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ABSTRACT

The high incidence of pulmonary disease in critically ill patients necessitates new
and improved techniques for pulmonary monitoring and thoracic imaging. To investigate
pulmonary monitoring techniques using pressure and flow signals, I developed a
comprehensive computational model of subjects breathing spontaneously or with the
support of an assist-ventilator. The model was used to quantitatively assess measurement
techniques for dynamic intrinsic positive end-expiratory pressure (PEEP;) and inspiratory
work of breathing. The results demonstrate that some means of correction for both
expiratory muscle activity and cardiogenic oscillations on esophageal pressure is
necessary if dynamic PEEP; and work of breathing are to be measured accurately on-line.
[ also conclude that the discrepancies between static and dynamic PEEP; are caused by
heterogeneity of the expiratory flow limitation. An adaptive filter to reduce the
cardiogenic oscillations on esophageal pressure was developed and validated in a
computer simulation. In four intensive care patients, the adaptive filter markedly
attenuated the apparent cardiogenic oscillations and reduced the standard deviation of the
measured PEEP; by 57%. Investigation of the interactions between patients and a pressure
support ventilator using the computer model confirmed our presen: understanding of
patient-ventilator asynchrony and indicated that patient and ventilator form a highly

nonlinear dynamic system, so that the optimal ventilator settings most likely vary between
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patients and with time. In the second part of this thesis, I investigated the importance of
inaccuracies in conventional Finite Elements for thoracic Electrical Impedance
Tomography (EIT) imaging. Augmenting the number of first-order Finite Elements did
not efficiently reduce these inaccuracies. A computer simulation suggested that the
accuracy of the forward solution needs to be improved by at least 30 dB before useful
static EIT images can be obtained and showed that neighbouring currents outperform
other single-source current patterns. The potential usefulness of a central reference
electrode was demonstrated. Finally, I derived higher-order isoparametric Finite Elements
with space-variant conductivity for EIT. In a preliminary study, a simple implementation
of these Finite Elements improved the accuracy of the EIT forward solution by up to 15

dB.
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ABREGE

La forte incidence des maladies pulmonaires entre les patients de soins intensif
nécessite des nouvelles techniques pour le monitoring pulmonaire et I’imagerie
thoracique. Pour étudier les techniques du monitoring pulmonaire utilisant les signaux de
pression et de débit, j’ai developpé un modéle informatis€é d’un sujet respirant
spontanément ou en ventilation assistée. Ce modéle a été utilisé pour étudier
quantitativement les techniques de mesure de la dynamique pression positive intrinséque
de fin d’expiration (intrinsic positive end-expiratory pressure, PEEP;) et le travail
inspiratoire. Les résultats démontrent qu’une correction est nécessaire aussi bien pour
I’activité des muscles expiratoires que pour les oscillations cardiogéniques sur la pression
cesophageale si la PEEP; dynamique et le travail inspiratoire doivent étre mesurés avec
précision en temps réel. Il resulte aussi que 1’écart entre la PEEP; statique et dynamique
est lié a I’hétérogénéité de la limitation du débit expiratoire. Afin de réduire les
oscillations cardiogéniques sur la pression cesophageale, un filtre adaptable a été
développé et validé en simulation. Sur quatre patients en soins intensifs, ce filtre a
considérablement attenué les oscillations cardiogéniques et réduit de 57% 1’écart type de
la PEEP; mesurée. La recherche des intéractions entre patient et ventilateur en support de
pression utilisant le modéle informatisé confirme notre compréhension de I’asynchronie

entre patient et ventilateur et indique que ’ensemble patient-ventilateur forme un systéme

Abstracts 1ii



sévérement non-linéaire. Par conséquent, la mise au point du ventilateur varie
probablement entre les sujets et avec le temps. Dans la deuxiéme partie de cette thése, j’ai
recherché I’importance de [’inexactitude des elements finis conventionnels pour
I’imagerie thoracique utilisant la tomographie d’impédance électrique (TIE). Une
augmentation du nombre d’éléments finis n’a pas réduit suffisamment ces imprécisions.
Une simulation a suggéré que la précision des éléments finis doit étre améliorée d’au
moins 30 dB avant que des images valables de TIE puissent étre obtenues et a montré que
I’injection du courant par électrodes adjacentes est meilleure que les autres méthodes
d’injection utilisant une seule source de courant. Le potentiel d’une électrode de référence
centrale a été¢ démontré. Puis, j’ai dérivé des éléments finis isoparamétriques d’ordre élevé
avec une conductivité variant dans I’espace pour la TIE. Dans une étude préliminaire, une

implémentation simple de ces elements finis a amélioré la précision par environ 15 dB.
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PREFACE

The motivation of the research described in this thesis is the continued need for
improved methods and techniques to assess the status of the diseased respiratory system.

Chapter one of this thesis provides a brief introduction to the clinical context of this
work and states the goals of my research. In the literature review in chapter two, the
relevant aspects of respiratory physiology, pulmonary pathophysiology and ventilatory
support are reviewed, and the literature pertinent to monitoring dynamic hyperinflation
and to thoracic imaging using Electrical Impedance Tomography is discussed in detail.

In the research that I have conducted over the past three years, two methodically
distinct approaches were used. Chapter three describes advances in the field of pulmonary
monitoring, i.e., the analysis of pressure and flow data. Specifically, I developed a
computer model of the spontaneously breathing or assist-ventilated patient that is
described in detail in section 3.1. In section 3.2, this model is used to test the sensitivity
of measurement techniques for intrinsic positive end-expiratory pressure (PEEP;) and
inspiratory work of breathing to expiratory muscle activity and cardiogenic oscillations,
and to investigate the physiologic cause for discrepancies between static and dynamic
measurements of PEEP;. In section 3.3, an adaptive filter is developed to suppress the
measurement problems caused by cardiogenic oscillations that were identified in section

3.2. This filter was tested both on simulated data and on in vivo patient data. Finally, the
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computer model was used to investigate mechanisms that compromise the synchrony
between the patient and an assisting ventilator in section 3.4. Much of the research
described in chapter 3 of this thesis was conducted in collaboration with Dr. Stewart B.
Gottfried, who contributed his clinical expertise and exhaustive knowledge of the clinical
literature. Dr. Robert E. Kearney contributed his experience in the field of time-domain
identification techniques to the adaptive filter described in section 3.3. The patient data
used to test this filter were provided by Drs. Stewart. B. Gottfried and Peter Goldberg.

Chapter four of this thesis is concerned with the reconstruction of static Electrical
Impedance Tomography (EIT) images. EIT is a novel medical imaging technique that
could potentially provide a direct measure of dynamic hyperinflation in patients suffering
from severe airway obstruction, or of increased lung water due to congestion of the
pulmonary vasculature. Section 4.1 presents a critical analysis of the first-order Finite
Elements that are commonly used for EIT image reconstruction. In section 4.2, the effects
of the current pattern on the image quality and the utility of a central reference electrode
in the esophagus are investigated in a computer simulation. The results are discussed in
the context of the results of section 4.1. Finally, section 4.3 presents a modification of the
initial algorithm using a novel type of Finite Elements that are expected to overcome
some of the limitations of first-order Finite Elements.

The work described in chapters three and four represents original contributions to
knowledge in the fields of pulmonary monitoring and thoracic imaging. Each section of
these chapters is structured into sub-sections describing the motivation for the study, the
methods employed, the resulting data, and a discussion of these results in their individual
scientific context. Chapter five concludes the thesis and provides a list of the original

contributions that [ have made.

The publications listed below have resulted from the work described in this thesis.
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INTRODUCTION

Approximately 85% of the patients admitted to the intensive care unit (ICU) of the
Royal Victoria Hospital in Montreal are treated for pulmonary disease during their ICU
stay. Some of these patients remain mechanically ventilated over very long periods of
time, so that 10% of the ventilated patients account for as much as 90% of the ventilator
days. Severe chronic airway obstruction, usually as a consequence of chronic obstructive
pulmonary disease (COPD), is the most common cause for this long-term ventilator
dependence, and is one of the dominant causes for long term hospitalization.
Understanding and accurately monitoring the mechanical status of the respiratory system
of these patients is thus an important task in modern medicine.

Severe airway obstruction commonly leads to dynamic hyperinflation, which has
profound physiologic consequences that eventually lead to acute respiratory failure and
long term ventilator dependence. The precise physiologic mechanisms that are involved in
this process are reviewed in more detail in section 2.1. Dynamic hyperinflation can be
assessed either directly via thoracic imaging, or more indirectly by computing the
associated intrinsic positive end-expiratory pressure (PEEP;) and inspiratory work of
breathing (Wiy,,) from pressure and flow data. The goal of the research described in this
thesis was to investigate and improve methods for assessing dynamic hyperinflation and

its consequences. Specifically, this included the quantitative assessment of measurement
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techniques for PEEP; and W,,,, the development of a data processing technique that
overcomes some of the problems associated with these techniques, and the investigation
of patient-ventilator asynchronies that are caused by dynamic hyperinflation. The
investigation of factors that limit the reconstruction of static Electrical Impedance
Tomography (EIT) images and the development of reconstruction techniques that may
overcome some of these restrictions were also part of this goal. In the long-term, I
envisage EIT as a technique for direct and non-invasive monitoring and visualization of
dynamic hyperinflation and its changes over time, e.g., following a change in the

ventilator settings or as a consequence of a medical intervention.
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2.1 The respiratory system

2.1.1 Basic respiratory physiology

Overview

The respiratory system consists of the upper airways, the lung and the chest wall. Its
prime duty is the exchange of oxygen and carbon dioxide between the atmosphere and the
blood. This function is absolutely essential for life; malfunction at the very least limits
exercise capacity, and may in extreme cases even be fatal.

Air enters the respiratory system through the upper airways, namely the nose, the
mouth and the larynx. The larynx assures that larger solid particles such as food do not
accidentally enter the lung by rapidly closing the glottis and opening the esophagus. The
upper airways humidify and warm the air to body temperature and provide a basic
immunodefense mechanism.

After passing the glottis, the air is conducted through the airway tree towards the
lung periphery. The human airways bifurcate on average 23 times from the trachea to the
terminal bronchioles, forming a right lung with three and a left lung with two distinct

lobes. In the upper 16 generations of airways, bulk flow is the dominant mechanism of
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gas transport. These airways are not lined with alveoli and are thus called conducting
airways. The four most distal generations of airways contain numerous alveoli and are
referred to as the respiratory zone or alveolar duct region. At this level, diffusion is the
dominant gas transport mechanism. The intermediate three generations form a gradual
transition zone from the conducting airways to the alveolar duct region. The airway walls
contain smooth muscle that presumably contributes to the adaptation of the respiratory
system to varying environmental conditions. Constriction of the smooth muscle narrows
the airways and increases their resistance to flow. The airway smooth muscle is controlled
by the autonomic nervous system and endocrine factors, and airway smooth muscle
hyperresponsiveness is thought to play an important role in Asthma.

Gas exchange between the air and the blood occurs solely by a passive diffusion
process, and a large surface area is required at the blood-gas barrier in order to exchange
sufficient quantities of gas. The lung provides such a large area within a relatively small
volume by aggregating the area of about 300 million gas exchange chambers (alveoli)
with an average diameter of 0.3 mm. This produces a total surface area of approximately
85 square meters (145). The stability of this configuration is assured by the release of
surfactant in the smaller alveoli that lowers the local coefficient of surface tension.
Without the surfactant, small alveoli would have a higher internal pressure than bigger
ones because the pressure within a sphere due to the surface tension is inversely
proportional to its radius. Therefore, the alveoli would coalesce into a few big air spaces
having a similar total volume, but a much smaller surface area.

The alveolar walls are lined with a close network of pulmonary capillaries. While
venous blood is conducted through these capillaries, oxygen diffuses from the alveoli into
the blood and carbon dioxide (CO,) diffuses in the opposite direction. In the blood, only a
small fraction of the oxygen is transported in a dissolved state in the plasma, while the
majority is bound by hemoglobin in the red blood cells. This mechanism allows the blood

to transport more than an order of magnitude more oxygen per unit volume than would be
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possible by solution only. CO, is much more soluble in the plasma than oxygen and can
be transported in sufficient quantities in a dissolved state and as bicarbonate ions.

The partial pressure of oxygen (Po,) in the venous blood that reaches the alveolar
blood-gas interface is substantially lower than that in the lumen of the alveolus. In resting
normals, diffusion of oxygen into the blood is so rapid that the Po, levels of blood and
alveolar air are equilibrated in a fraction of the time the blood takes to pass through the
pulmonary capillaries. However, during exercise or in disease, the transfer time of the
blood may become smaller than the diffusion time, and oxygenation may be incomplete.
If some alveolar regions are not ventilated at all or in the presence of an extreme diffusion
impairment, some venous blood may be able to reach the left ventricle completely without

being oxygenated. This condition is called a true shunt.

Mechanical properties

From an engineering point of view, the airway tree and alveoli can be viewed as a
fluid mechanical system that can be characterized by pressure-flow relationships. Despite
the enormous complexity of the system, the lungs are often regarded as a single resistive
pipe with an elastic or viscoelastic balloon at its end. More complex models have been
postulated and discussed in the literature, but only very simple models have found their
way to a wider application so far.

The elastic forces of the parenchymal tissue are always inbound, i.e., they oppose
expansion of the lung. In contrast, the el:;stic forces of the chest wall point outwards over
a wide range of lung volumes. The total lung volume at which the elastic forces of lung
and chest wall balance is called relaxation volume, while the total lung volume at the end
of a normal expiration in a quietly breathing subject is termed Functional Residual
Capacity (FRC). In normal adults, FRC and relaxation volume are essentially equal. At
FRC, the pressure in the virtual space between the lungs and the chest wall (pleural space)
becomes slightly subatmospheric, with its precise value depending on various factors
including body position. The volume inspired during a regular breath is called Tidal

Volume (V). The maximal volume that a patient can inspire is named Inspiratory
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Capacity (IC), and the sum of IC and FRC is the Total Lung Capacity (TLC). The
maximal volume below FRC that a patient can expire in a forced expiration is called
Expiratory Reserve (ER), and the amount of air that remains in the lungs after maximal
expiration is the Residual Volume (RV). The sum of IC and ER, i.e., the range of lung

volumes that can be covered by voluntary inspiration and expiration, is called Vital
Capacity (VC).

The respiratory pump

The lungs and the chest wall are not rigidly attached to each other. Rather, a virtual
space between the membranes of the pleura allows the lung and chest wall to slide past
each other, but nevertheless forces the lung to closely follow the volume and shape
changes of the chest wall.

The most important muscle for inspiration is the dome-shaped diaphragm. As it
contracts, the pressure in the thoracic cavity is reduced to a value below its equilibrium
level, and inspiratory flow is initiated. The external intercostal muscles support
inspiration by lifting and expanding the rib cage. In a healthy resting subject, expiration is
passive and complete, i.e., air is forced out of the lungs solely by the elastic energy stored
during inspiration until the equilibrium volume is reached. The primary mediator of active
expiration, as it occurs for example during exercise, is the abdominal wall musculature. It
compresses the abdominal cavity and, since the diaphragm is relaxed during expiration,
increases intrathoracic pressure, pressing air out of the lungs. This process is supported by

the internal intercostal muscles that reduce the diameter of the rib cage.

Control of breathing

The frequency and depth of respiration is usually controlled subconsciously in the
central nervous system, but can be consciously altered within certain limits. The precise
location and structure of the respiratory pattern generator in the brainstem remains unclear
to date. The partial pressure of CO, measured via a central chemoreceptor in the brain

stem is the most important respiratory feedback mechanism. Secondary feedback
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pathways include peripheral chemoreceptors for oxygen as well as stretch receptors in the

lungs and the thorax.

2.1.2 Relevant pulmonary pathophysiology

Chronic Obstructive Pulmonary Disease (COPD)

COPD is an ill-defined but commonly used term that is generally applied to patients
suffering from Chronic Bronchitis and/or Emphysema. Symptomatically, a patient is
considered to have COPD when the volume expired over the first second of a forced
expiration (FEV,) and the forced vital capacity (FVC) are less than a certain percentage of
the normal predicted values. Chronic Bronchitis is associated with enlarged mucous
glands and excessive mucus production in the bronchial tree. Both factors contribute to
the narrowing and obstruction of airways. Emphysema is characterized by structural
changes in the alveolar duct region, leading in particular to a loss of alveolar walls and an
enlargement of air spaces. There is evidence that excessive breakdown of the elastin fibers
within the parenchyma due to an overproduction of lyosomal elastase is the underlying
mechanism for these structural changes (146). The structural changes in the lungs in
Emphysema also affect the airway walls and reduce the maximal expiratory flow that the
patient can achieve. As a consequence, expiratory flow limitation occurs at comparatively
low flows in these patients. Expiratory flow limitation and its consequences are discussed

in detail in sections 2.1.3 and 2.1.4.

Acute respiratory failure

Acute respiratory failure (ARF) occurs when the respiratory system is no longer
able to maintain adequate gas exchange. According to general guidelines, a patient is
considered to be in ARF when the partial pressures of O, and CO, in the arterial blood
fall outside certain limits for an extended period of time (146).
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2.1.3 Expiratory flow limitation

The flow resistance of airways differs between inspiration and expiration. While
during inspiration, an increased driving pressure almost always results in increased flow,
Fry et al. showed in 1954 that expiratory flow reaches a limit above which an increase in
driving pressure does not significantly change the flow (44). This phenomenon can be
demonstrated by plotting expiratory flow as a function of the driving pressure at a fixed
lung volume, producing the so-called iso-volume pressure-flow (IVPF) curves. Fig. 2.1
shows an illustration of three typical IVPF curves, with the lung volume decreasing from
curve A to curve C (71). While at very high lung volumes, the expiratory flow increases
with driving pressure over most of its physiologic range, the expiratory flow rate clearly
plateaus at intermediate and low lung volumes. At the lowest lung volume (curve C), very
moderate expiratory pressures of less than 10 cmH,O are already sufficient to produce the

maximal expiratory flow. The plateau values of expiratory flow can be plotted against

Fig. 2.1
Right panel: Stylized IVPF curves describing expiratory flow limitation. A: high lung
volume; B: intermediate lung volume; C: lower lung volume. Left panel: MEFV curve
constructed from the plateau values of the IVPF curves. Illustration according to (71).
See text for details.
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lung volume to obtain the maximum expiratory flow volume (MEFV) curve (71), as also
shown in Fig. 2.1. Beyond the maximum, the IVPF curves may also exhibit a drop in
expiratory flow with increasing driving pressure, in particular at lower lung volumes. This
“negative effort dependence” (93) is illustrated in curve C of Fig. 2.1.

The explanation of the expiratory flow limitation phenomenon turned out to be a
complex issue. First, it was realized that the pressure along the airway tree during forced
expiration exhibits a pressure “waterfall”, i.e., a large pressure drop over a short segment
of the airways, and that changing the pressure on the downstream side of the waterfall
does not alter expiratory flow (110). The pressure waterfall occurs because of two
mechanisms. Under certain circumstances, the compressive forces on the airway due to
flow-related pressure losses in the airway lumen balance the elastic forces distending the
airway (71,82,102). Such an equilibrium of forces presents an intrinsic negative feedback
mechanism, since small increases in flow augment the viscous pressure losses and thus
further compress the airway, which in turn counteracts the increase in flow. Furthermore,
elastic tubes cannot conduct fluids at a velocity greater than the speed at which pressure
waves propagate along the wall of the tube, the so-called wave speed (30). If the wave
speed is reached at any point along an airway, communication between the upstream and
downstream sides of this “choke-point” is lost, and flow through the airway becomes
independent of the driving pressure. Lambert ef al. showed in a detailed computer
simulation (83) that in normals, the wave speed phenomenon is the dominant flow
limiting mechanism at higher and intermediate lung volumes, while the coupling between
the viscous pressure losses and airway wall compliance limits expiratory flow at low lung
volumes.

The wave speed of an elastic tube depends on the viscosity of the conducted fluid,
the mechanical properties of the tube wall, the geometry of the tube and the pressures in
and around the tube. In general, a stiff tube has a higher wave speed than a compliant

tube. In COPD patients, the compliance of the airway walls is increased, which reduces
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the wave speed and the maximal possible expiratory flow in any particular airway.
Expiratory flow limitation is also increased in asthmatics (71).

2.1.4 Dynamic hyperinflation, intrinsic PEEP and work of breathing

In patients with severe airway obstruction, e.g., in COPD, expiratory flow is often
slowed to the extent that expiration cannot be completed and inspiratory flow is initiated
before the equilibrium volume has been reached. The volume above FRC that remains in
the lungs at end-expiration in these patients is called dynamic hyperinflation, and the
elastic recoil pressure of the lungs and the chest wall that is associated with a given level
of dynamic hyperinflation is the patient’s PEEP;. PEEP, represents a threshold load that
needs to be overcome by the patient’s inspiratory muscles before inspiratory flow can be
initiated during both spontaneous breathing and assisted modes of mechanical ventilation
(51,52,105,119,135). The additional W;,,, required to overcome this threshold load is
thought to be a major contributing factor to the development of inspiratory muscle
fatigue, particularly in the face of the inherently disadvantageous operating conditions of
the inspiratory muscles during dynamic hyperinflation (122). Consequently, determining
the presence and magnitude of both PEEP; (51,120) and Wy, (10,41,129) is of great

clinical importance for the management of critical care patients.
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2.2 Measurement of pulmonary function

2.2.1 Basic diagnostic techniques

Physical examination

Physical examination receives great attention in many respiratory care textbooks.
Besides observation of the patient for obvious signs of respiratory distress, physical
examination includes passive tactile examination of the thorax (palpation), percussion
techniques and the stethoscopic analysis of breath sounds. Physical examination
techniques frequently rely on the subjective perception by the physician, e.g., the
identification of a “dull” percussion note or a “rumbling sound” with a “musical quality”
(127). Furthermore, they in general only provide qualitative results, and often the nature
of the disease can only be inferred from the combination of several tests. The practical
importance of these techniques despite their shortcomings illustrates the enormous need
and potential for Biomedical Engineers to develop advanced methods and techniques that

permit rapid, precise and quantitative evaluation of the patient status.

Blood gases

The analysis of the Po, and the partial pressures of CO, (Pco,) in arterial blood is
considered to provide a direct measure of the adequacy of the pulmonary ventilation and
the oxygenation of the blood. Respiratory distress is almost always associated with an
increase in Pco,. In the case of an acute exacerbation of the patient, the change in Pco,
also causes a reduction of the blood pH. Since the kidneys compensate this acidosis over a
period of roughly 24 hours, the combination of Pco, and pH can be used to distinguish
acute events from chronic disease processes.

Blood gases are taken several times a day in the ICU and can be analyzed in a few
minutes. Devices that detect the blood gases from a single drop of arterial blood
ins\tgg.lér;ously at the bedside have recently become available.
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Lung function tests

In the majority of hospitals, lung function tests are restricted to measurements that
can be obtained from a conventional spirometer. Beside V,, respiratory rate (RR) and
minute ventilation (V.), this device can be used to evaluate FVC and FEV,, provided that
the patient is willing and able to perform a forced expiration maneuver. These tests are
considered relatively robust, but are not very specific because each parameter is
influenced by a number of physiological factors and may be modulated by conscious
inputs.

In recent years, computerized pulmonary monitoring equipment has become
available that continuously monitors pressures and flow across the respiratory system and
computes parameters such as V, and RR on-line. More advanced measurements such as
respiratory system resistance and elastance, intrinsic PEEP and work of breathing can also
be monitored. The introduction of these pulmonary monitoring devices is a great step
towards better pulmonary monitoring and patient management. However, many of the
algorithms employed have not been properly validated or suffer from known
shortcomings. The quantitative assessment of some of these measurement techniques

forms part of the work for this thesis and is described in section 3.2.

2.2.2 Esophageal pressure measurement

Respiratory pressure swings in the esophagus (P.) can be measured using an
esophageal balloon, i.e., a small elastic balloon attached to the end of a small plastic
catheter placed in the mid-thoracic section of the esophagus via the nose (15,21).
Provided that the esophageal balloon is adequately placed and inflated, swings in P
reflect swings in pleural pressure (P,) with sufficient accuracy over the range of
frequencies that are relevant during spontaneous breathing (15,22,32). Measurements of
P.s can be used to separate estimates of respiratory mechanics into lung and chest wall

compartments (29,33,57), to evaluate variables of clinical importance such as dynamic
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PEEP; (PEEP, 4,,) and W, (see section 2.2.3), and to estimate the patient’s muscular
and/or neural drive (148).

Since the esophageal balloon is placed in close proximity to the heart, P recordings
often contain cardiogenic oscillations. These are components of P, that are not directly
related to respiration, but originate from pressure changes within the pericardium and the
aorta that are communicated to the esophageal balloon. Cardiogenic oscillations can
assume amplitudes that are large enough to significantly complicate processing of the P

signal.

2.2.3 Measurement of PEEP; and W,

Static PEEP;

In passive patients, static PEEP; (PEEP;,,) can be measured by occluding the
patient’s airway opening at end-expiration (Fig. 2.2). PEEP; g, equals the pressure that
can be measured on the patient side of the occlusion after any transients have vanished
(119). PEEP; 4, is difficult to measure in distressed patients because they are often not
able to remain passive for a sufficiently long period of time. Prolonged relaxation can be
achieved by sedating or paralyzing the patient. However, sedatives also change the
general muscle tone and alter the breathing pattern. The value of PEEP; i, obtained under
sedated conditions may thus differ significantly from the value of PEEP;,, during
spontaneous breathing.

