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AB S TRACT 

This Thesis concerns itself with the thorough 

investigation of the effects of core material parameters on 

the structural behaviour of wound rolls in core-roll 

winding systems. The underlying theme in this work is the 

derivation, based on the theory of elasticity, of an 

analytic expression for the core material' s elastici ty 

modulus as a function of only material parameters and 

geometry. 

The approach undertaken herein is purely theoretical 

~nd encompasses the rigorous analysis of principally two 

models; linear isotropie and anisotropie. As for the 

former, both planar and axisymmetric geoRletries are 

investigated; and in the case of the anisotropie model, an 

axisymmetric plane stress situation is studied. Moreover, 

finite-element modelling and analysis for the isotropie 

condition is c~rried out to confirm the theoretical 

findings. The objective is then to apply the resultsi 

namely, the inclusion of Poisson' s ratio and elasticity 

modulus of the core material, to modify existing energy-

balance roll structure formulae. This undertaking is 

called for if the aim is to have a valid winding model that 

simulates the ac:tual winding pro':ess i i. e., one which 

incorporates sensing the presence of the core through 

layers of wound material. Resul ts are further compared 

with existing winding models and conclusions are given. 

i 



RÉSUMÉ 

La thèse presentée ci-dessous est impliquée dans 

l'enquête sur les effets des paramétres du matériel central 

sur le comportement structural des rouleaux. D'abord, le 

théme fondamental dans ce travail est celui de la 

dérivation, basée sur le théorie d'élasticité, d'une 

expression analytique pour le module d'élasticité du 

matériel central en fonction seulement des paramétres de la 

substance et de la géométrie. 

La façon d'aborder cet ouvrage est tout à fait 

théorique. celui-ci contient l'analyse rigoureux de deux 

modéles principales. Il si~git de l'isotropie et de 

l'anisotropie linéaires. Le premier modél addresse les 

géométrie de surface plane et d'axisymmétriques. Quant ~u 

deuxiéme, celui d'anistropie un plane de contrainte 

axisymmétrique est recherché. En plus, le modél d'élément 

défini et l'analyse des conditions isotropiques sout 

recherchét; afin d' affi.:-mer les constatations théoriques. 

L'objecti\= est alors d'appliquer les résultats; 

essentiellement, l'inclusion de rapport de Poisson et le 

module d'élasticité de la substance centrale pour 

improviser les formules existantes sur l'énergie-équilibre 

de la structure des rouleaux. Cette hypothèse est mise en 

j eu au cas ou le but sera d'obtenir un modél valable 

d'enroulement qui stimule la vraie façon d'enroulement i 

c'est-à-dire un modéle qui incorue la perception de la 

présence du noyau à travers des couches du matériel 

enroulé. Les résultats sout comparés davantage à d'autres 

modéles d'enroulement et des conclusions sout marquées. 
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FORlfUD 

The science of building good rolls has undergone sorne 

fundamental advances through the years. Proper winding of 

flexible shee~-like materials into rolls is an area in the 

field of mec~anics which has broad utility in a number of 

diverse and important industries and which, therefore, has 

been of considerable interest over the pa st few decades. 

The prime conçern of this Thesis centres on how the 

stiffness of the core material in the core-roll winding 

system determines how much support i twill offer for the 

ini tial wraps of web mater ial, and whether this support 

will be maintained as internaI pressures are developed. 

The body of the Thesis is structured into three ~nair. 

parts. The first part, Chaptf'r One, offers a brief 

li '!'".erature review of existing theories for c=o~e-roll 

winding systems. An in-depth look is, however, taken at 

studying the energy~balance technique postulated by J. D. 

Pfeiffer; and several relevant examples are presented. 

Chapter Two, the essence of the theoretical worJ< of this 

Thesis, consists of a thorough theoretical investigation of 

the core effects. It starts by investigating linear, 

isotropie materials via three different models. The first 

model being the linear, planar sheet-stack model; the other 

two, both axisymmetric, are thick-walled cylinder and 

press-shrink-fit models, used in analysing the hollow core 

problem. An independent finite-element analysis of the 
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linear, isotropie condition is further carried out and the 

outcome is reported. The latter segment of Chapter Two 

delves into the anisotropie analysis of the core-roll 

winding system. Initially, a detailed study of the theory 

of curvilinear anisotropy and generalised plane stress 

analysis for a body possessing cylindrical anisotropy is 

presented. Then a p~rticular situation, the hollow-core 

problem, 1~ modelled as an annular plate; and a detailed, 

rigorous analysis which results in expressions for stresses 

and deflections is carried out. The analysis is, moreover, 

expanded to encompass sensing the presence of the core 

thro~qh layers of wound material. AlI the theoretical 

findings of this Chapter channel into determining an 

analytic relationship for the effective elasticity modulus 

of the core më:..terial in the core-roll winding system. 

Several examples are given along the way to graphieally 

demonstrate the significance of the theoretical findings. 

Comparison between resul ts from the different approaches is 

presented, and conclusions pertaining to the universal 

applicability of each model are discussed. 

Subsequently, these theoretical findings are 

implemented in modifying Pfeiffer' s existing energy-balance 

roll structure formulae. This particular Chapter was the 

subject of a recent scientific publication entitled, "How 

Core stiffness and Poisson Ratio Affect Energy Balance Roll 

structure Formulas," by the author of this Thesis and his 
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supervisor, Professor J. D. Pfeiffer; ··Thich was presented 

at the First International Conference on Web Handling, held 

at Oklahoma State University. 

The Thesis ends with a section bearing the titles, 

"Claims to Original Research" and "Suggestions for Further 

Work." 
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CHAPTER ONE 

BRIEP REVIEW OF EXISTING THEORIES FOR CORE-ROLL 

WINDING SYSTEMS 



1.1 GENERAL INTRODUCTZON 

Webs are sheet materials that are sufficiently thin to 

produce negligible bending stresses when they are wound 

into rolls. Paper, magnetic tape, plastic wrap, 

photographie film base, adhesive tape and metal foils are 

common examples. Webs are wound into rolls for processing, 

transport and storage. Controlling in-roll stresses is 

important to prevent damage to the web due to excessive 

plastic deformations within the roll and to provide rolls 

that are sufficiently robust to withstand shock during 

transport. 

The quality of a wound roll is dependent on the 

stresses which exist in it. Thus, in-roll stresses 

determine the structural integrity of the wound roll and 

make it an effective package for the web. These same in-

roll stresses can, under certain conditions, impart damage 

to the web. Existing literature enables predicting the in-

roll stresses developed by a specified winding tension. 

This stress state can th en be examined to determine if it 

falls within the window of stresses that will yield a 

robust roll without damaging the web. If the stresses fall 

outside this window, the winding tension term in the 

existing winding models must be varied in a tr~al-and-error 

manner to attempt to produce an acceptable in-roll stress 

state. 

The rigorous analysis of predicting wound roll 
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.. stresses resulting from a known winding tension, assuming 

that the coiled web exhibits constant orthotropic rnaterial 

properties, started with the work of Altmann [14] in which 

he derived exact integral expressions for the internaI 

stresses from basic stress-strain relationships, based on 

the simplifying assumption of linea.city in '-he radial­

direction modulus of the wound roll. Earlier on, Tramposch 

[18] developed equations, using finite-difference rnethods, 

to predict the relaxation of internaI stresses of a wound 

reel of magnetic tape, assuming a homogeneous and isotropie 

material which, under shear, exhibits instantaneous 

elasticity, delayed elasticity and creepi and under 

hydrostatic stressing shows elastic behaviour. He further 

extended his theoretical analysis to inelude the effect of 

a difference in the thermal properties of the tape and the 

hub [19]. 

An alternate, continuous solution for isotropie rolls 

by modelling the effect of the input tension through a 

modified expression for the cireumferential strain, was 

suggested by Yablonskii [42]. Urmanskii et al. [38] 

expanded the latter solution to orthotropic rolls. 

Yagoda [22] developed series solutions for integrals 

within Altmann's linear in-roll stress formulae. He then 

eompleted these solutions for winding tensions that are 

expressible as power series of the wincting radius, through 

an accurate treatment of the core boundary conditions [23]. 
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Yagoda extended the Altmann formulae for use with su~face­

wound rolls by dividing the roll into a thin outer section 

where inter-layer slip is allowed and a base where inter-

layer slip is prohibited; however, the state of stress at 

the interface of the sections must be known to apply the 

results. 

A comparison of the Altmann and Tramposch winding 

models was given by Connolly and Winarski [28]; moreover, 

they presented experimental data for stresses within reels 

of magnetic tape and analytically studied the effect of 

varying several winding parameters and temperature on the 

in-roll stresses. 

Pfeiffer [1] experimentally demonstrated substantial 

non-linearity in the radial modulus of paper rolls. He 

then used his experimentally-determined radial stress-

strain profile for paper as the basis of a continuous 

energy-based solution [5,6]. Furthermore, Pfeiffer [1] had 

previously describl:!d experiments for determining the stress 

state within finished rolls of paper. Experimental 

measurements of residual tension in a paper roll during 

unwinding by looping the uppermost layer of the roll over 

a force-sensing idler were performed and presented in a 

publication by Pfeiffer [3]. Hussain et al. [33] also 

presented in-roll stress data obtained from active sensors 

wound in to paper rolls. 

Hakiel (15] extended the previous analysis of Altmann 
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by treating both the boundary conditions and the non-linear 

behaviour of the wound roll in a rigorous way, resulting in 

a computer model that is accurate enough to be used for 

simulation. Results obtained with Hakiel' s model 

illustrated the highly non-linear nature of the winding 

process and compared weIl with experimental findings. 

Willett and Poesch [25] arbitrarily varied the radial 

modulus as a function of inter-layer pressure, as in 

Hakiel' s model, in finite-difference models of the roll 

similar to that developed by Tramposch. They modelled 

winding the final roll by adding a sequence of layers of 

web. Willett and Poesch iterated to converge to a 

consistent set of inter-l~yer pressures and radial moduli 

for each layer added, while Hakiel avoided i teration by 

using a set of radial moduli computed from the inter-layer 

pressure distribution of the previously added layer. 

An analytical comparison of the Pfeiffer [5,6], Hakiel 

(15] and Altmann [14] solutions was presented by Penner 

[16]. 

Severa! authors discussed the importance of 

controlling winding tension to obtain in-roll strIasses 

sufficiently high to yield robust rolls but sufficiently 

low to avoid damaging the web within the roll. Harland 

[31] presented an analytical comparison of isotropie rolls 

wound with constant tension and constant torque. Frye (29) 

suggested a radial stress profile to avoid winding defects 

5 



in paper rolls and machine parameters that may affect the 

actua l prof i le. Rand and Er icksson [34] reeommended an in-

roll stress distribution for newsprint on the basis of 

their analysis and experiments for determining in-roll 

stresses. Hussain and Farrel [32] experimentally 

determined the importance of eontrolling the winding 

tension at the start of a newsprint roll for avoiding loose 

cores. 

An inverse solution, i. e., sol ving for the winding 

tension necessary to produee a desired residual stress 

distribution, was f!rst demonstrated for isotropie rolls of 

wire by Southwell (37]. Whereas Catlow and Walls [27] 

derived the isotropie inverse solution for the winding 

tension necessary to obtain a constant residual tension in 

rolls of yarn wound on rigid cores. since then, very 

little work has been done as regards the generation of 

prescribed residual stresses by solvir.g for winding 

tension. 
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1.2 THE ZNBRGY-BALANCB APPROACH 

BacJtqround 

When rolls of paper, film, plastic sheeting, or other 

thin flexible webs are wound, it is of interest to know 

what stresses exist in the .coll, both during and after 

winding. If we know these stresses and how they may be 

changed by varying the winding tension and other 

parameters, the causes of many roll defects and their cures 

may also be known. 

Roll structure theory has been successful in 

describing the relationship between internaI stresses in a 

finished roll and the stresses that exist on the surface as 

the roll is being wound. This relationship is important in 

that it allows us to relate different types of experimental 

tests to each other. It also allows us to monitor on-line 

such properties as wound-in tension, wound-off tension and 

roll density rather than having to perf~rm destructive off­

line testing of finished rolls [16]. 

In essence, roll structure the ory has been developed 

in three stages. Altmann derived a relationship between 

internaI stresses and the wound-in tension for an 

anisotropie mode! in which aIl stress-strain relations were 

linear [14]. The solution was basically analytical in 

nature, with only one numerical integration required to 

apply the relevant formulae. Pfeiffer [5,6] extended the 

analysis to deal with non-linear behaviour in the radial 
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direction, perpendicular to the sheet. This the ory 

involved the nu~erical ~olution of a single, first-order, 

non-linear differential equation. The solution procedure 

was simplified by assuming an energy balance on a single 

wrap of paper as a function of time. On the other hand, 

Hakiel [15] extended Altmann's original work to deal with 

the general non-linear problem without making any specifie 

energy-balance assumptions. In aIl of the aforementioned 

work, Poisson' s ratio was assumed to be negligible and 

hence was not included into the analyses. 

