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Abstract

Bock and Aitkin (1981) developed an ENI algorithm for the maximum marginal

likelihood estimation of parametric item response curves, such that these estimates

could be obtained in the absence of the estimation of examinee parameters. Using

functional data analytic techniques described by Ramsay and Silverman (1997),

this algorithm is extended to achieve nonparametric estimates of item response

functions. Unlike their parametric counterparts, nonparametric functions have

the freedom to adopt any possible shape, making the current approach an attrac­

tive alternative to the popular three-parameter logistic mode!. A basis function

expansion is described for the item response functions, as is a roughness penalty

which mediates a compromise between the fit of the data and the smoothness of

the estimate. The algorithm is developed and applied to both actual and sirn­

ulated data to illustrate its performance, and how the nonparametric estimates

compare to results obtained through more classical methods.
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Résumé

Bock et Aitkin (1981) ont développé un algorithme ENI pour l'estimation de

vraisemblance marginale maximum des fonctions de réponse d'item paramétriques~

telle que ces estimations puissent être obtenues en l'absence d'estimations de

paramètres examinés. Utilisant des techniques analytiques de données fonction­

nelles décrites par Ramsay et Silverman (1997), cet algorithme est élargi afin

d'obtenir une estimation non-paramétrique des fonctions de réponse d'item. Con­

trairement à leur équivalent paramétrique, les fonctions non-paramétriques ont la

liberté d'adopter n'importe quelle forme. Ceci rend cette alternative plus popu­

laire que le modèle logistique à trois paramètres. Une expansion de fonction de

base est décrite pour les fonctions de réponse d'item, comme l'est une pénalité de

rudesse qui négocie un compromis entre la compatibilité de donnée et la fluidité de

l'estimation. La performance de l'algorithme est illustrée pour la donnée simulée

actuelle. Les extensions et les limites de la méthode sout abordées.
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Chapter 1

Introduction

1.1 Overview of the Thesis

This thesis will describe a procedure for the nonparametric estimation of item

response functions using the ENI algorithm. Among the key advantages of this

model is the nonparametric approach to item response functicn estimation. Pre­

sumptions regarding the shape features of these functions are avoided, as are

problems associated with item parameter estimation. Thus, this model is an at­

tractive alternative ta the popular three-parameter logistic mode!. Employment

of the ENI algorithm has the advantage of eliminating the estimation of examinee

ability parameters, and so allows for computational speed and simplicity. As the

data are viewed as functions, functional data analytic techniques can be applied.

This provides for smooth estimates of the item response functions and hence the

availability of derivative information.

Chapter 1 provides an introduction to the central tenets of item response

theory and the item parameters most commonly used to describe the shape fea­

tures of item response functions. Several parametric models are described, and

a distinction is made between these and nonparametric models. Functional data

analysis is defined and its raIe in curve estimation is outlined. The remainder of

the chapter briefly introduces the El\!I algorithm and describes how it is currently

8
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being used to estimate the parameters of the three-parameter logistic model. In

chapter 2, the detaiis of how functional data analytic techniques are used to es­

timate nonparametric item response functions are presented. Here, the focus is

shifted from estimating the functions directly to estimating the logit transforma­

tions. The concept of a basis function is discussed, and a basis function expansion

is considered for the item response functions. Chapter 3 provides the detaiis of

how marginal maximum likelihood estimation and the EM algorithm are used to

estimate the item response functions. The quadrature rule used to estimate the

integral in the E-step is described, as is a roughness penalty which mediates a

compromise between the fit of the data and the smoothness of the estimate. In

Chapter 4, two example analyses using the algorithm are described. The first is

a simulated three-parameter logistic test, such that the performance of the algo­

rithm may be assessed in a situation where the data are in fact describable by a

parametric mode!. The second analysis involves a set of real test data. Finally~

Chapter 5 provides a summary of the advantages of the current procedure, its

limitations and suggestions for the direction of future research.

1.2 Data and Notation

The model preseLted here is a unidimensianal model of responses ta dichotomous

test items. The data ta be analyzed are the responses of examinees, indexed by

a = 1, ... , N to a set of test items, indexed by i = 1, ... ,n. The response ta item

i by examinee a is coded by the binary variable 'Uai, which takes a value of 1 if

the item is answered correctly and a value of 0 otherwise. The set of examinee a's

responses ta the n test items is denoted by the response vector Ua = (Ual, ... , uan )'.

The set of response vectors for ail examinees can be organized into an N x n lnatri.x

U, where u~ is the ath row of U.

The notation PiCO) denotes the probability of responding correctly to item i

9
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given ability level (),

Since the proposed model is concemed only with dichotomous items~ the proba­

bility of respooding incorrectly to item i can he denoted as 1 - Pï«(}), or Qi(O).

1.3 Item Response Theory

Item response theory (IRT) is based on the assumption that examinee responses to

test items cao be accounted for by latent traits which are fewer in number than the

test items. In most applications it is assumed that a single latent trait accounts

for respooses to test items, with the latent trait most commonly conceptualized

as examinee ability Ievel.

1.3.1 Basic concepts

Item response functions

The fundamental concept of item response theory is the item response function.

The item response function plots the probability of responding correctly to an

item as a function of the latent trait, denoted e, underlying performance 00 the

items of the test. Item response functioos are often assumed to have an ogival

shape, although they are not limited to be of this type. Figure 1.1 is an example

of a typicai item response function. Here, even the examinee of the Iowest ability

has probability of .18 of answering this item correctIy, and high ability exami­

nees will almost surely respond correctly. This item response function increases

monotonically, with the most drastic changes in P(O) occurring for -1 :5 (J :5 1.

According to Lord (1980), there are two ways in which one cau correctIy in­

terpret the probahility of a correct response for an item:

1. A subpopulation of examinees can he conceived of at each point on the

latent trait scale (Le., a collection of examinees aIl having the same (J value) .

10



•

0.1

2.515
OL....-----'-_---'--_....L...-_.L--..I._............_--'--_.l.....-.--.l..._....

-2.5 -2 -1.5 -1 -lJ.S 0 0.5

9

Figure 1.1: A typical item response function. Examinee ability Ievel, B, is rep­
resented on the horizontal axis. The vertical axis represents the probability of a
correct response, P(B).

•
Then the probability of responding correctIy to an item is the probability

that a randomIy selected examinee from this homogeneous subpopulation

will respond correctIy ta an item, or the proportion of these examinees who

would respond correctly to an item.

2. A subpopulation of items an having the same item response function can be

conceptualized. Then the probability of responding correctIy is interpreted

as the probability that a particular examinee will respond correctly ta an

item randomly chosen from the subpopulation of items.

Local independence and unidimensionality

•

Central to item response theory is the assumptian that individual examinees re­

spand independentIy ta each and every test item, and independently of one an­

other. That is to say, an examinee's response to item i is not influenced by the

response to any other item, nor by the respanses of other exarlûnees ta item i, nor

the responses of any other examinee to any other item. The scares on two items

Il



• i and j are said to be statistically independent if the joint probability of a correct

response to both items is equal to the product of the marginal probabilities, that

is,

Prob(Ui = 1 n Uj = 1) = ~(f})~(O). (LI)

•

•

If (1.1) does not hold, items i and j are said ta be statistically dependent.

Item response theory uses the concepts of statistical independence and statis­

tical dependence ta describe the relationship between the latent trait, 0, and the

probability of responding correctly, P(O). The central concept of unidimension­

ality can he defined in terms of statistical dependence. Let it first be assumed

that test items are statistically dependent in the population. Then the test is uni­

dimensional if a single latent trait exists such that within each subpopulation of

examinees homogeneous with respect ta 0, the items are statistically independent.

Since this independence holds only for a subpopulation of examinees located at a

single point on the 0 scale, it is called local independence.

It should be emphasized that unidimensionality and local independence are

not the same thing. Unidimensionality is the assumption that a single latent trait

accounts for the statistical dependence among items, Le., the assumption of only

one latent variable will lead ta local independence. Local independence, however,

may be achieved without unidimensionality. In general, the dimensionality of a

test refers to the number of latent traits required ta obtain local independence.

It should also be emphasized that both unidimensionality and local independence

are assumptions.

IteDa par~eters

Severa! parameters may be used ta describe the features of the item response

functions. The left asymptote or guessing level, which can he denoted PC-00),

is relevant when the question format permits correct answers by guessing. This

parameter aUows examinees ta have P(O) greater than zero even at low values of

O. Nlultiple choice and true/false question formats are examples of iterns that are

12
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Figure 1.2: Three item response functions varying only with respect to the value of
the left asymptote. For the dashed Une P( -00) = .31, for the soUd line P( -00) =
.12, and for the dotted Une PC-00) = .03.

likely to have a left asymptote greater than zero. On a multiple choice question

with four response options, an examinee, regardless of his or her () value, has a

1/4 or .25 probability of choosing the correct response when guessing. As such

it is not appropriate for P(B) to approach zero as B approaches -00. Figure 1.2

shows three item response functions that are identical except for the value of the

left asymptote.

The item difficulty or location parameter, which may be denoted by P, refers

to the Bvalue rnidway between the guessing levei and the right asymptote of unity,

P(f}) = (PC -00) + 1)/2. For the case where PC -00) is equal to zero, P is the

value of () at which P(fJ) is equal to .5. Items with high Pare difficult items,

where PCB) is high only for lùgh ability examinees. Items with Iow Pare easy

items, where almost ail examinees have a high probability of responding to the

item correctIy. Three items with varying levels of difficultly are shown in Figure

1.3. Ideally, a test should include items of varying difficuIty.

Items rnay aiso differ from one another in terms of how they differentiate among

exarnÏnees. The slope of the item response function at B measures the extent to

13
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•
which the item discriminates among examinees on either side of B. This can be

computed by the derivative,
dP

DP(O) = dB'

•

The higher the value of DP(B), the more sharply the item discriminates among

examinees at 8. The overall discrimination power of the item, or the item discrim­

ination parameter, cau be measured by computing the maximum value of DP(B).

This maximum usually occurs at a point close to the item difficulty parameter.

Figure 1.4 shows a set of items which differ with respect to the degree of

discrimination at B = O. For the dashed tine DP(O) = .S. for the solid tine

DP(O) = .9, and for the dotted tine DP(O) = 1.S. Consider the range -0.5 ::;

o ::; O.S. For the dotted tine, pee) varies from araund .22 to .78 over this range,

whereas for the dashed line, P(B) varies from .39 ta .62. Thus, over this range the

dotted line better differentiates among examinees than do the dashed or soUd Hnes.

However, although items having high DP(O) discrirninate weIl among a subset of

examinees, the trade-off is examinee discrimination over a decreased range of e.
The dotted line only distinguishes among examinees with -1.5 ::; 0 < +1.5,

14
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Figure 1.4: Three item response functions varying only with respect ta the item
discrimination parameter. For the dashed line DP(D) = .5, for the solid line
DP(D) = .9, and for the dotted line DP(D) = 1.5.

whereas the dashed Une discriminates almost equally over the entire range of 8.

