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Abstract

Bock and Aitkin (1981) developed an EM algorithm for the maximum marginal
likelihood estimation of parametric item response curves, such that these estimates
could be obtained in the absence of the estimation of examinee parameters. Using
functional data analytic techniques described by Ramsay and Silverman (1997),
this algorithm is extended to achieve nonparametric estimates of item response
functions. Unlike their parametric counterparts, nonparametric functions have
the freedom to adopt any possible shape, making the current approach an attrac-
tive alternative to the popular three-parameter logistic model. A basis function
expansion is described for the item response functions, as is a roughness penalty
which mediates a compromise between the fit of the data and the smoothness of
the estimate. The algorithm is developed and applied to both actual and sim-
ulated data to illustrate its performance, and how the nonparametric estimates

compare to results obtained through more classical methods.



Résumé

Bock et Aitkin (1981) ont développé un algorithme EM pour 'estimation de
vraisemblance marginale maximum des fonctions de réponse d’item paramétriques.
telle que ces estimations puissent étre obtenues en l'absence d’estimations de
parametres examinés. Utilisant des techniques analytiques de données fonction-
nelles décrites par Ramsay et Silverman (1997), cet algorithme est élargi afin
d’obtenir une estimation non-paramétrique des fonctions de réponse d’item. Con-
trairement a leur équivalent paramétrique, les fonctions non-paramétriques ont la
liberté d’adopter n’importe quelle forme. Ceci rend cette alternative plus popu-
laire que le modeéle logistique & trois paramétres. Une expansion de fonction de
base est décrite pour les fonctions de réponse d’item, comme ’est une pénalité de
rudesse qui négocie un compromis entre la compatibilité de donnée et la fluidité de
'estimation. La performance de 'algorithme est illustrée pour la donnée simulée

actuelle. Les extensions et les limites de la méthode sont abordées.
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Chapter 1

Introduction

1.1 Overview of the Thesis

This thesis will describe a procedure for the nonparametric estimation of item
response functions using the EM algorithm. Among the key advantages of this
model is the nonparametric approach to item response function estimation. Pre-
sumptions regarding the shape features of these functions are avoided, as are
problems associated with item parameter estimation. Thus, this model is an at-
tractive alternative to the popular three-parameter logistic model. Employment
of the EM algorithm has the advantage of eliminating the estimation of examinee
ability parameters, and so allows for computational speed and simplicity. As the
data are viewed as functions, functional data analytic techniques can be applied.
This provides for smooth estimates of the item response functions and hence the
availability of derivative information.

Chapter 1 provides an introduction to the central tenets of item response
theory and the item parameters most commonly used to describe the shape fea-
tures of item response functions. Several parametric models are described, and
a distinction is made between these and nonparametric models. Functional data
analysis is defined and its role in curve estimation is outlined. The remainder of

the chapter briefly introduces the EM algorithm and describes how it is currently



being used to estimate the parameters of the three-parameter logistic model. In
chapter 2, the details of how functional data analytic techniques are used to es-
timate nonparametric item response functions are presented. Here, the focus is
shifted from estimating the functions directly to estimating the logit transforma-
tions. The concept of a basis function is discussed, and a basis function expansion
is considered for the item response functions. Chapter 3 provides the details of
how marginal maximum likelihood estimation and the EM algorithm are used to
estimate the item response functions. The quadrature rule used to estimate the
integral in the E-step is described, as is a roughness penalty which mediates a
compromise between the fit of the data and the smoothness of the estimate. In
Chapter 4, two example analyses using the algorithm are described. The first is
a simulated three-parameter logistic test, such that the performance of the algo-
rithm may be assessed in a situation where the data are in fact describable by a
parametric model. The second analysis involves a set of real test data. Finally,
Chapter 5 provides a summary of the advantages of the current procedure, its

limitations and suggestions for the direction of future research.

1.2 Data and Notation

The model preserted here is a unidimensional model of responses to dichotomous
test items. The data to be analyzed are the responses of examinees, indexed by
a=1,...,N toa set of test items, indexed by i = 1,...,n. The response to item
1 by examinee a is coded by the binary variable u,;, which takes a value of 1 if
the item is answered correctly and a value of 0 otherwise. The set of examinee a’s
responses to the n test items is denoted by the response vector uq = (tqy, . .., Uan)'-
The set of response vectors for all examinees can be organized into an /N xn matrix
U, where 1/, is the a‘* row of U.

The notation P,(6) denotes the probability of responding correctly to item i



given ability level 6,
P;(8) = Prob(u; = 1(6).

Since the proposed model is concerned only with dichotomous items, the proba-

bility of responding incorrectly to item i can be denoted as 1 — P;(#), or Q;i(8).

1.3 Item Response Theory

[tem response theory (IRT) is based on the assumption that examinee responses to
test items can be accounted for by latent traits which are fewer in number than the
test items. In most applications it is assumed that a single latent trait accounts
for responses to test items, with the latent trait most commonly conceptualized

as examinee ability level.

1.3.1 Basic concepts
Item response functions

The fundamental concept of item response theory is the item response function.
The item response function plots the probability of responding correctly to an
item as a function of the latent trait, denoted 8, underlying performance on the
items of the test. Item response functions are often assumed to have an ogival
shape, although they are not limited to be of this type. Figure 1.1 is an example
of a typical item response function. Here, even the examinee of the lowest ability
has probability of .18 of answering this item correctly, and high ability exami-
nees will almost surely respond correctly. This item response function increases
monotonically, with the most drastic changes in P(f) occurring for —1 < ¢ < 1.
According to Lord (1980), there are two ways in which one can correctly in-

terpret the probability of a correct response for an item:

1. A subpopulation of examinees can be conceived of at each point on the

latent trait scale (i.e., a collection of examinees all having the same 6 value).

10
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Figure 1.1: A typical item response function. Examinee ability level, 8, is rep-
resented on the horizontal axis. The vertical axis represents the probability of a
correct response, P(6).

Then the probability of responding correctly to an item is the probability
that a randomly selected examinee from this homogeneous subpopulation
will respond correctly to an item, or the proportion of these examinees who

would respond correctly to an item.

o

A subpopulation of items all having the same item response function can be
conceptualized. Then the probability of responding correctly is interpreted
as the probability that a particular examinee will respond correctly to an

item randomly chosen from the subpopulation of items.

Local independence and unidimensionality

Central to item response theory is the assumption that individual examinees re-
spond independently to each and every test item, and independently of one an-
other. That is to say, an examinee’s response to item 7 is not influenced by the
response to any other item, nor by the responses of other exarainees to item 7, nor

the responses of any other examinee to any other item. The scores on two items

11



t and j are said to be statistically independent if the joint probability of a correct
response to both items is equal to the product of the marginal probabilities, that
is,

Prob(u; = 1Nu;j = 1) = P(0)P;(0). (1.1)
If (1.1) does not hold, items 7 and j are said to be statistically dependent.

Item response theory uses the concepts of statistical independence and statis-
tical dependence to describe the relationship between the latent trait, ¢, and the
probability of responding correctly, P(6). The central concept of unidimension-
ality can be defined in terms of statistical dependence. Let it first be assumed
that test items are statistically dependent in the population. Then the test is uni-
dimensional if a single latent trait exists such that within each subpopulation of
examinees homogeneous with respect to 8, the items are statistically independent.
Since this independence holds only for a subpopulation of examinees located at a
single point on the # scale, it is called local independence.

It should be emphasized that unidimensionality and local independence are
not the same thing. Unidimensionality is the assumption that a single latent trait
accounts for the statistical dependence among items, i.e., the assumption of only
one latent variable will lead to local independence. Local independence, however,
may be achieved without unidimensionality. In general, the dimensionality of a
test refers to the number of latent traits required to obtain local independence.
It should also be emphasized that both unidimensionality and local independence

are assumptions.

Item parameters

Several parameters may be used to describe the features of the item response
functions. The left asymptote or guessing level, which can be denoted P(—oc),
is relevant when the question format permits correct answers by guessing. This
parameter allows examinees to have P(f) greater than zero even at low values of

. Multiple choice and true/false question formats are examples of items that are

12
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Figure 1.2: Three item response functions varying only with respect to the value of
the left asymptote. For the dashed line P(—o0) = .31, for the solid line P(—o0) =
.12, and for the dotted line P(—oc) = .03.

likely to have a left asymptote greater than zero. On a multiple choice question
with four response options, an examinee, regardless of his or her 8 value, has a
1/4 or .25 probability of choosing the correct response when guessing. As such
it is not appropriate for P(f) to approach zero as 8 approaches —oo. Figure 1.2
shows three item response functions that are identical except for the value of the
left asymptote.

The item difficulty or location parameter, which may be denoted by P, refers
to the 6 value midway between the guessing level and the right asymptote of unity,
P(8) = (P(—o0) + 1)/2. For the case where P(—oc) is equal to zero, P is the
value of # at which P(f) is equal to .5. Items with high P are difficult items,
where P(0) is high only for high ability examinees. Items with low P are easy
items, where almost all examinees have a high probability of responding to the
item correctly. Three items with varying levels of difficultly are shown in Figure
1.3. Ideally, a test should include items of varying difficulty.

Items may also differ from one another in terms of how they differentiate among

examinees. The slope of the item response function at § measures the extent to

13
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Figure 1.3: Three item response fungt;ions varying only with respect to the location
parameter P_ For the dashed line P = —1.5, for the solid line P = 0, and for the
dotted line P = 1.5.

which the item discriminates among examinees on either side of §. This can be

computed by the derivative,

dP
DP(6) = -

The higher the value of DP(8), the more sharply the item discriminates among
examinees at . The overall discrimination power of the item, or the item discrim-
ination parameter, can be measured by computing the maximum value of DP(6).
This maximum usually occurs at a point close to the item difficulty parameter.
Figure 1.4 shows a set of items which differ with respect to the degree of
discrimination at & = 0. For the dashed line DP(0) = .5, for the solid line
DP(0) = .9, and for the dotted line DP(0) = 1.5. Consider the range —0.5 <
@ < 0.5. For the dotted line, P(f) varies from around .22 to .78 over this range,
whereas for the dashed line, P(6) varies from .39 to .62. Thus, over this range the
dotted line better differentiates among examinees than do the dashed or solid lines.
However, although items having high DP(0) discriminate well among a subset of
examinees, the trade-off is examinee discrimination over a decreased range of 6.

The dotted line only distinguishes among examinees with —1.5 < 6 < +1.5,

14



Figure 1.4: Three item response functions varying only with respect to the item
discrimination parameter. For the dashed line DP(0) = .5, for the solid line
DP(0) = .9, and for the dotted line DP(0) = 1.5.

whereas the dashed line discriminates almost equally over the entire range of 6.

Item and Test Information Functions

In order to construct a useful test, the initial step should be to determine the
regions of the latent trait scale for which accurate discrimination among exam-
inees is desirable. For instance, the Graduate Record Examination is designed
to identify high ability examinees among all other examinees. Ideally, this test
should contain items which discriminate highly among examinees in the middle to
high range of the 6 scale. It would not be useful to include items which are most
discriminating at the lower end of the scale since the purpose of the test does not
involve the assessment of low performing examinees.

