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ABSTRACT 

The dual-hormone artificial pancreas is an emerging technology to treat type 1 

diabetes. It consists of a glucose sensor, infusion pumps, and a dosing algorithm 

that directs hormonal delivery. Pre-clinical optimization of dosing algorithms 

using computer simulations has the potential to accelerate the pace of 

development for this technology. Current simulation environments are far from 

complete, and in the following thesis we extend them to include two 

components: a glucose sensor model that accounts for dropouts of sensor 

readings, and a glucagon action sub-model. To develop the glucose sensor 

model, potential drop-outs were augmented to an existing model and their 

incidences and parameters were estimated simultaneously with the parameters 

of the model using the Bayesian approach. Drop-outs and model parameters 

were estimated from data collected from 15 subjects with type 1 diabetes who 

underwent an artificial pancreas study. Model fitting and parameter estimates 

were contrasted between the enhanced model and the one-compartment existing 

model. The enhanced model improves fitting of glucose levels and should allow 

more realistic simulations.  In developing the glucagon action sub-model, we 

considered eight candidate models of glucagon action featuring a number of 

possible characteristics: insulin-independent glucagon action, insulin/glucagon 

ratio effect on hepatic glucose production, insulin-dependent suppression of 

glucagon action, and the effect of rate of change of glucagon. To assess the 

models, we used measurements of plasma insulin, plasma glucagon, and 

endogenous glucose production collected from experiments involving 8 
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subjects with type 1 diabetes who received four subcutaneous glucagon boluses. 

We estimated each model’s parameters using a Bayesian approach, and the 

models were contrasted based on the deviance information criterion. The model 

achieving the best fit features insulin-dependent suppression of glucagon action 

and incorporates effects of both glucagon levels and its rate of change. 
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ABRÉGÉ 

Le pancréas artificiel à double hormone est une technologie émergente pour 

soigner le diabète de type 1. Il se compose d’un capteur de glucose, pompes de 

perfusion, et un algorithme de dose qui contrôle la distribution des hormones. 

L’optimisation préclinique des algorithmes de dosage en utilisant les 

simulations par ordinateur a le potentiel d’accélérer le rythme de 

développement de cette technologie. Les environnements de simulation en 

cours sont loins d’être complets, et dans la thèse suivante on propose d’inclure 

deux constituants: un modèle de capteur de glucose qui explique les données 

manquantes des interprétations de capteurs, et un sous-model de l’action du 

glucagon. Afin de développer le modèle de capteur de glucose, les donnés 

manquantes ont été ajoutées à un modèle existant et leur incidence et 

paramètres sont estimés simultanément avec les paramètres du modèle en 

utilisant l’approche Bayesian. Les paramètres du modèle ont été estimés en 

utilisant des données de 15 sujets avec le diabète de type 1. L’adéquation du 

modèle d’estimation des paramètres est contrasté entre le modèle amélioré et le 

modèle existant à compartiment unique. Le modèle amélioré optimise 

l’estimation des niveaux de glucose et devrait permettre des simulations plus 

réalistes permettant d’évaluer les systèmes de pancréas artificiels. En 

développant le sous-modèle de l’action de glucagon, on utilise des donnés 

provenant de sujets présentant plusieurs des caractéristiques possibles : action 

de glucagon non insulinodépendant, l’effet de l’insuline/glucagon sur la 

production de glucose hépatique, la répression non insulinodépendante de 
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l’action de glucagon, et l’effet du taux de changement de glucagon. Dans le but 

d’évaluer les modèles, on considère les mesures de l’insuline plasmatique, 

glucagon plasmique, et la production de glucose endogène collectées à partir de 

huit sujets avec le diabète de type 1 qui ont reçus quatre bols alimentaires de 

glucagon sous-cutanés. On estime les paramètres de chaque modèle utilisant 

une approche Bayesian, et les modèles sont comparés en utilisant le critère de 

déviance. Le modèle qui correspond le mieux avec les données disponibles est 

celui incluant la répression de l’action de glucagon et incorporant l’effet du 

glucagon ainsi que son taux de changement. 
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CHAPTER 1 

Introduction 

 

1.1 Type 1 Diabetes 

Insulin is a hormone secreted by pancreatic beta cells that promotes glucose 

utilization with which glucose concentration in the blood is reduced [1].  

Glucagon, on the contrary, is a hormone secreted by pancreatic alpha cells which 

promotes the conversion of hepatic glycogen into glucose, increasing glucose 

concentration in the blood. In a healthy individual, the blood glucose 

concentration is closely managed by both of these hormones.  

Type 1 diabetes (T1D) is a chronic disease that leads to the autoimmune 

destruction of pancreatic beta cells, resulting in the absence of insulin secretion 

in the pancreas [2].  Accounting for 5-15% of approximately 366 million 

worldwide patients with diabetes, the incidence of T1D is increasing at a rate of 

3.9% per year [3]. 

The discovery of Insulin in the early 1920’s allowed for the treatment of T1D, 

transforming it from a fatal condition into a disease requiring lifelong treatment. 

This treatment, known as insulin replacement therapy, requires either multiple 

daily injections of insulin or continuous subcutaneous insulin infusion via a 

pump, called insulin pump therapy. Glycemic levels should be tightly controlled, 

given that repeated occurrence of high glucose levels (hyperglycaemia) leads to 

long-term complications such as heart disease, kidney failure, nerve damage, and 

blindness [4].  
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Insulin pump therapy features insulin delivered in a continuous manner through 

a portable pump [5], and requires frequent finger-stick blood glucose 

measurements, calculating the carbohydrate content of each meal, and 

adjustment of various factors  including insulin sensitivity (how much glucose is 

dropped after the delivery of 1 unit of insulin). This treatment option improves 

glycemic control compared to multiple daily injections in most T1D patients [6]. 

The mid 2000’s introduced real-time continuous glucose monitoring systems, 

also known as continuous glucose sensors. While being less accurate than 

conventional glucose meters, these sensors measure, on a continuous basis, the 

blood glucose despite being minimally invasive. Consisting of a fine disposable 

probe and transmitter implanted under the skin, the system links wirelessly to a 

handheld device that analyses the received data and displays the glucose levels 

to the patient. These systems are being improved rapidly and are progressively 

showing greater accuracy.  

Despite the advances above, insulin pumps and continuous glucose sensors are 

far from perfect, as glucose control remains problematic and most patients do not 

achieve glucose targets [7], [8]. In addition, hypoglycemia (low blood glucose) 

secondary to insulin therapy may occur and lead to seizures, unconsciousness, or 

even death [9].  
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1.2 Closed-Loop Systems in Type 1 Diabetes 

Despite the remarkable progress observed in sensors and pump technologies, the 

desire to combine the interface between the two in an automated manner has 

recently led to the development of closed-loop delivery systems (often called the 

“Artificial Pancreas”). In this system, subcutaneous glucose sensor readings are 

continuously transmitted to a mathematical dosing algorithm which dynamically 

controls the rates of hormonal infusion pumps (Fig 1.2) Two configurations of 

the artificial pancreas, the single-hormone (insulin-only) and the dual-hormone 

(insulin and glucagon), have been shown to offer tighter glucose control 

compared to conventional pump therapy [8]. However, the addition of glucagon 

has the potential to further lower hypoglycaemia at the expense of increased costs 

and device complexity. 

 

 

 

 

 

Despite the momentum that the Artificial Pancreas has gained and its 

projection as the most promising treatment option for patients with type 1 

diabetes, a few major milestones stand in its way. First, to evaluate the safety and 

efficacy of such systems, in-patient clinical trials are necessary. These will allow 

Controller 

Sensor 

Pump 

Figure 1.1: Closed-Loop Delivery System 
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for the testing of the system in controlled conditions as well as for improving the 

dosing algorithms.  Given that clinical trials are time-consuming and expensive, 

computer simulation environments can be developed to further test the system 

before moving onto less controlled clinical environments. This would, naturally, 

allow testing the system under extreme conditions (hardware failure, sensor mal-

function, stress, etc) that would not otherwise be allowed in clinical studies due 

to ethical reasons. It is important to note that clinical and simulations studies 

improve each other in an iterative manner; data collected from clinical studies 

are used to improve the realism of the simulation environment, which can be used 

to improve the dosing algorithm that can, in turn, be used to collect more clinical 

data. In order for the simulation environment to be given regulatory approval 

(Health Canada, Federal Drug Administration), validation needs to take place. 

This is performed by comparing the environment’s predictions against a clinical 

study evaluating overnight closed-loop insulin delivery.  

Before moving to out-patient studies, closed loop devices also need to be 

given regulatory approval Finally, following these out-patient studies, long term 

home studies will be needed to conclusively contrast the closed loop system 

against conventional treatments.  

