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. ABSTRACT N

‘

In nonparametric testing based on ranks, thei&o/ccunenee of
ties is a fairly common phenomenon. Many methods have been suggested
for assigning ranks to tied observations in such problems. In this
thesis we review and discuss these methods with \regards to their rela-
tive merits under different situatioms. The recent extention of the
asymptotic theory of rank statistics from continuous to discontinuous
distributions has made it possible to calculate the Asymptotic Relative
Efficiency (ARE) of different methods of handling ties. A comparison,

. .

based on ARE, among the three main methods of handling ties, namely, the

average scores, midranks and randomized ranks methods, has been fdiscusaed.
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CHAPTER 1

’ INTRODUCTION

¢ Most nonparametric test procedures based on ranks, assume the
continuity of underlying distributions.. In the case when data consist
oirindependent observations, this assumption makes the (theoretical)
considerations of ties unnecessary, since then no tie can occur with
positive probability. In practice however, ties do occur even when the
underlying distributions may be assumeé continuous. This happens due to
various reasons, such as r?unding off errors, limited refinement of mea-
suring instruments etc.. In the discontinuous case however, ties cannot
be ignored even in theoretical considerations. Since the occurence of
ties is fairly common in most practical data, it should be of considera-
ble incerest to statisticians using nonparametric methods to study the

operating characteristics of various methods of dealing with tied obser~

vations.

i
"

In the present study we discuss this problem when the set of
observations are mutually independent and the underlying distributions are
either continuous or discontinuous (including discrete), As early as in
1945 this problem was recognized to be of practical importance and methods
of treating tied observations in two-sample test were proposed by Wilcoxon
(1945). Kendall (1970) and Krushkal and Wallis (1952) have also dealt

this problem in their respectivé tests. Putter (1955) considers the case

of purely discrete observations and examines the merits and demerits of



randomiaed vs. non-randomized methods of treating ties. A study by Pratt
(1959) gives intuitive arguments to show that the procedure suggested by
Wilcoxon dealing wi?h zeros in Wikfoxon signed rank test has many short
comings. Pratt suggested a new me\hgg/which ranks zero also and then
dropping their ranks, whereas zeros are totally ignored in the procedure
proposed by Wilcoxon. (See Conover (1973b) for a detailed comparison of
these two methods.) After Putter's study many papers dealing with nonpar-
ametric tests and their efficlencies in the discrete case have appeared
in literature. Chanda (1963) obtains the efficiencies of Wilcoxon two
sample test un&er different discrete distributions. Among others, Bﬁhle;
(1967), Klotz (1966), Krauth (1971), Taylor (1964) and Verlickova (19;2)

should be mentioned. Conover (1973a) discusses the tests of randomness

and symmetry under general case (with no continuity assumption).

k3

In Chapter 2 we give an account of different methods of hand-
ling ties and demonstrate these by means of an example. Some major non-
parametric tests in forms appropriate for continuous distributions are
also described in this chapter. As pointed out earlier, ties in this
situation do not present any problem and may be treated by any of the
three methods described in Section 2.2. In Sections 2.3, 2.4 and 2.5, we
discuss the common rank tests for randomness,symmetry and indepeﬁdence
respectively. Section 2.6 deals with one and two way layouts Analysis of
Varlance rank tests and also a new class of conditional tests for two way
layout Analysis of Variance problem as proposed by Hodges and Lehmann
(1962) and discussed at length in Mehra and Sarangi (1967), Mehra (1968)

and Sen (1968).
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Section 3.1 of Chapter 3 includes a treatment of, ties in X ‘\‘-\\\

general for various tests discussed in Chapter 2. The coﬁditional means

and variances given a vector of ties, have been given in this section for

i;rge sample approximations. In Section 3.2, 3.3 and 3.4, respegtively,

the Wilcoxon two sample test, the sign test and the Wilcoxon one sample

signed runk test are discussed in detail, 1in case the ties are present in

the data. A review of the®liter ture dealing with common one and two .

sample tests is also given in Lhese sections.

Chapter 4 deals with the asymptotic efficiencies of the tests
discussed earlier both With and without the assumption of continuity of
the distribution gunction. In Section 4.1 we introduce the.concept of
asymptotic efficiency. Section 4.2 gives the asymptotic distributions of
the linear rank statistics under different null hypotheses and jin differ-
ent cases arising from different methods of handling ties. In gection
4.3 the asymptotic distribution of linear rank statistics under contig-
uous alternatives are given. In Section 4.4 expression for asymptotic
efficiencies under appropriate conditions are derived. In this section
we also show that Putter's (1955) result is a special case of a result
due to Conover (1973a). In Section 4.5 we show with the help'of two exam-
ples that in testing for symmetry using rank tests, thg two methods 6f‘
handling ties at zero, descE;Eedﬂlater, are.superior than each other in

A

different situations.

Finally, Chapter 5 gives some general remarks and conclusions

which should be of practical value for users of nonparametric methods.




' CHAPTER 2 : . *

TIES IN CONTINUOUS CASE

Th this chapter we introduce some major nonparametric (rank)

4
tests and describe for these tests various methods of handling ties pro-

posed and discussed in the literature.

L

2.1 NOTATION AND PRELIMIQARIES.

[4

(1)

Let x denote the ith smallest co-ordinate in n-tuple

1) (n)

X = (xl,xz,...,xn) so that =x and x denote the minimum and maxi-

mum of n-coordinates respectively. If X = (xl,xz,...,xn) the vectorggf

ey

n observations, the statistic is called the 1ith order statistic
) 4

ang” X(.) = (x(l),x(z),...,x(“)) is the yector of order statistics.
/

?
N—

Now' supppse that with probability one no two co-ordinates in X

*coiqpide; this 18 ,the case, for example, when X ’XZ""’xn are inde-

1

pendent observatons with common continuous distribut&on function

F(x) =P (X<x). Then T -

(2.1.1) Ri(x) = # X's g_xi
is called rank of xi . Clgarly, Y
, 5,
. 0 (Ri) ) k] a
(2.1.2) - X, = X . '
LT \ ’ i .
‘ »
"y
’ [
L § ) -4 -\) . )
/ o
L4
o)
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¢

' The statistic R = (Rl’RZ""’Rﬁ)' denotes the vector of ranks.

T

The rank tests.uﬂﬂer consideration can be divided in four major

-

)
2

groups. )
Group 1. Tests of Randomness !
Group 2. Tests of Symmetry
’ o
Group 3. Tests of Independence
Le
Group 4. Anglysis of Varilance Tests.
- 4
Let
. 0 ’
(2.1.3) s= ] c, a(R) , d
i i
; i=1
where a(*) is a function on (1,2,...,n} and C, dre the so called

We shall denote ai

S is Ealled linear rank statistic. For

regression constants., for a(i) , 1 =1,2,...,n

ai's are called rank scores.
different score functions a(*) and appropriate constants Ci , the

statistic (2.1.3) covers most of the test statistics under the above four

groups.

/

4 »

2.2 RANKING OF TIES.,

Although the brobability of a tie is zero when observations are
independent and have a continuous distribution function, ties do occur in

practice as stated earlier. The probability distribution of S , defined
. i ~J
by (2.1.3) and the properties of tests based on S , however, remain

unchanged when any of the methods described below is used to assign ranks

t

¢




¢ ’ . 3

to tied-observations. Following are the three modé.commonly used methodsd

of ranking tied observations. . n ?

. ‘

s .
L \

(a) ‘Randomization method

«(b) Averaged score method o
(c) Midrank method. ‘ \\v/>
et .~ ' ¢ .
(t,) (t.+1) .
(2'2'1) . x(l) b oo‘- - X 1 <ox h = es e , ' :
L) (Ty+e.otT _+1) ' .
=X 12 eee <X 1 8 ln .. = x{n) '

©

:
where Tl,Tz,...,T 6aré the sizes of ties and Z Tj =n ,
] g j=lo

. (a) RANDOMIZATION METHOD.

In the r;Ldomized rank procedure, we assign ra%ks to tied obser-
vations on the basis of some random experiment in which -edch permutation

of tied observations has same probability of occurence. ‘This random
h A)
experiment is introduced only to deal with tied ob3ervations and it is in
_no way related to the basic experiment. The outcome of this experiment
' ‘

' on the other hand: does affect the final decision.

v

(b) AVERAGED SCORE METHOD.

AR
-~

For a given vector of sizes of ties (to be called vector of

ties henceforth) T = (Tl....,rg) and scores 81587500058, , we shall

-
L

introduce averaged scores * &




. . . L h -
T P R L :
(2.2.2) a, = a(1,7) == ;o a . :
. k j'Tl+."-.+Tk-1+1 . \
1f. ‘Tl + LN ) + Tb-11—< i i ‘tl :"w-c. + ‘TK‘ ] it *
. Then (2.4.3) is modified as v
. r/\ ) N ) . a
A _ n _ .
(2.2.3) S= ) c, a(R,,T) . .. -
=1 i i

>
\ +

(c) MIDRANK (AVERAGE RANK) METHOD,

v 4

We assign the midrank for all the obgervations tied. For

exa‘mple, if ' .
D ey
4 ’ X ’5 s = X —’A ‘e ,
>

: ti_lﬂi-i-l (1,,#1) . (1)’ ¢ -
we agssign rank — to " x sesesX and then also define
scores for half integer 1 . 2 - . ’

T, T4 |
i-1 "4

(2.2.4) a(Ri,‘t) = a( 5 )y,

- ' '

. and modifications similar to (2.2.3) can be incorporated.

_Now we give an éxample (to illustrate the above thgae methods.

4 . .
- L3 \ \.

EXAMPLE®*2.1: Let S be as ¥ (2.1.3) with c, = 1 for 1 =1,2,...,5, ~
' - . ' ‘

C R . ' ,

a®) = V™, =8 . :

and X = (X,Xp,0.0,% ) ® (15,16,17,18,25,16,17,19,16,20) , where

3
g,
~ Pl !
. 3
i )
i >
’ ' -
N ;
.
) .
.

A . .
. wd
. T ¥ LN




~

Y(t) denotes the quantile function of the standardized gormal distri-

bution function. We have xz s X;—~and X_  tied for ranks 2 , 3 and

6 9
4 and X3 and X7 for 5 and 6 . In randomization we assign ragk
4 to X2 , 2 'to x6 and 3 to XS « Similarly 5 for X3 and 6
for X7 . Then we have
" S(ran).” T Mo .
[ 4 o
— L]
S'S(ave) n o -27 ’ and
s(mid) J= - .25 .