One aims to construct a test consisting of items which discriminate highly
among examinees with latent trait scores in the regions where the test is to be
most informative. Since items provide different information about different regions
on the latent trait scale, a measure of the amount of information provided by a

particular item is useful. Good test items discriminate highly for some range of

15
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Figure 1.5: The information function for the item response function displayed in
Figure 1.1. The horizontal axis represents examinee ability level, and the vertical
axis represents, /(), the amount of information provided by the item about ability
for examinees at ability 6.

ability values, of which the slope of P(f) is an indicator. As the size of the slope
of P(f) at 8 is measured by its derivative DP(#), a measure of the amount of
information provided by item i about ability for examinees at or near ability @ is

given by
_ DR
~ P(9)Q:(6)

A value of I;(#) can be obtained for every value of §, and the plot of [;(§) against

1;(6)

@ is called the item information function. It is clear that information tends to
be larger when the first derivative is larger so that [;{(f) achieves its maximum at
that value of § where P() discriminates most highly among examinees. Figure
1.5 displays the information function for the item response function displayed in
Figure 1.1. According to the plot, this item is most informative about examinees
at or near average ability § = 0 and provides little information for those examinees
with very high or very low ability.

The test information function is the sum of the item information functions for

16



all items on the test, given by
1(0) = ZI,—(B).

This measure is an indicator of the amount of information in the entire set of

items about an individual examinee’s value of ability 8.

1.3.2 Parametric IRT

Parametric item response theory refers to those applications of the theory in which
the distribution of the item response function is specified except for the values of a
finite number of parameters. Nonparametric methods apply in all other instances.
As stated above, item response functions are often assumed to take on an ogival
shape. Naturally, an example of such a function is the normal ogive. The normal
ogive increases monotonically with a left asymptote of zero and an right asymptote
of unity. Letting a be the discrimination parameter, b the difficulty parameter and
z = a(f — b), the equation for the normal ogive item response function is written

as
1 T 2
e~ /248.

\/271' —o0

Use of the normal ogive in practice has been replaced by the family of lo-

P(f) =

gistic models. For these models, the basis for the item response function is the
cumulative logistic distribution function, which has the general form

e:
l14e

P(f) =

Like the normal ogive, the logistic item response function is ogival in shape and
increases monotonically. Each of the three logistic models is a variation of this
basic form, the models differing with respect to the number of parameters used.
In practice, the logistic models are preferable to the normal ogive as the former
require simpler computations. The difference between the two types of models is
negligible if the basic form of the logistic model is modified as follows:

el.?z

PO = o

17



By negligible it is meant that P(#) for the logistic and normal ogive models does
not differ by more than .01 over the 6 scale.

For the two-parameter logistic (2PL) model,
2= 01(9 - b,)

which gives the model

e 1.7a,(6-b;)

1+ el7a8-b)" (12)

P(6) =

The parameters a; and b; are indices of item discrimination and difficulty for item
i, respectively. For the family of logistic curves, the item difficulty parameter
refers to the point of inflection on the latent trait scale. That is, b denotes the
0 value midway between the left asymptote P(—oc) and the upper asymptote of
unity, P(8) = (1 + P(—oc))/2. The discrimination parameter a is the slope of the
item response function at the point of inflection. The 2PL model can be viewed
as a three-parameter model (see below) where the guessing level is set to zero,
implying that a low @ value could mean a P(f) that is close to zero. Although this
is not plausible for multiple-choice or true/false items, it may be the case with
essay-type items where examinees are required to supply the complete response to
a question instead of selecting the correct answer among a number of alternatives.

The one-parameter logistic model, also referred to as the Rasch model, is
a special case of the 2PL model where all items have the same discrimination
parameter. Since all items are equally discriminating, the subscript i may be
dropped and this parameter may be referred to as the constant a. The difficulty
parameter b, however, is not a constant, and so items may discriminate at different

locations on the # scale. The one-parameter model is written as

RRICE)

P(0) = 1 + el-7a@=b;)"

Setting ¢ = 1 and dropping the constant 1.7, the equation for the Rasch model

becomes
(0—by)

F(6) = L+ el0-b)"

(1.3)
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With this formulation of the model it is more evident that P(f) is a function of
examinee ability and item difficulty.

The most general of the logistic models is the three-parameter logistic (3PL)
model. With a and b defined as above and setting ¢ as guessing level P(—oc), this

model is defined by the equation

el-Tai(0-b)

Fi®) =ci+ (1 - ) imamn (1.4)

Here, each item is free to vary with respect to the values of the three parameters.
The 3PL model is the most commonly used with regards to multiple-choice and

true/false question formats.

Estimation procedures

Maximum likelihood estimation (section 3.1.1) procedures are commonly used in
item response theory. The computer program LOGIST (Wingersky, Patrick &
Lord, 1988) uses a joint mazimum likelihood procedure to simultaneously estimate
the item parameters for all items and the latent trait scores for all examinees.
However, there are a number of drawbacks when LOGIST is used with the 3PL
model. For one, it is not known whether the estimates yielded by the program
are consistent. An estimate is said to be consistent if as sample size increases, the
value of the estimate approaches the true parameter value. Another limitation
is that a large number of examinees are required for accurate estimation of the
model parameters. Furthermore, the parameter estimates show large standard
errors for the 3PL model, particularly for items with low difficulty. This results
from a high positive covariance between the location parameter b and guessing
level ¢ (Thissen & Wainer, 1982). For these easy items there is little data with
which to estimate c, therefore its standard error is made large. For more difficult
items this effect is less severe.

The computer program BILOG (Mislevy & Bock, 1982) uses the marginal
mazimum likelihood procedure to estimate the parameters of the 3PL model (see

section 1.6). By marginalizing over the individual ability parameters 6, for the
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N examinees, their estimation is avoided. As an improvement over LOGIST, the
estimates produced by BILOG are believed to be consistent. In addition, it is
possible to increase sample size N without simultaneously increasing the number

of total parameters to be estimated (see section 1.5.1).

1.3.3 Nonparametric IRT

In the parametric approach, the focus is on the estimation of the model parame-
ters. But a specific model presupposes that the test items are sufficiently repre-
sented by the features permitted by that model. For example, selection of the 3PL
model assumes that a test’s set of item response functions are all ogival in shape.
Any items characterized by curves which deviate from this shape cannot be ac-
commodated by this model. This includes curves which are either nonmonotonic,
have a non-unit right asymptote or have multiple inflection points. Using more
parameters in order to obtain greater flexibility would result in the overfitting of
some items which require only a small number of parameters to describe them
adequately, thus leading to poor estimators of the parameters actually needed.
Furthermore, current estimation procedures tend to produce parameter estimates
having strong positive covariance. Also, large amounts of data are required to
estimate the 3PL model well, particularly for easy items. Parameter estimates
for these items rely heavily upon data from low ability examinees. For a sam-
ple size of 500 and assuming that ability level is normally distributed, this leaves
less than 34 pieces of data with which to estimate the model parameters in the
region § < —1.5. In addition, programs such as LOGIST and BILOG are also
computationally demanding.

The inspiration for nonparametric estimation within item response theory is
the direct estimation of the item response functions. Nonparametric does not
imply the absence of parameters to be estimated. (In fact, there are an arbi-
trary number of parameters and hence an arbitrary amount of flexibility can be

achieved.)} Instead, the term nonparametric suggests that the emphasis is on the
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direct estimation of the curves and not on the estimation of the curve parameters.
Hence, the problems associated with item parameter estimation are avoided. For
example, direct estimation of the functions obviates any presumptions about the
shape of the curves. Furthermore, the shape features of the functions, such as
item discrimination and item difficulty, can still be described even though these

values are not directly estimated.

1.4 Functional Data Analysis

With regards to test data, for each item there is available a set of responses from
various examinees who vary in terms of their ability level. The set of responses
to each item can be viewed as a function of examinee ability level, and functional
data analytic techniques may be applied to derive estimates of these functions.
Functional data analysis (FDA) can be defined as a set of techniques for the
description and analysis of data where the observations are functions (Ramsay &
Silverman, 1997). Aside from providing a set of useful techniques, FDA presents
a conceptual framework with which to approach the current problem: the unit of
interest is not the string of numbers representing examinee responses, but rather
the functions P(6).

There are two primary ways in which functional data analysis will play a
leading role in this thesis. The first involves the assumption that the individual
responses to an item reflect a continuum of ability level. The raw data are discrete,
but are to be viewed as functions. Thus, the first step is to use FDA to represent
the probability of a correct response, P(uq; = 1), as a function of 6. If the dis-
crete data are error-free, they can be converted to a function using interpolation.
However, in the case of test data, the measurement of some observational noise
is presumed. Furthermore, if there is an interest in computing the derivatives of
these functions, they must be represented by a smooth curve. Smooth functions
can be derived using basis function methods, described in Chapter 2. Another

FDA approach which will play a role here involves roughness penalty smoothing
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(Chapter 3), which offers control of the smoothing by putting a limit on the total

curvature of the estimate.

1.5 The EM Algorithm

This section will provide a brief introduction to the EM algorithm. A more de-

tailed description of the algorithm will appear in Chapter 3.

1.5.1 EM and item response theory

Consider the three-parameter logistic model in (1.4) for a test consisting of 25
items administered to 500 examinees. Assuming that estimates of both the item
parameters and examinees abilities are desired, there are 575 parameters to be
estimated, three for each of the items and one for each examinee. The NV xn matrix
of observed responses, U, then consists of 12,500 independent observations. In
this context, sample size is considered to be not the total number of subjects, but
rather the number of observations available to estimate each parameter. In other
words, the focus is not on sample size defined as the number of examinees but
instead a data-to-parameter ratio where a ratio of at least 50 or 100 is ideal. In this
instance, there are 12,500 sample elements and 575 parameters to be estimated,
which amounts to 12,500/575 = 22 observations, a small sample size.

In certain circumstances only estimates of the item parameters, and not ex-
aminee abilities, are desired. The item parameters are referred to as structural
parameters - these are the parameters whose estimates are of most significance.
The ability parameters are referred to as nuisance parameters. They are not of
primary interest to the investigator concerned with estimating item response func-
tions, but due to their unobservable nature they must be estimated alongside the
structural parameters. The number of structural parameters remains constant
irrespective of sample size /V, and using larger samples would seemingly increase
the data-to-parameter ratio. But the number of ability parameters increases in

proportion to N, so an increase in N to allow for better item parameter esti-

22



mation is accompanied by an increase in the number of ability parameters to be
estimated. Thus, any attempt to improve item parameter estimates by an in-
crease in N will unavoidably involve an increase in the total number of model
parameters. In a situation where one could escape estimation of the examinee
ability levels, the data-to-parameter ratio reduces to 12,500/75 = 167, a rather
impressive improvement in sample size. Furthermore, in addition to increasing the
relative sample size, the chore of estimating parameters that are of no practical
interest is avoided.

