
INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. UMI

films the text directIy from the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others may be

from any type ofcomputer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. AIso, if

unauthorized copyright material had to be remov~ a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

eontinuing from Ieft to right in equal sections with small overlaps. Each

original is a1so photographed in one exposure and is included in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quaIity 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this copy for an additionai charge. Contact illvfi directIy to

order.

UMI
A Bell &. Howell Information Company

300 North Zeeb Road, AnD AJbor MI 48106-1346 USA
313n61-4700 800/S21-0600





AnvANCES IN PULMONARY MONITORING AND

THORACIC IMAGING

Thomas Florian Schuessler

Department of Biomedical Engineering,

McGill University, Montréal, Québec, Canada.

A Thesis submitted to the Faculty of Graduate Studies and Research

in December 1996 in partial fulfillment of the requirements of the degree of

Doctor of Philosophy.

© Thomas F. Schuessler 1996



1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
canada

Vou, file V0tr8 retenlrJce

Our file Netre reffHenœ

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
penmSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-30376-4

Canada



(

(

ABSTRACT

The high incidence of pulmonary disease in critically ill patients necessitates new

and improved techniques for pulmonary monitoring and thoracic imaging. To investigate

pulmonary monitoring techniques using pressure and flow signais, l developed a

comprehensive computational model of subjects breathing spontaneously or with the

support of an assist-ventilator. The model was used to quantitatively assess measurement

techniques for dynamic intrinsic positive end-expiratory pressure (pEEP j) and inspiratory

work of breathing. The results demonstrate that sorne means of correction for both

expiratory muscle activity and cardiogenic oscillations on esophageal pressure is

necessary if dynamic PEEP j and work of breathing are to he measured accurately on-line.

1 aIso conclude that the discrepancies between static and dynamic PEEPi are caused by

heterogeneity of the expiratory flow limitation. An adaptive tilter to reduce the

cardiogenic oscillations on esophageal pressure was developed and validated in a

computer simulation. In four intensive care patients, the adaptive tilter markedly

attenuated the apparent cardiogenic oscillations and reduced the standard deviation of the

measured PEEP j by 57%. Investigation of the interactions hetween patients and a pressure

support ventilator using the computer model confrrmed our present understanding of

patient-ventilator asynchrony and indicated that patient and ventilator fonn a highly

nonlinear dynamic system, so that the optimal ventilator settings most likely vary between
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patients and with time. In the second part of this thesis, 1 investigated the importance of

inaccuracies in conventional Finite Elements for thoracic Electrical Impedance

Tomography (EIn imaging. Augmenting the number of fust-order Finite Elements did

not efficiently reduce these inaccuracies. A computer simulation suggested that the

accuracy of the forward solution needs to be improved by at least 30 dB before useful

static EIT images can be obtained and showed that neighbouring currents outperform

other single-source current patterns. The potential usefulness of a central reference

electrode was demonstrated. Finally, 1derived higher-order isoparametric Finite Elements

with space-variant conductivity for EIT. In a preliminary study, a simple implementation

of these Finite Elements improved the accuracy of the EIT forward solution by up to 15

dB.
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ABREGE

La forte incidence des maladies pulmonaires entre les patients de soins intensif

nécessite des nouvelles techniques pour le monitoring pulmonaire et l'imagerie

thoracique. Pour étudier les techniques du monitoring pulmonaire utilisant les signaux de

pression et de débit, j'ai developpé un modèle informatisé d'un sujet respirant

spontanément ou en ventilation assistée. Ce modèle a été utilisé pour étudier

quantitativement les techniques de mesure de la dynamique pression positive intrinsèque

de fin d'expiration (intrinsic positive end-expiratory pressure, PEEP j) et le travail

inspiratoire. Les résultats démontrent qu'une correction est nécessaire aussi bien pour

l'activité des muscles expiratoires que pour les oscillations cardiogéniques sur la pression

œsophageale si la PEEP j dynamique et le travail inspiratoire doivent être mesurés avec

précision en temps réel. Il resulte aussi que l'écart entre la PEEP j statique et dynamique

est lié à 1'hétérogénéité de la limitation du débit expiratoire. Afin de réduire les

oscillations cardiogéniques sur la pression œsophageale, un filtre adaptable a été

développé et validé en simulation. Sur quatre patients en soins intensifs, ce filtre a

considérablement attenué les oscillations cardiogéniques et réduit de 57% l'écart type de

la PEEP j mesurée. La recherche des intéractions entre patient et ventilateur en support de

pression utilisant le modèle informatisé confirme notre compréhension de l'asynchronie

entre patient et ventilateur et indique que l'ensemble patient-ventilateur forme un système
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sévèrement non-linéaire. Par conséquen~ la mise au point du ventilateur varie

probablement entre les sujets et avec le temps. Dans la deuxième partie de cette thèse, j'ai

recherché l'importance de l'inexactitude des elements finis conventionnels pour

l'imagerie thoracique utilisant la tomographie d'impédance électrique (TIE). Une

augmentation du nombre d'éléments finis n'a pas réduit suffisamment ces imprécisions.

Une simulation a suggéré que la précision des éléments finis doit être améliorée d'au

moins 30 dB avant que des images valables de TIE puissent être obtenues et a montré que

l'injection du courant par électrodes adjacentes est meilleure que les autres méthodes

d'injection utilisant une seule source de courant. Le potentiel d'une électrode de référence

centrale a été démontré. Puis,fai dérivé des éléments finis isoparamétriques d'ordre élevé

avec une conductivité variant dans l'espace pour la TIE. Dans une étude préliminaire, une

implémentation simple de ces elements finis a amélioré la précision par environ 15 dB.
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PREFACE

The motivation of the research described in this thesis is the continued need for

improved methods and techniques to assess the status of the diseased respiratory system.

Chapter one of this thesis provides a brief introduction to the clinical context of this

work and states the goals of my research. In the literature review in chapter two, the

relevant aspects of respiratory physiology, pulmonary pathophysiology and ventilatory

support are reviewed, and the literature Pertinent to monitoring dynamic hyperinflation

and to thoracic imaging using Electrical Impedance Tomography is discussed in detail.

In the research that 1 have conducted over the past three years, two methodically

distinct approaches were used. Chapter three describes advances in the field of pulmonary

monitoring, i.e., the analysis of pressure and flow data. Specifically, 1 developed a

computer model of the sPOntaneously breathing or assist-ventilated patient that is

described in detail in section 3.1. In section 3.2, this model is used to test the sensitivity

of measurement techniques for intrinsic positive end-expiratory pressure {PEEPJ and

inspiratory work of breathing to expiratory muscle activity and cardiogenic oscillations,

and to investigate the physiologie cause for discrepancies between static and dYnamic

measurements of PEEP j • In section 3.3, an adaptive tilter is developed to suppress the

measurement problems caused by cardiogenic oscillations that were identified in section

3.2. This filter was tested both on simulated data and on in vivo patient data. Finally, the
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computer model was used to investigate mechanisms that compromise the synchrony

between the patient and an assisting ventilator in section 3.4. Much of the research

described in chapter 3 of this thesis was conducted in collaboration with Dr. Stewart B.

Gottfried, who contributed bis clinical expertise and exhaustive knowledge of the clinical

literature. Dr. Robert E. Kearney contributed bis experience in the field of time-domain

identification techniques to the adaptive filter described in section 3.3. The patient data

used to test this filter were provided by Ors. Stewart. B. Gottfried and Peter Goldberg.

Chapter four of this thesis is concerned with the reconstruction of static Electrical

Impedance Tomography (EIT) images. EIT is a novel medical imaging technique that

could potentially provide a direct measure of dynamic hyperinflation in patients suffering

from severe airway obstruction, or of increased lung water due to congestion of the

pulmonary vasculature. Section 4.1 presents a critical analysis of the fust-order Finite

Elements that are commonly used for EIT image reconstruction. In section 4.2, the effects

of the current pattern on the image quality and the utility of a central reference electrode

in the esophagus are investigated in a computer simulation. The results are discussed in

the context of the results of section 4.1. Finally, section 4.3 presents a modification of the

initial algorithm using a novel type of Finite Elements that are expected to overcome

sorne of the limitations of frrst-order Finite Elements.

The work described in chapters three and four represents original contributions to

knowledge in the fields of pulmonary monitoring and thoracic imaging. Each section of

these chapters is structured into sub-sections describing the motivation for the study, the

methods employed, the resulting data, and a discussion of these results in their individual

scientific context. Chapter five concludes the thesis and provides a list of the original

contributions that 1 have made.

The publications listed below have resulted from the work described in this thesis.
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( 1.

INTRODUCTION

Approximately 85% of the patients admitted to the intensive care unit (leU) of the

Royal Victoria Hospital in Montreal are treated for pulmonary disease during their leU

stay. Some of these patients remain mechanically ventilated over very long periods of

time, so that 10% of the ventilated patients account for as much as 90% of the ventilator

days. Severe chronic airway obstruction, usually as a consequence of chronie obstructive

pulmonary disease (COPD), is the most common cause for this long-tenn ventilator

dependence, and is one of the dominant causes for long tenn hospitalization.

Understanding and accurately monitoring the mechanical status of the respiratory system

of these patients is thus an important task in modem Medicine.

Severe airway obstruction commonly leads to dynamic hyperinflation, which has

profound physiologic consequences that eventually lead to acute respiratory failure and

long term ventilator dependence. The precise physiologie mechanisms that are involved in

this process are reviewed in more detail in section 2.1. Dynamic hyperinflation can he

assessed either directly via thoracic imaging, or more indirecdy by computing the

associated intrinsic positive end-expiratory pressure (PEEPJ and inspiratory work of

breathing (Winsp) from pressure and flow data. The goal of the research deseribed in this

thesis was to investigate and improve methods for assessing dynamic hyperinflation and

its consequences. SpecificaIly, this included the quantitative assessment of measurement

ehapter one: Introduction
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techniques for PEEPi and Winsp, the development of a data processing technique that

overcomes sorne of the problems associated with these techniques, and the investigation

of patient-ventilator asynchronies that are caused by dynamic hyperinflation. The

investigation of factors that limit the reconstruction of static Electrical Impedance

Tomography (EIT) images and the development of reconstruction techniques that may

overcome some of these restrictions were aIso part of this goaI. In the long-term, 1

envisage EIT as a technique for direct and non-invasive monitoring and visuaIization of

dynamic hyperinflation and its changes over rime, e.g., following a change in the

ventilator settings or as a consequence ofa medical intervention.
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( 2.

LITERATURE REVIEW

2.1 The respiratory system

2.1.1 Basic respiratory physiology

Overview

The respiratory system consists of the upper airways, the lung and the chest wall. Its

prime duty is the exchange of oxygen and carbon dioxide between the atmosphere and the

blood. This function is absolutely essential for life; malfunction at the very least limits

exercise capacity, and may in extreme cases even be fatal.

Air enters the respiratory system through the upper airways, namely the nose, the

mouth and the larynx. The larynx assures that larger solid particles such as food do not

accidentally enter the lung by rapidly closing the glottis and opening the esophagus. The

upper aitvlays humidify and warm the air to body temPerature and provide a basic

immunodefense mechanism.

After passing the glottis, the air is conducted through the airway tree towards the

lung periphery. The human airways bifurcate on average 23 times from the trachea to the

terminal bronchioles, fonning a right lung with three and a left lung with two distinct

lobes. In the upper 16 generations of airways, bulk flow is the dominant mechanism of
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gas transport. These airways are not lined with alveoli and are thus called conducting

airways. The four most distal generations of airways contain numerous alveoli and are

referred to as the respiratory zone or alveolar duct region. At this leveI, diffusion is the

dominant gas transport mechanism. The intennediate three generations form a graduai

transition zone from the conducting airways to the alveolar duct region. The airway walls

contain smooth muscle that presumably contributes to the adaptation of the respiratory

system to varying environmental conditions. Constriction of the smooth muscle narrows

the airways and increases their resistance to flow. The airway smooth muscle is controlled

by the autonomie nervous system and endocrine factors, and aitway smooth muscle

hyperresponsiveness is thought to play an important role in Asthma.

Gas exchange between the air and the blood occurs soIely by a passive diffusion

process, and a large surface area is required at the blood-gas barrier in order to exchange

sufficient quantities of gas. The lung provides such a large area within a relatively small

volume by aggregating the area of about 300 million gas exchange chambers (alveoli)

with an average diameter of 0.3 mm. This produces a total surface area of approximately

85 square meters (145). The stability of this configuration is assured by the release of

surfactant in the smaller aIveoli that lowers the local coefficient of surface tension.

Without the surfactant, small alveoli would have a higher internal pressure than bigger

ones because the pressure within a sphere due to the surface tension is inversely

proportional to its radius. Therefore, the alveoli would coalesce into a few big air spaces

having a similar total volume, but a much smaller surface area.

The aIveolar walls are lined with a close network of pulmonary capillaries. While

venous blood is conducted through these capillaries, oxygen diffuses from the alveoli into

the blood and carbon dioxide (C02) diffuses in the opposite direction. In the blood, only a

small fraction of the oxygen is transported in a dissolved state in the plasma, while the

majority is bound by hemoglobin in the red blood cells. This mechanism allows the blood

ta transport more than an arder of magnitude more oxygen per unit volume than would be
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possible by solution only. CO2 is much more soluble in the plasma than oxygen and cao

be transported in sufficient quantities in a dissolved state and as bicarbonate ions.

The partial pressure of oxygen (po:J in the venous blood that reaches the aIveolar

blood-gas interface is substantially lower than that in the lumen of the aIveolus. In resting

normaIs, diffusion of oxygen into the blood is so rapid that the P02 levels of blood and

alveolar air are equilibrated in a fraction of the time the blood takes to pass through the

pulmonary capillaries. However, during exercise or in disease, the transfer time of the

blood may become smaller than the diffusion time, and oxygenation may he incomplete.

If sorne alveolar regions are not ventilated at all or in the presence ofan extreme diffusion

impainnent, sorne venous blood may be able to reach the left ventricle completely without

being oxygenated. This condition is called a !rUe shunt.

Mecbanical properties

From an engineering point of view, the airway tree and alveoli cao he viewed as a

fluid mechanical system that can be characterized by pressure-flow relationships. Despite

the enonnous complexity of the system., the lungs are often regarded as a single resistive

pipe with an elastic or viscoelastic balloon at its end. More complex models have been

postulated and discussed in the literature., but ooly very simple models have found their

way ta a wider application so far.

The elastic forces of the parenchymal tissue are always inbound., i.e., they oppose

expansion of the lung. In contrast, the elastic forces of the chest wall point outwards over

a wide range of lung volumes. The total lung volume at which the elastic forces of lung

and chest wall balance is called relaxation volume, while the totallung volume at the end

of a normal expiration in a quietly breathing subject is tenned Functional Residual

Capacity (FRC). In normal adults, FRC and relaxation volume are essentially equal. At

FRC, the pressure in the virtual space between the lungs and the chest wall (pleural space)

becomes slightly subatmospheric, with its precise value depending on various factors

including body position. The volume inspired during a regular breath is called Tidal

Volume (VJ. The maximal volume that a patient can inspire is named Inspiratory
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Capacity (IC), and the sum of le and FRC is the Total Lung Capacity (TLC). The

maximal volume below FRC that a patient can expire in a forced expiration is called

Expiratory Reserve (ER), and the amount of air that remains in the lungs after maximal

expiration is the Residual Volume (RV). The sum of IC and ER., i.e., the range of lung

volumes that can be covered by voluntary inspiration and expiratio~ is called Vital

Capacity (VC).

The respiratory pump

The lungs and the chest wall are not rigiclly attached to each other. Rather, a virtual

space between the membranes of the pleura allows the lung and chest wall to slide past

each other, but nevertheless forces the lung to closely follow the volume and shape

changes of the chest wall.

The most important muscle for inspiration is the dome-shaped diaphragm. As it

contracts, the pressure in the thoracic cavity is reduced to a value below its equilibrium

level, and inspiratory flow is initiated. The external intercostal muscles support

inspiration by lifting and expanding the rib cage. In a healthy resting subject, expiration is

passive and complete, i.e., air is forced out of the lungs solely by the elastic energy stored

during inspiration until the equilibrium volume is reached. The primary Mediator of active

expiration, as it occurs for example during exercise, is the abdominal wall musculature. It

compresses the abdominal cavity and, since the diaphragm is relaxed during expiration,

increases intrathoracic pressure, pressing air out of the lungs. This process is supported by

the internal intercostal muscles that reduce the diameter of the rib cage.

Control of breathing

The frequency and depth of respiration is usually controlled subconsciously in the

central nervous system, but can he consciously altered within certain limits. The precise

location and structure of the respiratory pattern generator in the brainstem remains unclear

to date. The partial pressure of CO2 measured via a central chemoreceptor in the brain

stem is the most important respiratory feedback mechanism. Secondary feedback
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pathways include peripheral chemoreceptors for oxygen as weil as stretch receptors in the

lungs and the thorax.

2.1.2 Relevantpulmonary pathophysiology

Chronic Obstructive Pulmonary Disease (COPD)

COPD is an ill-defined but commonly used tenn that is generally applied to patients

suffering from Chronic Bronchitis and/or Emphysema. Symptomatically, a patient is

considered to have COPD when the volume expired over the frrst second of a forced

expiration (FEV t ) and the forced vital capacity (FVC) are less than a certain percentage of

the normal predicted values. Chrome Bronehitis is associated with enlarged mucous

glands and excessive mucus production in the bronchial tree. Both factors contribute to

the narrowing and obstruction of airways. Emphysema is characterized by structural

changes in the alveolar duct region, leading in particular to a 1055 of alveolar walls and an

enlargement ofair spaces. There is evidence that excessive breakdown of the elastin fibers

within the parenchyma due to an overproduction of lyosomaI elastase is the underlying

mechanism for these structural changes (146). The structural changes in the lungs in

Emphysema aIso affect the airway waIIs and reduce the maximal expiratory flow that the

patient can achieve. As a consequence, expiratory flow limitation occurs at comparatively

low flows in these patients. Expiratory flow limitation and its consequences are discussed

in detail in sections 2.1.3 and 2.1.4.

Acute respiratory failure

Acute respiratory failure (ARF) oceurs when the respiratory system is no longer

able to maintain adequate gas exchange. According to general guidelines, a patient is

considered to he in ARF when the partial pressures of O2 and CO2 in the artenaI blood

faIl outside certain lirnits for an extended period of time (146).
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( 2.1.3 Expiratoryjlow limitation

The flow resistance of airways differs between inspiration and expiration. While

during inspiration, an increased driving pressure aImost a1ways results in increased flow,

Fry et al. showed in 1954 that expiratory flow reaches a limit above which an increase in

driving pressure does not significantly change the flow (44). This phenomenon can he

demonstrated by plotting expiratory flow as a function of the driving pressure al a fixed

lung volume, producing the so-called iso-volume pressure-flow (lVPF) curves. Fig. 2.1

shows an illustration of three typical IVPF curves, with the lung volume decreasing from

curve A to curve C (71). While at very high lung volumes, the expiratory flow inereases

with driving pressure over most of its physiologie range, the expiratory flow rate clearly

plateaus at intennediate and low lung volumes. At the lowest lung volume (curve C), very

moderate expiratory pressures of less than 10 emH20 are already sufficient to produce the

maximal expiratory flow. The plateau values of expiratory flow can he plotted against

----------------------

------------------~~

c

v...---+-------------

Fig. 2.1
Right panel: Stylized IVPF curves describing expiratory flow limitation. A: high lung
volume; B: intermediate lung volume; C: lower lung volume. LeCt panel: MEFV curve
constructed from the plateau values of the IVPF curves. Dlustration according to (71).

See text for details.
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lung volume to obtain the maximum expiratory flow volume (MEFV) curve (71), as also

shown in Fig. 2.1. Beyond the maximum, the IVPF curves may also exhibit a drop in

expiratory flow with increasing driving pressure, in particular at lower lung volumes. This

"negative effort dependence" (93) is illustrated in curve C of Fig. 2.1.

The explanation of the expiratory flow limitation phenomenon tumed out to he a

complex issue. First, it was realized that the pressure along the airway tree during forced

expiration exhibits a pressure ·'waterfaII", Le., a large pressure drop over a short segment

of the airways, and that changing the pressure on the downstream side of the waterfaii

does not alter expiratory flow (110). The pressure waterfall occurs because of two

mechanisms. Under certain circumstances, the compressive forces on the airway due to

flow-related pressure lasses in the airway lwnen balance the elastic forces distending the

airway (71,82,102). Such an equilibrium of forces presents an intrinsic negative feedback

mechanism, since small increases in flow augment the viscous pressure losses and thus

further compress the airway, which in turn counteracts the increase in flow. Furthermore,

elastic tubes cannot conduct fluids at a velocity greater than the speed at which pressure

waves propagate along the wall of the tube, the so-called wave speed (30). If the wave

speed is reached at any point along an airway, communication between the upstream and

downstream sides of this "choke-point" is 10st, and flow through the airway becomes

independent of the driving pressure. Lambert et al. showed in a detailed computer

simulation (83) that in normais, the wave speed phenomenon is the dominant flow

limiting mechanism at higher and intennediate lung volumes, while the coupling between

the viscous pressure losses and airway wall compliance limits expiratory flow at low lung

volumes.

The wave speed of an elastic tube depends on the viscosity of the conducted fluid,

the mechanicai properties of the tube wall, the geometry of the tube and the pressures in

and around the tube. In general, a stiff tube has a higher wave speed than a compliant

tube. In COPD patients, the compliance of the airway walls is increased, which reduces
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the wave speed and the maximal possible expiratory flow in any particular airway.

Expiratory flow limitation is also increased in asthmatics (71).

2.1.4 Dynamic hyperinflation, ÎntrinsÎc PEEP and work ofbreathing

In patients with severe airway obstruction, e.g., in COPD, expiratory flow is often

slowed to the extent that expiration cannot he completed and inspiratory flow is initiated

before the equilibrium volume has been reached. The volwne above FRC that remains in

the longs at end-expiration in these patients is called dynamic hyperinflation, and the

elastic recoi! pressure of the lungs and the chest wall that is associated with a given level

of dynamic hYPerinflation is the patient's PEEPi . PEEPi represents a threshold loarl that

needs to he overcome by the patient's inspiratory muscles before inspiratory flow can be

initiated during bath spontaneous breathing and assisted modes of mechanical ventilation

(51,52,105,119,135). The additional Wjnsp required to overcome this threshold load is

thought to he a major contributing factor to the development of inspiratory muscle

fatigue, particularly in the face of the Lllherently disadvantageous operating conditions of

the inspiratory muscles during dynamic hyperinflation (122). Consequently, determining

the presence and magnitude of both PEEP j (51,120) and Winsp (10,41,129) is of great

clinical importance for the management ofcritical care patients.
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( 2.2 Measurement of pulmonary function

2.2.1 Basic diagnostic techniques

PhysicaI examinatiOD

Physical examination receives great attention in Many respiratory care textbooks.

Besides observation of the patient for obvious signs of respiratory distress, physical

examination includes passive tactile examination of the thorax (palpation), percussion

techniques and the stethoscopic analysis of breath sounds. Physical examination

techniques frequently rely on the subjective perception by the physici~ e.g., the

identification of a 4'dull" percussion note or a 44rumbling sound" with a umusical quality"

(127). Furthermore, they in genera! only provide qualitative results, and often the nature

of the disease can ooly be inferred from the combination of severa! tests. The practical

importance of these techniques despite their shortcomings illustrates the enonnous need

and potential for Biomedical Engineers to develop advanced methods and techniques that

permit rapid, precise and quantitative evaluation of the patient status.

Blood gases

The analysis of the P02 and the partial pressures of CO2(pc~ in arterial blood is

eonsidered to provide a direct measure of the adequaey of the pulmonary ventilation and

the oxygenation of the blood. Respiratory distress is almost aIways associated with an

increase in PC02. In the case of an acute exacerbation of the patient, the change in PC02

also causes a reduetion of the blood pH. Since the kidneys compensate this acidosis over a

period of roughly 24 hours, the eombination of Peo2 and pH can be used to distinguish

acute events from chronie disease processes.

Blood gases are taken severa! times a clay in the ICU and can be analyzed in a few

minutes. Devices that detect the blood gases from a single drop of arterial blood

~eouslyat the bedside have recently become available.
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Lung function tests

In the majority of hospitals, lung function tests are restricted to measurements that

can be obtained from a conventional spirometer. Beside Vt, respiratory rate (RR) and

minute ventilation (Ve ), this device can be used to evaluate FVe and FEV l' provided that

the patient is willing and able to perform a forced expiration maneuver. These tests are

considered relatively robust, but are not very specific because each parameter is

influenced by a number of physiological factors and May be modulated by conscious

inputs.

In recent years, computerized pulmonary monitoring equipment has become

available that continuously monitors pressures and flow across the respiratory system and

computes parameters such as Vt and RR on-line. More advanced measurements such as

respiratory system resistance and elastance, intrinsic PEEP and work ofbreathing can aIso

he monitored. The introduction of these pulmonary monitoring devices is a great step

towards better pulmonary monitoring and patient management. However, many of the

algorithms employed have not been proPerly validated or suffer from known

shortcomings. The quantitative assessment of some of these measurement techniques

forms part of the work for this thesis and is described in section 3.2.

2.2.2 Esophageal pressure measurement

Respiratory pressure swings in the esophagus cPcs) can he measured using an

esophageal balloon, Le., a small elastic balloon attached to the end of a small plastic

catheter placed in the mid-thoracic section of the esophagus via the nose (15,21).

Provided that the esophageal balloon is adequately placed and inflated, swings in Pes

reflect swings in pleural pressure (Ppl) with sufficient accuracy over the range of

frequencies that are relevant during spontaneous breathing (15,22,32). Measurements of

Pes can be used to separate estimates of respiratory mechanics into lung and chest wall

compartments (29,33,57), to evaluate variables of clinical importance such as dynamic
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PEEPi (PEEPi,dyn) and Winsp (see section 2.2.3), and to estimate the patient's muscular

and/or neural drive (148).

Since the esophageal balloon is placed in close proximity to the heart, Pes recordings

often contain cardiogenic oscillations. These are components of Pes that are not directly

related to respirationy but originate from pressure changes within the pericardium and the

aorta that are communicated to the esophageal balloon. Cardiogenic oscillations can

assume amplitudes that are large enough to significantly complicate processing of the Pcs

signal.