Dynamic PEEP;

During spontaneous breathing or assisted mechanical ventilation, PEEP, 4., can be
estimated from P and flow traces. As illustrated in Fig. 2.3, PEEP, 4, equals the negative
deflection in P, from its end-expiratory relaxation value (P, o) that is necessary to initiate
inspiratory flow (107). PEEP; 4, was initially considered a reasonable approximation of
the value of PEEP, g, (107,119). However, recent studies indicate that PEEP, 4, can
substantially underestimate PEEP; ,, and suggest that these discrepancies originate from

time constant inhomogeneities and/or tissue viscoelasticity (62,88).
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Fig. 2.2:

Measurement of static PEEP;. PEEP, i, equals the value at which airway opening pressure

plateaus after a prolonged end-expiratory airway occlusion
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Fig. 2.3:

Measurement of dynamic PEEP;. PEEP, 4,, equals the deflection in P, with respect to its

end-expiratory baseline value prior to the onset of inspiratory flow.
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Inspiratory work of breathing
The fraction of W, required to overcome the resistance of the airways and distend

the lungs can be estimated from P and flow or volume traces according to

“,insp,lung = I(Pa.o - Pﬁ)dv (2‘1)

A\
as the integral of the inspiratory deflection in P, from P, over inspired volume. To
obtain the complete W;,,, the work required to distend the chest wall must also be taken
into account. One possibility is to obtain the passive inflation waveform of P, from the
sedated patient and subsequently integrate the difference between the active and the
passive P, as illustrated in Fig. 2.4 (90). However, sedation is likely to alter the
properties of the chest wall, and a significant uncertainty is associated with the passive
inflation curve obtained in this manner. Therefore, some investigators have taken a
simpler approach to estimate the chest wall component of W;,, by assuming a constant

value for the chest wall elastance a priori. In this case, W;,,, can be expressed as

W, = [(Pao —P)dV+1EV]. (2.2)
v,

Fig. 2.4:
Measurement of inspiratory work of breathing according to (90). The difference between
P and the previously measured passive inflation curve, indicated by the shaded area, is
integrated over inspired volume.
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The Bicore CP-100 commercial pulmonary monitor (Bicore Corp., Irvine, CA)
employs this algorithm, assuming a constant linear chest wall elastance of 5 cmH,0 for

all patients.

2.2.4 Thoracic radiography

Radiography plays an important role in the diagnosis of pulmonary diseases.
Typically, mobile, so-called portable x-ray units are used to obtain thoracic x-rays
without removing the distressed patients form their beds or disconnecting vital sign
monitors, mechanical ventilators and other equipment. However, these portable x-ray
images suffer from a number of shortcomings. First, the geometry between tube, patient
and film is restricted, and the photographic quality of the images is generally inferior to
chest x-rays obtained from stationary equipment (127). Second, all equipment and tubing
attached to the patient become part of the image and may conceal the sometimes very
translucent reflections of abnormalities in the lungs. Finally, the patient position is usually
restricted to the anteroposterior view, which results in a comparatively larger and less
sharp cardiac shadow.

Chest radiography permits assessment of the diaphragm shape, which reflects the
level of dynamic hyperinflation. Furthermore, pneumothoraces, pleural effusions and
localized, severe airway closures (atelectases) can usually be detected in radiographic
images. However, many abnormalities are only visible when the disease has reached a
significant level of severity. Similar to physical examination techniques, the analysis of
chest x-rays to a large extent is based on the subjective interpretation by the attending
physician. The development of a non-invasive imaging technique that can be used
continuously at the bedside, and that provides a variety of views of the thorax would

present a great contribution to the improvement of respiratory care.
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2.3 Assisted positive pressure ventilation

2.3.1 Positive pressure ventilation

Positive pressure ventilators apply a supra-atmospheric pressure to the airway
opening in order to force air into the lungs. In general, the ventilator can take complete
control of the breathing pattern, e.g., during open chest surgery when the respiratory
pump is impaired. However, prolonged ventilation of intensive care patients under
complete machine control causes muscular atrophy. Candidates for long-term ventilation
are thus ventilated in assisting ventilator modes where ventilator and patient share the
work of breathing. Since the monitoring of intensive care patients is the focus of this

work, only assisted modes of positive pressure ventilation are discussed here.

2.3.2 Modes of assisted mechanical ventilation

Continuous positive airway pressure (CPAP)

In CPAP, a constant positive pressure is applied to the airway opening throughout
the entire breath. CPAP effectively forces the patient to breathe at a higher lung volume,
which is considered advantageous in the presence of severe airflow obstruction

(6,106,107). CPAP is also frequently used in the treatment of sleep apnea.

Synchronized intermittent mechanical ventilation (SIMV)
In SIMV, the ventilator intermittently delivers controlled mechanical breaths at a
very low respiratory rate. In the intervals between these machine breath, the patient is

allowed to breathe spontaneously. SIMV was the first assisted mode of ventilation.

Assist-control ventilation (ACYV)
In ACV, the ventilator does not initiate a mechanical breath until an inspiratory

effort from the patient is sensed. Once the ventilator is triggered, a complete mechanical
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breath is delivered as specified by the ventilator settings. The patient can thus control the

respiratory rate, but not the tidal volume, inspiratory flow rate or inspiratory time.

Pressure support ventilation (PSV)

Pressure support ventilation is a more recent mode of ventilation. Similar to CPAP,
a constant pressure is applied to the airway opening. However, the pressure level is
increased during inspiration in order to actively support inspiration. Within limits, the
patient can control the respiratory rate, the tidal volume, and the inspiratory time and

flow.

Proportional assist ventilation (PAYV)

PAYV is a novel mode of ventilation (157,158) that has only very recently become
commercially available. Similar to PSV, the airway opening pressure is controlled during
PAV. However, the set point of the inspiratory pressure level is not fixed, but is computed
in real time as the sum of two components. One of these components is proportional to
the actual inspiratory flow (Flow assist), while the other component is proportional to the
volume that has been inspired in the present breath (Volume assist). PAV thus allows
specific and independent compensation for part of the resistive and elastic load that the
respiratory pump is facing. The patient has complete control of the respiratory waveform,

and the pressure generated by the ventilator increases with the patient effort.

2.3.3 Positive end-expiratory pressure (PEEP)
PEEP is a constant pressure that is applied to the airway opening during expiration.
Similar to CPAP, the intention is to increase the mean lung volume in patients with severe

airflow obstruction. PEEP is usually combined with SIMV, ACV, PSV or PAV.

2.3.4 Trigger mechanisms
A ventilator operating in an assisted mode of ventilation must recognize the patient

effort before inspiratory flow is initiated. At present, two techniques are widely used for

this purpose.
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Pressure trigger

In this mode, the patient expires through a one-way valve. When expiration is
terminated and the inspiratory effort begins, the valve closes and the patient’s airways are
temporarily occluded, which causes the airway opening pressure (P,,) to drop rapidly.
Once P,,, becomes more negative than a specified threshold, the ventilator is triggered and
inspiratory flow is initiated.

This trigger mechanism is problematic because the patient does not receive flow
immediately at the onset of an inspiratory effort. Rather, the onset of flow is delayed by
the closing time of the one-way valve and the time required to detect and react to a sub-
threshold pressure. Also, the generation of sufficient negative pressure to trigger the

ventilator may impose a significant work load on the patient (40,135).

Flow trigger

More recent ventilators do not use a one-way valve, but permit the patient to inspire
while the ventilator is in its expiratory phase. As soon as inspiratory flow is detected, the
ventilator is switched to its inspiratory phase and the commenced inspiration is actively

supported.

2.3.5 Weaning

The process of getting a ventilated patient back to breathing spontaneously and
without the aid of a ventilator is termed weaning. Many physiologic parameters have been
reported as predictors of weaning outcome, but often the results have been contradictory.
An overall consensus about how to wean a patient does not exist in the literature, and a
number of experts consider weaning an art rather than a science. However, more
formalized weaning protocols and the use of knowledge-based algorithms in
computerized weaning aids have been suggested (36,86). The development of methods
and tools that permit more rapid and reliable weaning is one of today’s challenges for

Biomedical Engineering research in the field of respirology.
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2.4 Electrical Impedance Tomography

2.4.1 Imaging electrical tissue properties of the thorax

Biological tissues contain large amounts of ion-rich fluids. Because the relative
amount of body fluid, the ion balance and the nature and geometry of the membrane
structures that confine the body fluids differ from organ to organ, biological tissues
exhibit a wide variety of complex, frequency-dependent electrical properties (26,47,126).
A summary of the electrical resistivities of some biological tissues, i.e., the real parts of
their impedances, is given in Table 2.1 for the frequency range from 20 to 100 kHz.

Table 2.1:
Approximate electrical resistivities of tissues in the thorax in the
range from 20 to 100 kHz according to (11).

Tissue Resistivity (2cm)
Bone 16600
Fat 2500
Lung tissue 727 - 2363
Skeletal muscle 530
Blood 150
Plasma 66

Electrical Impedance Tomography (EIT) is a medical imaging modality that
estimates the spatial distribution of the electrical tissue properties. Often, the imaginary
part of the tissue impedance is ignored and only the resistivities or conductivities are
measured (3,12,24,155), although imaging of the complex tissue impedance has received
increased attention in the recent literature (54,75,114,115). Because the tissues that
compose the human thorax exhibit a wide range of resistivities, thoracic EIT images
should permit clear delineation of the various tissues and the many disease processes that

significantly alter the tissue conductivity (e.g., due to the increased volume of highly
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conductive fluid in the usually rather resistive lungs during pulmonary edema or
congestion of the pulmonary vasculature). EIT is relatively inexpensive and minimally
invasive and is thus potentially well-suited for continuous bedside monitoring of
pulmonary function (19,34,60,124,138). However, there is much room for improvement

in the resolution and contrast of current EIT systems.

2.4.2 The EIT system

Overview

An overview of a typical EIT system is provided in Fig. 2.5. In order to determine
the transfer impedances between a number of electrodes on the body surface, small-
amplitude high-frequency currents are injected into the body segment under consideration
and the resulting voltages are measured (12,56,115,134). The current sources are
controlled by a computer to apply the desired current patterns, and all data are digitized
and transferred to the computer which reconstructs the tissue impedance distribution from
the measured transfer impedances. All front-end electronics are electrically isolated from

all other equipment to assure patient safety. EIT systems that apply potentials to the body
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Fig. 2.5:
Overview of an EIT system
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surface and measure the resulting currents have been used less frequently (112,160)
because they are more sensitive to changes in the impedance of the electrode-skin

interface (117).

Current injection
The pattern in which current is injected into the body has an important influence on
the quality of the resulting image (23,65,104). The following is a summary of the current

patterns that are frequently used to collect EIT data.

(i) Neighbouring currents

When neighbouring currents are used, a single current source and sink are placed on
adjacent electrodes on the circumference of the body segment under consideration (12).
Both the source and sink are incrementally rotated around the body to obtain the maximal
number of N.-1 linearly independent projections, where N, is the number of electrodes.
Neighbouring currents have been used frequently in EIT (7,12,14,56). Compared to other
current patterns, neighbouring currents produce a low current density in the center of the

body segment to be imaged and a very inhomogeneous current density distribution.

(ii) Opposite currents

Similar to neighbouring currents, opposite currents utilize only a single current
source and sink. In this case, the sink is placed diametrically opposed to the source (104),
and the maximal number of linearly independent projections equals NJ/2. Opposite
currents provide a higher current density to the center than neighbouring currents,

although the current density distribution remains somewhat inhomogeneous.

(iii) Current patterns using multiple sources

In general, the current density distribution can be controlled best when current is
injected though multiple sources rather than through a single source-sink pair. The most
popular of these approaches is the optimal current pattern (49). It can be shown that the
distinguishability, defined as the normalized change of the measured voltages in response
to a conductivity change in a small central region of a cylindrical body, is maximal when

the amplitudes of equidistantly spaced current sources are adjusted according to
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trigonometric basis functions (73). From this starting point, the optimal current patterns
are adjusted iteratively such that the distinguishability is maximized for the conductivity
distribution in the most recently reconstructed image. Thus, unlike other current patterns,
optimal currents take the nature of the image into account. Unfortunately, this method
requires that all current sources present in the system are calibrated precisely with respect
to each other, which adds to the complexity of the device.

Other current patterns using muitiple sources, e.g., the multireference method (65)
and current injection according to Walsh functions (23,73), have been suggested in the

literature without attaining any practical significance.

(iv) Induced currents

In 1990, Purvis et al. (111) suggested replacing the injecticn of current through
boundary electrodes by induction of high-frequency rotary currents through a set of coils
placed around the object to be imaged, as shown in Fig. 2.6. This approach has been
subject to numerous studies in the recent EIT literature (46,111,123) since it possesses
several technical advantages. Because no current is injected into the patient, less stringent

safety requirements apply to the

equipment design. Furthermore, the
quality of the voltage measurements
is improved since no multiplexing
circuitry is required to switch
electrodes between current injection
and voltage measurement modes.
Also, the maximal number of
independent  projections,  now
determined by the number of

induction coils, becomes

independent of the number of

boundary electrodes, which _ Fig.26: )
Arrangement of induction coils for induced current

EIT around the object to be imaged.
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introduces a new degree of freedom to EIT system design. Despite these advantages,
however, induced current EIT has not been able to dramatically improve the resolution of

EIT images, and the significantly more cumbersome equipment remains the drawback of

this technique.

Voltage measurement

(i) Parallel versus serial data collection

To collect an EIT projection, a set of boundary voltages is measured on the body
surface. Ideally, these voltages should be measured at exactly the same point in time, i.e.,
using a parallel data collection strategy, to minimize the overall duration of the data
collection cycle. However, this method requires independent instrumentation amplifier
and demodulator circuits for each channel (76,118,140) and is thus comparatively
expensive. Alternatively, many investigators have employed a serial data collection
strategy, using multiplexers to consecutively connect each electrode to a single

instrumentation amplifier and demodulator circuit (12,56,81,137).

(ii) Electrode contact impedance

Electrode skin interfaces are known to have a significant and time-varying contact
impedance. Thus, the voltages measured at the electrodes that conduct current are
influenced by the contact impedances as well as by the conductivity distribution within
the body, which introduces a significant measurement error to EIT (117).

When neighbouring or opposite currents are used, this problem can be overcome by
excluding the voltages measured at the injection electrodes (104), which reduces the
number of linearly independent data points that can be obtained per projection by two.
When current patterns with multiple current sources are used, however, “compound
electrodes” consisting of pairs of independent voltage and current electrodes (68,160) are

necessary to avoid the contact impedance problem.

(iii) Geselowitz'’s theorem
The number of independent measurements that can be obtained in an EIT

measurement situation is limited by symmetry of the measurements. According to
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Geselowitz’s theorem (48), the voltage measured at a pair of electrodes, i and j, when a
current is injected through a different pair of electrodes, » and m, is exactly equivalent to
the voltage measured at electrodes n and m when a current of equal amplitude is injected
through electrodes i and j. This reduces the total number of independent measurements,
e.g., when neighbouring currents are used and the voltage measurements at the injection

electrodes are excluded, to N./2' (N,-3).

(iv) Esophageal reference electrodes

In a standard EIT setup, currents are applied and voltages are measured (or vice
versa) exclusively on the periphery of the body segment to be imaged. In order to provide
more information about the central regions of thoracic images, Pilkington et al. (108)
suggested the placement of a reference electrode in the thoracic section of the esophagus.
They argued that such an esophageal reference electrode increases the distinguishability,
defined above as the normalized change of the measured voltages in response to a
conductivity change in a small central region of a cylindrical body, by a factor of six in a
two-dimensional thoracic imaging situation (108). However, the effect of an esophageal
reference electrode on the reconstruction error, i.e., the normalized difference between the
reconstructed image and a known physical or computational phantom, has not been

examined to date.

Static and dynamic imaging

The long-term goal of EIT is to obtain a static image, i.e., an image of the absolute
values of the tissue conductivities in the body segment under consideration. However, the
reconstruction of static EIT images is problematic, presumably because of systematic
errors of the image reconstruction schemes (12). Static images of low resolution have
been obtained from physical phantoms (67,152) and, very recently, in vivo (91).

Dynamic EIT imaging does not attempt to reconstruct the absolute values of the
tissue conductivities. Rather, two sets of data are obtained before and after an event, e.g.,
at the beginning and the end of inspiration, and the difference between the two data sets is

used to reconstruct the dynamic (difference) image. In this case, the systematic errors
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cancel out and an image of the change in conductivities can be reconstructed (12).
Dynamic EIT images have been used for a number of applications, such as monitoring of
the depth of ventilation, measuring gastric emptying and secretion, monitoring microwave
hyperthermia treatment in cancer therapy and cancer screening (7,14,19,89,109,152).

Unfortunately, dynamic imaging is of limited use for many applications because the
event to be monitored has already occurred when the patient enters the hospital or clinic,
so that no reference data set can be obtained. To overcome this problem, a recent study
employed the average of a large number of data sets obtained from numerous normal
subjects as a reference data set to monitor the presence of increased lung water in a small
number of patients with pulmonary hypertension (100). However, the specificity of this
technique remains to be established in a larger number of subjects.

The difficulties in reconstructing static images were initially thought to relate to the
unknown position of the electrodes on the body surface (12). However, simulation studies
with variable electrode positions as well as the performance of the above averaging
technique show that the electrode position error is not as important as previously thought,
and that other systematic errors must play a role for the difficulty of static imaging
(1,100).

Multifrequency and complex-valued imaging

While early EIT systems were only able to measure the magnitudes or the real parts
of the transfer impedances, more recent designs permit evaluation of the complex transfer
impedances over a wide range of frequencies. Because the impedance of biological tissues
is frequency-dependent, it is possible to obtain a so-called muitifrequency EIT image
from two data sets acquired simultaneously or in rapid succession, but at different
frequencies (55,115). Similar to dynamic imaging, systematic errors cancel out in this
approach, but a change in tissue properties between the two data acquisitions is not
necessary for multifrequency imaging. However, multifrequency images differ
fundamentally from static EIT images because they do not estimate the absolute tissue

conductivities, but the dissociation of the tissue conductivities at the two measurement
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frequencies. Furthermore, using the complex transfer impedances to reconstruct complex-
valued EIT images (54,115) may help to distinguish tissues that have similar
conductivities but different permittivities, e.g., to distinguish carcinogenic from adipose
tissue (42,43).

Three-dimensional EIT

Unlike x-rays in a Computed Tomography system, electrical currents are not
restricted to the cross-sectional plane in which the electrodes are placed. In current
practice, many investigators assume a cylindrical geometry in which two-dimensional
treatment is valid despite the generally three-dimensional nature of the EIT problem.
However, while this assumption may be acceptable for some applications, e.g., to image
the depth of ventilation (19,60), reduced contrast and cancellation effects are encountered
as soon as objects with a finite longitudinal dimension are located in or near the image
plane (94). Truly three-dimensional EIT images of the thorax obtained from a 64
electrode system with four electrode planes have recently been presented (94,95) and

demonstrate that significantly improved resolution and contrast can be obtained.

2.4.3 Image reconstruction

Forward and inverse problem
We assume biological tissues to produce linear relationships between voltage and
current density, so that the EIT forward problem is governed by Ohm’s law. Using j for
the current density, E for the electric field, ¢ for the electrical potential, and y for the
complex admittivity of the medium, Ohm’s law can be expressed as
J=YE=-vVo, (2.3)
where V is the gradient operator and j, v, E and ¢ vary with position in the space of
interest (€2). At the boundary of €, we inject current into the medium, so that the current

density normal to the surface of Q (S) becomes

Js=) g ==Y Es‘s 2.4)
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where ng is the vector normal to S. To assure continuity, the net current injected must
vanish, i.e.,

$isdS=0. 2.5)

We can now find the voltages that are measured on the boundary (v,) as a function of v, jg
and the positions at which the measurements are obtained (x,,), from

Yy =Xy, s Js)s (2.6)
which solves the EIT forward problem. While v, is a linear function of jg, it is
significantly nonlinear in y (73,96).

EIT image reconstruction poses the inverse problem because we want to find the
admittivity distribution y~ that reproduces the measured vy, for each projection p in a data
set of N, projections, i.e.,

v =o(x,.7",J). 2.7
This is a nonlinear inverse problem that, in general, requires iterative solution (96).

In the following discussion of commonly used EIT image reconstruction
techniques, v,, denotes the vector of all measured voltages in one data set that has been
obtained by concatenating the measured v{? for all N projections. Furthermore, the
imaginary part of y is neglected and the reconstruction algorithms are written in terms of
resistivity (p) or conductivity (¢). Image reconstruction is restricted to the real part or
magnitude of y in most EIT image reconstruction schemes documented in the literature. In
any case, the reconstruction methods discussed below can be adapted to reconstructing

complex images without much difficulty.
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Weighted backprojection along equipotential lines
Weighted backprojection

along equipotential lines (11,12) is a
two-dimensional single-step
reconstruction  technique that
employs an analytical solution for
the forward problem with
neighbouring current injection.
Assuming a homogeneous initial
resistivity, p,, and a cylindrical

geometry, the equipotential lines are

computed analytically for each

projection, and an estimate of the

Fig. 2.7:
Weighted backprojection along equipotential lines.
(¥) is obtained. Subsequently, each = The area enclosed by the predicted equipotential

lines (shaded) is updated according to the measured
element of the vector v, is voltage, V.

voltages at the measurement sites

compared to the analogous element
of v. The resistivities of all image pixels that lie between the equipotential lines passing

through the voltage electrodes (Fig. 2.7) are now updated according to
p=wB(xp,xj’xm)'po'v_'€r:—a (28)

where W is a weight that depends on the positions of the pixel (x,), the injection
electrodes (x;), and on x,. Wg is necessary to compensate for geometric effects that
without weighing produce a non-uniform point-spread function (13).

Besides the assumption of a circular geometry, the above algorithm is exact only for
small changes in conductivity, i.e., when (p—p,)/p, <<l (12). Since in general, both
assumptions are not valid in a practical imaging situation, the pixel values of the

reconstructed images bear little relation to the absolute changes in conductivity. However,
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the technique is very fast and has been shown to provide useful images for a number of
clinical applications (7,14,19,100).

Image reconstruction using Newtonian optimization techniques

(i) Forward solution using Finite Elements

The Finite Element (FE) method provides an approximation of the EIT forward
problem that has fewer restrictions than the analytic solution discussed above because it
allows almost arbitrary boundaries and conductivity distributions as well as large changes
in the element conductivities. FEs have frequently been used to solve the EIT forward
problem (3,24,96,123,153,154).

The EIT forward problem can be expressed as a special case of the more general
Helmbholtz equation. Any scalar potential function that can be expressed by the Helmholtz
equation assumes its minimum energy configuration exactly when a functional @
containing the integral of the Helmholtz equation over Q is minimal (131). For the EIT

forward problem, © can be written as
©=1[o(Ve)'dQ+§ojsds. (2.9)
The FE method approximates the first integral by dividing Q into a large number of
elements of finite size. In the first-order FEs that are used almost exclusively in EIT, o is
assumed to be constant throughout the element and ¢ is assumed to vary linearly between
the nodes of each FE, i.e.,
Nn.d
()= D 0; a;(x) (2.10)

isl
where N, ; is the number of nodes per element, the subscript i denotes the node number,
the «; represent linear approximation functions that assume a value of 1 at node i and
vanish at all other nodes (131). Dividing € into a large number of two-dimensional FEs
and substituting each element’s ¢@(x) by Eq. 2.10, the first integral in Eq. 2.9 can be
expressed as a matrix product. Similarly, the second integral in Eq. 2.9 can be turned into
an algebraic expression by substituting both ¢ and jg by one-dimensional approximation

functions. Then, Eq. 2.9 can be written as
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©=101S 9, ~0n Tiy, (2.11)
where T denotes transposition, ¢, is the vector of the values of ¢ at the nodes of the FEM,
and i, is the vector of the currents injected at the nodes. In Eq. 2.11, S and T are a
symmetric (N,,N,) matrices that represent the properties of the medium and map the
boundary condition, respectively, with N, being the number of nodes in the FEM. S is
assembled from the individual element system matrices S, as follows. Because o is
considered constant across the element, each S, can be expressed as

S, =0,S., (2.12)
where o, represents the element conductivity. The preliminary matrix §e, contains the
integrals of the a; over the element area and essentially captures the geometry of the FE.
In order to assemble the FEs into a Finite Element mesh (FEM), the individual S
matrices are arranged along the main diagonal of the system matrix of the disconnected
mesh, S, and the connectivity of the elements is expressed in a connectivity matrix, C
(131). Then, the system matrix of the assembled mesh can be written as

$=C'S,C. (2.13)
The T matrix is assembled in an analagous fashion from the element matrices of the
individual one-dimensional FEs that are used to approximate the boundary condition.
However, in the EIT literature first-order FEMes are often interpreted as resistor networks
and the injection of current into the FEM is often modeled by point sources located on the
element nodes, i.e., with approximation functions that consist of Dirac’s d-functions at the
nodes rather the linear a; shown in Eq. 2.10 (96,154). In this case, T becomes the (N,,N,)
identity matrix.