Though it seems in this case that the above three values of S

are quite close but this may not be the case in general. In some cases

[

(see Section 3.1) the midrank and average score prdéedurés are identical.

o

2.3 TESTS OF RANDOMNESS.

b -
! ,j“‘>

Ho : We shall say random variables xl,xz,...,xn satisfy the
hypothegis of randomness Ho » 1f they are independent and have common

distribution function F(x) , L.e., if P = L((% 5e»X ) , P € B 1ff

)
(2:3.1) P(lexl,xzfxz,...,xnjgn) - F(xl)'F(xz)'...'F(xn) ’

-0 < yx <x2<.._<xn(w ,

1

¢

"where F 1s continuous. ’




-ﬁo : When F 1s arbitrary in Hc; , we have §° . Clearly
H < i; Coe ” .

Suppose that the obaeS&étions are rec&rded under differenf
conditions. We want to know whether the differences in|conditions have
affected their distributions (Xi's are assumed t; be independent). In

other words, we want to test .
1
®
Ho : Fi P , 1<4i<n for some F
(2.3.2) ‘;

vs. K : Fi ¥ FJ , forsome 143 , 1<1,3<n.

The alternative, say K , may be described as a family of distributions Q

for the form (2.3.1) ; K = {Q} . The following results whose proof is

elementary are needed for our later work. Let R denote the space of all

- permutations of 1,2,...,n . If

B
=R 1

—- n - n
(2:3.3) a== ) a, , C= I ¢
1=1 1=1

and R is uniformly distributed over R , then

n n

1
EGS) == ] ¢ Z a, , and
D yey tgep 1
(2.3.4)
ve) = 3 9’ ] (a-m2
- — C,~C a,~a ’
n-1 y=1 1 {=1 i

where S 6 is given by (2.1.3).




10.\ v

wt x’x ’II.’x 'x ’..l’
1°72 o, nl+1 n1+n2

1 and n, . Let Fl and F2

o
tribution functions of the populations from which the first and the sec-~

X (n1+n2 = n) denote two

combined samples of sizes n be the dis-

ond samples are drawn, respectively. We want to test Fl = F2 « Now '’

’

suppose F. and F, differ in location only, i.e., F, (x) = F(x-u )
2 1 1

1
and Fz(x) = F(x—u2) holds for some F and some conséant ul and My s

then we have the two sample location alternative:

-

- n n

. 1 2
(2.3.5) Q(X,<X.,000, Xk <x ) = I F(x,~u,) T F(x -M,) .
1-71° n="n =1 171 =1 n1+j 2 ’

i S

If sign of (ul-uz) is known, the alternatives are one sided, otherwise
two sided. These alternatives may be summarized as one sided

rd
(1) ul > Hy (11) ul < My and two sided ul ¢ u2 .

Now we discuss some of the important tests. For these tests,

tables of exact probability points are available in many books, for
example, Hollander and Wolfe (1973), for small sample sizes. In case of

samples of larger slze the approximations are given. Generally, the test

A

procedure consists of rejecting HO when S 18 too large or too small

or both depending upon the nature of the alternative.

(a) WILCOXON TWO SAMPLE TEST.

Let ai = 1 and Ci =1 for 1< n1 and zero otherwise then

nl .
(2.3.6) S= )] R

[ = sum of the ranks for first sample.
i=1 )




ot
=

X

11.

-
y
v u:\
By (2.3.4) under Ho we have
(2.3.7) E(S) =2 n (ntl) , V(S) = == n.n (n+1\) |
N 21 ’ 12 "12 *
o -

We note again that the tied observations may be ranked according to ‘one

of the three procedures described in Section 2.2.

(b) MEDIAN TEST.

If

0 if 1<3 (av) =
(2.3.8) a, =

Z ‘ 1 if i>%(n+l)
and C, =1",1<1<n, , then

t

n n
1 1

(2.3.9) s= [ a®) = [ uk -0l ,

i=1 =]
. . o
where u(*) 41s given by
N 0 , x <0
(2.3.10) u(x) =

&
is called the median statistic. By (2.3.4) under H0 we have

1 .
7 n1 if n even
(2.3.11a) E(S)J = A
) 1 n-1
k 3 n1 r if n odd , and




12,

’S

%

n, n

1 2

4 (o-1) if n even

(2.3.11b) V(S) =

n,n,(n+l)

L2 if n odd .

4n

REMARK 2.1: Usiﬁg a combinatorial argument it can be shown that under

Ho » S follows the hypergeometric distribution (see for example [8]).

(c) THE VAN DER WAERBEN TEST.

]

i

In Wilcoxon two-sample test if we set a, = wc;;i) where P(°)

As the same as defined in Example 2.1 then we have the Van der Waerden test

statistic "
_ ;1 R, ,
(2-3.12) . S = w(——" .
{=1 n+l
By (2.3.4) under H, we have .
e n, n n
1 2 2,1
(2.3.13)  E(S) =0 , V(5) = o) 121 Ve -

REMARK 2.2: In tests\(a), (b) and (c¢) under certain regularity conditions

/2

(see [8]) S-E(S)/(V(S))1 follows approximately N(0,1) and hence

-
when sample sizes arg large we can apply this approximation.

(d) KRUSHKAL~WALLIS k ~ SAMPLE TEST. .

In the setup of (2.3.5) suppose we u§ve k-sample instead of
two and want to test the equality of ui's , 1=1,2,...,k , Krushkal and

Wallis (1952) have introduced the following test.




)

13.

Iy

Let us rank the pooled sample and if Sj be the sum of the

ranks of jth sample, then the test statistic is definéd by

Kk s
L _12 %y
(2.3.14) H = =05 jzl > 3(n+l) |,

where ny +.1F + .0 4 n, - nw.wjgxact percentage points of H are

given in Krushkal and Wallis (1952) for small ni's . If ni's are

large, H follows Chi-square diséribution with (k—i& degrees of free~
dom (d.f.). The test consists of rejecting the null hypothesis when H

is large.

REMARK 2.3. When k = 2 , the above test reduces to the Wilcoxon two-

sample test.

2.4 TESTS OF SYMMETRY.

"

H, : We shall say the random variable xl,xz,...,xn satisfy

1
the hypothesis of symmetry H

1°* if P e Ho given by (2.3.1), with F

satisfying symmetry conditions, {i.e.,

- T

(2.4.1a) F(x) + F(-x) = 1 for all x .

Hl ¢ P satisfies all other conditions of H
[

continuity of F .

1 except the

We can confine our attention only to testing symmetry with

respect to the origin, as the other cases follow with trivial modifica-~




tions, Clearly under H, 1if f(x) = 9—-—5—&5)- exists at a point x we

1

<

have

f(x) = f(~x)

The alternative against which H, 1s frequently tested is the

1
\ shift in median from zéro to some point A . Let the alternative K be

*a family of distributions Q of the form
<

¢

n
(2.4.1b) Q(X<x anxn) = ] F(xi-A) .

’...’
1 1=1

?
If the sign of A 1s known, we have one sided alternatives otherwise two

gided. Let ’

\ 1

Ve
R, = } u(|X1|—|XJ|)

i=1
= rank of X, when lxil's are ranked, d
where u(*) 1is defined by (2.3.10). S takes the following form when
we use it to test Hl .
. n + -
(2.6.2) - s= ¥ u(X) a(K) .
i=1
Under Hl ,» We have
n n
(2.4.3) ES) =2 ) a, amda VS =1 ] af .
. 1-1 1-1 ) P




15.

b
~—
—

o »

"Now we 'shall describe some of the important special cases of
the statistics (2.4.2).‘, Tables for tests (a) and (b) may be found in

Hollander and Wolfe [13]. Also, under certain regularity conditions in

tests (a) and (b) (see [8]) {S-E(S)}/{(V($)}/? follows N(0,1) as

n * > and hence when n 18 large normal tables may be used.

(a) SIGN TEST.

" Let a;=1,1<4<n. Then (2.4.2) and (2.4.3) give

n .
S= 7 u(x,) = # of positive observations

i=1
(2.4.4)

E(S) --‘21 , V(S) -% (under H)) .

REMARK 2.4: Note that if there are some zero observations, we may follow

one of the two methods outlined in Sections 3.1 and 4.5.

(b) WILCOXON ONE-SAMPLE (SIGNED RANK) TEST.

Set . a; = 1,121 <n andwe have from (2.4.2) and .(2.4.3)

-

n
S = Z RI u(xi) = sum of ranks of positive observations,
i=1 '

(2.4.5) . ,

Al

E(S) = -,f— a(ntl) and  V(S) = -21—4 n(ntl) (20+1)  (under H)) .

Remark 2.4 18 applicable here also. )




16.

(c) MEHRA'S TEST FOR PAIRED COMPARISONS (k-sample).

Tt
Let us consider a pggred comparison experiment involving k-

treatments. Sdppose that the n independent comparisons for the pair

ij
, | ,
(1,3) of treatments (1 <1 < j < k) provide observed comparison dif-

{
ferences (®=1,2,...,n ). Let G,

Z
118 137 i
distribution function which is adsumed to be continuous. The hypothesis

(z) denote theilr common

of equality among the treatments can be expressed as

Hi : Gij(z) + Gij(-z) = 1 and Gij(z) = Gi'

pairs (i,j) and (1',3") .

j,(z) for any two

The alternative may be "not Hi'. We rank the absolute values

of n (= Z Z n,,) comparison differences Z 1l1<1<j§<k,
1y 13 i32 v - -
g = 1’2""’nij) in a pooled sample. In case of ties we may use one of

the methods described in Section 2.2. Let r be the rank of Izijll

142

if 2 % > 0 and zero otherwise; similarly, let s

19 be the rank of

1348

lz, | 1f z <'0 and zero otherwise. Also, denote R CTR) nij
140 142 and zero o . , denote R r

=1 ij2
n
4, . §
and § ' - Z 8 . Under this set up Mehra (1964) suggested the
n 2=1 132

following test statistic.

Ay

k k
(2.4.6) L= 6[(n+) 2ot )k}L V(] V(i.J)/ni/Z}z ,
i=1 §Hi 3

vhere v (b1 o g LD _ ¢ (1,1
n n n




The test consists of rejecting Hi at level o if L > L, » where 2L

satisfies PH'[L 2 %,] = a. No tables for probability distribution of
1 .

L are available, for small n . But, for large n , L is asymptoti-
cally distributed as the Chi~square distribution with (k-1) d.f. wunder

H} (see Mehra (1964)).

m .

REMARK 2.5: For k = 2 , the above test reduces to the Wilcoxon paired

*

comparison test.

2.5 TESTS OF INDEPENDENCE.

°

H, : We shall say that the family {(Xl,Yl),(Xz,Yz),...,(Xn,Yn)}

satisfies the hypoth’esis of independence H2 » 1f all the 2n random

variables are mutually independent, Xi's having arbitrary continuous
distribution function F(x) and Yi'a having an arbitrary continuous dis-

tribution functior G(y) . We may write it as

n
(2.5.1) )P(xlixl,Ylfyl,xz_gxz,ngz,...,xngxn,Yngyn) = ir_tl F(xi)G(yi) .

l’\l

izz Continuity assumption regarding F(x) and G(y) in Hy ,

is dropped. Let us consider alternatives K = {Q} against H2 , Where

Q's are given by

- ’
[}

n-
S A(xi 'yi) ’

(2.5’;2) Q(Xix ,Ylf_yl,xz_(_xziniyz’!cu’xnf_xn'er_(_yn) = i 1

where A(x,y) is a continuwous two-dimensional distribution function. The

pairs (xi’Yi) are independent under Q but within pairs there is a




IIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIlllllllllllllllIIIIIIllll=’llll-"""1":_ |

18.

