
A PETRI-NET MODEL

FOR LOOP SCHEDULING

by

Yue-Bong Wong

School of Computer Science

McGill University, Montréal

N ovember 1991

A THESIS SUBMITTED TO 1'HE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMI!lNTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright @ 1991 by Vue-Bong Wong

(

Abstract

This thesis describes a compile-time loop scheduling scheme and a supplementary

storage reduction scheme to generate code for computer architectures which exploit

fine-grain parallelism, such as superscalar, VLIW, and superpipeline machines.

In the first part we propose a new loop scheduling technique based upon the

notion of dalaflow software Jl lJlelm mg. Wc use Petri-net theory as the modcling

framework, both for dcscribing program behavior and for proving the feasibility of our

approach. The time complexity of computing a schedule fm an ideal machine mode!

is examined undcr various program struct ures; a polynomial bound is established for

the schedllling approach. We then intcgrate resource limitations into the model and

construct a. unificd Petri-net model for schcdule generation. Simulation rcsults are

('onductcd on a nurnber of Livermore loops to verify the feasibility of t.he approach.

In the second part we disCllSS the application of a program restructuring scheme,

known as limiied balancmg: for storage reduction [GHW90a, GHW90b]. With this

technique, storage is systematically reduced across a loop body according to a balane­

ing ratio. A guideline is derived to determine an appropriate latio for maintaining a

given pipeline utilization.

11

-

Résumé

Cette thèse décrit une technique statique d'ordonnanccrll<'llt dt' IWIlc!"s (,t UIlC m<"1 ho­

de de réduction d'u5age de mémoires pour générer du code pour d('s iu('hÎt('dul'<'~

d'ordinateurs qui utilisent 1,,:, parallélisme "fine-grain," tellps que I('s archit('clul'!'s dt'

type "superscalar," "VLlW." ct '·suprrpipclinc."

Dans la première partie de cette th('~e, IIOUS pIOpo~on~ 1111<' 1I0Ilv(,II(, \e(ItnÎ(pl<'

pour l'ordonnancement d'instruction~ basée sur la lIotion (k "Soft,walt' PiJ>t'linilll!,."

Nous utilisons la théorie des RésCdUX de Pétri {'II tdlll qUI' ~I\pport du Illodi,lt., pU1I1

décrire le comportement des programlI1e~, et p01l1 Pl'OIIV(" la Vrdidlt(" d(' nul Il' '!ll­

proche. La complexité en temps de calcul d'un ordonnanCC'IIl('lIt ('st ("vallll'(' pOlir

plusieurs structures de programmes Cil utilisant un Illodi>\!' dt' IlIrlChill<' id(\t1t'; 11111'

limite polynomiale est établie pour la méthode d'ordoIlIldllC<'IlI<'lIt NOliS IlIt/'I!,IOII~

alor~ les limites sur les ressources dans le modèl(· et construisolls 1111 Illod{»e d(' r{-smllx

de Pétri unifié pour la génération d'Grdonnane<·rnenl. Des simulatiolls SOllt ('fr('(tll("('~

sur plusieurs boucles de Livermol'C pOUl' vérifier la falsibiht(, dl' ('('Ut' 1l\(~th()dt'

Dans b seconde partie, nous décrivon-; l'application d'url(' lIu',thod(' d(' ('(;du(11011 d('

l'espace mémoire pour supporter la méthode d'ordoIlIlann·II1C'Ilt. propos(;(' pn"d'dl'III­

ment [GHW90a, GHW90b]. Avec cette amélioration, l'espacc IlI<"1II01l(, (':-.t ~y~IJ'I1I(tI,i­

quement réduit partout dans la boucle, en accord avec 1(· rapport df' ba/a1tn IIH'II{ d(, la

boucle. Nous dérivons alors une technique pOlir estimer lI/l rapport de' halarlC'('III('1\1.

approprié pour le taux d'utilisation du pipelinc.

III

(

Ackrlowledgments

1 would like to express my gratitude to my thesis adv'lsor, Professor Guang R. Gao,

for his constant support, guidance, and extensive discus''iion throughout this research.

1 am also very gratefuI to my colleagues and friem!s for helpmg me in various

ways. Jeall-Marc Monti soIved a lot of the technical problems 1 cncountered on the

system. Hussdl 015('11 spent rnuch time as my proof r(",'<1er. Russell and his wife

Yoshiko also invited me to hO many of thcir delightful and rUll dinners .. Jing Wu and

Jean-Marc accornpanic'd me during many long hours in tht' lab. Ail of thesc people

made my stay in Montredl a rnost enjoyable cxpericncc. \.ast but Ilot least, 1 am

aIso very gratcfuI tü Herbert Hum and Qi Ning for their Im,ny valuable discussions

related to this research. With0ut their valuable input this WOI k would not have been

possible.

Finally, 1 owe my greatest thanks to my parents and bl'other, for their generous

love, support, and carc, cspecially l11y brother Dominic who cook cd al! of our meals

while our parents WCI'C on vacation. Without my familY'l> support, my education

would not have been possi bIc.

iv

1

-1

Contents

Abstract

Résumé

Acknowledgments

1 Introduction
1.1 Architecture Model Assumption

1.2 Software Pipeline Scheduling ..

1.3 Storage Reduction: Limited Balancing

1.4 Overview of Results .

1.5 Thesis Outline .

2 Dataflow Model

2.1 Statie Dataflow Model

2.2 Dataflow Software Pipelining.

2.2.1 Dataflow Software Pipelining on Ideal Machines

2.3 Loop Representation and Loop Domain.

3 Petri-net Modeling

3.1 The Model and Re!ated Notation

3.2 Marking and Firing Rules

3.3 Liveness, Boundness, and Persistence

3.4 Sorne Special Structures

3.5 Marked Graphs

3.6 Timed Petri Nets

3.7 Optimal Computation Rate

4 Software Pipeline Scheduling on an Ideal Machine

4.1 Modeling a SDSP with a Petri Net

v

ii

...
III

iv

1

()

7

9

10

12

1 :1

H

16

I{i

17

18

18

19

19

20

23

2~

--

.{

(

{

4.2 The Behavior graph of SDSP-PN

4.3 Stcady Statc

4.4 Complcxity to Rpach a Cyclic Frustum ..

4.4.1 An SDSP-PN having One Critical Cycle

4.4.2 An SDSP-PN having Multiple Critieal Cycles

4.4.3 Tightm'ss of the Bound

4.5 Initial 'fokcn-Distribution Constraiut

4..5.1 A 'fightcr Initial Pcriod

4 .. 1.2 A Second Appl'Oach for a Tighter Initial Period

4.6 Rernarks........

5 Software Pipeline Scheduling with Pipeline Constraint

5.1 Model with a Single Clean Pipeline--SDSP-SCP-PN

5.2 Multiple Clean Pipclines--SDSP-MCP-PN

5.:1 Simulation Results

5.4 Discussion

6 Storage Allocation

6.1 Memory Model

6.2 Limited Balaneing of an SDSP-PN .. .

6.3 Limit.ed Balanci!\g of an SDSP-SCP-PN

6.4 Limited Balancing of an SDSP-MCP-PN

6.5 Experimental Results .

7 Related Work

7.1 Software Pipelining

7.1.1 Perfeet Pipelining ..

7.1.2 Enhanced Pipelining

7.1.3 The URPR Algorithm

7.1.4 The Systolic Array Optimizing Compiler

7.1.5 Remarks ..

7.2 Storage Allocation '" ...

8 Conclusion and Future Research

A Example: A-code graph for Loop 3

Bibliography

vi

25
27
28
29

35

39
41

41

43
45

47
47
52
53

56

58

59
60

65

68

69

73

73

74
75
76

77

78
78

81

83

85

1

List of Tables

4.1 Single Source 40
4.2 Multiple Sources f •••• .\0

5.1 Results for SDSP-PN Model ;)4

5.2 Results fol' SDSP-MCP-PN Model \Vith Eight Stages !)f)

6.1 Results fOl' Utilization Hate Estimation il

VII

(

(

---_._--_._-------------

List of Figures

1.1 Schedule Computation

1.2 The Concept of Balancing Ratio .

2.1 Dataflow Graph

2.2 Ex('clltioll Snapshot

2.3 Statie Dalaflow Graph

2.4 Software Pipelining of a Dataflow Program

2.5 Example L2

4.1 SDSP-PN of LI and L2

4.2 An Example of the Bchavior Graph for the SDSP-PN of LI .
4.3 An Example of Steady-State Equivalent Net

4

6

9
10

12

13

14

2"1
25
28

4.4 Code Sequence with Single Source. 38

4.5 Code sequence with Multiple Sources 38

4.6 A Code Scquenc<, with an O(n) Lower Sound 40

5.1 SDSP-SCP-PN and the Behavior Graph '" 48

5.2 SDSP-MCP-PN and the Behavior Graph . . . 53

6.1 Storage Usage of Argument-ftow Model versus Argument-Fetch Model 59
6.2 Minimum Storage Allocation.

6.3 A-code for Loop 9.
6.4 Loop 9 under Partial Limited Balancing

6.5 Loop 9 under Aggressive Limited Balancing

A.1 A-code Graphical View of Loop 3

viii

62
63
64
72

84

-...._- .• ,." ... ".~.'''__ ~" .• _n._" .. ~_ , ... , ..•. _ '~ .. _ _ .. _ ... _ __ ._----------

r--- --------------

Chapter 1

Introduction

With today's terhnology, Illultiple functional unit!'. (,illl 1)(' illl'Orpor.lt('t! 01110" :-.illgl<·

chip, significantl} increasing paralld processing pow('l'. Sup{·r!'.('c\lrtr. Very Lonp; 111-

struction Word (VLIW), and sup('rpip('lill(, machilws éll(' tYPlc,tl ,m 11I\{·clll){':-. (It'alt·"

using VLSI tcchnology [FlsS:L G090. h:~lH9. LUll~!). M('lx<)] To l'If(·(1 i\',.J.\' III dm' 1 hl'

increased machine parallt'li~1lI of tl\l' 1' IIIrtcllÎnc rl'quln''' lilw-gldÎII (11I 111l(li()II-I(·\'(·I)

parallelism wlthin the !->OUI(,(' rtpph(dt 1011. TIlt'll'fuJ('. 1 lit' (·'ploll.tI H)II of 11Iw-gl<l11l

parallelism bccolllcs a major I:-'SlIC III df(·(1 IV<' (olllpd('1 d(· ,)!,11 EIIl(1<'111 loop ('X('(\1-

tion, in part icular, has attract (.<1 lIIl1ch aU ('II t Ion I)('(iw:-,(' t hl:-' 1 \\' IlI'lI' .. pl (J((·:-. IIIJ!.