2.2.3 Measurement ofPEEPj and W;nsp

Statie PEEPi

In passive patients, static PEEPj (PEEPi.stad can he measured by occluding the

patient's airway opening at end-expiration (Fig. 2.2). PEEPi,stat equals the pressure that

can be measured on the patient side of the occlusion after any transients have vanished

(119). PEEPi,stat is difficult to measure in distressed patients because they are often not

able to remain passive for a sufficiently long period of time. Prolonged relaxation cao he

achieved by sedating or paralyzing the patient. However, sedatives aIse change the

general muscle tone and alter the breathing pattern. The value of PEEPi,stat obtained under

sedated conditions may thus differ significantly from the value of PEEPi,stal during

spontaneous breathing.

Dynamic PEEPi

During spontaneous breathing or assisted mechanical ventilation, PEEPi,dyn can he

estimated from Pcs and flow traces. As illustrated in Fig. 2.3, PEEPi,dyn equals the negative

def1ection in Pcs from its end-expiratory relaxation value (Pes,o) that is necessary to initiate

inspiratory f10w (107). PEEPi,dyn was initially considered a reasonable approximation of

the value of PEEPj,stal (107,119). However, recent studies indicate that PEEPi,dyn can

substantially underestimate PEEPj,stal and suggest that these discrepancies originate from

time constant inhomogeneities and/or tissue viscoelasticity (62,88).
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Fig_ 2.2:
Measurement ofstadc PEEPi• PEEPl.sbt equals the value at which ainvay openiog pressure

plateaus after a prolooged end-expiratory ainvay occlusion
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Fig. 2.3:
Measurement of dYDamic PEEPi- PEEPi,dya equals the deDectioD in Pes with respect to its

end-expiratory baseline value prior to the onset of inspiratory Dow.
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Inspiratory work of breathing

The fraction of Winsp required to overcome the resistance of the airways and distend

the lungs can be estimated from Pes and flow or volume traces according to

Wjn5P,lung = J(pes,O - pes) dV
VI

(2.1)

(

as the integral of the inspiratory deflection in Pes from Pes,o over inspired volume, To

obtain the complete Winsp, the work required to distend the chest wall must also he taken

into account. One possibility is to obtain the passive inflation wavefonn of Pes from the

sedated patient and subsequently integrate the difference between the active and the

passive Pes' as illustrated in Fig. 2.4 (90). However, sedation is likely to alter the

properties of the chest wall, and a significant uncertainty is associated with the passive

inflation curve obtained in this manner. Therefore, sorne investigators have taken a

simpler approach to estimate the chest wall component of Winsp by assuming a constant

value for the chest wall elastance a priori. In this case, Winsp can he expressed as

Winsp = J(pes,o -Pes)dV+tEVI2, (2.2)
v,

~
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Fig. 2.4:
Measurement of inspiratory work of breathing according to (90). The difference between
Pes and the previously measured passive inflation curve, indicated by the shaded area, is

integrated over inspired volume.
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The Bicore CP-IOO commercial pulmonary monitor (Bicore Corp., Irvine, CA)

employs this algorithm, assuming a constant linear chest wall elastance of 5 cmH20 for

all patients.

2.2.4 Thoracic radiography

Radiography plays an important raIe in the diagnosis of pulmonary diseases.

Typically, mobile, so-called portable x-ray units are used to obtain thoracic x-rays

without removing the distressed patients form their beds or disconnecting vital sign

monitors, mechanical ventilators and other equipment. However, these portable x-ray

images suifer frOID a number of shortcomings. First, the geometry between tube, patient

and film is restricted, and the photographie quality of the images is generally inferior to

chest x-rays obtained from stationary equipment (127). Second, all equipment and tubing

attached to the patient beeome part of the image and may eonceal the sometimes very

translueent reflections ofabnormalities in the lungs. Finally, the patient position is usually

restrlcted to the anteroposterior view, which results in a comparatively larger and less

sharp cardiac shadow.

Chest radiography permits assessment of the diaphragm shape, whieh reflects the

level of dynamie hyperinflation. Furthermore, pneumothoraces, pleural effusions and

localized, severe airway dosures (atelectases) can usually be detected in radiographie

images. However, many abnonnalities are only visible when the disease has reached a

significant level of severity. Similar to physical examination techniques, the analysis of

chest x-rays to a large extent is based on the subjective interpretation by the attending

physician. The development of a non-invasive imaging technique that can be used

continuously at the bedside, and that provides a variety of views of the thorax would

present a great contribution to the improvement of respiratory care.
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2.3 Assisted positive pressure ventilation

2.3.1 Positive pressure ventilation

Positive pressure ventilators apply a supra-atmospheric pressure to the airway

opening in order to force air into the lungs. In general, the ventilator cao take complete

control of the breathing pattern, e.g., during open chest surgery when the respiratory

pump is impaired. However, prolonged ventilation of intensive care patients under

complete machine control causes muscular atrophy. Candidates for long-term ventilation

are thus ventilated in assisting ventilator modes where ventilator and patient share the

work of breathing. Since the monitoring of intensive care patients is the focus of this

work, only assisted modes ofpositive pressure ventilation are discussed here.

2.3.2 Modes ofassisted mechanical ventilation

Continuons positive airway pressure (CPAP)

In CPAP, a constant positive pressure is applied to the airway opening throughout

the entire breath. CPAP effectively forces the patient to breathe at a higher lung volume,

which is considered advantageous in the presence of severe airflow obstruction

(6,106,107). CPAP is also frequently used in the treatment of sleep apnea

Synchronized intermittent mechanical ventilation (SIMV)

In SIMV, the ventilator intermittently delivers controlled mechanical breaths at a

very low respiratory rate. In the intervals between these machine breath, the patient is

allowed to breathe spontaneously. SIMV was the tirst assisted mode ofventilation.

Assist-eontrol ventilation (ACV)

In ACV, the ventilator does not initiate a mechanical breath until an inspiratory

effort from the patient is sensed. Once the ventilator is triggered, a complete mechanical
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breath is delivered as specified by the ventilator settings. The patient can thus control the

respiratory rate, but not the tidal volume, inspiratory flow rate or inspiratory time.

Pressure support ventilation (pSV)

Pressure support ventilation is a more recent mode of ventilation. Similar to CPAP,

a constant pressure is applied to the airway opening. However, the pressure level is

increased during inspiration in order to actively support inspiration. Within limits, the

patient cao control the respiratory rate, the tidaI volume, and the inspiratory time and

flow.

Proportional assist ventilation (PAV)

PAV is a novel mode of ventilation (157,158) that has only very recently become

commercially available. Similar to PSV, the airway opening pressure is controIIed during

pAV. However, the set point of the inspiratory pressure level is not fixed, but is computed

in real time as the SUIn of two components. One of these components is proportionai to

the actual inspiratory flow (Flow assist), while the other component is proportionai to the

volume that has been inspired in the present breath CVolurne assist). PAV thus aIlows

specific and independent compensation for part of the resistive and elastic load that the

respiratory pump is facing. The patient has complete control of the respiratory wavefonn,

and the pressure generated by the ventilator increases with the patient effort.

2.3.3 Positive end-expiratory pressure (PEEP)

PEEP is a constant pressure that is applied to the airway opening during expiration.

Similar to CPAP, the intention is to increase the Mean Iung volume in patients with severe

airflow obstruction. PEEP is usually combined with SIMV, ACV, PSV or PAV.

2.3.4 Trigger mechanisms

A ventilator operating in an assisted mode of ventilation must recognize the patient

effort before inspiratory flow is initiated. At present, two techniques are widely used for

this purpose.
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Pressure trigger

In this mode, the patient expires through a one-way valve. When expiration is

terminated and the inspiratory effort begins, the valve closes and the patient's airways are

temporarily occluded, which causes the airway opening pressure (paw) to drop rapidly.

Once Paw becomes more negative than a specified threshold, the ventilator is triggered and

inspiratory flow is initiated.

This trigger mechanism is problematic because the patient does not receive flow

immediately at the onset of an inspiratory effort. Rather, the onset of flow is delayed by

the closing time of the one-way valve and the tinte required to detect and react to a sub­

threshold pressure. AIso, the generation of sufficient negative pressure to trigger the

ventilator may impose a significant work load on the patient (40,135).

Flow trigger

More recent ventilators do not use a one-way valve, but permit the patient to inspire

while the ventilator is in its expiratory phase. As soon as inspiratory flow is detected, the

ventilator is switched to its inspiratory phase and the commenced inspiration is actively

supported.

2.3.5 Weaning

The process of getting a ventilated patient back to breathing spontaneously and

without the aid ofa ventilator is termed weaning. Many physiologic parameters have been

reported as predictors of weaning outcome, but often the results have been contradictory.

An overall consensus about how to wean a patient does not exist in the literature, and a

number of experts consider weaning an art rather than a science. However, more

formalized weaning protocols and the use of knowledge-based algorithms in

computerized weaning aids have been suggested (36,86). The development of methods

and tools that permit more rapid and reliable weaning is one of today's challenges for

Biomedical Engineering research in the field of respirology.
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( 2.4 Electrical Impedance Tomography

2.4.1 Imaging electrical tissue properties ofthe thorax

Biological tissues contain large amounts of ion-rich fluids. Because the relative

amount of body fluid, the ion balance and the nature and geometry of the membrane

structures that confine the body fluids differ from organ to organ, biological tissues

exhibit a wide variety of complex, frequency-dependent electrical properties (26,47,126).

A summary of the electrical resistivities of sorne biologÏcal tissues, i.e., the real parts of

their impedances, is given in Table 2.1 for the frequency range from 20 to 100 kHz.

Table 2.1:
Approximate electrical resistivities of tissues in the thorax in the

range from 20 to 100 kHz according to (11).

Tissue Resistivity (!lcm)

Bone 16600

Fat 2500

Lung tissue 727 - 2363

Skeletal muscle 530

Blood 150

Plasma 66

Electrical Impedance Tomography (EIn is a Medical imaging moda1ity that

estimates the spatial distribution of the electrica1 tissue properties. Often, the imaginary

part of the tissue irnpedance is ignored and only the resistivities or conductivities are

measured (3,12,24,155), although imaging of the complex tissue impedance has received

increased attention in the recent literature (54,75,114,115). Because the tissues that

compose the human thorax exhibit a wide range of resistivities, thoracic EIT images

should pennit clear delineation of the various tissues and the many disease processes that

significant1y alter the tissue conductivity (e.g., due to the increased volume of highly
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conductive fluid in the usually rather resistive lungs during pulmonary edema or

congestion of the pulmonary vasculature). EIT is relativeIy inexpensive and rninimalIy

invasive and is thus potentially well-suited for continuous bedside monitoring of

pulmonary function (19~34,60,124,138). However~ there is much room for improvement

in the resolution and contrast of current EIT systems.

2.4.2 The EIT system

Overview

An overview of a typical EIT system is provided in Fig. 2.5. In order to determine

the transfer impedances between a number of electrodes on the body surface~ smaII­

amplitude high-frequency currents are injected into the body segment under consideration

and the resulting voltages are measured (12,56,115,134). The current sources are

controlled by a computer to apply the desired current patterns, and ail data are digitized

and transferred to the computer which reconstructs the tissue impedance distribution from

the measured transfer impedances. AlI front-end electronics are electrically isolated from

aIl other equipment to assure patient safety. EIT systems that apply potentials to the body
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surface and measure the resulting currents have been used less frequently (112~160)

because they are more sensitive to changes in the impedance of the electrode-skin

interface (11 7).

Current injection

The pattern in which current is injected into the body bas an important influence on

the quality of the resulting image (23,65,104). The following is a summary of the current

patterns that are frequently used to collect EIT data.

(i) Neighbouring cu"ents

When neighbouring currents are used~ a single current source and sink are placed on

adjacent electrodes on the circumference of the body segment under consideration (12).

Both the source and sink are incrementally rotated around the body to obtain the maximal

number of Ne-l linearly independent projections, where Ne is the number of electrodes.

Neighbouring currents have been used frequently in EIT (7,12~14,56). Compared to other

current patterns, neighbouring currents produce a low current density in the center of the

body segment to be imaged and a very inhomogeneous current density distribution.

(U) Opposite currents

SunHar to neighbouring currents, opposite currents utilize ooly a single current

source and sink. In this case, the sink is placed diametrically opposed to the source (104),

and the maximal number of linearly indePendent projections equals Nel2. Opposite

currents provide a higher current density to the center than neighbouring currents,

although the current density distribution remains somewhat inhomogeneous.

(Ui) Current patterns using multiple sources

In general, the current density distribution can he controlled best when current is

injected though multiple sources rather than through a single source-sink pair. The most

popular of these approaches is the optimal current pattern (49). It can be shown that the

distinguishability, defined as the normalized change of the measured voltages in response

to a conductivity change in a small central region of a cylindrical body, is maximal when

the amplitudes of equidistantly spaced current sources are adjusted according to
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Fig. 2.6:
Arrangement of induction coils for induced current

EIT around the object to be imaged.

trigonometric basis functions (73). From this starting poin~ the optimal current patterns

are adjusted iteratively such that the distinguishability is maximized for the conductivity

distribution in the most recently reconstructed image. Thus, unlike other current patterns,

optimal currents take the nature of the image into account. Unfortunately, this method

requires that all current sources present in the system are calibrated precisely with respect

to each other, which adds to the complexity of the device.

Other current patterns using multiple sources, e.g., the multireference method (65)

and current injection according ta Walsh functions (23,13), have heen suggested in the

Iiterature without attaining any practical significance.

(iv) lnduced currents

In 1990, Purvis et al. (111) suggested replacing the injection of current through

boundary electrodes by induction of high-frequency rotary currents through a set of coils

placed around the abject to he imaged, as shawn in Fig. 2.6. This approach has been

subject ta numerous studies in the recent EIT Iiterature (46,111,123) since it possesses

severa! technical advantages. Because no current is injected into the patient, less stringent

safety requirements apply to the

equipment design. Furthermore, the

quality of the voltage measurements

is improved since no multiplexing

circuitry is required to switch

electrodes between current injection

and voltage measurement modes.

AIso, the maximal number of

independent projections, now

detennined by the number of

induction coils, becomes

independent of the number of

boundary electrodes, which

(
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introduces a new degree of freedom to EIT system design. Despite these advantages,

however, induced current EIT has not heen able to dramatically improve the resolution of

EIT images, and the significantly more cumhersome equipment remains the drawback of

this technique.

Voltage measurement

(i) ParaUel versus seriai data collection

To collect an EIT projection, a set of boundary voltages is measured on the body

surface. IdeaIly, these voltages should he measured at exactly the same point in time, Le.,

using a parallel data collection strategy, to minimize the overall duration of the data

collection cycle. However, this method requires independent instrumentation amplifier

and demodulator circuits for each channel (76,118,140) and is thus comparatively

expensive. Altematively, Many investigators have employed a seriai data collection

strategy, using multiplexers to consecutively connect each electrode to a single

instrumentation amplifier and demodulator circuit (12,56,81,137).

(fi) Electrode contact impedance

Electrode skin interfaces are known to have a significant and time-varying contact

impedance. Thus, the voltages measured at the electrodes that conduct current are

influenced by the contact impedances as well as by the conductivity distribution within

the body, which introduces a significant measurement error to EIT (117).

When neighbouring or opposite currents are used, this problem can he overcome by

excluding the voltages measured at the injection electrodes Cl 04), which reduces the

number of linearly independent data points that can be obtained per projection by two.

When current patterns with multiple current sources are used, however, "compound

electrodes" consisting of pairs of independent voltage and cunent electrodes (68,160) are

necessary to avoid the contact impedance problem.

(fii) Geselowitz 's theorem

The number of independent measurements that can he obtained in an EIT

measurement situation is limited by symmetry of the measurements. According to
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Geselowitz's theorem (48), the voltage measured at a pair of electrodes, i and j, when a

current is injected through a different pair of electrodes, n and m, is exactly equivalent to

the voltage measured at electrodes n and m when a current of equal amplitude is injected

through electrodes j and j. This reduces the total number of independent measurements,

e.g., when neighbouring currents are used and the voltage measurements at the injection

electrodes are excluded, to Nc!2"(Ne-3).

(iv) Esophageal reférence electrodes

In a standard EIT setup, currents are applied and voltages are measured (or vice

versa) exclusively on the periphery of the body segment to be imaged. In order to provide

more information about the central regions of thoracic images, Pilkington et al. (108)

suggested the placement of a reference electrode in the thoracic section of the esophagus.

They argued that such an esophageal reference electrode increases the distinguishability,

defined above as the nonnalized change of the measured voltages in resPQnse to a

conduetivity change in a small central region of a eylindrieal body, by a factor of six in a

two-dimensional thoraeie imaging situation (108). However, the effeet of an esophageal

reference electrode on the reconstruction error, Le., the normalized difference between the

reconstructed image and a known physical or computational phantom, has not been

examined to date.

Statie and dynamie imaging

The long-tenn goal of EIT is ta obtain a static image, i.e., an image of the absolute

values of the tissue conductivities in the body segment under consideration. However, the

reconstruction of statie EIT images is problematic, presumably beeause of systematie

errors of the image reconstruction schemes (12). Statie images of low resolution have

been obtained from physical phantoms (67,152) and, very reeently, in vivo (91).

Dynamic EIT imaging does not attempt to reconstruet the absolute values of the

tissue conductivities. Rather, two sets of data are obtained before and after an event, e.g.,

at the beginning and the end of inspiration, and the difference between the two data sets is

used to reconstruct the dynamie (difference) image. In this case, the systematie errors
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cancel out and an image of the change in conductivities can he reconstructed (12).

Dynamic EIT images have been used for a number of applications, such as monitoring of

the depth ofventilation, measuring gastrie emptying and secretion, monitoring microwave

hyperthermia treatment in cancer therapy and cancer sereening (7,14,19,89,109,152).

Unfortunately, dynamic imaging is of limited use for Many applications because the

event to be monitored has already occurred when the patient enters the hospital or c1inic,

so that no reference data set can be obtained. To overcome this problem, a recent study

employed the average of a large number of data sets obtained from numerous normal

subjects as a reference data set to monitor the presence of inereased lung water in a small

number of patients with pulmonary hypertension (100). However, the specifieity of this

technique remains to be established in a larger number of subjects.

The difficulties in reconstructing statie images were initially thought to relate to the

unknown position of the electrodes on the body surface (12). However, simulation studies

with variable electrode positions as weIl as the perfonnance of the above averaging

technique show that the electrode position error is not as important as previously thought,

and that other systematic errors must play a role for the difficulty of static imaging

(1,100).

Multifrequency and complex-valued imaging

While early EIT systems were ooly able to measure the magnitudes or the real parts

of the transfer impedances, more recent designs permit evaluation of the complex transfer

impedances over a wide range of frequencies. Because the impedance ofbiological tissues

is frequency-dependent, it is possible to obtain a so-called multifrequency EIT image

from two data sets acquired simultaneously or in rapid succession, but at different

frequencies (55,115). Sunilar to dynamic imaging, systematie errors cancel out in this

approach, but a change in tissue properties between the two data acquisitions is not

necessary for multifrequency imaging. However, multifrequency images differ

fundamentally from static EIT images because they do not estimate the absolute tissue

conductivities, but the dissociation of the tissue conductivities at the two measurement
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frequencies. Furthermore, using the complex transfer impedances to reconstnlct complex­

valued EIT images (54,115) may help to distinguish tissues that have similar

conductivities but different pennittivities, e.g., to distinguish carcinogenic from adipose

tissue (42,43).

Three-dimensional EIT

Unlike x-rays in a Computed Tomography system, electrical currents are not

restricted to the cross-sectional plane in which the electrodes are placed. In current

practice, many investigators assume a cylindrical geometry in which two-dimensional

treatment is valid despite the generally three-dimensional nature of the EIT problem.

However, while this assumption may be acceptable for sorne applications, e.g., to image

the depth of ventilation (19,60), reduced contrast and cancellation effects are encountered

as soon as objects with a finite longitudinal dimension are located in or near the image

plane (94). Truly three-dimensional EIT images of the thorax obtained from a 64

electrode system with four electrode planes have recentIy been presented (94,95) and

demonstrate that significantly improved resolution and contrast can be obtained.

2.4.3 Image reconstruction

Forward and inverse problem

We assume biological tissues to produce linear relationships between voltage and

current density, so that the EIT forward problem is govemed by Ohm's law. Using j for

the current density, E for the electric field, cp for the electrical potential, and y for the

complex admittivity of the medium, Ohm's law can be expressed as

j =yE =-yV'cp, (2.3)

where V is the gradient operator and j, y, E and cp vary with position in the space of

interest (.0). At the boundary of n, we inject current into the medium, so that the current

density normal to the surface of Q (S) becomes
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where Os is the vector nonnaI to S. To assure continuity, the net current injected must

vanish, i.e.,

(2.5)

We can DOW find the voltages that are measured on the boundary (vb) as a function ofy, js

and the positions at which the measurements are obtained (XnJ, from

vb = <p(xm , y,js)' (2.6)

which solves the EIT fOIWard problem. While Vb is a linear function of js, it is

significantly nonlinear in y (73,96).

EIT image reconstruction poses the inverse problem because we want to find the

admittivity distribution y. that reproduces the measured Vb for each projection p in a data

set ofNp projections, i.e.,

V~) =<p(xm,y·,j~P). (2.7)

This is a nonlinear inverse problem that, in general, requires iterative solution (96).

In the following discussion of commonly used EIT image reconstruction

techniques, vm denotes the vector of aIl measured voltages in one data set that has been

obtained by concatenating the measured v~) for ail Np projections. Furthennore, the

imaginary part of y is neglected and the reconstruction algorithms are written in tenns of

resistivity (p) or conductivity (0'). Image reconstruction is restricted to the real part or

magnitude ofy in most EIT image reconstruction schemes documented in the literature. In

any case, the reconstruction methods cliscussed below cao he adapted to reconstructing

complex images without much difficulty.
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Weighted backprojection along equipotentiallines

Weighted backprojection

along equipotentiallines (11,12) is a

two-dimensional single-step

reconstruction technique that

employs an analYtical solution for

the forward problem with

neighbouring current injection.

Assuming a homogeneous initial

resistivity, Po, and a cylindrical

geometry, the equipotential lines are

computed analytically for each

projection, and an estimate of the

voltages at the measurement sites Fig. 2.7:
Weighted backprojection along equipotentiallines.

(v) is obtained. Subsequently, each The area enclosed by the predicted equipotential
lines (shaded) is updated according to the measured

element of the vector vm is voltage, V.

compared to the analogous element

of v. The resistivities of all image pixels that lie between the equipotential lines passing

through the voltage electrodes (Fig. 2.7) are now updated according to

(2.8)

where WB is a weight that dePends on the positions of the pixel (xp), the injection

electrodes (x), and on xm• WB is necessary to compensate for geometric effects that

without weighing produce a non-uniform point-spread function (13).

Besides the assumption of a circular geometry, the above algorithm is exact ooly for

small changes in conductivity, Le., when (p-Po)/Po «1 (12). Sïnce in general, bath

assumptions are not valid in a practical imaging situation, the pixel values of the

reconstructed images bear little relation to the absolute changes in conductivity. However,
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the technique is very fast and has been shown to provide useful images for a number of

clinical applications (7~ 14~19,100).

Image reconstruction usmg Newtonian optimization techniques

(i) Forward solution using Finite Elements

The Finite Element (FE) method provides an approximation of the EIT fOlward

problem that has fewer restrictions than the analytic solution discussed above because it

allows aImost arbitrary boundaries and conductivity distributions as well as large changes

in the element conductivities. FEs have frequently been used to solve the EIT fOIWard

problem (3~24,96,123,153,154).

The EIT forward problem cao he expressed as a special case of the more general

Helmholtz equation. Any scalar potential function that can he expressed by the Helmholtz

equation assumes its minimum energy configuration exactly when a functional e
containing the integral of the Helmholtz equation over Q is minimal (131). For the EIT

forward problem, e can he written as

e =tJcr(Vcp)2 d.Q + f<p js dS. (2.9)

The FE method approximates the first integral by dividing n into a large number of

elements of [mite size. In the fust-order FEs that are used aImast exc1usively in EIT, cr is

assumed to he constant throughout the element and cp is assumed to vary linearly between

the nodes ofeach FE~ i.e.,

N•.d

<p(x) = L <Pi ai (x)
i=l

(2.10)

where Nn•el is the number of nodes per element, the subscript i denotes the node numher,

the ai represent linear approximation functions that assume a value of 1 at node i and

vanish at all other nodes (131). Dividing Q into a large number of two-dimensional FEs

and substituting each element's cp(x) by Eq. 2.10, the first integral in Eq. 2.9 can he

expressed as a matrix product. Similarly, the second integral in Eq. 2.9 cao he turned into

an algebraic expression by substituting both <p and js by one-dimensional approximation

functions. Then, Eq. 2.9 cao he written as
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r.:t. 1 T S TT' (2 Il)
0' =ï<Pn <Pn -<Pn ln' .

where T denotes transposition, CPn is the vector of the values of <p at the nodes of the FEM,

and in is the vector of the currents injected at the nodes. In Eq. 2.11, S and T are a

symmetric (Nn,NJ matrices that represent the properties of the medium and map the

boundary condition., respectively, with No being the numher of nodes in the FEM. S is

assembled from the inclividual element system matrices Sc" as follows. Because cr is

considered constant across the element., each Scl cao he expressed as

(2.12)

where crcl represents the element conductivity. The preliminary matrix Sel contains the

integrals of the aj over the element area and essentially captures the geometry of the FE.

In order to assemble the FEs into a Finite Element mesh (FEM), the individuai Scl

matrices are arranged along the main diagonal of the system matrix of the disconnected

mesh, Sdis, and the connectivity of the elements is expressed in a connectivity matrix, C

(131). Then, the system matrix of the assembled mesh can he written as

S=CTSdisC. (2.13)

The T matrix is assembled in an analagous fashion from the element matrices of the

individuai one-dimensional FEs that are used to approximate the boundary condition.

However, in the EIT literature fust-order FEMes are often interpreted as resistor networks

and the injection of current into the FEM is often modeled by point sources located on the

element nodes, i.e., with approximation functions that consist of Dirac's ô-functions at the

nodes rather the linear ai shown in Eq. 2.10 (96,154). In this case, T becomes the CNn,NJ

identity matrix.

