OpenMEEG software [35, 54]. One main advantage of
the software is that it is able to solve the issue of numerical instabilities when

generators are located too close to the BEM surface.
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2.5.2 The inverse problem

To estimate the neural sources of EEG or MEG data, three types of general
approaches are used: parametric model, dipole scanning approach and distributed
sources model.

The parametric model assumes that the measured data have been produced
by a few generators and each of them can be modeled using an equivalent current
dipole (ECD). The number of ECDs is fixed. The unknown parameters are then
the location, the orientation and the amplitude of these dipoles. Some of these
parameters can be fixed to facilitate the solution of the problem. The three
principal dipole models are: the rotating dipoles, with fixed position, the fized
dipoles, with fixed position and orientation, and the mowving dipoles, with all the
parameters unknown [79]. The main limitation with these methods is that the
user has to fix a priori the number of dipoles. For these reasons, dipole fitting
approaches are commonly used with only one dipole, or sometimes a few, after one
is set to a known position. These limitations imply that such methods can only
be used reliably with one or few very focal active regions. This is usually a valid
assumption for brain activations occurring shortly after stimulation of primary
functions (somatosensory, auditory or visual) [34]. However, the ECD model can
also provide misleading results when the source of activity is too spatially extended
[52], leading to inaccuracy in the estimation of the depth of the ECD.

Dipole scanning approaches focus on a region of interest, for example a
regular grid within the brain. An estimator of the contribution of each putative

source location to the data can be derived either via spatial filtering techniques
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(beamforming approach, [89, 14]) or signal classification indices (Multiple Signal
Classification approach (MUSIC), [66]). Historically these scanning methods were
first introduced in the radar and sonar community. An attractive feature of this
method is that they do not require any a priori on the number of underlying
sources. However, they make the strong assumption that the activations of the
different sources are uncorrelated. As a dipolar model evaluated iteratively on each
point on the grid, dipole scanning approaches could not be sensitive to the spatial
extent of the generators.

The distributed sources to model the MEG/EEG inverse problem consist of
considering the cortex as a set of distributed dipoles at fixed locations along the
cortical surface thus allowing to incorporate realistic anatomical constraints to
regularize the ill-posed inverse problem [22|. In this case, since the locations are
fixed, only the linear parameters, i.e. the current density, need to be estimated,
and the inverse problem reduces to a linear one with strong similarities to those
encountered in image restoration and reconstruction.

Typically, the dipolar sources are placed at each node of a triangular tessel-
lation of the surface of the cortical layer, obtained by anatomical MRI. Assuming
the pyramidal cells are organized perpendicularly to the cortical layer, we can
constrain each of these dipoles to be normal to the surface, which permits to
reduce by 3 the degrees of freedom of the model. However, a good representation
contains thousands of dipole sources, and the number of sensors is generally only
few tens for EEG and few hundreds for MEG. Therefore, the inverse problem is

largely underdetermined and needs constraints or prior information to be solved.
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The most common ways to regularize the inverse problem is to consider the solu-
tion with the minimum energy (Minimum Norm Estimate (MNE) [45]), or with
the maximum spatial smoothness (Low Resolution Electromagnetic Tomography
(LORETA) [77]). Others techniques, using Bayesian probabilistic approach [87] or
the Maximum of Entropy on the Mean (MEM, [36]), have been proposed. Bayesian
and MEM techniques provide a framework where you can add any prior informa-
tion. This gives the flexibility of choosing the constraint to regularize the inverse

problem, and also allows the possibility to compare models.
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Chapter 3
Spatio-temporal evaluation of reconstructed propagating sources

3.1 Rationale

The localization of the EEG and MEG sources is a challenging topic, and
many researchers proposed methods to solve this inverse problem [38, 21, 77, 20,
76, 36|. From our group, Amblard and colleagues developed a source localization
method based on a data-driven parcelization of the brain, and a non-linear
regularization maximizing the p-entropy [2|: the maximum of Entropy on the
Mean (MEM). It showed the good performance of the method and demonstrated
that, unlike standard linear techniques, MEM was sensitive to the spatial extent
of the source [36, 16|, which makes it an interesting source localization technique,
especially for spatially extended sources (such as the generators of interictal
spikes).

However, the temporal accuracy of the reconstruction of the MEM method
has never been studied. Whereas providing an accurate estimate of the time course
of underlying source is of great importance for any source localization method,
it is particularly important in the context of epilepsy to localize the onset of
propagating discharges. To analyze its temporal accuracy, the MEM technique
was evaluated using realistic simulations. These simulations mimic interictal spikes

propagating along the cortical surface.
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Several studies in EEG and MEG demonstrated propagation patterns in
epilepsy, notably in the temporal lobe [26, 5, 47| and the frontal lobe [26, 40].
Lantz et al. |56] indicated that the source localization was likely to be more
accurate when analyzing the signal at around 50% of the rise time of the spike,
since it is a tradeoff between the signal-to-noise ratio and the propagation of the
source. Several authors considered MEG more efficient than EEG to identify the
propagation pattern [85, 42|, due mainly to the enhanced spatial resolution.

In this chapter, we first present the standard inverse solvers, using Tikhonov
regularization (Section 3.2.1), before introducing the MEM framework, developed
in our laboratory (Section 3.2.3). In Section 3.2.4, the process to simulate the
interictal discharge is explained. The results for an example simulation and for a
set of 100 simulations are shown in Section 3.3 and discussed in Section 3.4.

3.2 Materials and methods

In this section, the standard way of source localization, i.e. techniques using
Tikhonov regularization, and the MEM techniques will be introduced.

3.2.1 Source localization using Tikhonov regularization

In the context of a distributed sources model, Dale and Sereno [21| proposed
to constrain the generators to be located in the cortical surface with their ori-
entation normal to the surface. The EEG/MEG inverse problem then becomes

linear:

M=GJ+E (3.1)
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where M is a ng X n; matrix of the EEG or MEG data measured with n, EEG
or MEG sensors and n; time samples. (G is the n, X ny4 lead field matrix, i.e. the
solution to the forward problem. G models the influence of each of the ny dipolar
generators distributed along the cortical surface on the ny EEG or MEG sensors. J
is the ng X n; matrix of the source distribution, characterizing the current density
as a function of time on the cortical surface. The estimation of this matrix is the
goal of the source localization. E is a ng X n; matrix that models the additive noise.
The number of sensors is usually around 64 for EEG and 275 for MEG. The
number of dipoles taken into account was set a priori. It may vary between 1000
and 50,000. A low number of dipoles will lower the problem complexity, but reduce
the spatial resolution. For this project, the number of dipoles ngy was about 4000.
One of the simplest ideas we can have to solve this problem is to use the least
square estimate to find the J based on the data M and the forward solution G we

modeled:

Jps = argmin | M — GJ||% (3.2)
J

where || - ||r denotes the Frobenius norm. An analytical solution can be found using

the differential of ||[M — GJ||%. We obtain:

Jrs = (GTG)'GTM (3.3)
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Unfortunately for our problem, this solution is not applicable: the number of
sensors is always much lower than the number of dipolar sources distributed on the
cortex (n, < ng), which makes GTG impossible to invert. The Equation 3.1 is said
to be ill-posed: a unique solution cannot be found without additional constraint or
regularization. The Tikhonov regularization is one of the methods used to find a

unique solution. With this method, the Equation 3.3 becomes:

Juve = (GTG + A\)'GT™M (3.4)

where [ is the identity matrix, and A is a hyperparameter to estimate. In the
domain of EEG and MEG source localization, this method is called Minimum
Norm Estimate (MNE), name given by Hamildinen and colleagues [38]. The
solution of this method provides the solution with the lowest energy in the source

space:

jMNE = arg}nin (||M - GJ”%’ + )\”JH%) (3-5)

A is a hyperparameter controlling the proportion of regularity brought to the
solution. It is related to the signal to noise ratio. The lower the level of noise, the
lower the reconstruction error, and therefore the lower \.

Different methods have been proposed to estimate A. The method used for
this study is called the L.-curve method, and was first proposed by Hansen and

colleagues [39]. The principle of this method is to calculate the inverse solution for
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different values of A. One can then represent on the same figure ||M — GJ||% as a
function of ||.J||% for different values of A. The Figure 3-1 shows an example of this
L-curve. The optimal A is then selected as the point with the highest curvature,
as shown in Figure 3 1 by the green lines. Indeed, when displaying the values of
the residual norm (||M — GJ||%) and the regularization term (||J]|%) for different
values of A\, one can see a horizontal line and vertical line. The horizontal part
(corresponding to high values of \) shows oversmoothed solutions, only dominated
by regularization errors. On the other hand, the vertical line, cases when A is
too small, show solutions dominated by perturbation errors. The [.-Curve theory
assumes the best solution lies in the corner of the two lines, assuring a tradeoff
between the regularization and perturbation errors. The corner of the curve is
found by selecting the point with the highest curvature.

We can generalize the minimum norm by changing the identity matrix in

Equation 3.5 by a symmetric matrix K:

J = argmin (| M — GJ|% + N KJ|2) (3.6)
J

In that case, Equation 3.4 becomes:

J=(GTG+\2,)"'G" M (3.7)

where 3; = (KT K)™!, a matrix related to the covariance matrix of the generators.
The assumptions put on the solution of your source localization depend of the

nature of K:
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Figure 3—1 — L-curve in minimum-norm estimator. The curve is displayed in a
log-log scale. Taken from [34]

— If K =1, as for the minimum norm method, it means that the generators
on the cortex are considered as independent and contributed identically to
the data

— If K =W, with W being a diagonal matrix, the method is called weighted
minimum norm. It is based on the fact that all the generators do not
contribute similarly to the data. Indeed, superficial sources have a higher
effect on the data than deep sources. Therefore, using a minimum norm

method penalizes deep sources over superficial ones. W is then used to
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cope with this bias. Generally, we set the diagonal elements of W as

w; = ||G;||”, with v = 1 or 2, where G; is the ith column of the gain matrix
G. The difference of norm of the columns of the gain matrix is therefore
counterbalanced by the W matrix. That way, all the generators have the
same impact on the data.