The EM algorithm, defined by Dempster, Laird and Rubin (1977), is an it-
erative procedure for finding maximum likelihood estimates in the presence of
unobserved random variables in probability models. It was first applied within
item response theory by Bock and Aitkin (1981) who, by working with marginal
likelihoods, eliminated the estimation of the unobservable ability parameters in es-
timating item response functions (see section 1.6 for details). The algorithm works
by alternating between two phases of analysis, the E (for Expectation) phase and
the M (for Maximization) phase. A comprehensive review of the evolution of the

EM algorithm for item parameter estimation can be found in Harwell, Baker and

Zwarts (1988).

1.5.2 The expectation phase

In the E-phase, the marginal likelihoods are estimated for each examinee for a
fixed set of item parameters 1. Assuming local independence and letting P(uq;)
represent the probability of a correct response to item i by examinee a, the con-
ditional likelihood of observing a particular response sequence can be written as
n

L(uq|ba; ) = I_[l P(uqilfa; ¥), (1.5)
The latent variable 6 is unknown, and in order to accommodate for this, the
marginal, or average, likelihood of each observed response sequence is computed.

The E-phase of the EM algorithm consists of taking the expectation of the con-
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ditional likelihood,
ML(ual) = E[L(ual659)] = [ Lual6; £)g(0)db. (16)

Thus, through marginalization the task of estimating the nuisance parameters has
been eliminated.

The final step in the E-phase is to compute the marginal likelihood for all
examinees, or the grand marginal likelihood, ML(U). Assuming that examinees
respond independently of one another, the grand marginal likelihood can be de-

fined as y
ML(Up) = [[ ML(ual®). (1.7)

a=1

For simplification, the dependence of M L on v will be dropped from the notation,

although it is always implied.

1.5.3 The maximization phase

In the M-phase of the EM algorithm, the grand marginal likelihood computed in
the E-phase is maximized with respect to the item parameters. [n other words,
the values chosen as estimates of the item parameters are those that maximize
the value of the grand marginal likelihood function, M L(U). The grand marginal
likelihood, rather than the individual marginal likelihoods, is maximized since
the set of item parameters for any particular item affects the M L(u,)’s for all
examinees answering that item.

Once these parameter estimates are obtained, the E-phase is revisited and the
marginal likelihoods for each examinee are recomputed using the parameter esti-
mates from the previous M-phase. Thus, the EM algorithm is an iterative process
of marginalizing over the likelihood function with respect to the nuisance param-
eters (E-phase), and then maximizing the function with respect to the structural
parameters (M-phase). The algorithm iterates between these two stages until some
convergence criterion is reached, usually when the change in parameter estimates

is negligible, or the change in M L(U) is small.
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1.6 Estimation of the 3PL Model with an EM
Algorithm

This section will present the application of the EM algorithm to the estimation of
the 3PL model item parameters as described by Bock and Atikin (1981) and more
recently by Bock (1989). First, recall that under the assumption of local indepen-
dence, the joint distribution of the set of item responses for the a** examinee can

be written as
P(u,|6,,¢) = H R(ga)u“iQi(oa)l—u“‘.
i=1

This is the probability of response vector u,; conditional on a known value of
@ and the item parameters. The likelihood of observing the matrix of the set of
responses to all items from all examinees, denoted U, represents the likelihood

function and can be written
n N
L{ug) = H H P;(8,)% Qi(0,) ' 4.
i=la=l1
Under maximum likelihood estimation, the parameter estimates are those val-
ues of a, b and ¢ which maximize the value of L. These estimates are found
from the roots of the likelihood equations, which are obtained by setting the first

derivatives of the likelihood equal to zero. For convenience, the log of the likeli-

hood function is used:

n N
log L = Z Z[uai log P;(6.) + (1 — uq log Q;(6,)]-

t=1a=1

This leads to the system

a d a
a—ai(log Ly=0, %;(log L)=0, a—q(log L)y=0.

If the 6, are known, the parameters for the i** item are estimated simultane-
ously using the above system of equations. With LOGIST, the initial § values
are treated as known while solving for the item parameters, then the process is

reversed with the item parameters treated as known and the € values estimated.
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Among the many shortcomings associated with LOGIST (see section 1.3.2),
the most significant is that the examinee abilities are nuisance parameters. The
Bock and Aitkin (1981) solution to this uses an EM algorithm to replace L(u,) by
its average over 8, or the marginal likelihood, M L(u,). First, some distribution
g(8) is assumed for the examinee ability parameters. Then the marginal likelihood
of response vector u, given item parameters ¢ is the average of L(u,) over the

prior distribution of abilities:

ML(uo|$) = E[L(ualfa)]
= [ Liul8)g(6)ds.

Thus, the ability parameters have been eliminated by averaging them out, or
marginalizing over them.

The grand marginal likelihood is now

Mum=ﬁMmm

a=|

and the log marginal likelihood is

N
log ML(U) =Y _ log M L(u,).

a=1

The parameter estimates are chosen to be those values of a, & and ¢ that
maximize the log marginal likelihood.

The two general steps of the p*® cycle of the EM algorithm are:
1. E-step: compute the expectation of the likelihood, E[log L(u,|6), v"].
2. M-step: choose 1P*! such that the log marginal likelihood is maximized.

The process is repeated until some convergence criterion is satisfied. This
procedure is used in BILOG, and overcomes several of the difficulties encountered
by LOGIST. BILOG, however, produces parametric estimates of the item response
functions, whereas nonparametric estimates allow for more flexibility (see section
1.3.3). In this thesis, the EM algorithm is applied to the nonparametric estimation

of item response functions.
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Chapter 2

Estimating Nonparametric Item
Response Functions

2.1 Basis Functions

Smoothness is a desirable characteristic of an estimated item response function.
This is essential if the item or test information function is to be computed, as it
depends on the item first derivative functions. A common smoothing procedure
is to represent the function to be estimated as a linear combination of a set of K

linearly independent basis functions ¢, with weight coefficients c.:
K
PB) = ckpn(d). (2.1)
k=1

The right side of (2.1) is called a basis function ezpansion for function P(). The
degree of smoothness of function P(f) is determined by the number K of basis
functions. As K increases, the fit of the data improves but the estimate becomes
less smooth. On the other hand, using a small K will yield a smooth function
that does not fit the data closely. In section 3.3, a compromise between fit and
smoothness will be discussed.

There are a number of options for the type of basis functions. The ideal
situation is one in which a good approximation is obtained with a relatively small
number of basis functions K. Preferably, they should possess features resembling
those known to belong to the functions being estimated. Classic bases include

the polynomials and the B-spline bases, to be covered in sections 2.1.1 and 2.1.2,
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respectively. Another classic basis function expansion is provided by the Fourier

series,
z(t) = ¢g + ¢; sinwt + ¢3 coswt + ¢z sin 2wt + ¢4 cos 2wt + . . .

defined by the basis ¢o(t) = 1, ¢or-1(t) = sinrwt and ¢o,(t) = cosrwt. This basis

is periodic, with the period 27 /w determined by parameter w.

2.1.1 Polynomial Bases

One possibility is to represent the function as a linear combination of the basis

functions

ok(z) = (z - w)F, k=0,..., K, (2.2)

known as the monomial bases. Parameter w is a shift parameter. Any polyno-
mial of degree K — 1 or less can be expressed as a linear combination of K fixed
linearly independent polynomials, of which the monomials are a classic example.
However, in order for the polynomials to fully capture local behavior a large value
for K is needed. Even so, in this case the data may fit well in the center but is
less satisfactory at the extremes, since the polynomial functions themselves ex-
hibit wild behavior at the extremes (Ramsay & Silverman, 1997). Furthermore,
although the derivatives of polynomial functions are easy to compute, they are
rarely reasonable estimators of the true derivative. This is due to the rapid lo-
calized oscillation common to high-order polynomial fits (Ramsay & Silverman.

1997). Figure 2.1 displays a set of monomial basis functions for K = 2.

2.1.2 Regression Spline Bases

An alternative to the polynomial bases are polynomial splines, which offer greater
flexibility and have the capacity to capture changing local behavior. In order
to derive these functions, first the range [a,b] of the function to be estimated is

partitioned into n subintervals [7;-1, 7], | < i < n, where

a<Tp<...< 1T <b.
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Figure 2.1: A set of monomial basis functions for A" = 2 and w = 0. The solid
line represents the basis function for which & = 0, the dotted line for £ = 1, and
the dashed line for k& = 2.

The 7; are referred to as knots, and there are n + 1 of them. Excluding the
boundary knots 19 and 7,,, the remaining set of knots 74,..., 7,—; are referred to as
the interior knots. Now function f may be approximated by a polynomial spline
S,, where S, is formed by connecting adjacent pairs of points (7, ¢:), 0 < i < n,
by a polynomial of degree at most k£ > 1, and forcing these polynomials to join
smoothly at these knots. As a special case y; = f(7;) may be chosen, where S,
interpolates the function, although a better estimate can be achieved by relaxing
this restriction.

In the simplest case S, is formed by connecting the (7;,y;) with straight line
segments, that is, polynomials of degree 1. In this case, spline S, is referred to as
a first degree spline (see Figure 2.2). In general, a spline S, of degree & in [a,b] is
constructed by joining the intervals [r;_;, 73], each of which contains a polynomial
of degree at most £ > 1. In order to give the spline a certain degree of smoothness
it is further required that S,, adhere to certain continuity conditions at the interior
knots. Specifically, S,, must have at least £ — 1 derivatives which are continuous

on [a,b]. For example, any first degree spline is a continuous function although
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Figure 2.2: The solid line is the curve y = \/z. The dotted line is an estimate of
this curve by a first degree spline with a single interior knot.

it may have discontinuities in its first derivative, these discontinuities occurring
at the knots. A quadratic spline (k = 2) will have a continuous first derivative, a
cubic spline (k = 3) continuous first and second derivatives, and so on. The cubic
splines, or piecewise cubic polynomials, are a popular choice for basis functions.

There is some question as to the number and position of the knots. For any
given set of knots, the spline is computed by multiple regression on an appropriate
set of basis vectors. By allowing more knots the spline becomes more flexible,
although with too large a K one runs the risk of overfitting the data resulting
in poor generalizability of the estimate. Another concern is the choice of basis
functions for representing the splines for a given set of knots.

One possible choice for a basis for first degree splines is the following. To

facilitate this discussion it is advantageous to extend the sequence of knots to an
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Rl % 5

Figure 2.3: An example of a linear B-spline basis function. The dashed vertical
lines represent the interior knots. The function has value 0 at all knots except 7».

infinite sequence ...7T.1,Tg,-- -, Tn, Tns1,- ... LThen, for —oo < i < 00, define

(
0, z< T
En. <zl

1 _ T 1_1-.7 t = gl
Bl(z) = "% (2.3)

ot Tiel < TS Tigo

| 0, Tiva < ZI.