When the potential distribution in Q represents the minimal energy configuration

for any given in' the first derivative of Eq. 2.11 with respect to CPn must vanish, i.e..,

~(t<P~S <Pa -<p~T in)=SCPn -Tin =0, (2.14)
&Pn

which yields the Dode potentials
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Now, ao estimate of the boundary voltages at the measurement sites for each projection p

(y(P» cao he computed by extracting the node voltages at the sites of the voltage

measurements from CPn, i.e.,

y(p) = X(p) m(p) = X(p)S-1 Ti(P)
y ..... o y n . (2.16)

Here, Xv is the CNb,NrJ matrix that reproduces the way in which the EIT hardware obtains

differential voltage measurements frOID the body surface, with Nb being the numher of

boundary voltages per projection. Finally, the boundary voltages of all projections are

concatenated into the desired Y according to

v(l)

V(2)

v= (2.17)

(U) Newtonian optimization

To solve the inverse EIT problem, we want to find the conductivity distribution c/

that equals the best possible mapping of the true conductivity distribution in the body or

phantom to he imaged onto the FEM used for the forward solution. We hence define the

scalar objective function of the inverse problem as

<1> =+[v(cr)-vm]TW[v(cr)-vm ], (2.18)

where W is a symmetric CNy,Nv)-matrix and Ny is the numher of data points in Vm (Nv =

Nb"Np). W cao he used to implement a priori knowledge, e.g., to attenuate the data

obtained from a faulty electrode. For the remainder of this derivation, we shall consider

W to be the identity matrix (1). Furthermore, we assume that the point cr = 0'. represents

the global minimum of CI>(cr).

The steepest descent method (SDM) is the simplest approach to finding the

minimum of <1>(0'). Using the first derivative of cI> with respect to 0', i.e., the gradient of <1>

in cr-space (<1>'), cr is updated recursively according to
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( with

6cri = -Â.cI>'(cri), (2.20)

where À, is a step size parameter. Both $' and 0' are (Na,I)-vectors, where Na is the

number of conductivity parameters in the image. The SDM is known to converge slowly,

so that large numbers of iterations are necessary.

The Gauss-Newton method (GNM) is derived from the requirement that $'(0'*)

must vanish. Using a Taylor expansion and truncating after the second term, we can write

<1>'(cr·) :==: $'(cr) + cI>"(cr)· Âcr =0, (2.21)

where /la is the difference between cr and cr*, and $" is a square (Na,Na)-matrix

representing the second derivative of <1> with respect to 0' that is often referred to as the

Hessian matrix (H). Solving for I1cr yields

Âcr = -H-1<I>'(cr). (2.22)

However, because the taylor series was truncated in Eq. 2.21 it is often useful to employ

the more conservative estimate

/lcr =-À,8-
1<1>'(cr), (2.23)

where Â. again is a step size parameter that usually ranges between 0 and 1. In the GNM,

this value of Âa is used in Eq. 2.19 to recursively update Cf. The GNM converges very

rapidly in the neighborhood of the global minimum, but is known to be less robust than

the SDM at a greater distance from cr*.

The Levenberg-Marquardt method (LMM) is an attempt to combine the advantages

of the SDM and the GNM by calculating /la according to

11er =-Â.[H +IlIr
l
$'(0'), (2.24)

where J.I. is a positive real parameter. If J.1 is zero, Eq. 2.24 equals Eq. 2.23, so that the

LMM performs like the GNM. In the limit of large values of Il, Eq. 2.24 equals Eq. 2.20,

which causes the LMM to behave like the SDM. The LMM thus permits a compromise

between the rapid convergence of the GNM and the robustness of the SDM.
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(Ui) Jacobian and Hessian matrices

Implementation ofthe Newtonian optimization techniques requires the evaluation of

et>' and H. Because Vm is independent of cr, application of the derivative operator to Eq.

2.18 yields

(2.25)

where J is an CNv,Na) matrix that is often referred to as the Jacobian matrix. Using the

product rule, we find the second derivative to he

(2.26)

where ® denotes the Kronnecker matrix product. The second term in this equation is

computationally expensive to evaluate and has been shown to he negligible (154), such

that we can use the locallinearization of the forward problem,

(2.27)

instead of Eq. 2.26.

The Jacobian matrix can be evaluated from the FE equations. From Eq. 2.17 it

follows that we can evaluate J by partitions for each projection, P>, and subsequently

assemble J according to

J=

For one partition, application of the differential operator to Eq. 2.16 yields

J(P) = dv(p) =X(P)~(S-')Ti(P) =X(p)S-1 dS S-ITi(p).
dcr v dO' n v dcr n

(2.28)

(2.29)

Substitution using Eqs. 2.13 and 2.15 results in the final form of the Jacobian partition,
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Because the individual Sel matrices are weIl separated in Sdis, the derivative of Sdis is

easilyevaluated.

Altematively, the Jacobian matrix cao he evaluated by applying the ComPensation

theorem to a discrete network (96,154). Consider the network in Fig. 2.8(a). The voltage

at port 2 (v;0 that results from injection of the current il at port 1 can be written as

(2.31)

where Zl2 is the transfer impedance between ports 1 and 2. Furthermore, assume that for

the forward solution we use a frrst-order FEM that is equivalent to a network of resistors

connecting the nodes of the FEM (96), where v3 is assumed to be the voltage between two

neighbouring nodes of the FEM, Le., the voltage across one network branch of the

admittance y. Increasing the admittance of this branch from y to y+tly causes a change in

V2 that can be expressed as

v 2 + ~V2 = (Z12 + ~12)il = v2 +~12 il· (2.32)

However, according to the compensation theorem, the initial V2 can he reestablished if

port 3 is paralleled by a CUITent source i3 = -ôy V3, as shown in Fig. 2.8(b). The effect of i3

on V2 is denoted by ÔV'2 and can be expressed as

(2.33)

with port 3' as illustrated in Fig. 2.8(b). For i3 to reestablish the initial V2, its influence

must compensate exactly for ÔV2, i.e.,

ôV2 +ôv; = ôV2 +Z23.i3 =ôV2 -zn' ôyv3 = o. (2.34)

Solving for ÔV2 and dividing by ~y yields

ôV2- =zn' v3. (2.35)
ôy

For ôy -» 0, the port 3' becomes equivalent to port 3 and we find

~2 6ay = zn v3 • (2.3 )

This represents a single entry of the Jacobian matrix for the element y and the current

pattern il' This method for evaluating J has heen shown to he more numerically efficient

than the direct method described above (154).
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Fig. 2.8:
Dlustration of the Compensation theorem method to evaluate the Jacobian matrix. See text

for details.

(iv) Regularization

Direct application of the nonlinear optimization techniques outlined above

frequently results in unstable numerical behavior or in convergence to a local minimum

where the image does not reflect the true conductivities in the body. However, a

physically and physiologically meaningful image can be enforced by incorporating a

priori knowledge in the reconstruction algorithm (3,66). This is often achieved by adding

a penalty function P to the initial objective function that assumes large values when

undesired behavior occurs, i.e.,

(2.37)

where 11 is a positive reai constant that controls the relative weight ofthe penalty function.

The simplest fonn of P is

P =(cr-cr)T(cr-cr), (2.38)

where cr is the mean conductivity of the image and equais zero in the case of dynarnic

imaging (17,66,154). This penalty function imposes a bounding constraint that favors a

homogeneous image.

In a more generai approach, the penalty function can be expressed as
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where W is a positive-definite weight matrix that can~ for example~ be chosen to impose a

continuity constraint that penalizes a large first spatial derivative of (J~ or a smoothing

constraint that penalizes a large second spatial derivative of (J (66). An approach that

effectively limits the spatial frequency content within the image has aIso been suggested

(3). However~ all of these penalty functions alter the objective function in the entire

conductivity space, including the neighborhood of the global minimum~ and are thus

likely to result in substantially reduced contrast and blurring of the image, as

demonstrated in (3).

(v) Single-step implementations

In general~ the solution of nonlinear inverse problems requires an iterative

implemeotation of the techniques described above (96). However, the implementation of

iterative optimization techniques is often associated with stability and convergence

problems. To overcome this problem, sorne investigators ooly perform a single iteration

of a Newtonian optimization technique (3,24). Images obtained using this method do oot

reproduce the full contrast of the conductivity distribution in the body to be imaged, but

are more stable than truly iterative implementations.

Other image reconstruction techniques

Numerous other algorithms have been suggested for the reconstruction of EIT

images, including the perturbation technique, the double constraint method and Neural

Networks (2,78,79,147,154,155). However, none of them has been employed frequently

in the literature. Therefore, a detailed discussion of these methods is omitted.

2.4.4 Pulmonary applications ofEIT

Monitoring lung inflation

The inflation and deflation of the lungs is ideally suited for EIT monitoring for a

number of reasons. Firs!, the electrical impedance of the lungs is known to change

significantly with the degree of lung inflation. Furthermore, the reconstruction ofdynamic

rather than static images is adequate for monitoring a periodic process such as respiration.
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Finally, the limited resolution and the two-dimensional nature of today's EIT systems are

less critical for the monitoring of ventilation than for other applications because of the

approximately cylindrical anatomy of the longs and their comparatively large size. The

feasibility of EIT for monitoring the depth of ventilation has been demonstrated in a

number of studies (19,60,136,151).

Pneumothorax and pleural effusion

The influx ofextremely resistive air or highly conduetive body fluid into the pleural

space as a result of pneumothorax or pleural effusio~ respeetively, causes a substantiaI

change in the electrical tissue properties of the affected area. It would thus seem likely

that these conditions could clearly be identified in an EIT image. Unfortunately, static in

vivo EIT images have proven difficult to reconstruct to date. However, recent progress

suggests that statie or quasi-statie images may soon be available at a resolution that would

be sufficient to detect and monitor these disorders (see section 2.4.2) (91,100). It May aIso

be possible to infer the existence of pleural effusions and pneumothoraces from dynamic

EIT images because these conditions are likely to cause unilateral ventilatory

disturbances.

Detection of increased lung water

A recent studies investigated the utility of EIT to detect pulmonary edema induced

by instillation of oleic acid in laboratory animais (98) and found that severe bilateral and

unilateral edema can he reflected adequately in the EIT images. Furthermore, increased

long water was reflected in quasi-static EIT images in patients suffering from pulmonary

hypertension (100,124). With the recent progress in (quasi-)static and three-dimensionaI

EIT (91,94,100), it is likely that the resolution and specificity of EIT for monitoring long

water will be further increased in the near future. A distinction between increased blood

volume in the pulmonary circulation and pulmonary edema, Le., fluid entering the

alveolar spaces, is not possible at present. However, we May speculate that as

multifrequency and complex-vaIued EIT images hecome more common and hetter
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understood~ they may provide a means of distinction between different mechanisms of

increased lung water.

Other pulmonary applications

Many disease processes cause substantial biochemical and structural changes in the

lungs. It is intriguing to speculate to what extent these alterations would he reflected in

static, three-dimensional and complex-valued images that are obtained over a wide range

of frequencies. For example, substantial structural changes have occurred in the lungs of

patients suffering from emphysema and COPO that May alter the complex electrical tissue

properties over a certain range offrequencies. Similarly, carcinogenic tissues May become

detectable in complex-valued images. From today's perspective, the ability to detect such

disease processes would not ooly require significant improvements in the EIT hardware

technology, but also necessitate exhaustive clinical research in order to permit adequate

understanding and interpretation of these EIT images.

2.4.5 Non-pulmonary applications ofEIT

The following non-pulmonary applications of EIT are listed for the sake of

completeness.

(i) Gastric applications

EIT has repeatedly been used to non-invasively measure the transfer times of food

through parts of the digestive system and to monitor gastric secretions and gastro­

esophageal reflux (7,14,19,89). In these applications, EIT replaced invasive techniques

involving radioactive tracers.

(U) Cancer detection

Carcinogenic tissues have electrical properties that differ substantially from those of

adipose tissues (42,43), so that EIT may provide a non-invasive, painless scanning tool

for many forms ofcancer including breast carcinomas (74,109).
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(Ui) Cardiologie applications

EIT has been suggested as a non-invasive method to estimate the stroke volume,

cardiac output and blood flow (20,37).

(iv) Dose monitoring/or microwave hyperhermia therapy

Several studies have investigated the use of EIT for dose monitoring during

microwave hyperthermia treatment for cancer patients (5,16,27,28,53,101).
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3.

PuLMONARY MONITORING

Pulmonary monitoring, Le., the computation of clinically vaIuable parameters from

pressure and flow data in real lime, is an important aid for the management of patients

suffering from severe pulmonary disease in the ICU. The fICSt section of this chapter

describes a computer model of a spontaneously breathing or assist-ventilated patient that

forms a methodologicaI basis for the subsequent sections. In section 3.2, this model is

used to investigate the susceptibility of conventional measurement techniques for PEEPi

and W jnsp to two important confounding factors. and to investigate a physiological

hypothesis that explains inconsistencies between static and dynamic measurements of

PEEPi. An adaptive filter that attenuates the adverse effects of cardiogenic oscillations on

measurements of PEEPj and W jnsp is developed in section 3.3. The performance of this

filter is demonstrated both in simulated data and in pressure and flow signais obtained

from four intensive care patients. Finally, in section 3.4 the computer model developed in

section 3.1 is used to study the interactions between flow-limited patients and an assisting

flow-triggered pressure support ventilator.
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3.1 A computer modet of the spontaneously breathing patient

3.1.1 Motivation

This section describes a comprehensive model of respiratory mechanics that pennits

the simulation of patients breathing spontaneously or with the support of an assisting

ventilator. The motivation to develop such a model initially originated from the insight

that severa! measurement techniques that are frequently used in clinical practice have not

been properly validated and are extremely difficult to validate in patients. In contrast~ the

validation of measurement techniques is comparatively easy using a computer model,

since many variables that are inaccessible in patients become available in simulation.

However~ the range of possible applications of the model described in this section

exceeds the validation of measurement techniques. For example, it can he used to test

hypotheses in a very controlled environment by studying the exact same population of

patients under two sets of conditions that differ ooly in the value of a single parameter.

The modified parameter can either he part of the model, e.g., the viscoelasticity of the

lungs, or represent a setting or design aspect of an assisting ventilator, e.g., the trigger

threshold, pressure support level or response time of a valve. The model can thus he

valuable to address both physiological questions and ventilator design criteria.

Furthermore, this computer model could he a valuable teaching tool.

3.1.2 Implementation

Overview

An overview of the nonlinear, viscoelastic model of the actively breathing subject is

shown in Fig. 3.1. The pressure drops across each passive compartment of the respiratory

system and the endotracheal tube (ETI) were computed as functions of tracheal flow CV)

and total lung volume (V). A predefmed neural output signal was used to generate a

volume- and flow-dependent muscular pressure (Pmusc). The individual pressures were

summed as illustrated in Fig. 3.1 to yield Paw' Paw was fed back ioto an active numerical
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controller that controlled V and/or Paw according to the desired mode of breathing (see

Determination offlow). For all studies performed to date, the mean and standard deviation

(SD) of each mode! parameter were chosen according to the literature to generate a

population of 100 random hypothetical adult patients with severe COPD (Table 3.1).

However, the model could easily he parameterized to simulate different diseases, normal

subjects, infants or neonates, provided that sufficient data are tabulated in the literature.

The model was implemented using the Matlab 4.21Simulink 1.3 mathematical and

simulation software package (The MathWorks Inc., Natick, MA). It was solved using

Matlab's fourth order Runge-Kutta integration routine with a precision setting of 10-6.

Complete diagrams of the Simulink implementation of the model are provided in the

apPendix.

Long and chest wall

The nonlinear static volume-pressure (V-P) relationship of the lung was modeled

using an exponential equation (125) of the fonn

(3.1)

(3.2)

where Pel.L is the static elastie recoil pressure of the lungs. The values of the parameters

AL, Bl and KL were set to the ones reported by Pare et al. (103) for COPD patients with

an emphysema score of greater than 20 (see Table 3.1).

The static V-P eurve of the chest wall was modeled by an analogous equation,

V =A +8 KcwPd~
cw cwe ,

where Pel.CW is the statie elastie recoil pressure of the chest wall. This equation was fit to

previously reported data for the elastie recoils of the rib eage and the passive diaphragm in

normal supine subjects (133) to determine Acw, Bcw and Kcw (V =1.36 + 2.3l.eo.os.P, ? =
0.94). These parameters were not modified for the COPO patients, since available

evidence suggests that the chest wall V-P relationship is not altered in COPO (57).
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Fig. 3.1
Schematic representation of the computer model used to simulate patients breathing

spontaneously or with the support of an assisting ventilator.

( Chapter three: Pulmonary Monitoring 44



(
Table 3.1:

Means and standard deviations of the parameter values used to simulated a population of
100 COPD patients.

Compartment Parameter (units) Mean SD Source 1comment

Lung AL(L) 7.41 1.18 Pare et al. (103), Group ID

BIlAL 1.02 0.44 Pare et al. (103), Group III

KL(cmH20-1) 0.249 0.079 Pare et al. (103), Group III

Ru (cmH2O's"L-1
) 8.75 1.21 Guerin et al. (57)

Tu (s) 1.4 0.19 Guerin et al. (57)

Chest wall Acw (L) 1.36 0.2 fit to Smith and Loring (133)

Bcw/Acw 1.699 0.3 fit to Smith and Loring (133)

Kcw (cmH20· l
) 0.05 0.01 fit to Smith and Loring (133)

R2.cw (cmH20·s·L-l) 3.25 0.6 Guerin et al. (57)

T2.cw (s) 2.49 0.48 Guerin et al. (57)

Airways Ka (cmH O·s·L- I
) 5.03 0.45 Guerin et al. (57)w.l 2

Ka ., (cmH O·s2°L-2) 2.69 0.63 Guerin et al. (57)w._ 2

Y/Xa 3 0.25 to produce typical FEY1 & FVC

Endotracheal Diameter (mm) 8 0.5 empirical
tube

Neural output Breath Rate (min° l
) 21.1 5.9 Appendini et al. (6)

duty cycle 0.41 0.04 Appendini et al. (6)

rate of increase 20 5 to match Yt from (6)
(cmfhO·s·1

)

Pexp (cmH20 ) 4 2 see text

Noise Heart rate (min- l
) 100 20 empirical

Ccp (cmH2O) 0.5 0.2 empirical

Cœ (CmH20 ) 3 1 empirical

Pes shift (cmH2O) 3 2 empirical
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Stress adaptation of both the lung and the chest wall was modeled by assigning a

Maxwell body in parallel to their respective static elastances (Fig. 3.1). The parameter

values for the Maxwell bodies (R2.L, R2.cw, 't2.L, and 't2.CW) were chosen according to

recently reported data for severe COPD patients (57) (see Table 3.1). Stress adaptation

cao he interpreted to reflect time constant inhomogeneities within the lung, viscoelastic

tissue properties or a combination of the two, since both phenomena have been shown to

have identical mathematical representations (132).

Airways

The pressure drop across the airways during inspiration was modeled using Rohrer' s

equation (116),

âPaw = K aw•1V+ K aw•2ViVi, (3.3)

and previously reported values for Kaw.l and Kaw.2 were used (57). Unfortunately, this

equation is not sufficient to describe the behavior of the airways during expiration in the

presence of flow limitation. While the mechanisms of expiratory flow limitation have

been extensively investigated (71,83), an empirical description of flow limitation in the

lung as a whole has not been previously proposed. 1 therefore incorporated an empirical

description into the model such that FEVIt FVC and PEEPi assumed values similar to

those reported in the literature (6). An exponential function of flow with a hyperbolic

volume dependence was employed to account for the pressure drop across the site of

expiratory flow limitation. The resulting equation for the expiratory pressure drop across

the airways,

_ . '1" (~{VfVo'fV )ÂPaw - K aw•1V + Kaw •2V V + Cl e -1 . (3.4)

was then fit to the family of IVPF curves shown by Lambert (83), setting Kaw.l equal to

Lambert's airway resistance for very small flows. As illustrated in Fig. 3.2, Eq. 3.4 was

able to reproduce the principal characteristics of the IVPF curves when constants Kaw.2, a,

~o, and 10 equaled 0.34 cmH20.L-2
.S

2
, 1.83.10-4 cmH20, 1.227 L·I.s and 1.823,

respectively, and the volume Vo was set to TLC. The expiratory flow limitation

mechanism was placed in parailei with the block representing Rohrer' s equation (Fig.
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Iso-volume pressure.Dow relationships of the airway compartment during expiration. The
empirical representation used in the model (solid lines, see text for details) reproduced the

principal features of the data by Lambert et al (83) (dashed lines).

3.1). A 100 msec time constant was assigned to the waterfall compartment in order to

produce the supramaximal flow transients at the onset of expiration.

Flow limitation is more pronounced in COPD patients. In my model, FEV t , FYC

and PEEPi assumed appropriate values for COPD patients and flow limitation during tidal

breathing was achieved (Fig. 3.3) when X was raised to X/'Xo = 3. In this case, the average

simulated patient was descrihed by FEV1 =0.81 L, FYe =2.36 L, FEVl/FVC =34%,

PEEPi.stat = 4.8 cmH20 and PEEPi.dyn =4.5 cmH20. In contrast, flow limitation during

tidal breathing could not he achieved when (3 was raised while X was maintained equal to

Xo.
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Patient effort

The central neural output to the respiratory musculature (Pneur, in pressure umts) is

modulated by a variety of factors, sueh as the physiological needs of the body as weIl as

psychologieal and voluntary factors that are beyond the seope of this mode!. For all

studies described in this chapter, inspiratory and expiratory Pneur were assumed to he

piecewise linear as shown in Fig. 3.4. Breathing frequency and duty cycle CTlftot) were

ehosen aceording to the data of Appendini et al. for spontaneously breathing patients with

severe COPD in acute respiratory failure (6). Inspiratory Pneur was assumed to inerease at

a constant rate up to an end-inspiratory plateau of 200 ms. The rate of increase of Pneur

was chosen such that when all other model parameters were set to their population means

(Table 3.1), a tidal volume of 330 mL was aehieved (6). At the beginning of expiration,

the inspiratory aetivity decreased linearly to zero by 200 msec. Subsequently, expiratory
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Pneur increased linearly to an end-expiratory plateau of 200 msec. The expiratory peak

value of Pneur (Pcxp) was set to 4 ± 2 cmH20, which approximately averages the values

reported in the recent literature (6,85,99). Expiratory Pneur linearly returned to zero ovec

the last 200 msee of each tidal breath.

In order to reproduce the length-tension relationship that has been reported for the

diaphragm (128), a bi-exponential volume-dependence was employed for inspiratory

PmusclPneur, as shown in Fig. 3.5 (solid line). The volume dependence of Pmusc during

maximal inspiration and expiration has been shown to be approximately inverse (4). In

the absence of a more detailed description, a mirrored version of the bi-exponential

function was used to implement the volume dependence of PmuscIPneur during expiration

(dashed line, Fig. 3.5). For both inspiration and expiration, PmuscIPncur was scaled to UDity

at FRe.
The flow dePendence of the inspiratory PmusJPneuf was implemented according to

the model of Younes and RiddIe (113,159) (see Fig. 3.1). Sïnce flow dependence of the

expiratory musculature bas not been quantitatively described in the literature, this feature

was omitted from the mode!. Both the inspiratory and expiratory muscles were assigned a

neural response time constant of 60 msec and a mechanical response time constant of 100

ms (113,159).

In sorne situations, il may be desirable to append a forced expiratory maneuver to a

sequence of spontaneous breaths. When this was the case, the neural output was altered as

shown on the right side of Fig. 3.4. In order to simulate truly maximal effort during the

forced expiration maneuver, the peak values of Pneur were set to 100 cmH20 for

inspiration and to 200 cmH20 for expiration. The Pneur wavefonn was altered such that

these plateau values were reached more rapidly than in the tidaI breaths, namely within

500 msee. The inspiratory time was doubled during the forced breath, and the total

expiratory time was flXed at 8 sec.
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Cardiogenic oscillations

A wavefonn for the cardiogenic oscillations was generated by passing a train of

impulses representing the basic beart beat through a linear low-pass fliter with a cutoff

frequency of 100Hz and a resonance at 10Hz. This fliter was adjusted sucb that at the

average heart rate, the mean value of the cardiogenic oscillation pressure (Pcoo) equaled

zero. The effect of the beating heart on pleural pressure was modeled by multiplYing PCGO

with a cardio-pleural coupling factor (Ccp) and adding the result to Ppl (Fig. 3.1).

However, strong cardiogenic oscillations on Pes concurrent with mild cardiogenic

oscillations on flow and Paw, as often observed under true pbysiological conditions, could

only he achieved after a second, cardio-esophageal coupling factor eCcE) was introduced

between PCGO and Pcs (Fig. 3.1). Both the heart rate and the values for Ccp and CeE were

randomized as shawn in Table 3.1.
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Endotracheal tube

The significant flow resistance of the ETT connecting the ventilator to the patient~s

airway opening had to he taken into account in the model. The pressure drop across ETIs

has been shown to fit the equation

PETr =le' VV, (3.5)

where K and v depend on the tube dimensions (59). An analysis of the values for K and v

documented in the literature for ETTs from 7.5 to 9 cm diameter (59) showed that v

remains roughly constant at a mean value of 1.738, while the variations of K with the

nominal tube diameter, d, fit the equation

K = 301 cmH~O.s ·e~·489cm-l.d. (3.6)

When intubated patients were simu1ated~ these equations were used to compute PEn from

the randomly chosen Err diameter (see Table 3.1) and flow. The effects of variations in

tube length and of reductions in the tube diameter due to depositions have not been

described quantitatively in the literature and were neglected.

Determination of Dow

To date, four modes of breathing have been implemented~ namely spontaneous

breathing, CPAP, ACV and PSV (see section 2.3). In the most simple cases of

spontaneous breathing and CPAP, V was adjusted such that Paw remained constant at

atmospheric pressure or assumed a constant positive value, respectively (Fig. 3.6a).

During flow-triggered PSV (Fig. 3.6b), Paw was maintained equal to a chosen PEEP

level during expiration. When inspiratory flow became greater than a preset trigger

threshold, the ventilator was switched to its inspiratory phase, and the setpoint for Paw was

raised above PEEP level by a preset pressure support level. When the inspiratory flow feH

to a value less than a preset off-trigger threshold~ the setpoint for Paw was lowered back to

PEEP leveL The transducer measuring flow was modeled to have single-pole behaviour

with a cutoff frequency of 20 Hz~ and the ventilator was allowed to switch between the

two pressure setpoints with a time constant of 20 ms.
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Pressure-triggered ACV was simulated using the ventilator model shown in Fig.