Item and Test Information Functions

In order to construct a useful test, the initial step should be to determine the

regions of the latent trait scale for which accurate discrimination among exam­

inees is desirable. For instance, the Graduate Record Examination is designed

to identify high ability examinees among aIl other exarnÏnees. Ideally, this test

should contain items which discrirninate highly among examinees in the middle to

high range of the 8 scale. It would not be useful to include items which are rnost

discriminating at the lower end of the scale since the purpose of the test does not

involve the assessment of low performing examinees.

One aims to construct a test consisting of items which discrirninate highly

among examinees with latent trait scores in the regions where the test is to be

rnost informative. Since items provide different information about different regions

on the latent trait scale, a measure of the amount of information provided by a

particular item is usefuI. Good test items discriminate highly for sorne range of

15
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Figure 1.5: The information function for the item response function displayed in
Figure 1.1. The horizontal axis represents exarninee ability Level, and the vertical
axis represents, 1(0), the amount of information provided by the item about ability
for exarninees at ability O.

ability values, of which the slope of P(0) is an indicator. As the size of the slope

of P((}) at 0 is measured by its derivative DP(fJ), a measure of the amount of

information provided by item i about ability for examinees at or near ability 0 is

given by
[DPi (O)]2

Ii(O) = ~(O)Qi(O)·

A value of Ii(O) can be obtained for every value of 0, and the plot of Ii(O) against

fJ is called the item information function. It is clear that information tends to

be larger when the first derivative is larger so that Ii(O) achieves its maximum at

that value of 0 where P(fJ) discriminates most highly among examinees. Figure

1.5 displays the information function for the item response function displayed in

Figure 1.1. According to the plot, this item is most informative about examinees

at or near average ability e= 0 and provides little information for those examinees

with very high or very Low ability.

The test information function is the sum of the item information functions for
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aIl items on the test, given by

1(8) = L fi(O).
i

This measure is an indicator of the amount of information in the entire set of

items about an individual examinee's value of ability fJ.

1.3.2 Parametric IRT

Parametric item response theory refers to those applications of the theory in which

the distribution of the item response function is specified except for the values of a

finite number of parameters. Nonparametric methods apply in aIl other instances.

As stated above, item response functions are often assumed to take on an ogival

shape. Naturally, an example of such a function is the normal ogive. The normal

ogive increases monotonically with a left asymptote of zero and an right asymptote

of unity. Letting a be the discrimination parameter, b the difficulty parameter and

z = a(fJ - b), the equation for the normal ogive item response function is written

as

P(O) = -1-1= e-=2/2dfJ.
l'ii -oc

Use of the normal ogive in practice has been replaced by the family of 10-

gistic models. For these models, the basis for the item response function is the

cumulative logistic distribution function, wmch has the general form

e=
P(O) = --.

1 + eZ

Like the normal ogive, the logistic item response function is ogival in shape and

increases monotonically. Each of the three logistic models is a variation of this

basic form, the models differing with respect ta the number of parameters used.

In practice, the logistic models are preferable ta the normal ogive as the former

require simpler computations. The difference between the twa types of models is

negligible if the basic farm of the logistic model is madified as follows:

e1.7z

P(O) = 17"' •
1+ e . -
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By negligible it is meant that P(0) for the logistic and normal ogive models does

not differ by more than .01 over the 0 scale.

For the two-parameter logistic (2PL) model,

which gives the model
e1.7ai (O-bd

~(O)=. (1.2)1 + e1.7ai (O-bi)

The parameters ai and bi are indices of item discrimination and difficulty for item

i, respectively. For the family of logistic curves, the item difficulty parameter

refers ta the point of inflection on the latent trait scale. That is, b denotes the

B value midway between the left asymptote P( -00) and the upper asymptote of

unity, P(B) = (1 + P( -(0))/2. The discrimination parameter a is the slope of the

item response function at the point of inflection. The 2PL model can be viewed

as a three-parameter model (see below) where the guessing level is set to zero,

implying that a low B value couId mean a P(8) that is close to zero. Although this

is not plausible for multiple-choice or true/false items, it may be the case with

essay-type items where examinees are required ta supply the complete response ta

a question instead of selecting the correct answer among a number of alternatives.

The one-parameter logistic model, also referred to as the Rasch model, is

a special case of the 2PL model where aIl items have the same discrimination

parameter. Since all items are equally discriminating, the subscript i may be

dropped and this parameter may be referred ta as the constant a. The difficulty

parameter b, however, is not a constant, and sa items rnay discriminate at different

locations on the B scale. The one-parameter model is written as

e1.7a(O-bi)

P.·(B) = ---
t 1 + e1.7a(O-bd .

Setting a = 1 and dropping the constant 1.7, the equation for the Rasch model

becomes

•
eCO-bd

~(B) = 1 + e(O-bd·

18
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With this formulation of the model it is more evident that P(0) is a function of

examinee ability and item difficulty.

The most general of the logistic models is the three-parameter logistic (3PL)

mode!. With a and bdefined as above and setting c as guessing level P( -00), this

model is defined by the equation

e1.7a,(0-bd

PiCO) = Ci + (1 - Ci) 1 7 ·(0 b.)·1 + e . al - 1

Here, each item is Eree ta vary with respect to the values of the three parameters.

The 3PL model is the most commonly used with regards to multiple-choice and

true/false question formats.

Estimation procedures

wlaximum likelihood estimation (section 3.1.1) procedures are commonly used in

item response theory. The computer program LOGIST (Wingersky, Patrick &

Lord, 1988) uses a joint maximum likelihood procedure to simultaneously estimate

the item parameters for ail items and the latent trait scores for aU examinees.

However, there are a number of drawbacks when LOGIST is used with the 3PL

mode!. For one, it is not known whether the estimates yielded by the prograrn

are consistent. An estimate is said ta be consistent if as sample size increases, the

value of the estimate approaches the true parameter value. Another limitation

is that a large number of examinees are required for accurate estimation of the

model parameters. Furthermore, the parameter estimates show large standard

errors for the 3PL model, particularly for items with low difficulty. This results

from a high positive covariance between the location parameter b and guessing

level c (Thissen & vVainer, 1982). For these easy items there is little data with

which ta estimate c, therefore its standard error is made large. For more difficult

items this effect is less severe.

The computer program BILOG (Mislevy & Bock, 1982) uses the marginal

maximum likelihood procedure to estimate the parameters of the 3PL model (see

section 1.6). By marginalizing over the individual ability parameters Ba for the
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IV examinees, their estimation is avoided. As an improvement over LOGIST, the

estimates produced by BILOG are believed to be consistent. In addition, it is

possible to increase sample size N without simultaneously increasing the number

of total parameters to be estimated (see section 1.5.1).

1.3.3 Nonparametric IRT

In the parametric approaeh, the foeus is on the estimation of the model parame­

terse But a specifie model presupposes that the test items are sufficiently repre­

sented by the features permitted by that mode!. For example, selection of the 3PL

model assumes that a test 's set of item response functions are ail ogival in shape.

Any items characterized by curves which deviate from this shape cannot be ae­

commodated by this mode!. This includes curves which are either nonmonotonic~

have a non-unit right asymptote or have multiple infiection points. Using more

parameters in order to ohtain greater flexibility would restùt in the overfitting of

sorne items which require only a small number of parameters ta describe them

adequately, thus leading to poor estirnators of the parameters actuaIly needed.

Furthermore~ current estimation procedures tend ta produce parameter estimates

having strong positive covariance. AIso, large amounts of data are required ta

estimate the 3PL model well, particularly for easy items. Parameter estimates

for these itelns rely heavily upon data frOln low ability examinees. For a sam­

pIe size of 500 and assuming that ability level is normally distributed, this leaves

less than 34 pieces of data with which ta estimate the model parameters in the

region () ~ -1.5. In addition, programs sucb as LOGIST and BILOe are also

eomputationally demanding.

The inspiration for nonparametric estimation within item response theory is

the direct estimation of the item response functions. Nonparametric does not

imply the absence of parameters to be estimated. (In fact, there are an arbi­

trary number of parameters and hence an arbitrary amount of flexibility can be

achieved.) Instead, the term nonparametric suggests that the emphasis is on the
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direct estimation of the curves and not on the estimation of the curve parameters.

Hence, the problems associated with item parameter estimation are avoided. For

example, direct estimation of the functions obviates any presumptions about the

shape of the curves. Furthermore, the shape features of the functions, sucb as

item discrimination and item difficulty, can still be described even though these

values are not directly estimated.

1.4 Functional Data Analysis

vVith regards to test data, for each item there is available a set of responses from

various e.xaminees who vary in terms of their ability level. The set of responses

to each item can be viewed as a function of examinee ability level, and functional

data analytic techniques may be applied to derive estimates of these functions.

Functional data analysis (FDA) can be defined as a set of techniques for the

description and analysis of data where the observations are functions (Ramsay &

Silverman, 1997). Aside from providing a set of usefuI techniques, FDA presents

a conceptual framework with which to approach the current problem: the unit of

interest is not the string of numbers representing examinee responses, but rather

the functions P(B).

There are two primary ways in which functional data analysis will play a

leading role in this thesis. The first involves the assumption that the individual

responses to an item reflect a continuum of ability level. The raw data are discrete,

but are to be viewed as functions. Thus, the first step is to use FDA to represent

the probability of a correct response, P(Uai = 1) l as a function of B. If the dis­

crete data are error-free, they can be converted to a function using interpolation.

However, in the case of test data, the measurernent of sorne observational noise

is presumed. Furthermore, if there is an interest in computing the derivatives of

these functions, they must be represented by a srnooth curve. Smooth functions

can be derived using basis function methods, described in Chapter 2. Another

FDA approach which will play a role here involves roughness penalty smoothing
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(Chapter 3), which offers control of the smoothing by putting a limit on the total

curvature of the estimate.

1.5 The EM Aigorithm

This section will provide a brief introduction to the E1t1 algorithm. A more de­

tailed description of the algorithm will appear in Chapter 3.

1.5.1 EM and item response theory

Consider the three-parameter logistic model in (1.4) for a test consisting of 25

items administered ta 500 examinees. Assuming that estimates of both the item

parameters and examinees abilities are desired, there are 575 parameters to be

estimated, three for each of the items and one for each examinee. The JV x n matrix

of observed responses, U, then consists of 12,500 independent observations. In

this context, sample size is considered to be not the total number of subjects, but

rather the number of observations available to estimate each parameter. In other

words, the focus is not on sample size defined as the number of examinees but

instead a data-to-parameter ratio where a ratio of at least 50 or 100 is ideal. In trus

instance, there are 12,500 sample elements and 575 parameters to be estimated,

which amounts to 12, 500/575 ~ 22 observations, a small sample size.

In certain circumstances only estimates of the item parameters, and not ex­

aminee abilities, are desired. The item parameters are referred to as structural

parameters - these are the parameters whose estimates are of most significance.

