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Abstract 

This thesis describes a compile-time loop scheduling scheme and a supplementary 

storage reduction scheme to generate code for computer architectures which exploit 

fine-grain parallelism, such as superscalar, VLIW, and superpipeline machines. 

In the first part we propose a new loop scheduling technique based upon the 

notion of dalaflow software Jl lJlelm mg. Wc use Petri-net theory as the modcling 

framework, both for dcscribing program behavior and for proving the feasibility of our 

approach. The time complexity of computing a schedule fm an ideal machine mode! 

is examined undcr various program struct ures; a polynomial bound is established for 

the schedllling approach. We then intcgrate resource limitations into the model and 

construct a. unificd Petri-net model for schcdule generation. Simulation rcsults are 

('onductcd on a nurnber of Livermore loops to verify the feasibility of t.he approach. 

In the second part we disCllSS the application of a program restructuring scheme, 

known as limiied balancmg: for storage reduction [GHW90a, GHW90b]. With this 

technique, storage is systematically reduced across a loop body according to a balane­

ing ratio. A guideline is derived to determine an appropriate latio for maintaining a 

given pipeline utilization. 
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Résumé 

Cette thèse décrit une technique statique d'ordonnanccrll<'llt dt' IWIlc!"s (,t UIlC m<"1 ho­

de de réduction d'u5age de mémoires pour générer du code pour d('s iu('hÎt('dul'<'~ 

d'ordinateurs qui utilisent 1,,:, parallélisme "fine-grain," tellps que I('s archit('clul'!'s dt' 

type "superscalar," "VLlW." ct '·suprrpipclinc." 

Dans la première partie de cette th('~e, IIOUS pIOpo~on~ 1111<' 1I0Ilv(,II(, \e( ItnÎ(pl<' 

pour l'ordonnancement d'instruction~ basée sur la lIotion (k "Soft,walt' PiJ>t'linilll!,." 

Nous utilisons la théorie des RésCdUX de Pétri {'II tdlll qUI' ~I\pport du Illodi,lt., pU1I1 

décrire le comportement des programlI1e~, et p01l1 Pl'OIIV(" la Vrdidlt(" d(' nul Il' '!ll­

proche. La complexité en temps de calcul d'un ordonnanCC'IIl('lIt ('st ("vallll'(' pOlir 

plusieurs structures de programmes Cil utilisant un Illodi>\!' dt' IlIrlChill<' id(\t1t'; 11111' 

limite polynomiale est établie pour la méthode d'ordoIlIldllC<'IlI<'lIt NOliS IlIt/'I!,IOII~ 

alor~ les limites sur les ressources dans le modèl(· et construisolls 1111 Illod{»e d(' r{-smllx 

de Pétri unifié pour la génération d'Grdonnane<·rnenl. Des simulatiolls SOllt ('fr('( tll("('~ 

sur plusieurs boucles de Livermol'C pOUl' vérifier la falsibiht(, dl' ('('Ut' 1l\(~th()dt' 

Dans b seconde partie, nous décrivon-; l'application d'url(' lIu',thod(' d(' ('(;du( 11011 d(' 

l'espace mémoire pour supporter la méthode d'ordoIlIlann·II1C'Ilt. propos(;(' pn"d'dl'III­

ment [GHW90a, GHW90b]. Avec cette amélioration, l'espacc IlI<"1II01l(, (':-.t ~y~IJ'I1I(tI,i­

quement réduit partout dans la boucle, en accord avec 1(· rapport df' ba/a1tn IIH'II{ d(, la 

boucle. Nous dérivons alors une technique pOlir estimer lI/l rapport de' halarlC'('III('1\1. 

approprié pour le taux d'utilisation du pipelinc. 
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Chapter 1 

Introduction 

With today's terhnology, Illultiple functional unit!'. (,illl 1)(' illl'Orpor.lt('t! 01110" :-.illgl<· 

chip, significantl} increasing paralld processing pow('l'. Sup{·r!'.('c\lrtr. Very Lonp; 111-

struction Word (VLIW), and sup('rpip('lill(, machilws éll(' tYPlc,tl ,m 11I\{·clll){':-. (It'alt·" 

using VLSI tcchnology [FlsS:L G090. h:~lH9. LUll~!). M('lx<)] To l'If(·( 1 i\',.J.\' III dm' 1 hl' 

increased machine parallt'li~1lI of tl\l' .... 1' IIIrtcllÎnc .... rl'quln''' lilw-gldÎII (11I .... 111l( li()II-I(·\'(·I) 

parallelism wlthin the !->OUI(,(' rtpph( dt 1011. TIlt'll'fuJ('. 1 lit' (·'ploll.tI H)II of 11Iw-gl<l11l 

parallelism bccolllcs a major I:-'SlIC III df(·( 1 IV<' (olllpd('1 d(· .... ,)!,11 EIIl( 1<'111 loop ('X('( \1-

tion, in part icular, has attract (.<1 lIIl1ch aU ('II t Ion I)('(iw:-,(' t hl:-' 1 .... \\' IlI'lI' .. pl (J( (·:-. .... IIIJ!. 

unit spends a significant alllount of till1t' durlllg progr.tlll (',('( 1111011. Th(· III si p,1I1 

of this thesÎs explores the u:-.t· of dala./lol/' . .,o/fwa/'( /)//)( 1,11 III!} fOI (Olllptlt'-1 Illll' loop 

scheduling for the exploitation of filH'-gr.tin par.tIl(·II:-'llI. Dtttdflow !-loft Will(' pIJH'ltllill)!, 

is a schemc for structuring fine-grain p.trall('II!-l1ll III Ill(' 1001' hodv III ,l Wily .,() t.1r,tf il 

can be exploited by statlc dataflow computer 

The second part of tht· t h('sis d is( Il,,!-I{':-' tilt' appl icat iOll of il gl aplr )'(·:-.tll \1 III l'Il1g 

scheme called lmutcd balaTJc/llg [(~II\V9(l< 1 Lllllit('d balall( ing ('dll Ill' Il!-l(·d tl) I{·dll/,(· 

the amount of storagC' lisage in dataflow !-Ioftwale pip('lllllllg NllHlt'rOIl" Slll'V{'y~ !I,\\'(' 

shown that the respon~(' tillH' of Illctin Il)('lllory Ih d IIIdjor hofll"rh'( k wh,( Il 1))(·\'(·111 .... 

ideal speedup from bt'Illg achievpd 111 high Iwrforlll.tll< (' (Ollll'lIt(·, dl (lJilt'!lIIl(· ..... TIlt' 

use of expensive high-spt'('d llH'lTlOry. 01 T'('!Jl • .,/(,. .'>(f ..... for tclllpOlrtr)' .... Iolagl' lu II' 

duce memory acccsses play'i all illlport,tIlt rolt' III lIIri.llltallllllg pw< ('!-I .... or t hlOughplll. 

Unfortunately, rcgister !wb alP il !-I('dlC<' 1 (· .... 0111 ('{', .\Ild t1lt'il II\I'rr(·( IIV(' Il .... {· I{·,ul ... lu 

significant performance degraddtioll. A~ d rp:-.ult, tilt' .... tudy 011 :-.Ior,lg(· rt·dll<l JOli lu 

reduce the amotlnt of register rcq ni n'd is anot her cr Il Cl ctl t'1('!IwIlI III ('0111 pd(" (I<·~igll. 
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1.1 Architecture Model Assumption 

For pip('lilwd (oll\putf'r archit ('cturC's, ha::al'd.~ <\1'<' rl main ral1~p of performance degr .. -

dation [IIP!)(), Kog~ll. Sf/'lu·fl11'f1Jhaz·1.fcls ari:-,(' flf)1lJ r(,~OIlr('(' conflicts W)WIl hardware 

caJlTlot support <,irnllltaII('OIl~ operation!> hy t wu, posslbly illdC'pendcnt. in:-.t ructlO!l!:>. 

Structural hcl.zards rncwa:-.(· th!' difficlllty of codC' gencration. The standard software 

approach t,o avold pipdlll!' anomalies call~('d hy hazards i!> to inscrt delays, such 

as NOOPs (NO OP('fiÜIOn in:-.trll(tion), 1)('!'o\'Ct'IJ the two olH'rations that conflici. 

TI\(' lengt.h of the !eqllin·d delay is call('d t1H' II/i( l'Jock p<'Iiod. '1'0 l't'sol,,(' stIuct.ural 

hazards, t1H' cornpilpi mll~t lind sllffici(,llt pcl.lal!f'1 illstrllclio!l~ 10 fill lh(' intf'rlock, 

thus kœpillg th!' pipelllle \lM·fully busy. Ilo\\,e\,('\" it i~ IInltkely that an effiCIent code 

sc!wduling "f1pro,t( h can )(' fOUlld SlllC(' sdH'dllling with sI rucl mal hazard~ IS NP­

hard [NPA~81. 

Cod(' sclH'dullllg bet!'1 abo )H'('Il ('xalllll)('d llIlder condItions III which the pipeline is 

In'(' of stnl( t.ural hétzard!'1 [BC;~m, HG8:~]. Pr()( ('s~or IHpelilws of t lm. type ar(' ealled 

clmu. Muel! of tl\(' srhcduling effort focu~cd only on acychc conslraillt graph. It hdS 

be('1I proV<'1l t hat schedullllg il clf'an PIP('11I1(' i~ NP-complet<· If the maximal dclay 

on direded edgl's of the const raint graph is 1I1lboundcd [II GS3] and i::, polynomial 

till\(' solvabl(' If the (klcl.y (,cplcl.b Olll' [BGR9]. Note thett tbc latter ca~e applie~ lo a 

single c1ean PIP<,line cOll~i!'1tlllg of two stage~. NOlJetlH'le~s. t}H' notion of butlding a 

clt'an pip('lilll' ha~ IJot hCl'n wid('l) adopted be('all~(, 110 code ~chcdllling tcchlllque yet 

dcve!op<,d could justify ib wort hiness. 

Recent findings by NIColau, Pingali, and Aiken on clean pipeline seheduling pre­

sents a IH'W insight int.o 1 li!' prohlf'IIl of loop scheduling [AN8S, N PA88J. They propose 

a polynomial tllne loop-sclH'duliIlg schcnw and prove that time-optimal results arc al­
ways achi('vetbk for a (';a~s of loop prograrn~ thal Itdw' 110 !OOp-c-dITied dependence 

whil(' suhoptillled r{,~1I1t~ arf' gllétldlll(·ed for tll<' ~arn(' cldS'> of loops with loop-carried 

depelld('ll<'e Ba~('d UpOIl th('~(' findings. tllf'y conclude thal th(' trend in architectures 

will \)(' to {\Void "trurtnrctl hazards a~ 1lI11ch ét~ po%iblp In tbis thesi~ wc al50 focus 

our loup Sc!WdU!\llg 011 rJIdchincs which usp ciran ('xccution pirclines, and al! refer­

('IIC('S to an ('Xccu1.IOII pipelmc ill subsequent sections will be clean pipelines, unless 

otherwis(' stated. 

1.2 Software Pipeline Scheduling 

ln this tht'sis we are intere::.tel\ Hl applying the concept of dataftow software pipelin­

ing to a compilf,-till1c loop sclwduling scheme for computer architectures other than 

2 
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dataflow, such as tightly-collpled synchronom paral!cllllétchilll''i (t' !! ,sllpt'rscalal' <tilt! 

VLIW machines) and various ot.hel' plpclill(·d ,\Ichitt'cLlIl(,S 

Dataflow software pipelilllllg is cHI (·frectIV(, loop stl'llcttlllIl!!, ~(lwlIH' fOl ,1 St"tlH 

dataf\ow architecturC' by cllabling tilt' dT( hit('( 1111(' to (',pIOII 1Î1lt'-!!,r.till pe\l,III('lislII 

during loop exccution [GP!lO] TIlt' strC'llgth of tht' scllt'Illc lic:-, III ih .Ibility 10 /"po:-,I' 

fine-grain péuallelism acro~~ 100(> boulldarl<'~ Illtllitl\'<'ly, il all.III).!,!·'" (\)(!t- (,1 slcllu' 

dataflow graph) for loop bodIes into cl 'iojtlNI/'f PII)(·lill(· ~o tliell "II( «'~~I\'(' ilt'I,ÜÎOlh 

can be initiated one af1('r tll(' otlwl'. III ot!lCr words, dtil,tI\ow ~()ftW.tI(· pipl'lillÎlI.I!, 

allowb the initiation of " !lew Iteration hefo\'(' t \1(' pn'\'io\l'" i\t>r,lI inll ('llIls, ,H hi(·\'lIl.l!, 

the same effcct as a hardwaf'(' pÎp,·lillt'. III tht' data{l(Jw lIlodl'l of comput.al iOIl, .111 

instrudion is cligible for executioll dS 80011 dS ..tH of its Ic<!uÎlcd IIlput~ ri\(' ,L\',ulablt·. 

As a rcsult, many waves of fomputa,\.lon (dll pro('('cd in a pip<,llIIcd fcl~hioll 1 hl olll!,h 

one copy of the dataflow progra!ll grdph. 

Compile-lime schcdullIIg il\\ulv('" the g(,lIc!'cttioll of tL ~t,tli(' S( lH'dlllt' wIll< h pw­

plans virtually aH run tllne IwhaviOl. '1'0 dPply the (Oll( ('pt of dcüallow ~()ItWellt· 

pipeIining iuto compile-tilllc 100[> ~chedlllillg I('qllll(,~ t wu fUlld,lIll('\ltal ..,( 11<'1111'''', A 

code mapping schcmc which ('ompllt" t.h(· givl'Il loop body 11110 ,1, ~('Ill,lllt Il ('qlliv,tI('lIt 

software pipeline, expresscd at the w"lrucluHl leV('\' ,Ult! tI ;-I,d,]( ~(llt'dull' (0111/>111.1-

tion schetne which generat.es code from tilt' '-,uftw;u(' Pl!wllllt' .\ 11~0I01h ~tlldy U1\ 

pipelined-codt> mapping for sClentific applications ('ail 1)(' rOlllld III [G,IO!)O]. III thh 

thesis we foclls on cstablishing il strltic ~cll<'dul(> COlllpulcltioll 'il 11/'1Il<'. 11('1(' \VI' ilS 

surne lhat. a loap hody has a\rcady heen tompikd into cL ~ofl \\,tLJ'(' pl/)('llIlI'. 'l'o,l,void 

a.mbiguity, wc l'der to the static ~c!tedul(' «)mplltatioll s('!tellw cL~ Sojlfll/L1't jJtpt/lllf 

Schedull1lg, or SPS fOl ShOl t. 

ln SPS, statie schedule generation for loops rt·lie~ Oll t,llI' (·XI..,t('1J( (' of ,1 fi pl 11-

live execulwTl sequence, also known as the ~leady 8tatt'. Thl~ f<'p<'l.itiv(· (·x(·cllt.ioll 

sequence remains the 5allle rq~ardless of the 1I11mbei of It< ration..,. TllIl~, t!w rllll-t 11111' 

behavior of the Joor can always b<, expr<·~s(·d firlltely wlth Il)(' !',tLlIH' ..,( IlI'dlll(·. ThIs 

finite schedulc \Olllprises thrc(' s!'gmclIls' prelud( St fj/LI'nCf, st('ùdy .... trt,tl', tille! j)O.,tllll[t 

sequence. The prelude i~ the "eqU('IIe<' of O[H'ratlolls l('ddlIIg 10 lite ~t<'<ldy ..,t,d(·, wh!!(' 

the postludc is the ~cqucllcc of 0p('rdtiolls 1('<)1111('<1 to (ompll'!(' loup ('X/'ClltIO/l 101-

lowing the steady statc. FlOm t.he pel~l){'( tive uf il hardwdJ'(' 1'11>('1111<', /)1('111<1(' tlllt! 

postlude sequences correspond to t.he sequence of operati()11~ whi('h li Il ,tIld dl ttin t!lI' 

software pipeline . 

Figure 1.1 illustrates the method of generating cl ~tatic S( hec\u\p IIsill~ SPS. Fi~­

ure 1.1( a) givcs an exarnple loop body, and Figure 1.1 (b) list~ tl](' dataflow III fOllllatioll 
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doall 1 trom 1 to n 
Alil :- XliI t 5; 
Bll} :- Y[i} t A[il 
C [lI :- Alil + Z[il 
Dlil :- B[il + C[il 
E [11 :- WIll t 0[11 

endall 

(a) Loop LI 

X[l) 5 

(b)Dataflow Graph 

For .... rd data _ 
arc 

Acknowledgement _ ~ 
arc 

+ C (A/D) 

-. + .' 

'" \ 
+ adjac;:ency 
: llst 

~(D)/ 
(c)Static Dataflow Graph 

Figure 1.1: Schedule Computation 

(d)Computed Schedule 

required to map the loop body to a software pipeline. The instruction-Ievel repre­

sentation wc cmploy for the loop body is a static dataflow graph (see Figure 1.1 (c». 

'l'he first. advantage of Ilsing a statie dataflow graph is that it operates naturally as 

a software pipeline. With its one-token-per-arc policy it also constrains execution 

to a bounded amount of storage while exploiting fine-grain parallelism. To derive a 

statie schedule from t!IC software pipeline, we apply to the statie dataftow graph the 

cxecution rule of dataftow computation, the rule being, an instruction is eligible for 

cxccution as soon as aIl inputs are available. Pictorially, the token on an arc repre­

sents the availability of the particular input. The execution of anode is represented 

by the rcmoval of an input token from each input arc and the production of a result 

tokcn on each output arc. Figure 1.1(d) shows the resulting execution sequence. Ini­

tially only node A is eligible for execution. Once the execution of node A completes, 

Hodes Band C start and are followed by nodes A and D. From then on the repeated 

firing sequence is formed by alternately activating the two groups of nodes BeE and 

AD, the third and fourth rows of the computed schedule. Note that the execution 

sequence is a semantic equivalent schedule for loop LI. If LI is executed n times, the 

stcady state of the schedule is iterated for n-l times. 

For SPS to hc an effective compile-time loop scheduling scheme, several questions 

need to be answered: Does there always exist a steady state for loop execution? 

What is the time complexity required to generate a schedule? How does the scheme 

4 



1 work for a machine with multiple pipelined-\.!~lits·? The nwthodology l1~wd ln study 

these questions is based upon Petri-net thcOI'Y [Chr8,t, CH EPï l, MIllf\9, Ham7.1). 
The strong resemblance between the Pe~ri-net model and tht' dataflow 1l1O(!t·1 allows 

a direct and natural application of the developed theorit's in Petri nd 1,0 d,\t,dlow. 

Before we move on we need to point out that, whilc the soft.wéu·(· pipdilH' is a lIIirror 

image of a hardware pipeline, the microprogralll IIsed to control th(' hardw<ll'I' pip(·lill(' 

under a time-stationary microprogramming sdl<'ll\c shows a SLlOllg rcs{'lllhlalln' Lo the 

statie schedule derived from the software pipeline [Kog77]. III faet, t.1H' <'arlit's\' idt'él 

of software pipelining was first applied ta opt.imize the llIicroprogralllll1ing colltrol 

of a pipelined processor. Just as the funetion of a microprogralll is 1,0 cOIlt.rol t II(' 

operation of the hardware pipeline, the computcd static scht>dule can also I>t' vipwt·d 

as the microprogram for controlling the software pipeline. ThC' n'st'Illhlall(,(' of t11<' 

two structures relates the notion of software pipclilling dir{'ct,ly to 1001' scll<'duling. 

1.3 Storage Reduction: Limited Balancing 

Limited balancing is a program restructuring schcme for reducing the sYlldll'OlIiza­

tion overhead which is intrinsic in a statie dataflow design [GIIW90c]. lIow('V('r, il.s 

application has a significant impact on storage reduction, thus prC's(·nt.ing a IH'W 1)('1'­

spective for register allocation in SPS. This stoJ'age reduct,ioll schc[)l<' is P('J'foJ'lIIed 

before the scheduling phase. Dy applying a balancing techniqu(" storag<' cali 1)(· sys­

tematically reduced aeross a loop body according to the loop's pa.rticala.r bnllLltf'tn!) 

ratio--a computed paramt'ter that charactcrizes the aehievahle computai to1l mf(' of 

the final schedulc. In effect, the computation rate is the frcqu('ncy of C'X('('lltillg a 

node over a long period of lime. As will be shown, the complltation rcil.c· of cl 100J> 

executing on an ideal machine equals the comput.ation rate of t!\(' slow(·st. simpl(' cyd(' 

in the graph. Such a cycle is called a crztlcûl ('I/clf:. Limit('d balau( illg of il graph 

thus requires aIl simple cycles to decrease their computation ral<'s as 1111\('11 as possihl<' 

to the same rate imposed by the critical cycles. One importdltt outcome Îs th,tl tlH' 

computation rate of the modified loop does not change. 

Shown in Figure 1.2 is an example application of lirnitcd balancing Ilsing the' hal­

ancing ratio. Suppose that the given code sequcncc is run on machine wit.h adequat.(' 

parallelism and the execution time of each node takes 1 cycles. The tok('ns IIsed ill 

the graph can be viewed as the amollnt of rl'sources used. G' 1 J'epre~ellb a COIll­

putation rate of 1/31 due to the simple cycle ABC. 02 reprebl'lIts a rebtmcturillg 

of Cl with respect to the factor 1/31 so that no rcsourccs are unrle('('~sary wasted. 

Note that after limited balancing the computation rate is rnaintailled, élud y<'l tll<' 
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GI ill unbalanced. It has 7 simple cycles and the 
cycle ABCA has the minimum balancinq ratio. 1.e •• 
BIC) =113. 

G2 ls limltedly balanced with a balanclnq ratio 
SIG2) ~1/3. 

Figure 1.2: The Concept of Balancing Ratio 

amount of required resources are reduced. One important issue is how to determine 

an appropriate balancing ratio such that enough parallelism is exposed to maintain 

the maximum throughput of the execution pipeline. 

1.4 Overview of Results 

The results of this thesis are presented in two parts: compile-time loop scheduling and 

register allocation. At the beginning of the first part, the time complexity required 

for the formation of the steady state for a class of loops operated on an ideal model 

is studied with a class of Petri nets known as marked graphs. Here is a summary of 

our findings: 

• Under an ideal machine model, for a class of loops with only one critical cycle, 

the steady state appears after O(n3 ) iterations, where n denotes the size of the 

loop bjdy [GWN91a}. For the case of multiple critical cycles, the length of the 

steady state is directly proportional to a corn mon multiple factor of the critical 

cycles; we are unaware of any polynomial bound for the length of the prelude 

sequence in this case. 

• Nodes on the critical cycles have one special property-they fire periodically 

after O(n2 ) iterations [G\VN91a, GWN91c). 

• A constraint which leads to a tightel polynomial bound for the length of the 

prelude sequence is established: When the starting condition of the loop body 
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meets the constraint, the stcady state appt'ars aft.('\" O( 11) it<'l'at ions, rl'gardlt,~s 

of thc number of critical cycles. Most importantly, this COIlstr,t1l1t C,III (Ilwtly~ 

be satisfied in 0(71) itcrations. 

The results based UpOII the flï:::t two points indinül' thtlt IWrft't t polynollllai t illH' 

complexity cannot be established for the SPS schclll<' for proglallls wlth lIIultiplt' 

critical cycles. The thilù rcsult above indi('au's, howt'Vt'I', 1 Ildl w(, CcUl bypass t hi:. 

difficulty and derive an approach wit.h polynolllial tinw <OllIph'xity hr fixillg"l1 illil i,1I 

condition. Doing so, wc ".'cre able to achif'V<' cl significclnt illlpI'OV('IIH'lIt ill ('f!ici('lIcy 

in finding a scht'dule. 

At the end of the first pa.rt of this document., a multiplc-pip<,lill<' I\H}(Il'llllv()lvil\~ 

hardware pipelines and program graph is composeo alld applicd 1,0 (''{plaill tht' illllll­

enee and property of clean pipeline 011 our sclwdulillg dppW,l(·!1. UsillA tilt' Illlllt iph'­

pipeline model we show how the steady-state sch('dulc can agtlill 1)(' ohUulwd cLlld 

serves as a schedule methodology fOI gellPral pipelilled ,LI ('hitec!,ul(':' PIt'limill,u'y 

simulation performed on a set of Livcrmorc Loops illustrat(·:. tht' f('élsihility of WIII­

puting compile-time schedule by this approach. In t1H' ~('cond part. of this dOCIlIlll'llt, 

register allocation is discussed for an idcal modcl and a Illuitiplt'-pipt'llllt' Illodd. Fur 

the former case, the execution rate of the eritical cycle c,m 1)(' L1SP(1 di n'cUy as li\(' 

balancing ratio in the limited balaneing sdICllle. For the Jatlt'I' Cc1S(', ,l lllath"lll,tI,u al 

guideline is derived to estimate the appropriate balancing factol so tha\. CI (Cl'\.alfl 

percent utili7-ation of the machine pipeline can be guarant('('d. 