unit spends a significant alllount of till1t' durlllg progr.tlll (',('(1111011. Th(· III si p,1I1

of this thesÎs explores the u:-.t· of dala./lol/' . .,o/fwa/'(/)//)(1,11 III!} fOI (Olllptlt'-1 Illll' loop

scheduling for the exploitation of filH'-gr.tin par.tIl(·II:-'llI. Dtttdflow !-loft Will(' pIJH'ltllill)!,

is a schemc for structuring fine-grain p.trall('II!-l1ll III Ill(' 1001' hodv III ,l Wily .,() t.1r,tf il

can be exploited by statlc dataflow computer

The second part of tht· t h('sis d is(Il,,!-I{':-' tilt' appl icat iOll of il gl aplr)'(·:-.tll \1 III l'Il1g

scheme called lmutcd balaTJc/llg [(~II\V9(l< 1 Lllllit('d balall(ing ('dll Ill' Il!-l(·d tl) I{·dll/,(·

the amount of storagC' lisage in dataflow !-Ioftwale pip('lllllllg NllHlt'rOIl" Slll'V{'y~ !I,\\'('

shown that the respon~(' tillH' of Illctin Il)('lllory Ih d IIIdjor hofll"rh'(k wh,(Il 1))(·\'(·111

ideal speedup from bt'Illg achievpd 111 high Iwrforlll.tll< (' (Ollll'lIt(·, dl (lJilt'!lIIl(· TIlt'

use of expensive high-spt'('d llH'lTlOry. 01 T'('!Jl • .,/(,. .'>(f for tclllpOlrtr)' Iolagl' lu II'

duce memory acccsses play'i all illlport,tIlt rolt' III lIIri.llltallllllg pw< ('!-I or t hlOughplll.

Unfortunately, rcgister !wb alP il !-I('dlC<' 1 (· 0111 ('{', .\Ild t1lt'il II\I'rr(·(IIV(' Il {· I{·,ul ... lu

significant performance degraddtioll. A~ d rp:-.ult, tilt' tudy 011 :-.Ior,lg(· rt·dll<l JOli lu

reduce the amotlnt of register rcq ni n'd is anot her cr Il Cl ctl t'1('!IwIlI III ('0111 pd(" (I<·~igll.

{ .

1.1 Architecture Model Assumption

For pip('lilwd (oll\putf'r archit ('cturC's, ha::al'd.~ <\1'<' rl main ral1~p of performance degr .. -

dation [IIP!)(), Kog~ll. Sf/'lu·fl11'f1Jhaz·1.fcls ari:-,(' flf)1lJ r(,~OIlr('(' conflicts W)WIl hardware

caJlTlot support <,irnllltaII('OIl~ operation!> hy t wu, posslbly illdC'pendcnt. in:-.t ructlO!l!:>.

Structural hcl.zards rncwa:-.(· th!' difficlllty of codC' gencration. The standard software

approach t,o avold pipdlll!' anomalies call~('d hy hazards i!> to inscrt delays, such

as NOOPs (NO OP('fiÜIOn in:-.trll(tion), 1)('!'o\'Ct'IJ the two olH'rations that conflici.

TI\(' lengt.h of the !eqllin·d delay is call('d t1H' II/i(l'Jock p<'Iiod. '1'0 l't'sol,,(' stIuct.ural

hazards, t1H' cornpilpi mll~t lind sllffici(,llt pcl.lal!f'1 illstrllclio!l~ 10 fill lh(' intf'rlock,

thus kœpillg th!' pipelllle \lM·fully busy. Ilo\\,e\,('\" it i~ IInltkely that an effiCIent code

sc!wduling "f1pro,t(h can)(' fOUlld SlllC(' sdH'dllling with sI rucl mal hazard~ IS NP­

hard [NPA~81.

Cod(' sclH'dullllg bet!'1 abo)H'('Il ('xalllll)('d llIlder condItions III which the pipeline is

In'(' of stnl(t.ural hétzard!'1 [BC;~m, HG8:~]. Pr()(('s~or IHpelilws of t lm. type ar(' ealled

clmu. Muel! of tl\(' srhcduling effort focu~cd only on acychc conslraillt graph. It hdS

be('1I proV<'1l t hat schedullllg il clf'an PIP('11I1(' i~ NP-complet<· If the maximal dclay

on direded edgl's of the const raint graph is 1I1lboundcd [II GS3] and i::, polynomial

till\(' solvabl(' If the (klcl.y (,cplcl.b Olll' [BGR9]. Note thett tbc latter ca~e applie~ lo a

single c1ean PIP<,line cOll~i!'1tlllg of two stage~. NOlJetlH'le~s. t}H' notion of butlding a

clt'an pip('lilll' ha~ IJot hCl'n wid('l) adopted be('all~(, 110 code ~chcdllling tcchlllque yet

dcve!op<,d could justify ib wort hiness.

Recent findings by NIColau, Pingali, and Aiken on clean pipeline seheduling pre­

sents a IH'W insight int.o 1 li!' prohlf'IIl of loop scheduling [AN8S, N PA88J. They propose

a polynomial tllne loop-sclH'duliIlg schcnw and prove that time-optimal results arc al­
ways achi('vetbk for a (';a~s of loop prograrn~ thal Itdw' 110 !OOp-c-dITied dependence

whil(' suhoptillled r{,~1I1t~ arf' gllétldlll(·ed for tll<' ~arn(' cldS'> of loops with loop-carried

depelld('ll<'e Ba~('d UpOIl th('~(' findings. tllf'y conclude thal th(' trend in architectures

will \)(' to {\Void "trurtnrctl hazards a~ 1lI11ch ét~ po%iblp In tbis thesi~ wc al50 focus

our loup Sc!WdU!\llg 011 rJIdchincs which usp ciran ('xccution pirclines, and al! refer­

('IIC('S to an ('Xccu1.IOII pipelmc ill subsequent sections will be clean pipelines, unless

otherwis(' stated.

1.2 Software Pipeline Scheduling

ln this tht'sis we are intere::.tel\ Hl applying the concept of dataftow software pipelin­

ing to a compilf,-till1c loop sclwduling scheme for computer architectures other than

2

l

......

dataflow, such as tightly-collpled synchronom paral!cllllétchilll''i (t' !! ,sllpt'rscalal' <tilt!

VLIW machines) and various ot.hel' plpclill(·d ,\Ichitt'cLlIl(,S

Dataflow software pipelilllllg is cHI (·frectIV(, loop stl'llcttlllIl!!, ~(lwlIH' fOl ,1 St"tlH

dataf\ow architecturC' by cllabling tilt' dT(hit('(1111(' to (',pIOII 1Î1lt'-!!,r.till pe\l,III('lislII

during loop exccution [GP!lO] TIlt' strC'llgth of tht' scllt'Illc lic:-, III ih .Ibility 10 /"po:-,I'

fine-grain péuallelism acro~~ 100(> boulldarl<'~ Illtllitl\'<'ly, il all.III).!,!·'" (\)(!t- (,1 slcllu'

dataflow graph) for loop bodIes into cl 'iojtlNI/'f PII)(·lill(· ~o tliell "II(«'~~I\'(' ilt'I,ÜÎOlh

can be initiated one af1('r tll(' otlwl'. III ot!lCr words, dtil,tI\ow ~()ftW.tI(· pipl'lillÎlI.I!,

allowb the initiation of " !lew Iteration hefo\'(' t \1(' pn'\'io\l'" i\t>r,lI inll ('llIls, ,H hi(·\'lIl.l!,

the same effcct as a hardwaf'(' pÎp,·lillt'. III tht' data{l(Jw lIlodl'l of comput.al iOIl, .111

instrudion is cligible for executioll dS 80011 dS ..tH of its Ic<!uÎlcd IIlput~ ri\(' ,L\',ulablt·.

As a rcsult, many waves of fomputa,\.lon (dll pro('('cd in a pip<,llIIcd fcl~hioll 1 hl olll!,h

one copy of the dataflow progra!ll grdph.