The ability parameters are referred ta as nuisance parameters. They are not of

primary interest to the investigator cancerned with estimating item response func­

tians, but due to their unobservable nature they must be estimated alongside the

structura.l parameters. The number of structural parameters remains constant

irrespective of sample size N, and using larger samples would seemingly increase

the data-to-parameter ratio. But the number of ability parameters increases in

proportion ta N, so an increase in N to allow far better item parameter esti-
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mation is accompanied by an increase in the number of ability parameters to be

estimated. Thus, any attempt to improve item parameter estimates by an in­

crease in lV will unavoid.l.bly involve an increase in the total number of model

parameters. In a situation where one could escape estimation of the examinee

ability levels, the data-to-parameter ratio reduces to 12, 500/75 ~ 167, a rather

impressive improvement in sampIe size. Furthermore, in addition to increasing the

relative sample size, the chore of estimating parameters that are of no practical

interest is avoided.

The EM algorithm, defined by Dempster, Laird and Rubin (1977), is an it­

erative procedure for finding maximum Likelihood estimates in the presence of

unobserved random variables in probability moclels. It was first applied within

item response theory by Bock and Aitkin (1981) who, by working with marginal

likelihoods, eliminated the estimation of the unobservable ability parameters in es­

timating item response functions (see section 1.6 for details). The algorithm works

by alternating between two phases of analysis, the E (for Expectation) phase and

the NI (for Nlaximization) phase. A comprehensive review of the evolution of the

E1tI algorithm for item parameter estimation can be found in Harwell, Baker and

Zwarts (1988).

1.5.2 The expectation phase

In the E-phase, the marginal likelihoods are estimated for each examinee for a

fixed set of item parameters 'f/;. Assuming local independence and letting P(Uai)

represent the probability of a correct response to item i by examinee a, the con­

ditionallikelihood of observing a particular response sequence cau be written as

n

L(ualOa;1/J) = II PCUai IBa ; Wi),
i=l

(1.5)

•
The latent variable B is unknown, and in arder to accommodate for this, the

marginal, or average, likelihood of each observed response sequence is computed.

The E-phase of the ENI algorithm consists of taking the expectation of the con-
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• ditionallikelihood,

AlL(ual'l/J) = E[L(ua /8; 7/1)] = JL(ua /8; 1/J)g(8)d{}. (1.6)

Thus, through marginalization the task of estimating the nuisance parameters has

been eliminated.

The final step in the E-phase is to compute the marginal likelihood for aU

examinees, or the grand marginallikelihood, ML(U). Assuming that examinees

respond independently of one another, the grand marginal likelihood can be de­

fined as
N

AlL(UI7/J) = II AlL(ua l1/J)·
a=l

(1.7)

•

•

For simplification, the dependence of lvILon 7/J will be dropped from the notation!

although it is always implied.

1.5.3 The maximization phase

In the NI-phase of the ElvI algorithm, the grand marginallikelihood computed in

the Frphase is maximized with respect to the item parameters. In other words,

the values chosen as estimates of the item parameters are those that maximize

the value of the grand marginallikelihood function, 1\;[L(U). The grand marginal

likelihood, rather than the individual marginal likelihoods, is maximized sinee

the set of item parameters for any particular item affects the A;[L(Ua )'5 for aIl

examinees answering that item.

Once these parameter estimates are obtained, the E-phase is revisited and the

marginallikelihoods for each examinee are recomputed using the parameter esti­

mates from the previous NI-phase. Thus, the EM algorithm is an iterative process

of marginalizing over the likelihood function with respect to the nuisance param­

eters (E-phase), and then maximizing the function with respect ta the structural

parameters (NI-phase). The algorithm iterates between these two stages until sorne

convergence criterion is reached, usually when the change in parameter estimates

is negligible, or the change in NI L(U) is small.
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• 1.6 Estimation of the 3PL Madel with an EM
Algorithm

•

This section will present the application of the EM algorithm to the estimation of

the 3PL model item parameters as described by Bock and Atikin (1981) and more

recently by Bock (1989). First, recall that under the assumption of local indepen­

dence, the joint distribution of the set of item responses for the ath examinee can

be written as

n

P(uaIBa, t/J) = II ~((Ja)UaiQi((Ja)l-uai.

i=l

This is the prlJbability of response vector Uai conditional on a known value of

(J and the item parameters. The likelihood of observing the matrix of the set of

responses to all items from all examinees~ denoted U, represents the likelihood

function and can be written

n N

L(ua) = II Il Pi((Ja)UacQi((Ja)l-uac .
i=l a=l

Uoder maximum likelihood estimation, the parameter estimates are those val­

ues of a, band c which maximize the value of L. These estimates are found

from the roots of the likelihood equations, which are obtained by setting the first

derivatives of the likelihood equal to zero. For convenience~ the log of the likeli­

hood function is used:

n N
log L = L L[Uai log Pi ((Ja) + (1 - Uai log Qi{Ba)].

i=l a=l

This leads to the system

8
-8(log L) = 0,

ai

8
8b

i
(log L) = 0,

8
-.(log L) = O.
8Ci

•
If the Ba are known, the parameters for the i th item are estimated simultane­

ously using the above system of equations. With LOGI8T, the initial e values

are treated as known while solving for the item parameters, then the process is

reversed with the item parameters treated as known and the e values estimated.
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Among the many shortcomings associated with LOGIST (see section 1.3.2),

the rnost significant is that the examinee abilities are nuisance parameters. The

Bock and Aitkin (1981) solution to this uses an EM algorithm to replace L(ua ) by

its average over fJ, or the marginallikelihood, AtIL(ua ). First, sorne distribution

g(O) is assumed for the examinee ability parameters. Then the marginallikelihood

of response vector Ua given item parameters 1/J is the average of L(ua ) over the

prior distribution of abilities:

NIL(ua l1/J) - E[L(ualfJa )]

- L: L(uaIO)g(B)dB.

Thus, the ability parameters have been eliminated by averaging tbem out, or

marginalizing over them.

The grand marginal likelihood is now

N

AIL(U) = II NIL(ua )

a=L

and the log marginal likelihood is

N

log lvIL(U) = L log AlL(ua).
a=L

The parameter estimates are chosen to be those values of a, band c that

maximize the log marginal likelihood.

The two general steps of the pth cycle of the ENI algorithm are:

1. E-step: compute the expectation of the likelihood, E[log L(uaIB)~ .tjJP].

2. :NI-step: choose 1/Jp+l sucb that the log marginallikelihood is maximized.

The process is repeated until sorne convergence criterion is satisfied. This

procedure is used in BILOG, and overcomes several of the difficulties encountered

by LOGIST. BILOG, however, produces parametric estimates of the item response

functions, whereas nonparametric estimates allow for more flexibility (see section

1.3.3). In this thesis, the ENI algorithm is applied ta the nonparametric estimation

of item response functions .
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Chapter 2

Estimating Nonparametric Item
Response Functions

2.1 Basis Functions

Smoothness is a desirable characteristic of an estimated item response function.

This is essential if the item or test information function is to be computed, as it

depends on the item first derivative functions. A cornmon smoothing procedure

is to represent the function to be estimated as a linear combination of a set of I(

linearly independent basis functions q;k, with weight coefficients Ck:

f(

P( fJ) = L ckfÎJk(8).
k=l

The right side of (2.1) is called a basis function expansion for function P(fJ). The

degree of smoothness of function P( fJ) is determined by the number I( of basis

functions. As K increases, the fit of the data improves but the estimate becomes

less smooth. On the other hand, using a small K will yield a smooth function

that does not fit the data c1osely. In section 3.3, a compromise between fit and

smoothness will be discussed.

There are a number of options for the type of basis functions. The ideal

situation is one in which a good approximation is obtained with a relatively small

number of basis functions [(. Preferably, they should possess features resembling

those known to belong to the functions being estimated. Classic bases include

the polynomials and the B-spline bases, ta he covered in sections 2.1.1 and 2.1.2,
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• respectively. Another classic basis function expansion is provided by the Fourier

series,

x(t) = Co + Cl sinwt + C2 coswt + C3 sin 2wt + C4 cos 2wt + ... ,

defined by the basis cPo(t) = 1, <P2r-l(t) = sin rwt and cP~r(t) = cos rwt. This basis

is periodic, with the period 21r/w determined by parameter w.

2.1.1 Polynomial Bases

One possibility is to represent the function as a linear combination of the basis

functions

k=O, ... ,K, (2.2)

•

•

known as the monomial bases. Parameter w is a shift parameter. Any polyno­

mial of degree K - 1 or less can be expressed as a tinear combination of [( fixed

linearly independent polynomials, of which the monomials are a classic example.

However, in arder for the polynomials ta fully capture local behavior a large value

for K is needed. Even so, in this case the data may fit weil in the center but is

less satisfactory at the extremes, since the polynomial functions thernselves ex­

hibit wild behavior at the extremes (Ramsay & Silverman, 1997). Furthermore,

although the derivatives of polynomial functions are easy to compute, they are

rarely reasonable estimators of the true derivative. This is due to the rapid 10­

calized oscillation cornmon to high-order polynomial fits (Ramsay & Silverman.

1997). Figure 2.1 displays a set of monomial basis functions for [( = 2.

2.1.2 Regression Spline Bases

An alternative to the polynomial bases are polynomial splines, which offer greater

flexibility and have the capacity to capture changing local behavior. In order

to derive these functions, first the range [a, bl of the function ta be estimated is

partitioned into n subintervals [Ti-l, Ti], 1 ::; i ::; n, where

a < TO < ... < Tn < b.
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Figure 2.1: A set of monomial basis functions for l( = 2 and w = O. The saUd
Une represents the basis function for which k = 0, the dotted Une for k = 1, and
the dashed Une for k = 2.

The Ti are referred to as knots, and there are n + 1 of them. Excluding the

boundary k--nots TO and Tn , the remaining set of knots Tl,"" Tn-l are referred to as

the interior A:nots. Now function f may be approximated by a polynomial spline

Sn, where Sn is formed by connecting adjacent pairs of points (Ti, Yi), 0 ::; i ~ n~

by a polynomial of degree at most k ~ 1, and forcing these polynomials to join

smoothly at these knots. As a special case Yi = J(Td may be chosen, where Sn

interpolates the function, although a better estimate can be achieved by relaxing

this restriction.

In the simplest case Sn is formed by connecting the (Ti, yt} with straight line

segments, that is, polynomials of degree 1. In this case, spline Sn is referred ta as

a first degree spline (see Figure 2.2). In general, a spline Sn of degree k in [a, b] is

constructed by joining the intervals [Ti-l, Ti], each of which contains a polynomial

of degree at most k ~ 1. In order to give the spline a certain degree of smoothness

it is further required that Sn adhere to certain continuity conditions at the interior

knots. Specificaily, Sn must have at least k - 1 derivatives which are continuous

on [a, b]. For example, any first degree spline is a continuous function although
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Figure 2.2: The solid tine is the curve y = JI. The dotted line is an estimate of
this curve by a first degree spline with a single interior knot.

it may have discontinuities in its first derivative, these discontinuities occurring

at the knots. A quadratic spline (k = 2) will have a continuous first derivative, a

cubic spline (k = 3) continuous first and second derivatives, and so on. The cubic

splines, or piecewise cubic polynomials, are a popular choice for basis functions.

