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ABSTRACT 
 

 

Meta-analyses (MA) based on individual patient data (IPD) are regarded as the gold 

standard and are becoming increasingly common, having several advantages over MA of 

summary statistics. These analyses are being undertaken in an increasing diversity of settings, 

often having a binary outcome. Parameter estimation of generalized linear mixed models 

(GLMMs), which are frequently used to perform inference on binary outcomes, is convoluted by 

intractable integrals in the marginal likelihood. Penalized quasi-likelihood (PQL) and adaptive 

Gauss-Hermite quadrature (AGHQ) are estimation methods commonly used in practice. 

However, few comparisons for the assessment of the performances of these estimation methods 

have been reported in the context of IPD meta-analyses (IPD-MA) with binary outcomes.  

 

I considered as a first step to the thesis, a systematic review of the literature. In a previous 

systematic review of articles published between 1999-2001, the statistical approach was seldom 

reported in sufficient detail, and the outcome was binary in 32% of the studies considered. Here, 

we explore statistical methods used for IPD-MA of binary outcomes only, a decade later. 19 of 

the 26 MA used a one-step approach verses a two-step approach and random-effect logistic 

regression was the most common method for these binary outcomes, allowing the treatment 

effect to vary across studies. However, the estimation technique used in these studies (e.g. a 

GLMM estimated via PQL or AGHQ) was rarely reported. 

 

Afterwards, via simulation studies, whose design is realistic for conducting IPD-MA of 

binary outcomes, to compare techniques to estimate multilevel models, and to address the 
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concern of including trial-membership as fixed or random? The parameters of the one-step 

models were estimated using PQL and AGHQ while that of the two-step model were estimated 

via restricted maximum likelihood (REML) at the second step. Size and number of study, total 

sample sizes, variances and correlation in the random effects distribution were varied. The 

comparison is done in terms of bias, root mean square error (RMSE), numerical convergence, 

and coverage of interval estimates. The two-step and one-step (via PQL, and AGHQ) methods 

produced approximately unbiased pooled treatment effect estimates, although the manner in 

which PQL achieves this is an advantage. The AGHQ methods for estimating the random 

treatment effect variance performed better with respect to bias and coverage, but RMSE 

performed relatively poor in comparison with PQL for all data sizes and model misspecification.  
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ABRÉGÉ 
 

 

Les méta-analyses (MA) de données individuelles de patient (IPD) sont considérées 

comme une approche de référence et deviennent de plus en plus communes puisqu’elles ont 

plusieurs avantages comparativement aux méta-analyses de statistiques sommaires. Le champ 

d’application de ces analyses est diversifié et relève souvent une réponse binaire. L’estimation 

des paramètres dans de modèles linéaires généralisés mixtes (GLMMs), qui sont souvent utilisés 

pour inférer sur des réponses binaires, est compliquée par l’évaluation d’intégrales insolubles 

dans la vraisemblance marginale. Les méthodes d’estimation quasi-vraisemblance pénalisée 

(PQL) et quadrature Gauss-Hermite adaptive (AGHQ) sont couramment utilisées dans la 

pratique. Cependant, peu de comparaisons sur l’évaluation de la performance de ces méthodes 

d’estimation ont été rapportées dans le contexte de méta-analyses de données individuelles de 

patient (IPD-MA) avec des réponses binaires. 

 

La première étape de la thèse est une revue systématique de la littérature. Dans une 

précédente revue systématique d’articles publiés entre 1999 et 2001, la méthode statistique était 

rarement rapportée avec suffisamment de détails et 32% des études considérées reportaient une 

réponse binaire. Une décennie plus tard, nous explorons les méthodes statistiques utilisées 

seulement pour les IPD-MA avec des réponses binaires. 19 des 26 MA identifiées utilisaient une 

approche en une étape au lieu d’une approche en deux étapes et la regression logistique avec 

effets aléatoires était la méthode la plus commune pour ces données binaires, permettant à l’effet 

du traitment de varier d’une étude à l’autre. Cependant, la technique d’estimation utilisée dans 

ces études (e.g. un GLMM estimé via PQL ou AGHQ) était rarement rapportée. 
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Ensuite, des études de simulation dont la conception est réaliste pour appliquer une IPD-

MA avec des réponses binaires sont réalisées pour comparer des techniques d’estimation de 

modèles à plusieurs niveaux et pour considérer l’inclusion de l’adhésion provisoire en tant 

qu’effet fixe ou aléatoire. Les paramètres de l’approche en une étape sont estimés avec PQL et 

AGHQ tandis que ceux de l’approche en deux étapes sont estimés via la vraisemblance 

maximale restreinte (REML) à la deuxième étape. La taille et le nombre d’études, les tailles 

d’échantillon totales, les variances et les corrélation de la distribution des effets aléatoires sont 

variés. La comparaison concerne le biais, l’erreur quadratique moyenne (RSME), la convergence 

numérique et la couverture des intervalles des estimés. Les approches en une et deux étapes (via 

PQL et AGHQ) produisaient des estimations combinées de l’effet du traitement 

approximativement non-biaisées, bien que la manière dont la méthode PQL produisait cette 

estimation soit avantageuse. La méthode AGHQ pour estimer la variance des effets aléatoires du 

traitement performaient mieux concernant le biais et la couverture, mais RSME performait 

relativement mal comparativement à PQL pour toutes les tailles de données et les mauvaises 

spécifications de modèle. 
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Chapter 1 Introduction 
 

1.1 Rationale 
Individual patient data meta-analyses (IPD-MA) are the gold standard of meta-analysis, 

having many advantages over conventional meta-analyses, particularly when the outcome is 

binary and modelled using the one-step method. Such models offer more possibilities of complex 

modelling, but empirically should perform comparably to the two-step methods in some 

situations.  

Further, the methods used for the analysis of IPD-MA with binary outcomes show wide 

variability in practice. However, several statistical challenges remain to be investigated.  
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Chapter 2 Literature Review 
 

2.1 Overview of Meta-analysis Techniques and the Role of IPD Analysis 
 
 

DerSimonian and Laird define meta-analysis as “the statistical analysis of a collection of 

analytic results for the purpose of integrating their findings” [1]. Meta-analyses (MA) can be 

considered a formal method for pooling information from a wide variety of sources and 

sometimes can be used to develop a consensus within the research community [2]. The method is 

particularly useful in fields where both the number of studies and the need for synthesis of the 

information is important [1 ,3]. The role of MA in summarizing scientific literature has expanded 

as the number of published studies has increased [1]. 

 

The role of MA in summarizing randomized clinical trials (RCTs) has been 

comprehensively studied and broadly utilized in clinical practice [4]. However, the use of MA 

techniques for summarizing results from observational studies is a more recent phenomenon and 

somewhat poses several unique challenges. Observational studies are more likely to suffer from 

uncontrolled confounding than randomized clinical trials and often times these biases are 

impossible to rule out [5]. The issue is further compounded by the diversity in study designs, 

data collection methods, analytic techniques and non-standardized reporting of observational 

studies. Although MA restricted to RCTs are usually preferred to MA of observational studies, 

there is still a need for synthesizing evidence in areas that are not amenable to RCTs, to enable 

optimal decision-making [6].  
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Conventional MA usually pool aggregate summary statistics of studies (e.g. odds ratios, 

risk differences, rate ratios, means, proportions, etc.), extracted from journal articles or via 

contacting the study investigator. Aggregate data MA suffer from several limitations [7-10]. 

Differences in study design can make it difficult to justify pooling results and to actually carry 

out MA [8]. Studies may also use different research methods and different modeling procedures 

in their published results, creating difficulties in combining their results [6 ,10]. The number of 

available studies for a meta-analysis can diminish rapidly as these inherent differences are 

discovered, hence reducing the power of the analyses. Stewart and Tierney[9] also pointed out 

that if only summary statistics are presented in the literature, it can be impossible to perform 

certain types of analyses such as time-to-event and to pool effects that have been adjusted for 

different variables [6]. With aggregate data MA, it is difficult to estimate the effects of patient-

level covariates on the treatment effect [11]. In the context of an aggregate-data MA, this is 

known as meta-regression and may use study level covariates or aggregated patient level 

information. Meta-regressions on patient-level characteristics are prone to aggregation or 

ecological bias, and to confounding from variables not included in the model [3 ,10 ,12]. Such an 

analysis must use average patient characteristics, and the bias occurs from the mistaken 

assumption that a statistical association between average patient variables across trials is equal to 

the association between the corresponding variables at the individual level [12]. 

 

2.2 Advantages of Individual Patient Data-Meta-Analyses over Aggregate Data Meta-

Analyses 
 

In order to overcome some of these problems, collaborative groups are increasingly 

collecting raw data for each patient in each study and performing what is known as individual 
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patient data meta-analyses (IPD-MA) [13]. Stewart and Tierney [9] defined IPD-MA as “the 

central collection, validation, and reanalysis of  ‘raw’ data from all clinical trials (or 

observational studies) worldwide that have addressed a common research question.” IPD-MA are 

considered to be the least biased method as compared to aggregated data MA and is termed the 

“gold standard” for addressing many problems associated with using data from published 

articles, and a few of the problems associated with synthesizing summary data [5 ,7].  

 

Some of these advantages include having access to a complete and up-to-date dataset 

from each of the included studies on which to base analyses, being able to perform standardized 

statistical analyses across studies and being able to have consistent inclusion and exclusion 

criteria across studies [2]. IPD-MA permit the possibility of detailed statistical analyses 

including subgroup analyses and the ability to adjust for confounders within and between studies 

[2].  

 

Furthermore, the benefits of IPD-MA over aggregate-data MA, according to Stewart and 

Tierney, are that a meta-analyst can reduce or eliminate publication bias by incorporating the 

results from unpublished studies [9]. That is, when some studies are more likely to be published 

than others, the literature that is available may provide misleading information. In addition, 

subgroup analyses can be performed on IPD data, different scales of measurements can be 

combined and alternative but related questions can be investigated [9].  

 

Stewart and Parmar compared the two methods using data from the Advanced Ovarian 

Cancer Trials Group that investigated non-platinum drugs and platinum based chemotherapy for 
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cancer treatment [5]. The analysis of the aggregated data (AD) MA gave a result of greater 

statistical significance (p-value=0.027 vs p-value=0.30) and an estimate of absolute treatment 

effect three times as large as the IPD-MA (7.5% vs 2.5%) [5]. The method of analysis 

contributed to this observed difference [5].  

However, the results of AD-MA can coincide with that of IPD-MA [2]. If complete 

aggregate data extracted from published studies can be obtained, then a two-step IPD-MA (as 

discussed below) and an AD meta-analysis will yield similar results, conditional on the other 

factors (number of patients etc.) [14 ,15]. 

 

As discussed, IPD-MA offer several advantages over conventional aggregated data MA, 

however, strikingly, a standardized data analytic approach for IPD-MA does not exist, and has 

been noted as one of the drawbacks for IPD-MA [16]. In this work the focus is on IPD-MA of 

binary outcomes that arise frequently in practice.  

 

2.3 Methods for Combining Effects: One- verses Two-Step 
 

Two broad analytic approaches exist for combining the results from multiple studies in 

IPD-MA. One approach requires that the analyst conduct individual analyses for each study then 

generate summary statistics (such as a difference in means or log odds ratio and a standard error 

of the estimate) that would be published in the literature, and use classical MA approaches, such 

as, inverse-variance weighting, to synthesize these summary statistics. This is known as the two-

step approach. A two-step analysis of IPD improves upon conventional aggregate-data MA due 

to the standardization of inclusion/exclusion criteria, exposure and outcome definitions and 
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statistical analysis. However, it does not take full advantage of the richness of an IPD [17]. A 

one-step approach as described next, should confer even more advantages.  

 

One-step methods use a single statistical model, while accounting for the clustering among 

patients in the same study, to estimate an overall effect. A one-step model also takes advantage 

of the ability to standardize elements of the analysis across studies [2 ,3 ,15]. However, a one-

step model allows investigation of patient- and trial-level covariates [11]. In particular, this 

approach allows investigation of dose-response curves (e.g. allowing non-linearity), improves 

power for interactions and subgroup analyses [8 ,10 ,18], and allows control of confounding by 

patient- and study-level covariates in a much better way than a two-step approach [2 ,3 ,15]. A 

one-step approach also offers more flexibility to explore the differences that may exist between 

patients in the same study as well as across studies [19]. The problems of zero cells in some 

studies [12], usually excluding smaller studies are also addressed by using a one-step model. 

This approach allows studies with zero cells to provide some information [12].  

 

Recently, some have suggested that the two-step and one-step approaches to analysis of 

IPD-MA produce similar results for meta-analyses of large randomized controlled trials [20]. 

However, another study showed that occasionally the one-step and two-step approaches lead to 

different conclusions about which factors are associated with the outcome [17]. The literature 

suggests that the one-step method is particularly preferable when few studies or few events are 

available as it uses a more exact statistical approach than reducing the evidence of MA to assume 

approximate normality [17].  Further, there is little agreement between the one- and two-step 

methods when interest lies in identifying patient-level characteristics that are related to 
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treatment-effect (effect modification) [8 ,12]. One-step method will always improve on the 

power to adequately identify clinically moderate interactions over the two-step method [8]. 

 

2.4 Fixed verses Random Effects 

 

Within IPD-MA, the study and/or the treatment may be specified as either a fixed- or 

random-effect; where the choice of method depends on the question to be answered.  