Pfeiffer's Energy-Balance Roll structure Formulae 

Authors [14, 34, 36, 18, 19] have, in their attempts 

to calculate the roll structure, acknowledged the non­

linear compression behaviour of paper and films in the 

direction perpendicular to the plane of the sheet but, 

nonetheless, opted to use a linear modulus in their final 

solutions. In cases where the variation in tension is 

inversely proportional ta the roll radius, as in centre­

winding, or in cases where there is no variation, the 

linear modulus approach can give a closed-form solution ta 

the distribution of inter-layer pressure and residual 

tension versus radius [5]. However, when the pattern of 

tension wound into the roll is not a simple function of 

radius, these solutions must be evaluated numerically. 

Pfeiffer' s work [ 5,6] takes a different approach to the 
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problem and c:'1?plies energy-balance techniques to help solve 

the non-linear compression case. 

It is essential to deal with non-linear 

compressibility since the latter is tantamount to the 

observed stress-strain behaviour ot stacks of sheet 

material. It has been determined [1,2] that paper follows 

the relationship: 

(1. 1) 

where, P = radial stress (inter-layer pressure), in Pa or 

psi, 

K1 = pressure multiplier, in Pa or psi, 

K2 = basic springiness factor, djmensionless, and 

Er = radial compressive strain, dimensionless. 

It is worthwhile noting that the quantity K2 forms the basis 

for the exponential sweep of the curve of equation (1.1). 

For soft, high-bulk materials, it is low, in the range 6-

15; indicating a low change of pressure with strain. with 

most printable grades of paper, Kz falls between 15 and 100. 

Very hard, dense products and homogeneous plastic films are 

characterised by a Kz of 100-500 [7]. 

The reason for this behaviour in fibrous materials was 

demonstrated by Elias [50]. By a similar line of 

reasoning, one can explain why homogeneous materials; such 

as plastic film, also follow an exponential relationship as 

the point of contact or support between adjacent sheets 
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\. come closer together with increasing pressure [5]. 

When compressing a stack of sheet material from zero 

pressure to a finite pressure or a finite compressive 

strain. the work done per unit volume is equal to the area 

under the stress-strain curve from zero up to that point. 

Hysteresis is involved with actual materials, indicating 

that more energy is required to compress than will be 

released on expansion. Pfeiffer managed, in his approach 

[5,6], to side-step this problem by defining KI and K2 to 

match the relaxing behaviour only. Hence, the area under 

the stress-strain curve is obtained by integrating equation 

(1.1); Le., 

where, ~rl in J/m3 , is the energy involved in compressing 

the roll material up to the radial strain t r ; and other 

symbols are as defined earlier. 

There is a steady supply of available energy coming to 

the roll in the form of elastic strain in the web because 

of its wound-in tension, (Jw (in units Pa or psi). The 

magnitude of this energy input, denoted by ~w' per cubic 

volume unit is given by: 

(1. 3) 

where ~w is in uni ts of J 1m3 and Et, the tangential modulus 
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of the roll, in Pa or psi. On the outside of the roll, 

where the residual tension is positive and the pressure 

low, most of this energy will be tensile in nature. 

Interior sections of the roll, which used to be on the 

outside, have been compressed radially, and the residual 

tension has been reduced. In these sections, most of the 

energy from Gw has been converted into compressive energy. 

One of the premises of Pfeiffer's energy-balance approach 

is that the tension disturbances or variations stay close 

to the location at which they occurred. This is 

substantiated by measurements of wound-in tension [4], in 

which small disturbances made within one or two revolutions 

of the winding roll can be played back and found to be in 

the same place they were made. 

Most of the enerqy of wound-in tension applied to the 

roll will find its way into radial compressive energy. 

This makes the cylindrical roll body firm and allows it to 

be transported more r .~-,dily than a stack of sheets [5]. 

All solutions to roll structure problems must satisfy 

the elastic equilibrium requirements of sections of the 

roll; namely, 

Gt - Gr - r(dGr/dr) = 0, (1. 4) 

where, Gt = tanqential stress, in Pa or psi, 

Gr = radial stress, in Pa or psi, and 

r = radius to a point in the finished roll, in 

metres or inches. 
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Here, the tangential stress is related to the tension, T, 

in N/m or pli (pounds per lineal inch) via, 

(1. 5) 

where, 0 designates the web thickness (usually referred to 

as the caliper) in micro-metres or inches. 

The difference between the various solutions to the 

roll structure problem stems from how the interrelation 

between 0w l 0t and or has been defined. Let us assume that 

the energy of a single wrap is conserved as a function of 

time as the roll is built. That is, there is no energy 

transfer between successive wraps in the roll. The energy 

in a wrap is known when it is first put on the roll and is 

given by equation (1.3). As the wrap becomes an internaI 

layer, this energy gets transformed from pure tensile 

energy into a combination of compressive energy (radial) 

and sorne residual tensile energy (tangential), but the 

energy of this wrap is still conserved. The question is, 

which energy? 

Pfeiffer [5,6] postulates that it is von Mises' 

distortion energy that is conserved rather than the total 

energy stored by the roll stresses r ~s' given by: 

(1.6) 

where ~r has been defined in equation (1.2). The distortion 

energy is def ined as the portion of the total energy 

associated with the a change in shape of a body rather than 

a change in volume. By assuming it i5 conserved, we 
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... obtain: 

'h ~w = ~r ± (~r~t) + ~t' (1.7) 

Note that (±) preceding the middle term is inserted in 

order to accommodate for the situation when or is negative 

and 0t positive, hence resulting in the energy term being 

higher than when or and Dt have the same signe Pfeiffer's 

method [5,6] seemingly tends to reduce the error between 

the locally applied energy, given by equation (1.3) and the 

total energy stored by the roll stresses, given by equation 

(1.6). Upon sUbstituting equation (1. 7) into equation 

(1.4) and making use of the boundary condition ar=O at the 

roll outer radius (which is constantly changing) ; 

Pfeiffer's solution is obtained. 

It is noteworthy that shear stresses are neglected 

sinee the roll is assumed to be symmetrically circular [5]. 

The bending stresses to wrap each layer around the rest of 

the roll are also neglected for most thin-gauge materials. 

However, for thick materials, the energy to bend on a per­

unit-volume basis may be compared with the winding stress 

energy to see if it may be disregarded. Hitherto, 

Poisson's ratio has not been brought into the analysis. It 

will be shown in Chapt ers Two and Three how poisson's ratio 

can be incorporated in the analysis of roll structure. 

Focussing our attention on the method of solution, the 

procedure used i5 to find a winding stress, De' that has an 

energy level equivalent to the local pressure. This is 



( 

( 

achieved by multiplying ~r by (2E t ) and taking the square 

root of the product. I.E. 

(1. 8) 

The distortion energy the ory [6] is then used to obtain von 

Mises' equivalent stress, a' , from the compression 

equivalent stress, ae , and the residual tensile stress, a t , 

as follows: 

a' = (a 2 - a a + a 2) Y, 
e e t t' (1. 9) 

This distortion energy aIl cornes from the winding stress, 

a w' so if a' is set equal to aw and we solved quadratically; 

a
t 

can be obtained, and from that, into equation (1.4) we 

can find r(dar/dr). That is, 

a t = O.S{-ae + (-3a/+4a/)}, 

r(dar/dr) = -Ot - a r , 

(1.10) 

(1.4') 

where (dar/dr) is the rate of change of pressure with 

radius. 

windinq Examples 

The author has managed, making use of the algorithm' 

based on the energy-balance technique that enables us to 

predict the roll structure under a given pattern of wound-

in tension; to produce sorne of the winding examples which 

appeared in a publication by Pfeiffer in 1979 [5]. 

Fig. 1.la shows the variation of radial pressure (in 

, The program in question is DPROL90.bas which is copyright 
December, 1990 by J. David Pfeiffer. 
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! kPa) with radius for a 0.876-m-diameter roll of catalogue 

paper [1). \-Jhereas Fig. 1. lb illustrates the plots of 

residual tension and wound-in tension (both in N/m) versus 

radius for the same catalogue paper roll. The values used 

for Ki' the tangential modulus of the roll, Et, and the 

caliper (web thickness), S, were 2.3 kPa, 4820 MPa and 

5l~m; respectively. 

Although equation (1.1), the basis of the current 

analysis, was developed to fit the non-linear compression 

behaviour of many materials, it may also be used to 

simulate the linear case as weIl if K2 is kept low (in the 

range of about 2 to 5) and the product of Ki and K2 is 

adjusted to equal the linear compressive modulus, perhaps 

from 16 to 100 times smaller than the tensile modulus [5}. 

And, hence, a comparison of centre-winding with linear and 

non-linear moduli can be made, and it is shown in Figs. 

1.2a,b and 1.3a,b; respectively. In the f irst set of 

figures pertaining ta the Iinear rnodulus, Ki and K2 were 

86,125 and 3.5, respectively. Whilst for the non-linear 

case, the constants were Ki =206.7 and K2=190. For both, the 

tangential modulus of the roll was 4820 MPa and the web 

thickness 25.4 ~m. Figs. 1.2a and 1.3a illustrate how the 

radial pressure varies with radial ratio, whereas Figs. 

1. 2b and 1. 3b represent the variation of residual and 

wound-in tensions with radial ratio. The plots are 

actually four cur.ves drawn on top of each other, 
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demonstrating a build-up ratio af 1.5, 2, 2.5 and 3 fram 

the core. 

16 



a. 

b. 

100 

SOO 1 
/ 

'00 / 

~ / 
400 

~ JOO 

'00 

100 

o 2 o 4 

RlIdlus . 

600 

500 

400 

~ 

~ 300 

, 
0 

t 200 

~ 

100 

0 

-100 
o 2 o 4 

Ood' 

Fig. 1.1: Plots of radial pressure, residual tension 

and wound-in tension versus radius for a 

O.876-m-diameter roll of catalogue paper, 

energy-balance solution. 
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for a centre-wound roll with a linear 
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EXANINATIOH OF CORE BPPBCTS 



2.1 INTRODUCTION 

Core characteristics play an important raIe in 

influencing the internaI stresses of wound raIls. Hence, 

a clear understanding of the behaviour of the core materi~l 

properties is paramount ta predicting the effect of the 

core on the inter-layer pressure and wound-in tension of 

wound raIls of, for instance, paper. 

In this chapter, a detailed investigation of how the 

core affects the roll rnaterial is provided. An attempt at 

predicting the effective elasticity modulus of the core 

material in the core-roll winding system is made, and the 

theoretical predictions are verified by a finite-element 

model. A thorough study of th5ck-walled cylinder theory is 

presented in the endeavour to pave the road for a clear 

understanding of lts applicability to the problem at hand; 

namely, investigating the core effects on wraps of wound 

material in core··roll winding systems. 

21 



~----------- --

( 2.2 THI LXNBAR STACK MODEL 

2.2.1 Backqround 

The firs. step taken in the endeavour to clearly 

understand the core material effects on the wound roll was 

ta model the core-roll combination as a stack of sheets. 

The stack model is a linear model principally consisting of 

planar sheets layered horizontally one on top of the other 

(refer to Fig. 2.1). This linear-planar model obviously 

excludes any regard:; to the actual axisymmetric geometry of 

the core structure and, thus, provides only a rough 

approximation, at best, to the actual behaviour of the core 

material. 

Initially, some certain percentage of the total number 

of sheets making u~ the stack model, say 99 percent, is 

taken to behave like the core material in q!lestion. The 

remainder is ta have the properties of the material being 

wound round the core. Thereafter, each layer having the 

core properties is stripped and replaced by the winding 

material. This process is successively continued until aIl 

of the roll material sheets replace the core material. 

2.2.2 The Mathematic.l Model 

The mathematical equations governing the subject model 

can be developed from the basic equation describing the 

non-linear behaviour of paper [1, 2,5]; viz., 
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.' p = -K1 + Kl exp (K2 € r) , (2.1) 

where, P = radial stress, Pa or psi, 

Kl = pressure relation multiplier, Pa or psi, 

K2 = basic springiness factor, dimensionless, and 

tr = compressive strain, dimensionless. 