There is sorne question as to the number and position of the knots. For any

given set of knots, the spline is computed by multiple regression on an appropriate

set of basis vectors. By allowing more knots the spline becomes more flexible,

although with too large a K one runs the risk of overfitting the data resulting

in poor generalizability of the estimate. Another concern is the choice of basis

functions for representing the splines for a given set of knots.

One possible choice for a basis for first degree splines is the following. To

facilitate this discussion it is advantageous to extend the sequence of knots to an
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Figure 2.3: An example of a linear B-spline basis function. The dashed vertical
Hnes represent the interior knots. The function has value °at aH knots except T2.

infinite sequence ... T-1, TO, ... , Tn , In+1, .... Then, for -00 < i < 00, define

• 0, x ~ Ti

~ Ti < x ~ Ti+1
Bl(x) = Ti+l-Ti 1 (2.3)

Ti±2-X
Ti+ 1 < x ::; li+2

Ti+2-T &+1 '

0, li+2 < x.

Notice that Bl(li+d = 1 and Bl(x) = 0 at all other knots (see Figure 2.3). It is

clear that the functions Bf are linearly independent and hence form a basis for

first degree splines. The spline can be expressed as

n

Sn(x) = LYiBl-1'
i=O

Later, it will be shown that B-splines of degree k, Br are a generalization of the

first degree splines and hence form a basis for splines of degree k.

Truncated power basis

•
The simplest way to represent polynomial splines is as the monomial basis in (2.2)

supplemented by a linear combination of the truncated powers. For coefficient
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• weights Ci and dj , these splines are written as

k n-l

Sn(X) = L Cixi + L dj(x - Tj)~.
i=O j=l

(2.4)

(2.5)

For illustrative purposes, this polynomial spline of degree k can be constructed,

for sorne fi..xed real number T and working with one subinterval at a time, by

augmenting the monomial basis (2.2) with the truncated powers

k {(X-T)k, X~T
(x - T)+ =

0, x < T

of degree k ~ O. Notice that (2.5) is a spline of degree k vâth a single knot at

X=T.

•

First, the spline of degree k on [TO' Td is written as

k

Sn(x) = L CiX
i
.

i=O

Now any polynomial function can be written as

k

Lai(X - Tr)i,
i=O

which may be adapted to
k

L Ui(X - Tl)~'
i=O

(2.6)

(2.7)

•

in order ta derive a function which is zero for x < Tl' Thus, to extend the spline Sn

from [To, Td to [TO' T2] without disrupting its representation on [TO' Td, the function

in (2.7) can be added to the right sicle of (2.6). However, there is a smoothness

condition to be satisfied at Tl' Specifical1y, the continuity of Sn or its first k - l

derivatives must not be disrupted at this knot. Ta account for this, ao,· . . ,ak-l

must all be set to zero, and relabeling ak as dl, the polynomial spline over interval

[TO' T2] can be written as

(2.8)

To further extend Sn across all n intervals, a suitable truncated power is added

for each interval while not disturbing the representation of Sn in the previous
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intervals. This results in a polynomial spline valid on the whole interval [Ta, Tn ],

which is written as in (2.4). Note that the total number of basis functions is

(k + 1) + (n - 1) = k + n, the order of the piecewise polynomial plus the number

of interior knots.

Although (2.4) is of theoretical interest, it is not used to produce an estimate

for the function of interest. For evaluation purposes it is preferable to express the

spline in terms of the B-spline basis functions, given that if there is more than a

small number of knots, the truncated power basis tends ta produce nearly singular

cross-product matrices (Ramsay & Silverman, 1997).

B-spline basis

It was stated above that the BI form a basis for first degree splines. In this section

it will be shown that a generalization of these, the Bf, form a basis for splines of

degree k. First, it is necessary ta express the BI in terms of simpler functions,

specifical1y, the Bp, defined as

otherwise.

The Bp are piecewise constant functions, and they constitute a basis for the set

of ail piecewise constant functions.

It should be noted that any function which takes the value Yi on interval

Ti < x ::; Ti+ l for 0 :s; i :s; n - 1 and the value 0 elsewhere can be \VTitten as

n-l

LYiB?(X).
i=O

Now the functions BI can be defined in terms of the Bf by taking

(2.9)

•
The validity of this equation can be verified by comparing the right sicle of (2.9)

to the definitian of BI given in (2.3). Functions B? and BI are referred ta as
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Figure 2.4: A set of cubic B-spline functions. Each basis function is nonzero over
at most four adjacent intervals.

B-splines of degree 0 and 1, respectively. A B-spline of degree k can be defined

recursively by

(2.10)

for each i and for k = 1,2, .... Function Ef is called a B-spline of degree k. For

justification that Et is indeed a spline, see Phillips and Taylor (1996).

The advantage of the B-splines over the truncated power bases in evaluating

a spline Sn is that the B-splines have compact support, meaning that the function

values are zero everywhere except over a finite interval. This implies that the

resulting regression matrix is banded, overcoming the problem of singular cross­

product matrices often encountered when using the truncated power bases. For

splines of degree k = 3, the B-splines are themselves piecewise cubics with support

on the interval [Tk-2' Tk+21 and shorter support on the ends (see Figure 2.4). Thus,

these Bi(x) are nonzero over at most four adjacent intervals.
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The moclel (2.1) has a major structural defect. Probabilities must fall between 0

and 1, whereas linear functions can take values over the entire realline, depend­

ing on the size of the coefficients Ck. Thus, unless restrictions are imposed on

CL, .•• ,CK, the model (2.1) will yield -00 < P(O) < 00 sa that ta express P(O)

as such a linear combination would be inconsistent with the laws of probability.

rvIodel (2.1) can be valid over a finite range of (J values for which 0 ~ P((J) ~ l.

However, using ordinary least squares ta fit the model is problematic as the con­

ditions making least squares estimators optimal are not satisfied. For one, the

variance V('ll) of binary response variable 'U, P((J)[1 - P(O)L is not constant, but

rather depends on () through its influence on P. As P moves towards zero or unity,

V(u) moves towards zero. Furthermore, as it is a binary variable~ the variance

of u cannat be assumed ta be normal, so that the sampling distributions for the

ordinary estimators are not applicable (Agresti, 1990).

The problem cao be avoided by using sorne transformation h[P(0)] wlùch maps

the unit interval (0,1) onto the realline (-00, (0) 50 that

•

•

2.2 The Logistic Reformulation of P(0)

•

l\

h[P(O)] = U·'"(O) = 2: Ck(/)k(()).
k=1

In arder ta derive the appropriate transformation or link function h[P(B)), it is first

realized that as with any function bounded by 0 and 1, P(B) cau be reformulated

as
K

P((J) = eXP(Lk=~ck4>k(())) . (2.11)
1 + exp(Lk=1 Ck4>k(B))

vVith this reformulation. the condition 0 < P(8) < 1 is satisfied. Although the

possibilities of P(O) = 1 and P((J) = 0 are lost, this is often considered to be of

no practical consequence.

Now for model (2.11) the odds of making response 1 are
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Figure 2.5: In the left panel are three Rasch item response functions P(B) with
varying values for the location parameters. In the right panel are the correspond­
ing ~V(O), which ail have a slope of unitY but vary with respect to the y-intercepts.

and the log-odds has the linear relationship

Thus the log-odds transformation, or the [agit, is the appropriate link functioll.

The logistic reformulation of item response functioll P(O) such that function

ltV(B) may illstead be estimated greatly simplifies the task. This results primarily

from W(B) being an unconstrained function, which makes it an ideal candidate

for a basis function expansion. For example, the logistic reformulation of the item

response function for the 2PL model in (1.2) amounts ta

ltV(B) = 1.7a(B - b),

and that for the Rasch model in (1.3) is

~V(B) = (} - b.

Thus, the vV(B)'s for Rasch item i will be a straight line with a slope of unity and

a y-intercept equal ta bi. For the 2PL model, the slope of the logit transformation
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Figure 2.6: In the left panel are three 2PL item response functions P(B) with
identical values for the location parameters but varying values for the discrimi­
nation paralneter. In the right panel are the corresponding ~V(B), which vary in
terms of both the slopes and y-intercepts.
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Figure 2.7: In the left panel are three item response fUllctions P(0) with identical
values for the discrimination and location parameters, but varying values for the
guessing levels. In the right panel are the corresponding ~V(B), which aIl approach
an upper right asymptote at a 45 degree angle, but vary with respect to the value
of the lower left asymptote.
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for item i is 1.7CLi and the y-intercept is 1.7o.tbi . The vV(B)'s for the 3PL model

are nonlinear functions which go to a lower asymptote on the left, and approach

an upper asymptote at a 45 degree angle on the right. Figures 2.5, 2.6 and

2.7 show sets of item response functions P(8) and the corresponding log odds

transformations W (8) for the Rasch, 2PL and 3PL models, respectively.

2.3 A Basis Function Expansion for P((})

In order to obtain estimates of P(8) that are intrinsically smooth, a basis function

expansion for VV(B) is considered. A set of [< basis functions are chosen and VV(B)

is expressed as a weighted linear combination of these functions,

K

vV(B) = L CkcPk(B).
k=l

The ]( basis functions cPk (0) are chosen to be the B-spline basis functions. Choos­

ing a larger 1< will result in a more flexible and hence less smooth curve, whereas

a smaller value for K will produce a smoother curve with less flexibility.
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Chapter 3

The EM Algorithm

3.1 Preliminaries

3.1.1 Maximum likelihood estimation

Likelihaod, denoted L, is proportianal ta the probability of the observed data

given a praposed model. Assume sorne model, ~ (B l'tbd 1 of examinee performance

on dichotamously scored item i given a set of item parameters 1/Ji and ability level

B. Let Ua denote the respanse vector of examinee a to a set of n items. Assuming

that the elements of Ua are independently distributed conditional on Band with

Ba denoting the ability level of examinee a, the likelihood of response vector Ua is

n

L(ua ) = II P(Uai = llBa ; 1/Ji).
i=l

Similarly, since ail N examinees are assumed ta behave independently, the likeli­

hood of the entire observed data matrix U can be computed as

N N n

L(U) = II L(ua) = II rI P(Oal'tPi)'
a=l a=l i=l

Now, should a specifie set of values be considered for the item parameters, and

L computed for the observed data and these particular parameter values, what

results is the likelihood of the observed matrix U given item parameters 1/J. Max­

imum likelihood estimation is a method of estimation which chaoses as estimates

those parameter values that maximize the value of the likelihood funetion. These
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estimates may be obtained by setting the first derivative of L(U) to zero and

solving the equation with respect to the individual item parameters.

Computing the derivatives of products can be an enormous task. Fortunately,

both the likelihood function and the log likelihood function,

N

log L(U) = L log L(ua ),

a=l

are maximized for the same parameter values, and the computational burden is

greatly alleviated in working with the derivatives of sums as opposed ta products

in maximizing log L(U).

3.1.2 Marginal MLE

Section 1.5.1 stated that a data-to-parameter ratio of at least 50 or 100 would

constitute a sufficient sample size for obtaining estimates of item parameters.