— If K is a spatial Laplacian matrix, the solution is the one with the highest
spatial smoothness. The formulation is similar to the method called
LORETA, developed by Pascual-Marqui et al. [77].

3.2.2 Connection with the Bayesian framework formulation

Within the Bayesian framework, given Equation 3.1 we consider that £ and J
are Gaussian distributions with null mean and of variance of o%1I, and o%(K*K)™
respectively. The inverse problem can be viewed as the conditional probability of J

given the data M. According to Bayes’ law:

p(M|J)p(J)
p(M)

where p(M|.J) is the data likelihood, and p(.J) is the prior distribution representing

p(JIM) = (3-8)

the information brought by J.
Within this Bayesian framework, a solution to this inverse problem can be
found by using the Maximum a Posteriori estimate of J, which is equivalent to

maximizing the log-posterior probability:

Jyap = argmax p(J|M) = argmax p(M|J)p(J) = arg max (In p(M|J) + In p(J))
J J J
(3.9)
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Given the distribution of E and J, the equation becomes:

Jarap = argmin [||M — GJ||> + A K J||?] (3.10)
J

where \ = Z

Lﬁ\)lm S

Hence, the solution is then given by:
Jyap = (GTG+ NKTK) ™)' G™M (3.11)

which is equivalent to Equation 3.7
3.2.3 Source localization within the MEM framework

MEM principle

The MEM approach considers J as a realization of a multivariate random
variable with a probability distribution dp(j) = Prob(J = j). Regularization is
introduced by writing the solution in the form of dp(j) = f(j)du(j) where the
reference distribution dp models the a priori information and f is a p-density to be

found such that dp can explain the data on average:
M= [ iG )G (3.12)

Figure 3-2 illustrates the principle of the MEM. Let us define ), as the set
of the distributions solving Equation 3.12 and p is the reference distribution. The
MEM solution is the solution p which minimizes the mu-entropy of dp, S, (p),
which is nothing else than the opposite of the Kullback-Leibler divergence between

p and pu. Let us define as p* the ‘true solution’ and belongs to C),. One can see

41



(reference measure)

u

S (dp)
 (dp

(true solution)

5 ir 1_-:\. y
\? c.

(MEM solution)

Figure 3-2 — llustration of MEM : (), is the set of the solutions. p is the MEM
solution, which is the ’closest’ density to the prior p. Taken from [2].
that the relevance of the solution, i.e. the distance between p and p*, depends
almost entirely on the relevance of the reference du. It is thus very important to
define an appropriate reference distribution.

Initialization of the reference distribution

To define the reference distribution, the MEM model originally proposed by
Amblard et al |2] and used in this thesis uses cortical parcels, in which all the
generators are spatially connected. Thus, initializing the reference distribution
dp will first consist in decomposing the whole cortical surface into n; non-
overlapping parcels . This allows to impose a different prior for each parcel,
instead of considering all the dipoles individually. To do so, we proposed a spatial
clustering based on a data-driven parcelization (DDP) method |23, 57|. This
method is based on the multivariate source prelocalization (MSP) method [61].

The MSP provides for each dipole an index corresponding to the probability of this

42



dipolar generator to contribute to the solution. The seed points for each parcel are
found among the local maxima of the MSP coefficients, and neighboring dipoles
will gather the parcel at the condition they contribute to the same underlying
generator. For detailed information, refer to Chowdhury, 2011 [15]. A cortex
composed of around 4000 generators is clusterized in sets of between 35 to 150
parcels.

Each parcel k is characterized by a hidden activation state S, describing if
the parcel is active (S, = 1) or not (S, = 0). If the parcel is active, the intensity of
the generators within the parcel is assumed to follow a Gaussian distribution. On
the other hand, generators belonging to an inactive parcel are assumed to follow
a Dirac delta distribution, meaning that the parcel is “shut down” (the current
density of all the generators is set to 0) and does not contribute to the data. If «y
is the probability for the parcel k to be active: o = p(Sy = 1). Information about
distributions can be found in Everitt et al., 2010 [28]. The reference distribution of

the kth parcel is:

dpy(j) = (1 = ar)o(jr) + N (px, Xr) () (3.13)

Assuming the K parcels to be mutually independent, prior information for
the MEM was introduced by the reference distribution du defined by the following

product of mixtures:

au() = TLam) = [T = a)dGo) + N SOG4 (3.14)
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For each parcel, oy were initialized using the median of MSP score of the
generators within the parcel k. p; was set to zero. For MEM, ¥, was a diagonal
matrix, whose diagonal was calculated using 5% of the mean of the square of the
activity on the parcel provided by MNE localization. The same process was used
for cMEM to calculate > except that it was afterward multiplied by a Green’s
function of the adjacency matrix, in order to impose spatial smoothness within the
parcels [16].

MEM resolution

The p-entropy of the distribution dp is then given by:
dp . .
Suldp) = — dplog@ =— [ f()log f(j)du (3.15)

The MEM solution is found by maximizing S,(dp) with respect to the data.

Jupn = [ dp 16,

@ = arg maxgy, S, (dp), with [dp=1and M -G [jdp =10

This equation can be solved using the Lagrange method. The Lagrange

function to minimize is:

L(dp,a,b) = —S,.(dp) + a(1 — /dp) +b (M - G/jdp) (3.17)
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where a and b are Lagrange parameters.

The MEM solution is then given by:

_ "G
P= e, (3.18)
where b is the maximum of the optimization function D(b):
. i by
b = argmax D(b), where D(b) = b" M — log / e Gy, — TEbTb (3.19)
b

where Y is the covariance matrix of the noise E in Equation 3.1.

The maximization of D(b) is done iteratively until convergence using an
unconstrained nonlinear optimization (using Matlab optimization toolbox). It can
be shown that D(b) is a convex function, meaning that there are no local maxima.
Moreover, the dimension of that function is the number of sensors and not the
number of generators. Therefore, the complexity of the optimization problem does
not depend on the precision of the cortical surface (i.e. the number of vertices).

Given the Equations 3.14 and 3.18, we can note that the solution for each

parcel k is given by:

Tient = G (Mk + Engi?> = X GLb (3.20)
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ay, is found based on oy, jnit:

N A init
¥ (1 — o e 5T CREGLThy (3:21)
ak,mlt + ( ak,lnlt)e

(), is the submatrix of G containing the columns of the generators present in
parcel k.

3.2.4 Simulation of propagating interictal spikes

Modeling an interictal spike

Simulations containing simulated interictal spikes were created. The simulated
signal lasts few milliseconds and contains a spike propagation along the cortical
surface, the whole being contaminated by realistic additive noise. For the matter
of statistics, a 100 of this kind of events were simulated. The different source
localization methods were then applied on the simulated data. As the ground
truth was fully controlled, validation metrics could be developed to assess the
performance of each method.

The construction of the simulation consisted of three main steps. First, the
theoretical data are simulated. This corresponds to the gold standard: it consists in
modeling the spatio-temporal patterns (location, duration, propagation, amplitude)
of the active dipoles mimicking the generators of epileptic activity. Then, the
forward problem is applied to the theoretical current density distribution in
order to simulate corresponding activity on the sensors. Then simulated data are

corrupted using realistic noise that consists in real EEG/MEG background.

46



EEG/MEG background activity was taken from a patient with focal epilepsy
for whom no epileptic brain activity could have been identified. Informed consent
for the study was obtained as approved by the research ethics committee of the
Montreal neurological institute and hospital. A high resolution T1 weighted
MRI was acquired on the patient at the Montreal neurological institute. In
order to estimate the cortical surface of the patient, we used a segmentation
of the white/gray matter interface, computed with BrainVISA software ([32] -
http://www.brainvisa.info). The solution of the forward problem was computed
using a 1-layer boundary element method (BEM) model [54]| using OpenMEEG
software (|35, 55| - http://www-sop.inria.fr/odyssee/software/0OpenMEEG/ ).
BEM was performed using the inner surface of the skull. MEG data were obtained
at the MEG center of université de Montréal on a 275-channel CTF whole-head
MEG system. The relative position of the sensors from the head was tracked with
localization coils placed on three fiducial points. Coregistration between the sensors
positions and the MRI data was done with a manual localization of the fiducial
points of the MRI images.

A source of epileptic spike was modeled as a region of activation randomly
located on the cortical surface. A source corresponds to an extended region of
activity. It is characterized by a seed point, i.e. the center of the source, and
a spatial extent. The seed point is chosen randomly among the vertices of the
cortical mesh. The spatial extent is expressed by a degree of spatial neighborhood
around the seed point. If the spatial extent is one, the source will be composed by

the seed point, and the vertices directly next to it, i.e. the nodes of the cortical
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mesh connected to it. If the spatial extent is two, the source will contain the seed
point, its neighbors, and the neighbors of its neighbors along the cortical surface;
and so on. For each dipolar source of the simulated spatially extended generator,
the same time course and amplitude was applied, even though such an assumption
is not realistic. The time course of an interictal spike was modeled as the sum of
3 gamma functions (see Figure 3-3). It consists in a spike lasting about 250 ms
and a positive and a negative peak, followed by a slow wave, which is a typical

interictal pattern [69].
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Figure 3-3 — Simulated interictal spike.

