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ABSTRACT

This Thesis concerns itself with the thorough
investigation of the effects of core material parameters on
the structural behaviour of wound rolls in core-roll
winding systems. The underlying theme in this work is the
derivation, based on the theory of elasticity, of an
analytic expression for the core material's elasticity
modulus as a function of only material parameters and
geometry.

The approach undertaken herein is purely theoretical
~nd encompasses the rigorous analysis of principally two
models; linear isotropic and anisotropic. As for the
former, both planar and axisymmetric geonetries are
investigated; and in the case of the anisotropic model, an
axisymmetric plane stress situation is studied. Moreover,
finite-element modelling and analysis for the isotropic
condition 1is carried out to confirm the theoretical
findings. The objective is then to apply the results;
namely, the inclusion of Poisson's ratio and elasticity
modulus of the core material, to modify existing energy-
balance roll structure formulae. This undertaking is
called for if the aim is to have a valid winding model that
simulates the actual winding process; i.e., one which
incorporates sensing the presence of the core through
layers of wound material. Results are further compared

with existing winding models and conclusions are given.
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RESUME

La thése presentée ci-dessous est impliquée dans
l'enquéte sur les effets des paramétres du matériel central
sur le comportement structural des rouleaux. D'abord, 1le
théme fondamental dans ce travail est celui de 1la
dérivation, Dbasée sur 1le théorie d'élasticité, d'une
expression analytique pour le module d'élasticité du
matériel central en fonction seulement des paramétres de la
substance et de la géométrie.

La fagon d'aborder cet ouvrage est tout a fait
théorique. Celui-ci contient 1l'analyse rigoureux de deux
modéles principales. Il s'agit de 1l'isotropie et de
l'anisotropie linéaires. Le premier modél addresse les
géométrie de surface plane et d'axisymmétriques. Quant au
deuxiéme, celui d'anistropie un plane de contrainte
axisymmétrigque est recherché. En plus, le modél d'élément
défini et 1l'analyse des conditions isotropigques sout
recherchés afin d'affirmer les constatations théoriques.
L'objectit 2 est alors d'appliquer les résultats;
essentiellement, l'inclusion de rapport de Poisson et 1le
module d'élasticité de la substance centrale pour
improviser les formules existantes sur l'énergie-équilibre
de la structure des rouleaux. Cette hypothése est mise en
jeu au cas ou le but sera d'obtenir un modél valable
d'enroulement qui stimule la vraie fagon d'enroulement;
c'est-a-dire un modéle qui incorue la perception de 1la
présence du noyau a travers des couches du matériel
enroulé. Les résultats sout comparés davantage a d'autres

modéles d'enroulement et des conclusions sout marquées.
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FORWARD

The science of building good rolls has undergone some
fundamental advances through the years. Proper winding of
flexible sheet-1like materials into rolls is an area in the
field of mectanics which has broad utility in a number of
diverse and important industries and which, therefore, has
been of considerable interest over the past few decades.

The prime concern of this Thesis centres on how the
stiffness of the core material in the core-roll winding
systen determines how much support it will offer for the
initial wraps of web material, and whether this support
will be maintained as internal pressures are developed.

The body of the Thesis is structured into three nain
parts. The first part, Chapter One, offers a brief
literature review of existing theories for core-roll
winding systems. An in-depth look is, however, taken at
studying the energy-balance technique postulated by J. D.
Pfeiffer; and several relevant examples are presented.
Chapter Two, the essence of the theoretical work of this
Thesis, consists of a thorough theoretical investigation of
the core effects. It starts by investigating linear,
isotropic materials via three different models. The first
model being the linear, planar sheet-stack model; the other
two, Dboth axisymmetric, are thick-walled cylinder and
press-shrink-fit models, used in analysing the hollow core

problem. An independent finite-element analysis of the
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linear, isotropic condition is further carried out and the
outcome 1is reported. The latter segment of Chapter Two
delves into the anisotropic analysis of the core-roll
winding system. 1Initially, a detailed study of the theory
of curvilinear anisotropy and generalised plane stress
analysis for a body possessing cylindrical anisotropy is
presented. Then a particular situation, the hollow-~core
problem, i modelled as an annular plate; and a detailed,
rigorous analysis which results in expressions for stresses
and deflections is carried out. The analysis is, moreover,
expanded to encompass sensing the presence of the core
through layers of wound material. All the theoretical
findings of this Chapter channel into determining an
analytic relationship for the effective elasticity modulus
of the core material in the core-roll winding systen.
Several examples are given along the way to graphically
demonstrate the significance of the theoretical findings.
Comparison between results from the different approaches is
presented, and conclusions pertaining to the universal
applicability of each model are discussed.

Subsequently, these theoretical findings are
implemented in modifying Pfeiffer's existing energy-balance
roll structure formulae. This particular Chapter was the
subject of a recent scientific publication entitled, "How

Core Stiffness and Poisson Ratio Affect Energy Balance Roll

Structure Formulas," by the author of this Thesis and his
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supervisor, Professor J. D. Pfeliffer; -thich was presented

at the First International Conference on Web Handling, held

at Oklahoma State University.

The Thesis ends with a section bearing the titles,

"Claims to Original Research" and "Suggestions for Further

Work."™
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CHAPTER ONE
BRIEF REVIEW OF EXISTING THEORIES FOR CORE-ROLL

WINDING SYSTEMS




1.1 GENERAL INTRODUCTION

Webs are sheet materials that are sufficiently thin to
produce negligible bending stresses when they are wound
into rolls. Paper, magnetic tape, plastic wrap,
photographic film base, adhesive tape and metal foils are
common examples. Webs are wound into rolls for processing,
transport and storage. Controlling in-roll stresses is
important to prevent damage to the web due to excessive
plastic deformations within the roll and to provide rolls
that are sufficiently robust to withstand shock during
transport.

The quality of a wound roll is dependent on the
stresses which exist in it. Thus, in-roll stresses
determine the structural integrity of the wound roll and
make it an effective package for the web. These same in-
roll stresses can, under certain conditions, impart damage
to the web. Existing literature enables predicting the in-
roll stresses developed by a specified winding tension.
This stress state can then be examined to determine if it
falls within the window of stresses that will yield a
robust roll without damaging the web. If the stresses fall
outside this window, the winding tension term in the
existing winding models must be varied in a tr.al-and-error
manner to attempt to produce an acceptable in-roll stress
state.

The rigorous analysis of predicting wound roll
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stresses resulting from a known winding tension, assuming
that the coiled web exhibits constant orthotropic material
properties, started with the work of Altmann [14) in which
he derived exact integral expressions for the internal
stresses from basic stress-strain relationships, based on
the simplifying assumption of lineacity in “he radial-
direction modulus of the wound roll. Earlier on, Tramposch
[18) developed eguations, using finite-difference methods,
to predict the relaxation of internal stresses of a wound
reel of magnetic tape, assuming a homogeneous and isotropic
material which, under shear, exhibits instantaneous
elasticity, delayed elasticity and creep; and under
hydrostatic stressing shows elastic behaviour. He further
extended his theoretical analysis to include the effect of
a difference in the thermal properties of the tape and the
hub [19].

An alternate, continuous solution for isotropic rolls
by modelling the effect of the input tension through a
modified expression for the circumferential strain, was
suggested by VYablonskii [42]. Urmanskii et al. ([38]
expanded the latter solution to orthotropic rolls.

Yagoda [22] developed series solutions for integrals
within Altmann's linear in-roll stress formulae. He then
completed these solutions for winding tensions that are
expressible as power series of the winding radius, through

an accurate treatment of the core boundary conditions [23].
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Yagoda extended the Altmann formulae for use with surface-
wound rolls by dividing the roll into a thin outer section
where inter-layer slip is allowed and a base where inter-
layer slip is prohibited; however, the state of stress at
the interface of the sections must be known to apply the

results.

A comparison of the Altmann and Tramposch winding
models was given by Connolly and Winarski [28]; moreover,
they presented experimental data for stresses within reels
of magnetic tape and analytically studied the effect of
varying several winding parameters and temperature on the
in-roll stresses.

Pfeiffer [1] experimentally demonstrated substantial
non-linearity in the radial modulus of paper rolls. He
then used his experimentally-determined radial stress-
strain profile for paper as the basis of a continuous
energy-based solution [5,6]. Furthermore, Pfeiffer [1] had
previously describad experiments for determining the stress
state within finished rolls of paper. Experimental
measurements of residual tension in a paper roll during
unwinding by looping the uppermost layer of the roll over
a force-sensing idler were performed and presented in a
publication by Pfeiffer [3]. Hussain et al. [33] also
presented in-roll stress data obtained from active sensors
wound in to paper rolls.

Hakiel {15) extended the previous analysis of Altmann
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by treating both the boundary conditions and the non-linear
behaviour of the wound roll in a rigorous way, resulting in
a computer model that is accurate enough to be used for
simulation. Results obtained with Hakiel's model
illustrated the highly non-linear nature of the winding
process and coumpared well with experimental findings.
Willett and Poesch [25] arbitrarily varied the radial
modulus as a function of inter-layer pressure, as in
Hakiel's model, in finite-difference models of the roll
similar to that developed by Tramposch. They modelled
winding the final roll by adding a sequence of layers of
web. Willett and Poesch iterated to converge to a
consistent set of inter-layer pressures and radial moduli
for each layer added, while Hakiel avoided iteration by
using a set of radial moduli computed from the inter-layer
pressure distribution of the previously added layer.

An analytical comparison of the Pfeiffer [5,6], Hakiel
(15] and Altmann ([14] solutions was presented by Penner
[16].

Several authors discussed the importance of
controlling winding tension to obtain in-roll straesses
sufficiently high to yield robust rolls but sufficiently
low to avoid damaging the web within the roll. Harland
(31] presented an analytical comparison of isotropic rolls
wound with constant tension and constant torque. Frye [29)

suggested a radial stress profile to avoid winding defects
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in paper rolls and machine parameters that may affect the
actual profile. Rand and Ericksson [34] recommended an in-
roll stress distribution for newsprint on the basis of
their analysis and experiments for determining in-roll
stresses. Hussain and Farrel [32] experimentally
determined the importance of controlling the winding
tension at the start of a newsprint roll for avoiding loose
cores.

An inverse solution, i.e., solving for the winding
tension necessary to produce a desired residual stress
distribution, was first demonstrated for isotropic rolls of
wire by Southwell [37]. Whereas Catlow and Walls [27]
derived the isotropic inverse solution for the winding
tension necessary to obtain a constant residual tension in
rolls of yarn wound on rigid cores. Since then, very
little work has been done as regards the generation of
prescribed residual stresses by solvirg for winding

tension.
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1.2 THE ENERGY-BALANCE APPROACH
1.2.1 Backgrouna

When rolls of paper, film, plastic sheeting, or other
thin flexible webs are wound, it is of interest to know
what stresses exist in the roll, both during and after
winding. If we know these stresses and how they may be
changed by varying the winding tension and other
parameters, the causes of many roll defects and their cures
may also be known.

Roll structure theory has been successful in
describing the relationship between internal stresses in a
finished roll and the stresses that exist on the surface as
the roll is being wound. This relationship is important in
that it allows us to relate different types of experimental
tests to each other. It also allows us to monitor on-line
such properties as wound-in tension, wound-off tension and
roll density rather than having to perferm destructive off-
line testing of finished rolls [16].

In essence, roll structure theory has been developed
in three stages. Altmann derived a relationship between
internal stresses and the wound-in tension for an
anisotropic model in which all stress-strain relations were
linear [14]. The solution was basically analytical in
nature, with only one numerical integration required to
apply the relevant formulae. Pfeiffer [5,6] extended the

analysis to deal with non-linear behaviour in the radial




direction, perpendicular to the sheet. This theory
involved the numerical solution of a single, first-order,
non-linear differential equation. The solution procedure
was simplified by assuming an energy balance on a single
wrap of paper as a function of time. On the other hand,
Hakiel [15] extended Altmwann's original work to deal with
the general non-linear problem without making any specific
energy-balance assumptions. In all of the aforementioned
work, Poisson's ratio was assumed to be negligible and

hence was not included into the analyses.