1.3 Simulation Environments 

Clinical trials are an integral part of the development process of closed-loop 

systems but are time-consuming, resource demanding, and costly [10], [11]. Pre-

clinical testing in a computer-simulation environment accelerates development 

and facilitates optimization of dosing algorithms. Simulation environments are 
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composed of a mathematical model of glucose regulation representing “virtual 

patients”, a glucose measurement model, and the insulin delivery model, all 

described by a set of differential equations along with parameters that differ from 

one patient to another [12]. The structure of the differential equations defines the 

relationship between physiological variables, such as insulin, glucagon, blood 

glucose, sensor glucose, insulin sensitivity, total daily dose (of insulin), meal 

sizes, exercise, and other demographic variables (age, weight, duration of 

diabetes). Many of the key physiological variables exhibit both inter- and intra-

patient variability (with the former being more prominent). For example, day-to-

day variations of insulin sensitivity in Type 1 individuals in one study showed a 

coefficient of variation of 13%, with inter-patient coefficient of variation of 

around 25% [13]. Total daily dose of insulin, another important variable, is 

known to show ten-fold intra- patient variability (0.2 units/kg/day to 2 

units/kg/day). Furthermore, factors including age, weight, time of day, and 

activity level may largely affect parameters including insulin and glucagon 

sensitivity. The primary goal of simulation environments is to mimic reality as 

closely as possible; very much as is the goal of a flight simulator.  For example, 

the structure of the environment should define that insulin reduces glucose levels, 

but that its action is modulated by insulin sensitivity (e.g. the ability of insulin to 

produce its biological effect). Likewise, it should mimic the characteristics of a 

sensor reading (i.e its incapacity to entirely correspond with blood glucose levels, 

either through sensor underreading, overreading, physiological delays, or other 

eccentricities). All together, these components combine to produce an 
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environment that can very much simulate that of a clinical study. The simulator 

would be provided (or can generate) multiple virtual patients, described by their 

own characteristic parameters, and for a specification of experimental protocol, 

glucose measurement and insulin delivery model, as well as dosing algorithm 

used, would output a comprehensive analysis of study results. As with the clinical 

setting, the algorithm’s performance through the simulation environment is 

evaluated on the basis of time spent in a safe glycaemic range (4-8 mmol/L) and 

glucose variability. 

1.4 Thesis Contribution 

In the following thesis, we present models that contribute to the 

completion of the simulation environments that test the Artificial Pancreas. In 

particular, we present a detailed overview of the methodology and results of two 

such models we have developed: a glucose sensor model that accounts for drop-

outs in sensor models, and an enhanced glucose regulation model. The rest of this 

thesis is organized as follows. Chapter 2 provides a literature review of work 

done towards developing current simulation environments, as well asrelated 

work regarding models describing certain components of these environments. It 

also introduces the technical background for our modelling tasks and describes 

the statistical inference methods and software used to solve it. Chapters 3 and 4 

highlight the experiment and results of the two studies performed, the former of 

which can be found published in [14], and the latter found published in [15]. 

Finally, Chapter 5 concludes and discusses the work presented in this thesis 

before outlining avenues for future work. 
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CHAPTER 2 

Problem Domain 

 

In the following chapter, we review the most recent efforts to complete the 

simulation environments that test the Artificial Pancreas, followed by some 

technical background for the thesis. Particularly, in the first section, we review 

three major simulation environments proposed by various teams that contain 

three fundamental components: the glucose regulation model, the glucose 

measurement model, and the insulin delivery model. In the two subsequent 

sections, we review work being done on developing and enhancing specifically 

two of these components: the sensor model, and the glucose regulation model. 

For each of these components, we describe some limitations that have yet to be 

addressed and outline how we seek to resolve them in our thesis. In the final 

sections, we describe some of the statistical inference methods by which we 

develop and enhance these models, as well as the software used to implement 

them. 

 

2.1 Current Simulation Environments 

Three major simulation environments have thus-far been developed to test 

the Artificial Pancreas [11], [16], [17]. Kovatchev et al. [17] created an 

environment of 300 virtual type 1 diabetes patients. Using glucose fluxes 

obtained in healthy individuals, parameters were estimated for a complex model 

of glucose regulation they proposed, and then altered to represent type 1 diabetes 

subjects. Briefly, their model assumes that the insulin and glucose subsystems 

are connected to each other via the control of insulin on endogenous production. 
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The main processes that govern the model are endogenous glucose production, 

glucose rate of appearance, and glucose utilization. The suppression of 

endogenous glucose production is assumed to have a linear affect on plasma 

glucose and portal insulin concentration. 

Another such simulation environment was developed by Medtronic [16], 

based on Bergman’s minimal model [18], an early model describing insulin’s 

effect to increase glucose uptake and decrease endogenous glucose production 

via insulin sensitivity. In this environment, compartmental models were used to 

describe the pharmacokinetics of subcutaneous insulin and glucose concentration 

following a meal. Model parameters were obtained by fitting glucose data in 10 

type 1 diabetes subjects who underwent closed-loop experiments. Data was fitted 

using nonlinear least squares regression. 

More recently, a simulation environment of 18 virtual subjects has been 

proposed by Wilinska et al [11], combining a mathematical model of glucose 

regulation representing a virtual population with T1DM, the glucose 

measurement model, and the insulin delivery model. Model parameters were 

estimated with the maximum likelihood approach for which a prior joint uniform 

distribution of parameters was determined from glucose measurements in 18 type 

1 diabetes patients. 

2.2 The Sensor Model 

An important component of the simulation environment is the sensor model. The 

sensor model is used to predict the individuals' sensor glucose profiles based on 
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their plasma glucose levels. This allows for comprehensive testing of the dosing 

algorithm, leading ultimately to an accelerated development of the artificial 

pancreas. 

As of now, a few attempts to model the dynamics of CGM have been published, 

all based on the assumption of one-compartment dynamics between BG and IG 

[19]. Breton and Kovatchev [20] modeled glucose sensor profiles by a one-

compartment model and decomposed sensor error into errors due to calibration, 

blood-to-interstitial dynamics, and noise. Lunn et al. [21] proposed a more 

refined model and estimation strategy, which allowed the estimation of model 

parameters and intra- and interpatient variability simultaneously. Their model 

accounted for additive and multiplicative multiple calibration errors, and they 

proposed an autoregressive structure for the measurement error. Facchinetti et al. 

[22] included a time-varying component to account for sensor drift and used 

multiple sensors to dissect the sensor error into physiology-related and 

technology-related. 

Owing to mechanical pressure on the sensor site, the sensor reading often 

experiences sudden temporal unphysiological drops followed by recovery, 

referred to as drop-outs (see, for example, Fig. 1) (for a detailed review of the 

physiology of pressure-induced sensor attenuations, we refer the reader 

elsewhere [23]). In the case of the artificial pancreas, this effect may lead to 

insulin suspension and, in the dual-hormone system, glucagon delivery, 

increasing the risk of temporary hyperglycemia. This inspired the development 

of detection strategies that could be used as part of the artificial pancreas dosing 
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algorithms[24], [25]. Testing and developing detection and action strategies to 

mitigate the effect of drop-outs could be facilitated by incorporating drop-out 

models as part of the in silico simulations. No effort, however, has been made 

yet to incorporate drop-outs within the sensor dynamical model. In this thesis, 

we use a probabilistic approach to extend the model of Lunn et al. [21] described 

above  to account for drop-outs and sensor drifts. 

 

Fig. 2.1: Sensory glucose readings (SG) in red are plotted against plasma glucose 

(PG; measured by YSI) in black in one subject wearing two sensors. Note the 

dropouts (marked with red circles). 
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2.3 Endogenous Glucose Production 

Endogenous glucose production (EGP) is a key component of blood glucose 

regulation; its suppression contributes to the control of post-prandial glucose 

excursion minimizing hyperglycemia, while its stimulation prevents 

hypoglycaemia. EGP is mainly controlled by two hormones, insulin and 

glucagon, and a mathematical model governing its dynamics is an integral part 

of all simulation environments. Early simulation models [11], [16], [17], [26]  

included insulin action only, and built on either the minimal model [27], the 

stable-label two-compartment model [28], or the Hovorka model [1]. These 

models were useful to test single-hormone closed-loop systems [29] but lacked 

glucagon action models. Recently, attempts have been made to extend these 

models to include glucagon action models to allow testing of dual-hormone 

closed-loop systems. In particular, Herrero et al. proposed a glucagon action 

extension to the minimal model [30], Markakis et al. proposed a glucagon action 

extension to the Hovorka model [31], and Hinshaw et al. proposed  a model that 

relates endogenous glucose production with hepatic glucagon sensitivity, and 

prevailing glucose concentrations [32]. We will detail the features of these 

models further in Chapter 4.  