3

dependence. Statistics for testing Hz against alternatives of the

» form (2.5.2) are given by, / :
\ 14
n
(2.5.3) s = ) a(R)) b(Q) , ©.
¢ i=] '
where N
n
R, = } wu(X,-X) = rank of X, 1in seperate ranking
1 1
i=1 q |
and : ) T
n
Q = } u(Y,~Y,) = rank of Y, in seperate ranking; .
1,0 T 1

both scores are non-decreasing, wu(*) 18 given by (2.3.10). Tables for

JESEEN

the tests described below are given in [13].

(a) SPEARMAN TEST,

-~

Taking the Wilcox scores a
n
(2.5.4) S= 7

and it can be easily verified that under H2

&

(2.5.5) E(S) -'-};n(nﬂ)z and  V(S) -i%-znz(n-kl)z(n-l) ,

and distribution of S 18 approximately normal for large values of n .
If S 18 linearly transformed so that the minimum®and maximum values
are -1 and +1 respectively, it 18 called the Spearman Rank Correla-

tion Coefficient and 18 given by

¢ ®



12 12 0 1 1 1 1
(2.5.6) P =—3= [S-E(5)] = 5 Z(%-in-ix%-in-i).

» N =n n-n i=}1
) ¢

The test consists of rejecting H, for large |p]| .

REMARK 2.6: If we use median scores as in Section 2.3, the test is

called Quadrant test.

(b) KENDALL T-TEST.

Kendafl [14] suggests the following statistic fér testing HZ

*
(we use T to distinguish between the vector of ties T and Kendall T).

‘ | \

% 1 n n
(2.5.7) Ly D) sign(R,-R.) sign(Q;-Q,) .
i=1 §=1
'

*
The maximum and minimum values of T are +I and -1 respectively.
*
The test consists of rejecting H, when’ |t | is Iﬁr%’. For large sam-

*
ple approximation, let us note that T 1s a linear function of

(2.5.8) K=1] ] u(R-R) u(q-Q) ,
: T
" namely, n(n-l)(l+r*) = 4K . Under .H,. we have - -
) S 1 .
(2.5.9) E(K) = Z-n(n-l) , V(K) =33 n(n-1) (2n+5) ,

and the distribution of K is®approximately normal for large n (see

[

Kendall ([14]).



N

c | |

{

2,6 ANALYSIS OF VARIANCE TESTS.

~

gWe have already described \one-vay layout Analysis of Variance Vol

]

design (Krushkal-Wallis test), let us consider now two-way layout with

m independent random observations xijz s L= 1,2,,,.,m in the

i} 1}
(1,j)th ¢ékll j§ = 1,2,(..,k , 1 =1,2,...,m . Here k 1is the number :
gge » L2 b <myy s

be distributed according to common continuous distribution function

of treatments and n 1is the pumber of blocks. Let X

(2.6.1) Fiy(m) = Fy GebE)) -

~

3

where Ei may represent the unknown block effects. Then the hypothesis
of equality of the treatments effects (the null hypothesia) H3 » Can

be defined as

L4 = 4 = ‘
(2.6.2) Hy .{1 Fp= oo =F "

3!—3 can be defined as usual dropping the continuity assumption in H3 .

In the following, we shall describe two tests: "one based on gseperate . -

Q’\
rankings (Friedman test) and the other based on joint ranking of observa~ \i
A ) * \i,\l
tions after 'alignment'. ’ . ‘

REMARK 2.7: The model (2.6.’1) is used for aligned rank test onl;. For
Friedman's test we need the following weaker condition

F -Fi for some Fi y 1 =1,2,,..,n .

1]

&



\
(a) FRIE S TEST.
Let mij =] for {i=1,2,,..,0 and j = 1,2,...,k . Within .

each block ~rank the k observations. Let rij denote the rank xi.1

. n R
in ranking of X, ,...,X;, . Set RJ ) Tey » Ry == and

o 1=] )
Ree = B-}l— . Then Friedman's (1937) test statistic is

J
k
12n . .e 2
Q= e L RA-R)
=1 .
(2-6.3) !
' 12 kK ' -

o

3

We reject H, when Q 1s large. Tables for exact probability points
&
are available in Hollander and Wolfe (1973). Under H {

3 " Q has asymp-
totically, as n + « , Chi-square distribution with (k-1)

"\
freedon. /

(b) CONDITIONAL ALIGNED RANK TEST.
o

L ‘

The approach here is emtirely different than that in Friedman's
test. We use the rank comparison after the 'alignment' (defined below)
as presented in Hodges and Lehmann (1962), Mehra and Sarangi (1967),

Mehra (1968) and Sen (1968).

Alignment essentially means removing the block effects Ei
(L =1,2,...,n) from observations by subtracting from each observations’
in a block, say ith y some reasonable function u of the observations

in the block which satisfy the condition

[}




22,

(2.6.4)  u(x

+8,..0,X +a,...,X Kk +a,.00,X,, +a)
i 12mi i fm,

11 L 1 .

'U(xi ,.oo’xiz‘n :...,Xik ’.."Xikm ) +a .
11 11 1 ik

Let the aligned obdervations be denoted by 2 2 =1,2,...,m

ijR °?
be the rank of 2

i °?

1<3<k,1<1¢x< A and r in a combined

14 142

ranking of all the N = Z Ni - Z Z m1j aligned observations. Each con- *
0 i i3

ditional situation (given a set of ranks for each block) is referred to

N
P < ri(2) << ri< 1)

then the configuration is simply an event [ = (rl,r

«

as a oonfiguration., More precisely, if r

2,...,rn) in our

sample sapce. Note that only rand;yneés (given a configuration) that

remains is due to independent assignments of ranks to the treatment. Let

-

a(*) be rank scores and
4

(2.6.5) T = Z Z a(r ) , [
Nj {4 132
<. ©
= gum of the rank scores for the jth ltreatmentm

. L2
Also, let mij = mj , for all 1 and j (the complete case which also
covers the equal observations per cdell). Under this scheme Ni's are
equal to N' = Z mj and the proposed test function is (see Mehra [21]): -

j, .
noa Ko -2
(2.6.6) L o= [O'-D/N (] op] | = {1, -m,n Y
1=1 =13 b

Rl

- a(i)}Z/Ni /and a=) a(i)/n . The test

where ai =) ) {a(r )

j 2

consists of rejecting Hy for large values of L. .

2

130

»

, / \
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In the general case when m 's do not satisfy the above

13

condition, whether the design is complete or not, the following sthii:iF

is suggested ([21]},(2.7)).

(2.6.7) v Aty
where V = (le""’vﬁ,k-l) with VN = [TN —E(TN )1 , and fé is the

-y ‘)j j j
exact covariance matrix of ¥V (which is required to be non-singular)

~

and E(TN ) and 0, ., , elements of A , are given by

] 13
~ n
. E(TNj) ‘0121 m,, a(i)
: . o2
U T Ly B Sygrmy) myye {ir';'i'f} SR TU

Y

or zero according as j = j' or not (E and O represent the condi-

13’

tional expectation and covariance function under H3 and condition \»/n

(2.6.4)).

Computational techniques for the evaluation of exact distribu-
4I

tion for the statistics of the type Ln are discussedwin (12] with Wilcox~

on score and k = 2 . With the help of éomputera exact distribution tables

can be prepared for various values of k , n and m . - ﬁb n-+o» theégn—

J
ditional statistic Ln , glven a configuration, converges in distributionm,
(under certain regularity conditions, see [21]) to a chi-square variable

with (k-1) degrees of freedom,

"\J\

1



CHAPTER 3 ~ .

TIES IN DISCONTINUOUS CASE

In this chapter we discuss the tests described in Chapter 2
without the continuity assumption. Consequently, in this case ties may

occur with positive probability. Expressions for tonditional (given the

vector of ties) expectations and variances are given for large sample
approximations. For explicit results on asymptotic distributions, see

Section 4.2 and (3].

3.1 TREATMENT OF TIES (GENERAL CASE).

In the following we shall describe the three methods of handling

ties introduced in Section 2.2 for the general case,

~

(a) RANDOMIZATION,
* * * K
Let R = (Rl""'Rn) be the vector of ranks after randomiza-

tion procedure (Section 2.2) applied for tied observations. The statistic,

*
Z ¢y a(R ) has the same distribution under HO as that of

Z C, a(R)) under H_ (Similarly for H
i=1

tables may be used. The asymptotic convergence of distributions for par-
4

1 ,'ﬁz and 'ﬁ3 ); and so the same

ticular statistics is the same as described in Chapter 2.

- 24 -
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(b) AVERAGED SCORES.

(1) Tests of Randommess: Let the scores ;i and statistic

S be the same as in (2.2.2) and (2.2.3).

»

THEOREM 3.1: Under ﬁ; and arbitrary 1 (the vector of ties) the

statistic S satisfies

— 1 E n
E(S/T) - - C Z a ’
n i i
i=1 i=1

(3.101) , A.-’\

n n :
VG = 1 €D ] @’
i=1 i=]

and
n n n
_ -2 -2 - 2
J (a,-a)" = § (a,~a)" - ] (a-a.) .
fm1 3 g=1- 1 1 101

PROOF: It is easy to verify that

—_ % —_
a(Ri) = g (Ri)

Cw’

and hence S may be written equivaleﬂtly as

?

‘ - ‘2‘ - %
S = c, a (R,) .
=1 1 i

?
[}

. *
According to Theorem 29A of Hajek (1969), the vectors R and 1 are

independent and hence

— n — & n -—
(3.1.2) E(S/T) = E[iz1 C, a(R;,7)] = 21 ¢, E@a(R;,T))
- 1=
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where T 18 considered fixed.