1.2.2 Pfeiffer's Energy-Balance Roll Structure Formulae

Authors [14, 34, 36, 18, 19] have, in their attempts
to calculate the roll structure, acknowledged the non-
linear compression behaviour of paper and films in the
direction perpendicular to the plane of the sheet but,
nonetheless, opted to use a linear modulus in their final
solutions. In cases where the variation in tension is
inversely proportional to the roll radius, as in centre-
winding, or in cases where there is no variation, the
linear modulus approach can give a closed-form solution to
the distribution of inter-layer pressure and residual
tension versus radius ([5]. However, when the pattern of
tension wound into the roll is not a simple function of
radius, these solutions must be evaluated numerically.

Pfeiffer's work [5,6] takes a different approach to the
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problem and coplies energy-balance techniques to help solve
the non-linear compression case.

It is essential to deal with non-linear
compressibility since the f(atter is tantamount to the
observed stress-strain behaviour ot stacks of sheet
material. It has been determined [1,2] that paper follows
the relationship:

P = =K, + K, exp(K,e ), (1.1)

where, P = radial stress (inter-layer pressure), in Pa or

psi,
K, = pressure multiplier, in Pa or psi,
K, = basic springiness factor, dimensionless, and

radial compressive strain, dimensionless.

™
i

It is worthwhile noting that the quantity K, forms the basis
for the exponential sweep of the curve of equation (1.1).
For soft, high-bulk materials, it is low, in the range 6-
15; indicating a low change of pressure with strain. With
most printable grades of paper, K, falls between 15 and 100.
Very hard, dense products and homogeneous plastic films are
characterised by a K, of 100-500 [7].

The reason for this behaviour in fibrous materials was
demonstrated by Elias [50]. By a similar 1line of
reasoning, one can explain why homogeneous materials; such
as plastic film, also follow an exponential relationship as

the point of contact or support between adjacent sheets
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come closer together with increasing pressure [5].

When compressing a stack of sheet material from zero
pressure to a finite pressure or a finite compressive
strain. the work done per unit volume is equal to the area
under the stress-strain curve from zero up to that point.
Hysteresis is involved with actual materials, indicating
that more energy is required to compress than will be
released on expansion. Pfeiffer managed, in his approach
[5,6], to side-step this problem by defining K; and K, to
match the relaxing behaviour only. Hence, the area under

the stress-strain curve is obtained by integrating equation

(1.1); i.e.,

L 173
= e T =_P— .ﬁ -—1-3-
E, b{ Klde,'f[Klexp(.(ze,)der £ () algeel, .2

where, ., in J/m3, is the energy involved in compressing
the roll material up to the radial strain e¢,.; and other
symbols are as defined earlier.

There is a steady supply of available energy coming to
the roll in the form of elastic strain in the web because
of its wound-in tension, o, (in units Pa or psi). The
magnitude of this energy input, denoted by f,, per cubic
volume unit is given by:

E, = 0,2/ (2E,), (1.3)

where £, is in units of J/m?® and E., the tangential modulus

10
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of the roll, in Pa or psi. On the outside of the roll,
where the residual tension is positive and the pressure
low, most of this energy will be tensile in nature.
Interior sections of the roll, which used to be on the
outside, have been compressed radially, and the residual
tension has been reduced. In these sections, most of the
energy from o, has been converted into compressive energy.
One of the premises of Pfeiffer's energy-balance approach
is that the tension disturbances or variations stay close
to the 1location at which they occurred. This is
substantiated by measurements of wound-in tension [4], in
which small disturbances made within one or two revolutions
of the winding roll can be played back and found to be in
the same place they were made.

Most of the energy of wound-in tension applied to the
roll will find its way into radial compressive energy.
This makes the cylindrical roll body firm and allows it to
be transported more r...dily than a stack of sheets [5].

All solutions to roll structure problems must satisfy
the elastic equilibrium requirements of sections of the
roll; namely,

d. = 0, - r(do,/dr) = 0, (1.4)

where, o, = tangential stress, in Pa or psi,

o radial stress, in Pa or psi, and

r
r = radius to a point in the finished roll, in

metres or inches.

11




Here, the tangential stress is related to the tension, T,
in N/m or pli (pounds per lineal inch) via,

o, = T/6, (1.5)
where, 6 designates the web thickness (usually referred to
as the caliper) in micro-metres or inches.

The difference between the various solutions to the
roll structure problem stems from how the interrelation
between o,, 0, and o, has been defined. Let us assume that
the energy of a single wrap is conserved as a function of
time as the roll is built. That is, there is no energy
transfer between successive wraps in the roll. The energy
in a wrap is known when it is first put on the roll and is
given by equation (1.3). As the wrap becomes an internal
layer, this energy gets transformed from pure tensile
energy into a combination of compressive energy (radial)
and some residual tensile energy (tangential), but the
energy of this wrap is still conserved. The question is,
which energy?

Pfeiffer [5,6] postulates that it is von Mises!'
distortion energy that is conserved rather than the total
energy stored by the roll stresses, { , given by:

& = §+8, = §4[0,%/(2E) ], (1.6)
where Er has been defined in equation (1.2). The distortion
energy is defined as the portion of the total energy

associated with the a change in shape of a body rather than

a change in volume. By assuming it is conserved, we

12
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obtain:

E, =&, £ (EE)" + & (1.7)
Note that (%) preceding the middle term is inserted in
order to accommodate for the situation when o  is negative
and o, positive, hence resulting in the energy term being
higher than when ¢, and o, have the same sign. Pfeiffer's
method [5,6] seemingly tends to reduce the error between
the locally applied energy, given by equation (1.3) and the
total energy stored by the roll stresses, given by equation
(1.6). Upon substituting equation (1.7) into equation
(1.4) and making use of the boundary condition 6.=0 at the
roll outer radius (which is constantly changing);
Pfeiffer's solution is obtained.

It is noteworthy that shear stresses are neglected
since the roll is assumed to be symmetrically circular [5].
The bending stresses to wrap each layer around the rest of
the roll are also neglected for most thin-gauge materials.
However, for thick materials, the energy to bend on a per-
unit-volume basis may be compared with the winding stress
energy to see if it may be disregarded. Hitherto,
Poisson's ratio has not been brought into the analysis. It
will be shown in Chapters Two and Three how Poisson's ratio
can be incorporated in the analysis of roll structure.

Focussing our attention on the method of solution, the
procedure used is to find a winding stress, o¢,, that has an

energy level equivalent to the local pressure. This is

13




achieved by multiplying § by (2E,) and taking the square
root of the product. 1I.E.

o, = -{2E,P/K, = (2EK,/K,) 1n[(P/K;)+1]}". (1.8)
The distortion energy theory [6] is then used to obtain von
Mises' equivalent stress, o', from the compression

equivalent stress, o,, and the residual tensile stress, o,

as follows:

o' = (02 - g0, + 02" (1.9)
This distortion energy all comes from the winding stress,
o, so if o' is set equal to o, and we solved quadratically;
o, can be obtained, and from that, into equation (1.4) we
can find r(do /dr). That is,

o, = 0.5{-0, + (-30,2+402)}, (1.10)
r(do /dr) = -0, - O, (1.4")

where (do_/dr) is the rate of change of pressure with

radius.

1.2.3 Winding Examples

The author has managed, making use of the algorithm'
based on the energy-balance technique that enables us to
predict the roll structure under a given pattern of wound-
in tension; to produce some of the winding examples which
appeared in a publication by Pfeiffer in 1979 [5].

Fig. 1.la shows the variation of radial pressure (in

' The program in question is DPROL%0.bas which is copyright
December, 1990 by J. David Pfeiffer.

14
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kPa) with radius for a 0.876-m-diameter roll of cataloque
paper [1]. Whereas Fig. 1l.1b illustrates the plots of
residual tension and wound-in tension (both in N/m) versus
radius for the same catalogue paper roll. The values used
for K,, the tangential modulus of the roll, E_, and the
caliper (web thickness), §, were 2.3 kPa, 4820 MPa and
51um; respectively.

Although eguation (1.1), the basis of the current
analysis, was developed to fit the non-linear compression
behaviour of many materials, it may also be used to
simulate the linear case as well if K, is kept low (in the
range of about 2 to 5) and the product of K; and K, is
adjusted to equal the linear compressive modulus, perhaps
from 16 to 100 times smaller than the tensile modulus [5].
And, hence, a comparison of centre-winding with linear and
non-linear moduli can be made, and it is shown in Figs.
l1.2a,b and 1l.3a,b; respectively. In the first set of
figures pertaining to the linear modulus, K; and K, were
86,125 and 3.5, respectively. Whilst for the non-linear
case, the constants were K;=206.7 and K,=190. For both, the
tangential modulus of the roll was 4820 MPa and the wek
thickness 25.4 um. Figs. 1.2a and 1.3a illustrate how the
radial pressure varies with radial ratio, whereas Figs.
1.2b and 1.3b represent the variation of residual and
wound-in tensions with radial ratio. The plots are

actually four curves drawn on top of each other,

15




demonstrating a build-up ratio of 1.5, 2, 2.5 and 3 from

the core.
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CHAPTER TWO

EXAMINATION OF CORE EFFECTS




%

£ 3

2.1 INTRODUCTION

Core characteristics play an important role in
influencing the internal stresses of wound rolls . Hence,
a clear understanding of the behaviour of the core material
properties is paramount to predicting the effect of the
core on the inter-layer pressure and wound-in tension of
wound rolls of, for instance, paper.

In this chapter, a detailed investigation of how the
core affects the roll material is provided. An attempt at
predicting the effective elasticity modulus of the core
material in the core-roll winding system is made, and the
theoretical predictions are verified by a finite-element
model. A thorough study of thick-walled cylinder theory is
presented in the endeavour to pave the road for a clear
understanding of its applicability to the problem at hand;
namely, investigating the core effects on wraps of wound

material in core-roll winding systems.
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2.2 THE LINEAR S8TACK MODEL

2.2.1 Background

The firs. step taken in the endeavour to clearly
understand the core material effects on the wound roll was
to model the core-roll combination as a stack of sheets.
The stack model is a linear model principally consisting of
planar sheets layered horizontally one on top of the other
(refer to Fig. 2.1). This linear-planar model obviously
excludes any regards to the actual axisymmetric geometry of
the core structure and, thus, provides only a rough
approximation, at best, tec the actual behaviour of the core
material.

Initially, some certain percentage of the total number
of sheets making ur the stack model, say 99 percent, is
taken to behave like the core material in question. The
remainder is to have the properties of the material being
wound round the core. Thereafter, each layer having the
core properties is stripped and replaced by the winding
material. This process is successively continued until all

of the roll material sheets replace the core material.

2.2.2 The Mathematical Model

The mathematical equations governing the subject model
can be developed from the basic equation describing the

non-linear behaviour of paper [1, 2, 5]; viz.,
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P = -K; + K; exp(Kye,), (2.1)

where, P = radial stress, Pa or psi,

~
[ah
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pressure relation multiplier, Pa or psi,

= basic springiness factor, dimensionless, and
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compressive strain, dimensionless.

By algebraically manipulating the previous equation we
get,

e, = {In(P/K; + 1)}/K,, (2.2)
and further using a, a fraction of unity (noting here that
unity is the total sheet stack height), to designate the
portion of the layers experiencing direct core effect (i.e.
sheets having core material properties) and the fact that
B=1-a (see Fig. 2.1), equation (2.2) then becomes;

Ly = {8/K,}*1n(P/K; + 1),

Ly = {(1~a)/K,}*1n(P/K, + 1), (2.3)
where L is the fractional change in height of the wound-
material-like sheets, and is dimensionless. Similarly,
using L, to denote the fractional change in height of the
sheets having the core material properties, the equation
used to define L, is;

L, = a*P/E_, (2.4)

where E, is the modulus of elasticity of the core material,

in the same units as P.

Then, the total strain of the entire sheet-stack

arrangement, ¢, will be

23




s,

a*P/E, + {[(l1-a)/K,] 1n(P/K; + 1)}. (2.5)

€

Equation (2.5) describes the total strain of the two-
component model as a function of the radial stress, modulus
of elasticity of the core, respective heights of the wound-
material and core-like sheets and, K; and K, pertaining to
the wound-roll material. Thus, knowing an initial pair of
values for K; and K, of the wound material, and the
stiffness or modulus of the core, E,, the stiffness of the
two-part stack can be determined for a specific range of
pressure values. The new relation between strain and
pressure is then used to determine a new set of K; and K,

values depending upon a and the relative amount of core

material included.

