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ABSTRACT , \ 

In nonparamecrie testing based on ranks, the occ~ (Jf' 
-"~~ 

ties ia a fairly common phenomenoh. Many methoda have been suggeated 

for asaigning ranks to tied observations in such problems. In this 
\ 

thes!s we review 4nd diseuss these methods wit~ regards to their rela-

tive meTits under different situations. The reeent extention of the 

asymptotic theory of rank statistics from continuous to di.con~nuous 

distributions has made it possible to calculate the Asymptotic Relative 

Efficiency (ARE) of different methods of handling ties. A comparison, .. 
based on ARE, among the three main methods of handling ties, namely, the. 

average scores, midranks and rand~mlzed ranks methods, has been fiscussed • 
.., 
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CHAPTER i 

, INTRODUCTION 

1 Most nonparametric test procedures baBed on ranks i assume the 

con~inuity of under1ying distributions.- In the case when data consist 

of'independent observations, this assumption makes the (theoretical) 
!' 

considerations of ties unnecessary, sinee then no tie can occur with 

positive probabi1ity. In practice however, ties dd occur even when the 

underlying distributions may be assumed continuous. This happens due to 
/ 

(. 

various reasons, such as rounding off errors, limited refinement of mea-
• 

suring instruments etc.. In the discontinuous case however, ties cannot 

be ignored even in theoretical considerations. Since the occurence of 

ties is fairly common in MOst practical data, it shou1d be of considera-

• 
ble interest to statisticians using nonparametric methods to study the 

operating eharacteristics of various methods of dealing with tied obser-

vations. 

Vi 

In ·the present study we diseuss this problem when the set of 

observations are mutua11y lhdependent and the underlying distributions are 

either eontinuous or diseontinuous, (ineluding discrete). AB early as in 

1945 this prob1em was reeognized to be of practiea1 importance and methods 

of treating tied observations in two·sample test were proposed by Wi1coxon 

(1945). Kendall (1970) and Krushkal and Wallis (1952) have a1so dea1t 

this problem in their respective tests. Putter (1955) considers the case 

of purely discrete observations and examines the merits and demerits of 
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randbmiaed vs. non-randbmiaed methods of treating ties. A study by Pratt 

(1959) gives intuitive arguments to show that the procedure suggested by 

Wi1coxon dea1ing wi~h zeros 

comings. Pratt suggested a 

in Wi\cOxon signed rank test has many short 

new me~od which ranks zero a1so and then 
'J 

dropping their ranks, whereas zeros are total1y ignored in the procedure 

proposed by Wi1coxon. (See Conover (1973b) for a detai1ed comparison of 

these two methods.) After Putter's study many papers dea1ing with nonpar-

ametric tests and their efficiencies in the discrete case have appeared 

in 1iterature. Chanda (1963) obtains the efficiencies of Wi1coxon two 

samp1e test under diff@rent discrete distributions. Among others, BÜh1er 

(1967), Klotz (1966), Krauth (1971), Taylor (1964) and Verli~kovâ (1972) 

shou1d be mentioned. Conover (1973a) discusses the tests of randomness 

and symmetry under genera1 case (with no continuity assumption). 

. ln Chapter 2 we give an account of different methods of hand-

1ing ties and demonstrate these by means of an exarnple. Sorne major non-

parame tric tests in forms appropriate for continuous distributions are 

a190 described in this chapter. As pointed out earlier, ties in this 

situation do not present any prob1ern and may be treated by any of the 

three rnethods described in Section 2.2. In Sections 2.3, 2.4 and 2.5, we 

discuss the common rank tests for randomness,symmetry and independence 

respective1y. Section 2.6 dea1s with one and two way 1ayouts Analysts of 

Variance rank tests and a1so a new c1ass of conditiona1 tests for two way 

1ayout Analysis of Variance prob1em as proposed-by Hodges and Lehmann 

(1962) and discUBsed at 1ength in Mehra and Sarangi (1967), Mehra (1968) 

and Sen (1968). 



3. 

Section 3.1 of Chapter 3 includes a treatment of,ties in 

general for various tests discussed in Chapter 2. The corlditional means 

and variances given a vector of ties, have been given in th:f.s sec'tion for .. 

large sample approximations. In Section 3.2. 3.3 and 3.,4, respectively, 

the Wilcoxon two sample test, the sign teSt and the Wilcoxon one sample 

signed runk test are discussed in detail, in case the ties are present in 

the data. A review of the'Olitejture dealing with c01lDDon one 

sample tests is also given in;ihese sections. 

and two 

Chapter 4 deals vi th the asymptotic effic1encies of the tests 

discussed earlier both with and without the assumption of continuity of 

the distribution function. ln Section 4.1 we introduce the, concept of 

asymptotic efficiency. Section 4.2 gives the asymptotic distributions of 

the linear' rank statistics under different null hypothese.s and Lin dUfer­
'\, 

ent cases arising from different methods of handling ties. In Section 

4.3 the asymptotic distribution of linear rank statistics under contig-

UOus alternatives l'lre given. ln Sectio'n 4.4 expression for asymptotic 

efficiencies under appropria te conditions are derived. In this section 

we also show that Putter's (1955) result is a special case of a result 
, 

due to Conover (1~73a). In Section 4.5 we show with the help of two exam-

pIes that in testing for symmetry using rank tests, the two methods o'f 

handling ties at zero, desc~ed~ater, are superior ~han each other in 

different situations. 

Finally, Chapter 5 gives sorne general remarks and conclusipns 

whiG" should be of practlcal value for users of nonparametric methods • 

.... ' 
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ŒAPTER 2 

TIES IN CONTlNUOUS CASE 

th1s chapter we 1ntroduce some major nonparametr1c (rank) 
-# 

tests and describe for these tests various methods of handling ties pro-

posed and discussed in the literature. 

2.1 NOTATION AND PRELIMINARIES. 
\ 

Let xCi) denote the ith smallest co~rdinaté in n-tuple 

so that x 
(1) 

and 
(n) 

x denote the minimum and maxJ-
/ \ 

mum of n-coordinates respectively. the vector t of ... 
n observations, the statistic xCi) is called the ith order atatistic 

• • 
18 the vector of order stat1atic8. 

No se that with proba~ility one no two co-ordinate8 in X 

coi~,cide ; case, for example, when X1 'X2""'Xn are inde­

common continuous distributfon function 

F(x) • P (X 2. x) 'Iben 

(2.1.1) 

is called rank ~f Xi 

(2.1.2) - , 
, ,'--.-/ .... 

" 'l 

Ri(X) • , ~'8 < X 
- i 

Clearly, 

• (R ) 
X • X i 

i 

, -" 

4 

J 
( 

", . 
• 

, . 

, 

) 

.0 

." 
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Thé statistic R· (Rl,R2, ••• ,R~)- denotes the vector of ranks. 

The rank tests url~er consideration can be divided in four major 
.. 

groups. 

Group 1. Teste of Randomness 

Group Z. Tests of SytllDetry 
0 

Group 3. Tests of Independence 
t,. 

AnR1YSis Group 4. of Variance Tests. 
Il 

Let 

n 
(Z.lo3) S .. l Ci a(Ri) ,J 

1-1 

where a(o) is a funct{on on {l,Z, ••• ,n} and Ci dre t~e so called 

regression constants. We shall denote for a(i) , i • 1,Z, ••• ,n ; 

a 's are called rank scores: S is called linear rank statistic. For 
i 

different score functions a(o) " and pppropriate constants Ci' the 

stat1stic (2.1.3) covers most of the test statistics under the above four 

groups. 

./ 
2.2 RANKING OF TIES. 

Although the probabl1lty of a tie i8 zero whèn observations are 

independent and have a continuous distributi6n function, ties do occur in 

practice as stated ear1ier. 
f 

The probabi1ity distribution of S , defined 
-.-J 

by (2.1.3) and the properties of tests based on S , however, remain .... 
unchanged when any of the methods described below Is used ta as.ign ranks 
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. 
to tied~servationa. Following are the three most.commonly used methQds 
~ 

of ranking tied observations. 

Let 

(a) 1 Ra~domization method 

.(à) Averaged 8co~e method 

(c) Midrank method. 

(2.2.1) (1) 
x -" 

l , 

" 

.. 

, 
.:. _ x(n) 

where 

\. 

g 
11 .t2, ••• ,1g ~aré the sizes of ties and l t - n 

j-l· j 

(a) RANDOMlZATION MEmOD. 

ln the rJndomi.ed rank procedure, we assign r",ka to tied obser­

vations on the basis of ,some random experiment in which-e~ch permutation 

of ti'ed observations bas same probability of occurence. "Th'is random . . 
~ 

experiment is int~oduced on1y to Seal with tied obàervations and it is in 

, no way re1ated to the basic experiment. The outcome of this experiment 

on the ot~er hand: does affect the final decision. 

(b) AVERAGED SCORE METHOD. 
. , 

For a gtven vector of sizes of ties (to be ca11e~ vector of 

introduce averaged scores 

, 

• 1 
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, \, 

(2.2.2) 

if- -Tl + ... + T~l-......( i ~ 'tl =_ ... + _T~. 

. , 

Then (2 .... 3) i8 modi f ied as tJ ..,,--

\ . n 

S - l Ci a(~,T) 
i-l 

(2.2.3) 

, , 

(c) MIDRANK (AVERAGE RANK) METHOD. 

We assign the~idrank for aIl the observations tied. For 
. 

example, if . ... 

'(~i_l+l) Ti 
• l' x ;If ~. •• - X tr" • 

). 

(T
i
_
1 
+1), (-r~)' {J' 

to . X t' • " ,x and then aIso define 

scores for ha1f integer i • 
1 .,. 

(2.2.4) 

and modifications ,imi1ar to (2.2.3) can b~ incorporated. .. ~ 

.... Now we give an éxamp1e (to illustraté the above th~ methods. 

t ", , 

Let S be as ~ (2.1.3) with Ci· 1 for i • 1,2, ••• ,5 , 
1 

where 

{ 

r .. 
*"" 1 

1 

Q, 

" . 
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~(t) denotes the quanti1e function of the standardized 8orma! dis tri-

bution function. We have X2 , ~and X9 tied for ranks 2, 3 and 

4 and X~ and X7 for 5 and 6. In randomization ve assign raqf 

4 to X
2

, 2 'to X6 and 3 to X
5

• Similar1y 5 ~or X
3 

and 6 

for X • 'lben ,we have 
7 

• S(ran)o· - .11 

S-S(ave) • - .27 , ' and 

S(mid) .= - .25 

Thou8h it seems in this case that the above three values of S-

are qulte close but this may qot be the case in general. In some cases 

(see Section 3.1) the mldrank and average score pr;éedurès are identlca1. 