Compile-lime schcdullIIg il\\ulv('" the g(,lIc!'cttioll of tL ~t,tli(' S(lH'dlllt' wIll< h pw­

plans virtually aH run tllne IwhaviOl. '1'0 dPply the (Oll(('pt of dcüallow ~()ItWellt·

pipeIining iuto compile-tilllc 100[> ~chedlllillg I('qllll(,~ t wu fUlld,lIll('\ltal ..,(11<'1111'''', A

code mapping schcmc which ('ompllt" t.h(· givl'Il loop body 11110 ,1, ~('Ill,lllt Il ('qlliv,tI('lIt

software pipeline, expresscd at the w"lrucluHl leV('\' ,Ult! tI ;-I,d,](~(llt'dull' (0111/>111.1-

tion schetne which generat.es code from tilt' '-,uftw;u(' Pl!wllllt' .\ 11~0I01h ~tlldy U1\

pipelined-codt> mapping for sClentific applications ('ail 1)(' rOlllld III [G,IO!)O]. III thh

thesis we foclls on cstablishing il strltic ~cll<'dul(> COlllpulcltioll 'il 11/'1Il<'. 11('1(' \VI' ilS

surne lhat. a loap hody has a\rcady heen tompikd into cL ~ofl \\,tLJ'(' pl/)('llIlI'. 'l'o,l,void

a.mbiguity, wc l'der to the static ~c!tedul(' «)mplltatioll s('!tellw cL~ Sojlfll/L1't jJtpt/lllf

Schedull1lg, or SPS fOl ShOl t.

ln SPS, statie schedule generation for loops rt·lie~ Oll t,llI' (·XI..,t('1J((' of ,1 fi pl 11-

live execulwTl sequence, also known as the ~leady 8tatt'. Thl~ f<'p<'l.itiv(· (·x(·cllt.ioll

sequence remains the 5allle rq~ardless of the 1I11mbei of It< ration..,. TllIl~, t!w rllll-t 11111'

behavior of the Joor can always b<, expr<·~s(·d firlltely wlth Il)(' !',tLlIH' ..,(IlI'dlll(·. ThIs

finite schedulc \Olllprises thrc(' s!'gmclIls' prelud(St fj/LI'nCf, st('ùdy trt,tl', tille! j)O.,tllll[t

sequence. The prelude i~ the "eqU('IIe<' of O[H'ratlolls l('ddlIIg 10 lite ~t<'<ldy ..,t,d(·, wh!!('

the postludc is the ~cqucllcc of 0p('rdtiolls 1('<)1111('<1 to (ompll'!(' loup ('X/'ClltIO/l 101-

lowing the steady statc. FlOm t.he pel~l){'(tive uf il hardwdJ'(' 1'11>('1111<', /)1('111<1(' tlllt!

postlude sequences correspond to t.he sequence of operati()11~ whi('h li Il ,tIld dl ttin t!lI'

software pipeline .

Figure 1.1 illustrates the method of generating cl ~tatic S(hec\u\p IIsill~ SPS. Fi~­

ure 1.1(a) givcs an exarnple loop body, and Figure 1.1 (b) list~ tl](' dataflow III fOllllatioll

(

doall 1 trom 1 to n
Alil :- XliI t 5;
Bll} :- Y[i} t A[il
C [lI :- Alil + Z[il
Dlil :- B[il + C[il
E [11 :- WIll t 0[11

endall

(a) Loop LI

X[l) 5

(b)Dataflow Graph

For rd data _
arc

Acknowledgement _ ~
arc

+ C (A/D)

-. + .'

'" \
+ adjac;:ency
: llst

~(D)/
(c)Static Dataflow Graph

Figure 1.1: Schedule Computation

(d)Computed Schedule

required to map the loop body to a software pipeline. The instruction-Ievel repre­

sentation wc cmploy for the loop body is a static dataflow graph (see Figure 1.1 (c».

'l'he first. advantage of Ilsing a statie dataflow graph is that it operates naturally as

a software pipeline. With its one-token-per-arc policy it also constrains execution

to a bounded amount of storage while exploiting fine-grain parallelism. To derive a

statie schedule from t!IC software pipeline, we apply to the statie dataftow graph the

cxecution rule of dataftow computation, the rule being, an instruction is eligible for

cxccution as soon as aIl inputs are available. Pictorially, the token on an arc repre­

sents the availability of the particular input. The execution of anode is represented

by the rcmoval of an input token from each input arc and the production of a result

tokcn on each output arc. Figure 1.1(d) shows the resulting execution sequence. Ini­

tially only node A is eligible for execution. Once the execution of node A completes,

Hodes Band C start and are followed by nodes A and D. From then on the repeated

firing sequence is formed by alternately activating the two groups of nodes BeE and

AD, the third and fourth rows of the computed schedule. Note that the execution

sequence is a semantic equivalent schedule for loop LI. If LI is executed n times, the

stcady state of the schedule is iterated for n-l times.

For SPS to hc an effective compile-time loop scheduling scheme, several questions

need to be answered: Does there always exist a steady state for loop execution?

What is the time complexity required to generate a schedule? How does the scheme

4

1 work for a machine with multiple pipelined-\.!~lits·? The nwthodology l1~wd ln study

these questions is based upon Petri-net thcOI'Y [Chr8,t, CH EPï l, MIllf\9, Ham7.1).
The strong resemblance between the Pe~ri-net model and tht' dataflow 1l1O(!t·1 allows

a direct and natural application of the developed theorit's in Petri nd 1,0 d,\t,dlow.

Before we move on we need to point out that, whilc the soft.wéu·(· pipdilH' is a lIIirror

image of a hardware pipeline, the microprogralll IIsed to control th(' hardw<ll'I' pip(·lill('

under a time-stationary microprogramming sdl<'ll\c shows a SLlOllg rcs{'lllhlalln' Lo the

statie schedule derived from the software pipeline [Kog77]. III faet, t.1H' <'arlit's\' idt'él

of software pipelining was first applied ta opt.imize the llIicroprogralllll1ing colltrol

of a pipelined processor. Just as the funetion of a microprogralll is 1,0 cOIlt.rol t II('

operation of the hardware pipeline, the computcd static scht>dule can also I>t' vipwt·d

as the microprogram for controlling the software pipeline. ThC' n'st'Illhlall(,(' of t11<'

two structures relates the notion of software pipclilling dir{'ct,ly to 1001' scll<'duling.

1.3 Storage Reduction: Limited Balancing

Limited balancing is a program restructuring schcme for reducing the sYlldll'OlIiza­

tion overhead which is intrinsic in a statie dataflow design [GIIW90c]. lIow('V('r, il.s

application has a significant impact on storage reduction, thus prC's(·nt.ing a IH'W 1)('1'­

spective for register allocation in SPS. This stoJ'age reduct,ioll schc[)l<' is P('J'foJ'lIIed

before the scheduling phase. Dy applying a balancing techniqu(" storag<' cali 1)(· sys­

tematically reduced aeross a loop body according to the loop's pa.rticala.r bnllLltf'tn!)

ratio--a computed paramt'ter that charactcrizes the aehievahle computai to1l mf(' of

the final schedulc. In effect, the computation rate is the frcqu('ncy of C'X('('lltillg a

node over a long period of lime. As will be shown, the complltation rcil.c· of cl 100J>

executing on an ideal machine equals the comput.ation rate of t!\(' slow(·st. simpl(' cyd('

in the graph. Such a cycle is called a crztlcûl ('I/clf:. Limit('d balau(illg of il graph

thus requires aIl simple cycles to decrease their computation ral<'s as 1111\('11 as possihl<'

to the same rate imposed by the critical cycles. One importdltt outcome Îs th,tl tlH'

computation rate of the modified loop does not change.

Shown in Figure 1.2 is an example application of lirnitcd balancing Ilsing the' hal­

ancing ratio. Suppose that the given code sequcncc is run on machine wit.h adequat.('

parallelism and the execution time of each node takes 1 cycles. The tok('ns IIsed ill

the graph can be viewed as the amollnt of rl'sources used. G' 1 J'epre~ellb a COIll­

putation rate of 1/31 due to the simple cycle ABC. 02 reprebl'lIts a rebtmcturillg

of Cl with respect to the factor 1/31 so that no rcsourccs are unrle('('~sary wasted.

Note that after limited balancing the computation rate is rnaintailled, élud y<'l tll<'

5

(

(

(

GI ill unbalanced. It has 7 simple cycles and the
cycle ABCA has the minimum balancinq ratio. 1.e ••
BIC) =113.

G2 ls limltedly balanced with a balanclnq ratio
SIG2) ~1/3.

Figure 1.2: The Concept of Balancing Ratio

amount of required resources are reduced. One important issue is how to determine

an appropriate balancing ratio such that enough parallelism is exposed to maintain

the maximum throughput of the execution pipeline.

1.4 Overview of Results

The results of this thesis are presented in two parts: compile-time loop scheduling and

register allocation. At the beginning of the first part, the time complexity required

for the formation of the steady state for a class of loops operated on an ideal model

is studied with a class of Petri nets known as marked graphs. Here is a summary of

our findings:

• Under an ideal machine model, for a class of loops with only one critical cycle,

the steady state appears after O(n3) iterations, where n denotes the size of the

loop bjdy [GWN91a}. For the case of multiple critical cycles, the length of the

steady state is directly proportional to a corn mon multiple factor of the critical

cycles; we are unaware of any polynomial bound for the length of the prelude

sequence in this case.

• Nodes on the critical cycles have one special property-they fire periodically

after O(n2) iterations [G\VN91a, GWN91c).

• A constraint which leads to a tightel polynomial bound for the length of the

prelude sequence is established: When the starting condition of the loop body

6

meets the constraint, the stcady state appt'ars aft.('\" O(11) it<'l'at ions, rl'gardlt,~s

of thc number of critical cycles. Most importantly, this COIlstr,t1l1t C,III (Ilwtly~

be satisfied in 0(71) itcrations.

The results based UpOII the flï:::t two points indinül' thtlt IWrft't t polynollllai t illH'

complexity cannot be established for the SPS schclll<' for proglallls wlth lIIultiplt'

critical cycles. The thilù rcsult above indi('au's, howt'Vt'I', 1 Ildl w(, CcUl bypass t hi:.

difficulty and derive an approach wit.h polynolllial tinw <OllIph'xity hr fixillg"l1 illil i,1I

condition. Doing so, wc ".'cre able to achif'V<' cl significclnt illlpI'OV('IIH'lIt ill ('f!ici('lIcy

in finding a scht'dule.

At the end of the first pa.rt of this document., a multiplc-pip<,lill<' I\H}(Il'llllv()lvil\~

hardware pipelines and program graph is composeo alld applicd 1,0 (''{plaill tht' illllll­

enee and property of clean pipeline 011 our sclwdulillg dppW,l(·!1. UsillA tilt' Illlllt iph'­

pipeline model we show how the steady-state sch('dulc can agtlill 1)(' ohUulwd cLlld

serves as a schedule methodology fOI gellPral pipelilled ,LI ('hitec!,ul(':' PIt'limill,u'y

simulation performed on a set of Livcrmorc Loops illustrat(·:. tht' f('élsihility of WIII­

puting compile-time schedule by this approach. In t1H' ~('cond part. of this dOCIlIlll'llt,

register allocation is discussed for an idcal modcl and a Illuitiplt'-pipt'llllt' Illodd. Fur

the former case, the execution rate of the eritical cycle c,m 1)(' L1SP(1 di n'cUy as li\('

balancing ratio in the limited balaneing sdICllle. For the Jatlt'I' Cc1S(', ,l lllath"lll,tI,u al

guideline is derived to estimate the appropriate balancing factol so tha\. CI (Cl'\.alfl

percent utili7-ation of the machine pipeline can be guarant('('d.