2.2.3 Examples and Conclusions

In this sub-section we shall use the results of
analysing three particular cases to draw conclusions so as
to establish whether the linear stack model is a viable
approach to accurately predicting how the stiffness of the
core determines how much support it will offer for the

initial wraps of web material.

Case One

The first case has the fo'lowing roll and core

material properties:
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Roll;
Erangential = 600,000 psi  (4.134 GPa),
Epaqial (P) = 1060%P - 0.153%P?, in psi,

= 1060*P - (2.22x1075)*P2, in Pa, and
Poisson's ratio, u = 0.
Core;

E = 890,000 psi (6.132 GPa).

core
Case Two
As case one except for;
E adqia1 (P) = 124*P, in psi or Pa.
Case Three
All properties as in case one except for;

E = 8,900,000 psi (61.32 GPa).

core

For each of the above cases, since we have the radial
elasticity modulus defined as a function of pressure!, we
can write a simple routine to compute the strains as a
function of pressure, too. The strain-pressure values thus
obtained can then be input into another routine? which uses
equation (2.1) as the basis for determining, by way of re-

iterative computations, the best pair of K,, K, values for

the particular situation under consideration. This pair of

The polynomial representation of E. is the form used for
handling the non-linear compression in the Hakiel model
solution [15].

written by J. D. Pfeiffer.
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K,, K, values, which we shall call the initial pair, is
thence used in equation (2.5) with the appropriate
substitutions for E,, a and a suitable range of P values;
to compute the total strain of the entire sheet-stack
arrangement.

Recalling that, in essence, the linear stack model
constitutes the replacement of a sheet with some initial K,,
K, values with one having K;, K, values determined from
equation (2.5), the above-described procedure may be
continued to find a pair of K,, K, values corresponding to
a certain a. Thus, continuing in this fashion one can put
forth a prediction of how K, and K, vary with a. 1In other
words, we should be able to know how quickly the core
effect fades away.

The K,, K, values corresponding to specific values of
a obtained from the aforementioned calculations are plotted
for the three cases under investigation (see Figs. 2.2 &
2.3). The numerical values are then used in a least-
square-curve~fitting technique to come up with an equation
that best describes the relationship between K,, K, and «a.
It was found that best fit between K, and a, and K, and a
may be represented by an exponential equation of the form,

Y = A*exp(B*X) - C, (2.6)
where, Y represents K, or K,,

X represents a, and

A, B and C are empirically determined constants.
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Table 2.1 contains values for A, B and C for the three
examined cases for both K, versus a, and K, versus a.

It becomes apparent, after the careful examination of
the graphs and equations describing the relation between K,
and a, and K, and a; that the linear stack model does not
provide us with an adequate understanding of how the core
effects tend to influence the wound material. This is true
since it is noticed that as more roll material is added,
the effect of the core does not fade away as quickly as one
would intuitively expect. Moreover, the high degree of
empiricism associated with arriving at equation (2.6)
precludes one from expanding the results to more universal
situations. This, indeed, is also due to the somewhat
severe restrictions on the chosen model from the standpoint
of the actual geometry pertaining to the core-roll system.
We are therefore forced to abandon the linear stack model
used hitherto and, endeavour to venture with an

axisymmetric model.

27




pts,

o

Table 2.1: Summary of the numerical results for three

particular cases, using the Linear Stack

Model.
K, = Avexp(B*a) ~ C
A B C
Case One 0.496088 1.34672 ~-0.583601
Case Two 0.101059 2.17807E-02 -1.30718E-05
Case Three 5.10060E-02 1.02927 -0.584226

K, = A%exp(B#a) ~ C

A B C
Case One 10518.4 0.268348 6855.35
Case Two 528.873 0.943581 3.69185
Case Three 4626.75 0.876170 283.030

et 4 e
e —
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a = portion of layers experiencing direct
core effects, and
B = remaining portion exhibiting wound-

material-like properties.

Fig. 2.1: The Linear Stack Model of the core material.
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Graph of K; versus a for three particular
cases (described in sub-section 2.2.3),
obtained from equation (2.6) of the Linear

Stack Model.
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2.3 THE AXISYMMETRIC MODEL

In an attempt to improve upon last section's findings
we shall, thenceforth, modify the hitherto-studied model to
include in the analysis the true geometry of the core-roll
system. Thus, an axisymmetric model will be used to
simulate the core-roll system. However, we shall continue
our analysis, at this stage, to consider materials
exhibiting isotropic behaviour. That is to say, that the
material parameters; viz., Poisson's ratio, 4, and
elasticity modulus, E, are the same in all directions.
I.E., Wpy=H¢, and E.=E,, where r and t represent the radial
and tangential directions, respectively. The subscripts
used 1in the notation pertaining to Poisson's ratio
characterise a dimensional decrease in the direction of the
second subscript during tension in the direction of the
first subscript. Hence, in studying the isotropic
condition, it should be apparent, whether u and E are
subscripted or not, that equivalence of the material
parameters in both the radial and tangential directions is
presumed.

The results procured from the analysis in this section
are purely analytic, and the identity between the two
approaches undertaken here on, the thick-walled cylinder
analysis and the press-shrink-fit model, will be verified.
An equation for predicting the effective core elasticity

modulus for a hollow isotropic core is derived.
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2.3.1 Thick-Walled Cylinder Analysis
2.3.1.1 Stresses in Thick—ﬂallea Cylinders

A thick-walled cylinder subjected to external or
internal pressure, or both, has radial and tangential
stresses with values which are radius-dependent. A thick-
walled cylinder may also be stressed longitudinally. 1In
determining the radial and tangential stresses we make use
of the assumption that the longitudinal elongation is
constant around the circumference of the cylinder, i.e., a
right section of the cylinder remains plane after
stressing.

Referring to Fig. 2.4, we designate the inside radius
of the cylinder by a, the outside radius by b, the internal
pressure by p;, and the external pressure by p,. Sections
of the cylinder must satisfy global static equilibrium
requirements. Thus, considering the equilibrium of a thin
semicircular ring cut from the cylinder at radius r and
having a unit 1length (see Fig. 2.4); and setting the
summation of forces in the vertical direction equal to
zero, we have

20,dr + 20,r - 2(0.+d0o.) (r+dr) = 0, (2.7a)
by further simplifying equation (2.7a) and neglecting
higher order quantities, we obtain the familiar form
commonly referred to as the hoop stress equation; viz.,

O = 0, - r(do,/dr) = 0, (2.7b)
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where; o, = tangential stress, in Pa or psi, and
o, = radial stress, in Pa or psi.

Defining P, and P, to be equal to o, and -0,
respectively, equation (2.7b) may be re-written
equivalently as;

P, + P, + r(dpP./dr) = 0, (2.7¢c)
which often appears in the literature.

We wish to obtain general expressions for o, and o, as
functions of a, b, p; and p,. Equation (2.7b) relates two
unknowns o, and o,, but we must obtain a second relation in
order to evaluate them. The second equation is obtained
from the assumption that the longitudinal deformation is
constant. Hence, for the triaxial state of stress under
consideration, the longitudinal principal strain will be:

€, = -(Wo./E) - (uo./E), (2.8a)
where, ¢, = longitudinal principal strain, dimensionless,

Poisson's ratio, and

m

E modulus of elasticity of the cylinder, Pa or

psi.
(N.B. Both, the tangential and radial stresses, are
positive for tension.)

Proceeding with our objective of finding general
expressions for o, and o,., we notice that equation (2.8a)
can be rearranged, since €,, # and E are constants; in the
form

-Ee,/u = 0, + 0, = 2Cq, (2.8b)
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where C, is a constant. Next solving equations (2.7b) and
(2.8b) to eliminate o, produces

r do,./dr + 20, = 2C;. (2.9a)
Multiplying equation (2.9a) by r gives

rz(dor/dr) + 2ro, = 2rC,. (2.9b)

However, noting that

d(r?c,)/dr = r?(do,/dr) + 2ro,, (2.10)

it

d(rzor)/dr 2rCy. (2.11a)

Integrating equation (2.11la) gives

26, = r?c; + Cy, (2.11b)

r
where C, is a constant of integration. Solving for o, from
equation (2.11b) we obtain,

o, =Cy + (Cp/r?). (2.11c)

r
Substituting equation (2.11c) for o, into equation (2.8b),
we find

0, = C; = (Cy/r?). (2.12)

In order to evaluate the constants of integration C,
and C,, we need to make use of the boundary conditions of
the cylinder. The boundary conditions are;

o. = -p; at r = a, and

g, = =p, at r =b.

Substituting these boundary conditions into equation

(2.11c) yields;

-p; = C; + (Cy/a?), (2.13a)

-po = C; + (C/b?). (2.13b)
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The constants C; and C, can be found by solving
equations (2.13a) and (2.13b) simultaneously. This gives
c, = (p;a? - pob?)/(b? - a?), (2.13c)
c, = a’b?(p, - p;)/ (b* - a?). (2.134d)
Substituting the previous expressions for C; and C, into
equations (2.11c) and (2.12), yields the sought general

expressions for o, and o, as functions of a, b, p; and pg;

namely,

(Po=P;)
2_p p2-g2pz_Po"Pi)
L (2.14)
(b2-a?)

and
' 2 244202 (Po~p;)
p;a‘-pb+a‘b — Y (2.15)

f (b2-a?)

Equations (2.14) and (2.15) make possible the
determination of the stress state inside a thick-walled

cylinder subjected to external and/or internal pressures.
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g, dr g, 4r

Fig. 2.4: Elements in a thick cylinder.
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2.3.1.2 A Particular Case: An Isotropic Hollow Core

The thick-walled cylinder theory is applied to
simulating the stresses and stiffness of the core material
in the core-roll winding system. Hence, the results
obtained from the thick-walled cylinder analysis will
justifiably apply towards solving the issue of concern;
namely, developing an analytic equation for predicting the
effective elasticity modulus of an isotropic, hollow core.

Fig. 2.5 illustrates a hollow core with inner (hole)
radius, a, outer radius, b, and uniform core pressure, p,
developed by the wound-roll material surrounding the ccre.
Denoting the change in radius of the hollow core by A and,
the tangential strain of the core outer surface (at r=b) by

€, we have,

change in circumference/original circumference,

€y =
€. = {2n(b+A) - 2mb}/2mD,
€. = A/b,
or A = be,. (2.16)
However,
€x = (0./E) = (uo,/E), (2.17)

where u und E are the core's Poisson's ratio and elasticity
modulus, respectively. o. and o,., at the core outer
surface, can be obtained from equations (2.14) and (2.15).

Substituting r=b, p;=0 and p,=p into the latter equations,

gives
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o, = -p(b%+a?)/(b?-a?),

g, = -p.
Furthermore, substituting for o, and o, into equation (2.17)
and subsequently into equation (2.16), we will get

A = -bp{(b*+a?)/(b%-a%) - u}/E, (2.18)

where the minus sign indicates that the deflection is

inwards. Equation (2.18) may be rearranged to read,

E = -bp{(1+a?)/(1-a?) - p}/A, (2.19)

where, a = a/b = radial ratio, dimensionless. However,
-bp/A = p/-ey = Eggg, (2.20)

where, Eq.¢¢ = the effective modulus of elasticity of the

e
core material, in Pa or psi.
We can now write, using equations (2.19) and (2.20),
a relation expressing the effective elasticity modulus for
an isotropic core material, Eg¢¢, in terms of only the
radial ratio and core material elasticity parameters. The
relevant equation is,
_ E

) (1+a?) _
(1-a?) :

Eeff !