1.5 Thesis Outline 

This thesis can be boardly divided into four major parts: The first part provid('s 

the necessary background to undt'rstand the dataflow cx('cutioll 1110(1<·1 alld Pdri-ll('t 

mode!. It also reviews the concept of datatlow software pipclinillg and ddillcs tI\(' c\ass 

of Ioop upon which we focus. The second part. introduœs approach('s for t'stahlishing 

a statie schedule with SPS for an ideal machine, a single-c1ean-pip<'lilll'd m(\chillt·, alld 

a multiple-clean-pipelined machine. In addition, the lime complexity of gellC'ratillg a 

statie schedule is studied. The third part discllsseb limit('d baJancing, its applicat.ioll 

on reducing the synchronization cast, partirularly for the dataflow lIIodel, and its 

application to the problem of storage reùuctioll. TheIl derivatiolls of an approplÎat,(' 

balancing ratio for the thrce modds arc prescntcd. The lasl part of the thc:-.i:. ('ollsists 

of a discussion of related work, a condusioll and future work. 'l'lw apJ>('lJdix attached 

at the end describes briefly the graphical vicw of A-code- a progl'éllll /'cpre:,clltatio/l 

in the form of a signal graph (for the static dataflow argulIwnt-fet.ch lIIodcl d('velorwd 
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at McGiIl University) to facilitate ullderstanding of the code sequences illustrated in 

Chapter 6. 

Chapters 2 and 3 are especially important to understand this document: Chapter 2 

gives an introduction to the general dataftow execution modcl and the static dataflow 

model. 1t then intrC'duces the concept of dataflow software pipelining and defines the 

c1ass of loops undcr examination at this stage. Chapter 3 provides the reader with 

the nccessary background to understand the Petri-net theory we use. 

Part two of the thesis consists of t wo chapters: Chapt er 4 introduces the framework 

for gencrating a static schedule in SPS for an ideal machine. It shows that the steady 

state is always rcachable in polynomial time based upon Petri-net thcory. Chapter 5 

establishes the framework for the multiple pipelines. 

Part three of the thesis consists of a single ehapter: Chapter 6 introduees limited 

ha/a1lcing and discusses its application on synehronization cast reduction and stor­

age reduction based upon two models: the statie dataflow argument-flow model and 

the statie de. taftow argument-jetch model. The concept. of balancing ratio and its 

estimation are also discussed. 

Part four of the thesis consists of Chapters 7 and 8: Chapter 7 compares the 

set of relaled works from other groups: Nicolau and Aiken's perfecting pipelining, 

Ebcioglu's enchancing pipelining, Su, Ding, and Xia's URPR algorithm, Lam 's soft­

ware pipelining, and the valid schedule computation originally by Reiter. Finally, 

Chapter 8 concludes the thesis by summarizing our achievements and pointing out 

topies for future research. 
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Chapter 2 

Dataflow Model 

The dataflow model of computation offers a natural way of exprcssing a.nd <'xploiting 

fine-grain parallelism in an application [AC86]. An abstract vi('w of the op<'ratiollal 

model is best explained using a directed graph. In tl1<' ('ontex!. of dal.aflow, l'Iuc!t 

graphs are called dataflow graphs. Each nod(' in llH' data.flow ~I'élph st,ctJ1<ls fol' ail 

operation or an instruction, also known as aclo,., Dil<'cted all:-' drélWIIIH'twPc'lI op 

erations decide the partial ordel' implied by dat.a depclldellC<'s, 'l'II<' g<'IIC'l'rlt iOIl alld 

consumption of data values in the course of computation ar<' pictonally d('(>le1.('d hy 

data tokens traveling alone: the arcs in the graph. A token on a direct('d éll( illdiccll('1'1 

the availability of an input for the dependent node produced hy th" sourn' 110(1.'. A 

node is said to be enabled if ail of its input data are available, dlld it i:-. indirat('d hy 

the arrivai of tokens on each input arc of the node. An enahled instructioll is l'ligihl(· 

for execution (or firing) at any time. This type of synchronous cOlltrol for rolllputa­

tion is known as daia-driven, as opposed to the technique of u:-.illg a progralll ('0\1111,('1, 

as in conventional computer designs. The result of exccuting <1 Ilod(· is illdi( at<,cl !Jy 

removing a token from each input arc and generating a result toke" 011 ('adj output. 

arc. Multiple instructions can be executed simultaneously, depcnding UpOII llIélchill(' 

parallelism. Token distribution at an instant reflects the currcut state of the lIlod('!. 

a 

b 
c 

ct 

z 

Figure 2.1: Dataflow Graph 
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Figure 2.2: Execution Snapshot 

z 

z 

An exarnple dataftow graph for the computation z == (a + b) x (c - d) is shown 

in Figure 2.1. Figure 2.2 portrays the execution of the abstract model using three 

execution snapshots. Initially, the addition and subtraction nodes are enabled with 

one token on cach of thcir input arcs (Figure 2.2(a». After execution of the addition 

node, a result tokcn is gcnerated on the node's output arc, and the subtraction node 

remains enabled (Figure 2.2(b»). As the subtraction node carries out its operation, 

the multiplication node becomes enabled (Figure 2.2(c». Figure 2.2(d) shows a final 

snapshot of the computation. 

2.1 Static Dataftow Model 

There are two variations of dataftow: statie dataftow [Den84, DG88, Den911 and 

dynamie dataftow [Aea83, AG82, ADNP881. The statie model en forces a one-token­

per-arc policy in which anode is said to he enahled, thus ready for execution, as 

soon as ail of its input arcs are filled and ail of its output arcs are empty. This 

restriction constrains the graph to at most one activated instance per no de at any 

time. Since each token stands for a data value, this restriction assmes the use of finite 

spacc during graph exccution. In contrast, dynamic dataftow has no restriction on 

the numb('f of tokens per arc; there il> no limit on the number of activated instances 

per node at any time. Thus, there is no a-priori bound on the amount of storage 
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required to support concurrent activations. In addition. tht' arrivai of lob'lls llIigltt 

be out of order. To ensurr no arnbiguity during ('xecut.ion, tOh{'I\S gell{'lalt>d flOl1l Ill<' 

same iteration, or th<:' sanw invocation, are tag~t·d wit.h t lit' sault' colo\'. :\ Bode' is s,lid 

to be enabled a.i soon as tht're exists a tok('1l with tht' salll(' color 011 ('ach illput arc 

The dynarnic dal anow modcl i~ knowll to hl' dble to ('xploit tltt' IlIclxillllllll par,tll"lislll 

in an application ln this thesis Wt' use ~tati(' dataflow 'iillC(' storag(' is Illldt\1 plogl,lIll 

control. 

To formaJly enfùrcc thc L>1l(·-tokt'lI-pcr-arc (onst.raillt. reqllllt'd for sl,ttlt d,II,dlow, 

ackTlowledgement arcs are used. For eaeh data arc (a, b) ill the grclph, ,ln (\ckllowl{·d)!.(·­

ment arc (b,a) is attached pointing in the oppositf' dilt'ttioll. A~ nod.· b (,01111'11'1(':­

execution, it deposits a rcsult token on cac" data ère and d . .'\lgll<l[ t.ok(,1\ on tW Il 

acknowledgcment arc. The signal tokt'Il ~('rV{'5 10 Ilotify IIIC' l'rt'd('( (,~SOI (lIod(· li) litaI 

it can safely begin a new ('x('cution without dalJla~ing ail (',\l'lit'l n'stdt. B('sid('s III<' 
acknowledgement arc, the I1ring rule for th<> ahstract llIodd i!-> rp{iI\P<l t,o prpsprv<, t I)(' 

static quality of the graph: 

• An node is enabled if thcre is a token on ('ach of it.s input cU n" 

• An enabled node can lj(~ fired by r<'IllOVlIlg a tok('11 frolll ('aell illput arc iHld 

deposit.ing a token on each output a.rc. 

Figure 2.3(a) gives an example statie dataflow graph for the colllput.at.ioll Z = 

(a + b) x (c - dl. Fii~ure 2.:3( b) shows a sllapshot aft.er ('X('CII ti IIg hoth tllC' addition 

and subtraction operations, As illustraled. ail input tok('Il'i ar<' consIlIJl(·d; oulpllt 

tokens carring the associatcd results arc sent to t.heil data MC.., 1,0 1)(' IIs('d by 1.)1(' 

multiplication node, and signal tokeIls aH' ~(,Ilt along thell c\CkIlOwll'dg(,IlH'lIt dl'< ~ 1 () 

notify the unseen operatiolls presurnclbly on tl\(' Icft to re!oad tlwir inpllts agaill. 

Suppose that th" input ares of the additioll and tlubtractioll 1I0d('5 ill(' Iclo,u!t'd al 

this point as shown in Figure 2.:3( c); both operatiolls cali ilOt. r('~tall without f'(·('t·ivi/lg 

a control signal from the multiplicatioll node to confirm tl\(' Il!-lt' of LI)(' ('arltt'r Jl'5111t. 

As a result., the one-loken-per-arc poliey is t'nforced by th(' ,u kllow!('c!g('lIwlIl éllCS. 

After the multiplication completed, the additioll and sUblt,lctio/l lIod('~, a~ w('11 a~ tilt' 

unseen operations presumably waiting for the result of :::, M(' ('Iiglble for ('XC( IItlOll 

The above examples exhibit two types of paralleli~lll: ."palud pctr<tlh·lislll and il 111-

poral parallelism. The former one i~ rcprcscntcd by any two SilllultélW'OIl!->!y ('wlbl('<! 

nodes which have no dependence, such a.'i the at1dition and subtradioll actor'i, The 

latter parallelism is demonstratcd by the pipclining of independenl waVC's of data 

through the graph., for example, the rc-('nablcd addition and suhtraclioll lIodps. 
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Figure 2.3: Statie Dataflow Graph 

Since the dataftow model has no notion of a single locus of global control, as 

cioes its Von Neumann countcrpart, the execution of enabled actors are not restricted 

ta any particular order. For implementation of loop and conditional constructs in 

a dataflow graph, a set of well-behaved graph schemas have been developed to gov­

ern interconncction [DFL72]. Under the schemata restriction, a computation always 

yields the same result, unaffected by the execution order of enabled actors. In other 

words, the schemas ensure dete1'mmate computation, A larger program is merely a 

hierarchical composit.ion of elementa.ry sub-schemas. 

2.2 Dataflow Software Pipelining 

Dataflow software pipelining is a pipelined code mapping strat.egy performed on units 

of program text called code blocks. Code blacks è.:!fine the major structured values 

involved in a computation. Dataflow software pipelining is particularly effective for 

implementing array operations on a static dataflow computer. For example, the 

following loop body takes as input two arrays A and Band produces another array 

X: 

for i in l, n 

Xli] = «2 * A[i])2 + (2 * B[i])2)2 
end for 

For this block, the corresponding dataftow graph can be easily software pipelined. 

The technique of dataOow software pipelining involves the arrangement of machine 

code su ch that successive computations can follow each other through one copy of 

the code. If we present a sequence of values to the inputs of the dataftow graph, 
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Figure 2.4: Software Pipelining of a Dataflow Program 

these values flow through the program in a IJipclincd fashioll. In the' abovt' t'xalllpit-, 

successive elements of the input array A and B are [t>tc!wd and [(.<1 into t.lH' dal(tflow 

graph, e.g., A [1], A[2], ... , A[n] and B[1], B[2], ... , B[n]; thus, (,olllpuf.atioll l/I'On·l'd!'. 

in a pipelined fashion. Instructions which helong lo li\{' saillI' stag(' cali h(· 'I·X(·cut.(·1i 

in parallel sinee there are no data dependcncies among thelll. Mor<'ov(", dmillg t.!\(' 
pipelined execution of the program, multiple stages can 1)(' ('xecul<'d (Ollell! f'('ntly 

stages 1 and 3 are enabled and can be executed in parall('l, alld the SalJH~ applw!'. 

to stage 2 and stage 4. The power of fine-grain parallclisrn ('an hl' deriv('d froJll 

programs which form a large pipeline in whirh many instructIOns III lIIult.ipl{· !'.t.a)!;t's 

execute concurrently. For the statie dataflow model, software pipclinillg is (·!'.sential fol' 

exploiting the parallelism within a loop body, and thus, it i~ a nt'C('!'>SMY optillli;l,(üioll 

for numerical scientific applications. 

2.2.1 Dataftow Software Pipelining on Ideal IVlachines 

Dataflow software pipelining which was proposed as a modcl for structul'illg fille-grain 

parallelism has been studied mostly under the conditions of an idca\i;"cd dataflow ar­

chitecture, one having infinite resourees [Gao89J. Herc we providc a SUrIllllary of SOIlW 

of the main results of previous rescarch using this modcl, A graph is ba/allc((/If ('vpry 

path from an input node to an output node contains exactly the sanH' lIum})('r of ilC­

tors. A graph is maximaily pipelined if it is balanccd [Ga,086J. '!'o il,( hi('VP maximulII 

pipelining, a basic technique called ba/anczng is used to trMl:.fol'Ill illl ullbalall('pd 

dataflow graph into a balanced one. This is donc by introducing FlFO blJfr(~n; 011 

certain arcs. To optimally balance a graph, a minimum amount of buff<'l'ing is inlro­

duced such that execution can be [ully pipelincd. It is known that optimal balancillg 
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do i from 1 to n 
Ali) := Xli) + 5; 
Blil := Y[il + A[i]; 
Cri] := A[i] + E[i-l]; 
Dli) := B[iJ + Cli); 
Eli} := W[il + D[i); 

end 

(a) Loop L2 

rorward data -. 
arc 

Ackoowledgement .. 
arc 

XIiI 5 Foedback data -(> 

alC 

(b)Dataflow Graph (c)Static Dataflow Graph 

Figure 2.5: Exam pIf> L2 

of an acyclic dataflow graph can be formulated into a linear programmillg problem 

which has efficient algorithmic solution. A dataflow compiler uses these algorithms 

to perform code optimization. 

2.3 Loop Representation and Loop Domain 

Statie dataftow graphs are used as the instruction-Ievel representation for the Joop 

body. The advantages of using a static dataftow graph are t.hat it operates naturally 

as a software pipeline, and it constrains the execution modet to use a bounded amount 

of storage, by its on<,-token-per-arc policy, while exploiting fine-grain parallelism. 

The class of loops which wc focus on herc are called Stalze Dataflow Software 

Pipeline (SDSP) loops. They are non-nested. For the case of nested loops, our code 

generation technique is applied directly to the innermost loop where the processor 

often spends most its execution time. Conditional constructs are omitted from the 

loop body. The existence of conditional branches presents a harder problem for 

construding a statie schedule because of unpredictable hranchillg behavior. The 

suhject of including conditional constructs is currently under research. Loop-carried 

dependence is restricted to span across one iteration only, 80 the size of a loop body 

stays within a manageahle limit. This class of loops has a simplicity which allows the 

corresponding software pipeline to be obtained in a straightforward manner. 

Figure 2Jj(a) IS an example of a loop body with a loop-carried dependence, and 

Figure 2.5(b) shows the associated datafiow graph. The arc which expresses the 

loop-carried dl'pcndence is called a feedback data arc. The rest of the arcs are called 
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fm'ward data arcs. Note tha.t this graph only pr('sents datallow illformatioll withill tht' 

loop body. To obtain the t:ùrresponding statie dataflow graph, acknowlt'dg<'llJ('llt arcs 

are introduced (sel' Figure 2.5(c)). Not(· that d (·ompl(lt(· r('pn'st'Iltdtioll of il loop in 

the formaI dataflow mode! involves control actors, Sllch as lflt'l'!lt alld 81/1llch [DFLï21. 

Control actors are omitted in the discussion for simplicity. 

A SDSP G, consistent with above assumptions, can forlllall)' \)(' t'xpr'('ss('" as Il\(' 

tuple: 

(V, E, E', F, F') 

V is the set of actors (or vertices) in G. E and E" arc rcspedivt'Iy 1,11(· l·;(·t of forward 

data arcs and the set of feedback data arcs. F and F' are tl\(' set of acknowl('dgt'IIH'llt 

arcs for E and E'. Figures 1.1(c) and 2.5(c) illustrate two possihle candid,ü('s of élll 

SOSP, one with and the other without loop-carried df'pl·!Hl(,IIC1· . 
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Chapter 3 

Petri-net Modeling 

Since the original dissertation of C. A. Petri was published in 1962 [Pet62], Petri-net 

theory has emerged as an important tool for system analysis and modeling of a wide 

range of applications Petri-net. theory allows a system to be modeled by a Petri net, 

a mathematiCdI represcntation. Analyzing the modeled system can reveal important 

information about the systPIlI's structure and dynamic behavior. This information 

can he beneficially used to suggest system improvements 

3.1 The Model and Related Notation 

A Petri net PNis a three-tuple (P, T, A), where Pis a non-empty set of places denoted 

by {Pl, P2, . .. , Pn}, T is a non-empty set of transitions denoted by {II, 12, ... ,lm}, 

and A is a non-empty set of directcd arcs slleh that P 1: 0, T =1= 0, P n T = 0, 
A ç P x TuT x P. Pictorially, p, T, and A are rcpresentcd by circles, bars, and 

directed arcs, rcspectively. 

By COllventlOll, dot notatlOft has been employed as a mcans of simplifying the 

representation for d set. of places and for a set of transitions. Shown below is the list 

of possible usages of dot notation, where Pl and Tl den ote the subset of P and Tin 

PN. In addition, (t, p) denotes the directed arc from t to p while (p, t) denotes the 

directed arc from P to t. 

• 'p = {t 1 (t,p) E A} (the set of input transitions), 

• p' = {t 1 (p, t) E A} (the set of output transitions), 
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1 • ·t = {p 1 (p, t) E A} (the set of input places), 

• t· = {p 1 (t,p) E A} (the set of output places), 

• 1· si and Is, 1 denote the number of elements in the tiet ·s and s· rcspt'divply, 

where scan be a place/transition or set of places/transitions. 

3.2 Marking and Firing Rules 

A marking of a net is a functioll Al : P - Z+, whcre Z+ is the set of lIon-Il('!!,ùtÎ\'(' 

integers. The non-negative integer associated with a place p, denoted by M(fJ), r<,\m'­

sents the number of lokens on the place. A Petri flet with a markill,!!, is étlwctyS ('('1'('1 J'C'd 

as a marked Petri net. Marking Mo Îs always referred to as the initicd Il 1 cil klll).'; of " 

net. 

A transition t in Petri net PN is said to 1)(' enablcd hy the mctrkillp; M, d('llol('d 

by M ~, if and only if Vp E ·i, M(p) > O. Ali enablcd trallsitloll ("cUI Il(' jirnl. TIJ(' 

firing of an enabled transition t is donc by removing one Loken frolll ('ctell of tlw illpllt. 

places p E ·t and depositing one token on cach of its output. plat('s ]J E 1·. A:"Sllll\ill~ 

the marking which enables t be M and the markillg which is obtailll'd by firlllg 1 \)(' 

M', firing can be expressed as AI ~ M'. 

A marking M' is said to be reachablc frolll M if A.JI CciII 1)(' obtctiJlC'd by firillg cUI 

enabled transition t, M ~ M', or by fi.ring a sequence of trausltions 1f' = i"lb ... 1" 

M ~ Ma ~ " . ..s M'. III the latter case, 1f' == lulb . .. I, is tel'Illed tif(' ji/'tr/g ,"wqllflt('( 

A firing sequence 7r is callcd cyehe ji/'tllg sequcnr(' if, for any Illarking M, M .:'.. M 

and 7r is Bot empty. Let a be a firing sequence. TIH'Il f(a) is callc·d the' jiT'll/g lJ(dol'of 

u, where f(u)1l denoting the z-th element in th<' vedor, is tlu' IlUlllbcI of O(,CIlIT('IlCP~ 

of transition i, in u. 

The Jorward marking class Û of a marking M is the set of IIIal killgs that (t! (' 

reachable from M. Conceptually, each distinct marking of a Petri net rl'pn'scllts a 

distinct state in the modeled system. Similarly, the forward marking rlass Mo of tilt' 

marking }v/o represents the set of reachable states of the rnodcled ~y:.,t,(~1Il 
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3.3 Liveness, Boundness, and Persistence 

A marking M is live for a transition t if and only if for every marking MI in the 

forward marking class M there exists a firing sequence which fires t. A marking M 
is live for a Petri net PN if and only if it is live for every transition in the net. If PN 

rcprcscnts a model of a system, the liveness property of PN implies that the modeled 

system will never deadlock. 

A marking M is bounded for a place p if and only if there exists an integer N such 

that for cvcry marking MI E M, M.(p) $ N. If N = 1, the marking M is called safe 

for p. A marking M is bounded (or safe, for the Petri net PN if and only if M is 

boundcd (or safe) for every place in the nd. Note that if PN is bounded, the set of 

reachable statps of the modeled system must be fini te. 

A Petri Het is perslslent if and only if for aIl t l , t 2 E T, il =1 t 2 and any reachable 

marking M, M !1. and M ~ imply M t2.!j (the firing of transi tion t 2 after the firing 

of transition id; i.e., if il and t 2 are enabled at a reachable marking, the firing of one 

cannot disablc the other; otherwise, it is said to have chotce. 

3.4 Sorne Special Structures 

• Self-Ioop is a transition which has both input and output from the same place. 

• A Petri net PN is said to have structural conflid if t··ere exists a place pin PN 

sueh that Ip'l > 1. The existence of structural conflicts is a necessary condition 

for situations where choice might occur. 

• A Petri net model is said to be COTlsistent if and only if there exists a non-zero 

integer assignment to each transition in the net (where each arc is assumed to 

carry the integer of its attached transition), such that at each place, the sum of 

the intcgers assigned to each of its input arc equals to the sum of the integers 

assigned to each of its output arc. The assignment ensures the existence of 

repeatable bchavior in the model so that it Îs meaningful to talk about cycle 

lime. Here are the two known theorems on cOllsistency [Ram74]: 

Theorem 3.1 A Petri ncl PN lS conslstent if and only if there exists an initial 

marking !v! for which there eXlsts a cyclic firing sequence. 

Theorem 3.2 A Petri net PN which has a live and bounded marking is consistent. 

A corollary of the above theorem is that, if a Petri net has a live and bounded 

marking, there exists a cyc1ic firing sequence. 
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3.5 Marked Graphs 

A cJass of Petri nets which is important to our work is the c\ass refcrrl'd tn as mark<'d 

graphs. 

Definition 3.1 A Petri nd PN = (P, T, A) is called a markfll gmph if a1ld ouly if 

Vp E P, 1· pl = Ip . 1 = 1. 

Marked graph must bc persistent because, for caeh plac{\ in th(' gl'clph, t 1\(·1'(' is 

only one associated output transition. Here are sorne significallt reslllts fol' lIlark('d 

graphs (for proofs, see [CHEP71]): 

Theorem 3.3 A marking is live if and only if the ioken couul of t'V"]'!J Slmp/" ('!J('!f. 

is positive.1 

Theorem 3.4 A live mal'king is safe if and only if every el/gr ln IIH' !/1'lLph is in (l 

simple cycle with token count 1. 

Theorem 3.5 If 7r is a cyclic firing sequence such that M ~ !vi, ail tm1lsl/ions have 

been fil'ed an equal numbel' of ttmes. 

3.6 Timed Petri Nets 

Adding the notion of time to the basic Petri-net model enables the eharacteri:!'ation of 

system performance. In this thesis we consider that a detcrminislic lime, expl'(\ss('c1 

by a non-negative integer number, can be assigned Lo eaeh transitioll in tlH' ha.sic 

Petri-net model rRam74, RH80]. The model described below is made up of t11(' orig­

inal timed Petri-net model introduced by Ramchandani [Ham74], and t11<' (,OIl({·PI. of 

instantaneous state subsequently developed by Chretienne [Chr85]. 