, 
2.3 TESTS OF RANDOMNESS. 

-"'4 ,/ ) 

Ho We sha11 say random variables X1,X2, ••• ,Xn satisfy the 

hy~the~s of ra~~omne8s Ho ' if theyare independent and have,common 

distribution function F(x) , 1.e.,. if P - L«Xl , ••• ,X » , P E: H iff n 0 

~ 

(2.3.1) 

"1 

where F ls contlnuous. ' 

. , 



H c H 
0- 0 

H o 
When F is arbitrary in H' ,. ve have H 

,0 0 
Clearly 

, 

Suppose that the obse~~tions are recor4ed under different 

9. 

conditions. We vant to knov whether the differences in conditions have 

affected their distributions (Xils are assumed to be independent). In 

ather words, ve want to test 

HF" F o i-
1 < i < n for some F 

(2.3.2) l 

vs. K for some i '" j , 1 < i j~n 

The alternative, say K, may be described as a family of distributions Q 

for the form (2.3.1) K = {Q}. The follovin~ results whose proof is 

e1ementary are needed fo~ our 1ater work. Let R denote the space of aIl 

.. -' permutations of 1,2, ••• ,n If 

(203.3) 
1 n 

a - - l ai 
n i-1 

_ 1 n 

C - - r Ci 
n i-l 

and R i8 uniform1y distributed over R, then 

(2.3.4) 

where S t i8 given by (2.1.3). 

\. 
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Let Xl ,X2,·.·,x. ,X +l""'X +n (nl +n2 • n) èienpte two 
nI nI nI 2 

combined samp1es of sizes nI and n2 • Let FI and F2 be t~e dis­
It 

tribution functions of the populations from which the first and the sec-

oJ1d samp1es are drawn, respective1y. We want to test FI • F2 • Now" 
( 

suppose FI and F2 differ in location only, i.e., FI(x). F(x-~l) 

an,d F2(x). F(x-~2) holds for some F and some constant ~l and ~2 

then we have the two sample location alternative: 

(2.3.5) 
nI 

Q(X1<x1, ••• ,X <x ). rr F(xi-~) 
- Ir- n i-.1 1 

... 

.. 

If sign of (~l-~2) is known, the alternatives are one sided, otherwise 

two sided. These alternatives may be summarized as one sided 

Now we discuss some of the important tests. For these tests, 

tables of exact probability points are available in many books, for 

example, Hollander and Wolfe (1973), for small sample sizes. In case of 

samples of larger size the approximations are given. General1y, the test 

procedure consists of rejecting H when S is tao large or too small o 

or both depending upon the nature of the alternative. 

(a) WILCOXON 'l'WO SAMPLE TEST. 

(2.3.6) 

Let ai - i and Ci • 1 for i ~ nI and zero otherwise then 

R • sum of the ranks for first sample. i 



l~_ , ~ 

By (2.3.4) under H we have 
o 

(2.3.7) 

11. 

.J 

We qote again that the tied observations may be ranked according to one 
\ 

of the three procedures described 1n Section 2.2. 
( 

(b) MEDIAN TEST. 

If 

(2.3.8) 

4 
a _ { 0 

i . 
1 

and Cl· l', 1 ~ 1 ~ nI ' then 

(2.3.9) 

, 
where u(t) la given by 

if 1 
1 ~ ï (n+1) 

if 1 
i > ï (n+1) 

n 
1 1 - r u(ll - - n-1) 

1-1 i 2 

(2.3.10) u(x) ~ {: 
x > 0 

x < 0 

~ 

, 

1s ca11ed the med1an stat1stic. By (2.3.4) under H WB qave 
o 

1 
if ï nI n even 

(2.3.11a) E(S) -
oc 

l. 1 n-1 
if odd and -n - n , 2 1 n . 

. 
• 

.. ---
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if n even 

(2.3.llb) V(S) • 

if n odd 

REMARK 2.1: Using a combinatorial a~gument it can be shawn that under 

H , S follows the hypergeo.etric distribution (see for example ,(8J). 
o 

(c) nIE VAN DER WAERDEN TEST. 

i 
In Wilcoxon two-sample test if we set ai - 1/I(n+1) where 1/1(-) 

,ie the same as defined in Example 2.1 then we have the Van der Waerden test 

statistic 

(2.3.12) s -

8y (2.3.4) under Ho we have 

o 

(2.3.13) E(S)· 0 

REMARK 2.2: In tests ,(a), (b) and (c) under certain regularity conditions 

(see [8]) S_E(S)/(V(S»1/2 follows approximately N(O,l) an4 hence 
-. ~ 

when sample sizes arl large we can app1y this ~pproximation. 

(d) KRUSHKAL-WALLIS k - SAMPLE TEST. 

In the setup of (2.3.5) su~pose we ~ve k-sample instead of 

two and want to test the equality of ~i'8, i • l,2, ••• tk , Krushkal and 

Wallis ~l952) have introduce4 the following test. 



Let us rank the poo1ed samp1e and if S j be the sum of the 

ranks of jth samp1e, then the test statistic is defined by 

(2.3.14) 
k 82 

H • -,.:;:;1.;;..2..,... l ..:..1 - 3 (n+ 1) 
n(n+l) j-1 nj 

, 

13. 

where nI +~ + ••• + ~ • n~~~act percentage points of H are 

given in Krushkal and Wallis (1952) for small ni's. If ni's are 

large, H follows Chi-square distribution with ('k-t~ degrees of free-

dom (d.f.). The test consists of rejecting the nu1l hypothesi~ when H 

is large. 

REMARK 2.3. When k - 2 , the Above test reduces to the Wi~coxon two-, 

sample tes t. 

2.4 TESTS OF SYHMETRY. 

Hl : We shall say the random variab~e X1,X2""'Xn satisfy 

the hypothesls of symmetry Hl' if P E H gIven by (2.3.1), with F 
;0 

satisfylng symmetry conditions, i.e., 

(2.4.1a) F(x) + F(-x) • 1 for a11 x. 

Hl P Batisfies aIl other conditions of Hl except the 

continuity of F. 

We can confine our attention on1y to testing symmetry with 

respect to the orIgin, as the other cases follow vith trfvial modifica-

e._ 
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tions. C1early tmder Hl if f(x). d !!x) exista at a point x we 

have 

f(x) - fe-x) .. 

The alternative agains t whlch Hl ls frequently teated la the 
,~-

, 

~~ shift in median from z~ro to some point ~ . Let the alternative K be 

a family of distributions Q of the fom 
<. 

n 
(2.4.lh) Q(X<xlJ"'~X <x ) • II F(xi-~) - n:- n 1-1 

, 
If the sign of ~ is known~ we have one slded alternatives otherwlse two 

\ 

Bided. Let 

~ 
\ 

• rank of Xi when Ixil's are ranked~ 

where u(o) 18 defined by (2.3.10). S takes the fo11owtng form when 

we use it to test Hl' 

(2.4.2) s • 

Under Hl ~ we have 

(2.4.3) 

\ 

1 n 
E(S) • - l a 2

1
1 

1-
and 

1 n 2 
V(S) - -4 L a1 • 

1-1 
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· Now we 'sha1l describe some of the important special cases of 

the statist1cé (2.4.2).~ Tables for tests (a) and (b) may he found in 

Hol1ander and Wolfe [13]. Also, under certain regularity conditions in 

tests (a) and (b) (see [8]) {S_E(S)}/{V(S)}1/2 fol Iowa N(O,l) as 

n + 00 and hence when n is large normal tables may be uaed. 

(a) SIGN TEST. 

(2.4.4) 

Let ai'" 1 , 1 .2 i 2. n. 'Then '(2.4.2) and (2.4.3) give 

n 
S - L u(xi ) - 1 of positive observations 

i-1 

E(S) n --2 
n --4 (under Hl) V(S) 

REHARK 2.4: Note that if there are some zero observations, we may follow 
r/ 

one of the two methods out1ined in Sections 3.1 and 4.5. 

(b) WILCOXON ONE-SAMPLE (SIGNED RANK) TEST. 

Set, ai - 1 , 1 :< i < ni and we have from (2.4.2) and ,(2.4.3) 

s -
n + r Ri u(Xi ) - sum of ranks of positive observations, 

i-1 

(2.4.5) 

E(S) • ! n(n+l) and V(S)· ;4 n(n+l)(2n+l) (under Hl) 

Remark 2.4 is applicable here a1so. 

" 

( 
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(c) HERRA' S TEST FOR PAlRED COHPARISONS (k-samp1e). 

- ri 

Let us cons1der a pâ~red comparison experiment involving k-
• 

treatments. S~ppose that the nij independent comparisons for th~ pair 
, (, 

(i,j) of treatments (1 ~ i < j ~ k) provide observed comparison dif-
, 
1 

ferences (t - 1,2, ••• ,nij>!. denote their common 
J 

distribution functlon whlch ls a&sumed to be continuous. The hypothesls 

of equality amang the treatments can ~e expressed as 

Hi. : Gi/z) + Gij(-z) - 1 and Gij(z) - Gi'J'(z) for any two 

pairs (i,j) and (i',j') • 

~ , " lUe alternative may be not Hl • We rank the absolute values 

of n (- l L nij ) comparison differences Ziji (1. 2. i < j ~ k , 
i<j 

t - 1,2, ••• ,nij ) ln a pooled sample. In case of ties we may use one of 

the methods described in Section 2.2. Let rij~ be the rank of Izijl , 

if Zij,l"::' 0 and zero otherwise; s1milarly, let Sijl be the rank of 

nij 
R (i, j) - l r

ij 
/1 

n t-l ~ 
IZijtl if Zijt <'0 and zero otherwise. Also, denote 

nij 
and S (i,j) \ n a l 8 ijt 1=1 

Under this set up Mehra (1964) suggested the 

following test statlstic. 

L - 6[(n+l)(2n+l)kl-l k k 
V(i,j) In!~2}2 (2.4.6) L { r 

1-1 jt'i 

where V (f,j) -R (i,j) _ S (i,j) 
n n n 

" 

, 
j 
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The test eonsists of rejecting Hi st Iévei a if L > .ta ' where ta 

satiefies PH,[L ~ ta] - a. No tables for probability distribution of 
1 

Lare ava 11 ab le , for small n. But, for large n, L is asymptoti-' 

caIIy distributed as the Chi-square distribution with (k-I) d.f. under 

If' 
l 

(see Mehra (1~64». , . . 