When the potential distribution in Q represents the minimal energy configuration
for any given i, the first derivative of Eq. 2.11 with respect to @, must vanish, i.e.,
0

5(%@15 (pu _(pIT in)=S(pn —Tin =0, (2.14)

which yields the node potentials
¢,=S"'Ti,. (2.15)
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Now, an estimate of the boundary voltages at the measurement sites for each projection p
(¥®) can be computed by extracting the node voltages at the sites of the voltage
measurements from @, i.e.,

v =X{P P = xXPIg- TP (2.16)
Here, X, is the (N,,N,,) matrix that reproduces the way in which the EIT hardware obtains
differential voltage measurements from the body surface, with N, being the number of
boundary voltages per projection. Finally, the boundary voltages of all projections are

concatenated into the desired v according to

X0

vd

<>
il

(2.17)

e(N,)

(ii) Newtonian optimization
To solve the inverse EIT problem, we want to find the conductivity distribution G
that equals the best possible mapping of the true conductivity distribution in the body or
phantom to be imaged onto the FEM used for the forward solution. We hence define the
scalar objective function of the inverse problem as
® = [¥(o)-v, ]TW["I(G) Vol (2.18)
where W is a symmetric (N,,N,)-matrix and N, is the number of data points in v, (N, =
Ny N,). W can be used to implement a priori knowledge, e.g., to attenuate the data
obtained from a faulty electrode. For the remainder of this derivation, we shall consider
W to be the identity matrix (I). Furthermore, we assume that the point ¢ = c represents
the global minimum of ®(c).
The steepest descent method (SDM) is the simplest approach to finding the
minimum of ®(c). Using the first derivative of ® with respect to o, i.e., the gradient of ®

in o-space (P'), o is updated recursively according to
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G;,1 =0; + Ac; (2.19)
with
Ac; = -A®'(5;), (2.20)
where A is a step size parameter. Both @' and ¢ are (Ng,1)-vectors, where N, is the
number of conductivity parameters in the image. The SDM is known to converge slowly,
so that large numbers of iterations are necessary.
The Gauss-Newton method (GNM) is derived from the requirement that (D'(O")
must vanish. Using a Taylor expansion and truncating after the second term, we can write
®'(c’) ~ ¢'(c) +P"(0)-Ac =0, (2.21)
where Ac is the difference between ¢ and o, and ®" is a square (Ng,N,)-matrix
representing the second derivative of @ with respect to o that is often referred to as the
Hessian matrix (H). Solving for Ac yields
Ac=-H'®'(c). (2.22)
However, because the taylor series was truncated in Eq. 2.21 it is often useful to employ
the more conservative estimate
Ac =-ALH'®'(c), (2.23)
where A again is a step size parameter that usually ranges between 0 and 1. In the GNM,
this value of Ao is used in Eq. 2.19 to recursively update . The GNM converges very
rapidly in the neighborhood of the global minimum, but is known to be less robust than
the SDM at a greater distance from o .
The Levenberg-Marquardt method (LMM) is an attempt to combine the advantages
of the SDM and the GNM by calculating Ac according to
Ao = -A[H +ul] " @' (o), (2.24)
where p is a positive real parameter. If u is zero, Eq. 2.24 equals Eq. 2.23, so that the
LMM performs like the GNM. In the limit of large values of p, Eq. 2.24 equals Eq. 2.20,
which causes the LMM to behave like the SDM. The LMM thus permits a compromise
between the rapid convergence of the GNM and the robustness of the SDM.
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(iii) Jacobian and Hessian matrices
Implementation of the Newtonian optimization techniques requires the evaluation of
@' and H. Because v,, is independent of o, application of the derivative operator to Eq.
2.18 yields
D' (c)=V"-(V-v,)=J"-(V-v,), (2.25)
where J is an (N,,N,) matrix that is often referred to as the Jacobian matrix. Using the
product rule, we find the second derivative to be
H=JJ+3"I®(F-v,)], (2.26)
where ® denotes the Kronnecker matrix product. The second term in this equation is
computationally expensive to evaluate and has been shown to be negligible (154), such
that we can use the local linearization of the forward problem,
H=J"J, 2.27)
instead of Eq. 2.26.
The Jacobian matrix can be evaluated from the FE equations. From Eq. 2.17 it
follows that we can evaluate J by partitions for each projection, J®, and subsequently
assemble J according to

[ J(l)

J(2)
J= : (2.28)

JNe
For one partition, application of the differential operator to Eq. 2.16 yields
dav® ds

J® = =X® i(s-l )Ti(p) =X gl Z glTi®. (2.29)
do Y do i ' do i
Substitution using Eqs. 2.13 and 2.15 results in the final form of the Jacobian partition,
J® = x® gt _dséd-iqu)(p) (2.30)
v dc n °
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Because the individual S, matrices are well separated in S, the derivative of Sy is
easily evaluated.

Alternatively, the Jacobian matrix can be evaluated by applying the Compensation
theorem to a discrete network (96,154). Consider the network in Fig. 2.8(a). The voltage
at port 2 (v,) that results from injection of the current i; at port 1 can be written as

vV, =251, 2.31)
where z,, is the transfer impedance between ports [ and 2. Furthermore, assume that for
the forward solution we use a first-order FEM that is equivalent to a network of resistors
connecting the nodes of the FEM (96), where v; is assumed to be the voltage between two
neighbouring nodes of the FEM, i.e., the voltage across one network branch of the
admittance y. Increasing the admittance of this branch from y to y+Ay causes a change in
v, that can be expressed as

vV, +Av, =(zZ), +AzZ,)i, =V, + Az, i,. (2.32)

However, according to the compensation theorem, the initial v, can be reestablished if

port 3 is paralleled by a current source i3 = -Ay vj, as shown in Fig. 2.8(b). The effect of i;
on v, is denoted by Av', and can be expressed as

AVy =251, (2.33)

with port 3' as illustrated in Fig. 2.8(b). For i; to reestablish the initial v,, its influence

must compensate exactly for Av,, i.e.,

Av, + AV = AV, + 2,1, = Av, —Z,;,. Ay v, =0. (2.34)
Solving for Av, and dividing by Ay yields
Av
—A—yl =2, V;. (2.35)
For Ay — 0, the port 3’ becomes equivalent to port 3 and we find
gy, (2.36)
oy

This represents a single entry of the Jacobian matrix for the element y and the current
pattern i;. This method for evaluating J has been shown to be more numerically efficient

than the direct method described above (154).
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Fig. 2.8:
Illustration of the Compensation theorem method to evaluate the Jacobian matrix. See text
for details.

(iv) Regularization
Direct application of the nonlinear optimization techniques outlined above
frequently results in unstable numerical behavior or in convergence to a local minimum
where the image does not reflect the true conductivities in the body. However, a
physically and physiologically meaningful image can be enforced by incorporating a
priori knowledge in the reconstruction algorithm (3,66). This is often achieved by adding
a penalty function P to the initial objective function that assumes large values when
undesired behavior occurs, i.e.,
© ., =d+nP, (2.37)
where 1 is a positive real constant that controls the relative weight of the penalty function.
The simplest form of P is
P=(c-5) (c-5), (2.38)
where G is the mean conductivity of the image and equals zero in the case of dynamic
imaging (17,66,154). This penalty function imposes a bounding constraint that favors a
homogeneous image.
In a more general approach, the penalty function can be expressed as

P=c"Wo, (2.39)
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where W is a positive-definite weight matrix that can, for example, be chosen to impose a
continuity constraint that penalizes a large first spatial derivative of o, or a smoothing
constraint that penalizes a large second spatial derivative of ¢ (66). An approach that
effectively limits the spatial frequency content within the image has also been suggested
(3). However, all of these penalty functions alter the objective function in the entire
conductivity space, including the neighborhood of the global minimum, and are thus
likely to result in substantially reduced contrast and blurring of the image, as
demonstrated in (3).
(v) Single-step implementations

In general, the solution of nonlinear inverse problems requires an iterative
implementation of the techniques described above (96). However, the implementation of
iterative optimization techniques is often associated with stability and convergence
problems. To overcome this problem, some investigators only perform a single iteration
of a Newtonian optimization technique (3,24). Images obtained using this method do not
reproduce the full contrast of the conductivity distribution in the body to be imaged, but

are more stable than truly iterative implementations.

Other image reconstruction techniques

Numerous other algorithms have been suggested for the reconstruction of EIT
images, including the perturbation technique, the double constraint method and Neural
Networks (2,78,79,147,154,155). However, none of them has been employed frequently

in the literature. Therefore, a detailed discussion of these methods is omitted.

2.4.4 Pulmonary applications of EIT

Monitoring lung inflation

The inflation and deflation of the lungs is ideally suited for EIT monitoring for a
number of reasons. First, the electrical impedance of the lungs is known to change
significantly with the degree of lung inflation. Furthermore, the reconstruction of dynamic

rather than static images is adequate for monitoring a periodic process such as respiration.

Chapter two: Literature review 37



Finally, the limited resolution and the two-dimensional nature of today’s EIT systems are
less critical for the monitoring of ventilation than for other applications because of the
approximately cylindrical anatomy of the lungs and their comparatively large size. The
feasibility of EIT for monitoring the depth of ventilation has been demonstrated in a
number of studies (19,60,136,151).

Pneumothorax and pleural effusion

The influx of extremely resistive air or highly conductive body fluid into the pleural
space as a result of pneumothorax or pleural effusion, respectively, causes a substantial
change in the electrical tissue properties of the affected area. It would thus seem likely
that these conditions could clearly be identified in an EIT image. Unfortunately, static in
vivo EIT images have proven difficult to reconstruct to date. However, recent progress
suggests that static or quasi-static images may soon be available at a resolution that would
be sufficient to detect and monitor these disorders (see section 2.4.2) (91,100). It may also
be possible to infer the existence of pleural effusions and pneumothoraces from dynamic
EIT images because these conditions are likely to cause unilateral ventilatory

disturbances.

Detection of increased lung water

A recent studies investigated the utility of EIT to detect pulmonary edema induced
by instillation of oleic acid in laboratory animals (98) and found that severe bilateral and
unilateral edema can be reflected adequately in the EIT images. Furthermore, increased
lung water was reflected in quasi-static EIT images in patients suffering from pulmonary
hypertension (100,124). With the recent progress in (quasi-)static and three-dimensional
EIT (91,94,100), it is likely that the resolution and specificity of EIT for monitoring lung
water will be further increased in the near future. A distinction between increased blood
volume in the pulmonary circulation and pulmonary edema, i.e., fluid entering the
alveolar spaces, is not possible at present. However, we may speculate that as

multifrequency and complex-valued EIT images become more common and better
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understood, they may provide a means of distinction between different mechanisms of

increased lung water.

Other pulmonary applications

Many disease processes cause substantial biochemical and structural changes in the
lungs. It is intriguing to speculate to what extent these alterations would be reflected in
static, three-dimensional and complex-valued images that are obtained over a wide range
of frequencies. For example, substantial structural changes have occurred in the lungs of
patients suffering from emphysema and COPD that may alter the complex electrical tissue
properties over a certain range of frequencies. Similarly, carcinogenic tissues may become
detectable in complex-valued images. From today’s perspective, the ability to detect such
disease processes would not only require significant improvements in the EIT hardware
technology, but also necessitate exhaustive clinical research in order to permit adequate

understanding and interpretation of these EIT images.

2.4.5 Non-pulmonary applications of EIT

The following non-pulmonary applications of EIT are listed for the sake of
completeness.
(i) Gastric applications

EIT has repeatedly been used to non-invasively measure the transfer times of food
through parts of the digestive system and to monitor gastric secretions and gastro-
esophageal reflux (7,14,19,89). In these applications, EIT replaced invasive techniques

involving radioactive tracers.

(i) Cancer detection
Carcinogenic tissues have electrical properties that differ substantially from those of
adipose tissues (42,43), so that EIT may provide a non-invasive, painless scanning tool

for many forms of cancer including breast carcinomas (74,109).
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(iii) Cardiologic applications
EIT has been suggested as a non-invasive method to estimate the stroke volume,

cardiac output and blood flow (20,37).

(iv) Dose monitoring for microwave hyperhermia therapy
Several studies have investigated the use of EIT for dose monitoring during

microwave hyperthermia treatment for cancer patients (5,16,27,28,53,101).
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PULMONARY MONITORING

Pulmonary monitoring, i.e., the computation of clinically valuable parameters from
pressure and flow data in real time, is an important aid for the management of patients
suffering from severe pulmonary disease in the ICU. The first section of this chapter
describes a computer model of a spontaneously breathing or assist-ventilated patient that
forms a methodological basis for the subsequent sections. In section 3.2, this model is
used to investigate the susceptibility of conventional measurement techniques for PEEP;
and Wj,, to two important confounding factors, and to investigate a physiological
hypothesis that explains inconsistencies between static and dynamic measurements of
PEEP;. An adaptive filter that attenuates the adverse effects of cardiogenic oscillations on
measurements of PEEP; and Wi, is developed in section 3.3. The performance of this
filter is demonstrated both in simulated data and in pressure and flow signals obtained
from four intensive care patients. Finally, in section 3.4 the computer model developed in
section 3.1 is used to study the interactions between flow-limited patients and an assisting

flow-triggered pressure support ventilator.
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3.1 A computer model of the spontaneously breathing patient

3.1.1 Motivation

This section describes a comprehensive model of respiratory mechanics that permits
the simulation of patients breathing spontaneously or with the support of an assisting
ventilator. The motivation to develop such a model initially originated from the insight
that several measurement techniques that are frequently used in clinical practice have not
been properly validated and are extremely difficult to validate in patients. In contrast, the
validation of measurement techniques is comparatively easy using a computer model,
since many variables that are inaccessible in patients become available in simulation.

However, the range of possible applications of the model described in this section
exceeds the validation of measurement techniques. For example, it can be used to test
hypotheses in a very controlled environment by studying the exact same population of
patients under two sets of conditions that differ only in the value of a single parameter.
The modified parameter can either be part of the model, e.g., the viscoelasticity of the
lungs, or represent a setting or design aspect of an assisting ventilator, e.g., the trigger
threshold, pressure support level or response time of a valve. The model can thus be
valuable to address both physiological questions and ventilator design criteria.

Furthermore, this computer model could be a valuable teaching tool.

3.1.2 Implementation

Overview

An overview of the nonlinear, viscoelastic model of the actively breathing subject is
shown in Fig. 3.1. The pressure drops across each passive compartment of the respiratory
system and the endotracheal tube (ETT) were computed as functions of tracheal flow (V)
and total lung volume (V). A predefined neural output signal was used to generate a
volume- and flow-dependent muscular pressure (Pmysc). The individual pressures were

summed as illustrated in Fig. 3.1 to yield P,,. P, was fed back into an active numerical
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controller that controlled V and/or Puw according to the desired mode of breathing (see
Determination of flow). For all studies performed to date, the mean and standard deviation
(SD) of each model parameter were chosen according to the literature to generate a
population of 100 random hypothetical adult patients with severe COPD (Table 3.1).
However, the model could easily be parameterized to simulate different diseases, normal
subjects, infants or neonates, provided that sufficient data are tabulated in the literature.
The model was implemented using the Matlab 4.2/Simulink 1.3 mathematical and
simulation software package (The MathWorks Inc., Natick, MA). It was solved using
Matlab’s fourth order Runge-Kutta integration routine with a precision setting of 10
Complete diagrams of the Simulink implementation of the model are provided in the

appendix.

Lung and chest wall
The nonlinear static volume-pressure (V-P) relationship of the lung was modeled
using an exponential equation (125) of the form
V=A_ -Be M, (3.1)
where P, is the static elastic recoil pressure of the lungs. The values of the parameters
Ap, BL and K were set to the ones reported by Pare et al. (103) for COPD patients with
an emphysema score of greater than 20 (see Table 3.1).
The static V-P curve of the chest wall was modeled by an analogous equation,
V=A_+B_e ", (3.2)
where P cw is the static elastic recoil pressure of the chest wall. This equation was fit to
previously reported data for the elastic recoils of the rib cage and the passive diaphragm in
normal supine subjects (133) to determine Ay, Bow and Ko (V = 1.36 + 2.31.e*%% 2 =
0.94). These parameters were not modified for the COPD patients, since available
evidence suggests that the chest wall V-P relationship is not altered in COPD (57).
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Fig. 3.1
Schematic representation of the computer model used to simulate patients breathing
spontaneously or with the support of an assisting ventilator.
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Table 3.1:
Means and standard deviations of the parameter values used to simulated a population of

100 COPD patients.
Compartment Parameter (units) Mean | SD Source / comment
Lung AL L) 741 1.18 | Pare et al. (103), Group II
BuU/AL 1.02 0.44 | Pare et al. (103), Group HI
K (cmH,0™") 0.249 | 0.079 | Pare et al. (103), Group III
Rop (cmH,OsL) | 875 | 1.21 | Guerineral (57)
Tar (s) 1.4 0.19 | Guerin etal. (57)
Chest wall Acw (L) 1.36 0.2 | fit to Smith and Loring (133)
Bew/Acw 1.699 | 0.3 | fit to Smith and Loring (133)
Kcw (cmH,0™") 0.05 | 0.01 | fitto Smith and Loring (133)
Rocw (cmH,OsL") | 325 | 0.6 |Guerinetal (57)
Tacw (s) 2.49 0.48 | Guerinetal. (57)
Airways Kaw,1 (cmH,OsL") | 5.03 | 0.45 | Guerinetal (57)
Kawa (cmH,0s*L?) | 2.69 | 0.63 | Guerin e al. (57)
X/ %o 3 0.25 | to produce typical FEV| & FVC
Endotracheal | Diameter (mm) 8 0.5 empirical
tube
Neural output | Breath Rate (min") | 21.1 | 5.9 | Appendini et al (6)
duty cycle 0.41 0.04 | Appendini et al. (6)
rate of increase 20 5 to match V., from (6)
(cmH,05s™)
Pexp (cmH0) 4 2 see text
Noise Heart rate (min™) 100 20 empirical
Ccp (cmH,0) 0.5 0.2 empirical
Cce (cmH,0) 3 empirical
P, shift (cmH,0) 3 2 empirical
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Stress adaptation of both the lung and the chest wall was modeled by assigning a
Maxwell body in paraliel to their respective static elastances (Fig. 3.1). The parameter
values for the Maxwell bodies (R21, Racw, T2, and Tz cw) were chosen according to
recently reported data for severe COPD patients (57) (see Table 3.1). Stress adaptation
can be interpreted to reflect time constant inhomogeneities within the lung, viscoelastic
tissue properties or a combination of the two, since both phenomena have been shown to

have identical mathematical representations (132).

Airways
The pressure drop across the airways during inspiration was modeled using Rohrer’s

equation (116),

V+K

AP, =K vV, (3-3)

aw,1 aw,2
and previously reported values for K,y and K,y 2 were used (57). Unfortunately, this
equation is not sufficient to describe the behavior of the airways during expiration in the
presence of flow limitation. While the mechanisms of expiratory flow limitation have
been extensively investigated (71,83), an empirical description of flow limitation in the
lung as a whole has not been previously proposed. I therefore incorporated an empirical
description into the model such that FEV,, FVC and PEEP; assumed values similar to
those reported in the literature (6). An exponential function of flow with a hyperbolic
volume dependence was employed to account for the pressure drop across the site of
expiratory flow limitation. The resulting equation for the expiratory pressure drop across
the airways,

wiV+K,, ,V

AP =K V] +a(e"“’/"°""’ - 1), (.4)

was then fit to the family of IVPF curves shown by Lambert (83), setting K1 equal to
Lambert’s airway resistance for very small flows. As illustrated in Fig. 3.2, Eq. 3.4 was
able to reproduce the principal characteristics of the IVPF curves when constants Kqw 2, @,
Bo, and Xo equaled 0.34 cmH,0.L2s? 1.83.10* cmH,0, 1.227 L's and 1.823,
respectively, and the volume Vo was set to TLC. The expiratory flow limitation

mechanism was placed in parallel with the block representing Rohrer’s equation (Fig.
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Fig. 3.2:
Iso-volume pressure-flow relationships of the airway compartment during expiration. The
empirical representation used in the model (solid lines, see text for details) reproduced the
principal features of the data by Lambert et al. (83) (dashed lines).

3.1). A 100 msec time constant was assigned to the waterfall compartment in order to
produce the supramaximal flow transients at the onset of expiration.

Flow limitation is more pronounced in COPD patients. In my model, FEV,, FVC
and PEEP; assumed appropriate values for COPD patients and flow limitation during tidal
breathing was achieved (Fig. 3.3) when ) was raised to X/Xo = 3. In this case, the average
simulated patient was described by FEV, = 0.81 L, FVC = 2.36 L, FEV\/FVC = 34%,
PEEP; sx = 4.8 cmH,;0 and PEEP; 4yn = 4.5 cmH,0. In contrast, flow limitation during

tidal breathing could not be achieved when § was raised while ) was maintained equal to

Xo-
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Fig. 3.3:

Sample flow-volume loop of the average subject for one tidal breath with a passive
expiration and a subsequent forced expiratory maneuver with a peak expiratory effort of
200 cmH;O . The expiratory flow amplitude is almost independent of the magnitude of the
patient’s expiratory effort, indicating that expiratory flow limitation during tidal breathing
was achieved.

Patient effort

The central neural output to the respiratory musculature (Pyeyr, in pressure units) is
modulated by a variety of factors, such as the physiological needs of the body as well as
psychological and voluntary factors that are beyond the scope of this model. For all
studies described in this chapter, inspiratory and expiratory Ppe, Were assumed to be
piecewise linear as shown in Fig. 3.4. Breathing frequency and duty cycle (Ti/T) Were
chosen according to the data of Appendini e al. for spontaneously breathing patients with
severe COPD in acute respiratory failure (6). Inspiratory Ppe,, was assumed to increase at
a constant rate up to an end-inspiratory plateau of 200 ms. The rate of increase of Prpeyr
was chosen such that when all other model parameters were set to their population means

(Table 3.1), a tidal volume of 330 mlL was achieved (6). At the beginning of expiration,

the inspiratory activity decreased linearly to zero by 200 msec. Subsequently, expiratory

Chapter three: Pulmonary Monitoring 48



Ppeur increased linearly to an end-expiratory plateau of 200 msec. The expiratory peak
value of Ppeur (Pexp) Was set to 4 £ 2 cmH,0, which approximately averages the values
reported in the recent literature (6,85,99). Expiratory Py, linearly returned to zero over
the last 200 msec of each tidal breath.

In order to reproduce the length-tension relationship that has been reported for the
diaphragm (128), a bi-exponential volume-dependence was employed for inspiratory
Prmusc/Pocurs @s shown in Fig. 3.5 (solid line). The volume dependence of Py during
maximal inspiration and expiration has been shown to be approximately inverse (4). In
the absence of a more detailed description, a mirrored version of the bi-exponential
function was used to implement the volume dependence of Pyuse/Prewr during expiration
(dashed line, Fig. 3.5). For both inspiration and expiration, Prysc/Pneur Was scaled to unity
at FRC.

The flow dependence of the inspiratory Ppyse/Pneur Was implemented according to
the model of Younes and Riddle (113,159) (see Fig. 3.1). Since flow dependence of the
expiratory musculature has not been quantitatively described in the literature, this feature
was omitted from the model. Both the inspiratory and expiratory muscles were assigned a
neural response time constant of 60 msec and a mechanical response time constant of 100
ms (113,159).

In some situations, it may be desirable to append a forced expiratory maneuver to a
sequence of spontaneous breaths. When this was the case, the neural output was altered as
shown on the right side of Fig. 3.4. In order to simulate truly maximal effort during the
forced expiration maneuver, the peak values of P, were set to 100 cmH»O for
inspiration and to 200 cmH>O for expiration. The Py, waveform was altered such that
these plateau values were reached more rapidly than in the tidal breaths, namely within
500 msec. The inspiratory time was doubled during the forced breath, and the total

expiratory time was fixed at 8 sec.
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Time course of expiratory (top) and inspiratory (bottom) neural output with all neural
output parameters adjusted to their population means (see text for details) for one tidal
breath (left) and a deep inflation/forced expiration maneuver (right). The neural output
was expressed in units of the driving pressure it generates at functional residual capacity

under isovolume conditions.
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Volume dependence of the inspiratory (solid line) and expiratory (dashed line) muscles used
in the model simulation. See text for details.

Cardiogenic oscillations

A waveform for the cardiogenic oscillations was generated by passing a train of
impulses representing the basic heart beat through a linear low-pass filter with a cutoff
frequency of 100 Hz and a resonance at 10 Hz. This filter was adjusted such that at the
average heart rate, the mean value of the cardiogenic oscillation pressure (Pcco) equaled
zero. The effect of the beating heart on pleural pressure was modeled by multiplying Pcgo
with a cardio-pleural coupling factor (Ccp) and adding the result to Py (Fig. 3.1).
However, strong cardiogenic oscillations on P concurrent with mild cardiogenic
oscillations on flow and P,y, as often observed under true physiological conditions, could
only be achieved after a second, cardio-esophageal coupling factor (Ccg) was introduced
between Pcgo and P (Fig. 3.1). Both the heart rate and the values for Ccp and Ccg were

randomized as shown in Table 3.1.
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Endotracheal tube
The significant flow resistance of the ETT connecting the ventilator to the patient’s
airway opening had to be taken into account in the model. The pressure drop across ETTs
has been shown to fit the equation
Perr =k- VY, (3.5)
where k and v depend on the tube dimensions (59). An analysis of the values for x and v
documented in the literature for ETTs from 7.5 to 9 cm diameter (59) showed that v
remains roughly constant at a mean value of 1.738, while the variations of k with the
nominal tube diameter, d, fit the equation
K =301 g0t g 04emTd, (3.6)
When intubated patients were simulated, these equations were used to compute Perr from
the randomly chosen ETT diameter (see Table 3.1) and flow. The effects of variations in
tube length and of reductions in the tube diameter due to depositions have not been

described quantitatively in the literature and were neglected.

Determination of flow

To date, four modes of breathing have been implemented, namely spontaneous
breathing, CPAP, ACV and PSV (see section 2.3). In the most simple cases of
spontaneous breathing and CPAP, V was adjusted such that P,, remained constant at
atmospheric pressure or assumed a constant positive value, respectively (Fig. 3.6a).

During flow-triggered PSV (Fig. 3.6b), P,y was maintained equal to a chosen PEEP
level during expiration. When inspiratory flow became greater than a preset trigger
threshold, the ventilator was switched to its inspiratory phase, and the setpoint for P, was
raised above PEEP level by a preset pressure support level. When the inspiratory flow fell
to a value less than a preset off-trigger threshold, the setpoint for P,y was lowered back to
PEEP level. The transducer measuring flow was modeled to have single-pole behaviour
with a cutoff frequency of 20 Hz, and the ventilator was allowed to switch between the

two pressure setpoints with a time constant of 20 ms.
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Spontaneous breathing and CPAP, (b) Pressure Support Ventilation, (c) Assist Control

Ventilation.
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Pressure-triggered ACV was simulated using the ventilator model shown in Fig.
3.6¢. During expiration, PEEP was applied as described for PSV. However, a one-way
valve was implemented such that no inspiratory flow was possible during the ventilator’s
expiratory phase. At the onset of an inspiratory effort, the patient thus inspired against an
occlusion, and P,, dropped rapidly. When PEEP - P,, became greater than a preset
threshold value, the ventilator was switched to inspiratory mode. Unlike the other modes
of breathing described above, inspiratory flow then became independent of P, and was
set to a constant rate. After a preset inspiratory time had passed, the ventilator was
switched back to expiratory mode. The trigger was disabled for a preset minimum
expiratory time before a new inspiration was allowed. The pressure transducer measuring
P.w was modeled to have a cutoff frequency of 20 Hz, and a small single time constant of
10 ms was used to model the mechanical properties of the ventilator and to assure

numerical stability.