 

Under the fixed-effects model we assume that the true effect size for all studies is 

identical, and the only reason the effect size varies between studies is by the play of chance, that 

is, within-study sampling error. The fixed-effects model may be used if (i) it is believed that all 

the studies included in the analysis are functionally identical and (ii) the goal is to compute the 

common exposure effect for the identified population, and not to generalize to other populations 

[21]. Typically, studies are not functionally identical -- the subjects or interventions differ in 

ways that may have impacted the results, and therefore one should not assume a common 

exposure effect. In these cases the random study- and/or treatment-effect models are more easily 

justified that the fixed effects model. The goal of the random effects model is not to estimate one 

true effect, but to estimate the mean of a distribution of effects. Conventionally the normal 

distribution has been used to accommodate the variation [21]. Additionally, the uses of the 

random effects models can be generalized to a range of scenarios.  

 

As demonstrated by Straum [22] the mixed effect regression model structure is a very 

general framework that can  incorporate random effects for the studies, treatments and covariates 
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[22 ,23], use data from both single and  two-arm studies [24], and offer the ability to combine 

surrogate endpoints [25].  

 

2.5 Heterogeneity in Meta-analysis 

 
In any meta-analysis the point estimates of the exposure effect from the different studies 

being considered will almost always differ, to some degree.  When exposure effects differ, but 

only due to sampling error (i.e. the true effect is the same in each study), the effect estimates are 

considered to be homogeneous; in other words, differences between estimates are random 

variations, and not due to systematic differences between studies. However, often the variability 

in the effect size estimates exceeds that expected from sampling error alone, that is, there is not 

just the same true underlying effect for each study, but “real” differences exist between studies. 

When it is present, the effect size estimates are considered to be heterogeneous and potential 

sources of heterogeneity should be explored.  

 

Heterogeneity may be related to differences between included patient populations, details 

of the interventions and co-interventions, and measurement and definition of the outcome [26]. 

Large heterogeneity demands some action, e.g. stratifying by trial features or meta-regression to 

identify sources of heterogeneity [27]; and suggests using a random-effects analysis, though 

some argue it precludes pooling effects [27]. Various methods exist for assessing and quantifying 

these differences between the study estimates. These range from simple graphical assessments 

(e.g. the forest plot [28]) to complicated formal statistical tests and estimation methods, such as 

I2 [27 ,29]. While the I2 is the standard, some have argued that between-study variability may be 

best described simply by τ2 [29 ,30].  
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2.6 Overview of generalized linear mixed models 

 

The one-step random effects model for binary outcome data described above is a form of 

generalized linear mixed model (GLMM). GLMMs extend generalized linear models (GLMs) by 

adding normally distributed random effects to the linear predictors of a GLM, to account for 

correlation among the responses [31]. The GLMMs are special cases of random effects models, 

as in some cases the random effects are not normally distributed [32]. Random effects can be 

interpreted as reflecting the natural heterogeneity across studies due to unmeasured factors or 

heterogeneity not captured by covariates included in the linear predictor [33]. For example, in 

patients with a suspected presence of Deep Vein Thrombosis (DVP)- IPD of patients can be 

collected and various studies can aim at estimating which candidate factors are associated with 

the outcome. These factors would induce correlation in responses for a patient within study, as 

well as, heterogeneity in responses of patients between studies (differences in geographic local, 

setting and time) [17]. 

 

To analyze IPD-MA with a dichotomous outcome measure under the fixed effects GLMs, 

the following notation will be adopted: yij is the observed outcome for an individual, coming 

from a binomial distribution with parameter ! !!" = 1 = !!" !and a denominator of 1. If  !!" is 

the true response probability for the jth individual in the ith study where ! = 1,… ,!, then  

 

!"#$% !!" ! = !! + !!!!" !
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where !! is the set of fixed study effects which represent the average log odds among the 

untreated subjects in each study, !!  is the pooled exposure effect (log odds ratio) of an 

intervention as compared to control and !!" is an indicator variable for treatment assignment.  

 

Under the same methodological framework, the general form of the random effects 

model with random study effects includes the effects !!!  of study on the log –odds as well as the 

effects !!!  of study on treatment effects: 

 

!"#$% !!" ! = !! + !!! + !! + !!! !!"  

where! !!!!!!
~! !! !"#

!"# !!  

 

When modeling treatment- and study-effects as random, we are implicitly modeling the 

variance-covariance matrix associated with parameter [34]. If !"# !!! , !!!  is assumed to be 

zero, the between-study variance of the log-odds across control groups is modeled by !! , while 

that across treatment groups is modeled by !! + !! [34]. The variation across study for control 

groups is thereby forced to be less than or equal to the variation across study for treatment 

groups; this assumption may well be inappropriate [34]. Therefore, the covariance between the 

random intercepts and slopes should be modeled. 

 

A GLMM can be specified as follows. As before, let !!" represent the !!! individual in 

the !!! study with ! = 1,… ,!! and ! = 1,… ,!. It is assumed, conditional on random effects, !!, 

the responses !!" are independent with mean: 
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!"#$%!!(!!"|!!) = !!"!! + !!!"!!!, 

where !"#$% ! = log!( !
!!!) and !! have a multivariate normal distribution with mean 0 and 

covariance matrix ! = !(!) [31]. If all elements of the covariance matrix ! equal 0, all of the 

random effects equal 0 and the GLMM is reduced to a GLM. The appropriateness of the 

normality assumption for the random effects is difficult to verify [31]. 

 

2.7 The problem of the likelihood inference for GLMMs 

 
 

The maximum likelihood estimates of the GLMM parameters are obtained by integrating 

out the unobserved random effects !! from the joint distribution of ! and !!. The marginal 

likelihood is defined as 

! !,!,! = !!"
!!

!!!
!!" !! ,!,! !(!!|!)!!!

ℝ!
,

!

!!!
 

where !!!" !!" !! ,!,!  is the  conditional density of the outcome !!" and !(!!|!) the density of 

the random effects, that is, a multivariate normal distribution. 

 

The problem with the expression for the likelihood is that it is generally not analytically 

tractable, and so the likelihood cannot be expressed in closed form, except in special cases such 

as linear mixed models (LMMs). A variety of approaches have been proposed to circumvent this 

difficulty, including approximate likelihood approaches based on the use of the Laplace 

approximation, such as penalized quasi-likelihood (PQL) introduced by Breslow and Clayton 

[35],  numerical approaches, such as Gauss-Hermite quadrature (GHQ) [36], and approaches 

based on the use of Monte Carlo methods, such as modern Bayesian approaches implementing 
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Markov Chain Monte Carlo (MCMC) techniques [37]. These methods will be explored in detail 

in the following section. 

 
 
2.8 Estimation methods for GLMMs 

 
 

The main difficulty with GLMM estimation is the presence of high dimensional integrals 

with no analytics solutions. A detailed overview of Adaptive Gauss-Hermite quadrature 

(AGHQ), PQL and some of the relative merits and disadvantages of each approach raised in the 

literature are provided below. 

 

2.8.1 Penalized Quasi-likelihood  

 

PQL is the most well known Laplace approximate likelihood approach for GLMMs. It is 

an iterative algorithm for solving a GLMM, which is similar to the iterative least squares method 

for solving a GLM [35 ,38].  

The simplest derivation for the PQL technique is based on a first order Taylor series 

approximation [39 ,40]. If the GLMM is decomposed into 

!!" ≈ !!" + !!!" = ℎ !!" + !!" 

!!"~! 0,!" !!" , 

where ℎ = !!! is the inverse link function, then an expansion around the current iteration value 

of the linear predictor, !!"(!!!) = !!"!!(!!!) + !!"!!(!!!), gives the pseudo-data defined as 

!!" ≈ ℎ !!"!!! + ℎ! !!"!!! ! !!"!!+ !!!"!!− !!"!!! + !!!" . 
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The PQL method is based on two analytic approximations: a Taylor series approximation 

and a probabilistic approximation of the normality assumption [39]. The expression given above 

follows the form of a LMM for the pseudo-data. The maximization of the likelihood for LMMs 

does not suffer from the problem of intractable integrals. The iterative steps of the PQL method 

alternates between fitting a LMM to the pseudo-data to obtain new estimates for !,!,!!and!!, 

then updates the pseudo-data with the new estimates [35]. 

 

Furthermore, the PQL method is considered to be a computationally efficient way of 

fitting a wide variety of GLMMs as compared to numerical methods, such as AGHQ. PQL can 

be utilized to estimate parameters of GLMMs with several random effects, with more than two 

levels. The biggest known problem with the PQL approach, highlighted in previous literatures, is 

the potential for large estimation biases for some GLMMs, such as for binary data with small 

cluster sizes [38 ,41]. The bias in the PQL estimates has led to the development of a series of 

modifications and proposals: correction of PQL [41 ,42], modified Laplace approximation [43 

,44], and higher order Laplace approximations [45]. The list is long, and one can find thorough 

reviews of these developments in McCullagh and Searle [31], Demidenko [46], Hedeker and 

Gibbons [47] and Lee et al. [48].  

 

2.8.2 Adaptive Gauss-Hermite Quadrature 

 

AGHQ is the current favored competitor to PQL, which approximate the likelihood by 

numerical integration via a weighted sum of the GHQ approximation [36]. Numerical integration 

proceeds by GHQ formula 
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ℎ ! !!!!!" ≅ ℎ !! !! ,
!

!!!

!

!!
 

where ℎ is a smooth function, !! are the quadrature points that are the roots of the mth order 

Hermite polynomial with corresponding weights !!, both of which are available from standard 

references [49]. The larger the m, the number of quadrature points, the better the approximation.  

When one quadrature point is used, AGHQ is equivalent to the Laplace approximation [36]. The 

integrand of the contribution of study i to the marginal likelihood can be transformed to the form 

of GHQ formula above by substituting the linear transformation !! = (2!)!!/!!! with 

!"! = (2!)!!/!!"!, considering a random intercept !! only model and ! the variance of the 

random intercept distribution 

!! !! !,!,! = !!" !!" !! ,!,! ! !! !
!!

!!!
!"!

!

!!
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!= !!" !!" !! ,!,!
!!!!/!!
(2!")!/!

!!

!!!
!"!

!

!!
 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!= !!" !!" !! ,!,!
!!((!!)!!/!!!)!

!

!!

!!!
!"!

!

!!
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!= !!" !!" !! = (2!)!/!!! ,!,!
!!!!!

!

!!

!!!
!"!

!

!!
 

= ℎ∗ !! !!!!!!!!
!

!!
,!!!!!!!!!!!!!!!!!!!! 
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where ℎ∗(∙) is the conditional distribution for the vector of responses given the random effects 

!!, divided by a normalizing constant !. The estimator obtained by maximizing the likelihood 

approximated in this way is called the non-adaptive Gauss-Hermite quadrature (NGQ) estimator.  

 

Naylor & Smith [50] and Liu & Pierce [51] suggested an improvement to standard GHQ. 

While GHQ approximates the likelihood by choosing optimal subsets at which to evaluate the 

integrand, AGHQ uses further information gained from an initial parameterization to increase 

precision [36]. However, there is a trade-off with respect to precision and speed. AGHQ gets 

exponentially slower as the dimension of the random effects increases, to an extent where the 

procedure is not feasible for 2 or 3 random effects [36].  

 

For simplicity, the AGHQ method is described here for a univariate integral ! ! !"!
!! . 

Let ! be the mode of ! !  or the mean of a variable with probability density function (pdf) 

proportional to ! ! , and let !! represent either the estimated curvature of ! !  at the mode ! or 

the variance of a variable with pdf proportional to ! ! . Consider an integrand including the 

product of a function and an arbitrary normal density  

! ! !" = ! !
! !; !,!! ! !; !,!! !" =

!

!!
ℎ(!) 1

2!!!
!!(!!!)/!!!!!

!

!!

!

!!
, 

where ℎ ! = !(!)/! !; !,!!  and ! !; !,!!  is a normal pdf with parameters ! and !!.  

The application of GHQ to this integral implies the re-parameterization of the function ℎ ∙  at 

quadrature point !! = ! + 2!!!, where !! are the roots of the mth order Hermite polynomial. 

Applying the change of variable ! = (! − !)/ 2!, the expression becomes 

ℎ(! + 2!!) 1
2!!!

!!!! 2!!"
!

!!
 

15



 

 

= ℎ(! + 2!!) 1! !
!!!!"

!

!!
 

≈ !!
! ℎ !!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

In short, the adaptive process takes into account the properties of the entire integrand. 

The method scale and translate the quadrature locations to place them under the peak of the 

integrand. In this way, the position of the quadrature points may vary from study to study.  

 

2.9 Review of previous simulation studies on the Estimation Methods 

 
 

The literature on likelihood-based methods for the maximum likelihood estimation of the 

parameters for GLMMs is vast. Diaz [52] compared the PQL approach with a special case of the 

Laplace approximation for the logit-normal model in a cluster randomized trial setting. He found 

that the numerical Laplace method might have reduced the bias, but at the expense of huge 

variances.  

Callens and Croux [53] compared the performance of PQL, to non-adaptive and adaptive 

Gaussian methods for correlated binary outcomes. In this paper it was concluded that (i) PQL is 

a much faster estimation method, (ii) AGHQ is preferred than non-adaptive and (iii) although 

PQL suffers from larger bias in the parameter estimates (confirming to findings in the literature), 

it performs better in terms of mean square error. 

 

Few comparisons between the various estimation methods have been reported in the 

context of IPD-MA with binary outcomes – that is few clusters, imbalanced cluster sizes, large 

inter-study heterogeneity, small exposure effects and an interest in the variance parameter of the 
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random treatment effect [17 ,34]. In addition, several simulation studies limit their attention to 

simple models with only random intercepts. The performances of the random effects models that 

include both a random intercept and a random slope, or only a random slope are far less reported 

[34]. The simulation studies presented in manuscript II assess the performance of likelihood-

based methods (PQL and AGHQ) for fitting stratified- and random-intercepts with an interest in 

the inter-study heterogeneity of the treatment effect in realistic settings common when IPD-MA 

are performed with binary outcomes.  