These glucagon models were proposed as stand-alone and were not compared 

to potentially superior candidate models. Different models affect simulation 

results depending on how they characterize the manner in which glucagon levels 

increase EGP, how glucagon action changes when insulin levels vary, and 

whether it is the ratio or the absolute levels of glucagon and insulin that affect 
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EGP, among others. While there are answers put forth addressing some of these 

issues in human and animal physiology studies [33]–[36], there currently lacks 

mathematical models developed from real subject data that captures some of 

these relationships, which is necessary for the simulation environments to 

reliably test dual-hormone closed-loop systems.  

2.4 Technical Background 

The models we develop in the chapters that follow will be composed of many 

parameters that are influenced by a combination of both prior information about 

the population parameter understood from physiology, and the evidence from 

information contained in a sample (measurement from data). Bayesian estimation 

is a method of statistical inference that naturally incorporates these two factors 

to determine estimations for these parameters.  

Let y be the vector representing the measurement, i.e plasma insulin or glucose 

levels, and 𝜃 the vector of unknown parameters.  

The likelihood function, 𝑝(𝑦|𝜃), describes the probability of the observed 

measurements given the parameter values, 𝜃. Recall Bayes’ theorem: 

                                       𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
                                     (1) 

where 𝑝(𝜃) is the prior on 𝜃 (which characterizes knowledge about 𝜃 before 

having seen the data), and 𝑝(𝜃|𝑦) is the posterior density of 𝜃. The estimation 

problem consists of determining the joint posterior density of all the unknown 

variables 𝜃 conditioned on the observed data. Inference about θ follows from 
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summarizing the likelihood (for frequentists) or the posterior density (for 

Bayesians). In the case of uninformative (vague) priors, p(θ) approximates a 

constant, which renders the posterior density proportional to the likelihood, 

resulting in the same inference about θ regardless of being in the Bayesian or 

classical framework. 

In Bayesian estimation, inference involves describing features of the posterior 

distribution of 𝜃, There are several algorithms, both exact and approximate, for 

carrying out inference in Bayesian estimationIn most cases, inference cannot be 

performed exactly, leading to the emergence of approximate methods such as Monte 

Carlo (MCMC) simulation, importance sampling, variational methods, loopy belief 

propagation, variational inference, or parametric approximation methods. 

Amongst these approximate methods, Markov Chain Monte Carlo techniques 

[37] are often favored and seen to perform most efficiently on larger sample sizes. 

Unlike procedures for conventional statistical inference (i.e, MLEs and least 

square estimators) that produce point estimates through optimization, these 

techniques produce samples from the joint posterior density of model parameters 

that are then summarized for the purpose of inference.  

MCMC techniques work by randomly drawing samples from the posterior 

distribution of the data given the parameters. The Markov chain property of 

MCMC stems from the idea that a special sequential process governs the 

generation of the random samples whereby the generation of each random sample 

depends only on the one before it (hence the “Markov” property).  

The sampling mechanism itself obeys a very similar structure: MCMC begins 
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with an initial guess for the first sample that might be plausibly drawn from the 

prior distribution. Then, MCMC is used to produce a chain of samples from this 

initial guess. Each new sample is generated by the following two steps: first, the 

proposal is generated via a small random perturbation to the previous sample; 

second, this proposal is either accepted as a new sample or rejected (retaining the 

old sample). There are several different ways of creating the random noise used 

to generate a proposal, and also several algorithms for the process of 

accepting/rejecting a proposal, the most popular of which being Gibbs Sampling 

(used when p(θ│y) is known—parameter values are drawn and kept throughout 

the chain,) and Metropolis Hastings (used when p(θ│y) is unknown—parameter 

values are proposed, then either kept or rejected). In our thesis, we employ the 

method of Metropolis Hastings given that for any parameter we consider, its full 

conditional distribution is not available in closed form.  

The algorithm for Metropolis-Hastings works as follows: 

1. Each parameter is assigned an initial value, drawn randomly from its prior 

distribution, unless the initial value is specified (for the purpose of 

speeding up the process). 

2. A new value is proposed for each model parameter p using some 

distribution S (often the normal distribution, particularlyN(0,5), for our 

problem): 

𝜃𝑝
∗~𝑆(𝜃𝑝

∗|𝜃𝑝) 

3. The proposed value is then accepted as the current value with probability 

max(𝑅𝑀𝐻𝐺 ,1): 

𝑅𝑀𝐻𝐺 =
𝑝(𝑦|𝜃𝑝

∗)𝑝(𝜃𝑝
∗)𝑆(𝜃𝑝|𝜃𝑝

∗)

𝑝(𝑦|𝜃𝑝)𝑝(𝜃𝑝)𝑆(𝜃𝑝
∗|𝜃𝑝)

 

4. The process repeats for a specified number of iterations (until 

convergence). 

 

For a long enough chain, the final values will represent those drawn from the 
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posterior distribution (from which the parameter estimates are determined). This 

is commonly known as convergence. An adaptive phase (or burn-in period) is 

used where a chain is allowed to run for a set number of iterations (so that the 

chain may converge) before the sampled parameter values are used to summarize 

the posterior distribution. 

2.5 WinBugs Modelling Framework 

The software we used to solve the Bayesian problem, as well as to construct 

and analyse the models, is WinBugs (Bayesian inference Using Gibbs 

Sampling) [38], a fully extensible modular framework in which one can 

construct an internal representation of the probability model in a way that is 

analogous to the way the model may be visualized graphically. More 

specifically, each quantity in the model is represented by a node and nodes are 

connected by arrows to show dependence. The distributional assumptions of 

each node are ‘hidden’ to maintain the qualitative nature of the model, and the 

structure of these dependencies, being directed and without cycles, leads 

naturally to a directed acyclic representation (DAG) that WinBugs is designed 

to handle. To deal efficiently with arbitrarily complex models, WinBugs uses 

object-orientation to represent various nodes in the model. Statistical analysis of 

the model itself then follows using the Markov chain Monte Carlo simulation 

methods like those described in the previous section. For more details on the 

framework and structure of the software, we refer the reader to [38].  
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 CHAPTER 3 

Enhancing Glucose Sensor Models: Modelling the Dropouts 

 

3.1 Chapter Contribution 

Computer simulation environments have been used in the development of many 

artificial pancreas systems. A glucose sensor model is an essential part of these 

environments, and different models have been proposed. However, none of these 

models account for sudden, temporal unphysiological drop of sensor readings (or 

better known as “droup-outs”, a well-known phenomenon caused by physical 

pressure on the sensor site. These dropouts, being unrepresentative of blood 

glucose level in the subject, may mislead the decisions made by the dosing 

algorithm in Artificial Pancreas, leading possibly to insulin suspension, 

increasing the risk of temporary hyperglycemia. 

In this chapter, we propose an enhanced model that accounts for drop-outs, and 

demonstrated its improvement over the existing one-compartment model. 

Potential drop-outs were augmented to the existing model and their incidences 

and parameters were estimated with the parameters of the model using the 

Bayesian approach. Drop-outs and model parameters were estimated from data 

collected from 15 subjects with type 1 diabetes who underwent an artificial 

pancreas study. Model fitting and parameter estimates were contrasted between 

the enhanced model and the one-compartment model. The enhanced model 

improves fitting of glucose levels and should allow more realistic simulations. 
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3.2 Subjects and Methods 

Model parameters were estimated using data from 15 subjects with type 1 

diabetes. Subjects were admitted to a clinical research facility for 15 h, from 

16:00 h until 7:00 h the following day. A meal was consumed at 18:00 h and a 

snack at 22:00 h. Insulin boluses were given with the meal but not the snack. 

Glucose levels were controlled by insulin and glucagon delivery adjusted every 

10 min using a model predictive control algorithm and real-time continuous 

glucose sensor readings. IG was measured using a Sof-sensor® glucose sensor 

(Medtronic, Northridge, CA), and plasma glucose was measured using the 

YSI2300 STAT™ Plus analyzer (YSI, Yellow Springs, OH). The data relevant 

to this article are the sensor glucose and plasma BG measurements. For more 

details, we refer the reader to Haidar et al. [39]. 