3.6c. During expiratioD7 PEEP was applied as described for PSV. However7 a one-way

valve was implemented such that no inspiratory flow was possible during the ventilator's

expiratory phase. At the onset of an inspiratory effort7 the patient thus inspired against an

occlusion7 and Paw dropped rapidly. When PEEP - Paw became greater than a preset

threshold value7 the ventilator was switched to inspiratory mode. Unlike the other modes

of breathing described above7 inspiratory flow then became independent of Paw and was

set to a constant rate. After a preset inspiratory time had passed, the ventilator was

switched back to expiratory mode. The trigger was disabled for a preset minimum

expiratory time before a new inspiration was allowed. The pressure transducer measuring

Paw was modeled to have a cutoff frequency of 20 Hz, and a small single time constant of

10 ms was used to model the mechanical properties of the ventilator and to assure

numerical stability.

3.1.3 Performance

Sample traces

To illustrate the performance of this model, eight breaths were simulated for the

average COPD patient7 i.e.7 with all parameters adjusted to their population means (see

Table 3.1), for the following modes ofbreathing.

• Spontaneous l?reathing;

• CPAP at a level of 5 cmH20;

• pressure-triggered ACV, constant inspiratory flow of 0.5 Us, inspiratory time of 1 s,

trigger threshold at 2 CmH20 7 plus PEEP of 5 CmH20; and

• flow-triggered PSV (Fig. 3.6b) at 5 cmH20 plus 5 cmH20 PEEP, trigger threshold at

0.05 Us, off-trigger at 0.02 Us.

In all four cases, the first six breaths were discarded to assure that a steady state had been

reached and dynamic hyperinflation was fully developed. The level of dYDamic

hyperinflation and Vt was evaluated from the volume traces of breaths seven and eight7
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(
and PEEPi,stat was evaluated as the difference hetween the sum of the statie elastic recoil

pressures of lung and chest wall and PllW at the seventh end-expiration.

The left panels of Fig. 3.7 show sample traces of the simulated flow, volume, PllW

and Pes waveforms during spontaneous breathing. At the onset of expiration, the simulated

patient exhibited the characteristic supramaximal flow transients that are frequently

observed in flow limited COPD patients. The patient was dyoamically hyperinflated with

an end-expiratory lung volume of 477 mL above FRC, while PEEPi.stat and Vt amounted

to 4.72 cmH20 and 341 mL, respectively. Cardiogenie oscillations were present both on

Pcs and~ to a lesser extent, on the flow trace. PllW showed its greatest deflections at the

onset of expiration when the highly nonlinear expiratory flow limitation phenomenon

began to dominate the model behavior. With an rms-value of less than 0.05 emH20, these

defleetions were negligible compared to the amplitudes of physiologie pressures

associated with respiration.

The right-hand side panels of Fig. 3.7 display traces for the same patient during

CPAP ventilation. In this case, the patient became eonsiderably more hyperinflated with

an end-expiratory lung volume of 710 mL above FRC. The tidal volume was slightly

inereased to 380 mL~ and PEEPi.stat was reduced to 1.8 emH20.

Fig. 3.8 shows equivalent traces for ACV and PSV ventilation. During ACV (1eft

panels of Fig. 3.8), inspiratory flow was fixed and did not contain any eardiogenic

oscillations. However, cardiogenic oscillations could he observed on Paw in this case. At

the onset of inspiration~ the patient inspired against an occlusion for a period of roughly

300 ms before the ventilator was triggered and inspiratory flow was initiated. The end­

expiratory long volume ranged 841 mL above FRC, while PEEPi.stat equaled 2.9 cmH20.

In the case of flow-triggered PSV~ the simulated patient achieved a Vt of 513 mL at an

end-expiratory lung volume of 867 mL above FRC and a PEEPi.stat of 3.1 emH20.
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Table 3'.2:
Means and standard deviations of pulmonary

fonction data obtained from the population of 100
simulated COPD patients.

Pulmonary fonction measurements

In a second test experiment, a population of 100 COPD patients was generated with

the specific parameter values drawn randomly from normal distributions having the

means and standard deviations shown in Table 3.1. For each patient, six spontaneous

breaths and a subsequent forced expiratory maneuver were simulated. To accelerate

convergence of the simulation towards a stable breathing pattern, an estimate of the

expected dynamic hyperinflation was employed as the initial lung volume for these

patient simulations. The change in end-expiratory lung volume between breaths four and

five averaged 1.2% of the dynamic hyperinflation volume at the end of breath five,

indicating that steady state breathing had essentially been achieved and dynamic

hyperinflation was completely developed.

For each patient, Vt was then

evaluated as the volume inspired in

breath six, and 'le was computed

l

by multiplying Vt by the patient's

RR. FEV1 and FYC were evaluated

as the volumes expired over the

frrst second and the over the full

eight seconds of the forced

expiratory maneuver. The means

and standard deviations of all four

Parameter Value Units

Vt 0.34 ± 0.19 L

'le 6.8 ± 3.1 L°min-·

FEV. 0.82 ±0.31 L

FYC 2.34 ± 0.55 L

FEV1IFVC 33.8 ±6.0 %

parameters are given in Table 3.2 and were in good agreement with the ones reported in

the literature for COPD patients (6,57,107).
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3.1.4 Discussion

In this section, 1 have described a comprehensive computational model of the

actively breathing patient that can be used to simulate spontaneously breathing patients as

weIl as patients breathing with the support of an assisting mechanical ventilator.

Computer simulations are particularly well-suited for many tasks in biomedical research

because they provide access to variables that are impossible to measure in patients and

because the simulated experimental conditions can he manipulated at will. This allows the

effects of various factors to be evaluated independently of all others. Also, computer

simulations allow an essentially unlimited number of subjects to he studied, and under

conditions that would he unacceptable in real patients. Indeed, with the growing

awareness of the ethical issues involved in human and animal experimentation, we may

expect computer simulations to play an increasingly important role in future biomedical

research.

The results of any computer simulation are always open to question in that the

underlying model will oever completely reproduce human physiology. However, the

structure and parameters used for this model were taken from the recent literature

wherever possible, although sorne aspects of the model required extrapolation of

published data (such as the formula used for expiratory flow limitation, Eq. 3.4). The

pressure and flow waveforms and the values of FEV1 and FVC obtained when simulating

spontaneously breathing patients were consistent with clinical observations in patients.

Similarly, changes in the ventilator settings during assisted modes of ventilation produced

changes in pressure and flow waveforms and ventilation parameters that were in

accordance with clinical observation and the literature. However, the waveforms of flow

and/or Paw appeared idealized compared to clinical data during assisted modes of

ventilation because the simulated ventilators provided much faster rise and fall times and

controlled the inspiratory flow and/or Paw with much greater accuracy than commercial

clinical ventilators.

Chapter three: Pulmonary Monitoring 59



The model described in this section is based on general respiratory physiology and

is thus not specific to the study of any particular disease. However~ the model parameters

to date have always been set to represent a population of COPD patients (Table 3.1). This

disease group was cbosen because dynamic byperinflation is generally weIl developed in

COPD patients. Furthermore~ the model parameters could be drawn from a vast literature,

since COPD has received great attention in the clinical and respiratory mecbanics

literature.

In its present form, my model has a multitude of uses. The remainder of this chapter

describes research that l bave conducted using this model to analyse measurement and

data processing techniques for pulmonary monitoring, to address physiological questions,

and to investigate the synchronization between patient and ventilator during PSV. Other

potential applications as weIl as possible extensions to the model that would further

increase its range of uses are discussed briefly in section 5.3.
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( 3.2 Quantitative assessment of measurement techniques for

intrinsic PEEP and work of breathing

3.2.1 Motivation

In dynamically hyperinflated patients in the ICU, it would he of great benefit to he

able to automatically assess PEEPi.dyn and Winsp breath-by-breath using computerized

monitoring equipment. Although this is straightforward in principle (see section 2.2.3),

the breath-by-breath estimation of Pes.a, which is used to compute both PEEPi.dyn and

Winsp, is complicated in practice by cardiogenic oscillations on Pcs. Furthermore, any

expiratory muscle activity that might he present at the end of a breath can potentially

cause overestimation of Pes.o and hence corrupt measurements of PEEPi.dyn and Winsp. A

quantitative analysis of the measurement errors due to cardiogenic oscillations and

expiratory muscle activity requires knowledge of the true values of PEEPi.dyn and Wjnsp,

which is essentially impossible in patients. 1 therefore decided to investigate these

measurement errors using the computer model descrihed in the previous section, where

the true values of PEEPi.dyn and Winsp are known accurately and confounding factors cao

he precisely controlled.

As described in section 2.2.3, PEEPj cao also he measured under static conditions.

PEEPi.dyn is often considered a reasonable approximation of the value of PEEPi.stat

(107,119), although recent studies indicate that PEEPi.dyn cao substantially underestimate

PEEPi.stat (62,88,107). Taking advantage of the computer model described in section 3.1, 1

further investigated the hypothesis that time constant inhomogeneities and/or tissue

viscoelasticity are responsible for the discrepancies observed between PEEPi.dyn and

PEEPi.stat during severe airway obstruction (62,88).
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3.2.2 Methods

Protocol

To test the sensitivity of measurement techniques for PEEPi.dyn and W insp to

cardiogenic oscillations and expiratory muscle activity, a Monte-Carlo simulation of a

population of 100 COPD patients was performed as described above (see Pulmonary

function measurements in section 3.1.3). Each patient was simulated in four

configurations: (a) with neither expiratory effort nor cardiogenic oscillations (CCE, CCP,

and Pexp =0; Control); (h) with Pexp as shown in Table 3.1 and no cardiogenic oscillations;

(c) with no expiratory effort and CŒ and Ccp as shown in Table 3.1; and (d) with both

expiratory effort and cardiogenic oscillations, i.e., with all parameters as shown in Table

3.1. Finally, to investigate whether increased time constant inhomogeneities alter the ratio

of PEEPi.dyn to PEEPi.stat as previously suggested (62,88), the control experiment was

repeated with the model parameters altered such that the effects of stress adaptation in the

lung were amplified, Le., simulating a more heterogeneous and/or viscoelastic lung (e).

This was achieved by multiplying R2.L by a factor of five, i.e., setting its mean value to

43.75 emH20.L-1.s.

AlI patients were simulated without any ventilatory support and without an ETT.

Each simulation consisted of six spontaneous breaths and a subsequent forced expiratory

maneuver. An estimate of the expected dynamic hyperinflation was employed as the

initiallung volume for each patient simulation to aecelerate convergence of the simulation

towards a stable breathing pattern. The change in end-expiratory lung volume between

breaths four and five averaged 1.2% of the dynamic hyperinflation volume at the end of

breath five, indicating that steady state breathing had essentially been achieved and

dynamie hyperinflation was completely developed.

Data analysis

At the end of the fifth breath, the true PEEPi.stat was evaluated as the total statie

reeoil pressure. The true PEEPi.dyn was evaluated as the sum of the static recoil pressures

and the pressures across the Maxwell bodies of lung and chest wall at the onset of the

{
\

Chapter three: Pulmonary Monitoring 62



sixth iDSpiratOry effort. Yt was the volume inspired in breath six, and Vc was computed by

muItiplYing Vt by the patient's RR. In the same breath, the true Winsp was computed by

integrating Pmusc.insp over the inspired volume and dividing the resuIt by Vt. FEY1 and

FVC were evaluated as the volumes expired over the [rrst second and the over the full

eight seconds of the forced expiratory maneuver.

Over the period in which expiratory f10w was present, the derivative of Pes (dPesldt)

was evaluated. The baseline value of Pcs al end-expiration (Pes.bascline) was identified

automatically al the point closest to the end of expiratory flow al which dPe.Jdt did not

exceed its minimum by more than 5% of ils range over that expiratory period. The

threshold for the detection of Pes.basclinc was thus not flXed, but depended on the Pes

waveform during the breath under consideration. The measured dYQamic PEEPi

(pEEPi.meas) was obtained from the deflection from Pcs.baseüne to the value of Pcs at the

onset of inspiratory f10w in breath six. When the value identified at the onset of

inspiratory f10w exceeded Pes.baseline, which occasionally occurred in the presence of

cardiogenic oscillations, PEEPi.meas was set to zero. A measurement of Winsp (Wmeas) was

evaluated as the integral of the difference between Pes.baseline and Pes over inspired volume

plus the work done to distend the chest wall, divided by Vt. A constant linear chest wall

elastance of 5 cmH20.L-1 was used to calculate the work done to distend the chest wall.

3.2.3 Results

Fig. 3.9 shows PEEPi.meas with respect to PEEPi.dyn for configurations (a) to (d).

Without expiratory effort and cardiogenic oscillations (Fig. 3.9a), PEEPi.meas reproduced

PEEPi.dyn with a good degree of accuracy (y =O.96x - 0.03, r =0.999). In the presence of

expiratory effort (Fig. 3.9b), PEEPi.meas systematically overestimated PEEPi.dyn (y =1.08x

+ 4.79, r = 0.85). As anticipated, the measurement error (PEEPi.meas - PEEPi.dyn) was

closely correlated with Pexp (Fig. 3.11a) (y = 1.13x + 0.008, r = 0.98). In Fig. 3.9c,

cardiogenic oscillations introduced a random error in PEEPi.meas which effectively

obliterated the correlation between PEEPi.meas and PEEPi.dyn Cr =0.29). The mean error

was 0.51 cmH20 which is 12.5% of the mean PEEPi.dyn (4.1 cmH20), while the standard
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deviation of the error was 3.54 cmH20. With both expiratory effort and cardiogenic

oscillations (Fig. 3.9d), the scatter in PEEPi.meas was even more pronounced (r =0.18). It

should he noted that data points representing a small number of simulated patients that

were able to expire below their equilibrium volumes when their expiratory muscles were

active were excluded from Fig. 3.9b and d, since they did not develop dynamic

hyperinflation and PEEPi under those conditions.

Wmcas is plotted with respect to Winsp in Fig. 3.10 for configurations (a) to (d).

Dnder control conditions (Fig. 3.10a), Wmeas slightly underestimated the true Winsp (y =

0.99x - 0.04, r =0.97), although the average relative error remained smaller than 5%. In

the presence of expiratory effort (Fig. 3.1Ob), Wmeas systematically overestimated Winsp (y

=1.36x + 0.15, r = 0.81). As above for PEEPi.dyn, the measurement error of W insp (Wmeas ­

Winsp) was closely correlated with Pexp (Fig. 3.11b) (y = O.llx - 0.015, r =0.91). The

correlation between Wmcas and Winsp was lost when cardiogenic oscillations were present

(Fig. 3.1Oc, r = 0.38). The error due to the oscillations was -0.018 ± 0.29 J.Lo i (mean ±

SD), compared to a mean Winsp of 0.92 J.L-l. The scatter became even greater when bath

expiratory effort and cardiogenic oscillations were present (Fig. 3. lOcI, r = 0.27).

The open circles in Fig. 3.12 display the relationship between PEEPi.stat and

PEEPi.dyn under control conditions (configuration (a». At higher levels of PEEPi, the data

points are scattered about the line of identity, while PEEPi.dyn increasingly underestimated

PEEPi.stat as PEEPi.stat decreased. In contrast, PEEPi.dyn underestimated PEEPi.stat in a

larger number of cases and to a greater extent when the stress adaptation of the lung was

increased five-fold (configuration (e), solid circles in Fig. 3.12).
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( 3.2.4 Discussion

In the present study, 1 have employed the computational model of the actively

breathing patient developed in section 3.1 to quantitatively analyze measurement errors in

PEEPi.dyn and Winsp during spontaneous breathing. Computer simulations are particularly

weIl-suited for this kind of analysis, because they provide access to variables that are

impossible to measure in patients and because the effects of various confounding factors

can he evaluated independently.

As discussed in section 3.1.4, the resuIts of any computer simulation study are

always open to question in that the underlYing model will never completely reproduce

human physiology. However, even if the mechanism that detennined the true PEEPi.dyn

and Winsp in these simulations was not entirely realistic, a robust algorithm should still

have estimated them correctly. Also, the employed scheme for identifying Pes.baseline was

based on the derivative of Peso This approach works weIl in a computer simulation where

random measurement noise is absent, but is likely to perform less weIl in a practical

measurement situation where numerical differentiation amplifies measurement noise and

necessitates further signal processing that may introduce additional errors to Pes.baseline. In

this sense, the data presented in Fig. 3.9 to Fig. 3.11 are a best-case scenario, whereas

poorer performance would he expected in a true measurement situation.

The results of this study demonstrate the extent to which automated breath-by­

breath measurements of both PEEPi.dyn and Winsp are susceptible to errors due to

expiratory muscle activity and cardiogenic oscillations. In the absence of expiratory effort

and cardiogenic oscillations, both PEEPi.dyn (Fig. 3.9a) and Winsp (Fig. 3.10a) were weIl

estimated. The slight systematic error in PEEPi.meas (Fig. 3.9a) was presumably due to

small changes in the pressure drop across the stress adaptation compartments that

occurred during the lime required to evaluate PEEPi.rncas. The random error in PEEPi.meas

was negligjble. Winsp exhibited a slight systematic error with a small degree of random

scatter (Fig. 3.10a). Comparison of these results to estimates of Winsp obtained using each

patient's individual chest wall mechanics showed that most of the error in Wmeas under
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control conditions was due to the assumption of a fixed chest wall elastance of 5

cmH20.L-·. This strategy is motivated by the fact that chest wall elastance is not easily

obtained in actively breathing patients andy as a result, a normal predicted value is

commonly used (9,18,106). A fixed chest wall elastance of 5 cmH20.L-1 bas aIso heen

employed in the Winsp algorithm of a commercially available pulmonary monitoring

device (CP-l00, Bicore Corp., Irvine, CA). In any case, this study indicates that the errors

introduced by assuming a fixed chest wall elastance for ail patients are minor.

With the introduction of expiratory effort, significant ereors were encountered in

both PEEPi.meas (Fig. 3.9b) and Wmeas (Fig. 3.10b). The measurement errors for bath

quantities correlated linearly with Pexp (Fig. 3.11)y indicating that the measurement errors

are predominantly determined by the expiratory muscle activity and do not dePend on the

level of dYQamic hyperinflation itself. Severa! investigators have suggested using changes

in gastric pressure to estimate the magnitude of the expiratory muscle pressurey which

may then he employed to correct PEEPi.mcas (6,85). Although the pressure generated by

the expiratory muscles of the rib cage may not he completely reflected in gastric pressure

(31,99), this method is certain to he better than no correction at all. Presumably, gastric

pressure could aIso be used to make a corresponding correction in Wmeas, aIthough to the

best of my knowledge this has not yet been investigated. Unfortunately, 1 was unable to

investigate the use of gastric pressure in my model because of the lack of published data

showing quantitatively how the abdominal wall and contents contribute to respiratory

mechanics.

1 aIso found that cardiogenic oscillations produced large errors in bath PEEPi.meas

and Wmeas (Fig. 3.9c and Fig. 3.1Oc). These eITors can he reduced by averaging estimates

from many breaths, provided that the cardiogenic oscillations are oot entrained with the

breathing cycle. However, a statistical analysis showed that over 1145 breaths would need

to he averaged to reduce the standard deviation of PEEPi.meas - PEEPi.dyn to less than 5%

of the mean PEEPi,dyn wi~ 95% confidence (63). An analogous computation showed that

a similar level of confidence would he obtained for Winsp by averaging over 152 breaths.

In my opinion, these numbers of breaths are too large to allow either PEEPi,dyn or Winsp to
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be accurately estimated in anything close to real lime. On the other hand7 single breath

estimates of both quantities are far too noisy to he useful. Furthennore, standard fùtering

techniques are not capable of reducing the confounding effects of cardiogenic oscillations

because the frequency spectra of respiratory and cardiac pressure waveforms overlap too

much. Obviously, more sophisticated processing of Pes, such as the adaptive tilter

technique described in the next section, is required in order to ameliorate the effects of

carcliogenic oscillations. AImost no attention has been given to this matter in previous

reports (6,9,85,99,107), yet it is clearly crucial to the successful estimation of both

PEEPi.dyn and W insp, in particular when these quantities are to he evaluated automatically

on a breath-by-breath basis. Not surprisinglY7 the errors were even greater when both

expiratory muscle activity and cardiogenic oscillations were present (Fig. 3.9d and Fig.

3.1Od).

Under the control condition (configuration (a), oPen circles in Fig. 3.12), i.e., in

absence of expiratory effort and cardiogenic oscillations and with Ru. as given in Table

3.1, it was not possible to reproduce the significant clifferences that have been observed

between PEEPi.slal and PEEPi.dyn in the setting of severe airway obstruction (62,88,107),

especially when PEEPi.stal was large. Presumably, this is because central airway flow

limitation was the main determinant of expiratory flow in my simulations, which would

have reduced the magnitude of the end-expiratory pressure in the stress adaptation

compartment. In other words, expiratory flow was slowed in the central aitways to an

extent that much of the energy stored in viscoelastic tissues and in local pressure

clifferences due to peripheral time constant inhomogeneities could dissipate before end­

expiration. 1 was able to simulate clifferences between PEEPi.dyn and PEEPi .Slal similar to

those reported in patients ooly after the degree of stress adaptation in the lung

compartment had been increased five-fold (configuration (e), solid circles in Fig. 3.12)

over that reported for COPD patients during inspiration (57). This suggests that COPD

patients exhibit more stress adaptation during expiration than during inspiration.

Presumably, the ooly way this can hapPen is if these patients are inhomogeneously flow

limited during expiration, so that their longs expire like a parallel arrangement of flow
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limited compartments emptying at relatively different rates. Inhomogeneous emptying

during flow limitation has been described previously in dogs (92,139,149). Because the

degree of inhomogeneity in flow limitation is likely to vary considerably from patient to

patient, the relationship between PEEPi.dyn and PEEPi.stat is in general extremely difficult

to predict in any particular individual. This may account for the wide range of PEEPi.dyn to

PEEPi.stat ratios reported in the literature (62,88,107,119).

In summary, 1 employed the computer model described in section 3.1 to examine

the extent to which automated breath-by-breath measurement techniques for PEEPi.dyn and

Winsp are susceptible to errors due to expiratory muscle activity and cardiogenic

oscillations. The results of this study demonstrate that bath quantities are highly sensitive

to these phenomena, such that in general, sorne means of correction for expiratory muscle

activity and cardiogenic oscillations are necessary if PEEPi.dyn and Winsp are to he

measured accurately on-line. Furthermore, my simulations suggest that the discrepancies

hetween PEEPi.stat and PEEPi.dyn are caused by the heterogeneity of the expiratory flow

limitation throughout the lung.
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l 3.3 An adaptive filter to reduce the cardiogenic oscillations in

esophageal pressure

3.3.1 Motivation

ln the previous section, 1 have demonstrated in a computer simulation that

cardiogenic oscillations in Pes may introduce substantial errors in estimates of PEEPi.dyn

and Winsp. Similarly, cardiogenic oscillations reduce the goodness of model fits when the

mechanical properties of the lungs and chest wall are identified using Peso Unfortunately,

cardiogenic oscillations cannot he removed from Pes signaIs by simple low-pass fIltering

because their frequency content overlaps that of the respiratory signal.

This section describes an adaptive fIlter to suppress cardiogenic oscillations that 1

developed to reduce the adverse effects of cardiogenic oscillations. The fIlter is validated

using both data obtained from the computer model described in section 3.1 and records

from four patients in a respiratory ICU. The effects on measurements of PEEPi.dyn are

investigated.

3.3.2 Methods

The adaptive tnter

In order to develop the adaptive fIlter presented in this study, we model Pes as the

sum of pressure swings due ta respiration (Presp) and the undesired cardiogenic oscillation

pressure (Pcoo), as illustrated in Fig. 3.13a. The linear dynamic system described by the

impulse response function hl(t) relates PCGO to the series of impulses generated by the

cardiac pacemaker in the SA node (Cp). PCGO contains very little power at frequencies

below the heart rate (HR), while Presp is likely to contain significant power below the HR

because the RR is generaIly less than the HR. Therefore, Pes can he considered to he

entirely determined by Presp in the frequency band from 0 Hz to slightly below the HR, but

to contain significant cardiogenic oscillations at and above the HR. A second impulse

Chapter three: Pulmonary Monitoring 73



response, h2( t), translates Cp ioto voltage swings on the body surface that cao he

measured as an electrocardiogram (EKG).

Presp

Cp

Pcoo

E G

(a)

+ lir.:Ipcs ..
p

~+

high-pass Pes,HP
~

filter
--.. recursive~

~ identification \
KG QRS ~ h3(-r)

Pcoo
detection

...

ow \

p

ft

E

(b)

Fig. 3.13:
(a) Model of the origin of cardiogenic oscillations employed to develop the adaptive fllter.

(b) Structure of the adaptive fllter. See text for details.
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In the adaptive fIlter, a number of quantities are smoothed by recursively calculating

an exponentially weighted running mean according to

x" = ÇXk_ 1 +(l-Ç)xk , (3.7)

where x" is the estimate of the mean obtained up to sample k. ç is often referred to as a

forgetting factor, and must range between 0 and 1. If x is sampled uniformly, this

estimator becomes equivalent to a single-pole low-pass filter, and ç is related to the time

constant of the finite memory, t, by the equatiûn

L\t
't =- In(Ç) ,

where ât is the sampling interval. If çis adequately chosen, this recursive estimator tracIcs

slow changes in x but averages out rapid fluctuations and measurement noise.

The structure of the adaptive tilter is shown in Fig. 3.13b. In order to compute an

estimate of PCGO (PCGo),a sequence of impulses representing the cardiac R-waves from a

lead II EKG was generated by thresholding the negative deflections of the EKG. The

threshold value for the R-wave detection was set to 1.7 times the RMS value of the EKG

signal, which was smoothed recursively as described ahove with a forgetting factor of

0.97. Provided that hz('t) is stationary, this sequence of impulses represents an estimate of

Cp, i.e.,

(3.9)

where 'tz is the delay between the initiation of a heart beat in the SA node and its

manifestation in the EKG. The HR was computed from the inverse R-R intervais and

smoothed recursively using a forgetting factor of 0.9.