 

Furthermore, there is little discussions of methodology for IPD-MA with binary 

outcomes in the literature, several concentrate either on general practicalities of IPD reviews or 

advance multilevel modeling techniques [16]. The lack of a standardized data analysis plan and 

guidance has led to various differences in the approach and conduct. To identify areas in need of 

guidance and further research, the systematic review presented in manuscript I investigate the 

statistical approach taken to analyze recent IPD-MA with binary endpoints.   
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Chapter 3 Objectives 
 

Two studies were undertaken whose manuscripts form this dissertation. The general 

objective was to further the development of bio-statistical methodology for the analysis of 

individual patient data meta-analyses (IPD-MA) with binary outcomes. The specific objectives 

were as follows: 

 

1) To systematically investigate statistical methods used to analyze IPD-MA with binary 

outcomes and update a previous review of these methods. 

Despite the many advantages in carrying out IPD-MA over aggregate data meta-analyses 

(i.e. standardizing the statistical analysis across studies, assessing patient-level data, examining 

interaction terms etc.), the obtainment of IPD as well as the cost associated can be prohibitive. 

Further, the wide range of methods used for the analysis of IPD-MA (one- vs. two-step, fixed- 

vs. random-effects etc.) and the lack of a standardized protocol for the data analysis is a 

limitation.  

 

2a) To compare various performance aspects of two estimation procedures (Penalized 

quasi-likelihood and Adaptive Gauss-Hermite quadrature) for generalized linear mixed 

models (GLMMs) in the unique setting of IPD-MA under a one-step approach, to each 

other and the two-step method.  

 More specifically, the performance of penalized quasi-likelihood (PQL) and adaptive 

Gaussian Hermite quadrature (AGHQ) was investigated via simulation study. Performance 

assessment was via: bias, mean square error, coverage and numerical convergence, of the pooled 

treatment effect and the inter-study heterogeneity. The effects of number of studies, number of 
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patients per study, variability of study size and heterogeneity of the treatment effects across 

studies was investigated.  

 

2b) To investigate the assumption and implication of modelling the study-effects as fixed or 

random within GLMMs.  

It is important to investigate different sources of heterogeneity in performing a meta-

analysis. Some of this variability cannot only be explained by the heterogeneity of the treatment 

effects across studies but also by heterogeneity in the baseline odds.  In fitting a fixed study-

effect, a dummy variable is estimated for each study included, reducing the information available 

for estimating any one-model parameter. 
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Preamble to Manuscript I 
 

 The first part of this thesis is a systematic review of the methodology for individual patient 

data meta-analysis (IPD-MA). A previous paper reviewed methods used in practice for meta-

analysis of IPD from randomized trials. That paper reviewed 44 articles published during 1999–

2001, of which 14 considered a binary outcome and found that the two-step approach was used 

about two-thirds of the time [16]. They also found that few details were provided. Further, the 

lack of guidance has led to vast variation in the approaches. 

 

 Over the intervening years, generalized linear mixed models have become increasingly 

commonplace-they are used more frequently in the medical research literature, and are available 

in most statistical software packages. Given this, we were interested in updating the previous 

review. 

 

 The second aspect considered in this manuscript was to investigate the analytical approaches 

to IPD-MA with binary outcomes. When there is substantial variation across studies, various 

random-effects meta-analysis models are possible that employ a one-step or two-step method. 

Empirical comparisons are few between the methods; therefore, it was interesting to compare 

these approaches and report, which is frequently employed in practice. 

 This article was submitted and published in the BMC Medical Research Methodology 

journal. 
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Systematic review of methods for individual
patient data meta- analysis with binary outcomes
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Abstract

Background: Meta-analyses (MA) based on individual patient data (IPD) are regarded as the gold standard for
meta-analyses and are becoming increasingly common, having several advantages over meta-analyses of summary
statistics. These analyses are being undertaken in an increasing diversity of settings, often having a binary outcome.
In a previous systematic review of articles published between 1999–2001, the statistical approach was seldom
reported in sufficient detail, and the outcome was binary in 32% of the studies considered. Here, we explore
statistical methods used for IPD-MA of binary outcomes only, a decade later.

Methods: We selected 56 articles, published in 2011 that presented results from an individual patient data meta-analysis.
Of these, 26 considered a binary outcome. Here, we review 26 IPD-MA published during 2011 to consider: the
goal of the study and reason for conducting an IPD-MA, whether they obtained all the data they sought, the
approach used in their analysis, for instance, a two-stage or a one stage model, and the assumption of fixed or
random effects. We also investigated how heterogeneity across studies was described and how studies investigated
the effects of covariates.

Results: 19 of the 26 IPD-MA used a one-stage approach. 9 IPD-MA used a one-stage random treatment-effect logistic
regression model, allowing the treatment effect to vary across studies. Twelve IPD-MA presented some form of statistic
to measure heterogeneity across studies, though these were usually calculated using two-stage approach. Subgroup
analyses were undertaken in all IPD-MA that aimed to estimate a treatment effect or safety of a treatment,. Sixteen
meta-analyses obtained 90% or more of the patients sought.

Conclusion: Evidence from this systematic review shows that the use of binary outcomes in assessing the effects of
health care problems has increased, with random effects logistic regression the most common method of analysis.
Methods are still often not reported in enough detail. Results also show that heterogeneity of treatment effects is
discussed in most applications.

Keywords: Individual patient data, Meta-analysis, Random effects, Systematic review, Heterogeneity, One-stage

Background
A meta-analysis (MA) attempts to synthesize the results
from various distinct studies. The goal is to summarize
the evidence for a particular statistical measure of interest,
such as a risk difference or odds ratio. It is an especially
important tool in clinical practice and medical research,
where evidence-based information is preferred [1].
Individual patient data (IPD) MA are the gold stand-

ard of meta-analysis. In an IPD-MA line-by-line patient

data are collected from the relevant studies, rather than
just the measure of effect as in a standard aggregate data
(AD) MA. This permits researchers to define exposures
and outcomes consistently across studies, and to analyze
them more similarly (e.g. adjusting for the same con-
founders), which may minimize heterogeneity [2,3].
For IPD-MA, two broad analytic strategies (one- and

two-step approaches) are possible; both preserve the clus-
tering of subjects within studies, comparability of study
arms, and both may be either fixed or random. A fixed ef-
fects analysis assumes that the estimated effect is the same
across all studies, while a random effects analysis assumes
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that the estimated effect varies across studies due to differ-
ences in patient populations, study procedures, etc [1,4].
A two-step approach first analyzes each study separ-

ately and as identically as possible, and then uses stand-
ard meta-analytic techniques to pool the measure of
interest. The well-known random effects method of Der
Simonian and Laird is frequently used in the second step
of a two-step IPD-MA approach [1].
One step approaches use one statistical model while

accounting for the clustering among patients in the
same study, to estimate an overall effect. A one step
model also takes advantage of the ability to standardize
elements of the analysis across studies, but offers more
flexibility to explore the differences that may exist
between patients in the same study as well as across
studies [2,3,5]. In particular, a one-step approach allows
better control of confounding by patient- and study-
level covariates, improves power for detecting interactions
and subgroup analyses, as well as avoids and reduces the
potential for ecological bias that may occur if group level
information is included in the analysis [6,7].
In conventional AD-MA, it is difficult to estimate the ef-

fects of patient-level covariates on the treatment effect
[8,9]. In the context of an AD-MA, this is known as meta-
regression and may use study level covariates or aggregated
patient level information. Meta-regressions are prone to
ecological bias, and to confounding from variables not in-
cluded in the model [5,6,9] and may have limited power.
IPD-MA have higher power than meta-regression to detect
the effect of an interaction between covariates and treat-
ment, and are preferable when the interest is in estimating
interactions with patient-level covariates [9-11].
Importantly, IPD-MA are not prone to ecological bias

if inferences about individuals are not based on aggre-
gated data and model misspecification is evaded [6]. For
these reasons, and others, IPD-MA are considered the
gold standard of meta-analysis, despite the complexity
and cost of collecting the data, and are published with
increasing frequency [2].
Despite the many advantages, the wide range of methods

used for analysis of IPD-MA and the lack of a standardized
data analysis plan is a serious drawback [12,13]. A previous
review of methods used in practice for IPD-MA, reviewed
44 articles published during 1999–2001, of which 14
considered a binary outcome [13]. That review found
that the two-step approach was used about two-thirds
of the time [13].
The aim of this systematic review is to update that re-

port, nearly a decade later when random effects models
have been well integrated into other areas of health re-
search, are readily available in many software packages
and computing power is also up to the challenge. Our
objective was to investigate the statistical approach taken
to analyze IPD-MA with binary outcomes. In particular,

we were interested in (i) whether two-stage or one-stage
approaches were more common; (ii) how heterogeneity
was investigated and reported; and (iii) if a one step ap-
proach was used, were intercepts permitted to vary
across primary studies considered as random.

Methods
Eligibility criteria for included studies were articles pub-
lished in 2011 that reported results of an individual pa-
tient data meta-analysis for a binary outcome and were
indexed in PUBMED or Medline. We believed that this
would provide a good overview of the methods currently
used for analysis of IPD-MA. We performed the search
in June 2012.
We searched in PUBMED and MEDLINE for articles

published between January 1, 2011 and December 30,
2011. The search terms used were “meta analysis” and
(“individual patient data” or “ipd” or “patient level” or
“individual participant” or “integrated analysis”). The ti-
tles and abstracts of these articles were reviewed to en-
sure that they reported results of an IPD-MA.
For the full text review, a standardized form was filled

independently by two reviewers (SR, DT). Discordant
entries were resolved by a third reviewer (AB). The data
we collected from each article included: the reason for
performing an IPD-MA, the goal of the IPD-MA, the
types of studies collected, the number of studies sought
and retrieved; the number of patients sought and re-
trieved; the type of outcome (e.g., binary, time-to-event
or continuous); the method of analysis for the primary
outcome and whether the analytic approach was one-
stage or two-stage; whether intercept and/or the treat-
ment effect were allowed to vary across studies (fixed or
random effects); how heterogeneity was quantified, ad-
dressed and reported; the method of analysis of covari-
ates: whether by one- or two-stage methods; methods
for study- or patient-level covariates; and, whether sub-
group analyses were performed (See Additional file 1:
Table S1). For this review, we have considered only those
articles which used a binary outcome.
We present descriptive analyses only.

Results
A total of 111 articles were returned from our search
strategy. The titles and abstracts of these articles were
reviewed to ensure that they reported results of an indi-
vidual patient data meta-analysis. On this basis, 56 were
selected for full text review. Articles excluded did not re-
port results from an individual patient data meta-analysis
(See Figure 1).
Twenty-seven articles presented time-to-event outcome

data, 2 presented continuous outcome data and only one
article had a count outcome. We focus on the 26 articles
that presented results using a binary outcome.
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Among these 26 studies, the goals of the study were to
estimate diagnostic accuracy (5, 19%) [14-18]; to esti-
mate a treatment or exposure effect (14, 53%) [19-32], to
identify predictors of an outcome (4, 15%) [23,33-35], to
investigate safety of a treatment (3, 12%) [32,36,37], or
other reason or goal not specified (2, 8%) [38,39]. (Note
that percentages may not total to 100, because more
than one goal was possible) (See Table 1).
Over half of IPD-MA (15/26) included only randomized

control trials while the other IPD-MA included only ob-
servational studies. IPD-MA that included observational
studies had a different profile in terms of goal with a
greater proportion of studies that aimed to estimated diag-
nostic accuracy, and fewer IPD-MA that aimed to esti-
mate the effect or safety of a treatment (See Table 1).

Why IPD?
When carrying out an IPD-MA, there are several advan-
tages to be gained from this approach over aggregated data
meta-analyses. The main reasons for adopting the IPD
method reported for these 26 articles are summarized in
Table 2. Half the studies included in our review cited sub-
group analyses as the reason for conducting the IPD-MA.

Numbers of studies and patients
Figures 2 and 3 present the number of studies and num-
ber of patients included in the IPD-MA, respectively.
More than 90% of the meta-analyses presented results for
both the number of studies and patients obtained and
sought. The median number of studies was 12, with inter-
quartile range 6–18. The number of studies obtained in

Figure 1 Flowchart of the inclusion of Individual patients data meta-analyses.

Table 1 Goal of study, overall and stratified according to whether the IPD-MA included only randomized controlled
trials, or included both randomized controlled trials and observational studies1

Reason Included only randomized
controlled trials (n = 15) N (%)

Included observational
studies (n = 11) N (%)

Overall N (%)

To estimate a treatment effect 10 (67%) 3 (27%) 13 (50%)

To investigate safety of a treatment 2 (13%) 1 (9%) 3 (12%)

To estimate diagnostic accuracy 1 (7%) 4 (36%) 5 (19%)

To identify predictors 1 (7%) 3 (27%) 4 (15%)

Other/Unclear 2 (13%) 1 (9%) 3 (12%)
1Numbers may not total to 100% because some IPD-MA had more than one goal.