By algebraically manipulating the previous equation we 

get, 

(2.2) 

and further using a, a fraction of unit y (noting here that 

unit y is the total sheet stack height), to designate the 

portion of the layers experiencing direct core effect (i.e. 

sheets having core material properties) and the fact that 

B=l-a (see Fig. 2.1), equation (2.2) th en becomes; 

La = {B/K2}*ln(P/Kl + 1), 

LB = {(1-a)/K2}*ln(p/K1 + 1), (2.3) 

where LB is the fractional change in height of the wound-

material-like sheets, and is dimensionless. Similarly, 

using La to denote the fractional change in height of the 

sheets having the core material properties, the equation 

used to define La is; 

where Ec is the modulus of elasticity of the core material, 

in the same units as P. 

Then, the total strain of the entire sheet-stack 

arrangement, e, will be 
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e = La + L/3' 

e = a*p/Ec + {[ (l-a) /K2] In(P/K I + 1) }. (2.5) 

Equation (2.5) deseribes the total strain of the two­

component model as a funetion of the radial stress, modulus 

of elastici ty of the core, respective heights of the wound­

material and core-like sheets and, KI and K2 pertaining to 

the wound-roll material. Thus, knowing an initial pair of 

values for KI and K2 of the wound material, and the 

stiffness or modulus of the core, Ec, the stiffness of the 

two-part stack can be determined for a specifie range of 

pressure values. The new relation between strain and 

pressure is then used to determine a new set of KI and K2 

values depending upon a and the relative amount of eore 

material ineluded. 

2.2.3 Bxamples and Conclusions 

In this sub-section we shall use the results of 

analysing three particular cases to draw conclusions so as 

to establish whether the linear stack model is a viable 

approach to accurately predicting how the stiffness of the 

core determines how much support it will of fer for the 

initial wraps of web material. 

Case One 

The f irst case has the fo' lowing roll and core 

material properties: 
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1 

2 

Roll; 

Etangential = 600,000 psi (4.134 GPa) , 

Eradial(P) = 1060*P - O.153*P2
, in psi, 

= 1060*P - (2.22x10-s )*P2, in Pa, and 

poisson's ratio, ~ = o. 

Core; 

Ecore = 890,000 psi (6.132 GPa). 

Case Two 

As case one except for; 

Eradial (P) = 124*P, in psi or Pa. 

Case Three 

AlI properties as in case one except for; 

Ecore = 8,900,000 psi (61.32 GPa). 

For each of the above cases, since we have the radial 

elasticity modulus defined as a function of pressurel, we 

can write a simple routine to compute the strains as a 

function of pressure, too. The strain-pressure values thus 

obtained car. then be input into another routine2 which uses 

equation (2.1) as the basis for determining, by way of re-

iterative computations, the best pair of KI' K2 values for 

the particular situation under consideration. This pair of 

The polynomial representation of Er is the form used for 
handling the non-linear compression in the Hakiel model 
solution [15]. 

written by J. D. Pfeiffer. 
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K" K2 values, which we shall calI the initial pair, is 

thence used in equation (2.5) with the appropriate 

substitutions for Ec' Cl and a suitable range of P valuesj 

to compute the total strain of the entire sheet-stack 

arrangement. 

Recalling that, in essence, the linear stack model 

constitutes the replacement of a sheet with sorne initial K" 

K2 values with one having Kl' K2 values determined from 

equation (2.5), the above-described procedure may be 

continued to find a pair of K" K2 values corresponding to 

a certain Cl. Thus, continuing in this fashion one can put 

forth a prediction of how K, and K2 vary with Q. In other 

words, we should be able to know how quickly the core 

effect fades away. 

The K" K2 values corresponding to specifie values of 

Q obtained from the aforementioned calculations are plotted 

for the three cases under investigation (see Figs. 2.2 & 

2.3) • The numerical values are then used in a least-

square-curve-fitting technique to come up with an equation 

that best describes the relationship between K" K2 and Q. 

It was found that best fit between K, and Q, and K2 and Q 

may be represented hy an exponential equation of the form, 

y = A*exp(B*X) - C, 

where, y represents K, or K2' 

X represents Q, and 

(2.6) 

A, Band C are empirically determined constants. 
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Table 2.1 contains values for A, Band C for the three 

examined cases for both K, versus Q, and K2 versus Q. 

It becomes apparent, after the careful examination of 

the graphs and equations describing the relation between K, 

and Q, and K2 and Q; that the linear stack model does not 

provide us with an adequate understanding of how the core 

effects tend to influence the wound material. This is true 

since it is noticed that as more roll material is added, 

the effect of the core does not fade away as quickly as one 

would intuitively expect. Moreover, the high degree of 

empiricism associated with arriving at equation (2.6) 

precludes one from expanding the results ta more universal 

situations. This, indeed, is also due to the somewhat 

severe restrictions on the chosen model from the standpoint 

of the actual geometry pertaining to the core-roll system. 

We are therefore forced to abandon the linear stack model 

used hitherto and, endeavour to venture with an 

axisymmetric model . 
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Table 2.1: Surnmary of the numerical results for three 

particular cases, using the Linear Stack 

Model. 

K1 - A*exp(B*a) - C -
A B C 

Case One 0.496088 1. 34672 -0.583601 

Case Two 0.101059 2.17807E-02 -1. 30718E-05 

Case Three 5.10060E-02 1. 02927 -0.584226 

K2 - A*exp(B*a) - C -
A B C 

Case One 10518.4 0.268348 6855.35 

Case Two 528.873 0.943581 3.69185 

Case 'l'hree 4626.75 0.876170 283.030 
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a = portion of layers experiencing direct 

core effec~s and 

B = remaining portion eXhibiting wound-

material-like properties. 

Fig. 2.1: The Linear Stack Model of the core mater ial. 
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Fig. 2.2: Graph of KI versus a for three particular 
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obtained from equation (2.6) of the Linear 

stack Model. 
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stack Model. 

31 



( 

( 

2.3 THE AXISYMHETRIC MODEL 

In an attempt to improve upon last section' s findings 

we shall, thenceforth, modify the hitherto-studied model to 

include in the analysis the true geometry of the core-roll 

system. Thus, an axisymmetric model will be used to 

simulate the core-roll system. However, we shall continue 

our analysis, at this stage, to consider materials 

exhibiting isotropie behaviour. That is to say, that the 

material parametersi viz., Poisson's ratio, ~, and 

elasticity modulus, E, are the same in aIl directions. 

I. E., ~rt=~tr and Er=Et, where rand t represent the radial 

and tangential directions, respectively. The subscripts 

used in the notation pertaining to Poisson's ratio 

character ise a dimensional decrease in the direction of the 

second subscript during tension in the direction of the 

first subscript. Hence, in studying the isotropie 

condi tion, i t should be apparent, whether J..I. and E are 

subscripted or not, that equivalence of the material 

parameters in both the radial and tangential directions is 

presumed. 

The resul ts procured from the analysis in this section 

are pU"'caly analytic, and the identity between the two 

approaches undertaken here on, the thick-walled cylinder 

analysis and the press-shrink-fit model, will be verified. 

An equation for predicting the effective core elasticity 

modulus for a hollow isotropie core is derived. 
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2.3.1 Thick-Walled cylinder An.lyais 
.. 

stresses in Thick-Walled cylindera 

A thick-walled cylinder subjected to external or 

internaI pressure, or both, has radial and tangential 

stresses with values which are radius-dependent. A thick­

walled cylinder may also be stressed longitudinally. In 

determining the radial and tangential stresses we make use 

of: the assumption that the longitudinal elongation is 

constant around the circumference of the cylinder, i.e., a 

right section of the cylinder remains plane after 

stressing. 

Referring to Fig. 2.4, we designate the inside radius 

of the cylinder by a, the outside radius by b, the internaI 

pressure by Pi' and the external pressure by Po' sections 

of the cylinder must satisfy global static equilibrium 

requirements. Thus, considering the equilibrium of a thin 

semicircular ring cut from the cylinder at radius rand 

having a unit length (see Fig. 2.4); and setting the 

summation of forces in the vertical direction equal to 

zero, we have 

(2.7a) 

by further simplifying equation (2. 7a) and neglecting 

higher order quantities, we obtain the familiar form 

commonly referred to as the hoop stress equation; viz., 

(2.7b) 
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where; Ut = tangential stress, in Pa or psi, and 

ur = radial stress, in Pa or psi. 

Defining Pt and Pc to be equal to Ut and -ur' 

respectively, equation (2.7b) may be re-written 

equivalently as; 

Pt + Pc + r(dPc/dr) = 0, (2.7c) 

which often appears in the literature. 

We wish to obtain general expressions for Ut and ur as 

functions of a, b, Pi and pO. Equation (2.7b) relates two 

unknowns Ut and ur' but we must obtain a second relation in 

order to evaluate them. The second equation is obtained 

from the assumption that the longitudinal deformation is 

constant. Hence, for the triaxial state of stress under 

consideration, the longitudinal prinGipal strain will be: 

(2.8a) 

where, el = longitudinal principal strain, dimensionless, 

~ = Poisson's ratio, and 

E = modulus of elasticity of the cylinder, Pa or 

psi. 

(N.B. Both, the tangential and radial stresses, are 

positive for tension.) 

Proceeding with our objective of finding general 

expressions for Ut and ur' we notice that equation (2.8a) 

can be rearranged, since el' ~ and E are constants; in the 

form 

(2.8b) 
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where Cl is a constant. Next solving equations (2.7b) and 

(2.8b) to eliminate Gt produces 

r dGr/dr + 2ar = 2Cl . 

Multiplying equation (2.9a) by r gives 

r 2 (dGr/dr) + 2ror = 2rcl • 

However, noting that 

d(r2ar )/dr = r 2 (dar /dr) + 2rGr , 

d( r20r)/dr = 2rCl · 

Integrating equation (2.11a) gives 

(2.9a) 

(2.9b) 

(2.10) 

(2.11a) 

r20r = r 2cl + C2 , (2.11b) 

where C2 is a constant of integration. Solving for Gr from 

equation (2.11b) we obtain, 

Gr = Cl + (C2/r
2 ). (2.11c) 

Substituting equation (2.11c) for Gr into equation (2.8b), 

we find 

(2.12) 

In order to evaluate the constants of integration Cl 

and C2, we need to make use of the boundary conditions of 

the cylinder. The boundary conditions are; 

Gr = -Pi at r = a, and 

Gr = -Po at r =b. 

Substituting these boundary conditions into equation 

(2 .11c) yü~lds; 

-Pi = Cl + (C2/a2), 

-Po = Cl + (C2/b
2). 
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The constants Cl and C2 can be found by solving 

equations (2.13a) and (2.13b) simultaneously. This gives 

Cl = (Pia2 - Pob2) / (b2 - a 2), (2.13c) 

C2 = a 2b2 (po - Pi)/(b2 - a 2). (2.13d) 

Substi tuting the previous expressions for Cl and C2 into 

equations (2.11c) and (2.12), yields the sought general 

expressions for Gt and Gr as functions of a, b, Pi and Po; 

namely, 

Pia2 -p,j)2-a 2b 2 (Po -Pi) 

r 2 (2.14) o -e (b 2-a 2) 
and, 

(Po -Pi) 
Pia2 -p,j)2+a 2b 2 

r 2 (2.15) a = r (b 2-a 2) 

Equations (2.14) and (2.15) make possible the 

determination of the stress state inside a thick-walled 

cylinder subjected to external and/or internaI pressures. 
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Fig. 2.4: Elements in a thick cylinder. 
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A Partieular Case: An Isotropie Hollow Core 

The thick-walled cylinder theory is applied to 

simulating the stresses and stiffness of the core material 

in the core-roll winding system. Hence, the resul ts 

obtained from the thick-walled cylinder analysis will 

justifiably apply towards solving the issue of concern; 

namely, developing an analytic equation for predicting the 

effective elasticity modulus of an isotropie, hollow core. 

Fig. 2.5 illustrates a hollow core with inner (hole) 

radius, a, outer radius, b, and uniform core pressure, p, 

developed by the wound-roll material surrounding the Gore. 

Denoting the change in radius of the hollow core by à and, 

the tangential strain of the core outer surface (at r=b) by 

et we have, 

et = change in circumference/original circumference, 

or 

et = {2"(b+à) - 2"b}/2"b, 

et = à/b, 

Il = be t • 

However, 

(2.16) 

(2.17) 

where /J .,tnd E are the core' s Poisson' s ratio and elastici ty 

modulus, respecti vely. D't and D'r' at the core outer 

surface, can be obtained from equations (2.14) and (2.15). 

SUbstituting r=b, Pi=O and Po=P into the latter equations, 

gives 
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Furthermore, substituting for 0t and or into equation (2.17) 

and subsequently into equation (2.16), we will get 

(2. lB) 

where the minus sign indicates that the deflection is 

inwards. Equation (2.18) may be rearranged to read, 

(2.19) 

where, a = a/b = radial ratio, dimensionless. However, 

-bp/â = pl-et = Eeff , (2.20) 

where, Eeff = the effective modulus of elasticity of the 

core material, in Pa or psi. 