Although increasing sample size lV will increase the data-to-parameter ratio, it

will be accompanied by an increase in the number of ability parameters to be

estimated. If it were possible to eliminate the estimation of the examinee ability

parameters, not ooly would the relative sample size increase, but the task of

estirnating parameters which are of no practical interest would also be avoided.

This may be accomplished by computing the likelihood not for each () value, but

the likelihood obtained by averaging over ail possible values of B. This requires the

assumption that examinees represent a random sample from a population where

ability is distributed according to sorne known density function g(fJ). Since the

family of item response functions is higlùy flexible for nonparametric rnethods,

the choice for this distribution is arbitrary. By tradition, the standard normal

distribution has been employed, as ability level is considered to have a normal

distribution. AIso, since g(8) can be chosen at will, it is preferable to select a

distribution whose mathematical properties make it convenient for computational

purposes.

One is then working with the marginallikelihood, denoted }v!L. vVhere L(uaIB)
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is the likelihood of a response vector viewed as a function of (), called the condi­

tional likelihood, the marginal likelihood of response vector Ua is defined as

M L(u.) = E[L(u.)] = JL(u.IIJ)g(IJ)dIJ = Jft p,u··(IJ)Q~-u·'(IJ)dIJ. (3.1)
1=1

The marginal likelihood NIL(ua ) is the average of L(ua ) across the values of (),

50 that for each examinee NfL(ua) is a single number. Thus, by averaging over ()

the task of estimating the ability level for each examinee has been eliminated. In

other words, the estimation of nuisance parameters can be avoided by taking the

expectation of the likelihood function with respect ta these parameters.

3.2 Using the Algorithm

3.2.1 The E-phase

The ultimate objective of the E-phase is the cornputation of the marginal like­

lihood for ail examinees, called the grand marginal likelihood. Assuming that

examinees respond to iterns independently of one another, the grand marginal

likelihood is
N

J'vIL(U) = II !vIL(ua ).

a=l

In order to compute this quantity, it is first necessary to evaluate the integral in

(3.1). Ta do 50 requires the application of sorne numerical method for approxi­

mating an integral. Nlore specifically, sorne quadrature rule must be invoked 50

as to replace the integral in (3.1) by a weighted sumo With w representing sorne

fixed weight function, this sum is of the farm

Q! w(x)f(x)dx ~ L wqf(xq).
q=l

Quadrature weights wq and quadrature points xq can be selected in a number of

ways, with the intention of finding a satisfactory approximation to the integral.

The details of selecting a quadrature mIe specifie ta the present case are deferred

to section 3.2.4. With the application of the quadrature rule, the integral in (3.1)
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translates to
Q

NfL(ua) ~ L wqL'uaIOq).
q=l

For the purpose of computational simplification, the log grand marginallikeli-

hood is preferable ta NfL(U), obtained by summing the log individuallikelihoods,

N

log.iVIL(U) = Llog.iVIL(ua ).

a=l

Invoking the quadrature rule yields

N Q
log NIL(U) ~ L log L wqL(uaIBq)

a=l q=l

N Q n

- L log L wq II ptaiCB)Qt-UaJ((J)
a=l q=l i=l

N Q n

- L ln L wqexp[L Uai ln ~(Oq) + (1- Uai) ln Qi(Oq)J,
a=l q=l i=l

the evaluation of which completes the E-phase.

3.2.2 The M-phase

In the NI-phase, the grand marginallikelihood computed in the E-phase is ma.xi­

mized with respect to the set of item parameters 1/Ji. There is a reason for working

with the grand marginal likelihood as opposed to the individual marginal likeli­

hoods IvIL('ua ). Any set of item parameters 1/Ji affects AIL(ua ) for ail examinees.

Thus, in order to obtain reasonable estimates of the item parameters 1Pï, infor­

mation is required on ail examinees, and this is provided by the grand marginal

likelihoad !vIL(U).

The item parameters are estimated using a maximum likelihood estimation

procedure, so that those values which maximize the value of AIL(U) are chosen

as estimates of the item parameters. In practice this amounts to the same thing as

ma.ximizing the mathematically simpler log !vIL(U) function over aH n parameter

values. For a particular item j, the ma~mizing values are those for which the

slope of log]VIL(U) will be zero, that is, for sorne fixed item index j the solution
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• to the equation

is sought.

Now

8logNIL = 0
81/1j

(3.2)

•

•

8 log NIL = L 1 L w
q
8L(ua IOq ). (3.3)

8'l/Jj a AiL(Ua) q 8Wj

Rearranging the partial derivative 8L(ua IOq )/âr/Ji on the right side and recognizing

that the parameter vector 1/1j affects only the jth item, ail items except the jth

can be taken outside of the product in (3.1) to obtain

aLeualOq) = [ft p;Ua. (Oq) Qt-Ua•(Oq)] aPjUa
j
(Oq)Q~-U'i (Oq) .

8'l/Jj i#j 8'l/Jj

Now the product taken over all items can be recovered by multiplying both sides

by
1 = PjUaJ(Bq)Q~-UaJ (Bq)

PjUai (Bq)Q~-UaJ (Bq)

and then simplifying to get

- rit; p;Uo. (Oq)Q;- ...•(Oq)j a[Pt
j
(O~~r"" (Oq)] 1[p/aj(Oq )Q~-Uai (Oq)1

_ L(uaIOq)a[p/"i (O~~ruaj (Oq)] 1[Pj
Uoj (Oq)Q~-Ual (Oq)]

(3.4)

Ignoring the quantity L(uaIBq ) for the moment and expanding the partial

derivative in the fraction yields

a[PjUa
i
(O~~rUoi (Oq)] 1[PjUaj(Oq)QtUaj (Oq) 1

= (1 _' .)p':aJ(O )Q~Uai(B )âQj(Oq)
Ua]] q J q 81/1j

. pUai (li )Q-UOJ(ll )P-1(1l)Q (0 )8Pj (Oq)+ Uaj j U q j U q j Uq j q 8 .Wj
Cancelling out like terms gives
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Substituting 1- Pj(Oq) for Qj(Oq) in the partial derivative and simplifying the

resulting expression leads to

sa that

Substituting the expression on the right into (3.3) results in

and exchanging the order of the two summations yields the expression

8 log fl;IL

8'l/Jj

(3.5)

Two quantities within (3.5) have a natural interpretation. "Vhat shall be

denoted as

(3.6)

can be interpreted as the expected number of examinees assoeiated with Oq, sinee

the quantity being summed is an estimate of the probability of examinee a having

Bq. Second, the quantity which shall be indicated by

(3.7)

is the expected frequency of right answers for item j for examinees associated with

Bq.

Substituting for these two quantities, (3.5) simplifies to

•
alog !vIL = "[J. _ P.(O )N.] ôltj(Bq) = o.

8-./. . L- Jq J q q 8,,1..
0/) q 0/)
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According to the binomial distribution, the log likelihood of getting fjq suc­

cesses in Nq trials given probability of success ~q is

Q

log L j = L fjq log Pjq + (Nq - fjq) log Qjq, (3.9)
q=l

and taking the derivative of this expression with respect to ltVjq and setting it ta

zero yields exactly (3.8). Thus, (3.8) essentially describes a binomial sampling

experiment.

The M-phase then involves solving equation (3.8) for each item j, regarding Nq

and fjq as fixed. As saon as estimates of the parameter vectors 1/1j are obtained in

this wI-step, the E-phase is revisited and the marginallikelihoods for each exarn­

inee are recomputed using the most recent parameter estimates. The algorithm

iterates between the E- and NI-phases until neither the marginallikelihoods nor

the parameters Wj change significantly from one iteration ta the next.

3.2.3 Starting values for the item response functions

The first iteration of the ENI algorithm requires sorne provisional estimates of

the item parameters and the item response functions. Estimates of P(Oa) can be

obtained as follows:

1. Compute N standard normal quantiles Za = cI>-l[l/(lV + 1)].

2. For each quantile, compute the index ta such that Oq-l +Oq :5 2za < Oq+f}q+l,

or assign the index of 1 or Q as appropriate.

3. Compute the total scores X a = Li Uai.

4. Sort the examinees with respect ta the total scores I a -

5. For every i and q, set ?iq to the average of that item's scores, which are

either 1 or 0, for the score-sorted examinees with index ta = q.

Estimates with values of aor 1 are replaced by values such as 1/2N and 1-1/2N,

respectively.
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3.2.4 Approximation by quadrature

As stated above, sorne quadrature rule must be ernployed to estimate the integral

! L(ua I8)g(B)dB

in the E-step. The question is which rule will yield a satisfactory approximation

to the integral.

Gaussian quadrature considers formulas of the form

b Qla f(x)dx ~ L wqf(xq),
a q=l

where the quadrature points Xll X2,.'" xQ and weights Wl, W2,.'" WQ are chosen

ta minimize the expected error obtained when performing the approximation for

some arbitrary function f. Thus, Gaussian quadrature chooses the points for

evaluation in an optimal manner.

To determine the accuracy of the rule in (3.10), it is typicallyassumed that

the best choice of values is that producing the exact result for the largest class of

polynomials. Now (3.10) is exact for the class of polynomial functions if and only

if it is exact for the monomials f(x) = 1, X, •.• ,xQ (Phillips & Taylor, 1996). Ta

be exact for f(x) = xi, it is required that

b Q1x!dx=LWq~'
a q=l

Now the left side of (3.11) is known, which implies that by takingj = 0, 1, ... , 2Q­

1, 2Q equations can be set up to solve for the 2Q unknowns wq and x q , q =

1, ... ,Q. If these equations have a solution, then the resulting quadrature rule

will be exact for ail polynomial functions of degree 2Q - 1 or less.

There aiso exist Gaussian quadrature formulas of the form

b Q1w(x)f(x)dx ~ L wqf(xq).
a q=l

As ahove, weights wq and points x q can he found 50 that (3.12) is exact for aIl

polynomial functions of degree 2Q -1 or less. As this paper is concerned with an
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Figure 3.1: Gauss-Hermite quadrature weights and points. This quadrature rule
provides a number of quadrature points in areas where there are no data availabIe
to estimate the integraL In this case, -5.5 ~ x q ~ 5.5, whereas () has been fi.xed
ta range from -2.5 to 2.5.

• infinite integral, the Gaussian rule takes the form

1
00 Q

w(x)f(x)dx ~ L wqf(xq).
-00 q=l

(3.13)

•

The selection of w(x) = exp(-x2 ) gives the Gauss-Hermite quadrature rules. The

Gauss-Hermite rules have been used by Bock and Aitkin (1981) to estimate the

marginaIlikelihood, and so they were empIoyed here as weIl.

The optimal weights wq and points xq obtained with this method are shown

in Figure 3.1. It is clear than in this case -5.5 ~ xq ~ 5.5, whereas () has

been fixed to range from -2.5 to 2.5. Thus, the Gauss-Hermite quadrature rule

provides a number of quadrature points in areas where there are no data available

to estimate the integral, and using these wBights and points did not produce

reasonable estimates of the item response functions. As a result, the Gauss­

Hermite quadrature rule was abandoned in exchange for a rule that allows for

control over the location of the quadrature points so that these points can be

restricted to be equally spaced about the desired range.
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Figure 3.2: Optimal weights for fixed xq • In comparison ta Gauss-Hermite, these
quadrature points are bounded by ±2.S. However, with the application of this set
of weights, the convergence of the algorithm became unstable.