With the spatial extent of the sources and their time course, it is possible
to create the matrix Jy,, corresponding to the ‘ground truth’, the gold standard

that will be used for evaluation of the source localization methods. Then, for each
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dipole belonging to a source, the corresponding row of .Jy, is the time source of the
source. All the dipoles not involved in any epileptic source were set to 0.

Propagation pattern

To simulate the propagation of the spike, we proposed to start by simulating a
simple but realistic pattern of propagation, which mimics the activity between two
cortical sources linked by axonal transmission. It simulates a spike which onsets
at a specific location of the brain and propagates on a region connected to the
irritative zone. An example of this propagation is illustrated in Figure 3-4.

For these simulations, the sources of onset and propagation are randomly
chosen on the surface of the cortex. The time course of the two sources are
identical, the region of propagation is simply activated few milliseconds after the
onset of the spike. The delay of propagation depends on the distance between the
two regions, with a speed of propagation to 1 m/s [26]. This type of propagation
is realistic in epilepsy and concordant with the literature [5, 47|, and can express a
remote activation of a neural network connected to an active population by a fiber
track.

Realistic noise

In realistic data the signal to noise ratio (SNR) depends on the depth of the
sources. To mimic this property, the simulated source distribution was normalized
so that the maximum amplitude that could be seen on the MEG data was 1.5 pT,

the expected order of magnitude for a spike [1]:

1.5

A (e

(3.22)
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Figure 3-4 — Illustration of a propagation on a source going from the right central
lobe to the right superior parietal lobe. Left: Spatial distribution of the source
onset zone (green) and the propagation zone (blue). Middle: time courses of acti-
vation of the two regions. The delay between the two region is set to 12ms. Right:
Topographic maps at the peak of activity for the source onset zone (t — 38ms) and
the propagation zone (t = 50ms). The red dots represent the MEG sensors. The
signal is projected on the skin of the subject: the red color represents a measured
magnetic field going out of the head and the blue color the field going inside the
head.

In order to corrupt our simulated data using realistic noise, we decided to use
noise taken from a set of real MEG data containing no traces of epileptic activity.
Several 700-ms segments of MEG data were prepared and stored. The noise was
then randomly chosen among the segments of background activity. It was added

according to the SNR:

signal = SNR X signalye noise + noise (3.23)

where signaly, noise = GJjj,. The source localization methods were then applied

A

to the noisy simulated signals. Each of them will calculate an inverse solution J.
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The validation metrics will then evaluate the quality of the results to compare the
methods.

Following this simulation strategy, MEG signals generated by deeper sources
will be of smaller amplitudes than the superficial ones. Consequently, the SNR for
deep sources will be lower, which is consistent with real epileptic activities.

3.2.5 Validation metrics

This section presents all validation metrics we proposed to assess the per-
formance of the three methods (MNE, MEM and cMEM) when applied to the
simulated MEG data previously described. Each metric compared the source
localization result to the ground truth. The proposed metrics focused on two as-
pects of the accuracy of the reconstruction: the ability to localize and to estimate
the spatial extent of a source without spurious activity, and the accuracy of the
reconstruction of source time courses.

I proposed four metrics to validate the spatial accuracy of source localization
results: the RMS error calculated the sensitivity of the reconstruction, i.e. the
accuracy of the reconstruction of the source, whereas E o and SA quantified
the specificity, in other words the amount of spurious activity. The metric E .o
was proposed to assess the false positive which is close to the simulated source,
whereas the metric SA was proposed to detect distant falsely activated sources.
The area under the ROC curve (AUC) provides a score based on both sensitivity
and specificity.

The shape error (SE) quantifies the accuracy of the temporal reconstruction of

the source localization. Details of the five metrics are given below.
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Notations

Let Jy, = Ju(0,1) be the theoretical current density, and J = J(6,1) its
estimation, # being the source index. t denotes the time parameter, and n; is the
length of the time series. The superscript { ™ } denotes the normalization of the
matrix over time and space: for example, Jn = m

O represents the set of all the dipoles of the cortical mesh, and ©,, and O,,
the set of dipoles belonging respectively to the two simulated sources. ©7(a;)
represents the set of vertices located within a local spatial neighborhood of
degree j or less around the region O, (i = 1 or 2). card represents the number
of elements (vertices) of a set and the operator \ is used for the set-theoretic
difference.

Root mean square (RMS) error

To represent the goodness of fit, we used the root mean square of the error of

the mean of J in the zone of activity:

RMS(a;) = RMS (m( i —mai(j")> A R2) <m ) (3.24)

with m,, (J) = 2969% z%j and p,, = card(0,,).
The lower this criterion, the better the estimation fits with the theoretical

data in amplitude and in shape in the region of interest.
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Energy within a close neighborhood of the source (E jose)

In order to look at the amount of false positive due to an overestimation
of the spatial extent or a small error in location around the main generator, we
considered the energy of the mean of the activity in a close neighborhood around
the source, but excluding the source. It was then normalized by the energy of the

theoretical time course.

- %
t Zee@ﬁ(@ai)\@aiT

Eclose<ai) = R 2
Tt ‘J|
t 2969% card(©a,;)

(3.25)

with p = card(©3(0,,) \ O,,)

A high value of Eclose means either the estimation misplaced the center of
activity, or the spatial extent of the source was larger than expected.

Spurious activity (SA)

Source localization techniques sometimes find activity far from the actual
source of activity (e.g. on the contralateral side). Those results may be very
misleading. SA indicator was calculated by counting the number of dipoles located
far from the actual sources, reaching a certain threshold 7. This threshold was set
as 30% of the maximum of amplitude at the peak of the signal. The dipoles taken
into account were those having more than two degrees of neighborhood of distance
from an active region. This index is a percentage showing the amount of active

dipoles among all the vertices far from the sources.
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card($2)

A= A0, (6%(6,,) U6¥(O,,)))

(3.26)

where Q = {9 100\ (0%0,,)U6%8,,)),3t|J]"6,1) > T}

Shape error (SE)

This indicator was used to show the accuracy of the temporal reconstruction
inside an activated region. This metric was calculated for each source of the
simulation.

SE was obtained by taking the mean of the time courses of the dipoles of
the reconstructed source. The time vector was then normalized, so that its values
are between -1 and 1, and compared to the simulated time source. SE was then
the root-mean square (RMS) of the error between the gold standard and the
reconstructed data. Therefore, the smaller SE, the better the source reconstruction
in the region of interest. The aim of this metric was to focus on the error on the

shape of the time course.

nt ( mai(Jth) o mal(j) )2
t \ max(Ima; (Jtn)l)  max(|ma,(J)))

SE(a;) = (3.27)

Uz

Area under the Curve (AUC)
This metric was proposed in Grova et al., 2006 [36] and Chowdhury, 2011 [15]
for evaluation of static simulation on EEG and MEG in order to assess the ability

of source localization method to recover the source and its spatial extension at the
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main peak of the simulated signals. It is based on receiver operating characteristic
(ROC) curves [63]. This criterion does not use the temporal dimension: the AUC is
calculated only at the peak of the spike.

The criterion looks at the normalized energy of each source at a specific time
sample. For a threshold 7 (0 < 7 < 1, 1 being the maximum of amplitude),
a dipolar generator is considered to be active if the amplitude of the generator
is larger than 7. By comparing the set of estimated active sources to the Gold
Standard, it is possible to quantify the amount of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The ROC curve is then obtained
by selecting different values of 7 between 0 and 1 and representing the sensitivity

against (1 - specificity . The AUC is a metric quantifying the

(7p77w) (75+rp))

area under this curve, i.e. AUC= ) wwﬁ + 1) + z(7)) with z and y
respectively the abscissa and ordinate of the curve.

AUC is often seen as the probability that the amplitude of an active source
is greater than an inactive one. In practice, a detection method showing an AUC
index greater than 0.8 is generally considered as sufficiently accurate [36|, allowing
80% of good detections.

For a better estimation of the AUC, it is preferable to have the same number
of activated and non-activated generators for the construction of the ROC curve.
In our case, there are many more inactive sources than active ones. Therefore
the specificity may be biased: it tends to be artificially high. For that reason, few

changes were proposed to the unbiased calculation of the AUC. We separate the

generators which are located near the source of activation, and the ones which are
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distant from it. The value of the AUC is the arithmetic mean between two values:
AUCpse and AUCr,,.

— We considered as "close" all the dipolar generators located within the 10th
neighborhood order around the simulated source. If d, generators were
contributing to the simulated source, d, inactive generators were randomly
selected among all the closed generators.

AUCk,,, considered all the generators that are not close to the source.

As for AUCge, we picked the same number of generators which were
non-activated as the ones contributing to the source. To prevent from
picking generators from the same regions, we used the clusters to select

the generators that was used for the computation of the ROC curve. To

do that, we selected the generators which were the most active for each
cluster, then the second most active, and so on until the number of selected
generators equals the number of generators in the source. This selection

of the local maxima located far from the source was used for AUCy,, to be
sensitive to eventual spurious activity,

To obtain a robust metric, we calculated AUC s and AUCy,, N = 30 times

and computed the mean of all the iterations. Concretely, we have:

2 N 3L TN

i=1

AUC = lz AUCclose 1 Z AUCfar (328)
7=1

where AUCY,  and AUCY s respectively the ith and jth iteration of AUC o

close far

and AUCq,,.
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Simulations were performed for 100 pairs of sources located randomly on
the cortical surface. Noise was added on the simulated sources with a SNR of 3.
20 simulations of the same source were computed, and averaged. MNE, MEM
and cMEM source localization were performed. For the propagation pattern, the
distance between the two sources was 10 degrees of spatial neighborhood (mean
geodesic distance : 73mm).