3.3 The Model of Lunn et al.  

Interstitial glucose (IG) is related to the blood glucose (BG) by the following first 

order differential equation: 

                                           
𝑑𝐼𝐺(𝑡)

𝑑𝑡
= −𝑘1𝐼𝐺(𝑡) + 𝑘2𝐵𝐺(𝑡)     (1) 

where k1 and k2 are transfer rate parameters. The sensor does not measure IG 

directly but maps an electric current generated in the sensor to a scaled measure 

of IG. Therefore, the sensor uses occasional calibrations (every 8-12 hours) to 

match electric current values to blood glucose estimates. Normalized interstitial 

glucose is therefore defined by: 
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 𝑑𝑁𝐼𝐺(𝑡)

𝑑𝑡
= −𝑘1[𝐼𝐺(𝑡) − 𝐵𝐺(𝑡)]                           (2)  

where NIG = k1/k2 IG. The calibration process itself is confounded by 

inaccuracies in the glucose meters. As a result, the dynamical model is 

characterized after each calibration with its own error parameters, defined ml 

(multiplicative error) and el (additive error) for 𝑙 = 1. . 𝐶 calibrations, leading to 

the following equation: 

                                       𝐶𝐼𝐺(𝑡) = 𝑚𝑙𝑁𝐼𝐺(𝑡) + 𝑒𝑙  for 𝑙 = 1. . . 𝐶                   (3) 

where CIG denotes “Corrected Interstitial Glucose”. Finally, the ith sensor 

glucose measurement is related to CIG by  

                                                          𝑆𝐺𝑖 = 𝐶𝐼𝐺𝑖 +∈𝑖,                                      (4) 

where ∈𝑖 is a first order autoregressive process with an autocorrelation of ρ [21]. 

3.4 Sensor Drop-outs and Drift – The Enhanced Model 

To account for sensor drifts, we assumed that the additive errors are time-

varying – a special case of the time variability proposed in Facchinetti et al [22]. 

More specifically, we assumed that the error has a tendency to decrease or 

increase in time linearly until the next calibration is performed. Accordingly, 

between two calibrations times, the model now becomes  

                                   𝐶𝐼𝐺(𝑡) = 𝑚𝑙𝑁𝐼𝐺(𝑡) + 𝑒𝑙 + s × 𝑡,                                 (5) 

where 𝑠 determines the extent of error variation over time. 

We defined a discrete variable, 𝑖𝑠𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑑, at every time point 𝑑 that 
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takes a value of 0 or 1. If 𝑖𝑠𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑑 is 1, then glucose levels drop and recover 

in the next 40 minutes based on the following equations:  

 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑 =  −
𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
𝑡 +

𝑑×𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
, 𝑡 ∈ (𝑑, 𝑑 + 10)                (6)       

 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑 =
𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
𝑡 +

(𝑑+20)×𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
, 𝑡 ∈ (𝑑 + 10, 𝑑 + 30)   (7) 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑 = −
𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
𝑡 +

(𝑑+40)×𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑

100
, 𝑡 ∈ (𝑑 + 30, 𝑑 + 40) (8)                   

                𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑 = 0, 𝑡 ∉ (𝑑, 𝑑 + 40)                                   (9) 

         𝑇𝑜𝑡𝑎𝑙𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥 = ∑ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑𝑑                                           (10) 

where 𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑 (mmol/L) determines the nadir of the decline (Figure 3.1, 

left panel), and t. In the case of overlapping drops (two or more drops that occur 

within the span of each other’s 40 minute durations), the resulting structure 

would be the addition of the two. This allows the model to manage cases in which 

the drop-out shape is not the curve specified in the above equations (See for 

example Figure 3.1, right panel). The 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥𝑑  values are interpreted as 

the rate of change of NIG introduced by the dropout effect. Its sum across all 

time points 𝑑, 𝑇𝑜𝑡𝑎𝑙𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥, is incorporated into equation 2 as follows: 

                      
 𝑑𝑁𝐼𝐺(𝑡)

𝑑𝑡
= −𝑘1[𝐼𝐺(𝑡) − 𝐵𝐺(𝑡)] + 𝑇𝑜𝑡𝑎𝑙𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝐹𝑙𝑢𝑥            (11) 
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Fig. 3.1: The left graph shows an example of a standard drop-out, as specified by 

the enhanced model. The duration of the drop-out is 40 minutes, with its peak 

drop at 20 minutes. Its peak value is 4 mmol/L. The right graph shows an example 

of an overlapping drop-out.  

3.5 Parameter Estimation 

We used Bayesian techniques and Markov chain Monte Carlo methods [37] to 

estimate simultaneously model parameters and the drop-outs. The Bayesian 

problem was solved using WinBUGS software [38], with WBDiff interface [40] 

used to allow the specification of the differential equations. Prior distributions of 

model parameters were set as follows: 

 

                               𝑖𝑠𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑑 ∼ 𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝)                                       (12) 

 

                                𝑝 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)                                                     (13) 

 

                           𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑 ∼ 𝑛𝑜𝑟𝑚(3,1)                                             (14) 
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                              𝑘1~ 𝐿𝑁(−2.8,0.001)                                                   (15) 

 

                     𝑚𝑙~ 𝐿𝑁 (0, [
0.0001 0

0 0.0001
]) , 𝑙 = 1. . 𝐶                         (16) 

 

                  𝑒𝑙 = 𝑚𝑛𝑜𝑟𝑚 (0, [
0.0001 0

0 0.0001
]) , 𝑙 = 1. . 𝐶                    (17) 

 

We restricted the drop-out size to be more than 1.5 mmol/L to force the model 

to use these potential deviations to fit only prominent drop-outs. When no 

restriction was put on the size of the drop-outs, the model had tendencies to fit 

other discrepancies between the model and the data, including small non-

significant errors, using these potential deviations. The priors specifying the 

shape and duration of dropouts, including 𝑖𝑠𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑑 and 𝑝𝑒𝑎𝑘𝑉𝑎𝑙𝑢𝑒𝑑 are set 

given observations of the data, while the priors for the transfer rate, additive 

error, and multiplicative error (equations 15-17) are set in accordance with 

Lunn’s model [21].  

For the purposes of parameter estimation, measurement errors were assumed 

correlated and follow a first order autoregressive process with an 

autocorrelation of ρ:  

                                   𝜎(𝑖) = (1 − 𝜌)𝜎(𝑖 − 1) + 𝑒𝑟𝑟𝑜𝑟                                 (18) 

                                           𝑒𝑟𝑟𝑜𝑟 ~ 𝑛𝑜𝑟𝑚(0,0.03)                                        (19) 

 

 



23 
 

Model Comparison 

A meaningful way to compare models is to use a criterion based on the trade-

off principle of rewarding the model for how well it fits the data while penalizing 

it for complexity. Based on this principle, Spiegelhalter et al. [41] proposed a 

Bayesian model comparison criterion, termed the Deviance Information 

Criterion, and defined as DIC = ‘goodness of fit’ + ‘complexity’. The goodness 

of fit is captured via the deviance: 

                                          𝐷(𝜃) =  −2log 𝑝(𝑦|𝜃)                                         (20)  

Complexity is measured via the estimation of the ‘effective number of 

parameters’: 

                             𝑝𝐷 = 𝐸𝜃|𝑦[𝐷] − 𝐷(𝐸𝜃|𝑦 [𝜃]) = �̅� − 𝐷(�̅�)                                 (21) 

where 𝐸𝜃|𝑦[𝐷] is the expected value of 𝐷(𝜃) given 𝑦 (posterior mean deviance) 

and 𝐷(𝐸𝜃|𝑦[𝜃]) is the deviance evaluated at the posterior mean of the parameters.  

The DIC is then formally defined as: 

                                    𝐷𝐼𝐶 ≡  𝐷(�̅�) + 2𝑝𝐷 = �̅� + 𝑝𝐷                                   (22) 

We thus define the best performing model as the model with the lowest DIC 

among the models that have physiologically plausible parameters estimates. By 

physiologically plausible, we mean that the values are sensible (within an order 

of magnitude) according to physiological findings, many of which can be found 

in [1] and [42].   

We further use the method of mean weighted residuals to quantify the goodness 
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of fit of the best performing model [43]. The measure of mean weighted residuals, 

often summarized as a range of percentages by which the fit deviates from the 

data, allows for a stand-alone evaluation of any one model’s performance.  

The enhanced model is contrasted against Lunn’s model using the 

deviance information criterion [41] and weighted residuals. Individual weighted 

residuals at every time point, j, were calculated using:  

                                             𝑅𝑖 = (𝐶𝐼𝐺𝑖  −  𝑆𝐺𝑖)/𝜎𝑖
2                                     (23)                                                             

where 𝜎𝑖
2 is the variance of the error of jth measurement which is multiplicative 

with 3% CV.  

3.6 Results 

Samples of Model Fit  

Figure 3.2 shows two sample fits for one individual using Lunn’s model and the 

enhanced model. The Figure shows that dropouts present at times 350 min, 650 

min, and 900 min were better fitted with the enhanced model compared to Lunn’s 

model.  
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Fig. 3.2: Graphs of model-derived SG (red) plotted against actual subject SG data 

points (black) for a subject, where the above and bottom graphs are fit using the  

Lunn’s model and the enhanced drop-out model, respectively. Note the inability 

of Lunn’s model to fit for the drop-outs. 