1.5 Thesis Outline

This thesis can be boardly divided into four major parts: The first part provid('s

the necessary background to undt'rstand the dataflow cx('cutioll 1110(1<·1 alld Pdri-ll('t

mode!. It also reviews the concept of datatlow software pipclinillg and ddillcs tI\(' c\ass

of Ioop upon which we focus. The second part. introduœs approach('s for t'stahlishing

a statie schedule with SPS for an ideal machine, a single-c1ean-pip<'lilll'd m(\chillt·, alld

a multiple-clean-pipelined machine. In addition, the lime complexity of gellC'ratillg a

statie schedule is studied. The third part discllsseb limit('d baJancing, its applicat.ioll

on reducing the synchronization cast, partirularly for the dataflow lIIodel, and its

application to the problem of storage reùuctioll. TheIl derivatiolls of an approplÎat,('

balancing ratio for the thrce modds arc prescntcd. The lasl part of the thc:-.i:. ('ollsists

of a discussion of related work, a condusioll and future work. 'l'lw apJ>('lJdix attached

at the end describes briefly the graphical vicw of A-code- a progl'éllll /'cpre:,clltatio/l

in the form of a signal graph (for the static dataflow argulIwnt-fet.ch lIIodcl d('velorwd

7

,
4

at McGiIl University) to facilitate ullderstanding of the code sequences illustrated in

Chapter 6.

Chapters 2 and 3 are especially important to understand this document: Chapter 2

gives an introduction to the general dataftow execution modcl and the static dataflow

model. 1t then intrC'duces the concept of dataflow software pipelining and defines the

c1ass of loops undcr examination at this stage. Chapter 3 provides the reader with

the nccessary background to understand the Petri-net theory we use.

Part two of the thesis consists of t wo chapters: Chapt er 4 introduces the framework

for gencrating a static schedule in SPS for an ideal machine. It shows that the steady

state is always rcachable in polynomial time based upon Petri-net thcory. Chapter 5

establishes the framework for the multiple pipelines.

Part three of the thesis consists of a single ehapter: Chapter 6 introduees limited

ha/a1lcing and discusses its application on synehronization cast reduction and stor­

age reduction based upon two models: the statie dataflow argument-flow model and

the statie de. taftow argument-jetch model. The concept. of balancing ratio and its

estimation are also discussed.

Part four of the thesis consists of Chapters 7 and 8: Chapter 7 compares the

set of relaled works from other groups: Nicolau and Aiken's perfecting pipelining,

Ebcioglu's enchancing pipelining, Su, Ding, and Xia's URPR algorithm, Lam 's soft­

ware pipelining, and the valid schedule computation originally by Reiter. Finally,

Chapter 8 concludes the thesis by summarizing our achievements and pointing out

topies for future research.

8

f
:

-

Chapter 2

Dataflow Model

The dataflow model of computation offers a natural way of exprcssing a.nd <'xploiting

fine-grain parallelism in an application [AC86]. An abstract vi('w of the op<'ratiollal

model is best explained using a directed graph. In tl1<' ('ontex!. of dal.aflow, l'Iuc!t

graphs are called dataflow graphs. Each nod(' in llH' data.flow ~I'élph st,ctJ1<ls fol' ail

operation or an instruction, also known as aclo,., Dil<'cted all:-' drélWIIIH'twPc'lI op

erations decide the partial ordel' implied by dat.a depclldellC<'s, 'l'II<' g<'IIC'l'rlt iOIl alld

consumption of data values in the course of computation ar<' pictonally d('(>le1.('d hy

data tokens traveling alone: the arcs in the graph. A token on a direct('d éll(illdiccll('1'1

the availability of an input for the dependent node produced hy th" sourn' 110(1.'. A

node is said to be enabled if ail of its input data are available, dlld it i:-. indirat('d hy

the arrivai of tokens on each input arc of the node. An enahled instructioll is l'ligihl(·

for execution (or firing) at any time. This type of synchronous cOlltrol for rolllputa­

tion is known as daia-driven, as opposed to the technique of u:-.illg a progralll ('0\1111,('1,

as in conventional computer designs. The result of exccuting <1 Ilod(· is illdi(at<,cl !Jy

removing a token from each input arc and generating a result toke" 011 ('adj output.

arc. Multiple instructions can be executed simultaneously, depcnding UpOII llIélchill('

parallelism. Token distribution at an instant reflects the currcut state of the lIlod('!.

a

b
c

ct

z

Figure 2.1: Dataflow Graph

9

f
l a

b
c

d

a

b
c

d

--"z

z

a

b
c

d

a

b
c

d

Figure 2.2: Execution Snapshot

z

z

An exarnple dataftow graph for the computation z == (a + b) x (c - d) is shown

in Figure 2.1. Figure 2.2 portrays the execution of the abstract model using three

execution snapshots. Initially, the addition and subtraction nodes are enabled with

one token on cach of thcir input arcs (Figure 2.2(a». After execution of the addition

node, a result tokcn is gcnerated on the node's output arc, and the subtraction node

remains enabled (Figure 2.2(b»). As the subtraction node carries out its operation,

the multiplication node becomes enabled (Figure 2.2(c». Figure 2.2(d) shows a final

snapshot of the computation.

2.1 Static Dataftow Model

There are two variations of dataftow: statie dataftow [Den84, DG88, Den911 and

dynamie dataftow [Aea83, AG82, ADNP881. The statie model en forces a one-token­

per-arc policy in which anode is said to he enahled, thus ready for execution, as

soon as ail of its input arcs are filled and ail of its output arcs are empty. This

restriction constrains the graph to at most one activated instance per no de at any

time. Since each token stands for a data value, this restriction assmes the use of finite

spacc during graph exccution. In contrast, dynamic dataftow has no restriction on

the numb('f of tokens per arc; there il> no limit on the number of activated instances

per node at any time. Thus, there is no a-priori bound on the amount of storage

10

J

1
required to support concurrent activations. In addition. tht' arrivai of lob'lls llIigltt

be out of order. To ensurr no arnbiguity during ('xecut.ion, tOh{'I\S gell{'lalt>d flOl1l Ill<'

same iteration, or th<:' sanw invocation, are tag~t·d wit.h t lit' sault' colo\'. :\ Bode' is s,lid

to be enabled a.i soon as tht're exists a tok('1l with tht' salll(' color 011 ('ach illput arc

The dynarnic dal anow modcl i~ knowll to hl' dble to ('xploit tltt' IlIclxillllllll par,tll"lislll

in an application ln this thesis Wt' use ~tati(' dataflow 'iillC(' storag(' is Illldt\1 plogl,lIll

control.

To formaJly enfùrcc thc L>1l(·-tokt'lI-pcr-arc (onst.raillt. reqllllt'd for sl,ttlt d,II,dlow,

ackTlowledgement arcs are used. For eaeh data arc (a, b) ill the grclph, ,ln (\ckllowl{·d)!.(·­

ment arc (b,a) is attached pointing in the oppositf' dilt'ttioll. A~ nod.· b (,01111'11'1(':­

execution, it deposits a rcsult token on cac" data ère and d . .'\lgll<l[t.ok(,1\ on tW Il

acknowledgcment arc. The signal tokt'Il ~('rV{'5 10 Ilotify IIIC' l'rt'd('((,~SOI (lIod(· li) litaI

it can safely begin a new ('x('cution without dalJla~ing ail (',\l'lit'l n'stdt. B('sid('s III<'
acknowledgement arc, the I1ring rule for th<> ahstract llIodd i!-> rp{iI\P<l t,o prpsprv<, t I)('

static quality of the graph:

• An node is enabled if thcre is a token on ('ach of it.s input cU n"

• An enabled node can lj(~ fired by r<'IllOVlIlg a tok('11 frolll ('aell illput arc iHld

deposit.ing a token on each output a.rc.

Figure 2.3(a) gives an example statie dataflow graph for the colllput.at.ioll Z =

(a + b) x (c - dl. Fii~ure 2.:3(b) shows a sllapshot aft.er ('X('CII ti IIg hoth tllC' addition

and subtraction operations, As illustraled. ail input tok('Il'i ar<' consIlIJl(·d; oulpllt

tokens carring the associatcd results arc sent to t.heil data MC.., 1,0 1)(' IIs('d by 1.)1('

multiplication node, and signal tokeIls aH' ~(,Ilt along thell c\CkIlOwll'dg(,IlH'lIt dl'< ~ 1 ()

notify the unseen operatiolls presurnclbly on tl\(' Icft to re!oad tlwir inpllts agaill.

Suppose that th" input ares of the additioll and tlubtractioll 1I0d('5 ill(' Iclo,u!t'd al

this point as shown in Figure 2.:3(c); both operatiolls cali ilOt. r('~tall without f'(·('t·ivi/lg

a control signal from the multiplicatioll node to confirm tl\(' Il!-lt' of LI)(' ('arltt'r Jl'5111t.

As a result., the one-loken-per-arc poliey is t'nforced by th(' ,u kllow!('c!g('lIwlIl éllCS.

After the multiplication completed, the additioll and sUblt,lctio/l lIod('~, a~ w('11 a~ tilt'

unseen operations presumably waiting for the result of :::, M(' ('Iiglble for ('XC(IItlOll

The above examples exhibit two types of paralleli~lll: ."palud pctr<tlh·lislll and il 111-

poral parallelism. The former one i~ rcprcscntcd by any two SilllultélW'OIl!->!y ('wlbl('<!

nodes which have no dependence, such a.'i the at1dition and subtradioll actor'i, The

latter parallelism is demonstratcd by the pipclining of independenl waVC's of data

through the graph., for example, the rc-('nablcd addition and suhtraclioll lIodps.