3.3 Results

Illustration on one simulated data set

This section presents the results of a simulation of a source propagating from
the left superior parietal lobe to the left angular gyrus. Both sources are superficial
(eccentricity > 70mm, where the eccentricity is defined as mean distance between
the source and the centre of the cortical surface ! ). We therefore expect such a
source reconstruction to be accurate, since superficial sources are easier to be
detected [4]. Figure 3-7(a)(e) shows the spatial distribution of the simulated
sources.

Figure 3-5 represents the MEG channel overlay, and two markers were added
to show the time of the peak of the two sources. Figure 3—6 shows the topographic
maps, i.e. the projection of the sensors data on the skin of the patient at the
peaks. The signal topography clearly exhibits a dipolar pattern at the peak of the

first source, that is to say a negative and a positive component.

1. The centre of the cortical surface is defined with the fiducial points. It is the point which
is equidistant to the left and right periauricular points, at the same height of the location of the
nasion.
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Figure 3-5 — Sources time courses (left) and MEG channel overlay plot of the
simulated signal (right). The vertical bars represent the time event of the positive

peak of source 1 and 2.
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Figure 3-6 — Topographic maps of the simulated MEG signal shown in Figure 3-5
during the peaks of activity.

Source localization results obtained using MNE, MEM and cMEM are
presented in Figures 3 7(b)(f), 3 7(c)(g) and 3 7(d)(h) respectively. All these
results are presented as the absolute value of the current density at the peak of
each of the two simulated spikes, and thresholded using Otsu threshold, which

finds a threshold minimizing the inter-class variance [73|. The figures show that
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Figure 3-7 — Spatial distribution of a simulated source and its reconstruction us-
ing MNE, MEM and cMEM. The absolute value of the amplitude of the dipoles
is represented here. The colors indicate the level of amplitude, from blue, which
represents low amplitude to dark red, the maximum of amplitude. All the maps are
thresholded using Otsu threshold at both peak.
MEM and cMEM source reconstructions at the first peak of the spikes have a
similar spatial extent to the simulated source. For the second source however, all
techniques failed to correctly estimate the spatial extent.

All the results of the metrics estimated on the source localization results are
presented in Figure 3-7 and in Table 3-1.

SA metric, reflecting the amount of false negative in remote regions, shows

that MEM amd cMEM did not reconstruct any spurious activity. This false

positive rate reaches 7% for MNE.
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Table 3-1 — Results of the metrics of the simulation shown in Figures 3-7 and 3-5.
In bold are the best results (maximum or minimum, depending on the metric) for
each source.

. MNE MEM cMEM
Metrics
Source 1 Source 2 Source 1 Source 2 Source 1 Source 2

SA 0.07 0.00 0.00
AUC 0.76 0.73 0.92 0.74 0.97 0.92
RMS error 0.87 1.87 1.24 2.26 1.94 2.59
SE 0.11 0.08 0.14 0.28 0.25 0.27
Eciose 1.66 3.86 1.83 1.71 1.01 0.20

As one can notice visually in Figure 3-7, the MNE solution is not sensitive to
the spatial extent, when compared to MEM and cMEM. This would be reflected
by the AUC scores at the time of the peaks.

The computation of the RMS error is illustrated in Figure 3 8. It shows the
mean time course of reconstructed amplitude within the simulated source and
compares it with the theoretical simulated time course. The metric then consisted
in the RMS errors between these two curves. For both sources, the error was lower
for MNE, as MEM and cMEM tended to underestimate the amplitude of the
source.

SE qualifies the ability for the methods to accurately reconstruct the shape
of the simulated time course, while normalizing the amplitude. SE results are
presented in Table 3 1 and in Figure 3 9. One can see that for this example, MNE
provided a better score than MEM and cMEM.
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Figure 3-8 — Mean of the reconstructed time courses of the dipoles located within
the simulated source in Figure 3-7 (in red). The dashed lines are the standard de-
viation values. In black is drawn the simulated time course of the source. The RMS
of the difference between the two curves give the RMS error of the source.

Ecoses as shown in Figure 3-10, reveals that cMEM was the method with

the least energy near the sources, meaning that this method showed no spurious

activity near the source.

61



MNE - Source 1

MEM - Source 1

c¢MEM - Source 1

05 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
1l . . . h 1l n n n h gl . . . h
175 180 185 190 195 175 180 185 190 195 175 180 185 190 195
time (ms) time (ms) time (ms)

MNE - Source 2

(a) Source 1

MEM - Source 2

cMEM - Source 2

0.5+

05|

0.5+

-0.5¢

-0.5¢

0.5+

200

205 210 215
time (ms)

220 200 205 210 215
time (ms)

(b) Source 2

200 205 210 215 220
time (ms)

Figure 3 9 Mean of the reconstructed normalized time courses of the dipole
located in the simulated source in Figure 3-7 (in red). In black is drawn the sim-
ulated time course of the source. The RMS between these two curves is the SE

metric.
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Figure 3 10 Result of the energy in the region close to the source (in red). The
dashed black line corresponds to the 10% amplitude of the theoretical source time
course, for the matter of comparison.
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Result for 100 simulations

Distribution of AUC scores over the 100 simulations is represented using
boxplot in Figure 3-11(a). The AUC score for MEM techniques was higher than
the MNE. The median of the AUC for the MEM techniques for each source was
above (0.8, meaning that most of the reconstructions presented excellent results.
The source 2 had most of the time a lower AUC than source 1, which was due to
the fact that the first source was affecting the localization of source 2. With the
two sources to localize at the same time, even if the generators of the first source
were not considered for the computation of the AUC of source 2, the SNR at the
peak of the second source was obviously lower because of the temporal overlap
between the simulated time courses of the two sources as shown in Figure 3-11(a).

Figure 3-11(b) presents the boxplot distribution of RMS error values for each
method over the 100 simulations. We observed that the lower RMS error values
were obtained for MNE, followed by MEM and then ¢cMEM.

Boxplot distributions of Ej.s and SA value are presented in Figures 3 11(c)
and 3-11(d). Concerning Ejose, the results were similar for MNE and MEM, and
lower for cMEM. The median of spurious activity found with SA reached 6% for
MNE, whereas it was only around 1% for MEM and ¢cMEM.

The temporal accuracy of the reconstruction, represented by SE, is shown in
Figure 3 11(e). Globally, MNE and MEM performed similarly in term of SE score.
cMEM, on the other hand, obtained higher values, meaning that the temporal

accuracy of this method was lower.
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3.4 Discussion

The purpose of the project was to simulate spatio-temporal MEG signal
containing the propagation of an interictal spike and to evaluate the performance
of different source localization methods.

We simulated a signal composed of two distinct sources, where a spike
(modeled by 3 gamma functions) propagated from one to another region, after
a certain delay. Several assumptions were made, such as the population being
composed of a set of equivalent dipoles which were represented by the nodes
of a cortical mesh. Moreover the two sources were imposed to be in the same
hemisphere, whereas other studies were referring to propagation to the contra-
lateral hemisphere [26].

Besides, the simulated signal was made by averaging 20 trials of the same
propagation pattern. This assumes that it is possible to record signals which have
exactly the same origin and spatial extent, and propagate exactly the same way.
This is obviously physiologically incorrect. Further studies will correct this error
by using single trial data for source localization. Moreover, it would be interested
to work with more accurate models of interictal spikes and propagation patterns.
Cosandier-Rimélé et al [19] for instance developed a model of neuron populations
able to generate realistic intracranial and scalp EEG especially in epilepsy.

During this study, we aimed at quantifying the ability of three distributed
source localization methods to reconstruct this spatio-temporal signal. We used to

validate the results the Area under the ROC curve [36] as well as other validation
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metrics specifically proposed for the present study to test the accuracy in space
(RMS error, Ecppges SA) and in time (SE).

For spatial accuracy, our results using AUC on simulations involving two
generators were in agreement with our previous findings [16], i.e. MEM and cMEM
demonstrated better performances than MNE. Our results showed that the MEM
source localization was able to accurately reconstruct the epileptic source even in
the context of a propagating source. Indeed, whereas the localization of source 1
corresponded to scenarios investigated in previous studies, at the peak of source 2,
the data was still contaminated by source 1, reducing the signal to noise ratio.

In term of sensitivity of the simulated source, MNE obtained a lower RMS
error than the other techniques. One of the reasons explaining this finding is
that MEM techniques tend to underestimate the amplitude of the current, which
increases the RMS error.

On the other hand, the MEM methods clearly showed better spatial specificity
than MNE. The ability for the MEM techniques to shut down cortical parcels
clearly reduced the number of spurious sources, as demonstrated by SA. Moreover,
the spatial extent of the source was better estimated with the entropic techniques,
as demonstrated by Fgse-

The ability to reconstruct the time course of a simulated source was found to
be of similar accuracy for MNE versus MEM as demonstrated using SE metric.
This was an important result for MEM since it was the first time the ability of
MEM to recover accurate time courses of the underlying sources was assessed.

Such a characteristic in MEM behavior was far from obvious since MEM is a non
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linear estimator and sources for every time samples are estimated independently

with no constraints on the reconstructed time course.
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Chapter 4
Resolution kernel analysis

4.1 Rationale

This chapter is an introduction to the implementation of a statistical map
proposed in chapter 5. We want to characterize the performance of the MEM
operator per se in term of spatial accuracy, before proposing a test statistic
dedicated to assess the spatial extent of the generators. If the spatial accuracy of
the MEM operator is too low, this would systematically over-estimate the spatial
extent of the underlying source, whatever the proposed test statistic.

Assessing the intrinsic spatial accuracy of a source localization method
is usually done by analyzing the so-called resolution matrix [59, 44, 64|. Such
an approach was proposed to compare the spatial accuracy of different source
localization methods in EEG or in MEG.