In order to eliminate the extreme quadrature points t the points were forced to

be equally spaced and only the weights were optimized with respect to the set of

Q polynomial functions. That is, for each test function fi(X) = Xi-l, i = l, ... ,Q,

the relation

['" ~e-%2/2/;(x)dx =t wqJ;(xq)
-00 v21r q=l

was satisfied. The weights obtained by this rule are shawn in Figure 3.2. As an

improvement, the quadrature points are bounded by ±2.5. However, with this

choice of weights the convergence of the algorithm becarne unstable.

The reason for this instability is that the set of weights used are optimal with

respect to the class of polynomial functiollS. Thus, although they may work weIl

with the polynomialst this Inay not he the case with other classes of functions.

In particular, the current application involves integration over the conditional

likelihood functions, which do not look like polynomials (see Figure 3.3). For a

particular examinee, the conditional likelihood function is a single-peaked curve

with its maximum at the examinee's ability level ea and tails quickly approaching

48



• 0.9

08

0.7

0.:1

0.2

o.•

.is -2 -1.5 -1 -4.5 0 05
Il

I.S 2 25

•

•

Figure 3.3: The likelihood for a simulated examinee's data in a 3PL model test,
rescaled to have a maximum of one. This function more closely resembles a B­
spline than a polynomial.

zero in both directions. Thus the collection of lV conditional likelihood functions

will be a set of peaks whose locations vary across the () scale.

vVhat is desired is a set of weights that work weIl with a set of test functions

resembling the functions which will be integrated. The class of B-spline basis

functions serves this purpose weIl (see Figure 2.4). Using the quadrature rule

(3.14) where the fi(X) are the B-spline basis functions, the weights shown in

Figure 3.4 were obtained. As with the optimal weights, these are bounded by

±2.5 but with the advantage that convergence of the algorithm became stable.

3.3 Regularizing the Fit

VVhen using a basis function expansion ta derive smooth estimates of the item

response functions, there is another issue which merits consideration. This is a

consequence of the relationship between the number of basis functions and the

degree of fit ta the data. In particular, as the number K basis functions increases

the fit to the data improves. However, the fitted item response function also
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Figure 3.4: Quadrature weights using B-spline basis test functions. The dotted
line represents the quantiles of the standard normal distribution. As ,vith the
optimal weights, these weights are bounded by ±2.5 but with the advantage that
convergence of the algorithm became stable.

becomes less smooth. vvbat is needed is a compromise between fit ta the data

and the smoothness of the estirnate.

Ramsay and Silverrnan (1997) describe the regularization or ro'Ughness penalty

for forcing a high-dirnensional basis expansion to be srnooth. A cornmon measure

of the roughness of a function is given by its integrated squared second derivative~

where Dm f(x) is the mth derivative of f(x). This quantity assesses the degree

of curvature in functian J, or equivalently the degree ta which f deviates from a

straight lîne. Functions with a high degree of curvature will manifest large values

of PEN2(f) since their second derivatives are large across the range of interest.

Establishing a compromise between fit and srnoothness then amounts to mod­

ifying the model fitting criterion log AlL(U) to the following penalized negative

log likelihood function:

• F~(U) = -logML(U) + Àt ![DmW;((JWd(J,
i=l

50
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where À is a smoothing parameter. For the case where m = 2, f[D2Wi(0)J 2dO is

a measure of the total curvature of Wi (0). The more variable the function the

larger trus quantity is going to be, and the closer the function to a straight line

the doser the value of the total curvature is to zero. The degree to which the

fitting criterion is to be penalized by the curvature of the vV's is controlled by

smoothing parameter À. For À close to zero, the penalty is relaxed and so the

data is fit without any regularization. However, as À increases the curvature of

the W's becomes exceedingly more significant in determining the value of F). (U).

Thus there needs to be less curvature in the W's in order to obtain its minimum

until ultimately, as À approaches infinity, the vV's are forced to be linear. In the

IRT case, linear W's are equivalent to the two-parameter logistic mode!.

The latter statement describes an important problem when smoothing with

D2. In penalizing the second derivative of the vVi's, the functions are forced to a

straight line as À approaches infinity. For linear VV(0), P(0) corresponds to the

two-parameter logistic mode!. The properties of actual test items, however, are

often insufficiently described by the 2PL model (see section 1.3.2). In particular,

the 2PL model assumes that the item response curves have a left asymptote equal

to zero. Responses to real test items, however, may be a result of guessing, in

which case the item response function will manifest a left asymptote which differs

from zero. Thus it would be more appropriate to apply a roughness penalty that,

when applied heavily, smooths P(O) towards the three-parameter logistic mode!.

In smoothing towards a 3PL model, there are important features of these

curves that must be captured by any expansion of the vV(O)'s. The functions

are monotone increasing with right asymptote 1 and left asymptote c, thus the

possibility that dltV1dO = 0 for large negative and large positive B must he ac­

commodated. Furthermore, in regions where there is likely to be little data, in

particular large positive and large negative values of 0, vV(B) should be linear, or

alternatively, d{JV1dB should be constant.
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• In order to accommodate these features, Wang (1993) used the basis

4Jl(8) - 1

4J2(8) - 8

4J3(8) - ln(eo + 1). (3.17)

Function W (8) is then expressed as

3

vV(8) = L CkcPk(fJ).
k=l

(3.18)

•

•

Figure 3.5 displays three item response functions P(8) generated by the 3PL model

and the corresponding W(8)'s. The proximity of the approximated vV(8)'s to the

actuallogit of the P(8)'s demonstrates the appropriateness of the basis functions

in (3.17) for capturing the essential characteristics of these curves. For example,

for large positive values of 8, ln(eO +1) approaches 8 and sa W (8) is asymptotically

linear on the right and hence the derivative of W (8),

d~V eO

dO = C2 + C3 eO + 1'

is constant. Similarly, for large negative values of 8, dWjd8 is asymptotically C2­

The roughness penalty FÀ(U) that will be used is of a more general form (see

Heckman & Ramsay, 2000), replacing the D 2 in the original penalty term (3.15)

,vith a linear differential operator L,

For the purpose of smoothing towards the 3PL model, weighting functions

CXj (0) are chosen such that any function which is a linear combination of the basis

functions (3.17) will yield a value of L~V equal ta zero. This amounts to choosing

cxj(8) such that, for j = 1,. _. ,3,

The weight functions are then determined by setting up a system of three linear

equations, one for each basis function <pj(8), and solving for the CXj(O). The result
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Figure 3.5: The solid lines in the left panel are three 3PL item response functions
P(O) with a = l, c = .18 and varying values for location parameter b = -1.5,0,1.5.
The solid Hnes in the right panel are the corresponding W(O). For each curve, the
nearest dashed Hne indicates the approximation based on the three basis functions
in (3.17) .

is

- Ql(O)=O
eO - 1

- eO + 1· (3.20)

Thus, the new roughness penalty is

[

0 ] 2PENL(~V) = 100

e(J - 1n 2w + D3vV dB
-00 e + 1

and the ne\v penalized negative log likelihood function,

n 100 [eO 1 ] 2F).(U) = -log}vfL(U) + À L °- D2~Vi + D3~Vi dB,
i=l -00 e + 1

(3.21 )

(3.22)

•
will, when appLied heavily, force the HIi(B) to conform to something like the 3PL

mode!.
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Chapter 4

Example Analyses

The examples in this chapter are designed to show how the nonparametric estima­

tion of item response functions performs in practice. The first section illustrates

its performance for simulated data, and the second presents results for an actual

set of testing data. In bath instances, modest sample sizes are involved in arder

to display results in a demanding environment.

• 4.1 A Simulated 3PL Test

•

For the simulated data, the goal is to assess the performance of the algorithm

with respect ta three variables:

1. the number of test items n,

2. the number of examinees N 1 and

3. the value of smoothing parameter À.

These factors are considered to be the most important for fitting the data weIl.

As the number of items increases, more information is available regarding an

individual examinee's ability level Ba allowing for a better estimate of the item

response function at Ba. A similar argument can he made for increases in the

number of examinees. Smaller values for smoothing parameter À imply that the

shape of the curve is more and more dependent on the actua1 data 50 that in the
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extreme case, the curve fits the pseudo-probabilities fjq/Nq as close as the basis

system will allow. On the other hand, larger values for.À result in smoother curves

that depend on the data less and less. In the latter case, the curves become doser

ta 3PL curves as .À increases. Simulating a 3PL test, it is expected that higher

values for .À will produce curves that are doser to the true item response curves.

Three levels of the number of items (n = 25,50,100) and the number of ex­

aminees (N = 500,1000,2000) parameters were examined, along with four levels

of the smoothing parameter (À = .01,1,10,100). The examinee ability levels f)

were generated according ta the standard normal distribution. Three sets of 3PL

item parameters were randomly generated which produced three tests, one each

of a 25, 50 and lOO-item test. These item parameter remained fixed across ail

replications. For each test, 25 simulations were run \vithin each carnbination of

the levels of N and .À, resulting in a total number of 900 simulations. For each

simulation, 14 B-spline basis functions of arder 5 were used with 21 quadrature

points and the roughness penalty described in section 3.3 \Vas applied.

Goadness of fit is assessed as the square root of the average squared difference

between the estimated and actual curve values. This quantity shall be referred ta

as the root mean square error t or RNISE:

RlvISEi = J[~(f)) - ?i(f))]2,

Taking this average over the entire () range would yield a global measure of

fit, whereas a more informed decision regarding the performance of the algorithm

should assess the fit of the estimates at varions locations along the f) scale, as it is

expected that the curve estimates will be better in sorne areas than in others. For

instance, sorne deviation of the estimate from the true curve is expected in the

region of the lower ability levels. A breakdown of the algorithm in the estimation

of the left asymptote cau be attributed to the assumption that ability level is

normally distributed. In the instance of 500 examinees, this amounts ta the

availability of approximately 12 pieces of data with which to estimate the lower

tail end of the curve (Le., in the region () ::; -2). Although a similar argument
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Table 4.1: ANOVA Table for f) = -2.
Source SSx10J dJ. ~ISx10J F Prob>F
À 42.03 3 14.01 164.8 0.000
N 277.52 2 138.76 1632.4 0.000
n 65.90 2 32.95 387.6 0.000
ÀxN 1.68 6 0.28 3.3 0.003
Àxn 5.69 6 0.95 11.2 0.000
IV x n 3.85 4 0.96 11.3 0.000
À x Nxn 0.90 12 0.08 0.9 0.565
Error 73.44 864 0.09
Total 471.02 899

Table 4.2: ANOVA Table for B= -1.
Source SSx10J dJ. NISx103 F Prob>F
À 6.21 3 2.07 197.1 0.000
lV 47.02 2 23.51 2236.3 0.000
n 0.43 2 0.21 20.2 0.000
À x N 0.28 6 0.05 4.5 0.000
Àxn 0.20 6 0.03 3.2 0.004
lV x n 0.05 4 0.01 1.1 0.363
À x Nx n 0.28 12 0.02 2.2 0.010
Error 9.08 864 0.01
Total 63.54 899

may be made for the region where B 2:: 2, less deviation is anticipated here since

the right asymptote is constrained ta a value of unity.