)

oo
EGR,D) == ) 3,0
i=]

Therefore by (3.1.2) we have

_ 1 @ n
E(S/T) = = ) c, ) a,
i=1 1=l ,

—_ n - %
V(S/T) = V[ } c, a(R ,T)] :
=1 1 <

1 =2 §F = =2
=== 1 (¢-0) 121 CTEY N

by Theorem 3B of Hajek (1969). Finally, it suffices for completing the

proof to show that

» that
e

n "
¥ (Zi—ai)(ai-a) = 0 . This follows from the fact

i=1

rl+...+r ‘ .
4 - " —‘. - o —_ 2 -_ t 3 < »
Z a (ai ai)(ai a) Ti(ak ai)(ai a) =0 , 1<k<g 0
i-T1+n . .+Tk-l S~
v In view of the above theorem, as the distribution of S depends

upon the vector of ties we need different tables. Hajek (1969) suggests

that if ties are few, we can use the same table for S as for § noting

that the resulting critical levels will be somewhat larger than the exact

conditional critical levels.
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O
i
\\\‘ In case of the two-sample Wilcoxon test, using Theorem 3.1, we
have
. E(S/T) = E(S) )
* and
\ . \
n n
— - - 2 ,
(3.1.3) V@) === } (c,0? ] -2 . \\ \4//
n-1 i i }
¢ i=1 i=1
Y
But as ai =1 ~u
T +...+{: . '
n_ 5 1 \\ Toheo b HAT foo4T,
! (ama)t = ] ( ( 5 - 19
i=]1 k=1 1-Tl+...+rk_1+1
Tl+...+Tk ) T, +1 )
= (- {i - (Tl+. . .+Tk-1~ + "—é—"‘) }

1 k
Tk 5 Tk+l 9
=§ I D) - (x + =97,
k=l i=1 ]
.
where x = Tl + ... + Tk—l . Thus
‘z‘ 2 &
(3.1.4) (a,~a,)" = § = (1,-1) T (T, +1)
=1 i1 kep 12 Kk k' 'k

1

Therefore, using the last equation of (3.1.1), (3.1.3), (3.1.4)

[
and (2.3.7) we have >
g 2
) kzl I
(3.1.5) _ V(s/1) = 5 It - o]
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Similar expressions can also be obtained in the case of
Median and Van der Waerden tests for expected values and conditional
variances. For asymptotic distributions of these statistics see Chapter

4,

In k-sample case, we can show as in Wilcoxon test (see (3.1.4)),

-

that the variance is reduced by

8 1

121 i3 (T D+,

P ‘

and hence we modify H (2.3.4) accordingly (see [19]):

& T, .(1,-1)(T,+1) k 2

- i - = 2

(3.1.6) H = 12[n(n+l) - in_l) Lty s PRI O

i=1 j=1 37y

For min(nl,...,nk) + o . H has Chi-square distribution with

(k-1) d.f. . Tables for small ni's are available in [19].

(i1) Tests of Symmetry: In testing ‘ﬁi there are two types of
problems; (1) zero observations, and (2) the ties among non-zero
absolute values. There are two methods of handling zeros proposed by
Wilcoxon (1945) and Pratt (1959). We will compare these two methods with
the help of two examples in Section 4.5. Here we use Wilcoxon's method

i.e., deleting zero observations altogether.

Let v be the number of non-zero observations and let u#

A A

denote them by Xl,...,Xv . Let 1t be the vector of ties in the

sequence lxll,...,|xvl - Let
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v
(3.1.7) ‘ S« [ wx)awh ' <
i
i=1
+ v A A
where R, = = ) u(;x1|—|xj|) , 1<1<v . Itis easy to verify that
; =1
under ‘El fsee [8] Theorem 30A) we have
— 1 v
EGS/v,TD =5 | a
i=1 -
(3.1.8) o
v
vsvoo =3 13t
i=1
and
v Vv
-2 2 — 2 s
sl= 7 al- ] (a-ap? .
i i=1 i (=1 S §

In the case of sign test, a, = 1 and hence, Ei =1 for all Tt .
And therefore the distribution of S 1s the same as that of S with n
replaced by v . In one sample Wilcoxon test, proceeding the same way as

in two sample case, we get

E(S/v,T) = %-v(v+1)
(3.1.9)

8
V(&/v,1) = -212- V(W) (2v+1) - % jzl T, (1D (x 4]

For large sample approximations of above tests see Section 4.2.

For Mehra's k-sample test, we do not have the modified form of
L , when ties are present. Also no asymptotic result reparding the distri-

' butionnof L under ﬁl is available.




]

(111) Tests of Independence: Let Ty and ry be the sizes of
ties in (Xl,...,xn) and (Yl""’Yn) respectively. We define

Z(i,rx) and ‘E(i,ry) by (2.2.2), and

)

—— n—— —
S = 121 a(Ri,Tx) a(Qi,Ty) .

' We have under HZ

v Jere

EGltt) =2 (] ap? and
x''y n i

i=1 o
(3.1.10) ’
VS|t .T) --!1; 'f (;(i,rx)-:)z rzl Gad,t)-n2 .
y i=1 t=1 ¥
N \\, : In Spearman test with a, = i , we have, under ﬁé
E(S) = E(S) .
and

, g*
= 1 X , X X
(3.1.11) V(s[rx,ry) " T [n(n+l) (n-1) = jzl Yy (rj+1)(rj-1)]

y
8

[n(n+l) (n-1) - *#] T§ () (-] .
4=1 7

Under certain regularity conditions (see orem 31A of [8]) the distri-

bution of S given Ty and Ty , 18 asymptotically normal.

-

:l/ While usihg the Kendall's test, Kendall (1970) suggests the

following argument: If there are Ty consecutive ties, all the scores

.

é77
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arising from any pair chosen from them are zero. There are Ti(Ti-l)

such pairs and so the sum n(n-1) will be reduced by

y |
* g

8

2 Tx(Tx-l) and Z Ty(Ty-1)~. Therefore our alternative form of the
=1 iti {=1 i1

= H - ¢

coefficient T* may be written

n n o _
- = Y
. 121 jzl sign(®;R,) sign(@-0)
(301-12) T = .
g g’
(n(n-1) - | ™ (*-D@m-1) - § 1 (7-1))
i i i1
. N 1=1 . i=1
The expression for conditional variance of K (defined by
(2.5.8)) is given in [13] for large sample‘épproximation. ) //////

(iv) Analysis of Variance Tests: 1In Friedman test, we rank each
’ N
block seperately. Let 8y be the number of tied groups in block i and., .

Ti 3 represent the size of jth tied group in block 1 . The modified
» »

Q statistic is (derived similar to H ) given by

k
j)-k}]-l 12“2 Z (R‘j-Rol)z

. n gi
3 3
Q = [nk(k+1)-{1/(kel) )} {(] T
3=1

i1  j=1

(see [13]). The distribution of Q under H, is asymptotically Chi-

3

-
h 4

square with k-1 d.f. .

Unfortunately, no similar results are available in the case of

aligned rank test.



32.

(c) MIDRANK METHOD. >

But for the Vath der Waerdeh and aligned rank te;ta, all the
tests have scores which are equal to either' ranks or constant values.
Therefore the midrank method (see Section 2,2) of handling ties are the

same as average score method,

In the van der Waerden test, we have the test statistic

ni _ﬁ

' ' * i
s = 1 W=
s =l n+l

where .ii represents the midranks. The conditional variance is reduced
as in the case of average score and the asymptotic distribution will be

given later (see Section 4.2).

In the aligned rank test, we do not have the modified form of
the test statistic Ln while using the midrank method as in average

score method. '

\/

3.2 TIES IN WILCOXON 2-SAMPLE TEST. '

In this section we would derive a nonparametric test, similar
to Wilcoxon 2-gsample test, when the underlying distribution is purely

discrete. Let us denote the two independent samples by xl,...,xn and
1

= n) with distr{bution functions F, and F, (discon-

Yl,...,Yn (n1+n 1 2

2

tinuous). We want to test ﬁ; : F1 = F2 = F (say) against location alter-

2

&, natives. It seems reasonable to choose a test based on the following

criteria (see [24]): '
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(1) distribution free under the hypothesis;

¢ -
(11) depends on observations only; and

"

(111) as close as poasible to original Wilcoxon test.

Let us assume that F1 and F2 have same discontinuity points

and denote them by Ek , k=1,2,... . We define

P = P(X;%8) , g = P(Yl'Ek)

U = # of X's which are equal to § ;
k L0 Sk
v, = # of Y's which are equal to Ek ;
»
We=U +V,

U = (Ul,‘tt,uk,ooo) y v = (vl’...’vk’..‘) 1) w = (wlgtuc,wk’coo) L]

The ord?red pooled sample is given by the nonzero components of
two vectors U and V . Hence, ahy rank (order) statistic which depends
upon the observatiéns only, can be expressed in terms to U and V .
According to the criteria (ii), the critical region C can be defined by

U and V only. Now we show that W 1is a sufficient statistic for the

vector of parameters. -

LEMMA3.1: P(u/w) is independent of pk's . | .
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PROOF:
: e
(3.2.1) P(ulw) = P(U=su , Vesw-u l Wew)
J
L o (U= P(Vw-y)
P (W=w) )
Now, ‘P(U-u) - .Z P(Usu | X = (r,,.0.,r_ )) * P(r yeses,T_ )
~ 1 n 1 n
(rl'-.-,r ) 1 r 1
n
1
where the :Byﬂgj;ak\ts over all possible (rl,...;;n ) 1in the space
‘ 1
£ Egreee ! .
P(r,5+00,F ) = D _ *pP_ s...°p .
1 ! I T2 Tn-1

Also conditional probability in the'summation is zero unless (rl,fz,...,

L L
r ) has exactly u, of El 5§, u, of 52 8 etc.. Let -

1 . |
(ri,ré,...,r; ) satisfy this. Therefore, we have only h(l < h < nl)
1 .

h
's which are nonzero, say, u, ,...,u 8.t., Z u, = n . We there-
Yk ” 2 8, T S

non-null events in the sPace, In this situation,

nl!
up leewu, !
21 2h
P(U=u | X (rl,...,rnl)) 1.

fore have

(302-2) oo P(U'U) hed a

Similarly, °

(3.2.3)  P(Vew-u) =




where g > h and some of the u, 's are zero; and

33
le wjg D
. . ¢ n! pj * s pj
(3.2.6) -~ P(u=w) = e S S
1 3y

Hence, substituting (3.2.2),?(3.2.3) and (3.2.4) in (3.2.1) we have

.

v, V..o w, !

n ! n,! i j
1 2 1
Plv) = T W, =u, )T ~o. (W, —u )T R
L TR kPR S P ’
1 f h 1 1 - g '8
u \u (w, ~u, ) (W, -u, )
(p g cee P Eh)(p 1 cee P Ig g ) .
oA WY Ig
"1 "1,
p:l ® ees * pj
1 8
The quantity in the brackets is 1. Hence the result. 0
° ‘ Let the size of C be o, i.e. P(C) = z P(W=w) P(C/W=w) = o
' ‘ w
"3 Y3
or, ] = !“’w' ,pjl’...'pjg y P(u|w) = o . As P(C)
vt jg‘ 1 g ,q,w-u)ec

has to be independent of pk's (requirement (1)), we must have

P(R|W=w) = 0. for every w , which 18 the usual condition for every dis-
tribution free tests. Since for every fixed w we have only finite set
of P(u|w) , and these sets vary with w , it will in general be impossi-
ble to find a region C with exact size o . Howayer, this can be solved
by taking somé sample points in C not definitely, but with certain given