Thomas et al. BMC Medical Research Methodology 2014, 14:79 Page 3 of 9
http://www.biomedcentral.com/1471-2288/14/79



23



the 26 meta-analyses ranged from about ten publications
with fewer than ten studies, to five with more than twenty
studies.
More variation was observed in the number of patients

obtained, with median and inter-quartile range of 2964
and 679–4291 respectively (See Figure 3). Three meta-
analyses had more than 10,000 patients and nine had
fewer than 1000 patients.
Figure 4 shows the percentage of patients sought for

which the full data were obtained. Sixteen (62%) meta-
analyses obtained 90% or more of the total number of
patients. Of these, eleven (69%) publications obtained in-
formation on all of the patients sought. The median of the
16 IPD-MA was 3430 with IQR of 908–6500 patients.

Statistical methods
Although many studies reported results for more than
one outcome, here, we focus on the methods used to
analyze the binary outcome. A majority of analyses con-
centrated on mortality or a dichotomized scale for the
binary outcome. Most analyses used a one-stage method
to pool the overall effect (69%) in the 26 IPD-MA for
binary outcomes (Table 3). In those papers that used the
one stage approach, usually all patient data from these
studies were combined in a generalized linear mixed

model (GLMM), accounting for the clustering among
patients from the same study by including random study
and or treatment effects. In general, few details were
provided, and information often had to be inferred based
on the results presented.
Among the 19 one-stage analyses, logistic regression

was the most frequent technique employed. Ten of these
IPD-MA used a random effects analysis. However, in 5
of these it was not clear whether intercepts, treatment
effects or both were allowed to vary across studies. In
the remaining 5 IPD-MA, 2 allowed both intercepts and
treatment effects to vary, 1 allowed only the treatment
effect to vary, and 2 allowed only the intercepts to vary. In
general, little justification was offered for these choices.
None specified the estimation method (e.g. penalized
quasi-likelihood (PQL) [40] or adaptive Gaussian Hermite
quadrature [41], etc.) used.
A fixed effects one-stage approach was used in 9 IPD-

MA. Of these, 5 IPD-MA seemed to ignore clustering of
subjects by study completely, and pooled all subjects
together.
Two-stage methods were used in 6 of 26 studies

reviewed. Of these, three studies used random effects for
the treatment. One study initially used a Der Simonian
Laird approach, but due to very low estimated hetero-
geneity, used a fixed treatment effect. The Cochrane-
Mantel-Haenszel two-stage approach was used in one
study, where no indication of heterogeneity across stud-
ies was found.

Heterogeneity
Most IPD-MA (n = 20) explicitly quantified heterogen-
eity across included studies. (See Table 4) The most fre-
quently used measures were the Q statistic and I2 [42],
which were used in 12 studies. In five studies, other
measures of heterogeneity were reported, such as the es-
timated variance from the random effects model or the
inclusion of an interaction term in a model. It was un-
clear if any measure of heterogeneity was used in 6

Table 2 Reasons provided to support conducting an IPD1

Reason N (%)

To perform subgroup analyses 13 (50%)

To improve consistency across studies
(in terms of inclusion criteria, outcome definition, etc.)

4 (15%)

To consider other outcomes 4 (15%)

To adjust for confounding variables 1 (4%)

To estimate diagnostic accuracy 5 (19%)

To identify predictors of an outcome 2 (8%)

Unclear 6 (23%)
1Percentages do not total to 100 because some studies reported more than
one reason for conducting an IPD-MA.

Figure 2 Number of studies from which IPD were obtained.
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studies. In these studies no report or quantification of
heterogeneity was presented. Two studies used multiple
estimates to quantify heterogeneity; these estimates were
the I2 and Q statistics and the Breslow-Day and Q statis-
tic [30]. Seven studies used a one step approach but re-
ported measures of heterogeneity based on a two-step
model, while the other studies used various techniques
to assess and report heterogeneity.

Covariates
Covariates were used in three ways: (i) to assess subgroup
effects; (ii) to adjust a treatment effect for possible con-
founders; and (iii) to identify predictors of an outcome.
Among the 16 studies where the goal of the IPD-MA

was to estimate a treatment effect or the safety of a treat-
ment, all considered subgroup analyses. Among studies
that reported the number of subgroups considered, the
median number of subgroups investigated was 2.5, with a
range from 1–15. In all but one case, subgroups were
formed by using categorical variables or categorizing a
continuous variable. In one study, an interaction between
the treatment and a continuous or ordinal risk score was
evaluated. The subgroups investigated were based on
patient-level characteristics in 13 IPD-MA, and on both
patient- and study-level characteristics in 3 IPD-MA.

Among the studies that used a one-stage approach, 9/10
included interaction terms in the model, and presented
stratum specific estimates as well as a p-value for the
interaction. Among studies that used a two stage ap-
proach, 5/6 presented the stratum specific effect estimates,
and 5/6 presented a p-value for the interaction. In two
cases this p-value was calculated as described in [43].
Among the 3 IPD-MA that included observational

studies and aimed to estimate a treatment effect or
safety, all three adjusted for potential patient-level con-
founders. One of these studies used a two-step approach
first adjusting for confounders in each study separately
then pooling the adjusted effect estimates. Among the
IPD-MA that only included randomized trials, and
aimed to estimate a treatment effect or safety (n = 13),
only 2 adjusted for patient level confounders. They did
so by including them in a one stage model.
Finally, of the four IPD-MA that aimed to identify pre-

dictors of an outcome, three included observational
studies.

Missing data
While there are a number of approaches that could be
taken to deal with missing data, 16/26 IPD-MA did not
report how missing data were handled. Three studies used

Figure 3 Number of patients from which IPD were obtained.

Figure 4 Percentage of patients sought that were obtained.
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multiple imputation and two studies used single imput-
ation. The remaining studies used a variety of other ap-
proaches to dealing with missing data including excluding
subjects with missing data, or excluding variables with too
much missing data, or it was unclear what approach was
taken.

Discussion
In this paper, we reviewed a sample of published individ-
ual patient data meta-analyses where the primary out-
come was dichotomous, focusing on the statistical
approach taken and results reported. To identify relevant
articles in our review, we used a thorough search strat-
egy and assessed 26 IPD MA articles published in the
year 2011 that presented results for a binary outcome. It
is possible that some relevant papers that reported the
results of IPD MA with binary outcomes and were

published in 2011 have been missed or excluded uninten-
tionally, but these would be unlikely to differ substantially
methodologically than those included. Two reviewers ex-
tracted all information independently and a third reviewer
resolved conflicts. It might also be possible due to the lack
of sufficient details to distinguish the methods used, that
methods were incorrectly classified since the precise
method used was sometimes inferred.
This review also highlighted the strengths and weak-

nesses of individual patient data meta-analyses (IPD-
MA) where the outcome was binary. IPD-MA are clearly
the gold standard of meta-analytic methods and publica-
tions featuring results from IPD-MA are growing stead-
ily in recent years. However, there are considerable
variations in the methodology employed, for instance,
the use of fixed or random effects for the estimated ef-
fect measures, measures of heterogeneity and strategies
used to estimate treatment effects. In many studies, the
statistical aspects were not clearly reported, with insuffi-
cient details provided to distinguish the methods used.
Most times, little justification was given for the ap-
proaches taken in the studies, perhaps due to the lack of
specific guidelines available for the IPD meta-analysis of
binary outcomes. While guidelines exist for the reporting
of systematic reviews and meta-analyses, these guidelines
are not specific to IPD-MA. For example, the PRISMA
guideline #14 suggests that the methods of handling
data and combining results, including measures of het-
erogeneity be described [44]. Extending those guide-
lines to encompass issues specific to IPD MA, such as
stating if a one- or two-stage approach was used, would
likely improve the reporting of IPD meta-analyses of
binary outcomes.
In a previous systematic review of articles published in

1999–2001 [13], 14 (32%) of the IPD -MA dealt with a
binary outcome. While the proportion was similar, we
found nearly twice the number of IPD-MA of a binary
outcome in just one year in 2011.
This review of 26 IPD meta-analyses of binary out-

come encouragingly shows that practitioners often ob-
tain a large proportion of the IPD required. IPD from
90% or more of the total number of studies were ob-
tained in 62% of IPD studies, an important improvement
to the 41% found in the previous review [13].
We found that more than half (73%) of studies did not

use a two-step approach (i.e. analyzing each study separ-
ately and as identically as possible and pooling via stand-
ard meta analytic methods) but instead used the more
flexible one-stage method. This finding was contrary to
the previous review [13], in which most analyses were
performed using a two-stage approach (82%) with little
consideration of the one-step approach. This finding
likely reflects the greater comfort with random-effects
models for binary outcomes in health research, as these

Table 3 Statistical analysis method categorized by overall
strategy among 26 IPD meta-analyses of binary
outcomes

Analytic approach1 n/N (%)

One stage approach (n = 19)

Ignored clustering by study Logistic regression 5/19 (26%)

Fixed effects Logistic regression 4/19 (21%)

Random effects Logistic regression 10/19 (52%)

Fixed study effect with
random treatment effect2

1/10 (10%)

Random study effect with
fixed treatment effect2

2/10 (20%)

Random study effect with
random treatment effect2

2/10 (20%)

Unclear1 5/10 (50%)

Two stage approach (n = 6)

Fixed effects Unspecified 2/6 (33%)

Cochrane-Mantel-Haenszel 1/6 (17%)

Random effects Der Simonian Laird 2/6 (33%)

Unspecified 1/6 (17%)
1It was unclear from one article [38] which approach was used.
2Among studies that used random effects logistic regression, where the
intercepts and/or treatment effects allowed to vary across studies.

Table 4 Statistic used to measure heterogeneity among
studies in the 26 IPD meta-analyses stratified by analytic
approaches

Statistics

Q Statistics I2 Multiple
statistics

Other
measures

Unclear

(N = 6) (N = 6) (N = 2) (N = 6) (N = 6)

n (%) n (%) n (%) n (%) n (%)

One-step 3 (50) 4 (67) 0 (0) 6 (100) 6 (100)

Two-step 2 (33) 2 (33) 2 (100) 0 (0) 0 (0)
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models are used much more frequently now and are
readily available in most mainstream statistical packages.
Heterogeneity was considered in some manner by 81%

of included reviews, whether by known quantitative
measures or other assessments. The most frequently used
measure of heterogeneity was the I2 statistic. Alternative
measures included the Q Statistic (Chi-square statistic),
and Breslow-Day test. In a few instances, heterogeneity
was estimated and reported from a two-stage approach;
even when a one-stage approach was used for the main
analysis.
Investigating subgroup effects was one of the primary

reasons for conducting an IPD-MA, and among IPD-MA
that aimed to estimate a treatment effect or treatment
safety all investigated subgroup effects. On the other hand,
IPD-MA were unlikely to adjust for potential confounders
unless observational studies were included.
Within the realm of IPD-MA with binary outcomes,

our review shows that a variety of methods were used to
estimate a pooled treatment effect. Many of the articles
reviewed contained insufficient details on the approach
used and the rationale for that approach. We next pro-
vide some recommendations and emphasize the use of
the PRISMA statement to help authors ensure transpar-
ent and complete reporting of systematic reviews and
meta-analyses [3,44,45]. First, if individual raw data is
available for all studies and irrespective of the final ap-
proach, most statisticians and methodologists prefer the
one-stage rather than a two-stage approach [2]. In some
cases, the one- and two-stage approaches will give simi-
lar results [46]. However, it is currently unknown under
what conditions this may be expected. Moreover, one
stage methods may be preferred for evaluating treatment-
covariate interactions of continuous covariates, incorpor-
ating nonlinear relationships, when studies are small, and
there is heterogeneity across studies, and particularly for
pooling of non randomized trials that may need to be ad-
justed for several confounders [46].
Moreover, methods have been developed to incorpor-

ate both individual patient data with summary level data
when necessary, so that having partial IPD should not be
an impediment to using a one-stage approach [5,11].
However, when random effects logistic regression is

used, several details should be reported including: whether
study and/or treatment were considered as random, and
the statistical method used to estimate the GLMM (e.g.
PQL or adaptive Gaussian Hermite quadrature). On the
other hand, if a two-stage approach is used, we suggest
that the meta-analytic technique used to pool results
should be stated explicitly. Moreover, simply pooling sub-
jects from various studies together is not appropriate.
Assessment and exploration of heterogeneity should

always be performed in any MA, or IPD-MA. Nonethe-
less, how best to quantify heterogeneity remains unclear.

While some advocate using the estimated variance of
the random treatment effect, difficulties with its inter-
pretation may imply that I2 as estimated from a two-
stage approach is the optimal choice for quantifying het-
erogeneity. Of course, whether heterogeneity estimated
from a two-stage approach is relevant to a one-stage
model is an open question.
There are some limitations to the work presented here.

First, we have focused on binary outcomes, while sur-
vival outcomes were reported in about half of the studies
retrieved (See Figure 1). Second, we limited our study
retrieval to articles published in 2011. This choice was
made because this gave us a sufficient sample of studies
to work with that were recently completed. Moreover,
we believe that there are unlikely to be major differences
in the methods used, or in how they were reported be-
tween e.g. 2010 and 2011. Finally, we have focused only
on the statistical approach used in these studies; whereas
some may be interested more generally in how well IPD-
MA are reported.

Conclusion
As found previously, we have demonstrated that a diver-
sity of methods are employed when dealing with IPD
meta-analyses for binary outcomes. Evidence from this
systematic review shows that the use IPD-MA of binary
outcomes has increased, with random effects logistic re-
gression the most common method of analysis. The stat-
istical approach taken, along with justification for that
approach, is still often not reported in sufficient detail.
Standardized guidelines both for the best approach to
use, as well as what details to report may be needed in
this area.
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Preamble to Manuscript II 
 

In our published review (Manuscript I) of the methods for individual patient data meta-

analysis with binary outcomes, we presented results with respect to the statistical approach used 

in the analysis (one- or two-step, penalized quasi-likelihood (PQL) or adaptive Gauss-Hermite 

quadrature (AGHQ)) and the assumption of fixed- or random-effects. Several findings were 

reported, however, we only considered the main conclusions of the systematic review: (i) one-

step method was most frequently used (ii) estimation method (PQL or AGHQ) were not reported 

entirely and (iii) it was unclear if in addition to a random slope, a random intercept was also 

used. In the second paper (Manuscript II) of this thesis, these findings are addressed. 