The RNISE between the true curve P(B) and the estimate P(B) was obtained at

five different B values: -2, -1, 0,1,2. An ANOVA was performed on this measure

for each of these B values. The results are given in Tables 4.1 through 4.5.

Factor standard deviations

To assess the importance of the significant effects, estimates of the factor standard

deviations were calculated for each effect A at each level of B. vVhere Cij = Ilj -Il

are the factor effects and a is the number of levels within effect A, the factor
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Table 4.3: ANOVA Table for f) = o.
Source SSx10J d.f. MSx103 F Prob>F
À 0.69 3 0.23 25.6 0.000
lV 33.63 2 16.82 1875.5 0.000
n 1.31 2 0.65 72.8 0.000
Àx N 0.07 6 0.01 1.3 0.237
Àxn 0.04 6 0.01 0.7 0.676
lV x n 0.30 4 0.08 8.4 0.000
À x Nx n 0.09 12 0.01 0.9 0.590
Error 7.75 864 0.01
Total 43.87 899

Table 4.4: ANOVA Table for () = -1.
Source SSx103 d.f. ~ISx 103 F Prob>F
À 1.47 3 0.49 45.1 0.000
lV 39.37 2 19.68 1811.6 0.000
n 1.39 2 0.07 64.1 0.000
À XLV 0.36 6 0.06 5.6 0.000
Àxn 0.18 6 0.03 2.7 0.012
Nxn 0.16 4 0.04 3.7 0.005
ÀX1Vxn 0.15 12 0.01 1.2 0.309
Error 9.39 864 0.01
Total 52.47 899

Table 4.5: ANOVA Table for () = 2.
Source SSx 103 dJ. MSx103 F Prob>F
À 10.54 3 3.51 96.0 0.000
N 68.64 2 34.32 937.5 0.000
n 5.81 2 2.91 79.4 0.000
Àx N 2.38 6 0.40 10.8 0.000
Àxn 1.71 6 0.29 7.8 0.000
lV x n 0.57 4 0.14 3.9 0.004
À x lV x n 1.09 12 0.09 2.5 0.003
Error 31.63 864 0.04
Total 122.37 899
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Table 4.6: Factor Standard Deviations x 102•

()

Effect -2 -1 0 1 2

" 0.6813 0.2621 0.0858 0.1264 0.3404
N 1.7555 0.7226 0.6111 0.6612 0.8729
n 0.8546 0.0670 0.1196 0.1235 0.2525

"x N 0.1142 0.0491 0 0.0576 0.1549
"xn 0.2400 0.0391 0 0 0.1287
Nxn 0.1975 0 0.0542 0.0362 0.0685
"xNxn 0 0.0412 0 0 0.0852

standard deviations are defined as

, _ JLi=l Ct]
UA - •

a

The estimates of the standard deviations for each effect and for each value of (j are

given in Table 4.6, magnified by a factor of 102
• The estimates for nonsignificant

effects are denoted by 0.

It is the three main effects that appear to have the largest standard deviations

across ail values of (J. The parameter having the greatest effect is the number of

examinees lV, particularly when B = -2. In this case, the standard deviation for

the number of examinees is more than two times greater than that for the number

of items and smoothing parameter À.

Across the various effects, the standard deviations are greatest for () = -2~

which was expected. vVith only 500 examinees, precise estimation of P(0) is

less likely in this region since there are not more than 12 or 13 pieces of data

available on the average. Increases in smoothing parameter À force the estimates

ta look more and more like 3PL curves, and so possibly ta look like the 3PL curves

that generated the data. Any increases in sample size or number of items would

provide more information on P(B) at this ability level, and 50 greatly effect the

estimation of the curve. Although this argument would seem to imply a sirnilar

finding for the effect sizes for () = 2, these values do not match those for B = -2,

although they are the next largest in magnitude. Unlike the left asymptote, the

58



•

•

•

right asymptote does not vary but instead is forced ta unitY as À increases. Thus

there is less variation in the estimation of the right asymptote than there is for

the left asymptote.

For most effects, the factor standard deviations are lowest at (J = o. Having

randomly sampied ability levels (} from a standard normal distribution, with 500

examinees there are roughly 191 pieces of data available between () = -0.5 and

() = 0.5 with which to produce an estimate of the item response function within

this region. With this amount of data, it is likely that the estimate of the item

response function here is quite good to begin with so that changes in the number

of items, number of examinees or the degree of smoothing would not produce

an improvement in fit as drastic as in the extremes of (). This notion is further

supported in observing the factor standard deviations of the main effects for () =

-1 and () = 1. In general, the magnitudes of these values are greater than at

() = 0 (where there is the greatest amount of data available)7 but less than their

respective extremes (where the least amount of data is available). An argument

similar ta that made regarding the disparity among the standard deviations for

() = - 2 and () = 2 cau be used to expIain the greater standard deviations for

() = -1 as compared ta () = 1.

Interaction effects

In observing the factor standard deviations, it is clear that the main effects show

more variation than do the interaction effects. However, the latter are a valuable

source of information regarding the perfonnance of the algorithm. Since an three

variables are assumed ta contribute considerably ta the fit, it is important ta

examine the interactions among them so that appropriate decisiolls can be made

regarding, for example, the value of À. For instance, is there a particular value of À

that should be applied generally, or should the value of this parameter be adjusted

according to sample size N? In this section, all interactions which were found ta

be significant are discussed, such that questions of this sort may be addressed.
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Figure 4.1: Plots of the tw<rway interaction between smoothing parameter À and
sample size N at () = -2, -l,land 2. The dashed line represents an N of 500,
the solid line an lV of 1000, and the dotted line an lV of 2000.

The À x N two-way interaction \Vas significant at allieveis of f) except () = o.
Figure 4.1 shows the plots of the interactions at the relevant () levels. The plots

vary in terms of the y-a.xis labelling. The fuvISE is greatest at f) = -2 and sa

there is a greater range for this pLot as compared ta the others. The range is also

slighter greater for () = 2, whereas the plots for () = -1 and () = 1 are roughly

the same. Aside from the disparity in range, there are sorne similarities arnong

the graphs. NIost obvious is that for each Line representing a particular number of

examinees lV, the greatest decrease in RJvISE occurs in moving from a À of .1 ta

a value of unity. A value of ,\ = .1 appears ta be tao permissive a value for tms

parameter, and the data is undersmoothed.

Another similarity across the fJ range is the pattern for N = 2000. For aU (),

it achieves its greatest decrease in RMSE in moving from À = .1 to l, after which

R1tISE does not further achieve a significant decrease. Similarly, for iV = 1000,

the greatest decrease in RNISE occurs when moving from À = .1 ta l, and there

is no further significant decrease from ,\ = 1 ta 100. For N = 500, a significant

decrease in RwlSE occurs from À = .1 ta l, and there is no significant change from
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a À of 1 te 10. The real variation in N = 500 cornes in moving from À = 10 to 100.

For B = -2, the error decreases, but for ail other B values, the RlvISE increases.

One possible explanation as to why an increase in À would worsen the fit only

at the upper end of the 0 scale is as foilows. For all iV, the most troublesome

region in which to obtain a close fit to the true curves is in the vicinity of B = -2.

This is due to the variability permitted in the value of the left asymptote. It

may vary considerably from zero. In contrast, the right asymptote does not differ

from unity. Increasing À has the effect of forcing ?(B) ta look more and more like

a 3PL curve, and sa in the upper regions all curves are forced to have an right

asymptote of one. In the region where 0 = -2, not only is there little data \Vith

which to estimate ?(O), but the curve may also vary greatly from zero. Thus,

a high degree of smoothing actually serves to improve the proximity of ?(O) to

P(O). At the other extreme, ?(O) is already close to P(B) when À = 10, since

there is little allowance for variation at the right asymptote. As À increases, the

estimated curve is oversmoothed and so made to be flatter than the target P(O),

resulting in a increase in R.1vISE as À increases from 10 to 100.
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The .À x n interaction was found to be significant only at the () values of -2,

-1 and 2. Figure 4.2 displays the relevant graphs. Again, there is a greater range

(reflecting a worse fit) for the extreme () values as compared ta () = -1, with the

greatest range at () = -2. As with the number of exarninees parameter, for aIl

the values of n the greatest decrease in RwISE occurs with a move from .À = .1 ta

À = l, suggesting once again that À = .1 is tao loose a fitting criterion. The main

differences in pattern here are similar ta those noted for the interaction between

À and lV. Specifically, for () = -2, there is an overall decrease in RlVISE as À

increases, with the best fit for each distinct test occurring for À = 100 (although

none of the fits at À = 100 are significantly better than those at À = 1). A

smoothing parameter value this high for () = -1 and () = 2, however, has in

adverse effect on the closeness of the estimate to the true curve. In these regîons,

there is no significant reduction in RlVISE beyond À = L Thus, as with N, an

increase ta À = 100 improves the fit in regions where there is more opportunity for

variability (Le., (J = -2) but has the effect of oversmoothing the data in regîolls

allowing for less variability (e.g., where (J = 2) .
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Figure 4.4: Plots of the three-way interaction between smoothing parameter À,

sample size N and number of test items n at () = -1 and 2. The dashed line
represents an N of 500, the solid line an N of 1000, and the dotted line an N of
2000.

The lV x n interaction effect was significant at ail () levels except () = -1.

Figure 4.3 displays the relevant graphs. As with the interactions discussed above,

the ranges for both () = - 2 and () = 2 are greater than the others.

For aU values of fJ, the greatest decrease in RNISE cornes with an increase from

500 ta 1000 examÏnees. The decrease is particularly great for the 25 item test,

and is least noticed for the 100 item test. This difference is due to the increase

•

in the amount of information available on fJa' With more items there is more

information available with which to estimate F(fJ). The fit improves further for

aU tests in moving from 1000 to 2000 examinees, although the change is slightly

less drastic as the move froln N = 500 to N = 1000. As with the number of items,

increases in the number of examinees also provides more information about ()a'

The three-way interaction was found to be significant at () = -1 and () = 2.

The plots of these interactions are shawn in Figure 4.4, where the interaction

between .À and N is displayed at each level of n. As it seerns ta be cornmon

throughout, the greatest decrease in RlVISE occurs when À moves from .01 to 1,
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and this is true for all levels of n .

The pattern for N = 2000 varies little across n or at the differing values of

o. There is sorne decrease in ~fSE as À changes from .1 ta l, but there is little

change in fit with any further increases in À, which is not surprising. Given such

a large sample size, there is a sufficient amount of data with which to estimate

P(8), and increases in À and/or the number of items can contribute Little to an

already close fit.