(2.21)

where, i = Poisson's ratio of the core material, and

E = core material elasticity modulus, in Pa or psi.
(N.B. It is not necessary to specify in which direction the
material parameters are measured since they are equivalent
in all directions for an isotropic material, which is what

we are dealing with here.)
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Fig. 2.5: A hollow core.
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Fig. 2.6: Press-shrink-fit model.
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2.3.2 Press-8hrink-Fit Model

The hollow core of Fig. 2.5 may equally be analysed as
a press~-shrink-fit model (see Fig. 2.6). Referring to the
latter figure, the two-element model has three boundaries,
the outer and inner radii, and the inside hole radius.
Physically, the inside hole and the inner member
identically represent a hollow-core situation, whereas the
outer member represents the wound roll material surrounding
the core. 1In Fig. 2.6, we designate the hole radius by a,
the inner member radius by b, the outer member radius by c;
and the pressure developed by the interference fit, which
acts uniformly on the interface between the two members, by
the symbol p. (N.B. External pressure=0, in this case.)
Moreover, the radial deformation, at the interface of the
boundary b, of the inner member from unloaded to loaded
shape using its effective modulus is denoted by the symbol,
5.

Employing the boundary conditions for the inner
members at the cecntact surface, r=b, which are obtained
from equations (2.14) and (2.15), respectively; viz.:

o, = -p(b%*+a?)/(b%-a?), (2.22a)

0. = ~p; (2.22b)
and applying a similar line of analysis to that of sub-
section 2.3.1.2, we have

¢, = tangential strain in the inner member at radius

b,
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e, = change in circumference/original circumference,
€, = {2m(b+6) =~ 2mb}/2mb,
3 e, = &§/b,

or, & = be,.
However, since

ey = (0/E;) - (4;0./E;), (2.23)
then a relaticn for § can be found to read,

§ = -pb{ (b?+a®)/(b?-a?) - u;}/E;, (2.24)
where the subscript (;) denotes quantities associated with
the inner member. Continuing with the analysis further,
equation (2.24) can be re-written to express the effective
core elasticity modulus, F,;¢, in terms of the radial ratio,
a=a/b, and core material properties, E and u. TI.E.,

Eets = B/{(1+a?)/(1-a?) - u}, (2.21)
where all the notation of equation (2.21) is identical to
that of sub-section 2.3.1.2.

t 1is clearly apparent that the expression for the
effective core elasticity modulus (equation (2.21))
obtained through the thick-walled cylinder analysis and the

press~shrink-fit model is identical in all respects.
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2.3.3 Concluding Remarks Pertaining to The Axisymmetric
Model
Equation (2.21), relating the effective core
elasticity modulus to the radial ratioc and isotropic
material parameters of the core material, that is,
Eeffz_—___Ec ¢
A1ve®) (2.21)
(1-a2)
may be re-arranged; if we define a quantity, the modular
ratio, denoted by R, to be the ratio of the effective core
elasticity modulus to the core material elasticity modulus
in the tangential direction; i.e. Rg=Eg¢¢/E;. Equation

(2.21) thus becomes,

- 1
g = e

(1+a?) _
(1-a7) ©

(2.25)

Equation (2.25) states that as the radial ratio, «,

decreases the modular ratio, R,, increases for a particular

e’
isotropic core material. In addition, defining the core
thickness ratio, denoted by B, to be (1-a), then as B

increases the modular ratio, R increases too. In

=14
particular, if a=21 (or B=0), then the modular ratio is
expected to approach zero. Conversely, if a30 (8=21),
corresponding to a situation where we have a solid core;

then the modular ratio shoots up. Indeed this statement is

physically sound; since the thicker the core material is,
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the stiffer it becomes and, vice versa. Figs. 2.7 and 2.8

depict graphically how R, varies with a and B8,

¥
H
{
b
¢
.

respectively. Four materials were examined:
(a) aluminium having the following properties,
E = 70967 MPa, and
L = 0.334;

(b) carbon steel having material properties,

T TR BOCT AR AN ST SR

E = 206700 MPa, and

T g e

u = 0.292;
: (c) same as (a) except for p = 0; and
(d) same as (b) except for u = 0.

It is worthy of note that R, versus a and R, versus B
curves coincide when the Poisson's ratio is equal to zero.
Thus indicating that failure to include the Poisson's ratio
effect in estimating the effective core material elasticity
modulus will ultimately 1lead to erroneous results.
Besides, it is important to note that the Poisson's ratio
actually acts to stiffen the core against deflection from

external pressure.

-
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Fig. 2.7: Plots of modular ratio, R,=Eq¢/E, versus
radial ratio, a=a/b, for cases (a)-(d) of

section 2.3.3 (isotropic condition).
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2.4 FINITE-ELEMENT ANALYSIS OF THE CORE-ROLL SYSTEM
2.4.1 Background

A new investigation is undertaken to find out how the
core stiffness affects the roll body at various radii. A
finite-element package, I-DEAS™ of Structural Dynamics
Corporation running on a Hewlett-Packard 350 workstation,
was used to model and analyse the core-roll system. Due to
the symmetry of the model under study, only a quarter of
the two concentric cylinders representing the core-roll
system, need be utilised for analysis. To structurally
simulate the actual physical behaviour of the core-roll
system, the finite-element model is allowed to freely move
horizontally and vertically (see Fig. 2.9), however, the
centre of the quarter circle is fixed for all translations
and rotations in order to ensure that the structure will
not cruise along a particular direction, hence, causing it
to be statically unstable. (It is worthwhile noting that
negligence to make certain that the static stability
condition is satisfied will undoubtedly lead to incorrect
results from the finite-element analysis.)

All elements of the finite-element model were analysed
as isotropic, thin-shell, gquadrilateral or triangular
elements where applicable. Three main cases were studied.

Below is some detailed account of each one.
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positional restraint

Fig. 2.9:

core outer radius,

o
i

roll outer radius,

Q,
i

u, = radial deformation at b,
uy = radial deformation at 4, and

p = test pressure.

Finite-element model used to find radial
deformations at core/roll interface and at
roll outer radius under linear isotropic
conditions. (Circles indicate

frictionless constraint at edges.)
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Fig.

2.10:

Diagram of core and roll model. Radial
deformations uy and u, are measured at roll
outer radius and core outer radius,
respectively. (Radial ratios are: c;=a/b;

and c,=b/d.)
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2.4.2 The Hollow-Core Finite-Element Model

Here, the model consisted of a 1"(2.54 cm)-radius hole
surrounded by a core material having the following
properties: modulus of elasticity = 30,000,000 psi (206.7
GPa) and, Poisson's ratio = 0.292. (For geometry and
finite-element mesh for the hollow-core model see Fig.
2.11.)

The radial deflection at the exterior surface of the
core, u,, was obtained for:

(i) uniform exterior pressure of 100 psi (689 kPa) applied
at outer core radius 2.5" (6.35 cm); and

(ii) uniform exterior pressure of 120 psi (826.8 kPa)
applied at outer core radius 2.5" (6.35 cm).

The latter case was done so as to examine the effect
of increasing the external pressure, that 1is to say,
emulating having more wraps of roll material as in the
actual core-roll system; on the radial deflections of the
core material at the core exterior surface.

The core radial deflections at the exterior core
surface, u,, obtained from the finite-element analysis are
compared with those computed from equation (2.18) or (2.23)
previously developed using the thick-walled <cylinder
analysis and press-shrink-fit model, vespectively. Table
2.2 shows details of the numerical results obtained for the
aforementioned cases. Examination of Table 2.2 reveals

that the u, values procured analytically and by finite-
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element analysis are in good agreement.
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a = core inner radius (hole radius),

core outer radius,

o
il

u, = radial deformation at b, and

p = test pressure.

Fig. 2.11: Geometry and finite-element mesh for the

hollow-core model.

¢ 3

53




Table 2.2: Comparison of thick-walled cylinder theory
and finite-element analysis results for a

hollow core.

Core material parameters:
elasticity modulus = 30,000,000 psi (206 CPa),
Poisson's ratio = 0.292,

hole radius = 1" (2.54 cm).

i. Core outer radius, b = 2.5" (6.35 cm)
Uniform external pressure applied at exterior core

surface, p = 100 psi (689 kPa)

* Thick-Walled Cylinder Theory Results

u, Eege = P*D/Y,
(in) (cm) (psi) (GPa)
-9.0746%107% ~2.3049%1075 27,549,423.67 189.81

* Finite-Element Analysis

u, Eegs = P*D/4,
(in) (cm) (psi) (GPa)
~9.076%10"8%  -2.305%1075 27,545,174.08 189.79
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Table 2.2 Continued.

ii. Core outer radius, b = 2.5" (6.35 cm)
Uniform external pressure applied at exterior core

surface, p = 120 psi (826.8 kPa)

* Thick-Walled_ Cyvlinder Theory Results

uy, Euee = P*b/u,
(in) (cm) (psi) GPa
~1.0889%1073 -2.7658*10°° 27,550,739.28 189.82

* Finite-Element Analysis

Uy, Eees = PYD/Y,
(in) (cm) (psi) GPa
-1.089*%107° -2.766%10"° 27,548,209.37 189.81

N.B. Minus signs represent inward deflections.
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2.4.3 The Solid-Core Finite-Element Model

Fig. 2.12 illustrates the geometry and finite-element
mesh generated for the analysis of the solid~core model.
Here, the core material had the properties shown below:
elasticity modulus = 100,000 psi (689 MPa) and, Poisson's
ratio = 0.05. A single run was executed, that for a 2.5"
(6.35 cm) solid core to whose exterior surface a uniform
external pressure of 100 psi (689 kPa) was applied. Again,
the finite-element results for the radial deflections at
the core exterior surface were compared with those obtained
from equations (2.18) or (2.23); and they were found to be

in very good agreement (refer to Table 2.3).
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Fig. 2.12: Geometry and finite-element mesh for a

s0lid core model.
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Table 2.3: Comparison of thick-walled cylinder theory
and finite-element analysis results for a

solid core.

Core material parameters:
elasticity modulus = 100,000 psi (689 MPa)

Poisscn's ratio = 0.05

— 2] |

Core outer radius, b = 2.5" (6.35 cm)

Uniform external pressure applizd at exterior core

surface, p = 100 psi (689 kPa) AJ
[

* Thick-Walled Cylinder Theory Results

u,, Eges = P*D/Yy,
(in) (cm) (psi) (GPa)
-2,375%1073 -6.0325%1073 105,263.16  725.26

* Finite-Element Analysis

u, Eers = P*D/u,
{in) (cm) {psi) GPa
-2.375%10"3 -6.0325*%10"3 105,263.16 725.26

-
—

N.B. Minus signs represent inward deflections.
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2.4.4 The S80l1lid Core-Roll Composite Model

This particular investigation was intended to
demonstrate how a core of specific material parameters
influences the layers of the roll material, being wound
around the core, at various radii. The geometry and
finite-element mesh generated for this model are shown in
Fig. 2.9.

In this model, the core material of radius 1" (2.54
cm) had material parameters as follows: elasticity modulus
of 30,000,000 psi (206.7 GPa), and Poisson's ratio of
0.292. Whereas the roll material having the parameters:
elasticity modulus = 100,000 psi (689 MPa), and Poisson's
ratio = 0.05; was simulated as being wound around the core
to outer radii 1.5", 2.5", 3", 3.5" and 4". Each of these
outer radii constituted an individual run (the core
material properties being the same at all runs) where an
exterior uniform pressure, p, of 100 psi (689 MPa) was
applied at the exterior surface of the roll. The finite-
element model was used to find radial deformations and
stresses at the core/roll interface and at the roll outer
radius. Radial strains and equivalent roll material moduli
at the roll exterior surface could then be computed. The
numerical results thus obtained are presented in Table 2.4.

It is evident from the finite-element analysis results
that the rate of change of the effective roll modulus with

radius is remarkably low. This could be attributed to the
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fact that the hardness of the core does not change the
hardness of the wound layers that lay on the core as in
winding, where the layers of the roll that have been wound
on harder substrata are yet harder themselves. This is
contrasted by the behaviour of a block of passive material
exposed to an external pressure, in which the elasticity
modulus of the material does not vary as in the case of
winding on bands of web with initial tension due to a
winding stress, o,, coming in the web.

Therefore, we here conclude our analyses of the
various models simulating an isotropic core material,
hollow and solid; being part of the core-roll winding
system. We shall, thenceforth, direct our attention to

investigating anisotropic core materials.
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Table 2.4: Finite-element results for a solid core-roll
composite model.