Parameter Estimates and Goodness of Fit 

Parameter estimates of the two models, including the drop-out parameters for the 

enhanced model are shown in Table 3.1. Both models achieved similar parameter 

estimates (p = NS), and all parameters were physiologically plausible. The 

enhanced model further estimated 1.71 drop-outs per day, which improved model 

fit (weighted residual reduced from [Min -4%, Max 3%] to [-3%, 2%]; Figure 
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3.3) and reduced significantly the deviance information criteria from 2739 to 

1456.00 (Table 3.1). 

 

 

Fig. 3.3: Graph of mean weighted residuals for the previous model’s fit (red) and 

that of the mean weighted residuals for the drop-out model’s fit (green), where 

the vertical axis denotes the mean percent difference between all subjects’ sensor 

glucose readings and those predicted by the model and the horizontal axis is time, 

in minutes. 
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Table 3.1. Parameter estimates of the sensor models, with autocorrelation 

coefficient of the autoregressive error (𝜌) assumed 0.7. 

 

 Parameter* Lunn’s Model Enhanced Model P-value 

𝑘1 0.094  

(0.059 –  0.113) 

0.110  

(0.073 – 0.121) 

0.071 

m1 0.920  

(0.833 – 1.158) 

0.886  

(0.833 – 1.055) 

0.726 

m2 0.9123  

(0.772 – 0.986) 

0.888  

(0.779 – 0.947) 

0.296 

e1 -0.063  

(-1.328 – 0.609) 

0.035 

(-0.054 –  0.101) 

0.195 

e2 -0.003 

(-0.373 – 0.952) 

0.104 

(-0.027 – 0.385 ) 

0.664 

Number of drop-outs 

(per subject per 

experiment) 

 - 0 (0 – 1.5) - 

Drop-out peak value  - 2.2 (2.086 – 2.395) - 

Frequency of  drop-outs 

(per day)¶ 

 - 1.7 - 

Deviance Information 

Criterion 

2739.72 1456.00 - 

* Values are median (interquartile range; N=15). Individual point estimates were 

inferred using medians of posterior realizations 

¶ Calculated as the total number of drop-outs (overlapping drop are counted as 

a single drop-out
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Autoregressive Assumption of Model Error 

We estimated the parameters of the enhanced model assuming a white noise 

structure for the model error (e.g, no correlation between consecutive 

measurement errors). This led to an increase in the number of drop-outs 

estimated, almost doubling the number from 1.7 to 3.0 drop-outs per day (Table 

3.2). Based on visual inspection, the model used drop-outs to fit both real drop-

outs and other large discrepancies, resulting from model misspecification, 

between the model and the data. In other words, the increased rate of drop-outs 

is a reflection of model misspecification, suggesting, as indicated by others [21], 

[22], that the autoregressive structure is an attribute of the sensor residual error.  

We varied the autocorrelation parameter of the error autoregressive process, ρ, 

and estimated model parameters and the drop-outs. Similar to what was shown 

by Lunn et al. [21], model parameters estimated were not sensitive to the value 

of ρ (Table 3.3).  

Table 3.2. Parameter estimates of the drop-out model, without 

autoregressive structure assumed. 

Parameter* Drop-out Model 

Number of Drop-outs (per subject per 

experiment) 

1 (0 – 3) 

Drop-out Peak Value 2.647 (2.209 – 3.446) 

Frequency of Drop-outs (per day) ¶ 3.0 

*Values are median (interquartile range) (N=15).  

¶ Calculated as the total number of drop-outs (overlapping drop are counted as a single 

drop-out) across all subjects divided by the total number of hours multiplied by 24. 

 

 



29 
 

Table 3.3. Parameter estimates of the drop-out model, with autoregressive 

structure assumed 

Parameter* Drop-out 

Model (ρ= 

0.6) 

Drop-out 

Model (ρ= 

0.7) 

Drop-out 

Model (ρ= 

0.8) 

Number of Drop-outs 

(Average per subject/per 

day) 

0 (0 – 1.5) 0 (0 – 1.5) 0 (0 – 1.5) 

Drop-out Peak Value 2.24 (2.11 – 

2.33) 

2.2 (2.09 – 

2.40) 

2.28 (2.09 – 

2.68) 

Probability of Drop-out 

(Per hour) 

0 (0 – 0.1) 0 (0 – 0.1) 0 (0 – 0.1) 

Frequency of drop-outs 

(per day) 

1.6 1.7 1.8  

*Values are median (interquartile range) (N=15). Individual point estimates were 

inferred using medians of posterior realizations. 

¶ Calculated as the total number of drop-outs (overlapping drop-outs are counted 

as a single drop-out) across all subjects divided by the total number of hours 

multiplied by 24. 

 

3.7 Discussion 

We have proposed an enhanced sensor model that takes into account signal drop-

out, a frequent phenomenon triggered by physical pressure on the sensor site. We 

augmented the model presented by Lunn et al [21] to include drop-outs using the 

Bayesian framework. The new model improved model fit and significantly 

decreased deviance information criteria. However, the two models predicted 

similar parameters (sensor delay, calibration errors, etc), suggesting that 

estimates produced by the previous model remain valid.  

The primary purpose for developing sensor models is to use them in metabolic 
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simulators that test artificial pancreas systems [11]. Although the models 

proposed by others [20]–[22] seems to provide plausible and valid parameter 

estimates, they still lack the ability to predict realistic drop-outs during 

simulations. Drop-outs during artificial pancreas operation might lead to insulin 

suspension, and in the dual-hormone system, glucagon delivery, increasing the 

risk of temporary hyperglycemia. Testing and developing strategies to mitigate 

the effect of drop-outs could be facilitated by drop-out models. Our model 

estimates frequency and magnitude of drop-outs from real sensor data.  

Lunn’s model and the enhanced model still display unexplained fluctuations from 

their fits. Whether or not more sophisticated models can correct for such 

discrepancies merits further research. Another noteworthy consideration is that 

we used data measured with the Sof-sensor® glucose sensor. Lunn’s model was 

developed from a different sensor, the Guardian RT CGM system [21]. While the 

results show that the new model is superior to the old one insofar as modelling 

the Sof-sensor® glucose sensor, whether or not the new model can be similarly 

improved for other sensors merits further research.  

In summary, we have enhanced the previous model in order to more accurately 

describe the drop-outs that frequently affect glucose sensor readings. Having 

proposed a general approach applicable to other sensors, this thesis invites future 

studies of similar spirit on diverse datasets. 
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CHAPTER 4 

Modelling Glucagon Action in Type 1 Diabetes 

 

 

4.1 Chapter Contribution 

Current simulation environments consider glucose regulation models that either 

do not include glucagon action sub-models, or include sub-models that were 

proposed without comparison to other candidate models. In the following 

chapter, we consider nine candidate models of glucagon action featuring a 

number of possible characteristics: insulin-independent glucagon action, 

insulin/glucagon ratio effect on hepatic glucose production, insulin-dependent 

suppression of glucagon action, and the effect of rate of change of glucagon. To 

assess the models, we used measurements of plasma insulin, plasma glucagon, 

and endogenous glucose production collected from experiments involving 8 

subjects with type 1 diabetes who received four subcutaneous glucagon boluses. 

We estimated each model’s parameters using a Bayesian approach, and the 

models were contrasted based on the deviance information criterion. The model 

achieving the best fit features insulin-dependent suppression of glucagon action 

and incorporates effects of both glucagon levels and its rate of change. 

4.2 Experimental Data 

Model parameters were estimated using data collected by El Youssef et al. [44]  

from 8 subjects with type 1 diabetes who underwent one to three experiments of 

8 hours in duration each. On each occasion, they were exposed intravenously to 

three different insulin infusion rates (low 0.016, medium 0.032, and high 0.05 

units/kg/h), and received 4 scheduled subcutaneous glucagon boluses given every 
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2 hours with different sizes (25, 75, 125, and 175 μg). The first glucagon bolus 

given was randomized in blocks that followed a chronological order (e.g 75, 125, 

175, 25). Insulin (mU/L) and glucagon (pg/mL), were measured every 10 

minutes, and EGP levels (umol/kg/min) were calculated using isotope tracer 

methodology and hierarchical Bayes modeling, as described by Haider et al. [45], 

[46]. Additionally, 10% dextrose was infused variably in order to maintain 

constant glucose levels at around 5 mmol/L. In the original study, El Youssef et 

al. completed twenty-nine occasions in 11 subjects; among these, certain 

occasions showed a continued rise in glucose infusion rates (implying that the 

first dose was delivered before steady-state insulin levels were achieved), and 

very high basal estimates of EGP (i.e., at time 0), likely due to the tracer plasma 

levels not reaching steady state. For the purpose of our modeling task, we selected 

only those occasions that did not have these characteristics, which amounted to 

13 among the 8 patients, of which 4 had high insulin levels, 5 had medium insulin 

levels, and 4 had low insulin levels. The occasions that were not used were 

excluded before any modelling work was conducted.  