REMARK 2.5: For k· 2 , the above test reduces to the Wilcoxon paired , 
comparison test. 

. .t 

2.5 TESTS OF INDEPENDENCE. 

H2 : We shali say that the fami1y {(X!'Yl),(X2'Y2), ••• ,(Xn'Yn)} 
, 

satisfiea the hypothesis of independence H2 ' if aIl the ln random 

variables are mutually independent, Xi' S having arb\.trary contin\lous 

distribution function F(x) and Yi's having an arbitrary continuous dis­

tribution functiort' G(y) • We may wr1te 1t as 

• 

H2 Continuity 88sumption regarding F(x) and Gey) in H2 , 

i8 dropped. Let us consider alternatives K· {Q} against Hl' where 

Q' 8 are given by 

(2.5·.2) , 

where A(x,y) is a cont1nuoua two-dimenl1oDl11 distribution function. 'nie 

pairs (Xi 'Y1) are 1ndependent under Q but w1thin pairs there 1. a 

) ! 
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dependence. Statlstics for testlng H2 against alternatives of the 

• form (2.5.2) are given by, J 

1 

(2.5.3) 

where 

and 

1 

n 

n 
S - l: a(Ri ). b(Qi) 

1-1 

u(X -x ) D rank of 
1 j 

4 

Xi ln seperate ranking 

Q - r u(Y -y ) • rank of Yl in seperate ranking; 
i j-1 i j 

both scores are non-decreasiug, u(e) le given by (2.3.10). Tables for 

the tests described below are given in [13]. , 

(a) SPEARMAN TEST. 

Taklng the ~ilcox BCores b
i 

- i , we get from (2.5.3) 

(2.5.4) 
n 

S - l 
1-1 

and it can be easily verified that under H2 

(2.5.5) E(S) •• 1 n(n+1} 2 
4 

and , 

and distribution of S la approxLœately normal for large values of n • 

If S i8 1inearly transf6rmed so that the minimlDll Yànd maximUlll values 

are -1 an~ +1 respective!y, lt 18 called the spe~ Rank Qo~ta-

tion Coeffiaient and 18 given by 

( 

, 



(~.5.6) 
12 12 n 1 1 1 1 

p -~ [S-E{S)] -~ l (Ri - 2 rt - 2) (Qi - ï n - 2) 
• n:-n n -n i-1 

The test consists of rejecting H2 for large Ipl • 

REMARK 2.6: If we use median scores as in Section 2.3, the test ie 

ca1led Quadrant test. 

, 

(b) KENDALL T-TEST. 

Kendall [14] suggests the following statistic for testing H2 .. 
(we use t to distinguish between the vector of ties T and Kendall T). 

(2.5.7) 

1 

.. 1 n 

T • n(n+l) l 
i-1 

o , 
n r sign (Ri -Rj) 

jal 

* The maximum and minimum values of tare +1 and -1 reepectively. 
Ir 

The test consists of rejecting H2 wh en , It 1 For l.arge sam-

"" pIe approximation, let us note that t ls a linear function of 

(2.5.8) 

. I 
namely. 

(2.5.9) 

, 

"" n(n-l)(l+t ) - 4K • Under ,H2 , we have 

E(IÇ) - ! n(n-l) • V(K) - i2 n(n-l) (2n+5) 

.. 

and the distribution of K isoapproximately normal for latge n (eee 

Kendall [14]). 

, 

-
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\ 
ANALYSIS OF VARIANCE TESTS. 

~we bave already described \ne ..... y 1ayout Analyais of Variance~, 1 

dësign (Krushka1-Wal1is test). let us consider now two-way layout vith 

Mij ipdependent random observations Xijt • t • 1,2, ••• ,mij in the 

(i,j)th &11 j. l,2,{..,k , i· 1,2, ••• ,n. Here k is the number 
" 

of trea tmen te and n is thé number of b10cks. Let 

be distributed accordi~g to common continuoUB distribution function 

(2.6.1) 

where ~i may represent the unknown b10ck effects. Then the hypothesis 

of equa1ity of the treatments effects (the nu1l hypothesia) H3 , can 

be defined as 

(2.6.2) "3 :~ • F2 • ••• - Fk • 

" H3 can be d~ned 8S usua1 dropping the continuity 8sswnption in H3' 

In the fo110wing, we shal1 describe~two tests: one based on seperate 
"-

~ rankings (Friedman test), and the other based on joint ranking of observ~ ,? 

tions after 'alignment'. 

REMARK. 2.7: 
... 

The mode1 (2.6.1) is used for a1igned rank test only. 
~ , 
For 

Friedman's test we need the fo1lowing weaker condition 

for some Fi i • 1,2, ••• ,n 

\ 
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(a) S TEST. 

Let mij • 1 for i-1,2, ••• ,n and j • 1,2, ••• ,k • Within 

eàch block "1:'ank the k observations. Let r ij denote the rank Xij 
n 

-~ in ranking of XiI"" ,Xik • Set R • l r!.j , Rej and j n 
a.. i-1 

k+l Ree. -
, 2 Then Friedman' s (1937) test statistic ia 

l2n k 2 
Q - L (Re;-Re.) 

k(k+1) j-l 

) 

• 
(2.6.3) 

We reject H3 when Q i~ large. Tdbles for exact prob~bilitY points 

,are available in Hollander and Wolfe (1973). Under H) \" Q has asymp-

totica11y, as n ~ 00 , Chi-square distribution with (k-1) degr. of 

freedom. 

(b) 

.0 

CONDITIONAL ALIGNED tANK TEST. 

The approach here 19 efttirely different than that in Friedman's 

test. We use"the rank comparison after the 'align~nt' (defined below) 

as presented in Hodges and Lehmann (1962), Mehra and Sarangi (1967), 

Mehra (1968) and Sen (1968). 

Alignment eS8entially meane removing the block effects ~i 

(i • 1,2, " .•• ,n) from observations by subtracting from each obaervations f 

in a b1ock, B4Y ith, Bomë reasonable funetion ~ of the observations 

1n the block which Batisfy the condition 

, . 



, 

.. 
... 

(2.6.4) 

Let the aligned obSèrvations be denoted by Zijl' 1 • 1,2, ••• ,mij , 

! 
1 ~ j ~ k , 1 ~ i 2 n and r ij1 be the rank of ~Zijl in a combined 

22. 

ranking of aIl the N· r Ni ... r r mij a1igned observations. Each con- ~ 
i i j 

ditional si.tuation (given a set of ranks for each b1ock) is referred to 

oonfiguration. More precise1y, if r (1) < r (2) < • •• < 
(Ni) 

as a 
i i ri 

then the configuration i8 simply an event E • (r1 ,r2 ,···,rn) in our 

sample sapce. Note that Only.rand~eàs (given a configuration) that 

remains i8 due to independent assignment~ of ranks ta the treatment. Let . 
aCe) be rank scores and 

'10 

(2.6.5) 

; 
,. SlDD of the rank scores for the j th treatment., 

Also, let mij D mj , for aIl i and j (the complete case which a1so 

cove~s the equal observations 'per ëell). Under this scheme NifS are 

equa1 to Nf z r m
j 

and the proposed test function is (s~e Mehra [21])1 ' 
j 

(2.6.6) 

2 2 " 
where a .. r r {a(riJR) - a(i)} IN

i 
and a ... r a(1)/n • TIte test. i 

j t i 

consists of reject1ng "3 for large values of L' • 
n 

f \, 

J 

\ 



................... ------------------------
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In ,the general case when mij's do not s8tlsfy the above 

conditlon, whether the design is complete or not, the fo11owing statistic 
'---

19 suggested ([21],(2.7». 

(2.6.7) , 

where ï • (VN1,···,VN,k-l) wit: :N
j 

• (TNj-i(TNj )] , and ê ls the 

exact covariance matrix of ï (which 18 required to be non-singular) 
,... 

'"" and E(T
N

) 
j 

and 0jj' , e1ements of ~ , are given by 

, ô - 1 jj' 

or zero accordlng as j • j' or not and represent the con di- ) 

tional expecta~ion and covariance function under H3 and condltion 

(2.6.4». 

Computational techniques for the evaluation of exact dlstribu-
~I 

tion for the statistics of the type 
, 

Lare discussed in [12] with Wilcox· 
n 

on score and k - 2. With the help of computers exact distribution tables 

the con-can be prepared for various values of k , n and mij ., \s n ..... 00 

ditional statistic L , given a configuration, converges in distribution, 
n 

(under certain regularity conditions, see [211) to a chi-square variable 

with (k-l) degrees of freedom • 

• 
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CHAPTE! 3 

TIES lN DISCONTlNUOUS CASE 

In this chapter we discuss the teBt~ described in Chapter 2 

without th~ continuity assumption. Consequent!y, in this case ties may 

occur with positive probability. Expressions for tonditiona! (given the 

vector of tiés) expectations and variances are given for large samp1e 

approximations. For exp1icit results on asymptotic distributions, see 

Section 4.2 and [3]. 

3.1 TREATMENT OF TIES (GENERAL CASE). 

In the fo!lowing we sha1! describe the three methods of handling 

ties introduced in Section 2.2 for the generai case. 

(a) RANDOMlZATION. 

be the vector of r~nks after randomiza-

tion procedure (Section 2.2) applied for tied obgerva~ion8. The statistic. 

has the same distribution under H as that of 
o 

n r Ci a(Ri) under Ho (Similarly for Hl ,H2 a~d H3 ); and so the same 
1-1 

tables ~y be used •. The asrptotic convergence of distr1bution~ for par-

tieular statisties ls the same as described in Chapter 2. 

- 24 -
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(b) AVERAGED SCORES. 

(1) Tests of Ranœmness: Let the scores ai and stat1st1c 

S be the same as 1n (2.2.2) and (2.2.3). 

nmOREK 3.1: Under R and arbitraPy t (the vector of ties) the 
o 

statistic S satisfies 

1 n n 
E(S/'t') - - r Cl r a1 ' 

n 1-1 1-1 

(3.1.1) 

and 

PROOF: lt ls easy to ver1~y that 

r ... \ 

and hence S may be- wr1tten equlvaler;tly as 

* Ac'cording to lbeorem 29A of H'jek (1969), the ve'ctors Rand l: are 

independent and hence 

(3.1.2) 

.. 



-
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where t ia eonsidered fixed. 