~

probability.
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Now suppose Co is the rejection region (S > a] , of the same
size o , given by 'randomized' Wilcoxon test. Then we have P(C) =
P(Co) =0 or, P(Cdﬁg) = P(Ehco} , where A stands for complement of
A . One possible explanation o%!(iii) above is to choose C s8uch that
. P(Crwf%) is migimized. This may be justified as~<follows: Suppose F
is reglly continuous and ties occur only because of lack of precision of
measurements. In this case the randomized test iq approximately equal to
Wilcoxon test (as randomization procedure is similar to the effect of
replacing each discontinuity by an interval of the uniform diatripution).
It is therefore appr;priate to minimize the probability of getting a dif=-
ferent result than that of randomizad test ([24]). This probability when

the hypothesis is true, is
P(CnCO) + P(Cnco) = 2P(CnCo) .
The above is achieved, if we minimize

P(Cn[S<a]|W=w) = ] P(u|w) P(S<a|U=u,Vew-u)
(u,w-u)eC %

for every w , where S is the same as in (2.2.6); under the condition

(3.2.5) ] P(u|w) = P(C|W=w) = a
(u,w-u)
As suggested by Putter (1955), we can use the following algori-
thm. For every w , we order all possible vectors (u,v) = (u,w~u) by
the magnitude of P(S<a|U=u,Vaw-u) . We take the vector with the smal-~

lest probability, then the next smallest etc., until the (conditional)

"
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+
size o as in (3.2.5), is reached. Doiﬂg thigs for all w we get the

desired C .

-

Unfortunately, the above derived test seems to be very diffi-
cult to apply and so we modify it without going far from the test, as
follows. Instead of rejecting hypothesis when P(SﬁgIU-u,V-w-u) is too

small we reject it when E(SIU-u,V-w-u) is too large ({24]1). Let

+

I3

(3.2.6) §' = Er(SIU,V) ,

where Er denotes the expectation under randomization. It is easy to
see that S' is the same as S we had in Section 3.1.7 Hence under
criteria (i),.(ii) and (11i) we have derived a test which is the same as
the average score test we proposed earlier. However, the cutoff point
does depend upon W and the tabulation involved is prohibitive. Klotz
(1966) has given an algorithm to calculate the exact distribution given
a vector o} ties. It is also suggested to use the computer for calcula-

ting the significance probabilities., We will compare this test with

randomized test in Chapter 4.

3.3 TIES IN SIGN TEST.

Let the number of observations which are positive, negative
and zero be n, o, n_ and n respectively. In Section 3.1, we mentioned
that we ignore the n zero observations which amounts to omitting ties

from the observations. We have
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H

1 : P(Xi >0) = P(Xi <0) wvs say, .

K : P(Xi >0) > P(Xi <0)

and our test procedure is to reject ﬁi whenever n, is too large.

]

let
P(X, > O|H,) = P(X -@olﬁ ) = ; ’
1 1 TPy FUAYy 1) T By

PX; > 0[K) = q , P(X; = 0]K) =q , P(X <OJK) =q_ .

-

Let us consider the conditional distribution of n, given ‘n ®=c.

+
Under ﬁi s ,
. t
n-c¢ l,n-c
(3.3.1) ‘P(n+f§lﬁo c) Pﬁl(X) ( x ) (2) ;
o
under K
q q '
- - - = (¢ __ = \D=Cc  4X
(3.3.2) P(n, xln0 c) = Ppe(x) = () (1_qo) (q_) ,
/ .
x = 0,1,...,n~c . Therefore,
P (x) q
K +.X
=0 " hE @
1 N

which is strictly increasing function of x . Therefore, by Neyman-

A

Pearson lemma, the unique most powerful (conditional) test is given by

(3.3.3) n, >kin) ,
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where the cutoff point k(no) is, of course, .the one corresponding to

B (n—c,%) )

, The test (3.3.3) amounts to "omitting the ties from observa-
tions". Let us compare this method with randomization. The n, zeros
are divided into two parts according to the outcome of a random experimen-
and suppose ni of them are assigned to the positive part. The random

variable ni =0, + nr is under H B (n,%) and we can use the test

+ 1’
/ -
(3.3.4) _ Tk,

without any concern about unknown P,

THEOREM 3.2: The non-randomized test (3.3.3) is uniformly nvrexﬁowerful
\
conditional (given n =c) test (against one-sided alternative K) than the

randomized test (3.3.4).

PROOF: Let n =c, and p(y) be the frequency distribution of
B (c;%) . The joint (conditional) distribution of n, and ni is

pg (x)°p(y) under H, and P, (X)°p(y) under K . The ratio of two 1is

1 \ 1
PK(x)IPﬁ (x) and hence (3.3.3) is also unique most powerful (conditional)
1
r
test based on n, s 0 and o, . 0

!
In the above, we have omitted the zeros altogether. Recently,
rauth (1973) has proposed a test procedure which does not ignore the

Zeros.,

ot *
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THEOREM 3.3 (Krauth): An UMP test for testing ﬁl against X with a

known constant Po * 9, <8 given by

.

1
(3.3.5) ‘b+ +3n >k ;po) . :

PROOF: Let us consider the distribution of

‘ 1
(3.3.6) n, - n_ 2n+ + n ~n= 2(n+ +-§ no) -n 3

under K ,

n n n

n! + - o
Pp(x) = P(n -n_=x) ) m 9, 4. 49,

n -n =x
+ -

. ( | )X E ny <n-i)( ' ‘ 2)1-x
9, (q,iq, Lo () Gy q+q_]q° ’

v

!

n
L OEHep D™,

and under 'ﬁi ,

n X
. Pﬁl(X) = P(n+"n_-x) = po(p+lp_) ‘

X = -n,-n+l,...,n . Therefore,

P(x) ¥y A (z,%)
(3.3.7) Ty
Hl Yo Ah(zo’x)
with
3.3.8) Az = T (MO Lix
(3.3.8) . ) L (2% Lo (1 fox) 2 .
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y =a,le, » vy, =plp, = 1-p |20, ;
”

' 2 2 2), 2
z=qa_la; 2z, = pp_lp) = (-p)"l4p,

Q
If we prove (3.3.7) 1is strictly increasing function of x (which we

do in the following lemma), by Neyman-Pearson lemma the test (3.3.5) is

UMP test for known P, ™ 4, and hence the result. a

LEMMA 3.2: Pk(X)lPﬁ (x) , (373.7), is strictly increasing function of
1 W

X, for x = -n+l,-n,...,n .

%

PROOF: As (%—)x is strictly increasing function of x and =z < zZ s
o

it suffices to prove that
(3.3.8) An(z,x)lAh(zo,x) > An(z,x-l)IAh(zo,x—l) ,

for 2z < z0 s X = =-n+l,~n,...,n . Or, equivalently

©

(3.3.9) An(x,z)lAh(z,x-l) > An(zo,x)lAn(zo,x—l) b

for 2z < 2 s X = -n+l,-n,...,n . We prove (3.3.9) by showing that the?
N »

derivative of H(z,x) = An(z,x)IAn(z,x-l) with respect to 2 1is nega-

tive for z >0, x = -np+l,-n,...,n . For x < 0 we have

r

T oa n-1 i-x
An(z,x) = Z (i)(i_x) k4 ]
i=1
vith m = [(04x)/2) . Therefore it is enough to show that

g
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) m' -1, n, n-j 1+
(1-3-1) () (P )y 2 <o

izo jgo j-x+l
with m' = [(n+x-1)/2] . Or, }

m m'+l '

J+ i+j-1
(3.3.10) ] Y a- j)( y(*~1y(n 5 <0 .
\7 1=1 j=1 i-x j l

/

We consider only terms for whi;h 1, € {1,2,...,m} , since
the terms with { = 0 or j = mtl , are negative anyhow. For 1 = § ,
the summation vanishes. For the sum of two terms with (11,11) = (8,t) , -
(12,12) = (t,8) ; s,t ¢ {1,2,...,m} , we get

)

n—- t n+x+1 s+t-1
-(s-t)(s)(s x)(t)( (n_2t+x+1)(n-25+x+l) z i

which is negative for all s,t ¢ {1,2,...,m} . This completes the proof

for x <0 . For x > 0 we have

A ( ) = ? n)(n—i) i-x%
n 22X} = = (i i-x’ 2 *
We complete the proof proving
m m'+l *
n-3j+1, _i+i-1
1£1 jzl - DG I 1) <o,

the same way as (3.3.11). g

172
Putter [24] has shown that Tn (2?+fno n)/(n-no) is
asymptotically N(0,1) as n + ® ., 1In virtue of Theorem 3.3, we can

o

now state the following result.

3,.:
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- | L
\
4
A

Vool - .
THEOREM 3.4. An asymptotically UMP test for testing H, against X,

under the restriction P, ™ 4, » 18 given by

/2

(3.3.11) T - (2n+~mo-n)/(n-no)l >k

»

where the cutoff point k oorresponds to N(0,1) distribution.

3.4: TREATMENT OF TIES IN WILCOXON 1-SAMPLE (SIGNED RANK) TEST.

In §3.1, we ignored the zeros from the sample and then ranked
the rest of the observations as suggested by Wilcoxon (1945). Pratt
(1959) has suggested a different procedure in this section we would

review these criteria. . .

The following three requirements have been suggested for a test

when these are 0's ,

(1) Increasing the observed values shall not make a significantly
positive sample insignificant nor an Insignificant sample significantly

negative,

(11) Assuming that the distribution of the observations has a center
of symmetry u , those values of § which are not rejected shall form

an interval.

(111) A\éfmple shall be judged significdantly positive if, when the
O's_ are 1.uréluded in the ranking, the sample is significantly positive

whatefver signs are attached to the ranks of the 0's ; similarly for sig-
1
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[y

- . ‘ificantly negative and not aignlﬁcant.

, Pratt (1959) points out that none of the three conditions are
satisfied (which are reasonable and are satisfied when there are no zeros)
when we use the Wilcoxon's procedure. The two methods of handling zeros

have been compared in [4] when the underlying distributions are discon-

tinuous and we would discuss these in Section 4.5.




i

CHAPTER 4 -

ASYMPTOTIC RELATIVE EFFICIENCY (ARE)

In this chapter we examine asymptotic efficiencies‘of the
linear rank tests for randomness and symmetry with particular attention
paid to~the three methods of handling ties, discussed in Section 2.2.

This is studied using ARE. -

»

4.1 EFFICIENCY,

Asymptotic power of a test against -a given alternative
| provides a good clue to the large sample operating characteristic of the
test. Asymptotic efficiency gives a comparative measure of the asympto-
tic power of a tesg relative to a most powerful test or relativé to a
standard test. In the latter.case we call it asymptotic relative effi-

ciency. We consider the asymptotic efficiency as defined in Hajek and

Sidak ((1967) p. 267) and asymptyfic relative efficiency as in Hodges and

L]
S\\__—- Lehmann (1956).