Liu and colleagues used the resolution matrix analysis to evaluate the spatial
resolution as a function of the number of EEG versus MEG sensors [59]. They
also did a Monte Carlo simulation to measure the effect of the prior information
based on fMRI data on a minimum norm solution. They showed that, surprisingly,
EEG localization was more accurate than MEG localization for the same number
of sensors averaged over many source locations and orientations. Moreover, they

proved that the combination of EEG and MEG improved the spatial localization.
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Finally prior fMRI constraint was shown to reduce the extent of the point spread
function.

The spatial resolution of combined EEG-MEG for minimum norm estimate
was also studied in Molins et al., 2000 [64]. They proposed to study two metrics
estimated from the resolution matrix, i.e. the spatial dispersion and the distance
localization error. They showed that the use of both EEG and MEG data im-
proved the performance of minimum norm estimate in term of spatial dispersion
and distance localization error, as compared when using MEG alone. The findings
based on simulation data were validated on real data using a median nerve stim-
ulation paradigm. The authors compared the MNE source reconstruction of the
evoked response to the corresponding equivalent current dipole solution.

The resolution of the minimum norm estimate and the noise-normalized
methods dSPM and sLORETA (cf. section 5.1) were compared in Hauk et al.,
2011 [44]. The authors showed that the noise-normalized methods had a better
localization (in term of localization error) but a larger dispersion of the point
spread function than the minimum norm estimate.

The estimation of the resolution matrix is direct when dealing with linear
source localization methods. However, for non-linear technique such as MEM, there
is no analytical formulation of the resolution matrix and it has to be estimated
numerically, which is the main objective of this chapter.

4.2 Materials and methods
Our goal was to compare and evaluate distributed methods. One way to

proceed was to analyze the resolution matrix.
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4.2.1 Definition

As showed in section 3.2.1, the solution for methods based on the Tikhonov
regularization is of the form of the equation 3.7. By neglecting the measurement
error F/, we have M = G J. Therefore the link between the estimate J and the true

amplitude distribution J is given by:

J=(GTG+X\2,)"'GTGJ = RJ (4.1)
b3

where R is by definition the resolution matrix associated with the corresponding
linear source localization method. R provides the information about the inherent
spatial error made by a model.

Two different types of analysis can be investigated when characterizing R:

— The columns of R are the point spread functions (PSF), i.e. the solution of
the source localization method for the activation a dipolar single generator,
with no noise. An ideal case would be if R = I, where the point spread
function does not spread at all. However, it is never the case: the solution is
spatially blurred and sometimes also wrongly localized. The spatial accuracy
of a source localization method can then be evaluated by quantifying the
blurriness and accuracy of these reconstructions.

The rows of R represent the crosstalk functions (CTF) characterizing the
influence of a single generator on the estimation of the amplitude of the

other generators in its neighborhood.
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One can show, using the Woodbury matrix identity [93] that

J=(GTG+\2,))"'\G"M = 2,GT(GE,GT + \XI) ' M (4.2)

This mathematical trick is very helpful for the computation of the minimum
norm solution. Indeed, it will result in the inversion of a matrix of dimension
ns X ng instead of ng x ng, which reduces the time of computation and the memory

needed to perform this operation. Using equation 4.2, we obtained:

R=(G"G+\2,)'GTG = ¥,GT (G ,GT + \I)7'G (4.3)

Since Y is symmetric, R is symmetric for source localization methods using
Tikhonov regularization. This means that the PSF and the CTF for these methods
are the same, which is not the case for nonlinear technique such as MEM.

Four metrics were proposed to characterize the resolution matrix. The first
two metrics, the average PSF map (APM) and the average CTF map (ACM),
were proposed by Liu and colleagues [59]. Let R;. and R.; be respectively the ith
row and the jth column of the R matrix. To represent the PSF and CTF for each
generator, we can define APM and ACM as the mean of each normalized columns

(for APM) and rows (for ACM) of the resolution matrix.

1 &
APM; = —

Ng <
7j=1

Rj;
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Rz‘z‘

(4.5)

These metrics were proposed to assess the spatial accuracy of a source
localization method. The lower the APM and AC'M are, the more accurate the
source localization technique at a specific location is.

Two other metrics, proposed in [44| and [64], were also considered in our
present study:

— The dipole localization error (DLE), which is the euclidean distance
between the maximum peak of the point spread function and the true
activated generator. An ideal case would be when DLE = 0, meaning that
the maximum of amplitude is located on the activated generator.

— The spatial dispersion (SD), for each dipole ¢ is computed as:

SD;

(4.6)

with d;; being the distance between generators ¢ and j. This metric was
proposed to characterize the spatial spread of a source localization method.

4.2.2 Estimation of the resolution matrix for non-linear source localiza-
tion techniques

As demonstrated in the previous section, the estimation of the resolution
matrix R is straightforward for linear source localization operators. Its estimation

does not require the use of any data and an analytical form of R is available. R

73



was estimated using the lead field matrix GG and the regularization matrix Y ;, that
the Bayesian framework showed to be linked to the model of the covariance of the
generators (see section 3.2.2). The hyperparameter \ was computed by using the
[-curve technique. The On the other hand, such an analytical solution does not
exist for non linear source localization, as it is the case for MEM-based approaches.
However, one could still estimate this resolution matrix using noise-free
simulations of single dipolar generators. We could construct the resolution matrix
column by column, by computing the source localization of a simulation including
a single activated generator, for each generator in the cortical surface. Indeed, if we
assume J = RJ, then for J = I;, where I, is a vector with 1 in the ith element and

0 otherwise, the solution to the inverse problem becomes:

By calculating J; for all the generators, we can obtain an estimation of R.

In the context of the MEM framework, one can be also interested in assessing
the influence of the choice of the reference distribution du on the spatial accuracy
of the MEM reconstruction. To do so, given the signal M; corresponding to each
source i1, a reference distributions dy; could be estimated. To test the influence

of the reference distribution on the spatial accuracy, J; was calculated using either

1. we can note that M; = GJ; = G;
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the reference distribution dy; or another one, du;, corresponding to M, the signal
of a generator far from the actual activated generator. The mean geodesic distance
between the actual source and the one considered to generate the reference was set
to 100mm.

We also used this framework to evaluate the impact of the number and size
of clusters used to initialize du on the resulting MEM spatial accuracy. To do
so, we selected data generated by one single generator (M;) and evaluated MEM
reconstruction using brain parcelization with different number of clusters ranging
from 38 (scale of 5) to 147 (scale of 3). The scale is the distance in term of degree
of neighborhood (where connected nodes have a degree of neighborhood of 1)
between the seed of the cluster and the generators delimiting its borders.

We used these estimated R matrices in the different configurations mentioned
above to compare the spatial accuracy of MEM, cMEM and MNE.
4.3 Results

The distribution of APM, ACM, DLE and SD metrics over all possible dipole
positions along the cortex are presented using boxplot representations, for each
source localization method (MNE, MEM and ¢cMEM) in Figure 4-1. It is worth
noting that to facilitate the visualization, the outliers obtained in the distributions
of APM and ACM metrics were removed. A value was considered as outlier
when it is greater than ¢ + 1.5(g3 — ¢1), where ¢; and g3 are the 25th and 75th
percentiles. For all the three methods, most of the outliers lay around 1. However
some outliers for MEM and cMEM were of much larger amplitude (up to 700),

revealing that these methods sometimes mislocated the single source generators.
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Indeed we noticed that these outlier values corresponded only to deep generators.
As expected, the values of APM and ACM for MNE were identical. On the other
hand, for both MEM and cMEM the average crosstalk map median was lower than
the average pointspread map. Overall we found lower ACM and APM values for
MEM and cMEM when compared to MNE, suggesting that the spatial resolution
was higher for MEM and cMEM. Dipole localization error was lower for cMEM as
compared to MEM, itself lower than MNE. MEM and cMEM showed also overall
less spatial dispersion of the PSF when compared to MNE results.

The results using the spatial clustering obtained from another generator
located at 100 mm from the source of interest are illustrated in Figure 4-1.
Visually one can see that the values of the metric using this clustering is very
similar to the ones using the clustering from the dipole of interest, just confirming
the fact that the accuracy of the parcelization had low impact on the accuracy of
the results. It is worth noting that both those clusterings have a similar number of
parcels (the spatial scale of the parcelization was set to 3).

A detailed example is illustrated in Figure 4-2. The idea was to estimate the
best result that the source localization techniques could produce given a spatially
extended source. To do so, we simulated an epileptic source in the right posterior
temporal region. This source was composed of 42 dipolar generators. We summed
the PSF maps corresponding to all dipoles of the simulated source; for linear tech-
niques, it is considered as the best solution, because the spatial resolution cannot
be lower. The resulting maps obtained for each source localization method were

thresholded using Otsu’s method [73|. For MEM and cMEM, we also evaluated
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the impact of the spatial scale of the parcelization of the cortical surface on the
localization results. Therefore the study was performed with scale 3 (Figure 4
2(c)), scale 4 (Figure 4-2(d)), scale 5 (Figure 4-2(e)), and scale 6 (Figure 4-2(f)).
The higher the space scale, the larger the parcels were. A visual examination
showed that the size of the clusters had very little influence on the accuracy of the
results. Results obtained with MNE were clearly more spatially spread than results

obtained with MEM and cMEM.
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Figure 4-1 — Boxplots of Average Pointspread Map (APM), Average Crosstalk Map
(ACM), Dipole Localization Error (DLE) and Spatial Dispersion (SD) for MNE,
MEM and ¢cMEM over all the generators on the cortical surface (N = 4203). For
MEM and cMEM, the results of the metrics when using a clustering from a gener-
ator far from the source are represented as “diff. cluster”. For APM (a) and ACM
(b), the outliers (whose values are larger than g3 + 1.5(¢g3s — ¢1), where ¢; and g3
are the 25th and 75th percentiles) are not shown in the graph. The percentage of
outliers is presented below each column.