Notice that B}(ri+1) = 1 and B}(z) = 0 at all other knots (see Figure 2.3). It is
clear that the functions B} are linearly independent and hence form a basis for

first degree splines. The spline can be expressed as

n
Su(z) =>_wBL,, 0<T< T
i=0

Later, it will be shown that B-splines of degree k, B¥, are a generalization of the

first degree splines and hence form a basis for splines of degree k.

Truncated power basis

The simplest way to represent polynomial splines is as the monomial basis in (2.2)

supplemented by a linear combination of the truncated powers. For coefficient
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weights ¢; and d;, these splines are written as

k n—1

Sa(z) = 3 i+ di(z — 7)i (24)
=0 i=1

For illustrative purposes, this polynomial spline of degree k can be constructed,

for some fixed real number 7 and working with one subinterval at a time, by

augmenting the monomial basis (2.2) with the truncated powers

(z—7), z>7
(z— 1)k = (2.5)
0, r<T

of degree k£ > 0. Notice that (2.5) is a spline of degree k£ with a single knot at
T=r.
First, the spline of degree & on [y, 71] is written as
k .
Sn(z) =) _ az'. (2.6)
i=0
Now any polynomial function can be written as
k B
Z ag (1’ - Tl)l:
=0

which may be adapted to

k
> ai(z — 1) (2.7)

=0
in order to derive a function which is zero for £ < 7. Thus, to extend the spline S,

from [0, 7] to [0, T2] without disrupting its representation on [7g, 71|, the function
in (2.7) can be added to the right side of (2.6). However, there is a smoothness
condition to be satisfied at 7;. Specifically, the continuity of S, or its first £ — 1
derivatives must not be disrupted at this knot. To account for this, ag,- .., ar-|
must all be set to zero, and relabeling ay as d;, the polynomial spline over interval
[T, T2] can be written as
k

Sp(z) = ;)c,-:ci +dy{z — Tl)ﬁ_. (2.8)

To further extend S, across all n intervals, a suitable truncated power is added

for each interval while not disturbing the representation of S, in the previous
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intervals. This results in a polynomial spline valid on the whole interval [7p, 7],
which is written as in (2.4). Note that the total number of basis functions is
(k+1) + (n — 1) = k + n, the order of the piecewise polynomial plus the number
of interior knots.

Although (2.4) is of theoretical interest, it is not used to produce an estimate
for the function of interest. For evaluation purposes it is preferable to express the
spline in terms of the B-spline basis functions, given that if there is more than a
small number of knots, the truncated power basis tends to produce nearly singular

cross-product matrices (Ramsay & Silverman, 1997).
B-spline basis

[t was stated above that the B} form a basis for first degree splines. In this section
it will be shown that a generalization of these, the B¥, form a basis for splines of
degree k. First, it is necessary to express the B! in terms of simpler functions,

specifically, the B?, defined as

B?(I) — ]-1 i<ZIT S Titl,
0, otherwise.
The B? are piecewise constant functions, and they constitute a basis for the set
of all piecewise constant functions.
It should be noted that any function which takes the value y; on interval
7 < < Ty for 0 €7 <n—1 and the value 0 elsewhere can be written as
n—1
Z '!JiB? (z)-
i=0
Now the functions B} can be defined in terms of the BY by taking
T—T Tiva — L
Bl(z) = (——-——) B+ (—-*-———) BY, .. (2.9)
Tiel — T Tiv2 = Tit1

The validity of this equation can be verified by comparing the right side of (2.9)

to the definition of B} given in (2.3). Functions B? and B} are referred to as
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Figure 2.4: A set of cubic B-spline functions. Each basis function is nonzero over
at most four adjacent intervals.

B-splines of degree 0 and 1, respectively. A B-spline of degree k can be defined
recursively by
Bf(z) = (—x_—r—) B!+ (M) BEZL, (2.10)
Tivk — Ti Tivk+1 — Titl
for each 7 and for k£ = 1,2,.... Function BF is called a B-spline of degree k. For
justification that B¥ is indeed a spline, see Phillips and Taylor (1996).
The advantage of the B-splines over the truncated power bases in evaluating
a spline S, is that the B-splines have compact support, meaning that the function
values are zero everywhere except over a finite interval. This implies that the
resulting regression matrix is banded, overcoming the problem of singular cross-
product matrices often encountered when using the truncated power bases. For
splines of degree k = 3, the B-splines are themselves piecewise cubics with support
on the interval [x_z, Tk+2] and shorter support on the ends (see Figure 2.4). Thus,

these B;(z) are nonzero over at most four adjacent intervals.
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2.2 The Logistic Reformulation of P(0)

The model (2.1) has a major structural defect. Probabilities must fall between 0
and 1, whereas linear functions can take values over the entire real line, depend-
ing on the size of the coefficients c¢x. Thus, unless restrictions are imposed on
¢y, ---,Ck, the model (2.1) will yield —oco < P(f) < oo so that to express P(4)
as such a linear combination would be inconsistent with the laws of probability.
Model (2.1) can be valid over a finite range of 8 values for which 0 < P(f) < 1.
However, using ordinary least squares to fit the model is problematic as the con-
ditions making least squares estimators optimal are not satisfied. For one, the
variance V'(u) of binary response variable u, P(6)[1 — P(8)], is not constant, but
rather depends on § through its influence on P. As P moves towards zero or unity,
V(u) moves towards zero. Furthermore, as it is a binary variable, the variance
of u cannot be assumed to be normal, so that the sampling distributions for the
ordinary estimators are not applicable (Agresti, 1990).

The problem can be avoided by using some transformation h[P(6)| which maps

the unit interval (0,1) onto the real line (—oc, 00) so that
K
h[P(8)] = W(0) = Z crde(8).
k=1

In order to derive the appropriate transformation or link function h[P(6)], it is first
realized that as with any function bounded by 0 and 1, P(8) can be reformulated

as
K
— ]
P(o) = 2Dzt atul0)) 2.11)
1+ exp(Lh=; cxdr(0))
With this reformulation, the condition 0 < P(f) < 1 is satisfied. Although the

possibilities of P(f) = 1 and P(8) = 0 are lost, this is often considered to be of
no practical consequence.
Now for model (2.11) the odds of making response 1 are

P(f)

K
.i__.TJ(—g.j. = exp(g Ck¢lc(9))1

1
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Figure 2.5: In the left panel are three Rasch item response functions P(f) with
varying values for the location parameters. In the right panel are the correspond-
ing W{(#), which all have a slope of unity but vary with respect to the y-intercepts.

and the log-odds has the linear relationship

P(# X o
log [1_—_(—?5%7)} = kgl crpr(d) = W(4).

Thus the log-odds transformation, or the logit, is the appropriate link function.
The logistic reformulation of item response function P(8) such that function
W (6) may instead be estimated greatly simplifies the task. This results primarily
from W () being an unconstrained function, which makes it an ideal candidate
for a basis function expansion. For example, the logistic reformulation of the item

response function for the 2PL model in (1.2) amounts to
W(6) = 1.7a(d - b),
and that for the Rasch model in (1.3) is
W) =606-b.

Thus, the W(8)’s for Rasch item i will be a straight line with a slope of unity and

a y-intercept equal to b;. For the 2PL model, the slope of the logit transformation
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Figure 2.6: In the left panel are three 2PL item response functions P(#) with
identical values for the location parameters but varying values for the discrimi-
nation parameter. In the right panel are the corresponding W{(#), which vary in
terms of both the slopes and y-intercepts.
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Figure 2.7: In the left panel are three item response functions P(#) with identical
values for the discrimination and location parameters, but varying values for the
guessing levels. In the right panel are the corresponding W (), which all approach
an upper right asymptote at a 45 degree angle, but vary with respect to the value
of the lower left asymptote.

37



for item ¢ is 1.7a; and the y-intercept is 1.7a;b;. The W(8)’s for the 3PL model
are nonlinear functions which go to a lower asymptote on the left, and approach
an upper asymptote at a 45 degree angle on the right. Figures 2.5, 2.6 and
2.7 show sets of item response functions P(#) and the corresponding log odds

transformations W (8) for the Rasch, 2PL and 3PL models, respectively.

2.3 A Basis Function Expansion for P(6)

In order to obtain estimates of P(#) that are intrinsically smooth, a basis function
expansion for W(#) is considered. A set of K basis functions are chosen and W ()

is expressed as a weighted linear combination of these functions,
K
W(8) = crdn(d)-
k=1

The K basis functions ¢ () are chosen to be the B-spline basis functions. Choos-
ing a larger K will result in a more flexible and hence less smooth curve, whereas

a smaller value for K” will produce a smoother curve with less flexibility.
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Chapter 3
The EM Algorithm

3.1 Preliminaries
3.1.1 Maximum likelihood estimation

Likelihood, denoted L, is proportional to the probability of the observed data
given a proposed model. Assume some model, P;(8|v;), of examinee performance
on dichotomously scored item i given a set of item parameters ¥; and ability level
6. Let u, denote the response vector of examinee a to a set of n items. Assuming
that the elements of u, are independently distributed conditional on 8 and with
6, denoting the ability level of examinee a, the likelihood of response vector u, is
n
L{ug) = i_HlP(um- = 1/fa; ¥3)-
Similarly, since all N examinees are assumed to behave independently, the likeli-
hood of the entire observed data matrix U can be computed as
N N n
L(U) = al:[l L(ua) = HH P(0alv:).
Now, should a specific set of values be considered for the item parameters, and
L computed for the observed data and these particular parameter values, what
results is the likelihood of the observed matrix U given item parameters ¥. Maz-

imum ltkelihood estimation is a method of estimation which chooses as estimates

those parameter values that maximize the value of the likelihood function. These
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estimates may be obtained by setting the first derivative of L(U) to zero and
solving the equation with respect to the individual item parameters.
Computing the derivatives of products can be an enormous task. Fortunately,

both the likelihood function and the log likelihood function,
N
log L(U) = log L(ua),
a=1

are maximized for the same parameter values, and the computational burden is
greatly alleviated in working with the derivatives of sums as opposed to products

in maximizing log L(U).

3.1.2 Marginal MLE

Section 1.5.1 stated that a data-to-parameter ratio of at least 50 or 100 would
constitute a sufficient sample size for obtaining estimates of item parameters.
Although increasing sample size N will increase the data-to-parameter ratio, it
will be accompanied by an increase in the number of ability parameters to be
estimated. If it were possible to eliminate the estimation of the examinee ability
parameters, not only would the relative sample size increase, but the task of
estimating parameters which are of no practical interest would also be avoided.

This may be accomplished by computing the likelihood not for each 8 value, but
the likelihood obtained by averaging over all possible values of 8. This requires the
assumption that examinees represent a random sample from a population where
ability is distributed according to some known density function g(f). Since the
family of item response functions is highly flexible for nonparametric methods,
the choice for this distribution is arbitrary. By tradition, the standard normal
distribution has been employed, as ability level is considered to have a normal
distribution. Also, since g(f) can be chosen at will, it is preferable to select a
distribution whose mathematical properties make it convenient for computational
purposes.