The mean plasma insulin levels (over 8 hours) for the low, medium, and high 

insulin infusion rate occasions were 10.1 (9.1-20.4), 28.5 (24.7-36.4), and 40.0 

(31.6-44.6) mU/L, respectively. The basal (time 0) plasma glucagon level for the 

13 occasions was 83.98 (60.14-151.9) pg/mL. The pre-bolus glucagon levels at 

the 25, 75, 125, and 175 μg boluses were 147.3(112.5-159.7), 107.1(73.9-134.0), 

114.6(97.1-122.9), and 106.5(84.1-152.7) pg/mL, respectively. The peak 

glucagon level measured after the 25, 75, 125, and 175 μg boluses were 
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232.2(205.8-287.8), 347.8(333.6-458.9), 506.4 (435.8-700.5), and 640.2 (621.5-

785.4) pg/mL, respectively. The mean plasma glucose level across all occasions 

was 5.2 (4.5-7.8) mmol/L. These characteristics are reported below in Table 4.1. 

 

 

 

4.3 Model Structure 

Background 

The liver and the kidneys are the main organs responsible for glucose 

production; 5-20% from the kidneys, and the remaining from the liver [47]. 

Accordingly, EGP can often be approximated using hepatic glucose production. 

Endogenous glucose production mainly occurs as a result of two processes: 

glycogenolysis (breakdown of glycogen to form glucose) and gluconeogenesis 

 Glucagon Bolus 

Glucagon 

level (pg/mL)  

25μg  75 μg  125 μg  175 μg  

Pre-bolus 

glucagon level 

147.3 

(112.5-159.7) 

107.1 

(73.9-134.0) 

114.6 

(97.1-122.9) 

106.5 

(84.1-152.7) 

Peak glucagon 

level 

232.2 

(205.8-287.8) 

347.8 

(333.6-458.9) 

506.4  

(435.8-700.5) 

640.2 

 (621.5-785.4) 

Basal plasma glucagon level for all occasions 83.98  

(60.14-151.9) 

 Rate of Insulin during Occasion 

Insulin  Low  Medium High 

Mean plasma 

insulin level 

(8 hours), 

(mU/L) 

10.1 (9.1-20.4) 28.5 (24.7-36.4) 40.0 (31.6-44.6) 

 

Mean plasma glucose level for all occasions (mmol/L) 5.2 (4.5-7.8) 

Table 4.1 Data Characteristics. 

 



34 
 

(formation of glucose from smaller molecules). A very important methodological 

problem in vivo is the dissection of glucose production into its gluconeogenic 

and glycogenolytic components. Studies indicate that although glucagon and 

insulin affect the activity of the gluconeogenic pathway within the liver, they 

have little or no impact on the amount of glucose derived from gluconeogenesis 

[34], [48]. The metabolic pathway of gluconeogenesis results primarily from 

substrates such as pyruvate, lactate, glycerol and glucogenic amino acids [42].  

The candidate models we propose are motivated by various such physiological 

findings and developed as sets of equations.  

Model 1 

Dose-response studies performed on dogs and humans [49] suggest that 

endogenous glucose production increases steadily with glucagon, eventually 

saturating at glucagon levels higher than 800 pg/ml. Similarly, dose-response 

studies for insulin’s effect on EGP (example, Holther-Nielsen et al. [36]) 

demonstrate a steady drop of EGP with insulin, saturating smoothly at insulin 

levels over 100 µu/ml. The relationships observed seem to indicate that glucagon 

and insulin effect on EGP can potentially be modeled exponentially. Moreover, 

Parrilla et al. [50] performed studies on rats to posit that the glucagon:insulin 

ratio determines EGP and not the absolute concentration of either hormone.  

Accordingly, we propose Model 1 as the following equation: 

𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃0 ∙ 𝑒
−𝑆∙𝑋(𝑡)

𝑇∙𝐺𝑙𝑢𝑐(𝑡)    

                                where �̇�(𝑡) = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠(𝑡)                               (1) 
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where 𝐸𝐺𝑃(𝑡) is the projected value for EGP in umol/kg/min, 𝐸𝐺𝑃0 is the EGP 

at zero insulin levels, T is the glucagon sensitivity, S is the insulin sensitivity, 

Gluc(t) is the measured glucagon concentration, X(t) is the remote insulin 

concentration, k is fractional deactivation rate constant, and Ins(t) is the plasma 

insulin concentration. For the subsequent models, these terms will have the same 

interpretation. 

Model 2 

In direct opposition to Parrilla et al.’s finding, Cherrington et al. maintain that 

although the insulin:glucagon ratio may be a helpful way to appreciate the effects 

of the endocrine pancreas, any given ratio does not produce a constant effect that 

is independent of the absolute hormone concentrations present [42]. Model 2 is 

thus put forth as a modification to Model 1, where it uses two additive 

exponential terms for each hormone: 

𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃0 ∙ (𝑒−𝑆∙𝑋(𝑡) + 𝑒
−1

𝑇∙𝐺𝑙𝑢𝑐(𝑡))   

                                 where �̇�(𝑡) = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠(𝑡)                            (2) 

Model 3 

The assumption that the exponential terms contribute additively is one that may 

be problematic in the case where insulin concentrations are high. Steiner et al. 

[35] demonstrate that when large increases in the infusion rates of insulin and 

glucagon were brought about simultaneously, the effect of the change in insulin 

became dominant and glucose production fell. In other words, high insulin 

concentrations lower the hyperglycemic effect of glucagon, thereby rendering 

small doses of glucagon ineffective. Model 2 does not entirely capture this 
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phenomenon (no matter how high 𝑋(𝑡) is, the contribution from 𝑒
−1

𝑇∙Gluc(t) remains 

just as significant). Accordingly, Model 3 would assume the contributions of the 

exponentials as multiplicative, which is incidentally able to account for this 

effect. 

The previous models do not account for the contribution of gluconeogenesis 

on EGP, as described earlier. In Model 3, we introduce a new parameter, 𝐺𝑛𝑔, 

being the effect due to gluconeogenesis independent of insulin or glucagon: 

  𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃0 ∙ 𝑒−𝑆∙𝑋(𝑡) ∙ 𝑒
−1

𝑇∙𝐺𝑙𝑢𝑐(𝑡) + 𝐺𝑛𝑔   

                             where �̇�(𝑡) = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠(𝑡)                           (3) 

Models 4 & 5 

Particularly in cases where glucagon and insulin doses are under the level at 

which their effect on EGP saturate, their effect on EGP seems to follow a linear 

behavior.Consequently, two models can be proposed, one of which relates the 

contributions of insulin and glucagon additively, and the other multiplicatively:  

               𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) + (𝑇 ∙ 𝐺𝑙𝑢𝑐(𝑡)) + 𝐺𝑛𝑔                  (4) 

               𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) ∙ (𝑇 ∙ 𝐺𝑙𝑢𝑐(𝑡)) + 𝐺𝑛𝑔                    (5)  

where �̇�(𝑡) = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠(𝑡), 

  and 𝐻(𝑥) is the unit step function.                   

The purpose of the unit step function, 𝐻(𝑥), is to ensure that EGP remains 

positive which may not have otherwise held if 𝑆 ∙ X(t) > 1.  

Hovorka’s model, very much like these two models, assumes a linear 

relationship between insulin and EGP [1]. Specifically, the two glucagon action 

models in the literature mentioned earlier, Markakis et al.’s extension of 
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Hovorka’s model, and Herrero et al.’s minimal model extension, are proposed in 

very similar spirit to Model 4, being additive and linear. Herrero’s model bears 

one particular difference with Model 4, in that it assumes a multiplicative 

dependence on the absolute level of glucose, which, given that in our data glucose 

levels remain roughly constant, would not be meaningful to include. 

Models 6 & 7 

Wada et al. [51] have shown that after maintaining elevated glucagon levels 

(with insulin level fixed at basal rate), EGP rises only initially, but immediately 

drops thereafter. In other words, with glucagon set at a constant value (rate of 

change is zero), EGP eventually drops to its initial value. It may then seem 

possible to account for this phenomenon by modelling EGP as a function of rate 

of change of glucagon instead of its absolute level. Therefore we consider the 

following two variants: 

 

                𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) + 𝐻(𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡)) + 𝐺𝑛𝑔                      (6) 

                𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) ∙ 𝐻(𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡)) + 𝐺𝑛𝑔                        (7) 

where  𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡)
̇ =  −𝐽 ∙ 𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡) + 𝑇 ∙ (

𝑑𝐺𝑙𝑢𝑐(𝑡)

𝑑𝑡
)   

�̇�(𝑡) = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠(𝑡) 

𝐻(𝑥) is the unit step function. 