E(a(R
i
*, T» .! ~. t:~T) 

0 10 
• ~ l ai - a J 

Therefore by (3.1.2) we have 

n * 
V(S/T) • V[ l Ci a(R ,T)] 

i-1 

1 2 n - - 2 ,. - L (Ci-C) L (ai-a) 
n-l 1-1 

by Theorem 3B of Hajek (1969). Final1y, it suffiees for eomp1et1ng the 

n 
proof to show that L (ai-ai)(ai~)· O. This fol1ows from the faet 

1-1 

,;<1" that 

o 

~ In view of the above the a rem , as the distribution of S depends 

upon the vector of ties we need dlfferent tables. Hâjek (1969) suggests 

that if ties are few, we can use the same table for S as for S notlng 

that the resulting eritical leve1s will be somewhat larger than the exact 

conditional critieal levels. 



, 

<. 

have 

and 

(3.1.3) 
( 

But as 

n 
l 

1-1 

27. 
~\ 

In case of the two-samp1e W11coxon test, using Theorem 3.1, we 

\ 

a - i 1 

l +1 
{(x+l)2 _ (x + _k ___ )2} 

2 

where x - II + ..• + lk_l' Thus 

(3.1.4) 

Therefore, us1ng the last equat10n of (3.1.1), (3.1.3), (3.1.4) 

and (2.3.7) we have 

(3.1.5) V(S!T) 



j 
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Similar expressions can aIso be obtained in the case of 

Median and Van der Waerden tests fqr expected values and conditional 

variances. For asymptotic distributions of these statistics see Chapter 

4. 

In k-samp1e case, we can show as in Wi1coxon test (see (3.1.4», , 

that the variance is reduced by 

and hence we modify H (2.3.4) accordingly (see [19]): 

(3.1.6) 

For min(n
1

, ••• ,nk ). -+ 00, H has Chi-square distribution with 

(k-1) d. f. . Tables for small 

(il) Tests of Symmetry: 

n 's 
i 

are aval1able in [19]. 

In testing H 
1 

there are two types of 

problems; (1) zero observations, and (2) the ties among non-zero 

abso1ute values. There are two methods oi handling zeros proposed by 

Wi1coxon (1945) and Pratt (1959). We will compare these two methods with 

the help of two examples in Section 4.5. Here we use Wil~oxon's method 

i.e., de1eting zero observations a1together. 

Let v be the number of non-zero observations and let u~ 
1\ 1\ 

denote them by X , ••• ,X Let T be the vector of ties in the 
1 \) 

" 1\ 

sequen~e Ixll •••• ,lx) _ Let 



r 
1 

29. 

(3.1. 7) s-

where 
+ V '" '" 

Ri .. r u<l\I-IXjl> , 1 ~ i ~ V • 
j-1 

under Hl (see [8] Theorem 30A) we have 

(3.1.8) 

and 

1 \1 
E(S/V,1) - - r ai 

2 i-1 

V(S/V,1) 
\1 

1 ~ - 2 
"" - l.. a 

4 i-1 <1 

L 
- 2 
a = 

i 

In the case of sign test, a = 1 and hence, 
i 

It i8 easy to verify that 

, 

ai s 1 for aIl T. 

And therefore the distribution of S i8 the same as that of S with n 

"\ 

replaced by v. In one sample Wilcoxon test, proceeding the same way as 

in two samp1e case, we get 

'\ 

(3.1.9) 

For large sample approximations of above tests see Section 4.2. 

For Mehra's k-sample test, we do not have the;nodified form of 

L , whan tics are present. Also no asymptotic resu1t rer.arding the distri-

butlon of L under Il} ls avoUable. 



1 ' 

(111) Tests of IndSpendenoe: ~t T and T he the slzes of x y 

ties ln (XI, ••• ,Xn) and (yl, ••• ,Yn) respectively. We define 

8(i,T) and s(l,T} by (2.2.2), and x y 

(3.1.10) 

and 

(3.1.11) 

We have under H2 

1 n 2 
E(SI T , T ) - - (I al) 

x y n 1-1 

1 n -' 2 
V(SIT ,T ) - - r (a(i,T )-a) 

x y n 1-1 x 

and 

- -2 (a(l,T )-a) 
,y 

In Spearman test wlth ai - i , we have, under H
2 

E(S) - E(S) 

gx 
- 1 . 

V(SITx':y) • l44(n-l) [n(n+l)(n-l) - r T~ (T;+l)(T~-l)l 
j-l 
gy 

[n(n+l)(n-l) - 9L T~ (T~+l)(T~-l)] 
~ j-l 

30. 

Under certain regularity 

bution of S given T 
~ 

conditlons (see ~orem 3lA of [8]) the dis tri­

and T , ls asymptotically normal. 
y 

~ Whlle usihg the Kendall's test, Kendall (1970) suggests the 

fo11owing argument: If there are Ti consecutive ties, aIl the scores 

J 

. ". 



) 

arising from 8ny pair chosen from them are zero. There are Ti(Ti-l) 

suCb pairs and so 

gX 

will be reduced by , 

31. 

l tX(Tx_l) and i-l i p i Therefore our alternative form of the 

coefficient T* may be written 

n n 

(3.1.12) 

r r sign(Ri-Rj ) 8ign(Qi-Qy) 

T* _ ~=====i=.=l~j=.~l==================~========~ 
gX gy 

(n(n-l) - I t~ (~-1)(n(n-1) - I ti (ti-1» 
i-1 i. i-l 

The expression for conditional vàriance of K (defined by 
. 

(2.5.8» i8 given in [13] for large sample approximation. 

(iv) Analysis of Variance Tests: In Friedman test, we rank each 

b10ck seperately. Let "-gi be the number of tied groups in block i and, 

ti,j represent the size of jth tied group in block i. 

Q statistic is (derived simi1ar to H) given by 

Q - [nk(k+l)-{l/(~l) 

. 

The modif ied 

(see [13]). The distribution of Q under H3 is asymptotically Chi-

square with k-1 d. f. • ,. 

Unfortunately, no simi1ar results are available in the case of 

aligned rank test. 

/ 
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(c) mDRANK MEmOD. 

But for the V~der Waerden and aligned rank tests, all the 

tests have scores which are equal to either' ranks or constant values. 

Therefore th~ midrank method (see Section 2.2) of handling ties are the 

same as average score method. 

In the van der Waerden test, we have the test statistlc 
, 

* s • 

where represents the midranks. 
\ 

The conditional variance is reduced 

as in the case of average score and the asymptotic distribution will be 

given later (see Section 4.2). 

In the aligned rank test, we do not have the modified form of 

the test statistic L while using the midrank method as in avera~ 
n 

score method. v 
3.2 TIES IN WILCOXON 2-SAMPLE TEST. 

In this section we would derive a nonparametric test, similar 

to Wilcoxon 2-sample test, when the underlying distribution Is purely 

discrete. Let us denote the two independent samples by Xl' ••• ,X and 
°1 

" 

(discon-

tinuous) • We want to test H o F - F - F 1 2 (say) against location alter-

natives. lt seems reasonable to choose a te~ based on the following 

criteria (see [24]): 
, 
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(i) distribution free under the hypothesis; 

t ... 
(ii) depends on observations on1y; and 

(iii) as close as poAsible ta original Wilcoxon test. 

Let us assume that FI and F2 have same discontinuity points 

and denote' them by ~k' k - 1,2, ••• We define 

x' s whieh are equa1 ta ~k -
Vk • # of y's whieh are equal ta Ck 

The ordered pooled sample ia given by the nonzero cômponents of ~ 
1 

two vectors U and V. Renee, any rank (arder) statistie whieh depends 

upon the observations only, can be expressed in terms ta U and V. 

Aeearding to the criteria (ii), the critical region C can be defined by 

U and V only. Now we show that W ia a suffic~ent statistic for the 

vector of parameters., 

9 

LEMMA 3.1: p(u/w) is independent of Pk's 
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PROOF: 

(3.2.1) p(ulw) - P(U-u , V-w-u 1 W-w) 

J • P(U-u)P(V-w-y) 
P(W-w) • 

Now, 

where the 

Also conditional probabi1ity in the'sumroation 15 zero unless (r
l
,r2, ••• , 

r ) has exact1y 
nI 

u1 of ~l's 
1 

of ~2 's etc •• 

( " , ) rI' r2 J • • '.J r 
nI 

satisfy this. 

~ts which are nonzero, ~ay. Utl' ••• 'u~ s.t., 

nI! 
fore have non-nu11 events iQ the s,ace. 

Ut 1 ••• Ut ! 
1 h 

p (U·u 1 ~ • ( ri ' ••• , r ~ ».. 1 • 
1 

(3.2.2) 

Similarly. 

(3.2.3) 

. . . ! ua 
nI ~1 

p {U-u} .. -~, -..:;;1----.,.. p /1 •• • • 

Ut .ut .. ,ut ~l'" 

1 2 h 

( 

Let 

We there-

In this situation, 



'\ 
where g ~ h and some of the U 's are zero; and 

ji 

(3.2.4) 

Wj Wj 
pl ••••• p g 
jl j, 

P (W-w) • ---w-j--r! -.---. -w-j...A.:-t 
1 g 

" ni 

, 
Renee, subst1tuting (3.2.2), (3.2.3) and (3.2.4) in (3.2.1) we have 

UR, \t (wj -u ) (w
j 

-u
j 

) 
ji 1 h) 1 p g g)] 

• 
[<Pt1 P~ (p

j1 jg 
w

j 
w

j 
1 • • P g Pj ... 

l jg 

The quantity in the brackets is 1. Hence the resu1t. 0 

35. 

Let the size of C be a, i.e. PCC) m l P(W-w) P(C/W-w) • a' 
w 

or, l n! 
W w

j 
1. •• w

j 1 g 

has to be independen t 0 f Pk' 8 

W
j 

• Pj g l P(u/w) • a. As PcC) 
g ,~~w-U)EC , 

(requirement (i», we must have 

P(R/W-w) • a for every w, which i8 the usual condition for every dis­, 
tribution free tests. Since for every fixed w we have on1y flnite set 

of P(u/w) , and these sets vary with W t it will in genera1 be impossi­

ble to 'find a r~ion C vith exact size ~a. H~er, this can be solved 

by taking some ~amp1e points in C not definite1y, but with certain given 

probability. 



JU. 