Il

-",-

l-
..... -..

a a \ a

b b b

z z z
c c c

d d , ... d

(a) (b) (c)

Figure 2.3: Statie Dataflow Graph

Since the dataftow model has no notion of a single locus of global control, as

cioes its Von Neumann countcrpart, the execution of enabled actors are not restricted

ta any particular order. For implementation of loop and conditional constructs in

a dataflow graph, a set of well-behaved graph schemas have been developed to gov­

ern interconncction [DFL72]. Under the schemata restriction, a computation always

yields the same result, unaffected by the execution order of enabled actors. In other

words, the schemas ensure dete1'mmate computation, A larger program is merely a

hierarchical composit.ion of elementa.ry sub-schemas.

2.2 Dataflow Software Pipelining

Dataflow software pipelining is a pipelined code mapping strat.egy performed on units

of program text called code blocks. Code blacks è.:!fine the major structured values

involved in a computation. Dataflow software pipelining is particularly effective for

implementing array operations on a static dataflow computer. For example, the

following loop body takes as input two arrays A and Band produces another array

X:

for i in l, n

Xli] = «2 * A[i])2 + (2 * B[i])2)2
end for

For this block, the corresponding dataftow graph can be easily software pipelined.

The technique of dataOow software pipelining involves the arrangement of machine

code su ch that successive computations can follow each other through one copy of

the code. If we present a sequence of values to the inputs of the dataftow graph,

12

, ..

AIn] ••. All]

+ + t t
Stage 1 Staqe 2 Staq(~ 3 Staqf> 4

Figure 2.4: Software Pipelining of a Dataflow Program

these values flow through the program in a IJipclincd fashioll. In the' abovt' t'xalllpit-,

successive elements of the input array A and B are [t>tc!wd and [(.<1 into t.lH' dal(tflow

graph, e.g., A [1], A[2], ... , A[n] and B[1], B[2], ... , B[n]; thus, (,olllpuf.atioll l/I'On·l'd!'.

in a pipelined fashion. Instructions which helong lo li\{' saillI' stag(' cali h(· 'I·X(·cut.(·1i

in parallel sinee there are no data dependcncies among thelll. Mor<'ov(", dmillg t.!\('
pipelined execution of the program, multiple stages can 1)(' ('xecul<'d (Ollell! f'('ntly

stages 1 and 3 are enabled and can be executed in parall('l, alld the SalJH~ applw!'.

to stage 2 and stage 4. The power of fine-grain parallclisrn ('an hl' deriv('d froJll

programs which form a large pipeline in whirh many instructIOns III lIIult.ipl{· !'.t.a)!;t's

execute concurrently. For the statie dataflow model, software pipclinillg is (·!'.sential fol'

exploiting the parallelism within a loop body, and thus, it i~ a nt'C('!'>SMY optillli;l,(üioll

for numerical scientific applications.

2.2.1 Dataftow Software Pipelining on Ideal IVlachines

Dataflow software pipelining which was proposed as a modcl for structul'illg fille-grain

parallelism has been studied mostly under the conditions of an idca\i;"cd dataflow ar­

chitecture, one having infinite resourees [Gao89J. Herc we providc a SUrIllllary of SOIlW

of the main results of previous rescarch using this modcl, A graph is ba/allc((/If ('vpry

path from an input node to an output node contains exactly the sanH' lIum})('r of ilC­

tors. A graph is maximaily pipelined if it is balanccd [Ga,086J. '!'o il,(hi('VP maximulII

pipelining, a basic technique called ba/anczng is used to trMl:.fol'Ill illl ullbalall('pd

dataflow graph into a balanced one. This is donc by introducing FlFO blJfr(~n; 011

certain arcs. To optimally balance a graph, a minimum amount of buff<'l'ing is inlro­

duced such that execution can be [ully pipelincd. It is known that optimal balancillg

l:l

r

l

do i from 1 to n
Ali) := Xli) + 5;
Blil := Y[il + A[i];
Cri] := A[i] + E[i-l];
Dli) := B[iJ + Cli);
Eli} := W[il + D[i);

end

(a) Loop L2

rorward data -.
arc

Ackoowledgement ..
arc

XIiI 5 Foedback data -(>

alC

(b)Dataflow Graph (c)Static Dataflow Graph

Figure 2.5: Exam pIf> L2

of an acyclic dataflow graph can be formulated into a linear programmillg problem

which has efficient algorithmic solution. A dataflow compiler uses these algorithms

to perform code optimization.

2.3 Loop Representation and Loop Domain

Statie dataftow graphs are used as the instruction-Ievel representation for the Joop

body. The advantages of using a static dataftow graph are t.hat it operates naturally

as a software pipeline, and it constrains the execution modet to use a bounded amount

of storage, by its on<,-token-per-arc policy, while exploiting fine-grain parallelism.

The class of loops which wc focus on herc are called Stalze Dataflow Software

Pipeline (SDSP) loops. They are non-nested. For the case of nested loops, our code

generation technique is applied directly to the innermost loop where the processor

often spends most its execution time. Conditional constructs are omitted from the

loop body. The existence of conditional branches presents a harder problem for

construding a statie schedule because of unpredictable hranchillg behavior. The

suhject of including conditional constructs is currently under research. Loop-carried

dependence is restricted to span across one iteration only, 80 the size of a loop body

stays within a manageahle limit. This class of loops has a simplicity which allows the

corresponding software pipeline to be obtained in a straightforward manner.

Figure 2Jj(a) IS an example of a loop body with a loop-carried dependence, and

Figure 2.5(b) shows the associated datafiow graph. The arc which expresses the

loop-carried dl'pcndence is called a feedback data arc. The rest of the arcs are called

14

1

. '

fm'ward data arcs. Note tha.t this graph only pr('sents datallow illformatioll withill tht'

loop body. To obtain the t:ùrresponding statie dataflow graph, acknowlt'dg<'llJ('llt arcs

are introduced (sel' Figure 2.5(c)). Not(· that d (·ompl(lt(· r('pn'st'Iltdtioll of il loop in

the formaI dataflow mode! involves control actors, Sllch as lflt'l'!lt alld 81/1llch [DFLï21.

Control actors are omitted in the discussion for simplicity.

A SDSP G, consistent with above assumptions, can forlllall)' \)(' t'xpr'('ss('" as Il\('

tuple:

(V, E, E', F, F')

V is the set of actors (or vertices) in G. E and E" arc rcspedivt'Iy 1,11(· l·;(·t of forward

data arcs and the set of feedback data arcs. F and F' are tl\(' set of acknowl('dgt'IIH'llt

arcs for E and E'. Figures 1.1(c) and 2.5(c) illustrate two possihle candid,ü('s of élll

SOSP, one with and the other without loop-carried df'pl·!Hl(,IIC1· .

15

1

.,.
,

,/

\.

Chapter 3

Petri-net Modeling

Since the original dissertation of C. A. Petri was published in 1962 [Pet62], Petri-net

theory has emerged as an important tool for system analysis and modeling of a wide

range of applications Petri-net. theory allows a system to be modeled by a Petri net,

a mathematiCdI represcntation. Analyzing the modeled system can reveal important

information about the systPIlI's structure and dynamic behavior. This information

can he beneficially used to suggest system improvements

3.1 The Model and Related Notation

A Petri net PNis a three-tuple (P, T, A), where Pis a non-empty set of places denoted

by {Pl, P2, . .. , Pn}, T is a non-empty set of transitions denoted by {II, 12, ... ,lm},

and A is a non-empty set of directcd arcs slleh that P 1: 0, T =1= 0, P n T = 0,
A ç P x TuT x P. Pictorially, p, T, and A are rcpresentcd by circles, bars, and

directed arcs, rcspectively.

By COllventlOll, dot notatlOft has been employed as a mcans of simplifying the

representation for d set. of places and for a set of transitions. Shown below is the list

of possible usages of dot notation, where Pl and Tl den ote the subset of P and Tin

PN. In addition, (t, p) denotes the directed arc from t to p while (p, t) denotes the

directed arc from P to t.

• 'p = {t 1 (t,p) E A} (the set of input transitions),

• p' = {t 1 (p, t) E A} (the set of output transitions),

16

1 • ·t = {p 1 (p, t) E A} (the set of input places),

• t· = {p 1 (t,p) E A} (the set of output places),

• 1· si and Is, 1 denote the number of elements in the tiet ·s and s· rcspt'divply,

where scan be a place/transition or set of places/transitions.

3.2 Marking and Firing Rules

A marking of a net is a functioll Al : P - Z+, whcre Z+ is the set of lIon-Il('!!,ùtÎ\'('

integers. The non-negative integer associated with a place p, denoted by M(fJ), r<,\m'­

sents the number of lokens on the place. A Petri flet with a markill,!!, is étlwctyS ('('1'('1 J'C'd

as a marked Petri net. Marking Mo Îs always referred to as the initicd Il 1 cil klll).'; of "

net.

A transition t in Petri net PN is said to 1)(' enablcd hy the mctrkillp; M, d('llol('d

by M ~, if and only if Vp E ·i, M(p) > O. Ali enablcd trallsitloll ("cUI Il(' jirnl. TIJ('

firing of an enabled transition t is donc by removing one Loken frolll ('ctell of tlw illpllt.

places p E ·t and depositing one token on cach of its output. plat('s]J E 1·. A:"Sllll\ill~

the marking which enables t be M and the markillg which is obtailll'd by firlllg 1 \)('

M', firing can be expressed as AI ~ M'.