 

Here, 𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡) is interpreted as the contribution to EGP from the rate of 

change of glucagon. It is described in the differential equation as being an 

exponential decline when rate of change of glucagon is absent, with the decline 
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counteracted (and possibly reversed) when there is a rate of change. If the rate of 

change is negative, the decline would be sharpened.  However, using the unit step 

function, 𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡) is only allowed to play a positive contribution on EGP.  

Model 8 

This model augments model 7 by including a contribution from the glucagon 

level as well as that of its rate of change; this is, of course, in consideration to the 

general understanding that the amount of glucagon distributed does, after all, 

affect EGP [33], [52]–[54].  

 

         𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) ∙ 𝐻(𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡) + 𝑇 ∙  𝐺𝑙𝑢𝑐𝑡) + 𝐺𝑛𝑔                (8) 

where 𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡)
̇ =  −𝑘𝐺𝑑 ∙ 𝐸𝐺𝑃𝐺𝑙𝑢𝑐(𝑡)−𝑘𝐺𝑑𝑇𝐺𝑑 ∙ (

𝑑𝐺𝑙𝑢𝑐(𝑡)

𝑑𝑡
) , 

𝑋(𝑡)̇ = −𝑘 ∙ 𝑋(𝑡) + 𝑘 ∙ 𝐼𝑛𝑠𝑡, 

𝐻(𝑥) is the unit step function. 

The parameters for each model, in units, are shown in Table 4.2. 

Model 9 

Hinshaw et al propose a model [32] describing glucagon action on EGP. 

Briefly, the dephosporylation of glucose-6-phosphate is assumed to govern 

EGP: 

                                            𝐸𝐺𝑃(𝑡) = 𝑎 ∙ 𝐺6𝑃(𝑡)                                 (9) 

Here, a is the dephosporylation rate, and G6P is the dynamics in the liver 

which is modeled by a first order differential equation: 

                                       𝐺6𝑃̇ = −𝑎 ∙ 𝐺6𝑃 + 𝐺𝑙𝑦𝑠 + 𝐺𝑛𝑔,                         (10) 

        𝑤ℎ𝑒𝑟𝑒 𝐺6𝑃(0) =
𝐸𝐺𝑃𝑏

𝑎
+ 𝑔6𝑝0 
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Here, Glys is the rate of glycogenolysis (which is further modeled to be 

linearly dependent on glucagon concentration above a given level, and 

modulated by an “evanescence effect), Gng the rate of gluconeogenesis, 

𝐸𝐺𝑃𝑏the basal EGP, and g6p0 a free parameter accounting for the sudden rise 

of EGP when glucagon rises above a given level.  

This model can incorporate the effect of insulin in a multiplicative way, as 

follows: 

                            𝐸𝐺𝑃(𝑡) = 𝐻(1 − 𝑆 ∙ 𝑋(𝑡)) +  𝑎 ∙ 𝐺6𝑃(𝑡)                          (11) 

                                where 𝐻(𝑥) is the unit step function 

4.4 Parameter Estimation 

We used Bayesian estimation in order to estimate model parameters. Markov 

Chain Monte Carlo methods [37] were exploited in order to produce a posterior 

joint distribution from which samples can be obtained. The median of these 

samples were used as a point estimate of parameter estimates. 

Implementation Details 

The differential equations describing the models were solved numerically 

using initial conditions, plasma insulin and glucagon levels, and model 

parameters. MCMC was implemented using WinBUGS version 1.4 [38], with 

WBDiff interface [40] to numerically solve the differential equations. Prior 

distributions of parameters for our models were set using estimates derived in the 

literature [1], [42] . Measurement errors were assumed to be normally distributed 

with zero mean. The measurement errors associated with EGP were assumed to 

have a coefficient of variation (CV) of 3%. 
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Table 4.2 Parameters, units of measurement, and previous estimate for each model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Comparison 

We define the best performing model as the model with the lowest DIC among 

the models that have physiologically plausible parameters estimates. For 

example, insulin and glucagon sensitivity have to be positive, transfer rate 

parameter for insulin kinetics has to be between 0 and 30 min (3 hr would be non 



41 
 

plausible). Refer back to Table 4.2 for the complete plausibility expectations of 

the parameters in question.  

We further use the method of mean weighted residuals to quantify the goodness 

of fit of the best performing model [43].. Individual weighted residuals at every 

time point, i, were calculated using:  

                                       𝑅𝑖 = (𝐸𝐺𝑃𝑝𝑖  −  𝐸𝐺𝑃𝑖)/𝜎𝑖
2             (12) 

where 𝐸𝐺𝑃𝑝𝑖 is the model predicted EGP for the ith measurement, 𝐸𝐺𝑃𝑖 is the 

measured EGP at the ith measurement, and 𝜎𝑖
2 is the variance of the error of ith 

measurement which we assume is multiplicative with 3% CV. 

4.5 Results 

Parameter estimates of the models are shown in Table 4.3. The parameters for 

six of the models (1, 2, 5, 7, 8, and 9) were physiologically plausible while those 

of three of the models (3, 4, and 6) were not. For Model 3, the parameter estimates 

of EGP0 were largely non physiological (the estimates varied to many orders of 

magnitude, with CV exceeding 100%), and Model 4’s and 6’s (additive models) 

parameter estimates for insulin sensitivity (T) were not plausible with respect to 

insulin concentrations during occasions in which insulin level is high. This 

reveals a critical drawback of additive models, as we will discuss in further detail 

in the next section. 

Among the models whose parameter estimates were physiologically plausible 

and posteriorly identifiable, Model 1, structured as an exponential ratio between 

insulin and glucagon, showed the highest deviance information criterion (i.e., 
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worst performance). Its variant, Model 2, reduced the DIC by 22273 (from 67527 

to 45255) simply by separating the effects of insulin and glucagon. Model 5, 

being the linear counterpart to the previous models, assumed a significant 

contribution from the gluconeogenesis term, at 5.4 (3.7-8.6), but did not reduce 

the deviance information criterion compared to Model 2; its DIC was higher by 

10463 (53003 vs 45255). Model 7, having also a linear structure, reduced the 

DIC by replacing the absolute level of glucagon with its rate of change to capture 

the observed effect of vanishing glucagon effect when its level is constant. Model 

8, which incorporates both the absolute concentration of glucagon and the rate of 

change, significantly reduces the DIC compared to the previous models. Model 

9, a re-implementation of Hinshaw et al.’s glucagon action model extended to 

incorporate the effect of insulin, had a DIC competitive with the previous models 

(47627) but one that was still significantly higher than Model 8’s. As a result, 

Model 8’s DIC demonstrates that EGP can be modeled best in terms of a product 

of a linear estimation of EGP due to insulin and both glucagon level and rate of 

change of glucagon. Additionally, all of its parameters were identified with good 

precision (CV < %100).  The mean weighted residuals of Model 8 are shown in 

Figure 4.2. 
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Table 4.3: Parameter Estimates for Each Model 
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Fig. 4.1: Graph of model fits on two sample occasions. Only models with physiological parameter estimates shown. 

Fig. 4.2: Graph of mean weighted residuals for model 8’s fit 
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4.6 Discussion 

Mathematical models for EGP play an important part of in-silico simulations 

that test closed-loop systems. Particularly, a model that can incorporate the effect 

of both glucagon and insulin allows the simulations of dual-hormone closed-loop 

systems. It may also open new horizons for designing clinical studies such as 

those assessing novel usage of glucagon (e.g., mini dosages to prevent 

hypoglycemia in an open- or closed-loop manner). In this work, we have 

proposed a new set of such models, and have compared them on the basis of their 

deviance information criterion and physiological plausibility.   

The first three models assume an exponential relationship between EGP and 

insulin and glucagon, with varying structures. Model 1 assumes a direct ratio 

between insulin and glucagon levels to affect EGP, while Model 2 separates the 

two effects additively, and Model 3 separates them multiplicatively and 

incorporates an extra term for the contribution of gluconeogenesis. The 

remaining five models are linear and vary on the basis of additive vs. 

multiplicative structure and on which factor among absolute level and/or rate of 

change of glucagon. Models 4 and 5 are the additive and multiplicative linear 

counterparts to Model 3; they also separate the effects of insulin and glucagon 

and assume an independent contribution from gluconeogenesis. In order to 

ensure that the contribution from insulin is positive, the step function was used 

to prevent the component from being negative. Models 6 and 7 are additive and 

multiplicative variants to the previous two models, where, instead of considering 

the absolute level of glucagon as a direct effect on EGP, its rate of change 
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becomes the key player. In Model 8, we explicitly allowed both the absolute level 

and rate of change of glucagon to play significant and independent roles in the 

determination of EGP, along with absolute level of insulin. Finally, Model 9 was 

developed in a similar spirit to one proposed in the literature [29]. Having tested 

several different candidate models and various configurations, our Model 8 

emerged as the most suitable for our experimental data.    