Now suppose C ls the rejectlon reglon o [5 > a] , of the same 

size a, given by 'randomized' Wilcoxon test. Then we have P{C)-

PCC ) • a o 
or, P(CnC ) • P{Cnc ) ,where A stands for complement of 

o 0) 
A. One possible explanation of (iii) above is to choose C Buch that 

'" 
p(Cn C) 1s min1m1zed. This may be justified alhfollows: Suppose F 

o 

1s really continuous and ties occur only because of lack of precision of 

measurements. In th1s case the randomized test is approximately equal to 

Wilcoxon test (as randomization procedure i8 similar to the e~fect of 

replacing each discontinuity by an interval of the uniform distribution). 

It 1s therefore appropriate to minimize the probability of getting a dif~ 

ferent result than that of randomizad test ([24]). This probability when 

the hypothes1s is true, 18 

P(CnC ) + P(CnC ) • 2P(CnC ) 
000 

The above is achieved, if we minimize 

P{Cn[S~a]IW-w) • l 
Cu, w-uhe 

p{ulw) P(S<aIU-u,V-w-u) 
- \ 

for every w ,where S ls the Bame as in (2.2.6); under the condition 

(f· 2 •5 ) l p(ulw) a p(CIW-w) • a 
(u,w-u) 

As sU8gested by Putter (1955), we can use the following algori-
. 

thm. For every w, we order aIl possible vectors (u,v) - (u,w-u) by 

the magnitude of P(S~aIU.u,V-w-u) • We take the vector with the smal-

lest probability, then the next smallest etc., until the (conditional) 

If 
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B1ze ~ as in (3.2.5), iB reached. Doing this for aIl w we get the 

desired C. 

Unfortunately, the above derived test seems ta be very diffi-

cult ta apply and sa we modify tt without going far from the test, as 

foilows. Instead of rejecting hypothesis when P(S~aIU·u,V-w-u) is tao 

smali we reject 1t when E(SIU-u,V-w-u) is too large ([24]). Let 

(3.2.6) 

where Er denotes the expeçtation undef randomization. lt 18 easy ta 

8ee that S' Is the same as S we had "in Section 3.1.~ence under 

criteria (i), (ii) and (iii) we have derived a test which is the same as 

the average score test we proposed eariier. However, the cutoif poirtt 

does depend upon W and the tabulation lnvolved ls prohibitive. Klotz 

(1966) has given an algorithm to calcula te the exact distribution given 

a vector of tles. lt is a1so suggested ta use the computer for ca1cula-

ting the significance probabilities. We will compare this test with 

randomized test in Chapter 4. 

3.3 TIES IN SIGN TEST. 

Let the number of observations which are positive, negative 

and zero be n+, n and n respectively. In Section 3.1, we mentioned 
o 

that we ignore the n zero observations which amounts ta omitting ties 
o 

from the observations. We have 



Hl P(Xi > 0) • P(X1 < 0) VB say, 

K : P(~i > 0) > P(X
i 

< 0) 

and our test procedure ls to reject Hl whenever n+ i8 too large. 
-, 

Let 

Let us consider the conditiona! distribution of n+ given 'no • c • 

Under Hl ' 

(3.3.!) ~(n -xln -cl _ P_ (x) • (n-c) (l)n-c 
+,.0 H! x 2 '. , under K 

(3.3.2) 

( 

x - 0,1, ••• ,n-c. Therefore, 

PK(X) q 
h( ) (..±)x PH (x) - C q_ 

1 

, 

which is Btrictly increasing function of x. Therefore, by Neyman-

Pearson lemma, the unique most powerful (conditiona!) test i9 given by 

(3.3.3) 

313· 
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where the cutoff point k(n) la, of course, "the one corresponding to 
o 

'nle test (3.3.3) amounts to "omltting the ties from observa-

tions". Let us compare this method with randomization. 'nle n zeros 
o 

1 

are divided into two parts according to the,outcome of a random experimen­

r and suppose n+ of them are assigned to the positive part. The r~ndom 

R r 1 
variable n+ - n+ + n+ is under Hl ' B (n'2) and we can use the test 

(3.3.4) 

without any concern about unknown p • 
o \ 

TIlEOREM 3.2: The non-ranchmized test (3.3.3) is uniformLy /7K)l'ec Powerfut 
\ 

~nat (given .o·c) test (again8t one-sidedaZternative KJI thon the 

randbmized test (3.3.4). 

PROOF: Let n - c , and pey) be the frequency distribution of 
o 

The joint (conditional) distribution of 

PH (x)-p(y) under Hl and Pk(x)"P(y) urtder K. The ratio of two is 
l \ 

PK(x)IPH (x) and hence (3.3.3) i8 a1so unique most power fuI (conditional) 
1 

test based on n+, no o 

In the above, we have omitted the zeros altogether. Recently, 

~
rauth 

zeros. 

, ,J 

(1973) has proposed a test procedure which does not ignore the 
1 



THEOREK 3.3 (Krauth): An UMP test for testing Hl against -K rPith a 

knoz.m exmstaYlt po· qo is given by 

(3.3.5) 

PROOF: Let us conslder the distribution of 

(3.3.6) 

under K , 

PK(X) - Pen -n ·x) • r + - n -n ·x 
+ -

n • q 
n 

(n-1) (. 1 2) i-x r (n) 
0 

(q+1 qo)X 
1-0 i i-x q+ q- qo 

f 

and under Hl ' 

n 
n 1 x Pii (x) - Pen -n -x) • po(P+ p) l 

1 + - 1 i-O 

x- -n,-n+l, ••• ,h. Therefore, 

(3.3.7) 

with 

(3.~.8) , A (z,x) c 
n 

x 
y A (z,x) 

.. n . 
x 

y A (z ,x) 
o n 0 

cl 

1 
n n-i 1 2 l-x 

(t}(i-x)(P+P- po) 

l-x z 

.f 

, 



) 
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Î' 

, 
If we prove (3.3.7) i9 strietly inereasing function of x (which we 

do in the following lemma) , by Neyman-Pearson lemma the test (3.3.5) is 

UMP test for known and henee the result. o 

LEMMA 3. 2 : Pk (x) 1 PH (je) , (3 • ~3. 7), is s triatZ y inal'easing funation of 

1 • x , fol' X = -n+1,-n, ••• ,n • 

" 
PROOF: As (Y-) x la strietly increasing funetion of 

Yo 

it suffiees to praye that 

x and z < z 
a 

(3.3.8) A (z,x) lA (z ,x) > A (z,x-l)IA (z ,x-l) n non n 0 

for z < z , x = -n+1,-n, •••• n. Or. equivalent1y 
a 

(3.3.9) A (x,z)/A (t,x-l) > A (z ,x)/A (z ,x-l) 
n n non a 

for z < z ,x· -n+1,-n, ••• ,n. We prove (3.3.9) by showing that the 
o ! 

derivative of H(z.x) = A (z,x)!A (z,x-l) with respect ta z la nega-
n n 

tive for z > 0 , x - -n+1.-n •••• ,n. For x < 0 we have ,. 

A (z,x) '" 
n 

i-x z 

with m· [(n+x)/2]. Therefore it i8 enough to show that 
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'\ lXl m' 

r r 
1-0 j-O 

with m'· [(n+x-l)/2]. Or. t 

(3.3.10) 

) 
1 

We consider on1y terms for which i.j E {1.2 •••• ,m} • aince 

the terms with i = 0 or j = m+l , are negative anyhow. For i. j , 

the summation vanishes. For the sum of two terms with (i
1
,jl) - (s,t) " 

(i2,j2) - (t,s) ; s,t E Ü,2, ••. ,m} t we get 

s+t-1 z t 

which is negative for aIl s,t € {1,2, ••• ,m} • This completes the proof 

for x < o. For x > 0 we have 

A (z,x) 
n 

i-x z 

We complete the proof proving 

the same way as (3.3.11). 0 

Putter [24] has shown that 

" 

1/2 T = (2n++n -n)/(n-n ) 
n ,0 0 

is 

asymptotically N(O,l) as n 4 00. In v!rtue of Theorem 3.3, we can 

now state the fol10wing result. 



.\ 

43. 

\ 
\ -

'lllEOREM 3.4. Àn asymptoticart,y UMP test for teBting Hl against K, 

under' the r'Bstriatipn 

(3.3.11) T • (2n +n -n)/(n-n )112 > k 
n + 0 0 

!.Jhere the autof! point k oor:caesponds to N(O,1) di8tzoibution. 

3.4: TREATMENT OF TIES IN WILCOXON 1-SAHPLE (SIGNED RANK) TEST • 

.. In §3.I, we ignored the zeros from the samp1e and then ranked 

the test of the observations as suggested by Wilcoxon (1945). Pratt 

(1959) has suggested a different procedure in this section we would 

review these criteria. 

The following three requirements have been suggested for a test 

when these are O's. 

(i) Increasing the observed values sha!! not make a significantly 

positive samp1e insignifi~ant nor an insignificant sample significantly 

negatlve. 

,(ii) Assuming that the distribution of the observations has a center 

of symmetry ~ , those values of ~ which are not rejected sha1! form 

an interval. 

(Iii) A ~Ple shall be judged signifi~antly positive if, when the 

!~iuded in the ranking, the samp!e is significantly positive 

signs are attached to the ranks of the O's ; similarly for s1g-

" 
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\ifieantly negative and not significant. 

Pratt (1959) points out that nOlle of the three conditions are 

satisiied (which are reasonable and are satisfied when there are no zeros) 

when we use the Wilcoxon' s procedure. The two methods of handling zeros "­

have been compared in [41 when the underlying distributions are discon­

tinuous and we would diseuss these in Section 4.5. 

" 



CHAPTER 4 ... 

ASYMPTOTIC RELATIVE EFFICIENCY (ARE) 

In this chapter we examine asymptotic efficienciesff the 

linear rank tests for randomness and symmetry with particular attention 

paid to~the three methods of handling ties, discussed in Section 2.2. 

This i8 studied using ARE. 