A marking M' is said to be reachablc frolll M if A.JI CciII 1)(' obtctiJlC'd by firillg cUI

enabled transition t, M ~ M', or by fi.ring a sequence of trausltions 1f' = i"lb ... 1"

M ~ Ma ~ " . ..s M'. III the latter case, 1f' == lulb . .. I, is tel'Illed tif(' ji/'tr/g ,"wqllflt('(

A firing sequence 7r is callcd cyehe ji/'tllg sequcnr(' if, for any Illarking M, M .:'.. M

and 7r is Bot empty. Let a be a firing sequence. TIH'Il f(a) is callc·d the' jiT'll/g lJ(dol'of

u, where f(u)1l denoting the z-th element in th<' vedor, is tlu' IlUlllbcI of O(,CIlIT('IlCP~

of transition i, in u.

The Jorward marking class Û of a marking M is the set of IIIal killgs that (t! ('

reachable from M. Conceptually, each distinct marking of a Petri net rl'pn'scllts a

distinct state in the modeled system. Similarly, the forward marking rlass Mo of tilt'

marking }v/o represents the set of reachable states of the rnodcled ~y:.,t,(~1Il

17

t

{

3.3 Liveness, Boundness, and Persistence

A marking M is live for a transition t if and only if for every marking MI in the

forward marking class M there exists a firing sequence which fires t. A marking M
is live for a Petri net PN if and only if it is live for every transition in the net. If PN

rcprcscnts a model of a system, the liveness property of PN implies that the modeled

system will never deadlock.

A marking M is bounded for a place p if and only if there exists an integer N such

that for cvcry marking MI E M, M.(p) $ N. If N = 1, the marking M is called safe

for p. A marking M is bounded (or safe, for the Petri net PN if and only if M is

boundcd (or safe) for every place in the nd. Note that if PN is bounded, the set of

reachable statps of the modeled system must be fini te.

A Petri Het is perslslent if and only if for aIl t l , t 2 E T, il =1 t 2 and any reachable

marking M, M !1. and M ~ imply M t2.!j (the firing of transi tion t 2 after the firing

of transition id; i.e., if il and t 2 are enabled at a reachable marking, the firing of one

cannot disablc the other; otherwise, it is said to have chotce.

3.4 Sorne Special Structures

• Self-Ioop is a transition which has both input and output from the same place.

• A Petri net PN is said to have structural conflid if t··ere exists a place pin PN

sueh that Ip'l > 1. The existence of structural conflicts is a necessary condition

for situations where choice might occur.

• A Petri net model is said to be COTlsistent if and only if there exists a non-zero

integer assignment to each transition in the net (where each arc is assumed to

carry the integer of its attached transition), such that at each place, the sum of

the intcgers assigned to each of its input arc equals to the sum of the integers

assigned to each of its output arc. The assignment ensures the existence of

repeatable bchavior in the model so that it Îs meaningful to talk about cycle

lime. Here are the two known theorems on cOllsistency [Ram74]:

Theorem 3.1 A Petri ncl PN lS conslstent if and only if there exists an initial

marking !v! for which there eXlsts a cyclic firing sequence.

Theorem 3.2 A Petri net PN which has a live and bounded marking is consistent.

A corollary of the above theorem is that, if a Petri net has a live and bounded

marking, there exists a cyc1ic firing sequence.

18

3.5 Marked Graphs

A cJass of Petri nets which is important to our work is the c\ass refcrrl'd tn as mark<'d

graphs.

Definition 3.1 A Petri nd PN = (P, T, A) is called a markfll gmph if a1ld ouly if

Vp E P, 1· pl = Ip . 1 = 1.

Marked graph must bc persistent because, for caeh plac{\ in th(' gl'clph, t 1\(·1'(' is

only one associated output transition. Here are sorne significallt reslllts fol' lIlark('d

graphs (for proofs, see [CHEP71]):

Theorem 3.3 A marking is live if and only if the ioken couul of t'V"]'!J Slmp/" ('!J('!f.

is positive.1

Theorem 3.4 A live mal'king is safe if and only if every el/gr ln IIH' !/1'lLph is in (l

simple cycle with token count 1.

Theorem 3.5 If 7r is a cyclic firing sequence such that M ~ !vi, ail tm1lsl/ions have

been fil'ed an equal numbel' of ttmes.

3.6 Timed Petri Nets

Adding the notion of time to the basic Petri-net model enables the eharacteri:!'ation of

system performance. In this thesis we consider that a detcrminislic lime, expl'(\ss('c1

by a non-negative integer number, can be assigned Lo eaeh transitioll in tlH' ha.sic

Petri-net model rRam74, RH80]. The model described below is made up of t11(' orig­

inal timed Petri-net model introduced by Ramchandani [Ham74], and t11<' (,OIl({·PI. of

instantaneous state subsequently developed by Chretienne [Chr85].

Formally, a t~med Petri net is defined as a pair (PN, n), wlH'rc PN is the hasic

Petri-net tuple (P, T, A) and n is a function that assigns a non-ncgative i/lteg('r TIto

each transition t, in the net (i.e., n : T -+ Z+, where Z+ is the set of /Ioll-Ilegativ('

integers). The value TI denotes the execulzon lime (or the firing lime) of t.ransitioll t,.

The state of the timed Petri net at time u is no longer described only by tlJe

current marking at time 1L (Mu) because sorne transitions rnight still be pl'OcC'ssing al.

time u. A new concept of l'esidual finng lime vectoT', Il, is mtroduccd lo k('ep lrack

of on-going executions at each time step. Ru{t,) stores the remaining cxecution tirne

1 A simple cycle is a directed path PIt J PI: . t'Pm su ch that ail placeb and tranbltlOnf> are diffN('nt
except P, and Pm.

19

1

r ...

of transition t, at time u. Accordingly, Mu and Ru together define the instantaneous

state of a timed Petri net. We also make the following two assumptions regarding the

firing ruie of cnabled transitions:

Assumption 3.1 Two distinct firings of the same transitwns cannat avel'itlp. Ta

formally enforce titis ru/e, rach transition in the net is assigned a distinct self-Ioop of

ils own with anly one loken in it. Though wc do not draw them explicitly they are

implicitly assumed.

Assumption 3.2 Transitions are fired as soon as they are enab/ed; this is termed

the ~ar/iest firmg ru/e.

3.7 Optimal Computation Rate

Timed Petri nets have been applied in the study of concurrent systems to deterrnine

the cycle time or equivalently the computation rate. We next review the method for

obtaining the cycle time of a marked graph.

Definition 3.2 The cycle lime of transitzan t, is defined as

1
. X:,
lm -­

n-+oo n

where Xi is the lime at which transztion t, initiales its n+ l execution.

Here are sorne important results fol' timed marked graph from Ramamoorthy and

110 [RH80]:

• The nurnber of tokens in a simple cycle remains the same after any firing se­
quence.

• Ali transitions in a marked graph have the same cycle time.

• Cycle time is computed by

where k = 1,2, ... ,q and t l E T;

n(CI,) = L:t,ECk n(t l) is the sum of the execution times of the transition III

simple cycle Ck;

M(Ok) = L:P,EC/c M(PI) is the total number of tokens in simple cycle Ck;

20

1

-

q is the number of simple cycles in the net, excluding tilt' sdf-Ioot> illlplicitly

assumed for each transition; and

the cycle time of cach self-Ioop is refleded by nU,), VI. E T .

• The computation rate 1 of a transition is the average Illlmber of firings of that.

transition in unit time and is computed by the r('<'Ïprocal of t!w cyd(' t.il\\<' .

. {M(k) 1}
"(=mm n(Cd'!l(i.)

where k = 1, 2, ... , q and t l E T

• The simple cycle Ck which gives the maximum cycle time, or equival('l1t.ly 1.11<'

minimum computa.tion rate, is known as the crliicn/ cycle.

In addition, Ramamoorthy and Ho dcmonstratt's t.hat éL valid ('x('("ut.ioll sdwdllip

5upporting the optima.l computation rat.e call always 1)(' compllt.ed for ét liVl'-bol1lld

marked graph. This result is stat.ed in the following lemméL and is lls('d sllbs('(\U('IIt.ly

to deduce a polynomial bound in Chapter 4.

Lemma 3.1 A va/id execution schedule for cach transitwu II (,llll br df1'l/Jfd lIIilll /l/(,

following Ume constrawt, once the cycle tlme a IS delcrmincll:

s; = a. + ah

where S~ is the time at which transition li commences the h+ 1 jirmg, lmd (lI i.., tlH'

time at which transition l, commences the first firing.

Cycle time a is

{
n(Ck) }

max M(Ck)' O(t l) ,for aIl simple cycles Ck in PN.

The starting t.ime au of transition tu can be assigncd as fo\lows:

1. Define the distance from transition li to transitioll i) to be H(tl) -- oM(]J.)),

where PI] is the place in hetween transitions il and iJ'

2. Find a transition ts , which is enabled initially and assign 0 t,o a~.

3. Assign au to each transition tu sueh that au is the gl'catest distance from ta to

t,u i.e.,

au = max{ L n(tw) - a L M(Pab)}
R

IwER PClbEIl

where R is a path from t& to tu. Note that the single-source longest path

algorithm can he applied here.

21

(

(

The cycl.'! time of a timed marked graph can be obtained by enumerating every

simple cycle in the associated graph; however, the lime complexity of the enumerating

process can be exponcntial because there exists a marked graph with an exponential

number of simple cycles [Mag84). A more efficient methfld for finding cycle time is

given in [Mag84] where the problem is formuJated as a linear programming problem

having a thcorctical polynominal bound.

The abovc computation rate "1 is optimal or lime-optimal in the sense that it is the

maximum achievable computation rate under any machine model [RH80, Ram74]. It

can be achieved when a model has enough parallelism to execute aIl enabled transi­

tions as SOOIl as they be.:ome enabled. Such an ideal machine model will be used in

the next chapter.