Our models provide several key findings that confirm experimental-based 

investigations. Model 1’s inadequacy compared to the subsequent models 

suggest the conclusion indicated by Cherrington et al. [42] that the interaction 

between insulin and glucagon on EGP may not in fact be described as a ratio 

between the two. The importance of considering gluconeogenesis (a process 

independent from insulin and glucagon levels) as an effect on EGP is also 

supported in the models; this is evidenced by the improvement of DIC amongst 

Models 3, 5, 7, and 8 when the gluconeogenesis term is included. These results 

could be of great use in dual-hormone closed-loop systems for which the 

distribution of glucagon is used to counterbalance insulin infusion and prevent 

hypoglycemia. 

We have chosen to estimate parameters using the Bayesian approach as it 

provides a convenient and natural way of combining prior information (for 

example, on parameters S, T, and k) with data. Accordingly, it allows what is 

already expected about the parameters from previous findings to influence the 

estimation. Markov Chain Monte Carlo methods are a class of computational 

algorithms to produce posterior joint distributions for the parameters. These 
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methods are used as closed-loop analytical solution rarely exist for Bayesian 

problems. 

A particularly important finding involves the comparison between additive and 

multiplicative models. The former, while often favored for their simplicity [10], 

[30], [31], [55], yield implausible parameter estimates in cases such as our own. 

In our case, Models 4 and 6, being the additive counterpart of Models 5 and 7, 

yielded non-physiological parameter estimates. Specifically, during high insulin 

occasions where glucagon lost its effectiveness [56], the additive models 

estimated implausible low glucagon sensitivities in order to fit the data (the data 

indicate no glucagon action despite high plasma glucagon levels, which cannot 

be fit with non-zero glucagon sensitivities, see equations 4 and 6). This is 

because, having treated the effects due to insulin and glucagon independently, 

additive models indicate that glucagon acts without restriction regardless of how 

high or low insulin levels are. In the multiplicative models, however, high insulin 

levels would directly suppress the effect of glucagon via the model structure 

(equations 5 and 7) without forcing glucagon sensitivity estimates to be 

implausible. Consequently, additive models might mislead closed-loop 

simulations; if used at high insulin levels, glucagon will be considered to have an 

effect in simulations, which will not be consistent with reality. Accordingly, we 

present our best model as a multiplicative relationship between insulin and 

glucagon. 

In the design of dual-hormone closed-loop dosing algorithms, two approaches 

may be used. Either a) using doses of glucagon as a rescue from hypoglycemia 
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in cases where hypoglycemia occurs despite insulin suspension, or b) allowing 

more aggressive insulin infusion to further reduce mean glucose levels while 

using glucagon as a modulator to prevent increasing the risk of hypoglycemia. 

Our proposed model may aid, via computer simulations or as part of the closed-

loop control algorithm, in determining the amount of glucagon required to 

counteract the insulin effect and to fine-tune the thresholds of insulin infusion 

levels at which glucagon dosages becomes less effective. In addition, concerning 

the second approach, simulations could also allow us to determine to what extent 

we can increase the aggressiveness of insulin delivery without increasing the risk 

of hypoglycemia due to glucagon inefficacy. 
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CHAPTER 5 

Conclusion 

 

 

5.1 Discussion 

Recent years have seen rapid progress towards the development of closed-loop 

delivery stems, a new technology to treat type 1 diabetes. An important step in 

this direction is the completion of simulation environments used to evaluate and 

test the dosing algorithm central to these systems. In this thesis, statistical 

modelling techniques and computational methods have been used to develop 

two models that contribute to the completion of the simulation environments.  

In Chapter 3 we propose a sensor model that enhances a previous model in 

order to more accurately describe the drop-outs that frequent glucose sensor 

readings. Using a set of differential equations representing the dropout fluxes, 

the general shape of a single dropout as observed in the data (a parabolic dip in 

sensory glucose reading of a duration 40 minutes) is mimicked, and its 

occurrence within a simulated study is governed by a random variable, 

isDropout, along with an attribute peakValue (the peak of the dropout dip). In 

order to account for less-standard shapes and the possibility of overlapping 

dropouts, the dropout fluxes can be added, resulting in various, less standard 

shapes. We have shown, then, that a model that incorporates this feature 

improves model fit and significantly decreased deviance information criteria 

from that of previous models.  

In Chapter 4 a set of physiologically motivated candidate models were used to 

determine a glucagon action sub model achieving the best fit with the data, 
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featuring insulin-dependent suppression of glucagon action and incorporating 

effects of both glucagon levels and its rate of change. Models that incorporated 

various combinations of these features, at various structures (additive and 

multiplicative) were proposed and compared. 

The important conclusions that emerge from these two models determined in 

this thesis include the efficacy of accounting for sensor eccentricities for 

simulation environments, the inadequacy of additive models for certain 

modelling tasks , as well the clinical significance of the best glucagon action 

sub-model.   

To determine model parameters in both modelling tasks, Bayesian estimation 

and Markov Chain Monte Carlo methods were used. These methods are 

becoming increasingly popular as techniques for modelling various systems in a 

wide variety of domains, including computational biology, our own domain, as 

well as computational physics, and computational linguistics. 

 One of the important features of Bayesian estimation is that it allows for the 

analysis and use of smaller data sets which would otherwise lead to power 

issues using classical frequentist frameworks [57]. This becomes particularly 

important when a simulation study or environment is being produced from a 

naturally small clinical sample, as was precisely the case with the modelling 

tasks in this thesis.  

The combination of the statistical methods of Markov Chain Monte Carlo and 

the use of the WinBUGS software to specify models and efficiently carry out 
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the parameter estimation serves as a comprehensive example of their potential 

use in the development of other novel intervention therapies. 

5.2 Limitations of Work 

The data we used for our study suffers from certain limitations. For both the 

sensor and the EGP modelling tasks, the data was taken from other closed-loop 

studies, and despite having statistical significance in most endpoints, a 

limitation of the study was its small sample size. In the case of the data used for 

the EGP models, given that glucose levels were unvarying, we were unable to 

explore the possible effect of glucose levels on EGP. Nevertheless, our best 

model’s ability to fit the data suggests that EGP may be modelled without the 

need to consider absolute glucose levels, which is in agreement with recent data 

in type 1 diabetes [32], unlike what is shown for dogs [58]. It should be 

mentioned, however, that the recent data only considered EGP during 

hypoglycemia and euglycemia. It would be the subject of further research to 

investigate whether this assumption would hold for models during 

hyperglycemia.  Another limitation of the data we used is that it reflects a 

suppressed endogenous glucagon release (through octreotide) that may not hold 

in actual applications. To explore more models that would fit for these more 

realistic situations also merits research. Ultimately, an important first step for 

the development of such models would be towards preparing richer and more 

accurate data—both by conducting studies with a larger sample size and by 

applying more varied protocols involving glucagon and insulin infusion (i.e 

varying more frequently and markedly the insulin infusion rates). Having 
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explored the fitting ability and plausibility of a set of candidate models, our 

work introduces the opportunity to validate the models, which would be another 

meaningful subject of research. 

5.3 Future Work 

An important question is whether or not modelling for within-patient and 

between-patient variability will improve the simulation environment. Within-

patient factors including stress, time of day, and level of activity, as well as 

between-patient variability may result in a change of parameters including 

glucagon and insulin sensitivity. Quantifying these variabilities during closed-

loop operation and their potential relationship with common clinical and 

demographics variables might improve the performance of closed loop systems 

and the accuracy of computer simulation environments.  

Another important area of research is whether or not a subject’s activity 

level (rest, exercise, etc.) affects sensor performance. Despite technological 

advances, the accuracy of continuous glucose monitoring (CGM) systems may 

not always be satisfactory with rapidly changing glucose levels, as is notable 

during exercise. It would be meaningful to evaluate and compare current 

sensors during both rest and exercise, in adults with type 1 diabetes. The results 

would suggest enhancements (such as the dropout enhancement in chapter 2) 

for the simulation environments that would increase realism.  We have 

preliminary results in this direction accepted for publication in the journal of 

Diabetes Therapeutics and Technology. 
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Despite the potential for dual hormone closed loop systems to further 

prevent hypoglycemic events compared to single hormone closed loop systems 

[59], the benefits remain to be quantified as the dual hormone closed loop 

systems are confounded with increased cost and complexity. Randomized trials 

should be conducted with head to head comparisons between single and dual 

closed loops systems. 
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