78



4.4 Discussion

In this study we proposed the first analysis of the MEM solver using the
resolution matrix. Even if an analytical solution cannot be found for this nonlinear
technique, it is still possible to estimate the resolution matrix, by estimating
explicitly the Point Spread Functions corresponding to all the dipolar generators
distributed along the cortical surface. The metrics of the average point spread
function and crosstalk maps gave indication of the spatial resolution of the method
and offered the possibility to compare MEM with more standard solvers, such as
the minimum norm estimate. We could see in Figure 4-1 that MEM solver showed
both improvements for the point spread function and the crosstalk maps. The
point spread function was less extended, meaning that the spatial accuracy was
higher. We demonstrated that the MEM solver was able to localize focal sources
with good spatial resolution, while generating very few spurious sources. The
fact that MEM localizations usually provided little spurious activity is probably
linked to the fact that entropy-based regularization is able to shut down the
cortical parcels not contributing to the data. This is an advantage over dSPM and
sLORETA which, by construction, only reduce PSFs and have the same crosstalk
functions as MNE [44]. However, for MEM and ¢cMEM, APM and ACM show few
more outliers than MNE, with results up to a value of 700 (even if the numbers of
outliers for MEM and ¢cMEM are up to 17%, less than 1% of the whole number of
generators are a APM and ACM greater than 1). These aberrant results affected

only very deep generators, where MEG source localization were very unlikely to be
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MEM cMEM
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(f) Cluster scale: 6 (~38 clusters)

Figure 4-2 — Simulation of an extended source and “ideal” results for MNE, MEM
and cMEM. These “ideal” results were obtained by adding the point spread func-
tions of all the generators composing the source. All the maps of activity were
thresholded using Otsu’s method. For MEM and ¢cMEM, the results were com-
puted using a reference distribution du defined with a brain parcelization obtained
at different spatial scales: scale 3 (about 145 clusters, mean area: 9.51 mm?), scale
4 (about 85 clusters, mean area: 16.45 mm?), scale 5 (about 55 clusters, mean area:
25.43 mm?) and scale 6 (about 38 clusters, mean area: 36.80 mm?).



used, and were not found for the DLE and SD scores, revealing that it was only a

problem due to the normalization of APM and ACM maps.

We showed that the localization (with DLE, Figure 4-1(c)) and spatial
dispersion (with SD, Figure 4-1(d)) of the point spread function were improved for
MEM and cMEM when compared to MNE.

This means that for focal sources, the source localization results of the
entropic techniques is of better accuracy in term of localization and spatial extent
than MNE. For that reason, the MEM framework seems to be a good candidate for
a source localization on which a method estimating the spatial extent of the source
can be applied. Noise-normalization techniques such as dSPM and sLORETA
have a lower localization error than MNE (especially for SLORETA, where DLE
of the PSFs is by construction set to 0 [76]); the SD was generally lower for the
unnormalized MNE, meaning that the spatial accuracy decreases for dSPM and
sLORETA as the PSFs are more spatially spread.

According to our findings, both the number of clusters (Figure 4-2(c)-(f))
and the data used to estimate the clustering of the reference distribution dp had
negligible influence on the results of MEM and cMEM. This means that MEM
regularization techniques are not sensitive to the accuracy of the underlying
clustering needed to define the brain parcelization. This finding is consistent
with what was shown in Chowdhury et al., 2013 [16]|. She demonstrated that,
for MEM and cMEM, the AUC score of the source localization of a simulated
interictal source does not depend on the size of the spatial clustering used in the

reference distribution. Therefore, the present findings are reassuring since they
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are in agreement with our previous study, suggesting that the accuracy of the

parcelization is not critical in the regularization of these MEM-based models.
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Chapter 5
Implementation of a bootstrap-based statistical threshold in the
time-scale domain

5.1 Rationale
The main goal of this section is to represent the activity of the brain not
by the current density map, but by a dimensionless statistical quantity. Indeed,
statistical maps have the advantage of providing a natural way of thresholding the
reconstructed estimates.
Methods converting source localization methods exist. The two most popular
are dSPM [20] and sLORETA [76].
5.1.1 Dynamic statistical parametric neurotechnique mapping (dSPM)
Given the equation 3.1, if we assume that J is not a random variable and
E ~ N(0,Xg), i.e. the noise follows a zero-mean Gaussian distribution of variance

g, then:

M ~ N(GJ,Eg) (5.1)

By combining this equation and 3.7, we have

J~N(HGJ,H Sz HT) (5.2)
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with H = (GTEEG + /\E‘])ilGTEE.
Under the null-hypothesis, assuming that the MEG signal is not affected by

any activity of interest (i.e. J = 0), we obtain:

Ju, ~ N0, HSgH?) (5.3)

Let C be HYpHT. A t-value map can be obtained for each generator i at a

time 7 using the following formula:

taspm(?, 7) = (5.4)

where C; is the ith element of the diagonal of C. Once all the t-values are
calculated, we can obtain a statistical map. Active generators are then found by
thresholding the map. The threshold can be related to a p-value using a table of
values from Student’s t-distribution.

5.1.2 Standardized low resolution brain electromagnetic tomography
(sLORETA)

In SLORETA method, we add variability of the generative matrix with the

assumption that J ~ N(0,X,). The inverse solution becomes:

J = (GTSpG 4+ 22)) 'GPy M = HM (5.5)

The variance of J influences the variance of the estimation as well:
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C=H(Sp+GS;GNH" (5.6)

The calculation of the t-values is proceeded in the same way as for dSPM.
The generator covariance cannot be calculated and should be set using models and
prior information. Most of the time, the sensor noise covariance is fixed to Xp = I.

dSPM and sLORETA are commonly used by researchers [74, 40, 53, 43|
and are known to have a good behavior in term of localization of the source
reconstruction. However the value of C}; can be very small for deep generators and
can lead to spurious activity in deep regions.

5.1.3 Non-parametric statistical analysis

A non-parametric statistical test refers to statistics that do not assume
that the data follow any known distribution. The objective of this approach is
to provide an empirical estimate of the underlying null-hypothesis distribution
HO. This estimate of H0 could then be used to perform statistical tests. One
way to empirically estimate the HO distribution with minimum assumptions for
validity is to use resampling techniques. Resampling techniques consist in using
the data itself to validate a model or perform a statistical test. Resampled data
are created by selecting randomly samples from the original data (the samples
could be time samples, time segments, Fourier or wavelet coefficients, etc.). If
those samples are drawn with replacement, it is called bootstrap [25]; if this
is a sampling without replacement, the method is called permutation|46|. The

estimation of H0 is done by computing a large number of resampled data. One of
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the main disadvantages of these techniques is that they are computer intensive. On
the other hand, they rely on less assumptions than classical parametric methods.
Nonparametric permutation tests are often used for statistical analysis of data
from functional neuroimaging experiments in PET, SPECT and fMRI [68]. In
MEG, bootstrap resampling approaches have been proposed for group study
analysis [12] or condition-based experiments [80, 95].

Pantazis and colleagues developed a non-parametric statistical analysis
of MEG sources based on permutations between pre- and post-stimulus time
segments |75]. He compared this method with the Random-Field method [94],
which is based on a topological approach, in order to control the familywise
error rate, i.e. the probability of making one or more false discoveries, due to the
multiple comparison problem. They demonstrated that their method provided
better result in term of sensitivity than Random-Field method, and does not rely
on the assumptions of relative smoothness and Gaussian distribution (assumptions
which are not respected by real data). Moreover, when using Random Field theory,
a spatial smoothness operator is often applied to the data, thus reducing the
spatial resolution.

In this chapter we propose to develop and validate a non parametric statistical
test dedicated to threshold MEM based source reconstructions. The idea is to
estimate the distribution of the amplitude of the source signal for each generator
during baseline, i.e. without any signal of interest. We used non-parametric
statistical test in order not to make any assumption of the distribution of source

signal.
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5.2 Materials and methods

5.2.1

Resampling method

After using MEM source localization to the MEG data, Bootstrap resampling

was applied to baseline data to have an estimation of the null-hypothesis distri-

bution for each generator. Bootstrap was used rather than permutation because

it relies on fewer assumptions than permutation |25]. The sampling technique was

applied on time-frequency boxes obtained with discrete wavelet representation. The

analysis was performed in the time-frequency domain for three reasons:

— MEG normal brain activity has a '/; spectral structure [31], that is

intrinsic to synaptic communication [11]|. Therefore in order to preserve the
spectral pattern for the resampled data, it was preferable to work in the
time-frequency domain.

Bootstrap resampling is based on the resampling of independent samples.
Even though it is possible to apply this technique in the temporal domain
[25], in the present case the MEG time samples would not respect the as-
sumption of independence considering the high energy in the low frequency
bands for MEG background data. On the other hand, since we used dis-
crete wavelets, the boxes in the time-frequency domain are by construction
independent from each other [49|, which make them reliable candidates for

bootstrap resampling.

This section presents only preliminary results. Therefore, the presented

method was only applied to cMEM.
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The resampling technique is summarized in Figure 5-1 and was done as

follows:

1. ¢cMEM was first applied to a time window selected around the activity of

interest, i.e. here, the interictal spike to localize.