Solid core:
core radius, b = 1" (2.54 cm)
elasticity modulus = 30,000,000 psi (206.7 GPa)
Poisson's ratio = 0.292

Roll material:
elasticity modulus = 100,000 psi (689 MPa)
Poisson's ratio = 0.05

Uniform exterior pressure applied at outer roll radius,

p = 100 psi (689 kPa)

Outer Roll Radius, 4 (in)

4 3.5 3 2.5 1.5
ud (in) -3.373 -2.845 -2.303 -1.744 -0.566
(x1073)
ed=qyd -8.432 -8.128 -7.677 -6.976 -3.773
(x107%)
or (psi) 180.3 177.4 173.2 166.5 135.9

E ¢=pd/uy 118589 123023 130265 143349 264018

(psi)

N.B. 1) u,radial deflection at exterior roll surface,
ii) E=effective roll modulus at exterior surface,
iii) o.=radial stress at core/roll interface, and

iv) minus signs represent inward deflections.
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2.5 THE ANISOTROPIC HOLLOW-CORE MODEL

Thenceforward, we shall introduce to our analysis the
fact that the core material exhibits anisotropic behaviour.
That is to say, the core material's elastic properties are
different for different directions. In particular, we
shall model the hollow core as a plate having the shape of
a complete circular concentric ring with cylindrical
anisotropy. our ultimate fgoal is to derive an analytic
equation describing the efiective elasticity modulus for
anisotropic core materials.

In the endeavour to offer a detailed analysis of the
anisotropic hollcw-core model, we shall first indulge in
explaining the definitions, symbolism and theory associated
with curvilinear anisotropy and the analysis of a
generalised plane stress problem for a body possessing
cylindrical anisotropy. This should hopefully provide a
clear perception of how the generalised plane stress
approach for a body with cylindrical anisotropy can be
applied to the hollow-core model. Thereafter, we shall
further allow the wound-on material to exhibit anisotropic

behaviour, and make deductions thereupon.
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2.5.1 Curvilinear Anisotropy

In the study of stresses and deformations in elastic
anisotropic bodies, we will consider, on the basis of a
generally accepted model ([57, 61, 65], that the elastic
body is a continuous medium.

A homogeneous anisotropic body, also said to be
rectilinearly-anisotropic, is characterised by the
equivalence of parallel directions passing through
different points of the body. In contrast, however,
curvilinear anisotropy is characterised by the fact that in
such a body ear:ivalence is not found in parallel directions
but follows some other directions. Choosing a system of
curvilinear coordinates in such a manner that coordinate
directions coincide with equivalent directions at different
points of the body, then infinitely small elements of the
body, which are delineated by three pairs of coordinate
planes, will possess identical elastic properties.
Conversely, the elastic properties of elemental rectangular
parallelepipeds with mutually parallel sides will not be
identical. The number of possible types of curvilinear
anisotropy is unlimited. However, we will limit ou™ study
to cylindrical anisotropy which indeed reflects the
material behaviour of the hollow-core model under
investigation.

The axis °,f, anisotropy, whict can pass either

externally or internally, 1is represented by a straight
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line, g, in the body with cylindrical anisotropy (see Fig.
2.13). All directions which cross this axis at right
angles are equivalent. All directions parallel to the
anisotropy axis, as well as those orthogonal to the latter
are also equivalent. All infinitely small elements A,, A,,

.. cut from the body by three pairs of surfaces: (a) two
planes passing through the axis of anisotropy; (b) two
parallel planes normal to g and (c) two concentric
cylindrical surfaces with the axis which coincides with g
(Fig. 2.13); all such elements have identical elastic
properties.

It would be prudent as well as convenient to use
cylindrical coordinates; r, ©, z, during our analysis of
the problem at hand, with the z-axis coinciding with the
axis of anisotropy, g, and with an arbitrarily chosen polar
axis, x, from which angle 8 is measured.

The equa ions of the generalised Hooke's law for a

body with cylindrical anisotropy of the general type

without any elastic symmetry are:

= Q310,481,707 30,+214T, 15T, ,1216T e

ee = alzar+d2200+ ® o ¢ o0 0 0 00 e s ¢ o +a267r9’
ez = a130r+a23ae+ ® 2 00 e e e e 08P e o0 +a36Tr0,
Yez = al4ar+a2406+ ® o & v v s e 0088000 s +a46‘rre’ (2 L] 26)

er = a150r+a2500+ L R A A R I I N A ) "'ass'rre'

Yre = a160r+a2600+ ® % 8000 0 0000 e o +a66'rreo
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In equaticns (2.26), €., €4, ... Yoo are the components of
deformation; o0,., 0y, ... T, are the stress components on
planes normal to coordinates r, 6, z of the cylindrical
system, and the coefficients a;; lesignate the elasticity
constants [f[which are usually expressed 1in terms of
elasticity parameters) [57, 65].

Above, we have adopted the commonly used notation to
designate each normal stress component by o with a
subscript indicating the direction of the normal to the
plane, and consequently, the direction of the component
itself. Further, each tangential component is designated
by 7 with two subscripts, the first one indicating the
direction of the component, and the other, the direction of
the normal to the plane. As for the components of
deformation, ¢ is used, with the appropriate subscript, to
designate relative elongations for the directions r, 6, z;
and y, with two subscripts, to designate three relative
shears. The number of independent constants in equations
(2.26) , in general, is 21. Different types of elastic
symmetry are possible for a budy with cylindrical
anisotropy; which will consequently lead to reducing the

number of independent constants in equations (2.26).
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Fig. 2.13:

Elements of a body with cylindrical
anisotropy. The axis of anisotropy is
designated by g, and A; and A, represent

elements of the body [65].
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2.5.2 Generalised Plane Stress For a Body Possessing
Cylindrical Anisotropy

In this sub-section, we will consider the equilibrium
of a thin prismatic body, a plate, which has a constant
thickness in the z-direction (see Fig. 2.14) and possesses
cylindrical anisotropy; as a result of forces distributed
along the edges and, of body forces. The following, with
respect to elastic properties, will be assumed:

1. the axis of anisotropy, g, is normal to the middle plane
of the plate (the intersection of the axis of anisotropy
with the middle plane, which is fregquently referred to as
the pole of anisotropy, may be located inside, outside or
on the edge of the plate), and

2. each point has a plane of elastic symmetry which is
normal to the axis of anisotropy (and, consequently, is
parallel to the middle plane).

Furthermore, it will be assumed that the surface and
body forces are parallel to the middle plane, as well as
distributed symmetrically relative to this plane and vary
only slightly with respect to the thickness. The
deformation will be considered to be small.

Referring to Fig. 2.14, we have chosen the axis of
anisotropy to be the z-axis of the system of cylindrical
coordinates r, 6, z and, the direction of the polar x-axis
is arbitrary within the middle plane. We shall denote the

plate thickness by h, and the body forces per unit volume
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in coordinate directions r, 6, z by R, T, Z, respectively.
It is worthy of note to recognise that 2Z=0 for our plate;
since the faces of the plate are entirely free from applied
loads (a necessary assumption for the generalised plane
stress situation). In studying the state of plane stress
it is advantageous, because of the basic assumptions, to
introduce the average values with respect to thickness of
the stress components and displacements: o,", 05", 0,", T, ,
u.", up". These values are designated as integrals of

corresponding stresses and displacements taken over the

thickness and divided by it; i.e.,

(2.27)
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Moreover, we will alsc introduce the notation:

ol
\N'D’

R*= Rdz, and T*'=

>l
C—, ol

1
ol
b

where R" and T are the average values of body forces with
respect to the thickness. It is assumed that the body
forces are derivable from a potential U(r,8), i.e., they
are determined from formulae

R" = -9U"/dr,

T = -(1/r) (du*/de), (2.29)
where U" designates the averaged (with respect to
thickness) potential.

Similarly, we can obtain the average values, with
respect to thickness, of the components of deformation; er*,
€o s Yro r Which, assuming small deformations, are equal to:
e,” = du/l/dr,

Lo (1/r) (dug*/d8) + (u,"/r), (2.30)

Il

Y= (1/r) (9u,"/36) + (duy"/dr) - (ug'/r).

(N.B. Equations (2.30) are true for any continuous body,
both elastic and inelastic. Derivations of these equ.tions
can be found in textbooks on the theory of elasticity, eqg.
[57, 67, 68].)

The equilibrium equations in cylindrical coordinates
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read,
(d0,./9r)+(1/r) (971 o/38) +(d1 ,/d2)+((0,~0,) /T)+R = O,

(97.4/0r)+(1/1) (aaa/ae)+(8191/az)+(21re/r)+'r = 0, (2.31)

(871,,/9r)+(1/r) (814,/08)+(30,/d2) +(1,,/X)+% = O.
And the equations of the generalised Hooke's law (2.26) in

which, since we have a case of one plane of elastic

symmetry; the number of independent elastic constants

reduces to 13 because,

Ay, =2,578,,58c=a5, 585,74, =80, and thence equations

(2.26) become,

€, = ay0,.1a,,05%7230,+a,T 4,
€g T 930,.13,,05%250,+85T g/
€, = a,30.ta,0gtano, taqy T, (2.32)

Yor = A1Ter ATz

Yrz = 5Tgt257,,, and

Yo = 2140,150g%85,0,+ AT g-
By averaging (i.e. by multiplying by dx/h and integrating
over the thickness) equations (2.31) and (2.32); and
disregarding az", since it is negligible compared with or",
oe" and "m.' we obtain five equilibrium equations, which
correspond to the number of unknown functions; namely,

(80,"/3r) +(1/r) (31 4 /38)+( (0, ~0,") /T)+R" = O,

(87, /9x)+(1/1) (d0, /38) +(27 o /T)+T = O; (2.33)
€ = a0, +a0gtayT g,
g = 5,0, 850, +ayT o (2.34)
Yo = 8140, +ta00 +agT ) .

70




The equation of compatibility may be obtained by
eliminating the displacements from equaticens (2.30);
namely:

(92%e,."/002)+r (9% (rey") /0r?) - (0% (ry,o") /Ord6) -

r(de "/dr) = 0. (2.35)
The equilibrium equations (2.33) are identically satisfied
by the introduction of a stress function F(r,8) and if we
set:

(1/r) (8F/dr) +(1/r?) (32F/d8%)+U",

Q
It

(82F/8r2) +U*, (2.36)
T,o = -9%(F/r)/drde,
where U" is the (averaged) potential previously encountered
in equations (2.29). On the basis of the compatibility
equation (2.35), equilibrium equations (2.34) and (2.36);
we obtain the differential equation which must be satisfied
by the stress function:
a,,(3%F/3r%) ~2a,4(1/r) (8F/3r3de) +
(2a;,+agg) (1/r2) (3%F/9r2062) -2a,¢(1/x3) (3%F/drde’)+
a;;(1/r%)(9%F/0e%)+2a,,(1/r) (d3F/0dr3) -
(2a;,+agg) (1/13) (8'F/9rde?) +2a;4(1/r?) (33F/063) -
a;;(1/x?) (3%F/3r?) -2 (aj¢tayg) (1/r) (8%F/drde) +
(2a,,+2a,,+agg) (1/T%) (32F/002) +a;, (1/r3) (IF/dr) +
2 (ajgtasg) (1/r) (3F/38) = -(aj,+ay,) (32U /9r?) +
(ajg+ayg) (1/r) (3%U"/8rde) - (a  -a;,) (1/x?) (3%U™/d6%) +

(aj1-2a,,-a;5) (1/1) (AU*/Ir) +(aje+ayg) (1/r?) (3G™/d8).
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Due to the considerable complexity of equation (2.37),
principally, since it contains the derivatives of the
stress function F of different orders, from the first to
the fourth; a general expression for F in terms of
arbitrary functions is excruciatingly difficult to find.
To the author's best knowledge, general expressions for F
have only been found using the theory of complex variables,
for much simpler cases where the differential equation does
not involve different orders of the derivatives of F, as in
the cases of isotropic or orthotropic materials [64, 65,
67].

In particular, if the plate with cylindrical
anisotropy is at the same time also orthotropic, i.e., has
three planes of elastic symmetry a* each point, of which
one is parallel to the middle plane, the second passes
through the axis of anisotropy, and the third is orthogonal
to the first two, then equations (2.34) can be written
(N.B. aj;g=ase=a3g=a6=0):
¢ = (1/EQ)0," = (ug/Eg)ay,

"= =(u/E)0. + (1/Eg)og”, (2.34a)

™
I

Yre* = (1/Gpe)Tro
here E., Ey are Young's moduli for tension (compression)
along principal directions r and 6; u,, uy are Poisson's
ratio in the radial and tangential directions,
respectively; and G.o the shear modulus which characterises

the change of angles between principal directions r and 6.
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The differential equation which must be satisfied by the
stress function, equation (2.37), for this case is
simplified to

(1/Eg) (3°F/Ox%) + [(1/Gyre)=(2M./E,)1(1/x?) (8%F/3r2a6?)