We can now write, using equations (2.19) and (2.20), 

a relation expressing the effective elasticity modulus for 

an isotropie core material, Eeff , in terms of only the 

radial ratio and core material elasticity parameters. The 

relevant equation is, 

(2.21) 

where, J.I. = Poisson's ratio of the core material, and 

E = core material elasticity modulus, in Pa or psi. 

(N.B. It is not necessary to specify in which direction the 

material parameters are measured since they are equivalent 

in aIl directions for an isotropie material, which is what 

we are dealing with here.) 
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Fig. 2.5: A hollow core. 
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Fig. 2.6: Press-shrink-fit model. 
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2.3.2 Press-Shrink-Fit Model 

The hollow core of Fig. 2.5 may equally be analysed as 

a press-shrink-fit model (see Fig. 2.6). Referring to the 

latter figure, the two-element model has three boundaries, 

the outer and inner radii, and the inside hole radius. 

Physically, the inside hole and the inner member 

identically represent a hollow-core situation, whereas the 

outer member represents the wound roll material surrounding 

the core. In Fig. 2.6, we designate the hole radius by a, 

the inner member radius by b, the outer member radius by Ci 

and the pressure developed by the interference fit, which 

acts uniformly on the interface between the two members, by 

the symbol p. (N.B. External pressure=O, in this case.) 

Moreover, the radial deformation, at the interface of the 

boundary b, of the inner member from unloaded to loaded 

shape using its effective modulus is denoted by the symbol, 

ô. 

Employing the boundary conditions for the inner 

members at the ccntact surface, r=b, which are obtained 

from equations (2.14) and (2.15), respectivelYi viz.: 

Gt = -p(b2+a2)/(b2-a2 ), (2.22a) 

Gr = -Pi (2.22b) 

and applying a similar line of analysis to that of sub-

section 2.3.1.2, we have 

et = tangential strain in the inner member at radius 

b, 
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et = change in circumference/original circumference, 

et = {2n(b+ô) - 2nb}/2rrb, 

=* et = ô/b, 

or, 0 = be t • 

However, since 

et = (at/EL) - (~iar/Ei)' 

then a relation for ô can be found to read, 

o = -pb{(b2+a2)/(b2-a2) - ~i}/Ei' 

(2.23) 

(2.24) 

where the subscript (i) denotes quantities associated with 

the inner member. Continuing with the analysis further, 

equation (2.24) can be re-written to express the effective 

core elastici ty modulus, Feff , in terms of the radial ratio, 

a=a/b, and core material properties, E and~. I.E., 

Eeff = E/{(1+a2)/(1-a2 ) - ~}, (2.21) 

where aIl the notation of equation (2.21) is identical to 

that of sub-section 2.3.1.2. 

It is clearly apparent that the expression for the 

effective core elasticity modulus (equation (2.21» 

obtained through the thick-walled cylinder analysis and the 

press-shrink-fit model is identical in aIl respects. 
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2.3.3 concludinq Remarks pertaininq to The Axisymmetric 

Model 

Equation (2.21) , relating the effecti ve core 

elasticity modulus to the radial ratio and isotropie 

material parameters of the core material, that is, 

(2.21) 

may be re-arranged; if we define a quantity, the modular 

ratio, denoted by Re to be the ratio of the effective core 

elasticity modulus to the core material elasticity modulus 

in the tangential direction; i. e. Re=Eett/Et. Equation 

(2.21) thus becomes, 

(2.25) 

Equation (2.25) states that as the radial ratio, a, 

decreases the modular ratio, Re' increases for a particular 

isotropie core material. In addition, defining the core 

thickness ratio, denoted by B, to be (l-a), then as B 

inereases the modular ratio, Rer increases too. In 

particular, if a~l (or B~O), then the modular ratio is 

expectto!d to approach zero. Conversely, if a~O (B~l), 

corresponding to a situation where we have a solid corei 

then the modular ratio shoots up. Indeed this statement is 

physically sound; since the thicker the core material is, 
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the stiffer it becomes and, vice versa. Figs. 2.7 and 2.8 

depict graphically how Re varies wi th a and B, 

respectively. Four materials were examined: 

(a) aluminium havinq the following properties, 

E = 70967 MPa, and 

J.I. = 0.334; 

(b) carbon steel having material properties, 

E - 206700 MPa, and 

J1. = 0.292; 

(c) same as (a) except for J1. = 0; and 

(d) same as (b) except for J1. = o. 

It is worthy of note that Re versus a and Re versus B 

curves coincide when the Poisson's ratio is equal to zero. 

Thus indicating that failure to include the Poisson's ratio 

effect in estimating the effective core material elasticity 

modulus will ultimately lead to erroneous results. 

Besides, it is important to note that the Poisson's ratio 

actually acts to stiffen the core against deflection from 

external pressure. 
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( 2.4 FINITE-ELEMENT ANALYSIS OF THE CORE-ROLL SYSTEM 

2.4.1 Backqround 

A new investigation is undertaken to find out how the 

core stiffness affects the roll body at various radii. A 

fini te-element package, l -DEAS™ of Structural Dynamics 

corporation running on a Hewlett-Packard 350 workstation, 

was used to model and analyse the core-roll system. Due to 

the symmetry of the model under study, only a quarter of 

the two concentric cylinders representing the core-roll 

system, need be utilised for analysis. To structurally 

simulate the actual physical behaviour of the core-roll 

system, the finite-element model is allowed to freely move 

horizontally and vertically (see Fig. 2.9), however, the 

centre of the quarter circle is fixed for aIl translations 

and rotations in order to ensure that the structure will 

not cruise along a particular direction, hence, causing it 

to be statically unstable. (It is worthwhile noting that 

negligence to make certain that the static stability 

condition is satisfied will undoubtedly lead to incorrect 

results from the finite-element analysis.) 

AlI elements of the finite-element model were analysed 

as isotropie, thin-shell, quadrilateral or triangular 

elements where applicable. Three main cases were studied. 

Below is sorne detailed account of each one. 
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positional restraint 

b = core outer radius, 

d = roll outer radius, 

ub = radial deformation at b, 

ud = radial deformation at d, and 

p = test pressure. 

Fig. 2.9: Finite-element model used to find radial 

deformations at core/roll interface and at 

roll outer radius under linear isotropie 

conditions. (Circles indicate 

frictionless constraint at edges.) 
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Fig. 2.10: Diagram of core and roll model. Radial 

deformations ud and ub are measured at roll 

outer radius and core outer radius, 

respectively. (Radial ratios are: cl=ajb; 
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2.4.2 The Hollow-Core Finite-Element Model 

Here, the model consisted of a 1"(2.54 cm)-radius hole 

surrounded by a core material having the following 

properties: modulus of elasticity = 30,000,000 psi (206.7 

GPa) and, Poisson's ratio = 0.292. ( For geometry and 

fini te-element mesh for the hollow-core model see Fig. 

2.11.) 

The radial deflection at the exterior surface of the 

core, ub' was obtained for: 

(i) uniform exterior pressure of 100 psi (689 kPa) applied 

at outer core radius 2.5" (6.35 cm); and 

(ii) uniform exterior pressure of 120 psi (826.8 kPa) 

applied at outer core radius 2.5" (6.35 cm). 

The lâtter case was done so as to examine the effect 

of increasing the external pressure, that is to say, 

emulating having more wraps of roll material as in the 

actual core-roll system; on the radial deflections of the 

core material at the core exterior surface. 

The core radial deflections at the exterior core 

surface, u b ' obtained from the finite-element analysis are 

compared with those computed from equation (2.18) or (2.23) 

previously developed using the thick-walled cylinder 

analysis and press-shrink-fit mOdel, ~espectively. Table 

2.2 shows details of the num~rical results obtained for the 

aforementioned cases. Examination of Table 2.2 reveals 

that the ub values procured analytically and by finite-
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( element analysis are in good agreement. 

( 
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a = core inner radius (hole radius), 

b = core outer radius, 

Ub = radial deformation at b, and 

p = test pressure. 

Fig. 2.11: Geometry and finite-element mesh for the 

hollow-core model. 
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Table 2.2: Comparison of thick-walled cylinder the ory 

and finite-element analysis results for a 

hollow core. 

Core material parameters: 

i. 

* 

elasticity modulus = 30,000,000 psi (206 GPa), 

Poisson's ratio = 0.292, 

hole radius = 1" (2.54 cm). 

Core outer radius, b = 2.5" (6.35 cm) 

Uniform external pressure applied at exterior core 

surface, p = 100 psi (689 kPa) 

Thick-Walled Cylinder Theory Results 

Ub Eeff = p*b/ub 

..ûJ:ù. 19n1. (psi) (GPa) 

-9.0746*10-6 -2.3049*10-5 27,549,423.67 189.81 

* Finite-Element Analysis 

Ub Eeft = p*b/Ub 

.ûnl l.9!ù. (psi) (GPal 

-9.076*10-6 -2.305*10-5 27,545,174.08 189.79 
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Table 2.2 continued. 

ii. Core outer radius, b = 2.5" (6.35 cm) 

Uniform external pressure applied at exterior core 

surface, p = 120 psi (826.8 kPa) 

* Thick-Walled Cylinder Theory Results 

Ub Eeff = p*b/ub 

.tinl 1..çml (gsi) (Gpa) 

-1. 0889*10-5 -2.7658*10-5 27,550,739.28 189.82 

* Finite-Element Analysis 

Ub Eeff = p*b/ub 

.tinl l.çjnl (Qsi) (GPa) 

-1. 089*10- 5 -2.766*10-5 27,548,209.37 189.81 

N.B. Minus signs represent inward deflections. 
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2.4.3 The Sol id-Core Finite-Element Model 

Fig. 2.12 illustrates the geametry and finite-element 

mesh generated for the analysis of the sol id-core model. 

Here, the core material had the properties shown belaw: 

elasticity modulus = 100,000 psi (689 MPa) and, Poisson's 

ratio = O. 05. A single run was executed, that for a 2.5" 

(6.35 cm) salid core to whose exterior surface a uniform 

external pressure of 100 psi (689 kPa) was applied. Again, 

the finite-element results for the radial deflections at 

the core exterior surface were compared wi th those obtained 

from equations (2.18) or (2.23); and they were faund to be 

in very good agreement (refer to Table 2.3). 
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b 

~ositional restraint 

b = core outer radius, 

Ub = radial deforrnation at b, 

p = test pressure. 

Fig. 2.12: Geornetry and finite-elernent rnesh for a 

solid core model. 
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Table 2.3: comparison of thick-walled cylinder theory 

and finite-element analysis results for a 

solid core. 

Core rnaterial parameters: 

elasticity modulus = 100,000 psi (689 MPa) 

Poisstn's ratio = 0.05 

Core outer radius, b = 2.5" (6.35 cm) 

Uniforrn Lxternal pressure appli~d at exterior core 

surface, p = 100 psi (689 kPa) 

* Thick-Walled Cylinder Theory Results 

Ub Beff = p*b/Ub 

Cini 1.çml (psi> (GPa) 

-2.375*10-3 -6.0325*10-3 105,263.16 725.26 

* Finite-Element Analysis 

Ub Beff = p*b/ub 

ilnl 1.gl 1ru;il (GPal 

-2.375*10-3 -6.0325*10-3 105,263.16 725.26 

N.B. Minus signs represent inward deflections. 
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2.4.4 The Solid Core-Roll Composite MOdel 

This particular investigation was intended to 

demonstrate how a core of specifie material pararneters 

influences the layers of the roll rnaterial, being wound 

around the core, at various radii. The geornetry and 

finite-elernent mesh generated for this model are shown in 

Fig. 2.9. 

In this model, the core material of radius 1" (2.54 

cm) had material parameters as follows: elasticity modulus 

of 30,000,00U psi (206.7 GPa), and Poisson's ratio of 

0.292. Whereas the roll material having the parameters: 

elasticity rnodulus = 100,000 psi (689 MPa), and Poisson's 

ratio = 0.05; was simulated as being wound around the core 

ta outer radii 1.5", 2.5", 3", 3.5" and 4". Each of these 

outer radii constituted an individual run (the core 

material properties being the same at aIl runs) where an 

exterior uniform pressure, p, of 100 psi (689 MPa) was 

applied at the exterior surface of the roll. The finite­

element model was used ta find radial deformations and 

stresses at the core/roll interface and at the roll outer 

radius. Radial strains and equivalent roll material moduli 

at the roll exterior surface cou Id then be cornputed. The 

numerical results thus obtained are presented in Table 2.4. 