2. Source localization was also apply to 2-second data of MEG background
activity, or baseline. It is assumed that during the duration of the signal,
no epileptic signal of interest would occur. However the initialization of
the cMEM for this baseline localization was a bit different. Instead of
calculating the reference distribution dp based on the data, we used the
reference distribution estimated when localizing the peak of the signal of
interest in order to initialize ay,;;. The clusters, the values of i, pp and X
are therefore the same for both localizations (the spike of interest and the
baseline). We used the same du for the localization of the baseline and the
signal of interest because, in order to provide a statistical threshold, we were
interested in the difference between the source reconstruction of the signal
of interest and the reconstruction of the background activity, given the same

prior distribution.

3. A discrete wavelet-transform was applied to the result of the baseline
localization. We used here Daubechies wavelets [49] because they are able
to remove polynomial trends in the signal. In our context, we used wavelets
with four vanishing moments, meaning that the wavelets are able to get rid
of 3-polynomials present in the signal. The frequency domain is represented

by scales, which is equivalent to frequency bands. A time-scale representation

88



was obtained for each generator of the cortical surface and along the 2-second

baseline.

. This time-scale representation was resampled N, times. The resampling

follows the following rules:

— For each resampling realization, the same bootstrap resampling strategy
was applied for all the generators to preserve the same spatial and spectral
structure in the overall signal.

— The time-scale boxes corresponding to the first and last 5% of the time
samples were left untouched to avoid side effects.

Therefore, in the original data, for each frequency scale, the coefficients of

the resampled data were randomly drawn (with replacement) from the set

of the original coefficients. The resampling strategy (e.g. “the first resampled
coefficient is the third original coefficient, the second resampled coefficient is

the first original coefficient, etc.”) was reproduced for all the generators.
. For each resampling realization, an inverse wavelet-transformed was applied.

. For each source, the amplitude values of all the resampling realizations for

each time sample were taken and put into a histogram.

. The current value of the reconstruction during the peak of the signal of
interest was compared to the histogram and a p-value p was estimated,
corresponding to the ratio between the number of elements in the histogram

larger than that number and the total number of elements (7" x Nj). If
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H; represents the values of the estimation of the distribution of the null-

hypothesis for generator ¢, then:

. card(H; > J. 7, tyea
B = ( mEM (1 tpeak)) (5.7)
card(H,;)

. The multiple comparison on the source space was handled by a False
Discovery Rate (FDR) technique [7]. To do so, the p-values P were ordered
from the smallest to the largest value (pay < pay < -+ < Pry), considered as

active all the sources which followed:

(5.8)

with a = 0.05 the expected FDR rate.
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Figure 5 1 Illustration of the procedures used to produce statistical map. First, the source localization
was performed on the simulated signal using cMEM technique. Then we apply the cMEM technique on a
background signal of MEG activity using the same reference distribution as for the simulated source lo-
calization. A discrete wavelet transform is applied on the resulting density map. For each generator, we
obtain a time-scale map composed of a finite number of time-frequency boxes. A bootstrap technique is
performed on the time-frequency boxes, independently for each scale. This operation is repeated N times
(here, N = 1000). The inverse discrete wavelet transform is used to obtain N time-varying current density
map. For each generator, the amplitudes for all the time samples and all the bootstrap samples are used
to construct, an estimate of the null-hypothesis density function for this generator. The amplitude of the
reconstructed source is compared to the histograms and p-values are obtained. After FDR correction and
given a significance rate a = 0.05, a statistical map is obtained.



5.2.2 Simulation and evaluation

Interictal spikes were simulated on 5 different localizations on the cortical
surface (see Figures 5-4 and 5-5). Simulations were made with two spatial extents
(one small, ~7cm?, and one large, ~25cm?). 5 different segments of 2 seconds of
baseline, taken from data showing no clear epileptic discharges, were added to
the simulated data as realistic noise, with a constant SNR of 2, for a total of 50
datasets. The source localization was performed on single trials. The resampling
method was applied and we obtained, for each localization with a particular noise
segment, an estimated HO distribution for each generator, and a statistical map of
activated generators.
5.3 Results

Figure 5-2 shows the result of cMEM for a simulation on the left fronto-
opercular region. The figure also shows the estimations of the HO for two gener-
ators located within the simulated source, the seed of the source and one located
on the edge of the simulated source, and two other generators, one close to the
actual activated source, the other located on the contra-lateral hemisphere. We can
see all the distributions resemble Gaussian distributions, but we observed a large
variability of the standard deviation of these distributions. The largest standard
deviation was observed for the seed of the source. The other generator within the
simulated source, even if it was close to the seed point, had a very low standard
deviation, because it was deeper in the cortex, as you can see in Figure 5-3. The
same reason is probably the cause of the low standard deviation of the remote

generator.
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Figure 5-2 — cMEM reconstruction of a simulated source, and estimated HO distri-
bution for some of the generators. The black line represents the amplitude of the
reconstruction, the asterisks indicate when the generator is significantly different
from the null hypothesis (¢ < 0.05, FDR corrected). The red graphs are magnified
representations of the distributions.

The map of all the standard deviation of the estimated HO distribution for
all the vertices along the cortical surface was illustrated in Figure 5-3. We can
see that the maximum of variance was located near the simulated source, and on
superficial generators.

The summary of the results for all the simulations is illustrated in Figures 5—4

(small spatial extent, ~7cm?) and Figure 5-5 (large spatial extent, ~25¢cm?). The
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Figure 5 3 Spatial map of the estimated standard deviation of the HO distri-
bution in (pA.m)?2. The data are shown in a logarithmic scale. The maximum of
variance is located near the simulated source, on superficial generators.

statistical maps were compared to the actual activated generators. The metrics of
sensitivity (proportion of true positive, i.e. simulated generators found as activated
on the statistical map) and specificity (proportion of true negative, i.e. non-
simulated generators found as non-activated on the statistical map) are presented.
For specificity, we proposed to separate the generators close to the source from the
others. A generator is considered as close if it is located at 10 or fewer degrees of
neighborhood from an activated generator, i.e. up to about 65mm from the source
in term of geodesic distance along the cortical surface.

For some maps in Figure 5 4 nothing was found significant, leading to
sensitivity of 0 and specificity of 1. We can see in Figure 5-4 that the sensitivity
is often high (above 0.7) whereas the specificity, especially the one for close
generators, was quite low, meaning that the spatial extent of the source seems to
be overestimated. For sources of larger extent, the specificity of close generators

rarely reaches 0.5. The segment of baseline used as noise greatly affects the results,
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and the values of sensitivity and specificity are varying a lot from one noise
segment to the other.

Examples of the statistical maps are illustrated in Figures 5-6 and 5-7. It
shows the simulated source, its localization, the resulting statistical map and the
localization when using the activated threshold as a mask, for both spatial extents.
The Figure 5-6 corresponds to the results of the simulation on the first row and
third column of Figures 5 4 and 5 5, and Figure 5 7 corresponds to the simulation
on the third row and second column. We can see that for all these results, the
source of activity was found activated. However the spatial extent was greatly
overestimated, with an obvious example presented in Figure 5-7(g) where almost
all the hemisphere was found activated, which shows that some statistical maps
behave better than others.

Figure 5-8 shows the results of «;p;;, i.e. the initial value of the mean of the
activated generators for MEM source localization, used for the source and the
baseline localizations. The map should be compared to the results of the statistical
map of the Figures 5-6 and 5-7. For both maps 5-8(b) and 5-8(d), the larger
values of ajni; cover much more that the simulated source, which is an expected
result. iy comes from MSP values [61|, which is an unspecific prelocalization
which does not mean to be focal. One can notice that many more dipoles are
showing large values of ajn;; in example 2 (Figure 5 7) than in example 1 (Figure
5-6). On the other hand, the values of specificity were higher for the statistical
map corresponding to example 1 (see Figure 5-6) rather than example 2 (see

Figure 5-7), even if a large spurious activity can be found in the left insula in
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example 1. Those are simply preliminary results, but it seems that the amplitude
and the good detection of ay,;; are related to the quality of the statistical map.
Further investigation will be performed, but evaluating the influence of the « on

statistical maps was beyond the scope of my Master’s thesis.
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Noise sample 1 Noise sample 2 Noise sample 3 Noise sample 4 Noise sample 5

Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

I Sensitivity
I Specificity (close)
I Specificity (far)

Figure 5 4 Evaluation of the statistical map for 5 small sources (mean size: 14
cm?), for 5 different noise samples used as realistic noise. The simulated source is
illustrated in the right of each row. The baseline used to estimate H(0 was the same
for all tests. The sensitivity, the specificity close to the source (a dipolar generator
located within the 10th spatial neighborhood order of the seed of the simulated
source), and the specificity far from the source is shown for all the configurations.
It is worth noting that for 4 of these maps, the sensitivity is equal to 0, and the
specificity is equal to 1, meaning that the statistical map did not detect anything
significant activity.
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Figure 5-5 — Evaluation of the statistical map for 5 large sources (mean size: 37cm
%), for 5 different noise samples used as realistic noise. The simulated source is il-
lustrated in the right of each row. The baseline used to estimate H(0 was the same
for all tests. The sensitivity, the specificity close to the source (a dipolar generator
located within the 10th spatial neighborhood order of the seed of the simulated
source), and the specificity far from the source is shown for all the configurations.
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(a)  Simulated source (b) Source localization (c) Statistical thresh- (d) Source localization
(spatial extent 3) old using statistical mask

(e)  Simulated source (f) Source localization (g) Statistical thresh- (h) Source localization
(spatial extent 5) old using statistical mask

Figure 5-6 — Illustration of the statistical map for simulation 1 with noise sam-
ple 3 in Figures 5 4 and 5 5. Top: small spatial extent. Bottom: large spatial
extent. (a)(e): simulated source. (b)(f): Source localization, visualization with Ot-
su’s threshold. (c)(g): Statistical map. (d)(h): Source localization showing all the
generators considered as active.
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(a)  Simulated source (b) Source localization (c¢) Statistical thresh- (d) Source localization
(spatial extent 3) old using statistical mask

(e)  Simulated source (f) Source localization (g) Statistical thresh- (h) Source localization
(spatial extent 5) old using statistical mask

Figure 5-7 — Illustration of the statistical map for simulation 3 with noise sam-
ple 2 in Figures 5-4 and 5-5. Top: small spatial extent. Bottom: large spatial
extent. (a)(e): simulated source. (b)(f): Source localization, visualization with Ot-
su’s threshold. (¢)(g): Statistical map. (d)(h): Source localization showing all the
generators considered as active.