+ (1/E.) (1/r%) (8%F/38%) + (2/Eg) (1/r) (3°F/3r3) -

[(1/Gre) = (21,/E,) 1(1/x?) (8°F/9rde?) -
(1/E,) (1/r?) (8%F/9r?) +
{[2(1=p,) /EL1+(1/Gpo) } (1/x?) (8%F/80%) +
(1/E.) (1/x%) (3F/3r) = -[(1-ue) /Ee) (3%U"/3?%) -
[(1-pp)/E.](1/x2) (8°U™/96%) -
{(2/Eg) = [ (1+u,) /E,)}(1/T) (3U"/3r).
............... (2.37a)

The boundary conditions for given forces at the plate
edge can be expressed in terms of the first derivatives of
the stress function (JdF/dr) and (JF/de) at the contour of
the region occupied by the plate.

Moreover, by superimposing the directions of axes x
and y on the principal directions of elasticity for an
orthotropic plate (see Fig. 2.14), and in the absence of
body forces; the following homogeneous equation is obtained
instead of equation (2.37) [70]:

(1/Ep) (3%F/9x%) + [(1/G)-(2w,/E;)1(3%F/9x*3y?)

+ (1/E;) (8%F/3y*) =0, ..., (2.37b)
where E;, E;, are the Young's moduli for tension
(compression) along the principal directions x and y; G=G,,,

the shear modulus which ch .racterises the change of angles
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between principal directions x and y; and u,=u,, the
Poisson's ratio which characterises the dimensional
decrease in direction y during tension in direction x.

However, in the case of an isotropic plate in which
material parameters are equivalent in all directions; i.e.
E,=E,=E, and G=E/2(1+u), then equation (2.37b) becomes the
biharmonic equation [71]. 1I.E.,

V292 F=0, (2.37¢)
where V? is the two-dimensional Laplacian operator:

V2 = (32/9x%) + (82%/3y?).
Expanded, equation (2.37c) is written as:

(3%F/0x%) + 2(9%F/9x23y?) + (8%F/dy?) = o. (2.37¢")

We shall henceforth direct our attention to
determining the stress distribution in an annular plate
with cylindrical anisotropy which ultimately leads to

solving the anisctropic hollow-core problem.
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Fig. 2.14: General situation where generalised plane

stress is applicable.
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2.5.3 Stress Distribution in an Annular Plate with
Cylindrical Ar isotropy

As has already been statrd, the hollow core made up of
anisotropic material was modelled as an annular plate, of
certain thickness, h, with cylindrical anisotropy. The
findings of sub-section 2.5.2 for analysing a body
possessing cylindrical anisotropy, in a (generalised) plane
stress situation, will now be applied to determining the
stress distribution of a plate havina the shape of a
complete circular concentric ring with <cylindrical
anisotropy and compressed along the external and internal
surfaces by a uniformly distributed normal load (see Fig.
2.15). In considering the elastic equilibrium of the
plate, the anisotropy pole will be taken to coincide with
the ring centre. It will further be considered that there
are no elements of elastic symmetry besides the planes
which are parallel to the middle plane. By solving this
problem, we obtain at the same time the solution to the
analogous problem regarding the stress distribution in a
(hollow) core made up of material with cylindrical
anisotropy subjected to external and/or internal pressures.

By having the anisotropy pole (the ring centre) as the
origin of coordinates, the polar x-axis mway be directed
arbitrarily (see Fig. 2.15). In reference to the same
figure, we designate the magnitudes of the internal and

external pressures per unit area by p and q, respectively,
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the internal and external plate radii by a and b, and the
radius to a point inside the plate by r. Assuming that
U*=0 and using a stress function F, independent of polar
angle © (since the plate is axisymmetric), which reads

F = A + Br? + crl*k 4+ prl-k,
(2.38)
where A, B, C and D ure ccnstants (to be determined from
the boundary conditions) and,

k anisotropy ratio,

= (a;;/a5,) % = (Eg/E,)™. (2.39)
E, and E, are Young's moduli for tension (or compression)
in the radial and tangential directions r and 6,
respectively. Upon so doing, the stress components
(averaged relative to thickness) are expressed by stress
function F, of formulae (2.36), where U'=0. Function F
satisfies equation (2.37), where again U'=0. We are now

able to determine the stress components, 0., 0y, T,.o. They

are:

0. =Pk -q) | Iyii_ (P=gck ) Lk Byia

T (1-c%*) b (1-c2k) r
2.40
0,=2C5 =) Ty, (P=GCX) p ks ( Bykr, (240
(1-c2k) ' b (1-c2k) r
tze=o,

where, ¢ = a/b = radial ratio.
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It is worthwhile mentioning that the stress
distribution, indicated by equations (2.40), is identical
for all radial cross sections and depends only on the ratio
of Young's moduli for tension (compression) in the
tangential and radial directions.

Displacements of points in the plate in the radial and
tangential directions u. and uy can, hence, be found from

the generalised Hooke's law equations (2.32) for the case

of one plane cof elastic symmetry. They are:

- b
Ee(l_czk)

r

[ (pc*t-q) (k-pq) (—Ir-)) ks (p-gckt) ekt (kvpg) (_iz, K]
(2.41)

UO-O’

where E, and ug are Young's elasticity modulus and Poisson's

ratio, respectively, for principal directions, 6.
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Fig. 2.15: Diagram illustrating a cross-section of an
annular plate with cylindrical anisotropy.
The internal and external pressures are
denoted by p and g, whilst a and b are
used to designate the inner and outer
radii of the plate. 6 is the polar angle
and r represents the radius to any point

inside the plate.
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2.5.4 Interpretations & Conclusions
2.5.4.1 The Hollow-Core Problem: Anisotropic and
Isotropic Materials

The theory and analysis of an annular plate with
cylindrical anisotropy can now be easily used to derive an
analytic expression for the effective elasticity modulus of
an anisotropic hollow core under the influence of only
external pressure, caused by the wraps of roll material
wound around the core. Adopting the same notation
previously implemented (refer to Fig. 2.15), i.e., q to
denote uniform pressure at the exterior core surface (the
internal pressure being zero) and, a and b to denote the
inner and outer core radii; *the radial deflection at the

core's exterior surface (at r=b), u can now be obtained

r/’

from equation (2.41) as

[ (k-pg) +C 2K (k+pg) ] __gb k(1+c?*) _
By (1-c?k) Ey ~ (1-c*)

u,=-gb Bel

(2.42)

where the minus sign signifies that the core radial
deflection is inwards, as expected. Dividing equation
(2.42) by b, inverting the resulting equation and, finally,
multiplying by q; will give an expression for the effective
core elasticity modulus, Eqees, (note that Eg¢e=qb/-u.) in
terms of the tangential Young's modulus, E,, radial ratio,
c, tangential Poisson's ratio, ug; and the material

anisotropy ratio, k, defined by relation (2.39). This
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expression reads,

E, — Ee(l—CZk) - Ee
S (k-py) +c?X (k+pg)  kil+c2k) (2.43a)
(1-c2k) Ho

It is worthy of note, at this stage, that the assumption of
zero pressure on the interior of the core presumes that the
interior wall is unsupported by any other rigid body. If
there is contact with a stiff inside cylinder, then the
determination of the exterior deflection becomes more
complex. Furthermore, the effective core modulus can be
found from equation (2.43a) provided that Eg, and E. can be
evaluated; which may not always be an easy task,
particularly in the case of fibre tube cores [26].
Defining the modular ratio, R,, to be the ratio of
effective core elasticity modulus to tangential elasticity

modulus, i.e. R,=E.¢¢/Ey, then equation (2.43a) becomes

I ___Eeff= 1
T OB k(e (2.43b)
(1-c2k) °°

This relationship is graphed against the radial ratio,
c=a/b, for linear anisotropic materials with Poisson's
ratio of 0.1 and k values of 2, 4 and 8 (Fig. 2.16). The
highest value of k might be taken as appropriate for a
model for spiral-wound-paper-tube cores where Ey is on the
order of 600,000 psi (4.2 MPa), however this material is

known to be non-linear in compression, so k will be a
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function of pressure [9]. Ostensibly, for linear isotropic
materials (i.e. k=1) such as aluminium or carbon steel,
equation (2.43b) reduces to equation (2.25) previously
encountered 1in sub~-section (2.3.3). Fig. 2.17 which
graphically illustrates relationship (2.43b) for linear
isotropic materials, using Poisson's ratio of zero and
0.334; shows that Poisson's ratio acts to stiffen the core
against deflection from external pressure. Here the
elasticity modulus is increased by roughly 50% when
Poisson's ratio goes from 0 to 0.334. Additional strains
are produced in the tar~ential and axial directions when
there is a ccistant Poisson's ratio. These strains are
proportional to the radial strain caused by external
pressure. The net effect is to reduce the radial
de’ormation, which results in a higher effective modulus.

The rate of change of effective core elasticity
modulus with radial ratio, for anisotropic core materials
with tangential elasticity modulus, EG=RZXEI; is greatly
reduced as can be surmised from Fig. 2.16. When the radial
modulus is low compared to the tangential modulus, a small
amount of radial deformation will cause inward strains that
produce like amounts of tangential strain. In the presence
of a high tangential modulus, these strains will cause
large tangential stresses, thus causing the core tube to
act as props to support the external pressure so it does

not penetrate deeply into the underlying layers. In Figqg.
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2.16 at radial ratio, a/b=0.80 (wall thickness 20% of the
outer radius), little if any increase in modulus occurs if
the wall thickness is increased to 35% (i.e. a/b=0.65).
This shows that it does not pay to add material to the
inside of the core because little of the external load is

carried on to the inner layers.

Equations (2.40), previously derived in sub-section
2.5.3, predict the distribution of radial and tangential
stresses inside a core as a function only of geometry,

anisotropy ratio, %k, and the internal and external

pressures; namely,

-{pc*-@) (ryka_ (p=gc®t) Lk Byra,

' (1-¢%*) Db (1-c2k) r
2.40
Ou= (Pck‘l‘q) k(X )k-1+ (p-gc*k )k ku( )ku ( )
(1-c2k) (1-c?k)
tzo-o-

It is interesting to note that these equations do not
include Poisson's ratio. In the particular case of
isotropic materials, when k=1, equations (2.40) reduce to
the known Lamé equations [72]:

o, -tPtQ) __(p=q) 2By
(1-c?) (1-c?) r (2.44)

- {pci-q) . (p-q) b
° (1-¢2) ' (1-c?) CZ(_I—)Z" and %m0,
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where all symbols are as defined earlier. The above
equations are identical to the general expressions for the
radial and tangential stresses (equations (2.14) and
(2.15)) obtained from the thick-walled cylinder theory.
The stresses within an isotropic hollow core then vary as
a function of (1/r2), as in the case of a hollow shaft over

which a hub is press-fit.
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Fig. 2.16: Graph of ratio of effective core modulus to

elastic tangential modulus, R,, versus
radial ratio, a/b, for anisotropic linear
materials with k values of 2, 4 and 8,

with Poisson's ratio = 0.1 for all three

cases.,

85




"ﬂ‘

¢ 9

Re (aimension'ess)

Modutar ratio

g I Y T T T T T T
0 02 04 06 08 1
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O k=1(Pors=0) + k=1 (Pois=0 334}

Fig. 2.17: Graph of ratio of effective core modulus to
elastic tangential modulus, R,, versus
radial ratic, a/b, for isotropic, linear
core materials with Poisson's ratio of 0.0

and 0.334.
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2.5.4.2 The Core-Roll Winding System: Sensing The
Presence of The Core Through Layers of Wound
Material

Having determined the effective core elasticity
modulus, we next wish to know how the hardness (or
softness) of the core material will be obscured by the
build-up of roll material over it. This is necessary in
order to incorporate the radial variation of the hardness
effect into a roll winding model. Intuitively, one would
expect such a curve of hardness to start with the core
stiffness modulus at core radius, then change quickly with
radius, and finally end up at many multiples of the roll
radius with a value approaching that of the roll material
itself [9].