It is evident from the finite-element analysis results 

that the rate of change of the effective roll rnodulus with 

radius is rernarkably low. This could be attributed to the 
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fact that the hardness of the core does not change the 

hardness of the wound layers that layon the core as in 

winding, where the layers of the roll that have been wound 

on harder substrata are yet harder themselves. This is 

contrasted by the behaviour of a block of passive rnaterial 

exposed ta an external pressure, in which the eJasticity 

modulus of the material does not vary as in the case of 

winding on bands of web wi th initial tension due to a 

winding stress, Gw' coming in the web. 

Therefore, we here conclude our analyses of the 

var ious models sirnulating an is.:>tropic core material, 

hollow and solid; being part of the core-roll winding 

system. We shall, thenceforth, direct our attention to 

investigating anisotropie core rnaterials. 

'1 
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Table 2.4: Finite-element results for a solid core-roll 

composite model. 

Solid core: 

core radius, b = 1" (2.54 cm) 

elasticity modulus = 30,000,000 psi (206.7 GPa) 

poisson's ratio = 0.292 

Roll material: 

elasticity modulus = 100,000 psi (689 MPa) 

poisson's ratio = 0.05 

Uniform exterior pressure applied at outer roll radius, 

p = 100 psi (689 kPa) 

Outer Roll Radius, d ( in) 

.1 3.5 1. 2.5 1.5 

ud (in) -3.373 -2.845 -2.303 -1. 744 -0.566 

( x10·3) 

ed=ud/d -8.432 -8.128 -7.677 -6.976 -3.773 

(X10· 4) 

Or (psi) 180.3 177. 4 173.2 166.5 135.9 

Eeff=pd/ud 118589 123023 130265 143349 264018 

(psi) 

N.B. 1 U -rad1al d deflect10n at exterlor roll surface 

ii) Eeff=effective roll modulus at exterior surface, 

iii) Gr=radial stress at core/roll interface, and 

iv) minus signs represent inward deflections. 
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2.5 THE ANISOTROPIe HOLLOW-CORE MODEL 

Thenceforward, we shall introduce to our analysis the 

fact that the core material exhibits anisotropie behaviour. 

That is to say, the core material's elastic properties are 

different for different directions. In particular, we 

shall model the hollow core as a plate having the shape of 

a eùmplete eircular coneentrie ring with eylindrical 

anisotropy. Our ultimate ryoal is to deri ve an analytie 

equation describing the efl:ecti ve elastici ty modulus for 

anisotropie core materials. 

In the endeavour to offer a detailed analysis of the 

anisotropie hollow-eore model, we shall first indulge in 

explaining the definitions, symbolism and theory assoeiated 

with eurvilinear anisotropy and the analysis of a 

generalised plane stress problem for a body possessing 

cylindrieal anisotropy. This should hopefully provide a 

clear perception of how the generalised plane stress 

approach for a body with eylindrical anisotropy ean be 

applied to the hollow-core model. Thereafter, we shall 

further allow the wound-on material to exhibit anisotropie 

behaviour, and make deductions thereupon. 
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2.5.1 curvilinear Anisotropy 

In the study of stresses and deformations in elastie 

anisotropie bodies, we will eonsider, on the basis of a 

generally aecepted model [57, 61, 65], that the elastie 

body is a eontinuous medium. 

A homogeneou3 anisotropie body, also said to be 

reetilinearly-anisotropie, is characterised by the 

equivalence of parallel directions passing through 

different points of the body. In contrast, however, 

curvilinear anisotropy is eharaeterised by the tact that in 

such a body eC'-!Ï'Jalence is not found in parallel directions 

but follows sorne other directions. Choosing a system of 

curvilinear coordinates in sueh a rnanner that coordinate 

directions coincide with equivalent directions at different 

points of the body, th en infini tely small elements of the 

body, which are delineated by three pairs of coordinate 

planes, will possess identical elastic properties. 

Conversely, the elastic properties of elernental reetangular 

parallelepipeds with rnutually parallel sides will not be 

identical. The number of possible types of curvilinear 

anisotropy is unlimited. However, we will limit ou- study 

to cylindrical anisotropy whieh indeed reflects the 

material behaviour of the hollow-core model under 

investigation. 

The axis of anisotropy, whiet can pass ei ther 

externally or internally, is represented by a straight 
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line, g, in the body with cylindrical anisotropy (see Fig. 

2.13) • AlI directions which cross this axis at right 

angles are equi valent. AlI directions parallel to the 

anisotropy axis, as weIl as those orthogonal te the latter 

are also equivalent. AlI infinitely small elements Al' A2 , 

cut from the body by three pairs of surfaces: (a) two 

planes passing through the axis of anisotropy; (b) two 

parallel planes normal to g and (c) two concentric 

cylindrical surfaces with the axis which coincides with 9 

(Fig. 2.13); aIl such elements have identical elastic 

properties. 

It would be pr'..ldent as weIl as convenient to use 

cylindrical coordinates; r, e, z, during our analysis of 

the problem at hand, with the z-axis coinciding with the 

axis of anisotropy, g, and with ~n arbitrarily chosen polar 

axis, x, from which angle a is measured. 

The equa ions of the generalised Hooke 15 law for a 

body with cylindrical anisotropy of the general type 

without any elastic symmetry are: 

e r = allGr+a12oe+a130z+a141ez+alS1rz+a161re' 

ee = a12Gr+c:l22oe+ ............... +a261 re' 

e z = a13Gr+a230e+ ............... +a361 re' 

Yez = a 14Gr +a24oe+ ............... +a461 re' (2.26) 

Yrz = alSGr+a2soe+ ............... +aS61 re' 

Yre = a16Gr+a26oe+ ............... +a66 1re' 
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In equaticns (2.26), Er' Ee, Yre are the components of 

deformation; or' Ue' Tre are the stress components on 

planes normal to coordinates r, e, z of the cylindrical 

system, and the coefficients a ij iesignate the elasticity 

constants (which are usually expressed in terms of 

elastici ty parameters) [57, 65]. 

Above, we have adopted the commonly used notation to 

designate each normal stress component by U with a 

subscript indicating the direction of the normal to the 

plane, and consequently, the direction of the cornponent 

itself. Further, each tangential cornponent is designated 

by T with two subscripts, the first one indicating the 

direction of the component, and the other, the direction of 

the normal to the plane. As for the components of 

deformation, e is used, with the appropriate subscript, to 

designate relative elongations for the directions r, e, Zi 

and y, with two subscripts, to designate three relative 

shears. The number of independent constants in equations 

(2.26), in general, is 21. Different types of elastic 

symmetry are possible for a b<.\dy with cylindrical 

anisotropy; which will consequently lead to reducing the 

number of independent constants in equatlons (2.26). 
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Fig. 2.13: Elements of a body with cylindrical 

anisotropy. The axis of anisotropy is 

designated by g, and Al and A2 represent 

elements of the body [65]. 
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2.5.2 Generalised Plane stress For a Body Possessinq 

cylindrica~ Anisotropy 

In this sub-section, we will consider the equilibrium 

of a thin prismatic body, a plate, which has a constant 

thickness in the z-direction (see Fig. 2.14) and possesses 

cylindrical anisotroPYi as a result of forces di5tributed 

along the edges and, of body forces. The following, with 

respect to elastic properties, will be assumed: 

1.. the axis of anisotropy, g, is normal to the rniddle plane 

of the plate (the intersection of the axis of anisotropy 

with the middle plane, which i5 frequently referred to as 

the pole of anisotroPY, may be located inside, outside or 

on the edge of the plate), and 

2. each point has a plane of elastic symmetry which is 

normal to the axis of anisotropy (and, consequently, is 

parallel to the middle plane). 

Furthermore, i twill be assumed that the surface and 

body forces are parallel to the middle plane, as well as 

distributed symmetrically relative to this plane and vary 

only slightly with respect to the thickness. The 

deformation will be considered to be small. 

Referring to Fig. 2.14, we have chosen the axis of 

anisotropy to be the z-axis of the system of cylindri.cal 

coordinates r, e, z and, the direction of the polar x-axis 

i5 arbitrary within the middle plane. We shall denote the 

plate thickness by h, and the body forces per unit volu.me 
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( in eoordinate directions r, e, z by R, T, Z, respectively. 

It is worthy of note to recognise that z=o for our plate; 

sinee the faces of the plate are entirely free from applied 

loads (a n~cessary assumption for the generalised plane 

stress situation). In studying the state of plane stress 

it is advantageous, because of the basic assumptions, ta 

introduce the average values with respect ta thickness of 

• 11 1'r 11 11 
the stress components and dlsplacements: Gr' Ge , a z ' T rE> , 

These values are designated as integrals of 

corresponding stresses and displacements taken over the 

thiekness and divided by it; Le., 

h 
"2 

and u;= ~ f uedz . 
-il 

2 
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Moreover, we will also introduce the notation: 

and (2.28) 

where R* and T" are the average values of body forces with 

respect to the! thickness. It is assumed that the body 

forces are derivable from a potential U(r,S), i.e., they 

are determined from formuL3.e 

R* = -au* jI",r, 

T* = -(l/r) (au*/de), (2.29) 

where U* designates the averaged (with respect to 

thickness) potential. 

Similarly, we can obtain the average values, wi th 

respect to thickness, of the c.:>mponents of deformation i € r * , 

€c/, Yre*' which, assuming small deformations, are equal to: 

€ r * = aUr * j ar, 

€e* = (ljr) (aue*laS) + (u/jr), (2.30) 

Yre* = (ljr) (au/ jaS) + (alle* jar) - (Ue* Ir) • 

(N.B. Equations (2.30) are true for any continuous body, 

both elastic and inelastic. Derivations of these equ,-,-tions 

can be found in textbooks on the the ory of elasticity, ego 

[57, 67,68].) 

The equilibrium equations in cylindrical coordinates 
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read, 

(aar/ar)+(l/r) (a1re/ae)+(a1rzlaz)+( (ar-ae) /r)+R = 0, 

(a1 re/ar)+(1/r) (aaelae)+(a1ezlaz)+(21re/r)+T = 0, 

(a1rzlar)+(1/r) (a1ez/dS)+(aaz/dz)+(1rz/r)+Z = o. 

(2.31) 

And the equatians of the generalised Haoke's law (2.26) in 

whieh, sinee we have a case of one plane of elastie 

symrnetrYi the number of independent elastie constants 

reduees ta 13 beeause, 

(2.26) beeorne, 

(2.32) 

y rz = a 4s1 ez +a551 rz ' and 

By averaging (i.e. by rnultiplying by dxjh and integrating 

over the thickness) equatians (2.31) and (2.32); and 

disregarding 0'/, sinee it is negligible campared with 0'/, 
(Je* and 1 ra*' we abtain five equilibrium equations, which 

correspond to the nurnber of unknown functions; namely, 

(aa//ar)+(ljr) (a1 re*jaS)+«(J/-ae*)/r)+R* = 0, 

(aT r8*jdr)+(l/r) (aae*/aS)+(21 ra*jr)+T* = Oi 
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The equation of compatibility may be obtained by 

eliminating the displacements from equations (2.30); 

namely: 

(o2Er*joe2)+r(02(rEe*)jar2)-(o2(rYre*)joras)-

r(at/jar) = o. (2.35) 

The equilibrium equations (2.33) are identically satisfied 

by the introduction of a stress function F(r,a) and if we 

set: 

a/ = (ljr) (oFjar)+(1/r2) (a 2Fjae2)+u*, 

ae * = (o2 Fjar2)+u*, 

T re* = -o2(Fjr)jarae, 

(2.36) 

where u* is the (averaged) potential previously encountered 

in equations (2.29). On the basis of the compatibility 

equation (2.35), equilibrium equations (2.34) and (2.36); 

we obtain the differential equation which must be satisfied 

by the stress function: 

a 22 (a 4F/àr4) -2a26 (1/r) (a4Fjor3àe) + 

(2a12+a66) (ljr2) (a4F/or2ae2)-2a16(ljr3) (à 4Flarae 3 )+ 

a 1 l(1/r 4 ) (o4 F jae 4 )+2a 22 (l/r) (a J F/ar 3 )­

( 2a12+a66) (ljrJ ) (a 3Fjorae2) +2a16 (l/r4) (a 3Fjae3)­

all(l/r~l) (a 2Fjàr2)-2(a16+a26) (ljrJ ) (a 2FjoraS)+ 

(2all+2aI12+a66) (i,'r4) (a2F/àe2)+all(ljr3) (àFjàr)+ 

2 (a16+a26) (ljr4) (aFjae) = - (a12+a22) (à 2U* jàr2 ) + 

(a16+a26) (l/r) (o2U*/àraS)-(all-a12 ) (ljr2) (a 2u*/oe2)+ 

(all-2a22-a12) (1/r) (oU* jar) + (a16+a26) (l jr2) (au* / aS) . 

......... (2.37) 
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Due to the considerable complexity of equation (2.37), 

principally, since it contains the derivatives of the 

stress function F of different orders, from the first to 

the fourth; a general expression for F in terms of 

arbitrary functions is excruciatingly difficult to find. 