Formally, a t~med Petri net is defined as a pair (PN, n), wlH'rc PN is the hasic 

Petri-net tuple (P, T, A) and n is a function that assigns a non-ncgative i/lteg('r TIto 

each transition t, in the net (i.e., n : T -+ Z+, where Z+ is the set of /Ioll-Ilegativ(' 

integers). The value TI denotes the execulzon lime (or the firing lime) of t.ransitioll t,. 

The state of the timed Petri net at time u is no longer described only by tlJe 

current marking at time 1L (Mu) because sorne transitions rnight still be pl'OcC'ssing al. 

time u. A new concept of l'esidual finng lime vectoT', Il, is mtroduccd lo k('ep lrack 

of on-going executions at each time step. Ru{t,) stores the remaining cxecution tirne 

1 A simple cycle is a directed path PIt J PI: . t'Pm su ch that ail placeb and tranbltlOnf> are diffN('nt 
except P, and Pm. 
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of transition t, at time u. Accordingly, Mu and Ru together define the instantaneous 

state of a timed Petri net. We also make the following two assumptions regarding the 

firing ruie of cnabled transitions: 

Assumption 3.1 Two distinct firings of the same transitwns cannat avel'itlp. Ta 

formally enforce titis ru/e, rach transition in the net is assigned a distinct self-Ioop of 

ils own with anly one loken in it. Though wc do not draw them explicitly they are 

implicitly assumed. 

Assumption 3.2 Transitions are fired as soon as they are enab/ed; this is termed 

the ~ar/iest firmg ru/e. 

3.7 Optimal Computation Rate 

Timed Petri nets have been applied in the study of concurrent systems to deterrnine 

the cycle time or equivalently the computation rate. We next review the method for 

obtaining the cycle time of a marked graph. 

Definition 3.2 The cycle lime of transitzan t, is defined as 

1
. X:, 
lm -­

n-+oo n 

where Xi is the lime at which transztion t, initiales its n+ l execution. 

Here are sorne important results fol' timed marked graph from Ramamoorthy and 

110 [RH80]: 

• The nurnber of tokens in a simple cycle remains the same after any firing se­
quence. 

• Ali transitions in a marked graph have the same cycle time. 

• Cycle time is computed by 

where k = 1,2, ... ,q and t l E T; 

n(CI,) = L:t,ECk n(t l ) is the sum of the execution times of the transition III 

simple cycle Ck; 

M(Ok) = L:P,EC/c M(PI) is the total number of tokens in simple cycle Ck; 
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q is the number of simple cycles in the net, excluding tilt' sdf-Ioot> illlplicitly 

assumed for each transition; and 

the cycle time of cach self-Ioop is refleded by nU,), VI. E T . 

• The computation rate 1 of a transition is the average Illlmber of firings of that. 

transition in unit time and is computed by the r('<'Ïprocal of t!w cyd(' t.il\\<' . 

. {M(k) 1} 
"(=mm n(Cd'!l(i.) 

where k = 1, 2, ... , q and t l E T 

• The simple cycle Ck which gives the maximum cycle time, or equival('l1t.ly 1.11<' 

minimum computa.tion rate, is known as the crliicn/ cycle. 

In addition, Ramamoorthy and Ho dcmonstratt's t.hat éL valid ('x('("ut.ioll sdwdllip 

5upporting the optima.l computation rat.e call always 1)(' compllt.ed for ét liVl'-bol1lld 

marked graph. This result is stat.ed in the following lemméL and is lls('d sllbs('(\U('IIt.ly 

to deduce a polynomial bound in Chapter 4. 

Lemma 3.1 A va/id execution schedule for cach transitwu II (,llll br df1'l/Jfd lIIilll /l/(, 

following Ume constrawt, once the cycle tlme a IS delcrmincll: 

s; = a. + ah 

where S~ is the time at which transition li commences the h+ 1 jirmg, lmd (lI i.., tlH' 

time at which transition l, commences the first firing. 

Cycle time a is 

{ 
n(Ck) } 

max M( Ck)' O(t l ) ,for aIl simple cycles Ck in PN. 

The starting t.ime au of transition tu can be assigncd as fo\lows: 

1. Define the distance from transition li to transitioll i) to be H(tl) -- oM(]J.)), 

where PI] is the place in hetween transitions il and iJ' 

2. Find a transition ts , which is enabled initially and assign 0 t,o a~. 

3. Assign au to each transition tu sueh that au is the gl'catest distance from ta to 

t,u i.e., 

au = max{ L n(tw) - a L M(Pab)} 
R 

IwER PClbEIl 

where R is a path from t& to tu. Note that the single-source longest path 

algorithm can he applied here. 
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The cycl.'! time of a timed marked graph can be obtained by enumerating every 

simple cycle in the associated graph; however, the lime complexity of the enumerating 

process can be exponcntial because there exists a marked graph with an exponential 

number of simple cycles [Mag84). A more efficient methfld for finding cycle time is 

given in [Mag84] where the problem is formuJated as a linear programming problem 

having a thcorctical polynominal bound. 

The abovc computation rate "1 is optimal or lime-optimal in the sense that it is the 

maximum achievable computation rate under any machine model [RH80, Ram74]. It 

can be achieved when a model has enough parallelism to execute aIl enabled transi­

tions as SOOIl as they be.:ome enabled. Such an ideal machine model will be used in 

the next chapter. 

22 



l 

-

Chapter 4 

Software Pipeline Scheduling on 
an Ideal Machine 

In this chapter we use Petri nets to examine the fcasibility and cOlllplt'XIt.y of soft­

ware pipeline scheduling. Section 4.1 describes formally the SDSP usillg a Pd,ri I)('\.; 

the resulting model is called a SDSP-PN. Once the SDSP-PN is colIstrllcl<'d, Wt' al'(' 

then able to examine the repetitive behavior, or thc stcady slal<', r(,s\lILill~~ t'rom tilt' 

execution of the SDSP, using an ideal machine modcl and will! the ('<ulit'sl. lirillg Illlt' 

enforced. Section 4.2 introduces the notion of a behavior graph [R.ulI"') which, 1.,)­

gether with the live-safe properties of an SDSP-PN, pl'ovide the llIt'ans l'or provillg t1lC' 

existence and uniqueness of the steady state discussed in Scction 4.3. III St'ction 'lA 

we determine the time-complexity requircd to rcach stcady :state. III ;WdIOIl LI) 

we discuss an marking constraint which lowers the time-complexity n~qu:tellJ('llt [01' 

reaching steady state. 

4.1 Modeling a SDSP with a Petri Net 

It is straightforward to translate a SOSP into a Petri net call(~d an SDSP- P N. TIJ(' 

following algorithm performs the translation: 

Algorithm 1 SDSP to SDSP-PN transformation 

Input: A SDSP G = (V,E,E',F,F'), where V = {vJ, ... ,v,,}, Ru E'u Fu F' = 

{et, ... ,em}, and 1 is a constant (we assume allnodes have the sarne execution lime). 

Output: A SDSP-PN PN = (P, T, A, n) 

• For each vertex VI in V, we introduce a corresponding transition II in T, i.e., 

T=- {tb ... ,t,,}. 
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(a) SDSP-PN of Ll (b) SDFP-PN of L2 

Figure 4.1: SDSP-PN of LI and L2 

• For each directed edge eu = (VI! vJ ) in E u E' u F U F', we introduce (1) a 

cOl'responcling place Pu in P, i.e., P = {Ph,'" Pm}; and (2) a set of directed 

arcs in A denoting the flow relations 'pu = t l and pu' = t J' A can be expressed 

as: 

A= u 
e .. =(v"v,) e (EuE'uFuF') 

In addition, the initial marking Mo associated with PN will simply be 

Mo(Pu) = l, if eu E E' U F, 
Mo(Pu) = 0, if eu E Eu F'. 

Figures 4.1(a) and (b) give the corresponding Petri-net representations for LI and 

L2. The resulting PN is a marked graph due to the fact that 1· pl = Ip· 1 = 1. 

Accordingly, it is also persistent. Furthermore, the initial marking Mo is live and safe 

due to the following two theorerns: 

Theorem 4.1 SDSP-PN with initiai marking Mo is live. 
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Figure 4.2: An Example of the Bchaviol' Graph fol' tlJ(' SDSP-PN of LI 

PraoE of Theorem 4.1. 

Note that each possible cycle found in the resulting SDSP-PN contains at I(,êlst OIIC' 

token. This can be seen by noting that every arc in the SDSP-PN paint.ing in t.11(' 

backward direction is initialized with one token. The validity of Thcol'em 1\.1 therdon' 

follows immediately from Theorem 3.3. 0 

Theorem 4.2 SDSP-PN wlth mitUlllltal·kwg Mo IS :iu/e. 

Proof of Theorem 4.2. 

For each arc (v" v]) E EU F' (in G), the corresponding arc (VJ , l'.) E E' u F initialJy 

holds a token and points in the opposite direction. Accordingly, each edg(' in t!1t' 

resulting SDSP-PN is within a simple cycle having a token count of 1. Helice, li\(' 

validity of this theorem follows directly from TheorelTl 3.'1. o 

4.2 The Behavior graph of SDSP-PN 

The construction of a behavior graph provides an alternative way tü descrihe lIw 

behavior of a Petri net, besides a reachability tree [PetSlj. A behavior graph is 

particularly useful for describing the concurrency and c., die firing sequencps of a Petri 

net. From a different standpoint, the behavior graph is actually a traC(' gencral('d 

while executing the SDSP-PN, according ta the carliest firing rult,. At cach lill\(, 

step, the behavior graph records the set of newly marked places and the set of elJahl(·d 

transitions to be fired at that step. In addition, directed arcs are introduced dlTlong the 

places and transitions to denote the token ftow relation from place to transition (loken 

consumption) and from transition to place (token production). The instantaneO\1S 
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state of the bchavior graph al time i can be described by the current residual firing 

time vector R and the currcnt marking M,. The algorithm for constructing the 

behavior graph is given below: 

Algorithm II Behavior Graph Construction 

Input: a SDSP-PN PN = (P, 1', A, n) and initial marking Mo 

Output: behavior graph B 

Step 1 Initial!y i = O. Let M' denote the set of currently marked places in PN. 
Duplicatc M' in B. Initialize aIl entries of the residual firing time vector 17.0 to 

O. 

Step 2 Fire ail enabled transitions in PN. Let T' denote the set of transitions just 

fired. Duplicate a copy of 1" in B. Update the residual firing time vector and 

current marking al:! follows: 

R.(t) = n(t)), Vi) ET', 

M,(Pk) = .M.(Pk) - l, VPk E ·T'. 

St.cp 3 Introduce directed arcs among places M' and transitions T'in B t.o indicate 

the token flow relation. 

Step 4 i = l + 1. Mil = Ut}ES t}·, where S = {t, 1 R'_l(t.) - 1 = 0, Vi, ET}, i.e., Mil 

is the set of newly marked places. Duplicate Mil in Band update the residual 

firing time vector and the current marking as follows: 

Ri(t}) = R'_l(t}) - l, if R,-dt}) > 0, Vt} E T, 

R,(t}) = R,-dt}), if RI-I(t}) = 0, Vt} ET, 
M.(Pk) = M,-l(Pk), VPk EPand ~ M", 

M.(Pk) = M,-l(Pk) + 1, VPk EMil. 

Step 5 Introduce directed arcs among transitions T'and places Mil in B to indicate 

token flow. 

Step 6 Let M' denote the set of currently marked places in PN. Repeat from Step 

2. 

Figure 4.2 illustrates t,he behavior graph constructed for the marked graph, SDSP­

PN LI, shown in Figure 4.I(a), where the execution timeof aIl transitions are assumed 

to be equal. 
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4.3 Steady State 

As can he seen, the construction proccss of the behavior graph can font ilHlt' fO\"('\'('I" 

and the hehavior graph can he infinitcly ext('nd('d. A kl'j' obs(·rvat.ioll is t hcll. t IH' 

behavior graph exhibits rcpet.itive behavior after an wliwl pt'l'lOd t.ht' illllOllllt uf 

time elapsed befof(~ the repetitive bchavior is reached. This is shown h)' t.he following 

lemma..c;: 

Lemma 4.1 Behavzor graph is unique for SDSP-PN. 

Proof of Lemma 4.1. 

Ohviously the original marking of the marked graph IS ulllqm'. Silice t!1<'1'(' is no 

structural confliet in a marked graph, the firings of ail ('Ilrtbl('d t.rallsitions al, (·ad. 

time step with respect to the earliest firing rule arc unique. Th('r('for(', tlt(' validity of 

the lem ma is immediate. 0 

Lemma 4.2 There exzsls an znsianlancous slate in l!tf bdwvwl' gmph of S/JSP-PN 

that appears repealedly. 

Praof of Lemma 4.2. 

The total number of distinct Ml is finitc becausc SDSP-PN has a safe marking. Simi­

larly, the total nurnber of distinct RI is also finite becau&e cach trallsiti\Hl in SDSP-PN 

has a known firing time. As a result, the total number of possible instétlltall('OIlS stat.I·!> 

are also fini te. Hence, if the behaviol' graph is infinitely cxtcndcd, somp inst.ant,ctlH'OllS 

states must he repeated. 0 

From Lemmas 4.1 and 4.2 we can sec that an instantall(,olls siat<· 011( (' J'(·I)(·,Ll.l'd 

will do so forever. As a result, the region of tht' behaVlOr graph bet\.v(·(·n two J'(·I)I·al,(·d 

instantaneous states can he used to represent the steady-stat(' hehaviol' of th(' SDS\'­

PN executed under the earliest firing rule. Thus wc have the following d('finitlon: 

Definition 4.1 A Cyclic Frustum (or steady state) of a bchavwl' grap/t /J lS litt. por­

tion of B between two consecutzvc occurrencelj of sorne repca/('d mstlLutllncOlls stail. 

ln addition, the two mstantaneOHS states that sU1'Tound the jru.<,tuTn al'i' IfTmcd tilt' 

initzal inslantaneous staie and the tcrrnznal znslanlaneous state. 

The marking portion of both the initial and terminal in1>tantancous state rOlllld in 

the hehavior graph for Li are marked in Figure 4.2, wherc the two associated residual 

firing time vectors are vectors composed of zero entries. Notice that the cydic frustulII 

is actual1y a cyclie firing sequence sinee it fires each transition at least once and f(~t\lrns 
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Figure 4.3: An Example of Steady-State Equivalent Net 

the net to its initial state. Once the behavior graph reaches its frustum, it will keep 

repeating. This simply suggests a way of capturing the repetitive behavior of the 

studied system. lnstead of cxtending the behavior graph indefinitely, we can extract 

the cyclic frustum and coalesce the initial and terminal instantaneous states to form 

a strongly-connected Petri net, called a steady-slate equivalent net. Figure 4.3 shows 

an example of the steady-state equivalent net derived from the behavior graph shown 

in Figure 4.2. Note that the steady-state equivalent net is itself a marked graph. 

As wc initializc it with an init.ial marking, by assigning one token to each coalesced 

place (i.e., the top row of places), the net captures the steady statc behavior of the 

corresponding SDSP-PN, yielding the same computation rate. 

4.4 Complexity to Reach a Cyclic Frustum 

As was shown in Lemmas 4.1 and 4.2, a repetitive execution pattern can always be 

found for an SDSP-PN executed under the earliest firing rule within a finite Humber of 

steps. The length of the initial period is examined in two sections: In Section 4.4.1 we 

impose a theoretical bound on the length of the initial period for an SDSP-PN having 

one critical cycle, while in Section 4.4.2, we deal with the case of multiple critical 

cycles, noting the barrier confronted and giving sorne partial results. In Section 4.4.3 

we pTOvide an indication of the tightness of the theoretical bound obtained using 

sample code which requires O(n) iterations for the initial period. In Section 4.5 we 

introduce an initial token-distribution constraint. As t.he initial marking of an SDSP­

PN meels the constraint, a tighter polynomial bound can be established for the initial 

period. More importantly, the result can be generalized t.o the case of multiple critical 

<'ydes, imposing a polynomial bound on the initial period. The work described in this 

section benefited both from Chretienne's thesis on Petri-net theory [Chr84] and from 
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Aiken and Nicolau 's work [A N88J. The notai iOlls and as:,ulIlpllOIlS wlllch wc' will IIM' 

are defined below: 

• Let G denote a SDSP-PN having Tl transitions, and 1('1 X;l <1('1101(' IIIt' 1 JIll<' ,II 

which transition t l commences its h+ l firing. We aSSlIJll(' t h,d I}I<' (·x(·cu\.ioll 

time TI of each transition l, is one time uuit. In g(·m.·rc\l, how('\{'I', tht' followinp; 

results can be extended ta cas('s in whlch transitions have ditfN('1I1 (·x(·clIt.ioll 

times. 

• If P is a path in C, then M{P), the loken sum, denote:. t.1l<' SIIIll of tht' lokt'II:' 

on each place in P.I The token in one place is Lakell III tht' ~1I1lI a:, lIIi\lIy 1.1111<':-; 

as the place is embedded in P. Similarly, n( Pl, tht' l'li/Ut' ~1I111, (}(·lIot(·S 1 lit' SIIIII 

of T, of each transition t 1 in P. The T, of trc\lIsitlOlI 1. i~ t ,tk"11 i Il t h(· :-'111 Il cl:' 

many times as the transition is emhedd(·d in P. L<'I. 1\(/.,1)) d('IH>tt· tilt' "PI of 

possible paths in C from li to t] hc\ving ('x(lctly Il tokells illollg t.ht' p,tllt, .1Ild kt 

ah( t" t J) denote the value sum of the maxi III Il III vahl«' IMI h i Il })It (l" 1 )). WC' cd:,o 

use the notation P~ (t" t)) to d('l1ot.(' t.h(' subspt JI of P,.{ f .. 1)) dlHI 1 II<' Ilot ,II iOIl 

a~(t"tJ) to denote the maximum palh value of Sllh~(·t P,~(/"f)) Sill(,(' ('etell 

transition has a self-Ioop with olle t.okclI 011 il (:\SSUlllptlt)JJ;l.I), 1),,(1.,1)) f:.~, 

for h ~ ho where ho is a positive integer. 

• A simple cycle C* in C is cl'ltua/ if th(· ratio of tht' valut' Slllll to tll(' t.okpJI sunl 

is maximal, i.e., if 
O(C*) > O(C,) 
i\l(C*) - M(C,)' 

where C, denotes the other simple cycles in G. Let al dellote the cyd(· t.ill\(, of 

the simple cycle CIl i.e., a, = O(C'.)/M(C.); lik('wise, let 0'* (= H(C*)/M(("*)) 

denote the cycle time of C·. 

4.4.1 An SDSP-PN having One Critical Cycle 

Chretienne shows that a precise description of the action of eclch I.rall!>itioll l. lIJ1d('r 

the ed.rliest firing rule obeys the global time constraillt X~+k - .\':' = p, h ~ ho, wlwf(' 

ho is a non-negative integer, k equals the lcast commoll Ilniltiplp of th(' t.ok(·1J SUIlI of 

all critical cycles in C, and p equals a x k, where a is li\(' maXllllUIlI cyck lime of 

C [Chr84J.2 This time constraint rneans that after the ho firings, ('Vf'J'y k·th hrillg of 

a transition i, must be p time steps apart; that is, the steady ~tate app(·d.rs. III ot!wr 

1 Note that a cycle is allowed along a path 
2The constramt is global In the senst. that It is appltcable ta dCSCflbc li\(' behavLOr of ail trallsitlons 
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words, the length of the steady state is p time cycles, and the steady state consists of 

k firings of tran~ition t,. 

Since, in this sectIOn, wc only consider SDSP-PN having one critical cycle C*, k 

and p (!quals M (C*) and fl( C*). This implies thdt the length of the steady state of Gis 

hound('{J, bypasslllg the problem of determining an upper bound for the least corn mon 

multiple of token sllms in the case of multiple critical cycles. Theorem 4.3 states that 

in the single' critical-cycle case, the global tlme constraint for cach t l E Gis satisfied 

(i.(>., the steady state is reached) after O(n3
) iterations, i.e., ho = O(n3

). Before 

this daim is provpn, wC' introduce several important lernrnas: The first is Lemma 4.3 

which relatf!S tht> time at which transition i) starts its h+ 1 firing 1,0 the computation of 

ah(t., t)), the value sum of the maximal value path in Ph(t" t)) [CCG84, Chr84, Chr85]. 

Lemma 4.4 C'stablishes the criterion that the maximum value pat,h must pas~ through 

tl1<' critical cycle. Lemma 4.5 states that a subset of a given set of k integers can 

always b(· round su ch that the total sum is a multiple of k [AN88]. Lemma 4.6 is 

an inequality based upon the faet that the value-per-token ratio of a critical cycle is 

alw.a.ys larger than that of a non-critical cycle. 

Lemma 4.3 For a71y G e.recuted under the carllest firmg rule , the time X; at which 

lmnsition t) stad.., lis h+ 1 fi1'mg equa[s 

max ah(t.,t)), t, E set ofe71abled transltions at time zero. 
t , 

Lemma 4.4 For h 2: O(n3
), the maximum value path in Ph(t., iJ) in G must pass 

lhrough the cn/ical cycle C*. 

Proo{ of Lemma '1,4 

Let \11 be a path in Ph(t., tJ) which does not touch C*. Let Pa be a path in Ph(t" tJ) 

which passes through C*. For any given h ~ ho, we choose Po. = J.L(c*)m v, where ho 

is an intcger, Jl and v are r<:spectively the directed path from t, ta ty and the direded 

path from ty ta t), ty is a transition on C*, and m is the number of times that C· 

is ronsecutivcly iterated. The value m and the paths J.L and v can respectively be 

computed and constructed as follows: 

• m - lM(Pa)-2nJ 
- M(C·) 

• Let ml = (M(Po.) - 2n) mod M(C*) + n; J.L is a path from tJ to ty with ml 

tokcns while v is a path from ty to tJ with n tokens. 3 

3Such paths must exist berause the token sum of any simple p,.th (cycle free) is bounded by n, 
and by AssumptlOn :J 1 Ph(ta,tb) 'f 0 provided h ~ n III a sare marked graph. 
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Notice that under such construction 

M(Jl) + M(v) $ 3n. (.1.1 ) 

Let us assume Sm = M(fL) + M(v) + m X M(C") for the given h. Thus by (It'finit.ion 

both \li and Pa belong to PSm (il, tJ)' To prove this lemma, we first COlIstrllct an llPp('r 

bound on the value sum 0(\11). Then we show that O(Pa) Îs always great('l' than tl\(' 

upper bound of n(\II) for m ~ O(n2 ) or h ~ O(n 3
) • 

• Construction of the upper bound for O(\lI) 

This construction was taken from Chretienne's Ph.D thesis [Chr84J. Let {CI; i = 
1, ... ,a} denote the set of non-critical simple cycles in G, and let E and E, be 

defined as follows: 

el - a* - ail 'Vi, 1 $ i ::; a 

and e - min {el} 
.=l, ... t a 

> 0 

Recall that a* and al are respectivcly the cycle time for the crit.ical cyde Co 

and the simple cycle CI' Then, ê is the cycle time differenc(' of th!' crit.lcal cycl(' 

and the simple cycle that has t.he second largest cycle lime in (; 

Notice that path \II can be decomposcd into a simple path q (cycle fl'(,(,) 1'1I11lJÎng 

from t, to tJ and a set of non-critical simple cycles, wherc for each (,'1 we assodat(· 

an integer TJi ~ 0 to denote the number of times Cl is itcrated in \li. The valu(' 

sum of \li is computcd as follows: 

a 

O(\lI) = O(q) + L 17,O( C,) 
1=1 

a 

= O(q) + L 11,o:,M(C,) 

Q 

- O(q) + L TJI(O:* - c,)M(C,) 

a 

< O(q) + L 111(0:* - c)N/(CI ) 

1=1 
a 

O(q) + (0" - c) L TJIM(C'I) 
1=1 

< O(q) + (a" - é)M(IlI) 

Since \li E PSm (ti, tJ)' M(\lI) can be expanded and bounded as follows: 

O(\lI) 
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< O(q) + (a" - e) (M(Il) + M(II) + m M(C")) 

- m (a" - e) M(C'") + b 

where b::::: O(q) + (a* - ê) (M(J1.) + M(II)) 

• Evaluation of h 50 that n(Pa) > n(\}I) 

(4.2) 

Note thal the palh Pa=p(c*)m /1 also belongs ta PSm(t" tJ)' and O(p(c .. )m Il) 
equals O(ll) + 0(11) + m 0'* M(C*). As we compare O(J1.(c*)m/l) and the upper 

bound of O(\}I) (Equation 4.2), we see for m > mo, where mo is sorne positive 

integcr, \li can never be the maximum value path in PSm (t" tJ)' Moreover, this 

is true for all possible \}I E Psm(t" tJ) that do not touch C*. 

m (0'* - e) M(C*) + b 

< ma" M(C'") + O(p) + 0(/1) (4.3) 

mo can be estimated by solving Equation 4.3 for m: 

b - (O(Il) + O(v» 
m > eM(C*) (4.4) 

Next we simplify the right-hand side of Equation 4.4 and construct an upper 

bound. Without loss of generality in i, assume that e, is the smallest value in 

{et, ... ,êa }, i.e., e ::::: ê, ::::: 0'* - a,: 

b - (O(/.l) + O(v») 
ê M(C-) 

< 
b 

e M(C'") 

::::: 
O(q) + (a* - E) (M(Jl) + M(/I» 

(a" - a,) M(C'") 

::::: 
O(q) + a, (M(p) + M(v» 

(0'* - a,) M(C*) 

::::: 
O(q) + ~)~,) (A/(Il) + M(v» 

( °1CO
) _ °1Cd

» M(C") M CO) MC, 

::::: 
n(q) + ~\~,» (A/(Il) + M(II») 

O(C*) _ O(C,)M{C') 
M(C,) 

::::: 
M(C,) O(q) + O(C,) (M(p) + M(II» 

(4.5) 
n(c") M(C,) - O(C,) M(C") 

Note that G is a live-safe marked graph composed of n transitions. The token 

sum for any simple path or any simple cycle is bounded by n. Similarly, the 
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value sum of any simple path or any simple cycle is boundtcl hy 11. Note also 

that by Equation 4.1 M(jt) + M(v) ~ 3n. Equation 4.5 can be furthcl' rcduced 

and bounded by 

n x n + n X 3n 

1 
(4.6) 

As a result, for m ~ O(n2 ) the maximum value path in PSrn(l"l)) must pass 

through C*, where Sm = M(Jl) + M(ll) + m X 1\4(C*). Or equivalclltly, fol' 

h ~ O(n3 ) the maximum value path in Ph(t"tJ ) must pass t.hrough Co. 

o 

Lemma 4.5 Given J( integers II, ... , h, ther'e is a subset S of 1. sucll litai 

(L: 1.) mod k = O. 
l.eS 

In other U'lJrds, the sum of ail l, E S is a multiple of k. 