4.1 EFFICIENCY • 

Asymptotic power of a test against'a given alternative 

provides a good clue to the large sample operating characteristic of the 

test· Asymptotic efficiency gives a comparative measure of the asympto-

tic power of a test relative to a most powerful test or relative to a 

standard test. In the 1atte~case we calI it asymptotic relative effi-

ciency. We consider the asymptotic efficiency as defined in Hâjek and 

Sidâk «1967) p. 267) and asympt?'ic relative efficiency as in Hodgea and 

Lehmann (1956). 

against 

normal 

(~o ~a~) 

Assume that an asymptotically most powerfu1 test for H o .. 
q is based on a statistic S , where S ia asymptotica1ly 

0 0 

(0,02) under the nul! hypothesis and asymptotically normal 
0 

under the alternative. Further, let us conaider another test 

for 

and 

~o against q 

(~,a2) under 

based on 

H and q 
o 

S , which ia asymptotically normal 2 
(0,0 ) 

respectively. Then the asymptotic powers 

- 45 -



of S - test and S - test equal o 

-1 
l-t(k -lJ (J- ) 

1-<1 b 0 

respectively. The expression 

(4.1.1) e • 

46. 

l 
is cal1ed asymptotic efficiency of S - test (it is rario of the two 

as~ptotic powers given above). 

Now, let a (a) 
n 

* and 8 (a) 
n 

denote the power function of two 

tests, say A and A* based on same set of n 

a family of alternatives labelled by e and let 

. 
observations, against 

a be the value of a 
o 

specified by the hypothesis. We shal1 assume that aIl tests are at the 

same level of significance a. Let 8 be a specified power with 

a < B < 1 . Consider the sequence of alternatives 

(4.1.2) 

'" and a sequence n 

(4.1.3) 

Then -if 

(4.1.4) 

B (a ) ~ a 
n n 

- h{n) such that 

* a *(6n) .... a 
n 

e '" A tA 

j 
.. ~ 

as n~oo 

~s 0 .... 00 

n 
'" Hm "'"'T 
n~ n 

e such that 
n 



exists and is independent of a,e and the particular sequences {9 } 
n 

and {h(n)} chosen, e * is d~fined to be the asymptotic relative 
A ,A .. 

47. 

efficiency (ARE) of the test A with respect to the test A. Me th-
1 

ods of obtaining the 1imit (4.1.4) in different situations are avai1ab1e 

in 1iterature (see for example, Hodges and Lehmann (1956». ARE is u8e-

ful for problems where optimum tests eith~r do not exist or are not avail-

able. 

We sha11 use the form of asymptotic efficiency as described in 
~ ~ 

Hajek and Sidak [9] (pp. 267-70). 

4.2 ASYMPTOTIC DISTRIBUTION UNDER NULL HYPOTHESES. 

~ 
To ca1culate the asymptotic efficiencies let us first examiné 

the asymptotic distributj.on of linear rank statistic utlder Ho and Hl ' 

as discussed in [3]. 

(4.2.1) 

where 

on the 

(4.2.2) 

The following theorems present conditions under which 

E(SIT) 

.. 
Let 

interva1 

o < 

S - E(Slt) '\ N(q.,I) 
[V{S 1 T} ]1/2 

and V(SIT) are as in (3~1.1) • 

4>(u) de no te an arbi trary real valued function defined 

o < u < l and 

r 2 
-' ' 

"$. (~(U) o (q,(u)-~) du < t OO , where du f , 

J 

( 

l, 



THEOREM 4.1: Under H , if conditions (4.2.2), (4.2.3) and 
o 

fo
l -1 2 

(a(n~Tn (u), t) - CP(u» du -p> 0 

1 haZd then (4.2.1) foUows. Here, T (u) • - {fi of Ri'a < un} and the n n -

>inverse is defined by f-l(t) = inf {xlf(x) ~ d , for a reaZ vaZued 

funation f. 

PROOF: tét us consider the r~ndom variable Yi· F(X
i

) which under 

48. 

Ho are Lied. with some cdf G,(u). Let Wl,W2, ... ~Wn be uniform ran­

dom vàriables which are also indep'~ndent of Yi' Let G({·}) denote 

the measure induced by G(u) on any set {.} of rea1 numbers. Then 

G({y}) • P(Y·y) at di~continuity points of G(u) and equals zero else-

where. Now we will prove that the random variables U
i 

2 Yi - WiG({Y i }) 

are mutua1ly independent with uniform distribution on (0,1) • Let 

\ 

a(u) - G(G-l(u» - G({G-1 (u)}) and 

(4.2.5) 

b(u} .. G(C-l(u» 

Uten 



If G(u) - u then b(u)· u and R(ui<u) - P(Yi~(u» • u. If 

G(u) <, u ,. then G(u) ia constant on the interval '"' ta(u) ,b(u» and .. 
W1 G({h-1 (u)}) is uniformly distributed on (O,b(u)-a(u». And we 

have 

. (4.2.6) 

- a(u) + P(Yi-b(u» p(W > b(u)-u ) - u • 
i - b(u)-a(u) 

49. 

It ie shown in (9), p. 153 that under the aSRumptione (4.2.2) and (4.2.3) 

the random variable T la ,wbere 
c c 

(4.2.1) "Tc -1. (Ci-C) ~('Ùi) and 

2 (J .. 
c Ï (C

i
-C)2 f1

0 (4)(u)-4>)2 du 
i a 1 

has asymptotically standard normal "distribution. 

It i8 a1so shown on p. 160 that s~lac where ~ 

. . 
(4.2.8) S~.. r (C -ë) a4> (R *) ; a4> (i) - E{$(U

1
) 1 ~ ~ i} 

i-1 i i -1 

satie fies , , 

(4.2.9) .. 



C~nsequent1y, s~lac ~ N{O,l) under (4.2.2)' and (4.2.3). By (3.1.1) 

we bave 

n 
E{{S-E(slt)-S~]2It} • E{[ r {ci-ë)(a(Ri,t)-a~çR:»12It} 

- i-1 

n 
(Ci -C) 

2 n 
~ !Ir 2 

(4.2.10) < 1 r r [a{rj,t)-a (r
j
)] - n-1 i-l j-l 

n 
(CCC)2 f~ -1 ~' 2 u .- L [a{nT {u),t)-a (l+[unJ») n-l n i a l 

Now, 

(4.2.11) 

if the integral id (4.2.10) converge to zero in probability. But the 

integral in (4.2.10) i8 1ess than or equal to 

(1 (1 ~ 
2 [a(n T-l(u),T)_~(u»)2 du + 2 [a (1+[un)-~{u»)2 du • 

JO n JO 

, 1 The first integral goes to zero by hypothesis and the second 
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du • 

by Theorem b of [91, p. 158. The rest of the proof follows on the same 

lines as in [9J, p. 161. o 

When there are tied observations in the data, ranks,may be 
'" 

aS8igned by'one of the three methods described in Section 2.1. Let US 

state the particu1ar forma of-Theorem 4.1 in different situations. 

.... 



Average Saore Method: Let ~a(U) be ~(u) averaged over the 

interva1s in which G(u) i8 constant va1ued: 

(4.2.12) ~a(u) '" ~(u) if 

~ l ~(t) dt f
b(U) 

b(u)-a(u) a(u) 
otherwise 

where a(u) and b(u) are the same as in (4.2.5) and are left and 

right end points of the interva1 containing u. 

51. 

COROLLARY 4.1: Under Hb ~ if (4.2.2) hoZd8, the soore8 a(i) satisfy 

(4.2.13) Il 2 
o (a(1+[un) - ~(u» du ~ 0 

and if. ~a(u) is sqUare integrahZe and non-aonstant over (0,1) , then 

(4.2.1)' holds for the average soores defined by (2.2.2). , 

? 

PROOF: Proof fo11ows from Theorem 4.1 and the fact that (4.2.13) implies ... 

(4.2.4) ([3], p. 1112). 0 

MidPank Method: Let {Ik}k>O' denote the countable set of dis con­

tinuity interva1s (~(u)~b(u»), where a(u) and b(u) are defined as 

in (4.2.5) for each discontinuity point of G(u). Let 

--......... 

(4.2.14) if u ls in a continuity interva1 

= ~(med Ij> if u ls in a discontlnu1ty interval 

.. ,.." .... 

" 
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where, med lj refera ta th~ midpaint of lj , (a(u)+b(u»/2 • 

COROLLARY 4.2: Let H be true. If (4.2.2) and (4.2.13)~ hald, ~ (u) 
a m 

is squa:I'e integrabZe and non-oonstant ovep (0,1) , {med Ik} k>O a1'e 

aontinuity points of ~(ti) , and 

(4.2.15) 

then, (4.2.1) foUolJJS fol' midmnk 8001'es (2.2.4). 

PROOF: lt suffices ta prové that (4.2.3), which takes the form 

fo
l 

(a(n T-1(u);t)-~ (u»2 du ---P > 0 
n m 

ho1ds for the scores defined by (4.2.4). For the outline of the proof 

of the above, we refer to [3], p. 1113. o 
. 

cf~ 

Randomized Ranks:" 

COROLLARY 4.3: Vndep Ü' if (4.2.2), (4.2.3) and (4.2.13) hotas then 
o 

(4.2.1) fottolJJS fol' the scores given by 

whepe * Ri a1'e randomized ronks. 

PROOF: 
-1 .... 

Since a(m'rn (U)',T) "" a(l+[un]) , (4.2.13) impiies (4.2.,4) and 

hence the resul ~ 0 
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Let a; be as defined in Section 2.4 and 

< un} 

~~OftUV 4.2·. Let ~+(u) b . t __ L~ ( 0 < < 1) J.IU:. n.r.n 'f' e a square -z..n egL'UUve ,on _ u _ 

function wi th 
l.-

(4.2.16) J
1 

{cfl+(u)]2 du > 0 
F+(O) 

and Zet Hl be true. If 

flo +-1 + 2. -/) 
[a(n Tn (U);T) - ~ (u)] du -p-> 0 1 

T ln o 

(4.2.17) 

hoZd8, then sla ~> N(O,l) , where a2
• V(SIT) and, s 'is the'same 

n n 

'as defined in (2.4.2). 

PROOF: As in Theorem 4.1, let y;. F;(/X
i

/) where F+ denotes the 

1 1 
+ + +} cdf of Xi • Let Ui - Yi - Wi G({Yi ) , where G(u) is the cdf of 

y+ and 
1 

and 

Wl, ••• ,Wn are iid uniform on (0,1) • Let 

where R; i~ rank' of U; 

Theorem 2], where 

Then sepia + N(O,I) ~s n + 00 [see [27], 

\ 



........................... ------------------:~4~.-----

(4.2.18) 

Now we show that 

" 

t + + '" 2 - +L [a(ri,T) a (ri)} 
r >T 

i " 

- n fI (a(n r+-1(U),T} - a+(1+[unJ»2 du 
T ln n 

o 

(4.2.19) 

< 2n fI 
- T ln 

o 

(a(n r+-1{u),l) - ~+(u»2 du 
r n 

The first integra1 in (4.2.19) -X-> 0 by (4.2.17) and the 

second converges to zero by Theorem V.l.4 of [9]. Therefore, 

(S-S<1»
2 

E { 2} -p> 0 
a 

Proof i8 camp1eted from the fact that (see (9], p. 