 

Manuscript II presents the next step considered in this thesis, that is, to assess via a 

simulation study, the performance of different analytic approaches to individual patient data 

meta-analyses (IPD-MA) with binary outcomes that was reported in Manuscript I. We compare 

(i) one-step and two-step methods, (ii) PQL and AGHQ estimation methods and (iii) stratified 

verses random study-effects.  

  

Simulation comparisons between the one-step and two-step approaches to meta-analyzed 

IPD data are limited. Also, despite several comparisons of the estimation methods for 

generalized linear mixed models (GLMMs), there are few literature publications, particularly, the 

context of GLMMs for IPD-MA with binary outcomes (i.e. small effect size, large inter-study 

correlation and variance, imbalances in study sizes etc.). The lack of pragmatic guidelines and 

justifications has been the driving force behind this work. 
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 The manuscript will be then submitted to an applied statistical journal such as BMC 

Medical Research Methodology, Journal of Statistical Computation and Simulation, or 

Computational Statistics & Data Analysis 
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5.1 Abstract 

 
 
Introduction: Individual patient data meta-analyses (IPD-MA) are regarded as the gold standard 

for MA and are performed using a one-step approach with increasing frequency, in a form of 

generalized linear mixed model (GLMM) for binary outcomes. Parameter estimation in GLMMs 

with binary outcomes is complicated by integrals without closed form solutions. Penalized quasi-

likelihood (PQL) and adaptive Gauss-Hermite quadrature (AGHQ) methods are commonly used 

to circumvent this problem. Conventionally, the study effect may be modelled as either fixed or 

random within the GLMMs framework. If random study effects are used, the covariance between 

the study- and treatment-effect should be modelled and estimated. 

Methods: The performance of PQL and AGHQ procedures for estimating GLMMs with binary 

outcomes in the context of IPD-MA were evaluated, which were then compared to the 

conventional approach of Der Simonian and Liard (the two-step approach) via simulation 

studies. The prevalence of the outcome, sample size, number of studies and variances and 

correlation of the random effects were varied and the comparison was done in terms of: (i) bias, 

(ii) mean-squared error (iii) coverage and (iv) numerical convergence, of the pooled treatment 

effect and inter-study heterogeneity of the treatment effect. 

Results: The two-step and one-step methods produced approximately unbiased pooled treatment 

effect estimates, despite the advantages of the one-step in MA with 15 studies and on average 

500 total subjects (small size MA). PQL for estimating the inter-study heterogeneity of the 

treatment effect performed better than AGHQ with respect to RMSE for small and large data 

sets, but absolute percent bias of the pooled treatment effect and its inter-study variability 

performed comparably with AGHQ for small and large data sizes. For small size MA, the 

random study-effects model outperformed the stratified study-effects model. However, 
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performance was comparable for larger data sizes, but the stratified study-effect model had a 

slight advantage.  

Conclusion: For these simulated MA, a one-step approach was recommended over the two-step 

method for small size MA, as it uses a more exact statistical approach and accounts for 

parameter correlation. Though both estimation methods can suffer from several challenges, we 

recommend employing the PQL procedure if interest lies in precise estimation of the inter-study 

heterogeneity of the treatment effect and if the major objective is the estimation of the bias of the 

pooled treatment effect then either estimation procedure can be applied. It should also be noted 

that, researchers undertaking IPD-MA with binary outcomes should always fit a random study-

effect model, as it offered a more flexible fit to IPD structure and parameterizations as 

experienced in practice. 

 

Keywords: Individual patient data meta-analyses; One- and two-step models; Generalized linear 

mixed models; Penalized quasi-likelihood; Adaptive Gauss-Hermite quadrature; Fixed and 

random study-effects.  
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5.2 Introduction 

 
 
 Individual Patient Data (IPD) meta-analyses (MA) are regarded as the gold standard in 

evidence synthesis and are increasingly being used in current practice [5 ,7]. However, some 

details regarding the analysis of IPD-MA remain unclear, particularly when the outcome is 

binary. These details include (i) should a one- or two-step model be used [17 ,20], (ii) what 

estimation procedure should be used to estimate the one-step model [53 ,54] and, (iii) should the 

study effect be fixed or random [55].  

 

Although IPD-MA were conventionally analyzed via a two-step approach [16], over the 

last decade, use of the one-step approach has increased [56]. Recently, some have even 

suggested that the two-step and one-step framework produce similar results for MA of large 

randomized controlled trials [20]. The literature suggests the one-step method is particularly 

preferable when few studies or few events are available as it uses a more exact statistical 

approach than relying on a normality approximation [17].  

 

When IPD is available and the outcome is binary, the one-step approach consists of 

estimating Generalized Linear Mixed Models (GLMMs) with a random slope for the exposure, 

to allow the exposure effect to vary across studies. Penalized quasi-likelihood (PQL) introduced 

by Breslow and Clayton is the most method popular for estimating the parameters in GLMMs 

[35]. However, regression parameters can be badly biased for some GLMMs, especially with 

binary outcomes with few observations per cluster, low outcome rates, or high between cluster 

variability [38 ,41].  
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Adaptive Gaussian Hermite quadrature (AGHQ) is the current favored competitor to 

PQL, which approximates the likelihood by numerical integration [36]. Although estimation 

becomes more precise as the number of quadrature points increases, it often gives rise to 

computational difficulties for high-dimension random effects and convergence problems where 

variances are close to zero or cluster sizes are small [36].  

 

The heterogeneity between studies is an important aspect to consider when carrying out 

IPD-MA. Such heterogeneity may arise due to differences in study design, treatment protocols or 

patient populations [55]. When such heterogeneity is present, the convention is to include a 

random slope in the model as it captures the variability of the exposure across studies. However, 

there is a considerable amount of controversy in regards to the study effect being modelled as 

stratified or random [34]. When a study is considered as random, it is assumed hat the log-odds 

are drawn from a normal distribution [34], while the stratified study effect estimates a separate 

intercept for each included study, in the absence of the normality assumption. 

 

Few comparisons have been reported in the context of GLMMs for IPD-MA with binary 

outcomes [17 ,34] - when the number of study and the number of subjects within the study is 

small, imbalanced study sizes, large between-study heterogeneity, small exposure effects and an 

interest in the variance parameter of the treatment effect. According to previous literature, these 

factors have all been identified as influencing model performance [53]. In addition, several 

simulation studies limit their attention to simple models with only random intercepts, as a results, 
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the performance of the random effects models including both a random intercept and a random 

slope are far less reported. 

 

Our objective was to assess and compare via simulation studies, (i) the performance of 

different estimation procedures for GLMMs with binary outcomes, (ii) compare using stratified 

study-effect and random study-effects estimates in one-step approaches to two-step methods. 

Moreover, we used these findings to develop guidelines on the choice of methods for analyzing 

data from IPD-MA with binary outcomes and to understand explicitly the trade-offs between 

computational and statistical complexity.  

 

Section 5.3 described briefly the GLMM and the estimation procedures. Section 5.4 

introduced the models we are considering, the design of the simulation study and the assessment 

criteria. In section 5.5, results for the different methods under varying conditions are presented 

and discussed. Section 5.6 concluded with a discussion. 

 
 
5.3 Generalized linear mixed models and estimation methods 

 
  The extension of the generalized linear models with random effects terms is called the 

GLMM [31]. The conditional independence assumption of the outcome, given the random 

effects in a GLMM, is essential in the formulation of the joint likelihood function. However, the 

main difficulty with GLMM estimation is that no closed analytic solutions for the joint 

likelihood function are available but a number of effective ways to compute and maximize the 

likelihood have been developed. In this paper, we considered the two mainstream techniques: (i) 

PQL [35]; and (ii) AGHQ [36]. 

37



 

 

 

 
5.4 Methods 

 
 We conducted a simulation study to compare (i) one- vs. two-step approaches, (ii) 

PQL vs. AGHQ and (iii) random- vs. stratified study-effect, when analyzing data from IPD-MA 

with binary outcomes. Hereto, our methods all assume that between-study heterogeneity exists, 

as it is likely in practice, and so only random treatment-effects IPD meta-analysis models are 

considered. 

 

5.4.1 Data Generation 

 

 The data generation algorithm was developed to generate two-level data sets (e.g. patients 

grouped into studies). We generated a binary outcome (!!") and a single binary exposure (!!"). 

We denote the number of studies ! = 1, 2,… ,! and ! = 1, 2,… ,!! denotes the individuals per 

study. Therefore, !!" is the outcome observed for the !!! individual from the !!! study. 

The dichotomous exposure variable, !!", was generated from a Bernoulli distribution with 

probability = 0.5 and recoded ±½ to indicate control/treatment group. The coding of ±½ is 

advantageous when fitting a random effects meta-analysis model with random study effects in 

data sets with few degrees of freedom, and where estimation of a covariance between two 

random effects is problematic or impossible [34]. To generate the binary outcome variable !!", 

first the probability of the outcome was calculated from the random-study and –treatment effects 

logistic regression model given by Equation (1), and the stratified-study effects model given by 

Equation (2): 
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!!!!!"#$% !!" ! = !! + !!! + !! + !!! !!"⋯ 1  
  

 !"#$% !!" ! = !! + !! + !!! !!"⋯⋯⋯ 2  
 

 Here !!" is the true probability of the outcome for the !!! individual from the !!! study, 

!!!denotes the mean log-odds of the outcome and !! the pooled treatment effect (log odds ratio). 

The random effects (!!! and !!!) were generated from a bivariate normal distribution with mean 

= 0 and variance-covariance matrix Σ = !! !"#
!"# !!  for the random study-effect case. In the 

stratified study effects case, (i.e. Eq. (2)), !! , were generated from a uniform distribution and !!! 

was generated from a normal distribution with zero mean and variance, !!. 

A Bernoulli distribution with probability !!" from Equations (1) and (2) was used to 

generated the binary outcome !!". 

 

The number of studies, study size, total sample size, variances and correlation of the 

random effects, and average conditional probability were all varied, with levels described in 

Table 1. For each distinct combination (n=96) of simulation parameters, 1000 IPD-MA were 

generated from each equation (1) and (2), allowing us to investigate a wide range of scenarios. 

 
 

 

 

 

�

�

�

�
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Table 1a: Summary of Simulation Parameters 

Parameters Values 
IPD-Meta-analyses generated: M=1000 
(Number of studies, number of subjects per 
study, total average sample sizes) b: 

(!,!! ,!) !∈ {(5,100,500), (15,33,500), 
(15,200,3000), (5,357,500), (15,98,500), 
(15,588,3000)} 

Fixed effects (intercepts): !! = !−0.85 
Prevalence of the outcome ! = 30% 
Fixed effects (Slopes): !! = 0.18! 
Random effects distribution: Normal  
Random effects variances: !!, !! ∈ (0.05, 1, 4) 
Correlation between random effects: !! ∈ (0,!0.5)  
a In a sensitivity analysis, we extended the number of studies to 50 with an average sample size of 9000 
and reduce the prevalence of the outcome to 5%. The prevalence of the outcome was fix to 30% by setting 
the value of the intercept !!!to! − 0.85. b The number of subjects per study was reported for only large 
studies when data sets were generated with imbalance study sizes (bold text: 25% large studies-10 times 
more subjects thank normal size). 

 
A sensitivity analysis was also considered to explore the performance of different 

methods to a 5% outcome rate. All simulation parameters were held constant, however, the 

number of studies and the distribution of study sizes were allowed to vary. 

 

5.4.2 Models 

 
1. Two-step IPD methods 

In the two-step approach, each study in the IPD was analyzed separately via logistic 

regression 

!!"~!!"#$%&''( !!"  

!"#$% !!" ! = !! + !!!!" 

 

40



 

 

The first step estimates the intercept, the slope and their associated within-study 

covariance matrix (consisting the variances of the intercept and slope, as well as the covariance) 

for each study. This model reduces the IPD to AD for each study. At the second stage the effect 

estimates are synthesized. 

 

Model 1- Bivariate meta-analysis: 

The AD (here intercept and slope) are combined via a bivariate random-effects model 

that simultaneously synthesizes the estimates whilst accounting for their correlation [17].  The 

model assumes that the true effects follow a bivariate normal distribution and is estimated via 

restricted maximum likelihood with the following marginal distributions of the estimates [57]: 

 

!!!
!!!

~! !!
!!

, Σ+ C! , Σ = !! !"#
!"# !!  

where  Σ is the unknown variance-covariance matrix of the true effects (!!!!"#!!!) and 

!! !(! = 1,… ,!) the diagonal matrix with  the variances of the estimates. 

 

Model 2: Conventional DerSimonian and Laird approach [1]: 

The with-in study and between-study covariance estimates are often times ignored, and 

instead a univariate meta-analysis of the logit of the odds ratios is performed [58]. The marginal 

distribution of the pooled estimated treatment effect under this approach is easily obtained as: 

!!!~!(!!, !! + !!!) 

with unknown parameters !!  and !!, estimated via the inverse variance weighted non-iterative 

method (method-of-moment). 
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2.   One-step methods 

The one-step approach analyzes the IPD from all studies simultaneously, while 

accounting for clustering of subjects within studies [17].  The one-step model is a form of 

GLMM. Two different specifications are considered. 

