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ABSTRACT

Mining complexes are generally comprised of multiple deposits that contain
several material types and grade elements, which are transformed in available pro-
cessing destinations and transported to final stocks or ports as saleable products.
These components, associated with a mining complex, encompass multiple sequen-
tial activities: (7) Mining the material from one or multiple sources; (i) blending
the material including stockpiling; (ii7) transforming the material in different pro-
cessing destinations considering operating modes; (iv) transporting the transformed
material to final stocks or ports. Since these activities are strongly interrelated, their
optimization must take place simultaneously. In the technical mining literature, this
problem is known as global optimization of mining complexes. Conventional mining
optimization methods suffer from at least one of the following drawbacks when opti-
mizing mining complexes: some decisions are assumed when they should be dynamic;
component based objectives are imposed, which might not coincide with global ob-
jectives; many parameters are assumed to be known when they are uncertain. Past
research works have demonstrated that geological uncertainty is the main cause of
the inability of meeting production targets in mining projects.

This thesis presents methods to optimize mining complexes that simultaneously
consider different components and account for geological uncertainty. In this study,
the term geological uncertainty refers to uncertainty related to grades and mate-
rial types of the mineral deposits under consideration. This uncertainty is modelled

through geostatistical orebody simulations of the different deposits.



A multistage methodology that uses simulated annealing algorithm to generate
risk-based production schedules in mining complexes with multiple processing des-
tinations is presented and implemented in Escondida Norte (Chile) copper dataset.
The algorithm swaps periods of mining blocks seeking for minimizing the deviations
from the capacities at the different processing destinations. Its implementation us-
ing Escondida Norte dataset generates expected average deviations of less than 5%
regarding mill and waste targets, whereas a mine production schedule generated con-
ventionally over a single estimated model generates expected average deviations of
20 and 12% for mill and waste targets respectively.

An iterative improvement algorithm that considers operating modes at different
processing destinations is developed and applied to a copper complex. The objective
function seeks for maximizing discounted profits along the different periods and sce-
narios (orebody simulations). The algorithm iteratively perturbs an initial solution
by pushing profitable blocks to early periods and non-profitable ones to later periods
while approaching mining and processing targets. The destinations of the mining
blocks are also perturbed toward NPV improvements and attainment of production
targets. The implementation of the method at a copper deposit allows reducing the
expected average deviations from 9 to 0.2% regarding the capacity of the first process
while increasing the expected NPV by 30% when compared with an initial solution
generated conventionally.

A method that uses simulated annealing at different decision levels (mining, pro-
cessing and transportation) is described and tested in a multipit copper operation.

The method integrates three different types of perturbations: (i) Swapping periods
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and destinations of mining blocks; (7i) swapping operating modes at the different
processing destinations; (4ii) modifying the utilization of the transportation systems
available in the mining complex. The implementation of the method in a multipit
copper operation permits the reduction of the expected average deviations from the
capacities at two mills from 18-22% to 1-3% and the expected average deviation from
the targets regarding two blending elements from 7-1.8% to 0.3-0.6% when compared
to an initial solution generated conventionally. The expected NPV also improves by
5%.

The previous method is extended to mining complexes that combine open pit
and underground operations and it is tested in a gold complex in Nevada. The ex-
tended method also accounts for external blending material used for meeting the
operational ranges of the metallurgical properties in some specific destinations. The
implementation of the method at Twin Creeks gold complex in Nevada shows im-
provements in meeting the metallurgical blending requirements while increasing the
expected NPV by 14%.

The formulations described in this thesis encompass a large number of integer
variables given the discretization of the mineral deposits. To solve the problems, effi-
cient optimization algorithms are implemented with significant improvements when
compared with conventional deterministic approaches. These algorithms outperform
conventional methods regarding expected NPV and meeting targets at the different

components of the value chain.
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ABREGE

Les complexes miniers sont généralement composés de multiples gisements de
minerai complexe qui contiennent plusieurs types de matériaux. Ces matériaux sont
transformés dans différentes destinations de traitement et sont transportés au dépot
final ou dans des ports comme produits finaux. Ces composantes associées au com-
plexe minier englobent de multiples activités séquentielles : (i) 1“abattage du min-
erai a partir d ‘'un ou plusieurs gisements, (i7) 1"homogénéisation des matériaux en
incluant le stockage, (i7i) la transformation des matériaux dans les différents destina-
tions de traitement qui considérent certains modes d “opération, (iv) le transport des
matériaux transformés au dépot final ou dans les ports. Puisque ces activités sont
fortement inter-reliées, 1 “optimisation de ceux-ci doit étre faite simultanément. Dans
la littérature technique miniere ce probleme est connu sous le nom d optimisation
globale des complexes miniers. Les méthodes d optimisation conventionnelles souf-
frent d "au moins une de ces inconvénients lorsqu “utilisées pour 1 optimisation glob-
ale des complexes miniers : certaines décisions sont assumées fixes alors qu “elles de-
vraient étre dynamiques (les modes d “opération, destination des blocs d “exploitation,
etc.), les objectifs sont basées sur certains composantes qui peuvent ne pas coincider
avec les objectifs globaux et plusieurs parametres sont assumés connus alors quils
sont incertains. Les recherches passées ont démontré que 1 incapacité a atteindre les
objectifs de production dans les projets miniers est due a 1 incertitude géologique du
gisement.

Cette these présente des méthodes pour 1 optimisation des complexes miniers
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qui considerent simultanément les différentes composantes ainsi que 1 incertitude
géologique. Dans cette étude, le terme incertitude géologique réfere au type de
matériel et la qualité du matériel du gisement sous considération. Cette incerti-
tude est modélisée par simulations géostatistiques des différents gisements. Une
méthodologie en plusieurs étapes, qui utilise un algorithme de recuit simulé pour
générer un calendrier de production basé sur le risque pour les complexes miniers avec
plusieurs destinations de traitement de matériaux, est présentée et implémentée pour
le complexe d”Escondida Norte, Chile. L “algorithme change la période d “abattage
des blocs d exploitation en cherchant a minimiser les écarts par rapport aux ca-
pacités des différentes destinations de traitement. Sa mise en ceuvre a Escondida
Norte génere des écarts moyens attendus de moins de 5% par rapport aux cibles
du broyeur et des matériaux stériles produits alors qu un calendrier de production
générer a partir d 'une méthode conventionnelle en utilisant seulement un modele
de gisement estimé génere des écarts moyens attendus de 20% et 12%. Un algo-
rithme d“amélioration itérative qui considere les modes d opérations aux différentes
destinations de traitement est développé et implémenté a un complexe minier trai-
tant du cuivre. La fonction objective cherche a maximiser le profit actualisé pour les
différentes scénarios (simulations géostatistiques du gisement) et périodes. L “algorithme
perturbe de maniere itérative une solution initiale en devancant la période d “extraction
de blocs d exploitation rentables et en différant celle de blocs non-rentables tout en
approchant les cibles des destinations de traitement et ceux d’ extraction. La desti-
nation des blocs d “exploitation est aussi perturbée en favorisant une amélioration de

la valeur nette actualisée et 1"atteinte des objectifs de production. L “implémentation
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de cette méthode a un gisement de cuivre permet de réduire 1”écart moyen attendu
de 9% a 0.2% pour la capacité de la premiere destination tout en augmentant la
valeur nette actualisée de 30% par rapport a celle de la solution initiale générée de
maniere conventionnelle. Une méthode qui utilise le recuit simulé pour les différentes
étapes de décision (extraction, traitement, transport) est présentée et testée pour un
complexe avec plusieurs mines de cuivre en opération. La méthode integre trois
différents types de perturbations : (i) le changement de périodes et de destinations
des blocs d“exploitation, (i) le changement du mode opérationnel aux différentes
destinations de traitement et (%ii) la modification de 1 utilisation des modes de
transport disponibles dans le complexe minier. L “implémentation de la méthode
au complexe multi mines permet de réduire les écarts moyens attendus par rapport
a la capacité de deux broyeurs de 18%-22% a 1%-3% et les écarts moyens attendus
des éléments d “homogénéisation de 7%-1.8% a 0.3%-0.6% par rapport a la solution
initiale générée conventionnellement. De plus, la valeur nette actualisée augmente
de 5%. La méthode précédente est généralisée pour un complexe minier qui combine
des opérations de mines a ciel ouvert et de mines sous-terraine et est testée dans un
complexe traitant de 1’or au Nevada. Cette méthode prend aussi en considération
du matériel d " homogénéisation provenant d une autre source qui est utilisée pour
1"atteinte de contraintes opérationnelles de propriétés métallurgiques dans certaines
destinations de traitement. L ‘implémentation de cette méthode au complexe Twin
Creeks au Nevada montre une amélioration quant au respect des contraintes des pro-
priétés métallurgiques tout en augmentant la valeur nette actualisée de 14%.

En considérant la discrétisation du gisement de minerai, les formulations décrites



dans cette these produisent un large nombre de variables en nombres entiers. Pour
résoudre ces problemes, des algorithmes d “optimisation efficients sont implémentés,
produisant des améliorants significatifs lorsque comparés avec des méthodes déterministes
conventionnelles. Ces algorithmes surpassent les méthodes conventionnelles aux
points de vue de la valeur nette actualisée produite et d’ atteinte des objectifs de

production pour les différentes composantes de la chaine de valeur.

xi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . .. .. . e

CONTRIBUTION OF AUTHORS . . . . ... ... .. .. .. .. ....

ABSTRACT . . . o

ABREGE

LIST OF TABLES . . . . . . . e

LIST OF FIGURES . . . . . . . o .

1

General introduction . . . . . . . ..

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Overview . . . . . . . .
Optimizing the components of the value chain . . . . . .. .. ..
Stochastic mine planning . . . . . . .. .. ... L.
Stochastic simulation . . . . . . ... ... 0L
Goal and objectives . . . . . . ... Lo
Thesis outline . . . . . . . . .. .. ...
Originality and contribution to knowledege . . . . . . . . . .. ..

Stochastic mine production scheduling with multiple processes: Applica-
tion at Escondida Norte, Chile . . . . . .. ... ... ... ... ...

2.1
2.2

2.3

Introduction . . . . .. ... o
LOM production scheduling with multiple ore/waste destinations
via simulated annealing . . . . . ... ...
Casestudy . . . . . . . . . .
2.3.1 Generation of the input mining sequences . . . . . . . . ..
2.3.2 Selection of the starting sequence . . . . .. .. ... ...
2.3.3 The stochastic mine production schedule . . . . ... ...
2.3.4 The robustness of the stochastic solution . . .. .. .. ..
2.3.5 Comparison with a conventional mine production schedule

xii



24 Conclusions . . . . . . . .

An extended stochastic optimization method for multi-process mining

complexes . . . . ...

3.1 Introduction . . . . . . ...
3.2 Optimization model . . . . . . .. .. ... L

3.2.1 Solution of the problem . . . . . . ... ... ... .....
3.3  Case study: a copper deposit . . . . . .. ...
3.4 Conclusions . . . . .. ...

Optimizing mining complexes with multiple processing and transporta-

tion alternatives: An uncertainty-based approach . . . . ... ... ..

4.1 Introduction . . . . . ...
4.2  Method . .. . ..
421 Overview . . . . . ..o
4.2.2 Optimization model . . . . . . ... ...
4.2.3 Solution approach . . . . .. ... ..o
4.3  Implementation of the method: A multipit operation . . . . . ..
4.3.1 Overview of the operation . . . . .. .. ... ... ....
432 Basecase . . . . . . ...
4.3.3 Optimization parameters . . . . . .. ... ... ... ...
4.3.4 Case 1: Multipit multiprocess . . . . ... ... ... ...

4.3.5 Case 2: Multipit multiprocess with operating alternatives

at themills . . . . . .. ..o
4.4 Conclusions . . . . . . . .

Globally optimizing open-pit and underground mining operations under

geological uncertainty, Twin Creeks Mining Complex, Nevada, USA . .

5.1 Introduction . . . . . . . ..
5.2 Optimizing the components of the value chain . . . . . .. .. ..
5.2.1 Generalities . . . . ... ... ...
5.2.2 Mathematical model . . . . . . . ... ... L.
5.2.3 Solution . . . . . ...
5.3  Case study: Twin Creeks mining complex, Nevada . . . . . . . ..
5.3.1 Initial solution . . . . . . . . . . ... ...
5.3.2 Optimization parameters . . . . . . . . ... .. .. ....
5.3.3 Stochastic solution. . . . . . .. ... ...



54 Conclusions . . . . . . . .
6 General conclusions . . . . . . . . L
References . . . . . . . .

Xiv



Table

2-1
2-2
2-3
2-4
4-1
4-2
4-3

4-5
4-6

LIST OF TABLES

page
Operating and financial parameters . . . . . .. .. .. ... .. ... 49
Metallurgical recoveries . . . . . . . . . .. ... L 49
Annealing parameters . . . . . ... .. L 54
Results from the stochastic schedule . . . . . ... ... .. ... ... o7
Main variables . . . . . . ..o 96
Deviation variables . . . . . . .. ... oo 96
Economic and penalty variables . . . . . . . ... ... ... ... .. 97
Tonnage variables . . . . . . . . ... oo 97
Parameters . . . . . . ... o 98
Sets . . . . 99

XV



LIST OF FIGURES
Figure page

2-1 Example of a mining complex . . . . . ... .. .. ... ... .. .. 42

2-2 Multi-stage method to generate stochastic long-term production
schedules [37] . . . . . . L 44

2-3 Possibilities for material handling according to the material type . . . 48

2-4 Material types (left) and copper grades (right) in section Y=114037.5

of (a) orebody simulation 5; (b) orebody simulation 10 . . . . . . . 50
2-5 Geotechnical zones of the deposit . . . . . . ... ... ... .. ... o1
2-6 Cross-section of (a) mining sequence 1; (b) mining sequence 6; (c)

mining sequence 10; (d) mining sequence 15 . . . . . . . ... ... 51
2-7 Expected ore sent to milling process of input mining sequences . . . . 52

2-8 Expected material sent to the waste dump of input mining sequences 53
2-9 Ore sent to milling process with stochastic mine production schedule . 54

2-10 Ore sent to bio-leaching process with stochastic mine production

schedule . . . . . . . .. 55
2—-11 Ore sent to acid-leaching process with stochastic mine production

schedule . . . . . . . . 55
2—-12 Material sent to the waste dump with stochastic mine production

schedule . . . . . . . . 56
2-13 Copper production with stochastic mine production schedule . . . . . 56
2-14 Cumulative NPV with stochastic mine production schedule . . . . . . o7

xvi



2-15 Material sent to processes and waste dump with the stochastic mine
production schedule: (a) ore to mill; (b) ore to bio-leaching; (c) ore
to acid-leaching; (d) material to waste dump . . . . . . . ... ...

2-16 Cumulative NPV with the stochastic mine production schedule . . . .
2-17 Material sent to mill and waste dump with the schedule of the e-type
2-18 Cumulative NPV with conventional schedule . . . . . . . .. ... ..
3-1 Process and operating alternatives . . . . . . .. ... ... ...
3-2 Stages of the method . . . . . . . ... ... ..

3-3 Two-dimensional example of predecessors and successors of a given
block . . . . ..

3-4 Overall profitability per block per destination . . . . .. ... .. ..

3-5 Possible destinations and mining periods of a block with positive
overall profitability . . . . . . .. .. ... ...

3-6 Stage 3 of the proposed method . . . . . .. .. ... ... .. ....
3-7 Available material types and destinations . . . . . . ... ... .. ..
3-8 Orebody simulations (left), mining sequences (right) . . . . . . . . ..
3-9 Productions vs. number of perturbations . . . . .. .. .. ... ..
3-10 Evolution of expected NPV . . . . . . .. ... ...
3-11 Tonnage sent to destinations . . . . . . . . .. .. ... ... .....
3-12 Metal . . . . . .
3-13 Material types sent to stockpile . . . . . .. . ... L.
3-14 Net present value . . . . . . . . . . ... . ...
3-15 Process 1: Production forecast for the conventional initial solution . .
3-16 Net present value of the conventional initial solution . . . . . . . . ..

3-17 Cross-section of the risk-based schedule . . . . . . . .. .. ... ...

XVii



4-1 Operating alternatives foramill . . . . .. ... ... ... ... ... 92
4-2 Flexibility of the mining complex . . . . . . .. ... ... ... ... 95
4-3 Activities of the mining complex . . . . . . . . . ... ... ... ... 95
4-4 Block based perturbations . . . . . .. ... .. 0oL 109
4-5 Operating alternative based perturbations . . . . . .. .. ... ... 111
4-6 The heuristic approach . . . . . . ... ..o oo 112
4-7 Multipit operation . . . . . .. ... 114
4-8 Base case schedule . . . . ... .. oo 0oL 115
4-9 Objective function terms at different temperatures . . . . . . . . . .. 116
4-10 Objective function terms vs. number of cycles . . . . . . .. . .. .. 117
4-11 Case 1: Multipit multiprocess . . . . . . . . . . .. .. .. ... ... 118

4-12 Case 1: Multipit multiprocess with operating alternatives at the mills 119

4-13 NPV of the case 2 solution . . . . . .. .. ... .. ... ... .... 120
5-1 Components of a mining complex . . . . . . ... .. ... ... ... 125
5-2 Processing destination . . . . . . ... o0 oL 127
5-3 Transportation systems . . . . . . . . . .. ... 128
5-4 Cumulative profit of aunit . . . . . . . . .. ... 0L 131
5-5 Perturbation of units . . . . . .. ..o 132
5-6 Method . . . . . . . . 134
5-7 Twin Creeks gold complex . . . . . . . .. .. ... ... ... .... 135
5-8 Three orebody simulations of Mega pit . . . . . . .. ... ... ... 136

59

Gold grades (left) and production zones(right) in Turquoise Ridge:
(a) Plan view; (b) Cross section . . . . . . . ... ... ... .... 136

xviil



5-10 Validation of the simulations in Turquoise Ridge: (a) Drillhole data;

(b) Histogram reproduction; (c¢) Variogram reproduction . . . . . . 137
5-11 Orebody simulations and production zones of Turquoise Ridge . . . . 137
5-12 Sage autoclave . . . . . . ... 138
5-13 Productions with the initial solution . . . . . . . ... .. ... .. .. 140
5-14 Metallurgical properties with the initial solution . . . . . . . . . . .. 140
5-15 NPV with the initial solution . . . . . .. ... .. ... ... .... 141
5-16 Evolution of objective value with different initial temperatures . . . . 142
5-17 Productions with the stochastic solution . . . .. ... ... ... .. 143
5-18 Metallurgical properties with the stochastic solution . . . . . . . . .. 144
5-19 NPV with the stochastic solution . . . . . . ... .. .. ... .... 145
5-20 Productions with the new stochastic solution: (a) Mill 5 concentrate;

(b) Mill 5 concentrate x 5 . . . . . .. ... 145
5-21 Expected NPVs of stochastic solutions . . . . . .. .. ... .. ... 146

Xix



CHAPTER 1
General introduction

1.1 Overview

A mining complex is a value chain where raw material is extracted and trans-
formed into saleable products. The value chain is comprised of different components:
mineral deposits, stockpiles, processing paths, transportation systems. The mineral
deposits are the sources of raw materials that can be classified into different material
types based on their chemical and metallurgical properties (e.g. sulphide or oxide
material in a copper operation). The stockpiles contribute to the blending opera-
tion, contain potential ore and can provide a backup supply of raw material. The
material that comes directly from the deposits or from the stockpiles is transformed
through multiple processing paths or destinations. In each destination, several op-
erating modes can be used; for example, a mill can be operated at fine or coarse
grinding. The operating mode defines the metallurgical recovery, processing cost,
blending requirement and throughput of a given destination. Once the material is
transformed, it is transported to final stocks or ports using transportation systems.

To optimize a mining complex, its components must be optimized simultane-
ously (deposits, stockpiles, processing destinations, transportations systems). The
problem of simultaneously optimizing all the components of the value chain is known
in the mining literature as global optimization of mining complexes [110, 111, 113].

Some efforts have been made to incorporate several components of the value chain



during the optimization [12, 46, 50, 96, 110]. However, these methods have at least
one of the following limitations: some decisions are fixed when they should be dy-
namic (operating modes, destination of mining blocks, etc.); component-based objec-
tives are imposed, which might not coincide with global objectives; many parameters
are assumed to be known when they are uncertain [110, 111].

Project risk may arise from three main sources: technical (geological and min-
ing), financial and environmental [88]. Several authors [25, 106] have concluded that
the major factor in the inability to meet production targets and to generate reliable
project expectations in mining is geological uncertainty; that is, uncertainty in grades
and material types. Mine optimization methods consider single estimated (average-
type) orebody models in their calculation processes, ignoring the uncertainty asso-
ciated with the spatial distribution of the attributes of interest. These models are
generated by interpolation methods that provide smoothed representations of the
mineral deposit attribute being estimated, typically metal grade. Smoothed models
are inadequate for the assessment of variability in deposit characteristics. As op-
posite to interpolation methods, stochastic simulation is a technique that permits
generating models that respect all that is known about the orebody in terms of the
statistical distribution and spatial variability of the attributes as determined from
available sampling information. Repeated simulations will produce different equally
probable models of the orebody, which allows modelling the geological uncertainty
associated with the deposit at a mining scale. The optimal design and sequence of an
average-type model has poor performance over a set of orebody simulations derived

from the smoothing effect associated with the estimated model. This misleading is



originated from the fact that single average-type models do not generate solutions
that perform well in average over a set of orebody simulations, given that the transfer
function that relates grades and discounted economic values is non-linear.