Assume that an asymptotically most powerful test for HO .
against q 1s based on a statistic So s Where S0 is asymptotically‘
normal (0,02) under the null hypothesis and asymptotically normal
(uo,oi) under the alternative. Further, let us consider another test

for Ho against q based on S , which is asymptotically normal (0,02)

and (H.Oz) under H0 and q respectively. Then the asymptotic powers




of S° - test and S - test equal

-1 -1
l-Q(kl_a MOOB ) and 1-¢(k1_a-u0 ) o

|

respectively. The expression

uo '

(4.1.1) e = (—2)2
i o

2
is called asymptotic efficiency of S - test (it is ratio of the two

asymptotic powers giveﬁ above) .

Now, lét en(e) and B:(e) denote the power function of two
tests, say A and A* based on same set of n observations, aéainst
a faﬁily of alternatives labelled by € and let 60 be the value of 9
specified by the hypothesis. We shall assume that all tests are at the
"same level of significance a . Let B be a specified power with

a < B <1. Consider the sequence of alternatives Gn such that

:

(4.1.2) Bn(en) +B8B as n+o

*
and a sequence n = h(n) such that
¢

* N -
(4.1.3) B *(Gn) + B a8 n > o
n
Then -if
1
(4.1.4) e, =limZy

AJA npon

g,

J

.
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exists and is independent of IG,B and the particular sequences {en} \Q

and {h(n)} chosen, e N is defined to be the asymptotic relative
A LA

*
efficiency (ARE) of the test A with respect to the test A . Meth-
ods of obtaining the limit (4.1.4) in di%ferent situations are available
in literature (see for example, Hodges and Lehmann (1956)). ARE 1is use=~

ful for problems where optimum tests eilther do not exist or are not avail~

o

We shall use the form of asymptotic efficiency as described in

able.
Hajek and Sidak [9] (pp. 267-70).

4.2 ASYMPTOTIC DISTRIBUTION UNDER NULL HYPOTHESES.

-
To calculate the asymptotic efficiencies let us first examine

the asymptotic distribution of linear rank statistic under ﬁg and Hl s

as discussed in [3]. ) ’ .

The following theorems present conditions under which

P

S - ESS!T!

(4.2.1) NG, 1) ,
TTABRIEA

I

where E(S|t) and V(S|t1) are as in (3:1.1).

Let ¢(u) denote an arbitrary real valued function defined

on the interval 0 <u<l and

1 - 1 ) .
(4.2.2) 0 < [ (¢(u)-$)2 du <, , where ¢ =J "¢€u) du .
0 0
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-1

n
(4.2.3). ! 0%/ nax (c
1m1- 1<i<n

—.12"
17O e

THEOREM 4.1: Under ﬁo , if conditions (4.2.2), (4.2.3) and

1
ol - 2 4y —
\\fA.Z.A) ‘ Jo (a(nﬂTn (u),T) $(u))” du P > 0

™
S~

hold then (4.2.1) follows. Here, T (u) =% {# of Ri's < un} and the
‘inverse is Eiefined by f-l(t) = inf {xlf(x) > t} , for a real valued
function f .

%

PROOF: Let us consider the random variable Y, = F(Xi) which under

i
ﬁ; are i.i.d. with some cdf G(u) . Let wl,wz,...,wn be uniform ran-

dom variables which are also Independent of Y Let G({*}) denote

i L]
the measure induced by G(u) on any set {*} of real numbers. Then
G({y}) = P(Y=y) at discontinuity points of G(u) , and equals zero else-
where. Now we will prove that the random variables Ui = Yi - wiG({fi})

are mutually independent with uniform distribution on (0,1) . Let
-1 -1, .
a(u) = 6(6 “(u)) - G({G “(u)}) and

(4.2.5)

b(u) = 6G W) . e

Then

~

P(U <u) = P(Y <b(u) W, G({G-l(u)}) 2 b(u)-u) .
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If G(u) = u then b(u) = u and B(uifp) = P(Yifb(u)) »u . If
G(u) <u ,‘then G(u) 1is constant on the 1nterva1—\Ia(u),b(u)) and

LA G({h"l(u)}) is uniformly distributed on (0,b(u)~a(u)) . And we

have

' (4.2.6) P(U,<w) = P(U,<a(u)) + P(a(u)<U,<u)

b{(u)=-u

= alw) + P(=b(u)) POV 2 ey T Y,

It i8 shown in [9], p. 153 that under the assumptions (4.2.2) and (4.2.3)

the random variable T_|o_, where

(4.2.7) ‘ T, - i (¢,~0) ¢(111) , and
n 1

o= 1 (ci-E)zf @()-$)? au
1=1 0

has asymptotically standard normal ‘distribution.

It is also shown on p. 160 that S¢|0c vhere .

-

, . |
(4.2.8) = ] (0 @) ; a?t) = B (R = 1)
i=1

*
R1 = rank of Ui s

satisfies

@ (s“’-r)2
(4.2:9) . E{ 2“

4]
c

}+0 . .
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k}

c

]
Consequently, S¢|oc + N(0,1) under (4.2.2) and (4.2.3). By (3.1.1)

we have

'

1 N

. )
E{(s-E(s|1)-s?1%|1} = E{[ | (ci-E>(a(R1,r)-a¢gR:))lzlf}

1=1
1% —2 0 b, * .2

(4.2.10) <=== 7 (c,~0)° ] la(r,,1)-a'(r,)]
g P g :

| BT (Bl " a1 (), -a® 1+l 12 d

n-1 % (€;=0) 0 a(nT_"(u), ? un u.

Now, .

. . 2

(4.2.11) E { [S‘E@';J’Sq’] } =0

ag
c

if the 1nteéral in (4.2.10) converge to zero in probability. But the

integral in (4.2.10) is less than or equal to

“

1 1
2 Jf la(n TH(w),1)-0())% du + 2 ,( [a® (4 [un])-0(w) 1% du .
0 0

. The first integral goes to zero by hypothesis and the second
by Theorem b of [9], p. 158. The rest of the proof follows on the same

lines as in [9], p. 161. 0

When there are tied observations in the data, ranks may be
o ‘ ) \
assigned by one of the three methods described in Section 2.1. Let us

state the particular forms of Theorem 4.1 in different situations.

!
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\H

L]

Average Score Method: Let Y¢a(u) be ¢(u) averaged over the

intervals in which’ G(u) 1is constant valued:

(4.2.12) by () = 6(u) 1 c({g (wh =0

1 jb(u)

= m a(w) ¢(t) dt otherwise

where a(u) and b(u) are the same as in (4.2.5) and are left and

right end points of the interval containing u . .

COROLLARY 4.1: Under ﬁg s Lf (4.2.2) holds, the scores a(l) satisfy

L

1
(4.2.13) ] (a(+[wm]) - o(w)? du > 0
0

’

and if ¢ (u) <& square integrable and mon-constant over (0,1) , then

(%4
(4.2.1) holds for the qverage scores defined by (2.2.2).

3

PROOF: Proof follows from Theorem 4.1 and the fact that (4.2.13) implies
(4.204) ([3], pc 1112)0 D

Midrank Method: Let {Ik}k>0' denote the countable set of discon-
tinuity intervals (a(u),b(u)] , where a(u) and b(u) are defined as

in (4.2.5) for each discontinuity point of G(u) . Let

o

(4.2.14) ¢ = ¢(U%\ if u is in a continuity interval

= ¢(med Ij) if u 1is in a discontinuity interval
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where, med I, refers to the midpoint of I, , (a(u)+b(u))/2 .

] h|

COROLLARY 4.2: Let ﬁo be true. If (4.2.2) and (4.2.13) hold, ¢ (u)
18 8quare integrable and non-constant over (0,1) , {med Ik} Ko e
continuity points of ¢(u) , and

)

(4.2.15) a (31[—21‘“—]) +¢(u) , for 0<uc<1l

“

then, (4.2.1) follows for midrank 8cores (2.2.4).

PROOF: It suffices to prove that (4.2.3), which takes the form

1 -1 2
JO (a(n '1‘n ‘(U);T)-(bm(u)) du 3 o ,

holds for the scores defined by (4.2.4). For the outline of the proof
A

of the above, we refer to [3], p. 1113. 0 \

£
Randomized Ranks:- .

COROLLARY 4.3: Under ’H';) if (4.2.2), (4.2.3) and (4.2.13) holds then

(4.2.1) follows for the seores given by
| *)
a(Ri,T) = a(Ri

*
where Ri are randomized ranks.

PROOF: Since a(\n'T:ll(u),T) = a(l+[un]) , (4.2.13) implies (4.2.4) and

hence the results 0




" Let RI be as defined in Section 2.4 and :

+ 1 +
T (u) == {fof Ri's <un} .

L. ]

THEOREM 4.2: [Let ¢+(u) be a square integrable .(on 0 < u <1)

funetion with 1
L k|
" 1 +, .2
(4.2.16) J + [$ (W)]° du>0
F (0)

and let Hl be true. If

1. -1 ¥ "
(4.2.17) I l [a(n ’I‘: (uy;t) - ¢?+(u)]2 du —§—> 0 ./?

T |n .

[o]

v L -
holds, then slon ——> N(0,1) , where crzl = V(S|T) and S is the’same

as defined in (2.4.2).

+
=

PROOF: As in Theorem 4.1, let Y FI(IXiI) where F' denotes the

i
+ + +
cdf of lxi . Llet U =Y -W GU{Y/}) , vhere G(u) dis the cdf of
YI and wl,...,wn are iid uniform on (0,1) . Let
+ +, + *
a’ (1) =E[¢ (U | R = 1]
and
. . .
S-Za+(R)usian ,
N 1 i

+

* » .
where Ri is ran of U1

. Then S¢|0 + N(,1) as n >« [see [27],

Theorem 2], where *

4
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, 1
(4.2.18) o? = n f . rwia .
F (0) B
(s—s¢)2 ?
Now we show that E { } >0 .

2 P
E{(S-S¢)2|T} - Var(S-S¢,T)

- +Z [a(rI,T) - a"'(rf)]2

o ri>To
1 -1 + 2
(4.2.19) =n f (a(n T: (u),T) - a (A+[wm]))° du
To n
1 -1 + 2
< 2n f (atn T (w),1) - ¢ (uw))° du »
- T |n n ~
o -
1 + + 2
+ 2n f (a (14+{um]) - ¢ (u))° du . .
¢ T n
)

The first integral in (4.2.19) —=—> 0 by (4.2.17) and the
second converges to zero by Theorem V.1.4 of [9]. Therefore,
(s-5¢)°

E{ } >0 .
g

"Proof is completed from the fact that oﬁ + 02 (see [9], p.