 

Model 3- Random intercept and random slope  

We estimated a GLMM with a random study effect !!! and a random treatment effect !!! 

via PQL and AGHQ, and allowed the random effects to be correlated. Note that the covariance 

between the!!!! and the !!! may be estimated.  

!"#$% !!" ! = !! + !!! + !! + !!! !!" 

!!!
!!! ~! 0

0 , Σ! , Σ! =
!! !"#
!"# !!  

 

Model 4-Stratified intercept one-step 

Finally, the stratified one-step approach estimates a separate intercept for each study 

rather than constraining the intercepts to follow a normal or other distribution. Therefore, there is 

no need for the normality assumption for the study membership, hence, the between-study 

covariance term is no longer estimated. The model is defined as follows: 

!"#$% !!" ! = (!!!!!!)
!

!!!
+ !! + !!! !!" 

where !!!!  indicates that a separate intercept should be estimated for each study ! = 1,… ,! and 

!!!~! 0, !! . These models were estimated via PQL and AGHQ. 
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5.4.3 Estimation Procedures and Approximations 

 

The parameters of the one-step models were estimated using PQL, AGHQ, while that of 

the two-step model were estimated via method-of-moments (MOM) (Model 2) and restricted 

maximum likelihood (REML) (Model 1) [1 ,59 ,60] at the second stage. 

Both likelihood-based methods (PQL and AGHQ) were implemented on SAS version 9.4 

using PROC GLIMMIX [61].  REML estimation was chosen for PQL and maximum likelihood 

(ML) for AGHQ.  

Therefore, for each generated data set the following 4 models were fit. 

• Two-step approach (Models 1 and 2) 

• One-step approach via GLMMs (Models 3 and 4) estimated with PQL and 

AGHQ. 

 

5.4.4 Assessment criteria 

 

The performance of the estimation methods was evaluated using: a) numerical 

convergence, b) absolute bias; c) root mean square error (RMSE); and d) coverage probability - 

of the pooled treatment effect and its inter-study variability. 

 

Numerical convergence 

The convergence rate was estimated for both PQL and AGQH procedures, as the number 

of simulation repetitions that did converge (without returning a warning message) divided by the 

total attempted (M=1000). This was iteratively decided using the relative deviation of the 
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parameter estimates [62]. 

 

Bias  

The Monte Carlo bias of the pooled treatment effect and its inter-study heterogeneity is 

defined as the average of the bias in the estimates provided by each method as compared to the 

truth, across the 1000 IPD-MA in each scenario. The Monte Carlo estimate of the bias is 

computed as  

!"#$ = 1
1000 !! − !

!"""

!!!
 

Positive and negative bias represents over- and under-estimation for each method 

respectively, but does not provide an overall measure of bias. Therefore, we also reported the 

mean absolute bias (AB) via the following formula: 

!" = 1
1000 !! − !

!"""

!!!
, 

where !! were the parameter estimates and ! was the true parameter of the pooled 

treatment effect or its inter-study variance.  

 

Mean square error 

The mean square error (MSE) is a useful measure of the overall accuracy, because it 

penalizes an estimate for both bias and inefficiency. The Monte Carlo estimate of the MSE is: 

!"#(!) = 1
1000 (!! − !)!

!"""

!!!
, 

For each scenario, the RMSE of the pooled treatment effect and its inter-study 
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heterogeneity is reported, as this measure is on the same scale as the parameter. 

 

Coverage probability  

We estimated coverage for the pooled treatment effect and its inter-study heterogeneity 

for the various methods. Gaussian coverage was estimated, where if ! − ! ≤ 1.96×!"(!) the 

true value was covered, and if ! − ! > 1.96×!"(!) it was not. 

 

We reported the median, the 25th and 75th percentiles of the AB and RMSE of the pooled 

treatment effect and its inter-study heterogeneity but reported percentages for the numerical 

convergence and coverage rate. 

 

5.5 Results 

 
 Tables 2 and 3 present the median and interquartile range of the AB, RMSE, coverage 

and convergence of the pooled treatment effect and its inter-study variance, respectively, as 

estimated via two- and one-stage; AGHQ and PQL; random slope only and random intercept and 

slope methods. We reported results for data generated with imbalances in study sizes (different 

sample size in all studies) and random intercept data generation (equation 1) with correlated 

random effects, as this scenario is likely the closest to real-life.  

 
 We excluded results from meta-analyses that failed to converge. 
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Table 2 Performance of the different approaches in small data setsa with greater (Top panel) and 

lesser (Bottom panel) heterogeneity of random effects. 

  Methodsb 
 

 

Performance 
measuresc                                                       

       Two-step   vs.   One-step        AGHQ       vs.        PQL 
Random 

Slope only 

Random 
intercept & 

Slope 
(!!,!!)
= (4,4)d 

AB (!!) 0.04 
(0.02 0.06) 

0.04       
(0.02, 0.07) 

0.05      
(0.02, 0.08) 

0.04          
(0.02, 0.07) 

0.04       
(0.02, 0.08) 

0.04         
(0.02, 0.07) 

 RMSE (!!) 1.11       
(0.49, 1.94) 

1.19       
(0.53, 2.12) 

1.42       
(0.64, 2.52) 

1.19         
(0.53, 2.12) 

1.24        
(0.49, 2.44) 

1.19         
(0.53, 2.12) 

 Coverage   
(!!) 89.3 91.8 93.2 91.8 99.1 91.8 

 AB (!!) 0.23     
(0.14,0.30) 

0.16       
(0.08, 0.24) 

0.18     
(0.09,0.29) 

0.16          
(0.08, 0.24) 

0.16       
(0.07, 0.25) 

0.16         
(0.08, 0.24) 

 RMSE (!!) 7.26     
(4.39,7.51) 

4.93       
(2.56, 7.51) 

5.76     
(2.80,9.07) 

4.93         
(2.56, 7.51) 

5.01       
(2.35,7.95) 

4.93         
(2.56, 7.51) 

 Coverage 
(!!)e NA NA 85.5 76.2 11.6 76.2 

 Convergence  100 97.7 99 97.7 13.8 97.7 

(!!,!!)
= (1,1) 

AB (!!) 0.02      
(0.01, 0.04) 

0.02      
(0.01, 0.04) 

0.03      
(0.01, 0.05) 

0.02         
(0.01, 0.04) 

0.03       
(0.01, 0.04) 

0.02         
(0.01, 0.04) 

 RMSE (!!) 0.73      
(0.35, 1.29) 

0.75      
(0.37, 1.33) 

0.79      
(0.41, 1.42) 

0.75          
(0.37, 1.33) 

0.83       
(0.41, 1.38) 

0.75         
(0.37, 1.33) 

 Coverage   
(!!) 89.1 90.6 92.3 90.6 96.4 90.6 

 AB (!!) 0.06       
(0.03, 0.08) 

0.04       
(0.02, 0.1) 

0.06      
(0.03, 0.09) 

0.04         
(0.02, 0.1) 

0.05       
(0.03, 0.09) 

0.04         
(0.02, 0.1) 

 RMSE (!!) 1.73      
(0.85, 2.65) 

1.22      
(0.53, 3.16) 

1.76      
(0.84, 2.70) 

1.22         
(0.53, 3.16) 

1.72       
(0.85, 2.78) 

1.22         
(0.53, 3.16) 

 Coverage   
(!!)! NA NA 74.5 81.1 37.3 81.1 

 Convergence 100 90.4 96.8 90.4 42.6 90.4 

 

���������������������������������������� ����
a""Small"data"sets"had"15"studies"and"on"average"500"total"subjects."

b"Estimation"by"PQL"was"used"for"brevity"(most"commonly"used)"to"compare"oneCstep"versus"twoCstep,"as"well"as"
random"slope"only"model"versus"random"intercept"and"slope"method."Only"the"Der"Simonian"and"Laird"twoCstep"
method"(Model"2)"was"used"for"comparison"(conventional"method)."Superior"measures"were"highlighted"in"bold"
text.""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

c"Median"(25th"and"75th"percentile)"were"reported"for"AB"and"RMSE,"the"proportion"was"reported"for"coverage"and"
convergence."

d"(!!,!!):"(Random"treatmentCeffect"variance,"random"studyCeffect"variance)."

e"The"twoCstep"approach"did"not"return"a"confidence"interval"for"!!,"hence"no"coverage"was"estimated"and"
comparison"was"not"applicable"(NA)"to"the"oneCstep"method."

if&�
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Table 3 Performance of the different approaches in large data setsf with greater (Top panel) and 

lesser (Bottom panel) heterogeneity of random effects. 

  Methodsg 
 

 

Performance 
measuresh                                                       

       Two-step   vs.   One-step        AGHQ       vs.        PQL 
Random 

Slope only 

Random 
intercept & 

Slope 
(!!,!!)
= (4,4)i 

AB (!!) 0.03 
(0.02 0.06) 

0.03       
(0.02, 0.06) 

0.04      
(0.02, 0.06) 

0.03         
(0.02, 0.06) 

0.04       
(0.02, 0.06) 

0.03         
(0.02, 0.06) 

 RMSE (!!) 1.02      
(0.50, 1.85) 

1.07       
(0.49, 1.84) 

1.20      
(0.55, 1.99) 

1.07         
(0.49, 1.84) 

1.11        
(0.55, 1.94) 

1.07         
(0.49, 1.84) 

 Coverage   
(!!) 91.9 92.3 92.2 92.3 95.2 92.3 

 AB (!!) 0.14     
(0.07,0.22) 

0.12      
(0.06, 0.20) 

0.13     
(0.07,0.21) 

0.12         
(0.06, 0.20) 

0.13       
(0.06, 0.20) 

0.12         
(0.06, 0.20) 

 RMSE (!!) 4.36     
(2.22,6.80) 

3.87       
(1.81, 6.21) 

4.12     
(2.06,6.77) 

3.87         
(1.81, 6.21) 

4.05       
(1.85,6.25) 

3.87         
(1.81, 6.21) 

 Coverage (!!)j NA NA 81.9 78.9 53.7 78.9 

 Convergence  100 98.3 100 98.3 63.8 98.3 

(!!,!!)
= (1,1) 

AB (!!) 0.02      
(0.01, 0.03) 

0.02      
(0.01, 0.03) 

0.02      
(0.01, 0.03) 

0.02         
(0.01, 0.03) 

0.02       
(0.01, 0.03) 

0.02         
(0.01, 0.03) 

 RMSE (!!) 0.61      
(0.30, 1.04) 

0.59      
(0.29, 1.05) 

0.60      
(0.30, 1.06) 

0.59         
(0.29, 1.05) 

0.63       
(0.29, 1.07) 

0.59         
(0.29, 1.05) 

 Coverage   
(!!) 91.2 91.9 91.7 91.9 91.8 91.9 

 AB (!!) 0.03       
(0.02, 0.06) 

0.03       
(0.02, 0.05) 

0.04      
(0.02, 0.06) 

0.03         
(0.02, 0.05) 

0.03       
(0.02, 0.06) 

0.03         
(0.02, 0.05) 

 RMSE (!!) 1.08      
(0.53, 1.73) 

1.03      
(0.49, 1.68) 

1.09      
(0.52, 1.75) 

1.03         
(0.49, 1.68) 

1.06       
(0.52, 1.74) 

1.03         
(0.49, 1.68) 

 Coverage   
(!!)! NA NA 83.6 82.5 86.3 82.5 

 Convergence 100 96.5 99.5 96.5 95.3 96.5 

 
 

 

���������������������������������������� ����
f"Large"data"sets"had"15"studies"and"on"average"3000"total"subjects."

g"Estimation"by"PQL"was"used"for"brevity"(most"commonly"used)"to"compare"oneCstep"versus"twoCstep,"as"well"as"
random"slope"only"model"versus"random"intercept"and"slope"method."Only"the"Der"Simonian"and"Laird"twoCstep"
method"(Model"2)"was"used"for"comparison"(conventional"method)."Superior"measures"were"highlighted"in"bold"
text.""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

h"Median"(25th"and"75th"percentile)"were"reported"for"AB"and"RMSE,"the"proportion"was"reported"for"coverage"and"
convergence."

i"(!!,!!):"(Random"treatmentCeffect"variance,"random"studyCeffect"variance)."

j"The"twoCstep"approach"did"not"return"a"confidence"interval"for"!!,"hence"no"coverage"was"estimated"and"
comparison"was"not"applicable"(NA)"to"the"oneCstep"method."

if&�
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5.5.1 One- versus Two-step  

 
• Absolute bias (AB) of the pooled treatment effect, !! estimates was similar and under 

0.05 in the one step and the two-step approaches in both small and large data sets (Table 

2 and 3). 

o The difference in the amount of bias depended on the true !!, and the number of 

studies. 

o Absolute percent bias in !! was reduced when data was generated to have 

balanced study sizes (same sample size in all studies) and when the intercept was 

generated as stratified (results not shown)- less variation between studies. 

o Both the one- and the two-step methods continued to produce negligible and 

similar bias for !!, when the outcome rate was reduced from 30% to 5% (Figure 1 

in the Appendix A). 

• Root mean square error (RMSE) in !! was slightly larger when the one-step method was 

used, and the total sample size was large or small (Table 2 and 3). 

o Precision in the estimates of !! increased when data was generated with balanced 

study sizes (results not shown) and the true heterogeneity in the random effects 

was reduced (Bottom panel of Table 2 and 3). 

o RMSE in !! was inflated when the outcome rate was reduced for both methods, 

and the two-step approach continued to yield lower RMSE in !! estimates (Figure 

2 in the Appendix A). 