3.1.3 Performance

Sample traces
To illustrate the performance of this model, eight breaths were simulated for the
average COPD patient, i.e., with all parameters adjusted to their population means (see
Table 3.1), for the following modes of breathing.
e Spontaneous breathing;
e CPAP at a level of 5 cmH,0;
o pressure-triggered ACV, constant inspiratory flow of 0.5 L/s, inspiratory time of 1 s,
trigger threshold at 2 cmH,0, plus PEEP of 5 cmH,0; and
e flow-triggered PSV (Fig. 3.6b) at 5 cmH,0 plus 5 cmH,O PEEP, trigger threshold at
0.05 L/s, off-trigger at 0.02 L/s.
In all four cases, the first six breaths were discarded to assure that a steady state had been
reached and dynamic hyperinflation was fully developed. The level of dynamic

hyperinflation and V, was evaluated from the volume traces of breaths seven and eight,
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and PEEP; ., was evaluated as the difference between the sum of the static elastic recoil
pressures of lung and chest wall and P,,, at the seventh end-expiration.

The left panels of Fig. 3.7 show sample traces of the simulated flow, volume, P,y
and P waveforms during spontaneous breathing. At the onset of expiration, the simulated
patient exhibited the characteristic supramaximal flow transients that are frequently
observed in flow limited COPD patients. The patient was dynamically hyperinflated with
an end-expiratory lung volume of 477 mL above FRC, while PEEP; ., and V, amounted
to 4.72 cmH,0 and 341 mL, respectively. Cardiogenic oscillations were present both on
P.s and, to a lesser extent, on the flow trace. Py, showed its greatest deflections at the
onset of expiration when the highly nonlinear expiratory flow limitation phenomenon
began to dominate the model behavior. With an rms-value of less than 0.05 cmH,O, these
deflections were negligible compared to the émplirudes of physiologic pressures
associated with respiration.

The right-hand side panels of Fig. 3.7 display traces for the same patient during
CPAP ventilation. In this case, the patient became considerably more hyperinflated with
an end-expiratory lung volume of 710 mL above FRC. The tidal volume was slightly
increased to 380 mL, and PEEP; st.: Was reduced to 1.8 cmH,O.

Fig. 3.8 shows equivalent traces for ACV and PSV ventilation. During ACV (left
panels of Fig. 3.8), inspiratory flow was fixed and did not contain any cardiogenic
oscillations. However, cardiogenic oscillations could be observed on P,y in this case. At
the onset of inspiration, the patient inspired against an occlusion for a period of roughly
300 ms before the ventilator was triggered and inspiratory flow was initiated. The end-
expiratory lung volume ranged 841 mL above FRC, while PEEP; ¢ equaled 2.9 cmH,O.
In the case of flow-triggered PSV, the simulated patient achieved a V. of 513 mL at an
end-expiratory lung volume of 867 mL above FRC and a PEEP; o of 3.1 cmH,0.
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Sample traces of the simulated waveforms of flow, volume above FRC, P,,, and P,,.
Left: Spontaneous breathing; right: Continuous Positive Airway Pressure (CPAP).
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Sample traces of the simulated waveforms of flow, volume above FRC, P,,, and P.
Left: Assist-Control Ventilation (ACV); right: Pressure Support Ventilation (PSV).
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Pulmonary function measurements

In a second test experiment, a population of 100 COPD patients was generated with
the specific parameter values drawn randomly from normal distributions having the
means and standard deviations shown in Table 3.1. For each patient, six spontaneous
breaths and a subsequent forced expiratory maneuver were simulated. To accelerate
convergence of the simulation towards a stable breathing pattern, an estimate of the
expected dynamic hyperinflation was employed as the initial lung volume for these
patient simulations. The change in end-expiratory lung volume between breaths four and
five averaged 1.2% of the dynamic hyperinflation volume at the end of breath five,
indicating that steady state breathing had essentially been achieved and dynamic
hyperinflation was completely developed.

For each patient, V, was then

Table 3.2:
evaluated as the volume inspired in Means and standard deviations of pulmonary
breath si v function data obtained from the population of 100
reath six, and V, was computed simulated COPD patients.

by muitiplying V: by the patient’s Parameter Value Units
RR. FEV, and FVC were evaluated v/, 034+0.19 L

as the volumes expired over the 6.8 + 3.1 L'min""
first second and the over the full FEV, 0.82 +0.31 L
eight seconds of the forced FVC 234 +0.55 L
expiratory maneuver. The means FEV/FVC 338+ 6.0 %

and standard deviations of all four
parameters are given in Table 3.2 and were in good agreement with the ones reported in

the literature for COPD patients (6,57,107).
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3.1.4 Discussion

In this section, I have described a comprehensive computational model of the
actively breathing patient that can be used to simulate spontancously breathing patients as
well as patients breathing with the support of an assisting mechanical ventilator.
Computer simulations are particularly well-suited for many tasks in biomedical research
because they provide access to variables that are impossible to measure in patients and
because the simulated experimental conditions can be manipulated at will. This allows the
effects of various factors to be evaluated independently of all others. Also, computer
simulations allow an essentially unlimited number of subjects to be studied, and under
conditions that would be unacceptable in real patients. Indeed, with the growing
awareness of the ethical issues involved in human and animal experimentation, we may
expect computer simulations to play an increasingly important role in future biomedical
research.

The results of any computer simulation are always open to question in that the
underlying model will never completely reproduce human physiology. However, the
structure and parameters used for this model were taken from the recent literature
wherever possible, although some aspects of the model required extrapolation of
published data (such as the formula used for expiratory flow limitation, Eq. 3.4). The
pressure and flow waveforms and the values of FEV, and FVC obtained when simulating
spontaneously breathing patients were consistent with clinical observations in patients.
Similarly, changes in the ventilator settings during assisted modes of ventilation produced
changes in pressure and flow waveforms and ventilation parameters that were in
accordance with clinical observation and the literature. However, the waveforms of flow
and/or P,, appeared idealized compared to clinical data during assisted modes of
ventilation because the simulated ventilators provided much faster rise and fall times and
controlled the inspiratory flow and/or P,, with much greater accuracy than commercial

clinical ventilators.
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The model described in this section is based on general respiratory physiology and
is thus not specific to the study of any particular disease. However, the model parameters
to date have always been set to represent a population of COPD patients (Table 3.1). This
disease group was chosen because dynamic hyperinflation is generally well developed in
COPD patients. Furthermore, the model parameters could be drawn from a vast literature,
since COPD has received great attention in the clinical and respiratory mechanics
literature.

In its present form, my model has a multitude of uses. The remainder of this chapter
describes research that I have conducted using this model to analyse measurement and
data processing techniques for pulmonary monitoring, to address physiological questions,
and to investigate the synchronization between patient and ventilator during PSV. Other
potential applications as well as possible extensions to the model that would further

increase its range of uses are discussed briefly in section 5.3.
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3.2 Quantitative assessment of measurement techniques for

intrinsic PEEP and work of breathing

3.2.1 Motivation

In dynamically hyperinflated patients in the ICU, it would be of great benefit to be
able to automatically assess PEEP;4yn and Wiy, breath-by-breath using computerized
monitoring equipment. Although this is straightforward in principle (see section 2.2.3),
the breath-by-breath estimation of Pesg, which is used to compute both PEEP;4,, and
Winsp, is complicated in practice by cardiogenic oscillations on Ps. Furthermore, any
expiratory muscle activity that might be present at the end of a breath can potentially
cause overestimation of Peso and hence corrupt measurements of PEEP; gyn and Wigsp. A
quantitative analysis of the measurement errors due to cardiogenic oscillations and
expiratory muscle activity requires knowledge of the true values of PEEP; ayn and Wipsp,
which is essentially impossible in patients. I therefore decided to investigate these
measurement errors using the computer model described in the previous section, where
the true values of PEEP; gyn and Wiy, are known accurately and confounding factors can
be precisely controlled.

As described in section 2.2.3, PEEP; can also be measured under static conditions.
PEEP;¢yn is often considered a reasonable approximation of the value of PEEP;gua
(107,119), although recent studies indicate that PEEP; 4y, can substantially underestimate
PEEP; 5. (62,88,107). Taking advantage of the computer model described in section 3.1, I
further investigated the hypothesis that time constant inhomogeneities and/or tissue
viscoelasticity are responsible for the discrepancies observed between PEEP;g4y and

PEEP, ot during severe airway obstruction (62,88).
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3.2.2 Methods

Protocol

To test the sensitivity of measurement techniques for PEEP;4nm and Wingp to
cardiogenic oscillations and expiratory muscle activity, a Monte-Carlo simulation of a
population of 100 COPD patients was performed as described above (see Pulmonary
function measurements in section 3.1.3). Each patient was simulated in four
configurations: (a) with neither expiratory effort nor cardiogenic oscillations (Ccg, Ccp.
and Pexp = 0; Control); (b) with Py, as shown in Table 3.1 and no cardiogenic oscillations;
(c) with no expiratory effort and Ccg and Ccp as shown in Table 3.1; and (d) with both
expiratory effort and cardiogenic oscillations, i.e., with all parameters as shown in Table
3.1. Finally, to investigate whether increased time constant inhomogeneities alter the ratio
of PEEP; 4y, to PEEP; ., as previously suggested (62,88), the control experiment was
repeated with the model parameters altered such that the effects of stress adaptation in the
lung were amplified, i.e., simulating a more heterogeneous and/or viscoelastic lung (e).
This was achieved by multiplying R, by a factor of five, i.e., setting its mean value to
43.75 cmH,0.L" s.

All patients were simulated without any ventilatory support and without an ETT.
Each simulation consisted of six spontaneous breaths and a subsequent forced expiratory
maneuver. An estimate of the expected dynamic hyperinflation was employed as the
initial lung volume for each patient simulation to accelerate convergence of the simulation
towards a stable breathing pattern. The change in end-expiratory lung volume between
breaths four and five averaged 1.2% of the dynamic hyperinflation volume at the end of
breath five, indicating that steady state breathing had essentially been achieved and

dynamic hyperinflation was completely developed.

Data analysis
At the end of the fifth breath, the true PEEP; o, was evaluated as the total static
recoil pressure. The true PEEP; 4y, was evaluated as the sum of the static recoil pressures

and the pressures across the Maxwell bodies of lung and chest wall at the onset of the
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sixth inspiratory effort. V, was the volume inspired in breath six, and Vc was computed by
multiplying V; by the patient’s RR. In the same breath, the true Wiy, was computed by
integrating Prusc insp Over the inspired volume and dividing the result by V.. FEV, and
FVC were evaluated as the volumes expired over the first second and the over the full
eight seconds of the forced expiratory maneuver.

Over the period in which expiratory flow was present, the derivative of P (dPs/dt)
was evaluated. The baseline value of P.s at end-expiration (Pespaseiine) Was identified
automatically at the point closest to the end of expiratory flow at which dP./dt did not
exceed its minimum by more than 5% of its range over that expiratory period. The
threshold for the detection of Pespaseiine Was thus not fixed, but depended on the P
waveform during the breath under consideration. The measured dynamic PEEP;
(PEEP; meas) was obtained from the deflection from Pespaseiine t0 the value of P at the
onset of inspiratory flow in breath six. When the value identified at the onset of
inspiratory flow exceeded Pespaseiine, Which occasionally occurred in the presence of
cardiogenic oscillations, PEEP; ness Was set to zero. A measurement of Wingp (Wmeas) wWas
evaluated as the integral of the difference between Pes pasciine and Pes over inspired volume
plus the work done to distend the chest wall, divided by V.. A constant linear chest wall

elastance of 5 cmH,0.L"! was used to calculate the work done to distend the chest wall.

3.2.3 Results

Fig. 3.9 shows PEEP;mess with respect to PEEP; 4y for configurations (a) to (d).
Without expiratory effort and cardiogenic oscillations (Fig. 3.9a), PEEP; meas reproduced
PEEP; 4yn with a good degree of accuracy (y = 0.96x - 0.03, r = 0.999). In the presence of
expiratory effort (Fig. 3.9b), PEEP; o5 systematically overestimated PEEP; gyn (y = 1.08x
+ 4.79, r = 0.85). As anticipated, the measurement error (PEEP; meas - PEEP; 4yn) was
closely correlated with P, (Fig. 3.11a) (y = 1.13x + 0.008, r = 0.98). In Fig. 3.9c,
cardiogenic oscillations introduced a random error in PEEP;mes which effectively
obliterated the correlation between PEEP; peas and PEEP; gyn (r = 0.29). The mean error
was 0.51 cmH>O which is 12.5% of the mean PEEP; 4y, (4.1 cmH>0), while the standard
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deviation of the error was 3.54 cmH;0. With both expiratory effort and cardiogenic
oscillations (Fig. 3.9d), the scatter in PEEP; meas Was even more pronounced (r = 0.18). It
should be noted that data points representing a small number of simulated patients that
were able to expire below their equilibrium volumes when their expiratory muscles were
active were excluded from Fig. 3.9b and d, since they did not develop dynamic
hyperinflation and PEEP; under those conditions.

Wineas is plotted with respect to Wi, in Fig. 3.10 for configurations (a) to (d).
Under control conditions (Fig. 3.10a), Wneas slightly underestimated the true Wiy, (¥ =
0.99x - 0.04, r = 0.97), although the average relative error remained smaller than 5%. In
the presence of expiratory effort (Fig. 3.10b), Weas systematically overestimated Wiy, (¥
= 1.36x + 0.15, r = 0.81). As above for PEEP; 4yn, the measurement error of Winsy (Wmeas -
Winsp) was closely correlated with Pe, (Fig. 3.11b) (y = 0.11x - 0.015, r = 0.91). The
correlation between W, and Winsp was lost when cardiogenic oscillations were present
(Fig. 3.10c, r = 0.38). The error due to the oscillations was -0.018 + 0.29 JL?! (mean
SD), compared to a mean Wiss, of 0.92 J.L'1. The scatter became even greater when both
expiratory effort and cardiogenic oscillations were present (Fig. 3.10d, r = 0.27).

The open circles in Fig. 3.12 display the relationship between PEEP;, and
PEEP; 4yn under control conditions (configuration (a)). At higher levels of PEEP;, the data
points are scattered about the line of identity, while PEEP; 4,5 increasingly underestimated
PEEP; sux as PEEP; . decreased. In contrast, PEEP;4,, underestimated PEEP;, in a
larger number of cases and to a greater extent when the stress adaptation of the lung was

increased five-fold (configuration (e), solid circles in Fig. 3.12).
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Fig. 3.9:
Identity plots relating the measured and the true dynamic PEEP, in four different

configurations: (a) no expiratory effort or cardiogenic oscillations ; (b) expiratory effort
alone; (c) cardiogenic oscillations alone; and (d) both expiratory effort and cardiogenic

oscillations. The dashed lines are lines of identity.
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Identity plots relating the measured and the true inspiratory work of breathing in four
different configurations: (a) no expiratory effort and cardiogenic oscillations; (b)
expiratory effort alone; (c) cardiogenic oscillations alone; and (d) both expiratory effort
and cardiogenic oscillations. The dashed lines are lines of identity.
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Fig. 3.12:

Identity plot comparing static and dynamic PEEP,. In the initial population of COPD
patients (open circles), PEEP 4,, underestimated PEEP, », at lower levels of PEEP, .,
whereas the two were comparable at higher PEEP, ., values. After stress adaptation within
the lungs was increased five-fold (closed circles), PEEP, 4, consistently underestimated
PEEP, ;... at all levels of PEEP, ;. The dashed line is the line of identity.
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3.2.4 Discussion

In the present study, I have employed the computational model of the actively
breathing patient developed in section 3.1 to quantitatively analyze measurement errors in
PEEP; g4yn and Wiy, during spontaneous breathing. Computer simulations are particularly
well-suited for this kind of analysis, because they provide access to variables that are
impossible to measure in patients and because the effects of various confounding factors
can be evaluated independenty.

As discussed in section 3.1.4, the results of any computer simulation study are
always open to question in that the underlying model will never completely reproduce
human physiology. However, even if the mechanism that determined the true PEEP; ¢yn
and Wiy in these simulations was not entirely realistic, a robust algorithm should still
have estimated them correctly. Also, the employed scheme for identifying Pepascline Was
based on the derivative of P.s. This approach works well in a computer simulation where
random measurement noise is absent, but is likely to perform less well in a practical
measurement situation where numerical differentiation amplifies measurement noise and
necessitates further signal processing that may introduce additional errors to Pes paseline- In
this sense, the data presented in Fig. 3.9 to Fig. 3.11 are a best-case scenario, whereas
poorer performance would be expected in a true measurement situation.

The results of this study demonstrate the extent to which automated breath-by-
breath measurements of both PEEP;4n and Wij,, are susceptible to errors due to
expiratory muscle activity and cardiogenic oscillations. In the absence of expiratory effort
and cardiogenic oscillations, both PEEP; 4y, (Fig. 3.9a) and Wiy, (Fig. 3.10a) were well
estimated. The slight systematic error in PEEP;mes (Fig. 3.9a) was presumably due to
small changes in the pressure drop across the stress adaptation compartments that
occurred during the time required to evaluate PEEP; yeas. The random error in PEEP; meas
was negligible. Wiy, exhibited a slight systematic error with a small degree of random
scatter (Fig. 3.10a). Comparison of these results to estimates of Wins, obtained using each

patient’s individual chest wall mechanics showed that most of the error in Wy,,s under
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control conditions was due to the assumption of a fixed chest wall elastance of 5
cmH>O.L!. This strategy is motivated by the fact that chest wall elastance is not easily
obtained in actively breathing patients and, as a result, a normal predicted value is
commonly used (9,18,106). A fixed chest wall elastance of 5 c.:mHzo.L‘l has also been
employed in the Wi, algorithm of a commercially available pulmonary monitoring
device (CP-100, Bicore Corp., Irvine, CA). In any case, this study indicates that the errors
introduced by assuming a fixed chest wall elastance for all patients are minor.

With the introduction of expiratory effort, significant errors were encountered in
both PEEP; yeas (Fig. 3.9b) and Wy, (Fig. 3.10b). The measurement errors for both
quantities correlated linearly with P, (Fig. 3.11), indicating that the measurement errors
are predominantly determined by the expiratory muscle activity and do not depend on the
level of dynamic hyperinflation itself. Several investigators have suggested using changes
in gastric pressure to estimate the magnitude of the expiratory muscle pressure, which
may then be employed to correct PEEP; s (6,85). Although the pressure generated by
the expiratory muscles of the rib cage may not be completely reflected in gastric pressure
(31,99), this method is certain to be better than no correction at all. Presumably, gastric
pressure could also be used to make a corresponding correction in Wy, although to the
best of my knowledge this has not yet been investigated. Unfortunately, I was unable to
investigate the use of gastric pressure in my model because of the lack of published data
showing quantitatively how the abdominal wall and contents contribute to respiratory
mechanics.

I also found that cardiogenic oscillations produced large errors in both PEEP; meas
and Wye,s (Fig. 3.9c and Fig. 3.10c). These errors can be reduced by averaging estimates
from many breaths, provided that the cardiogenic oscillations are not entrained with the
breathing cycle. However, a statistical analysis showed that over 1145 breaths would need
to be averaged to reduce the standard deviation of PEEP; ness - PEEP; gy to less than 5%
of the mean PEEP, 4,, with 95% confidence (63). An analogous computation showed that
a similar level of confidence would be obtained for Wins, by averaging over 152 breaths.

In my opinion, these numbers of breaths are too large to allow either PEEP; 4yn or Winsp t0

Chapter three: Pulmonary Monitoring 70



be accurately estimated in anything close to real time. On the other hand, single breath
estimates of both quantities are far too noisy to be useful. Furthermore, standard filtering
techniques are not capable of reducing the confounding effects of cardiogenic oscillations
because the frequency spectra of respiratory and cardiac pressure waveforms overlap too
much. Obviously, more sophisticated processing of P., such as the adaptive filter
technique described in the next section, is required in order to ameliorate the effects of
cardiogenic oscillations. Almost no attention has been given to this matter in previous
reports (6,9,85,99,107), yet it is clearly crucial to the successful estimation of both
PEEP; 4yn and Wiy, in particular when these quantities are to be evaluated automatically
on a breath-by-breath basis. Not surprisingly, the errors were even greater when both
expiratory muscle activity and cardiogenic oscillations were present (Fig. 3.9d and Fig.
3.10d).

Under the control condition (configuration (a), open circles in Fig. 3.12), i.e., in
absence of expiratory effort and cardiogenic oscillations and with Ry as given in Table
3.1, it was not possible to reproduce the significant differences that have been observed
between PEEP; . and PEEP; 4y, in the setting of severe airway obstruction (62,88,107),
especially when PEEP;, was large. Presumably, this is because central airway flow
limitation was the main determinant of expiratory flow in my simulations, which would
have reduced the magnitude of the end-expiratory pressure in the stress adaptation
compartment. In other words, expiratory flow was slowed in the central airways to an
extent that much of the energy stored in viscoelastic tissues and in local pressure
differences due to peripheral time constant inhomogeneities could dissipate before end-
expiration. I was able to simulate differences between PEEP; ¢yn and PEEP; g similar to
those reported in patients only after the degree of stress adaptation in the lung
compartment had been increased five-fold (configuration (e), solid circles in Fig. 3.12)
over that reported for COPD patients during inspiration (57). This suggests that COPD
patients exhibit more stress adaptation during expiration than during inspiration.
Presumably, the only way this can happen is if these patients are inhomogeneously flow

limited during expiration, so that their lungs expire like a parallel arrangement of flow
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limited compartments emptying at relatively different rates. Inhomogeneous emptying
during flow limitation has been described previously in dogs (92,139,149). Because the
degree of inhomogeneity in flow limitation is likely to vary considerably from patient to
patient, the relationship between PEEP; 4yn and PEEP; q is in general extremely difficult
to predict in any particular individual. This may account for the wide range of PEEP; 4y, to
PEEP, i, ratios reported in the literature (62,88,107,119).

In summary, I employed the computer model described in section 3.1 to examine
the extent to which automated breath-by-breath measurement techniques for PEEP; 4y and
Winp are susceptible to errors due to expiratory muscle activity and cardiogenic
oscillations. The results of this study demonstrate that both quantities are highly sensitive
to these phenomena, such that in general, some means of correction for expiratory muscle
activity and cardiogenic oscillations are necessary if PEEPigyn and Wiy, are to be
measured accurately on-line. Furthermore, my simulations suggest that the discrepancies
between PEEP; . and PEEP; 4yn are caused by the heterogeneity of the expiratory flow

limitation throughout the lung.

Chapter three: Pulmonary Monitoring 72



3.3 An adaptive filter to reduce the cardiogenic oscillations in

esophageal pressure

3.3.1 Motivation

In the previous section, I have demonstrated in a computer simulation that
cardiogenic oscillations in P may introduce substantial errors in estimates of PEEP; ayn
and Wiysp. Similarly, cardiogenic oscillations reduce the goodness of model fits when the
mechanical properties of the lungs and chest wall are identified using P.;. Unfortunately,
cardiogenic oscillations cannot be removed from P, signals by simple low-pass filtering
because their frequency content overlaps that of the respiratory signal.

This section describes an adaptive filter to suppress cardiogenic oscillations that I
developed to reduce the adverse effects of cardiogenic oscillations. The filter is validated
using both data obtained from the computer model described in section 3.1 and records
from four patients in a respiratory ICU. The effects on measurements of PEEP; 4y, are

investigated.

3.3.2 Methods

The adaptive filter

In order to develop the adaptive filter presented in this study, we model P as the
sum of pressure swings due to respiration (Presp) and the undesired cardiogenic oscillation
pressure (Pcgo), as illustrated in Fig. 3.13a. The linear dynamic system described by the
impulse response function h;(t) relates Pcgo to the series of impulses generated by the
cardiac pacemaker in the SA node (Cp). Pcgo contains very little power at frequencies
below the heart rate (HR), while Prp is likely to contain significant power below the HR
because the RR is generally less than the HR. Therefore, P can be considered to be
entirely determined by P in the frequency band from 0 Hz to slightly below the HR, but

to contain significant cardiogenic oscillations at and above the HR. A second impulse
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response, h»(t), translates Cp into voltage swings on the body surface

measured as an electrocardiogram (EKG).

that can be

Prup
+ P,
h() |
C EKG
: . b b3
(a)
P, 0 Pe,
N
+
high-pass Pawe ]
" filter .| recursive
»| identification \
EKG | ORS G Peoo
' detection i by(7)
flow \<
(b)
Fig. 3.13:

(a) Model of the origin of cardiogenic oscillations employed to develop the adaptive filter.

(b) Structure of the adaptive filter. See text for details.
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In the adaptive filter, a number of quantities are smoothed by recursively calculating

an exponentially weighted running mean according to
X, =CX,_, +(1-0)x,, (3.7)
where X, is the estimate of the mean obtained up to sample k. { is often referred to as a
forgetting factor, and must range between O and 1. If x is sampled uniformly, this
estimator becomes equivalent to a single-pole low-pass filter, and { is related to the time

constant of the finite memory, T, by the equation

1=-28 (3.8)

- In(¢)’
where At is the sampling interval. If { is adequately chosen, this recursive estimator tracks
slow changes in x but averages out rapid fluctuations and measurement noise.