Over the past decade, new stochastic optimization methods that take into ac-
count geological uncertainty by means of multiple orebody simulations have been
developed for open pit designs and life-of-mine (LOM) production scheduling. These
methods allow quantifying and minimizing the risks of deviating from production
targets while increasing the expected NPV of the operation. Furthermore, some
applications of stochastic methods reveal potential increases in recoverable metal,
which contribute to the responsible utilisation of non-renewable resources [1, 2, 69].
1.2 Optimizing the components of the value chain

The global optimization of a mining complex demands the simultaneous opti-
mization of all its components. Hoerger et al. [50] formulate the problem of opti-
mizing the simultaneous mining of multiple pits and the delivery of ores to multiple
plants as a mixed integer program. The model calculates the net present value of
the mining complex by using variables that represent material sent from the mines
to the stockpiles, material sent from the mines to the processes, and material sent
from the stockpiles to the processes and their associated costs. The mining blocks
are grouped into increments based on the metallurgical properties, which belong to
sequences (or pushbacks). The integer variables are used to model mine sequencing
constraints at a pushback level and plant startups and shutdowns. This formula-
tion is based on the work done by Urbaez and Dagdelen [105]. Hoerger et al. [50]

implement the formulation at Newmont’s Nevada operations where 50 sources, 60



destinations and 8 stockpiles are considered. This has led to increased profitability
in northern Nevada mine sites by taking advantage of the available synergies. How-
ever, due to the use of pushback sequencing constraints instead of block sequencing
constraints to decrease the complexity of the problem, there is a loss of resolution in
the solution generated from the method that may lead to the inability of meeting the
blending and production requirements. Furthermore, the method does not consider
multiple operating modes for each processing destination and ignores the geological
uncertainty associated with the ore deposits.

Stone et al. [96] present the Blasor optimization software tool developed by
the mine planning optimization group within BHP Billiton Technology. To deter-
mine the optimal extraction sequence in multiple pits, it formulates the problem as
a mixed integer linear problem and solves it using ILOG CPLEX [53]. Material is
assigned to bins on the basis of combination of grades and impurities. Blocks spa-
tially connected and with similar properties are aggregated, which largely reduces
the amount of integer variables in the formulation. The formulation accounts for
slope angles, mining rates, capacities, and quality and grade constraints. The Blasor
procedure starts with the aggregation of blocks, then it calculates the optimal extrac-
tion sequences and pit limits, later it generates mineable mining phases, and finally
it provides the optimal panel extraction sequence, where a panel is the intersection of
a mining phase and a bench. The software generates a solution within 0.5% bound of
optimality in 6-10 hours when implemented in Yandi’s operation comprised of 1000

aggregates, 11 pits and 20 periods over the LOM.



Rocchi et al. [91] implement Blasor at Illawarra Coal mining operations, New
South Wales, Australia. BHP Billiton’s Illawarra Coal operates several longwall coal
extraction systems. Eight different domains are defined along two colliery complexes.
Each domain is presented in Blasor as a distinct virtual open pit. The implementation
of Blasor provides an optimized solution for coal hoisting and production within
blend constraints that outperforms the mining sequences derived from the solution
methodology using the XPAC scheduling software [93].

Zuckerberg et al. [119] present Blasor-InPitDumping or BlasorIPD that is a
specialized version of Blasor to model waste handling. It uses the general approach
of Blasor but incorporates variables representing when mined-out areas are filled
with waste material. The refill is done in a way that maximum waste repose slope
constraints are respected and no ore is overlaid with waste material. Despite of the
additional complexity added in BlasorIPD, it provides fast solution times for full
sized problems as in Blasor.

Bodor is an in-house BHP Billiton “s software developed to generate the resource
extraction sequence at Boddington bauxite mine, south-western Australia. The op-
eration is a bauxite mine comprised of bauxite pods clustered into several distinct
mining envelopes. Pods are distinct bodies of ore lying close to the surface and
of modest size. Zuckerberg et al.[120] outline the main features of Bodor and its
implementation at the mine. Bodor focuses on the sequences in which pods are to
be excavated to minimize capital and operational costs, meet blend targets at the
refinery front gate, respect environmental and operational constraints, and allow for

smooth utilization of trucking resources. The basic assumption is that the material



in a given pod (or sub-pod) is homogeneous, which allows it to be extracted in any
proportion. The formulation is a mixed-integer-linear model (MILP) that is solved
using a standard CPLEX MILP optimization engine [53]. The objective function
seeks for minimizing costs while ensuring the delivery of material to the refinery.
The implementation of the software at Boddington mine generates a reduction of 5%
of the costs when compared with a schedule generated using XPAC scheduling soft-
ware under the policy of deferring the capital expenditure as long as possible. The
software is deposit-specific as it works with bauxite pods instead of mining blocks as
other formulations.

Chanda [16] formulates the delivery of material from different deposits to a
metallurgical complex as a network linear programming optimization problem. The
nodes of the network represent mines, concentrators, smelters, refineries and market
regions. The arcs represent per-unit production and transportation costs. The ob-
jective is to minimize the costs throughout the network under a certain demand of
metal. Although interesting to model the flow of material through a metallurgical
complex, the model does not generate a mine production schedule by assuming a
constant grade from the different sources.

Wooller [114] describes the COMET software that optimizes mill throughput /
recovery and cut-off grade. COMET uses an iterative algorithm based on succes-
sive approximation dynamic programming [68]. Through successive iterations the
algorithm searches for an operating policy and sequence that maximizes the value
of a resource. In each iteration, it generates period operating policies until the de-

pletion of the resource. The algorithm is able to define operating policies such as



mill throughput/recovery or the choice of process routes such as heap leach versus
concentration. However, one of the main limitations of the method is its ability to
optimize deposits where blending is required to produce the final products, given that
it does not consider minimum constraints required to respect operational ranges.

Whittle [110] introduces the global asset optimization tool incorporated in Whit-
tle software. The tool is designed to optimize the sequence of extraction of multiple
deposits considering complex processing and blending operations. The mining blocks
are aggregated in parcels that are intersection of mining phases and benches and
classified in grade bands originated from the different grade elements. This allows
reducing orebody models of millions of blocks to grade banded databases of several
thousand records. The method assumes the possibility of stockpiling each material
type (grade band) and allows incorporating non-linear expressions, multi-stage paths
and recycle loops in the processing database. Processing turns mined material into
one or more blend feeds that can be stockpiled, discarded or combined to generate
the final products. Prober is the algorithm used to solve the problem. It combines a
mathematical search algorithm with a linear programming evaluation routine. The
search algorithm samples the feasible domain of alternative LOM plans and the eval-
uation routine determines optimal COG, stockpiling, processing selection, blending
and production plan, and determine the NPV. The prober works by repeatedly cre-
ating a random feasible solution and then finding the nearest local maximum. The
algorithm stops when the top ten values lie within 0.1% of each other [113].

All the methods previously described ignore the uncertainty associated with key

parameters. Groeneveld et al. [46] incorporate uncertainty in market price, costs,



utilization of equipment, plant recovery and time for building options (infrastructure)
while simultaneously optimizing mining, stockpiling, processing and port policies.
The authors formulate the problem as a mixed integer program where the objective
is maximizing NPV. To do that, the objective function accounts for the revenue from
the sale of ore, the capital cost of building an option, the disposal cost of reducing
capacity, the variable cost of processing ore and the fixed cost of maintaining an
option. The formulation brings flexibility by considering options for: (i) mining,
e.g., increase capacity by buying trucks, (i) stockpiling, (i) processing, which are
characterized by their capacities, capital costs, fixed operating costs and grade limits,
and (i) port, e.g., different port capacities. The flexibility of the model allows an
increment of 85% in the NPV of a hypothetical iron mine when compared to a design
without flexibility. Although very flexible, the method has some limitations: it does
not consider multi-product options and ignore geological uncertainty, which is the
major factor in the inability to meet production targets and to generate reliable
project expectations in mining [25, 106].

Bodon et. al [12] models the problem of supplying exports in a coal chain as a
discrete event simulation model (DES). The model is able to asses various operat-
ing practices, including maintenance options and capital expenditure to determine
the best infrastructure for a given system. The DES model allows determining the
optimal capacity of the supply chain with its robustness under uncertainty. The op-
timization is a linear program with multiple objectives, in where some assumptions
are made to linearize some non-linear constraints as the variation in stockpile qual-

ity over time. The implementation of the model on the export supply chain of PT



Kaltim Prima Coal in Indonesia shows the ability of DES to analyze multiple scenar-
ios towards the increase of the value of the supply chain. However, the method is not
able to generate LOM productions schedules or to account for non-linear expressions
along the supply chain.

Interesting developments have being done in other industries to optimize value
chains and incorporate uncertainty. Goel and Grossmann [39] model the construction
of well and production platforms and pipelines in an offshore gas field as a multi-
stage stochastic programming model. The model accounts for the uncertainty in the
sizes and initial deliverabilities of the fields. The authors develop a decomposition
based approximation algorithm that involves solving scenario sub-problems and a se-
quence of two-stage stochastic programming problems. Through different examples,
the authors show improvements in expected net present value and good solutions
in reasonable time. Tarhan et al. [103] develop a multistage stochastic program-
ming approach for the planning of oil or gas infrastructure. The main uncertainties
considered are the oil/gas flowrate, recoverable oil/gas and water breakthrough time
of the reservoir. The probability distributions of the uncertain parameters are dis-
crete, which allows representing the stochastic process by scenario trees. The model
optimizes investment decisions such as number of wells to drill, facilities to build
and operational decisions such as oil production rate from the reservoirs to max-
imize the expected net present value. To solve the problem, the authors propose
a duality-based branch and bound algorithm that takes advantage of the problem
structure. The solutions obtained with the algorithm are 10 and 22% better than

the solutions obtained with the expected value approach in two different examples.



This result highlights the importance of stochastic optimizers in improving expected
results when compared with deterministic implementations.
1.3 Stochastic mine planning

Geological risk is seen as the major contributor to not meeting project expec-
tations. Vallee [106] notes that 60% of surveyed mines had an average rate of pro-
duction less than 70% in the first year of production. Ravenscroft [87] proposes a
methodology to measure the risk in mine production scheduling by using orebody
models generated with conditional simulation. The methodology consists of testing
a mine production schedule generated from an estimated model on a set of orebody
simulations. The author performs a risk analysis in the schedule of a large open-pit
mining operation and observes that in one of the periods evaluated, there was only
40% of chances of deviating less than 10% from the grade that was expected. Dim-
itrakopoulos et al. [25] point out that for any open-pit design, the uncertainty over
grades, tonnages or geology can be readily modelled and integrated into the opti-
mization and design process so as to provide accurate modelling and quantification
of uncertainty and risk. The authors show the limits of conventional optimization
in a test with a disseminated gold deposit where net present value determined from
conventional optimization (estimated orebody model and pit optimization with in-
dustry conventional optimization standards) has only 2-4% probability of occurring
with a 95% of probability of the project of returning a lower NPV than predicted.
To summarize, traditional open pit optimization: (i) ignores uncertainty generating
misleading NPV and thus suboptimal solutions and major deviations from produc-

tion plans; (%i) is unable to assess thus manage risk regarding key project indicators.
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Therefore, the implementation of risk-based approaches to value assets, operations
or projects as well as quantifying and minimizing the associated risks is sought.
Dimitrakopoulos et al. [28] present one of the first efforts to include uncertain
supply based on orebody simulations and conventional optimizers. To generate the
pit designs and mining sequences using conventional methods, nested pit implemen-
tation of the Lerchs-Grossman algorithm and Milawa scheduler available in Whittle
software are used [112]. The Lerchs-Grossman algorithm (LG) formulates the prob-
lem of generating the ultimate pit as a graph closure problem[72]. Seymour [94]
proposes a pit limit parameterisation from the three-dimensional LG algorithm to
discretize the pit space and account for discounting by iteratively modifying a given
parameter, generating different pit shapes that are optimal under the specified pa-
rameter conditions. The nested pits (or pitshells) generated from parametric LG can
be grouped into phases or pushbacks that respect operational constraints. Milawa
scheduler from Whittle software is based on possible combinations of pushbacks and
benches to generate the highest NPV [112]. Dimitrakopoulos et al. [28] propose
a maximum upside / minimum downside approach to open pit optimization based
on the quantification of geological uncertainty through the generation of a series of
equally probable representations of the orebody. The approach consists of the fol-
lowing steps: (i) Stochastically simulate several orebody models using the available
data; (i) determine the final pit and generate the mining sequence design for each
orebody simulation using the parametric implementation of Lerchs-Grossman algo-
rithm and the Milawa algorithm incorporated in Whittle software; (iii) quantify the

level of risk with each pit design for the key project indicators, such as net present
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value (NPV) of the project, ore production, metal production and cash flows; (iv)
discard pit designs that do not meet the key project performance indicators deemed
necessary; (v) calculate the upside potential and downside risk on the project indi-
cators for the remaining designs using a point of reference and select the design that
meet the stated decision making criteria. The method is applied at an epithermal
gold deposit in where 13 orebody simulations are used to generate the set of possi-
ble designs. The key project indicators in the case study are discounting cash flows
(DCF), periodical ore tonnage and metal content. Four mine designs are selected
as they have more than 70% chance of producing at least one million tonnes of ore.
Then, the upside potentials and downside risks of the 4 selected designs are calcu-
lated according to a minimum acceptable return (point of reference) of the DCF of
the pushbacks. Two designs are selected as they have higher total upside poten-
tials with less risk over their production life than the two others. To select the best
schedule, the authors perform a sensitivity analysis of the two remaining designs to
the gold price. Although upside potential values in both designs are comparable at
the original price, the difference between upside potentials become significant when
increasing the gold price, so that the selected final design provides the highest upside
potential if there is an increment in gold prices. The approach permits selecting a
single design preferable to the remaining in the group of designs being compared.
However, the approach does not generate an optimal design that simultaneously
accounts for all the possible scenarios (orebody simulations).

Dimitrakopoulos and Ramazan [26] develop a mathematical programming model

to generate a mine production schedule that accounts for geological uncertainty and
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equipment mobility. The first term of the objective function of the model, that is
linear, penalizes the deviation from having 100% probability of meeting the desired
grade and ore quality and quantity. The last two terms of the objective function
control the smoothness of the mining operation by accounting, for each block, the
tonnages of some surrounding blocks belonging to a neighbourhood that are not
mined simultaneously. These tonnages are used to calculate the deviations from pre-
defined tonnage targets, which are also penalised. These two last terms are evaluated
in the same manner but differ in the size of the neighbourhood and the penalty values,
whereas penalties for deviations in the small neighbourhood should be greater than
the penalties used on the bigger one. The model can be applied in multi-element
deposits and can be easily extended to a mixed integer programming (MIP) model
simply by defining the variables as binary instead of linear. The formulation contains
constraints to calculate the probabilities, ensure the quality of the material, and
respect the capacities for mining and processing. The model introduces the geological
risk discounting; that is, the rate at which decrease the penalty values of not having
100% probability of getting the desired properties. It implies that blocks with highest
probabilities will be scheduled in the early periods when the penalties are largest,
and the uncertain blocks are scheduled later when more information will become
available. The authors tested the method in a nickel-cobalt lateritic deposit in where
attributes as Ni, Co, Mg, Al and % of rock types and ore were jointly simulated using
minimum/maximum autocorrelation factors (Section 1.4). The realizations were used
for calculating the probabilities of the blocks of having the grades within the desired

intervals. The results of the simulation-based model exhibited a highest probability
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to achieve the desired properties in the first year (88.3%), a lower probability in the
second year (84.3%) and the lowest in the last year (78.83%), which is what the
formulation aims to do and is due to geological risk discounting. The traditional
model for production scheduling does not control the risk, obtaining the highest
probability to achieve the desired properties in the last period, when it is more likely
to take risks as more information will be available at that time. The simulation-
based model controls the risk of not having the desired properties while generating
a practical schedule for mining due to the control of smoothness in the objective
function. The schedule obtained with the traditional model has a pattern spread
over the deposit and does not appear feasible in practice, which is a common concern
with traditional mixed/linear integer programming scheduling models. Although the
NPVs of both schedules appear to be similar, the one obtained with the traditional
model is unreliable given the poor control of risk (year 1) and the lack of smoothness
(infeasible schedule). The magnitude of the penalties that control the probability of
having the desired properties and the smoothness of the schedule are defined as a
trade-off between the quality of the solution in terms of meeting the processing plant
requirements and the feasibility of the schedule based on the accessibility. The major
drawback of the model is that the use of probabilities acts in a block-by-block basis
while scenario-wise approaches make full use of joint local uncertainty. This limits the
ability of probabilistic programming formulations in generating higher rewards with
less risk. Similar results were obtained by Grieco and Dimitrakopoulos [45], who
implement probabilistic programming in stope design optimization. The authors

evaluate the probabilities of the different rings of being above specified cut-offs. The
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limitation of the probabilistic programming formulations come from the fact that
probabilities are evaluated independent for each unit (blocks or rings), which discard
the compound relationship between units.

Godoy [37] develops a multistage method for mine production scheduling that
integrates the joint local uncertainty using simulated annealing (SA) algorithm [35,
64, 76] in the optimization stage. The method seeks for generating a risk-based pro-
duction schedule that minimizes deviation from ore and waste production targets
over a set of orebody simulations. The stages of the method are: (i) calculate the
stable solution domain (all the feasible combinations of ore and waste); (7i) generate
optimal mining rates using a linear programming formulation; (iii) generate mining
sequences for the available simulations using a conventional scheduler; (iv) derive a
single mining sequence using a combinatorial optimisation algorithm based on SA.
The risk-based schedule minimizes expected deviations from annual ore and waste
production targets. The algorithm iteratively perturbs an initial schedule by swap-
ping the periods in where the blocks are mined and evaluating the deviations. The
evaluation in every perturbation of the deviations from ore and waste production
targets for each scenario incorporates the joint local uncertainty, preserving the spa-
tial correlation in the simulations that are discarded in probabilistic formulations.
The method accepts perturbations that reduce the deviations from mine production
targets with 100% probability, while the perturbations that increase the deviations
are accepted or rejected based on a probability function that accounts for the ob-
jective value of the new solution and the annealing temperature (T). T is reduced

by a cooling factor which controls the annealing schedule that accepts unfavourable
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perturbations according to a negative exponential probability distribution [44]. At
higher temperatures, the algorithm is more likely to accept unfavourable perturba-
tions. The acceptance of unfavourable perturbations allows the algorithm to avoid
local optimal while the cooling factor permits to converge to a final solution. Godoy
and Dimitrakopoulos [38] test the method at Fimiston gold open pit (Superpit) in
Western Australia. The expected deviations from production targets in the risk-
based production schedule are shown to be less than 4% in all production periods
while in a conventional schedule periods with expected deviations of the order of 13%
are found. The conventional optimizer generates a solution that does not meet pro-
duction targets leading to not meeting NPV forecast either. The risk-based schedule
has an expected NPV 28% higher than the forecast of the conventional one (predicted
by the conventional optimizer). This is originated from the fact that the forecast
of the conventional optimizer evaluates the schedule assuming that the smoothed
representation of the deposit denotes the reality, whereas the risk analysis on the
stochastic schedule accounts for the different orebody simulations. Furthermore, the
stochastic schedule allows producing more ore in the periods evaluated by minimizing
the deviations. In addition, the swapping of the periods of the mining blocks is done
considering the probabilities of the blocks of being mined in the different periods,
which are calculated from the mining sequences that are generated so as to maximize
NPV. Therefore, the stochastic formulation maximizes NPV in an indirect way.
Leite and Dimitrakopoulos [69] test the method in a low-grade disseminated
copper deposit in where 20 orebody simulations were used. The authors obtain an

increment of 26% in the NPV with the stochastic schedule when compared to the
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results obtained by a conventional approach. The average NPV of the stochastic
schedule is 15% higher than the average from a risk profile of the conventional sched-
ule; that is, testing the conventional schedule on the 20 orebody simulations. This
15% of increment may be seen as the value of the stochastic solution (VSS) which
represents what is expected to be gained by implementing the stochastic schedule
[9]. The authors also find that, for that particular case study, the stochastic schedule
reduces the life of the mine one year caused by a lower tonnage of ore exhibited in the
simulations when compared to the estimated model at the cut-off grade used (0.3%
Cu). It is well known that interpolation methods tend to overestimate ore tonnages
in low cut-off grades and underestimate ore tonnages in high cut-offs.

Even though there are substantial benefits of using risk-based schedules through
simulated annealing algorithm, some additional aspects are further addressed. Albor
and Dimitrakopoulos [1] use the same low grade disseminated copper deposit as in [69]
to evaluate the best starting sequence; define the number of simulations (or mining
sequences) required; and the ultimate pit limit. The authors perform a sensitivity
analysis to select the best and the worst starting mining sequences regarding the
production targets and the NPVs. They observed that using the same annealing
parameters, the schedule obtained with the worst starting mining sequence did not
meet the ore production targets and yielded a low cumulative net present value
when compared to the production schedule that uses the best starting sequence.
The authors implement the method using different number of starting sequences
and notice that the production schedule obtained is not particularly sensitive after

10-15 mining sequences. Although a large number of orebody simulations may be
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generated, the study shows that for production scheduling 10-15 simulations or more
lead to the same schedule. This is because the yearly schedule groups hundreds
of mining blocks in one extraction period, which is a large volume and therefore
it is affected by the volume-support effect; that is, the sensitivity of a schedule is
not the same as observed at the scale of individual mining blocks. The method by
construction uses predefined pit limits obtained conventionally. In the presence of
uncertainty, a conventional (deterministic) optimization cannot provide an optimal
solution, i.e., truly optimal pit limits. Albor and Dimitrakopoulos [1] extend the
ultimate pit limit by adding pitshells (from Whittle’s nested pit implementation
of LG) as a final pushback and allow the simulated annealing algorithm to decide
whether or not to mine the blocks added. They find a stochastic ultimate pit limit
17% greater than the deterministic one while the net present value increases by an
additional 9%. The method has several limits that can be overcome: it does not
consider grade blending constraints; does not defer the risk for the latest periods
(geological risk discounting); and does not optimize the other components of a given
mining complex (multiple deposits, stockpiles, processing destinations, etc.).
Ramazan and Dimitrakopoulos [85] develop a stochastic integer programming
formulation for mine production scheduling. The scheduling is formulated as a two-
stage stochastic integer program with fixed recourse [9], where the binary variables
that represent whether or not a block is mined in a given period are the first stage
variables; and the deviations from production targets over the different scenarios (ore-
body simulations) correspond to the second stage variables. The objective function

seeks to maximize the net present value while simultaneously minimizing deviation
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from ore, waste and metal production targets. The deviations from production tar-
gets are controlled by penalties that decrease using the geological risk discounting
introduced in the probabilistic formulation [26], which allows deferring risk to latest
periods. The authors test the method on a hypothetical two-dimensional data set
where the life of the mine is 3 periods. The problem is solved using the commercial
software for optimization ILOG CPLEX [53]. Several schedules with different risk
distributions are generated by considering different ore and grade penalty values.
The model allows the selection of the best schedule based on the expected NPV and
the risk profile defined.