22

l

-

Chapter 4

Software Pipeline Scheduling on
an Ideal Machine

In this chapter we use Petri nets to examine the fcasibility and cOlllplt'XIt.y of soft­

ware pipeline scheduling. Section 4.1 describes formally the SDSP usillg a Pd,ri I)('\.;

the resulting model is called a SDSP-PN. Once the SDSP-PN is colIstrllcl<'d, Wt' al'('

then able to examine the repetitive behavior, or thc stcady slal<', r(,s\lILill~~ t'rom tilt'

execution of the SDSP, using an ideal machine modcl and will! the ('<ulit'sl. lirillg Illlt'

enforced. Section 4.2 introduces the notion of a behavior graph [R.ulI"') which, 1.,)­

gether with the live-safe properties of an SDSP-PN, pl'ovide the llIt'ans l'or provillg t1lC'

existence and uniqueness of the steady state discussed in Scction 4.3. III St'ction 'lA

we determine the time-complexity requircd to rcach stcady :state. III ;WdIOIl LI)

we discuss an marking constraint which lowers the time-complexity n~qu:tellJ('llt [01'

reaching steady state.

4.1 Modeling a SDSP with a Petri Net

It is straightforward to translate a SOSP into a Petri net call(~d an SDSP- P N. TIJ('

following algorithm performs the translation:

Algorithm 1 SDSP to SDSP-PN transformation

Input: A SDSP G = (V,E,E',F,F'), where V = {vJ, ... ,v,,}, Ru E'u Fu F' =

{et, ... ,em}, and 1 is a constant (we assume allnodes have the sarne execution lime).

Output: A SDSP-PN PN = (P, T, A, n)

• For each vertex VI in V, we introduce a corresponding transition II in T, i.e.,

T=- {tb ... ,t,,}.

23

B~ ... _

Ps

(a) SDSP-PN of Ll (b) SDFP-PN of L2

Figure 4.1: SDSP-PN of LI and L2

• For each directed edge eu = (VI! vJ) in E u E' u F U F', we introduce (1) a

cOl'responcling place Pu in P, i.e., P = {Ph,'" Pm}; and (2) a set of directed

arcs in A denoting the flow relations 'pu = t l and pu' = t J' A can be expressed

as:

A= u
e .. =(v"v,) e (EuE'uFuF')

In addition, the initial marking Mo associated with PN will simply be

Mo(Pu) = l, if eu E E' U F,
Mo(Pu) = 0, if eu E Eu F'.

Figures 4.1(a) and (b) give the corresponding Petri-net representations for LI and

L2. The resulting PN is a marked graph due to the fact that 1· pl = Ip· 1 = 1.

Accordingly, it is also persistent. Furthermore, the initial marking Mo is live and safe

due to the following two theorerns:

Theorem 4.1 SDSP-PN with initiai marking Mo is live.

24

,
1 P2

A

Pl

B

P2

A
• iniLlal

instdntaneous

Pl
state markinq

B E • terminal
inslantancous

PlO statc marklnq

Figure 4.2: An Example of the Bchaviol' Graph fol' tlJ(' SDSP-PN of LI

PraoE of Theorem 4.1.

Note that each possible cycle found in the resulting SDSP-PN contains at I(,êlst OIIC'

token. This can be seen by noting that every arc in the SDSP-PN paint.ing in t.11('

backward direction is initialized with one token. The validity of Thcol'em 1\.1 therdon'

follows immediately from Theorem 3.3. 0

Theorem 4.2 SDSP-PN wlth mitUlllltal·kwg Mo IS :iu/e.

Proof of Theorem 4.2.

For each arc (v" v]) E EU F' (in G), the corresponding arc (VJ , l'.) E E' u F initialJy

holds a token and points in the opposite direction. Accordingly, each edg(' in t!1t'

resulting SDSP-PN is within a simple cycle having a token count of 1. Helice, li\('

validity of this theorem follows directly from TheorelTl 3.'1. o

4.2 The Behavior graph of SDSP-PN

The construction of a behavior graph provides an alternative way tü descrihe lIw

behavior of a Petri net, besides a reachability tree [PetSlj. A behavior graph is

particularly useful for describing the concurrency and c., die firing sequencps of a Petri

net. From a different standpoint, the behavior graph is actually a traC(' gencral('d

while executing the SDSP-PN, according ta the carliest firing rult,. At cach lill\(,

step, the behavior graph records the set of newly marked places and the set of elJahl(·d

transitions to be fired at that step. In addition, directed arcs are introduced dlTlong the

places and transitions to denote the token ftow relation from place to transition (loken

consumption) and from transition to place (token production). The instantaneO\1S

25

t
state of the bchavior graph al time i can be described by the current residual firing

time vector R and the currcnt marking M,. The algorithm for constructing the

behavior graph is given below:

Algorithm II Behavior Graph Construction

Input: a SDSP-PN PN = (P, 1', A, n) and initial marking Mo

Output: behavior graph B

Step 1 Initial!y i = O. Let M' denote the set of currently marked places in PN.
Duplicatc M' in B. Initialize aIl entries of the residual firing time vector 17.0 to

O.

Step 2 Fire ail enabled transitions in PN. Let T' denote the set of transitions just

fired. Duplicate a copy of 1" in B. Update the residual firing time vector and

current marking al:! follows:

R.(t) = n(t)), Vi) ET',

M,(Pk) = .M.(Pk) - l, VPk E ·T'.

St.cp 3 Introduce directed arcs among places M' and transitions T'in B t.o indicate

the token flow relation.

Step 4 i = l + 1. Mil = Ut}ES t}·, where S = {t, 1 R'_l(t.) - 1 = 0, Vi, ET}, i.e., Mil

is the set of newly marked places. Duplicate Mil in Band update the residual

firing time vector and the current marking as follows:

Ri(t}) = R'_l(t}) - l, if R,-dt}) > 0, Vt} E T,

R,(t}) = R,-dt}), if RI-I(t}) = 0, Vt} ET,
M.(Pk) = M,-l(Pk), VPk EPand ~ M",

M.(Pk) = M,-l(Pk) + 1, VPk EMil.

Step 5 Introduce directed arcs among transitions T'and places Mil in B to indicate

token flow.

Step 6 Let M' denote the set of currently marked places in PN. Repeat from Step

2.

Figure 4.2 illustrates t,he behavior graph constructed for the marked graph, SDSP­

PN LI, shown in Figure 4.I(a), where the execution timeof aIl transitions are assumed

to be equal.

26

1

-..

4.3 Steady State

As can he seen, the construction proccss of the behavior graph can font ilHlt' fO\"('\'('I"

and the hehavior graph can he infinitcly ext('nd('d. A kl'j' obs(·rvat.ioll is t hcll. t IH'

behavior graph exhibits rcpet.itive behavior after an wliwl pt'l'lOd t.ht' illllOllllt uf

time elapsed befof(~ the repetitive bchavior is reached. This is shown h)' t.he following

lemma..c;:

Lemma 4.1 Behavzor graph is unique for SDSP-PN.

Proof of Lemma 4.1.

Ohviously the original marking of the marked graph IS ulllqm'. Silice t!1<'1'(' is no

structural confliet in a marked graph, the firings of ail ('Ilrtbl('d t.rallsitions al, (·ad.

time step with respect to the earliest firing rule arc unique. Th('r('for(', tlt(' validity of

the lem ma is immediate. 0

Lemma 4.2 There exzsls an znsianlancous slate in l!tf bdwvwl' gmph of S/JSP-PN

that appears repealedly.

Praof of Lemma 4.2.

The total number of distinct Ml is finitc becausc SDSP-PN has a safe marking. Simi­

larly, the total nurnber of distinct RI is also finite becau&e cach trallsiti\Hl in SDSP-PN

has a known firing time. As a result, the total number of possible instétlltall('OIlS stat.I·!>

are also fini te. Hence, if the behaviol' graph is infinitely cxtcndcd, somp inst.ant,ctlH'OllS

states must he repeated. 0

From Lemmas 4.1 and 4.2 we can sec that an instantall(,olls siat<· 011((' J'(·I)(·,Ll.l'd

will do so forever. As a result, the region of tht' behaVlOr graph bet\.v(·(·n two J'(·I)I·al,(·d

instantaneous states can he used to represent the steady-stat(' hehaviol' of th(' SDS\'­

PN executed under the earliest firing rule. Thus wc have the following d('finitlon:

Definition 4.1 A Cyclic Frustum (or steady state) of a bchavwl' grap/t /J lS litt. por­

tion of B between two consecutzvc occurrencelj of sorne repca/('d mstlLutllncOlls stail.

ln addition, the two mstantaneOHS states that sU1'Tound the jru.<,tuTn al'i' IfTmcd tilt'

initzal inslantaneous staie and the tcrrnznal znslanlaneous state.

The marking portion of both the initial and terminal in1>tantancous state rOlllld in

the hehavior graph for Li are marked in Figure 4.2, wherc the two associated residual

firing time vectors are vectors composed of zero entries. Notice that the cydic frustulII

is actual1y a cyclie firing sequence sinee it fires each transition at least once and f(~t\lrns

27

Figure 4.3: An Example of Steady-State Equivalent Net

the net to its initial state. Once the behavior graph reaches its frustum, it will keep

repeating. This simply suggests a way of capturing the repetitive behavior of the

studied system. lnstead of cxtending the behavior graph indefinitely, we can extract

the cyclic frustum and coalesce the initial and terminal instantaneous states to form

a strongly-connected Petri net, called a steady-slate equivalent net. Figure 4.3 shows

an example of the steady-state equivalent net derived from the behavior graph shown

in Figure 4.2. Note that the steady-state equivalent net is itself a marked graph.

As wc initializc it with an init.ial marking, by assigning one token to each coalesced

place (i.e., the top row of places), the net captures the steady statc behavior of the

corresponding SDSP-PN, yielding the same computation rate.