The general arrangement for a two-body core and roll
material is diagrammed in Fig. 2.10. Referring to the
latter figure, a and b denote the inner and outer core
radii, respectively; and d denotes the roll outer radius.
The radial deformations u, (at radius b) and uy (at radius
d) are caused by the test pressure, p, applied at radius d.
The radial deformations at radii b and d can be determined
from equations (2.41) provided that the external and
internal pressures, g and p, can be established for each
ring. The boundary ccnditions for each ring can then be
used to obtain the missing information in equation (2.41).

For the inner ring, the internal pressure, p, is zero,
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while the external pressure, q,, is that developed at the
interface when the deformation becomes u, (at r=b). For
the outer ring the external pressure, g, is the test
pressure applied, and the internal pressure at the
interface, p,, exactly equals q, for the inner ring. Also
the outer ring's radial deformation at the interface radius
b is equal to that of the inner ring. Noting that c in
equation (2.41) applies when r is between a and b (see Tig.
2.15), thus for the inner ring c; is used to denote the
radial ratio and similarly; c, is used for the outer ring.
Further, the variable b in equation (2.41) refers to the
outer radius, and hence d should be used in its place in
the case of the outer ring. By setting the t'wo
deformations, u,, of the inner and outer rings equal; the
following solution is obtained for p,, the pressure at the

interface, in response to an external pressure, q:

k-1

l-c':kz
k. k
1\72(1+c,,2’)+ ]+Eez[k1(1+cf‘)_

Ho T
2k. 2 2k 1
1 _C2 : Eel 1 —Cl !

bp=gq

’

(2.45)
[

where all quantities are as defined earlier. However,
those quantities subscripted (,) refer to the roll material
parameters; whereas those subscripted (;) refer to the core
material parameters. As it is apparent from above, we are
incorporating the anisotropy effects in both roll and core

materials.
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The analytic equations developed thus far for
predicting the radial deflections at the outer roll radius
and at the roll/core interface, the pressure at the
interface and the effective elasticity modulus; based on
applying the analysis of generalised plane stre<s for an
annular plate possessing cylindrical anisotropy, can be
used to compare the results obtained from the finite-
element analysis of the svlid core-roll system. The case
to be studied via the analytic approach is that used for
the finite-element model; namely, a solid core with radius
b=1" (2.54 cm), Eg;=30x10% psi (206.7 GPa), pg;=0.292,
Eg,=100,000 psi (689 MPa), pg,=0.05, =100 psi (689 kPa) and
k,=k,=1 (both core and roll materials being isotropic).
Table 2.5 shows the computed values for the radial
deformation at the roll outer radius, uy, the effective
roll modulus, E, at the outer roll radius d, the radial
deformation at the core/roll interface (at radius b), u,,
and the interface pressure, p,; each being computed at roll
outer radii 1.5", 2.5", 3", 3.5" and 4". The close
agreement between the numerical results of Tables 2.4
(finite-element output) and 2.5 confirm the accuracy of the
algebraic solution (equations (2.41)-(2.45)).

The modulus values shown in Table 2.5 are decreasing
with greater distance from the core, as expected. For
large radial ratios, it was expected that the asymptote

would approach the roll material valvz. (It should
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approach 100,000/ {1-ug,) = 105,263 psi.) The pressure at
the core however, keeps rising as the radial ratio grows,
arriving at approximately 1.8 times the test pressure when
C,=4 (roll outer radius=4"). This is an artifact of the
isotropic condition; when winding actual materials one
seldom finds equal radial and tangential moduli [9].

The analytical approach can further be used to solve
test cases for different anisotropic ratios, and the
results are plotted in Fig. 2.18. In this figure an
aluminium core is modelled, having radial ratio, ¢;=0.80,
elasticity modulus, Eg,=107 psi, Poisson's ratio, pg,=0.334.
The roll material's tangential modulus is held constant at
a value of 600,000 psi, typical both of paper and polyester
film; whilst the radial modulus is found by dividing this
value by k?. The latter figure may seem to be rather high,
however, one ought to bear in mind that the radial
Poisson's ratio, p,,, will be equal to (pg,/k?), which will
agree with the range of values typically measured cuiring
stack tests of compressible sheet material.

Fig. 2.182 demonstrates that the ability to detect the
presence of a hard core by modulus measurements made at the
exterior surface becomes all but impossible at radial
ratios of 2.5 or greater, whenever the anisotropy ratio, k,
is 8 or greater. This is within the normal range of k
values for paper and many plastic film materials. The

range of k from 2 to 8 would apply to plastic film
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materials with very high radial elasticity modulus, E., and
particularly those with low tangential modulus, E,, on the
order of 150,000 psi. Winding materials having
E,=E;=600,000 psi are harder to find ([9].

The analysis developed thus far has only enabled us to
predict in a linear anisotropic material of constant radial
elasticity modulus, how strongly the core properties can be
sensed at different distances from the core. Indeed, an
appreciation of how rapidly the core effect can fade away
when k is large 1is given upon examining Fig. 2.18;
nonetheless, this is not all that happens when a roll is
wound. The initial layers which are added over a hard core
also present a hard interface to the layers added, because
of the stiffening effect of the core underneath. It would
be much too complicated to develop a predictor equation
which takes into account the continuous change of the
anisotropy ratio, k, with radius as more layers are added.

In Chapter Three, the final one of this Thesis, we
shall endeavour to make the necessary adjustments for roll
material stiffness parameters. We shall further
incorporate such adjustments to modify the existing energy-
balance roll structure formulae developed by J. D. Pfeiffer

[(5,6].
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Table 2.5: Numerical results obtained from analytic
equations (2.41)-(2.45)

Core~-Roll Parameters

* Core outer radius, b=1" (2.54 cm)

* Effective core modulus=30x10° psi (206.7 GPa)

* Core's Poisson's ratio=0.292

* Roll's elasticity modulus=100,000 psi (689 MPa)

* Roll's Poisson's ratio=0.05

* Uniform external pressure applied at outer roll

radius=100 psi (689 kPa)

Radius Uy E u, Pp
d (in) (1073xin) (psi) (1078xin) (psi)
1.5 -0.5675 264,306 -3.2032 135.73
2.5 -1.7453 143,239 -3.9203 166.12
3.0 -2.3043 130,193 -4.0772 172.76
3.5 -2.8457 122,994 -4.1786 177.04
4.0 -3.3737 118,563 -4.2460 179.92

N.B. i) radius, 4 = roll outer radius,

ii) uy radial deformation at radius 4,

iii) E effective roll modulus at radius 4,
iv) u, = radial deformation at core outer radius b,
V) pPp = radial pressure at core/roll interface, and

vi) minus signs represent inward deflections.
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Radial modulus. psi
(Millions)

Radial ratio (dimensionless)
+ k=2 O k4 A k-8 —— k=16

Variation of radial modulus with distance
from the core for various ratios of k.
Core aluminium: a=0.8, b=1. Roll
material: Eg=600,000 psi, uy=0.2, E. values

depend upon k.
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CHAPTER THREE

MODIFICATION TO ENERGY-BALANCE ROLL STRUCTURE FORMULAE
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3.1 INTRODUCTION

For a roll of paper or plastic film being wound,
energy-balance principles were used to calculate roll
structure under a given pattern of wound-in tension for
materials that are non-linear in compression behaviour
[(5,6]. This is analogous to the actual winding process, in
which the tensile strain energy put into elements of the
web by the web-carrying tension, provides the energy
necessary to compress the layers underneath into a firm
cylindrical roll body.

Pfeiffer's two-parameter model ([5,6], which has been
studied extensively in Chapter One, results in the slope of
the pressure versus strain curve having linear dependence
on the pressure itself:

P = -K; + K; exp(Kye,), (3.1)
where, P = inter-layer pressure, in Pa or psi,

pressure multiplier, in Pa or psi,

=
[
i

K, = basic springiness factor, dimensionless, and
¢, = radial compressive strain, dimensionless.
slope = dP/de, = K;K, exp(K,e,). (3.2)
And recognising that
K; exp(K,e,.) = P+K;; (3.1')
then,
dP/de, = K, (P+K;) = K,P+K;K,. (3.3)
The latter equation shows that the slope of the curve is a

linear function of P with a constant additive term of K;K,.
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Equation (3.3) gives the local modulus of elasticity around
the P, ¢, operating point.

The energy-balance scheme does not require repeated
iterations of the winding structure from the core outward
every time an incremental thickness of wind is added to the
outer radius. Instead, a single pass is made to calculate
the roll residual inter-layer pressure and tangential
stress, beginning at the outer roll radius and moving to
the core. The energy in a unit volume of a web is
calculated, based on the winding tension and tangential
elasticity modulus of the web, E,. This energy appears
inside the roll body as a combination of the energy
necessary to produce non-linear compression of the sheet
material up to the inter-layer pressure, and the energy
associated with the residual tangential stress within the
roll. The combination is calculated using distortion
energy theory [5,6]. The rate of change of pressure with
radius, do,./dr, is limited by the hoop stress equation;
viz.,

O = 0, = r(do,./dr) = 0,
to be that which is allowable under the current values of
radial and tangential stresses, o, and o¢,, to keep the
equation in balance.

Nothing mentioned so far in the description of the

energy-balance solution method gives the winding program!

1

written by J. D. Pfeiffer ©,
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a warning that the stiffening effect of the core is soon to
be felt, as the program makes evaluations of the winding
tension level as the solution proceeds directly from the
roll outer radius to the core radius. In the existing
program, the solution reaches the core at a value intended
to be correct for winding on an infinitesimally small core
of a zero-approaching radius. However, tiis is wrong if we
are to simulate the interface with a hard or a soft core.

In the next section, we shall attempt to rectify this
situation by incorporating Chapter Two's findings in order

to enable the existing winding program to account for core

stiffening.
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3.2 EMPLOYING RADIAL STIFFNESS MULTIPLIERS TO ACCOUNT
FOR CORE BTIFFENING

The approach that is recommended to work with the
energy-balance solution 1is patterned on how the web
actually responds during winding in the zone adjacent to
the core [9]. The first several wraps laid against a hard
metal core cannot easily be moved radially by the pressure
developed by wraps laid on top. If they could deform
radially inward towards the roll centre, the rapidly
changing tangential strain would cause them to lose their
initial tension, just as wraps in the outer roll body do.
But the stiffness of the core prevents them from moving

inwards, so they behave as if their radial modulus, E_, has

y
been artificially increased by the presence of the core.

In an attempt to incorporate the vast difference of
material properties, which is a must if a valid approach to
the solution of the roll winding problems is sought;
Pfeiffer [8] modified his earlier two-parameter model to
include a third term, a linear function of strain,
characterised by one additional constant strain mu)tiplier:
K;, in Pa or psi. Pfeiffer's modified equation for
measuring the compressive stress~strain behaviour of sheet
material is,

P = =K, + K, exp(K,e ) + K, (3.4)
where all variables are as defined earlier. The slope,

which is nothing other than the roll body's radial
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elasticity modulus, E,; then becomes

E. = dP/de, = KK, exp(K,e,) + Kj. (3.5)
And further substituting K; exp(K,e,)=P+K;-K3e,. into
equation (3.5) we will obtain,

E, = dP/de, = K,P + KK, + Ky(1-Kye,) . (3.6)

Equation (3.5) is most readily evaluated if e_ is
known. Integrating equation (3.5) and making use of the
pressure versus strain equation (3.4) and finally, taking
the natural logarithm of the resulting equation; we will
get a relation which will enable us to solve for strain
when pressure is known, viz.,

e, = {1n[ (P+K;-K3e,.) /K;1}/K,. (3.7a)
Since e, appears on both sides of equation (3.7a), one must
use successive re-iterations in order to evaluate the above
relation. This is done by writing equation (3.7a) as

e.'Y) = {In[ (P+K,-Ke_ (%)) /K ]} /K,, (3.7b)
evaluating the latter expression and setting e_(0)=¢ (1);
then repeating this process several times until e.(®) and
e.(!) are essentially equal. (If we start ¢,.(9) at zero,
then, the convergence is proved to be rapid.)