Ramazan and Dimitrakopoulos [86] extend the formulation to include stockpil-
ing, which allows processing material from the stockpile at any period. The amount
of material processed from the stockpile depends on the simulated orebody models.
The authors test the method on a gold deposit in where the implementation of the
stochastic integer programming approach requires splitting the problem in two sub-
problems because of its size. The first sub-problem considers periods 1-4 while the
second sub-problem considers years 4-6. The authors state that the schedule obtained
with the SIP formulation reduces the ore deviation in the first year of production to
500kt from 4Mt that is obtained with the conventional approach. Furthermore, the
increment in net present value due to the stochastic implementation is 10%.

Leite and Dimitrakopoulos [71] apply the method in the same low-grade dissemi-
nated copper deposit where they implement the multi-stage approach with simulated
annealing algorithm. Firstly, the authors define the final pit conventionally. They use

20 orebody simulations and a geological risk discounting of 20% with the magnitude
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of the penalties weighted accordingly with the first term of the objective function
that accounts for NPV. The authors later apply a geological risk discounting of 30%
with no substantial differences between both stochastic schedules. They compare the
base stochastic schedule with a conventional schedule generated using Milawa NPV
algorithm [112]. While the stochastic schedule control the deviation from production
targets, the conventional one only meets the expected targets in two years (from 8
mining periods). Although the NPV forecasts of the conventional schedule are not
reliable given the large deviations from targets, the stochastic schedule generates an
expected NPV 29% greater than the value of the conventional one.

Bendorf and Dimitrakopoulos [11] expand the stochastic integer programming
approach to multi-element deposits and include mineability constraints to facilitate
accessibility and equipment size constraints [26]. The authors implement the ap-
proach at Yandi Central 1 iron deposit in Western Australia, in where Fe, SiO,,
AlO3, P and losses of ignition (LOI) are the key deposit attributes. The goal is to
ship to customer material with specified geochemical characteristics by maintaining
the various grades between target limits. The authors test the effect of the order
of magnitude with three different penalty values to the elements to control ($1, $10
and $100 per unit of deviation in the first year) with a geological discount rate of
10%. They observe that higher the penalty value, more dispersed is the schedule
generated. The authors find that with medium penalty values, the fluctuation of
grades between periods decreases significantly and there are slight probabilities of
deviating from target in few periods, while the higher penalties improve the results

only marginally in comparison with the medium penalty values. Even though the
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schedule they obtain with the medium penalty values is more dispersed than the one
obtained with low penalties, it is reworked to a feasible schedule using a hauling road
design tool [22] with no significant impact on the results.

Typically, short-term production sequences deviate from the long-term plans and
are adjusted to meet mill demand to avoid large deviations from forecasts. Jewbali
[56] develops a multistage approach for production scheduling incorporating short-
scale deposit information and related grade uncertainty into the scheduling process,
thus allowing for the realistic integration of short- and long-term mine production
schedules, as well as the generation of more reliable mine production forecasts. The
first stage consists in simulating future grade control data from mined out parts of the
deposit. The second stage calls for updating the current geological simulations with
the grade control data by using conditional simulation with successive residuals [107,
57]. Once the orebody simulations are updated, generate a mine production schedule
using a stochastic optimisation method handling multiple simulated orebody models,
while accommodating both maximising net present value and minimising deviations
from production targets [86]. The final stage consists in quantifying grade risk in
the production schedules that have been generated. Dimitrakopoulos and Jewbali
[31] implement the approach at a gold deposit in where 20 orebody simulations and
20 simulated grade control data are considered, which generates 400 simulations
conditioned on both the exploration data and the simulated future grade control
data. Twenty updated simulations are selected for scheduling given the volume-

support effect [1]. The approach delivers 3.6 Mt of additional ore which matches
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better with the mine reconciliation and adds 7.7 million dollar to the expected NPV
when compared to a stochastic schedule that does not consider grade control data.
Boland et al. [13] propose a multistage stochastic programming approach that
considers the decision of processing block aggregates as posterior-stage variables.
This approach provides a set of polices to follow according to the actual scenario
(orebody simulation) obtained with the advance of the extraction. The set of ag-
gregates with considerable differences in grade permits to differentiate two different
scenarios. The mining and processing decisions can change when new information
is revealed. However, mining decisions require a lag between the acquisition of new
information and reacting to that information (they consider one year of production),
whereas processing decisions react in real time. In multistage stochastic formu-
lations, there exists large number of non-anticipativity constraints to ensure that if
two scenarios cannot be distinguished until certain time, then the same decisions will
be made under both scenarios. The authors propose two variations of the method:
scenario dependent processing decisions, that consider mining decisions equal for all
scenarios; and scenario dependent mining and processing decisions in which both
decisions depend on the scenario considered. The authors use realistic mining data
to compare the multistage stochastic approach with a base-case method that ignores
multiple scenarios and find that the proposed approach increases the net present
value around 3% (the expected value of perfect information is 5% higher). This
formulation presents several drawbacks: it assumes that the scenarios used cover all
possibilities, therefore no policy will be provided if reality happens to be different (as

it might be); it assumes that the blocks inside an aggregate are mined in the same
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proportion, which can push cash flows in time where high grade blocks are at the
bottom of the aggregate; it does not penalise the schedule in cases where the mill
demand is not supplied in a scenario, which can lead to considerable shortfalls in ore
processed.

Albor and Dimitrakopoulos [2] develop a methodology for pushback design that
involves geological uncertainty by testing the stochastic integer programming formu-
lation [85] for scheduling over different pushback designs. The available pushback
designs are generated by grouping a set of nested pits. Given a set of N nested pits,
the number of possible combination of pits for generating a pushback design is given
by 2N-1, so that testing all the possible combinations with the SIP formulation is
impractical. The authors suggest considering the best pushback design for differ-
ent target number of pushbacks. A stochastic integer programing formulation for
scheduling is implemented in the pushback designs selected previously, and the one
that leads to the best results in terms of meeting production targets and net present
value is selected. The approach was implemented in a porphyry copper deposit in
where 20 orebody simulations were available. 17 nested pits were generated and 6
different pushback designs that have different number of pushbacks were considered.
The SIP formulation is implemented on the 6 available pushback designs. The se-
lected pushback is the one that is practical and leads to the highest NPV. Such design
was obtained by combining the available pushback designs: the starting pushback
that gives a higher NPV from the available designs was selected as starting pushback;
the intermediate pushbacks were selected to avoid ore shortfalls and infeasible waste

production rates; and, the bottom of the pit was discretized for being more selective
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and avoid negative cash flows at the end. The stochastic LOM production schedule
originated with the stochastic pushback design method although capable of control-
ling deviation from targets, it is also able to generate a NPV around 30% higher
than the value of the traditional pushback design and scheduling implementation.
Meagher et al. [73] develop a method for pushback design through a para-
metric implementation of the maximum flow/minimum cut algorithm [81] in where
geological and market uncertainty where considered as well as discounting. Several
stochastic models can be used to describe the evolution of metal prices and exchange
rates with time. In particular, the authors suggest the use of the mean reversion
method proposed by Schwartz [95] because of its availability to reproduce the cyclic
nature of metal and currency markets. With multiple orebody realizations and price
simulations, several block valuations are obtained. The mining blocks are treated as
nodes that can be connected through arcs to a source node or a sink according to their
economic values. Arcs connecting blocks with negative economic values to the sink
are placed with capacities equal to the economic value of the block. The source node
is connected to blocks with positive economic values by arcs with capacities equal
to the economic value of the block. To deal with multiple realisations, negative and
positive economic values are accumulated over all realisations and connected to the
sink and the source node respectively. Slope constraints are respected by placing arcs
with infinity capacities between corresponding blocks. A cut in a directed graph is a
set of edges such that after the removal of these edges no direct path exists between
the source node and the sink. A minimum cut is the set of edges where the sum of

capacities is as small as possible over all cuts in the graph. Many efficient algorithms
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are known for computing the minimum cut of a graph in polynomial time with a
well performance in practice. A parametric minimum cut algorithm replaces the ca-
pacities on the arcs leaving the source and arcs entering the sink with functions of a
single parameter p. Different p values generate different nested pits obtaining small
pits at small p“s when they multiply the economic value directly. The discounting is
involved in this modified parametric net flow algorithm by considering different val-
ues according to the different years of production and combining them as was done
with the multiple realization values. The authors observe that in a copper deposit,
conventional block valuation methods tend to under valuate mining blocks.
Chatterjee et al. [17] applied the method developed by Meagher et al. [73]
at a copper-gold deposit by implementing the push-relabel algorithm [40] for solv-
ing the minimum cut problem. In this case study, only the geological uncertainty is
considered (no metal price and exchange rate uncertainties) through 20 orebody sim-
ulations generated with direct block simulation algorithm [37]. The discount rate is
not considered in the generations of pushbacks. The number of pushbacks generated
with the method is 5, which minimizes the gap problem (large differences in pushback
sizes). However, the authors observe a high increment in the stripping ratio in the
5th pushback that may indicate that is not profitable to mine after pushback 4. The
authors generate bench-wise schedules in the stochastic pushback design obtained
and the conventional pushback design of the average grade of the simulations (E-
type). The uncertainty-based pushback design and schedule generated 11% higher
NPV than schedule from the E-type orebody model. Asad and Dimitrakopoulos [6]

introduce the subgradient method [101] to systematically update the parameters for
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addressing the gap problem. The authors apply the approach at a copper deposit
involving copper price uncertainty as well as geological uncertainty. They generate
two different pushback designs, one by scaling the parameters with the subgradient
method and one that does not scale them. The authors observe that when scal-
ing the factors they obtained approximately uniform size in phases as opposed to
the inconsistent phases when the parameters are not scaled. Therefore, the scaling
procedure played its role in addressing the gap problem. The stochastic approach
leads to an optimal pit design 45% larger than the conventional one, providing a
higher economic value and metal production. The extended version of the minimum
cut algorithm is computationally very fast, thus integrating multiple uncertainties
in the optimization process is feasible on a routine basis. The major drawbacks of
the method are: (i) there is no geological risk discounting to defer the risk in time;
(i) even though the method uses substantially more information than conventional
network flow models, the fact that it accumulates economic values along different
realizations averts the use of the joint local uncertainty thus not maximizing the
upside potential of the deposit.

The cut-off grade is an economic-based criterion to discriminate between ore
and waste in a mineral deposit, or to decide where to send the ore material among
a set of processing streams. The methods that have been described so far use static
cut-off grades that do not consider opportunity costs associated to grade-tonnage
distributions of the deposit. A dynamic cut-off optimization policy would decide
whether material should be stockpiled for future processing or processed immediately.

Many publications can be found in the technical literature concerning estimation and
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optimization of cut-off grades [63, 67, 89]. An optimal cut-off policy depends on the
mining extraction sequence, which is influenced by the choice of the cut-off; hence
there is an interaction between mining sequence and cut-off policy.

Menabde et al. [75] develop and implement a method that accounts for geo-
logical uncertainty and simultaneously optimizes the extraction sequence and the
cut-off grade. The approach developed is similar to the traditional mixed integer
programming formulation for mine scheduling but extended to include multiple ore-
body simulations and multiple cut-off grade values from which one will be selected at
each period. At first glance the formulation seems difficult to solve due to the large
number of integer variables involved but the authors implement an algorithm for
block aggregation that allows replacing the binary variables representing blocks for
significantly less binary variables representing panels. The authors do not indicate
the mechanism that uses the algorithm for aggregating blocks due to confidentiality
reasons. Applying variable cut-off grades without considering grade uncertainty al-
lows increasing the expected net present value 20% when compared to the schedule
generated with marginal cut-off grades. Considering the orebody simulations and the
variable cut-off grade simultaneously, the solution obtained increases the net present
value 26% with respect to the base case, i.e., 6% with respect to the case of variable
cut-offs without geological uncertainty.

1.4 Stochastic simulation

In the uncertainty-based methods described previously the geological uncer-

tainty is modeled through spatial Monte Carlo stochastic simulations. Simula-

tions are used to integrate joint local uncertainties in stochastic frameworks such
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as stochastic mine scheduling optimization. The basic idea of conditional spatial
simulations is to generate multiple realisations (images) of a pertinent attribute re-
producing all data/information available. For geological data, a conditional simu-
lation must reproduce (i) data statistics, (ii) spatial correlation, and (%ii) original
data.

A random function in a set of NV locations is characterized by the N-variate or V-
point cumulative distribution function: F(uy,...,ux : 21,...,2y) = Prob{Z(u;) <
21y, Z(un) < zy}. In two-point geostatistics the analysis is limited to cdfs in-
volving no more than two locations at a time and their corresponding moments, e.g.,
the (two-point) Z-covariance C(u,u') = E{Z(u).Z(u')} — E{Z(u)}.E{Z(u')}. The
concept of second order stationarity implicates that the bivariate cdf depends on the
distance h of separation of locations u — u’ instead of the locations itself.

Given a set of data and grid points, the covariance matrix C' can be generated
including both conditioning and grid points. Davis [23] proposes a method for con-
ditional simulation based on the Cholesky decomposition of the covariance matrix.
Given that a covariance matrix C' is positive definite, it can be decomposed into
the product of a lower triangular matrix L and its conjugate transpose T (named
also U). A conditional simulation that reproduces the covariance matrix is obtained
when multiplying the lower triangular matrix L by a vector that contains weight
values derived from conditioning data and independent random numbers. A major
limitation of the method is the size of the covariance matrix C' (that considers both

conditioning and grid points) which in practice cannot exceed few thousand of points.
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Johnson [58] describes the conditional distribution approach that allows decom-
posing the problem of generating a p-dimensional random vector X = (X1, Xs, ..., X))
into a series of p univariate distribution problems. Isaaks [55] introduces the sequen-
tial conditional simulation method based on the decomposition of the multivariate
pdf into a product series of conditional distributions. Sequential Gaussian simulation
is the application of the decomposition of the multivariate pdf to the Gaussian ran-
dom function model. Any stochastic simulation method is implemented considering
neighbouring data around the grid points to simulate, which is known in the litera-
ture as screen effect approximation. The sequential Gaussian simulation with screen
effect approximation reduces significantly the computational cost when compared to
the LU conditional simulation algorithm. In a case study with n conditioning points
and N grid points a realization of conditional LU algorithm [23] requires a number of
floating point operations (flops) of the order of O(n + N)? while a SGS implementa-
tion with screen effect requires O(NVj,q.)?, in which V4, is the neighbourhood size.
Therefore the benefits in terms of number of flops depend on the neighbourhood size
and the number of conditioning points. Furthermore, with SGS there is significant
less requirement of memory as it is not necessary to consider the large covariance
matrix with conditioning and grid points as in the LU.

Dimitrakopoulos and Luo [27] propose a generalized sequential Gaussian sim-
ulation algorithm (GSGS) to enhance the computational efficiency. The authors
propose the decomposition of the multivariate probability density function Z(u) into
groups of products of univariate posterior distributions, where each group is used

to simultaneously generate realization at the corresponding grid nodes. A unique
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neighbourhood is considered in each group in where the grid points are simulated
using LU decomposition method. The GSGS algorithm can be seen as a generaliza-
tion of the sequential Gaussian simulation method, in which a decomposition with
a single node in a group is identical to SGS, and a decomposition with all nodes in
one group is identical to LU method. The authors also introduce a measure of the
loss due to screen effect approximations (SEA loss) and find that they are function
of the corresponding posterior variances. The number of flops in GSGS is given by
O(N/V (V3. +V3)) where N is the number of points to simulate, V' is the number
of grid points in a group and V., is the size of the neighbourhood. The authors
observe that the number of flops is minimal when the group size is approximately
80% of the neighbourhood size. They also observe that losses due to screen effect
approximations were negligible in exponential and spherical covariance models while
in Gaussian models they were high in most of the cases.

Godoy [37] propose a natural extension of the GSGS algorithm called direct
block simulation (DBSIM). The author noticed that when simulating large grids, the
new simulated values have to be retained as conditioning information. This gen-
erates increased memory requirements, issues of data management and, in general,
leads in practice to performance decline [10]. DBSIM simulates directly at the block
support scale based on GSGS, whereby the group of nodes discretizes a block. The
implementation of the DBSIM proceeds as follows: (i) define a random path visiting
each of the blocks to be simulated; (i) normalise data; (7ii) for each block, generate
the simulated values in Gaussian space of the internal nodes discretizing the block;

(iv) derive the simulated block value by averaging values of simulated nodes in one
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group in Gaussian space and calculate the block value in data space; (v) discard
values of internal nodes and add the simulated block value in Gaussian space to the
conditioning dataset; keep the block value in data space as the result; and, (vi) loop
through steps three to five until all blocks are simulated. The author implements
DBSIM at Fimiston Gold mine to generate 20 realizations. The Fimiston resource
model consists of 321,937 ore blocks and a total of 20,843,814 nodes to be simulated
(416,876,280 grade values for the 20 realizations). DBSIM generates the realizations
and validations in practical time (1.8 times the processing time required to generate
an estimated model). The results show a close reproduction of the block variograms
and a consistent reproduction of the sample statistics. Bendorf and Dimitrakopoulos
[10] observe through an application on a porphyry copper deposit that the applica-
tion of DBSIM results in a substantial reduction of storage requirements and leads to
improved data management when compared to GSGS. Boucher and Dimitrakopoulos
[14] extend the method for multivariate simulations by using minimum/maximum
autocorrelation factors.

Multiple point or MP statistics consider the joint neighbourhood of any number
n of points. Two-point statistics is a particular case where n = 2. MP statistics can
be formulated using the multiple-point data event D with the central value A. The
geometric configuration of D is called the template 7, of size n. As MP statistics
characterize spatial relations of closely spaced data, they may not be calculated
directly from drilling data. Guardiano and Srivastava [47] propose the use of training
images (TI) to infer MP statistics. The TI is regarded as a geological analogue,

forms part of the geological input, and it should contain the relevant geometric
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features of the units being simulated. The geometries contained in the TI should be
consistent with the geological concept and interpretation of the deposit. The authors
proposed a direct algorithm for imposing MP statistics into stochastic simulation
that is extremely CPU demanding: the full training image has to be scanned at each
unsampled node to infer the node-specific conditional probability distribution.
Strebelle [98] proposes the single normal equation simulation algorithm (SNESIM)

that can be seen as an extension of the method developed by Guardiano and Srivas-
tava [47]. The TI image is scanned once and the events that occur are stored in a
search tree in where probabilities of the data are calculated based on the replicates
obtained in the scanning process. At each location the cpdf is calculated from the
search tree based on the conditioning data event and a simulated value is drawn from
the distribution. This process is repeated until all nodes have been simulated. The
SNESIM algorithm represents a large improvement in computational costs as the T1
is scanned once and only the events that occur in the TI are retained in the search
tree. Strebelle and Zhang [99] present a modification of SNESIM to account for non-
stationary information. The modified SNESIM is able to capture different directions
of continuity of the training image and fluctuations in facies dimension. Strebelle
and Cavelius [100] increase speed and decrease memory demand of SNESIM by intro-
ducing a new multiple-grid approach that includes intermediate grids, a new search
neighborhood designing process to preferentially include previously simulated node
locations and a method to optimize data template size. However, in large datasets
memory is still an issue given the necessity of storing the data events in the search

tree. Straubhaar et al. [97] present IMPALA, a revision of SNESIM where the search
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tree is replaced by a list to decrease RAM requirement. This also allows accounting
for non-stationarity by having different lists at different simulation zones and par-
allelization by splitting the lists into as many sub-lists as the number of available
Processors.

Arpat and Caers [4] propose a pattern-based simulation algorithm to overcome
the limitation of RAM usage. The algorithm uses the training image as a database
of patterns, which are multi-pixel configurations identifying meaningful entities of
the underlying spatial continuity. The algorithm randomly visits nodes along a ran-
dom path and simulate/paste an entire pattern. The major random component of
the method is the random path it uses to visit the nodes whereas the major tuning
parameter is the template size. Although less memory demanding than SNESIM, its
computational cost is much higher as it requires searching for most similar patterns
at each node. Zhang et al. [117] propose FILTERSIM to reduce the dimensionality
of the space of patterns. The method groups all the patterns from a TT into a set of
classes using filter scores. At each location, the method identifies the training pat-
tern class closes to the local conditioning data event, then samples a training pattern
from the prototype class and pastes it onto the simulation grid. The selection of the
closest pattern class is based on the wise-distance between the prototype of each
training pattern class and the local conditioning data event. Wu et al. [115] propose
a reduction of the computational cost of FILTERSIM by replacing that pixel-wise
distance calculation with a filter score comparison, which allow speeding up FIL-
TERSIM algorithm by a factor around 10 in 3D applications. Mustapha et al. [79]

propose CDFSIM, a pattern-based simulation method that maps the patterns to
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one dimension. The method builds cumulative distribution functions (CDF) of the
one-dimensional patterns and classifies them by decomposing the CDFs. The im-
plementation of the method shows improvements in reproducing MP configurations
and main characteristics of images when compared with FILTERSIM. Furthermore,
CDFSIM appears to be less sensitive to the number of classes and the spatial tem-
plates. Chatterjee et al. [18] present a pattern-based simulation algorithm that uses
wavelet analysis for dimensional reduction of the space of patterns. The method per-
forms wavelet decomposition of the patterns generated using a given template and
classify the approximate sub-band of the patterns using k-means clustering tech-
nique. The implementation of the method shows a better reproduction of images in
2D and 3D examples when compared with FILTERSIM. The method is sensitive to
the number of clusters as the pattern based simulation methods and the orientation
of the training image.