Next, Pes was high-pass filtered using a two-sided 256th-order FIR filter with a

constant group delay. The cutoff frequency (fc) of this fIlter was adjusted to 0.6 times the

identified HR. Thus, the high-pass ftltered Pes signal (Pes.HP) still contained the complete

and undistorted PCGO, but suppressed the low frequency components of Presp that in sorne

cases would complicate the following processing steps. The two sided high-pass tilter

introduced a delay of 128 data points from the moment that data were sampled to the
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point when fùtered values were available. Since all data were sampled at 100Hz, the lime

delay amounted to 1.28 seconds.

Assuming linearity, we have that

PCGO = h t ('t-'t2 )*êp , (3.10)

where * denotes convolution. In order to calcuJate PCGO ' a third impulse response, h3('t),

was estimated recursively according to

h~k+t) ('1:) = t; h~k) ('t)+ (1- t;) P~~~p (t) , (3.11)

where ç again is the forgetting factor, and P~~~p is the segment of pes.HP that faIls into the

k-th R-R interval. Assuming that there is no phase-Iocking between the heart rate and the

breathing cycle, and provided that ç is sufficiently large, components of h3('t) that

originate frOID Presp are averaged out so that h3('t) effectively provides an estimate of hl(';­

't2). Using h3('t), PCGO was computed and subtracted from Pes in order to obtain the rmal

estimate of Presp, Le.,

Prcsp =Pa - PCGO =Pes - h3('t)*êp • (3.12)

The choice of the forgetting factor ç in Eq. 3.11 is a crucial determinant of the

algorithm's performance. If t; is chosen too small then h3('t) becomes sensitive to

measurement noise, and contributions to Pes.HP that originate from Presp are not effectively

averaged out. On the other hand, large values of ç limit the fIlters ability to adapt to

changes in hiC';) over time. Part of this problem can he overcome by using the adaptive

scheme of Wellstead and Sanoff (144) to update ç at each iteration. Briefly, this scheme

recursively traclcs the residuals with a finite memory. When the residuals are persistently

large, a change in the underlying dynamics is assumed and ç is decreased. Conversely, ç
is increased to reduce the sensitivity to measurement noise in the case of consistently

small residuals. This scheme has been applied successfully to fitting models of respiratory

mechanics to pressure and flow data (84).

While the scheme of Wellstead and Sanoff alters t; appropriately in the case of

changing underlying dynamics, it fails in the presence of iDcreased band overlap, Le.,
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when the frequency content of PCGO increasingly overlaps that of Presp• Band overlap aIso

increases the variability between PCGO and Pcs.HP, but requires an increase rather than a

reduction of ç in order to properly average out the contributions of Presp in Eq. 3.11. We

are thus faced with conflicting possibilities when PCGO and pcs.HP do not match weIl: it

may he that the underlying dynamics are varying in which case çshould he decreased7 or

it may he due to band overlap in which case ç should he increased. However, sorne a

priori information to estimate the prominence of band overlap can he obtained from the

relative values of the HR and the respiratory rate (RR). We can develop a modified

scheme to adaptively update ç at each interval k that encapsulates this a priori

information starting with an expression similar to the scheme by Wellstead and Sanoff,

Le.,

(3.13)

However, â in this case is a function of the residuaIs, the heart rate and the respiratory

rate that is recursively updated according to

IIp(lc> h{lc) Il KR
es.HP - 3 "1~1(2

à.=çà,_,+(I-ç) jh\'lll e, (3.14)

where ç is another forgetting factor, and Il.11 denotes a quadratic nonn The exponentiaI

term in Eq. 3.14 was chosen empirically on the basis of preliminary computer simulations

and effectively determines the range over which the scheme cao modify ç. When the HR

is close to the RR, the exponential tenn in Eq. 3.14 is small. This in tum causes ~k to

remain small, so that Çk in Eq. 3.13 is close to unity, biasing the algorithm towards long

memory. The effects of band overlap cao thus be averaged out.. Conversely, as the HR

hecomes much greater than the RR, the exponential term in Eq. 3.14 increases. This

allows 6Jt to he large and the memory ta he short when Pcs.HP consistently differs

significantly from h3• The filter cao then adapt rapidly to changes in Pcoo. The constants

in Eq. 3.14 were set to ç=0.8, KI =0.5 and 1C2 =-5. Small changes in these parameters

harrlly affected the overaIl outcome, indicating that this scheme is robust towards slight
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misadjustments of ç, lCl and 1(z. The RR was computed from the intervals between the

onset of inspiratory flow and smoothed recucsively with a forgetting factor of 0.6.

The adaptive fliter was implemented using the Matlab 4.21Simulink 1.3

mathematical software package (The Mathworks, Nattick, MA).

Computer simulations

To test the adaptive ftIter, Pes signais contaminated with cardiogenic oscillations

were simulated using the model described in section 3.1. In order to introduce a

physiologically reasonable variability in PeGO over time, this model was extended by

making the magnitude of PeGO volume-dependent according to

k
FRC-V{t)

:1 -PCGO =kt ·e FRC • PCGO • (3.15)

Here, PCGO is the preliminary, volume independent cardiogenic oscillation waveform. The

constants k l and kz were chosen to he 10 CmH20 and 5, respectively. This volume

dependence can he interpreted as one possible mechanism to introduce variability of PeGO

over tïme.

Eight spontaneously breathing patients were simulated with the RRs and HRs

shown in Table 3.3. These values were chosen to produce degrees of band overlap

spanning the range likely to he observed in real patients. The inspiratory drive was

adjusted to produce minute ventilations between 5.5 and 7.2 Umin, and expiratory muscle

activity was absent in all eight simulated patients. AIl other model parameters were

chosen equal to the population means listed in Table 3.1. Patients 1 to 4 had very rapid

shallow breathing patterns with a RR of 40 min-1
• The simulations were designed such

that band overlap was most pronounced in patient 1, where the HR. with 54.7 min- I was

only 37% higher than the RR. In contrast, patients 5 to 8 breathed deeply with a RR of 10

min-1. In these patients, band overlap was less prominent, but the effects of the volume

dependence of PeGO became more important due to the larger Vt. Three minutes of data

were simulated for each patient, and the frrst two minutes of data were discarded in order

to assure that the steady state of the simulation had been reached, and to allow the filter to

adapt. From the last minute of data, 1evaluated the variance accounted for (VAF) by both

( Chapter three: Pulmonary Monitoring 78



(
Pes and PeGO with respect to the true Presp in order to quantify the reduction of the

cardiogenic oscillation achieved by the adaptive filter.

Patient data

The adaptive futer was also applied to recordings of Pes, V and EKG that had been

obtained from four patients receiving ventilatory support in the leu of the Montreal Chest

Hospital. Each data collection protocol was approved by the local ethics committee, and

informed consent had been obtained from all subjects. AlI signais were amplified and

anti-aliasing futered at 30 Hz using 6th-order Bessel low-pass filters and digitized at a

sampling rate of 100Hz. The correct position of the esophageal balloon was verified prior

to data collection by a standard occlusion test (15). Table 3.4 summarizes the

characteristics of eacb patient.

From each patient record, a data segment was chosen for further analysis that (i)

started a minimum of 60 seconds after the beginning of data collection to permit time for

the filter to adapt, (ii) showed a relatively stable breathing pattern over a period of at least

10 breaths, and (iii) did not contain any esophageal spasms or EKG artifacts. For each

analysis segment, the magnitude of the 2048-point Fourier Transfonn (Fr) was computed

for both the unfiltered and the filtered Pes using a Hamming window with 50% overlap.

Using the same segments, PEEPi.dyn was estimated automatically for each breath as

described in section 3.2.2. PEEPi.dyn was corrected for the trigger threshold of the

ventilator by subtracting the deflection in airway opening pressure that occurred

simultaneously with the deflection in Peso The onset of inspiratory flow was identified by

extrapolating backwards to zero flow from the points at whicb inspiratory flow amounted

to 50 and 100 mUsec. This procedure was carried out using both the unfiltered and the

fl1tered Pes, and the mean and standard deviation of PEEPi.dyn were computed in each case.
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3.3.3 Results

Simulated data

Fig. 3.14 shows samples of the simulated Presp and Pes and the resulting Presp traces

for simulated patients 1 (top) and 8 (bottom). In both patients, the unfiltered Pes (center)

differed significantly from the simulated Presp (left). In patient 1 where band overlap was

most pronounced, the effects of the cardiogenic oscillations were suppressed to a large

extent, but not entirely in the filtered Pes signal (top right). In the fùtered Pes trace of

patient 8 where volume dependence was more pronounced (bottom right), most of the

cardiogenic oscillations were suppressed.

The VAFs for both Pes and Presp are shown in the bottom two rows of Table 3.3.

When the RR was 10 breaths per minute, Pes accounted for 89 to 94% of the variance of

Presp• This number dropped as low as 55% when the RR was raised to 40 breaths per

minute and band overlap became more prominent. Presp produced a substantially greater

VAF in all eight cases, with a minimum of 98.5% at a RR of 10 and a minimum of 95.4%

at a RRof40.

Patient data

Fig. 3.15 shows samples of the unîtltered (dashed lines) and fIltered (solid lines) Pes

for each of the four leU patients studied. In all four graphs, the filtered Pes trace was

shifted downward by 5 cmH20 to separate the graphs. Except for patient C, the data

shown in Fig. 3.15 lie completely within the segments used to compute the power

spectrum and to estimate PEEPj. For patient C, the analysis segment ended at t=290 sec.,

when the patient was switched from Proportional Assist Ventilation to Pressure Support

Ventilation. At this point, the RR of patient C dropped from 32 breaths per minute to 8.3

breaths per minute. Fig. 3.15 shows this transition to illustrate the performance of the

adaptive filter over a change in ventilatory conditions. Patient D had a large tidal volume

al a very low RR of 4.7 and showed abnonnal positive deflections in Pes. Analysis of

concurrently recorded Paw and V traces suggested that these were busts of expiratory

muscle recruitment.
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In Fig. 3.16, the magnitudes of the FT of the unfl1tered (dashed lines) and fl1tered

(solid lines) Pcs signais of ail four patients are plotted against the frequency nonnalized to

the heart rate. Thus, on the abscissa of each plot, the heart rate occurs at a value of one

and its hannonics occur at integer values greater than one. In all eases, the Fr of the

unfl1tered Pes signal showed spikes at the heart rate and its harmonies. These were

essentially eliminated in the Fr of the fl1tered Pcs signal.

The mean and standard deviation of PEEPi.dyn for each patient are shown in Table

3.5. The standard deviation ofPEEPi.dyn was less for the fl1tered than for the unfiltered Pcs

signal in all patients. The mean PEEPi.dyn dropPed in three patients and increased in one

patient when the fùtered Pcs signal was used.

Table 3.3:
Heart rate and respiratory rate of eight simulated patients, and variance accounted for

(VAF) of the unfiltered and f"I1tered Pes with respect to Prespe

Simulated 1 2 3 4 5 6 7 8
patient

Heart rate 54.7 74.7 139.3 199.3 54.7 74.7 139.3 199.3 min-1

Respiratory rate 40 40 40 40 10 10 10 10 min- l

VAF unfùtered 57.9 54.5 64.5 76.2 90.2 89.4 91.7 94.4 %

VAF fIltered 95.4 97.7 97.8 97.9 98.5 98.7 98.9 99.4 %
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Table 3.4:
Characteristics of the four intensive care patients studied.

Patient Sex Age Diagnosis Ventilator mode Heart rate Resp. rate

A m 66 COPDI CPAP5cmH2O 126 min- l 22 min- I

Pneumonia

B f 57 COPD PAV + PEEP 3 CmH20 104 min- l 15 min- I

C m 64 COPD PAV + PEEP 4 CmH20 87 min- l 32 min- I

D f 69 COPO PSV 12cmH2O 106 min- l 4.7 min- I

+ PEEP 5 cmH20

Table 3.5:
Dynamic intrinsic PEEP (mean ± standard deviation) for four intensive care patients,

obtained using the unfUtered and the rdtered esophageal pressure signal.

Length of analyzed data PEEPi.dyn PEEPi.dyn
segment (unfiltered Pes) (filtered Pes)

PatientA 100 sec (36 breaths) 0.54± 1.06 cmH20 0.18 ± 0.31 cmH20

Patient B 100 sec (25 breaths) 1.54 ± 1.59 cmH20 1.11 ± 0.57 CmH20

Patient C 50 sec (24 breaths) 2.06 ± 1.11 cmH20 1.06 ±0.56 CmH20

Patient D 120 sec (10 breaths) 2.56 ± 1.64 cmH20 3.76 ±0.92 cmH20
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Fig. 3.14:
Simulated data for simulated patients 1 (top) and 8 (bottom). The ftltered Pa traces (right
panels) reproduce the simulated Prap traces Oeft panels) with much greater accuracy than

the UJÜdtered Pa traces (center panels).
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Fig. 3.15:
Sample traces from the four patients studied. Dashed lines: Unfiltered Pes signais. Solid

Unes: Adaptively rdtered Pes signal (shifted dOWDward by 5 cmH20 to separate the curves).
Patient characteristics see Table 3.4. Patient C was switched 10 from PAV 10 PSV at t=290
sec., causing the respiratory rate to instantaneously drop from 32 to 8 breaths per minute.

Patient D showed an abnormal recruitment of expiratory muscles.
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Fig. 3.16:
Magnitude of the Fourier Transfonn of both the unfiltered (dashed lines) and rIltered (solid

lines) esophageal pressure traces for ail four patients, plotted against the frequency
normalized to the heart rate. The Fourier Transform was computed using a moving 2()48.
point Hamming window with 50% overlap. The rdter removed transients in the Fourier

Transform at the heart rate and its harmonies (at integer values on the abscissa).
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( 3..3..4 Discussion

In the present study, 1 have described in detail an adaptive fIlter to suppress the

cardiogenic oscillations that complicate the processing of Pcs signais. This futer was tested

in eight simulated patients with a wide range of heart and respiratory rates. In ail eight

cases, Presp reproduced the Presp with substantiaUy greater accuracy than the unfiltered Pcs.

The VAF of Presp with respect to Presp was lowest in simulated patient 1 where band

overlap was most pronounced, but exceeded 95% in all simulated patients (Table 3.3).

1 aIso tested the adaptive filter in four patients receiving mechanical ventilatory

support in the ICU. The performance of the adaptive fùter is more difficult to evaluate in

patients because Presp is unknown and cannot be used as a reference. However, the fIlter

always reduced the apparent cardiogenic oscillations without noticeably distorting the

sharp deflections due to respiration (Fig. 3.15). In the Fourier domain, the fllter

suppressed transients at integer multiples of the heart rate that presumably represent the

harmonies of PeGO (Fig. 3.16). Otherwise, the Fr of the filtered Pes signal closely

resembled the Fr of the unfI1tered Pes signal. These results indicate that the adaptive futer

adequately reduces the cardiogenie oscillations in Pes without unduly distorting the

respiratory pressure swings.

FinalIy, 1 applied the adaptive filter to the computerized estimation of PEEPi.dyn

using the algorithm described in section 3.2.2. The mean PEEPi.dyn was reduced in three

patients and increased in one patient. However, the standard deviation of PEEPi,dyn was

reduced by 44 to 71 % (mean 57%) in aU four patients when the flitered Pes was used. This

suggests, as one would expect~ that part of the variability of the PEEPi,dyn obtained from

the unfutered Pes was not due to variability in the patient's breathing pattern, but rather to

the cardiogenie oscillations. As it is improbable that the patients were perfectly stable

over the analysis period, it seems likely that part of the remaining variability must have

been physiologie.

To develop the adaptive fil ter, Pes was assumed to represent the sum of two

independent and uneorrelated pressure signais, namely Presp and PeGO. Clearly, this is not a
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precise account of events. First, the coupling between the heart and the esophageaI

balloon is likely to be volume dependent. This would cause PCGO to he entrained with

respiration in patients with large tidaI volumes. However, the adaptive filter perfonned

weIl in my computer simulations even when the simulated PCGO was markedly volume

dependent (simulated patients 5 to 8). The filter also perfonned weIl in patient D where

the amplitude of the cardiogenic oscillations appeared to increase during expiration as

lung volume decreased.

Second, since the beating heart is located within the thoracic cavity, cardiac

pressure swings are not ooly communicated directly to the esophageai balloon, but aIso

contribute to the pleural pressure swings. Depending on the application, this indirect

contribution of the heart to Pes may he considered part of the respiratory pressure swings

because it contributes to the transpulmonary pressure and hence influences flow.

Altematively, it may be considered artifactuai because it does not originate from the

respiratory musculature. In any case, this indirect contribution of the heart is likely ta

contribute much less to the cardiogenic oscillations on Pes than the direct coupling from

the heart to the esophageal balloon.

The identification of the transfer function h3('t) would, in general, require the

utilization of time-domain system identification techniques (70,143) between Pes and Cp.

However, the input signal to h3 is reduced to a single impulse function when each R-R

interval is processed independently. Provided that the delay between a cardiac event and

its manifestation in Pcs is much shorter than the duration of an R-R interval, the segment

of Pcs that corresponds to the R-R interval constitutes the impulse response, obliterating

the need for computationally expensive deconvolution.

In summary, 1 have described an adaptive filter that reduces the cardiogenic

oscillations on esophageal pressure traces. l have validated its performance in a computer

simulation and shown its effect in bath the time and the frequency domain on data

obtained from four ICU patients. Furthermore, 1 found the standard deviation of breath­

by-breath estimates of PEEPi.dyn, obtained from periods with apparently stable breathing

patterns, to he substantially reduced when the adaptive fùter was used.
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( 3.4 Assessment of patient-ventilator asynchrony during

pressure support ventilation

3.4.1 Motivation

PSV is frequently administered to patients suffering from acute respiratory failure to

unload the respiratory pump. Severa! investigators have suggested the RR as a possible

criterion for the determination of the optimal ventilator settings during PSV

(18,77,80,87), and one study explicitly argues that the optimal ventilator setting is the one

that minimizes the RR (87). On the other hand, the clinical literature aIso reports cases in

which patients failed to trigger the ventilator on every inspiratory effort (39,58,69). In

these cases, the reduction in the apparent RR of the ventilator (RRvent) may reflect patient­

ventilator asynchrony (pVA) rather than unloading of the respiratory pump. The

mechanisms leading to PVA have been studied in sorne detail in a computer simulation

(156). However, that study employed a comparatively simple model of respiratory

mechanics with a single respiratory system resistance for inspiration and expiration and

was focused primarily on patients with muscle weaknesses or severely decreased

respiratory drive.

The motivation for the study described in this section was to use the computer

model described in section 3.1 to examine the mechanisms and determining factors of

asynchrony between a mechanical ventilator in flow-triggered PSV mode and patients

with adequate respiratory drive, but severe airway obstruction and expiratory flow

limitation.

3.4.2 Methods

Two actively breathing COPD patients were simulated using the computer model

described in section 3.1. The spontaneous respiratory rate was fixed at RRspont = 30 min-1

and cardiogenic oscillations were absent (CCE = CCP = 0) in both patients. The rate of

increase in Pneur determining the patient's respiratory drive was adjusted as described
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below. In subject 1., all other model parameters were set to the mean values given in Table

3.1 in order to simulate an average COPD patient. Patient 2 differed from patient 1 in that

Xwas increased by 30% to simulate very severe flow limitation.

Both simulated patients breathed with the support of a flow-triggered pressure

support ventilator as described in section 3.1.2 using four PEEP levels from 0 to 7.5

cmH20 and 20 PS levels from 1 to 20 cmH20. The ventilator' s trigger and off-trigger

thresholds were set to 0.05 Us and 0.02 Us, respectively. Each simulation consisted of 36

breathing efforts. The rate of increase in Pncur was set to 20 cmH20'S'
1 and resulted in a

peak inspiratory Pncur of 12 cmH20, which equaled approximately 40% of the maximal

inspiratory effort of an average patient requiring ventilatory support (156). As in my

previous simulations., the initial lung volume was set equal to an estimate of the expected

dynamic hyperinflation to accelerate convergence towards a stable breathing pattern, and

the frrst six breaths were discarded to assure that dynamic hyperinflation was completely

developed (see section 3.2.2).

Over the remaining 30 breathing efforts., comprising one minute of data, the

respiratory rate of the ventilator (RRvent) was obtained from the flow trace and the average

delay frOID the onset of a triggering inspiratory effort to the onset of inspiratory flow

(âttrig) was computed. âttrig included both delays due to neuromuscular dynamics

(approximately 100 msec) and the trigger delay caused by dynamic hyperinflation. 'te was

determined, and the parenchymal stress was evaluated (in uoits of pressure) according to

PSln:SS =max(Palv - Pcs) (3.16)

as an index for the risk of barotrauma.
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l
3.4.3 Results

The results for patient 1 breathing without PEEP are shown by the solid circles in

Fig. 3.17. At low values ofPS, RRvent was equal to RRspont (Fig. 3.17a). As PS exceeded a

threshold of 13 CmH20, RRvent suddenly deviated from RRspont and dropped to 15 min· l
.

Analysis of the pressure and flow waveforms showed that for PS greater than 14 CmH20,

this patient ooly succeeded in triggering the ventilator with every second inspiratory

effort, as shown in Fig. 3.18 for a PS of 15 cmH20.

At PS levels below 14 CmH20, ~ttrig increased monotonically with increasing PS

(Fig. 3.17b). At PS =13 cmH20, i.e., just below the PVA threshold, ~ttrig was 0.78 sec,

which is ooly slightly less than the duration of the inspiratory effort (0.82 sec). As PS

increased further, ~tbig dropped to a minimum of 0.5 sec at PS = 15 CmH20 and

subsequently increased slowly with increasing PS. As shown in Fig. 3.17c, Ve generally

increased with increasing PS. However, a slight decrease occurred when PS ranged from

13 to 15 cmH20, i.e., around the PVA threshold.

The application of PEEP shifted the PVA threshold slightly towards higher values

of PS (other symbols in Fig. 3.17a). Furthermore, ~tbig was reduced substantially at most

values of PS and 'le iocreased considerably in all cases as PEEP was increased (Fig. 3.17b

and c, respectively).

Psm:ss showed a step increase of approximately 20% whenever an PVA occurred, but

increased ooly mildly with increasing PS and PEEP otherwise (Fig. 3.17d). In general,

PStI'CSS in this patient remained far below the upper deflection point of the static V-P curve

of the lungs and hence did not indicate an important risk of barotrauma (121).
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Fig. 3.17:
RRvenb trigger delay, minute ventilation and trans-alveolar pressure in the simulated

average COPD patient (patient 1). See text for details.
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Fig. 3.18:
Sample traces for the simulated average COPO patient (patient 1) al a PS of IS cmB20 and

a PEEP of O. The patient ooly managed to trigger the ventilator with every second
inspiratory effort.

( Chapter three: Pulmonary Monitoring 92



(
At low levels of PS, the more severely flow limited patient 2 behaved similarly to

patient 1 (Fig. 3.19). However, the PVA threshold was shifted towards lower PS levels

and showed a stronger PEEP dependence than in patient 1. As shown in Fig. 3.19a, PVA

occurred at as Iowa PS level as 8 cmH20 when no PEEP was applied. Not surprisingly,

.ô.ttrig was increased and Ve was reduced in patient 2 relative to patient 1. PStres5 differed

very little between patients 1 and 2 at low levels of PS.

At higher levels of PS, patient 2 exhibited behavior that was not observed in patient

1. At a PEEP of 0 (solid circles in Fig. 3.19), RRvent dropped to one third of RRspont as PS

was raised beyond 14 cmH20. As before, this drop in RRvent was associated ~ith a

considerable drop in âttrig, a slight reduction of 'te and a step increase in Pstress of

approximately 20%. Analysis of the pressure and flow traces showed that in the range of

PS from 15 to 19 CmH20, this patient only managed to trigger the ventilator with every

third inspiratory effort. As PS was raised to 20 cmH20, RRvent dropped again to 8 min-le

However, both âttrig and Vc failed to drop in this case, while Pstress increased by 30% to a

value exceeding 10 cmH20. In this case, the ventilator sometimes failed to switch from

inspiration to expiration over an entire expiratory phase of the patient. Thus some

ventilator inspirations extended over more than one full period of patient effort (Fig.

3.20). The duration of the ventilator expiration was variable, and up to four inspiratory

efforts were necessary before the patient succeeded in triggering the next inspiration.

At lower levels of PS, the effects of PEEP in patient 2 were similar to those in

patient 1. When a PEEP of 2.5 cmH20 was applied, a second drop in RRvent occurred at a

PS of 18 cmH20. In this case, only every third effort triggered the ventilator, but no off­

trigger problems were observed. In contrast, at PEEPs of 5 and 7.5 cmH20 the second

drop in RRvent was associated with off-trigger problems. These cases resulted in complex

phasic breathing patterns, as illustrated in Fig. 3.21 for the case of a PS of 20 cmH20 and

a PEEP of 5 cmH20.
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Fig. 3.19:
RRYeob trigger delay, minute ventilation and trans-alveolar pressure in the simulated very

severely Dow limited COPD patient (patient 2). See text for details.
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Sample traces for the simulated very severely Dow limited COPD patient (patient 2) at a PS
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{ 3.4.4 Discussion

Rapid shallow breathing is a characteristic sign of respiratory distress. Thus, the

reduction of RRvent during PSV was initially interpreted as an indication of relief of the

patient's distress and hence considered heneficial (87). On the other band, severa! more

recent studies have demonstrated both in critically ill patients (39,58,69) and in a

computer simulation (156) that the reduction in RRvent during PSV may he related to

asynchronies hetween the patient and the ventilator rather than to true reduction of

RRspont• The results of this simulation study conîmn the previous fmdings in a more

systematic and quantitative fashion and permit sorne additional insights.

When PVA are studied in vivo, some uncertainties remain as to what extent the

observed PVA are caused or amplified by an adaptation of the patient's respiratory

controller to the periodic unloading of the respiratory pump by the ventilator. For

example, it is conceivable that the inspiratory effort following an assisted breath is weaker

that the inspiratory effort following an episode of trigger failure. Also, PVA may in part

he caused by technological limitations of the mechanical ventilator employed. Practical

limitations of the ventilatory equipment can, for example, he observed in Figure 2 of (39).

The ventilator employed in that study failed to produce a square waveform in Paw, and the

rise lime and steady state error amounted to approximately 500 msec and 3 cmH20,

respectively. For these reasons, it is useful to investigate the mecbanisms of PVA in

computer simulations, where neural feedback cao he excluded and RRspont can he flXed.