161). 0 

As in the case of tests for randomness we can prove rèsults 

similar to Corollaries 4.1, 4.2, and 4.3 in this case also. Resulta 

along these lines for pure1y discrete distribution functions are given 

in (21). , 

f , 
,-
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REMARK 4.1: No such resu1ts for H2 and H3~are available in 1itera­

ture. In case of k-samp1e test for randomness we do have similar resu1ts 

(see Conover [3]). 

4.3 ASYMPTOTIC DISTRIBUTION UNDER CONTIGUOUS ALTERNATIVES. 

" Let uS first note that the loca11y most powerful conditiona1 
..... 

rank test for Ho and Hl is a linea~ranK test, under certain regu1ar-

ity conditions [see [3], Theorems 6.1 and 7.1]. Now, we shall discuss the 

asymptotic distribution of S under contiguous alternatives [in both 

-cases: for testing Ran'domness and Symmetry]. 

Let us consider a distribution function F(x,8) vith parameter 

e. Let 

respect to 

f(x,e) represent the Radon-Nikodym derivative of F(x,e) vith 
t'I 

F(x,e) and assume this exista. We define the generalized 
o 

Fisher's information 

(4.3.1) 

The distribution function of y,. F(xi8) is denoted by 

G(uj8) , where F(x;6) ia the distribution function of X. Let the 

distribution function of the X'a under H be dedôted by F(x;e) 
o 0 and~ 

consider the alternative 

H : xl, ••• ,X are Independent and Xi la an n 

distributed according to F(x;e
i

) . 



The asymptotic distribution of S is found under the 

conditions 

(4.3.2) 

and 

(4.3.3) 
n 

lim I(F,ao) L (6i -ao)2 - b2 

n-+oo i-1 

for 0 < b2 
< 00 where l() satisfies 

Let also 

(4.3.4) 

exists and 

(4.3.5) 

o < lim 
s-a o 

r(F ,a) • r(F,a ) 
o 

< 00 

a aë f(x,S)/s-eo • lim 
s-+e o 

f(x,S)-f(x,8 ) 
o 

6-6 o 

f(x,e ) e lim f(x,6) 
o 6-+6 

o 

exists almost everywhere with respect to F(x,6) • We shall omit 
o t 

:>b. 

the double subscript implied by conHitions (4.3.2) and (4.3.3) in order 

to take the limite Let 

(4.3.6) 

be likel1hood ratio and cons1der the stat1stics 

J 



Il 

(4.3.7) 

and 

(4.3.8) 

w • 2 o 

T • o 

where we denote ~(u,Fte) for 
o 

(4.3.9) 

LEMMA 4.1: Cbnditian8 (4.3.2) t~ugh (4.3.5) imply T + N(O,b2) 
o 

undel' H 
o 

PROOF: Proef i8 omitted (see [3], Theorem 8.1). 0 

LEMMA 4.2: 

(4.3.10) 

and 

(4.3.11) 

undel' H 
o 

Undel' rondi tians of Le"",a 4.1" Ille have 

1 2 log L - T - - b ---> 0 o 0 2 P 

1 2 2 log Lo + N(- 2 b t b ) 

PROOF: See Conover (1973a). Theorem 8.2. 0 

57. 



" 

/ 

Let 

(4.3.12) 

.~ 

n 
S' - S - E{S/T} - L (Ci-C) a(Ri,T) 

i-1 

58. 

The limiting distribution of S' is already given in Theorem 

4.1. 

TIlEOREM 4.3: Let 4>(u) be a non-constant square integro.ble function on 

o ~ u ~ l', and let 

(4.3.13) f
I -1 2-

(a(n Tn (u),T) - 4>(u» du -p-> 0 , \ 
o 
, 

hold under H • Then if o 

holds, the aonditions of Lerrrna ~.1 imply that s' is asymptotioaZZy 

2 
N(~e;a) under Ha' ~here 

and 

(4.3.16) 2 ~ -2f01 -2' a - 1. (Ci-C) (cf>(u)-cf» du 
i-1 

PROOF: We sha11 out1ine the proof. From (4.2.9) and (4.2~11) we have 

S'and T asymptotica11y equiva1ent under H • This and the first 
C 0 

, 



resu1e of Lemma 4.2 imply that the bivariate random variables 
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(5',10g L ) 
o 

and converge in probability to the same limit. Under H 
o 

by Theorem 4.1 and Lemma 4.1, we have T + N(O,cr2
) and T + N(O,b2) • 

c 0 

Note also that 

T -o 

riance of Tc and To i8 

(4.3.17) oV(T,T)­c 0 

because E{T} - 0 • 
o 

Rest of the proof that (T ,T ) 
c 0 

i8 asymptotically 

bivariate normal 18 the same as in [9], p. 218. This implies (S',log L ) 
o 

is asymptotica1ly bivariate normal under H and the parameters satisfy 
o 

the conditions of LeCam's third lemma, p. 208 of [9] and so S' is asym-

ptotically normal o 

/ 
Now, we state an analogous resu1t under Hl ' the proof of 

which 'is similar to the above theorem. Let 

(4.3.18) 

1 Let F(x,6) be a symmetric function for e· e 
o 

ia true) and define likelihood function 

(4.3.19) 
f(X

i
,6

0
+tl.) 

f(Xi,Oo) 

, 

(when Hl 



( 
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Assume 

(4.3',20) 6 + 0 , 

(4.3.21) 

and 

o < 11m 1(F,6) - 1(F,6 ) ~ œ , 
e....e 0 

o 

where I(F,e) 18 defined by (4.3.1). As 'T in (4.3.8) let 
o 

f 

TIlEOREM 4.4. Let F(x,e) 8atisfy (4.3.4), (4.3.5), (4.3.22) and .., 

If (4.2.17) hotds under Hl for Bome 8quare integrobZe (on (0,1») funo­

tion ~+(u) that satisfie8 (4.2.16), then (4.3.20) and (4.3.2i) imply 

that the sequenoe S is asymptoticalZy N(~~,02) ~r Ha' where 

0
2 

ia given by (4.2.18) and ~6 by 

Il + + 
~6 • n ~ + ~ (u) ~ (u,F,e ) du 

F (0) 0 

(4.3.23) 

and the 8equence sion is asymptoticaZZy N{~àla,l) • 

-
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r f_ 

PRDOF: The proof i8 slm11ar to the proof of Theorem 4.3 (see Theorem 

9.1 of [3) and hence we omit It. 0 

CI 

4.4 ASYMPTOTlp EFFICIENCY. 

When testing H t if there ls convergence 
0 

n 

(4.4.1) 
l (Ci-C) (91-9

0
) 

1-1 
n n -+ P2 

( l (C1-C)2 r (e -9 )2)1/2 

1-1 1 .. 1 'i 0 

then the asymptotlc efflclençy of the test uslng S 18 defined (8ee [91 

p. 268] as 

(4.4.2) 

where Pl is glven by 

(4.4.3) 

I~ $(u) $(u,F,90 ) du 

p .. --------~---------------------
1 fI 2 fI 2 1/2 ( 0 (~(u)-~) du 0 ~ (u,F,6

0
)du) 

.. 
If we want to compare two tests, for which <P(u) dlffers'we 

ca1cu1ate,;the asymptotlc relative efficiency (ARE). In the usua1 case 

Ci's are the sarne, then the ARE of the test using ~l(u) , say relatlve 

to the test using ~2(u) ls 

J
I 2 fI 2 

( 0 ~l(u)~(u,F,e~}du) 0 (~2(u)-~2) du 

(4.4.4) ARE '" 1 1 
~l ,<P2 f 2 f 2 ( 0 ~2(u)~(u,F,eo)du) 0 (~1(~)~1) du 

-. 
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r 
Now let US mention thé qat:l$ed Pl' s ... in different methods of handling ~ 

/ 

ties (see [3]). When-we use average score method Pl is given by 

f~ ~a(u)~(u,F,6o) du 
Pl • -.;....,..1-----------

(f
o 

(~a(u)-~)2du I(F,9
0
»1/2 

(4.4.5) 

where ~a(u) i8 defined by (4.2.12). Using midrank method we have, 

where ~ (u) m 

(4.4.7) 

f
I ~(u)~(u,F,9 )du 
o 0 

p • --~~--------------------

(fo
l 1 

1 (~ (u)-~ )2du I(F,e »1 2 
m m 0 

is defined by (4.2.14). By using randomized rank, we get 

f~ ~(u) (u,F,6o)du 

Let us find out the ARE of an average score test (A) relative 

to a randomized rank test (R). The numerators of both pI's in 

(4.4.5) and (4.4.7) are identical, because ~(u,F,e) ls constant over 
o 

the same interval in which ~(u) 

(4.4.8) AREA,R "" 

ls averaged to give 

f
I 2 
o (Hu)-~) du 

f(~ct(u)-~)2 du 

~ (u) • ct 
Renee 

\ 
Note that (4.4.a) is greater than or equa1 to one with equality 

only if ~(u) is constant in the same interval_where G(u) i8 constant. 

Theorem 6 of Putter (1955) given below as Theorem 4.5, is a special case 

of (4.4.8). 
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THEOREK 4.5: Undett the regutat'i ty oondi tiens, undett rJhi ah (4. 4 • 8) ho las J 

in" th8 same sèt up as in Seotion 3.2, the ARE of randomized test tJith­

respeot te averaged soore (01' midztank, as they a1'e the same in WUt:JO:rx:m 

test) is 1 - l P~ • 
k 

PROOF: 

(4.4.9) 

$(u) • u , in Wilcoxon test and hence the denominator of (4.4.9) ia 

(4.4.10) 

• 
Let qi - Pl + P2 -f: ••• +: Pi· 'The $a (u) ia given by (udng 

(4.2.12» 

t dt 

(4.4.11) 

Therefore the numberator of (4.4.9) 

, 



~~ 

. . . 

J Now, we will be through if we prove that 

2" 3 
3 r (2q -p -1) p • 1 - l p , or 
'1 1 i 1 i i 

(4.4.12) r P~ -.1 
1 

64 • 

For on1y one point mass (i.e. k-1) (4.~.12) i8 triviàl. Let , 

us assume that it' is true for k· 1 (i.e. it holds for a11 probabil-
., ~ 

1ty distributions with i points having positive probability. 