161), [

As in the case of tests for randomness we can prove results
similar to Corollaries 4.1, 4.2, and 4.3 in this case also. Results
along these lines for purely discrete distribution functions are given

in [27].
'

-
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b}

REMARK 4.1: No such results for H, and H,, are available in litera- .
ture. In case of k-sample test for randomness we do have similar results

(see Conover [3]).

4.3 ASYMPTOTIC DISTRIBUTION UNDER CONTIGUOUS ALTERNATIVES. " K

N .
Let us first note that the locally most powerful conditional

rank test for ﬁ; and ﬁi is a lineag rank’ test, under certain regular-
ity conditions [see [3], Theorems 6.1 and 7.1}. Now, we shall discuss the
asymptotic distribution of S under contiguous alternatives [in both

"cases: for testing Randomness and Symmetry].

Let us consider a distribution function F(x,0) with parameter
8 . Let f(x,8) represent the Radon-Nikodym derivative of F(x,8) with
f
respect to F(x,ao) and assume this exists. We define the generalized

Fisher's information

(4.3.1) 1(F,8) -r ((3/30)£(x,0)12 ;1 (x 0)

£(x,6)

The distribution function of Y = F(x;6) 1s denoted by
G(u;0) , where F(x;0) is the distribution function of X . Let the
distribution function of the X's wunder ﬁ; be denoted by F(x;eo) and¢

consider the alternative

- Han : xl,...,xn are independent and X1 is

distributed according to F(x;ei) .

o




The asymptotic distribution of S 1s found under the

conditions : ‘
(4.3.2) max (61-6 )+ 0
1<i<n
and
s 2 .2
(4.3.3) lim I(F,8,) J (6,-6 )" = b
o
n-co i=1
for 0 < b < & where I( ) satisfies
r»-r
\e - 0 <1im I(F,0) = I(F,Go) <o
0=0 )
(o]
Let also
3 f(x,e)-f(x,eo)
(4.3.4) % f(x,e)/e-e° = 1im 5-8
60 o
o
exists and
1
(4.3.5) f(x,BO) = lim f(x,0)
6*60

exists almost everywhere with respect to F(x,eo) . We shall omit

¢

the double subscript implied by conditions (4.3.2) and (4.3.3) in order

to take the limit. Let

(4.3.6) L = [ ———
° gy FXp6Y)

be likelihood ratio and consider the statistics
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n f(xi,ei)

(4.3.7) | W= 2 121 {[m? 12 _
and '

n
(4.3.8) T = 1§1 (8,-6) ¢(Y,,F,0)
where ve demote ¢(u,F,0 ) for
4.3.9) p(a,E,0 ) = $298) £ (u;0),0) [o=8,

-1
f(F (u;eo),eo)

LEMMA 4.1:  Conditions (4.3.2) through (4.3.5) imply T -+ N(0,b%)
under H_ . -
[s]

‘

PROOF: Proef is omitted (see [3], Theorem 8.1). a

LEMMA 4.2: Under conditions of Lemma 4.1, we have

12
(4.3.10) log L, - T, - 3% == 0
and
(4.3.11) log L > N(- 3 b%,b%)
wnder Ho .

N

PROOF: See Conover (1973a), Theorem 8.2. a
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n
(4.3.12) s' =s-Els|t} = ] (c,-C) a(R,T) .
- i=1
The limiting distribution of S' is already given in Theorem

401.

THEOREM 4.3: Let ¢(u) be a non-constant square integrable function on

0 <u<1l', and let

1 .
(4.3.13) J (a(n T.l(U),T) - 6(w)? du—=> 0 \

0 n P :
hold wnder W_. Then if

n
(6.3.14) ¥ (ci—C)Z/ max (Ci-C)2 > b
1=1 1<i<n

holds, the conditions of Lemma 4.1 imply that S' <18 asymptotically

N(ue,oz) wnder Hy » where

) n 1
(4.3.15) bg = 121 (¢, (8,0 ) fo é(u) ?fu,F,eo) du
and i
2 1 —2 {* —2 .
(4.3.16) ¢ = J (Ci-—C) [ (d(u)=9)” du .
i=1 0

PROOF: We shall outline the proof. From (4.2.9) and (4.2.11) we have

S' and T, asymptotically equivalent under ﬁo . This and the first
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result of Lemma 4.2 imply that the bivariate random variables (S',log Lo)
and (TC,To-bZ/Z) converge in probability to the same limit. Under ﬁ; R
by Theorem 4.1 and Lemma 4.1, we have Tc -+ N(O,GZ) and To + N(O,bz) .

Note also that

n
= 4 - ¢
T, ) (8,-6) ¢(U,,F,6) .

i=]
The cowariance of TC and To is Q

n 1 .
(4.3.17) ov(T,,T ) = ) (qi-E)(ei-eo) [0 ¢(u) ¢(u,F,8 ) du
i=1

because E{T;} =0 ., Rest of the proof that (Tc’To) is asymptotically
bivariate normal is the same as in [9], p. 218. This implies (S',log Lo)
is asymptotically bivariate normal under ﬁ; and the parameters satisfy
the conditions of LeCam's third lemma, p. 208 of [9] and so S' 1is asym-
ptotically normal (ue,oz) . a
%
Now, we state an analogous result under 1 , the proof of

which is similar to the above theorem. Let
+ ) -1,1 1
(4.3.18) ¢ (u,F,8 ) = 55 £(F (5 + 5 uj,0)|6 = 8, -

" Let F(x,0) be a symmetric function for 6 = 60 (wvhen ﬁi

ig true) and define likelihood function

n o £(X;,0 +A)
(4.3-19) L = H P T U .
A i=1 f(Xi’eo)
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Assume

(4.3.20) A+0 ,

[ 4 6 '
2 2 2
(4.3.21) lim I(F,8 ) * n A" = b for 0 <bH " <=
n+e o R
and
(4.3.22) 0 <1lim I(F,0) = I(F,0 ) <o
8+0 ° ~
» o

where I(F,0) 1is defined by (4.3.1). As ‘To in (4.3.8) let

n n
)
Ty = I A6(F(X)F0) = | 8+ £(X,30) [gugn -
y im=] i=1 o .

THEOREM 4.4, Let F(x,0) satisfy (4.3.4), (4.3.5), (4.3.22) and «

- s\

3 ’ d
- 55 £(-x,0) 9=0_ = -5 f(x,0)[6 =6 .

If (4.2.17) holde under i

tion ¢'(u) that satiefies (4.2.16), then (4.3.20) and (4.3.21) imply

for eome square integrable (on (0,1)) fume-

that the sequence S 18 asymptotically N(uA,OZ) under H, where

o? i8 given By (4.2.18) and Wy by

1 + +
(4.3.23) My =n A j + $ (u) ¢ (u,F,0 ) du
, F (0) ° .

°

and the sequence SI(Jn is asymptotically N(uAIU,l) .

]
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. 2

PROOF: The proof is similar to the proof of Theorem 4.3 (see Theorem

9.1 of [3]) and hence we omit it. 0

4.4 ASYMPTOTIC EFFICIENCY.

L3

When testing s 1f there is convergence

o]

m
n —
. 121 (c,~C) (8,-6))
(4.4.1) >0, s
(7 B2 ] (8.-6)22 ’
ju1 1 =1 1 ©

then the asymptotic efficiency of the test using S 1s defined (see [9]
]

p. 268] as . L .
2 2
(4.4-2) e = Ol Dz 3
where Dl is given by . ~

A 1 1
f $(u) ¢(u,F.90) du
0
(4.4.3)

P1 1 1 y
(j 6w-p? au f 62 (u,F,0 Yauw/?
0 0 o

»

i -

If we want to compare two tests, for which ¢(u) differs we
calculate the asymptotic relative efficiency (ARE). In the usual case‘
Ci's are the same, then the ARE of the test using ¢1(u) » 9ay relative

to the test using ¢2(u) is

1 2 _ 2
- (I ¢1(U)¢(0,F,90>du) [ (¢, (u)-¢,)" du
(4.4.4) . ARE = 0 : 0 )
6154, 1 5 (L )
(f 6, (06 (u,F,0_)du) ]0 (6, (WF)* au
0 )

N\




&,
’\ tMﬂ
Now let us mention théchgpged Dl's‘\ in different methods of handling -

ties (see [3]). When—eb use average score method p1 is given by

1
[o b (W(u,F,0 ) du

(4.4.5) pl i
(f (9, (-9 au 1(F,0 )2
0

vwhere ¢a(“) is defined by (4.2.12). Using midrank method we have,

1
I ¢(u)¢(uste Ydu
0 (o]

(4.4(6) p = —

. 1 -2 1/2
» (fo (¢m(u)-¢m) du I(F,0))

where ¢m(u) is defined by (4.2.14). By using randomized rank, we get

1
f ¢(u) (u,F,0 )du
0 (o]

(4.6.7) P, T
<[ 6w -8 au 1(7,8, 07 ,

0

Let us find out the ARE of an average score test (A) relative
to a randomized rank test (R). The numerators of both ol's in
(4.4.5) and (4.4.7) are 1dentical, because ¢(u,F,60) is constant over

the same interval in which ¢(u) 1s averaged to give ¢a(u) . Hence

1 —.2
[0 (9(u)-¢)" du

(4.4.8) . AREA,R =

[a,05 au

\ Note that (4.4.8) 1is greater than or equal to one with equality
only if ¢(u) 1is constant in the same interval where G(u) 1is conséant.
Theorem 6 of Putter (1955) given below as Theorem 4.5, is a special case

of (4.4.&).



0

THEOREM 4.5: Under the regularity conditions, under which (4.4.8) holds,
in the same set up as in Section 3.2, the ARE of randomized teet with-

respect to averaged score (or midrank, as they are the same in Wilcoxon
test) is l-Zpi . )
k

PROOF : 1
f’w (0, (0)-H)? du
0

(4.4.9) ARER,A == )
IO (¢(u)=9)  du

$(u) = u , in Wilcoxon test and hbnee the denominator of (4.4.9) is

| 1_
1 1 - .
s @ a
Let 4 =Py + Py + ... +.'pi . The ¢a(u) is given by (using
(4.2.12))
L[t '
0o (v) = b j t de Yo U Y
91-1
(4.4.11)
2 P
R N T S R Pt -
2 2 2

Therefore the numberator of (4.4.9)

1 _ qi 2q,~p 3
[ 0,9 du = | f 2 -p%
0 i qi_1
(Zq;-pi-l)2
- 7 pi .
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7 —
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W

o
. 82
. L Aan’A a3 § (2q,-p =1) Py -

~
- »~

Now, we will be through 1f we prove that
2° 3
3 Z (2q,-p,~-1)“ p, =1 ~ Z P, , oOr
‘i i%1 i i i
‘-
(4.4.12) Z p3 =1-3 X (2q,-p -1)2 P
oo ii - ,i qii i ‘.