The principal mechanisms of PVA have previously been investigated in a computer

simulation by Younes (156). However, this study focused on patients with muscle

weaknesses or severely decreased respiratory drive and employed a comparatively simple

model of respiratory mechanics. Specifically, a single linear respiratory system resistance

was employed for inspiration and expiration, stress adaptation in the lung and chest wall

were neglected, no PEEP was applied and expiration was assumed to he entirely passive.

In comparison, the present study of PVA uses a computer simulation of COPO patients
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with severe expiratory flow limitation in the presence of expiratory muscle activity at

various PEEPs.

The basic mechanisms that led to PVA in the present study follow the discussion in

(156). Briefly, progressively raising the PS level increased V t and hence Ve (Fig. 3.17 and

Fig. 3.19). This augmented the amount of air left in the lungs and hence the threshold load

at the onset of subsequent inspiratory efforts. With Pmusc rising approximately linearly

during most of the patient inspiration, ~tttig increased and eventually became close to the

total neural inspiratory time, so that the simulated patients only triggered the ventilator

during the Iast fraction of their inspiratory efforts. In other words, the ventilator breaths

were essentially aImost 1800 out of phase with the patients' efforts. With the next increase

in PS, each ventilator breath inflated the patient by a small additional amount that sufficed

to raise the threshold load at the onset of the next inspiratory effort to the point that the

patient was no longer able to trigger the ventilator. Then, expiration was continued over

an additional period of the neural output, causing RRvcnt to drop to half of its initial value.

At the end of this prolonged expiration, the threshold 10ad was significantly reduced, so

that the patient now succeeded in triggering the ventilator with a much smaIler ~ttrig. This

decrease in ~tuig allowed for an increased inspiratory time that aIso raised Vt.

Consequently, Ve remained almost constant around the PS where PVA occurred (Fig.

3.17c and Fig. 3.19c). This result suggests that the pronounced drop in Vc associated with

PVA in a previous case study (39) must have been associated with secondary influences

over the 2 i h hour observation period in that study.

In the very severely flow limited patient 2, further drops in RRvcnt were encountered

at higher Ievels of PS. Sorne of these represented a reoccurrence of trigger problems

discussed above 50 that ooly every third or fourth inspiratory effort triggered a machine

breath. However, in three cases a qualitatively different behaviour was observed when the

ventilator failed to off-trigger during the patient's entire expiratory phase of the patient, so

that those ventilator inspirations extended over more than one full period of the patient

effort (Fig. 3.20 and Fig. 3.21). In fact, patient data showing this exact behaviour were

presented in Figure 3 (breaths 5 and 8) of (39), although the authors did not explicitly
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address this issue. Similar episodes of complex or entirely aperiodic breathing patterns

have also been reported in a number of very severely diseased COPD patients who were

transferred to the lCU of the Montreal Chest Hospital because of failure to wean from

mechanical ventilation (Dr. Peter Goldberg, persona! communication). Presumably, the

balance between the pressure applied by the ventilator and the elastic recoil of the

respiratory system in these cases was such that even the SUIn of the pressures generated by

the elastic lung recoil and the expiratory musculature was not sufficient to slow

inspiratory flow below the off-trigger threshold. When such prolonged inspirations

occurred, PStres5 increased to approximately twice its baseline value, generating an

increased risk of barotrauma, while Pstress remained uncritical under all other

circurnstances (Fig. 3.17d and Fig. 3.19d).

In earller studies, it bas been argued repeatedly that PVA during PSV cao be

detected by observing Paw or flow traces because non-triggering inspiratory efforts retard

expiratory flow (39,156). However, this was not always true in my simulations of the

more severely flow-limited patient 2 (Fig. 3.20 and Fig. 3.21). Presumably, in sorne cases

the upressure waterfall" of expiratory flow limitation was large enough to completely

conceal any effect of the inspiratory effort. Also, at very high lung volumes following a

machine inspiration the inspiratory muscles may he operating under sucb mecbanically

disadvantageous conditions that the deflections in Pmusc are very small in the fIfSt place

(159). In the latter case, missed inspiratory efforts may even he difficult to detect from

esophageal pressure traces. Clearly, the missed breaths should not he retlected in Paw

because a properly functioning ventilator should accurately control Paw•

The ultimate question to he addressed in the context of PVA is how to optimally

choose the PSV settings. The present study shows, however, that even wben an aImost

ideal implementation of a pressure support ventilator is used, PVA May still arise. This

means that the problem of PVA during PSV cannot he overcome by simply improving the

design of pressure support ventilators. Thus, we are left with the choice of adjusting the

ventilator settings above or slightly below the PVA threshold. In the ftrst case, a

considerable fraction of the patient efforts are wasted because they fail to trigger the
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ventilator, but the patient is extemally stabilized, i.e., respiration is slower and deeper. In

the second case, RRvenl matches RRsponh but âttrig is high and patient and ventilator

breathe almost 180 degrees out of phase. In a recent clinical study comparing both options

(97), the patients' blood gases were worst at the lowest PS level where PVA were least

pronounced. The best blood gases were obtained at an intennediate PS Ievel, which was

equivalent to an intermecliate prevalence of PVA.

ln summary, these fmdings confmn the conclusion of an earlier study that patient­

ventilator interactions in patients with COPD are a complex matter (77). In general, an

assisting mechanical ventilator together with a severely flow Iimited patient forms a

dynamic system with multiple degrees of freedom and several strong nonlinearities, e.g.,

the patient's expiratory flow limitation and V-P relationship and the ventilator's trigger

and off-trigger mechanisms. 5uch higher-order nonlinear dynamic systems can exhibit

complex period or chaotic behaviour and are extremely difficult to control because a

small change in one of the parameters cao significantly alter the overall system behaviour

(50). Thus, a globally valid way of determining the optimal PSV settings in patients with

severe expiratory flow limitation may not exist. Most Iikely, the best choice of the

ventilator settings depends of the actual characteristics of the patient and varies quite

considerably with time. This suggests that in clinical practice, the ventilator settings

during PSV should he verified and updated as frequently as possible.
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4.

THORACIC IMAGING USING

ELECTRICAL IMPEDANCE TOMOGRAPHY

The potential of EIT as a method to provide clinically useful images of the thorax

has repeatedly been demonstrated (see section 2.4.6). However, the poor resolution of EIT

and the restrictions of dynamic imaging remain limiting factors for the precision and

clinical usefulness of the images obtained. This chapter describes research that 1 have

conducted to investigate factors limiting the quality of static EIT images, and to develop

improved static EIT image reconstruction techniques. In section 4.1, the magnitude of

inaccuracies of fust-order Finite Elements is investigated and the implications for static

EIT are discussed. In section 4.2, a computer simulation is introduced that employs a

computational phantom and a reconstruction algorithm based on the Finite Element

method and Gauss-Newton optimization. This simulation is used to examine the effects of

the current pattern and of a central reference electrode on the reconstruction error. Finally,

higher-order isoparametric Finite Elements for the EIT forward solution are derived in

section 4.3, and the accuracy of the simplest version ofthis type ofelement is evaluated.

For ail of this chapter, the body to be imaged was assumed to he of cylindrical

geometry with a large enough extension in the axial direction that a central slice could he

modeled with sufficient accuracy in two dimensions.
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( 4.1 A critical analysis of the Finite Elemeot method for static EIT

4.1.1 Motivation

The accuracy of the forward solution is of great importance for the iterative solution

of nonlinear inverse problems because the repetitive evaluation of the forward solution

allows even small errors to accumulate. As described in section 2.4.3, FEs are

\ /

\ /

same geometry.

advantageous for the EIT forward solution because of their geometrical flexibility.

However, the accuracy of the FE method may still he a limiting factor for static EIT. The

purpose of this study was to evaluate the

accuracy of the FE method by comparing the

boundary voltage estimates obtained from a

circular FEM to an analytical solution for the

4.1.2 Methods

Analytical solution

In order to compute the analytical solution

of the electrical POtentiai on the boundary (<Pb),
Fig. 4.1:

consider a circular phantom of radius ro and Circular geometry for the analytical
solution.background conductivity (l'bg with a centered

circular object of radius robj and conductivity O'obj (Fig. 4.1). Furthennore, let the Fourier

series

ce

js(8) =LCncos(ne) + Sn sin(n9)
0=1

(4.1)

represent a current pattern that satisfies Eq. 2.5 for 9 as shown in Fig. 4.1. Theo,

according to (45,73), <Pb can be computed from
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crobj - er bg
er rel = .

crobj +crbg

(4.2)

(4.3)

An approximate numerical solution for <Pb is possible if the SUIn in Eq. 4.2 is finite

and can be approximated by a manageable number of terms. If the electrodes are assumed

to be very small, the frrst projection of the opposite current pattern can be expressed by

js(9) =ô(9) - ô(9 -1t), (4.4)

where ô represents the Dirac delta function. Because this is an even function in 9, all Sn

vanish and the Fourier series is completely described by the Cn coefficients that are found

to be

l
-i, n odd;

C n = t[cos(n1t)-t] =
0, n even.

(4.5)

Substitution of these Fourier coefficients into Eq. 4.2 yields the infmite series

representation of <Pb. Unfortunately, the resulting <i>b is not fmite for all combinations of R

and 9. For example, at R =°and e= 0, we find

ao 1
<Pb ce L 2 -1'

n=l n
(4.6)

which is infinite.

However, <Pb is fmite for all combinations of R and e if the electrodes are modeled

to have a finite dimension and jg is written as

js(8) =~ [rr(2~ 9) - TI(2~ (9 -1t»)]. (4.7)

Here, D is a parameter that prescribes the finite size of the electrode as a fraction of the

phantom perimeter, and the rectangular function

(

1
0, Ixl >t

TI(x) =
1, Ixl ~t
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models the electrodes such that in the interval -1tfD < a < 7t/D the current density is

uniform and positive and a current of 1 mA is injected, while an equal and opposite

current density is applied to the interval1t-7t1D < a < 1t+7t/D. Because js as described by

Eq. 4.7 is even all the Sn vanish, so that its Fourier series is completely described by the

Cn coefficients. Using Eq. 4.7, the integral that dermes the Cn can he written as

n even;

21t

Co =-} J2~ [n(~ a) - n(~ (8 -1t»)] cos(na) da,
o

which reduces to the integrals over the electrode segments. Thus, we can write

D (! lt~ ]Cn =-2 Jcos(na)d9- Jcos(n9)da .
21t Il x-t

Making use of the symmetry of the trigonometric functions, we find

Co = Dl [sin(~)-sin(n7t+~)]
n1t

JO,

= h~ sine0)' n odd.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Substitution of the odd terms into Eq. 4.2 and rearranging the terms yields

(9)
- 2D ~cos[(2n-l)e].1-O'rdR4n-2 . (2n-I)1t

<Pb - 2 ~ 2 4D-2 sm .
O'bg1t 0=1 (2n-l) I+O'reIR D

The finiteness of <Pb for the current pattern defined by Eq. 4.7 can he established as

follows. First,

lim{cOs[(2n - ~)e] .1-crrcl R
4n

-
2

} = o.
n-'Gll (2n-l) l+cr rcl R

40-2

Furthermore, because of the periodicity of the sine function there exists a bound B such

that

N2

Lsin(2n~I)1t) < B
n=N t

(4.14)

for any NI and N2• Together, these conditions are sufficient to ensure that Eq. 4.12 is

finite as per Dirichlet's convergence criterion (141).
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In the present study, the SUffi in Eq. 4.12 was approximated by the SUIn over the first

1024 terms. Under all conditions that were used in this study, doubling the number of

terms changed the rms-value of CPb by less than 0.1 %.

FEM phantoms

In this study, the EIT boundary condition (Eq. 2.4) was modeled by linear

approximation functions that were defined in analogy to Eq. 2.10. Renee, unlike other

EIT studies (3,96,154), the T matrix in Eq. 2.11 did not equal the identity matrix, but was

derived as follows.

Let the boundary of the FEM be represented by a ring of Nb one-dimensional first­

order FEs. In analogy to the FEM derivation in section 2.4.3, the functional of the

Helmholtz equation (Eq. 2.9) for the boundary condition (eb) can he expressed as

e b = fCPbjS dS = CP~b Tb job' (4.15)

where CPnb and jnb denote the values of cp and js at the boundary nodes, respectively, and Tb

captures the geometry of the ring of one-dimensional FEs. Furthermore, the vector of the

currents injected at the boundary nodes can be expressed as

(4.16)

where U is a diagonal matrix that contains the integrals of the linear approximation

functions and the connectivity of the boundary FEs. Then, Eq. 4.15 can he written as

e b = CP~b Tb U-l i ob · (4.17)

Finally, the boundary nodes are mapped onto the nodes of the FEM by the (Nb,NJ matrix

Cb' which yields

(4.18)

and

T=C~TbU-l Cb. (4.19)

The five circular FEMs that were used in this study are shown in Fig. 4.2, and their

characteristics are summarized in Table 4.1. In Fig. 4.2, the small solid circles denote the

locations of the electrodes (Ne = 16) on the FEM boundary. The admittance of each
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triangular FE was assumed to be constant and real, such that the tissue properties in each

phantom were completely described by the vector of the element conductivities, <l'p.

Table 4.1:
Characteristics of the five FEMs used in this study.

Mesh Na Nn Nb Ne

(a) 38 28 16 16

(h) 86 60 32 16

(c) 182 124 64 16

(d) 374 252 128 16

(e) 758 508 256 16

Quantification of the FEM inaccuracies

In this study, the inaccuracies of the FEM were quantified both by computing the

root-mean-square (rms) potential difference between <PD and <i>b at the electrode locations

(LlvnnJ, and in tenns of the signal-to-noise ratio (SNR) they produce according to

SNR =20 .loglo cpe.rms •

Llvrms
(4.20)

where, q>e represents the values of <Pb at the electrode locations. The cunent density on the

boundary was set as described by Eq. 4.7. Unless otherwise stated, 0 equaled 256, which

is equivalent to an electrode diameter of3.7 nun for a phantom diameter of30 cm.
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Fig. 4.2:
The five phantom FEMs. The small solid circles denote the sixteen electrode locations.

See Table 4.1 (or details.
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Protocols

(i) Boundary voltages ofa homogeneous phantom

The FEM inaccuracies were evaluated for all five phantoms using a homogeneous

conductivity distribution of O'bg = (J'p = 1 mS. Because the greatest errors are likely to

occur at the site of current injection where the current density is largest, ~vnns and SNR

were computed twice for each FEM. First, all Ne data points were used, which is

equivalent to the two-electrode method (142). Subsequently, ~vrms and SNR were

evaluated from Ne-2 data points, excluding the potentials at the boundary nodes where the

current source and sink were located (four-electrode method). To investigate the efIects of

the electrode size, the complete protocol was repeated with a value of D = 512, which is

equivalent to an electrode diameter of 1.85 mm on a 30 cm phantom.

(fi) Centered targels in a circular phan/om

The inaccuracies of FEM (b) (Fig. 4.2rrable 4.1) were evaluated for four circular

targets that were centered in a medium of (J'bg = 1 mS. For targets A and B, the radius robj

was chosen such that R assumed a value of 0.1862, so that the target area equaled the area

of the two central elements of the FEM. Target A represented a small object that was

more conductive that the background (crobj = 10 mS), while target B was chosen 10 times

more resistive than the background (O"obj = 0.1 mS). For targets C and D, robj was

increased such that R became 0.4744, which matched the area of the two innennost layers

of FEs. The object conductivities were again set to 10 mS and 0.1 mS for targets C and D,

respectively. As in the previous protocol, ~vnns and SNR were evaluated for both the two­

electrode and the four-electrode methods.

4.1.3 Results

The results for protocol (i) are shown in Fig. 4.3. In general, ~vnns dropped and the

SNR became larger with increasing Nn• However, the rate at which the accuracy of the

FEM improved dropped considerably as Nn became larger. Bath ~vnns and the SNR

demonstrated substantially larger inaccuracies for the two-electrode method than for the
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(
four-electrode method in all five FEMs, indicating that the greatest eITors were

encountered at the sites of current injection. For the two-electrode method, the SNR was

further reduced and Avrrns was further increased when D was raised from 256 ta 512,

halving the electrode size in the analytical solution. In contrast, altering D had a

negligible effect on the FEM inaccuracies when the four-electrode method was used.

The values of Avnns and the SNR for the four targets of protocol (ii) are shown in

Table 4.2 together with their values for the homogeneous case (first row in Table 4.2).

The values of bath Avnns and Sl'ffi. did not change substantially for any of the targets,

although the fluctuation is SNR were somewhat greater for the four-electrode method. As

above, the FEM inaccuracies were reduced dramatically as the four-electrode method was

used in lieu of the two-electrode method.

Table 4.2:
Inaccuracies of the FEM shown in Fig. 4.2(b) for the homogeneous case and

when four centered, circular targets were modeled. See text for details.

two-electrode four-electrode

Target R O'obj (mS) Avnns SNR(dB) Avnns SNR(dB)
(mV) (mV)

none 1 1 313.5 7.83 18.8 24.9

A 0.1862 10 319.0 7.45 11.0 29.0

B 0.1862 0.1 315.4 8.02 14.9 27.6

C 0.4744 10 316.7 6.39 15.3 22.4

D 0.4744 0.1 324.9 9.31 11.7 33.0
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Fig. 4.3:
FEM inaccuracies with respect to the analytical solution for the homogeneous case. The

circles represent data points where the standard finite element size was used for the
analytical solution (D = 256), while the triangles represent smaller current eleetrodes (D =
512). Solid and open symbols represent the two- and four eleetrode method, respeetively.
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( 4.1.4 Discussion

The FE method has frequently been used to solve the EIT forward problelD

(3,24,96,123,153,154) because it provides good geometrical flexibility and does not

require assumptions about the magnitude of the change in cr (as does, for example, the

weighted backprojection method, see section 2.4.3). However, the data presented in this

section show that the fust-arder FEs that are usually employed for EIT produce

significant inaccuracies in the forward solution. These inaccuracies persisted even when

FEMs with very large numbers of elements were used, and they were not altered

substantially by conductive or resistive targets in the medium. In contrast, bath âvnns and

the SNR differed dramatically between the two-electrode method and the four-electrode

method. This indicates that the largest differences between <Pn and <i>b were encountered at

the sites ofcurrent injection. Strictly speaking, the results of this section are ooly valid for

the opposite current pattern. However, because sunHar or even greater current densities

occur near the electrodes when other current patterns with a single source and sink (such

as neighbouring currents), the results of this study most likely are relevant for all single­

source current patterns.

The accuracy of the FE forward solution is best evaluated by comparing the

estimate of the boundary voltages to an analytical solution. However, it is iInportant ta

assure that the analytical solution is accurate and reflects the real measurement situation

as closely as possible. While the general analytical solution used in this study (Eq. 4.2) is

valid for any current pattern that fulfills Eq. 2.5, it cannot he solved for point current

sources because the value of the sum in Eq. 4.2 is infinite. This occurs because such

electrodes produce a singularity in the current density, which would require infinite power

and result in an infinite value of <i>b at the site of injection. To overcome this problem, 1

derived the analytical solution for a finite electrode size and opposite currents (Eq. 4.12).

Provided that D is finite which is equivalent to a finite electrode size, Eq. 4.12 results in a

finite-valued boundary potential vector.

( Chapter four: Thoracic imaging using electrical impedance tomography 111



The assumption of infinitesimaIIy small current electrodes is aIso frequently made

when the FEM for the EIT forward solution is developed. However, because this

assumption is not vaIid in practice, 1 employed linear approximation fonctions for

modeling the current density normal to the boundary of the first-order FEM. This

approach does not assume an infinite power configuration and, in general, is more

consistent with the FE methodology.

A finite and exact analytical solution exists for any current pattern that is based on

trigonometrlc functions, such as the optimal current pattern (49), because these result in

only a small number of non-zero Fourier coefficients. Trigonometrie current patterns can

also be modeled fairly accurately in the FEM if linear approximation functions are used

for the current density normal to the boundary. UnfortunateIy, trigonometric corrent

patterns are difficult to apply in practice. For example, if a limited number of small

electrodes is used, significant gaps occur between the electrodes, such that the true js is a

cosine-weighted set of impulses rather than a true cosine pattern. On the other had, large

electrodes impose a piecewise constant approximation of the cosme fonction and

essentially short-circuit the potentiais over considerable parts of the boundary. AIso, the

simultaneous use of multiple current sources requires precise calibration of ail current

sources to assure proper mutual phase-Iocking. Thus, the use of trigonometrlc current

patterns is inadequate for evaluating the accuracy of the FE method because it is likely to

result in an agreement between the analytic solution and the FEM that cannot he

reproduced in practice.

The inaccuracies of the FEM are systematic errors, in contrast to the effects of

random measurement noise. Nonetheless, they are quantified in terms of a SNR in this

study in order to maintain a consistent tenninology with subsequent sections of this

chapter. In all scenarios that were examined in this study, the inaccuracies of the FEM

produced SNRs of less than 40 dB. In comparison, the SNR due to the electrical

characteristics of present EIT hardware amounts to approximately 60 dB (56,61). Thus, it

is likely that in most EIT systems, the errors in static EIT image reconstruction are
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dominated by the inaccuracies of the FEM rather than by the measurement errors of the

EIT hardware.

As shown in Fig. 4.3, the FEM inaccuracies were reduced as the numher of

elements in the mesh was increased. However, the rate at which the accuracy of the FEM

improved dropPed considerably as Nn became larger. This May he counter-intuitive

because, in general, the accuracy of estimates of electrical potentials obtained from FEMs

are known to improve as the number ofelements in the mesh increases. IndeecL increasing

the numher of FEs substantially reduces the average estimation error in Q. However, as

this study demonstrates, the effect of the mesh size is much weaker if the errors are

evaluated only at the nodes representing the electrodes. In EIT7 we employ ooly the

potentiaIs at these nodes to reconstruct images. Furthennore, the computational

complexity increases as Nn1.85 when sparse matrix techniques are used (150), so that the

solution of FEM (e) takes approximately 213 times as long as the solution of FEM (a).

For these reasons, increasing the number of elements in the FEM is not an efficient

strategy for improving the precision of the EIT forward solution.

The SNR and ô vnns remained roughly constant when centered conductive or

resistive targets were used (Table 4.2). Presumably, this means that at least part of the

FEM inaccuracies are independent of the conductivity distribution to he imaged. In a

dynamic imaging situation (see section 2.4.2), these inaccuracies wouId cancel out,

making the difference signal obtained from the FE forward solution more accurate than

the absolute boundary voltage estimate. This May he one of the factors that explains why

dynamic EI~ imaging has been more successful than static EIT imaging to date.

In generaI, ôVrms and the SNR were considerably improved when the four-electrode

method was used instead of the two-electrode method7 i.e.., when the voltages at the sites

ofcurrent injection were neglected. An analysis of the boundary voltage estimates showed

that the errors at these nodes were always an order of magnitude larger than at any ather

point along the FEM boundary. Also7 the error at the sites of current injection dePended

on the electrode size that was assumed for the analytical solution (solid symbols in Fig.

4.3), while no such dependence was noticeable for the four-electrode data (open symbols
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in Fig. 4.3). This means that first-order FEMs are particularly bad at modeling the high

current densities that occur in the vicinity of the current electrodes. In the literature, the

four electrode method is often favored because it elirninates the effects of unknown

impedances of the electrode-skin interface (117,142). However, the inaccuracies of the

FEM approximation represent a second reason why the voltages at the sites of cunent

injection shouid not he used for static EIT image reconstruction.

In summary, the data presented in this section show that first-order FEs are

associated with numerical inaccuracies that are large enough to significantly disturb the

reconstruction of static EIT images. These inaccuracies are particularly pronounced at the

sites of current injection, and their effects can he diminished by neglecting the boundary

potentials at the sites of current injection for the image reconstruction, i.e.~ by using the

four-electrode method. In contrast, the data presented show that increasing the number of

elements in the FEM is not an efficient way of improving the precision of the forward

solution. Because the errors associated with first order FEMs present one of the important

error sources for statie EIT, it is likely that the aceuracy of the forward solution needs to

he improved eonsiderably hefore high resolution static EIT images can he obtained.
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<- 4.2 Effects of current patterns and central electrodes on static

EIT images of the thorax

4.2.1 Motivation

Most of today's EIT systems use 16 or 32 electrodes that are placed equidistantly in

a linear anay around the body segment to he imageci, with a single current source and sink

being used to drive current through the body while the remaining electrodes measure the

resulting voltages (12,56,72,134). The relative position of the current source with respect

to the sink is arbitrary and can he anY1hing from neighbouring to opposite currents (see

section 2.4.2). It has been argued that opposite currents are advantageous because they

provide a higher current density to the central regjons (23,104). However, the ultimate

current density distribution and hence the optimal current pattern depends on the nature of

the objects to be imaged and the reconstruction algorithm employed (23). For dynamic

imaging using weighted backprojection, it bas been shown that neighbouring currents

produce better-eonditioned projection matrices than opposite currents (8). The effect of

the source-sink constellation on the reconstruction error has not yet been systematically

examined for static EIT image reconstruction using Newtonian optimization techniques,

and for source-sink configurations other than opposite or neighbouring currents.

As described in section 2.4.2, the exclusive placement of electrodes on the body

surface is thought to result in a relative lack of information about the central regions of

the body, which contributes to the ill-conditioning of the inverse EIT problem.

Consequently, it has been suggested that an additional central reference electrode (CRE)

in the esophagus, i.e., close to the center of the thorax, could substantially improve the

quality of thoracic EIT images (108). A CRE could aIso be placed in the stomach or the

duodenum.

The goal of the work described in this section was to use a computer simulation to

investigate the effects of single-source current patterns and a CRE on the convergence
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rate and reconstruction error of static thoracic EIT images. Computer simulations are

well-suited for this kind of analysis because the experimental parameters are under

complete control and the reconstruction error can he evaluated accurately.

4.2.2 Methods

Phantoms and simulation

The FEM shown in Fig. 4.2(b) was used as a computational phantom to simulate an

EIT measurement. This FEM was parameterized using two different conductivity

distributions, as shown in Fig. 4.4. The phantom shown in Fig. 4.4(a) modeled a small

central conductive target with a conductivity of 7 mS against a background with a

conductivity of 1 mS (Central object phantom). For the phantom shown in Fig. 4.4(b), CJp

was chosen according to the literature to reproduce the principal features of the

conductivity distribution in a cross-section of the human thorax (Thoracic phantom). The

vector vm was computed by solving the phantom FEM for each projection and extracting

and concatenating the boundary voltage measurements in analogy to Eqs. 2.16 and 2.17.