MP simulation methods although widely used, have a major drawback: they
rely on the training image for probabilities or patterns, therefore when the statistics
of the training image and the hard data are different, they reproduce the statistics
of the training image, being the hard data information more certain (and costly)
[41, 80, 90]. Robles and Dimitrakopoulos [90] apply both SNESIM and FILTERSIM
at a kimberlitic diamond pipe in the Northwest Territories and observe that while
the realizations tend to reproduce the high-order statistics of the TI, they do not

reproduce those of the available data.
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To overcome this limitation, a stochastic simulation algorithms that uses cu-
mulants has being developed [77]. Cumulants are combinations of moment sta-
tistical parameters that allow complete characterization of non-Gaussian random
variables [8]. A random variable is fully determined by its probability density
function, its cumulative distribution function and its first or second characteris-
tic function. Given a random variable Z, its first characteristic function is given
by ®(w) = Ele/?] = [T eM“dF,(u) and its second characteristic function is
U(w) = In(P(w)). The moments of order r at the origin are the coefficients of
((jw)")/r! of the MacLaurin series expansion of the first characteristic function:
Mom[Z"] = E{Z"} = (1/3")(d"/(dw"))[®(w)]w=o. The cumulants of order r are
given by the derivative of order r of the second characteristic function at w = 0:
CumlZ, ..., Z] = (1/5")(d"/(dw")[¥(w)]w=o-

The cumulants of the random variable Z of order r are related to the lower or
equal order moments by:

CumlZ,Z ... 2] = Y (=1 (p = VIE{[ L, ZYEATLs, Z} - BT L, Z.
where the summation extends over all partitions (s1,sg,...,5,), p =1,...,7. From
the definition, it is possible to infer that the first order cumulant is the mean and
the second order cumulant of a non-centered random function Z(z) is the covari-
ance. Mustapha and Dimitrakopoulos [77] develop an algorithm called HOSC (High
Order Spatial Cumulants) to compute experimental high order spatial cumulants on
regular and irregular grids. Mustapha and Dimitrakopoulos [77] develop HOSIM,

a high-order simulation algorithm that implements a sequential simulation process,
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where local conditional distributions are generated using weighted orthonormal Leg-
endre polynomials. These polynomials define the Legendre cumulants, which are
high-order conditional spatial cumulants inferred from both the available data and
training images. This approach is data-driven and reconstructs both high and lower-
order spatial complexity. The authors validate the algorithm in a three-dimensional
domain of complex channels.

1.5 Goal and objectives

The goal of this thesis is to develop and implement a new stochastic optimization
framework for optimizing mining complexes while simultaneously accounting for the
different components of the value chain (deposits, stockpiles, processing destinations,
transportation systems) and geological uncertainty (grades and material types). To
reach the goal, the following objectives are set:

(1) Critical review on recent developments in optimization of the different com-
ponents of a mining complex, mine planning with uncertainty and stochastic simu-
lations.

(2) Develop and implement a stochastic optimization model based on simulated
annealing for mine production scheduling that accounts for geological uncertainty
and integrates a single supply (pit) with multiple ore/waste destinations.

(3) Develop and implement an iterative improvement approach to optimize a
multi-process mining complex accounting for geological uncertainty and operating

modes at the different processing destinations.
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(4) Develop and implement an uncertainty based heuristic that uses simulated
annealing at different decision levels to optimize multipit mining complexes with
operating and transportation alternatives.

(5) Extend the method developed in (4) to mining complexes comprised of open
pit and underground operations and implement it at Twin Creeks Mining Complex,
Nevada, USA.

(6) Discuss general conclusions and suggest future research avenues.

1.6 Thesis outline

The Chapter 2 presents the method to generate stochastic mine production
schedules in mining complexes with multiple processing destinations and its imple-
mentation using Escondida Norte dataset.

The iterative improvement algorithm that accounts for operating modes at the
different processing destinations is described and implemented in Chapter 3.

The Chapter 4 describes the method to optimize multipit mining complexes
accounting for multiple operating modes at the different processing destinations and
presents its implementation in a multipit copper complex.

The extension of the previous method to mining complexes comprised of open pit
and underground operations is displayed in Chapter 5 as well as its implementation
in Twin Creeks gold complex, Nevada, USA.

Conclusions and future research avenues are presented in Chapter 6.

1.7 Originality and contribution to knowledege
The major contributions of this thesis are highlighted in this section.

I. Optimizing a mining complex by integrating flexibility at different
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components of the value chain.

Although standard practices in the mining industry are able to consider flexi-
bilities at different components of the value chain such as material types, stockpiles,
non-linear recovery curves, etc., this thesis considers, besides that, operating modes
at the different processing destinations and transportation systems. Operating modes
are result of different design and operating parameters at a given processing desti-
nation (processing times, temperature, pressure, rotation speed, etc.), differences in
quality of the input material and different product specifications. Transportation
systems are important given that they may limit the overall output of the system
(bottlenecks).

II. Extension of optimization to include both open pits and under-
ground operations.

Open pits and underground mines are usually optimized in isolation. This thesis
integrates the optimization of both operations in the context of a global optimization
of a mining complex while accounting for supply uncertainty.

III. Development of new and efficient algorithms that can be imple-
mented in a wide variety of mining operations.

Given the flexibility associated with the different components of a mining com-
plex and the discretization of the deposits in mining blocks (or activities in un-
derground mines), the global optimization of a mining complex is a problem with
millions or hundreds of thousands integer variables where standard optimization soft-
ware packages are unable to solve or even find the linear relaxation. Because of this,

heuristic methodologies and metaheuristics to solve the problems are presented in
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this thesis with results that outperform standard practices in terms of generating
higher and more reliable NPVs. Simulated annealing is the metaheuristic used in
the methods described in Chapters 2, 4 and 5.

IV. Optimization moving beyond economic values of mining blocks to
account for rock/material properties and blending requirements.

Standard practices in mine optimization consider cut-off grade policies to de-
fine destinations of mining blocks which implies that the destination of a mining
block is defined prior to optimization. The destination of a mining block not only
depend on the properties of the block (grades, metallurgical properties) but also on
the properties of the material sent to that particular destination given its blending
and operating requirements. This thesis presents methods that swap destinations of
mining blocks based on the properties of the compound material that go to those
destinations.

Full field testing and benchmarking.

The methods described in this thesis are tested in full field case studies to eval-
uate their applicability in actual operations. For large size problems (millions of
integer variables) the methods generate good quality solutions in practical times

(less than 12 hours of running time using a common desktop computer).
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CHAPTER 2
Stochastic mine production scheduling with multiple processes:
Application at Escondida Norte, Chile

2.1 Introduction

A mine operation may be seen as a sequence of processes in which material is
safely extracted from an ore deposit to feed one or several processing plants or waste
dumps, given various requirements in quality and tonnage of the material extracted.
Mine planners must guarantee the continuous operation of the plant(s) by generating
mine production schedules that meet production targets and maximize discounted
cashflows. Traditional methods for mine planning and open pit optimization con-
sider single estimated (average type) orebody models in their calculation processes,
ignoring the uncertainty associated with the spatial distribution of the attributes
of interest. Several authors [25, 106] have concluded that geological uncertainty is
the major factor in the inability to meet production targets and to generate reliable
project expectations in mining. Over the past decade, new methods that take into
account this uncertainty have been developed for open pit designs and life-of-mine
(LOM) production scheduling [30]. These methods demonstrate effectiveness in con-
trolling the risk of deviating from production targets while increasing the expected
net present value of the operation as well as recoverable metal, thus contributing to

the responsible utilisation of non-renewable resources [1, 2, 69]. Additional recent
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research work further extends the above methods to jointly address geological and
market uncertainty [6, 73] and address issues of computational efficiency [65].

Stochastic optimization research in LOM production scheduling includes works
by Godoy [37] and Godoy and Dimitrakopoulos [38] who develop a multistage method
for LOM production scheduling that integrates geological uncertainty and is based on
simulated annealing (SA) [35, 64, 76]. In [37] and [38], the authors test the method
at Fimiston gold open pit mine, Western Australia. The expected deviations from
production targets in the stochastic production schedule are shown to be less than
4% in all production periods, while in the schedule generated conventionally, periods
with expected deviations of the order of 12% are observed. Furthermore, the net
present value (NPV) increases by 28% when compared to conventional methods.
Leite and Dimitrakopoulos [69] increase the expected NPV by 26% when applying
the method in a low-grade disseminated copper deposit. Albor and Dimitrakopoulos
[1] use the method in the same copper deposit with a pit 17% larger, obtaining an
additional 9% to the expected NPV.

Even though the method integrates geological uncertainty, the solution gener-
ated is local in the sense that the method does not consider the entire mining complex
[110]. A mining complex can contain several mine operations producing simultane-
ously with multiple processing streams, stockpiles and products (Figure 2-1). The
optimal solution for a single processing plant differs from the global optimal solution
for the mining complex, which highlights the necessity of generating global optimal

solutions.
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In the context of stochastic global optimization, Goodfellow and Dimitrakopou-
los [42] implement a SA approach to design pushbacks in complex multi-process
open-pit mines. The method attempts to minimize the variability around the target
tonnage for each pushback while accounting for material types and grade uncertainty.
The method proposed in this paper generates stochastic mine production schedules
instead, and may be seen as an adaptation of the multi-stage method with SA [37, 38]
to mining complexes with multiple material types and multiple processing streams.
First, the method is described in detail, then it is applied to Escondida Norte copper

deposit, and finally, some conclusions are drawn and future work is addressed.
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Figure 2—-1: Example of a mining complex

2.2 LOM production scheduling with multiple ore/waste destinations
via simulated annealing

The multi-stage method for generating stochastic long-term LOM production
schedules (Figure 2-2) requires: (i) a set of stochastically generated orebody sim-
ulations , (4i) defined mining rates, (7ii) a conventional scheduler to generate mine
production schedules from the orebody simulations, and (7v) the implementation

of a simulated annealing algorithm (SA). SA is a metaheuristic method for solving
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large combinatorial problems based on the principle of stochastic relaxation [35].
Stochastic relaxation is a class of optimisation algorithms that randomly perturb
the current state of the system and determine the resulting change in performance,
allowing temporary decreases in an objective function with nonzero probability. SA
gradually perturbs an initial solution so as to match constraints, e.g., meeting pro-
duction targets in a mine production scheduling problem. The algorithm requires an
objective function that measures the deviation between the target and current values
(productions) of the solution at each i-th perturbation. The steps of the algorithm
are as follows:

(1) Define an initial solution.

(2) Compute the initial value of the objective function.

(3) Perturb the solution by some mechanism, such as swapping elements of the
solution.

(4) Compute again the objective function, accounting for the modification of
the previous solution.

(5) Accept or reject the new solution on the basis of a specified decision rule.

(6) If the new solution is accepted, update the solution to the new perturbed
solution.

Repeat steps 3 to 6 until the target constraints are acceptably reached or the
perturbations do not further reduce the objective function significantly.

Different criteria can be used to decide whether a given perturbation is accepted

or rejected during the optimization process. The decision rule applied in the proposed
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Figure 2-2: Multi-stage method to generate stochastic long-term production
schedules [37]

method herein is the one commonly used, and amounts to accepting unfavourable

perturbations according to a negative exponential probability distribution [35]:

1 if(AO <0)

—(A0)

e~ if(AO >0)

P<AO) = P(Onew - Ocurrent) = (21)

where T is the annealing temperature. The probability of accepting an unfavourable
perturbation is greater at higher temperatures. As the optimization proceeds, the
temperature is gradually lowered by a reduction factor named the cooling factor.
The objective is to find a balance between a too slow temperature reduction that
unnecessarily increases the convergence time and a too fast one that may freeze the
solution at some local minimum with values far from the targets.

The objective is to minimize the average deviations from production targets for

N mining periods, S orebody simulations, and P different processes:

N S P
min0O = <Z <Z A6, — an(s)|> + Ao|w? — wn(s)|> (2.2)

s=

where 0}, , is the target for process p at period n; wy, is the waste target at period

n; O,p(s) is the actual production of process p at period n in the orebody simulation
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s; wy(s) is the actual waste production at period n in the orebody simulation s; A,
is the weight associated to process p and ), is the weight associated to waste. The A
parameters are chosen to balance the capacities of the processes if they have different
scales and to give more weight to the more critical ones.

In mining complexes with multiple material types and multiple processing streams,
the mining blocks can be processed by some treating plants according to their mate-
rial type; that is, a given processing plant may not accept all the available material
types. Furthermore, if a given process accepts two or more different material types,
their associated costs and metallurgical recoveries may differ. These considerations
need to be taken into account in defining the perturbation strategy and the type of
solution of the SA algorithm. When dealing with multiple processes, two possibilities
can be distinguished: (a) there is a single material type, or, if there are multiple ones,
for any block its material type remains constant over the orebody simulations; (b)
there are multiple material types that can change for the same block in the different
orebody simulations (material type uncertainty).

If the case evaluated corresponds to case (a), the solution obtained from the SA
implementation corresponds to a long-term production schedule that determines the
periods and destinations of the mining blocks. On the other hand, if the case is (b),
the solution must be a mining sequence that determines the periods only without
defining destinations to avoid infeasible material type-process combinations. In the
last case, the algorithm must respect the destinations of the input mining sequences;

that is, the algorithm provides a solution that states the mining period for each
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block, but evaluates the productions of the various scenarios (orebody simulations)
based on the optimal destinations obtained from a conventional scheduler.

From the input mining sequences, the probabilities of each block to be mined
in different periods are calculated. A certain block is a block that is mined in the
same period in all the input mining sequences, e.g., it has 100% probability of being
mined in a particular period. The set of candidate blocks is given by the uncertain”
blocks, in which the mining periods vary over the mining sequences. The perturbation
mechanism depends on the two possible cases. If the case corresponds to case (a), the
algorithm randomly selects a candidate block and swaps the current mining period to
a different one based on the probabilities calculated from the input mining sequences
and the respect of the slope angles. The available processing stream that leads to the
best objective value is selected as the destination. If the case evaluated corresponds
to case (b), the additional step of selecting the destination is not needed, as the
destinations obtained from the mining sequences are respected to avoid infeasible
material type-process combinations. Once a new solution is generated, it is accepted
or rejected based on the decision rule described in Eq. (2.1).

The algorithm perturbs a given solution until a stopping criterion is reached. A
stopping criterion may be that: the current solution yields to a satisfactory minimum;
the total number of swaps equals a user-defined maximum; either the number of
perturbations at any given temperature or the number of perturbations without
a change in the objective function surpasses maximum acceptable values. These
parameters must be established in the implementation of SA together with the initial

temperature and the reduction or cooling factor.
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The implementation of the method proposed herein has important concerns.
The method considers the pit limits of the starting mining sequence. The optimal
stochastic pit limits do not coincide with the ones obtained deterministically [1, 2, 69],
so that the method can be iteratively implemented to various pit limit definitions
in order to select the ones that generate the higher NPV. The cut-off grade policy
in the method is implicitly considered when generating the mining sequences, in
which the blocks are sent to the most profitable destinations based on the technical
and economical parameters. The method assumes specified mining rates based on
processing plant requirements.

2.3 Case study

The method is applied at Escondida Norte mine, Chile. The orebody is a por-
phyry copper deposit located 170 km south-east of Antofagasta, Chile. The deposit
is formed by two major stages of sulphides and one stage of oxide mineralization.
The material of the deposit is classified in 5 different types and can be processed
through 3 available treating paths or sent to the waste dump. Figure 2-3 displays
the possibilities for handling the material according to the material types.

A given block will be sent to the waste dump if it is waste rock or if the revenue
obtained from the copper recovered does not compensate the operating costs. Both
types of sulphides can be sent to the milling process or the bio-leaching plant. The
mixed material can only be processed in the bio-leaching plant, while the oxides can
only be processed in the acid-leaching plant. The metallurgical recoveries vary with

the type of material and the process selected.

47



Waste Waste dump
Sulphide-1
| Supmdet Milling
—————
| Sulphide-2
_____ Bio-leaching
| Mixed
_ Acid leaching
Oxide

Figure 2-3: Possibilities for material handling according to the material type

Several stochastically simulated representations of the orebody of Escondida
Norte are available [44, 92, 118]. The operating and financial parameters used to
generate the input mining sequences are displayed in Table 2-1. The average met-
allurgical recoveries for the material types and processes are calculated from the
simulations and are summarized in Table 2-2.

The orebody simulations consider uncertainty in both copper grades and ma-
terial types (Figure 2—4); that is, for a given block, the material type can change
among simulations. This implies that the final solution must state only the mining
periods of the blocks to avoid infeasible material type-process combinations. The
deposit has been divided in four geotechnical zones with their corresponding slope
angle definitions (Figure 2-5), and these are 33, 35, 41 and 35, for zones 1, 2, 3 and

4, respectively.
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Table 2-1: Operating and financial parameters

[tem Value
Mine capacity 500 ktpd
Mill capacity 120 ktpd

Acid-leaching capacity 60 ktpd
Bio-leaching capacity  unlimited

Copper price $2/1b
Mining cost $1.5/t
Milling cost $6.0/t
Bio-leaching cost $1.5/t
Acid-leaching cost $4/t
Discount rate 8%

Table 2-2: Metallurgical recoveries

Material type Milling (%) Bio-leaching (%) Acid-leaching (%)

Sulfide-1 81 31.8 Infeasible
Sulfide-2 79.2 47.3 Infeasible
Mixed Infeasible 37.5 Infeasible
Oxide Infeasible Infeasible 72.7
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Figure 2-4: Material types (left) and copper grades (right) in section Y=114037.5
of (a) orebody sunulatlon 5; (b) orebody simulation 10

2.3.1 Generation of the input mining sequences

Albor and Dimitrakopoulos [1] document that there is no significant improve-
ment in the quality of the stochastic solution generated when more than 15 — 20
simulations are used. Based on that result, 15 mining sequences are generated from
the orebody simulations using the technical and financial information available. The
robustness of the stochastic solution is further tested through a risk analysis [87] on a
different set of simulations. The mining sequences are obtained using the Milawa al-
gorithm from the software program Whittle [112]. This algorithm seeks to maximize
the NPV in an approximate way based on the combination of benches and nested
pits generated from the nested pit implementation of the LerchsGrossman algorithm

in the Whittle software [112].
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Figure 2-5: Geotechnical zones of the deposit

Figure 2-6 shows a particular section of four mining sequences generated from
the orebody simulations. It is observed from the figure that different orebody simu-
lations generate different mining sequences. Even though the number of years in the
mining sequences varies between 45 and 50, only the first 15 years are considered in
the comparison of results for production targets and cumulative NPV. The first 15
years represent more than 80% of the total NPV of the project.

(a) (b)

(©) (d)

Figure 2-6: Cross-section of (a) mining sequence 1; (b) mining sequence 6; (c)
mining sequence 10; (d) mining sequence 15
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2.3.2 Selection of the starting sequence

The first step of implementing SA is selecting the starting mining sequence. A
risk analysis on productions is performed on each of the input mining sequences.
Figure 2-7 shows the expected mill production of the 15 mining sequences generated

from the orebody simulations.
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Figure 2—-7: Expected ore sent to milling process of input mining sequences

The expected ore tonnages sent to the milling process have larger fluctuations
in the latest periods due to the increment of fractioned blocks in these periods in
the mining sequences generated. Between years 3 and 15, it is expected that the
mining sequence 10 deviates on average 8.1% from the milling target, which is the
smallest expected deviation from the set of input mining sequences. This mining
sequence is highlighted in the figure. Figure 2-8 shows the expected material sent to
the waste dump for the input mining sequences for the first 15 years of production.
In the first two years, the waste removal is shown to be above the target, which
compensates for the lower tonnage sent to mill at these periods. Between years 3

and 15, it is expected that mining sequence 10 deviates on average 7.0% regarding the
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waste removal target. These deviations are shown to be smaller than the expected

deviations of the other input mining sequences.
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Figure 2-8: Expected material sent to the waste dump of input mining sequences

The criteria used to select the starting sequence is subjective in the sense that
the best starting sequence may in some cases be the one that has productions nearest
to the targets, the one that leads to the highest expected NPV, or can be selected
arbitrarily. Due to the smaller expected deviations from mill and waste production
targets, mining sequence 10 is selected as the starting mining sequence. This criterion
is applied to facilitate the use of fewer mining sequences and less practical computing
time to obtain a nearly optimal solution.

2.3.3 The stochastic mine production schedule

Once the starting mining sequence has been selected, it is possible to initiate the
SA algorithm. The parameters that control the algorithm must be chosen to guaran-
tee a considerable number of swaps that make possible a satisfactory improvement
of the initial solution in a practical amount of time. After running several tests, the

annealing parameters used are the ones displayed in Table 2-3.
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Table 2-3: Annealing parameters

[tem Value
Maximum number of swaps 1.0e+11
Low objective function value (convergence) 1.0e+6
Initial temperature (C) 0.00001
Reduction factor 0.1
Maximum number of perturbations at any given temperature 85000
Max. number of perturbations without a change 1.0e+10

Figure 2-9 shows the mill production of the stochastic mine production schedule
obtained through the implementation of SA. Between years 3 and 15, the expected
deviation from mill production targets with the stochastic mine production schedule
is 3.9%.The largest expected deviation is shown to be in year 14. The expected
deviation from the mill target decreases from 8.1% in the starting mining sequence to
3.9% in the stochastic schedule due to the SA implementation. Figure 2-10 shows the
bio-leaching production with the stochastic mine production schedule. The expected

bio-leaching production is greatest in year 8, with 12.8 M tonnes.
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Figure 2-9: Ore sent to milling process with stochastic mine production schedule

Figure 2-11 shows the acid-leaching production for the oxide material with the

stochastic mine production schedule. In the stochastic schedule, the acid-leaching
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Figure 2-10: Ore sent to bio-leaching process with stochastic mine production
schedule

production starts increasing from the second year until the sixth, when the capacity
of the plant is reached for two consecutive periods, then starts decreasing from year
7 until year 12 (depletion of the oxide resources). Figure 2-12 shows the material
sent to the waste dump using the stochastic mine production schedule. The expected
deviations from waste production targets with the stochastic schedule are on average

4.5% between years 3 and 15. The waste targets are used to control the mining rates.
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Figure 2-11: Ore sent to acid-leaching process with stochastic mine production
schedule
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Figure 2-12: Material sent to the waste dump with stochastic mine production
schedule
Figure 2-13 shows the copper production using the stochastic schedule. As
expected, there are larger productions of copper in the early periods because of
discounting (8%). The largest expected copper production is shown to be in year 5.
Figure 2-14 shows the cumulative NPV of the stochastic schedule through the first

15 years of production.
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Figure 2-13: Copper production with stochastic mine production schedule

The cumulative NPV until year 15 has a negligible variation in comparison
with any intermediate sequence when implementing the SA algorithm. However, the

benefits of the SA implementation are evidenced in the expected reach of specified
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Figure 2-14: Cumulative NPV with stochastic mine production schedule

production targets, which avoid costs associated with idle capacities that are not
taken into account in the calculation of the NPV.

Table 2 summarizes the results obtained from the risk analysis of the stochastic
schedule. The stochastic mine production schedule has a 90% probability of devi-
ating on average less than 8.5 and 8.4% from mill and waste production targets,

respectively, and provides a cumulative NPV until year 15 greater than $8.11 billion.