Lemma 4.6 Let C* be the critical cycle in a, m be a pO!;itive inlegcl', and Ca,' .. ,Cb 

be the set of simple cycles in a such that M(Ca ) + ... + M(Cb) = rn X M(CO). Then, 

Proof of Lemma 4.6 

L O(Cd 
C,eR 

O(C,). 

= aa x M(Ca ) + .. , + ob X M(Cb) 

< a" x M(Ca ) + .. , + 0" x M(Cb) 

= a*xmxM(C*) 

= m x O(C*) 

o 

Theorem 4.3 For any a with only one critical cycle C" executed unda' the ea1'izest 

firing rule and for h ~ O(n3 ), the lime constraint X;+k - X; = P lS obcycd by ail 

tj E G, where k = M(C*) and p = O(C*). 
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Proof of Theorcm 4.3 

By Lemma 4.3, this theorem can be proven by showing that for h ~ O(n3 ): 

where ti is a member of the set of initially enabled transitions at time zero. Or 

equivalcntly, we show that for h ~ 0(n3 ): 

for ail ti in the set of initially enabled transitions at time zero. 

Notice that Pz( t" t)), the set of paths from t l to t) with exactly z tokens, can 

he partitioned into three disjoint subsets: P:(tl,t)), P~(t"t)), and P;(t"t)), where 

z > O. Suhset PZB(tI' t}) denotes the set of paths that iterate through C" at least 

once. Subsct P:(t" t}) den otes the set of paths which only touch C·, that is, C· is 

not embedded entirely in the path, and subset P~(t" t}) denotes paths that do not 

contain C· at aIl. 

We would like to show that the maximum value path in Ph(t" i}) for h ~ 0(n3 ) 

can only be found in subset P;:(t l , il)' By Lemma 4.4 we know that the maximum 

value path in Ph ( t l , i}) for Il ~ O( n3 ) ~an never be found in subset Pt(i" t}). For every 

path in subset Pk(t" t]) there always exists a corresponding path in subset Ph(t" t)) 

which has a higher value sum, provided h ~ (n + l)k + n. For h ~ (n + l)k + n, there 

exists at least k cycles along any possible path in Ph(t" il)' By Lemma 4.5 there 

cxists a subset S of those cycles CI su ch that L:C,ES M(CI ) is a multiple of k. Recall 

that k = M(C*). Assume L:c,es M(C,) = m x M(C"), mE integer, and m > 0 for 

any path Px E Ph(t"t)). Either Sis composed of C" m times, i.e., Px E P;:(tl,t]); 

otherwisc, Px could never have the maximum path value. This is so because a path 

PlI can be constructed From Px by replacing aIl C, E S wit h exactly m C·. PlI must 

also exist in Ph(t" i]), and by Lemma 4.6, it has a higher value sumo Therefore, the 

maximumvaluepathof Ph(tl,i)) fork 2: 0(n3
) must beamemberofsubset Ph(t"i)). 

In addition, notice that subset PI~+d l" t]) can be constructed by having every 

path in subsets Ph(t" i}) and Pk(tl, iJ) iterate through C* one more time. However, 

as was shown previously, subset Pk(tlltJ) does not contain the maximum value path. 

Consequently, 

ah+k( t" t)) = ah+k(t"t)) 

= ah(l" i}) + O( C*) 

= ah(t l1 t)) + p 

= ah(t" i]) + P 
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Theorem 4.3 states that ail nodes in the loop (including bot.h tilt' Hodt>s 011 or Ilot 

on the critical cycles) will enter a periodic firing pattern aftpr O(n3
) itcrat.iolls, This 

suggests that we can "simuIate" the Ioop execution at compil(·-tinw by rotlst.l'udillg 

the behavior graph in O(n3
) iterations to reach this patt.t>rn. Sillet' ('arh it(·rat.ioll has 

O(n) firings in the "simulation" process, the actual numb('1' of t.illlP stl'pS 1,0 1'('(\r1l li\(' 

pattern is O(n4 ), as shown by the following tlwol'em. 

Theorem 4.4 Under' the earliest firing rule, the cychc frusfllm of G Iwmllg Ollf 

critical cycle can be found in O(n4 ) time steps. 

Proolol Theorem 4.4 

By Theorem 4.3, the time constraint X;+k - X1h = p, VII E G, ~, == M(('*), alJ(l 

p = O(C*) is satisfied when h ~ 0(n3 ). In othe!' words, t.he' ('yelie fl'lIstllI1l apP('ilIS 

after O( n3 ) times of Gare scheduled. Since G consists of n transitions, a t,ot.<ll of 

O(n4 ) firings will be performed. Note that 0(n 4 ) firings canlw d011<' ill al, 1ll0St. 0(11,1) 

time steps. 

Since p = O( C*) is the value sum of the crilical cycle, it is bound('d by n. '1'1)('\'(·­

fore, under the earliest firing rule, the cyelie frustllIll of (,' having 011(' cJ'itÎcal cycl(' 

emerges in O(n4 )+n time stcps, or sim ply O(n4 ). 0 

4.4.2 An SDSP-PN havillg Multiple Critical Cycles 

As noted previously, the action of each transition is dcscribed hy a glohal till\(, ('011-

straint. It states that every k firings of a transition is p period apart, will'I'(' k ('qllills 

the least common multiple of the token sum of t.he critical cycks éllld Tl ('qllilb 0 x ~'. 

Since the Lime complexity fol' finding th{' stcady state ill volwt. t II<' d('\,('lllli Ilat.ion of 

the length of the steady statc, an upper bound for the lcast COlllfllOIl lIIultipl(' [cteto!' is 

th us required. Wc are unaware of any polynomial rcsllit and tH'l!ev(' th,ü tl\(' 1'1"01>1('111 

in this case remainR open. 

The rest of this section demonstrates that, for tral\"itiOlI~ r(':-.idillg Oll t!H' critiral 

cycles, a more concise local time cOllstraint <-an he d(·dllced whi( hal:-,o wifl('Jcks wlth 

the hehavior description of the global time con~lraiIlt:1 III addltlO/I, tlw 11IIprowd 

constraint is shawn ta he obeyed after O(n2
) iteratiolls under the t'arli('st firiug rlllt·, 

This result also applies ta the case of singl(' uitical cyd(', Let (:j, (:.;, , .. dellot(· 

the critical cycles. The new lime constraint has the ~arnc fonn a~ t.ht' pl'('VIOllS one 

4The time constramt IS local ln the sense that It IS only apphcabh· lu dl'bcrllH' th,. lH'ha.vlOr of 
the regarded transitions 

35 



1 

( 

cxcept that in this case k = M(Cn and p:= n(Cn for aIl tJ E Ci- This constraint 

justifies that transitions from different critical cycles have a different repeating period 

p, but they aH keep the same computation rate M(C;)jO(C;). To dpmonstrate these 

daims, Lcmmas 4.3 and 4.5 are used again. In the instance of multiple critical 

cycles, Lemma 4.6 is revised to Lemma 4.7. Note that the proof of the daim below, 

Theorem 4.5, is so similar to the one used for Theorem 4.3, in the last section, with 

only a slight difference. 

Lemma 4.7 Let C* be a critical cycle in C, m be a positive integer, and Ca, ... , Cb 
be the sel ofsimple cycles in G such thal M(C(1) + ... +M(Cb) = m x M(C*). Then, 

Proof of Lemma 4. 7 

C,eR 

m x n(c*) ~ 

aa x M(Ca ) + ... + ab x M(Cb) 

< a" x M(Ca ) + .. , + a" x M(Cb ) 

- a· x m x M(C*) 

- m x n(C") 

o 

Theorem 4.5 For any C executed undel' the earliest firing schedule and for h > 
O(n2 ), the tnne constrainl X;+k - XJh = p is obeyed by ail tJ E C·, where C* is a 

critical cye/e, k = M(C"), and p = n(c*). 

Proof of Theorem 4.5 

With Lemma 4.3, this theorem is proven by showing that for h ~ O(n2 ), 

where li is a member of the set of initially enabled transition at time zero. Or 

equivalently, we show that for h ~ O(n2 ), 

for an l, in the set of initially enabled transition at time zero. 
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Notice that Pz(t., tJ)' the set of paths from t, to t] \Vith cxactly :: tok<'lls, C,lIl hl' 

partitioned iuto two disjoint subset.s P:(t., t)) and P~(t., iJ)' wh('f(' :: > O. SlIbsl't 

P:(t" tJ) denotes the set of paths that itcratc through C* al !east 01lce, whilt, slIbscl 

P:(l., t l ) denotes the set of paths which only touch C., i.c., C'* is Ilot ('I\\!wddt·d 

entirely in the path. 

We show that for every path in subset Pk( i" iJ) thcrc always exisls a COIT('spondillg 

path in subset P;:(t" tJ) which has a greater or cqual valu<, sum, pl'Ovid<'d Il ~ (n + 
l)k + n. Consequently, the maximum value path in Ph(t" f J) for Il ~ 0(1/ 1 ) cali 

always be found in subset P;:(t"t)). For h '2: (n + l)k + n thcre <'xisls at !«'as!. A· 

cycles along any possible paths in Ph(t., t)). By Lemma 4.5 th('rc t'xists a subs('1, S of 

those cycles C. such that LC,ES M(C.) is a multiple of k, whcre k = M(C*}. ASSlIl1\(' 

Ec,esA'f(C.) = m x M(C*),m E integer, and m > 0 for any path Pl E /)II(1"I J ). 

Either S is composed of C· m times (i.e., Pl' E P;:(t"I))) or Pl lIlay Ilot have' t!w 

maximum path value. This is so because a path Py can be coustI lIcted l'Will P.r by 

replacing aH C. E S with exactly rn C-. Py must also ('xist ill Ph(t ll l J)' alld by 

Lemma 4.7, it will have a greater or equal value sumo Therdol'<" tht' maximulII valtu' 

path of Ph(t"t)) for h ;::: O(n2
) is always a mcmber of sub~ct P;.'(t"f)). 

In addition, notice that subset Pt:H.(t" LJ) can be conslrudcd by having <'Vt'ry IMlll 

in the subsets p;:(t., tJ ) and Pk(t" il) iterate through C· olle l1Ior<> tilll(·. lIowpv('/', 

as was shown, the maximum value path can always })(' fOlllld in slIb:-wt j';t(t" t)). 
Consequently, 

ah+k(t"t)) = ah+k(t" 1)) 

= ah(tntJ)+O(C'") 

= ah(t" i)) + p 

= ah(t n i)) + p 

o 

Illustration of the Effect of Multiple Critical Cycles 

To conclude the discussion of multiple critical cycles, we illustrate two sampl(' codp 

sequences to demonstrate the least-common-multiple efff'ct of the tok(,11 SII/II of ('fit.ical 

cycles on the length of the stcady state (see Figures 4 A and 4.5). Figur(' 4.1 shows il 

code sequence made of one initial enablcd node l! (or a single SOIlr< (.) a/ld two <Titi( al 

cycles Cl and C2• The computation ratcs of CI and Cz an' :l/9 and 2/(;. 'l'lU' vahl(' 

of the least common multiple k then equals {) (3 x 2). Figure 4.5 display~ a coc!p 

sequence composed of three initial enabled nodes: t ill , t il2 , and t ,\ (rIIllltlpl(' !->OIlfU'l-» 
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Critical Cycle Cl: tltlt3t4tSt6t7t9tSt1 
Computation Rate = 3/9 ... 

"------------~----------~ 
Critical Cycle C]: t12t13tHtlSt16t17tl2 
Computation Rate = 2/6 

Figure 4.4: Code Sequence with Single Source 

Crltlcal Cycle Cj: tjt2t)t4t5t,t1tet9tjotlltutl4tlJtj2tj 

Computation Rate. 5/15 --

'----------------~ 
Crltlcdl Cycle Cl: t]5t)6t)1tJlt]9t40t]S 

Computation Rate = 2/6 

Figure 4.5: Code sequence with Multiple Sounes 
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and three critical cycles: Cl, C2, and C3• The computation rates of (\, Cl, and CI 
in this case equal 5/15, 3/9, and 2/6 respectively; the valUt' of ).. l'quais :JO (~ x :1 x 5). 

The corresponding results for the two samplc cod('s undt'r t'ar\i('st firing rul(' art' 

depicted on Tables 4.1 and 4.2. Among the results, thf' ut/mb",. of jil'lJl!ls inoica.t(·s li\(' 

number of firings of a node in a repeated firing s<'qurllce, by which w(' cali dd('rlllil\(, 

if the local time constraint is obeyed. The time dclay indicatl's tht' .iday Iwtw('('11 

consecutive firings in the corresponding repeated firing sequ<'lln'; t.h<' tot.al slIm of t.ht' 

time delays thus equals the repeating period of the parlicular 1I0d('. Tht' ll('l'tLliOIl 

indicates the latest iteration instance observcd whcn the steady stiÜ(' is J'('aclu·d. IIN(' 

are the major observations: 

• Nodes tu and in in the single-source code sequence and node' ln iTl tlu' Illldlipl<'­

source code sequence tire respectively six limes and lhirly linws in Uwir st,('iuly 

states, confirming the effect of critical cycles undcr the global tillll' (,()Ilstrdiut. 

• The number of firings for no de on the critical cycle CJ i/l holh «)(I(· S('<\II<'II('('S 

equals j\f( C}), the number of tokens on the critical <'Yc!t'. Th(·s(· ill( id('1I1.!. 

verifies the existence of a local lime conslraint daimed hy Th('on'llI ,U'). 

• The steady state of the off {Titical-cycle Bode!> arc Ilot Il('('('ssary illflllPllC(·d hy 

the least common multiple factor. In the single souret' caSt', ollly 1I0d('s l" ,Uld 

tn demonstrate the impact of critical cycles while Hodes ts and tlO oh('Y the' local 

time constraint. 

For more ex amples of the influence of critical cycles, th(' multipl('-sollJ'cc's cast' 

presents an extensible platform. For example, wc can rais(' the valll(' of ~. flOIll 

2 X 3 X 5 to 2 X 3 X 5 X 7 by attaching a new brallch of nodcs w/lich COTlsist'i of a /U'w 

critical eycle C4 with a rat€' of 7/21 and a new source nodp (,,1' Thp ['('sldtillg graplr 

t.hen consists of four brancht>s corresponding lo four critical cy( It,s WI' tllI'lI adjust 

the other three branches by inserting new Hodes until lll(' thn.'(· old brallch('s ('('gain 

the same height, i.e., the distance of each branch from thl' sour«' /lod('s 1,0 'II ('<{uals 

the distance from t s4 to ln. 

4.4 .. 3 Tightness of the Bound 

In this section wc illustratc the tightncss of the derived polynomial upper !.Olllld, 

using the example in Figure 4.6. The cxamp/e illustratcs the Ilced for illitic.ting al 

least n-l iterations before lhe repclitive firing paltcfIl is rcadH'd. Il contai/ls il chain 

of n nodes with only one critical cycle (t'll-2ln-l t n t ll _ 2 ) located al. tll<' right ('II(!. 'l'lU' 
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Table 4.1: Single Source 

Range of Nodes 
t, tl-t9 llO tu 

Label Source Node Cl 
Number of Firings le 3 3 3 6 
Time Delays 2,3,4 2,3,4 2,3,4 2,4,2,4,3,3 

t12-t 17 

C2 
2 

2,4 
6 

2,4,2,4,3,:' 

t Code Size: 19, Iteration: 14 

Table 4.2: Multiple Sources 

Range of N odes 

Label 
t,1 t,2 l,3 tl-tl5 t16-t19 t2o-t 28 t29-t34 t35-t40 tn 
Sourel? Nod"'"e-s -""'C"'"I--'---'----C=-2 ------:(" ....... 3---

Number of Firings le 5 3 2 5 3 3 2 2 30 

t Code Size: 44, Iteration. 43 

computation rate of th~ critical cycle and the chain, in generaI, is 1/3. AIl other 

simple cycles have a computation rate of 1/2. In addition, note that there is a total 

of n-2 tokens along the path from tn to t l . Initially at time zero, t l is the only 

inîtially enabled node. By Lemma 4.3, the time for t l to commence its h+ 1 flring 

can be computed by ah(t1, t.), the maximum path value among the S(~t of possible 

paths from t l to l) with exactly h tokcns. However, due to the chain of n-2 tokens 

from tn to t), the set of paths from t l to t) with less than n-·2 tokens can never reach 

the critical cycle. Thus, it indicates that II is required to initiate at least n-l times 

(i.e., n-l iterations, or O(n) iterations) before the effect of the critical cycle can be 

propagated back to t 1. 

••• 

Critical Cycle 
Computation Rate = 1/3 

Figure 4.6: A Cod~ Sequence with an O(n) Lower Bound 
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4.5 Initial Token-Distribution Constraint 

Through our simulations (Table 5.1), wc have found surprisingly short initictl pt'riods 

for aIl benchmarks tested. In fact, the observed bound was within 0(11) itel'at.iolls. 

It appears that the bound derived above is too pessimist.ic, and a tightt'I' bOUJl(\ 

is possible. In Section 4.5.1 we give a marking condition, obtained by g<'II<'l'ali:l.ÎlIg 

Theorem 4.5, with a tightel' initial pel'iod. ln Section 4.5.2 wc report il sigllifiCélllt.ly 

improved bound for the same marking found by using a diffel'('lIt. appl'Oc\ch. 

4.5.1 A Tighter Initial Period 

The Initial token-distribution depicted by Theorem 4.6 charact<'rizes aIl illllut! l1la,.k­

ing of G such that a repeated pattern can be found after O( n'l ) iteratiol1s l'<'gardlt,ss 

of the number of critical cycles. The length of steady stat.e and !.Il(' llum\WI' of fil'illgs 

of each transition in steady state are respectively n( C') and AI (('.), wh('J'(' ('. i1-> t.h(· 

critical cycle initially holding aIl enabled transitions. Formally, tlH' t.illH' cOllstraillt1. 

X~+k - X~ = p, Vtt EGare satisfied aCter O(n:l) iteratioll:' of C:, wlwl't, A· ::: M(C*) 

and p = O(C*). The validity of Theorem 4.6 is important becausl' tht' n'qt\i«'d initial 

condition can always be reached aft er at Illost 0(71) iteratiolls, as di~( IIss(·d in t.h(· 

next paragraph. Consequently, the repetitive firing pattern for a gt'/H'ral SDSP-PN (,' 

can be round after O(n2 ) iterations of U, regardl(>ss of th(' 1I1I1ll1)('1 of ('nt\( al ('ycl(·~. 

Token Distribution Constraint Satisfaction: A~Sll[ne tltat II cWhllion " !'(':-.i<l(·1-> 

on a critical cycle. To meet the initial condition, one simply ex('cuU'S (,' usillE!; 

the earliest firing ru le but prohibits any firing of transitio/l t. The fin/lg IHO('('8S 

soon deadlocks. Since G is strongly connectcd, there alw,tys t'Xlsts a. (y( I('-fn'(' 

path P from l, to t] for al! lJ in G. If l, is never fired, t) stops firillg soon aftel' 

all tokens along P have been consumed. Note alsu that tlll'f(' cali Il(' at lIIo~l 

n tokens along a cycle-free path; that is, t J can be fired al llIosl 1l tillH's \)('f()f(' 

the initial condition is met. Equivalcntly, it requires tilt' sch('duling of a.l iTlOSt. 

O( n) iterations of G to reach the requircd statc. 

Theorem 4.6 Under the earbesl fi7'mg ru le, lf lhe sel of lmtlUl cnablcd 11'fwsllzon." 

at time 0 ail belong to a selected c1'lhcal cycle C· in C, Vi) E C lhe lwu: con.~tramts 

X;+k - X; = p zs obeyed for h ~ O(n2), Whel'f k = M(C·) and l' = n(c*). 

Proof of Theorem 4.6 

Assume that the only enabled transitions al lime zero are those on dll' l.decled 

critical cycle C*. With Lemma 4.3, we prove the theorern by showing thilt for ft ~ 
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where t l is a member of the set of initially enabled transitions at time zero. Equiva­

lently, we show that for h ~ O(n2 ), 

for aIl ti in the set of initially enabled transitions at time zero. 

Notice that Pz(t"tJ)' the set of paths from tl to tJ with exactly z tokens, can be 

partitioned int.o two disjoint subsets P:(t"tj) and P;(t"t)), where z > O. Subset 

P;(t" tJ) den otes the set of paths that iterate through C· at least once, while subset 

P:( t" t)) denotes the set of paths which only touch C· (Le., C· is not embedded 

entirely within the path). 

We show that for every path in subset Pk(t" t]) there alway& exists a corresponding 

path in subsct PJ:(t" iJ) which has an equal or greater value sum, provided h ~ 
(n+ l)k+n, where k == M(C*). Consequently, the maximum value path in Ph(t"t]) 

for h ~ O(n2 ) can always be found in subset Ph(t" tJ)' For h ~ (n + l)k + n, there 

exists at least k cycles along any possible path in Ph(t"t}). By Lemma 4.5 there 

exists a subset S'of those cycles C'a such that LC.ES M(C,) is a multiple of k. Assume 

LC.ES M(C) = m x M(C*), m E integer, and m > 0 for any path Px E Ph(t" t]). 
Either S is composed of C· m times (i.e., Px E Ph(t" iJ» or Px may not have the 

maximum path value. This is because a path Py can be constructed from Px by 

replacing aIl C, E S with exactly m C*. Py must also exist in Ph(t" iJ), and by 

Lcmma 4.7, it has a greater or equal value sumo Therefore, the maximum value path 

of Ph(t" t]) for h 2: O(n2
) is always a memher of subset P;:(t" t]). 