For only one point mass (i.e. K-l)\ (4.4.12) is trividl., Let

us assume that it is true for k = £ (i.e. it holds for all probabil-
. . y

ity distributions with £ points having positive probability.

N

: 3 § ' 2 |
(4.4.13) s pi=1-3 (2q,-p,-1)° p, .
=1 ! 121 1 !

We want to prove that it is true for any distribution with (241)

points having positive probability

3
241 L p
3 3 i 3
! p)=q’ ] S+p y where q=1-p
. e 1 151 q3. 241 241

2 2q, p P
3 i i 251 3
= {1-3 — - ] _....}+
q 121 ( q q ) q p9,+1

p
using (4.4.13) for probability distribution with 7% vl=1,...,8

as probabilities — T . 1) . Therefore,
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S+1 L
3 3,3 2
Py = (-pp, )  +pp, =3 I (2q,-p-0)%
oy Bt 241 UL S S
3,3 g 2
" (1P )” + gy - 3 121 (2q,=p,~14py, )0, “
) 3, .3 d 2 2
" APgyy)” + Py -3 1§1 (2937p4~1)7py = 3ppy; (1-Pgyy)
)
. N o Tbpyy ! (2q;-p,-1)p; > Or
1=1
1 41
3., . Y 3.2
(4.6.24) ] py=1-3} (2a,-p,-1)" py + bpg,, = 6Py,
1=} t=1
L
L 12 (2a;-p-1) by

=] ‘

It can easily be shown that for every n , with k = ntl

n
2
(4.4.15) 151 (24,-p;~1) P, =P . =P -

Therefore by (4.4.14) and (4.4.15), we have

3

i

94%1 3" 2-20:-1 ’ .
p; =1-3 (2q,-p.-1)" p, .
i=1 i i=1 i "1 i
8 F4 N

Hence, Ey induction hypothesis the result follows. 0

In case of tests for symmetry, - ﬁi .the asymptotic efficiency

v

becomes (Canerg (1973a))




1
[[ + ¢+(u) ¢+(U,F,9°)du]2
) F (0)
(4.4.16) e = n .
fl (6" () 12du r (67 (u, 7,0 )1%du
F (0) F (0) o .

We can discuss as in case of ﬁg » the asymptotic relative
efficiencies of different methods of handling ties and prove Putter's

(1955) Theorem 2 as a special case.

4.5 TWO METHODS OF HANDLING TIES AT ZERO: COMPARISON.

\

U
Two methods of handling ties at zero in Wilcoxon signed rank

oy R

-

-
N

tests has been mentioned in Chapter 3 (Pratt's method and Wilcoxon's
method). In this section, we will compare the asymptotic efficiencies
of two, as given by (4.4.16) and show that each one performs better in

different conditions (see [4]).

3, Let xl,xz,...,xn be a random sample with discrete distri-

bution function F(x,0) . Let p(x,8) represent the probability func~

\

tion. In order to apply the results of preceding sections, F(x,0)

should gatisfy the following conditions
A

(1) p(x,@o) = p(—x,eo) for some 0 = 60

(11) f£(x,6) = g%ﬁlgly exists almost everywhere with respect to
»
0

F(x.eo) .

(111) §§ £(x,6) w6 exists almost everywhere with respect to
o

_ ' 66

’

»

-
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F(x,8 )

S
(iv) 1lim £f(x,0) = 1 almost everywhere with respect to r(x,eo)
6+0 ) -

v) la | "a% £(x,0) | dF(x,0)) = J: Ig% f(x,e)le'eo | dF(x,8 ) <=

0-+9
o]
9 3 Ay
(vi) ggf(x,e)h:e ""a?f(”"'e)lese .
o ‘ [0}
M "t
\“ The above conditions: do hold for the examples under considera-
tion. Let
B + 2,.4+..1/2
S (4.5.1) T= ) a(Ry) sign X, | ( I a"®’D)
1=1 K>t

where To equals the number of observations which equal zero, a(RI)
are scores. If scores satisfy the conditions of Theorem 4.2 then (4.5.1)

18 asymptotically standard normal (in Conover (1973b), the statistic (2.1)

is incorrect and (4.5.1) is corrected form of that). In the following,
we will calculate asymptotic efficiency of T from {4.4.16) in differ-

ent situations.

(a) W : Wilcoxon's Test with Pratt's method for ties at zero and

' the Randomized Rank method for other ties: Here the scores
L ]

a(i) = 1/n+l and converge to ¢;(u) =3y , 0<u<l .,

Hence (4.4.16) becomes

- -

1 1
(4.5.2) e = 3[[ " ¢+(u,F,90)du]2~/ (1-p)) f (67 (u,F,8)1% du .

Po Po

\,.w PO,
Py '
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(b) W : Wilooaon's test with Pratt's method for ties at zero

and averagZ‘I (= midrank),rank method for other tiee:

Since the midrank method is used, the score does not converge

to u because of discontinuities in the distribution function. In this

)
case the scores converge to

A

-1, utl 0 1 - prp-lutl
(4.5.3)  dgw) = FIF (5=, 00361 - PIF "¢, 8,8 1/2

-

And (4.5.3) and (4.4.16) gives -

1
3[Ip u p+(u,F,90)du]2
(4.5.4) ew = 0 ]

1
(r Z Pi) f [¢+(U,F,90)]2 du
i

Po

(c) wo : Wilcoxon's test with zero discarded and randomiaed

rank method for other ties:

Tne scores start at 1/(n+l) for nom-zero observations rather

than at about p, as in the previous case. The scores converge tor

(4.5.5) ¢y (u) =0 0<us<p .
o
u-p
(2}
) 1o P, <ux<l

which gives
1 + ’ 1 + 2
3[[p ud (u,F,Bo)du - P, fp ¢ (u,F,Bo)du]/
(4.5.6) ey = I .
° (1-p)° fp (" (u,7,0)1% du
0 .
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(d) Wo : Wilecoxon's Test with zero discarded and midrank method

for other ties:
t *A.
o

From (4.5.3) and (4.5.5), we have scores convefging to

(4.5.7) ¢ (u) =0 0 <u<p
’ w

[s)

tgt, .
- — p <u<x<l
l-po o - .

which gives

1 1
3[fp u ¢+(U’F’eo)du - po [P ¢+(u,F,96)du]2
(4.5.8) e = o - o
W 3 3 + 2
o [Q-p)”° - L p f [¢" (u,F,8 )" du
o i#o i pO [o]

Having discussed the asymptotic efficiencies of different methods of
handling ties in Wilcoxon's signed ramk test, we give two examples; one

of which favours Pratt's method and the other discarding zeros.
e

]

EXAMPLE 4.1: Let us consider the discrete uniform distribution. Under
null hypothesis the probabilities are equal and symmetric about zero,

namely

"(4.5.9) P‘x,O) = 1/(2k+1) for x = 0,+1,...,+tk ,

~
13 4

N\
> \

)

and zero elsewhere, under the null hypothesis. Let the alternative be

14x6

P(X=x) =31

X = 0,4],...,4% , o<|e|571(-

= ( elsewhere.
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Then il is 6960-0. We have,

¢+(u,F,9) - F-ll(lﬁ'l)/z] =0, 0<ulp = (21];4.1)

- i) (21-1) . (2141)
Z » (kA1) T = (ZkH)

1 = l’2’...’k L]

&

Therefore (2.5.2), (2.5.4), (2.5.6) and (2.5.8) become respectively,

ey = (4kP+6k42)/ (4k74+6k3)

e 1, s
e, (16k3+8k2=7k+1) / €16k +8k%) , ‘and .

0

o - (16k3+8Kk2-7k+1) / (16k F+8k2-4k=2) .

[s]

For k=1, W and Wo are equivalenp with efficiencies 1°,
\

-

For k > 1 , we have

different ew'Sr for different k has been given ih (4]

EXAMPLE 4.2: Let

P(X=x) = (kﬁ) o ¥ (1.9)*X | x =0,41,..) %

= 0 C elsewhere.

¥ “ {




The test of symmetry El tests 6 = -%— .

" In this case we have for 0 <u<1l and 1<1i<k

o', F D) = art ({2 L g 0cucp = Hd*

“ w 41 <u7<P

where
‘ Po = po
1 2k
k-1 2
Let I = 2k - 2 2 P, . Then we have
o0 )

2 3
ey = 31 /[8k(l-Po)]

2 3
e = 312/[8k(L - p] - Lo
0

2
e, - 3(1-4k po)Z/{Sk[(l-po),3 -1 Pi]} .
x O 1*0

A

The above formulae do not suggest any obwious ordering but
1 -
some numerical results for different k (see [4]) yield that Wo

preferred.

is

71.



,CHAPTER 5

GENERAL REMARKS

In this chapter we give some general remarks which may be of
some use to a practical statistician. The main concern while using a
rank test when ties are present is that, the null distribution of statis-
tics 'depends upon the pattern of tiles an? is usually difficult to compute.
Let us note the following points. |

(1) As proved in Section 4.4, the test statistics based on the

average score method is more powerful than that based on the randomized
rank procedure., But as the tables for each vector of ties are different
in the former case, it may not always be practicable to use the average
score method. However, we suggest the use of average score method in case
of large samples, i.e., whenever a large sample approximation 1s used and

moddfy the test statistics according to the charge in the variance (for

example, see (3.1.6)).

(ii) In case we do not have the modified form of the statistics or
limiting distribution of the test statistics, when ties are present is
difficult to compute we should note that using the original test statis-
tics and ranking ties by averaged score method, increases the level of sig-

nificance than the one indicated by tables (Héjek (1969)).

»




-
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(111) We also suggest the use of Computer Tables. By this we mean,
the use of computer programmes, which should be available in readily usa-
ble forms, to calculate the probability (given a vector of ties)

P[S > s8/1] , where s 18 the observed value of S and T is the vector

of ties. By this procedure we do not have to print hugé amounts of tables

which may be used rarely. Klotz (1966) has given an algorithm to compute

approximate probabilities in case of Wilcoxon two sample test. The approx-

imation is quite good for large n (n > 5) but for n <5 it fails 1like

other approximations,

»

(iv) In tests of symmetry we haye the problem of zero bbservations
apart from the usual ties. Among the two methods Pratt's and Wilcoxon's,
as discussed in Section 4.5, it is hard to recommend one over the other.
As argued by Pratt, omitting zeros from the observations (Wilcoxon's
method) seems to be causing some loss of information, Hence intuitively,
we suggest the Pratt's method (ranking zero along with other observations

and then dropping them from the rank vector).

' -3

(v) 1If the number of tied observations are very few, it might be
much easier to use the randomized rank procedure and hence use the usual

tables (see Section 3.1) without losing much power than to use averaged

f
score method or midrank method and so requiring tabulation.

1

\
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