To the author's best knowledge, general expressions for F 

have only been found using the theory of complex variables, 

for much simpler cases where the differential equation does 

not involve different orders of the derivatives of F, as in 

the cases of isotropie or orthotropic materials [64, 65, 

67]. 

In particular, if the plate with cylindrical 

anisotropy is at the same time also orthotropic, Le., has 

three planes of elastic symmetry a~ each point, of which 

one is parallel to the middle plane, the second passes 

through the axis of anisotropy, and the third is orthogonal 

to the first two, then equations (2.34) can be written 

(N.B. a16=a26=a36=a46=O): 

€r* = (l/Er)Or* - (l-'e/Ee)Oe*, 

€e* = -(J..I.r/Er)Or* .:. (l/Ee)Oe*, 

y re * = (1/ Gre) r r</ ' 

(2.34a) 

here Er' Ee are Young's moduli for tension (compression) 

along principal directions rand 9; J.1. r , /.Le are Poisson' s 

ratio in the radial and tangential directions, 

respectivelYi and Gre the shear modulus which characterises 

the change of angles between principal directions rand 9. 
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The differential equation which must be satisf ied by the 

stress function, equation (2.37), for this case is 

simplified to 

(l/Ee) (a 4F/ar4
) + [(1/Gre)-(2~r/Er)] (1/r2 ) (a 4F/ar 2aa2 ) 

+ (l/Er) (1/r4) (a 4 F/aa4
) + (2/Ee) (l/r) (a 3F/ar 3 ) -

[(1/Gre )-(2J.'r/ Er>] (1/r3 ) (a 2F/arae2) -

(l/Er) (1/r2 ) (a 2Fjar2 ) + 

{[2 (l-I-'r) /Er]+{l/Gre)} (1/r4) (a 2F/ae2 ) + 

(l/Er) (1/r3 ) (aF/ar) = -[ (l-J.'e) /Ee] (a 2u* ja 2 ) -

[{l-~r)jEr] (1/r2) (a 2u*jae2 ) -

{(2/Ee ) - [ (l+J.'r) /Er]} (l/r) (au* far) • 

(2.37a) 

The boundary conditions for given forces at the plate 

edge can be expressed in terms of the first derivatives of 

the stress function (aF/ar) and (aF/ae) at the contour of 

the region occupied by the plate. 

Moreover, by superimposing the directions of axes x 

and y on the principal directions of elasticity for an 

orthotropic plate (see Fig. 2.14), and in the absence of 

body forces; the following homogeneous equation is obtained 

instead of equation (2.37) [70]: 

(1/E2 ) (a 4Fjax4) + [(l/G) -(21-'1/El)] (a 4F/ax2ay2) 

(2.37b) 

where El' ~2 are th~ Young's moduli for tension 

(compression) along the principal directions ){ and Yi G=G12 , 

the shear modulus which ch, .racterises the change of angles 
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between principal directions x and y; and 1J.1 =1J.12 the 

poisson's ratio which characterises the dimensional 

decrease in direction y during tension in directi~n x. 

However, in the case of an isotropie plate in which 

material parameters are equivalent in aIl directions; i.e. 

E1=E2=E, and G=E/2(1+1J.), then equation (2.37b) becomes the 

biharmon1c equation (71]. I.E., 

V2V2 F=O, (2. 37c) 

where V2 is the two-dimensional Laplacian operator: 

V2 = (a 2 /ax2 ) + (a 2/a y 2). 

Expanded, equation (2.37c) is written as: 

(a 4F/aX4) + 2(à 4 F/ax2ay2) + (a 4Fja y4) = o. (2.37C') 

We shall hencef.orth direct our attention to 

determining ".:he stress distribution in an annular plate 

with cylindrical anisotropy which ultimately leads to 

solving the anisotropic hollow-core problem. 
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Fig. 2.14: General situation where generalised plane 

stress is applicable. 
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2.5.3 stress Distribution in an Annular Plate vith 

cylindrical Arisotropy 

AR has already been statrd, the hollow core made up of 

anisotropie material was modelled as an annular plate, of 

certain thickness, h, with cylindrical anisotropy. The 

findings of sub~section 2.5.2 for analysing a body 

possessing cylindrical anisotropy, in a (generalised) plane 

stress situation, will now be applied to determining the 

stress distribution of a plate havintJ the shape of a 

complete circular concentric ring with cylindrical 

anisotropy and compressed along the external and internaI 

surfaces by a uniformly distributed normal load (see Fig. 

2.15) • In considering the elastic 9quilibrium of the 

plate, the anisotropy pole will be taken to coincicle with 

the ring centre. It will further be considered that there 

are no elements of elastic symmetry besides the planes 

which are parallel to the middle plane. By solving this 

problem, we obtain at the same time the solution ta the 

analogous problem regarding the stress distribution in a 

(hollow) core made up of material with cylindrical 

anisatropy subjected to external and/or internaI pressures. 

By having the anisotropy pole (the ring centre) as the 

origin of coordinates, the polar x-axis may be directed 

arbitrarily (see Fig. 2.15). In reference to the same 

figure, we designate the magnitudes of the internaI and 

external pressures per unit area by p and q, respectively, 
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the internaI and external plate radii by a and b, and the 

radius to a point inside the plate by r. Assuming that 

u*=o and using a stress function F, independent of polar 

angle a (since the plate is axisyw~etric), which reads 

F = A + Br2 + cr1+k + Dr1- k , 

(2.38) 

where A, B, C and 0 ure c~nstants (to be determined from 

the boundary conditions) ~~d, 

k = anisotropy ratio, 

(2.39) 

Er and Ee are Young's moduli for tension (or compression) 

in the radial and tangential directions r and a, 

respectively. Upon so doing, the stress components 

(averaged relative to thickness) are expressed by stress 

function F, of formulae (2.36), where U* =0. Function F 

satisfies equation (2.37), where again u*=O. We are now 

able to determine the stress components, Gr' Ge' Tra • They 

are: 

G
e
= (pCk+1_q) k ( I) k-l + (p_qc k-1) kCk+1 ( b) k+l , 

(1-c 2k) b (1-c 2k ) l 

(2.40) 

where, c = a/b = radial ratio. 
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It i s worthwhile mentioning that the stress 

distribution, indicated by equations (2.40), is identical 

for aIl radial cross sections and depends only on the ratio 

of Young's moduli for tension (compression) in the 

tangential and radial directions. 

Displacements of points in the pl ate in the radial and 

tangential directions ur and ua can, hence, be found from 

the generalisecl Hooke 1 s law equations (2.32) for the C"f\se 

of one plane cf elastic symmetry. They are: 

(2.41) 

where Ee and J.l.a are Young' s elasticity modulus and Poisson' s 

ratio, respectively, for principal directions, 9. 
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Fig. 2.15: Diagram illustrating a cross-section of an 

annular plate with cylindrical anisotropy. 

The internaI and external pressures are 

denoted by P and q, whilst a and b are 

used to designate the inner and outer 

radii of the plate. e is the polar angle 

and r represents the radius to any point 

inside the plate. 
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2.5.4 Interpretations , Conclusions 

2.5.4.1 The Bollow-Core Problem: Anisotropie and 

xsotropic Materials 

The theory and analysis of an annular plate with 

cylindrical anisotropy can now be easily used to der ive an 

analytic expression for the effective elasticity rnodulus of 

an anisotropie hollow core under the influence of only 

external pressure, caused by the wraps of roll rnaterial 

wound around the core. Adopting the same notation 

previously irnplernented (refer to Fig. 2.15), Le., q to 

denotc uniforrn pressure at the exterior core surface (the 

internaI pressure being zero) and, a and b to denote the 

inner and outer core radii; the radial deflection at the 

core's exterior surface (at r=b), ur' can now be obtained 

from eqüation (2.41) as 

(2.42) 

where the minus sign signifies that the core radial 

def lection is inwards, as expected. Dividing equation 

(2.42) by b, inverting the resulting equation and, finally, 

multiplying by qi will give an expression for the effective 

core elasticity modulus, Eeff' (note that Eeff=qb/-ur ) in 

terms of the tangential Young's modulus, Ee' radial ratio, 

c, tangential Poisson' s ratio, 1/' and the rnaterial '-0' 

anisotropy ratio, k, defined by relation (2.39). This 
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expression reads, 

Be - . 
k~1+c2k) 
(1-c 2k ) -lJe 

(2.43a) 

It is worthy of note, at this stage, that the assumpt.ion of 

zero pressure on the inter ior of the core presumes that the 

interior wall is unsupported by any other rigid body. If 

there is contact with a stiff inside cylinder, then the 

determination of the exterior deflection becomes more 

complexe Furthermore, the effective core modulus can be 

found from equation (2.43a) provided that Ee and Er can be 

evaluated; which may not always be an easy task, 

particularly in the case of fibre tube cores [26]. 

Defining the modular ratio, Re' to be the ratio of 

effective core elasticity modulus to tangential elasticity 

modulus, i.e. Re=Eeff/Ee, then equation (2.43a) becomes 

(2.43b) 

This relationship is graphed against the radial ratio, 

c=a/b, for linear anisotropie materials with Poisson' s 

ratio of 0.1 and k values of 2, 4 and 8 (Fig. 2.16). The 

highest value of k might be taken as appropriate for a 

model for spiral-wound-paper-tube cores where Ee is on the 

arder of 600,000 psi (4.2 MPa), however this material is 

known ta be non-linear in compression, 50 k will be a 
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" function of pressure [9J. Ostensibly, for linear isotropie 

materials (i. e. k=1) su ch as aluminium or carbon steel, 

equation (2.43b) reduces ta equatian (2.25) 

encountered in sub-section (2.3.3). Fig. 

graphically illustrates relationship (2. 43b) 

previously 

2.17 which 

for linear 

isotropie materials, using Poisson' s ratio of zero and 

0.334; shows that Poisson's ratio acts to stiffen the core 

against deflection from external pressure. Here the 

elasticity rnodulus is increased by roughly 50% when 

poisson's ratio goes from 0 to 0.334. Additional strains 

are produced in the tan~~ntial and axial directions when 

there is a co 1stant Poisson' s ratio. These strains are 

proportional to the radial strain caused by external 

pressure. The n~t effect is to reduee the radial 

de'ormation, which results in a higher effective modulus. 

The rate of change of effective core elastici ty 

modulus with radial ratio, for anisotropie core materials 

with tangential elasticity rnodulus, Ee=k2xEr; is greatly 

reduced as can be surrnised from Fig. 2.16. When the radial 

modulus is low compared to the tangential modulus, a small 

amount of radial deformation will cause inward strains that 

produce like amounts of tangential strain. In the presence 

of a high tangential modulus, these strains will cause 

large tangential stresses, thus eausing the core tube to 

act as props to support the external pressure so it does 

not penetrate deeply into the underlying layers. In Fig. 
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2.16 at radial ratio, ajb=0.80 (wall thickness 20% of the 

outer radius), little if any increase in modulus occurs if 

the wall thickness is increased to 35% (Le. ajb=0.65). 

This shows that it does not pay to add material to the 

inside of the core bpcause li~tle of the external load is 

carried on to the inner layers. 

Equations (2.40), previously derived in sub-section 

2.5.3, predict the distribution of radial and tangential 

stresses inside a core as a function only of geometry, 

anisotropy ratio, k, and the internaI and external 

pressures; namely, 

a -.r 

(2.40) 

't re-a. 

It is interesting to note that these equations do not 

include Poisson's ratio. In the particular case of 

isotropie materials, when k=1, equations (2.40) reduce to 

the known Lamé equations [72j: 

a -r 
(pc 2 _.q) _ (p-q) c 2 ( b) 2

, 
(l-c~) (1-c 2 ) l 
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w'1ere aIl symbols are as defined earlier. The above 

equations are identical to the general expressions for the 

radial and tangential stresses (equations (2.14) and 

(2. 15)) obtained from the thick-walled cylinder theory. 

The stresses within an isotropie hollow core then vary as 

a function of (1/r2), as in the case of a hollow shaft over 

which a hub is press-fit. 
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2.5.4.2 The Core-Roll windinq system: sensinq The 

Presence of The Core Throuqh Layers of Wound 

Material 

Ha'/ing determined the effective core elasticity 

modulus, we next wish to know how the hardness (or 

softness) of the core material will be obscured by the 

build-up of roll material over it. This is necessary in 

order to incorporate the radial variation of the hardness 

effect into a roll windinq model. Intuitively, one would 

expect such a curve of hardness to st art wi th the core 

stiffness modulus at core radius, then chanqe quickly with 

r.adius, and finally end up at many multiples of the roll 

radius with a value approaching that of the roll material 

itself [9]. 