The structure of the adaptive filter is shown in Fig. 3.13b. In order to compute an
estimate of Pcco (f’mo ).a sequence of impulses representing the cardiac R-waves from a
lead I EKG was generated by thresholding the negative deflections of the EKG. The
threshold value for the R-wave detection was set to 1.7 times the RMS value of the EKG
signal, which was smoothed recursively as described above with a forgetting factor of
0.97. Provided that h,(t) is stationary, this sequence of impulses represents an estimate of
Cp, i.e.,

Cp =Co(t-1,), (3.9)
where 7, is the delay between the initiation of a heart beat in the SA node and its
manifestation in the EKG. The HR was computed from the inverse R-R intervals and
smoothed recursively using a forgetting factor of 0.9.

Next, Pes was high-pass filtered using a two-sided 256th-order FIR filter with a
constant group delay. The cutoff frequency (fc) of this filter was adjusted to 0.6 times the
identified HR. Thus, the high-pass filtered Pes signal (Pesup) still contained the complete
and undistorted Pcco, but suppressed the low frequency components of Prsp that in some
cases would complicate the following processing steps. The two sided high-pass filter

introduced a delay of 128 data points from the moment that data were sampled to the
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point when filtered values were available. Since all data were sampled at 100 Hz, the time
delay amounted to 1.28 seconds.

Assuming linearity, we have that

Pego = hy(t-1,)*C,, (3.10)

where * denotes convolution. In order to calculate f’cco, a third impulse response, h3(t),
was estimated recursively according to

by (1) =Chs” (7)+ (1-E) Pl (1), (3.11)

where { again is the forgetting factor, and P{),, is the segment of P yp that falls into the

k-th R-R interval. Assuming that there is no phase-locking between the heart rate and the

breathing cycle, and provided that { is sufficiently large, components of hs(t) that

originate from Py, are averaged out so that hs(t) effectively provides an estimate of hy(t -

T2). Using hs(t), f’coo was computed and subtracted from P.s in order to obtain the final

estimate of Prp, i.€.,
P, =P, —Pgo =P, —h,(1)*C,. (3.12)
The choice of the forgetting factor { in Eq. 3.11 is a crucial determinant of the
algorithm’s performance. If £ is chosen too small then h3(t) becomes sensitive to
measurement noise, and contributions to Pes yp that originate from P are not effectively
averaged out. On the other hand, large values of { limit the filters ability to adapt to
changes in h;(t) over time. Part of this problem can be overcome by using the adaptive
scheme of Wellstead and Sanoff (144) to update { at each iteration. Briefly, this scheme
recursively tracks the residuals with a finite memory. When the residuals are persistently
large, a change in the underlying dynamics is assumed and { is decreased. Conversely, {
is increased to reduce the sensitivity to measurement noise in the case of consistently
small residuals. This scheme has been applied successfully to fitting models of respiratory
mechanics to pressure and flow data (84).
While the scheme of Wellstead and Sanoff alters { appropriately in the case of

changing underlying dynamics, it fails in the presence of increased band overlap, i.e.,
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when the frequency content of Pcgo increasingly overlaps that of Prp,. Band overlap also
increases the variability between ﬁcco and P pnp, but requires an increase rather than a
reduction of { in order to properly average out the contributions of Pes, in Eq. 3.11. We
are thus faced with conflicting possibilities when f’cco and Peyp do not match well: it

may be that the underlying dynamics are varying in which case { should be decreased, or
it may be due to band overlap in which case { should be increased. However, some a
priori information to estimate the prominence of band overlap can be obtained from the
relative values of the HR and the respiratory rate (RR). We can develop a modified
scheme to adaptively update { at each interval k that encapsulates this a priori
information starting with an expression similar to the scheme by Wellstead and Sanoff,

ie.,
Ak
1+4A,

L =1- (3.13)

However, A in this case is a function of the residuals, the heart rate and the respiratory
rate that is recursively updated according to

(k) (k)
[P — 05 <

€
(k) !
[ns*]

where & is another forgetting factor, and ||.| denotes a quadratic norm The exponential

A, =8A,  +(1-E) (3.14)

term in Eq. 3.14 was chosen empirically on the basis of preliminary computer simulations
and effectively determines the range over which the scheme can modify {. When the HR
is close to the RR, the exponential term in Eq. 3.14 is small. This in turn causes A to
remain small, so that {y in Eq. 3.13 is close to unity, biasing the algorithm towards long
memory. The effects of band overlap can thus be averaged out. Conversely, as the HR
becomes much greater than the RR, the exponential term in Eq. 3.14 increases. This
allows A¢ to be large and the memory to be short when P.yp consistently differs
significantly from hj. The filter can then adapt rapidly to changes in Pcgo. The constants
in Eq. 3.14 were set to £ = 0.8, x; = 0.5 and x; = -5. Small changes in these parameters

hardly affected the overall outcome, indicating that this scheme is robust towards slight
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misadjustments of &, k; and x;. The RR was computed from the intervals between the
onset of inspiratory flow and smoothed recursively with a forgetting factor of 0.6.

The adaptive filter was implemented using the Matlab 4.2/Simulink 1.3
mathematical software package (The Mathworks, Nattick, MA).

Computer simulations

To test the adaptive filter, P.; signals contaminated with cardiogenic oscillations
were simulated using the model described in section 3.1. In order to introduce a
physiologically reasonable variability in Pcgo over time, this model was extended by
making the magnitude of Pcgo volume-dependent according to

. FRC-V(t)

Pooo =k, T P (3.15)
Here, ?CGO is the preliminary, volume independent cardiogenic oscillation waveform. The

constants k; and k, were chosen to be 10 cmH,O and S, respectively. This volume
dependence can be interpreted as one possible mechanism to introduce variability of Pcgo
over time.

Eight spontaneously breathing patients were simulated with the RRs and HRs
shown in Table 3.3. These values were chosen to produce degrees of band overlap
spanning the range likely to be observed in real patients. The inspiratory drive was
adjusted to produce minute ventilations between 5.5 and 7.2 L/min, and expiratory muscle
activity was absent in all eight simulated patients. All other model parameters were
chosen equal to the population means listed in Table 3.1. Patients 1 to 4 had very rapid
shallow breathing patterns with a RR of 40 min™'. The simulations were designed such
that band overlap was most pronounced in patient 1, where the HR with 54.7 min" was
only 37% higher than the RR. In contrast, patients S to 8 breathed deeply with a RR of 10
min™. In these patients, band overlap was less prominent, but the effects of the volume
dependence of Pcgo became more important due to the larger V. Three minutes of data
were simulated for each patient, and the first two minutes of data were discarded in order
to assure that the steady state of the simulation had been reached, and to allow the filter to

adapt. From the last minute of data, I evaluated the variance accounted for (VAF) by both
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Pes and f’cco with respect to the true Py in order to quantify the reduction of the

cardiogenic oscillation achieved by the adaptive filter.

Patient data

The adaptive filter was also applied to recordings of Pes, V and EKG that had been
obtained from four patients receiving ventilatory support in the ICU of the Montreal Chest
Hospital. Each data collection protocol was approved by the local ethics committee, and
informed consent had been obtained from all subjects. All signals were amplified and
anti-aliasing filtered at 30 Hz using 6™-order Bessel low-pass filters and digitized at a
sampling rate of 100 Hz. The correct position of the esophageal balloon was verified prior
to data collection by a standard occlusion test (15). Table 3.4 summarizes the
characteristics of each patient.

From each patient record, a data segment was chosen for further analysis that (i)
started a minimum of 60 seconds after the beginning of data collection to permit time for
the filter to adapt, (ii) showed a relatively stable breathing pattern over a period of at least
10 breaths, and (iii) did not contain any esophageal spasms or EKG artifacts. For each
analysis segment, the magnitude of the 2048-point Fourier Transform (FT) was computed
for both the unfiltered and the filtered P.s using a Hamming window with 50% overlap.
Using the same segments, PEEP; 4, was estimated automatically for each breath as
described in section 3.2.2. PEEP;g4, was corrected for the trigger threshold of the
ventilator by subtracting the deflection in airway opening pressure that occurred
simultaneously with the deflection in P.. The onset of inspiratory flow was identified by
extrapolating backwards to zero flow from the points at which inspiratory flow amounted
to 50 and 100 ml/sec. This procedure was carried out using both the unfiltered and the

filtered P.s, and the mean and standard deviation of PEEP; 4y» were computed in each case.
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3.3.3 Results

Simulated data

Fig. 3.14 shows samples of the simulated Py, and P and the resulting f’mp traces

for simulated patients 1 (top) and 8 (bottom). In both patients, the unfiltered P (center)
differed significantly from the simulated Prgp, (left). In patient 1 where band overlap was
most pronounced, the effects of the cardiogenic oscillations were suppressed to a large
extent, but not entirely in the filtered P, signal (top right). In the filtered P trace of
patient 8 where volume dependence was more pronounced (bottom right), most of the
cardiogenic oscillations were suppressed.

The VAFs for both P and 13,51, are shown in the bottom two rows of Table 3.3.

When the RR was 10 breaths per minute, P.s accounted for 89 to 94% of the variance of
Presp- This number dropped as low as 55% when the RR was raised to 40 breaths per

minute and band overlap became more prominent. ﬁmp produced a substantially greater

VAF in all eight cases, with a minimum of 98.5% at a2 RR of 10 and a minimum of 95.4%
at a RR of 40.

Patient data

Fig. 3.15 shows samples of the unfiltered (dashed lines) and filtered (solid lines) Pes
for each of the four ICU patients studied. In all four graphs, the filtered P, trace was
shifted downward by 5 cmH,O to separate the graphs. Except for patient C, the data
shown in Fig. 3.15 lie completely within the segments used to compute the power
spectrum and to estimate PEEP;. For patient C, the analysis segment ended at t=290 sec.,
when the patient was switched from Proportional Assist Ventilation to Pressure Support
Ventilation. At this point, the RR of patient C dropped from 32 breaths per minute to 8.3
breaths per minute. Fig. 3.15 shows this transition to illustrate the performance of the
adaptive filter over a change in ventilatory conditions. Patient D had a large tidal volume
at a very low RR of 4.7 and showed abnormal positive deflections in P.. Analysis of
concurrently recorded P,, and V traces suggested that these were busts of expiratory

muscle recruitment.

Chapter three: Pulmonary Monitoring 80



In Fig. 3.16, the magnitudes of the FT of the unfiltered (dashed lines) and filtered
( (solid lines) P, signals of all four patients are plotted against the frequency normalized to
the heart rate. Thus, on the abscissa of each plot, the heart rate occurs at a value of one
and its harmonics occur at integer values greater than one. In all cases, the FT of the
unfiltered P signal showed spikes at the heart rate and its harmonics. These were
essentially eliminated in the FT of the filtered P signal.
The mean and standard deviation of PEEP; 4y, for each patient are shown in Table
3.5. The standard deviation of PEEP; 4y, Was less for the filtered than for the unfiltered Pes
signal in all patients. The mean PEEP; 4y, dropped in three patients and increased in one

patient when the filtered P, signal was used.

Table 3.3:
Heart rate and respiratory rate of eight simulated patients, and variance accounted for
(VAF) of the unfiltered and filtered P, with respect to P,p.

Simulated 1 2 3 4 5 6 7 8
patient
Heart rate 547 | 747 |139.3 | 1993 | 54.7 | 74.7 |139.3 | 199.3 | min*

Respiratory rate | 40 40 40 40 10 10 10 10 | min™
VAF unfiltered | 579 | 545 | 645 | 76.2 | 90.2 | 894 | 91.7 | 944 | %
VAF filtered 954 | 977 | 978 | 979 [ 985 | 98.7 | 989 | 994 | %
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Table 3.4:

Characteristics of the four intensive care patients studied.

Patient | Sex | Age | Diagnosis Ventilator mode Heart rate | Resp. rate
A m 66 COPD/ | CPAP 5 cmH-0 126 min' | 22 min™
Pneumonia
B f 57 COPD |PAV+PEEP3cmH,0 | 104 min! | 15 min™
C m 64 COPD PAV +PEEP 4 cmH,0 | 87 min™ 32 min
D f 69 COPD PSV 12 cmH,0 106 min" | 4.7 min™
+ PEEP 5 cmH,O
Table 3.5:

Dynamic intrinsic PEEP (mean + standard deviation) for four intensive care patients,

obtained using the unfiltered and the filtered esophageal pressure signal.

Length of analyzed data PEEP; 4y, PEEP; 4yn
segment (unfiltered Pes) (filtered Pes)
Patient A 100 sec (36 breaths) 0.54+ 1.06 cmH,O | 0.18 £0.31 cmH,0O
Patient B 100 sec (25 breaths) 1.54 £ 1.59 cmH,0O 1.11 £0.57 cmH,0
Patient C 50 sec (24 breaths) 206+ 1.11 cmH,O 1.06 + 0.56 cmH>0
Patient D 120 sec (10 breaths) 256+ 1.64 cmH,O | 3.76 £0.92 cmH,0O
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Fig. 3.14:
Simulated data for simulated patients 1 (top) and 8 (bottom). The filtered P, traces (right
panels) reproduce the simulated P, traces (left panels) with much greater accuracy than
the unfiltered P traces (center panels).
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Fig. 3.15:

Sample traces from the four patients studied. Dashed lines: Unfiltered P, signals. Solid
lines: Adaptively filtered P, signal (shifted downward by 5 cmH,O to separate the curves).
Patient characteristics see Table 3.4. Patient C was switched to from PAYV to PSV at t=290
sec., causing the respiratory rate to instantaneously drop from 32 to 8 breaths per minute.

Patient D showed an abnormal recruitment of expiratory muscles.
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Fig. 3.16:

Magnitude of the Fourier Transform of both the unfiltered (dashed lines) and filtered (solid
lines) esophageal pressure traces for all four patients, plotted against the frequency
normalized to the heart rate. The Fourier Transform was computed using a moving 2048-
point Hamming window with 50% overlap. The filter removed transients in the Fourier
Transform at the heart rate and its harmonics (at integer values on the abscissa).
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3.3.4 Discussion

In the present study, I have described in detail an adaptive filter to suppress the
cardiogenic oscillations that complicate the processing of P.s signals. This filter was tested

in eight simulated patients with a wide range of heart and respiratory rates. In all eight

~

cases, P, reproduced the Pr, with substantially greater accuracy than the unfiltered Pes.

The VAF of f’m with respect to Py, was lowest in simulated patient 1 where band

overlap was most pronounced, but exceeded 95% in all simulated patients (Table 3.3).

I also tested the adaptive filter in four patients receiving mechanical ventilatory
support in the ICU. The performance of the adaptive filter is more difficult to evaluate in
patients because Prsp is unknown and cannot be used as a reference. However, the filter
always reduced the apparent cardiogenic oscillations without noticeably distorting the
sharp deflections due to respiration (Fig. 3.15). In the Fourier domain, the filter
suppressed transients at integer multiples of the heart rate that presumably represent the
harmonics of Pcgo (Fig. 3.16). Otherwise, the FT of the filtered P.s signal closely
resembled the FT of the unfiltered P, signal. These results indicate that the adaptive filter
adequately reduces the cardiogenic oscillations in P, without unduly distorting the
respiratory pressure swings.

Finally, I applied the adaptive filter to the computerized estimation of PEEP;gyn
using the algorithm described in section 3.2.2. The mean PEEP; 4y, Was reduced in three
patients and increased in one patient. However, the standard deviation of PEEP; ¢yn was
reduced by 44 to 71% (mean 57%) in all four patients when the filtered P.s was used. This
suggests, as one would expect, that part of the variability of the PEEP; ¢yn Obtained from
the unfiltered P was not due to variability in the patient’s breathing pattern, but rather to
the cardiogenic oscillations. As it is improbable that the patients were perfectly stable
over the analysis period, it seems likely that part of the remaining variability must have
been physiologic.

To develop the adaptive filter, P.s was assumed to represent the sum of two

independent and uncorrelated pressure signals, namely Presp and Pcgo. Clearly, this is not a
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precise account of events. First, the coupling between the heart and the esophageal
balloon is likely to be volume dependent. This would cause Pcgo to be entrained with
respiration in patients with large tidal volumes. However, the adaptive filter performed
well in my computer simulations even when the simulated Pcgo was markedly volume
dependent (simulated patients 5 to 8). The filter also performed well in patient D where
the amplitude of the cardiogenic oscillations appeared to increase during expiration as
lung volume decreased.

Second, since the beating heart is located within the thoracic cavity, cardiac
pressure swings are not only communicated directly to the esophageal balloon, but also
contribute to the pleural pressure swings. Depending on the application, this indirect
contribution of the heart to P may be considered part of the respiratory pressure swings
because it contributes to the transpulmonary pressure and hence influences flow.
Alternatively, it may be considered artifactual because it does not originate from the
respiratory musculature. In any case, this indirect contribution of the heart is likely to
contribute much less to the cardiogenic oscillations on P than the direct coupling from
the heart to the esophageal balloon.

The identification of the transfer function h3(t) would, in general, require the
utilization of time-domain system identification techniques (70,143) between P, and é,,.
However, the input signal to h; is reduced to a single impulse function when each R-R
interval is processed independently. Provided that the delay between a cardiac event and
its manifestation in P is much shorter than the duration of an R-R interval, the segment
of Pes that corresponds to the R-R interval constitutes the impulse response, obliterating
the need for computationally expensive deconvolution.

In summary, I have described an adaptive filter that reduces the cardiogenic
oscillations on esophageal pressure traces. I have validated its performance in a computer
simulation and shown its effect in both the time and the frequency domain on data
obtained from four ICU patients. Furthermore, I found the standard deviation of breath-
by-breath estimates of PEEP; 4yn, Obtained from periods with apparently stable breathing

patterns, to be substantially reduced when the adaptive filter was used.
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3.4 Assessment of patient-ventilator asynchrony during

pressure support ventilation

3.4.1 Motivation

PSV is frequently administered to patients suffering from acute respiratory failure to
unload the respiratory pump. Several investigators have suggested the RR as a possible
criterion for the determination of the optimal ventilator settings during PSV
(18,77,80,87), and one study explicitly argues that the optimal ventilator setting is the one
that minimizes the RR (87). On the other hand, the clinical literature also reports cases in
which patients failed to trigger the ventilator on every inspiratory effort (39,58,69). In
these cases, the reduction in the apparent RR of the ventilator (RRy.n:) may reflect patient-
ventilator asynchrony (PVA) rather than unloading of the respiratory pump. The
mechanisms leading to PVA have been studied in some detail in a computer simulation
(156). However, that study employed a comparatively simple model of respiratory
mechanics with a single respiratory system resistance for inspiration and expiration and
was focused primarily on patients with muscle weaknesses or severely decreased
respiratory drive.

The motivation for the study described in this section was to use the computer
model described in section 3.1 to examine the mechanisms and determining factors of
asynchrony between a mechanical ventilator in flow-triggered PSV mode and patients
with adequate respiratory drive, but severe airway obstruction and expiratory flow

limitation.

3.4.2 Methods

Two actively breathing COPD patients were simulated using the computer model
described in section 3.1. The spontaneous respiratory rate was fixed at RRspon = 30 min
and cardiogenic oscillations were absent (Ccg = Ccp = 0) in both patients. The rate of

increase in Ppe,, determining the patient’s respiratory drive was adjusted as described
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below. In subject 1, all other model parameters were set to the mean values given in Table
3.1 in order to simulate an average COPD patient. Patient 2 differed from patient 1 in that
X was increased by 30% to simulate very severe flow limitation.

Both simulated patients breathed with the support of a flow-triggered pressure
support ventilator as described in section 3.1.2 using four PEEP levels from O to 7.5
cmH>O and 20 PS levels from 1 to 20 cmH;0. The ventilator’s trigger and off-trigger
thresholds were set to 0.05 L/s and 0.02 L/s, respectively. Each simulation consisted of 36
breathing efforts. The rate of increase in Ppeur Was set to 20 cmH,0's™ and resulted in a
peak inspiratory Pne,r of 12 cmH>0, which equaled approximately 40% of the maximal
inspiratory effort of an average patient requiring ventilatory support (156). As in my
previous simulations, the initial lung volume was set equal to an estimate of the expected
dynamic hyperinflation to accelerate convergence towards a stable breathing pattern, and
the first six breaths were discarded to assure that dynamic hyperinflation was completely
developed (see section 3.2.2).

Over the remaining 30 breathing efforts, comprising one minute of data, the
respiratory rate of the ventilator (RRyen;) Was obtained from the flow trace and the average
delay from the onset of a triggering inspiratory effort to the onset of inspiratory flow
(Atyz) was computed. Atyig included both delays due to neuromuscular dynamics
(approximately 100 msec) and the trigger delay caused by dynamic hyperinflation. V, was
determined, and the parenchymal stress was evaluated (in units of pressure) according to

P, =max(P,, —P.) (3.16)

as an index for the risk of barotrauma.
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3.4.3 Results

The results for patient 1 breathing without PEEP are shown by the solid circles in
Fig. 3.17. At low values of PS, RRyeq Was equal to RRpont (Fig. 3.17a). As PS exceeded a
threshold of 13 cmH>0, RRyene suddenly deviated from RRgpone and dropped to 15 min’.
Analysis of the pressure and flow waveforms showed that for PS greater than 14 cmH,O0,
this patient only succeeded in triggering the ventilator with every second inspiratory
effort, as shown in Fig. 3.18 for a PS of 15 cmH,0.

At PS levels below 14 cmH,0, Atyg increased monotonically with increasing PS
(Fig. 3.17b). At PS =13 cmH,0, i.e., just below the PVA threshold, Aty;; was 0.78 sec,
which is only slightly less than the duration of the inspiratory effort (0.82 sec). As PS
increased further, Aty dropped to a minimum of 0.5 sec at PS = 15 cmH,O and
subsequently increased slowly with increasing PS. As shown in Fig. 3.17c, V. generally
increased with increasing PS. However, a slight decrease occurred when PS ranged from
13 to 15 cmH,0, i.e., around the PV A threshold.

The application of PEEP shifted the PVA threshold slightly towards higher values
of PS (other symbols in Fig. 3.17a). Furthermore, Atyg was reduced substantially at most
values of PS and V. increased considerably in all cases as PEEP was increased (Fig. 3.17b
and c, respectively).

Pswess showed a step increase of approximately 20% whenever an PVA occurred, but
increased only mildly with increasing PS and PEEP otherwise (Fig. 3.17d). In general,
Pseess in this patient remained far below the upper deflection point of the static V-P curve

of the lungs and hence did not indicate an important risk of barotrauma (121).
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Fig. 3.17:
RR,ens, trigger delay, minute ventilation and trans-alveolar pressure in the simulated
average COPD patient (patient 1). See text for details.
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Fig. 3.18:

Sample traces for the simulated average COPD patient (patient 1) at a PS of 15 cmH,O and
a PEEP of 0. The patient only managed to trigger the ventilator with every second
inspiratory effort.
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At low levels of PS, the more severely flow limited patient 2 behaved similarly to
patient 1 (Fig. 3.19). However, the PVA threshold was shifted towards lower PS levels
and showed a stronger PEEP dependence than in patient 1. As shown in Fig. 3.19a, PVA
occurred at as low a PS level as 8 cmH;0 when no PEEP was applied. Not surprisingly,

Atyig was increased and Ve was reduced in patient 2 relative to patient 1. Py differed

very little between patients 1 and 2 at low levels of PS.

At higher levels of PS, patient 2 exhibited behavior that was not observed in patient
1. At a PEEP of 0 (solid circles in Fig. 3.19), RRen, dropped to one third of RRgpon: as PS
was raised beyond 14 cmH>0. As before, this drop in RRy.,; was associated with a

considerable drop in Atgg, a slight reduction of V, and a step increase in Pgyress Of

approximately 20%. Analysis of the pressure and flow traces showed that in the range of
PS from 15 to 19 cmH,0, this patient only managed to trigger the ventilator with every
third inspiratory effort. As PS was raised to 20 cmH;0, RRene dropped again to 8 min™.
However, both Atgig and Vc failed to drop in this case, while Pgyess increased by 30% to a

value exceeding 10 cmH,O. In this case, the ventilator sometimes failed to switch from
inspiration to expiration over an entire expiratory phase of the patient. Thus some
ventilator inspirations extended over more than one full period of patient effort (Fig.
3.20). The duration of the ventilator expiration was variable, and up to four inspiratory
efforts were necessary before the patient succeeded in triggering the next inspiration.

At lower levels of PS, the effects of PEEP in patient 2 were similar to those in
patient 1. When a PEEP of 2.5 cmH;0O was applied, a second drop in RRy.n occurred at a
PS of 18 cmH,0. In this case, only every third effort triggered the ventilator, but no off-
trigger problems were observed. In contrast, at PEEPs of 5 and 7.5 cmH,0 the second
drop in RRyee Was associated with off-trigger problems. These cases resulted in complex
phasic breathing patterns, as illustrated in Fig. 3.21 for the case of a PS of 20 cmH,0 and
a PEEP of 5 cmH,0.
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Fig. 3.19:

RR, ., trigger delay, minute ventilation and trans-alveolar pressure in the simulated very

severely flow limited COPD patient (patient 2). See text for details.
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Fig. 3.20:
Sample traces for the simulated very severely flow limited COPD patient (patient 2) at a PS
of 20 cmH;O and a PEEP of 0. In this case, the patient was unable to properly trigger or
off-trigger the ventilator, resulting in a phasic breathing pattern.
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Fig. 3.21:
Sample traces for the simulated very severely flow limited COPD patient (patient 2) at a PS
of 20 cmH,0 and a PEEP of 5§ cmH,O. The patient is frequently unable to off-trigger the
ventilator, resulting in a complete loss of synchrony between the patient and the ventilator.
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3.4.4 Discussion

Rapid shallow breathing is a characteristic sign of respiratory distress. Thus, the
reduction of RRyen during PSV was initially interpreted as an indication of relief of the
patient’s distress and hence considered beneficial (87). On the other hand, several more
recent studies have demonstrated both in critically ill patients (39,58,69) and in a
computer simulation (156) that the reduction in RRye, during PSV may be related to
asynchronies between the patient and the ventilator rather than to true reduction of
RRspone. The results of this simulation study confirm the previous findings in a more
systematic and quantitative fashion and permit some additional insights.