Table 2-4: Results from the stochastic schedule
P10 P50 P90
Average deviation from mill target (%) 1.6 46 85
Average deviation from waste target (%) 28 57 84
Average production in bio-leaching plant (Mt) 5.1 5.7 6.4
Average production in acid-leaching plant (Mt) 83 8.9 9.5
Cumulative NPV ($ billion) 8.11 824 845

2.3.4 The robustness of the stochastic solution

The risk analysis performed so far on the stochastic mine production schedule
considers the simulations from which the mining sequences were generated. To test
the robustness of the schedule, a risk analysis over different orebody simulations is

made. A set of 15 different orebody simulations is used. Figure 2-15 shows the ore
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sent to the mill, bio-leach, and acid-leach, and material sent to the waste dump with

the stochastic schedule.
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Figure 2-15: Material sent to processes and waste dump with the stochastic mine
production schedule: (a) ore to mill; (b) ore to bio-leaching; (c) ore to
acid-leaching; (d) material to waste dump

The expected average deviation from mill production targets according to this
new risk analysis is 3.6%, which is on the same order as the 3.9% obtained with the

previous risk analysis. The expected average deviation from waste production targets
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is 4.7%, which is very similar to the 4.5% obtained in the previous risk analysis.
Figure 2-16 shows the cumulative NPV calculated with the new risk analysis. The
difference between the expected cumulative NPVs in both risk analyses is negligible
in practice (around 1.8%). Based on the forecasted productions and the cumulative
NPV, it is possible to conclude that the schedule generated considering 15 orebody

simulations is robust when compared to a different set of orebody simulations.
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Figure 2-16: Cumulative NPV with the stochastic mine production schedule

2.3.5 Comparison with a conventional mine production schedule

In order to quantify the benefits of the stochastic mine production schedule,
this schedule is compared to a schedule generated conventionally. A conventional
mine production schedule that considers the 3 available processes is generated using
the average grade of the 50 available orebody simulations (e-type) and using the
Milawa scheduler of Whittle software [112]. Figure 2-17 shows the mill and waste
productions with the e-type schedule. The conventionally generated schedule leads
to large and impractical ore and waste productions. Figure 2-18 shows the NPV
of the conventional schedule forecasted in Whittle and the expected NPV of the

stochastic schedule.
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Figure 2-17: Material sent to mill and waste dump with the schedule of the e-type

The stochastic schedule provides an expected cumulative NPV 4% higher than
that forecasted in Whittle software for the conventional schedule. However, the costs
associated with idle capacities are not included in the calculation of the NPV. This
indirect cost has a large influence in the conventional schedule, which reduces its
NPV expectations.

2.4 Conclusions

The method proposed in this paper allows for the control of deviation from pro-

duction targets in mining complexes with multiple ore types and multiple processing

streams. The solution obtained from the implementation of the method depends on
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Figure 2-18: Cumulative NPV with conventional schedule

the uncertainty of material types of the related mining blocks: if the blocks present
invariable material types over the orebody simulations, the stochastic mine produc-
tion schedule states the periods and destinations of the blocks; if the material type
of a given block can vary over the simulations, the solution obtained determines only
the block mining periods to avoid sending blocks to improper processes.

The selection of the starting mining sequence may influence the generation of
high quality solutions in a practical amount of time; it is recommended to perform
a sensitivity analysis to select the best starting mining sequence. The application
of the method in a copper deposit generates expected average deviations smaller
than 5% from mill and waste production targets. The expected average deviations
are around 20% from mill targets and 12% from waste targets when considering a
schedule generated conventionally using the e-type of the orebody simulations.

During the definition of the annealing parameters, several tests were performed
to determine the ones that generate good quality solutions with practical computing
time; however, documenting the change of the quality of the solution with different

annealing parameters can result in better assessment of the optimal ranges of the

61



annealing parameters for solving mine production scheduling problems. Although
the stochastic mine production schedule obtained is robust to a different set of sim-
ulations when considering 15 input mining sequences, a sensitivity analysis on the
number of input mining sequences is also desirable. The method needs to be ex-

panded to mining complexes with multiple sources (open pit mines) and stockpiles.
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CHAPTER 3
An extended stochastic optimization method for multi-process mining
complexes

3.1 Introduction

Mining complexes contain multiple sequential activities that are strongly in-
terrelated: (i) mining the materials from one or multiple sources; (i7) blending the
material considering stockpiling, (iii) transforming the material sent to different des-
tinations or processing paths; (i) transporting the products to final destinations,
etc. The quality of the input material of a metallurgical process may determine its
corresponding throughputs, costs and metallurgical recoveries. Mill throughput can
be sensitive to rock hardness, work index, the ratio of clay materials, etc.; costs and
reaction times in an autoclave depend on sulphur content; recoveries are affected by
deleterious materials [108]. Multiple approaches have been developed to optimize the
different parts of a mining complex in isolation: For example, Caccetta and Hill [15],
Lerchs and Grossmann [72], Picard [81] for pit design and mine production schedul-
ing. The process of optimizing all activities of a mining complex simultaneously is
known in the mining literature as global optimization [113]. This is a problem with
high complexity due to the link between time periods and discounting, the blending
requirements, the flexibility generated from the stockpiles, the multiple destinations
and operating alternatives, and the variability and uncertainty associated with grades

and material types [110].
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Over the last decade, several algorithms that seek for generating optimal so-
lutions in mining and processing plans have been developed. Hoerger et al. [50]
formulate the problem of optimizing the simultaneous mining of multiple sources
(pits and underground mines) and the delivery of ores to multiple plants as a mixed
integer program. The model calculates the net present value of the mining complex
by using variables that represent material sent from the mines to the stockpiles, ma-
terial sent from the mines to the processes, and material sent from the stockpiles
to the processes and their corresponding associated costs. The blocks are grouped
into increments based on the metallurgical properties, which belong to sequences
(or mining phases). The integer variables are used to model mine sequencing con-
straints at a phase level and plant startups and shutdowns. Due to the use of phase
sequencing constraints instead of block sequencing constraints to decrease the com-
plexity of the problem, there is a loss of resolution in the solution generated from
the method that may lead to the inability of meeting the blending and production
requirements. Furthermore, the method does not consider multiple operating alter-
natives for each process and ignores the geological uncertainty associated with the
ore deposits. Whittle [110] presents the Prober optimizer for global optimization
that aggregates the mining blocks into parcels of mine material type. These mate-
rial types are defined from different grade bin categories; that is, for each relevant
grade or attribute, cut-offs are defined to allow flexibility for blending purposes. The
method considers stockpiles for each material type that may be combined with the
material obtained directly from the mines to satisfy the different process require-

ments. Prober uses a random sampling and an evaluation routine to generate the
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solution. The random sampling consists of a search algorithm that samples the fea-
sible domain of alternative life-of-mine (LOM) mining plans; the evaluation routine
determines the optimal cut-off grade, stockpiling, processing selection, blending and
production plans and determines the net present value (NPV). The optimizer works
by repeatedly creating a random feasible solution and then finding the nearest local
maximum. The various NPVs that the algorithm finds are stored, and the run is
usually stopped when the top ten values lie within 0.1 per cent of each other. Al-
though very flexible and able to handle complex blending operations, the algorithm
has some drawbacks: it groups the parcels into panels and assumes that the parcels
are consumed in the same proportion within a panel; good solutions may be found
but it does not guarantee optimality; and, geological uncertainty is discarded.
Regarding geological uncertainty; that is, uncertainty in grades and material
types, some approaches have been developed in the last decade for pit design and
mine production scheduling problems. Ramazan and Dimitrakopoulos [85] formu-
late the mine scheduling problem as a two-stage stochastic integer program (SIP)
in which the first stage variables represent mining decision variables and the second
stage variables represent deviation from grade and production targets evaluated on a
set of orebody simulations. The formulation was later extended to include stochasti-
cally designed stockpiles, multiple processors and integrate short- term information
[11, 31, 71, 86]. Menabde et al. [75] develop and implement a method that accounts
for geological uncertainty and simultaneously optimizes the sequence of extraction
of the mining blocks and the cut-off grade policy. The authors aggregate blocks into

panels to reduce the number of binary variables and obtain an increase of 26% in
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expected NPV when compared to a solution that uses a deterministic static cut-off
grade policy. Boland et al. [13] propose a multistage stochastic programming ap-
proach that considers the decision of processing block aggregates as posterior-stage
variables. The approach provides a set of policies to follow according to the actual
scenario (orebody) obtained with the advance of the extraction. The implementation
of the approach using realistic mining data increases the expected NPV by 3% when
compared to a conventional deterministic method. However, some drawback can be
remarked in the approach: continuous variables with aggregates do not guarantee
slope constraints; it assumes all scenarios can be covered with orebody simulations;
and, it does not penalize deviation from production targets. Although, the SIP
formulation generates substantial improvements in terms of NPV and meeting pro-
duction targets, industry standard optimizers such as CPLEX are unable to solve
big size problems due to the large amount of integer variables, thus alternative solu-
tion avenues are being sought [65]. Many different approaches are available to solve
large combinatorial optimization problems. Some of them have been implemented
for solving complex mine scheduling optimization problems. Godoy [37] develops a
multi-stage method for mine production scheduling that integrates the joint local ge-
ological uncertainty and uses simulated annealing (SA) algorithm. The method seeks
to generate a risk-based mine production schedule that minimizes deviation from ore
and waste production targets. Leite and Dimitrakopoulos [69] apply the method at
a copper deposit obtaining an expected NPV 20% greater than the ones obtained
using conventional deterministic schedulers. Albor and Dimitrakopoulos [1] imple-

ment the method at the same copper deposit and observe that the schedule obtained
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was not sensitive after 15 orebody simulations. Furthermore, the authors point out
that the stochastic final pit limit was 17% greater than the deterministic one, adding
9% to the expected NPV. Goodfellow and Dimitrakopoulos [42] develop a simulated
annealing implementation for pushback design to control deviation from pushback
size targets considering different material types and processing plants. Lamghari
and Dimitrakopoulos [65] implement tabu search (TS) and variable neighbourhood
search (VNS) for the mine scheduling problem obtaining near-optimal solutions while
outperforming CPLEX in terms of computational time. Lamghari et al. [66] develop
a hybrid approach that combines exact methods and metaheuristics for solving the
LOM production scheduling problem.

In a mining complex, the different types of material extracted from a deposit
are sent to stockpiles or the different processing streams (destinations). Processing
a particular mining block can be profitable; however, the decision of mining and
processing that particular block in a given period not only depends on the individual
characteristics of the block (grades, tonnage, metallurgical properties) but in the
compound characteristics of the total material sent to the destination, including
both: the material sent directly from the deposit and the material sent from the
stockpiles. At any destination, there may be multiple operating conditions depending
on the quality of the input material, the design and operating parameters (processing
time, temperature, pressure, rotation speed, etc.) and the desired properties of
the output products; that is, a given destination (mill) may have several operating
alternatives (operate the mill with high silica in the input material or with low silica

content). Some additives may be considered at each destination, e. g., cyanide in a
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hydrometallurgical plant. In some cases additives are the bottleneck of the system.
To acount for them, availability constraints are added to the formulation in the next
section. Each operating alternative at a given destination may have its corresponding
costs, metallurgical recoveries, blending requirements, and additive demand (Figure
3-1). Considering the example of the mill operated with higher silica content in
the input material, given the hardness of the silica, the demand of energy (seen
as an additive of the mill) to decrease the average particle size to 80m is higher
when compared to a low silica content operation. This may affect the costs and
recoveries there-after; that is, having different blending requirements in the input
material for a particular process originates different consumption of additives, costs
and metallurgical recoveries. However, these differences may also be originated from
different conditions of operation in the process, or different product specifications;
e.g., 120m instead of 80m as average particle size desired in the output material of
the mill.

The production plan of a mining complex must state for any mining block when
to mine it, but also where to send it; and, for each destination, which operating
alternative to use.

3.2 Optimization model

Let N be the set of mining blocks considered to discretize the deposit; D the
set of processing destinations; X;;; a binary variable that denoted whether or not
the block 7 is mined in period t and sent to destination d; and, m;s the mass of block
¢ in simulation s. The amount of material mined at a given period and simulation,

denoted as tonne_mn(s, t), is given by Eq. (3.1). For modelling purposes, destination

68



Alternative A

Ore Type A Additives (Costs)
1 (Recoveries)

(Blending requirements)
(Additive consumption)

Ore Type B | =) Process

(Capacity)

(Additive availabilities)

Ore Type C (Costs)
(Recoveries)

(Blending requirements)

(Additive consumption)

Alternative B

Figure 3-1: Process and operating alternatives

d = 0 represents sending the block to the waste dump, and d = D + 1 represents

sending the block to the stockpiles.

N D+1

tonne_mn(s,t) = Z Z Xitd * Mis Vs, t (3.1)

i=1 d=0

The amount of material that will be processed at a given destination accounts
for the material that comes directly from the mine and the material that comes
from the stockpiles as shown in Eq. (3.2). The material sent from the stockpiles to

destination d in period ¢ in simulation s is represented as tonne_rehandle(s,t,d).

N
tonne_destination(s,t,d) = Z Xita - mys + tonne_rehandle(s,t,d) Vs,t,d (3.2)
i=1
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This amount of material rehandle depends on the tonnage available in the stock-
piles and the idle capacity associated with a given destination, and follows the mass
conservation expression showed in Eq. (3.3), where tonnestockpile(s,t) is the ton-
nage available in the stockpiles in period t in simulation s.

N

tonne_stockpile(s, t) = tonne_stockpile(s,t — 1) + Z Xitd - Mis
i=1

(3.3)

D
— Z tonne_rehandle(s,t,d) Vs, t
d=1

Eq. (3.4) is used to ensure that all the material sent to a particular destination
d is processed using any of the available operating alternatives O(d), where Y4, is
a variable between 0 and 1 that represents which proportion of material sent to

destination d in period t is processed using operating alternative o.

0(d)
Y Yue=1 vtd (3.4)
o=1

The revenue in each period and destination (revenue(s,t)) is obtained by ac-
counting for the different metals recovered from the available destinations. For each
operating alternative at any given destination, there is a recovery expression asso-
ciated to each material type and recoverable metal. The same level of flexibility is
considered for processing costs and the requirement of additives; that is, they de-
pend on the type of material input to a destination and the operating alternative
implemented.

Eq. (3.5 - 3.8) represent the costs associated with the different activities of

the mining complex where mn_cst(s,t) is the cost incurred by mining in period
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t in simulation s; m,. is the per-unit mining cost; pr_cst(s,t) is the cost incurred
by processing the material at the different destinations in period ¢ and simulation s;
pe(d, 0) is the per-unit processing cost in destination d using alternative o; stk_cst(s,t)
is the cost incurred by stockpiling the material in period ¢ and simulation s; sp, is
the per-unit stockpiling cost; rh_cst(s,t) is the cost incurred by sending material
from the stockpiles to the different destinations in period ¢ and simulation s; rh, is

the per-unit rehandle cost.

mn_cst(s,t) = tonne-mn(s,t) -m. Vst (3.5)
D O(d)

pr-cst(s,t) = Z Z (tonne_destination(s,t,d) - Yiao - pe(d, 0)) Vs, t  (3.6)
d=1 o=1

stk_cst(s,t) (Z Xit(D+1) - m,s> - 8P, Vs, t (3.7)

i=1

d=1

rh_cst(s,t) (Z tonne_rehandle(s,t d)) rhe Vs, t (3.8)

The objective function of the proposed formulation is given by the sum of the
discounted revenues obtained by selling the different recoverable metals minus the
discounted costs associated to the different parts of the operation throughout the

different periods and simulations.
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revenue(s,t) — mn_cst(s,t) — pr_cst(s,t)

—stk_cst(s,t) — rh_cst(s,t)

MaximizeO = Z Z e (3.9)

s=1 t=1

where S is the set of orebody simulations, 7" is the number of years considered
for the project and d is the discount rate.

Given the time value of money and the geological uncertainty associated with
the deposit, the blocks with higher and more certain profit must be mined in early
periods and sent to their optimal destinations, whereas the blocks which are more
certain to be non-profitable must be delayed for latest periods and sent to the waste
dump.

At any given period and simulation it is possible to evaluate the amount of
metal v sent to a given destination using Eq. (3.10) where g5, is the grade of
block 7 in simulation s considering property v; the amount of metal v that will be
processed using a particular operating alternative of a given destination using Eq.
(3.11); and, the average grade of metal v in that operating alternative using Eq.
(3.12). The amount of metal v sent from the stockpiles to a given destination d in a
period ¢ and simulation s is given by metal_rehandle(s,t,d,v) and follows the mass
conservation principle as tonne_rehandle(s,t,d). Zo is a variable between 0 and 1
that represents the proportion of metal v sent to destination d in period t that will
be recovered using the operating alternative o. To ensure that all the metal sent to a
given destination will be processed, ZOO:(‘? Ziao = 1 where O(d) is the set of operating

alternatives available in destination d.
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N
metal _destination(s,t,d,v) = < (Xita - s - gisv))

i=1 (3.10)
+ metal_rehandle(s,t,d,v) Vs, t,d,v
metal_alternative(s,t,d, 0,v) = metal_destination(s,t,d,v) + Zgop Vs, t,d,o,v
(3.11)

metal _alternative(s,t,d, o, v
average_grade(s,t,d,o,v) = ( )

Vs, t,d,o,v (3.12)

tonne_destination(s,t,d) - Y4,

The requirement of additive a at each destination is obtained using expression
(3.13). k(d,o,a) represents the per-unit additive consumption coefficient of a in

destination d using operating alternative o.

0(d)
additive_consumption(s,t,d,a) = Z (tonne_destination(s,t,d) - Yiqo - k(d, 0,a))
o=1

Vs, t,d,a
(3.13)

The feasible domain is constrained by Eq. (3.14 - 3.18). Eq. (3.14) represents
capacity constraints, which imply that it is not possible to send to any destina-
tion more material than the amount that can be processed. Eq. (3.15) represents
availability constraints, which avoid the usage of more additives than the amount

available at a given destination. Eq. (3.16) represents blending constraints, which
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control that the grade of the different attributes falls in between some operational
ranges for the different operating alternatives. Eq. (3.17) represents reserve con-
straints, which control that a block can be mined only once and sent to a unique
destination. Eq. (3.18) represents block precedence constraints, which ensure that

slope constraints at the different geotechnical zones are not violated.

tonne_destination(s,t,d) < capacity_destination(d) Vs, t,d (3.14)

additive_consumption(s,t,d,a) < availability(d, a) Vs, t,d,a (3.15)

low_range(d,o,v) < average_grade(s,t,d,o,v) < high_range(d,o,v) Vs, t,d,o,v

(3.16)
T D+1
Y Xua=1 Vi (3.17)
t=1 d=0
D+1 t D+1
> Xua—> Y Xja<0 Vit and Vje Pfi} (3.18)
d=0 k=1 d=0

All variables must be greater or equal to zero. Yy, Ziaon < 1 and Xy € {0, 1}.
Given the complexity of the problem derived from the flexibility considered at

the different stages of the mining complex, the use of an exact method incorporated
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in any conventional optimization software, such as CPLEX, will not be able to gen-
erate an optimal solution in a feasible amount of time. A heuristic methodology is
proposed to generate risk-based solutions that outperform conventional deterministic
ones in practical times. The methodology is presented in the next section. Capacity,
availability and blending constraints are called target constraints in the method for
simplicity.
3.2.1 Solution of the problem

The method proposed in this paper uses iterative improvement over an initial
solution until it converges to a final one. The procedure that the method uses can
be divided in three stages: (i) Assign periods and destinations to the mining blocks
based on the initial solution; (i) Calculate the overall profitability per block per
destination based on the orebody simulations; and, (7i) perturb the solution until a

stopping criteria is reached to generate the final solution.

STAGE 1: STAGE 2: STAGE 3:
Initial Assign periods | Orebody Calculate Perturb
solution and simulations overall solution until
=——> | destinations to || profitability per stopping
Geoz‘ecfﬂj fcal the mining block per criteria is
zone file blocks destination reached

Figure 3-2: Stages of the method

Stagel
In this stage, the method assigns periods and destinations to the mining blocks
from the initial solution. It also assigns a geotechnical zone for each block based

on the geotechnical zone file. Different zones can have different slope angles and
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therefore different set of predecessor and successor blocks. If there are some slope
constraint violations in the initial solution, block mining period corrections are per-
formed based on the different slope angles. For doing so, when a slope constraint
violation is found, the mining period of the block is moved to a feasible period based
on the set of successor and predecessor blocks; that is, the range between the lat-
est period of the predecessor blocks and the earliest period of the successor blocks

(Figure 3-3).

a Slope angle

. Predecessors

Succesors
x2|13(13
Max predecessor9
"_.-‘12 el e 15‘*.* Min Successor 12
32|13 |14 (14| 15|15| 1§

Figure 3-3: Two-dimensional example of predecessors and successors of a given
block

Stage2
At this stage, the profits and costs for each simulation and period are evalu-
ated. From the material types and grades at each simulation, the proposed method

calculates, for each block, the overall profitability per available destination; that is,
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it evaluates the profit (or loss) obtained by sending a particular block to a given
destination (considering the best operating alternative for that block at that desti-
nation) and accumulates it through the set of simulations (Figure 3-4). From there,
the method evaluates the optimal destination for a particular block, but, this op-
timal destination may not be the final destination due to capacity, availability and

blending constraints (target constraints).

{Economic Value} in Sim 1

{Economic Value} in Sim 2
Destination 4 | J *

Ed

< {Economic Va*lue} in Sim S
e | SUM = Overall profitability (i.4)
/7
7 " {Economic Value} in Sim 1
4 {Economic Value} in Sim 2

Ed

Block i é = == p| Destination B <

Ed

{Economic Value} in Sim S
\ . SUM = Overall profitability (i,B)

\ «~ {Economic Value} in Sim 1

\‘ {Economic Value} in Sim 2

< *

{Economic Va*lue} inSim S

. SUM = Overall profitability (i,C)

Destination C

Figure 3-4: Overall profitability per block per destination

Stage3
This is the perturbation stage. A block is selected randomly and the available
destinations for that particular block are sorted based on its overall profitability. If

the best destination has a positive overall profitability, i.e., it increases the value
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of the objective function, the block is pushed to early periods, otherwise it may be
pushed to later periods.