The general arrangement for a two-body core and roll 

material is diagrammed in Fig. 2.10. Referring to the 

latter figure, a and b denote the inner and outer core 

radii, respectivelYi and d denotes the roll outer radius. 

The radial deformations ub (at radius b) and ud (at radius 

d) are caused by the test pressure, p, applied at radius d. 

The radial deformations at radii band d can be determined 

from equations (2.41) provided that the external and 

internaI pressures, q and p, can be established for each 

ring. The boundary conditions for et\ch rinq can then be 

used ta obtain the missinq information in equation (2.41). 

For the inner ring, the internaI pressure, p, is zero, 
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while the external pressure, gbl is that developed at the 

interface when the deformation becomes ub (at r=b). For 

the outer ring the external pressure, g, is the test 

pressure applied 1 and the internaI pressure at the 

interface, Pb' exactly equals qb for the inner ring. Also 

the outer ring 1 s radial deformation at the interface radius 

b is equal to that of the inner ring. Noting that c in 

equation (2.41) applies when r is between a and b (see ri.g. 

2.15), thus for the inner ring cl is used to denote the 

radial ratio and similarly; c2 is used for th~ outer ring. 

Further, the variable b in equation (2.41) refers to the 

outer radius, and hence d should be used in its place in 

the case of the outer ring. By setting the two 

deformations, ubl of the inner and outer rings equal; the 

fOllowing solution is obtained for Pb' the pressure at the 

interface, in response to an external pressure, q: 

(2.45) 

where aIl quantities are as defined earlier. However, 

those quantities subscripted (2) refer to the roll material 

parameters; whereas those subscripted (1) refer to the core 

material parameters. As it is apparent from above, we are 

incorporating the anisotropy effects in both roll and core 

materials. 
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The analytic equations developed thus far for 

predicting the radial deflections at the outer roll radius 

and at the roll/core interface, the pressure at the 

interface and the effective elasticity modulus; based on 

applying the analysis of generalised plane stre~s for an 

annular plate possessing cylindrical anisotropy, can be 

used to compare the results obtained from the finite­

element analysis of the solid core-roll system. The case 

to be studied via the analytic approach is that used for 

the fillite-element model; namely, a solid core with radius 

b=l" (2.54 cm), 6 . 
EE>1 =30x10 ps~ (206.7 GPa), Jo'E>1 =0.292, 

Ee2=100,000 psi (689 MPa), ~e2=0.05, q=100 psi (689 kpa) and 

k1 =k2= 1 (both core and roll materials being isotropie). 

Table 2.5 shows the computed values for the radial 

deformation at the r.oll outer radius, ud' the effective 

roll modulus, E, at the outer roll radius d, the radial 

deformation at the core/roll interface (at radius b), ub' 

and the interface pressure, Pb; each being computed at roll 

outer radii 1.5", 2.5", 3", 3.5" and 4". The close 

agreement between the numerical resul ts of Tables 2.4 

(finite-element output) and 2.5 confirm the accuracy of the 

algebraic solution (equations (2.41)-(2.45». 

The modulus values shown in Table 2.5 are decreasing 

with greater distance from the core, as expected. For 

large radial ratios, it was expected that the asymptote 

would approach the roll material valv~. (It should 
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approach 100,000/(1-~02) = 105,263 psi.) The pressure at 

the core however, keeps rising as the radial ratio grows, 

arriving at approximately 1.8 times the test pressure when 

c2=4 (roll outer radius~4"). This is an artifact of the 

isotropie condition; when winding aetual materials one 

~eldom finds equal radial and tangentjal moduli [9]. 

The analytical approaeh can further be used to solve 

test cases for different anisotropie ratios, and the 

results are plotted in Fig. 2.18. In this figure an 

aluminium core is modelled, having radial ratio, c1=0.80, 

elasticity mOdulus, E01=107 psi, Poisson's ratio, ~01=0.334. 

The roll material's tangential modulus is held constant at 

a value of 600,000 psi, typical both of paper and polyester 

film; whilst the radial modulus is found by dividing this 

value by k2. The latter figllre may seem to be rather high, 

however, one ought to bear in mind that the radial 

Poisson's ratio, ~r2' will be equal to (~02/k2), whieh will 

agree with the range of values typically measured ~~ring 

stack tests of compressible sheet material. 

Fig. 2.18 demonstrates that the ability to deteet the 

presence of a ha rd core by modulus measurements made at the 

exterior surface beeomes aIl but impossible at radial 

ratios of 2.5 or greater, whenever the anisotropy ratio, k, 

is 8 or greater. This is within the normal range of k 

values for [laper and many plastic film materials. The 

range of k from 2 to 8 would apply to plastic film 
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materials with very high radial elasticity modulus, Er' and 

particularly those with low tangential modulus, Es, on the 

order of 150,000 psi. Winding materials having 

Er =Ee=600,OOO psi are harder to find [9]. 

The analysis developed thus far has only enabled us to 

predict in a linear anisotropie material of constant radial 

elasticity modulus, how strongly the core properties can be 

sensed at different distances from the core. Indeed, an 

appreciation of how rapidly the core effect can fade away 

when k is large is given upon examining Fig. 2.18; 

nonetheless, thi~ is not aIl that happens when a roll is 

wound. Thp. initial layers which are added over a hard core 

also present a hard interface to the layers added, because 

of the stiffening effect of the core underneath. It would 

be much too complicated ta develop a predictor equation 

which takes into account the continuous change of the 

anisotropy ratio, k, with radius as more layers are added. 

In Chapter Three, the final one of this Thesis, we 

shall endeavour to make the necessary adjustments for roll 

material stiffness parameters. We shall further 

incorporate su ch adjustments to modify the existing energy-

balance roll structure formulae developed by J. D. Pfeiffer 

[5,6]. 
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Table 2.5: Numerical results obtained from analytic 

equations (2.41)-(2.45) 

Core-Roll Parameters 

* Core outer radius, b=1" (2.54 cm) 

* Effective core modulus=30x10 6 psi (206.7 GPa) 

* Core's Poisson's ratio=0.292 

* Roll's elasticity modulus=100,000 psi (689 MPa) 

* Roll's Poisson's ratio=0.05 

* Uniform external pressure applied at outer roll 

radius=lOO psi (689 kPa) 

Radius ud E ub 

d (in) ( 10-3x in) (psi) ( 10-6xin) 

Pb 

(psi) 

1.5 -0.5675 264,306 -3.2032 135.73 

2.5 -1.7453 143,239 -3.9203 166.12 

3.0 -2.3043 130,193 -4.0772 172.76 

3.5 -2.8457 122,994 -4.1786 177.04 

4.0 -3.3737 118,563 -4.2460 179.92 

N.B. i) radius, d = roll outer radius, 

ii) ud = radial deformation at radius d, 

iii) E = effective roll modulus at radius d, 

iv) ub = radial deformation at core outer radius b, 

v) Pb = radial press1Jre at core/roll interface, and 

vi) minus signs represent inward deflections. 

92 



( 

, 
0 

0 

3.5 
0 
0 

t 0 
0 

3 0 

... + 
• Il 2.5 . . ~ 
~ . 
ri ~ 
~ 0 t 
'II'" ~ 
0" 
e~ + 
.. X 
.~ t 
.t 1.5 + 
'II + • " 

l 

1., 1.8 2.2 2.6 3 3.' 3.8 

Radial ratlo (dillle.oaionless) 
o !t-1 + 1r.-2 0 !t-, tJ. !t-e - !t-16 

Fig. 2.18: Variation of radial modulus with distance 

from the core for various ratios of k. 

Core aluminium: a=O.8, b=l. Roll 

material: Ee=600, 000 psi, "'8=0.2, E,. values 

depend upon k. 

( 
93 



CBAPTER THRSB 

MODIFICATION TO BNBRGY-BALANCB ROLL STRUCTURB FORMULAS 
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3.1 1 N'l'RODUCT 1 OH 

For a roll of paper or plastic film being wound, 

energy-balance principles were used to calculate roll 

structure under a given pattern of wound-in tension for 

materials that are non-linear in compression behaviour 

[5,6]. This is analogous to the actual winding process, in 

which the tensile strain energy put into elements of the 

web by the web-carrying tension, provides the energy 

necessary to compress the layers underneath into a firm 

cylindrical roll body. 

Pfeiffer's two-parameter model [5,6], which has been 

studied extensively in Chapter One, results in the slope of 

the pressure versus strain curve having linear dependence 

on the pressure itself: 

(3.1) 

where, P = inter-layer pressure, in Pa or psi, 

Kl = pressure multiplier, in Pa or psi, 

K2 = basic springiness factor, dimensionless, and 

Er = radial compressive strain, dimensionless. 

(3.2) 

And recognising that 

(3.1') 

then, 

(3.3) 

The latter equation shows that the slope of the curve is a 

linear function of P with a constant additive term of K1K2. 

95 



1 

Equation (3.3) gi ves the local modulus of elastici ty around 

the P, Er operating point. 

The energy-balance scheme does not require repeated 

i terations of the winding structure from the core outward 

every time an incremental thickness of wind is added to the 

outer radius. Instead, a single pass is made to calculate 

the roll residual inter-layer pressure and tangential 

stress, beginning at the outer roll radius and moving to 

the core. The energy in a unit volume of a web is 

calculated, based on the winding tension and tangential 

elastici ty modulus of the web, Et. This energy appears 

inside the roll body as a combination of the energy 

necessary to produce non-linear compression of the sheet 

material up to the inter-layer pressure, and the energy 

associated with the residual tangential stress within the 

roll. The combinat ion is calculated using distortion 

energy theory [5,6]. The rate of change of pressure with 

radius, dar/dr, is limited by the hoap stress equatian; 

viz. , 

a t - Gr - r(dar/dr) = 0, 

ta be that which is allowable under the current values of 

radial and tangential stresses, a r and Gt , to keep the 

equation in balance. 

Nothing mentioned so far in the description of the 

energy-balance solution method gives the winding program1 

written by J. D. Pfeiffer ~. 
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a warning that the stiffening effect of the core is soon to 

be felt, as the program makes evaluations of the winding 

tension level as the solution proceeds directly from the 

roll outer radius to the core radius. In the existing 

program, the solution reaches the core at a value intended 

to be correct for winding on an infinitesirnally smal1 core 

of a zero-approaching radius. However, this is wrong if we 

are to simulate the interface with a hard or a soft core. 

In the next section, we shall attempt to rectify this 

situation by incorporating Chapter Two's findings in order 

to enable the existing winding program to account for core 

stiffening. 
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3.2 EMPLOYING RADIAL STIFFNESS MULTIPLIERS TO ACCOUNT 

FOR CORE STIFFENING 

The approach that is reconunended to work with tho 

energy-balance solution is patterned on how the web 

actually responds during winding in the zone adjacent to 

the core [9]. The first several wraps laid against a hard 

metal core cannot easily be moved radially by the pressure 

developed by wraps laid on top. If they could deform 

radially inward towards the roll centre, the rapidly 

changing tangential strain would cause them to lose their 

initial tension, just as wraps in the outer roll body do. 

But the stiffness of the core prevents them from rnoving 

inwards, so they behave as if their radial modulus, Er' has 

been artificially increased by the presence of the core. 

In an attempt to incorporate the vast difference of 

material properties, which is a must if a valid approach to 

the solution of the roll winding problems is sough t; 

Pfeiffer [8] modified his earlier two-paraneter model to 

include a third term, a linear function of strain, 

characterised by one additional constant strain muJtiplier: 

K3 , in Pa or psi. Pfeiffer's modified equation for 

measuring the compressive stress-strain behaviour of sheet 

material is, 

P = -K, + K, exp(~er) + ~er' (3.4) 

where aIl variables are as defined earlier. The slope, 

which is nothing other than the roll body's rQdial 
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elasticity rnodulus, Er; then becomes 

(3.5) 

And further substi tuting Ki exp (K2 e r) =P+K1 -K3 e r into 

equation (3.5) we will obtain, 

(3.6) 

Equation (3.5) is most readily evaluated if e r is 

known. Integrating equation (3.5) and making use of the 

pressure versus strain equation (3.4) and finally, taking 

the natural logarithm of the resulting equation; we will 

get a relation which will enable us to solve for strain 

when pressure is known, viz., 

(3.7a) 

Since e r appears on both sides of equation (3. 7a), one must 

use successive re-iterations in order to evaluate the above 

relation. This is done by writing equation (3.7a) as 

(3.7b) 

evaluating the latter expression and setting er(O)=er(l); 

then repeating this process several times until er(O) and 

er(i) are essentially equal. (If we start er(O) at zero, 

then, the convergence is proved to be rapid.) 