When PVA are studied in vivo, some uncertainties remain as to what extent the
observed PVA are caused or amplified by an adaptation of the patient’s respiratory
controller to the periodic unloading of the respiratory pump by the ventilator. For
example, it is conceivable that the inspiratory effort following an assisted breath is weaker
that the inspiratory effort following an episode of trigger failure. Also, PVA may in part
be caused by technological limitations of the mechanical ventilator employed. Practical
limitations of the ventilatory equipment can, for example, be observed in Figure 2 of (39).
The ventilator employed in that study failed to produce a square waveform in Py, and the
rise time and steady state error amounted to approximately 500 msec and 3 cmH,O,
respectively. For these reasons, it is useful to investigate the mechanisms of PVA in
computer simulations, where neural feedback can be excluded and RRspore can be fixed.

The principal mechanisms of PVA have previously been investigated in a computer
simulation by Younes (156). However, this study focused on patients with muscle
weaknesses or severely decreased respiratory drive and employed a comparatively simple
model of respiratory mechanics. Specifically, a single linear respiratory system resistance
was employed for inspiration and expiration, stress adaptation in the lung and chest wall
were neglected, no PEEP was applied and expiration was assumed to be entirely passive.

In comparison, the present study of PVA uses a computer simulation of COPD patients
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with severe expiratory flow limitation in the presence of expiratory muscle activity at
various PEEPs.
The vbasic mechanisms that led to PVA in the present study follow the discussion in

(156). Briefly, progressively raising the PS level increased V, and hence V. (Fig. 3.17 and
Fig. 3.19). This augmented the amount of air left in the lungs and hence the threshold load

at the onset of subsequent inspiratory efforts. With Prusc rising approximately linearly
during most of the patient inspiration, Aty increased and eventually became close to the
total neural inspiratory time, so that the simulated patients only triggered the ventilator
during the last fraction of their inspiratory efforts. In other words, the ventilator breaths
were essentially almost 180° out of phase with the patients’ efforts. With the next increase
in PS, each ventilator breath inflated the patient by a small additional amount that sufficed
to raise the threshold load at the onset of the next inspiratory effort to the point that the
patient was no longer able to trigger the ventilator. Then, expiration was continued over
an additional period of the neural output, causing RRyen to drop to half of its initial value.
At the end of this prolonged expiration, the threshold load was significantly reduced, so
that the patient now succeeded in triggering the ventilator with 2 much smaller Atyg. This
decrease in Aty allowed for an increased inspiratory time that also raised V.

Consequently, Ve remained almost constant around the PS where PVA occurred (Fig.
3.17c and Fig. 3.19c). This result suggests that the pronounced drop in V, associated with

PVA in a previous case study (39) must have been associated with secondary influences
over the 2'/, hour observation period in that study.

In the very severely flow limited patient 2, further drops in RRyene Were encountered
at higher levels of PS. Some of these represented a reoccurrence of trigger problems
discussed above so that only every third or fourth inspiratory effort triggered a machine
breath. However, in three cases a qualitatively different behaviour was observed when the
ventilator failed to off-trigger during the patient’s entire expiratory phase of the patient, so
that those ventilator inspirations extended over more than one full period of the patient
effort (Fig. 3.20 and Fig. 3.21). In fact, patient data showing this exact behaviour were
presented in Figure 3 (breaths 5 and 8) of (39), although the authors did not explicitly
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address this issue. Similar episodes of complex or entirely aperiodic breathing patterns
have also been reported in a number of very severely diseased COPD patients who were
transferred to the ICU of the Montreal Chest Hospital because of failure to wean from
mechanical ventilation (Dr. Peter Goldberg, personal communication). Presumably, the
balance between the pressure applied by the ventilator and the elastic recoil of the
respiratory system in these cases was such that even the sum of the pressures generated by
the elastic lung recoil and the expiratory musculature was not sufficient to slow
inspiratory flow below the off-trigger threshold. When such prolonged inspirations
occurted, Pgnss increased to approximately twice its baseline value, generating an
increased risk of barotrauma, while Pgrss remained uncritical under all other
circumstances (Fig. 3.17d and Fig. 3.19d).

In earlier studies, it has been argued repeatedly that PVA during PSV can be
detected by observing P,y or flow traces because non-triggering inspiratory efforts retard
expiratory flow (39,156). However, this was not always true in my simulations of the
more severely flow-limited patient 2 (Fig. 3.20 and Fig. 3.21). Presumably, in some cases
the “pressure waterfall” of expiratory flow limitation was large enough to completely
conceal any effect of the inspiratory effort. Also, at very high lung volumes following a
machine inspiration the inspiratory muscles may be operating under such mechanically
disadvantageous conditions that the deflections in Pmusc are very small in the first place
(159). In the latter case, missed inspiratory efforts may even be difficult to detect from
esophageal pressure traces. Clearly, the missed breaths should not be reflected in P,y
because a properly functioning ventilator should accurately control P,y,.

The ultimate question to be addressed in the context of PVA is how to optimally
choose the PSV settings. The present study shows, however, that even when an almost
ideal implementation of a pressure support ventilator is used, PVA may still arise. This
means that the problem of PVA during PSV cannot be overcome by simply improving the
design of pressure support ventilators. Thus, we are left with the choice of adjusting the
ventilator settings above or slightly below the PVA threshold. In the first case, a

considerable fraction of the patient efforts are wasted because they fail to trigger the
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ventilator, but the patient is externally stabilized, i.e., respiration is slower and deeper. In
the second case, RRvent matches RRspon, but Atyig is high and patient and ventilator
breathe almost 180 degrees out of phase. In a recent clinical study comparing both options
(97), the patients’ blood gases were worst at the lowest PS level where PVA were least
pronounced. The best blood gases were obtained at an intermediate PS level, which was
equivalent to an intermediate prevalence of PVA.

In summary, these findings confirm the conclusion of an earlier study that patient-
ventilator interactions in patients with COPD are a complex matter (77). In general, an
assisting mechanical ventilator together with a severely flow limited patient forms a
dynamic system with multiple degrees of freedom and several strong nonlinearities, e.g.,
the patient’s expiratory flow limitation and V-P relationship and the ventilator’s trigger
and off-trigger mechanisms. Such higher-order nonlinear dynamic systems can exhibit
complex period or chaotic behaviour and are extremely difficult to control because a
small change in one of the parameters can significantly alter the overall system behaviour
(50). Thus, a globally valid way of determining the optimal PSV settings in patients with
severe expiratory flow limitation may not exist. Most likely, the best choice of the
ventilator settings depends of the actual characteristics of the patient and varies quite
considerably with time. This suggests that in clinical practice, the ventilator settings

during PSV should be verified and updated as frequently as possible.
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THORACIC IMAGING USING
ELECTRICAL IMPEDANCE TOMOGRAPHY

The potential of EIT as a method to provide clinically useful images of the thorax
has repeatedly been demonstrated (see section 2.4.6). However, the poor resolution of EIT
and the restrictions of dynamic imaging remain limiting factors for the precision and
clinical usefulness of the images obtained. This chapter describes research that I have
conducted to investigate factors limiting the quality of static EIT images, and to develop
improved static EIT image reconstruction techniques. In section 4.1, the magnitude of
inaccuracies of first-order Finite Elements is investigated and the implications for static
EIT are discussed. In section 4.2, a computer simulation is introduced that employs a
computational phantom and a reconstruction algorithm based on the Finite Element
method and Gauss-Newton optimization. This simulation is used to examine the effects of
the current pattern and of a central reference electrode on the reconstruction error. Finally,
higher-order isoparametric Finite Elements for the EIT forward solution are derived in
section 4.3, and the accuracy of the simplest version of this type of element is evaluated.

For all of this chapter, the body to be imaged was assumed to be of cylindrical
geometry with a large enough extension in the axial direction that a central slice could be

modeled with sufficient accuracy in two dimensions.
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4.1 A critical analysis of the Finite Element method for static EIT

4.1.1 Motivation

The accuracy of the forward solution is of great importance for the iterative solution
of nonlinear inverse problems because the repetitive evaluation of the forward solution
allows even small errors to accumulate. As described in section 2.4.3, FEs are
advantageous for the EIT forward solution because of their geometrical flexibility.
However, the accuracy of the FE method may still be a limiting factor for static EIT. The

purpose of this study was to evaluate the

accuracy of the FE method by comparing the

boundary voltage estimates obtained from a /\

circular FEM to an analytical solution for the

same geometry.

4.1.2 Methods

Analytical solution
In order to compute the analytical solution
of the electrical potential on the boundary (@),
Fig. 4.1:

solution.

background conductivity o, with a centered
circular object of radius r,,; and conductivity ,; (Fig. 4.1). Furthermore, let the Fourier
series

i5(8) = 3.C, cos(n®) +$, sin(nd) @.1)

n=1

represent a current pattern that satisfies Eq. 2.5 for 8 as shown in Fig. 4.1. Then,

according to (45,73), @, can be computed from
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An approximate numerical solution for @y, is possible if the sum in Eq. 4.2 is finite
and can be approximated by a manageable number of terms. If the electrodes are assumed
to be very small, the first projection of the opposite current pattern can be expressed by
js(8)=38(8)-3(6 — =), 44
where 3 represents the Dirac delta function. Because this is an even function in 0, all S,
vanish and the Fourier series is completely described by the C, coefficients that are found

to be

C, = L[cos(nm)-1]= 4.5)
0, neven

-2, nodd;

Substitution of these Fourier coefficients into Eq. 4.2 yields the infinite series
representation of ¢,. Unfortunately, the resulting @, is not finite for all combinations of R
and 0. For example, at R =0 and 6 =0, we find
Ry 46
which is infinite.
However, oy is finite for all combinations of R and 9 if the electrodes are modeled
to have a finite dimension and jg is written as
js(®) =R{11(R0)-NI(£(6-))]- @7
Here, D is a parameter that prescribes the finite size of the electrode as a fraction of the
phantom perimeter, and the rectangular function
0, x|>%

I(x) = (4.8)
1, |x<%
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models the electrodes such that in the interval -n/D < 8 < n/D the current density is
uniform and positive and a current of | mA is injected, while an equal and opposite
current density is applied to the interval n-n/D <0 < n+n/D. Because jg as described by
Eq. 4.7 is even all the S, vanish, so that its Fourier series is completely described by the
C, coefficients. Using Eq. 4.7, the integral that defines the C, can be written as

2

C, =1 [2[r1(£6)-T1(£(8-n))]cos(n) b, (4.9)
0
which reduces to the integrals over the electrode segments. Thus, we can write
D 3 x+
C,== jcos(ne) de - Icos(ne) de|. (4.10)
2n bt g

Making use of the symmetry of the trigonometric functions, we find

C = —DT[sm(%) —sin(nm + %‘-)]

a
nm

0, n even; “.11)

20-sin(F), nodd.
Substitution of the odd terms into Eq. 4.2 and rearranging the terms yields
2D cos[(2n - 1)9] -6, ,R"? . (2n-)n
0)=— =l .
%(0)=-—0 Z; @n-1 1+o,R™2 D

(4.12)

The finiteness of @, for the current pattern defined by Eq. 4.7 can be established as

follows. First,

4n-2
lim cos{(2n— 1)6] 1-o,R _o. @.13)
»o|  (2n-1)° 1+GMR“" -2

Furthermore, because of the periodicity of the sine function there exists a bound B such
that

N,
> sin((-zﬁgli)‘ <B (4.14)

n=N,
for any N, and N,. Together, these conditions are sufficient to ensure that Eq. 4.12 is

finite as per Dirichlet’s convergence criterion (141).
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In the present study, the sum in Eq. 4.12 was approximated by the sum over the first
1024 terms. Under all conditions that were used in this study, doubling the number of
terms changed the rms-value of ¢y, by less than 0.1%.

FEM phantoms

In this study, the EIT boundary condition (Eq. 2.4) was modeled by linear
approximation functions that were defined in analogy to Eq. 2.10. Hence, unlike other
EIT studies (3,96,154), the T matrix in Eq. 2.11 did not equal the identity matrix, but was
derived as follows.

Let the boundary of the FEM be represented by a ring of N, one-dimensional first-
order FEs. In analogy to the FEM derivation in section 2.4.3, the functional of the
Helmbholtz equation (Eq. 2.9) for the boundary condition (®,) can be expressed as

©, =§$0,isdS =L T, ji;, (4.15)
where @, and j,,, denote the values of ¢ and jg at the boundary nodes, respectively, and T),
captures the geometry of the ring of one-dimensional FEs. Furthermore, the vector of the
currents injected at the boundary nodes can be expressed as
i =Ujuys (4.16)
where U is a diagonal matrix that contains the integrals of the linear approximation
functions and the connectivity of the boundary FEs. Then, Eq. 4.15 can be written as
©,=0L T, U i,. (4.17)
Finally, the boundary nodes are mapped onto the nodes of the FEM by the (N,N,,) matrix
C,, which yields
0,=9,C,T,U"C,i, (4.18)
and
T=C!T,U"C,. (4.19)
The five circular FEMs that were used in this study are shown in Fig. 4.2, and their
characteristics are summarized in Table 4.1. In Fig. 4.2, the small solid circles denote the

locations of the electrodes (N, = 16) on the FEM boundary. The admittance of each
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triangular FE was assumed to be constant and real, such that the tissue properties in each

phantom were completely described by the vector of the element conductivities, o,,.

Table 4.1:
Characteristics of the five FEMS used in this study.

Mesh Ng Na Ny N,
(@) 38 28 16 16
(b) 86 60 32 16
©) 182 124 64 16
(d) 374 252 128 16
(e) 758 508 256 16

Quantification of the FEM inaccuracies
In this study, the inaccuracies of the FEM were quantified both by computing the
root-mean-square (rms) potential difference between @, and @, at the electrode locations

(AVys), and in terms of the signal-to-noise ratio (SNR) they produce according to

SNR =20- IOglo (pe.rms . (420)
Av

ms

where, ¢, represents the values of ¢, at the electrode locations. The current density on the
boundary was set as described by Eq. 4.7. Unless otherwise stated, D equaled 256, which

is equivalent to an electrode diameter of 3.7 mm for a phantom diameter of 30 cm.
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Fig. 4.2:

The five phantom FEMs. The small solid circles denote the sixteen electrode locations.

See Table 4.1 for details.
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Protocols

(i) Boundary voltages of a homogeneous phantom

The FEM inaccuracies were evaluated for all five phantoms using a homogeneous
conductivity distribution of oy, = 6, = 1 mS. Because the greatest errors are likely to
occur at the site of current injection where the current density is largest, Avy, and SNR
were computed twice for each FEM. First, all N, data points were used, which is
equivalent to the two-electrode method (142). Subsequently, Av,,, and SNR were
evaluated from N,-2 data points, excluding the potentials at the boundary nodes where the
current source and sink were located (four-electrode method). To investigate the effects of
the electrode size, the complete protocol was repeated with a value of D = 512, which is

equivalent to an electrode diameter of 1.85 mm on a 30 cm phantom.

(i) Centered targets in a circular phantom

The inaccuracies of FEM (b) (Fig. 4.2/Table 4.1) were evaluated for four circular
targets that were centered in a medium of o, = 1 mS. For targets A and B, the radius ry;
was chosen such that R assumed a value of 0.1862, so that the target area equaled the area
of the two central elements of the FEM. Target A represented a small object that was
more conductive that the background (c,,; = 10 mS), while target B was chosen 10 times
more resistive than the background (o,,; = 0.1 mS). For targets C and D, r,; was
increased such that R became 0.4744, which matched the area of the two innermost layers
of FEs. The object conductivities were again set to 10 mS and 0.1 mS for targets C and D,
respectively. As in the previous protocol, Av,, and SNR were evaluated for both the two-

electrode and the four-electrode methods.

4.1.3 Results

The results for protocol (i) are shown in Fig. 4.3. In general, Av, dropped and the
SNR became larger with increasing N,. However, the rate at which the accuracy of the
FEM improved dropped considerably as N, became larger. Both Av.,, and the SNR

demonstrated substantially larger inaccuracies for the two-electrode method than for the
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four-electrode method in all five FEMs, indicating that the greatest errors were

encountered at the sites of current injection. For the two-electrode method, the SNR was

further reduced and Av,_,, was further increased when D was raised from 256 to 512,

halving the electrode size in the analytical solution. In contrast, altering D had a

negligible effect on the FEM inaccuracies when the four-electrode method was used.

The values of Av,, and the SNR for the four targets of protocol (ii) are shown in

Table 4.2 together with their values for the homogeneous case (first row in Table 4.2).

The values of both Av,,; and SNR did not change substantially for any of the targets,

although the fluctuation is SNR were somewhat greater for the four-electrode method. As

above, the FEM inaccuracies were reduced dramatically as the four-electrode method was

used in lieu of the two-electrode method.

Table 4.2:

Inaccuracies of the FEM shown in Fig. 4.2(b) for the homogeneous case and
when four centered, circular targets were modeled. See text for details.

two-electrode four-electrode
Target R G gpj (mS) Av . SNR (dB) AV SNR (dB)
(mV) (mV)
none 1 1 3135 7.83 18.8 24.9
A 0.1862 10 319.0 7.45 11.0 29.0
B 0.1862 0.1 3154 8.02 14.9 27.6
C 0.4744 10 316.7 6.39 153 224
D 0.4744 0.1 3249 9.31 11.7 33.0
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Fig. 4.3:

FEM inaccuracies with respect to the analytical solution for the homogeneous case. The
circles represent data points where the standard finite element size was used for the
analytical solution (D = 256), while the triangles represent smaller current electrodes (D =
512). Solid and open symbols represent the two- and four electrode method, respectively.

Chapter four: Thoracic imaging using electrical impedance tomography 110



4.1.4 Discussion

The FE method has frequently been used to solve the EIT forward problem
(3,24,96,123,153,154) because it provides good geometrical flexibility and does not
require assumptions about the magnitude of the change in ¢ (as does, for example, the
weighted backprojection method, see section 2.4.3). However, the data presented in this
section show that the first-order FEs that are usually employed for EIT produce
significant inaccuracies in the forward solution. These inaccuracies persisted even when
FEMs with very large numbers of elements were used, and they were not altered
substantially by conductive or resistive targets in the medium. In contrast, both Av,, and
the SNR differed dramatically between the two-electrode method and the four-electrode
method. This indicates that the largest differences between ¢, and ¢, were encountered at
the sites of current injection. Strictly speaking, the results of this section are only valid for
the opposite current pattern. However, because similar or even greater current densities
occur near the electrodes when other current patterns with a single source and sink (such
as neighbouring currents), the results of this study most likely are relevant for all single-
source current patterns.

The accuracy of the FE forward solution is best evaluated by comparing the
estimate of the boundary voltages to an analytical solution. However, it is important to
assure that the analytical solution is accurate and reflects the real measurement situation
as closely as possible. While the general analytical solution used in this study (Eq. 4.2) is
valid for any current pattern that fulfills Eq. 2.5, it cannot be solved for point current
sources because the value of the sum in Eq. 4.2 is infinite. This occurs because such
electrodes produce a singularity in the current density, which would require infinite power
and result in an infinite value of ¢, at the site of injection. To overcome this problem, I
derived the analytical solution for a finite electrode size and opposite currents (Eq. 4.12).
Provided that D is finite which is equivalent to a finite electrode size, Eq. 4.12 results in a
finite-valued boundary potential vector.
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The assumption of infinitesimally small current electrodes is also frequently made
when the FEM for the EIT forward solution is developed. However, because this
assumption is not valid in practice, | employed linear approximation functions for
modeling the current density normal to the boundary of the first-order FEM. This
approach does not assume an infinite power configuration and, in general, is more
consistent with the FE methodology.

A finite and exact analytical solution exists for any current pattern that is based on
trigonometric functions, such as the optimal current pattern (49), because these result in
only a small number of non-zero Fourier coefficients. Trigonometric current patterns can
also be modeled fairly accurately in the FEM if linear approximation functions are used
for the current density normal to the boundary. Unfortunately, trigonometric current
patterns are difficult to apply in practice. For example, if a limited number of small
electrodes is used, significant gaps occur between the electrodes, such that the true jg is a
cosine-weighted set of impulses rather than a true cosine pattern. On the other had, large
electrodes impose a piecewise constant approximation of the cosine function and
essentially short-circuit the potentials over considerable parts of the boundary. Also, the
simultaneous use of multiple current sources requires precise calibration of all current
sources to assure proper mutual phase-locking. Thus, the use of trigonometric current
patterns is inadequate for evaluating the accuracy of the FE method because it is likely to
result in an agreement between the analytic solution and the FEM that cannot be
reproduced in practice.

The inaccuracies of the FEM are systematic errors, in contrast to the effects of
random measurement noise. Nonetheless, they are quantified in terms of a SNR in this
study in order to maintain a consistent terminology with subsequent sections of this
chapter. In all scenarios that were examined in this study, the inaccuracies of the FEM
produced SNRs of less than 40 dB. In comparison, the SNR due to the electrical
characteristics of present EIT hardware amounts to approximately 60 dB (56,61). Thus, it

is likely that in most EIT systems, the errors in static EIT image reconstruction are
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dominated by the inaccuracies of the FEM rather than by the measurement errors of the
EIT hardware.

As shown in Fig. 4.3, the FEM inaccuracies were reduced as the number of
elements in the mesh was increased. However, the rate at which the accuracy of the FEM
improved dropped considerably as N, became larger. This may be counter-intuitive
because, in general, the accuracy of estimates of electrical potentials obtained from FEMs
are known to improve as the number of elements in the mesh increases. Indeed, increasing
the number of FEs substantially reduces the average estimation error in 2. However, as
this study demonstrates, the effect of the mesh size is much weaker if the errors are
evaluated only at the nodes representing the electrodes. In EIT, we employ only the
potentials at these nodes to reconstruct images. Furthermore, the computational

185 when sparse matrix techniques are used (150), so that the

complexity increases as N,
solution of FEM (e) takes approximately 213 times as long as the solution of FEM (a).
For these reasons, increasing the number of elements in the FEM is not an efficient
strategy for improving the precision of the EIT forward solution.

The SNR and Av,,, remained roughly constant when centered conductive or
resistive targets were used (Table 4.2). Presumably, this means that at least part of the
FEM inaccuracies are independent of the conductivity distribution to be imaged. In a
dynamic imaging situation (see section 2.4.2), these inaccuracies would cancel out,
making the difference signal obtained from the FE forward solution more accurate than
the absolute boundary voltage estimate. This may be one of the factors that explains why
dynamic EIT imaging has been more successful than static EIT imaging to date.

In general, Av,; and the SNR were considerably improved when the four-electrode
method was used instead of the two-electrode method, i.e., when the voltages at the sites
of current injection were neglected. An analysis of the boundary voltage estimates showed
that the errors at these nodes were always an order of magnitude larger than at any other
point along the FEM boundary. Also, the error at the sites of current injection depended
on the electrode size that was assumed for the analytical solution (solid symbols in Fig.
4.3), while no such dependence was noticeable for the four-electrode data (open symbols
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in Fig. 4.3). This means that first-order FEMs are particularly bad at modeling the high
current densities that occur in the vicinity of the current electrodes. In the literature, the
four electrode method is often favored because it eliminates the effects of unknown
impedances of the electrode-skin interface (117,142). However, the inaccuracies of the
FEM approximation represent a second reason why the voltages at the sites of current
injection should not be used for static EIT image reconstruction.

In summary, the data presented in this section show that first-order FEs are
associated with numerical inaccuracies that are large enough to significantly disturb the
reconstruction of static EIT images. These inaccuracies are particularly pronounced at the
sites of current injection, and their effects can be diminished by neglecting the boundary
potentials at the sites of current injection for the image reconstruction, i.e., by using the
four-electrode method. In contrast, the data presented show that increasing the number of
elements in the FEM is not an efficient way of improving the precision of the forward
solution. Because the errors associated with first order FEMs present one of the important
error sources for static EIT, it is likely that the accuracy of the forward solution needs to

be improved considerably before high resolution static EIT images can be obtained.
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4.2 Effects of current patterns and central electrodes on static

EIT images of the thorax

4.2.1 Motivation

Most of today’s EIT systems use 16 or 32 electrodes that are placed equidistantly in
a linear array around the body segment to be imaged, with a single current source and sink
being used to drive current through the body while the remaining electrodes measure the
resulting voltages (12,56,72,134). The relative position of the current source with respect
to the sink is arbitrary and can be anything from neighbouring to opposite currents (see
section 2.4.2). It has been argued that opposite currents are advantageous because they
provide a higher current density to the central regions (23,104). However, the ultimate
current density distribution and hence the optimal current pattern depends on the nature of
the objects to be imaged and the reconstruction algorithm employed (23). For dynamic
imaging using weighted backprojection, it has been shown that neighbouring currents
produce better-conditioned projection matrices than opposite currents (8). The effect of
the source-sink constellation on the reconstruction error has not yet been systematically
examined for static EIT image reconstruction using Newtonian optimization techm'ques,.
and for source-sink configurations other than opposite or neighbouring currents.

As described in section 2.4.2, the exclusive placement of electrodes on the body
surface is thought to result in a relative lack of information about the central regions of
the body, which contributes to the ill-conditioning of the inverse EIT problem.
Consequently, it has been suggested that an additional central reference electrode (CRE)
in the esophagus, i.e., close to the center of the thorax, could substantially improve the
quality of thoracic EIT images (108). A CRE could also be placed in the stomach or the
duodenum.

The goal of the work described in this section was to use a computer simulation to

investigate the effects of single-source current patterns and a CRE on the convergence
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rate and reconstruction error of static thoracic EIT images. Computer simulations are
well-suited for this kind of analysis because the experimental parameters are under

complete control and the reconstruction error can be evaluated accurately.