For positive overall profitable blocks, the method defines four possible options
for periods and destinations (Figure 3-5). The first option is to send the block to
its best destination in the previous period (current period 1). If there are no slope
and target constraint violations this option is chosen. The second option is to mine
the block in the previous period and send it to a profitable destination different
from the optimal without violating slope and target constraints; that is, it considers
the destinations with positive overall profit. The third option is to randomly select
another block mined in the previous period from which a double swapping that
increase the objective function can be performed without violating slope and target
constraints. The double swapping consists of two different blocks switching mining
periods. If the double swapping is non-feasible or non-profitable, the block is sent to
the stockpile, which is the last option.

If the block has a negative overall profit for all the different destinations, it is sent
to the waste dump. To decide the period when the block is going to be mined, the
method evaluates the overall profitability of the set of closest successor blocks. If the
sum of the overall profitability of the closest successor blocks is positive, the period
of the block does not change to allow the successor blocks to move to early periods.
This permits the schedule to access profitable areas early even when waste blocks
are overlying them. If the sum is negative, the block and the predecessors belonging

to the same period are sent to the next period without violating slope and mine
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BLOCK

Block i

POSSIBLE POSSIBLE CONSTRAINTS PRIORITY
DESTINATION PERIOD TO CHECK ORDER
Best destination Period = Check slope FIRST

overall Period-1 & target OPTION
profitability>0 constraints
Other destinations Period = Check slope SECOND
with overall Period -1 & target OPTION
profitability>0 constraints
Best destination Check another Check obj. THIRD
overall block & double function, slope & OPTION
profitability>0 swap periods target constraints
Send to Current No LAST
stockpile period checking OPTION

Figure 3-5: Possible destinations and mining periods of a block with positive
overall profitability

After a certain number of iterations, the method re-evaluates the destination

The method stops after the maximum number of iterations, swaps, or iterations
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the respect of the target constraints at the different destinations.

capacity constraints. It should be noted that the method uses an overall revenue cut-
off instead of a grade cut-off that conventional methods use to discriminate between
ore and waste. The material sent to stockpiles is a profitable material that cannot

be processed immediately due to capacity, availability and blending constraints.

policy of the stockpiled material based on the tonnage available, its profitability and

without substantial improvement of the objective value, are reached. The maximiza-

tion of the objective value is driven by means of the swapping mechanism: sending



the most profitable blocks to early possible periods and the best available destina-

tions and sending to the waste dump the blocks with negative overall profit in later

possible periods without violating slope and target constraints. The constraints are

respected by means of the checking mechanism throughout the iterations of Stage 3.

Figure 3-6 shows the flowchart of the method in the Stage 3.
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Figure 3-6: Stage 3 of the proposed method

Select a block
randomly

4

C

FIEST OPTION

Does it meet
constraints?

Does it meet
constraints?

MNo:
v

THIED OPTION

Does it meet
constramts?

No:
4

LAST OPTION

No

Final
solution

oes it meet stopping
criteria?

Update periods,
destinations, profits,
costs, tonnages and

metal quantities

!
&

A A

G R RAE R R R R R R R

80



3.3 Case study: a copper deposit

The method is implemented at a copper deposit, from which fifty orebody sim-
ulations are available for modelling geological uncertainty. Figure 3-7 shows the
different material types of the deposit and the available processing destinations in
the mining complex. Figure 3-8 shows different possible initial solutions generated

using a conventional optimizer over different orebody simulations.

MATERIAL STOCKPILES DESTINATIONS

TYPES
WASTE —p| Waste Dump
ORE 1 Process 1
ORE 2

Process 2
ORE 3

\

; : :
Figure 3—7: Available material types and destinations

The proposed method seeks to generate a mine and destination schedule that
maximizes the NPV and respect capacity, availability and blending constraints. For
doing so, an initial solution is iteratively perturbed to improve the objective value.

To identify the number of perturbations required in the perturbation stage, different
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Figure 3-8: Orebody simulations (left), mining sequences (right)

numbers of perturbations are tested and the deviations from target constrains eval-
uated. Figure 3-9 shows the evolution of the 50th percentile (P50) of the tonnage
sent to process 1 and the total tonnage mined with the number of perturbations. It
is observed a large deviation from capacities at small number of perturbations and
a substantial reduction in the deviation driven by the increment of the number of
perturbations; i.e., the reduction in deviation from capacity of process 1 decreases
from 9% in average to 0.2% when increasing the number of perturbations from 100
thousand to 1 million. Regarding the total mine production, the average deviation
in the first 16 years remains in the same level (around 4% from the mine capacity).

An analysis based on the value of the expected NPV was performed. Figure
3-10 shows the evolution of the expected NPV with the number of perturbations

and the number of simulations.
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Figure 3—10: Evolution of expected NPV

It is observed that the increment of the expected NPV is marginal after 1 million
perturbations. There is no substantial benefit in increasing the number of pertur-
bations there-after. The objective value is increased by 30% when compared to the
initial solution. The same analysis is done regarding the number of simulations re-
quired. It can be observed that after 15 simulations, no significant improvement in
the expected NPV is presented.

Figure 3-11 shows the tonnage sent to Process 1, 2, 3 and the total tonnage
mined. Given that the solution states the destination of the blocks, the differences in

tonnage of the material sent to a given destination through the different simulations
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are negligible.
blocks among simulations derived from simulated densities. If the tonnage of the
blocks were similar along the different simulations, no differences were presented in
terms of tonnage among simulations. It can be observed that the Process 1 and
the total tonnage mined are controlled by their corresponding capacities, whereas

the Processes 2 and 3 are controlled by the amount of profitable reserves for those

These minor differences are generated from different tonnages of

destinations.
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Although the material sent to the different destinations does not vary signifi-

cantly between simulations, the amount of metal that can be recovered has significant

Figure 3-11: Tonnage
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fluctuations (Figure 3-12). This is originated from the grade and material type un-
certainties; that is, the amount of metal sent to a process change in the simulations
due to copper grade uncertainty, and the metallurgical recovery at a given destination

vary in the simulations due to material type uncertainty.
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Figure 3-12: Metal

Figure 3-13 shows the amount of the different material types sent to the stock-
piles. Sending waste material to the stockpile may be seen as a misclassification error.
Although there are some risks of misclassifying material by following the stochastic
solution generated, the algorithm seeks for minimizing the misclassification errors;
that is, sending waste material to the stockpiles or sending a given material type to
a non-profitable destination. A given material type sent to a wrong destination may
produce a very high cost with low or negligible recovery. The way the algorithm
controls misclassification errors is by maximizing the objective function, given that
misclassification errors are very costly. The amounts of material type 3, 4 and 5 sent

to stockpile are marginal and may be generated from misclassification; however, the
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algorithm will send that material to a particular destination if there is some profit
associated. By having a look at the output material from the stockpiles, it was

observed that only ore types 1 and 2 are rehandled and sent to process 1.
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Figure 3-13: Material types sent to stockpile

Figure 3-14 shows the P10, P50 and P90 of the cumulative discounted cash
flows. It is observed that during the first two decades of the project, the expected
NPV is around $7.8 billion. Although, no blending constraints were considered in this

case study, the method attempts to maximize net present value expectations while
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maintaining target constraints within acceptable tolerable limits. It discriminates
blocks between ore and waste based on the overall profitability; that is, the profit
(or loss) obtained by sending a block to a given destination accumulated through
the set of simulations. When profitable material cannot be processed due to target

constraints, it is sent to the stockpiles for being rehandled in future periods.

Net Present Value
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Figure 3-14: Net present value

To evaluate the benefits of the method, a comparison with the initial solution
that was generated using conventional mining practices can be performed. Figure
3-15 shows the tonnage sent to process 1 when using a conventional scheduler. Large
impractical deviations from the capacity of Process 1 can be observed.

Figure 3-16 shows the risk profile of the cumulative discounted cash flow of the
conventional schedule. It is observed that during the first two decades of the project,
the expected net present value of the risk-based schedule is 30% greater than the

conventional initial schedule. This shows the ability of the method to handle two
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Figure 3-15: Process 1: Production forecast for the conventional initial solution

conflicting objectives: maximize expected net present value while approaching target

constraints.
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Figure 3-16: Net present value of the conventional initial solution

The method can handle processes with multiple operating alternatives, addi-
tives and blending constraints. Although it shows good results in this particular

case-study, its ability to handle complex blending requirements needs to be tested
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in a future work. Regarding the heuristic process, even though it has some checking
mechanisms to take advantage of the nature of the problem for having large im-
provements of the objective function, new heuristic mechanisms and diversification
strategies should be evaluated to better explore the solution domain.

Figure 3-17 shows a cross section of the final schedule generated using the
method. It can be observed that slope constraints are controlled by means of the

correcting and checking mechanism utilized throughout the stages of the method.

PERIODS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3-17: Cross-section of the risk-based schedule

3.4 Conclusions

An iterative improvement heuristic method is presented for generating mine pro-
duction schedules in single-pit mining complexes that can contain multiple metals or
attributes, multiple material types, stockpiles and processing options. The method
considers relaxed capacity, availability and blending constraints. The implementa-
tion of the method in a copper deposit shows its ability to control target constraints
by reducing the deviations from the capacity of Process 1 from 9% to 0.2% while
increasing the expected net present value 30% when compared to an initial conven-

tional solution.
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An advantage of the method regarding previous developments is that it requires
a single initial solution and the set of orebody simulations, whereas other implemen-
tations require multiple starting solutions, which increases substantially the labor of
the mine planning engineer.

Regarding the expected NPV, there were no significant additional benefits from
increasing the number of simulations after 15. However, the amount of simulations
required to control complex blending operations needs to be addressed in future
implementations.

Although the method allows for improving an initial solution in terms of meeting
target constraints and net present value expectations, different heuristic strategies
with diversification should be implemented to explore better the solution domain.
Another possibility is to implement the method iteratively by considering several
initial solutions simultaneously.

The possibility of adapting the method to multi-pit mining complexes is a future
research avenue. Although the method requires practical amount of time for solving
single-pit mining complexes (no more than 3 hours for dozens of millions of per-
turbations in a 1-million blocks deposit), its requirement in terms of computational
time for multi-pit mining complexes needs to be addressed given the large size of the

multi-pit problems.
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CHAPTER 4
Optimizing mining complexes with multiple processing and
transportation alternatives: An uncertainty-based approach

4.1 Introduction

A mining complex can be interpreted as a supply chain system where material
is transformed from one activity to another [43]. The primary activities (or stages)
consist of mining the materials from one or multiple sources (deposits); blending
the material considering stockpiling; processing the material in different processing
paths accounting for multiple operating alternatives; and transporting the products
to port or final stocks using one or multiple transportation systems.

For a given processing path (e.g. mill-roaster in a refractory ore operation),
it is possible to have multiple operating alternatives; for example, a mill may be
operated using two different options: fine or coarse grinding (Figure 4-1). If the mill
is operated using fine grinding, there is often a very high energy consumption, which
is associated with a higher processing cost and also requires larger residence times for
the material processed, thus limiting the mill throughput. A coarse grinding option
requires less energy and residence time in the mill, which decreases the operating
cost and increases the mill throughput, however, it results in a lower recovery in
the roaster downstream. Furthermore, different processing alternatives often impose
different blending requirements. For example, the tolerable amount of free silica of

the input material may be lower when operating the mill at fine grinding given that
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the presence of this element increases the hardness of the material. Case studies have
demonstrated [111] that for maximizing the net present value (NPV) when a mill is
bottlenecking the system, it is better to use a coarse grind with higher throughput
in the early periods of the life-of-mine (LOM), and, to use a finer grind to maximize
recovery towards the end of the LOM. During the early periods, a mining complex
incurs an opportunity cost for having material with large residence times in the mill,
however, as the quantity of ore remaining in the mining complex diminishes, there

is no opportunity cost.

MATERIAL TYPES

T2 T2 B

S

l l

FINE GRINDING COARSE GRINDING
P80 = 80 microns P80 = 160 microns
High recovery Low recovery
Low throughput High throughput

Figure 4-1: Operating alternatives for a mill
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Once the material is processed through the different processing paths and using
some available operating alternatives, existing transportation systems, either con-
tinuous (belt conveyors, pipeline transport) or batch (trucks, rail transportation),
are used to transport the processed material to one or several ports or final stocks.
Accounting for transportation systems in the optimization of mining complexes is
important, given that they may limit the overall system output. In a mining complex,
it is common to have multimodal transportation that involves the use of separate
contractors or operators for each type of transport [116]. To account for the de-
mand of transportation of material processed, it is necessary to establish the feasible
relations between processing paths and transportation systems; specifically, a par-
ticular transportation system may be able to handle output material from some of
the available processing paths: For example, in a pyro/hydrometallurgical complex,
a hydraulic pipe may be able to transport the material output from the lixiviation
plant whereas the material output from the pyrometallurgical plant is transported to
the final stocks via trucks. Once the feasible transport relations are established, the
demand for transportation is evaluated by considering the throughput relationships
(output/input tonnages) for each processing path given the operating alternative
implemented. For example, the output/input tonnage relation and the metallurgical
recovery in a gold flotation plant change if the mass pull is 4 or 7% [48]. When
the transportation of processed material is the bottleneck in the overall system, the
operating conditions at the different processing paths must be evaluated. To over-
come this limitation, it may be useful to re-evaluate throughput specifications of the

processed material. Whittle [111] shows that by increasing the copper concentrate
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from 28 to 32% in some periods on a sulphide deposit, the metallurgical recovery
decreases by 7%, but the NPV increases by 6% given the possibility of transporting
more concentrated ore on the pipe, which is the bottleneck of the system.

Optimizing mining complexes by considering geological uncertainty and the dif-
ferent stages simultaneously is a large combinatorial optimization problem. Several
efficient methodologies have been developed in stochastic environments for the mine
production scheduling problem [37, 38, 42, 65, 66]. This paper presents a method-
ology for optimizing the mine plan and destination and transportation policies by
considering all the stages of the mining complex simultaneously, and accounting
for geological uncertainty by means of geostatistical orebody simulations of the de-
posit(s). The next section presents the formulation of the problem and the heuristic
methodology proposed to solve it. Then, its implementation at a multi-pit operation
is described; and, finally, some conclusions and future research avenues are addressed.
4.2 Method
4.2.1 Overview

In a mining complex, the material flows from the deposits as raw material to
ports or final stocks as saleable products. To optimize the mining complex, the
different stages that are involved must be considered simultaneously (Figure 4-3).
First, the multiple material types coming from the mine(s) are sent to the available
processes or to stockpiles where they are blended to meet the quality requirements.
At each process the material is transformed into intermediate or final products,
which are then transported to ports or final stocks. The goal when optimizing a

mining complex is to maximize discounted cash flows while minimizing deviation
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Figure 4-2: Flexibility of the mining complex

from mining and metallurgical processing targets, such as capacities associated to the
different processing and transportation options and blending requirements regarding
the different metallurgical properties. These metallurgical properties control the
operation of the different processes and are calculated as mathematical expressions of
the different grade elements, e.g., fuel value is a metallurgical property that controls

the operation on a roaster.

MINING> BLENDIN(> PROCESSID}TRANSPORTIN} PRODUC1>

Figure 4-3: Activities of the mining complex
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4.2.2 Optimization model

Table 4-1: Main variables

Xitd
}Qdo
szr

discprofit(s,t)
penalty(s,t)

binary variable denoting whether or not a block 7 is mined in period ¢

and sent to destination d

binary variable denoting whether or not a processing alternative o is
implemented in destination d in period ¢

continuous variable € [0, 1] that represents the proportion of output tonnage
from destination d to be transported by transportation system r in period t
discounted profit obtained in period ¢ under scenario s

penalty term of objective function in period ¢ under scenario s

Table 4-2: Deviation variables

D(s,t,p)u
D(s,t,p)rL
D(s,t,d,o)y
D(s,t,d, o)L,
D(s,t,d, o, k)y
D(s,t,d,o, k)L
D(s,t,r)y

l)<37tar)L

tonnage exceeding the capacity associated with pit p in period ¢ under
scenario s

deficient amount of tonnage mined in pit p during period ¢ under scenario
s regarding its associated capacity

tonnage exceeding the capacity associated with the operation alternative o
of destination d in period ¢ considering the scenario s

deficient amount of tonnage input to destination d in period ¢ under
scenario s considering operating alternative o and its associated capacity
over-deviation from the upper target regarding the metallurgical property
k in processing option o of destination d in period ¢ under scenario s
under-deviation from the lower target regarding the metallurgical property
k in processing option o of destination d in period t under scenario s
tonnage exceeding the capacity associated with the transportation system
r in period ¢ considering the scenario s

deficient amount of tonnage regarding the capacity associated with
transportation system r in period ¢ under scenario s
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Table 4-3: Economic and penalty variables

revenue(s,t)
mncost(s, t)
procost(s,t)
stkcost(s, t)
rehandlecost(s,t)

transcost(s,t)

penalpit(s,t)
penalpro(s,t)

penalmetal(s,t)

penaltrans(s,t)

revenue in period ¢ under scenario s

cost of mining the materials in period ¢ under scenario s

cost of processing the materials in period ¢ under scenario s

cost of stockpiling the materials in period ¢ under scenario s

cost of sending material from the stockpiles to the available
destinations in period ¢ under scenario s

cost of transporting the products to the ports or final stocks in
period ¢t under scenario s

penalized deviations from pits capacities in period ¢ under scenario s
penalized deviations from operation alternatives capacities in period
t under scenario s

penalized deviations from metallurgical operational ranges in period
t under scenario s

penalized deviations from transportation systems capacities in period
t under scenario s

Table 4-4: Tonnage variables

maineproduction(s,t) tonnage mined in period ¢ under scenario s

tonnesentmine(s,t,d)  tonnage sent from the pits to destination d in period ¢ under
scenario s

tonnestockpiles(s,t) tonnage presented in the stockpiles in period ¢ under scenario s

tonnerehandle(s,t, d) tonnage sent from the stockpiles to destination d in period t

under scenario s

tonneprocess(s,t,d) tonnage of material processed in destination d in period ¢ under

scenario s

metalsentmn(s,t,d,m) amount of metal m sent from the pits to destination d in period

t under scenario s

metalrehand(s,t,d,m) amount of metal m sent from the stockpiles to destination d in

period ¢ under scenario s

tonneoutprocess(s,t,d) tonnage of material output from destination d in period ¢ under

scenario s

tonnetransport(s,t,r)  tonnage of material transported using transportation system r

metalrec(s,t,m)

in period ¢ under scenario s
amount of metal m recovered in period ¢ under scenario s
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Table 4-5: Parameters

mys

Adr
T€Cdom
Price,
PCdo

ke

he

drate
O(tu p)U

C(tvp>L
C(tv da O)U
O(tu da O)L

C(t, d, 0, k)U

C(t, d, 0, k?)L

C(t, T)U

O(t, T)L

mass of block ¢ under scenario s

proportion output/input tonnage in operating alternative o of
destination d

0-1 parameter indicating whether or not the output material from
destination d can be transported using transportation system r
metallurgical recovery of metal m in destination d using the operation
alternative o

price of metal m

per-unit mining cost

per-unit processing cost in destination d using operation alternative o
per-unit stockpiling cost

per-unit rehandle cost

per-unit transportation cost using transportation system r

discount rate

per-unit penalty cost associated with over-deviation of production in
pit p during period t

per-unit penalty cost associated with under-deviation of production in
pit p during period ¢

per-unit penalty cost associated with over-deviation of production in
operation alternative o of destination d during period ¢

per-unit penalty cost associated with under-deviation of production in
operation alternative o of destination d during period ¢

per-unit penalty cost associated with over-deviation from upper target
of metallurgical property k in period t considering operation alternative
o of destination d

per-unit penalty cost associated with under-deviation from lower target
of metallurgical property k in period ¢ considering operation alternative
o of destination d

per-unit penalty cost associated with exceeding the capacity of
transportation system r during period ¢

per-unit penalty cost associated with failing to meet the tonnage
capacity of the transportation system r during period ¢
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Table 4-6: Sets
set of scenarios
set of periods considered in the LOM
set of mining pits
set of mining blocks considering all available pits
set of destinations (processing paths) available
set of operating alternatives at destination d
set of grade elements (including recoverable metals)
set of metallurgical properties
set of transportation systems

IR OTTTHN®
o

Objective function

The objective function is given by Eq. (4.1) and seeks for maximizing discounted
profits and minimizing deviations from targets along all periods and scenarios (de-
rived from orebody simulations). The first term of the objective function accounts for
discounted profits by evaluating the revenues obtained by selling the different prod-
ucts and the costs associated to the different activities of the mining complex. The
second term accounts for penalized deviations regarding mining, processing, trans-
portation and blending targets and may be seen as a penalty cost it is incurred by
not meeting the different targets. The value of penalty(s,t) depends on the deviations
from the targets itself and the magnitude of the per-unit penalty costs associated.
If the per-unit penalty costs are too high, the method will improve the reproduc-
tion of the targets ignoring the first term of the objective function generating poor
improvement of expected NPV. Conversely, too small per-unit penalty costs will gen-
erate impractical solutions with large and non-realistic NPV forecasts given the large

violations of the targets.
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T s
MaxO = Z <% (Z discprofit(s,t) — penalty(s, t))) (4.1)

To manage the risk along the different periods, the per-unit penalty costs can
be discounted using the geological risk discounting rate (GRD) introduced by Dim-
itrakopoulos and Ramazan [26]. This allows deferring risks of not meeting targets
for later periods when more information will be available. GRD can be applied to
processing, blending and transportation targets.

Model constraints

When generating a strategic plan for a mining complex there are important
questions that need to be answered: (i) at each mining block, when to mine it
and where to send it; (i) at each destination (processing path), which processing
alternative to implement every period; (7i) which transportation systems should be
used to transport the products.