One is then working with the marginal likelihood, denoted M L. Where L(u,|6)
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is the likelihood of a response vector viewed as a function of 6, called the condi-

tional likelihood, the marginal likelihood of response vector u, is defined as
ML(us) = E[L(ua)] = / L(ua|6)g(6)d8 = / [ P (6)Qi = (0)ds.  (3.1)
=1

The marginal likelihood M L(u,) is the average of L(u,) across the values of 6,
so that for each examinee M L(u,) is a single number. Thus, by averaging over 6
the task of estimating the ability level for each examinee has been eliminated. In
other words, the estimation of nuisance parameters can be avoided by taking the

expectation of the likelihood function with respect to these parameters.

3.2 Using the Algorithm
3.2.1 The E-phase

The ultimate objective of the E-phase is the computation of the marginal like-
lihood for all examinees, called the grand marginal likelihood. Assuming that
examinees respond to iteins independently of one another, the grand marginal
likelihood is v

ML(U) = [[ ML(ua).

a=1

In order to compute this quantity, it is first necessary to evaluate the integral in
(3.1). To do so requires the application of some numerical method for approxi-
mating an integral. More specifically, some quadrature rule must be invoked so
as to replace the integral in (3.1) by a weighted sum. With w representing some

fixed weight function, this sum is of the form
Q

[w@f(@)dz ~ 3w, f(z,).
g=1

Quadrature weights w, and quadrature points z, can be selected in a number of
ways, with the intention of finding a satisfactory approximation to the integral.
The details of selecting a quadrature rule specific to the present case are deferred

to section 3.2.4. With the application of the quadrature rule, the integral in (3.1)
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translates to o
ML(ug) = Y weL'ug|6,).
q=1
For the purpose of computational simplification, the log grand marginal likeli-

hood is preferable to M L(U), obtained by summing the log individual likelihoods,

N
log ML(U) = Z log M L(u,)-

a=1
Invoking the quadrature rule yields

N Q
) log Y wyL(ualb;)

a=1 q=1
N Q n
= Y log) we [ P=(8)Qi ™™ (6)
a=1

q=1 i=1

N Q n
= > In) weexp(d_uulnPi(0,) + (1 — ua:) In Q:(6,)],
q=1 i=1

=1

log M L(U)

Q

the evaluation of which completes the E-phase.

3.2.2 The M-phase

In the M-phase, the grand marginal likelihood computed in the E-phase is maxi-
mized with respect to the set of item parameters v;. There is a reason for working
with the grand marginal likelihood as opposed to the individual marginal likeli-
hoods M L(u,). Any set of item parameters v; affects M L(u,) for all examinees.
Thus, in order to obtain reasonable estimates of the item parameters v;, infor-
mation is required on all examinees, and this is provided by the grand marginal
likelihood M L(U).

The item parameters are estimated using a maximum likelihood estimation
procedure, so that those values which maximize the value of M L(U) are chosen
as estimates of the item parameters. In practice this amounts to the same thing as
maximizing the mathematically simpler log M L(U) function over all n parameter
values. For a particular item j, the maximizing values are those for which the

slope of log M L(U) will be zero, that is, for some fixed item index j the solution
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to the equation
Jlog ML

=0 3.2
2 &2

is sought.

Now
(910cr ML BL(ua|0q)

_Z ML(u,,) 2wy v; (3-3)

Rearranging the partxal denvatlve 0L(uq|6,)/0; on the right side and recognizing
that the parameter vector v; affects only the jth item, all items except the jth

can be taken outside of the product in (3.1) to obtain

OL(ualfy) % o1 1 y1mt s v OPE (8)Q5 " (6)
i | RGO Ch) o :

Now the product taken over all items can be recovered by multiplying both sides

by u, l—u
P (0,)Q; " (64)

TP (0,)Q " (6,)

and then simplifying to get

dlog ML % . AP (0)Q (6] ) L, Qi
i = R0l ) g [P 00 )
. Ugj I—ug;
= Luatp 2% PO s g 91w )

ov;

(3.4)

Ignoring the quantity L{u,|0,) for the moment and expanding the partial
derivative in the fraction yields

[P} (8,)Q; " (8,)]

/1P (6,)Q;"(6,)]

av; 7

Ugy —Uq; C)Q(e )

(1 - uaJ)-PJ (Gq)Q] (GQ)TJ%'L
u —u _ oP;(6

+ B (605 B P (0250 T2,
2
Cancelling out like terms gives
_ ,aQJ'(eq) -1 -1 c?P (9)

(1 ua]) aw]_ Qj (gq) (9 ) —— 31113 .
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Substituting 1 — P;(6,) for Q;(6,) in the partial derivative and simplifying the

resulting expression leads to

OP;(6,) - - _ taj — P5(6,) OP;(6,)
qu [(ua; — 1)Q5'(8g) + uai Py '(8,)] = P,-(G,,)Qj(Oi) aqu ,
so that
a[})}‘w (eq)QJI'—uaj (gq)] Uqj I.—u,,]' _ Ugj — 131(6(1) aR](ga)
awj /[PJ (OQ)QJ (efl)] - Pj(gq)Q_](eq) 31/11

Substituting the expression on the right into (3.3) results in

dlog ML 1 uq; — P;j(8,) 0P;(0,)

L{u,|0, =0,
o0 > ML) & I B G0, 6 o0y
and exchanging the order of the two summations yields the expression
dlogML dP;(6,) 1
op; Zq:wq ov;  Pji(8,)Q;(0,)
uaJL(uaw) P;(0,)L(ua|8,),
Z[ M L(ug) M L(ug) I=o. (3-3)

Two quantities within (3.5) have a natural interpretation. What shall be
denoted as ¥

wqeLl{uy|6,)

=2 ML(ug,) ’

a=1
can be interpreted as the expected number of examinees associated with §,, since

(3.6)

the quantity being summed is an estimate of the probability of examinee a having
f,. Second, the quantity which shall be indicated by

Y wyta; L(ualfy)

fra= 2. ML(u,)

a=1

(3.7)

is the expected frequency of right answers for item j for examinees associated with
8,.
Substituting for these two quantities, (3.5) simplifies to

aW (6") =0. (3.8)

dlog ML
T = Xlfiu = BN,
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According to the binomial distribution, the log likelihood of getting f;, suc-
cesses in NV, trials given probability of success Py, is
Q
logL; = ; fiqlog Pjq + (Ng — fiq) log Qjq. (3.9)
and taking the derivative of this expression with respect to W}, and setting it to
zero yields exactly (3.8). Thus, (3.8) essentially describes a binomial sampling
experiment.

The M-phase then involves solving equation (3.8) for each item 7, regarding N,
and fj, as fixed. As soon as estimates of the parameter vectors 1; are obtained in
this M-step, the E-phase is revisited and the marginal likelihoods for each exam-
inee are recomputed using the most recent parameter estimates. The algorithm
iterates between the E- and M-phases until neither the marginal likelihoods nor

the parameters v; change significantly from one iteration to the next.

3.2.3 Starting values for the item response functions

The first iteration of the EM algorithm requires some provisional estimates of
the item parameters and the item response functions. Estimates of P(f,) can be

obtained as follows:

. Compute N standard normal quantiles z, = ®~}1/(N + 1)].

—

o

For each quantile, compute the index ¢, such that 6,_,+6, < 22, < 8,+0¢41,

or assign the index of 1 or @ as appropriate.
3. Compute the total scores z, = 5_; ug;-
4. Sort the examinees with respect to the total scores z,.

5. For every ¢ and q, set 15,~., to the average of that item’s scores, which are

either 1 or 0, for the score-sorted examinees with index ¢, = gq.

Estimates with values of 0 or 1 are replaced by values such as 1/2V and 1 - 1/2N,

respectively.
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3.2.4 Approximation by quadrature
As stated above, some quadrature rule must be employed to estimate the integral
[ Liwalo)g(6)d8

in the E-step. The question is which rule will yield a satisfactory approximation
to the integral.

Gaussian quadrature considers formulas of the form

b Q
[ f@)dz =3 wef(z,), (3.10)
a a=1
where the quadrature points z,, 2, ..., z¢o and weights w,, w,, ..., wq are chosen

to minimize the expected error obtained when performing the approximation for
some arbitrary function f. Thus, Gaussian quadrature chooses the points for
evaluation in an optimal manner.

To determine the accuracy of the rule in (3.10), it is typically assumed that
the best choice of values is that producing the exact result for the largest class of
polynomials. Now (3.10) is exact for the class of polynomial functions if and only
if it is exact for the monomials f(z) = 1,z,...,z9 (Phillips & Taylor, 1996). To

be exact for f(z) = z7, it is required that
b Q _
/ ddr =) WqTy. (3.11)
a q=1

Now the left side of (3.11) is known, which implies that by taking j = 0,1,...,2Q0—-
1, 2Q equations can be set up to solve for the 2QQ unknowns w, and z,, ¢ =
1,...,Q. If these equations have a solution, then the resulting quadrature rule
will be exact for all polynomial functions of degree 2Q) — 1 or less.

There also exist Gaussian quadrature formulas of the form
b Q
/ w(z) f(z)dr ~ S wof(z,). (3.12)
a q=1

As above, weights w, and points z, can be found so that (3.12) is exact for all

polynomial functions of degree 2Q) — 1 or less. As this paper is concerned with an
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Figure 3.1: Gauss-Hermite quadrature weights and points. This quadrature rule
provides a number of quadrature points in areas where there are no data available
to estimate the integral. In this case, —5.5 < z, < 5.5, whereas § has been fixed
to range from -2.5 to 2.5.

infinite integral, the Gaussian rule takes the form
To'e) Q
/ w(z)f(z)dz ~ 3wy f(z,). (3.13)
—oo =

The selection of w(z) = exp(—z2) gives the Gauss-Hermite quadrature rules. The
Gauss-Hermite rules have been used by Bock and Aitkin (1981) to estimate the
marginal likelihood, and so they were employed here as well.

The optimal weights w, and points z, obtained with this method are shown
in Figure 3.1. It is clear than in this case —5.5 < z, < 5.5, whereas 8 has
been fixed to range from -2.5 to 2.5. Thus, the Gauss-Hermite quadrature rule
provides a number of quadrature points in areas where there are no data available
to estimate the integral, and using these weights and points did not produce
reasonable estimates of the item response functions. As a result, the Gauss-
Hermite quadrature rule was abandoned in exchange for a rule that allows for
control over the location of the quadrature points so that these points can be

restricted to be equally spaced about the desired range.
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Figure 3.2: Optimal weights for fixed z,. In comparison to Gauss-Hermite, these
quadrature points are bounded by +2.5. However, with the application of this set
of weights, the convergence of the algorithm became unstable.