4.2.2 Methods

Phantoms and simulation

The FEM shown in Fig. 4.2(b) was used as a computational phantom to simulate an
EIT measurement. This FEM was parameterized using two different conductivity
distributions, as shown in Fig. 4.4. The phantom shown in Fig. 4.4(a) modeled a small
central conductive target with a conductivity of 7 mS against a background with a
conductivity of 1 mS (Central object phantom). For the phantom shown in Fig. 4.4(b), &,
was chosen according to the literature to reproduce the principal features of the
conductivity distribution in a cross-section of the human thorax (Thoracic phantom). The
vector v, was computed by solving the phantom FEM for each projection and extracting
and concatenating the boundary voltage measurements in analogy to Eqs. 2.16 and 2.17.

1
(mS)

Fig. 4.4:
(a) Central object phantom. (b) Thoracic phantom.
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Various levels of Gaussian white noise were added to v, in order to produce SNRs
between 30 and 80 dB.

For all images shown in this section, a nonlinear mapping of & onto a gray scale
was employed in order to enhance the contrast. This mapping is illustrated at the bottom
of Fig. 4.4.

Image reconstruction

Images were reconstructed from the simulated data as described in section 2.4.3.
The forward problem was solved using a FEM that was topologically identical to the
phantom FEM (Fig. 4.2b). To solve the inverse problem, the Jacobian matrix was
computed according to Egs. 2.28 and 2.30, and the GNM was employed as stated in Eq.
2.23. The step size parameter A was adjusted by a quadratic line search, as follows.

If Eq. 2.23 is substituted into Eq. 2.19 and the result is substituted into Eq. 2.18, the
objective function ® can be expressed as a function of A, i.e.,

O =>d). (4.21)

Thus, Eq. 2.23 maps the multidimensional EIT optimization problem onto a one-
dimensional optimization problem that is easier to solve. From the preceding major
iteration i, we already know the value of ® at A=0 (®d;). Furthermore, the GNM employs
derivatives up to second order, which means that it essentially fits a quadratic function to
the multi-dimensional gradient information provided by J and H that possesses a
minimum at A = 1. Assuming that ® at A = 1 (®,) vanishes completely, the one-
dimensional (L) is parabolic and fully defined, so that we can estimate the slope of ©(A)
at A = 0 according to

od
O; = =20,. 4.22
"=, 0 (4.22)

In practice, of course, ®,; will not vanish because the Taylor series in Eq. 2.21 was
truncated. However, we can now evaluate @, and use it with @, and @', to fit a second
order polynomial to ®(). The location of the minimum of this polynomial (A") is our
new estimate of the optimal A that minimizes ®(A).
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Because the EIT optimization problem is highly nonlinear, this line search is faced
with two potential problems. First, A" may still be too large to assure convergence.
However, a measure of confidence can be obtained by comparing the actual value of
(L) to its prediction obtained from the second order polynomial. If the two values differ
significantly, another iteration of the line search (also termed subiteration) can be
invoked, now fitting a second order polynomial to @, @'y and <D()\.'). Second, @, may be
so large that A immediately becomes extremely small, which may produce unacceptably
slow convergence rates. It is hence useful to specify a limit for the amount by which A can
be reduced in one subiteration.

In the present study, a maximal number of 20 major iterations was used for each
image reconstruction. For each major iteration, the quadratic line search was started with
an initial value of A = 1 and was not allowed to reduce A by more than 80% of its value
within one subiteration. The line search was terminated when the true value of d)(l')

exceeded its predicted value by less than 5%, or after five subiterations were completed.

Convergence criterion

In general, the iterative image reconstruction technique derived above may behave
in three distinct ways. First, the algorithm may fail to reduce ®, i.e., diverge. Second, the
solution may converge towards a local minimum in & where o does not reproduce o .
Finally, the solution may converge as intended towards the global minimum where o
approximates ¢ within the limits of the FEM grid. Divergence of the reconstruction
process is easily detected because @ is evaluated at each iteration. In contrast, it is more
difficult in a practical measurement situation to distinguish between convergence to local
and global minima because o is usually unknown. In this study, convergence to local and
global minima was detected as follows.

We define the relative mean squared image update at major iteration i as

AT Ac]W,W, Ac,

o 423
= TOTWIW, o, (5:23)
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where W, is a diagonal weight matrix of the relative areas of each FE that accounts for
the size and topology of the FEM used. The relative change in ® at each major iteration is
defined as

A0, = L= Pt (4.24)
D,
Now, a convergence estimator function ‘¥ can be computed according to
Ac?
¥, =9%_+(1-9 L. 4.25

1

This function assumes a very small value when a small conductivity change in the image
causes a large change in the objective function @. On the other hand, ¥ becomes large
when significant conductivity changes in the image cause only small changes in the .
Thus, ¥ represents a measure of the prominence of ill-conditioning at any given point in
the iterative process. In order to suppress rapid fluctuations, ¥ is updated recursively in
Eq. 4.25, with 3 being a forgetting factor that ranges between 0 and 1.

The parameters of the convergence estimator for this study were chosen on the basis
of preliminary experiments. Images were considered to have essentially converged to the
global minimum when ¥ assumed a value of less than vy, = 5107. In contrast,
convergence to a local minimum was suspected when ¥ exceeded y, = 510™. The
forgetting factor was set to 3 = 0.5. The reconstruction was terminated and considered
divergent when the algorithm failed to reduce ® below its initial value after three

iterations.

Reconstruction error

The topological identity between the phantom and the reconstruction FEM permits
precise evaluation of the reconstruction error at each iteration. We can hence define the
normalized rms image error as

_ 'T 'r - .
s=100%~\/(“i G.)Tw“w"((f' c). (4.26)
¢ WiW,c
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Because € is weighted by the relative FE area and normalized by an equivalent expression

of o', it is independent of the size or topology of the phantom and its mean conductivity.

Protocols

(i) Correlation of sample images and reconstruction error

In order to illustrate the performance of the reconstruction algorithm and to
demonstrate the way in which ¢ correlates with the visual appearance of the image, the
thoracic phantom was simulated using neighbouring currents and without any
measurement noise (SNR = o). An image reconstruction was performed executing 20

major iterations, and the image and € were saved for each major iteration.

(ii) Validation of the convergence estimator

To validate the convergence estimator, images of both phantoms (Fig. 4.4) were
reconstructed at 11 SNRs from 30 to 80 dB. For each phantom and noise level, the
simulation was repeated 10 times in order to average out the influences of any particular
noise implementation, resulting in a total of 220 simulations. Twenty iterations were
performed for each image reconstruction, and both the minimal value of € (g;,) over all
20 iterations and the value of ¢ after the 20™ iteration (gg,,,) were stored. The value of ¥
was computed for each iteration, and the numbers of cases in which convergence to the
global minimum was detected and in which convergence to a local minimum was
suspected (N,, and N, respectively) were evaluated. In the simulations that
converged to the global minimum according to ¥, the value of € at the point of
convergence (Econy), i-€., when ‘¥ first was less than y,, was saved.
(iii) Effects of current patterns

In this protocol, the influence of the relative position of the current source and sink
on N, and €, was evaluated using the thoracic phantom. Initially, neighbouring
currents were used, i.e., the current source was located at the electrode adjacent to the sink
for each projection. Subsequently, the current source and sink were progressively
separated until the source was diametrically opposed to the sink, which is equivalent to

the opposite current pattern. At each separation setting and for SNRs of 50, 60, 70 and 80
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dB, 10 images were reconstructed, yielding a total of 320 simulations. For each source-
sink separation setting and noise level, Ny, Nioca @nd the mean and standard deviation

of ., Were evaluated.

(iv) Effect of a central reference electrode

To investigate the effect of a CRE on N, and €.,,, EIT measurements were
simulated using the thoracic phantom with the neighbouring current pattern in three
configurations: (A) with 16 boundary electrodes as above (Control16); (B) with a CRE
located as shown in Fig. 4.5(a) in addition to the 16 boundary electrodes (CRE17); and
(C) with 32 boundary electrodes but no CRE, as shown in Fig. 4.5(b) (Control32). For
each configuration, measurements were simulated 10 times at each of 11 SNRs from 30 to
80 dB. As above, N, and the mean and standard deviation of €, were evaluated for

each simulation.

Fig. 4.5:
FEM used for protocol (iv). The open circle denotes the location of the CRE.
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4.2.3 Results

Fig. 4.6(a) to (c) show reconstructed images for protocol (i) at iterations 3, 6 and 8§,
respectively. The image shown in Fig. 4.6(a) produced a value of £ = 60% and did not
reflect the features of thoracic phantom. The principal features of the phantom were better
reproduced in the image shown in Fig. 4.6(b), which corresponded to € = 15%. However,
some visible differences remained between this image and the phantom. The image
shown in Fig. 4.6(c) produced an error of € = 1.9% and was essentially visually identical
to the thoracic phantom. In general, the principal features of the phantom were reproduced
in the images for € < 20%, and the images closely resembled the phantom when €
assumed a value of less than 5%.

In protocol (ii), convergence of images of the thoracic phantom to the global
minimum was detected in 69 out of 110 reconstructions after an average of 13.3
iterations. In 22 cases, convergence to a local minimum was suspected after 7.5 iterations
on average. For the remaining 19 simulations, ‘¥ ranged between y, and y, for all 20
iterations. The relationships between €.,,, and €, and between €, and €g,, for the
thoracic phantom are denoted by the solid circles in Fig. 4.7. In Fig. 4.7(a), the data points
are scattered slightly above the line of identity, indicating that €_,,, exceeded €, by some
small amount in most cases. On average, €., cqualed 1.092°¢;,. The data points in Fig.
4.7(b) are scattered tightly around the line of identity, showing that ¢, was very close to
€pnal iD all cases. On average, the mean of the ratio of €., to €5, amounted to 1.0001.
The criterion for convergence to the global minimum was fulfilled for all image
reconstructions for which g,;, was less than 20%, i.e., for all images that reproduced the
principal features of the phantom. The value of € increased by 202% on average in the
first iteration for which ‘¥ exceeded vy, indicating that these reconstructions were indeed
not converging to the global minimum.

The central object phantom in protocol (ii) produced similar results to the thoracic
phantom. In this case, convergence to the global and local minima was detected in 79 and

9 simulations, respectively. Both outcomes were detected after slightly more than 9
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iterations on average. In the remaining 22 cases, 20 iterations were completed without
either criterion being fulfilled. No numerical instability was encountered in the
simulations performed for protocol (ii). The open triangles in Fig. 4.7(a) and (b) show
€.onv Plotted over €., and £4,,, for the central object phantom, respectively. The means of
the €.gny-t0-€nin ANd €.oqy-tO-Egna ratios were 1.085 and 0.986, respectively. Again, the
criterion for convergence to the global minimum was fulfilled for all image
reconstructions with an €,;, of less than 20%. For this phantom, € increased by 89% in the
first iteration at which ¥ exceeded w,.

For protocol (iii), N,y and €.,y are plotted as functions of the separation between
the current source and sink and the SNR in Fig. 4.8(a) and (b), respectively. At
comparatively high SNRs of 70 and 80 dB, nearly all simulations converged to the global
minimum at all separation settings except for those using opposite currents (Fig. 4.8a). At
a SNR of 60 dB, N, equaled 100% for source-sink separations of one and two
electrodes but dropped as the source was progressively separated from the sink. When the
SNR was further reduced to 50 dB, some images failed to converge to the global
minimum at all small separation settings and N, was zero when the current source and
sink were more than four electrodes apart. For all SNRs, the reconstructions diverged
when opposite currents were used. This was in contrast to all other separation settings
where reconstructions that failed to converge to the global minimum either approached a
local minimum or completed the maximum number of iterations without fulfilling either
criterion.

As shown in Fig. 4.8(b), the mean €,,, was minimal for separation settings of 1 and
2 at each SNR. The mean g,,, was less than 20% at a SNR of 80 dB for all separation
settings except opposite currents. At SNRs of 60 and 70 dB, images that reproduced the
principal features of the phantom (mean €, < 20%) were obtained when source and sink
were less than three electrodes apart. Images with a mean €, of less than 5% were
reconstructed for separations of 1 and 2 at a SNR of 80 dB and for neighbouring currents
at a SNR of 70 dB.
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For all three configurations used in protocol (iv), N, equaled 100% and 0% for
SNRs greater that 55 dB and of less than 40 dB, respectively (Fig. 4.9a). The
reconstruction error produced by configuration CRE17 in general ranged between those of
the two control configurations (Fig. 4.9b). The mean ¢, was less than 20% when SNR
was equal or greater than 60, 55 and 50 dB for configurations Control16, CRE17 and
Control32, respectively. Images that closely resembled the phantom (mean €.,y < 5%)
were obtained at SNRs of 70 dB and above for configuration Controi16, and at SNRs of
65 dB and above for configurations CRE17 and Control32.
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Fig. 4.6:
Images of the thoracic phantom reconstructed from noise-free data. The number of
iterations (i) and the corresponding reconstruction error (€) are given for each image.
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Fig. 4.7:

Reconstruction error at the point when convergence was detected plotted versus the
minimal reconstruction error over 20 iterations (a) and the reconstruction error after 20
iterations (b). The circles and triangles represent reconstructions of the thoracic phantom
and the central object phantoms, respectively. The dashed line is the line of identity.
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Percentages of successful convergence to the global minimum (a) and reconstruction errors
(b) as functions of the separation between the current source and sink for four signal-to-

noise ratios. The error bars in plot (b) denote the standard deviation.
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Percentages of successful convergence to the global minimum (a) and reconstruction errors
(b) as functions of the signal-to-noise ratio for the configuration using a central electrode
(CRE17) and two control configurations with 16 and 32 boundary electrodes (Control16

and Control32, respectively). The error bars in plot (b) denote the standard deviation.
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4.2.4 Discussion

In this section, I have developed a computer simulation of the static thoracic EIT
measurement situation. This computer simulation was used to investigate how the choice
of the current pattern and the placement of a CRE effect the probability of successful
convergence to the global minimum and the reconstruction errors of images obtained
using the GNM with a FE forward solution. The simulations showed that current patterns
for which the current source was placed very close to the sink were best. The placement
of a CRE did not significantly alter the likelihood of convergence of the reconstruction
process to the global minimum, but noticeably reduced the reconstruction error. However,
the reconstruction error was reduced even further when the number of boundary
electrodes was doubled, but no CRE was used.

A circular FEM consisting of 86 first-order FEs was employed both for the
computational phantom and to solve the forward problem for image reconstruction. This
mesh has relatively few elements, compared to the FEMs used by some other
investigators (3,24,68). However, in these studies the number of elements and hence the
number of conductivity parameters in the image usually exceeds the number of
independent measurements, which equals 104 when neighbouring currents are used (104).
Thus, many investigators regularize the reconstruction process (3,17,155), e.g., using a
smoothing constraint (see section 2.4.3). Regularization links the conductivity value of
any element of the reconstruction mesh to its neighbours and hence effectively reduces
the number of degrees of freedom of the reconstruction mesh to a value equal to or less
than the number of independent measurements. Thus, increasing the number of FEs in the
reconstruction mesh cannot overcome the fundamental restriction that is imposed on the
resolution of EIT images by the limited number of independent measurements. For this
study, I preferred a smaller FEM to the use of a smoothing constraint because
regularization in itself may reduce the image quality and complicate the interpretation of

the results.
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Because the phantom and the image reconstruction FEM were topologically
identical, the numerical inaccuracies of the FE method investigated in the previous
section cancel out in this study. Therefore, the probabilities of convergence to the global
minimum and the reconstruction errors obtained here differ substantially from those that
would be obtained if the same reconstruction algorithm were used to reconstruct images
from real static EIT data. However, the exclusion of confounding factors was desirable for
the purposes of investigating only the influences of the current patterns and the CRE on
the quality of the reconstructed images, which was the goal of this study. The topological
identity of the phantom and reconstruction FEM also permitted precise evaluation of the
reconstruction error, which would have been more problematic otherwise. Moreover, the
elimination of the FEM error in the computer simulations permits an estimate of the
extent to which the accuracy of the FE method must be improved before static images can
be reconstructed. For example, in protocol (iii) of this section images with g, < 20%
were successfully reconstructed only when the SNR was greater than 60 dB, and images
with €., < 5% could not be obtained for SNRs less than 70 dB. In comparison, the FEM
inaccuracies reported in section 4.1 produced SNRs of around 30 dB. Thus, it is necessary
to reduce the FEM inaccuracies by at least 30 dB before static EIT images can be
reconstructed.

The reconstruction algorithm used in this section employed a quadratic line search.
For the derivation of this algorithm, it was assumed that for a step size of A = 1, the
objective function would vanish. However, the GNM only predicts a minimum of ® at A
= 1 that, in general, can assume any positive value. Therefore, the estimate of the
magnitude of @', obtained from Eq. 4.22 represented an upper bound for @'
Consequently, the minimum of the second-order polynomial that was fit to ®(A) was
always closer to zero than it would have been if a smaller value of @'y had been used. This
in turn caused the line search to produce comparatively small step sizes. Thus, the
assumption that @ vanishes completely for A = 1 was conservative in the sense that it
produced smaller step sizes, which is likely to render the iterative reconstruction

algorithm more robust.
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The sample images of the thoracic phantom for the noise-free case (Fig. 4.6)
illustrate the performance of the reconstruction algorithm and the correlation of € with the
visual appearance of the images. The thresholds for & of 20% and 5%, used to classify
images that reproduced the principal features and the full detail of the phantom,
respectively, were chosen empirically and are thus somewhat subjective. However, a
slightly different choice of these thresholds would not have significantly altered the
outcome of this study.

The value of the objective function of an iterative image reconstruction process does
not directly correspond to the reconstruction error. Rather, ® decreases when the solution
converges to the global minimum as well as when a local minimum is approached and €
increases rapidly. In the case of convergence to the global minimum, the reconstruction
error often plateaus, such that beyond a certain point additional iterations do not improve
the image any further and may even result in a slight increase in €. For these reasons,
termination criteria that are based on only the objective function or on the termination of
the reconstruction process after a fixed number of iterations are not satisfactory. The
convergence estimator employed in this study used the ratio of the normalized change in
the image to the change in the objective function at each iteration, which essentially
provides an estimate of the ill-conditioning of the optimization problem. This
convergence estimator successfully detected reconstructions that converged to the global
minimum and indicated those that approached a local minimum. For all reconstructions
that had the potential of reproducing the principal features of the phantom (g, <20%), ‘¥
became less than y, before iteration 20 and €, only slightly exceeded &y, (Fig. 4.7a).
Moreover, €,,, Was generally very close to and sometimes even smaller than &g, (Fig.
4.7a). This convergence estimator thus permitted excluding from the further analysis
images that rapidly converged to a local minimum and would have produced large,
meaningless values of €. For images that converged to the global minimum, the
convergence estimator helped in avoiding superfluous additional iterations that would not

have improved the images.
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The results of protocol (iii) in this section contradict a previous analytical study
suggesting that current patterns with a low spatial frequency are advantageous because
they produce a higher current density in central regions of the body (73). Using the same
methodology, opposite currents were shown to resolve small central objects better than
neighbouring currents (23). However, the outcome variable in these studies was not the
reconstruction error, but a distinguishability function that was defined as the normalized
change of the electrode voltages in response to a conductivity change in a small central
region of a cylindrical body. This approach does not take into account the effect of the
current pattern on the condition of the Hessian matrix. Also, the distinguishability
function is defined in terms of a conductivity change rather than in terms of absolute
conductivity and hence is relevant for the dynamic imaging situation only. Finally, the
results of (23) are only valid for rotational symmetry in the volume to be imaged, and
may differ significantly in cases where asymmetrical conductivity changes occur close to
the periphery.

In an object with a homogeneous conductivity distribution, the current density in
the center will clearly be greater for opposite currents than for neighbouring currents.
However, as the object becomes inhomogeneous, the current densities become determined
by the conductivity distribution to be imaged. In the thoracic phantom shown in Fig.
4 .4(b), the minimal current density never occurred in the center, but always closer to the
periphery in the highly resistive areas representing the lungs and the spine. In any case, a
more homogeneous current density distribution is not necessarily numerically
advantageous. When the current densities are homogeneously distributed, all element
conductivities within the image contribute roughly equally to the boundary voltage vector
of each projection, which means that all elements of the Jacobian matrix have
approximately equal magnitudes. In this case, the Hessian is a full matrix. In contrast, if
the current density distribution is highly heterogeneous, each element conductivity may
contribute predominantly to one projection while its influence on all others is negligible.

In this case, the Jacobian matrix is reduced to a sparse structure such as
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where j,; is the (Ny,1) vector that contains the derivatives of the boundary voltages of

projection p with respect to the i-th element of ¢. Then, the Hessian matrix
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assumes a diagonal structure that is better conditioned than the full Hessian matrix in the
case of homogeneous current densities. Thus, a comparatively localized current
distribution such as occurs with neighbouring currents is likely to yield better images than
more homogeneous current patterns in the presence of measurement noise. In general,
these results suggest that the optimal choice of current pattern depends on both the
conductivity distribution to be imaged and the reconstruction technique employed. As in
this study, neighbouring currents have been shown to produce better images than opposite
currents when filtered backprojection is used to reconstruct dynamic EIT images (8).

In protocol (iii), I did not consider current patterns with more than one source-sink
pair (see section 2.4.2). As already discussed in section 4.1.4, these current patterns are
difficult to implement in practice because precise matching of the output impedance of
each current source in the system is required for the current patterns to be applied as
desired. Also, only few currently existing EIT systems are capable of using more than one

source-sink pair simultaneously. Furthermore, limiting the amount of current injected into

Chapter four: Thoracic imaging using electrical impedance tomography 133



the body is more difficult when multiple current sources operate simultaneously, and the
merit of these current patterns may be reduced when safety limitations are applied strictly
(38). I envisage EIT ultimately to be a low-cost bedside monitoring tool and therefore
focused this study on the simpler and more widely used single-source systems.

In protocol (iv), the use of a CRE shifted the graph of €, as a function of the SNR
towards lower SNRs by somewhat less than 5 dB (Fig. 4.9b). About twice as large an
effect was obtained when the number of boundary electrodes was increased to N, = 32
and no CRE was used, although this configuration may be biased because each boundary
node of the FEM was used as an electrode. Considering that the Control32 configuration
has a much greater number of independent measurements and takes much longer to solve,
the CRE did produce a considerable improvement. However, the placement of a CRE is
somewhat invasive, although in many ICU patients it may be possible to place the CRE
together with an esophageal balloon or a endogastric feeding tube. It is also intriguing to
speculate that a CRE may reduce the off-plane sensitivity and hence improve the
specificity of two-dimensional EIT, but these effects have not yet been investigated.

In this section, I have developed a computer simulation of the static thoracic EIT
measurement situation. A convergence criterion was introduced to terminate the iterative
reconstruction of images from the simulated data. I have shown that this convergence
criterion successfully distinguished between convergent and divergent images, and that
the reconstruction error at the point when convergence was detected was close to its
minimum while superfluous iterations were avoided. In protocol (iii), the best images
were obtained when the current source and sink were placed in close proximity. These
results were found to be related to the nature of the iterative reconstruction process
employed because neighbouring currents accentuate the diagonal structure of the Hessian
matrix. Moreover, I found that the use of a CRE reduces the reconstruction error and may
be valuable despite its being somewhat more invasive. Finally, the comparison of the
results of this study with those of the previous section suggests that the accuracy of the
FE method needs to be improved by at least 30 dB before useful static EIT images can be
obtained.
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4.3 Higher-order Finite Elements for the forward solution in static EIT

4.3.1 Motivation

The previous sections of this chapter have demonstrated that first-order FEs are, in
general, not accurate enough to be useful for the forward solution of static EIT problems.
A possible approach for overcoming this problem is the use of higher-order FEs that have
been shown to provide more accurate solutions than first-order FEs for comparable levels
of computational complexity (131). Unfortunately, conventional higher-order FEs have
the following two important shortcomings for their application in EIT: (i) Because the
tissue properties are constant across conventional higher-order FEs, higher-order FEMs
have fewer conductivity parameters than first-order FEM with similar values of N,. Thus,
the spatial resolution is reduced when conventional higher-order FEs are used instead of
first-order FEs. (ii) For approximately constant inter-node distances, higher-order FEs
have longer straight boundaries than first-order FEs. Therefore, conventional higher-order
FEs do not approximate the irregular body shapes that need to be modeled in static EIT as
well as first-order FEs. However, the approximation of the boundary shape is known to
strongly effect the accuracy of the FEM solution (131). A poorer approximation of the
boundary shape might thus counteract the improved polynomial accuracy of conventional
higher-order FEs.

The aims of this study were to derive isoparametric curvilinear higher-order FEs
with a space-variant conductivity that can approximate arbitrary continuous boundary
shapes and conductivity distributions, to illustrate the potential of these elements for
improving the accuracy of the EIT forward solution, and to discuss their theoretical

advantages and limitations.
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4.3.2 Methods

Two-dimensional isoparametric Finite Elements with variable conductivity

Higher-order isoparametric FEs with variable conductivity differ from the standard
FEs described in the previous sections in three aspects. First, the increased order of the
approximation functions necessitates additional nodes in the element. In two dimensions,
a minimum of (N + 1)(N + 2)/2 nodes are required to completely describe a set of
approximation functions of order N. Second, if the conductivity is modeled to vary across
the element, the S matrix can no longer be assembled as outlined in section 2.4.3 (Egs.
2.12 and 2.13). Thus, it is necessary to derive new element matrices for FEs with variable
conductivity. Finally, curvilinear FEs require integration of the Helmholtz equation over
curvilinear boundaries. This is best achieved by means of a coordinate transform that
projects the curvilinear element onto a standard element of simpler geometry that can be
integrated more easily. FEs that obey all three requirements can be derived, as follows.