The tonnage mined in a given period ¢ under a scenario s can be evaluated as:

I D

mineproduction(s,t) ZZXW Mis (4.2)
i=1 d=0

Scenarios are obtained from orebody simulations and, due to grade and material
type uncertainties, the tonnage of a block may differ from one scenario to another.
Similarly, the tonnage sent from the pits to any particular destination d can be
evaluated as:

tonnesentmine(s,t, d) ZX”d Mg (4.3)

In a mining complex, different material types are storage in different stockpiles

given that they may have different metallurgical properties. The model considers one
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stockpile for each material type that contributes to the blending operation. When a
particular block is sent to the stockpiles, the assignment of any particular stockpile
is a scenario-dependent decision derived from the material type uncertainty. In other
words, for each scenario, a stockpiled block will be assigned to the corresponding pile
related to its material type. For modeling purposes, stockpiling a block is represented
as having destination d=0. Therefore, in a period ¢, the total tonnage presented in
the stockpiles under a scenario s is:

tonnestockpiles(s,t) = tonnestockpiles(s,t — 1)

D
- Z tonnerehandle(s,t,d) (4.4)

d=1

+ tonnesentmine(s,t,0)
The amount of material processed in a given destination d during period ¢ under

scenario s is given by:

tonneprocess(s,t,d) = tonnesentmine(s,t, d)
(4.5)
+ tonnerehandle(s, t,d)
Similarly, the amount of metal m input to a particular destination d during
period t under scenario s can be evaluated as:

metalprocess(s,t,d, m) = metalsentmine(s,t,d, m)

+ metalrehandle(s,t,d, m)
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At any given period ¢, only one of the possible available operating alternatives

0(d) can be implemented in a particular destination d, which implies that:

O(d)
> V=1 (4.7)
o=1

At each destination, every available operating alternative may have its corre-
sponding associated capacity, operating cost, recoveries, operational ranges for met-
allurgical properties, and throughput specification (relation between output/input
tonnages). The amount of material output from a given destination d in period ¢

under scenario s is given by:

O(d)
tonneoutprocess(s,t,d) = Z (tonneprocess(s,t,d) - Yigo - Pao) (4.8)

o=1
After evaluating the output material from the different destinations in a period
t under scenario s, the tonnage transported by a given transportation system r can

be calculated as:

tonnetransport(s,t,r) = Z (tonneoutprocess(s,t,d) - Ziay) (4.9)

D
d=1

Eq. (4.10) and (4.11) are used to respect feasible process-transport configura-

tions and to transport all output material obtained from a given destination.

th'r S Ad'r (410)

R
Z Zoar = 1 (4.11)
r=1
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The amount of metal m recovered in period ¢ under scenario s can be calculated

as:

o

(d)
(metalprocess(s,t,d,m) - rec(d,o,m)) (4.12)
1

NE

metalrec(s,t,m) =

.
Il

1

=)
Il

Using the amount of metals recovered, it is possible to calculate the revenue

obtained in period ¢ under scenarios s as:

M
revenue(s,t) = (metalrec(s,t,m) - price(m)) (4.13)

m=1
The costs associated with the different activities of the mining complex are given

by Eq. (4.14 - 4.18):

minecost(s,t) = mineproduction(s,t) - m. (4.14)
D O(d)
procost(s,t) = Z Z (tonneprocess(s,t,d) - P.(d,0) - Yia0) (4.15)
=1 o=1
stock:cost(s,t) = tonnesentmine(s,t,0) - k. (4.16)
rehandlecost (s, t) (Z tonnerehandle(s,t d)) he (4.17)
d=1
R
transcost(s,t) = Z (tonnetransport(s,t,r) - 1.(r)) (4.18)
r=1

The discounted profit, which is the term that appears in the objective function,

can be calculated by discounting the difference between the revenue and the costs
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associated with the different activities Eq. (4.19).

revenue(s,t) — minecost(s,t) — procost(s,t)

—stockcost(s,t) — rehandlecost(s,t) — transcost(s,t)

discprofit(s,t) = (1 + drate)t

(4.19)

To control the operations at the different destinations (processing paths), vari-

ous metallurgical properties must be considered. At any given operation alternative

of a particular destination, these metallurgical properties must fall in between some

operational ranges. The deviations from these operational ranges must be also min-
imized by means of penalty costs.

penalty(s,t) is the second term of the objective function and can be evaluated

in each period and scenario using Eq. (4.20).

penalpit(s,t) + penaltrans(s,t
penalty(s,t) = (51) (5:9) (4.20)

+ penalpro(s,t) + penalmetal(s, t)

The evaluation of the different penalized deviations that affect the penalty term

of the objective function is displayed in Eq. (4.21 - 4.24):

penalpit(37 t) = Z (C(tvp)U ' D(S, tvp)U + C(tvp)L : D(Sa t>p)L) (421)

p=1
R
penaltrans(s,t) = Z (C(t,r)v - D(s,t,r)u + C(t,r)r - D(s,t,7)L) (4.22)
r=1
9D [ C(t,d, o)y - D(s,t,d,0)y

D
penalpro(s,t) = Z (4.23)
d=1 o=1 \ + C(t,d,0)r - D(s,t,d,0)r
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Q

(d) C(t,d, o, k)y - D(s,t,d, o0, k)y

i (4.24)

penalmetal(s,t) = Z
1 k=1 + O(t7d7 0, k)L ’ D<S7t7d7 0, k)L

1o

D
d=

All variables must be greater or equal to zero. X4, Yiao € {0,1} and Zyy. < 1.

The production and transportation capacities and the blending targets are con-
trolled via penalties in the objective function. Other operational constraints, al-
though not displayed in this paper, are considered in the formulation, such as prece-
dence constraints, reserve constraints, etc. [83].
4.2.3 Solution approach

Given the complexity of the problem derived from the flexibility considered at
the different activities of the mining complex, the use of an exact method incorpo-
rated in any conventional optimization software, such as CPLEX, will not be suitable
as solution times will be impractical even for small instance problems (few thousands
of blocks). To overcome this situation, a heuristic methodology is proposed to gen-
erate good-quality solutions. The proposed algorithm perturbs an initial solution
iteratively to improve the objective function. In order to avoid local optimal solu-
tions and to explore the solution domain (the set of all possible mine production
schedules with operating policies for processing paths and transportation systems),
the method allows deterioration based on a decision rule and uses diversification.
The decision rule is the same implemented by the Metropolis algorithm [76] and al-
lows the exploration of the solution domain while converging to a final good-quality
solution. A diversification strategy over the solution domain is performed by means

of perturbation at different decision levels of the mining complex (blocks, operating
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alternatives, transportation systems). The proposed algorithm can be implemented
multiple times to improve the final solution by controlling the number of cycles.

Decision rule

Metropolis et al. [76] introduce an algorithm to provide a simulation of a col-
lection of atoms in equilibrium at a given temperature. The Metropolis algorithm
perturbs the initial state and, at each iteration, an atom is displaced and the result-
ing change in energy AFE is computed. If AF < 0, the displacement is accepted.
The case AE > 0 is accepted or rejected based on random sampling of a probability
distribution P(AFE) = exp(—AFE/kgT) where Kp is a constant and 7" the temper-
ature of the state. Kirkpatrick et al. [64] use a cost function in place of the energy
and define configurations by a set of variables to generate a population of configura-
tions of a given optimization problem at some temperature. This temperature acts
as a control parameter of the same units as the cost function. Previous implementa-
tion of annealing schedule have demonstrated its ability to improve mine production
scheduling and pit designs in terms of expected NPV and meeting production targets
[1, 37, 42, 69].

Given the nature of the optimization problem considered in this paper, which is
a maximization problem and not a cost or deviation minimization one, a perturbation
that deteriorates the current solution is the one that decreases its objective value.
Accounting for this, the probability distribution is given by Eq. (4.25) with T" being

the annealing temperature.

1 if(AO > 0)

P<AO) = P(Onew - Ocurrent) = (425)

—(A0)

e~ if(AO <0)
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The probability of accepting an unfavourable perturbation is greater at higher
temperatures. As the optimization proceeds, the temperature is gradually lowered
by a reduction factor. When the temperature approaches zero, the probability of
accepting an unfavourable swap tends to zero. This allows the algorithm to converge
to a final solution.

The total number of swaps and the number of swaps at a given temperature
control the end of the algorithm and the changes of temperature throughout the
iteration process.

Perturbation mechanism

The proposed algorithm requires an initial mining sequence to assign periods
and destinations to mining blocks and a set of orebody simulations for each deposit
to evaluate profits, costs, productions and deviations at the different activities of the
mining complex. While reading the orebody simulations, the algorithm evaluates the
overall profitability of a block at a given destination by accumulating the economic
value of the block in that destination through all scenarios. For simplicity, the overall
profitability of a block at a given destination will be referred to as OPBD. Based
on the OPBD, it is possible to determine the optimal destination of a given block.
One or several waste dumps may be considered and they are treated as processing
destinations with null recoveries.

The solution is improved by means of the perturbation mechanism. The al-
gorithm performs perturbation at three different level or stages: blocks, operating
alternatives and transportation systems. At any level of perturbation, a new solution

will be accepted based on the decision rule explained in the previous section.
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Block Based Perturbations (BBP): The algorithm selects a block randomly and
checks its OPBD in the different destinations. It perturbs the solution by modifying
periods and destinations of mining blocks. Moving the extraction period of a mining
block to a previous period will be referred to as pulling up the block, whereas moving
the block to a following period is referred to as pushing down the block. If the block
has a positive OPBD in the optimal destination, the algorithm iterates the candidate
period from a previous to a following period, favouring first the chance of pulling
up the block given the time value of money. In the case where a block has negative
OPBD in all destinations, the algorithm iterates from the following period to the
previous one, favouring first pushing down the block (Figure 4-4). Before accepting
any candidate period, the algorithm checks that slope constraints are respected.

For a block with positive OPBD in its optimal destination, the set of candidate
destinations are those with positive OPBD. The algorithm sorts candidate destina-
tions based on the OPBD and iterates from the most profitable destination to the
less profitable one (but still with positive OPBD). If the block has negative OPBD
in all destinations, the only candidate destination is its optimal destination (the one
with higher OPBD). This ensures that waste blocks are always sent to the waste
dump(s) as they are treated as destinations with null recoveries. There may be cases
where blocks have negative OPBD in all destinations but the optimal destination in
not a waste dump; that is, although processing that block in a particular processing
path generates a negative profit, the profit losses are less by processing the block
than by sending it to a waste dump. In these cases, optimal destinations are also

respected.
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Figure 4-4: Block based perturbations

Although, pulling up a positive block and pushing down a negative one improve

NPV expectations because of the time value of money, the objective value of the

new solution generated does not necessarily increase as there is a penalty term also

affecting the objective function. There may be cases where the NPV increases, but

the new solution deteriorates the objective value due to the penalized deviations. A

similar analysis can be made for the opposite case; a perturbation that decreases NPV

expectations does not necessarily deteriorate the current solution. The objective
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value can be seen then as a trade-off between improving the NPV and decreasing
deviation from operational targets.

Operating Alternative Based Perturbations (OBP): In the previous section, block
based perturbations were described; however, the operating alternatives implemented
at each destination are not simultaneously modified. The set of perturbations at
the OBP level refer to swapping operating alternatives at the different destinations
(processing paths); e.g., swapping from fine to coarse grinding in the mill in some
periods of the LOM. Modifying the operating alternative at a particular destination
in a given period may vary the objective value as: (i) Processing cost and recovery
may change, which may affect the expected NPV; (ii) Capacity and operational
metallurgical ranges may change, which affect the penalty term in the objective
function.

Given a particular period and destination, the algorithm selects randomly an
available operating alternative as the candidate alternative, and evaluates the ob-
jective value when swapping the operating alternative to the candidate one (Figure
4-5). The new solution is accepted or rejected based on the decision rule explained
previously.

Transportation system based perturbations (TBP): As previously explained, the
first level of perturbations modify period and destinations of mining blocks, whereas
the second level of perturbations modify operating alternatives at the different peri-
ods and destinations. The third level of perturbations is referred to as the transporta-
tion system based perturbations. For a given destination and period, the algorithm

attempts to perturb the proportion of output material transported using the available
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Figure 4-5: Operating alternative based perturbations

Yes

transportation systems; e.g., the mill-roaster processing path (destination) change its
transportation arrangement for the output material from [70% trucks / 30% pipe] to
[50% trucks / 50% pipe|. This set of perturbations seeks to minimize the transporta-
tion costs and penalized deviations in the objective function. The variations of the
proportions of transportation systems utilized are generated using random numbers
but ensuring that 100% of the output material from a given destination is trans-
ported using the feasible transportation systems (mass conservation). Perturbations
are accepted or rejected based on the decision rule described previously.

The heuristic approach: The different activities of a mining complex are strongly
interrelated. Any modification in a particular activity modifies the optimal operation

at the other activities of the mining complex; e.g., modifying the mining sequence
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affects the optimal operating parameters at a given destination and the transporta-
tion system implemented. The same occurs when modifying operating parameters
or transportation arrangements. Given the interrelation between the different activi-
ties, the algorithm integrates the multilevel perturbations in an iterative way (Figure

4-6).

INITIAL
SOLUTION > B8P
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Figure 4-6: The heuristic approach
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At any given temperature, a user-defined number of BBP is performed, when
it reaches this predefined number, the temperature in this level of perturbation is
lowered and the OBP starts. Similarly, when it reaches a user-defined number of
OBP, the temperature in this level of perturbation is lowered and the TBP starts.
When the three levels of perturbations are performed, the algorithm returns to the
first level (BBP). It continues until the total number of BBP is reached.

The heuristic approach can be implemented iteratively by controlling the number
of cycles. However, it must be important to establish a trade-off between the quality
of the solution and computational time, given that it increases linearly with the
number of cycles. Furthermore, there may be a number of cycles from where no
significant improvement in the objective value of the solution is obtained.

4.3 Implementation of the method: A multipit operation

The method is implemented in a mining complex that produces copper and
contains two different pits: Pit A and Pit B.

4.3.1 Overview of the operation

The material extracted from both pits has been classified in 5 different types
that originate different metal recoveries at the different destinations. 5 destinations
are available (Figure 4-7), including a waste dump.

Twenty orebody simulations of each deposit are used, which consider both un-
certainty in grades and material types. Three variables of interest are considered in
the orebody simulations: copper, which is the selling product of the mining complex;
and two metallurgical properties that control the operation in the small and the big

mill.
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Figure 4-7: Multipit operation

4.3.2 Base case

An initial solution for the multipit multiprocess problem is generated using
Whittle software. This initial solution contains the periods and destinations of min-
ing blocks for both pits, and is generated considering the estimated geological models
(E-types) of the two deposits; that is, the average grade of each block from the avail-
able simulations. This solution will be referred to as base case schedule and it is
generated using a conventional optimizer widely used in the mining industry.

The results obtained by implementing the base case schedule are depicted in
Figure 4-8. Large and impractical deviations in terms of capacities and blending
targets are presented when implementing the base schedule over the different sce-
narios. After the pre-stripping years, deviations in the small mill are 18% in average
and 22% in the big mill. Regarding the blending element 1 (BEL1) that controls

the operation of the small mill, the deviations in the first 7 years of operation are in
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average 7%, whereas the blending element 2 (BEL2), that controls the operation of

the big mill, deviates in average 1.8% in these periods.
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Figure 4-8: Base case schedule

Any conventional scheduler attempts to optimize the sequence of extraction of a
given deposit using a single input model. Interpolation methods generate averaged-
type models that smooth the grades and do not reproduce the spatial variability
of the data. Furthermore, any mining sequence that performs well using an E-type
model does not perform well in average with respect to a set of orebody simulations

given that the transfer function that relate grades and economic values of blocks is
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non-linear. These two factors explain the poor performance of deterministic methods
when performing risk analysis [32].
4.3.3 Optimization parameters

To implement the approach, optimization parameters such as initial tempera-
ture, reduction factors, penalties, cycles and number perturbation must be calibrated.
The penalties must account for the order of magnitude of the different targets in or-
der to balance the penalization in the objective function. Figure 4-9 displays the
evolution of the terms of the objective function with the number of perturbations for
5 different temperatures. An initial temperature of 0 means that only perturbations
that improve the objective value are accepted (pure iterative improvement) which
limits the ability of the methodology of escaping from local optimal solutions. A
very large initial temperature implies accepting both, favourable and unfavourable
perturbations with high probability, which may not improve the initial solution as

the solution will not necessarily converge to a final good solution.
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Figure 4-9: Objective function terms at different temperatures

116



The same analysis is performed to evaluate the number of cycles (Figure 4—
10). It can be observed that after two cycles, the improvement in expected NPV is
negligible, whereas no significant reduction in penalized deviations is attained after

one cycle.
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Figure 4-10: Objective function terms vs. number of cycles

4.3.4 Case 1: Multipit multiprocess

The proposed approach is implemented considering the economic and technical
parameters used in the base case. The results obtained are displayed in Figure 4-11.

Low deviations from capacities and blending targets are expected. After the
pre-stripping years, deviations from the capacity of both the small and big mills
are 1% on average. The probability of deviating from the operational ranges of
BEL1 are largely reduced, obtaining an average expected deviation of 0.4%. Larger
probabilities of deviating are presented at the end, originated from the geological
risk discounting applied to the penalties that allow deferring risk to later periods
when more information becomes available. For BEL2, there are expected deviations

of 1.3%. The expected NPV is 3% higher when compared to the base case; however,
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Figure 4-11: Case 1: Multipit multiprocess

given the large and impractical deviation from targets in the base case, its NPV

forecast is not reliable.

4.3.5 Case 2: Multipit multiprocess with operating alternatives at the
mills

The method is implemented considering the case where multiple operating al-
ternatives are available in both mills. In case 1, fine grinding option is selected by
default. The method is now able to choose which option to implement at each mill
along the different periods. For both mills, when operating using a coarse grinding

option, the capacities increase by 11.6% and the metallurgical recoveries decrease by
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2%. The operational ranges for BEL1 and BEL2 also change with the two different
operating alternatives. Given the flexibility in the operation of the mills, the method
is able to perform second level perturbations (OAP). Figure 4-12 display the results

obtained when implementing the method.
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Figure 4-12: Case 1: Multipit multiprocess with operating alternatives at the mills

The coarse grinding option is selected in years 5-8, 10, 12, 13, 16, 18, 21 and
22 in the small mill, and in years 16, 19 in the big mill. Although capacities of the
mill change when swapping from one alternative to another, the algorithm pushes
material in a way that deviation from capacities of both mills are well controlled (in
average 1% in small mill and 3% in the big mill). The same behaviour is observed
with respect to the blend element targets; BEL1 jumps in periods when the small mill
operates at coarse grinding to meet the new blending requirements, whereas BEL2
jumps in periods when the big mill swaps to coarse grinding. In average, BEL1 and

BEL2 deviate 0.7 and 1.2% respectively.
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The risk analysis of the NPV expected by implementing the solution generated
in the case 2 is displayed in Figure 4-13. This solution generates an expected NPV
5% higher than the base case. As was previously mentioned, the NPV forecasts of
the base case solution are not reliable given the large deviations from capacities and
blending targets. The base case solution is improved by means of the two levels of

perturbation implemented (BBP and OBP).
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Figure 4-13: NPV of the case 2 solution

4.4 Conclusions

This paper proposes a method to generate solutions that outperform solutions
obtained using conventional deterministic approaches in mining complexes with mul-
tiple pits, blending requirements, processing paths, operating alternatives and trans-
portation systems. The solutions generated define the sequence of extraction of the
mining blocks in the different pits, the operating alternative implemented at each
processing path, and the transportation systems used to carry the processed material

to the final stocks.
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The implementation of the method in a multipit copper operation allows reduc-
ing the average deviations from capacities and blending targets considering an initial
solution generated using a conventional optimizer over a single estimated model:
from 18 to 1% regarding small mill capacities, from 22 to 3% regarding big mill ca-
pacities, from 7 to 0.3% regarding BELI1 in the first 7 periods, and from 1.8 to 0.6%
regarding BEL2 in the first 7 periods.

Although NPV forecasts for the base case are not reliable given its large devia-
tions from capacities and blending targets, the solution generated by implementing
the proposed method generates an expected NPV 5% higher than the base case,

which highlights the ability of the method to generate a higher NPV with less risk.
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CHAPTER 5
Globally optimizing open-pit and underground mining operations under
geological uncertainty, Twin Creeks Mining Complex, Nevada, USA

5.1 Introduction

A mining complex is a value chain with multiple components: deposits, stock-
piles, processing destinations and transportation systems. Optimizing a mining com-
plex demands the simultaneous optimization of all its components, a problem known
in the mining literature as global optimization of mining [110, 113]. Several methods
have been developed to incorporate multiple components of the value chain during
the optimization. Hoerger et al.[50] formulate the problem of optimizing the simul-
taneous mining of multiple pits and the delivery of ore to multiple plants as a mixed
integer program. The model groups blocks into increments and accounts for multi-
ple stockpiles. The authors implement the model at Newmonts Nevada operations
where 50 sources, 60 destinations and 8 stockpiles are present, and leads to an in-
crease of profitability by taking advantage of the synergies. Stone et al. [96] present
the Blasor optimization tool developed by the mine planning optimization group
within BHP Billiton technology. Blasor formulates the problem of determining the
optimal extraction sequence of multiple pits as a mixed integer linear program and
solves it using ILOG CPLEX [53]. Blasor aggregates blocks spatially connected that
have similar properties and generates nearly-optimal solutions in practical times in

large-scale operations: Yandi (1000 aggregates, 11 pits, 20 periods) and Illawarra
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Coal mine (8 domains) [91]. Zuckerberg et Al. [119] present Blasor-InPitDumping
(Blasor IPD) that is an extension of Blasor that accounts for waste handling; that is,
it incorporates refilling mined-out areas with waste. Zuckerberg et Al. [120] intro-
duce Bodor to optimize the sequence of extraction of bauxite “pods” at Boddington
bauxite mine, south-western Australia. Pods are distinct bodies of modest-sized ore
that are lying close to the surface. Chanda [16] formulates the delivery of material
from different deposits to a metallurgical complex as a network linear programming
optimization problem. The model attempts to minimize the costs through the net-
work that encompasses mines, concentrators, smelters, refineries and market regions.
Wooller [114] describes COMET, software used to optimize mill throughput /recovery
and cut-off grade. COMET uses an iterative algorithm to define operating policies
and process routes; e.g., heap leach versus concentration. Whittle [110] introduces
the global asset optimization tool incorporated in Whittle software. The tool is de-
signed to optimize the sequence of extraction of multiple deposits considering com-
plex processing and blending operations.

Although efficient and able to incorporate several components of the value chain,
the methods previously described have at least one of the following limitations when
globally optimizing mining complexes: some decisions are fixed when they should be
dynamic (operating modes, destinations of mining blocks, etc.); component-based
objectives are imposed, which may not coincide with global objectives; many param-
eters are assumed to be known when they are uncertain [110].