• Percent coverage of !! was usually under nominal levels for the both approaches and 

somewhat higher for the one step approach (Table 2 and 3). Both approaches did better 

with increased total sample size (Table 3). 

o Percent coverage of !! increased when data was generated with equal study sizes 

(results not shown) and, decreased when the outcome rate was reduced, 

particularly when true heterogeneity was large (Table 3 in the Appendix A). 

However, the two-step method still yielded percent coverage under nominal level. 

• Absolute bias of the inter-study heterogeneity, !! was usually slightly lower when the 

one step approach was used than when the two-step approach was, particularly, when the 
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sample size was small and when greater amount of heterogeneity exist in the random 

effects (Bottom panel of Table 2). 

o The amount of bias decreased when data was generated with equal study sizes 

(results not shown) and when total sample size increased (Table 3). The bias 

increased when the rate of occurrence was reduced. In these cases, the one-step 

approach was most biased (Figure 3 in the Appendix A).  

• RMSE of !!was mostly lower when the one step approach was used, though the 

difference was less as total sample size increased and when less heterogeneity was in the 

random effects (Bottom panel of Table 3). 

o RMSE of !! was still lower when the one-step method was used and the outcome 

rate was reduced (Figure 4 in the Appendix A). 

• Convergence was consistently higher for the two-step approach than for the one-step 

approach (Table 2 and 3). 

 
5.5.2 AGHQ versus PQL 

 
• Absolute bias in !! was usually similar, but slightly greater when AGHQ was used than 

when PQL was used (Table 2 and 3). 

o The bias was reduced when total sample size was increased (Table 3) 

o Similar amount of bias in !! was observed when the outcome rate was reduced 

(Figure 1 in the Appendix A). 

• RMSE estimates of !! were generally greater when AGHQ was used than when PQL was 

used (Table 2 and 3). 

o When total sample size was increased (Table 3) or when data was generated with 

equal study sizes (results not shown), the RMSE was significantly reduced. 

o RMSE of !! was inflated when the event rate was reduced (Figure 3 in the 

Appendix A). 

 

• Coverage for !!!was always closer to nominal levels with AGHQ than with PQL, 

particularly, when the true heterogeneity was large and total sample was small (Top panel 

of Table 2). 
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o Coverage was closer to nominal levels for PQL when the number of studies and 

total sample size was larger (Table 3). 

o Similar coverage of the estimates was observed when the outcome rate was 

reduced (Table 3 in the Appendix A). 

• Absolute bias in !! was very high, and similar when PQL and AGHQ were used, when 

the number of studies was small and the true heterogeneity was large (Top panel of Table 

2).  

o When the total average sample size was increased, the bias was lower when PQL 

was used (Table 3). The difference was smaller when data was generated with a 

stratified intercept (data not shown). 

o Even greater bias in !! estimates was observed when the event rate was reduced 

(Figure 3 in the Appendix A). 

• RMSE of !!!was generally lower with PQL than with AGHQ (Table 2 and 3). 

o PQL-estimates continued to yield smaller RMSE than AGHQ-estimates when the 

outcome rate was reduced (Figure 4 in the Appendix A). 

• Percent coverage of !! was greatly under-covered for both estimation methods, 

particularly when PQL was used. (Table 2 and 3). This pattern was also evident when the 

outcome rate was reduced (Table 5 in the Appendix A). 

• Convergence occurred more often when AGHQ was used than when PQL was used 

(Table 2 and 3). 

o Convergence was problematic for PQL, particularly when true heterogeneity was 

low and number of studies was few (Bottom panel of Table 2). 

o Similar convergence was seen when the event rate was reduced (Table 4 in the 

Appendix A). 

 
5.5.3 Random intercept & slope versus random slope only  

 
• Absolute bias in !! was similar for both random slope only and random intercept & slope 

methods when PQL was the choice of estimation than when AGHQ was used (Table 2 

and 3) 
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o The difference was negligible when a random slope and intercept was fit than 

when a random slope only was fit. 

o Negligible and comparable bias for !! was observed when the event rate was 

reduced (Figure 1 in the Appendix A). 

 

• RMSE in !! was smaller when estimated by the random intercept and slope model than 

when only a random slope was fit and when the number of studies was small and large 

(Table 2 and 3). 

o RMSE in !! was still smaller when the random intercept and slope was fit and the 

outcome rate was reduced (Figure 2 in the Appendix A). 

• Coverage of !! was conservative, when a random slope only was fit in small sample than 

when fit with a random slope and intercept (Table 2).  

• Absolute bias in !! was similar when fit with a random intercept & slope approach or a 

random slope only (Table 2 and 3).  

o There was a trend towards less bias when a random slope only was fit and when 

the outcome rate was reduced (Figure 3 in the Appendix A). 

• RMSE of !! was mostly lower when a random intercept was fit, especially when the true 

heterogeneity was large (Top panels of Table 2 and 3). 

o RMSE of !! was comparable when both models were fit in large sample and the 

true heterogeneity was small (Bottom panel of Table 3)- also when outcome rate 

was reduced (Figure 4 in the Appendix A). 

• Percent coverage of !! was greatly under-covered when both models were fit and the true 

heterogeneity was large, particularly, when a random slope only model was fit (Top 

panels of Table 2 and 3). 

o Coverage continued to be an issue when equal study sizes were used (data not 

shown); when the rate of occurrence was reduced (Table 5 in the Appendix A). 

• Convergence was markedly different for both a random intercept & slope method, and a 

random slope only method when fit in small data sets (Table 2). 

o In these cases, the random intercept & slope method convergence more often than 

the random slope only approach. 

o Convergence improvement when the total sample size increased (Table 3). The 
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random intercept & slope approach continued to converge often than the random 

slope only approach for thee data. 

 
 
 
5.6 Discussion 

 

Findings 
 
 Our simulation results indicate that when the number of subjects per study is large, the 

one- and two-step methods yield very similar results. Our results also confirm the finding of 

previous empirical studies [20 ,63 ,64] that in some cases, the one-step and two-step IPD-MA 

results coincide. However, we found discrepancies between these methods, with a slight 

preference towards the one-step method when the number of subjects per study is small.  In these 

situations, neither method produced accurate estimates for the inter-study heterogeneity 

associated with the treatment-effect; however, the biases were larger for the two-step approach. 

Furthermore, one-step methods produced less biased and more precise estimates of the variance 

parameter and had slightly higher coverage probabilities.  

 

  Estimation of GLMMs with binary outcomes continues to pose challenges, with 

many methods producing biased regression coefficients and variance components [54]. AGHQ 

has been shown to overestimate the variance component with few clusters or few subjects [65]. 

On the contrary, PQL has been found to underestimate the variance component while the 

standard errors are overestimated [41]. We found that the absolute bias of the PQL-estimated 

pooled treatment effect was slightly less than that of the AGHQ-estimates. The PQL-estimates of 

the inter-study variance had greater precision when study sizes were small and random effects 

were correlated. This somewhat confirms previous results, which found that PQL suffers from 
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large biases but performs better in terms of MSE than AGHQ [53]. Both estimation methods 

experienced difficulty in attaining nominal coverage of the inter-study heterogeneity associated 

with the treatment effect in two situations: (i) when the number of studies included was small 

and/or (ii) the true variances between random effects was small. AGHQ-estimated confidence 

intervals around the inter-study heterogeneity of the pooled treatment effect were greatly under 

nominal levels in these scenarios. For PQL-estimated confidence interval, at times severe under 

coverage for the inter-study heterogeneity was found, both because the PQL estimates were 

downward biased and the standard errors were too small. Our work also found that convergence 

was not a significant problem for AGHQ when meta-analyses include study sizes with less than 

50 individuals per study. The problem was exacerbated when the prevalence of the outcome was 

reduced to 5% and the true heterogeneity was close to zero.  

 

 Stratification of the intercept in the one-step models avoids the need to estimate the 

random effect for the intercept and the correlation between the random effects. Overall, we found 

that the random slope only approach suffered from marked convergence rates when fit to small 

data sets (15 studies and on average 500 subjects). It was also found that the loss in efficiency 

was due to fitting several dummy variables for the study effect rather than a normality 

assumption. V. Rondeau et al. also found that with survival multilevel data, not including the 

intercept as random in the additive Cox model could lead to inaccurate results [55]. We found 

that the absolute percent bias of the treatment effect and its associated variance was comparable 

for both models. The random intercept and slope model was found to produce the most precise 

estimates of the pooled treatment effect and its inter-study heterogeneity in small data sets. For 

the random slope only model, the coverage rate was close to and above nominal levels for the 
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estimates for the pooled treatment effect, but suffered from convergence, as the random slope 

only model might be under-defined (lack of sufficient variation in the intercept). We found that 

both models failed to achieve close to nominal coverage rates of the inter-study heterogeneity of 

the treatment effect, as the construction of the confidence interval are likely to be invalid [34]. 

 

Strengths and Limitations 
 
 We used simulation studies to compare various analytic strategies to analyze data arising 

from IPD-MA across a wide range of data generation scenarios but made some simplifications. 

We only considered binary outcomes, one dichotomous treatment variable, a two-level data 

structure, and no confounders-however; this is the least common reason provided to support 

conducting IPD-MA [56]. Moreover, we estimated GLMMs via PQL and AGHQ, but did not 

compare Bayesian or other estimation methods, which might be particularly useful in sparse 

scenarios [66]. Throughout this thesis, we have assumed that IPD were available. Certainly, the 

time and cost associated with collecting IPD are considerable. However, once such data is in 

hand, we have addressed several open questions relating to the best way to analyze it. We should 

also note that methods exist for combing IPD and aggregated data [7]. Further study is needed to 

investigate alternative confidence intervals (or coverage probability) for the inter-study 

heterogeneity that can be used to remedy the under-coverage of Gaussian intervals. The 

normality based intervals (coverage rate) we have studied, greatly underperformed in most 

scenarios. A further simplification that limits the generalizability of this work is that it is 

restricted to only two-arm trials. The extension to three or more arms would require careful 

consideration of more complicated correlation structures in treatment effects across arms and 

within studies [67]. 

 One important comparison we have not addressed is, computational speed where the two-
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step method had a distinct advantage over the one-step; PQL was faster than AGHQ and the 

stratified-intercept model run-time was quicker than the random-intercept model. 

 

 As far as we know, this simulation study is the first to simultaneously generate data with 

normally distributed and stratified random intercepts. This study also compares approaches that 

include a random intercept for study membership to those that do not. Furthermore, the use of 

simulation - to systematically investigate the robustness of the approaches to variation in sample 

size, study number, outcome rate, magnitude of correlation and variances. As a result, our 

scenarios have allowed us to assess performance without being too exhaustive. 

 

Guidelines for Best Practice 
 

On the basis of these findings, we can make several recommendations. When the IPD-

MA included many studies and the outcome rate was not too low, this work supports the 

conclusion of a previous study [20] that the conventional two-step method by DerSimonian and 

Laird [1]is a good choice. Further, while the bivariate two-step approach is very rarely used in 

practice, we found that it tended to yield good overall model performance, comparable with that 

of the one-stage models when study sizes are small. In addition, our results also suggest that the 

one-step method can be used in IPD-MA where study sizes are less than 50 subjects per study or 

few events were recorded in most studies (outcome rate of 5%). In these cases, the one-step 

approach is more appropriate as it models the exact binomial distribution of the data and offers 

more flexibility in model specification. 

If interest lies in estimation of the pooled treatment effect or the inter-study heterogeneity 

of the treatment effect, estimation using PQL appeared to be a better choice due to its excellent 

coverage probabilities and lower bias for the settings considered. In addition, computational 
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issues such as convergence occurred less with this technique than with AGHQ. Finally, if one 

were interested in precise estimation of the inter-study heterogeneity of the treatment effect, the 

PQL approach may be preferred. However, it is important to note that convergence and coverage 

in !! was an issue in small and large total sample sizes and also, when level of true heterogeneity 

was too large.  

Fitting GLMMs with random intercept and random slope were more robust than 

stratification of the intercept when conducting IPD-MA with binary responses. These models 

always estimate the variability between the random effects from the data without any 

assumptions.  

There are four important caveats to these recommendations. First, our simulations show 

greater accuracy of the pooled odds ratio as the number of studies increase. Therefore, an IPD-

MA with more studies will provide more accurate estimates. Secondly, our results show that the 

estimation of the inter-study heterogeneity of the treatment effect is highly biased regardless of 

the sample size and number of studies. Therefore, we should always expect that the variance 

parameter be estimated with some error. Thirdly, small overall samples mark the trade-off under 

which a meta-analyst might consistently choose precision over bias and our simulations show 

that AGHQ estimation may be preferred in these situations. Finally, large overall sample size can 

eliminate the lack of statistical power present in small overall samples. In such cases, comparable 

results are seen for one- and two-step methods and fitting a two-step analysis as a first step may 

be advisable. This could aid as a quick and efficient investigation of heterogeneity and treatment-

outcome association.  