( ) ( )
1 2

(mS)

Fig. 4.4:
(a) Central object phantom. (h) Thoracic phantom.
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Various levels of Gaussian white noise were added to vm in order to produce SNRs

between 30 and 80 dB.

For all images shown in this section, a nonlinear mapping of cr onto a gray scale

was employed in order to enhance the contrast. This mapping is illustrated at the bottom

ofFig. 4.4.

Image reconstruction

Images were reconstructed from the simulated data as described in section 2.4.3.

The forward problem was solved using a FEM that was topologically identical to the

phantom FEM (Fig. 4.2b). To solve the inverse problem, the Jacobian matrix was

computed according to Eqs. 2.28 and 2.30, and the GNM was employed as stated in Eq.

2.23. The step size parameter l was adjusted by a quadratic line search, as follows.

If Eq. 2.23 is substituted into Eq. 2.19 and the result is substituted into Eq. 2.18, the

objective function <1> can be expressed as a function of l, i.e.,

<1> = <I>(l). (4.21)

Thus, Eq. 2.23 maps the multidimensional EIT optimization problem onto a one­

dimensional optimization problem that is easier to solve. From the preceding major

iteration i, we already know the value of <1> at l=O (<1>0). Furthermore, the GNM employs

derivatives up to second order, which means that it essentially fits a quadratic fonction to

the multi-dimensional gradient information provided by J and H that possesses a

minimum at l = 1. Assuming that <1> at Â. = 1 (cI>.) vanishes completely, the one­

dimensional <1>(Â.) is parabolic and fully defined, so that we can estimate the slope of <l>(Â.)

at Â. = 0 according to

<1l~ = 8<1l1 = 2<1l0 • (4.22)
aÀ À=O

In practice, of course, <DI will not vanish because the Taylor series in Eq. 2.21 was

truncated. However, we can now evaluate <1>. and use it with <1>0 and <I>'o to fit a second

order polYnomial to <1>(l). The location of the minimum of this polYnomial (À-) is our

new estimate of the optimal À. that minimizes <l>(À).

( Chapter four: Thoracic imaging using electrical impedance tomography 117



(4.23)

(
Because the EIT optimization problem is highly nonlinear, this line search is faced

with two potential problems. First, À.. May still be too large to assure convergence.

However, a measure of confidence can he obtained by comparing the actual value of

<I>(Â..) to its prediction obtained from the second order polynomial. If the two values differ

significantly, another iteration of the line search (aiso termed subiteration) can he

invoked, now fitting a second order polynomial to <1>0, <1>'0 and <I>(Â.-). Second, <1>1 May he

so large that 'J..: immediately becomes extremely small, which may produce unacceptably

slow convergence rates. It is hence useful to specify a lintit for the amount by which À. can

he reduced in one subiteration.

In the present study, a maximal number of 20 major iterations was used for each

image reconstruction. For each major iteration, the quadratic line search was started with

an initial value of À. = 1 and was not allowed to reduce Â. by more than 80% of its value

within one subiteration. The Hne search was terminated when the true value of <I>(À.-)

exceeded its predicted value by less than 5%, or after five subiterations were completed.

Convergence criterion

In general, the iterative image reconstruction technique derived above May behave

in three distinct ways. First, the algorithm may fail to reduce <1>, i.e., diverge. Second, the

solution may converge towards a local minimum in <1> where cr does not reproduce cr*.

Finally, the solution may converge as intended towards the global minimum where 0'

approximates CI* within the limits of the FEM grid. Divergence of the reconstruction

process is easily detected because cI> is evaluated at each iteration. In con~ it is more

difficult in a practical measurement situation to distinguish between convergence to local

and global minima because 0'* is usually unknown. In this study, convergence to local and

global minima was detected as follows.

We define the relative mean squared image update at major iteration i as

-;2 _ AO'!WIwA AO'i
uer i - TT'

CI i WA WA CIi
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where W A is a diagonal weight matrix of the relative areas of each FE that accounts for

the size and topology of the FEM used. The relative change in <1> at each major iteration is

defined as

ô<I>j = <I>j - <I>j_t •

cI>j_t

Now, a convergence estimator function qJ can be computed according to

ôcr~
\IIj =SqJj_t +(1-9)-1.

â<I>·1

(4.24)

(4.25)

This function assumes a very smali value when a smali conductivity change in the image

causes a large change in the objective function <1>. On the other hand, qJ becomes large

when significant conductivity changes in the image cause ooly smali changes in the c1>.

Thus, 'II represents a measure of the prominence of ill-conditioning at any given point in

the iterative process. In order to suppress rapid fluctuations, 'P is updated recursively in

Eq. 4.25, with S being a forgetting factor that ranges between 0 and 1.

The parameters of the convergence estimator for this study were chosen on the basis

of preliminary experiments. Images were considered to have essentially converged to the

global minimum when \II assumed a value of less than \Vg = S"10·7• In contras4

convergence to a local minimum was suspected when 'II exceeded 'VI = 5"10-4. The

forgetting factor was set to S = 0.5. The reconstruction was terminated and considered

divergent when the algorithm failed to reduce <I> below its initial value after three

iteratioDS.

Reconstruction error

The topological identity between the phantom and the reconstruction FEM permits

precise evaluation of the reconstruction error at each iteration. We cao hence define the

nonnalized rms image error as
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Because € is weighted by the relative FE area and normalized by an equivalent expression
•ofcr , it is independent of the size or topology of the phantom and its mean conductivity.

Protocols

(i) Co"e/ation ofsampie images and reconstruction e"or

In arder to illustrate the performance of the reconstruction algorithm and to

demonstrate the way in which € correlates with the visual appearance of the image, the

thoracic phantom was simulated using neighbouring currents and without any

measurement noise (SNR = 00). An image reconstruction was performed executing 20

major iterations, and the image and 8 were saved for each major iteration.

(U) Validation ofthe convergence estimator

To validate the convergence estimator, images of bath phantoms (Fig. 4.4) were

reconstructed at Il SNRs from 30 to 80 dB. For each phantom and noise level, the

simulation was repeated 10 times in order to average out the influences of any particular

noise implementation, resulting in a total of 220 simulations. Twenty iterations were

performed for each image reconstruction, and both the minimal value of 8 (8miJ over all

20 iterations and the value of 8 after the 20th iteration (€finaJ) were stored. The value of \fi

was computed for each iteration, and the numbers of cases in which convergence to the

global minimum was detected and in which convergence ta a local minimum was

suspected (Nconv and NlocaI, respectively) were evaluated. In the simulations that

converged ta the global minimum accorcling ta \fi, the value of € at the point of

convergence (€conv), i.e., when "P first was less than 'Vg, was saved.

(Ui) Effects ofcu"entpatterns

In this protocol, the influence of the relative position of the current source and sink

on Nconv and €conv was evaluated using the thoracic phantom. Initially, neighbouring

currents were used, i.e., the current source was located at the electrode adjacent to the sink

for each projection. Subsequenùy, the current source and sink were progressively

separated until the source was diametrically opposed to the sink, which is equivalent to

the opposite current pattern. At each separation setting and for SNRs of 50, 60, 70 and 80
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dB, 10 images were reconstructecl, yielding a total of 320 simulations. For each source­

sink separation setting and noise level, Nconv, N10caI and the Mean and standard deviation

of Econv were evaluated.

(iv) Effict ofa central reference electrode

To investigate the effect of a CRE on Nconv and Econv, EIT measurements were

simulated using the thoracic phantom with the neighbouring current pattern in three

configurations: (A) with 16 boundary electrodes as above (Control16); (B) with a CRE

located as shown in Fig. 4.5(a) in addition to the 16 boundary electrodes (CREI7); and

CC) with 32 boundary electrodes but no CRE, as shown in Fig. 4.5(b) (Contro132). For

each configuration, measurements were simulated 10 times at each of Il SNRs from 30 to

80 dB. As above, Nconv and the Mean and standard deviation of Econv were evaluated for

each simulation.

(

( ) ( )

Fig. 4.5:
FEM used for protocol (iv). The open circle denotes the location of the CRE.
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4.2.3 Results

Fig. 4.6(a) to (c) show reconstructed images for protocol (i) at iterations 3~ 6 and 8~

respectively. The image shawn in Fig. 4.6(a) produced a value of E = 60% and did oot

reflect the features of thoracic phantom. The principal features of the phantom were better

reproduced in the image shown in Fig. 4.6(b)~ which corresponded to E = 15%. However~

sorne visible differences remained between this image and the phantom. The image

shown in Fig. 4.6(c) produced an error of E = 1.9% and was essentially visually identical

to the thoracic phantom. In geoeral, the principal features of the phantom were reproduced

in the images for E < 20%, and the images closely resembled the phantom when E

assumed a value of less than 5%.

In protocol (ii)~ convergence of images of the thoracic phantom to the global

minimum was detected in 69 out of 110 reconstructions after an average of 13.3

iterations. In 22 cases, convergence to a local minimum was suspected after 7.5 iterations

on average. For the remaining 19 simulations~ qJ ranged between \fig and \VI for all 20

iterations. The relationships between Econv and Emin and between Econv and Efinal for the

thoracic phantom are denoted by the solid circles in Fig. 4.7. In Fig. 4.7(a)~ the data points

are scattered slightly above the line ofidentity, indicating that Econv exceeded Emin by some

small amount in most cases. On average, Econv equaled 1.092·Emin' The data points in Fig.

4.7(b) are scattered tightly around the line of identity, showing that Econv was very close to

EfinaJ in all cases. On average, the Mean of the ratio of Econv ta Efinal amounted to 1.0001.

The criterion for convergence ta the global minimum was fulfilled for all image

reconstructions for which Emin was less than 20%, i.e.~ for all images that reproduced the

principal features of the phantom. The value of E increased by 202% on average in the

tirst iteration for which "P exceeded 'VI' indicating that these reconstructions were indeed

not converging to the global minimum.

The central object phantom in protocol (ii) produced sunHar results to the thoracic

phantom. In this case, convergence to the global and local minima was detected in 79 and

9 simulations, respectively. Bath outcomes were detected after slightly more than 9
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iterations on average. In the remaining 22 cases, 20 iterations were completed without

either criterion being fulfilled. No numerical instability was encountered in the

simulations performed for protocol (ii). The open triangles in Fig. 4.7(a) and (h) show

Econv plotted over Emin and Etinal for the central object phantom, respectively. The means of

the Econv-to-Emin and Econv-to-Efinal ratios were 1.085 and 0.986, respectively. Agam, the

criterion for convergence to the global minjmum was fulfilled for all image

reconstructions with an Emin of less than 20%. For this phantom, E increased by 89% in the

flI'St iteration at which 'P exceeded 'VI.

For protocol (iü), Nconv and Econv are plotted as functions of the separation between

the current source and sink and the SNR in Fig. 4.8(a) and (h), respectively. At

comparatively high SNRs of 70 and 80 dB, nearly all simulations converged to the global

minimum at aIl separation settings except for those using opposite currents (Fig. 4.8a). At

a SNR of 60 dB, Nconv equaled 100% for source-sink separations of one and two

electrodes but dropped as the source was progressively separated from the sink. When the

SNR was further reduced to 50 dB, sorne images failed to converge to the global

minimum at all small separation settings and Nconv was zero when the current source and

sink were more than four electrodes apart. For all SNRs, the reconstructions diverged

when opposite currents were used. This was in contrast to all other separation settings

where reconstructions that failed to converge to the global minimum either approached a

local minimum or completed the maximum numher of iterations without fulfilling either

critenou.

As shown in Fig. 4.8(b), the Mean Econv was minimal for separation settings of 1 and

2 at each SNR. The Mean Econv was less than 20% at a SNR of 80 dB for all separation

settings except opposite currents. At SNRs of 60 and 70 dB, images that reproduced the

principal features of the phantom (mean Econv < 20%) were obtained when source and sink

were less than three electrodes apart. Images with a Mean Econv of less than 5% were

reconstructed for separations of 1 and 2 at a SNR of 80 dB and for neighbouring currents

at a SNR of 70 dB.
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For all three configurations used in protocol (iv), Nconv equaled 100% and 0% for

SNRs greater that 55 dB and of less than 40 dB, respectively (Fig. 4.9a). The

reconstruction error produced by configuration CRE17 in general ranged between those of

the two control configurations (Fig. 4.9b). The mean &conv was less than 20% when SNR

was equal or greater than 60, 55 and 50 dB for configurations Contro116, CRE17 and

Contro132, respectively. Images that closely resembled the phantom (mean &conv < 5%)

were obtained at SNRs of 70 dB and above for configuration Control16, and at SNRs of

65 dB and above for configurations CRE17 and Contro132.
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Fig. 4.6:
Images of the thoracic phantom reconstructed from noise-free data. The Bomber of

iterations (i) and the corresponding reconstruction error (E) are given for each image.
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Fig. 4.9:
Percentages ofsuccessful convergence to the global minimum (a) and reconstruction errors

(b) as functions of the signal-to-noise ratio for the configuration using a central electrode
(CREI7) and two control configurations with 16 and 32 boundary electrodes (ControIl6'
and Control32, respectively). The error bars in plot (b) denote the standard deviation.
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( 4.2.4 Discussion

In this section~ 1 have developed a computer simulation of the static thoracic EIT

measurement situation. This computer simulation was used to investigate how the choice

of the current pattern and the placement of a CRE effect the probability of successful

convergence to the global minimum and the reconstruction errors of images obtained

using the GNM with a FE forward solution. The simulations showed that current patterns

for which the current source was placed very close to the sink were hest. The placement

of a CRE did not significantly alter the likelihood of convergence of the reconstruction

process to the global mjnjmum~ but noticeably reduced the reconstruction error. However,

the reconstruction error was reduced even further when the number of boundary

electrodes was doubled~ but no CRE was used.

A circular FEM consisting of 86 first-order FEs was employed both for the

computational phantom and to solve the forward problem for image reconstruction. This

mesh has relatively few elements, compared to the FEMs used by sorne other

investigators (3,24,68). However, in these studies the number of elements and hence the

number of conductivity parameters in the image usually exceeds the number of

independent measurements, which equals 104 when neighbouring currents are used (104).

Thus, Many investigators regularize the reconstruction process (3,17,155), e.g., using a

smoothing constraint (see section 2.4.3). Regularization links the conductivity value of

any element of the reconstruction mesh to its neighbours and hence effectively reduces

the number of degrees of freedom of the reconstruction mesh to a value equal to or less

than the number of independent measurements. Thus, increasing the number of FEs in the

reconstruction mesh cannot overcome the fundamental restriction that is imposed on the

resolution of EIT images by the limited number of independent measurements. For this

study, l preferred a smaller FEM to the use of a smoothing constraint because

regularization in itself May reduce the image quality and complicate the interpretation of

the results.
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Because the phantom and the image reconstruction FEM were topologically

identical, the numerical inaccuracies of the FE method investigated in the previous

section cancel out in this study. Therefore, the probabilities of convergence to the global

minimum and the reconstruction errors obtained here differ substantially from those that

would be obtained if the same reconstruction algorithm were used to reconstruct images

from real static EIT data. However, the exclusion of confounding factors was desirable for

the purposes of investigating only the influences of the curreot patterns and the CRE on

the quality of the reconstructed images, which was the goal ofthis study. The topological

identity of the phantom and reconstruction FEM aIso permitted precise evaluation of the

reconstruction error, which would have been more problematic otherwise. Moreover, the

elimination of the FEM error in the computer simulations pennits an estimate of the

extent to which the accuracy of the FE method must be improved before static images cao

he reconstructed. For example, in protocol (iii) of this section images with 8conv < 20%

were successfully reconstructed only when the SNR was greater than 60 dB, and images

with 8 conv < 5% could not be obtained for SNRs less than 70 dB. In comparison, the FEM

inaccuracies reported in section 4.1 produced SNRs of around 30 dB. Thus, it is necessary

to reduce the FEM inaccuracies by at least 30 dB before static EIT images cao he

reconstructed.

The reconstruction algorithm used in this section employed a quadratic line search.

For the derivation of this algorithm, it was assumed that for a step size of À = 1, the

objective function would vanish. However, the GNM ooly predicts a minimum of <I> at À

= 1 that, in general, can assume any positive value. Therefore, the estimate of the

magnitude of <1>'0 obtained from Eq. 4.22 represented an upper bound for <1>'0'

Consequently, the minimum of the second-order polyoomial that was fit to <I>(À) was

always closer to zero than it would have been if a smaller value of <1>'0 had been used. This

in turn caused the Hne search to produce comparatively small step sizes. Thus, the

assumption that <I> vanishes completely for À = 1 was conservative in the sense that it

produced smaller step sizes, which is likely to render the iterative reconstruction

algorithm more robust.
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The sample images of the thoracic phantom for the noise-free case (Fig. 4.6)

illustrate the performance of the reconstruction algorithm and the correlation of E with the

visual appearance of the images. The thresholds for E of 20% and 5%, used to classify

images that reproduced the principal features and the full detail of the phantom,

resPectively, were chosen empirîcally and are thus somewhat subjective. However, a

slightly different choice of these thresholds would not have significantly altered the

outcome ofthis study.

The value of the objective function ofan iterative image reconstruction process does

not directly correspond to the reconstruction error. Rather, <I> decreases when the solution

converges to the global minimum as weIl as when a local minimum is approached and E

increases rapidly. In the case of convergence to the global minimum, the reconstruction

error often plateaus, such that beyond a certain point additional iterations do not improve

the image any further and may even result in a slight increase in E. For these reasons,

termination criteria that are based on ooly the objective function or on the termination of

the reconstruction process after a fixed number of iterations are not satisfactory. The

convergence estimator employed in this study used the ratio of the normalized change in

the image to the change in the objective function at each iteration, which essentially

provides an estimate of the iIl-conditioning of the optimization problem. This

convergence estimator successfully detected reconstructions that converged to the global

minimum and indicated those that approached a local minimum. For all reconstructions

that had the potential of reproducing the principal features of the phantom (Emin < 20%), 'l'

became less than 'Vg before iteration 20 and Econv only sIightly exceeded Emin (Fig. 4.7a).

Moreover, Econv was generally very close to and sometimes even smaller than Efmal (Fig.

4.7a). This convergence estimator thus permitted excluding from the further analysis

images that rapidly converged to a local minimum and would have produced large,

meaningless values of E. For images that converged to the global minimum, the

convergence estimator helped in avoiding superfluous additional iterations that would not

have improved the images.
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The results of protocol (iii) in this section contradict a previous analytical study

suggesting that current patterns with a low spatial frequency are advantageous because

they produce a higher current density in central regions of the body (73). Using the same

methodology, opposite currents were shown to resolve small central objects better than

neighbouring currents (23). However, the outcome variable in these studies was oot the

reconstruction error, but a distinguishability function that was defined as the nonnalized

change of the electrode voltages in response to a conductivity change in a small central

region of a cylindrical body. This approach does not take into account the efIect of the

current pattern on the condition of the Hessian matrix. Also, the distinguishability

function is defined in terms of a cooductivity change rather than in terms of absolute

conductivity and hence is relevant for the dynamic imaging situation only. Finally, the

results of (23) are only valid for rotational symmetry in the volume to he imaged, and

May differ significantly in cases where asymmetrical conductivity changes occur close to

the periphery.

In an object with a homogeneous conductivity distribution, the curreot density in

the center will clearly he greater for opposite currents than for neighbouring currents.

However, as the object hecomes inhomogeneous, the current densities become determined

by the conductivity distribution to he imaged. In the thoracic phantom shown in Fig.

4.4(b), the minimal current density never occurred in the center, but always doser to the

Periphery in the highly resistive areas representing the lungs and the spine. In any case, a

more homogeneous curreot density distribution is not necessarily numerically

advantageous. When the current densities are homogeneously distributed, all element

conductivities within the image contribute roughly equally to the boundary voltage vector

of each projection, which means that all elements of the Jacobian matrix have

approximately equal magnitudes. In this case, the Hessian is a full matrix. In con~ if

the current density distribution is highly heterogeoeous, each element conductivity May

contribute predominantly to one projection while its influence on all others is negligible.

In this case, the Jacobian matrix is reduced to a sparse structure such as
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where ip.i is the (Nb,l) vector that contains the derivatives of the boundary voltages of

projection p with respect to the i-th element of cr. Then, the Hessian matrix
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JI.N" •J•.N..

o

o

(4.28)

assumes a diagonal structure that is better conditioned than the full Hessian matrix in the

case of homogeneous current densities. Thus, a comparatively localized cunent

distribution such as occurs with neighbouring currents is likely to yield better images than

more homogeneous current patterns in the presence of measurement noise. In generaI,

these results suggest that the optimal choice of current pattern depends on both the

conductivity distribution to he imaged and the reconstruction technique employed. As in

this study, neighbouring currents have been shown to produce better images than opposite

currents when filtered backprojection is used to reconstruct dynamic EIT images (8).

In protocol (iii), 1 did not consider current patterns with more than one source-sink

pair (see section 2.4.2). As already discussed in section 4.1.4, these current patterns are

difficult to implement in practice because precise matching of the output impedance of

each current source in the system is required for the current patterns to he applied as

desired. AIso, only few currently existing EIT systems are capable of using more than one

source-sink pair simultaneously. Furthermore, limiting the amount of curreot injected ioto
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the body is more difficult when multiple current sources operate simultaneously, and the

merit of these current patterns May be reduced when safety limitations are applied strictly

(38). 1 envisage EIT ultimately to be a low-cost hedside monitoring tool and therefore

focused this study on the simpler and more widely used single-source systems.

In protocol (iv), the use of a CRE shifted the graph of Econv as a function of the SNR

towards lower SNRs by somewhat less than 5 dB (Fig. 4.9b). About twice as large an

effect was obtained when the number of boundary electrodes was increased to Ne = 32

and no CRE was used, aIthough this configuration May he biased because each boundary

node of the FEM was used as an electrode. Considering that the Contro132 configuration

bas a much greater number of indePendent measurements and takes much longer to solve,

the CRE did produce a considerable improvement. However, the placement of a CRE is

somewhat invasive, although in Many lCU patients it May he possible to place the CRE

together with an esophageai balloon or a endogastric feeding tube. It is aIso intriguing to

speculate that a CRE May reduce the off-plane sensitivity and hence improve the

specificity of two-dimensional EIT, but these effects have not yet been investigated.

ln this section, 1 have developed a computer simulation of the static thoracic EIT

measurement situation. A convergence criterion was introduced to terminate the iterative

reconstruction of images from the simulated data. l have shown that this convergence

criterion successfully distinguished between convergent and divergent images, and that

the reconstruction error at the point when convergence was detected was close to its

minimum while superfluous iterations were avoided. In protocol (iii), the oost images

were obtained when the current source and sink were placed in close proximity. These

results were found to be related to the nature of the iterative reconstruction process

employed because neighbouring currents accentuate the diagonal structure of the Hessian

matrix. Moreover, 1 found that the use of a CRE reduces the reconstruction error and May

he valuable despite its being somewhat more invasive. FinaIly, the comparison of the

results of this study with those of the previous section suggests that the accuracy of the

FE method needs to he improved by at least 30 dB before useful static EIT images can be

obtained.
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( 4.3 Higher-order Finite Elements for the forward solution in static EIT

4.3.1 Motivation

The previous sections of this chapter have demonstrated that fust-order FEs are, in

general, not accurate enough to he useful for the forward solution of staric EIT problems.

A possible approach for overcoming this problem is the use of higher-order FEs that have

been shown to provide more accurate solutions than first-order FEs for comparable levels

of computational complexity (131). Unfortunately, conventional higher-order FEs have

the following two important shortcomings for their application in EIT: (i) Because the

tissue properties are constant across conventional higher-order FEs, higher-order FEMs

have fewer conductivity parameters than fust-order FEM with similar values of No. Thus,

the spatial resolution is reduced when conventional higher-order FEs are used instead of

fust-order FEs. (ii) For approxîmately constant inter-node distances, higher-order FEs

have longer straight boundaries than first-order FEs. Therefore, conventional higher-order

FEs do not approximate the irregu1ar body shaPes that need to he modeled in static EIT as

weil as first-order FEs. However, the approximation of the boundary shaPe is known to

strongly effect the accuracy of the FEM solution (131). A poorer approximation of the

boundary shape might thus counteract the improved polynomial accuracy of conventional

higher-order FEs.

The aims of this study were to derive isoparametric curvilinear higher-order FEs

with a space-variant conductivity that can approximate arbitrary continuous boundary

shapes and conductivity distributions, to illustrate the potential of these elements for

improving the accuracy of the EIT forward solution, and to discuss their theoretical

advantages and limitations.
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4.3.2 Methods

Two-dimensional isoparametric Finite Elements with variable conductivity

Higher-order isoparametric FEs with variable conductivity differ from the standard

FEs described in the previous sections in three aspects. F~ the increased order of the

approximation functions necessitates additional nodes in the element. In two dimensions,

a minimum of (N + 1)(N + 2)/2 nodes are required to completely describe a set of

approximation functions oforder N. Secon~ if the conductivity is modeled to vary across

the elemen~ the S matrix can no longer be assembled as outlined in section 2.4.3 (Eqs.

2.12 and 2.13). Thus, it is necessary to derive new element matrices for FEs with variable

conductivity. Finally, curvilinear FEs require integration of the Helmholtz equation over

curvilinear boundaries. This is best achieved by means of a coordinate transfonn that

projects the curvilinear element onto a standard element of simpler geometry that can he

integrated more easily. FEs that obey all three requirements can he derived, as follows.

In arder to remain consistent with the FE methodology and for the sake of

simplicity, we approximate the conductivity across the FE by the same approximation

functions as the potential, Le.,

N•.d

cr(x) = L crj CXj(X).
j",)

(4.29)

Substituting Eqs. 2.10 and 4.29 into Eq. 2.9, we can express the first functional of the

Helmholtz equation (el) as

8 1 =tLLLcrjCPj<PkJcxjVajVcxkdQ. (4.30)
i j k

Changing the order ofsummation and expressing two of the sums in matrix form yields

[

N.'d ].. = 1. T • (i). = 1. T0 1 2 <Po.eI ~ cri Scl <Po.cl 2 <Po.cl Sel <Po.cl·
1..1

(4.31)

Thus, the Sel matrix for a FE with variable conductivity is obtained frOID a conductivity­

weighted sum over a family ofNn.el distinct S~~) matrices. Assembling the FEM in analogy

ta Eq. 2.13 and changing the order of summation, the fust Helmholtz functional cao be

written as
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[

N. J• -1. T * (i). -.L Tel - 2<PD ~cri S <PD - 2<PD S<PD*
1=1

(4.32)

(4.33)

This rneans that in contrast to FEs with constant conductivities, the FEM can he

assembled before the conductivity-weighted sum over the S(i) matrices is evaluated.