All the methods previously described ignore the uncertainty associated with dif-

ferent parameters. Groeneveld et al. [46] incorporate uncertainty in market price,
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costs, utilization of equipment, plant recovery and time for building options (infras-
tructure) while simultaneously optimizing mining, stockpiling, processing and port
policies. Bodon [12] models the problem of supplying exports in a coal chain as a
discrete event simulation model (DES). The model is able to asses various operat-
ing practices, including maintenance options and capital expenditure to determine
the best infrastructure for a given system. In both methods, geological uncertainty
is discarded, which is the major contributor of not meeting production targets and
NPV forecasts.

Several methods have been used to incorporate geological uncertainty for the
open pit production scheduling problem [26, 37, 65, 66]; however, few work has been
done regarding the production scheduling of underground mines. Grieco and Dimi-
trakopoulos [45] implement probabilistic programming in stope design optimization.
The authors evaluate the probabilities of the different rings of being above specified
cut-offs. However, the probabilistic programming formulation discards the compound
relationship between rings as opposite of stochastic formulation that make full use
of joint local uncertainty.

This paper describes a method for simultaneously optimizing different com-
ponents of mining complexes comprised of open pits and underground operations
under geological uncertainty. The method is described in the next section, later its
implementation at Twin Creeks gold complex is displayed and finally conclusions are

presented.
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5.2 Optimizing the components of the value chain
5.2.1 Generalities

The components of a mining complex are strongly interrelated (Figure 5-1).
Any decision taken in a particular component affects the decisions taken at the

others. To optimize a mining complex the different components must be optimized

/\

Transportation Geological
systems uncertainty

simultaneously.

Processing
destinations

Figure 5-1: Components of a mining complex

Mineral deposits are the sources of material. The different ore types are ex-
tracted via open pits or underground mining methods. Open pits are discretized into
mining blocks whereas underground mines are comprised of development, prepara-
tion and production activities. Different underground mining methods have different
activities; however, regardless of the mining method, the mine design can be dis-
cretized in activities and dependencies; that is, each activity has its set of successor

and predecessor activities, similar to slope constraints in an open pit.
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Mining blocks in open pits and activities in an underground mine are named
units in this paper. Each unit can be sent to a particular processing destination or to
stockpiles. There may be as many stockpiles as metallurgical ore types available from
the deposits. Stockpiles contain potential ore, contribute to the blending operation
and serve as a backup supply of material.

Each processing destination may have operating modes that determine the oper-
ating costs, metallurgical recoveries, operational blending limits for the metallurgical
properties and throughputs. For example, the capacity, operating cost and recovery
of a milling plant change if it operates to generate fine material (80um) or coarse
material (120um). The decision of which operating mode to select at a given pro-
cessing destination must be taken by accounting for the decisions taken at the other
components of the value chain. In some cases, the quality of the material extracted
from the different deposits does not meet the specific blending requirements at a
given processing destinations. To meet the quality targets, external blending ma-
terials are added to specific destinations (Figure 5-2). These materials come from
external sources and have very specific quality. For example, in an autoclave, exter-
nal material with high sulfide and low carbonate may be added if the ore extracted
from the deposits have low sulfide, in order to meet the SS/CO? ratio.

The output material from the different processing destinations is transported
to final stocks or ports using available transportation systems (Figure 5-3). It is
important to account for transportation systems when optimizing a mining complex
given that they can limit the overall throughput of the system (bottleneck). Each

transportation system has its associated cost and capacity.
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Figure 5-2: Processing destination

5.2.2 Mathematical model

The goal is to maximize expected NPV while minimizing deviations from targets
associated with the different components of the value chain. The objective function
(Eq. 5.1) has two terms: discprofit(s,t) is the discount profit in period ¢ under
scenario s; penalty(s,t) is a term that accounts for the penalized deviations from the
targets at the different components of the value chain in period ¢ under scenario s.

Each scenario is a combination of orebody simulations of the different deposits.

T S
mazximizeO = Z Z(discpmfz’t(s, t) — penalty(s,t)) (5.1)

t=1 s=1

The discounted profits at each period and scenario are calculated by accounting
for the revenue obtained by selling the different products, the cost of mining the
material at the different deposits, the cost of processing the material at the different
destinations, the cost of stockpiling the material, the cost of sending material from

the stockpiles to the available processing destinations and the transportation costs.
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revenue(s,t) — minecost(s,t) — procost(s,t)
—stockcost(s,t) — rehandlecost(s,t) — transcost(s,t)

discprofit(s,t) = (1 + drate)?

(5.2)
The second term of the objective function that accounts for the penalized devi-

ations is evaluated using Eq. 5.3.

penalmine(s,t) + penaltrans(s,t

penalty(s,t) = (5.1) (5.3)
+ penalpro(s,t) + penalmetal(s,t)

where penalmine(s,t) are the penalized deviations from the capacities of the differ-

ent mines, penaltrans(s,t) are the penalized deviations from the capacities of the

different transportation systems, penalpro(s,t) are the penalized deviations from
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the capacities at the different processing destinations and penalmetal(s,t) are the
penalized deviations from the operational ranges of the metallurgical properties.

Three main decision variables are used to evaluate revenues, costs, production
and deviations at the different components of the value chain. X,;;, is a binary
variable that represent whether or not a particular unit ¢ is mined in period ¢ and
sent to processing destination d. Y; 4, is a binary variable that represent whether or
not an operating mode o is used in destination d during period t. Z; 4, represents the
proportion of output material from destination d transported using transportation
system r during period t.

For example, the amount of material extracted from the different deposits can
be evaluated using Eq. 5.4, the output material from a given destination can be
evaluated using Eq. 5.5 and the amount of material transported using a particular

transportation system using Eq. 5.6.

I D
mineproduction(s,t) = Z Z Xitd - Mis (5.4)
i=1 d=0
O(d)
tonneoutprocess(s,t,d) = Z (tonneprocess(s,t,d) - Yigo - Pao) (5.5)
o=1

NE

tonnetransport(s,t,r) = (tonneoutprocess(s,t,d) - Zia) (5.6)

)
Il
—

where [ is the set of all units from the deposits, D is the set of processing destinations,
m;s is the tonnage of unit ¢ under scenario s, O(d) is the set of operating modes

available at destination d, tonneprocess(s,t,d) is the tonnage sent to destination
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d from the deposits and the stockpiles in period ¢ under scenario s and P, is the
proportion output/input tonnage in destination d using operating mode o.

A mining complex may contain millions or hundreds of thousands of units which
implies a large number of integer variables in the optimization model. Because of
this, finding an optimal solution using a standard optimizer is impractical.

5.2.3 Solution

Any solution of the optimization model must answer the questions associated
with the three main decision variables: (i) Which units are going to be extracted
in each period and where are they going to be sent? (X4 variables); (ii) Which
operating modes are going to be used at the different processing destinations? (Y4,
variables); (7ii) Which transportation systems are going to be used? (Zq4, variables).

Given a particular solution, it is possible to modify the objective value by gener-
ating perturbations at the three different decision levels. These perturbations should
be done towards improvements in the objective value. Given the time value of money,
profitable units should be pushed to be extracted in early periods and non-profitable
ones should be pushed to later periods. Operating and transportation decisions
should minimize processing and transportation costs and deviations.

The perturbation mechanism

For each unit u, it is possible to calculate the cumulative profit of u in every
destination by accumulating the economic value in each scenario (Figure 5-4). The
cumulative profit provides a guidance of the most profitable destinations for a partic-
ular unit and controls the iterating process when swapping periods and destinations

of a mining unit (Figure 5-5). If the greatest cumulative profit of a unit is positive,
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the iterating process for the candidate periods of extraction of the mining unit will
favor extracting that unit in an earlier period; otherwise, the iterating process will
favor extracting the unit in a later period. The set of candidate destinations is given
by the destinations with positive cumulative profit if the unit is profitable, or the

less unprofitable destination in the opposite case.

Economic value in scenario 1

+ Economic value in scenario 2

Processing
destination A

+ Economic value in scenario S

| ‘cumulative profit’ of u in destination A

Unitu |3

Economic value in scenario 1

+ Economic value in scenario 2

Processing
destination B

+ Economic value in scenario §

| ‘cumulative profit’ of u in destination B

Figure 5—4: Cumulative profit of a unit

The iteration process over the candidate periods and destinations of a mining
unit is designed to increase the expected NPV given the time value of money. How-
ever, the objective value of the perturbed solution is also affected by the penalized
deviations, therefore, there might be cases when pushing a profitable unit to a later
period or an unprofitable one to an early period increases the objective value given

the lower deviations in the new solution. In these cases, the objective function can
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Figure 5-5: Perturbation of units

be seen as trade-off between maximizing the expected NPV and minimizing the
penalized deviations.

The perturbations at an operating decision level consist in swapping operating
modes at different processing destinations towards improvements in the objective
value. The perturbations at the transportation decision level consist in modifying
the transportation proportions of the output material from the different processing

destinations; for example, changing the transportation of the output material from
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a mill from 50% trucks / 50% pipeline to 70% trucks / 30% pipeline. The trans-
portation perturbation mechanism seeks for minimizing transportation costs and
deviations.

At any level, perturbations are accepted or rejected using the Eq. 5.7 from

Metropolis algorithm [64, 76].

1 if(AO > 0)

—(A0)

e~7  if(AO <0)

P<AO) = P(Onew - Ocurrent) = (57)

where T is the annealing temperature. The probability of accepting an unfavourable
perturbation is greater at higher temperatures. As the optimization proceeds, the
temperature is gradually lowered by a reduction factor. When the temperature
approaches zero, the probability of accepting an unfavourable swap tends to zero.
This allows the algorithm to converge to a final solution.

The method

The method proposed to optimize a mining complex has three stages (Figure 5—
6). The first stage consists in assigning periods and destinations to the mining units
from an initial solution. In the second stage the method evaluates the profits, pro-
ductions and deviations at the different scenarios. It also evaluates the cumulative
profit of the mining units at the different destinations. The last stage is the pertur-
bation mechanism at the three different decision levels. The algorithm stops when
it reaches a user-specified number of iterations or poor improvement is presented in

the objective value after a certain number of perturbations.
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Figure 5-6: Method

5.3 Case study: Twin Creeks mining complex, Nevada

Twin Creeks is a gold mining complex located in northern Nevada, USA. Twin
Creeks is one of the major ore producers in Newmont Nevada’s operations [61]. The
complex has two open pits named Mega Pit and Vista Pit and one underground mine
named Turquoise Ridge that is a joint venture between Newmont Mining Corporation
and Barrick Gold Corporation. Higher-grade oxide ore is processed at Juniper mill,
lower-grade is treated on heap leach pads. Refractory ore is processed at the Sage
autoclave. In this particular study, the focus is the interaction between the ore
extracted from Mega pit and Turquoise Ridge (Figure 5-7).

The Mega pit provides oxide and refractory ore. Twenty orebody simulations for
gold, sulfide sulfur, CO3 and organic carbon are provided. The higher concentrations
of gold are located in the north-east part of the deposit where the current mining
phases are located (Figure 5-8). The gold and sulfide sulfur grades are controlled by
the mineralized domains whereas the carbonate and organic carbon are spread in all

the area of the deposit.
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Figure 5-7: Twin Creeks gold complex

The Turquoise Ridge mine uses underhand-cut-and-fill due to the relatively low
rock quality in the ore zones [54]. Intensity of gold mineralization is related to struc-
tural complexity and the location of rocks chemically receptive to mineralization.
The production zones are located in the high grade areas (Figure 5-9).

Twenty orebody simulations are generated with direct block simulation using
the drillhole data within the mineralized domain [37]. The Figure 5-10 shows the
validation of the orebody simulations generated. It can be observed that the simu-
lations respect the statistics of the drillhole data as they reproduce its histograms
and variograms at the main directions of anisotropy. The simulated values at each
unit are calculated by averaging the simulated points that fall inside; that is, given
the different shapes and sizes of the underground mining units, there is no a single
support size as in the open pits where the mining blocks have the same size. The
Figure 5-11 shows three different orebody simulations and the production zones of

the mine.
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Figure 5-8: Three orebody simulations of Mega pit

(b)

Figure 5-9: Gold grades (left) and production zones(right) in Turquoise Ridge: (a)
Plan view; (b) Cross section
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Figure 5-11: Orebody simulations and production zones of Turquoise Ridge
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The Sage autoclave has tight operating ranges for SS/COs, SS, CO3 and organic
carbon [61]. To help metallurgical blending, concentrates from other plants are added

to the process (Figure 5-12).

*Blend limits
- 0.7<S8S/CO3 <11
Mega Pit 41< SS <46
39< CO3 <58
OC<0.72
Sage Autoclave
Turquoise Mill 5 Conc. | | Mag Conc.
Ridge

Blending material

* Values scaled for confidentiality

Figure 5-12: Sage autoclave

In the three processing destinations the metallurgical recovery of gold follows
non-linear curves. In the sage autoclave the recovery curve is a function of the gold
grades and the organic carbon whereas in the juniper mill and the heap leaching
plant the recovery is a function of gold grades only.

5.3.1 Initial solution

An initial solution for the optimization of Twin Creeks gold complex was gen-
erated by: (i) Considering the current mining plan in Turquoise Ridge that was
developed by the mine planners using Enhanced Production Scheduler (EPS) soft-

ware; (i7) using Milawa scheduler in Whittle software for the Mega pit using the
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e-type of the orebody simulations; that is, the average grades of the mining blocks
at the different realizations.

The amount of external blending material used in the Sage autoclave is consid-
ered when evaluating the results of the implementation of the initial solution over the
different scenarios (combinations of orebody simulations of Mega pit and Turquoise
Ridge). The productions of the two mines, the Sage autoclave and the Juniper mill
are shown in Figure 5-13. It can be observed that the Turquoise Ridge mine oper-
ates below the target whereas Mega pit operates very close to its capacity until the
depletion of the reserves. Although external blending material is added to the Sage
autoclave, given the tight blending constraints imposed to this processing destina-
tion, the conventional scheduler only can find blended material to fill the capacity
in three periods of the life of the mine (LOM). There is a big shortfall in production
in the Sage autoclave in year 4, and after year 9 the tonnage sent to this processing
destination is very marginal. Regarding the Juniper mill that processes oxide ore,
the production is going to be close to the capacity in years 2-4 but deficient produc-
tion is observed in the rest of the periods of the LOM. However, most of the oxide
ore filled to this processing destination comes from Vista pit that is not considered
in this study.

The low sulfide sulfur presented in the simulations generates that the initial
solution is below the operational ranges for SS in most of the years and for SS/CO3
in the last years (Figure 5-14). The COj; increases with time and fall inside the
operational ranges in most of the years. The organic carbon is well controlled in all

the different scenarios.
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Figure 5-14: Metallurgical properties with the initial solution




The risk profile of the NPV is displayed in Figure 5-15. It is observed that after
year 9 the cumulative NPV starts to decrease given the marginal tonnage sent to
the Sage autoclave. It will be more profitable to stop the operation after year 9. For

confidentiality, the values of the NPV are presented in percentages.
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Figure 5-15: NPV with the initial solution

5.3.2 Optimization parameters

Different tests are performed to define the optimization parameters that lead
to the largest improvement of the objective value. Different initial temperatures,
reducing factors and number of perturbations were tested. The figure 5-16 shows
the evolution of the objective value with the number of perturbations for six different
initial temperatures. The largest improvement in the objective value is obtained
when the initial temperature of the order of 1 million.

Other important parameters to define are the per-unit penalty values associated
with the targets at the different components and the geological risk discounting.

The magnitude of the penalties must be defined so as to balance the two terms of
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Figure 5-16: Evolution of objective value with different initial temperatures

the objective function. Too high penalty values will improve the reproduction of the
targets ignoring the first term of the objective function generating poor improvement
of expected NPV. Conversely, too small penalty values will generate impractical
solutions with large and non-realistic NPV forecasts given the large violations of the
targets.
5.3.3 Stochastic solution

The method is implemented after setting up the optimization parameters. It
is possible to observe from Figure 5-17 that the solution operates the underground
mine very close to its capacity except in year 12 where there is a big shortfall.
However, the productions at the Sage autoclave and the Juniper mill are below their
capacities in all the periods of the LOM. Regarding the blending properties, it is

observed a similar behaviour when compared with the deterministic initial solution
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5-18. Given the low sulfide sulfur presented in the simulations, the method is not
able to accommodate the sulfide sulfur inside the operational ranges. The expected
NPV is 14% greater than the one obtained with the deterministic initial solution
5-19.
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Figure 5-17: Productions with the stochastic solution

The method is implemented considering different amount of external blending
material input to the Sage autoclave. In particular, the amount of Mill 5 concentrate
fed to the Sage autoclave is increased five times given its high sulfide sulfur. The
productions at the Turquoise Ridge mine and the Sage autoclave and the sulfide sulfur
with the new stochastic solutions are displayed in Figure 5-20. It can be observed
that by increasing the concentrate from mill 5 the method is able to find more
material to blend to increase the production in the Sage autoclave. Furthermore, the

sulfide sulfur approaches the operational ranges by increasing the external blending
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Figure 5-18: Metallurgical properties with the stochastic solution

material given its large sulfide sulfur content compared to the material extracted
from Mega Pit and Turquoise Ridge. However, the content of sulfide sulfur is still
below the operational ranges given the grade in the orebody simulations.

The expected NPVs of both stochastic solutions are very similar (Figure 5-21).
However, the availability of mill 5 concentrate is a strong assumption. In the actual
operation, the planning and production departments mitigate the negative effects
of contaminants in the Sage autoclave by using acid. This is not considered in this
case study. The shortfall in production in the Sage autoclave in the year 4 in both
stochastic solutions suggests that the method got trapped in a local optima. To
overcome this situation, a diversification strategy in the perturbations at the unit

decision level is desired.
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Figure 5-19: NPV with the stochastic solution
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Figure 5-20: Productions with the new stochastic solution: (a) Mill 5 concentrate;
(b) Mill 5 concentrate x 5
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Figure 5-21: Expected NPVs of stochastic solutions

5.4 Conclusions

This paper presents a method to simultaneously optimize different components
of mining complexes comprised of open pits and underground operations. The
method is easily adapted to different underground mining methods.

At the different processing destinations, the method accounts for operating
modes and external sources of material used for blending purposes. The implemen-
tation of the method at Twin Creeks shows substantial improvement in expected
NPV (14% when compared with a deterministic initial solution); however, given the
low sulfide sulfur in the orebody simulations, the stochastic solution is not able to
meet the tight operational ranges for sulfide sulfur.

The perturbations at operating and transportation decision levels act as a diver-

sification strategy for the unit-based perturbations. However, as in the case study no
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operating modes and transportation systems are considered, a stand-alone diversifi-
cation strategy for the unit-based perturbations must be included to explore better
the solution domain.

Future extensions of the method may consider geotechnical and environmental
aspects of the underground activities and the optimal consumption rate of external

blending material.
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CHAPTER 6
General conclusions

Optimizing a mining complex demands the simultaneous optimization of all its
components. This is a complex problem given the flexibility associated with the
decisions taken at the different components of the value chain and the uncertainty
associated with different parameters. Geological uncertainty is seen as the major
contributor of not meeting project expectations in mining. Optimizing a mining
complex while accounting for geological uncertainty is a large optimization problem
given the amount of integer variables associated with the discretization of the mineral
deposits.

This thesis presented several formulations for simulataneously optimizing dif-
ferent components of the value chain. To solve these large optimization problems,
efficient algorithms are developed and implemented. These algorithms outperform
conventional deterministic methods in generating higher expected NPV while mini-
mizing deviations from the targets associated with the different components of the
mining complex. This is originated from the fact that stochastic optimizers not only
prioritize the mining of blocks with high economic values but also with high probabil-
ities of being profitable, which lead to higher chances of meeting production targets
and higher NPV; that is, lower risk and higher reward.

A multistage method that uses simulated annealing was presented in Chapter

2. The method shows its ability to minimize deviations from targets at different
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processing destinations. It also improves the expected NPV by swapping periods
of mining blocks to most probable periods based on pre-optimized input mining
sequences. The expected deviations of the stochastic solution are shown to be less
than 5% for mill and waste targets, whereas a conventional solution generates average
expected deviations of 20 and 12% from mill and waste targets respectively. It
was observed that 15 orebody simulations were sufficient to generate a robust LOM
production schedule. This is originated from the fact that mine planning works at a
block scale thus it is affected by the support effect.

In Chapter 3 a heuristic approach that account for operating alternatives at
the different processing destinations was presented. The method makes use of the
structure of the problem and the time value of money by pushing profitable blocks
to early periods and non-profitable blocks to later ones. The iteration process of
the method controls the respect of the targets and the imposition of the discounted
profits in the objective function leads to better improvements in expected NPV.
The implementation of the method in a copper deposit reduces the deviations from
capacity of processing destination 1 from 9 to 0.2% and increases the expected NPV
by 30% regarding an initial solution generated with a conventional method.

A method that uses simulated annealing at different decision levels is described
in Chapter 4. The method account for mining, blending, processing and trans-
portation decision variables that incorporate multiple pits, material types, processing
destinations, operating alternatives and transportation systems. Given the strong
relationship between the different activities associated with the mining complex, the

method performs perturbation at different decision levels in an iterative way. This
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heuristic implementation of simulated annealing allows exploring the solution do-
main; that is, the set of possible mining, blending, processing and transportation
plans. The implementation of the method in a multipit copper operation allows
controlling the deviations from capacities of the mills and the targets of the blend-
ing elements while increasing the expected NPV. The extension of the method to
mining complexes comprised of open pits and underground operations is presented
in Chapter 5. The method is able to incorporate underground activities while re-
specting their dependencies. The implementation at Twin Creeks mining complex,
Nevada, USA shows its ability to increase the expected NPV while generating little
improvement in meeting metallurgical blending targets. A diversification strategy
in the unit-based perturbation mechanism must lead to larger improvements of the
objective value.

Given the previous successful implementations of simulated annealing in stochas-
tic LOM production scheduling, this metaheuristic was chosen to optimize the value
chain. However, other metaheuristics must be tested seeking for a better exploration
of the solution domain and a better integration with the nature of the problem. In
particular, local search techniques with diversification strategies appear as a promis-
ing avenue of research.

Further improvements also include the incorporation of other sources of uncer-
tainty (market, environmental, etc.), investment options at the different components,
and operational constraints such as equipment mobility, drilling and blasting alter-

natives and location of infrastructure. Furthermore, the integration of underground
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operations can be extended to account for different mining methods, development

activities and geotechnical constraints.
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