The pattern for N = 1000 resembles that for N = 2000. It is the sample size

of 500 which seems to be the source of the three-way interactions. For both values

of 8, the best fit occurs at À = la if n = 25. However, if n = 50 or 100, the best

fit occurs when À = 1. It might he the case that with N = 500 and n = 25: there

is minimal information available regarding Oa, and so a more stringent smoothing

parameter has a beneficial effect. But when n = 50 or 100, there is sufficient

information on Ba such that increasing smoothing parameter À from 1 to 10 does

little to decrease the &\tfSE. In fact, increasing À actually significantly worsens the

fit when 0 = 2, presumably due ta oversmoothing in the asymptote region, where

a certain amount of curvature is appropriate. In contrast, this oversmoothing

effect is significant at 0 = -1 only when n = 25.

4.1.1 Examples of Estimated Item Response Functions

Figure 4.5 shows various estimates of the item response functions for two items

with fixed À and test length and varying values for the number of examinees.

These items in particular were chosen as they appear to best represent the sort

of variation found throughout the various simulated tests. 'vVhen sample size

N = 500, the left asymptote for both curves is poody estimated. There is also

sorne discrepancy between the true curve and the estimate in the center region of

the f) scale. For both items, the estirnate improves when N = 1000, although the

lower ends of the curves are not approximated as weil as the center and upper

regions. There is a slight improvement when N = 2000, although this increase in
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Figure 4.5: The estimated item response functions for items 10 and 20 varying
across the number of examinees with .À = 1 and n = 50. The dashed curve rep­
resents the true item response function, the solid curve is the estimated function,
and the circles are the probabilities !jq/Nq. The estimates in the first column
are based on a sample size of 500 examinees, those in the second column on 1000
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Figure 4.6: The true and estimated curves for item 17 for varying values of .À with
N = 1000 and n = 50.
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Figure 4.7: The true and estimated curves for items 10 and 18 for various test
lengths, with À = 1 and lV = 1000. The estimates in the first column are based
on a 25 item test, those in the second column on a 50 item test, and those in the
third column on a 100 item test.

sample size adds littie ta the already excellent estimates when N = 1000.

Figure 4.6 displays the estimated item response functions for an item for dif­

ferent degrees of smoothness with fixed sample size and test length. The closeness

of the estimate to the true curve appears to increase as À increases, the closest fit

achieved when À = 10. It seems as though the data is over-smoothed at À = 100,

where the right asymptote is pulled away from the true item response function

and doser ta unity.

Figure 4.7 displays the item response functions for two items estimated at

various test Iengths for fixed sampIe size and À. As the number of test items

increases, there is more information avaiIable on (}, hence it is expected that the

RNISE decreases as n increases. However, Figure 4.7 seems to tell a different

story. Clearly the lOO-item test results in the best estimate for item ID, but it is

questionable whether the 50-item test is an improvement over the 25-item test or

vice versa. For item 18, the 50 item test provides an excellent estimate of P(8)

and obviously an improvement over the 25-item test. But the lOO-item test does
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Table 4.7: Confidence Intervals x 104
•

~Iean Lower Mean Upper
() Comparison baund Difference Bound

J.L··l - J.L..2 102.43 124.59 146.75
-2 J.L··l - J.L··3 186.11 208.27 230.43

J.L··2 - J.L··3 61.52 83.68 105.84

J.L··l - J.L··2 2.09 9.88 17.68
-1 J.L··1 - J.L··3 8.96 16.75 24.55

J.L··2 - J.L··3 -0.92 6.87 14.66

J.L··l - J.L··2 10.29 17.49 24.69
0 J.L··l - J.L··3 22.12 29.32 36.51

J.L··2 - J.L··3 4.63 11.83 19.02

J.L··l - J.L··2 14.09 22.02 29.94
-1 J.L··l - J.L··3 21.34 29.26 37.18

J.L··2 - Jl··3 -0.68 7.24 15.17

J.L··l - Jl..2 12.44 26.98 41.52
-2 J.L··l - J.L··3 47.53 62.07 76.61

J.L··2 - J.L··3 20.55 35.09 49.63

not improve on the 50- item test, even though it has more information with which

to estimate the true curve.

Although the ANOVA revealed a significant effect for the number of items

parameter across ail values of (), the curves in Figure 4.7 suggest that the marginal

means for the number of items variable may not differ significantly from one

another. Furthermore, the curves also bring ta light the possibility that Rl'ISE

may not have a negative linear relationship with the number of test items. Ta

address these issues, multiple comparisons among the marginal means for the

number of items variable were tested at each level of (). Alpha \Vas set to .05 and

adjusted using the Bonferroni procedure to campensate for the multiple tests.

The confidence intervals for the mean differences are displayed in Table 4.7.

AlI but two mean differences were significant. In addition, the estimated values of

the means decreased (Le., RNISE decreased) as the number of test items increased,

and this was true for aIl values of () (see Table 4.8) .
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Table 4.8: ~Iean Estimates for n x 102

() J.l··l J.l··2 J-L··3
-2 8.31 7.06 6.22
-1 2.86 2.76 2.69

0 2.38 2.21 2.09
1 2.58 2.36 2.28
2 3.82 3.55 3.20

GMAT Data

•

•

The data being analyzed here came from the quantitative subscale of the Graduate

lVlanagement Admission Test (G~IAT) administered to 2735 individuals. The

subscale consists of 25 multiple choice items, each with four response options. As

with the simulated tests, this test was analyzed using 14 B-spline basis functions

of order 5 with 21 quadrature points. The analysis was performed four times, with

the value of smoothing parameter À varying for each iteration. The results for

several items where À = 1 are shown in Figure 4.8. The solid Une represents the

estimated item response function, the dashed line represents the starting values

used for the algorithm, and the circles are the probabilities !jq!Nq.

The estimated curve for item 10 possesses properties of an ideal item response

function. The curve is monotone increasing, 50 the probability of responding

correctly ta this item increases with ability level. The slope of the curve is highest

among average ability (J = 0, thus the item discriminates best among examinees

of average ability. However, this item provides little information about examinees

with ability levels greater than 1 and less than -l, regions where the slope of

the curve is shallow. Similarly, item 2 discriminates best among examinees of

lower than average ability since the slope of this curve is highest in the vicinity of

(J = -1.5, but provides no information for examinees having 8 > -0.5.

The properties of items 5 and 21 are less than ideal. Item 5 has a high guessing

level and may be labelled as uninformative. Even examinees of the lowest ability
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Figure 4.8: Items 2, 5, 10 and 21 of the GNIAT quantitative subscale for À =
1. The solid line represents the estimated item response function, the dashed
line represents the starting values used far the algorithm, and the circles are the
prababilities !jq/Nq.

have more than a 50% chance of choosing the correct response to this item. The

nonmonotonic nature of the estimated curve for item 21 also renders this item

•

uninformative. Initially, the probability of responding correctly decreases, attains

its minimum at 0 = -1. Thus for at least part of the population, the more

knowledgeable the examinee, the less likely he or she is ta respond correctly ta

this item. At 0 = 1 the curve changes direction and P(8) increases over the

remainder of the 8 range. Thus from 0 = -2.5 to about 8 = 0.5, examinees can

not be distinguished on the basis of P(O) alone since, for example, P(O = -2.5)

is approximately the same as P({} = 0.5).

Figure 4.9 displays the item response function for item 10 estimated at four

different levels of smoothing parameter À. As is evident in the wild behavior of the

curve for () < l, the function is insufficiently smoothed at À = .01. Clearly, more

smoothing is necessary in arder for the estimate ta be reasonable in this region.

The problem is resolved by decreasing the total curvature in setting À = 1. The

curve now resembles a typical 3PL curve and does not appear ta require further
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Figure 4.9: Item 10 of the GrvrAT quantitative subscale, estimated at four different
levels of .À.

•
smoothing. Additional smoothing only reduces the value of the left asymptote.

•
70



•

•

•

Chapter 5

Discussion and Conclusions

The approach to item response function estimation described in this thesis has

a number of benefits over current approaches. For one, the algorithm involves

nonparametric estimation of functions. This draws the focus away from item

parameter estimation, and more appropriately places it on the actual estimated

curves. Needless to say, item response theory should be concerned with the func­

tion representing the relationship between ability level () and the probability of a

correct response, P(fJ). Focussing on parameter estimation detracts one from the

essence of the theory.

Furthermore, nonparametric estimation does not accommodate any precon­

ceived notions of item response function behavior. There is relief from the as­

sumption that all items of a single test have the same shape features~ permitting

greater flexibility and variability in the functions across items. Any particular

item is free to manifest a shape that is either unusual or unexpected. For exam­

pIe, the current approach can accommodate nonmonotonic item response curves,

whereas the 3PL model would not.

Apart from its ability to fit arbitrary complexities of curves, the basis function

method allows for the user to control the smoothness of a result. This can be

accomplished either by adjusting the number of basis functions used, or by ad­

justing smoothing parametcr À as a control over sorne predetermined roughness

penalty. The benefits of the inclusion of a roughness penalty are twofold. First,
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it offers a reasonable compromise between the closeness of the estimate to the

data and the smoothness of this estimate. Both qualities are desirable, and so a

tradeoff between the two must be established. Second, the roughness penalty may

be modified sa as to allow for "intelligent" smoothing towards a low dimensional

baseline model that can be regarded as a sensible default. In the applications

presented here, the 3PL model was considered to be an appropriate default.

Also, as an alternative to CUITent estimation procedures, this approach avoids

the problem of large sampling covariance between parameter estimates encoun­

tered with BILOG and the uncertaintly regarding the consistency of paramater

estimates, as weIl as their large standard errors when using LOGIST. However, as

in BILOG, use of the EM algorithm eliminates the estimation of the individual

examinee abilities. This has the advantage of increasing the data-to-parameter

ratio, or in other words, increasing the amount of information on () with a corre­

sponding increase in the number of parameters to be estimated. In addition, trns

method is not computationally demanding. AlI of the analyses presented in this

thesis were performed in less than one minute.

The primary limitation of the current approach is that small sample sizes

(~ 500) suifer from poor item response function recovery, particulary at the low

end of the escale. AIso, the presence of interactions among the three variables

examined here presents a challenge in deciding upon a suitable level for À. In

many of the situations a value of À = 1 seems appropriate, whereas in others this

value should be increased. Still, there are fits that improve little over what is

achieved when À =.1. Perhaps the most significant drawback is that differing

values of À are optimal for different regions on the escale for a single test or item.

Often, a curve is well estimated when À = 1 for all () except e~ 2.

A future direction of research then is ta examine the possibility of specifying

À separately for different regÏons of a curve. With this added flexibility, À can

be increased in areas where the data tends to be undersmoothed, and decreased

where oversmoothing takes precedence. At the very least, it should be possible to
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adjust À separately for each item of a particular test.

This may be important for expansion of the CUITent model to accommodate

polytomous data. For a polytomous item, m curves will need ta be estimated,

one for each of m possible options for that item. Options selected by low ability

examinees will require more smoothing than those favored by examinees with

average ability. Among other considerations, the roughness penalty may need

adjustment in the polytomous case, as smoothing ta a 3PL model may not be

appropriate.

Despite its limitations, the future of the procedure described here is promising.

It overcomes severa! of the shortcomings of the parametric models, allows for much

user-controlled flexibility, and has the potential to provide these benefits beyond

the realm of dichotomous test items.
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