In addition, notice that subset Ph+k(i" i) can he constructed by havingevery path 

in the subsets P;:(t.,iJ) and Pk(t"i) iterate through C· one more time. However, 

as was shown, the maximum value path can always he round in subset P;:(t" tJ)' 
Consequently, 

ah+k(t" t) - ah+k(t" t)) 

- ah(t"t])+O(C*) 

- ah(t"t])+p 

= ah(t" tJ + p 

o 
As c,an he seen, to meet the initial token-distribution constraint, the search for 

a. transition on the critical cycle is significant. One possible approach to find such a 
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1 transition is to first determine the computation ratt' restrided by the cntic,t! cycle 

using Magott's linear programming forlllulation [Mag84) dlld I.h(,11 apply th(' shorlt'sl 

path algorithm with the distance formulation defiued by Ham,u!loorthy <wei 110 10 

obtain a critical cycle [RH80}. Using the critical cycle, the requirt'd 1.1',\IIsitioll can lU' 

selectcd arbitrary. Since Magott's formulation can 1)(' solV<'d by lill('iu' p\'Ogrclllll\lill~ 

within a theoretical polynomial bound and the shortest path problem CclII 1)(' solv('d ill 

O(n3 ) steps, the final problem of determining repetitive patt('fIl is POIYIlOlllictl bouilli 

also. 

An alternative approarh to the problem is lo appoint a tl'dll~itioll !Il(' illit.Î,d (·Ilahl(· 

condition and then construct the behavior graph from tlwll 011 fol' nltn 1(,('J',II,ioIlS. If 

the repetitive execution pattern cannot be found, an untoudH'd trcUlsitioll I~ ~(·I(·ct(·d 

and the procedure is repeated. In the proccss a maximllm of 11 trélllsitlOIlS will 1)(' 

checked, and at most n itcration:o. are required to satisfy th(' initial lokt'll-dist.1 dHIt.ioll 

constraint for a selected transition. The time <-Oll1plcxity of t!w appw,\('h Îs 1>01lIld(·11 

by the time required to schedulc n(n+n2+n) iteratious, i.t'., 0(11'1) it('(',ÜIO/lS. Not(· 

that this algorithm suggests a totally diff('J'(>llt WCLy of clpproé\chillg t.IH' plobl('111 of 

determining the computation rate for G. 

Though we have established a theoJ('tlcdl ~()llItioll tu tll(' "lclldy-"I,t!(' pl'uh!('11I 

with respect ta the carliest firing rule. the platforlll UpOIl wltidl ,dl tl)(' plO()f~ ,l/(' 

based (Lemma 4.5), however, scems too gcncl al and faib to \It iliz(' tilt' silf(,J1('~~ 1)101'­

erties of the SDSP-PN. Bence, the thcordlcdl bound IS loos(' (olllpan'd Wlt Il 0111 

simulation results. In the next section we report a slgui fiea/l t1y i rll pl'OV('d hOll/ld Olt 

the length of the initial period for the saIlle tokcn-dlstributlOll (Ollsl rilllll, IISÎlIg il 

different approach. 

4.5.2 A Second Approach for a Tighter Initial Period 

The results described in this section show that th(· ste'adj "it.atc· l!'l ft'achahl(' artel 

k iteration of C, where k is th<, number of tokens of t1l<' (') ItICéll (y( 1(' wlllch hold~ 

the initial enabled transition t". Hat hf'r than /'('Iyi ng 011 tl\(' l'n'v iously i Il t 1 odu( pd 

rnaximum-value-path framcwork, the following proof makes use of tl)('ory d('velop('d 

for valid-schedule-computatioll seheme (s('(' LC'mmét:U) [HlIHO. }{(')(iH] PH'( i!'l('ly, W(' 

make use of the relation betwc(,11 the earlicst firing :;dwdul(· X:' (\IId t1w valHI "c\H'dlllp 

Sh. 
1 • 

viL < c.;iL \..Jt E (' 
.:\, _ lI' VI' 

Our proof consÎsts of two parts: The first part shows that the 1 hrÎ/lg, k + J fillllg, ~kt 1 

firing, ... , mk+ 1 firing of a transitIon are p-perimj apart Il'iing tilt' valicl-~( II('<lul('­

computation framework. The second part of li\(' proof gcneralizes tlt(' result in IMrt 
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one to h firing and h+k firing are p-period apart using the safeness property of the 

model. 

Theorem 4.7 Under the earliest firing ru/e, if the only enabled tr'ansition at time 

zero belongs to C* 1 a crztical cycle in G, Vt) E G the hme constraint X;+k - X; = P 

is obeyetl for h ~ 0, where k = M(C*) and p = O(C*). 

Proof of Theorcm 4.7 

Let k = M(C*), p = O(C*), and ta be the enabled transition at time zero residing 

on C*. First we show that for m ~ 0 the mk+ 1 +k firing and the mk+ 1 firing of t& 

are p-period apart, i.e., 

(4.7) 

Observe that with t& being the only enabled transition in G at time zero, the valid 

firing time S? for transition t, to commence the first firing also equals the earliest 

firing time X~, according to Lemma 3.1, i.e., 

(4.8) 

Since t& resides on C., every k-th firing of t& cannot be shorter than p, i.e., 

(4.9) 

By Lemma 3.1, the valid firing time for the mk+l firing of t& is comput.ed by: 

= mp. 

That is, the corresponding valid firing time for ta to commence the l firing, A~+ 1 firing, 

2k+ 1 firing, ... , mk+ 1 firing are 0, p, 2p, ... , mp, according to Lemma 3.1. According 

to Equations 4.8 and 4.9 it is the earliest firing schedule. Thereby, X,;,k = S,;,k for 

m ~ O. Hence, Equation 4.7 is proven. 

Next wc show that for m ~ 0 and Vi, E G the mk+ 1 +k firing and the mk+ 1 

firing of t, Îs p-period apart, i.e., 

(4.10) 

After constraint satisfaction, for each li E G :f:. t& there exists a place p E ·t l with 

no tokens on it; otherwise, t l Îs an enabled transition eligible for firing. Accordingly, 

there always exists at Icast one loken-free path from t& to i,. Let p. denote the one 
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which gives x~ (= Sr) the longest token-free path from (, to i, (Lemma:3.1). Not(' 

that the amount of time t 6 takes to generate anù deliver the mk+l t.oken to l, alollg 

Pa cannot be shorter than a period of X~+mp, i.e., 

x;nk - X~ ? mp, m ~ 0 and Vtt E G. (4.11) 

By Lemma 3.1, the valid firing time for the mk+ 1 firing of l. is computecl by: 

smk - a.+mp , 
= S~+mp 

- X?+mp. 

According to Lemma 3.1, the corresponding valid firing time for il to commence th(' 1 

firing, k+1 firing, 2k+l firing, ... , mk+l firing arc X~, X~+p, X~+2]J, ... , X:)+1II1I. 
Equation 4.11 confirms that it is the earlicst firing sc\wdu\C'. TIH'rchy, X:,lk ;co· -"';111-

for m ;::: 0 and Vtt E G. Equation 4.10 18 validat('d. Note th<tt wl\(,l1 ~. == i\I ((") -= l, 

the cyclic frustum is obviously reachcd dfter the first itcrcüioll 

Finally, we are ready to show that )(h+k - X~ = p for Il ~ 0 and VI. E (,'. Si nf(' 

G is safe, for h ~ 1, X~ of transition l, equals 

(4.12 ) 

For m ;::: 0, the subsequent earliest firillg schedule of transition l, aft('1" ('(\< h 111 kt 1 fÎl­

ing (i.e., the schedule staring from th~ mk+2 firing) Il1crdy starts 011 tok('lIs prodllc<·d 

by the mk+ 1 fi.ring or the mkt2 firing of sorne trallsitioll~ Thus, by ECJlI.tt,ioll ·LI () 

and 4.12, the same earliest firing schcdule of il rep('ats after the IlIkt 1 firillg fOI 

m ;::: O. Consequently, X,h+k - X,h = p for h 2: 0 and Vit E G. Thi:-. J'(·~ult. illlpli('!'i tltal. 

a repeated patt.ern can be found aftel ~. iteratlOI1S of n. EqllivalC'lltly, O( Il) iU'litl.ioll'> 

is required bec au se k is bounded by n in a safe marked graph. o 

4.6 Rernarks 

Note that the requirement for an acknowlcdgcnwlIl arc for pach data arc aIle! t./H' 

resulting safeness property are both characteristics of the stati< dataflow lIlode!. '1'0 

keep the concept of an ideal machine, we have assumed il. unit. firillg t.in\(' fOI eacb 

transition. In general, howcver, the proofs prescnted in SectIOns 1.1 and 1..1.1 cali Iw 

extended to cover a more general class of strongly-connectcd rnarked graphs wlwf(' tlw 

one-acknowledgement-arc-pcr-data-arc restriction is elirniIlat(~d, Ul(' illdivlclllai tfélll­

sition is assigned a different firing time, and Uw number of tokC'lls f('siding a.1. ft plaCC' 
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are more than one (but hounded). Accordingly, a larger polynomial may he obtained. 

The proofs presented in Section 4.5.2 can also be extended to a more general class of 

strongly-connected sale marked graphs where the one-acknowledgement-arc-per-data­

arc restriction is eliminatcd, and an individual transition is assigned a different firing 

time. Howcvcr, the assumption of having a self-Ioop on each transition (Assump­

tion 3.1) is requircd in aIl cases. Without the self-Ioop control, the relation between 

the earlicst firing schedule and the maximum path value (Lemma 4.3) cannot be 

established. 
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Chapter 5 

Software Pipeline Scheduling with 

Pipeline Constraint 

In this section we study the application of SPS for loop ::;c!U'dulillg 011 I>I'O('(':-,sor iII'­

chitectures having a number of c1ean executioll pipelines. 'l'lU' CUI'I'Put M('!tttl'<'llllt' 

under consideration assumes the existence of multiple c1eall pip('lil\t's lhal élit' idt'Il­

tical. It serves to represent a series of high-pcrformallCP ('omputt'r cHchitl'ct IIn's "illch 

as pipelined machines and very long instruction wOld (VLlW) élr('hit('rtll((,~ 

In Section 5.1 we introduce a single c!t>an pipelille (SCP) IlIo<h'l SDSP-S( 'P-PN. 

We then incorporate the ideas of multiple clean pipelines alld (>lOdll(,(, SDSP-MCP­

PN in Sectior. 5.2. Based upon the two rnodels, wc explore thp COll n'pt of tilt' lH'htlViol 

graph and the existence of steady statt> 1.0 ensur(' t.he f('asihility of deriviup; .\ ~trlti(' 

schedule for a machine with multiple c\ean pipdiIlCS. In Sl'rlioll G :~ Wt> t'XtlllliJH' t.lJé' 

amount of time required to find the steady state 011 a set of Li V('I'IIlOI'(' IO(Jp~. The 

fast detection of steady state shown in the result::; indlcat('~ the f('élslbility of 1>I'étctic(ll 

compilers using a behavior graph to generate a ::;tatic sched Ille Fillally, in St·('t.101l !l.ll 

we discuss a related work. 

5.1 Model with a Single Clean Pipeline-SDSP­

SCP-PN 

In this section we describe a unified timed Petri-net Jllodel SDSP-SCP-PN fol' fiue­

grain 100p scheduling having resource cOllstraÎnts. The unified mode! is nHlst.nH tee! 

by incorporating a clean hardware pipeline of 1 stages iuto the SDSP-PN JJJode!. 'l'II(' 

main property of a clean pipeline is that an instruction tllove~ thougb the pÎpf'lill<' ill 

1 cycles once it enters, without interfcrencc from other illstruction~. This implif!s t,h,LI, 
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Figure 5.1: SDSP-SCP-PN and the Behavior Graph 

the detailed structure of an SCP neecl not be explicit. The construction of the single 

pipeline mode) consists of two steps: serles expansion and run-place introduction. 

Run-place introduction: We introduce a place Pr, known as the run place\ to 

denote the SCP and rnodify ail transitions t, in the SDSP-PN to include Pr as 

both the input and output places. Place Pr is initially marked with a token 

representing the existence of one SCP. When a transition becomes enabled, it 

corn petes for pr to get fired. 

Series expansion: To denote the fad that one traversaI through sep takes 1 time 

units, a series expansion is performed which introduces a new transition for 

each place in the SDSP-PN; this accounts fùr the time delay. We call the 

transitions originally appearing in the SDSP-PN the SDSP transitzons and the 

ones newIy introduced in series expansion the dummy transitions. Every SDSP 

transition is assigned an execution time of 1 while every dummy transition is 

assigncd an execution time of 1-1, where 1 denotes the Iength of the execution 

pipeline. When 1=1 there are no dummy transitions remaitling. In Figure 5.1 
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1 we distinguish dummy transitions by bars of a differcnt lengt h. 

Figure 5.1 (a) illustrates the outcome of LI aft('r s('rÎ('s expansion. Figurt, 5.1 (l,) 

shows the result of introducing a run place. 

Theorem 5.1 An SDSP-SCP-PN with an lIuttal markwf/ M~ is "Ul'. saff. Cll/d ]I('/'­

sistent if the SDSP·PN with an initial markl7lg Mo is Iwl', saff'. and PtTSI • .;/! I/t. 

Proo{ of Theorem 5.1 

The application of series expansion on a marked graph pn'S('rv('s llU' liv('IU'SS and 

safeness properties in the resulting marked graph [MuI'80, MJ\~OI. III additioll, (1)(' 

introduction of the run place initially rontaining a token still !>l't'SNV('S 1)('l'sist('llcy 

since the firing of an enabled transition cloes not disabl{' ot!\('\, ('Ilahl('d t.rall~itiolls. 

Although we have introduced a structural conflict, which leads 1.0 tht' possibdity of 

choi ces , the resulting Petri net still preserves th(' livcl1ess, ~af('I)('~~ .tIlt! 1H'l'sis!'('II<'Y 

properties of the original markcd graph. 0 

Using Theorem 5.1 we construct the behavior graph for t!\(' ('omhil\('<! mo(1P1 in 

a manner similar to the one constructing for an SDSP-PN Wit.h t1H' (·Xlsl.t'IH'1' of 

the run place as a structural conRiet, choices appear wh('llt'v('r 1lI01'(' tltall 011(' SDSP 
transition is enabled. To resolve the choices, w(' ll1ak(' li\(' followlIl1!, aSSlIlllptioll: 

Assumption 5.1 The finng meclwltlsm ln the sep mac/lln( a/ways dWOMS Ollt 

enabled node io fire--ll never id/es as long as thcre 1.'> at If([.<;1 Ollt t'lHlblcf! /101"'. 'l'ht 

machine can break hes by gwing prionly 10 the 7l0dcs litai $llflltllanf'{)Il.~/y bf'('()/Iu' 

enabled. The priority does nol malter. Wc assume ou/y litai th,. mac/mit l'Ihdn/s 

rf'peatable behavior, i.e., li a/ways makes thf samf c!Wlff .fJlI't'/l Il . .; 7Jl'IoT'lly T'lÛt' tl/ul 

machine conditwn (instanlaucou8 slalc). 

This assumption providcs a mcans for making lIl<' traJll'>itioll prot ('~~ of tilt' illstall­

taneous state unique, and the bchavior graph will 1)(' unique as long as cL péll"tÎndal' 

choice scheme is enforced. Wc can achicve uniquelless by l'(,l'>olvillg (ortllicts ill two 

ways: 

• One way is to use a mathematical functioIl Lü compute the' lH'xl SDSP 1,1 allsitioll 

to fire at every time steps based UpOH the CUH('lIt set of ('lIahl('d tlall~iti(}Il~ . 

• Another way is to employ an Întcflldi decÎ~ioll lIIecballl~11I d~ a finit(· ~t.dt(' /IIa­

chine. Newly enabled SDSP trall~itioll~ an' then fcd illlo Üw 11\('( ha/ll~1II M'­

quentially as input. 
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1 The major difference in the two approaches regards the involvement of the internai 

state in th(' laller case. As for tht> former approach, the instantaneous statc defined 

by thC' marking and residual firing time vectol' is sufficient and precise. However, 

witb the introduction of a decision rnechallism as a part in the SDSP-SCP-PN model, 

the content of the instantaneous state is l'e<.Juired to also incol'porate the state of 

the decisioll IIlcchanism. Fur the function approach to conflict resolution, ail SOSP 

transitions can be initially assigned a unique priority value, 80 a function whieh always 

picks the one with the highest priority can be used. Note that it will Ilot cause starving 

because transitions cannot cont.inue firing infinitely without. fiTing others (in a live-sare 

Petri net). 

Figure 5.1 (c) illustrates a possible behavior graph derived from the example in Fig­

ure 5.1 (b). III this particular case choice resolu/ion i8 done by a decision mcchanism 

which employs a PIPO queue and an adjacency lzst repl'csentatzon of the static data­

flow graph. 1 Notice that there can only be one instruction coming out of the execution 

pipe at every pipe beat under the single pipeline architecture. Vpon completioll of 

executing a node (i.e., a SDSP transition and its associated dummy transitions), aU 

adjacent nodes (SDSP transitions) will be signaled. Enabled ones are then ordered 

sequentially onto a FIFO queue according to order in the adjacency list. The choice 

resolution at any time step is then done by honoring the one at the head of the FIFO 

queue. In this case, the instantaneous state is made up of the marking, the residual 

firing time vector, and the state of the FIFO queue. 

Similar to the behavior graph of an SDSP-PN, the behavior graph of an SDSP­

SCP-PN also cxhibits a repetitive behavior. This behavior ig described by Lcmma 5.1 

in conjunctiol1 with Assumption 5.1. 

Lemma 5.1 J'here eXlsts an mstantaneous state in the behavzor graph of an SDSP­

SCP-PN which appears repcatedly. 

Proof of Lcmma 5.1 

The total Humber of distmct !vII must be finite because SDSP-SCP-PN has a safe 

marking. Similarly, the total Humber of distinct RI is also finite because each tran­

sition in SDSP-SCP-PN has a known firing time. If the behavior graph is infinitely 

extended, some instantaneous state must be repeat\.:d. 0 

Once the machine l'eturns to a previous instantaneous state the same firing se­

quence is T<'pcated. As an example, the two sets of highlighted markings shown in 

1 Adjacellcy hsts are a cornlllOIl represenlatlOll for dlrected graphs Node j IS sald to be adjacent 
to Ilode i in a dlrected graph G If the dlrected arc (l,)) eXlsts ln G The adjacency hst for node i IS 
a list, 111 sollle ordt'r, of allnodes adjacent tü 1 
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Figure 5.1(c) illustrate the marking portion of the initial and tt'rlninal ill~t.alltall(,()lIS 

states. Their associated residual firing time v('ctors an' zero v(·ctor~. Tht' linll~ M'­

quence in the steady state is ADBeE. As illustrated. t.ht' \lotIOn of slt'ady sletl<' 

can he defincd hy enforcing Assumption 5.1. Similarly, W(' can ddin(' tilt' (onet'pt of 

steady-state equivalent net as the SDSP-PN cOllnterpart. Thll1'>, SPS Cétll 1)(' applit'd 

equally weil on a machine with pipelined constraiuts by adherillg tü tills a:"slllllpt iOIl. 

Note also thG' the assumption degenerates to the earlicst firil'g mit· (lI~wd III tht' i,h'.lI 

case) as enough pipelines are available. 

With the existence of a resource constraint, imposl·d by the singl(' pip('lil\C', t.lu· 

computation rate of an SDSP-SCP-PN is no longer rcHerted dirt'd,ly in th(' (1 il irai cy­

cle. The impact of resource constraints is îllustratcd with Th('m('1II .).~. Il lIlt ill':tt, ly 
imposes an upper bouml on the execution rate of carh nodt' iu t.!w SnSp-S( 'P- PN. 
Intuitively, t.here can be at most one enabled t.rall~ition for t~x(>cllt.ioll durillg ('iU It tillll' 

step. ThllS, it t.akes at least n cyclt's to complete one ilNatio\l of the loop body (·Vt'\1 

though the cycle time of the cri tical cycles is far less. Not(· also that thi:.. hOlllld is t!)(' 

result of the constraint imposed hy the pipeline and IS illclqH'lldellt of t!\(' ilpproélch 

used for confliet resolution. When slIch a bO\llld is reaclH'd, ail pilwliJlC's ;Ut' IOO<){) 

utilized. 

Theorem 5.2 Let G be ail SDSP-SCP-PN wtfh 12 SJJSP tran . .,dwlIs. TIlt' computa­

tion rate of any SDSP transitzan ln G can never be greatcl' thltn 1 /n, 1 f., , :::; \ /11. 

Proof of Theorem ,5.2 

To prove this theorem, it is sllfficient to show that there exist.s a simp)(' cycl(' ill t!J(' 

resulting steady-state equivalent net such that tht' rOllllHll,(üioll rate' for ally SDSP 

transition is lin . 

• Let M he the first l'epeated instantaneous state marking Ilspd to fOl'1II tlu' sl,('ady­

state equivalent net. Let a be the cyclic firing seqUl'llce f,IICh that M ~ M. By 

Lernma 3.5, each SDSP transitioll of G ill (J OCCUl'S ail ('qual 11111111)('1' of till)(,~ . 

• Note that none of the SDSP transitions can b(· fir('d lfl para.llcl \)('( iLll:..e· t.!\('r(· 

is only one token in the l'un place. III addition, any appectrallrp of t!w SI>SP 
transition in the steady state must be chaim'cl togethl'I by dlff('f('llt lIl~tal\( ('S of 

the fun place sinee the run place forms a self-Ioop with cadi olle of tlu' SDSP 

transitions. Consequently, thcre cxists a simple cycle C in the \'('sulting steady­

state equivalent net containing al! of the occurrence~ of ll\(' SDS!' lraw.,itiolls. 
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• Note also that each of the n SDSP transitions is assigned a timing of one time 

cycle. As a result, n(C) = a x n, where a is the number of times that ea.ch 

SDSP transition occurs in C. The wmputation rate of any SDSP transition is 

th us _a_ or 1, 
axn' n 

o 

5.2 Multiple Clean Pipelines-SDSP-MCP-PN 

In this section we extend the single cIe an pipeline model to the case of multiple 

clean pip"lines (MCP), producing a unified Petri-net model SDSP-MCP-PN. The 

SDSP-MCP-PN models the execution of the SDSP on machine with multiple clean 

execution pipelines each of 1 stages. The previous development of the single pipeline 

model provides a.n extensible platform upon which the multiple clean pipelines mode} 

can be established. Instead of assigning only one token at the st cp of run place 

introduction, as many tokens as the number of pipelines are modeled are assigned 50 

that each token denotes a distinct execution pipeline. Figure 5.2( a) shows a model of 

two pipelines. 

The behavior graph for the combilled model can he constructed in a way similar 

to that of the SDSP-SCP-PN described previously. To deal with the problem of 

choices resulting from st.ructural confiicts, we again assume a firing mechanism which 

always chooses the particular enabled nodes to fire-it never idles as long as there is 

at least one enableJ Hode. The machine breaks ties hy giviug priority to nodes that 

simultaneously become enabled. The priority does not matter; we assume only that 

the machine exhibits repeatable hehavior, i.e., it al ways makes the same choice given 

its priority rule and machine condition (the instantaneous state). 

Multiple tokens in a run place can be represented in the behavior graph as multiple 

instance of the run places, as shown in Figure 5.2(b). In addition, the assumption 

above implies that a repeatable instantaneous state is encountered if the behavior 

graph is extended for a sufficient period of time. The notion of cyclic frustum is 

again uscd to derive a repetitive schedule for Cl. multiple clean pipeline machine. 

Similar to the single pipeline case, the constraint of multiple pipelines imposes an 

upper bound on the computation rate of each transition in the SDSP-MCP-PN. For 

a model of R pipelines. there can he at most R cnabled transitions sent for execution 

at each time step. Thus, it takes o.t least ni R cycles to compute one iteration of the 

loop body even though the cycle time of the critical cycles is far less. 

Theorem 5.3 Gmen an SDSP-MCP-PN G which models R clean pipe/mes and con­

tains n SDSP transztions, the computation rate of any SDSP transztion m G can 
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Figure 5.2: SDSP-MCP-PN and the B('havior Graph 

never be greaier than R/n, i.e., 1 :S R/n. 