In order to eliminate the extreme quadrature points, the points were forced to
be equally spaced and only the weights were optimized with respect to the set of
@ polynomial functions. That is, for each test function fi(z) =z ',i=1,...,Q,
the relation

© 1 ey IR 3.14
/_ Tame T @) ;wqﬂ(zn (3.14)

oo V2T
was satisfied. The weights obtained by this rule are shown in Figure 3.2. As an
improvement, the quadrature points are bounded by +2.5. However, with this
choice of weights the convergence of the algorithm became unstable.

The reason for this instability is that the set of weights used are optimal with
respect to the class of polynomial functions. Thus, although they may work well
with the polynomials, this may not be the case with other classes of functions.
In particular, the current application involves integration over the conditional
likelihood functions, which do not look like polynomials (see Figure 3.3). For a
particular examinee, the conditional likelihood function is a single-peaked curve

with its maximum at the examinee’s ability level 6, and tails quickly approaching
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Figure 3.3: The likelihood for a simulated examinee’s data in a 3PL model test,
rescaled to have a maximum of one. This function more closely resembles a B-
spline than a polynomial.

zero in both directions. Thus the collection of V conditional likelihood functions
will be a set of peaks whose locations vary across the # scale.

What is desired is a set of weights that work well with a set of test functions
resembling the functions which will be integrated. The class of B-spline basis
functions serves this purpose well (see Figure 2.4). Using the quadrature rule
(3.14) where the f;(z) are the B-spline basis functions, the weights shown in
Figure 3.4 were obtained. As with the optimal weights, these are bounded by

+2.5 but with the advantage that convergence of the algorithm became stable.

3.3 Regularizing the Fit

When using a basis function expansion to derive smooth estimates of the item
response functions, there is another issue which merits consideration. This is a
consequence of the relationship between the number of basis functions and the
degree of fit to the data. In particular, as the number K basis functions increases

the fit to the data improves. However, the fitted item response function also
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Figure 3.4: Quadrature weights using B-spline basis test functions. The dotted
line represents the quantiles of the standard normal distribution. As with the
optimal weights, these weights are bounded by +2.5 but with the advantage that
convergence of the algorithm became stable.

becomes less smooth. What is needed is a compromise between fit to the data
and the smoothness of the estimate.

Ramsay and Silverman (1997) describe the regularization or roughness penalty
for forcing a high-dimensional basis expansion to be smooth. A common measure

of the roughness of a function is given by its integrated squared second derivative,
PEN(f) = [{D*f(2)}dz, (3.15)

where D™ f(z) is the mth derivative of f(r). This quantity assesses the degree
of curvature in function f, or equivalently the degree to which f deviates from a
straight line. Functions with a high degree of curvature will manifest large values
of PEN;,(f) since their second derivatives are large across the range of interest.
Establishing a compromise between fit and smoothness then amounts to mod-
ifying the model fitting criterion log M L(U) to the following penalized negative

log likelihood function:

Fy(U) = —log ML(U) + A Z / [D™W;(6)]2d6, (3.16)
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where A is a smoothing parameter. For the case where m = 2, [[D?W,(9)]?d@ is
a measure of the total curvature of W;(#). The more variable the function the
larger this quantity is going to be, and the closer the function to a straight line
the closer the value of the total curvature is to zero. The degree to which the
fitting criterion is to be penalized by the curvature of the W's is controlled by
smoothing parameter A\. For A close to zero, the penalty is relaxed and so the
data is fit without any regularization. However, as X increases the curvature of
the W’s becomes exceedingly more significant in determining the value of F)(U).
Thus there needs to be less curvature in the W’s in order to obtain its minimum
until ultimately, as A approaches infinity, the W’s are forced to be linear. In the
IRT case, linear W's are equivalent to the two-parameter logistic model.

The latter statement describes an important problem when smoothing with
D?. In penalizing the second derivative of the W;’s, the functions are forced to a
straight line as A approaches infinity. For linear W (#), P(#) corresponds to the
two-parameter logistic model. The properties of actual test items, however, are
often insufficiently described by the 2PL model (see section 1.3.2). In particular,
the 2PL model assumes that the item response curves have a left asymptote equal
to zero. Responses to real test items, however, may be a result of guessing, in
which case the item response function will manifest a left asymptote which differs
from zero. Thus it would be more appropriate to apply a roughness penalty that,
when applied heavily, smooths P(f) towards the three-parameter logistic model.

In smoothing towards a 3PL model, there are important features of these
curves that must be captured by any expansion of the W(6)’s. The functions
are monotone increasing with right asymptote 1 and left asymptote ¢, thus the
possibility that dW/df = 0 for large negative and large positive # must be ac-
commodated. Furthermore, in regions where there is likely to be little data, in
particular large positive and large negative values of §, W (8) should be linear, or

alternatively, dW/d@ should be constant.
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In order to accommodate these features, Wang (1993) used the basis

6i(8) = 1
$(0) = 6
$3(6) = In(e’ +1). (3.17)

Function W (#) is then expressed as
3
W) = ckow(6)- (3.18)
k=1

Figure 3.5 displays three item response functions P(€) generated by the 3PL model
and the corresponding W(f)'s. The proximity of the approximated W (8)’s to the
actual logit of the P(#)’s demonstrates the appropriateness of the basis functions
in (3.17) for capturing the essential characteristics of these curves. For example,
for large positive values of 8, In(e? +1) approaches 8 and so W () is asymptotically
linear on the right and hence the derivative of W (8),

dW N e?
—_— = C: —_
2T G +1

df
is constant. Similarly, for large negative values of 8, dW/df is asymptotically c,.
The roughness penalty Fy(U) that will be used is of a more general form (see
Heckman & Ramsay, 2000), replacing the D? in the original penalty term (3.15)

with a linear differential operator L,
LW = ap(0)W(0) + a1 (8) DWW (6) + aa(6) D*W () + D*W (6). (3.19)

For the purpose of smoothing towards the 3PL model, weighting functions
a;(8) are chosen such that any function which is a linear combination of the basis
functions (3.17) will yield a value of LW equal to zero. This amounts to choosing

a;(0) such that, for 7 =1,...,3,
ao(6)0;(9) + a1(8)D¢;(8) + aa(8) D?*¢;(8) + D3¢,(6) = 0.

The weight functions are then determined by setting up a system of three linear

equations, one for each basis function ¢;(f), and solving for the a;(8). The result

52



w(e)

1
-

Figure 3.5: The solid lines in the left panel are three 3PL item response functions
P(8) with a = 1, ¢ = .18 and varying values for location parameter 6 = —1.5,0, 1.5.
The solid lines in the right panel are the corresponding W (8). For each curve, the
nearest dashed line indicates the approximation based on the three basis functions
in (3.17).

is

@8 = a(8) =0

ed —1
) = . 3.20
Ckg( ) 60 +1 ( )
Thus, the new roughness penalty is
N = 3.

PEN. (W) /_m [e” —D*W +D W} df (3.21)

and the new penalized negative log likelihood function,
F\(U) = —log ML(U) + /\Zn: /w e~ 1D2W. + D3W; ’ df (3.22)

o = oo eo + 1 t 1 1 .-

will, when applied heavily, force the W;(8) to conform to something like the 3PL

model.
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Chapter 4

Example Analyses

The examples in this chapter are designed to show how the nonparametric estima-
tion of item response functions performs in practice. The first section illustrates
its performance for simulated data, and the second presents results for an actual
set of testing data. In both instances, modest sample sizes are involved in order

to display results in a demanding environment.

4.1 A Simulated 3PL Test

For the simulated data, the goal is to assess the performance of the algorithm

with respect to three variables:

1. the number of test items n,

&

the number of examinees NV, and
3. the value of smoothing parameter A.

These factors are considered to be the most important for fitting the data well.
As the number of items increases, more information is available regarding an
individual examinee’s ability level §, allowing for a better estimate of the item
response function at 6,. A similar argument can be made for increases in the
number of examinees. Smaller values for smoothing parameter A imply that the

shape of the curve is more and more dependent on the actual data so that in the
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extreme case, the curve fits the pseudo-probabilities fjq/N, as close as the basis
system will allow. On the other hand, larger values for A result in smoother curves
that depend on the data less and less. In the latter case, the curves become closer
to 3PL curves as X increases. Simulating a 3PL test, it is expected that higher
values for A will produce curves that are closer to the true item response curves.

Three levels of the number of items (n = 25,50, 100) and the number of ex-
aminees (N = 500, 1000, 2000) parameters were examined, along with four levels
of the smoothing parameter (A = .01,1,10,100). The examinee ability levels §
were generated according to the standard normal distribution. Three sets of 3PL
item parameters were randomly generated which produced three tests, one each
of a 25, 50 and 100-item test. These item parameter remained fixed across all
replications. For each test, 25 simulations were run within each combination of
the levels of NV and A, resulting in a total number of 900 simulations. For each
simulation, 14 B-spline basis functions of order 5 were used with 21 quadrature
points and the roughness penalty described in section 3.3 was applied.

Goodness of fit is assessed as the square root of the average squared difference
between the estimated and actual curve values. This quantity shall be referred to

as the root mean square error, or RMSE:

RMSE; = /[P.(6) - B,(8)]2,

Taking this average over the entire # range would yield a global measure of
fit, whereas a more informed decision regarding the performance of the algorithm
should assess the fit of the estimates at various locations along the @ scale, as it is
expected that the curve estimates will be better in some areas than in others. For
instance, some deviation of the estimate from the true curve is expected in the
region of the lower ability levels. A breakdown of the algorithm in the estimation
of the left asymptote can be attributed to the assumption that ability level is
normally distributed. In the instance of 500 examinees, this amounts to the
availability of approximately 12 pieces of data with which to estimate the lower

tail end of the curve (i.e., in the region § < —2). Although a similar argument
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Table 4.1: ANOVA Table for 8 = -2.

Source SSx10° | d.f. | MSx10° F | Prob>F
A 42.03 3 14.01 164.8 0.000
N 277.52 2 138.76 | 1632.4 0.000
n 65.90 2 3295 | 387.6 0.000
AxX N 1.68 6 0.28 3.3 0.003
AXn 5.69 6 0.95 11.2 0.000
Nxn 3.85 4 0.96 11.3 0.000
AXNXxn 090 | 12 0.08 0.9 0.565
Error 73.44 | 864 0.09

Total 471.02 | 899

Table 4.2: ANOVA Table for § = —1.

Source SSx10° | d.f. | MSx10° F | Prob>F
A 6.21 3 207 | 197.1 0.000
N 47.02 2 23.51 | 2236.3 0.000
n 0.43 2 0.21 20.2 0.000
AX N 0.28 6 0.05 4.5 0.000
AXn 0.20 6 0.03 3.2 0.004
Nxn 0.05 4 0.01 1.1 0.363
AxNxn 028 12 0.02 2.2 0.010
Error 9.08 | 864 0.01

Total 63.54 | 899

may be made for the region where § > 2, less deviation is anticipated here since
the right asymptote is constrained to a value of unity.