In general, the projection of a straight-bordered FE in the coordinate space (~v)

onto a the curvilinear FE in the coordinate space (x,y) is achieved by means of a

coordinate transfonn of the fonn

x =fx(u, v),

y =fy(u, v).

Because we want to actually define the element in (x,y) coordinates and then transform it

back into (~v) space where the element is straight-bordered and therefore easier to

integrate, the coordinate transform used for our FEs must he reversible. This requires that

it uniquely relates any point (Uj,vJ to exactly one point (Xi,YJ and vice versa and imposes

sorne geometrical constraints in order to assure that the numerical inversion of the

transform is well-conditioned (131). A suitable coordinate transform that is particularly

consistent with the FE methodology is derived from the approximation functions

thernselves according to

N•.d

X = LXi ai(u, v),
i-l

(4.34)
N•.d

Y= LYi ai(u, v).
Î=l

Curvilinear FEs that have been obtained using this transform are often referred to as

isoparametric FEs. Now, the entries of the S~~) matrices can be cornputed according to

S~:.t =Jfai (J~l Vajf .J~I Vak det(Jc ) dudv, (4.35)

where V now denotes the gradient in (u,v) coordinates and Je is the Jacobian matrix of the

coordinate transform (13 1) that is defined as
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ôx ax
- -

l Je =
au av

(4.36)
ôx ôy
-
âv av

In the case of trianguIar FEs it is possible to express the S~~) matrices such that all

parameters defining the geometry of the element, i.e., all functions of the node

coordinates, are no longer part of the integral (35,130,131). Then, the innermost kemels

can be integrated and tabulated once and for all as global matrices, and the Sel of any

particular FE is rapidly evaluated by multiplication of these global matrices with

comparatively simple functions of the element coordinates. Unfortunately, this is no

longer possible for curvilinear elements because Je varies with position within the

element and cannot he extracted from the întegral. Thus, we must integrate the

approximation functions of the curvilinear FEs numerically.

The integration of the FE matrices for triangular elernents is best perfonned in

Simplex coordinates (35,131) and can be solved using symbolic integration software. For

curvilinear transformatio~ quadratic FEs are often preferred because they can he

integrated in one dimension at a time, which simplifies the numerical implementation of

Eq. 4.35 (131). However, quadratic FEs have the disadvantage that they are geometrically

anisotropic. This means that their polynomial representation is supercomplete, Le., that

their polynomial basis contains sorne but not all terms of orders greater than the element

order N (131). For example, the second-order FE shown in Fig. 4.10(a) can model only

quadratic potential functions along any line parallel to the sides of the element, while

cubic or quartic polynomials can he exactly represented along the diagonals. Because

supercompleteness is of little practical benefit, the internaI nodes of quadratic FEs are

often omitted for N < 5 (131), which yields the boundary node FE shown in Fig. 4.1 O(b).

This eliminates sorne of the supercornplete terms while all polynomials up to order N

remain unaltered. Boundary nodes cannot be omitted because they are necessary to

maintain inter-element continuity.
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Fig. 4.10:
(a) Complete quadratic second-order FE, 9 nodes. (b) Quadratic second-order boundary

Dode FE, 8 Dodes. The internai Dode is omitted to reduce the supercompleteness. (c)
Isoparametric second-order FE obtained from the boundary node FE shown in (h) using a

eoordinate transform.

For the computations performed in this sectio~ the second-order boundary node FE

shown in Fig. 4.10(b) was employed and transformed to any required shape using Eq.

4.34. An isoparametric curvilinear FE is illustrated in Fig. 4.1 O(c). The FE matrices were

integrated using Gaussian quadrature. Because the polynomial order of the integrand in

Eq. 4.35 equals 14 for each dimension, 8 quadrature points each in u and v were sufficient

for exact numerical integration (64).

Curvilinear one-dimensional Finite Elements for the boundary ~onditioD

As in section 4.1.2, the boundary condition was modeled by a ring of one­

dimensional FEs. Clearly, these line elements must he curvilinear and ofan order equal to

that of the two-dimensional FEs used to model the tirst term of the Helmholtz equation.

The isoparametric coordinate transfonn for the one-dimensionalline element is expressed

by

N•.d

x= ~xjaj(u),
j-l

(4.37)
Na.d

y =~Yi aj(u),
i=l
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and the elements of the T matrix of a single one-dimensional element are easily found to

he

(4.38)

Because the polynomial order of the integrand is 6, four quadrature points along the

element are sufficient for exact numericai integration of each element of T el. Tb is

assembled from the individual Tel in anaiogy to Eq. 2.13, and the U matrix is computed in

direct analogy.

Protocol

The inaccuracies of the four second-order isoparametric FEMs shown in Fig. 4.11

were evaluated as described in section 4.1. A summary of the characteristics of these

FEMs is given in Table 4.3. The electrode size parameter was adjusted to D =256 and the

four-electrode method was used in all cases. The results were compared to those obtained

using standard fust-order FEMs with the four-electrode Methode

Table 4.3:
Characteristics of the four isoparametric FEMs used in tbis study.

Mesh Na ND Nb Ne

(iso-a) 69 69 16 16

(iso-b) 113 113 32 16

(iso-c) 193 193 48 16

(iso-d) 309 309 64 16

4.3.3 Resu/ts

Fig. 4.12 shows the inaccuracies of the higher-order FEMs shown in Fig. 4.11 in

comparison with those of the FEMs shown in Fig. 4.2. When No was small (FEMs iso-a

and iso-b), the inaccuracies of the isoparametric FEMs were somewhat greater than those

ofcomparable fust-order FEMs. However, at ND greater than 100 the isoparametric FEMs

(iso-c) and (iso-d) produced smaller values ~vrms and larger SNRs than comparable frrst­

order FEMs.
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Fig. 4.11:
The four isoparametric Finite Element Meshes. The small solid circles denote the electrode

locations. See Table 4.3 for details.
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4.3.4 Discussion

ln this study, 1 have derived higher-order curvilinear FEs with space-variant

conductivity across the element. This derivation (Eqs. 4.29 to 4.36) is of general validity

for use with many kinds of two-dimensional FEs, Le., for any element order as weil as for

various basic shapes, and could easily he extended to three spatial dimensions. However,

the computations performed for this study were limited to isoparametrically distorted

second-order square FEs with 8 boundary nodes (Fig. 4.10c). This is the type of

isoparametric FE that is easiest to compute. The inhomogeneous boundary condition was

modeled using second-order curvilinear line elements. The approximation functions for

the standardized second-order line element before application of the coordinate transfonn

are shown in Fig. 4.13.

Of the four FEMs that were

u
o

0.5

1.0

1
1

/
1

0.0 (. .;'
..................,_._._........".

-0.5 'L.- ---'-- -"
-1

Fig. 4.13:
Approximation functions for a one-dimensional
second-order Finite Element. The solid, dashed

and dash-dotted lines represent the approximation
functions for nodes placed at u = -1, U =0 and u =

1, respectively.

used to investigate the accuracy of

isoparametric FEs, the two smaller

ones (iso-a and iso-b in Fig. 4.11) did

not reproduce the analytical solution

as weIl as comparable fust-order

FEMs. Presumably, these increased

inaccuracies were caused by the side

lobes of the approximation functions

for the boundary condition. For

example, the approximation function

that models current injection into a

node at the end of a second-order line

element (solid line if Fig. 4.13)

deviates considerably from zero close

to the node at the opposite end of that line element. In FEM (iso-a) where ooly 8 line

elements were used to model the boundary condition, this was essentially equivalent to
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unintentionally placing two current sources with small negative amplitudes at angles of

±33.75° relative to the position of the intended current source. The effects of these

unintentional cunent sources are more pronounced in the FEMs (iso-a) and (iso-b)

because they fall into close proximity of the voltage electrodes neighbouring the cunent

electrodes. Therefore, a considerable error in <Pc was encountered at the voltage electrodes

neighbouring the current electrodes. This analysis confirms a previous analytical study

that demonstrated the importance of the accurate modeling of the boundary condition

(25).

For meshes (iso-c) and (iso-d) in Fig. 4.11, the closest voltage electrode was always

more than one complete line element away from the current electrode. This presumably

explains the steep increase in the SNR from (iso-b) to (iso-c). The accuracy of the FEMs

(iso-c) and (iso-d) exceeded that offirst-order FEMs with a similar level of computational

complexity by somewhat less than 15 dB. According to section 4.2.4, this improvement is

not quite sufficient ta pennit the reconstruction of useful static EIT images. However, the

FEs employed here were the simplest kind of higher-order isoparametric elements with

space-variant conductivity. Most likely, the accuracy of the forward solution could be

improved further by using third or fourth-order FEs and by an improved modeling of the

boundary condition.

Theoretically, the fact that the conductivity of the isoparametric FEs was modeled

to be space-variant may be advantageous in itself, for the following reason. The

assumption ofa constant conductivity across each element produces a piecewise constant

conductivity distribution in the assembled FEM. If for simplicity we assume square FEs,

this is equivalent to sampling and convolution with a two-dimensional square window.

Because the spatial frequency content ofa square window is not band limited, we must, in

general, be concemed with the satisfaction of the sampling theorem when FEs with

constant conductivity are used. In practice, however, the EIT reconstruction process is

usually regularized (3,17,66,154) (see section 2.4.3), which effectively links the

conductivities of neighbouring elements and hence imposes sorne degree of low-pass

filtering. However, a piecewise constant conductivity distribution cao ooly he truly band
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limited in the limit of an infinitely large number of Finite Elements. In contrast, FEs with

space-variant conductivity produce a continuous conductivity distribution in the

assembled FEM, which in general has less power at high spatial frequencies than a

piecewise constant conductivity distribution.

Although the spatial frequency content of the conductivity distribution in the

isoparametric FEs derived above is band-limited, it may still he necessary to regularize

the iterative image reconstruction process to assure convergence to the global minimum

under all circumstances. At presen~ most reconstruction algorithms employ the Penalty

function described by Eq. 2.38. Formulations that penalize the first or second spatial

derivative of cr have heen shown to he advantageous (67) but cannot he implemented

accurately in a standard first-order FEM because V(5 vanishes within the element and is

singular at the boundaries. In contrast, V(5 is non-trivial at any point in the isoparametric

FEs derived above. Furthermore, although the n-th derivative of an approximation

function of order N is of order N - D, it can always he expressed exactly by a linear

combination of the complete set of approximation functions of order N (130). Hence, the

magnitude of Va cao he evaluated efficiently by multiplication of (5 with a tabulated

differential operator matrix (130). This permits more efficient and accurate gradient

regularization than in a standard FEM, which may contribute to the reconstruction of EIT

images with improved contrast. However, in cases where strong regularization is

necessary, it may also he heneficial to altematively reduce the order of the approximation

functions for (5 to a value less than the order of the approximation functions <p.

To the best of my knowledge, the preliminary study presented in this section is the

fust to investigate higher-order isoparametric FEs with space-variant conductivity for the

EIT f01Ward solution. Clearly, a great deal ofwork remains to fully investigate all aspects

of these FEs, e.g., determining the ideal order and shape of the elements, the best

modeling of the boundary condition and the effects of measurement noise and

regularization of the reconstruction process. However, given the preliminary results of

this section and the theoretical advantages that have been discussed, 1 expect higher-order

isoparametric FEs with space-variant conductivity to improve the accuracy of the EIT
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forward solution to an extent that FE inaccuracies are no longer a limiting factor for the

reconstruction ofclinically useful staric EIT images.
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5.

CONCLUSIONS

5.1 Summary and conclusions

The high incidence of pulmonary disease in critically ill patients necessitates the

continued investigation of new and improved teclmiques for obtaining clinically valuable

infonnation from the diseased respiratory system. The research described in this thesis

approaches this problem in two distinct ways. In chapter three, 1 investigate pulmonary

monitoring techniques using conventional pressure and flow measurements. Many of the

results of chapter three are immediately applicable in a clinical contexte In chapter four, 1

investigate image reconstruction techniques for Electrical Impedance Tomography (EIT).

This novel non-invasive Medical imaging teclmique is still in its infancy, but has a great

potential for continuous thoracic imaging because of the marked differences in the

electrical properties of the tissues that compose the human thorax, and the pronounced

changes that can be expected in disease.

ln chapter three, 1 develop a comprehensive computational model of the actively

breathing subject that can be used to simulate patients breathing spontaneously or with the

support of an assisting mechanical venti1ator. This model has a multitude of potential

applications in respiratory research because the experimenta1 conditions can be
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manipulated at will and may be adjusted to simulate configurations that would he

unacceptable in humans. Furthermore, variables that are inaccessible in patients can be

accessed in computer simulations, and the number of subjects available for study is

essentially unlimited. Therefore, 1 envisage this model to complement many clinical

investigations and to contribute to the development of improved pulmonary monitoring

techniques and mechanical ventilators.

In section 3.2, the computer model is used to quantitatively assess techniques to

measure breath-by-breath a patient's dYnamic intrinsic PEEP and inspiratory work of

breathing, and to investigate the physiological reasons for the discrepancies that have

heen reported between values of intrinsic PEEP measured under staric and dynamic

conditions. Both measurement techniques performed weIl in the absence of expiratory

muscle activity and cardiogenic oscillations. However, expiratory muscle activity at end­

expiration intI'oduced a substantial overestimation in both parameters, while cardiogenic

oscillations caused large random errors that could not he reduced efficiently by ensemble

averaging. These results demonstrate that sorne means of correction for bath expiratory

muscle activity and cardiogenic oscillations is necessary if dynamic intrinsic PEEP and

work of breathing are to be measured accurately on-line. The kind of discrepancies seen

experimentally between static and dynamic intrinsic PEEP could only he reproduced

when the stress adaptation in the model was increased to five-fold the value that bas heen

reported for COPD patients during inspiration, suggesting that these discrepancies are

caused by heterogeneity of the expiratory flow limitation throughout the lung.

Cardiogenic oscillations on esophageal pressure signaIs cannot he removed by

standard filtering because their frequency content overlaps that of respiratory pressure

swings. In section 3.3, 1 develop an adaptive filter that employs an electrocardiogram to

reduce the cardiogenic oscillations. In computer simulations, the variance of the simulated

pleural pressure swings that was accounted for by the unfiltered and filtered esophageal

pressure signal ranged between 55 and 94% and between 95 and 99%, respectively. In

data obtained froID four intensive care patients, the apparent cardiogenic oscillations were
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markedly reduced without noticeable distortion of sharp deflections associated with

respiration. The standard deviation of the measured intrinsic PEEP was reduced in all four

patients by 44 to 71% (mean 57%), indicating that a considerable fraction of the

variability of the measured dynamic intrinsic PEEP was entirely due ta cardiogenic

oscillations, and that the adaptive tilter efficiently reduced this undesired variability.

In section 3.4, the effects of the interactions between a flow-triggered pressure

support ventilator and patients with pronounced expiratory flow limitation are

investigated in a computer simulation. The results of this study confirm Younes' earlier

description of the basic mechanisms of patient-ventilator asynchrony (156) and indicated

that a severely flow-limited patient receiving pressure support ventilation presents a

highly nonlinear dynamic system in which small parameter changes cao have a large

impact on the overall system behaviour. Therefore, the optimal strategy for adjusting the

ventilator is likely to depend on the subjects current condition and to vary considerably

with time.

In chapter four, 1 investigate the inaccuracies of conventional first-order Finite

Elements for EIT with respect to a specifically derived analytical solution. These

inaccuracies produced SNRs of approximately 10 dB and between 18 and 35 dB for the

two- and four-electrode method, respectively. Although the SNR increased somewhat

when larger meshes were used, this study showed that augmenting the number of

elements in a fust-order Finite Element mesh is not an efficient means of improving the

EIT forward solution. The great differences between the two- and four-electrode methods

demonstrate that the voltages at the sites ofcunent injection are badly estimated in a first­

order Finite Element mesh and should not be used for static EIT image reconstruction

even when the electrode-skin contact impedance is negligible. Comparison of the

inaccuracies of the fust-order Finite Element Meshes to the results of the simulation study

in section 4.2 suggested that the accuracy of the forward solution needs to be improved by

at least 30 dB before useful static EIT images cao he obtained.
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In a computer simulation of static EIT using only a single current source-sink pair,

current patterns for which the current source was placed near the sink produced the

smallest reconstruction errors and the greatest probabilities of convergence to the global

minimum. Presumably, this was because they produced comparatively inhomogeneous

current density distributions that favoured a diagonal structure of the Hessian matrix. The

use of a central reference electrode produced approximately half the improvement in the

quality of the reconstructed images that was obtained by doubling the number of

boundary electrodes. This illustrates the general usefulness ofcentral reference electrodes.

In the last section of chapter four, 1 derive higher-order isoparametric Finite

Elements with space-variant conductivity for EIT. A comparatively simple second-order

implementation of these Finite Elements improved the accuracy of the EIT forward

solution by up to 15 dB over first-order Finite Elements. Higher-order isoparametric

Finite Elements are aIso theoretically advantageous because they produce a conductivity

distribution with less power at high spatial frequencies than standard Finite Elements, and

because they permit a more accurate implementation of gradient regularization

techniques. Thus, the further development of these higher-order Finite Elements for EIT

is an important and promising area for future research.

Despite its present shortcomings, 1 envisage EIT to play an important role in future

intensive care monitoring. For example, it is conceivable that a fairly accurate measure of

lung volume May be obtained from a relatively simple three-dimensional EIT system.

Simultaneous recordings of esophageal pressure signals would then allow the evaluation

of clinically important parameters such as intrinsic PEEP and inspiratory work of

breathing in spontaneously breathing patients without the discomfort of a direct flow

measurement at the airway opening. Ultimately, the electrode grid of the EIT system May

aIso he used for electrocardiographic measurements which, together with sorne

measurements of physiological air and blood pressures, would permit the complete

integration ofcardio-respiratory monitoring equipment for critical care patients.
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5.2 Original contributions

(1) A multi-purpose nonlinear viscoelastic model of the actively breathing patient was

developed. The model comprises four nonlinear dynamic subsystems that

characterize the passive mechanical properties of the respiratory system, the

properties of the respiratory musculature, the conditions at the airway opening

(endotracheal tube and ventilator or atmospheric pressure), and the transmission of

cardiogenic oscillations onto the respiratory system.

(2) An empirical closed-form description of the expiratory flow limitation phenomenon

was developed to permit efficient computational simulation of expiratory flow

limitation.

(3) In a computer simulation, the assumption of a fixed chest wall elastance of 5

cmH20·L-1 for the computation of the patient's inspiratory work of breathing from

esophageal pressure and flow was found to he valid within a 5% error margin when

no other confounding factors were present.

(4) In a computer simulation, expiratory muscle activity at end-expiration was found to

cause severe overestimation of the measured values of both dynamic intrinsic PEEP

and the patient's inspiratory work ofbreathing.

(5) In a computer simulation, cardiogenic oscillations on esophageal pressure were

found to introduce substantial random errors to the measured values of both

dynamic intrinsic PEEP and the patient's inspiratory work ofbreathing.

(6) In a computer simulation based on a model with central expiratory flow limitation,

the discrepancies between the values of intrinsic PEEP measured under static and

dynamic conditions could be reproduced ooly after the stress adaptation in the Iungs

was increased five-foid over the values reported in the literature for COPD patients
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during inspiration. This suggests that these discrepancies are caused by

heterogeneity of the expiratory tlow limitation throughout the lung.

(7) An adaptive tilter to reduce the cardiogenic oscillations on esophageal pressure

signaIs was developed. In simuIated da~ this tilter improved the variance of the

true pleural pressure swings that was accounted for by the esophageal pressure

signal from between 55 and 94% to between 95 and 99%. In in vivo patient da~ the

tilter reduced the apparent cardiogenic oscillations without noticeably distorting the

sharp deflections in esophageal pressure due to respiration. In the Fourier domain,

the tilter removed transients at integer multiples of the heart rate without

significantly altering the remainder of the signaIs.

(8) In four intensive care patients, the standard deviation of the dynamic intrinsic PEEP

measured breath-by-breath over periods of 50 to 120 seconds was reduced by 44 to

71% (mean 57%) when the adaptive tilter was used. This suggests that a

considerable fraction of the variability of the measured dynamic intrinsic PEEP was

entirely due to cardiogenic oscillations, and that the adaptive tilter efficiently

reduces this undesired variability.

(9) The mechanisms of patient-ventilator asynchrony during pressure support

ventilation were studied in a computer simulation that reproduces the diseased

human respiratory system more closely than the model employed in an earlier study

(156). The principal mechanisms of patient-ventilator asynchrony as described in

that study were confinned. The results suggest that a pressure support ventilator

together with a severely diseased patient may fonn a highly nonlinear dynamic

system that is difficult to control.

(10) The analytical solution for the electrical potential on the boundary of a two­

dimensional circular phantom and opposite current injection was shown to diverge

when point current sources are assumed. A solution for finite size electrodes was
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derived and shown to converge. This solution is applicable both for a homogeneous

conductivity distribution and for centered circular targets.

(11) The inaccuracies of first-order Finite Elements for the EIT forward solution were

shown to produce SNRs of less than 35dB even when meshes with very large

numbers of elements were used. The data suggest that the accuracy of the forward

solution needs to be improved by approximately two orders of magnitude before

good static EIT images can he obtained.

(12) The inaccuracies of first-order Finite Elements for the EIT forward solution were

more pronounced at the sites of current injection than anywhere else in the mesh.

Thus, the voltages measured at these locations should not he used for the

reconstruction of static EIT images even when the electrode-skin contact imPeciance

is negligible.

(13) A convergence criterion for the iterative reconstruction of EIT images was

developed. This convergence criterion successfully identified image reconstructions

that efficiently converged to the global minimum~ thereby avoiding sUPerfluous

iterations that did not noticeably improve the image any further.

(14) In a computer simulation, the reconstruction error of static EIT using a single

current source-sink pair and iterative Gauss-Newton optimization was shown to he

minimal when the current source and sink were placed in close vicinity.

Presumably, this was because cuneot patterns that produce relatively

inhomogeneous current density distributions favour a diagonal structure of the

Hessian matrix.

(15) In a computer simulation, the reconstruction error of images obtained using a

central reference electrode were found to range hetween those of a control

configuration with an equal number of boundary electrodes and of a

computationally more involved configuration with twice the number of boundary
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electrodes, but no central electrode. This demonstrates the general value of a central

reference electrode.

(16) Higher-order isoparametric Finite Elements were derived for modeling electric

fields in two-dimensional media with space-variant material properties.

(17) Higher-order isoparametric Finite Elements with space-variant tissue properties

were shown to reduce the inaccuracies of the EIT forward solution by up to 15 dB

compared to fust-order Finite Element Meshes of similar computational

complexity.

(18) The theoretical advantages and limitations of higher-order isoparametric Finite

Elements with space-variant tissue properties for EIT image reconstruction were

întroduced.
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l 5.3 Suggestions for future work

5.3.1 Pulmonary monitoring

As discussed elsewhere in this thesis, the computer model of the spontaneously

breathing patient described in section 3.1 has a large numher of potential applications.

The following is a list of sorne examples.

Recent clinical studies advocate measuring the pressure-rime integral (pT!, also

referred to as pressure-time product) rather than Winsp• However, it is somewhat unclear

whether the PTI can be measured any more accurately than Winsp and how PTI and Winsp

relate. AIso, the measurement of the PTI is ambiguous in that it can he measured hetween

zero-flow points or between deflection points in Pes with bath measurement techniques

yielding markedly different results (Volta et al., ATS inti. conf., New Orleans 1996).

These issues could easily be addressed using the computer simulation described in section

3.1.

Younes (156) bas previously compared PSV and PAV in a comparatively simple

computer simulation. A more thorough investigation of the patient's ability to modulate

ventilation for all existing assisting modes of mechanical ventilation including CPAP can

be expected to be clinically valuable and to provide additional insights into patient­

ventilator interactions. For this study, it might be interesting to parameterize the model of

section 3.1 for various groups of simulated patients with different pulmonary diseases.

The effects of ventilator design aspects may he studied individually for different

disease groups using my computer model. Hopefully, studies of this type will he

conducted soon and May contribute to the design of improved mechanical ventilators.

The adaptive tilter to reduce cardiogenic oscillations on Pes described in section 3.3

may permit an improved exploitation of the information contained in the esophageal

pressure signal. One particularly interesting question is whether it may he possible ta

trigger an assisting mechanical ventilator off an adaptively filtered esophageal pressure
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signal. Presumably, this would substantially reduce Lltmg and hence overcome some of the

problems of assisted mechanical ventilation that were addressed in section 3.4. The

computer model developed in section 3.1 provides an ideal environment for the

investigation ofthis issue.

5.3.2 Thoracic imaging using EIT

Although dynamic EIT imaging of the thorax bas been shown to have several

interesting applications, it is beyond question that static EIT imaging could ultimately

provide a much greater amount ofclinically valuable information. In my opinion, the long

term goal of EIT research is the reconstruction of three-dimensional static complex­

valued images at multiple frequencies in real time.

The most obvious continuation of the work presented in chapter four of this thesis is

the further investigation ofhigher-order isoparametric FEs with variable conductivity. For

solution of the inverse problem, however, 1am inclined to speculate that meshes primarily

based on the transformation of triangular elements may show better convergence

behaviour because their polYnomial basis is nl>t supercomplete. The modeling of the

boundary condition, especially in the context of very high-order FEs where the boundary

condition may be modeled by ooly a few line elements, aIso merits further investigation.

In this context, it may be usefuI to consider the use of other approximation functions than

regular polynomials for js, since these might permit better modeling of fmite-size

electrodes.

In general, the FE method can easily be extended to three-dimensional, complex­

valued isoparametric FEs with space-variant admittivity. Thus the FE method does not

present any fundamental limitations for the reconstruction of three-dimensional static

complex-valued images. However, a substantial amount of work will he necessary before

this goal cao be achieved.
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ApPENDIX:

IMPLEMENTATION OF THE MODEL

DESCRIBED IN SECTION 3.1
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