5.3 Simulation Results 

A set of Livermore Loops was chosen for the study; ail \Vcrc writtm in SISAL [F('oSS, 

Mea85J, and simulations performed on thesr loops using a compil('f /simula(ol' l('stlJ('<! 

developed at McGill University [GP90]. The testbed consisls of a pl'Ololyp(' SISAL 

compiler capable of producing dataflow code, knowll as A-Codt' [Tio~8a, Tio88b]. Fol' 

this study, we modified the simulator to permit analYllis of ("yelie fruslum:, gell<'ral('c1 

for both SDSP-PN and SDSP-MCP-PN models. The slllIulator tak(·s A-('odl' as inpul 

and simulates the corresponding firing :,cqucncc. 

Table 5.1 shows the results of cxecuting an SDS}> on an id('al machill(' with IB­

finitely many single-stage pipelines. Equivalently, th<' SDSP-PN wa.'i ('xecut(~d ullder 

the earliest firing rule with the firing time of each transition equal lo one. III lll(' table, 

the Slze reflects the number of nodes in a loor body that wen' repeatedly ('x('cuted 
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Size 
Iteration 
StartT 
RepeatT 
FrustumLen 
TCounl. 
CompRate 

Loop 1 
31 
13 
33 
36 
3 
1 

1/3 

Table 5.1: Results for SDSP-PN Model 

Loops without LeD Loops wlth LCD 
Loop 7 Loop 92 Loop 12 Loop 3 Loop 5 Loop 9 

64 84 15 15 18 84 
7 14 8 5 6 2 
19 26 16 8 9 14 
23 30 19 10 13 28 
4 4 3 2 4 14 
1 1 1 1 1 1 

1/4 1/4 1/3 1/2 1/4 1/14 

Loop Il 
14 
7 
16 
20 
4 
1 

1/4 

cxcluding the start-up initiation sequence. Star'tT and RepeatT (Start Time and Re­

peat Time) indicate the times wh en the initial and the t.erminal instantaneous states 

arc idclltificd. Iteratwn indicates the number of iterations initiated up to repeat time. 

p.,·ustumLen (Frustum Length) is the difference between rcpeat time and start time. 

7'Count (Transition Count) records H'c number of occurrences of a transition that 

appears in t.he cyclic frustum. Note that aIl transitions are fired an equal number 

of times in the cyclic fruslum (Theorem 3.5). CompRate (Computation Rate) is the 

average firing rate of each SDSP transition in the loop body and equals 

TCount 

Repeat T - S tart T 

Note that in each example the repeated instantaneous state is found within O(n) 

iterations. 

Table 5.2 shows the corresponding pattern for the set of benchmarks using one, 

two, four, and eight cie an pipeline(s), respectively. For the case of one pipeline, we 

includc utJlization, which gives the processor usage as a basis for discussion. The 

results of this cxpcriment demonstrate that the steady state in aIl instances can be 

round efficiently. It also reveals the following faets: 

• The condit.ion raised by Thcorem 5.2 is verified in the case of one clean pipeline 

whcre sorne test programs keep the single pipeline fully busy. In Loop l, Loop 

7, and Loop 9, the upper bound on the computation rate, lIn, imposed by the 

single pipeline is reached. AIl three cases indicated that the respective pipelines 

werc fully utilized at ail time except when they were filling and draining. The 

various proccssor usage in the three loops also reflects the impact of the prelude 

and postlude execution sequence. Though the length of the postlude sequence 

2Loop 9 is a potentlnl candIdate for parallehzmg as a. DOALL loop; however, it requlres subscript 
analysis to expose Its parallehsm Herc wc exammed the loop both ways, wlth and without LCDs, 
to lIlcrease tht' diverslty of our testillg 
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t Table 5.2: Results for SDSP-MCP-PN Modcl with Eight Stav,t's 

r 
~ Loops without LCD Loops wlth L('I) 

Loop 1 Loop 7 Loop 9 Loop 12 Loop 3 Loo!, 5 LooJl !l Loo(l Il 
2n x 1 ~BD) 480 1024 1344 240 240 21lH 1:14·\ 224 

1 Pipeline: 
Iteration 13 8 14 9 5 li 2 7 
StartT 341 296 749 157 86 8(i 1:12 13~ 

RepeatT 372 360 833 184 106 121 :W:J ln 
FrustumLen 31 64 84 '27 20 :15 1:J 1 :14 
TCount 1 1 1 1 1 1 1 1 
CompRate 1/31 1/64 1/84 1/27 1/'20 1/:15 1/1:11 l/a4 
U tilization 98.9% 99.7% 98.4% 558% 729% 510% MI% 409% 

2 Pipelines' 
Iterations 13 8 14 9 5 7 '2 7 
StartT 282 206 395 147 8'2 78 115 l:i:i 

-~" RepeatT 308 244 438 172 100 14f) '2:10 1 ()f) 

..:. FrustumLen 26 38 43 25 18 67 115 :13 
TCount 1 1 1 1 1 2 1 1 
CompRate 1/26 1/38 1/43 1/25 1/18 2/67 1/115 l/a:1 

4 Pipelines: 
Iteration 13 9 14 10 6 7 '2 ~ 

StartT 268 207 242 145 81 74 113 154 
RepeatT 293 240 277 194 98 139 226 186 
FrustumLen 25 33 35 49 17 65 lia :12 
TCount 1 1 1 2 1 2 1 1 
CompRate 1/25 1/33 1/35 2/49 1/17 2/65 1/ lia 1/:12 

8 Pipelines: 
Iteration 15 8 16 8 Q 6 '2 7 
StartT 265 174 223 128 64 72 11'2 128 
RepeatT 338 206 323 152 80 104 221 160 
FrustumLen 73 32 100 24 16 3'2 112 :12 
TCount 3 1 3 1 1 1 1 1 
CompRate 3/73 1/32 3/100 1/24 1/16 1/32 1/112 1/:12 



( was not recorded, the shorter prelude sequence in Loop 7, indicated by start 

time, was obviously a fador accounting for the higher ut.ilization rate. 

• Though ('ach transition was fired an equal Humber of times in the steady state 

of a marked graph, the numher of firings was not necessarily one. 

• In gcneral, the amounl of time required for the emergence of stcady state de­

creaseù as the number of pipelines increased, except in a few ('ases whcre the 

value of the transition count was different from the ideal mode!. 

• As the number of pipelines exceeded the amount of parallelism in the loop, the 

behavior graph obtained was exactly the same as the one obtained for the ideal 

mode!. For instancc, as Loop 12, Loop 3, Loop 5, Loop 9 with LeD, and Loop 

Il were run with eight pipelines, their slart time and repeal time were sim ply 

eight times the corresponding time derived for the ideal mode!. 

• The lIumbcr of the iterations initiated to reach steady state for al! cases were 

stillless than n, the size of the loop body. Hence, the steady state WaS reached 

efficiently. In addition, the counted number of iteratlons for the ideal model 

gave a close approximation of the number of iterations required by ail of the 

multiple-pipelines models studied. 

5.4 Discussion 

To construct a schedule for the multiple pipeline machines, Aiken and Nicolau sug­

gestcd using the same schedule obtained from the ideal case by scheduling the steady 

state one row at a time IAN88]. It was also shown when such schedule is adopted for 

the multiple pipelines machine, the t.otal run time is al ways bouncled by two times 

the optimal run time obtained for t.he same machine [NPA88]. Nevertheless, the re­

sulting schedule is still unsatisfactory be('ause, after ail instructions from row z are 

schedulcd for (>x(>cution, a period of / -1 idle cycles (where / is the length of the pipe­

line) is always l'equired to delay the initiation of row z+ 1, in order to avoid possible 

data conflict bctwecn the last operat:on of row z and the fil'st operation of row i+l. 
Consider the us(> of the steady statc of LI, shown in Figure 4.2, as the schedule fol' 

a machine with two clean pipelines and each one having two stages. The part of the 

schcdule which invnlves the' steady statc will be 

processor\ 

proccssor2 

A noop B E noop 

o noop C noop noop 
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At each iteration, A and D cannot be sent for ex{'culÏon until ail /J. C, and I~' complpt,{' 

firing, even though transition A is fr(:'e for ex('cution right aft pr JJ alld (' compl(,tt' 

their firing. Similarly, sinee Hamamoorthy and Ho's Scllt'thJlt' i!'! dt'l'ivI'd 011 a lllcU'kt'd 

graph which is equivalent to an ideal machine model, it ill( urs li\(' S.lIlH' illl'flicil'lll')' 

when it is applied to the Illultiple cleall pipelint' case. 

In the SDSP-MCP-PN Illodel, the problelll of data collflict in il Illullq)lt, pipt'lillt' 

was considered in the process of constructing the behavior g,r<lph. Whdt' lI\1pO~,illg 

the earliest firing rul{~, the gap rcquirt.>d in the [ormel' ca:;t' is !illt'd wlth l'llahlt·cI 

instructions that are safe to he executed. The correspondillg sc}H'dlllt, which illvolVt's 

the steady state, derived from the hehavior graph (Figure 5.2(b)), is givI'1I IH'low. 

processorl 

proeessor2 

BEA D 

C noop JlOOp HOOp 

Thus this seheme will always l't'Ilder belle\' pro('('ssol' \I!'!étg('. In .lddit.iOll, t.ilt' aSSlIl'éUl('(' 

of a repeatable st ale in the SDSP-MCP-PN. togetht'r with tIlt' sillllliatioll l'('slllts 

obtained so far, reveals the feasibility of employing the b{'havior graph to gt'IH'I'it!.t' a 

statie schedule in practical compilers. 

As a final remark, note that the pipelined models PI'('8('I1I.('d an' g('llpral ('Il(Hlglt !.o 

allow the existence of multiple fUll( tion lInits within each individual pip(·ItIH'. No!.t' 

that for each SOSP transition the rcgarded dummy transitiolls s('rVt' lo éH'(,Ollllt fl)1' 

the time delay f0r a particular pipeline. Helice, t1H' assignllH'lIt of liU' difrl'J'('11l tillw 

delay implies the use of a different functioll pipeline. 
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Chapter 6 

Storage Allocation 

Memory requcsts can slow down a computation eonsiderably. If they occur during 

the steady statc of a pipelined schedule the computation cannot proceed efficiently. 

The use of registers as temporary storage to redure memory accesses is important 

t.o maintain the steady-stat.e computation rate and processor throughput. In this 

chapter wc diseuss the application of a program rcstructuring scheme known as limited 

balanci~lg to reduce the amount of storage requirement in SPS, making th~ use of fast 

memory feasible. 

The ohjective behind limited balancing is to expose in a soft.ware pipeline only 

the amount of parallelism that is exploitable by the machine. This is accomplished 

by restructuring a statie dataflow graph, prior to pipeline scheduling~ aeeording to 

a balancing ratzo----a parameter which characterizes the achievable computation rate 

of the final schedule. The utilization of execution units is Ilot affected sinee only 

excessive parallclism is suppressed. During restructuring, storage requirements are 

systematically reduCf'd across the Joop body. The one-token-per-arc policy of the 

statie dataflow graph originally needs one unit of storage p€:' data arc; limited bal­

aneing redures the storage requirement below this level. 

In Section 6.1 we introduce two nWlIlory models for a statie dataflow graph due to 

two different arehitecturt' designs: argument-flowand argument-fetch. The argument­

f('kh model d('scribes how cOllvcIllional data fetehing and storing -::an be implemented 

lIsing a statie dataflow graph. ln Section 6.2 we introduce the notion of lirnited bal­

alleing, using the SDSP-PN model, and we disluss its application to the two memory 

models. Since the computation rate of a critical cycle in an SDSP-PN determines the 

computation rate of ail entire net, it naturally represents the balancing ratio of the 

model. In S(·ctions fi.:! and 6.4 we derive a guideline to estimate a balancing ratio 

for a machint' with a pipeline eOllstraint. We then validate the guideline through 

<'xpcrimcntttl results. 
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Input Storage Result Storage 

(a)Argument Flow (b)Argument Fetch 

Figure 6.1: Storage Usage of Argument-flow Model versus Argument-Feteh Mod<'1 

6.1 Memory Model 

Thus far our discussion of static dataHow graphs haw bccn based Il))on ail ahsl.racl. 

notion of data flow, i.e., the notion that tokcns flow from a sourn' no(k 1.0 it.s 1'<'('('iwl s. 

In this section two memory models arc prcscntcd: a/'.quIIH'IlI-jlow éllld (U'!/llIl/f'III­

fetch [Oen84, OG88]. The argumcnl.-fetch model descrihes how COIlVf'IIt.iOllttl dat.a 

fetching and st.oring can be irnplern<'utcd using a st(üic dataflow grap!!. 

Since, in the original dcvclopment of dataflow l1Io<kL dattL is vi('wt'd as flowillg 

from a source node to destination lIo<les, the model IS call('d a l'fJIl 111 fflt-jZO w. FIg­

ure 6.1(a) presents an abstract view of storage orgallizat.ioll for cOflvent.Îolltt! st.atic 

datafiow. Storage fol' input data is local to cach nodf'. Accordillgly, th(' n'suit is 

required to be replicated and dispatched st'parat.ely to ('ach d('!->tirlitt.ioll lIod('. TI\(' ar­

rivaI of an input token serves two purposes: it :,ignals the f('œiv('r of t/H' ,tVail(tbility of 

data (a control l'ole), and it transmits the data vetlue (a data l'O\e). III (',Illy d('~igll~ of 

the architecture, data packcts composed of a data portioll and (l d(·st,illdt.IO!I-,l.dclres~ 

portion were used [Den84]. U nfortunately\ duplication of délta. for lIudtipl(' d('Stlll(L­

tions causes unneccssary data traffie. Such indficiency results fro/ll bindi/lg cO/ltrol 

information and data information within the saille packet.. 

The argument-fetch dataHow model ovcrcomcs thC' argulIH'nt-fiow modc'I\ indfi­

ciency. The key differcnce in the t,wo modcls is the sepa.ratlon of data alJ(1 control 

information. After each computation only a control pack('1, i!'. SCTJI, 1,0 ackllowledpp 

the availability of data. This packet is called a stgnal. The result of each compu­

tation either remains in a rcgister or i!> l'et ullled to mPIllO! y c1ost' to t1lC' ('X('('uliOll 

pipeline where it can be easily fetched by SUCceSSOl nod('!' (see Figure (i.l (b)) The 
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major improvement of argument-fetch is a significant reduetion of data traffie; the 

number of da ta storage is also considerably reduced. For a detai\ discussion of the 

argument-fctch dataflow model, see [DG88]. 

The abstract model of argument-fctch is depicted b,v a directed graph. However, 

the illterconnection of szgnal arcs in this model merely represents sequencillg infor­

mation basc>d upou data dependence. The abstract graph is called a slgnal graph, 

and each node in the graph represents an operation, as before. Aeknowledgement 

arcs still serve to preserve the one-token-per-arc principle. Upon node execution, 

signaling pcrforms two fllnctions: Signais along the signal arcs notify successors of 

the availability of results, and signaIs along acknowledgement arcs inform predeces­

sors of the conslllllption of thcir output and are rcady for new inputs. Figures 1.1(c) 

and 2.\)( c) muId be a signal graph if ail arcs were treated as signal arcs. 

The dcvclopment of the argument-fetch dataftow model at McGill has led to the 

construction of an abstract machine code known as A-code. A-code is an example 

of a signal graph. To take advantage of software pipelining, new control constructs, 

sueh as an index generator (IGEN), are introduced in A-code. Appendix A contains 

an exarnple of thp. A-code for Loop 3 of the Livermore loops, and it briefty describes 

the A-code strudure. For a detailed discussion of A-code and design decisions related 

to argulllcnt-fetch, see [GT89, GTHS8, GP90, Par88, Par90]. 

6.2 Limited Balancing of an SDSP-PN 

Wc start our description of lirnited balancing by introdueing the concept using the 

SDSP-PN model. 8ased upon this ideal model, wc will establish a connection between 

balancing ratio and computation rate, and we will demonstrate a savings of data 

storage and synchronization both for the argument-flow and for the argurnent-jetrh 

graph models. Our discussion begins, however, with an ideal model in which resource 

savings secm unnecessary. In practical situation one often encùunters the situation 

in which sufficÎent resources (execution pipelines) are available (cf. the ideal model). 

ln thesc cases w(' minimize the data storage required while sustaining maximum 

computat.ion. 

Limited balancing evolved from the notion that the attainable computation rate 

of a statie dat.aflow graph was constrained by critical cycles [GHW90a, GH\V90b]. 

Rccall for an SDSP-PN PN, the computation rate Î is determined by the cycle time 

of the critical cyde in the net: 

. {M(C\) 1 } 
Î = mlll O(C

k
)' O(t,) , for ail simple cycles Ck in PN 
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This relationship suggests an oppol'tunity to lllodify the st l'li ct IIrt' of ot IIt'I' [lOIH 1 il Il al 

simple cycles without sufferi ng ar..y los~ of spt'('d, providt'd t 1)(' ('Olll plll ,\ t 1011 l,lIt' of 

aIl altered cycles is larger th&.l1 or cqud to t/w computatioll 1',11t' of 1 lit' Cllt it ,t! l·."e1es 

Previous studi('::; on bala71clIIg WN(> only CéU'I'lt·d out 1I~1I\!-', an idl'.d IIlddlllll' Illodd, 

where the intention wa::; to exploi t maxi IIIUIll fi Il t'-gl'ai Il Pdfélll('II~llI; fllIL b,t/tlll( Illg 011 

an acyclic graph was thpn t.he main foclls [Gao~91. 'l'II<' (OIl:-'ldt'I',t!IUIl of I()op~ \\'11 Ir 

loop-carried dependcnce Icads to IimiU'd bala\l('ing [(;HW90,tl. If ,1 ('l'II \(',,1 (y< It' i~ 

composed cntirely of dat.a arcs (citlwr forward or ba('kward). tilt' <OllIplll<ll iOIl l,lit' 

cannot be altcrcd without. modifying input plOgrrllll. In t hi~ CrlSt' 1 ht' t Oillplll cll 1011 

rate of a critical cyclc forces a hanl upper bouilli on t.lw adllt·,,·cthl,' (OlIlpllt ,11.1011 l,tI(· 

of the graph. One Îmlllcdiatc problern is to dete! mille the lllinllll\llli i\l1l0ll\ll of :-I\)! agI' 

necessary to maintain the computatioJll'éttf' illlJ)o~ed hy the (lill/ct! t)'('It' FOI I()()p~ 

without loop-carried dependence, limited bdlcu,cillg ,t1~() plcly~ <III ('~S('1I1 i,II loi!' III 

sorne cases the parallelislll of a progralll ih hig,lll'! 1,11,\1\ that Illt' Ill;\( hlll<' i~ .11>1(' 10 

exploit, but maint.aining ex('('ss parallelislI1 wa~t('s machille n'S()III(,(·~. 

For our definition of the balanclllg ra.tio we adopt ail IcI('ctl lIlode'l, 011(' which 

assumes that ail operations requin'> t.he saIlH' c\1lI0Ullt of !.JIll(' 10 ('x('nlt(" d.·lIo\,«·d hy 

1 [Gao891. Note that this time const.raint can 1)(' l'el<lx('d. '1'0 fat ililrll(' our dl .... ( II~~IOII, 

we define a balancing ratio hased upon datafiow gl dph )(·pn· ... t·lIl,lIIOIl If (; i~ tlll' 

original static dataflow soft wan"' pipelillp, tht' formula loI' t ,IIculrtl ill.!!. tl)(' «Dlllput ,It 1011 

rate of Gis: 
· {M(Cd} t' Il' 1 1 C' . (' r = mIn N

k 
xl' LOr a sanp (' <y( ('~ A. III l, 

where N k is the number of Ilodes in cycle Ck, and M(Ck ) is tht' 111111111("1 of lok(,l1~ 

within cycle Ck. For each Ck the ratio M~~k) is called the balllltl'lll.t/ mlw. A< (Oldlllgly, 

critical cycles always havp the smallest balancillg ratio alld slow('st C'OllIlHllatioll 1,ltl' 

We now demonstrate the application of limited halan('illg lI~illg, both 1 Ill' .n)!,ll JI 11'11 t -

flow and the argument-fetch computatioll lIIode\:". 

Recall that in the arguITI(>nt-f1ow model each fOl'Wrlrd/fl'('dbrl( k dat ri éll (' ('01'/1'­

sponds ta one unit of storagc; an associaled tlcknow I('dgenll'Ilt dl (' ('OlIt lob 1 b u..,agt· 

A token on an acknowledgemellt arc dellot('s t!\(' vacdl\cy of lOféW', will l" ,\ tokl'II 

on a forward/feedback arc denote::; accu p l.llcy. 1 For tif(' clrgull WIl t -/low lIlode!. tl 1 t·­

duction of balancing ratio on I1011-criti<al {JLies sllggesth a way 01 d('alrllg with bulh 

the storage-usage problcm and the synchl'Ollizatioll-( ()~t !>roblt-m (r.tll~('d by tl)(' f10w 

of the acknowledgement signaIs). III gelleral the lec\....,::;igtlllll·1I t of rl( know 1('dg"lIlt'lIl 

arcs in a graph l'ail be il meanh of dccreasillg tlH' balcuJCIIIg, ratio. The i Il .... (·11 iOIl of 

lThe token and space dualtty ln the SDSP l!> actudlly tlll' 1>allll' a." tht' dllhltl~ III h.lIl1~''''' ,\II~III\'lIlf'd 
dataflow graph [KLL86] 
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Figure 6.2: Minimum Storage Allocation 

dumrny nodes as butTer!'. will increase the balanclIlg ratio [Ga089]. For instance, L2 

consists of a critical cycle C· (C DEC) consisting entirely of data arcs, a situation 

which imposes a hard upper bound on the computation rate of the graph, 1/31 (see 

Figure 2.5). On the other hand, simple cycles C\ (ABA) and C2 (BDB) possess a 

larger balancillg ratio, 1/2, and allow the opportunity to alter the balanring ratIO by 

reassiglling ackllowledgemclll arcs. Figure 6.2 illustrates the consequences of limited 

balancing by acknowledgelllcnt-arc rearrangement. Now the new cycle ('3 (ABDA) 

has a balancillg ratio of 1/3. The immedlate saving in signal traffIc is obvious. Note 

also that acknowledgement arc (D, A) controls the usage of the input storage for 

nodes B and D, creating an opporLunity for nodes Band D to reuse the sarne space 

as their input storage. l\~ Oie irnportantly, ail of these trcatmellts can be carried out 

without sacrificing execution speed. 

For the argunwut-fetch model, the signal graph IS the target of lirnited balallcing. 

Similar methods such as acknowledgement-arc rearrangement and buffer insertion 

cali be employed, and similar sa\'ings on signal traffie achieved. '1'0 illustrate how 

storage is rcduced in this case, we pres~nt a simple example in which a set of nodes 

safcly reuses output spacc. Figure 6.3 shows the A-code for Loop 9 of the Livcrmore 

Loops. The loop body of Loop 9 eonsists of one critical cycle (node72, node73, node77 

nodeï4, nod(72). The maximum computation rate is 1/4/, and henee the suggested 

balancing ratio is 1/4. Figure 6.4 shows a possible limited-balancing of Loo)) 9 (with 

a balaneing ratio of 1/4). As can be seen, plenty of simple cycles are found after arc 

rearrangenwnt. The unique seriai formation of nodes in a cycle not only assures the 

order of activation of each I10de but, also provides a safe situation for the nodes to 

f{'USt' tht' saille output space. For instance, Bodes 30, 31, and 32 in the simple eycle 

locat('d at the left ('dge of th(' graph cali reuse the same output storage. 
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Figure 6.3: A-code for Loop 9 
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Figure 6.4: Loop 9 under Partial Limited Balancing 
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6.3 Limited Balancing of an SDSP-SCP-PN 

For the id{'al mode! the balancing ratio provid('s a lIlt'dll~ of "ddrt'~si\lp" ",it hlll Il 

unified framewol'k, hoth the ~cht·duli\lg pl'Oblt'Il\ alld tlU' stol'.t/!,I·-,t11o('atioll plllhklll. 