 
�
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Conclusion 
 
 To summarize, the one- and two-step methods consistently produced similar results when 

the number of studies and overall sample are large. Although the PQL and AGHQ estimation 

procedures produced similar bias of the pooled log odds ratios, PQL-estimates had lower RMSE 

than the AGHQ-estimates. The random intercept and slope model yielded precise estimates and 

good coverage probabilities of the pooled treatment effect and its inter-study heterogeneity in 

small and large overall sample sizes as compared to the random slope only model. 
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Appendix A: Sensitivity analysis results 

 

 
Figure 1 Median absolute bias of the pooled treatment effect, !!, by number of studies, 

estimation methods and sample sizes over increasing random-effect variances: Bivariate two-step 

(Model1), DeSermonian-Laird two-step (Model2), random intercept one-step (Model3; 

estimation method: PQL or AGHQ) and stratified intercept one-step (Model4; estimation 

method: PQL or AGHQ). 
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Figure 2 Median percent root mean square error of the pooled treatment effect, !!, by the 

number of studies, sample size and methods over increasing random-effect variances: Bivariate 

two-step (Model1), DeSermonian-Laird two-step (Model2), random intercept one-step (Model3; 

estimation method: PQL or AGHQ) and stratified intercept one-step (Model4; estimation 

method: PQL or AGHQ). 
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Table 4 Percent Coveragea (percent convergence rate)b for the pooled treatment effect, β1 by 

varying number of studies, sample sizes and random-effects variances over increasing random-

effect variances: Bivariate two-step (M1), DeSermonian-Laird two-step (M2), random intercept 

one-step (M3; estimation method: P-PQL or A-AGHQ) and stratified intercept one-step (M4; 

estimation method: P-PQL or A-AGHQ). 
  Random-effects Variances (σ2,τ2) c 
(K, N)d Model (0.05, 0.05) (0.05, 1) (0.05, 4) (1,1) (1,4) (4,4) 
(5,500) M1 96.6 (100) 87.4 (100) 83.8 (100)  87.5 (100) 86.8 (100) 86.5 (100) 
 M2 97.5 (100) 83.9 (100) 81.4 (100) 85 (100) 84 (100) 82 (100) 
 M3P 94.9 (99.6) 82.7 (99.7) 80.9 (99.2) 84.6 (99.7) 82.5 (99.3) 83.4 (99.1) 
 M3A 79.4 (74) 73.1 (67.7) 71.9 (63.8) 82.4 (48.9) 80.5 (53.8) 89.7 (51.8) 
 M4P 99.1 (34.5) 95.6 (41.7) 95.2 (49.4) 96.9 (30.5) 96.5 (39.2) 96.3 (27.9) 
 M4A 84.8 (100) 75.4 (99.7) 75 (100) 71.1 (99.9) 72.4 (100) 68.3 (99.9) 
(15, 3000) M1 94.5 (100) 89.5 (100) 92.3 (100) 88 (100) 90.5 (100)  91 (100) 
 M2 94.9 (100) 88.5 (100) 91  86.6 (100) 90.3 (100) 86.6 (100) 
 M3 91.4 (94.7) 86.9 (84.4) 92.4 (88) 81.6 (95.3) 86.7 (96.3) 86.9 (97.6) 
 M3A 92.7 (58) 86.5 (75.6) 87.5 (82.8) 92.6 (84.7) 91.5 (97.3) 92.9 (98.5) 
 M4P 96.5 (48.6) 94.9 (56.8) 95.4 (67.5) 97.2 (20.1) 97 (33.8) 99.2 (6.5) 
 M4A 86.2 (99.8) 85.8 (100) 89.6 (100) 75.4 (100) 86 (100) 77.6 (100) 
(50,9000) M1 94.6 (100) 93.5 (100) 93.9 (100) 88.7 (100) 90.6 (100) 89.2 (100) 
 M2 94.5 (100) 93.3 (100) 93.6 (100) 83.6 (100) 86.1 (100) 77.2 (100) 
 M3P 91.4 (94.7) 91.8 (89.1) 95.4 (59.9) 95.7 (23.4) 96.4 (27.3) 93.6 (90.6) 
 M3A 97.2 (65.6) 93.4 (90.1) 91.3 (96) 93.4 (100) 93.9 (100) 94.9 (100) 
 M4P 99.9 (2.8) 99.8 (6.8) 98.9 (16.3) 99.9 (0.3) 99.9 (0.8) 99.1 (9.5) 
 M4A 51.9 (100) 81.8 (100) 91.9 (100) 63.9 (100) 83.3 (100) 89.4 (100) 

  

���������������������������������������� ����
a""Percent"coverage"of"β1"was"calculated"for"each"simulated"metaCanalysis"first,"and"then"summarized"across"metaC
analyses."For"each"combination"of"data"generation"parameters,"1000"metaCanalyses"were"generated."

b"Numerical"convergence"was"only"reported"for"PQL"and"AGHQ"via"GLIMMIX"procedure"in"SAS.""

c"σ2"is"the"random"studyCeffect"variance"and"τ2,"the"random"treatmentCeffect"variance"

d"(K,N):"(number"of"studies,"total"sample"size)"
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Figure 3 Median absolute bias of the variance component, !! by number of studies, estimation 

methods and sample sizes over increasing random-effect variances: Bivariate two-step (Model1), 

DeSermonian-Laird two-step (Model2), random intercept one-step (Model3; estimation method: 

PQL or AGHQ) and stratified intercept one-step (Model4; estimation method: PQL or AGHQ). 
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Figure 4 Median percent root mean square error of the variance component, !!, by the number 

of studies, sample size and methods over increasing random-effect variances: Bivariate two-step 

(Model1), DeSermonian-Laird two-step (Model2), random intercept one-step (Model3; 

estimation method: PQL or AGHQ) and stratified intercept one-step (Model4; estimation 

method: PQL or AGHQ). 
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Table 5 Percent Coverage 15(percent non-zero between study variance estimates) for variance 

component, !!, by the number of studies, sample size and methods over increasing random-

effect variances: Bivariate two-step (M1), DeSermonian-Laird two-step (M2), random intercept 

one-step (M3; estimation method: P-PQL or A-AGHQ) and stratified intercept one-step (M4; 

estimation method: P-PQL or A-AGHQ). 
  Random-effects Variances (σ2,τ2) 16 
(K, N) 17 Model (0.05, 0.05) (0.05, 1) (0.05, 4) (1,1) (1,4) (4,4) 
(5,500) M1 (52.2) (68.2) (89.3) (82.6) (93) (95.3) 
 M2 (4.6) (21.4) (55.6) (28.4) (59.2) (60.8) 
 M3P 100 :8.2 (99.8) 98.1 :5.2 (99.7) 40.9 :1.8 (99.6) 93.8 :4.5 (98.8) 41.6 :3.2 (99.5) 34.9 :7.1 (98.9) 
 M3A 27.9 :3.1 (99.9) 58.8 :7.7 (100) 62.8 :12.9 

(100) 
68.2 :9.3 (99.9) 67.3 :17.5 

(99.9) 
77.2 :28.5 
(100) 

 M4P 100 :16.2 
(93.6) 

99.7 :28.3 
(95.8) 

93.1 :40.7 
(98.9) 

96.7 :20.8 
(97.4) 

89.5 :31.6 (99) 79.4 :20.5 
(98.8) 

 M4A 52.6 :12.4 
(93.1) 

74.4 :35 (95.5) 74.8 :53.1 
(96.7) 

80.6 :35.8 
(95.8) 

75.4 :51.5 
(97.4) 

68.9 :46.2 
(96.8) 

(15, 3000) M1 (83.4) (98.9) (100) (99.7) (100) (100) 
 M2 (35.4) (92) (98.9) (91) (99.2) (99.1) 
 M3P 96.2 :2.6 (99.9) 97.1 :7.4 (99.9) 25.2 :4.2 (100) 94.2 :24.7 

(98.2) 
0.4 :0.2   (99.2) 0 :0        (99.3) 

 M3A 91.3 :22.9 
(100) 

84.8 :49.4 
(100) 

72.8 :53.2 
(100) 

86.5 :69.9 
(100) 

81.7 :79.2 
(100) 

83 :81.4   (100) 

 M4P 100 :25.3 
(94.5) 

84.8 :46.4 
(99.6) 

85.6 :57.6 
(100) 

91.8 :17.8 
(99.6) 

87.9 :29.7 
(100) 

89.2 :5.8 (100) 

 M4A 86.1 :36.5 
(93.3) 

79.6 :73.9 
(99.3) 

76 :75.8  (100) 82.5 :72.1 
(99.9) 

75.4:75.1 (100) 76.1:73.9 
(99.9) 

(50,9000) M1 (91.6) (100) (100) (100) (100) (100) 
 M2 (41.6) (100) (100) (100) (100) (100) 
 M3P 88.9 :0.8 (99.9) 97.1 :6.8 (100) 11.1 :3.4 (99.8) 56.3 :2.7 (98.3) 0 :0         (100) 0 :0         (100) 
 M3A 98.7 :54  (100) 89.7 :76.8 

(100) 
83.1 :78.6 
(100) 

88.5 :88.4 
(100) 

91.8 :91.8 
(100) 

92.1 :92.1 
(100) 

 M4P 100 :1.2 (97.2) 91.2 :6.2 (100) 87.1 :14.2 
(100) 

100 :0.3  (100) 100 :0.8  (100) 88 :11.7  (100) 

 M4A 99.7 :29.2 
(96.2) 

87.2 :82.7 
(100) 

79.3 :79.3 
(100) 

90 :80.2  (100) 79.8 :79.8 
(100) 

79.4 :79.4 
(100)  

        
 

 

�
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�
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15"Percent"coverage"of"τ2"was"calculated"assuming"normality"for"each"simulated"metaCanalysis"first,"and"then"
summarized"across"metaCanalyses."For"each"combination"of"data"generation"parameters,"1000"metaCanalyses"were"
generated."Coverage"was"reported"as"a"ratio"of"the"subset"of"cases"that"excluded"metaCanalyses"where"no"
standard"error"was"estimated,"to"cases"that"included"these"metaCanalyses"as"nonCcoverage."

16"σ2"is"the"random"studyCeffect"variance"and"τ2,"the"random"treatmentCeffect"variance"

17"(K,"N):"(number"of"studies,"total"sample"size)"

63



 

 

Chapter 6 Conclusion 

 
 

The two manuscripts in this thesis had distinct objectives. In this chapter the results and 

findings from both are summarized. The first manuscript (Chapter 4) was a systematic review of 

the statistical methods used in a sample of published individual patient data meta-analyses (IPD-

MA) with binary outcomes. In particular, I was interested in the following: (i) whether two-step 

or one-step methods were frequently used; (ii) how inter-study heterogeneity was calculated and 

reported; and (ii) if a one-step approach was used, were intercept were permitted to vary across 

studies as random. In Chapter 5 (Manuscript II), I evaluated via a simulation study the 

performance of several strategies for analyzing IPD-MA with binary outcomes. 

 

The systematic review (Manuscript 1) included 26 IPD-MA published in 2011 that 

presented results on binary outcomes. When compared to a previous review [16], I found nearly 

twice the number of IPD-MA with binary outcome in just one year within this manuscript (14 vs. 

26) [56].  Evidently, this review showed that the one-step approach was being used more often in 

practice than the two-step methods, reflecting it’s flexibility over the two-step, as well as the 

greater comfort with and availability of software to fit GLMMs. It was also shown that 

heterogeneity was usually reported (81%) and quantified using the I2 statistic [29]. However, the 

statistical approach taken to perform IPD-MA of binary outcomes was often not reported in 

sufficient detail. 

 

Regarding the simulation results presented in Chapter 5, nearly comparable and unbiased 

results were obtained for the pooled treatment effect with the one- and two-step methods for 

scenarios with large study sizes. However, the one-step method outperformed the two-step 

method in meta-analyses of smaller study size and its method appeared to produce more accurate 

and precise estimates of the inter-study variance of the treatment effect as compared to the two-

step method. It was also reported that correction for attenuation bias and correct model selection 

can potentially reduce the bias in the one-step method [17 ,20], but the bias in the treatment 

effect variance estimates for the two-step approach was inherent to the estimation process. 
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 Both the PQL and AGHQ produce mostly unbiased estimates of the pooled treatment 

effect, particularly when there was low heterogeneity. However, we found that the bias as 

estimated via the AGHQ procedure was substantial when study sizes were small. In general, 

coverage was reasonably close to the nominal level with both methods for the pooled treatment 

effect and as expected, convergence was an issue with the AGHQ procedure for scenarios when 

the heterogeneity was low. 

  

Also, both PQL and AGHQ produced large biases for the inter-study heterogeneity of the 

treatment effect, particularly when the variability in the random effects was large. The bias 

increased as the outcome rate decreased. Overall, AGHQ estimates of the inter-study 

heterogeneity of the treatment effect were more biased than PQL estimates, with larger RMSE 

when overall sample was small.  

 

In addition, the simulation results from manuscript II showed the primary advantage of 

modelling the study-effect as random than stratified when study sizes were small. Hence, the two 

different sources of heterogeneity can be jointly modelled and estimated. Falsely coercing the 

study-effect to be common across all studies could lead to inaccurate parameter estimates 

(pooled treatment effect and its inter-study heterogeneity). 

 

Finally, the number of studies (result not shown) had the greatest impact on the 

performance indicators than the other generation parameters. Meta-analyses of small studies 

were observed to pose severe challenges, however, in these cases the PQL procedure tended to 

perform better than the AGHQ method. We recommend that the one-step method be used in 

IPD-MA of binary outcome when study sizes are small, as it was most appropriate for these 

scenarios. The two-step method does not produce biased pooled treatment effects, but frequently 

underestimates the inter-study heterogeneity.  

Future work in the area of IPD-MA of binary outcome is necessary, particularly; the 

relative merits of the Bayesian approach (that allows non-normal distribution to also be specified 

for the random effects) offers some substantial advantages over the conventional likelihood 

approaches [68 ,69]. In addition, unresolved issues concerning methods performance for the 

pooling of observational studies and addressing the known biases that frequently occur in these 
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designs (clinical differences between study population, misclassification of subjects, controlling 

for confounding variables etc.) [70 ,71]. 
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