To model the effects shown in Fig. 2.18 (of Chapter
Two) where the tangential :lasticity modulus, E., is much
greater than the radial modulus, E.; a function is required
which will cause a high slope of the stiffness parameter

near the core. Thus a multiplier, y, is introduced which

is used to raise or lower E. [9]. This multiplier is used
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on both K, and Kj, but not K;. The form for calculating ¥y
is given by

Yy =1+ [Fy/(R-8)®], (3.8)
where F;, 8 and 6 are dimensionless quantities which will
be determined below; and R is the dimensionless ratio of
roll radius to core radius. Hence the compressive stress-
strain equation will read,

P = =-K; +K; exp(yKye,.) + yKje .. (3.9)
And the siope, E,, becomes

E, = K;YK, exp(yK,e,) + yKj. (3.10)

In expression (3.8), 8 is usually taken as 1, however,
in the event other values such as 1.5 or 2 are chosen; 0
will be included in the procedure for evaluating the other
coefficients. Equation (3.8) is capable of modelling the
effects illustrated in Fig. 2.18 if B is made slightly less
than 1, and F, is positive [9]. By contrast, when winding
on a soft core with effective elasticity modulus, E,
slightly lower than E,., F; will be negative to soften the
roll body; and B will be considerably less than 1, near
zero or negative. F; and 8 depend on yg, which is the value
of ¥ at the core surface, and a slope SL, which is dy/dR at
the core, and an intercept. The equations for these

relationships are given below, where Py is the "no-corel"

1 The "no-core" pressure, P,, is the residual pressure value
when calculations, provided that winding tension values are
to avail, are continued down to a radius of zero without
ever acknowledging the presence of the core.

100




{

pressure that would exist at the core radius if y=1 for all

radii.

F, = E./E, = E./(K,Pp), (3.11)
k? = E./E. = E¢/(K,Py), (3.12)
Yo = N;[1 - exp(-F;/Njy)], (3.13)
SL = 2k2[N3 + (N,/(F,+Ng)) 1, (3.14)
B = [8(yp-1)/SL + 1],

= [(yp=1)/SL + 1l]o=1, (3.15)
F, = -SL(1-8)®*l/e,

-{SL(1-B)%]g-1, (3.16)
where the dimensionless empirical constants used above are:
N,=25 N,=27.972 N3=-16.31755
N,=80.12425 Ny;=4.43017.2
It is worthy of note that approximating E,. by (Ky;P,) in
equations (3.11) and (3.12) is a short cut to using
equation (3.5). The results of the approximation, being
only a few percent low, are sufficient for estimation of
stiffness parameter effects; especially when the constants
N;-N; can be adjusted to compensate. The determination of
Po is the most difficult step, requiring several iterations
to find a balance between the equal quantities; the radial
and tangential stresses o, and 0., just outside the core

radius, where we assume the rate of change of pressure with

2 The empirical constants, N,-N;, were developed [9] by

fitting results to some known solutions of the roll winding
problems which use the method developed by Dr. Z. Hakiel of
Eastman Kodak Co., MNew York, U.S.A. [15].
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radius, do /dr, is zero. The procedure for determining P,
necessitates that we indulge in explaining some other
variables and relevant concepts, as follows.

When a stack of sheet material is compressed from zero
pressure to a finite compressive strain, the work done per
unit volume is equal to the area under the stress-strain
curve from zero up to that point. Hence, denoting the
energy involved in compressing the roll material up to
radial strain e_, by the symbol £ in units J/m’; we will
get by integrating equation (3.4):

E. = =K, + K [exp(Ke, )~-1]/K, + K ?/2. (3.17)
But to calculate the total stored energy on a distortion-
energy basis [5,6]; a winding stress, denoted by o,, that
has an energy level equivalent to the local pressure g, and
is a 1linear equivalent of the non-linear compression
response, must be calculated using

o, = -(2§.E)", (3.18)
where all symbols are as defined before.

The magnitude of the energy input per cubic volume
unit, denoted by £, in units J/m®, coming to the roll in the
form of elastic strain in the web because of its wound-in
tensile stress, o,, is given by:

£, = 0%2/2E,. (3.19)
on the outside of the roll, where the residual tension is

positive and the pressure is low, most of this energy will

be tensile in nature. Interior sections of the roll, which
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used to be on the outside, have been compressed radially,
and residual tension has been reduced. In these sections,
most of the energy from o, has been converted into
compressive energy. The premise that tension disturbances
or variations stay close to the location at which they
occurred [5], holds true in our analysis.

Thence, an initial approximation for the "no-core"
residual pressure, P,, can be obtained from

P, = (0’K,)/(2E,) . (3.20)
Furthermore, Pfeiffer [5,6] uses the distortion-energy
theory to obtain the von Mise's equivalent stress, ', from
the compression equivalent stress, o,, and the residual
tensile stress, o, as
o' = (02-0,0,+02)". (3.21)
Then the energy stored by the roll stresses, Es (in units
J/m?), is calculated to be

E, = (0,2-0,0,+02) /(2E,). (3.22)
Equations (3.4), (3.17), (3.18) and (3.22) are evaluated
several times until the unit stored energy §,Z in the zone
near the core is sufficiently close to §,6 to stop the
iterations. When a new estimate of pressure P, is made as
defined by equation (3.4), it is also assigned (negatively)
to o,, since the rate of change of pressure with radius,
do./dr, is assumed here to be negligibly small (i.e. o =0=
-P,) . The hitherto-described sequential iterations to

determine P,, can easily be programmed soc as to obtain the

103



(R ]

desired output as we shall see in the following section.
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3.3 ROLL-WINDING EXAMPLES

Four examples are considered here ([9]. In all of
them, the tension is assumed to have no variation with roll
radius, i.e., constant winding tension. Tables 3.1 and 3.2
illustrate the winding parameters used for the example
cases, and the parameter determination for stiffness
multiplier vy (i.e. equations (3.13)-(3.16)); respectively.
As regards Table 3.1, values for the effective core
elasticity modulus, E, were rounded off after having been
computed according to equation (2.43b) (note that E_ here
is the same as E_, used in equation (2.43b)). The radial
stiffness has, for all three cases, been expressed as a
function of pressure in the form of a polynemial series;
viz.,

E. = Ay + AP + AP? + ..., (3.23)
which is the form used by Dr. Z. Hakiel for handling non-
linear compression [15]. Hakiel's winding model re-
balances all of the residual stresses throughout the roll
on each iteration of adding tensile wraps at the outside,
and in this manner it is able to take into account the
stiffening action of the core. The values of K,, K, and K,
for the four cases, to reproduce the same pressure versus
strain behaviour as Hakiel's were obtained by curve-fitting
the polynomial series (equation (3.23)).

For each of the four cases, two diagrams are

presented: one illustrating how the radial pressure, P,
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varies with respect to the radial ratio, and the other
demonstrates the variation of residual tensile stress, Tes
with radial ratio. Three curves are shown in each diagram;
one representing the modified energy-balance method
solution, the other for Hakiel's winding model solution,
and the last depicts the solution predicted by Pfeiffer's
old energy-balance winding modei without correction for
core effects (i.e. when y=1).

Fig. 3.1 corresponds to a condition where a polyester-
type plastic film (high K, -or high A,) is wound on a hollow
metal core. The material parameters used are in agreement
with those used in an example by Z. Hakiel published in
1987 [15]. However, the condition represented by Fig. 3.2
is more typical of paper wound on a metal core. The
material properties demonstrated in Fig. 3.3 are similar to
those of Fig. 3.1, except for the inclusion of a high A
term in the polynomial expression, and the fact that
winding takes place at a lower constant tension. This
example is from a recent publication by A. Penner [17]. In
Fig. 3.4 a moderately stiff polyester film is wound tightly
on a fibre core, causing large amounts of core deformation
and the fcrmation of high negative tangential stress just
above the core. The energy-balance solution method prints
out a warning message near the inflexion point of Fig. 3.4b

at radial ratio 1.3 that buckling is likely to occur.
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Table 3.1: Winding parameters for the three roll-winding

example cases of section 3.3

(N.B. in all three cases the value of E.=600,000 psi)

(Note: A, and K, values are almost equal.)

107

" Case B 1 2 3 4

[Ec (psi) 890,000 | 890,000 890,000 | 46,000
o, (psi) 333.33 555.55 300.0 1000.0
A, (psi) 0. 0. 1060. 0.
A, 1060. 124. 1060. 450. ]
A, (psiv?) -0.153 0.0 0.0 0.0
K, (psi) 0.059600 0.056124 0.968729 | 0.056109
K, 1049.88 124.006 1056.299 | 450.036
Ky (psi) -19.625 0.1875 ~88.75 0.75

m
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Table 3.2: Parameter determination for stiffness

multiplier ¥y

Case 1 2 3 4

Po (psi) 125.83 34,13 106.03 497.44
Yo 5.35115 24.9864 6.18263 0.18297
SL -83.052 -4520.85 -105.474 5.183

B 0.9476093 | 0.9946943 | 0.9508633 | 0.8423482
Fy 0.279598 0.127264 | 0.254658 -0.128806
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CONCLUSIONS

The progressive development in the line of analysis of
how the core stiffness might influence the wraps of web
material being wound around the core, as has been witnessed
in some great detail in Chapter Two, led tc realising the
significance in the inclusion of the anisotropic behaviour
of the web material as well as the core for the radial
deformation of core structures and linear axisymmetric
models. This made possible the prediction of effects, in
core-roll winding systems, due to the application of
pressure from the outside and the reaction from the
underlayers which present a resistance to deformation.

The premise undertaken by Pfeiffer [5,6,8] in
developing the energy-balance roll structure model; namely,
that energy admitted to the roll does not migrate
substantially in radial distance from the location at which
it was applied, was undoubtedly confirmed by the analytic
results of Chapter Two. In particular, the tremendous
difficulty encountered when attempting to detect the
presence of a hard core, by modulus measurements made at
the outside surface at radius ratios of 2.5 or greater
whenever the anisotropy ratio is relatively high (refer to
Fig. 2.18). And, also, the precipitous attenuation of
pressure predicted by the analytic equations for anisotropy
ratios higher than 2.

The modifications performed on Pfeiffer's old energy-
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balance model, based on Chapter Two's findings, agree
reasonably well when compared to some known analytical
solutions to core-roll winding systems. This agreement can
further be improved upon, if and when data becomes
available which can then be used to refine the five
dimensionless constants (N;-Ng) used to adjust the local
effective radial elasticity modulus for the presence of the

core.
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CLAIM8 TO ORIGINAL RESEARCH

The scope of originality in the course of this
research principally encompasses the following:
1. the modelling and analysis of the core-roll system as an
isotropic, flat platen model, to predict the influence of
the core material's :.“iffness on layers of wound rolls,
2. performing compressicn testing and, subsequently, curve
fitting the results to find equation types suitable for
describing the material behaviour,
3. undertaking a linear, isotropic finite-element analysis
of various axisymmetric core-roll models,
4. performing numerical analyses to search for equation
types to fit Hakiel's solutions,
5. roll structure modelling for numerous forms of equz:ions
leading up to the final form of the stiffness multiplier,
y (many computer runs were made to investigate alternate
exponential and power series forms that might be suitable),
and
6. the in-depth study of curvilinear anisotropy and the
rigorous analysis of the (generalised) plane stress of a
body possessing cylindrical anisotropy, and the subsequent

formatting of equations suitable for that type of solution.
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SUGGESTIONS FOR FURTHER WORK

It should prove interesting to see what effects
varying the radial elasticity modulus of the anisotropic
material, has on the results obtained here. Moreover,
attempting to consider the continuous change of the
anisotropy ratio with radius as more layers are added in
order to develop a predictor equation for the material's
elasticity modulus, is a very complex and challenging task
and may not prove feasible. However, it deserves some
attention.

It 1is further suggested to perform experimental
investigation of the type and distribution of stresses when
winding high viscosity emulsions, coated on high modulus
plastic sheet material; each of which having different
temperature properties and subject to relaxation effects
after winding. Finally, more data gathering is to be
undertaken to see if the stiffness multiplier, vy, is
suitable for all —conditions encountered when many
industrial materials are wound on a wide range of core

types.
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