There art· two important charactt'l1stics iIl t }It· pn'\'lOliS dl~(,II~~1011. FII~I. t II(' bal­

ancing ratio Lan be computed precisely by dt't('rmilling t hl' nil ical <,yelt·. Secolld, 

limited balancing of a graph with the saille hdlancing ratio ,l~ ih ('\'II it.1I cydt' dnt's 

not alter the computdtion rate. U nfortunately t hes(' 1 Wo chari\( lerist \t ~ do Ilot holt! 

for the SDSP-SCP-PN mode\. 1'hough a larg('r bdlancillg rat io wililikt'Iy IlIln'clS(' t.llt' 
amount of parallelisrn, the computation rate of a si ligie t \('all pipl'llIIt' wil Il 1/ ill:--t 1\11'­

tions can never excced 1/1/. Therefore, the hdldIlcing rat io of d 1!,1 (\.>11 alnlll' I,wllol 

determine the' computation rate for U\(' SDSP-SCP-PN rnodd Hdt Ilt'r t h,lII "'('('hinp, 

a dcfinite relatIOn betwcell halallcing 10110 and (OlllplltatlOll l,III'. ,\..., III t III' ('rl~(' of 

the ideal mod.>I, we estdblish il balallcillg rdtio alld Iltlltzatiotl 1<11,(' r('I(\li()Il~llIp. Ali 

approximation is derived to (·!'Itillldt(· dll d<lequ'll,t' b,dc\IICill1!, latlo for II\(' loop htldy 

such that a certain utilization rdte of t!w dedit ""wlil\(, IS llIilllll,llIlPd IlIldl'" 1 II(' SPS 

applOach. Once the balctncing l'dtio l~ dpt('rlllllll'<1. lilllltt'd hc,Ic\I}('lllp, (rlll \)1' "I>pl\l'd 

throughout the graph to {'(·dll("(· storagt' . 

1'0 estirnaU' a correct alld appropl inl (' b,t!iUlCi IIg rat iu IIl\dl'" S PS. W(' ,'0111 pli 1 l' 

a balanciag ratio hast' cl UpOIl d mort' ('Oll~('ndt iv(' 1..( \Wdlll:llg ~I b('IItt' /J. wlll'II' IJ i~ 

inferior to SPS ll1 tcrms of longer l'lInnillg tin\('. A('('ordillgly, tilt' (,Olllplllt't1 I"dalll­

ing ratio for scherne B alway!> pIOvide~ a cOII~t'l'vativt' Il H'dSIIl l' of tilt' trllp,t'I l'lUO 

required for SPS and l'an be sardy used. TIH' chm'('11 '>( 111'111(' Jj I~ (',dl(,d cl /HlII" 

scheduling scheme (sec Chdpter 5..1) [AN88]. Bast·d IIpOIl tl\l' ~tt'ady 'il dit' obl,.tilwd 

from the ideal case, schemc B schedules ont' row dt d tlll1(, t hl' WP(·tltl\,(, pal t('11I 011 

a machine with one executlOlI pipeline. Thi~ ~c1\('n)(' ha!'l dit illtporLlIIt 1 !tellr\( t(·) I:-t.il, 

it has predictable scheduling behavior so tltat the total exP( IIlioll liJllt' l,lit IH' (·.I!'Iil,\' 

computed. 1'0 estimale t ll(' rcqllired balallcillg ) atlo for '>( IWIIH' H. tilt' 1 t'1,1I1()II~hip 

between balancing ratio and utilizatiull rate· i!'l ('stabll~h('d 1I~1l1P; Ut(' flllld,lIlWllt,t! 

pipeline utilization-rate forlllula shown IH'\ow: 

Utilization rate U = 
Idle time 

1 - TI' . ota ex('cullO[\ tllllt· 
({i.l) 

where the idle time and the total exccution lime are the (orr('~portdlllg tlll\(, ('xp('cl/'cI 

for scheme B. In addition, wc will use the followillg n()tatloll~ ill our all<tly~i..,: 

• C, n, and l will denotc rcspectively an SDSP, UH' total 1l111ll1wl' of iw,tl'lJctjoll~ 

in a, and the length of the cxecutioll pip(~line 
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• F will denote the stcady state for thc associated SDSP-PN of C, i.e., thc cyclic 

fruslum obtailled from the ideal case. 1 will denote the number of times F is 

itcratcd at execution, and J}, J2 , ••• , Jp will denote respectively the p rows in 

Fj N(J.) will dcnote the nun.ber of transitions fired at row l of F. 

• k will dcnote the total number of occurrences of a transition in F. Rccall that 

aIl transitions appear the same number of times in F (by Theorem 3.5). For the 

ideal case, !. is thcn the computation rate as weil as B( G), thc current balancing 
p 

ratio of G. 

Listed bclow are two terms used to compute an upper bound for the idle time 

expected on scheme B. Equation 6.2 shows the total execution time required to 

cxecutc F, 1 times on a single pipeline machine using schernc B, while Equation 6.3 

shows the minimal execution time required. The idle time can thus be obtained by 

subtracting Equation 6.3 from Equation 6.2. 

• Total execution time: 

1 x (N(Jd + 1- 1 + N(J2 ) + 1- 1 + ... + N(Jp ) + 1- 1) 

- 1 x (kn + pl - p) 

• Minimal execution time: 

Ikn + 1- 1 

(6.2) 

(6.3) 

We are now ready to establish the relationship between balancing ratio and uti­

lization rate for scheme B, using the pipeline utilization-rate formula. By substitution 

of Equations 6.2 and 6.3 into Equation 6.1, we have 

l-U 
Eqn. 6.2 - Eqn. 6.3 

= 
Eqn.6.2 

l-U = 
1 _ Eqn. 6.3 

Eqn.6.2 

U 
Eqn.6.3 

= 
Eqn.6.2 

U 
Ikn + 1- 1 

(6.4) = 
1 x (kn + pl - p) 

The resulting Equation 6.4 can be evaluated in various ways: 

• By approximating Equation 6.4 for U one can determine the guaranteed utiliza­

tion rate U of the execution pipeline for a givcn loop body G of n instructions 
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1 having a balancing ratio B(G). 

U > 

= 

= 

JJm 
1 x (kn + pi - p) , 

lm 
p x (kn + 1 - 1) 

p 

nB( C) 

nB(G) + 1- 1 

l?:. 1 

• By solving Equation 6.5 for H( G) one can deteflllilll' for a gi\'I'Jl loop body (; of 

n instruction a sufficient balancing ratio H( 0) sueh that. a pipdiu(' ut.ilization 

rate U is maintained. 

B(O) ~ U(l-~ 
n(l -- (T) 

For loops with no loop-carried dependenn" if t.ll(' balallcing ratio CéUlIIot b(' 

improved due to restricted paralldism in a loop hody, Ol\t' l1li~ht. lw ablt, t.o 

unroll the loop body to increase parallC'lism of a softwar<' pipf'lillC' a~ dpscrihed 

by the following guideline . 

• Finally, by approxirnating Equation 6..1 for n, ont' C(!.II dct('rlllillt' for d giVf'1l 

balancing ratio B( C) the required number of instructions Tt in a too!> body n 
such that U utilization of the execution pipeline is maintained. 

11 = 
(Ulp-l)x(/-l) 

(1 - li) x / k 

< 
V/pl 

(l-U)x/k 
Upl 

= 
(l-U)xk 

For loops with no loop-carried dependence, if the loop body dOf's Ilot match 

the size n, a new loop body can be obtaincd hy unrolling U11til the 1I1l1111H'r of 

instructions matches t.he requirerncnt. 

The establishment of the guidclines ba..,ed upon naiVt' schedulillg provides the 

conservative estimations for the corresponding pararneters in SPS. For exampl(', the 

estimation of B(G) can be safely used as a COlls(>rvative estimatf' for UH' balaucing 

ratio used in limited balancing for SPS. Note that thesc guid('liIl('~ can ouI}' be' applil'd 

in cases where the execution time of ail nodes is the saille. 
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6.4 Limited Balancing of an SDSP-MCP-PN 

For rnultiplc-clean pipelines we explore a similar set of relational guidelines. As in the 

previous sedion, na.ive scheduling is assumed as the basis for deriving an upper bound 

on the exc(:ution timc of multiple pipelines. Naive scheduling schedules one row at 

a lime from the repetitive schedule under the ideal case, whilc each row is divided 

equal1y among ail a.vailable execution pipelines. With the aid of the utilization-rate 

formula, relation between balancing ratio and utilization rate is again established. Wc 

use R to d('notc the number of execution pipelines available. Equation 6.6 shows an 

upper bound on the execution time required by naive scheduling" and Equation 6.7 

shows the expression for the best achievable lime when a hundred percent utilization 

of ail pipelines is achieved. 

• Total Execution Time 

• Lower bound on Execution Time 

Ikn 
-+1-1 
R 

(6.7) 

Equation 6.8 shows the result of :mbstituting the minimal execution time and the 

required cxccution time expressions (Equations 6.6 and 6.7) into t.he utiIization rate 

formula (Equation 6.1). 

l-U < 
Eqn. 6.6 - Eqn. 6.7 

Eqn.6.6 

l-U < 
} _ Eqn. 6.7 

Eqn.6.6 

U > 
Eqn.6.7 

Eqn.6.6 

= 
!ff+l-l 

(6.8) Ipl + l~n 
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1 • Equation 6.9 shows the result of reducing Equation 6.S fllrtlH'r. For tl)(' gi\'('1\ 

program factors, B( G) and n, and the hardwan' factors, 1 and H, Equat.ioll tU) 

imposes a lower bound of tilt' utilizatioll rate of ail H ('X('('\ltion pipt'Iilll'S. 

u > 

> 

L1f+l-l 
[pl + l~n 

lkll 

If" 1 ~ 1 
lpl + I;t ' 

Ikll 

- pRJ(I + :R) 
B(G)n 

RI + B(G)ll 
((;.9 ) 

• By solving Equation 6.9 for B( Cl), Equdtion 6.10 irnpos('l> an IIpp<'r huul1<1 011 

the balancing ratio to keep a utilizatioll ratl> of {! 011 al! Il ('X(>, IIlioll pipt'lin('s 

for the loop G consisting of 71 instructiolls. 

, PlU 
B(G) < 11(1 __ tr) ( (i.lO) 

• Finally, by solving Equation 6.8 for TI, 011(' t'an <1<'1 ('r1ll i 1 If' fol' il gi \,('11 balallci/lg 

ratio 8(G) the f('quired Humher of ill~tl'l1ctiolll> 11 in Cl loup body l>1I( Il th.ü 

a uWization rate of U for ail Il exccutioll plpelille~ IS malllla,ÎII('d. FOI loops 

without loop-cal'rit'd dependellcc, if tlH' loop body dops Ilot Ill<ttch tilt' sizt' 1/, 

a new loop body can be obtained by unrolling Ilntil th(' IIl1l1lbN of ill-;I l'lI<'t iOlls 

matches the requirement. 

U Ipl + U Ikn 
R 

U Ipl-I + 1 

Ikll , J 
> Tl + -

/IwO - (f) 
> Il 

Il( U 1 pl - 1 + 1 ) 
< 1 k{ 1 - (!) 

U(/lpl 
< 1 k(l _ U)' 1 ~ 1 

HU 8((:)1 
= 

J -li 

6.5 Experimental Results 

(UI) 

To substantiate the corrcctness of our guideline, wc provHlp simulatio/l r('sults of 

pipeline utilization conducted 011 Loop 9 of th,:' Livermore Loops. Figlln~ ().:~ show:. tlw 
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signal graph of Loop 9. The loop body of Loup 9 consists of 8·1 nodes and one critical 

cycle (noden, node7:J, Bode77 Ilode74, node72). The maximum computation lte i~ 

1/4/. In the experiment w<' balanced Loop 9 using 1/4 and cornpan'd t.he observed 

utilization ratf~ against the cstimated lower bound. Table 6.1 provides estimations 

and rcsults ulldcr various machine cOJlfiguration~. PL and Numbe1' of Stages illdicate 

the number of pipelines and their associated lcngth used al, the simulation. Under 

each configuration the cstimated utilization rate is computed using Equations 6.5 

and 6.9, and is listed unrler the row Estimate. 1'0 appreciatc the impact of Iimited 

balancing, wc eXdmine Loop 9 under three levc\s of lirnited balancing, indicated in 

the table as Before, Phase1, and Phase2. 

Be fort>: Original Loop 9 contains one eritieal cycle, i.e., no limited balancing. 

Phase1: Limited balancing is partially applied across Loop 9, as shown in Figure 6.4. 

Phase2: Limited balancing is applied more aggressively across Loop 9, as shown in 

Figure 6.5. 

For cach of the three cases, recorded results includes computation rate for steady 

state ('xecution (on the right) and pipeline ul,ilization (on the left). The following 

sllmmarizes our observations: 

• Ali of the estimated pipeline utilization rates are a correct lower bound for 

obser"ed processor usage, confirming our guideline . 

• The accuracy of the approximation increases under two extremes; the first ex­

treille is the rcsult of two behavioral factors: The first factor is the increase in 

the number of executwn pipelines. ln this case the behavior graphs of the pro­

gram respectivcly uuder SPS aud under naive scheduling both converge towards 

Hl(' behavior graph ullder idcal mode\. As the nurnber of execlItion pipelines 

ex('eeds the amount of cxploited parallelism, the schedules of SPS and naive 

sdl<'duhng are tht> sal1lf' as the one produced for the ideal case. The second 

factor 15 the increase in the number of stages in the cxecution pipeline. The 

amount of parallelism tf'llds to decrease as pipeline length increases. Thus, a 

longer pipelilH' decreases the Iltilization rate over the same program. As both 

factors are infllH'ucÎng the result, the utilization rate decreases rapidly towards 

the estimated bound. The other extreme is a decrease in the number of pipelines 

and pipt'linc lcngth. As both the Humber of pipelines anù the number of stages 

drop to a small value, the calculated lower bound approaches 100% utilization. 
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Table 6.1: Results for Utilizatioll Ratt' Estilllat iOIl 

Number of Stagelo 
4 8 W :12 

PL Rate L1til Rate Util H,\te II t il. Rah' Lllil 

1 Estimate 87.5% 75% !)ô 8% 40 ·1% 
Berore 1/84 99.4% 1/84 98.4% 1/8(i 93.8% 1/1·11 M~ 0% 
Phasel 1/84 99.8% 1/84 99.3% 1/85 969% 1/1:11 ti:! :\% 
Phase2 1/84 99.8% 1/84 99.3% 1/87 947(X· 1/14'l f)7 j(iI, 

2 Estimale 72.4% 56.8% 396% 247% 
Before 1/42 98.4% 1/43 93.9% 1/70 584% I/I:H :10 2(X, 
Phase 1 1/42 993% 1/42 98.0% 1/65 62.8% 1/129 :\16% 
Phase2 1/42 993% 1/43 95.7% 1/71 577% 1/1:\[1 :\0 :!% 

4 Estimate 568% :\96% 247% H l'X, 
Berore 2/43 939% 1/:15 58.4% 1/()7 :JO ()% I/I:U 15 ti% 
Phasel 1/21 98.0% 1/32 637% 1/64 :31 !)(X, 1/128 15 !J% 
Phase2 2/43 957% 1/35 584% 1/67 :W 1)% 1/1:11 lfi<i% 

8 Estimate 39.6% 247% 14 1 (M, 71i% 
Berore 3/52 589% 3/100 30.7% :1/196 15 filX, :\/:188 i!)% 
Phase 1 1/16 63.6% 1/32 31 !)% 1/ti4 15.!)% 1/128 HO% 
Phase2 1/17 600% 1/33 :109% I/H5 15.7% 1/129 i!l% 

16 Estimate 247% 14 1% 7 (i% :\ \1% 
Berore 3/50 307% 3/9g 15.0% 3/H)4 79% :\/aSti ,10% 

Phasel 1/16 318% 1/32 159% 1/64 80% 1/128 40% 
Phase2 2/33 309% 2/65 15.1% 2/129 79% 2/21)7 .\ 0% 

• For each machine configuration, the three versions of Loop H ail 1'('1\('('1 silllilar 

processor usage. From this observation wc can conclude that tht' (,olllputatÎolI 

rate of a Ioop is insensitive to the number of criti('al ('ycl('~ ill ils body. 
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Figure 6.5: l.oop 9 under Aggressive Lirnited Balancing 
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Chapter 7 

Related Work 

7.1 Software Pipelining 

Software pipelining is a weil known technique for cxploitillg filw-grain parallc'lislIl ill 

loops, by reorganizing statemcnts in succcssiv(' iterations of (\ loop hody SO (IS t.o ('Xl'­

cute in a pipelined fashion. The idea originally emergcd from IJI(' lIIiCl'OplOgrallllllillg 

~ommunity as a means for a pipclined processor to exc'cutt' VC( tOI' operat.ions [l\og77]. 

Since then there have been variations of the techniquc propos(·d for loop :->< Iwdtd­

ing [Aik88, Ebc87, EN90, Ga090, Lam89, RGSi, SDXS6, 'l'ou84]. III this st'ctioll Wt· 

survey several typical methods and compare their flllldalllcIlt,d ideas. FOI this dis­

cussion, we closely follow the terminology Ilsed in [J AgU]. We l'dt'! to ('aell 0JwrcLt.ioll 

in the origilîdII .. op body as a rmcm-operatlOn (MO) and the (ompaded opl'ratiolls 

as a micro-instructlOn (MI). Accordingly, cacl. MI can cOlltaill st'v('rdl MOs aft.(·!' 

compaction. !nzfzatzon mterval is equivalent to dw cycle' t.illlt· COI!C(·Pt. wC' dc·fi\l(·d 

earlier. 

The software pipelining schemes to be disCllssed indude p('rfert pipeliniIlg IAik~8], 

enhanced pipelining [EN90], URPR algorithm [SDX86], and software pipC'lilliug fol' 

the Warp [Lam89]. Ali of thesc schemes handle loops havillg loop-Cdrri('d dC'JWII<!('!lC'(' 

and conditional constructs. Tlwil major differen('('s lit' in tlH'ir hctrdware a!->slllllptlollS 

and their approaches to construct the stcd.dy statt'. They cali 1)(' divid('d IOllghly ill\'o 

two categories: compact llnl'olling and l1'lll/-and-t ''l'O/'. 

Compact unrolling unrolls tbe loop body a lIumhc'r of tillw!-> alld t}WIl compacts 

the unrolled sequence subject to a glvcn (ompaction ,tlgOllthm. TI\(' l'cp('att'd patlC'f11 

spotted in the compacted sequence forrns the t.teady stale'; its lcngt.h l~ tll<' illitlilt.iop 

interval. The numberof unrollings and the aggressiverwss of t}w COlllpactloll illgurithrn 

correspond to variations of the earliest firing l'ule, and bence, dfft'ct UI(' opti,. itlity of 

the schedule. Perfect pipelining and enchanced pipelining an' ('xétrnpl('s of rompact, 
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Ilnrolling. The trial-and-error rnethods COUf:>truct the steady stat(' based UpOIl a series 

of trials on a range of initiation intervals. The smallest achicvable Olle is taken as the 

initiation intNval. URPR algorithm and Lam's software pipelinin~ scheme are good 

exarn pIes. 

7.1.1 Perfect Pipelining 

Aikcn and Nicolau's work Oll perfect pipelining [Aik88, AN88J consists of two steps: 

infinite unrollillg and code compaction. A data dependence graph ,DDG) expressing 

tilt' partial ordcr amollg the' MOs presents the ultimate dependence constraint to be 

followed. Assume thal the> loo}> body G is initially expressed in a sequence of MOs, 

obtaincd by sorting the DDC topologically and tempordrily ignoring loop-carried 

d('(>('lId('lIc(, "dges. 

Perfect pip('lining umolls r, infinitely, i.e., th(' sequence of MOs is rcplicated in­

finitdy. '1'11('11 cach MO ill the unrolled loop hody 0' is moved upwards as much as 

possible with rcsp('ct ta the compaction algorithm, subject ta aIl data dependences 

and resourcc cOllstraints. Throughout the process, the sequence of MIs is searched 

for a rcpeated pattern. Once a pattern is detected, the prelude sequence is formed 

directly {rom the sequence of MIs beforc the steady state and the postludc sequence 

is at tach('d accordingly. 

As pcrfect pipclining is applied to a condition-free non-nested loop body with­

out J'csource r('strictions, a time-optimal pipelined schedulc is obtained [AN88J. No 

transformation of the loop based upon the given data depl'Ild(~nce can yield a shorter 

running time. Silice each MO is moved to the carliest possible starting position during 

compactioll, t.he resulting schedule is an earliest firing schedule. Thus, for a machine 

withollt l'csourcc r<,,,tl'ictioll~, compact unrolling aclllev('s sllIlllar rcsults as exccutmg 

the DDC lInder th(' carliest firing ruie. The rpsults from our study regard:ng how to 

rcach steady statt' is also applIc<Lble i Il this case. 

Whefl a conditIOIlal ~tat('mCIlt is con~id('red within a loop body, perfect pipeIining 

finds a rep('att'd patt('1'I1 on each path rcgardlcss of the flow of control. In this case, 

scvcrallJrcdicatc MOs can bc compacted into an MI. To satisfy the rcquirement for 

evaluating multiple predicates, the underlying architecture assumes the function of 

pcrforming lllulti-way branching. This feature allows several predicates to be evalu­

at<,d togl'tlH'l' within a long instruction word in order to select the subsequent branch 

point. 
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1 7.1.2 Enhanced Pipelining 

Assume the Ioop body G is expressed using a sequence of M Os obt ai IIl'd hy t opo­

logically sorting the DDC as before. MOs whirh are al t.1\{' htllllt' d('pth in tilt' 1)1)(; 

are said to belong to the same level and stay consecutively ill li\(' hl'qllCIICt', Illitidlly 

Gis unrolled infinilely to form G'. 1'0 facililal(' l'xplanation, \\'(' l't'l'cr III III(' MO 011 

each row of C' as MI. The term wzndow w, dellolcs a f('gioll of COlls('cllti\,t' ~t b in t lU' 

unrolled sequence G'. Initially, window w, is !'l('t to co\,('r tlll' 1-1 h 1I11lolll,d loup body 

in G'. 
Ebcioglu and Nakatani's enhanced Plpelinmg is similar to !>erfect pip<,lIl1illg ill 1 lit' 

sense that it also performs unrolling and compaction [EN90j. III ddditioll, tht,y "Iso 

assume a similar multi-way branching capabilit.y to handl(' ('onditiolldl (Ollsl III( ts 

However, they speed convergellCP of stc'ldy stat(· by ('lIfolcill,!!, t wo IlIlt·~ . 

• MI is the basic unit of moving for compa( t iOIl, \.t·" (omp,\(!t'd MI ... (,1111101 1)(' 

decomposed . 

• Cümpaction is only applied to MIs withlll the salllt' wlIldo\\' '1'0 \)(' Jllolt· PIt'( lM'. 

MIs tü be filled at compaction lime mll~t he cllrrelltly <li, tilt' top Lt lit 1 01 t 11<' 

window. In addition, ('andidates used to ril) the' top-It'\(·) l\lb IIII1!'>t IH' (hu!'>('11 

from the same window as well. This ~('colld rult- IIhillléllt'ly «()JI~llélIIIS Ill<' 

formation of the stcddy statt' to contain ollly OJl(' <opy of ('a, Il 1\10 flOIll tilt' 

original loop hody. 

Enhanced pipelining applie~ the salll<' ('01 Il IM( t ion IIlU"C' lu l'<l( Il Il'.. V,. "'lIbJ"( 1 

to data depcndcnce constraints, resolJJ'(t' COJl~tlrlillb, and tlll' (ump,\( tlOl1 11I1(,~ Ju..,t 

described. Artel' compacting the top-lC'v(') MI ... , ail wllldow!'> dit' <ldjtl~tc'd c!owllwald 

by one lev el of MIs. This adjustnH'llt has tlll' clr('ct of Illovmg t III' PI('VIOII:-- lop lt'v!'1 

MIs to the bot tom of the wiudow. At thi~ poiJlt. (OmpcHtloll i:-. t'nI l'wei Ollt <l1.!,<UII 

with the current top-)cvel MIs. If tl)('re i~ no loop-( dll H'd d('(H'lId('!I( (', ~1 1 ... !rom tilt' 

bottom leveJ of IVI , whicb IwloIlg origindlly 10 tiH' ril~t )('\'(,) of tI)(' l-t ) It('{ctl iOI1, 1110\'(' 

up to the top level of w" which rorre:-,polld~ to li\(' second )('\,(,1 of il"1 clt IOIJ 1 Tbll .... 

software pipclining occur~. Nole that eV('ry willdow JJ1dmtdlll:-' MI Id('lIll( ,II (Opy 01 

MIs. 