In order to remain consistent with the FE methodology and for the sake of
simplicity, we approximate the conductivity across the FE by the same approximation
functions as the potential, i.e.,

o(x)= %ci o, (x). (4.29)

i=1
Substituting Egs. 2.10 and 4.29 into Eq. 2.9, we can express the first functional of the
Helmholtz equation (©,) as

0, =133 ¥ 0,0;0, [o;Va,Va,dQ. (4.30)
i i k

Changing the order of summation and expressing two of the sums in matrix form yields

Nl.d R

0, = %<PI.=: '[Zci S(ell):l°(Pn.el = '%'(p:.el Sd_(pn.el . 4.31)
i=l

Thus, the S, matrix for a FE with variable conductivity is obtained from a conductivity-

weighted sum over a family of N, distinct S} matrices. Assembling the FEM in analogy

to Eq. 2.13 and changing the order of summation, the first Helmholtz functional can be

written as
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N, .
©, =10, -[Zci S"’]-w., =19, Sq,. (4.32)
i=l

This means that in contrast to FEs with constant conductivities, the FEM can be
assembled before the conductivity-weighted sum over the S matrices is evaluated.

In general, the projection of a straight-bordered FE in the coordinate space (u,v)
onto a the curvilinear FE in the coordinate space (x,y) is achieved by means of a
coordinate transform of the form

*=hy) 4.33)

y=£,(u,v).
Because we want to actually define the element in (X,y) coordinates and then transform it
back into (u,v) space where the element is straight-bordered and therefore easier to
integrate, the coordinate transform used for our FEs must be reversible. This requires that
it uniquely relates any point (u;,v;) to exactly one point (x;,y;) and vice versa and imposes
some geometrical constraints in order to assure that the numerical inversion of the
transform is well-conditioned (131). A suitable coordinate transform that is particularly
consistent with the FE methodology is derived from the approximation functions
themselves according to

Nog

x= ) x;a(q,v),

i=l

(4.34)

Nl.d
y= ZYi o;(u, v).

i=l
Curvilinear FEs that have been obtained using this transform are often referred to as

isoparametric FEs. Now, the entries of the S} matrices can be computed according to
S(e::* = Hai (I Vonj)T -J&' Vo det(J.) dudv, (4.35)

where V now denotes the gradient in (u,v) coordinates and J¢ is the Jacobian matrix of the

coordinate transform (131) that is defined as
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J.= (4.36)
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In the case of triangular FEs it is possible to express the S! matrices such that all
parameters defining the geometry of the element, i.e., all functions of the node
coordinates, are no longer part of the integral (35,130,131). Then, the innermost kernels
can be integrated and tabulated once and for all as global matrices, and the S, of any
particular FE is rapidly evaluated by multiplication of these global matrices with
comparatively simple functions of the element coordinates. Unfortunately, this is no
longer possible for curvilinear elements because J. varies with position within the
element and cannot be extracted from the integral. Thus, we must integrate the
approximation functions of the curvilinear FEs numerically.

The integration of the FE matrices for triangular elements is best performed in
Simplex coordinates (35,131) and can be solved using symbolic integration software. For
curvilinear transformation, quadratic FEs are often preferred because they can be
integrated in one dimension at a time, which simplifies the numerical implementation of
Eq. 4.35 (131). However, quadratic FEs have the disadvantage that they are geometrically
anisotropic. This means that their polynomial representation is supercomplete, i.e., that
their polynomial basis contains some but not all terms of orders greater than the element
order N (131). For example, the second-order FE shown in Fig. 4.10(a) can model only
quadratic potential functions along any line parallel to the sides of the element, while
cubic or quartic polynomials can be exactly represented along the diagonals. Because
supercompleteness is of little practical benefit, the internal nodes of quadratic FEs are
often omitted for N < 5 (131), which yields the boundary node FE shown in Fig. 4.10(b).
This eliminates some of the supercomplete terms while all polynomials up to order N
remain unaltered. Boundary nodes cannot be omitted because they are necessary to

maintain inter-element continuity.
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Fig. 4.10:

(a) Complete quadratic second-order FE, 9 nodes. (b) Quadratic second-order boundary
node FE, 8 nodes. The internal node is omitted to reduce the supercompleteness. (c)
Isoparametric second-order FE obtained from the boundary node FE shown in (b) using a
coordinate transform.

For the computations performed in this section, the second-order boundary node FE
shown in Fig. 4.10(b) was employed and transformed to any required shape using Eq.
4.34. An isoparametric curvilinear FE is illustrated in Fig. 4.10(c). The FE matrices were
integrated using Gaussian quadrature. Because the polynomial order of the integrand in
Eq. 4.35 equals 14 for each dimension, 8 quadrature points each in u and v were sufficient

for exact numerical integration (64).

Curvilinear one-dimensional Finite Elements for the boundary condition

As in section 4.1.2, the boundary condition was modeled by a ring of one-
dimensional FEs. Clearly, tilese line elements must be curvilinear and of an order equal to
that of the two-dimensional FEs used to model the first term of the Helmholtz equation.

The isoparametric coordinate transform for the one-dimensional line element is expressed

by

Nn.d
x= Y x;o;(u),
i=l

" (4.37)
y=.¥(u),
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and the elements of the T matrix of a single one-dimensional element are easily found to

be

T, =jocj(u)oak(u),/(%)2 (29 qu. (4.38)
Because the polynomial order of the integrand is 6, four quadrature points along the
element are sufficient for exact numerical integration of each element of T,. T, is
assembled from the individual T, in analogy to Eq. 2.13, and the U matrix is computed in
direct analogy.

Protocol

The inaccuracies of the four second-order isoparametric FEMs shown in Fig. 4.11
were evaluated as described in section 4.1. A summary of the characteristics of these
FEMs is given in Table 4.3. The electrode size parameter was adjusted to D = 256 and the
four-electrode method was used in all cases. The results were compared to those obtained

using standard first-order FEMs with the four-electrode method.

Table 4.3:

Characteristics of the four isoparametric FEMs used in this study.
Mesh Ng N, Np N,
(iso-a) 69 69 16 16
(iso-b) 113 113 32 16
(iso-c) 193 193 48 16
(iso-d) 309 309 64 16

4.3.3 Results

Fig. 4.12 shows the inaccuracies of the higher-order FEMs shown in Fig. 4.11 in
comparison with those of the FEMs shown in Fig. 4.2. When N,, was small (FEMs iso-a
and iso-b), the inaccuracies of the isoparametric FEMs were somewhat greater than those
of comparable first-order FEMs. However, at N, greater than 100 the isoparametric FEMs
(iso-c) and (iso-d) produced smaller values Av,;, and larger SNRs than comparable first-
order FEMs.
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Fig. 4.11:
The four isoparametric Finite Element Meshes. The small solid circles denote the electrode
locations. See Table 4.3 for details.
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Fig. 4.12:
Inaccuracies of standard (solid circles) and isoparametric (open circles) FEMs.
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4.3.4 Discussion

In this study, I have derived higher-order curvilinear FEs with space-variant
conductivity across the element. This derivation (Egs. 4.29 to 4.36) is of general validity
for use with many kinds of two-dimensional FEs, i.e., for any element order as well as for
various basic shapes, and could easily be extended to three spatial dimensions. However,
the computations performed for this study were limited to isoparametrically distorted
second-order square FEs with 8 boundary nodes (Fig. 4.10c). This is the type of
isoparametric FE that is easiest to compute. The inhomogeneous boundary condition was
modeled using second-order curvilinear line elements. The approximation functions for
the standardized second-order line element before application of the coordinate transform
are shown in Fig. 4.13.

Of the four FEMs that were

used to investigate the accuracy of
isoparametric FEs, the two smaller
ones (iso-a and iso-b in Fig. 4.11) did
not reproduce the analytical solution
as well as comparable first-order

FEMs. Presumably, these increased

inaccuracies were caused by the side

lobes of the approximation functions 05~ L |
-1 0 1
for the boundary condition. For
example, the approximation function
Fig. 4.13:

that models current injection into a .
J Approximation functions for a one-dimensional

node at the end of a second-order line  second-order Finite Element. The solid, dashed

. . . . and dash-dotted lines represent the approximation
element (solid line if Fig. 4.13) fynctions for nodes placed atu=-I,u=0and u=
deviates considerably from zero close 1, respectively.
to the node at the opposite end of that line element. In FEM (iso-a) where only 8 line

elements were used to model the boundary condition, this was essentially equivalent to
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unintentionally placing two current sources with small negative amplitudes at angles of
+33.75° relative to the position of the intended current source. The effects of these
unintentional current sources are more pronounced in the FEMSs (iso-a) and (iso-b)
because they fall into close proximity of the voltage electrodes neighbouring the current
electrodes. Therefore, a considerable error in @, was encountered at the voltage electrodes
neighbouring the current electrodes. This analysis confirms a previous analytical study
that demonstrated the importance of the accurate modeling of the boundary condition
(25).

For meshes (iso-c) and (iso-d) in Fig. 4.11, the closest voltage electrode was always
more than one complete line element away from the current electrode. This presumably
explains the steep increase in the SNR from (iso-b) to (iso-c). The accuracy of the FEMs
(iso-c) and (iso-d) exceeded that of first-order FEMs with a similar level of computational
complexity by somewhat less than 15 dB. According to section 4.2.4, this improvement is
not quite sufficient to permit the reconstruction of useful static EIT images. However, the
FEs employed here were the simplest kind of higher-order isoparametric elements with
space-variant conductivity. Most likely, the accuracy of the forward solution could be
improved further by using third or fourth-order FEs and by an improved modeling of the
boundary condition.

Theoretically, the fact that the conductivity of the isoparametric FEs was modeled
to be space-variant may be advantageous in itself, for the following reason. The
assumption of a constant conductivity across each element produces a piecewise constant
conductivity distribution in the assembled FEM. If for simplicity we assume square FEs,
this is equivalent to sampling and convolution with a two-dimensional square window.
Because the spatial frequency content of a square window is not band limited, we must, in
general, be concerned with the satisfaction of the sampling theorem when FEs with
constant conductivity are used. In practice, however, the EIT reconstruction process is
usually regularized (3,17,66,154) (see section 2.4.3), which effectively links the
conductivities of neighbouring elements and hence imposes some degree of low-pass

filtering. However, a piecewise constant conductivity distribution can only be truly band
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limited in the limit of an infinitely large number of Finite Elements. In contrast, FEs with
space-variant conductivity produce a continuous conductivity distribution in the
assembled FEM, which in general has less power at high spatial frequencies than a
piecewise constant conductivity distribution.

Although the spatial frequency content of the conductivity distribution in the
isoparametric FEs derived above is band-limited, it may still be necessary to regularize
the iterative image reconstruction process to assure convergence to the global minimum
under all circumstances. At present, most reconstruction algorithms employ the penalty
function described by Eq. 2.38. Formulations that penalize the first or second spatial
derivative of ¢ have been shown to be advantageous (67) but cannot be implemented
accurately in a standard first-order FEM because Vo vanishes within the element and is
singular at the boundaries. In contrast, Vo is non-trivial at any point in the isoparametric
FEs derived above. Furthermore, although the n-th derivative of an approximation
function of order N is of order N - n, it can always be expressed exactly by a linear
combination of the complete set of approximation functions of order N (130). Hence, the
magnitude of Vo can be evaluated efficiently by multiplication of ¢ with a tabulated
differential operator matrix (130). This permits more efficient and accurate gradient
regularization than in a standard FEM, which may contribute to the reconstruction of EIT
images with improved contrast. However, in cases where strong regularization is
necessary, it may also be beneficial to alternatively reduce the order of the approximation
functions for & to a value less than the order of the approximation functions ¢.

To the best of my knowledge, the preliminary study presented in this section is the
first to investigate higher-order isoparametric FEs with space-variant conductivity for the
EIT forward solution. Clearly, a great deal of work remains to fully investigate all aspects
of these FEs, e.g., determining the ideal order and shape of the elements, the best
modeling of the boundary condition and the effects of measurement noise and
regularization of the reconstruction process. However, given the preliminary results of
this section and the theoretical advantages that have been discussed, I expect higher-order

isoparametric FEs with space-variant conductivity to improve the accuracy of the EIT
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forward solution to an extent that FE inaccuracies are no longer a limiting factor for the

reconstruction of clinically useful static EIT images.
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CONCLUSIONS

S.1 Summary and conclusions

The high incidence of pulmonary disease in critically ill patients necessitates the
continued investigation of new and improved techniques for obtaining clinically valuable
information from the diseased respiratory system. The research described in this thesis
approaches this problem in two distinct ways. In chapter three, I investigate pulmonary
monitoring techniques using conventional pressure and flow measurements. Many of the
results of chapter three are immediately applicable in a clinical context. In chapter four, I
investigate image reconstruction techniques for Electrical Impedance Tomography (EIT).
This novel non-invasive medical imaging technique is still in its infancy, but has a great
potential for continuous thoracic imaging because of the marked differences in the
electrical properties of the tissues that compose the human thorax, and the pronounced

changes that can be expected in disease.

In chapter three, I develop a comprehensive computational model of the actively
breathing subject that can be used to simulate patients breathing spontaneously or with the
support of an assisting mechanical ventilator. This model has a multitude of potential

applications in respiratory research because the experimental conditions can be
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manipulated at will and may be adjusted to simulate configurations that would be
unacceptable in humans. Furthermore, variables that are inaccessible in patients can be
accessed in computer simulations, and the number of subjects available for study is
essentially unlimited. Therefore, I envisage this model to complement many clinical
investigations and to contribute to the development of improved pulmonary monitoring
techniques and mechanical ventilators.

In section 3.2, the computer model is used to quantitatively assess techniques to
measure breath-by-breath a patient’s dynamic intrinsic PEEP and inspiratory work of
breathing, and to investigate the physiological reasons for the discrepancies that have
been reported between values of intrinsic PEEP measured under static and dynamic
conditions. Both measurement techniques performed well in the absence of expiratory
muscle activity and cardiogenic oscillations. However, expiratory muscle activity at end-
expiration introduced a substantial overestimation in both parameters, while cardiogenic
oscillations caused large random errors that could not be reduced efficiently by ensemble
averaging. These results demonstrate that some means of correction for both expiratory
muscle activity and cardiogenic oscillations is necessary if dynamic intrinsic PEEP and
work of breathing are to be measured accurately on-line. The kind of discrepancies seen
experimentally between static and dynamic intrinsic PEEP could only be reproduced
when the stress adaptation in the model was increased to five-fold the value that has been
reported for COPD patients during inspiration, suggesting that these discrepancies are
caused by heterogeneity of the expiratory flow limitation throughout the lung.

Cardiogenic oscillations on esophageal pressure signals cannot be removed by
standard filtering because their frequency content overlaps that of respiratory pressure
swings. In section 3.3, I develop an adaptive filter that employs an electrocardiogram to
reduce the cardiogenic oscillations. In computer simulations, the variance of the simulated
pleural pressure swings that was accounted for by the unfiltered and filtered esophageal
pressure signal ranged between 55 and 94% and between 95 and 99%, respectively. In

data obtained from four intensive care patients, the apparent cardiogenic oscillations were
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markedly reduced without noticeable distortion of sharp deflections associated with
respiration. The standard deviation of the measured intrinsic PEEP was reduced in all four
patients by 44 to 71% (mean 57%), indicating that a considerable fraction of the
variability of the measured dynamic intrinsic PEEP was entirely due to cardiogenic
oscillations, and that the adaptive filter efficiently reduced this undesired variability.

In section 3.4, the effects of the interactions between a flow-triggered pressure
support ventilator and patients with pronounced expiratory flow limitation are
investigated in a computer simulation. The results of this study confirm Younes’ earlier
description of the basic mechanisms of patient-ventilator asynchrony (156) and indicated
that a severely flow-limited patient receiving pressure support ventilation presents a
highly nonlinear dynamic system in which small parameter changes can have a large
impact on the overall system behaviour. Therefore, the optimal strategy for adjusting the
ventilator is likely to depend on the subjects current condition and to vary considerably

with time.

In chapter four, I investigate the inaccuracies of conventional first-order Finite
Elements for EIT with respect to a specifically derived analytical solution. These
inaccuracies produced SNRs of approximately 10 dB and between 18 and 35 dB for the
two- and four-electrode method, respectively. Although the SNR increased somewhat
when larger meshes were used, this study showed that augmenting the number of
elements in a first-order Finite Element mesh is not an efficient means of improving the
EIT forward solution. The great differences between the two- and four-electrode methods
demonstrate that the voltages at the sites of current injection are badly estimated in a first-
order Finite Element mesh and should not be used for static EIT image reconstruction
even when the electrode-skin contact impedance is negligible. Comparison of the
inaccuracies of the first-order Finite Element Meshes to the results of the simulation study
in section 4.2 suggested that the accuracy of the forward solution needs to be improved by

at least 30 dB before useful static EIT images can be obtained.
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In a computer simulation of static EIT using only a single current source-sink pair,
current patterns for which the current source was placed near the sink produced the
smallest reconstruction errors and the greatest probabilities of convergence to the global
minimum. Presumably, this was because they produced comparatively inhomogeneous
current density distributions that favoured a diagonal structure of the Hessian matrix. The
use of a central reference electrode produced approximately half the improvement in the
quality of the reconstructed images that was obtained by doubling the number of
boundary electrodes. This illustrates the general usefulness of central reference electrodes.

In the last section of chapter four, I derive higher-order isoparametric Finite
Elements with space-variant conductivity for EIT. A comparatively simple second-order
implementation of these Finite Elements improved the accuracy of the EIT forward
solution by up to 15 dB over first-order Finite Elements. Higher-order isoparametric
Finite Elements are also theoretically advantageous because they produce a conductivity
distribution with less power at high spatial frequencies than standard Finite Elements, and
because they permit a more accurate implementation of gradient regularization
techniques. Thus, the further development of these higher-order Finite Elements for EIT

is an important and promising area for future research.

Despite its present shortcomings, I envisage EIT to play an important role in future
intensive care monitoring. For example, it is conceivable that a fairly accurate measure of
lung volume may be obtained from a relatively simple three-dimensional EIT system.
Simultaneous recordings of esophageal pressure signals would then allow the evaluation
of clinically important parameters such as intrinsic PEEP and inspiratory work of
breathing in spontaneously breathing patients without the discomfort of a direct flow
measurement at the airway opening. Ultimately, the electrode grid of the EIT system may
also be used for electrocardiographic measurements which, together with some
measurements of physiological air and blood pressures, would permit the complete

integration of cardio-respiratory monitoring equipment for critical care patients.
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5.2 Original contributions

1)

)

3)

Q)

()

(6)

A multi-purpose nonlinear viscoelastic model of the actively breathing patient was
developed. The model comprises four nonlinear dynamic subsystems that
characterize the passive mechanical properties of the respiratory system, the
properties of the respiratory musculature, the conditions at the airway opening
(endotracheal tube and ventilator or atmospheric pressure), and the transmission of

cardiogenic oscillations onto the respiratory system.

An empirical closed-form description of the expiratory flow limitation phenomenon
was developed to permit efficient computational simulation of expiratory flow

limitation.

In a computer simulation, the assumption of a fixed chest wall elastance of 5
cmHzo‘L'l for the computation of the patient’s inspiratory work of breathing from
esophageal pressure and flow was found to be valid within a 5% error margin when

no other confounding factors were present.

In a computer simulation, expiratory muscle activity at end-expiration was found to
cause severe overestimation of the measured values of both dynamic intrinsic PEEP

and the patient’s inspiratory work of breathing.

In a computer simulation, cardiogenic oscillations on esophageal pressure were
found to introduce substantial random errors to the measured values of both

dynamic intrinsic PEEP and the patient’s inspiratory work of breathing.

In a computer simulation based on a model with central expiratory flow limitation,
the discrepancies between the values of intrinsic PEEP measured under static and
dynamic conditions could be reproduced only after the stress adaptation in the lungs

was increased five-fold over the values reported in the literature for COPD patients
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during inspiration. This suggests that these discrepancies are caused by

heterogeneity of the expiratory flow limitation throughout the lung.

An adaptive filter to reduce the cardiogenic oscillations on esophageal pressure
signals was developed. In simulated data, this filter improved the variance of the
true pleural pressure swings that was accounted for by the esophageal pressure
signal from between 55 and 94% to between 95 and 99%. In in vivo patient data, the
filter reduced the apparent cardiogenic oscillations without noticeably distorting the
sharp deflections in esophageal pressure due to respiration. In the Fourier domain,
the filter removed transients at integer multiples of the heart rate without

significantly altering the remainder of the signals.

In four intensive care patients, the standard deviation of the dynamic intrinsic PEEP
measured breath-by-breath over periods of 50 to 120 seconds was reduced by 44 to
71% (mean 57%) when the adaptive filter was used. This suggests that a
considerable fraction of the variability of the measured dynamic intrinsic PEEP was
entirely due to cardiogenic oscillations, and that the adaptive filter efficiently

reduces this undesired variability.

The mechanisms of patient-ventilator asynchrony during pressure support
ventilation were studied in a computer simulation that reproduces the diseased
human respiratory system more closely than the model employed in an earlier study
(156). The principal mechanisms of patient-ventilator asynchrony as described in
that study were confirmed. The results suggest that a pressure support ventilator
together with a severely diseased patient may form a highly nonlinear dynamic

system that is difficult to control.

The analytical solution for the electrical potential on the boundary of a two-
dimensional circular phantom and opposite current injection was shown to diverge

when point current sources are assumed. A solution for finite size electrodes was
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(11)

(12)

(13)

(14)

(15)

derived and shown to converge. This solution is applicable both for a homogeneous

conductivity distribution and for centered circular targets.

The inaccuracies of first-order Finite Elements for the EIT forward solution were
shown to produce SNRs of less than 35dB even when meshes with very large
numbers of elements were used. The data suggest that the accuracy of the forward
solution needs to be improved by approximately two orders of magnitude before

good static EIT images can be obtained.

The inaccuracies of first-order Finite Elements for the EIT forward solution were
more pronounced at the sites of current injection than anywhere else in the mesh.
Thus, the voltages measured at these locations should not be used for the
reconstruction of static EIT images even when the electrode-skin contact impedance

is negligible.

A convergence criterion for the iterative reconstruction of EIT images was
developed. This convergence criterion successfully identified image reconstructions
that efficiently converged to the global minimum, thereby avoiding superfluous

iterations that did not noticeably improve the image any further.

In a computer simulation, the reconstruction error of static EIT using a single
current source-sink pair and iterative Gauss-Newton optimization was shown to be
minimal when the current source and sink were placed in close vicinity.
Presumably, this was because current patterns that produce relatively
inhomogeneous current density distributions favour a diagonal structure of the

Hessian matrix.

In a computer simulation, the reconstruction error of images obtained using a
central reference electrode were found to range between those of a control
configuration with an equal number of boundary electrodes and of a
computationally more involved configuration with twice the number of boundary
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electrodes, but no central electrode. This demonstrates the general value of a central

reference electrode.

(16) Higher-order isoparametric Finite Elements were derived for modeling electric

fields in two-dimensional media with space-variant material properties.

(17) Higher-order isoparametric Finite Elements with space-variant tissue properties
were shown to reduce the inaccuracies of the EIT forward solution by up to 15 dB
compared to first-order Finite Element Meshes of similar computational

complexity.

(18) The theoretical advantages and limitations of higher-order isoparametric Finite
Elements with space-variant tissue properties for EIT image reconstruction were

introduced.

Chapter five: Conclusions 154



5.3 Suggestions for future work

5.3.1 Pulmonary monitoring

As discussed elsewhere in this thesis, the computer model of the spontaneously
breathing patient described in section 3.1 has a large number of potential applications.
The following is a list of some examples.

Recent clinical studies advocate measuring the pressure-time integral (PTI, also
referred to as pressure-time product) rather than W;,,. However, it is somewhat unclear
whether the PTI can be measured any more accurately than Wi, and how PTI and W,
relate. Also, the measurement of the PTI is ambiguous in that it can be measured between
zero-flow points or between deflection points in P, with both measurement techniques
yielding markedly different results (Volta er al., ATS intl. conf., New Orleans 1996).
These issues could easily be addressed using the computer simulation described in section
3.1.

Younes (156) has previously compared PSV and PAV in a comparatively simple
computer simulation. A more thorough investigation of the patient’s ability to modulate
ventilation for all existing assisting modes of mechanical ventilation including CPAP can
be expected to be clinically valuable and to provide additional insights into patient-
ventilator interactions. For this study, it might be interesting to parameterize the model of
section 3.1 for various groups of simulated patients with different pulmonary diseases.

The effects of ventilator design aspects may be studied individually for different
disease groups using my computer model. Hopefully, studies of this type will be
conducted soon and may contribute to the design of improved mechanical ventilators.

The adaptive filter to reduce cardiogenic oscillations on P described in section 3.3
may permit an improved exploitation of the information contained in the esophageal
pressure signal. One particularly interesting question is whether it may be possible to

trigger an assisting mechanical ventilator off an adaptively filtered esophageal pressure
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signal. Presumably, this would substantially reduce At;, and hence overcome some of the
problems of assisted mechanical ventilation that were addressed in section 3.4. The
computer model developed in section 3.1 provides an ideal environment for the

investigation of this issue.

5.3.2 Thoracic imaging using EIT

Although dynamic EIT imaging of the thorax has been shown to have several
interesting applications, it is beyond question that static EIT imaging could ultimately
provide a much greater amount of clinically valuable information. In my opinion, the long
term goal of EIT research is the reconstruction of three-dimensional static complex-
valued images at multiple frequencies in real time.

The most obvious continuation of the work presented in chapter four of this thesis is
the further investigation of higher-order isoparametric FEs with variable conductivity. For
solution of the inverse problem, however, I am inclined to speculate that meshes primarily
based on the transformation of triangular elements may show better convergence
behaviour because their polynomial basis is not supercomplete. The modeling of the
boundary condition, especially in the context of very high-order FEs where the boundary
condition may be modeled by only a few line elements, also merits further investigation.
In this context, it may be useful to consider the use of other approximation functions than
regular polynomials for jg, since these might permit better modeling of finite-size
electrodes.

In general, the FE method can easily be extended to three-dimensional, complex-
valued isoparametric FEs with space-variant admittivity. Thus the FE method does not
present any fundamental limitations for the reconstruction of three-dimensional static
complex-valued images. However, a substantial amount of work will be necessary before

this goal can be achieved.
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