The RMSE between the true curve P(8) and the estimate P(#) was obtained at
five different 4 values: —2,—1,0,1,2. An ANOVA was performed on this measure

for each of these @ values. The results are given in Tables 4.1 through 4.5.

Factor standard deviations

To assess the importance of the significant effects, estimates of the factor standard
deviations were calculated for each effect A at each level of §. Where a; = p1; — 1

are the factor effects and a is the number of levels within effect A, the factor
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Table 4.3: ANOVA Table for 8 = 0.

Source SSx10° | d.f. | MSx10° F | Prob>F
A 0.69 3 0.23 25.6 0.000
N 33.63 2 16.82 | 1875.5 0.000
n 1.31 2 0.65 72.8 0.000
Ax N 0.07 6 0.01 1.3 0.237
AXn 0.04 6 0.01 0.7 0.676
Nxn 0.30 4 0.08 8.4 0.000
AXNXn 0.09 | 12 0.01 0.9 0.590
Error 7.75 | 864 0.01

Total 43.87 | 899

Table 4.4: ANOVA Table for § = —-1.

Source SSx10° | d.f. | MSx 103 F | Prob>F
A 1.47 3 0.49 45.1 0.000
N 39.37 2 19.68 { 1R11.6 0.000
n 1.39 2 0.07 64.1 0.000
AXN 0.36 6 .06 5.6 0.000
AxXn 0.18 6 0.03 2.7 0.012
N xn 0.16 4 0.04 3.7 0.005
AXNxXxn 0.15 12 0.01 1.2 0.309
Error 9.39 | 864 0.01

Total 52.47 | 899

Table 4.5: ANOVA Table for § = 2.

Source SSx10° | d.f. | MSx10° F | Prob>F
A 10.54 3 3.51 ] 96.0 0.000
N 68.64 2 34.32 1 937.5 0.000
n 5.81 2 2.91 79.4 0.000
Ax N 2.38 6 0.40 | 10.8 0.000
AXn 1.71 6 0.29 7.8 0.000
Nxn 0.57 4 0.14 3.9 0.004
AXNXn 1.09 12 0.09 2.5 0.003
Error 31.63 | 864 0.04

Total 122.37 { 899
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Table 4.6: Factor Standard Deviations x102.

[
Effect -2 -1 0 1 2
A 0.6813 | 0.2621 | 0.0858 | 0.1264 | 0.3404
N 1.7555 | 0.7226 | 0.6111 | 0.6612 | 0.8729
n 0.8546 | 0.0670 | 0.1196 | 0.1235 | 0.2525
AxX N 0.1142 | 0.0491 0 | 0.0576 | 0.1549
AXn 0.2400 | 0.0391 /] 0 |0.1287
Nxn 0.1975 @ | 0.0542 | 0.0362 | 0.0685
AXNxn 0| 0.0412 0 @ i 0.0852
standard deviations are defined as
j=105

da =
a

The estimates of the standard deviations for each effect and for each value of 8 are
given in Table 4.6, magnified by a factor of 102. The estimates for nonsignificant
effects are denoted by 0.

It is the three main effects that appear to have the largest standard deviations
across all values of §. The parameter having the greatest effect is the number of
examinees NV, particularly when § = —2. In this case, the standard deviation for
the number of examinees is more than two times greater than that for the number
of items and smoothing parameter A.

Across the various effects, the standard deviations are greatest for § = —2,
which was expected. With only 500 examinees, precise estimation of P(#) is
less likely in this region since there are not more than 12 or 13 pieces of data
available on the average. Increases in smoothing parameter A force the estimates
to look more and more like 3PL curves, and so possibly to look like the 3PL curves
that generated the data. Any increases in sample size or number of items would
provide more information on P(f) at this ability level, and so greatly effect the
estimation of the curve. Although this argument would seem to imply a similar
finding for the effect sizes for 8 = 2, these values do not match those for 8 = -2,

although they are the next largest in magnitude. Unlike the left asymptote, the
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right asymptote does not vary but instead is forced to unity as A increases. Thus
there is less variation in the estimation of the right asymptote than there is for
the left asymptote.

For most effects, the factor standard deviations are lowest at 8 = 0. Having
randomly sampled ability levels # from a standard normal distribution, with 500
examinees there are roughly 191 pieces of data available between § = —0.5 and
# = 0.5 with which to produce an estimate of the item response function within
this region. With this amount of data, it is likely that the estimate of the item
response function here is quite good to begin with so that changes in the number
of items, number of examinees or the degree of smoothing would not produce
an improvement in fit as drastic as in the extremes of §. This notion is further
supported in observing the factor standard deviations of the main effects for § =
—1 and 8 = 1. In general, the magnitudes of these values are greater than at
6 = 0 (where there is the greatest amount of data available), but less than their
respective extremes (where the least amount of data is available). An argument
similar to that made regarding the disparity among the standard deviations for
0 = —2 and 6 = 2 can be used to explain the greater standard deviations for

0 = —1 as compared to § = 1.

Interaction effects

In observing the factor standard deviations, it is clear that the main effects show
more variation than do the interaction effects. However, the latter are a valuable
source of information regarding the performance of the algorithm. Since all three
variables are assumed to contribute considerably to the fit, it is important to
examine the interactions among them so that appropriate decisions can be made
regarding, for example, the value of A. For instance, is there a particular value of A
that should be applied generally, or should the value of this parameter be adjusted
according to sample size N7 In this section, all interactions which were found to

be significant are discussed, such that questions of this sort may be addressed.
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Figure 4.1: Plots of the two-way interaction between smoothing parameter A and
sample size NV at § = —2,—1,1 and 2. The dashed line represents an N of 500,
the solid line an V of 1000, and the dotted line an NV of 2000.

The A x N two-way interaction was significant at all levels of 8 except § = 0.
Figure 4.1 shows the plots of the interactions at the relevant @ levels. The plots
vary in terms of the y-axis labelling. The RMSE is greatest at § = —2 and so
there is a greater range for this plot as compared to the others. The range is also
slighter greater for § = 2, whereas the plots for § = —1 and 8 = 1 are roughly
the same. Aside from the disparity in range, there are some similarities among
the graphs. Most obvious is that for each line representing a particular number of
examinees N, the greatest decrease in RMSE occurs in moving from a A of .1 to
a value of unity. A value of A = .1 appears to be too permissive a value for this
parameter, and the data is undersmoothed.

Another similarity across the 8 range is the pattern for N = 2000. For all 6,
it achieves its greatest decrease in RMSE in moving from A = .1 to 1. after which
RMSE does not further achieve a significant decrease. Similarly, for N = 1000,
the greatest decrease in RMSE occurs when moving from A = .1 to 1, and there
is no further significant decrease from A = 1 to 100. For N = 500, a significant

decrease in RMSE occurs from A = .1 to 1, and there is no significant change from
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Figure 4.2: Plots of the two-way interaction between smoothing parameter )\ and
number of test items n at # = —2, —1 and 2. The dashed line represents an n of
25, the solid line an n of 50, and the dotted line an n of 100.

a Aof 1 to 10. The real variation in N = 500 comes in moving from A = 10 to 100.
For § = —2, the error decreases, but for all other # values, the RMSE increases.
One possible explanation as to why an increase in A would worsen the fit only
at the upper end of the 8 scale is as follows. For aill N, the most troublesome
region in which to obtain a close fit to the true curves is in the vicinity of § = —2.
This is due to the variability permitted in the value of the left asymptote. It
may vary considerably from zero. In contrast, the right asymptote does not differ
from unity. Increasing A has the effect of forcing 13(6) to look more and more like
a 3PL curve, and so in the upper regions all curves are forced to have an right
asymptote of one. In the region where § = —2, not only is there little data with
which to estimate P(6), but the curve may also vary greatly from zero. Thus,
a high degree of smoothing actually serves to improve the proximity of P(6) to
P(6). At the other extreme, P(f) is already close to P(#) when A = 10, since
there is little allowance for variation at the right asymptote. As A increases, the
estimated curve is oversmoothed and so made to be flatter than the target P(6),

resulting in a increase in RMSE as A increases from 10 to 100.
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Figure 4.3: Plots of the two-way interaction between sample size N and number
of test items n at § = —2,0,1 and 2. The dashed line represents an n of 25, the
solid line an n of 50, and the dotted line an n of 100.

The A x n interaction was found to be significant only at the 8 values of -2,
-1 and 2. Figure 4.2 displays the relevant graphs. Again, there is a greater range
(reflecting a worse fit) for the extreme € values as compared to 8§ = —1, with the
greatest range at § = —2. As with the number of examinees parameter, for all
the values of n the greatest decrease in RMSE occurs with a move from A = .1 to
A = 1, suggesting once again that A = .1 is too loose a fitting criterion. The main
differences in pattern here are similar to those noted for the interaction between
A and N. Specifically, for § = —2, there is an overall decrease in RMSE as A
increases, with the best fit for each distinct test occurring for A = 100 (although
none of the fits at A = 100 are significantly better than those at A = 1). A
smoothing parameter value this high for § = —1 and § = 2, however, has in
adverse effect on the closeness of the estimate to the true curve. In these regions,
there is no significant reduction in RMSE beyond A = 1. Thus, as with N, an
increase to A = 100 improves the fit in regions where there is more opportunity for
variability (i.e., § = —2) but has the effect of oversmoothing the data in regions

allowing for less variability (e.g., where § = 2).
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Figure 4.4: Plots of the three-way interaction between smoothing parameter A,
sample size N and number of test items n at § = —1 and 2. The dashed line
represents an N of 500, the solid line an N of 1000, and the dotted line an N of
2000.

The N x n interaction effect was significant at all 8 levels except § = —1.
Figure 4.3 displays the relevant graphs. As with the interactions discussed above,
the ranges for both 8 = —2 and 8 = 2 are greater than the others.

For all values of 8, the greatest decrease in RMSE comes with an increase from
500 to 1000 examinees. The decrease is particularly great for the 25 item test,
and is least noticed for the 100 item test. This difference is due to the increase
in the amount of information available on 6,. With more items there is more
information available with which to estimate P(). The fit improves further for
all tests in moving from 1000 to 2000 examinees, although the change is slightly
less drastic as the move from N = 500 to N = 1000. As with the number of items,
increases in the number of examinees also provides more information about 6,.

The three-way interaction was found to be significant at § = —1 and 6 = 2.
The plots of these interactions are shown in Figure 4.4, where the interaction
between A and N is displayed at each level of n. As it seems to be common

throughout, the greatest decrease in RMSE occurs when A moves from .01 to 1,
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and this is true for all levels of n.

The pattern for N = 2000 varies little across n or at the differing values of
#. There is some decrease in RMSE as A changes from .1 to 1, but there is little
change in fit with any further increases in A, which is not surprising. Given such
a large sample size, there is a sufficient amount of data with which to estimate
P(6), and increases in A and/or the number of items can contribute little to an
already close fit.