To model the effects shown in Fig. 2.18 (of Chapter 

Two) where the tangential ~lasticity modulus, Et, is much 

greater than the radial modulus, Er; a function is required 

which will cause a high slope of the stiffness parameter 

near the core. Thus a multiplier, y, is introduced which 

is used to raise or lower Er [9]. This multiplier is used 
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on both K2 and K3 , but not Kl" The forrn for calculating y 

is given by 

(3.8) 

where FI' Band e are dirnensionless quantities which will 

be determined below; and R is the dirnensionless ratio of 

roll radius to core radius. Hence the compressive stress-

strain equation will read, 

(3.9) 

And the slope, Er' becomes 

(3.10) 

In expression (3" 8), e is usually taken as 1, however, 

in the event other values such as 1.5 or 2 are chosen; e 

will be included in the procedure for evaluatin~ the other 

coefficients. Equation (3.8) is capable of modelling the 

effects illustrated in Fig. 2.18 if B is made slightly less 

than 1, and FI is positive [9]. By contrast, when winding 

on a soft core wi th effecti ve elastici ty modulus, Ec, 

slightly lower than Er' FI will be negative to soften the 

roll body; and B will be considerably less than 1, nedr 

zero or negative. FI and B depend on 10' which is the value 

of y at the core surface, and a slope SL, which is dy/dR at 

the core, and an intercept • The equations for these 

relationships are given below, where Po is the "no-corel" 

1 The "no-core" pressure, Po, is the residual pressure value 
when calculations, provided that winding tension values are 
to avail, are continued down to a radius of zero without 
ever acknowledging the presence of the core. 

100 



{ 

• 

pressure that would exist at the core radius if y=l for aIl 

radii. 

F2 = Ec/Er = Ec/(K2PO)' 

k 2 = Et/Er = Et/ (K2 PO) , 

Yo = N1 [1 - exp(-F2/N2)], 

SL = 2k2[N3 + (N4/(F2+Ns»), 

B = [9(Yo-1)/SL + 1], 

= [(yo-l)/SL + 1]e=1' 

F1 = -SL(1-S)e+1/e , 

= -(SL(l-B) 2]e=l' 

(3.11) 

(3.12 ) 

(3.13) 

(3.14 ) 

(3.15) 

(3.16 ) 

where the dimensionless empirical constants used above are: 

N1=25 

N4=80.12425 

N2=27 • 972 

Ns=4.43017. 2 

It is worthy of note that approximating Er by (K2 PO) in 

equations (3. Il) and (3.12) is a short cut to using 

equation (3.5). The results of the approximation, being 

only a few percent low, are sufficient for estimation of 

stiffness parameter effects; especially when the constants 

N1-Ns can be adjusted to compensate. The determination of 

Po is the most difficult step, requiring several iterations 

to find a balance between the equal quantities; the radial 

and tangential stresses a r and a t , just outside the core 

radius, where we assume the rate of change of pressure wi th 

2 The empirical constants, N1-Ns , were developed [9] by 
fitting results to some known solutions of the roll winding 
problems which use the method developed by Dr. Z. Hakiel of 
Eastman Kodak Co., New York, U.S.A. [15]. 
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radius, dGr/dr, is zero. The procedure for determining Po 

necessitates that we indulge in explaining some other 

variables and relevant concepts, as follows. 

When a stack of sheet material is compressed from zero 

pressure to a finite compressive strain, the work done per 

unit volume is equal to the area under the stress-strain 

curve from zero up to that point. Hence, denoting the 

energy involved in compressing the roll material up to 

radial strain Er' by the symbol ~r in units J/m3 ; we will 

get by integrating equation (3.4): 

(3.17) 

But to calculate the total stored energy on a distortion-

energy basis [5,6]; a winding stress, denoted by Ge' that 

has an energy level equivalent to the local pressure Gt and 

is a linear equivalent of the non-linear compression 

response, must be calculated using 

(Je = - ( 2 ~ rEt) 'Ir, (3.18) 

where aIl symbols are as defined before. 

The magnitude of the energy input per cubic volume 

unit, denoted by ~w in units J/m3 , coming to the roll in the 

form of elastic strain in the web because of its wound-in 

tensile stress, Gw' is given by: 

~w = Gw
2 

/ 2Et· (3.19) 

On the outside of the roll, where the residual tension is 

positive and the pressure is low, most of this energy will 

be tensile in nature. Interior sections of the roll, which 
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( used to be on the outside, have been compressed radially, 

and residual tension has been reduced. In these sections, 

most of the energy from Cf w has been converted into 

compressive energy. The premise that tension disturbances 

or variations stay close to the location at which they 

occurred [5], holds true in our analysis. 

Thence, an initial approximation for the Il ne-corel! 

residual pressure, POi can be obtained from 

po(O) = (a2
wK2) 1 (2Et ) • (3.20) 

Furthermore, Pfeiffer [5,6] uses the distortion-energy 

the ory to obtain the von Mise' s equivalent stress, a', from 

the compression equivalent stress, ae , and the residual 

tensile stress, Cft' as 

a' = (a 2-a Cf +a 2)v! t ete • (3.21) 

Then the energy st()red by the roll stresses, ~s (in units 

J/m3 ) , is calculated to be 

(3.22) 

Equations (3.4), (3.17), (3.18) and (3.22) are evaluated 

several times until the unit stored enerqy ~s in the zone 

near the core is sufficiently close to ~w to stop the 

iterations. When a new estimate of pressure Po is made as 

defined by equation (3.4), it is also assiqned (negatively) 

to Cft' since the rate of change of pressure with radius, 

dar/dr, is assumed here to be negligibly small (i.e. al=ar= 

The hitherto-described sequential iterations to 

determine Po' can easily be programmed so as to obtain the 
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desired output as we shall see in the following section. 
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3.3 ROLL-WIBDIHG BXAKPLBS 

Four examples are considered here [9]. In aIl of 

them, the tension is assumed to have no variation \t:ith roll 

radius, i.e., constant winding tension. Tables 3.1 and 3.2 

illustrate the winding parameters used for the example 

cases, and the parameter determination for stiffness 

multiplier y (i.e. equations (3.13)-{3.16»; respectively. 

As regards 'l'able 3.1, values for the effecti ve core 

elasticity modulus, Et' were rounded off after having been 

computed according to equation (2. 43b) (note that Et here 

is the same as Eeff used in equation (2. 43b) ). The radial 

stiffness has, for aIl three cases, been expressed as a 

function of pressure in the form of a polyn~mial series; 

viz. , 

... , (3.23) 

which is the form used by Dr. Z. Hakiel for handling non-

linear compression [15]. Hakiel' s winding model re-

balances aIl of the residual stresses throughout the roll 

on each iteration of adding tensile wraps at the outside, 

and in this manner i t is able to take into account the 

stiffening act ion of the core. The values of Kl' K2 and K3 , 

for the four cases, to reproduce the same pressure versus 

strain behaviour as Hakiel's were obtained by curve-fitting 

the polynomial series (equation (3.23». 

For each of the four cases, two diagrams are 

presented: one illustrating how the radial pressure, Pr' 
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varies with respect to the radial ratio, and the other 

demonstrates the variation of residual tensile stress, 0t' 

with radial ratio. Three curves are shown in each diagram; 

one representing the modified energy-balance method 

solution, the other for Hakiel's winding model solution, 

and the la~t depicts the solution predicted by Pfeiffer's 

old energy- balance winding mod~l \vithout correction for 

core effects (i. e. when y=l) . 

Fig. 3.1 corresponds to a condition where a polyester­

type plastic film (high K2 -or high A,) is wound on a hollow 

metal core. The material parameters used are in agreement 

with those used in an example by Z. Hakiel published in 

1987 [15]. However, the condition represented by Fig. 3.2 

is more typical of paper wound on a metal core. The 

material properties demonstrated in Fig. 3.3 are similar to 

those of Fig. 3.1, except for the inclusion of a high Ao 

term in the polynomial expression, and the fact that 

winding takes place at a lower constéint tension. This 

example is from a recent publication by A. Penner [17]. In 

Fig. 3.4 a moderately stiff polyester film is wound tightly 

on a fibre core, causing large amounts of core deformation 

and the formation of high negative tangential stress just 

above the core. The energy-balance solution method prints 

out a warning message near the inflexion point of Fig. 3.4b 

at radial ratio 1.3 that buckling is likely to occur. 
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Table 3.1: Winding parameters for the three rOll-winding 

example cases of section 3.3 

(N.B. in aIl three cases the value of Et =600,000 psi) 

Case 1 2 3 4 

Ec (psi) 890,000 890,000 890,000 46,000 

°w (psi) 333.33 555.55 300.0 1000.0 

Ao (psi) O. o. 1060. o. 

Al 1060. 124. 1060. 450. 

A2 (psi- l ) -0.153 0.0 0.0 0.0 

Kl (psi) 0.059600 0.056124 0.968729 0.056109 

K2 1049.88 124.006 1056.299 450.036 

K3 (psi) -19.625 0.1875 -88.75 0.75 

(Note: Al and K2 values are almost equal.) 
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Table 3.2: Parameter determination for stiffness 

multiplier y 

Case 1 2 3 4 

Po (psi) 125.83 34.13 106.03 497.44 

Ya 5.35115 24.9864 6.1826) 0.18297 

SL -83.052 -4520.85 -105.474 5.183 

B 0.9476093 0.9946943 0.9508633 0.8423482 

Fl 0.279598 0.127264 0.254658 -0.128806 
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( 3.4 COlfCLUSZONS 

The progressive development in the line of analysis of 

how the core stiffness might influence the wraps of web 

material being wound around the core, as has been witnessed 

in some great detail in Chapter Two, led to realising the 

significance in the inclusion of the anisotro9ic behaviour 

of the web material as weIl as the core for the radial 

deformation of core structures and linear axisymmetric 

models. This made possible the prediction of effects, in 

core-roll winding systems, due to the application of 

pressure from the outside and the reaction from the 

underlayers which present a resistance to deformation. 

The premise undertaken by Pfeiffer [5,6,8] in 

developing the energy-balance roll structure model; namely, 

that energy admitted to the roll does not migrate 

substantially in radial distance from the location at which 

it was applied, was undoubtedly confirmed by the analytic 

resul ts of Chapter Two. In particular, the tremendout:; 

difficulty encountered when attempting to detect the 

presence of a hard core, by modulus measurements made at 

the outside surface at radius ratios of 2.5 or greater 

whenever the anisotropy ratio is relatively high (refer ta 

Fig. 2.18). And, also, the precipitous attenuation of 

pressure predicted by the analytic equations for anisotropy 

ratios higher than 2. 

The modifications performed on Pfeiffer's old energy-

117 



balance model, based on Chapter Two's findings, agt"ee 

reasonably weIl when cornpared to sorne known analytical 

solutions to core-roll winding systems. This agreement can 

further be irnproved upon, if and when data becomes 

available which can then be used ta refine the five 

dimensionless constants (N1-Ns ) used to adjust the local 

effective radial elasticity modulus for the presence of the 

core. 
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CLAIMS TO ORIGINAL RESEARCB 

The scope of originality in the course of this 

research principally encompasses the following: 

1. the modelling and analysis of the core-roll system as an 

isotropie, fIat platen model, to predict the influence of 

the core material's L~iffness on layers of wound rolls, 

2. performing compression testing and, subsequently, curve 

fitting the results ta find equation types suitable for 

describing the material behaviour, 

3. undertaking a linear, isotropie finite-element analysis 

of various axisymmetric core-roll models, 

4. performing numerical analyses to sea:'ch for equ"ltion 

types to fit Hakiel's solutions, 

5. roll structure modelling for numerous forms of equé.. :ions 

leading up to the final form of the stiffness multiplier, 

y (many computer runs were made to investigate alternate 

exponential and power series forms that might be suitable) , 

and 

6. the in-depth study of eurvilinear anisotropy and the 

rigorous analysis of the (generalised) plane stress of a 

body possessing cylindrical anisotropy, and the subsequent 

formatting of equations suitable for that type of solution. 

119 



SUGGESTIONS FOR FURTBER .ORX 

It should prove interesting to see what effects 

varying the radial elastieity modulus of the anisotropie 

material, has on the results obtained here. Moreover, 

attempting to consider the continuous change of the 

anisotropy ratio with radius as more layers are added in 

order to develop a predietor equation for the material's 

elasticity modulus, is a very complex and challenging task 

and may not prove feasible. 

attention. 

HO\ieVer, i t de serves sorne 

It is further sugges~ed to perform experimental 

investigation of the type and distribution of stresses when 

winding high viscosity emulsions, coated on high modulus 

plastic sheet material; each of which having different 

temperature properties and subject to relaxation effects 

after winding. Finally, more data gathering is to be 

undertaken to see if the stiffness multiplier, y, is 

suitable for all conditions encountered when many 

industrial materials are wound on a wide range of core 

types. 
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