5.4 Discussion

We showed in chapter 4 that the MEM-based source localization had a greater
spatial resolution than traditional methods. The goal of this chapter was to come
up with a method able to perform statistical analysis on a source localization
solution to obtain a map of activated generators. To do so, the current amplitude
at the peak of the reconstructed solution was compared to an estimation of the HO0
distribution for each generator. This null-hypothesis estimate was computed using
the bootstrap method on the time-scale domain on baseline data. The reason why
we used bootstrap on wavelet transformed data is to keep the 1/f structure of the

MEG background activity.
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(c¢) Simulated source (d) Corresponding init

Figure 5 8 Map of the values of ay,;; for two statistical analyses.

Figure 5-3 showed that the standard deviation of the HO0 distribution was
of great variability for the generators on the cortical surface. The variance of H0
estimate for deep dipoles is of smaller amplitude than superficial ones. Therefore
it is important that, like the method proposed here, the estimated statistical
threshold should be different for each dipolar generator. From results not shown
in this study, we saw that the segment of baseline used to make the bootstrap
samples was of little influence on the estimate of HO standard deviations.

Based on Figures 5-4 and 5-5, we showed that our statistical analysis were
sensitive and not specific: our technique was able to recover the spatial extent of
the source but tended to overestimate its spatial extent, even if MEM localization
seemed to correctly reconstruct the source. On the other hand, the MEM method

provided an accurate source localization. The HO distribution estimated for each
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generator showed a great variability of the standard deviation, thus making it
difficult to provide an optimal statistical map. First results suggested that the
statistical thresholding was more efficient when the «;,;; was accurately estimated.
One can try to understand the reason why we were not able to find a better
solution. It seems that the technique is highly affected by the determination of
the reference distribution du for MEM technique. First of all, the statistical map
is affected by the background activity of simulation for the source localization
(columns in Figures 5-4 and 5-5). The noise sample affects, among others,
the initialization of «;,;; which was used for the localization of the baseline
(step 2 of the proposed technique, see Figure 5-8). This might explain why
the statistical map results change so drastically with the noise sample, since
preliminary investigation seems to show that the quality of statistical map is
related to the value of qj,i, a fortiori to the reference distribution du. We need
to provide methods to extract in a more robust manner the properties of HO
distribution, to show less variability with the choice of the baseline segment.
Different ways of improving the statistical analysis exist. One can think
of applying the bootstrap analysis at the sensor level, as what was done in the
study from Xu and colleagues [95], and to apply the baseline localization on the
bootstrap samples. The result may be less affected by the reference distribution.
On the other hand, the computational cost becomes extremely important since
N = 1000 MEM localizations are now needed. This is the reason why this option
was discarded and that the bootstrap samples were used on the level of the dipolar

generators.
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Chapter 6
General conclusion

In the domain of epilepsy, the localization of the zone of the brain triggering
the seizures is primordial. The magnetoencephalography (MEG), which measures
the magnetic field resulting from the brain activity, is one of the modalities used
to localize the epileptogenic focus. It is based on the detection of the onset of
activity of interictal spikes, transient activity occurring between the seizures.
MEG has the advantage of having a higher temporal resolution than the other
imaging techniques (such as fMRI and PET). However, the spatial resolution of
MEG is limited, as signals are recorded from the scalp. On the other hand, MEG
is less affected than EEG by the resistivity of the skull, the spatial resolution
is then higher than for EEG. Distributed source localization is based on the
assumption that the brain activity is generated on the cortical surface and can
be approximated by a set of evenly distributed generators. Given this assumption
the resolution of the source localization becomes linear, but under-determined,
meaning the problem has an infinite number of solutions. To obtain a unique
solution, one needs to add some additional constraints. The Maximum of Entropy
on the Mean (MEM) technique is a framework which aims at finding the solution
which maximizes the p-entropy (i.e. minimizes the Kullback-Leibler divergence)
to a reference distribution. Our reference distribution in this thesis is based on a

data-driven full parcelization of the brain.
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6.1 Spatio-temporal evaluation of reconstructed propagating sources
6.1.1 Summary

The objective of the thesis was three-fold. First, we wanted to make sure
that the MEM techniques had a good ability to detect temporal propagation.
Indeed, interictal spikes may propagate along the cortical surface and it is crucial
to be able to recover the propagation pattern of the source to identify the onset of
activity. In Chapter 3, we showed, based on realistic simulations of epileptic spikes,
that the MEM techniques were able to recover the spatial extent of the source
along propagation patterns. We also confirmed previous studies [36, 16| showing
that MEM obtained better localization than standard techniques (such as the
minimum norm (MNE) estimate). Finally we demonstrated the ability for MEM
and cMEM to recover accurately the time course of the underlying sources.
6.1.2 Future work

Future works will focus on the generation of more realistic propagation
patterns, using models of coupled neuronal populations |[19|. Moreover, the present
findings will be validated using real data, where the propagation patterns could be
validated with intracranial EEG recordings.
6.2 Resolution kernel analysis
6.2.1 Summary

The second part of this study (Chapter 4) was to compare the theoretical
spatial resolution of the source localization methods and especially of the MEM
solver. To do so, we used different metrics based on the resolution matrix. For

linear techniques, such as MNE, the resolution matrix has an analytical formula.
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For MEM techniques, this matrix can be estimated based using Monte Carlo
simulations of single generator source localization. By comparing the point spread
functions of MEM and MNE in Chapter 4, we concluded that MEM localization
was more focal and more accurate. These results mean that the spatial resolution
of MEM techniques is higher. These results are really important considering the
fact that we are looking for a method sensitive to the spatial extent of the source.
It is the first time such an analysis is performed for MEM approaches. Besides,
we showed that the size and accuracy of the data-driven parcelization used for
the reference distribution in MEM and cMEM did not have any influence on their
spatial resolution, thus reproducing and confirming in other conditions some of our
previous findings [16].
6.2.2 Future work

Next step would be to validate the present findings using somatosensory
response data, as the study proposed by Molins and colleagues [64|. This kind of
study has the advantage of being easy to acquire and is known to produce focal
response, which can be modeled by a single generator source. The seed of activity
would be localized using a single dipole fit localization at the peak of the evoked
signal obtained after electrical median nerve stimulation. The analysis of the
localization and spatial extent of the source localization techniques can give us
insights on the spatial resolution of those techniques.

One way of using the resolution matrix analysis is to quantify the improve-
ment in term of spatial accuracy of fusion data. As mentioned before, Molins et al.

[64] and Liu et al. [59] compared the spatial resolution of MNE using a fusion of
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EEG and MEG (by concatenating the signal and gain matrices) to EEG and MEG
alone. Both teams concluded that fusion had a significant impact on the accuracy
of the reconstruction. Future works will investigate the effect of EEG-MEG fusion
on MEM or cMEM.

6.3 Implementation of a bootstrap-based statistical threshold in the
time-scale domain

6.3.1 Summary

The third part (Chapter 5) dealt with the implementation of statistical
analysis to obtain a map of activated generators. To do so, for each generator
on the cortical surface the null-hypothesis distribution was estimated using a
bootstrap resampling technique. The bootstrap technique was used to avoid
imposing any a priori on the null hypothesis distribution in the cMEM source
space. The analysis was performed using discrete wavelet to keep the 1/f spectral
structure of the data, and to obtain independent samples since discrete wavelet
representations provide interesting decorrelation properties between time samples
and scales [49]. After localization a segment of background activity, we obtained
a set of time-frequency boxes, using discrete Daubechies wavelet transformed.
Those time-frequency boxes were resampled to create new samples estimating
baseline activity. The samples were regrouped into histograms which estimate
the distribution of background activity. The source localization result was then
compared to those histograms to obtain p-values statistics, and therefore a
statistical map. Even if the results from Chapter 4 were really promising, the
results obtained here were not as good as expected. The statistical map lacks

specificity, meaning that the spatial extent is not recovered, and cannot be
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estimated based on this technique. We have not clearly identified the reason of this
result yet, but it is probably due to the calculation of the reference distribution.
We demonstrated that the HO distribution was found to be complex and highly
influenced by the initialization of « for the MEM reference distribution.
6.3.2 Future work

A large part of the work remains to be done to obtain a satisfactory statis-
tical map of activity. Moreover, the technique will be applied to a new source
localization technique, the wavelet-based MEM (wMEM), which is the MEM
technique applied to the time-frequency boxes of the discrete wavelet transform of
the signal [58]. We expect wMEM approach to be more appropriate to these non
parametric statistical approaches, since the sources are directly estimated in the
time-frequency boxes during the localization procedure.
6.4 Final conclusion

Source localization is still a hot topic in EEG and MEG, and it is possible
to improve the accuracy and the spatial resolution of the reconstruction. MEM is
a promising technique since we proved it was able to recover the time course of
sources and had a better spatial resolution than standard techniques. Few steps are
left to do to obtain a statistical map to be able to give a good estimation of the
extent of a source, a useful piece of information for the presurgical investigation of

patients with epilepsy.
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