The pattern for N = 1000 resembles that for N = 2000. It is the sample size
of 500 which seems to be the source of the three-way interactions. For both values
of 8, the best fit occurs at A = 10 if n = 25. However, if n = 50 or 100, the best
fit occurs when A = 1. It might be the case that with N = 500 and n = 25, there
is minimal information available regarding #,, and so a more stringent smoothing
parameter has a beneficial effect. But when n = 50 or 100, there is sufficient
information on 8, such that increasing smoothing parameter A from 1 to 10 does
little to decrease the RMSE. In fact, increasing A actually significantly worsens the
fit when § = 2, presumably due to oversmoothing in the asymptote region, where
a certain amount of curvature is appropriate. In contrast, this oversmoothing

effect is significant at § = —1 only when n = 25.

4.1.1 Examples of Estimated Item Response Functions

Figure 4.5 shows various estimates of the item response functions for two items
with fixed A and test length and varying values for the number of examinees.
These items in particular were chosen as they appear to best represent the sort
of variation found throughout the various simulated tests. When sample size
N = 500, the left asymptote for both curves is poorly estimated. There is also
some discrepancy between the true curve and the estimate in the center region of
the 6 scale. For both items, the estimate improves when N = 1000, although the
lower ends of the curves are not approximated as well as the center and upper

regions. There is a slight improvement when N = 2000, although this increase in
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Figure 4.5: The estimated item response functions for items 10 and 20 varying
across the number of examinees with A = 1 and n = 50. The dashed curve rep-
resents the true item response function, the solid curve is the estimated function,
and the circles are the probabilities f;;//NV,. The estimates in the first column
are based on a sample size of 500 examinees, those in the second column on 1000
examinees, and those in the third column on 2000 examinees.
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Figure 4.6: The true and estimated curves for item 17 for varying values of A with
N = 1000 and n = 50.
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Figure 4.7: The true and estimated curves for items 10 and 18 for various test
lengths, with A = 1 and N = 1000. The estimates in the first column are based
on a 25 item test, those in the second column on a 50 item test, and those in the
third column on a 100 item test.

sample size adds little to the already excellent estimates when N = 1000.

Figure 4.6 displays the estimated item response functions for an item for dif-
ferent degrees of smoothness with fixed sample size and test length. The closeness
of the estimate to the true curve appears to increase as A increases, the closest fit
achieved when A = 10. It seems as though the data is over-smoothed at A = 100,
where the right asymptote is pulled away from the true item response function
and closer to unity.

Figure 4.7 displays the item response functions for two items estimated at
various test lengths for fixed sample size and A. As the number of test items
increases, there is more information available on 6, hence it is expected that the
RMSE decreases as n increases. However, Figure 4.7 seems to tell a different
story. Clearly the 100-item test results in the best estimate for item 10, but it is
questionable whether the 50-item test is an improvement over the 25-item test or
vice versa. For item 18, the 50 item test provides an excellent estimate of P(6)

and obviously an improvement over the 25-item test. But the 100-item test does
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Table 4.7: Confidence Intervals x10%.

Mean Lower Mean Upper
8 | Comparison | bound | Difference | Bound
oy — o | 102.43 124.59 | 146.75
-2 (. — i3 | 186.11 208.27 | 230.43
f.g— .3 | 61.52 83.68 | 105.84
..y — [.2 2.09 9.88 17.68
-1 b1 — B3 8.96 16.75 | 24.55
.o —p.3 | -0.92 6.87 | 14.66
n. — o | 10.29 1749 | 24.69
0 oy — 3| 22.12 29.32 | 36.51
Mg — [h.3 4.63 11.83 | 19.02
. — pa | 14.09 22.02 | 29.94
-1 oy —p3 | 21.34 29.26 | 37.18
t.o— .3 | -0.68 7.24 | 15.17
foy — o | 12.44 26.98 | 41.52
-2 fg — p.3 | 47.53 62.07 | 76.61
fo — p.3 | 20.55 35.09 | 49.63

not improve on the 50- item test, even though it has more information with which
to estimate the true curve.

Although the ANOVA revealed a significant effect for the number of items
parameter across all values of 8, the curves in Figure 4.7 suggest that the marginal
means for the number of items variable may not differ significantly from one
another. Furthermore, the curves also bring to light the possibility that RMSE
may not have a negative linear relationship with the number of test items. To
address these issues, multiple comparisons among the marginal means for the
number of items variable were tested at each level of §. Alpha was set to .05 and
adjusted using the Bonferroni procedure to compensate for the multiple tests.

The confidence intervals for the mean differences are displayed in Table 4.7.
All but two mean differences were significant. In addition, the estimated values of
the means decreased (i.e., RMSE decreased) as the number of test items increased,

and this was true for all values of  (see Table 4.8).
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Table 4.8: Mean Estimates for n x 10?
6 | pa | pa | 3
-2 1831 7.06]|6.22
—-11}1286]276 | 2.69
01238221 2.09
11258 (236 2.28
213.821]3.55]3.20

4.2 GMAT Data

The data being analyzed here came from the quantitative subscale of the Graduate
Management Admission Test (GMAT) administered to 2735 individuals. The
subscale consists of 25 multiple choice items, each with four response options. As
with the simulated tests, this test was analyzed using 14 B-spline basis functions
of order 5 with 21 quadrature points. The analysis was performed four times, with
the value of smoothing parameter A varying for each iteration. The results for
several items where A = 1 are shown in Figure 4.8. The solid line represents the
estimated item response function, the dashed line represents the starting values
used for the algorithm, and the circles are the probabilities f;,/N,.

The estimated curve for item 10 possesses properties of an ideal item response
function. The curve is monotone increasing, so the probability of responding
correctly to this item increases with ability level. The slope of the curve is highest
among average ability 8 = 0, thus the item discriminates best among examinees
of average ability. However, this item provides little information about examinees
with ability levels greater than 1 and less than -1, regions where the slope of
the curve is shallow. Similarly, item 2 discriminates best among examinees of
lower than average ability since the slope of this curve is highest in the vicinity of
f = —1.5, but provides no information for examinees having 8 > —0.5.

The properties of items 5 and 21 are less than ideal. Item 5 has a high guessing

level and may be labelled as uninformative. Even examinees of the lowest ability
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Figure 4.8: Items 2, 5, 10 and 21 of the GMAT quantitative subscale for A =
1. The solid line represents the estimated item response function, the dashed
line represents the starting values used for the algorithm, and the circles are the
probabilities f;,/N,.

have more than a 50% chance of choosing the correct response to this item. The
nonmonotonic nature of the estimated curve for item 21 also renders this item
uninformative. Initially, the probability of responding correctly decreases, attains
its minimum at § = —1. Thus for at least part of the population, the more
knowledgeable the examinee, the less likely he or she is to respond correctly to
this item. At § = 1 the curve changes direction and P(f) increases over the
remainder of the # range. Thus from 8 = —2.5 to about § = 0.5, examinees can
not be distinguished on the basis of P(#) alone since, for example, P(§ = —2.5)
is approximately the same as P(f = 0.5).

Figure 4.9 displays the item response function for item 10 estimated at four
different levels of smoothing parameter . As is evident in the wild behavior of the
curve for § < 1, the function is insufficiently smoothed at A = .01. Clearly, more
smoothing is necessary in order for the estimate to be reasonable in this region.
The problem is resolved by decreasing the total curvature in setting A = 1. The

curve now resembles a typical 3PL curve and does not appear to require further
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Figure 4.9: Item 10 of the GMAT quantitative subscale, estimated at four different
levels of A.

smoothing. Additional smoothing only reduces the value of the left asymptote.
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Chapter 5

Discussion and Conclusions

The approach to item response function estimation described in this thesis has
a number of benefits over current approaches. For one, the algorithm involves
nonparametric estimation of functions. This draws the focus away from item
parameter estimation, and more appropriately places it on the actual estimated
curves. Needless to say, item response theory should be concerned with the func-
tion representing the relationship between ability level 8 and the probability of a
correct response, P(f). Focussing on parameter estimation detracts one from the
essence of the theory.

Furthermore, nonparametric estimation does not accommodate any precon-
ceived notions of item response function behavior. There is relief from the as-
sumption that all items of a single test have the same shape features, permitting
greater flexibility and variability in the functions across items. Any particular
item is free to manifest a shape that is either unusual or unexpected. For exam-
ple, the current approach can accommodate nonmonotonic item response curves,
whereas the 3PL model would not.

Apart from its ability to fit arbitrary complexities of curves, the basis function
method allows for the user to control the smoothness of a result. This can be
accomplished either by adjusting the number of basis functions used, or by ad-
justing smoothing parameter A as a control over some predetermined roughness

penalty. The benefits of the inclusion of a roughness penalty are twofold. First,
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it offers a reasonable compromise between the closeness of the estimate to the
data and the smoothness of this estimate. Both qualities are desirable, and so a
tradeoff between the two must be established. Second, the roughness penalty may
be modified so as to allow for “intelligent” smoothing towards a low dimensional
baseline model that can be regarded as a sensible default. In the applications
presented here, the 3PL model was considered to be an appropriate default.

Also, as an alternative to current estimation procedures, this approach avoids
the problem of large sampling covariance between parameter estimates encoun-
tered with BILOG and the uncertaintly regarding the consistency of paramater
estimates, as well as their large standard errors when using LOGIST. However, as
in BILOG, use of the EM algorithm eliminates the estimation of the individual
examinee abilities. This has the advantage of increasing the data-to-parameter
ratio, or in other words, increasing the amount of information on 8 with a corre-
sponding increase in the number of parameters to be estimated. In addition, this
method is not computationally demanding. All of the analyses presented in this
thesis were performed in less than one minute.

The primary limitation of the current approach is that small sample sizes
(< 500) suffer from poor item response function recovery, particulary at the low
end of the # scale. Also, the presence of interactions among the three variables
examined here presents a challenge in deciding upon a suitable level for A. In
many of the situations a value of A = 1 seems appropriate, whereas in others this
value should be increased. Still, there are fits that improve little over what is
achieved when A = .1. Perhaps the most significant drawback is that differing
values of A are optimal for different regions on the @ scale for a single test or item.
Often, a curve is well estimated when A = 1 for all € except 8 < 2.

A future direction of research then is to examine the possibility of specifying
A separately for different regions of a curve. With this added flexibility, A can
be increased in areas where the data tends to be undersmoothed, and decreased

where oversmoothing takes precedence. At the very least, it should be possible to
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adjust A separately for each item of a particular test.

This may be important for expansion of the current model to accommodate
polytomous data. For a polytomous item, m curves will need to be estimated,
one for each of m possible options for that item. Options selected by low ability
examinees will require more smoothing than those favored by examinees with
average ability. Among other considerations, the roughness penalty may need
adjustment in the polytomous case, as smoothing to a 3PL model may not be
appropriate.

Despite its limitations, the future of the procedure described here is promising.
It overcomes several of the shortcomings of the parametric models, allows for much
user-controlled flexibility, and has the potential to provide these benefits beyond

the realm of dichotomous test items.
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