Compact ion and window adjustment are repc'dted IIl1til (OIIlpa< lIoII hr!:' 1)('('11 tlwd 

on each level. The resultihg formation of MIs III window 1111 ('Olltl ibutt,:-. to t!w .,tt'ady 

state. The prelude sequence can he ohtaincd directly [Will the !'l('q l1ell ( (' of MI ... !J(·f(jr(' 

steady state (w.) and the postludc ~cquellce i~ ~lInilarly rlt.tadICd Note, t hcll ('(LeI! 

MO from the origmalloop body appC'ars only OllC!' ill !'>t(wly stat('. Th(· aclvalll.ag(· of 

this approach lies in the accelcration of stcady-state forma.ti(HI. Even SO, pn·lllat.IIJ'l'ly 
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tying parallelisrn together reduces the flexibiIity of fine-grain scheduling for utilizing 

availablc resourccs. 

7.1.3 The URPR Algorithm 

URPH (UnRolling, Pipelining, and Rerolling) originally applies only to loops which 

contain a single basic block [SDX86). More reccntly the technique has becn extcnded 

into what i~ now cd.lIed GUHPR (Global URPH). GURPH incorporatf's conditionals, 

Il('stf'd loops, ami subroutmf' calls [SDWX87]. For the purpmw of this survey. wc 

focus only on lJRPR, which contd.ins the basis for software pipclining. The URPR 

algorithm is silI\llar to trial-and-error. First, the initiation illt(>rval is computed; the 

Ioop body i~ unrolled and tlH'n pipt>lined with respect to the interviii ail in one trial. 

Illitially the loop body G i~ locally cornpaded with respect to illtra-data depen­

dCfl('(' and rf'sourn' constraints, into a sequence' of MIs. Onc(' this i .. accomplished, 

MOs becolllf' indivisible and are manipulated aH a single entity. Let (;' deuote the 

prewmpad('d loop hody and S tht' schedult' to he built illcrf'IllC'lltally, rllld let MI~ 

and MI~ d{'nott~ il\(' t-th MI of S' and th(> J-th MI of tilt> l-th unrollcd body of (;'. 

'l'II<' algorithm ("oIISlst" of thr('c st agcs: 

1. Unrolling: C' i~ unrollcd k = fi/dl tinw~, wlwre 1 i" tll(> kllgth of (;' and (l 

is the initiation interval computed using the maximum lUter-body data depen­

dellfe distanC<' that spalls 011(' it(>ration. 1 Intuitivcly wc need only ta unroll the 

loop bodies k times to Ullroyer the ~teady states if each initIation is d cyclps 

apart. 

2. Pipelining: The J.. loop bodips ale pipelined. S' is inlti,tt('d with the first loop 

body, a copy of (;' with 1 MIs. The remd.inillg loop bocbcs are added to Sone 

by ml(', suhjed to initlrl-tjOll intt>rval and data dependcIlCe. If a tt'source conflirt 

Ofcurs betw('('n Ml~ alld MI; while adding the l-tlt loop body, MI~ is dclaycd to 

compact wlth MI~+I. If it fails again. a new MI .. containing only ~n: is inserted 

hetwe('11 Ml~ and MI~tl. The rea:-,on for this insertion is to keep the distance 

bctw('('11 rvU: and 1\'fl:_ 1 dS close to d as possible so the pipelined steady state 

is 8hort('1". Compactioll is colltinued with MI;+l until d.1I MIs from the k loop 

bodies arc' addcd to 5'. 

3. Rerolling: Steady state is formed from a scquellCf' of adjacent MI in S with 

shortcst cycle time. '1'0 cnsure the steady state consists of an equal numbcr 

of MOs, rt>dundant MOs are removed from S. URPR furthcr simplifies the 

1ft was latcr pointed out that thc calculation should be done for ail dependences [JA90J 
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1 selection by r('stricting the steady state to contaill ('xdctly Ollt' copy of ('(\cl! 

MO. Based upon the sdection, prdud(' and postlllde "'('«tH'Il( t'S <lrt' coltsl fll<"lt·d 

The GUHPR schenw of handling collditiollal C()II~tlllcts i~ ~llllil,u' 10 11lt' ~Iob,d 

compact ion technique cal\ed trace ~chedulillg [FisSI J. SI'I>c\.l dt t' pdl h~ MI' 1 Olllp,l( !t'd. 

pipelined, and rerolled individually. Bookk('('piug Op('felt iOIl~ (li l' t ht'II ,Hldt·t! fOI ... 1'­

man tic adjustmcIlt. 

The URPR algorithm hdS the advétllLagpof lo\\' cOlllputal 1011,11 (o/llpl('xl'y 111 Illllld 

ing a schedule. On the other haud, Il prellldt \I1(,\Y pll~hl's )lott'Ilt l,Il P,ll ,dlt'[i~1lI tll 

gether, losillg the fI('xibility of fint'-grain par(dl('li~lII III ctddit 1011.11· ... 11 <lUIUl/!, 0111' IOpy 

of C'in steady statc clIlJllllat{'~ the opportullity for fOlllllllg cl dt'IISI'I plp('llIlI'. 'l'Ill' 

GURPR algorithm also slIffers frorn tht, Sdllll' critirislll of t l'cU (' :-.dll'dllliJlg, Th.·1 l' 1:­

no reason why the ~dlll(' pillh wIll be lë'IJ(·atedly 1''(1'1 IIkd III tl\(' loup budy 

7.1.4 The Systolic Array Optimizing COlupilcr 

Lam 's software pipelining algol'ithm if, tdiJorl'd to codl' gl'llt'l étllOll lOI ,\ V LI \\' f,y..,t IIII( 

architecture known ét~ \Varp [Lalll~~, Ldlll~91 FOI t Ill.., IIUt< hlllC'. 1 III' J)J)(; If, ..,llghllv 

different. Earh mino-operatlOlI (~'10) ('Ol1lpIN· ... ci f,('(PU'I\( l' 01 illdl\'\'>lhl(' o»(,\,ill 1011'1; 

once an MO IS inÎt.i<llt·d thl' l'lItÎI<' ,>('qUI'Il< l' 1l\1l~1 IUII lu (1III1pldll/1l \\'llltotit IUIt'I 

ruptioll. Lam's algorithlll If, cl 'ypI(et) tl1<lI-dIHI-l'l101 ',1 hl'lItt' :\ Irlll~l' of IllllletllOll 

intcrvals is first obtalllt'd, c\1It! \ hl'Il a ~1'q1\l'lI(,\' lA 1 netl~ 011 tilt' (I!O..,I·1l 1111 ('1 v,L! ,III' 

initiated. For l'a( li trIetl. ('dch ~10 i~ fot( (·d to f,( IlI'dut" lt')!;ul.\ll\ ,d t 1\1' illtl'I \,d 

The startillg point of tilt' tnal 1 dllg<' 1"> < Olllputl·d lI~illp, !1'o,Olllt (' dlld PI('( l·dl·lI( l' 

constraints GÎvcn ail dcycllc [OO)> body U alld cl CIII (('lit 11'l,t! illll'I \,d d. f,.lIll1' :\10 

from succes~i\'(' it('ratio":,, lt\'(' f,c!lt'duled (Oxd(tl) tl f,t(·p'" dP,lIt will Il' l',t( Il ~1() WIIIIIII 

aGis list sdwdulcd. 

For ail MO, scheduled dt tilllt' t. J'(''''{)(lrc(' lI~a~l' i~ (}If'('kl'cJ cl).!;ctlll..,t tI1t' Il, Il+tf, 

u+2d, ... indivisibk op{>ratiulls of the ~cll('dlll('d ~10) helVIlIg Il,, IL-t.h illdlvi"lbl<· 

operation exccutcd al lime t. If d r('sourn' «)uflict O( (IIr~, MO, l~ dl'Iaycd <HW cy( 1(· 

and the resourcc check rcpcated. Ilowpv<'r, if tlj(' 0lwr,tt,loll r(lll~ t,o 1)(' S( IlI'd\lll'<I 

within the range [t, l+d-l], tll<' clltirc f,cl)('dul<' i.., ahalldoll('d, ,lIId a IIf'W tll,t! ~t arted 

using the ÎntervaJ d+ 1. 

If there is loop-carricd dep<,ndence i nside (,', ~l. rOllgly -('ounc'etl'c1 COlllpOlll'lll. ... ail' 

scheduled first. Thcn ('ach cornponent Îs l'f'duccd into ail MO) by IlH'lgillg 1('~()III«' 

requirements. The set of nodes in the components oecoIllc au indivisible sequeuce of 

MO). Again an acyclic graph is obtained which can be ~chcdll[ed u~illg thp éV'YcllC­

graph scheduLlg scheme. 
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A distinct c:haracteristic of this approach is its Wê"y of scheduling conditionals 

using so-callcd hierarchical redudion. Similar to the schedule for strongly-connected 

components, the IIlner most sub-branch of a conditional is list scheduled and reduced 

iuto an MO by merging resource requirements. This reduction is then repeated for the 

outer conditlonal. Hecause the entire eonditional eonstrucl is reduced into a single 

/Iode, the acyclic-graph scheduling sehen'''' b u~ed. 

The major diff('felln' bdwecn Lam's algorithm and the 'JRPR algorithm is that 

once a rcsour( (' couflict on'urs, the former seheme abandons the entire schedule and 

starts a Il<'W t.ridl over a larger interval whereas URPR does not. 

7.1.5 Remarks 

Th(· valid-sclH'dule-complItation seheme (Lemma 3.1) introduced in Chapter 3.7 pro­

vides a typical ('xdlllple of ~oftware pipelining [HH80, ReWS]. Thi~ approach mat Iw­
Illat.ically COlllput('S a valid schedllle fOI a Pve-bound Petri net. However, the technique 

is only applicable to ideal machines and machines without rcsource cOllstraints. One 

very nin' charaderist le of this approach is that the resulting schedule enter~ steady 

state a.'i SOOII as ('very transition is fired once, i.e., after tl1(' fir:,t Iteration. 

Amol1g the various softwan' Plpelining :,chemes introduced, perfect pipelilllllg pos­

S{'SS('S thl' lIlost slIllilarity to SPS. III fad, SPS was inspired b) perfeet pipdiIliug. FOI 

a loop operatt,d in aIl ideal machine, Alken dnd N Icolau gave an O( 1/ 3 ) Lound i:1 time 

steps (or e<!ulvalelltly, 0(11 2 ) Il('ratlOns) tü find a pattern in the single critical cycle 

casp, and they Iloted thdt t!\(' least-comlllon-muitiple effect incurred hy the multiple 

critical cycl('~ woule! ~eld{)1ll occur III practical situatiolls [Aik88, AN88J. 'vVe could 

Ilot justify thelr proofs alld 50 relllvcstigated the problem in tili:, thesis. 

Under the assumptioll of an ideal machine lTlodel dnd for a claSH of loops having 

only a single· rritical cycle, ~teady stat(· appeals aft<'r O(n3 ) iteratioIls, whcle 11 de­

Iloh's t}w sizt' of tlH' loop body For the case of multiple critical cycles, the l('ngth of 

the stC'ady st.at<' is dlrectly proportional to a COIllIIlon multiple of critical cydes. Wc 

arc' unaware of any polynomial boulld for the lcngth of the prelude sequence in this 

case; instead, wc ha.ve derived an approach with polynomial time complexity by fixing 

an initial condition. Doing SO, we were able to achie-ve a significant improvement in 

dliciency in finding a schedule, regardless of the number of crit.icdl cycles. 

7.2 Storage Allocation 

Two strategies, bascd upon software and hardware support respectively, treat storage 

allocation for software pipelining: 
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• The software approach solves the registcr allocation problt'Ill by tilt' IISt' of COII­

ventional graph coloring techniqucs [r A ('+81 , C'ha~2, Tou~,ll, SI 11('(' 1 1 If' IIUII tht'r 

of registers allocated to cach variable i~ ullkllOWII lInt Il tltt' S( hed\ll(' i:-. \'0111-

puted, the general graph coloring approach can only h(' applit'd 011 tilt' lill,tl 

schedule. ft is assunwd that a large dlllOllllt of rt'glstt'rs .m· cl\'clilablt' illlllctll~' M) 

the scheduling phase· cali be handled i Il <1<, pell cl (' Il tly of rq~i:-.tt·r WlIst l 'UIII:-., A t'­
ter scheduling, graph coloring is perforll1t'd giobally for 1t'~I:-.1<'1 .lllot .ll 1011. Sptll 

codes are inserted in the schedule tu r('use J'('gihteJ's in tht' abs('IlCt, of IIII"l1o(,<lkd 

ones. 

Once a schedule is fixed, il is difficult to ['(·duC<.· regiskl' U:-.,\!!,(' IU'(',\\ISt' 1 lit' ~o." 

is to avoid the insertion of spill code, ln Lam's ('a,:.;1' , tilt' prol>l('1II 1)('('01111''' 

harder bccallsc of t1H' llldivisihle opt'raliolls, The major ('l'II i('islII of tilt· I!,I,lph 

coloring approach is Il\{' d('gradatiull of tl\(' pt'lforllliUI('(' that I(·sult:-. tr01l1 tilt' 

insertion of spill cod(', Spill (od(' \InétvoHlahly !('ngtht'ns t hl' illlt iùl ion 1111 ('1 \'al 01 

a pipelille, Sin('(' :-.pill codl' t\('('d~ malll Il\plI\ory .\('( ('%, tIlt' i/llp.ld 011 ">( hl·dlll" 

throughput Îs mon' M'\'('rt>, 

• The hardwarc dppl'Oétch :-'01\'(,:-' tht' H'!!;I..,t(·1 .tl1u('allOll plObl('lIl IHdill!, -.jJ:'( i.1l 

hardware. The particuldl' type of cil dllt(·( tUI(' that Il:-(':- t Ill.., COIII cpt 1.., ( cdl(·tI .l 

polycyclu' aJ'chil('('turt· [HG81], llllllill\'('ly, t'<ll h d.lt,l dl( III tl\(' D\)C 1" IIl1pl(· 

mented with a FIFO qU('ll<', AIt('1 ('ad, opt·r.ltioll t'Xt·('IIIIOIl. cl 1'I'~1111 l~ .lpp(·lldl'd 

to the oui pu t qlH'\!('S 'l'II<' d('~jgll siglll tieant ly ..,i III "IIIÎ(':-. t Il(' \\'01 k 01 (1 JI \1 pd"1 

storage allocation, Il o\\,{'\,('f , tl\(' lllllllh{'r of f(·quÎn·d FIFO qlll'll('~ .-tllt! t I!t'Il 

associated length vary for diff{>J'('nt programs. wlld(' t Il<' a1l1011l11 of h.1I dW.II(· 

resources are limited. 

Limited balancing binds schedulillg and ~t.orag'· a!lo< cttiOIl 11110 cl IIllifit·t! frallH' 

work. In limited balanciYlg, sp<'cial (Oll('ern is gIV('1I tü tilt' I"..,IH' of ('xploit..d)!t· pal.d­

lelism ullder resourc(' constIaÎlIb For simple typt' of llladlllH' a."'''' III 11('<1 III tlll'> th(,"I~, 

the amount of exploitable pclra\lf'lI:-'1II varH'S accordÎlIg to bot" 1.111' 11111111)(·/ of (H p('llIlI'd 

processors and the number of registen" \Vlth resp('ct to tl\(~~(· t,wo ('ntl( ,,1 fa,( 1.01:-, 

limited balancing restructu!'('S the soft ware pilWllllc to clt hJev(' .Ul(·qll.tt,· )hll all('lislIl 

in the machine, The amollnt of storag('s requin'cl in SPS is alf('cI(ly bOIlIlr!(·d by tlw 

number of llodes in the loop body becausc the constru('tion of t!1(' ~dl<'dl\l(· I~ l)rl~(·d 

upon a static dataflow graph, Limitf'd balallcing ofrel~ furtlwr opportullity to rI' 

duce storage usagf' based upon exploitable paral1cli~m, The aclvalltages of liIllited 

balancing include: 
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• Whcn cnough rcgisters arc available, limited balancing reduces registcr usage 

without affecting the throughput of the software pipeline. 

• When lack of registers, unlike conventional graph coloring schemes, no spill code 

is required. Instcad, a lower balancing ratio is chosen for limited balancing 

to reducc the requirement further, thus avoiding the possible interruption of 

memory access. 

• For the SPS schcme, limited balancing helps to shorten the time to reach steady 

state hy thcorctically placing each node on a critical cycle, satisfying the initial 

(;ondition given in Theorem 4.7. 

• For statie dataflow architectures, limited balancing also helps to reduce syn­

chronization costs. 
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Chapter 8 

Conclusion and Future Research 

The application of Petri-Net th('ory 10 compiler cl('~igl1 n'( (·iv(·cl (\.1 t.f·nl iOll a~ "arl~' ,1:" 

1970 [SS70]. Similar wOl'k, report('d n'("('llt!y, hclS to do wilh llIicrOplOgl',11ll DpI iIlIlZ<I' 

tion of Joops on a pipelincd architt'ctun" wl)('('(' n'soul n' const rcullb Sllcll as Iq!,IS!t·I'~ 

and functionalunits arc modeled withill a llnificd Pd.Iï-II('!. frclJlwwork [lIcIl\S9] 'l'III" 

work indicates that the s('arch for an opl IIna! ~r1}('cllll,· !Je\.S ('XpOlH'lIt i,lI (olllpl",{lly ill 

gcneral. In this thesi~, we han' introdll('('d a Il<'W Pd ri-llet \lIOdl,1 to ~t IIdy fi 1 lt"/!,I ,1111 

100p scheduling. l'lw f(Jllowillg~ art' t II(' f('~ulh uf OUI 1(· ... (·,111·11, 

• We have shown tlH' developlllf'lIt of a Petn-llet loop 1II1)(ld (etll('d ,III SDSP·PN 

wherein loops are fir~t tram,lat('d illto a cla~s of ~tetll(, datatlow p;1.lph~ kllOWII .l~ 

a siaiu: dalaflolL' :-.oflwal'( plpdlllf (SDSP) ,\.nd tlwll tlm SDSP I~ 1 1 tllI ... I.\1 l'l' inlll 

an SDSP-PN. \Vhe/l ail SDSP-P~ is (·X(·cut.<'d <uc()ldlllP; to tlt(· tarllt .. 1 jil'llll} 

ru/e, a btcady stat(' app<'ars i/l tlJ(' )wh.wior gl etph wit hlll ,1 IHJllIlt!l·d 11111111)/'1 

of stcps. We show thdt (1) ill ail SOSP·PN heL\'Îng il <;1Il1!,11' (rill( ,LI cy( k. a 

polynomial bouml cali he ('~tdblislwd for tl\<' ..,tcady ~t .tlf' tu O( 1 III (fuI ,dl nodl':-' 

in the loop) ullder the ('etrliest firlllg 1'111(·. (:!) III etH SDSP-l'N hdVIII/!, 1II1. 1t,lpl(· 

critical cycles, a polyllO/llldl bOllne! (etH \)(' (·:.,tahlt ... llt'd lOI tlll' ,,!<'.tdy "l,III' lu 

occur oIlly for Bodes rcsidr-d on tl\(' ('l'itital tydp .... (:q III addillOll, wc' haVI' 

shown that the 1 III pact 011 the lellgt h of t II<' pl'<'lud(' ::'('(IlI('I1( (' fOI 11\ \lit 1 pk ( 111 wal 

cycles can be cirCUIIlvented by irnpobing ail initial tok('n·distl'lbutioll ('Oll~tt .. int 

This constraint ultimately (tne!erat('s l,he en!erg(,lln' of b\l"ldy ~t.,lI.(', 1'('1!;itl'dl<'ss 

of the number of cl'itica! cycles III the loo\> body. (-1) Frolll ~t(,etdy ... tat.!·, a 

time-optimal schr-dllip for the corn'~p(H1dillg 1001' (,élll 1)(' dCI Îv('d . 

• We have presentcd a methodology for integrating rpsource limitations into ollr 

model. Through it we have demonstrated how Ci tllned PetrÎ-IH't flIodpl kllown 

as an SDSP-MCP-PN can be construded to mode! execution of an snsp on 
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architectures having any number of clean execution pip<'iines. 

• Simulation results on a number of Livermore loops, both with and without. 

loop-carried dependences, have dcmollstrated that steady state for both the 

SDSP-PN and the SDSP-MCP-PN can be determined al, compilc-time in 0(11) 

time, wlH're 11 is the number of instructions in the loop body. This demonstrates 

the feasibility of determinillg steady state at compile time. 

• For storage allocation, we have justified limited balancing as a solution. With 

this lHethod, a schedulcd loop can maintaiJl cxecution specd without using extra 

storag('. Simulation r('sults also verified the corrcctness of our mathematical 

guidelille for finding a feasible balancing ratio. 

ShoWIl Jwlow is <JlIgoillg l'eseal'( h we illtcnd to pursul' to solve the pl'obl<>m of 

fill('-grain sch('duling <md storage optimi~ation: 

• Incorporation of conditional constructs. Due to the unpredictable fun- lime 

behavior of conditional branches, consideration of conditional branches inside 

loops is a major oostacl(' in the design of a compile-time loop scheduling !>cheme. 

Preliminary ideas on the imple!llentation of conditional ("(Hlstructs are docu­

melltcd in [GWN91bJ. 

• Extension of our scheduling method using dataflow modcls other than stati<' 

dataflow, tü st,udy time-optimal scheduling. Two such models are the tagged­

token dataflow model [AG7S] and thc FIFO-quelled dataflüw model [Kah74). 

Both models have f'liminated the onc-token-per-arc restriction assumed in the 

statie mod('1. The tagged-token mode! allows a pool of tokeJ!s on a single arc 

and di!>tingUlshes tokells by color. For the FIFO model, cach arc is a FIFO 

qllCll(' capable of holdlllg multiple tokens. 

• Storag(' optimi~ation. The results from evaluating our mode! suggest that 

CfltiCdl cycles in a program determine the achievable performance of a soft­

ware pipelined loop. This opens up new opportunities for storage optimization 

through time-optimal scht'duling. For example, storage optimization of various 

dataflow graph models might be studied with this insight. For the latest results 

in this area, sec [GN91). 

• Application to other machine models. The scheduling method in this thesis 

descrihed might he applied to other machine models to verify scheduling effec­

tiveness. 
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Appendix A 

Example: A-code graph for Loop 

3 

Loop3 is a Livermore Loop which computes the dot produrts of t.wo OIH' dill\l'lISiolls 

array. !ts corresponrling A-cod(' graplucal rt'presentatioll is giv('n in l''iglll(' A. t 

• lnitially, ail dotted arcs ,U(' assigned a tokell whil(· th(' solrd 011<'8 il!'t' t'Illpty. 

Ali labeled nodes except node 0 arc !'t'gular acton;; e(l( h of wlllch J'('pn'S('llts .l 

single instmction aud is execllted ill liH' executiou pl(>clirlt' wl1t'u ('lIablt·d. 

• Node 0 is always recognized by the machill(' Illod('] as tlll' start.ill/!, Iloel(' of él 

program. Its adjacency list points to ail starting lIod('~ of t.he pl'Ogr alII. As t.hl' 

program started, aIl norles 011 the list art' signal('d direct ly 

• Each crossed square in the progralll gràph dellot('s a :"lgnal lIH'rgp :-.tl'llrtuJ'(·. 

Note that it is not anode consisting of an operation. It is JII('l'ply dl'awlI 1.0 

show the detail of the signal flow. Its output lIod(' fen·ives a sigllal if ('itlH'1' 011(' 

of its input no de sends a signal. 

The operations of most nodes are self-explallatory with the (l<'scriptiol1 011 it. III 
particular, ID stands for an identity actor, which copies the valll(' From th(~ illput 

register to its resllit registcr. lG EN stands for th(' illdcx g('I\('1 iitor; i t gCIl('rat('s 

a sequence of integer index witbin the range of two input vahl(·s. The I('adl'rs éln' 

referred to [GP88, Ti088a, Tio88b] for a more dctail C'xplanation of A-code operations. 

A deeper insight to each portion of the code is given below: 

• First four levels of the graph are the loop mitiation sequence. Ali ICENs arc 

loaded with the necessary inp'lt values. 
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Figure A.l: A-code Graphical View of Loop 3 

• Node4 serves the purpose of index generation fol' the loop body while node20 

guides the proper loop termination. Node7 and nodclO are used for loop con­

stant propagation. 

• Each branell under node5 (i.e., node12 to node14 and node15 to node17) cor­

responds to the address computation sequence and the element load operation 

of an input array. 

• The actual dot product multiplication and addition are donc at node18 and 

node22. 
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