(4.4.13) 
1 3 

:. l Pi - 1 
i-1 

. 2 
(2q -p -1) 

i i 

We want ta prove that It 18 true for any distribution vith (t+l) 

points havlng positive probabl11ty 

3 
1+1 3 3 t Pi 3 r Pi· q l ~ + PR.+1 ' where q - 1 - Pt+l 
1-1 1-1 q 

3 
• q Ü - 3 

Pl 
using (4.4.13) for probability ,distribution w1th i • l, ••• ,t 

q 

as probabilities 
R. p I-p 
\" i' t+l - , 

(l. --. • 1) 
1-1 q q 

Therefore, 



...... --, 
,~ 
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, or , 

(4.4.14) 
U1 3 .41 2 3 2 
i~1 Pi ·,1 - 3 i~1 (2Qi-Pi-1) Pi + 6Pt+1 - 6Pt+1 

t 

,- 6p~+1' i~1 (2Qi-Pi-1) Pi 
, . 

lt can easily be shown -that for every n , with k - n+1 

(4.4.15) 

Therefore by (4.4.14) and (4.4.15), we have 

U1 3 c - t+1 2 
L p * 1 - 3 L (2Q -p -1) 

i=1 i i-1 i i 

Hence, by induction hypothesis the resu1e fo11ows. ... o 

In case of tests for symmetry,. Hl . the asymptotic efficiency 

becomes (Canover (1973a» 



( 
\ 

• 

66 • 

.. 

(4.4.16) 
f

I + + 2 
[ + t ~ (u) ~ (u,F,e )du) 

e ,. ~F~{~O.) ________ ~r~ __ O ____________ __ 

fI + 2 [1 + 2 + [~(u)] du + [~(u,F,S.)J du 
F (0) F (0) 0 

'l 

We ean diseuss as in case of Ho ' the 8symptotic relative 

efficiencie1s of different methods of handling ties and prove Putter' s ; 

(1955) Theorem 2 as a special case. 

4.5 NO METIiODS OF HANDLING TIES AT ZERO: COMPARISON. 

u 
!Wo methods of handl1ng ties at zero in Wilcoxon signed rank 

.~~ '-.', \ 
tests has been mentioned in Chapter 3 (Pratt's method and Wltcoxon's 

method). In this section, we will compare the aaymptotic efficiencies ,~, 

of two, as given by (4.4.16) and show that each one performs hetter in 

different conditions (see [4]). 

'. Let X
l

,X2, ••• ,Xn he a random samp1e with discrete distri-

bution function F(x,9). Let p(x,e) represent the proha~ility func­

tion. In order to apply the results of preceding sections, F(x,S) 

~hould vatlsfy the following conditions 
/ 

(ii) f(x 6) ,. p(x,6) 
, p(x,6 ) 

F(x,e ) 
o 

o 

a 
(iii) as f(x,6)la_e 

o 

for sorne e· e 
o 

exista almost everywhere with respect to 

exista almost everywhere with respect to 

• 



.. 

F(x,e > o 

(iv) lim f(x,e) - 1 
a-.o 

\ 
alacst everywhere wlth respect to F(x.e) 

o 

67. 

(v) lim [ la3e f(x,6>! dF(x,e ) • r lia f(x:e)le_e 1 dF(x,e )<CD e-.e ...00 0 J ~ 0 0 
o 

a a 
(vi) ae f(x,6)le_e • - ae f(-x,e)le_e 

0' 0 

'. 
" 

\' The above condition& do ho1d for the examp1es uqder considera-

\ 1 

tion. Let 

(4.5.1) 

where i equals the number of observations which equa1 zero, 
o 

are scores. If scores satisfy the conditions of Theorem 4.2 then (4.5.1) 

ia asymptotica11y standard normal (ln Conover (1973b), the statistlc (2.1) 

16 incorrect and (4.5.1) ls corr~~ted form of that). In the fo11owing, 

l ' 
~e' will ca1culate asymptotic efficiency of T from t4.4.16) in differ-

ent situations. 

(a) W: Wiloo:ron's Test with Pmtt's method fol' ties at zero œtd 

(4.5.2) 

the Randomized Rank method fOl' àt~el' ties: Here th~ scores 
f 

+ a(i) • i/n+1 and converge to ~W(u). u 0 < U < 1 

Hence (4.4.16) becomes 

+ 2 
[~ (u,F,e)] du • 

• - 0 "e -W 

" 



(b) W: WiZoo:rxJn'8 test with Pratt's method fop ties at sero 

and averog"1 (= midPankJ.rank method for ot~er ties: 

68. 

Since the midrank method is used, the score does not converge 

to u because of discontinuities in the distribution function. In this 
~ 

case the scores converge to 

(4.5.3) e ),e ]/2 
o 0 • ., 

And (4.5.3) and (4.4.16) gives 

3[f1 u p+(u,F,e )du]2 
Po 0 

ew .., ------::---------

(1:"" l p~) JI [CP+(u,F,e)]2 du 
i P 0 

o 

(4.5.4) 

(c) W : WitOO3X)n'8 test with zero disoorded and rondomised o 

ronk method for other ties: 

Tne scores start at 1/(n+1) for nàn-zero observations rather 

than at about P as in. the previous case. TQe scores converge to~ 
o 

(4.5.5) • 

which gives 

(4.5.6) ~ .. 
o 

l' 

4>w (u) .. 0 
o 

u-p 
o 

:s --
1-po 

o < U < P - o' 

p < u < 1 
o 

J
I + f JI + 2 3[ u ~ (u,F,e )du - p cp (u,F,e )dU)/ poo p 0 

o 0 



(d) 

(4.5.7) 

W : Wil.aomn'8 Test with zero disaard2d and midrank method o 

for other ties: , 
J 

From (4.5.3) and (4.5.5), we have scores converging to 

<p_ Cu) e 0 
W o 

-
o < U < P 

- 0 

p < u'< 1 
o 

which gives 

(4.5.8) 

Raving discussed the asymptotic efficiencies of different Methode of 

69. 

handling ties in Wilcoxon's signed raak test, we give t~ examp1es; one 

of which favours Pratt's method and the other discarding zeros. 
( 

EXAMPLE 4.1: Let us consider the discrete uniform distribution. Under 

null hypothesis the probabilities are equal and symmetric about zero, 

namely 

. (4.5.9) P~x,O) = 1/(2k+l) 

\. 
and zero elsewhere, under the null hypo~hesis. Let the alternative be 

~(X=x) 
l+xe 

!:::-

2k+l 
x = 0,±1, •.. ,,:tk 

• 0 elsewhere. 



Then H 1 1s e,. e 0 - O. We have, 

1 
o < u ~ Po • (2k+ 1) 

(21-1) < < (21+1) 
(2k-1) u - (2k+1) 

i ... 1,2, ••• ,k 

Therefore (2.5.2), (2.5.4), (2.5.6) and (2.5.8) beeome respect1ve1y, 

For k 

e.. - 1 w ' 
-

~ - (16k3+8k2-7k+l)/E16k3+8k2) 
o 

, and 

For k • 1 , W and W are equiva1enp with efr1ciencies 
0 , 

> 1 , we have 
• 

W < W < W < W 
0 0 

Henee Pratt's method seemS to be preferred. A 

dU feren t ~ , Sr for dif feren t k has beén 8i ven i}.. [4] 

EXAMPtE 4.2: Let 

- 0 \ , elsewhere. 

70. 

/ 

1·. 



where 

'l1le tes t of syaDetry 
1 

Hl tes ts a - ï . 

In th1s case we have for 0 < U < 1 and 
~--------

• 41 , 

p - p o 0 

1 < 1 < k - -

k 
Pi • P + 2 l (2k) (1.) 2k , 1 > 1 

~ 0 j-l' k+j 2 

k-l 2 
Let 1 - 2k - 2 l P j • Then we have 

j=O 

312/l8k{1-p3») 
o e '"' W 

e:-: .. 
W 

e .. 
W 

y 0 

The above formulae do not sU8g~st any obv1ous ordering but 
\ 

some numerical results for different k (see [4]) yield that Wo is 

preferred. 

.. 
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CHAPTER 5 
1 

GENERAL REMABKS 

ln this chapter we give some general remarks which may be of 

some use to a practical statistician. The main concern while using a 

rank test when ties are present is that, 'the null distribution of statis-

tics 'depends upon the pattern of ties and is usually difficul t to compute. 
r 

Let uS note the following points. 

(i) As proved in Section 4.4, the test statistics based on the 

average score method is more powerful than that based on the randomized 

rank procedure. But as the tables for each vector of ties are different 

in the former case, ~t may not always be practicable ta use the average 

sco,re Methode However, we suggest the use of average score method in case 

of l~amPles, Le., whenever a large sample approxima;ion is used and 

mo~ test statistics according ta the charge in the variance (for 

example, se'e (3.1. 6». 

(ii) ln case we do not have the modified form of the statistics or 

limiting distribution of the test statistics, when ties are present ls 

difficult ta compute we should note that using the original test' statis-

tics and ranking ties by averaged score method, increases the level of s1g-

nificance th an the one indicated by tables (Hâjek (1969». 

- 72 -
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(1ii) We a1so suggest the use of Computer Tab1.es. Dy this we mean, 

the use of computer programmes, wh1ch should be available in readily usa-

ble forms, to calculate the probability (given a vector of ties) 

p[S > s/T] ,where s ta the observed value' of Sand T is the vector 

of t1es. By this procedure we do not have to print huge amounts of tables 

which may be uBed rarely. Klotz (1966) has given an algorithm to compute 

• approximate probabilities 1n case of Wilcoxon two sample test. The approx-

imat10n is quite good for large n (n ~ 5) but for n < 5 it fails like 

other approximations. 

(iv) In tests of symmetry we hp.ye the problem of zero tlbservations 

apart from the usual ties. Among the two methods Pratt's and Wi1coxon's, 

as discussed in Section 4.5, it is ha rd to recommend one over the other. 

As argued by Pratt, omitting zeros from the observations (Wilcoxon's 

method) seems to be causing some loss of informationr, Rence intuitively, 

we suggest the Pratt's method (ranking zero along with other observations 

and then dropping them from the rank vector). 

(v) If the number of tied observ~tions are very few, it might be 

much easier to use the randomized rank procedure and hence use the usual 

tables (see Section 3.1) without losing much power than to use averaged 
• , 

score method or midrank method and so requiring tabulation. 

, ,., 
'- / 
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