4.4 Complexity to Reach a Cyclic Frustum

As was shown in Lemmas 4.1 and 4.2, a repetitive execution pattern can always be

found for an SDSP-PN executed under the earliest firing rule within a finite Humber of

steps. The length of the initial period is examined in two sections: In Section 4.4.1 we

impose a theoretical bound on the length of the initial period for an SDSP-PN having

one critical cycle, while in Section 4.4.2, we deal with the case of multiple critical

cycles, noting the barrier confronted and giving sorne partial results. In Section 4.4.3

we pTOvide an indication of the tightness of the theoretical bound obtained using

sample code which requires O(n) iterations for the initial period. In Section 4.5 we

introduce an initial token-distribution constraint. As t.he initial marking of an SDSP­

PN meels the constraint, a tighter polynomial bound can be established for the initial

period. More importantly, the result can be generalized t.o the case of multiple critical

<'ydes, imposing a polynomial bound on the initial period. The work described in this

section benefited both from Chretienne's thesis on Petri-net theory [Chr84] and from

28

1

..

Aiken and Nicolau 's work [A N88J. The notai iOlls and as:,ulIlpllOIlS wlllch wc' will IIM'

are defined below:

• Let G denote a SDSP-PN having Tl transitions, and 1('1 X;l <1('1101(' IIIt' 1 JIll<' ,II

which transition t l commences its h+ l firing. We aSSlIJll(' t h,d I}I<' (·x(·cu\.ioll

time TI of each transition l, is one time uuit. In g(·m.·rc\l, how('\{'I', tht' followinp;

results can be extended ta cas('s in whlch transitions have ditfN('1I1 (·x(·clIt.ioll

times.

• If P is a path in C, then M{P), the loken sum, denote:. t.1l<' SIIIll of tht' lokt'II:'

on each place in P.I The token in one place is Lakell III tht' ~1I1lI a:, lIIi\lIy 1.1111<':-;

as the place is embedded in P. Similarly, n(Pl, tht' l'li/Ut' ~1I111, (}(·lIot(·S 1 lit' SIIIII

of T, of each transition t 1 in P. The T, of trc\lIsitlOlI 1. i~ t ,tk"11 i Il t h(· :-'111 Il cl:'

many times as the transition is emhedd(·d in P. L<'I. 1\(/.,1)) d('IH>tt· tilt' "PI of

possible paths in C from li to t] hc\ving ('x(lctly Il tokells illollg t.ht' p,tllt, .1Ild kt

ah(t" t J) denote the value sum of the maxi III Il III vahl«' IMI h i Il })It (l" 1)). WC' cd:,o

use the notation P~ (t" t)) to d('l1ot.(' t.h(' subspt JI of P,.{ f .. 1)) dlHI 1 II<' Ilot ,II iOIl

a~(t"tJ) to denote the maximum palh value of Sllh~(·t P,~(/"f)) Sill(,(' ('etell

transition has a self-Ioop with olle t.okclI 011 il (:\SSUlllptlt)JJ;l.I), 1),,(1.,1)) f:.~,

for h ~ ho where ho is a positive integer.

• A simple cycle C* in C is cl'ltua/ if th(· ratio of tht' valut' Slllll to tll(' t.okpJI sunl

is maximal, i.e., if
O(C*) > O(C,)
i\l(C*) - M(C,)'

where C, denotes the other simple cycles in G. Let al dellote the cyd(· t.ill\(, of

the simple cycle CIl i.e., a, = O(C'.)/M(C.); lik('wise, let 0'* (= H(C*)/M(("*))

denote the cycle time of C·.

4.4.1 An SDSP-PN having One Critical Cycle

Chretienne shows that a precise description of the action of eclch I.rall!>itioll l. lIJ1d('r

the ed.rliest firing rule obeys the global time constraillt X~+k - .\':' = p, h ~ ho, wlwf('

ho is a non-negative integer, k equals the lcast commoll Ilniltiplp of th(' t.ok(·1J SUIlI of

all critical cycles in C, and p equals a x k, where a is li\(' maXllllUIlI cyck lime of

C [Chr84J.2 This time constraint rneans that after the ho firings, ('Vf'J'y k·th hrillg of

a transition i, must be p time steps apart; that is, the steady ~tate app(·d.rs. III ot!wr

1 Note that a cycle is allowed along a path
2The constramt is global In the senst. that It is appltcable ta dCSCflbc li\(' behavLOr of ail trallsitlons

29

1

(

(..

words, the length of the steady state is p time cycles, and the steady state consists of

k firings of tran~ition t,.

Since, in this sectIOn, wc only consider SDSP-PN having one critical cycle C*, k

and p (!quals M (C*) and fl(C*). This implies thdt the length of the steady state of Gis

hound('{J, bypasslllg the problem of determining an upper bound for the least corn mon

multiple of token sllms in the case of multiple critical cycles. Theorem 4.3 states that

in the single' critical-cycle case, the global tlme constraint for cach t l E Gis satisfied

(i.(>., the steady state is reached) after O(n3
) iterations, i.e., ho = O(n3

). Before

this daim is provpn, wC' introduce several important lernrnas: The first is Lemma 4.3

which relatf!S tht> time at which transition i) starts its h+ 1 firing 1,0 the computation of

ah(t., t)), the value sum of the maximal value path in Ph(t" t)) [CCG84, Chr84, Chr85].

Lemma 4.4 C'stablishes the criterion that the maximum value pat,h must pas~ through

tl1<' critical cycle. Lemma 4.5 states that a subset of a given set of k integers can

always b(· round su ch that the total sum is a multiple of k [AN88]. Lemma 4.6 is

an inequality based upon the faet that the value-per-token ratio of a critical cycle is

alw.a.ys larger than that of a non-critical cycle.

Lemma 4.3 For a71y G e.recuted under the carllest firmg rule , the time X; at which

lmnsition t) stad.., lis h+ 1 fi1'mg equa[s

max ah(t.,t)), t, E set ofe71abled transltions at time zero.
t ,

Lemma 4.4 For h 2: O(n3
), the maximum value path in Ph(t., iJ) in G must pass

lhrough the cn/ical cycle C*.

Proo{ of Lemma '1,4

Let \11 be a path in Ph(t., tJ) which does not touch C*. Let Pa be a path in Ph(t" tJ)

which passes through C*. For any given h ~ ho, we choose Po. = J.L(c*)m v, where ho

is an intcger, Jl and v are r<:spectively the directed path from t, ta ty and the direded

path from ty ta t), ty is a transition on C*, and m is the number of times that C·

is ronsecutivcly iterated. The value m and the paths J.L and v can respectively be

computed and constructed as follows:

• m - lM(Pa)-2nJ
- M(C·)

• Let ml = (M(Po.) - 2n) mod M(C*) + n; J.L is a path from tJ to ty with ml

tokcns while v is a path from ty to tJ with n tokens. 3

3Such paths must exist berause the token sum of any simple p,.th (cycle free) is bounded by n,
and by AssumptlOn :J 1 Ph(ta,tb) 'f 0 provided h ~ n III a sare marked graph.

30

1

.....

Notice that under such construction

M(Jl) + M(v) $ 3n. (.1.1)

Let us assume Sm = M(fL) + M(v) + m X M(C") for the given h. Thus by (It'finit.ion

both \li and Pa belong to PSm (il, tJ)' To prove this lemma, we first COlIstrllct an llPp('r

bound on the value sum 0(\11). Then we show that O(Pa) Îs always great('l' than tl\('

upper bound of n(\II) for m ~ O(n2) or h ~ O(n 3
) •

• Construction of the upper bound for O(\lI)

This construction was taken from Chretienne's Ph.D thesis [Chr84J. Let {CI; i =
1, ... ,a} denote the set of non-critical simple cycles in G, and let E and E, be

defined as follows:

el - a* - ail 'Vi, 1 $ i ::; a

and e - min {el}
.=l, ... t a

> 0

Recall that a* and al are respectivcly the cycle time for the crit.ical cyde Co

and the simple cycle CI' Then, ê is the cycle time differenc(' of th!' crit.lcal cycl('

and the simple cycle that has t.he second largest cycle lime in (;

Notice that path \II can be decomposcd into a simple path q (cycle fl'(,(,) 1'1I11lJÎng

from t, to tJ and a set of non-critical simple cycles, wherc for each (,'1 we assodat(·

an integer TJi ~ 0 to denote the number of times Cl is itcrated in \li. The valu('

sum of \li is computcd as follows:

a

O(\lI) = O(q) + L 17,O(C,)
1=1

a

= O(q) + L 11,o:,M(C,)

Q

- O(q) + L TJI(O:* - c,)M(C,)

a

< O(q) + L 111(0:* - c)N/(CI)

1=1
a

O(q) + (0" - c) L TJIM(C'I)
1=1

< O(q) + (a" - é)M(IlI)

Since \li E PSm (ti, tJ)' M(\lI) can be expanded and bounded as follows:

O(\lI)

31

,,(
i. ...

< O(q) + (a" - e) (M(Il) + M(II) + m M(C"))

- m (a" - e) M(C'") + b

where b::::: O(q) + (a* - ê) (M(J1.) + M(II))

• Evaluation of h 50 that n(Pa) > n(\}I)

(4.2)

Note thal the palh Pa=p(c*)m /1 also belongs ta PSm(t" tJ)' and O(p(c ..)m Il)
equals O(ll) + 0(11) + m 0'* M(C*). As we compare O(J1.(c*)m/l) and the upper

bound of O(\}I) (Equation 4.2), we see for m > mo, where mo is sorne positive

integcr, \li can never be the maximum value path in PSm (t" tJ)' Moreover, this

is true for all possible \}I E Psm(t" tJ) that do not touch C*.

m (0'* - e) M(C*) + b

< ma" M(C'") + O(p) + 0(/1) (4.3)

mo can be estimated by solving Equation 4.3 for m:

b - (O(Il) + O(v»
m > eM(C*) (4.4)

Next we simplify the right-hand side of Equation 4.4 and construct an upper

bound. Without loss of generality in i, assume that e, is the smallest value in

{et, ... ,êa }, i.e., e ::::: ê, ::::: 0'* - a,:

b - (O(/.l) + O(v»)
ê M(C-)

<
b

e M(C'")

:::::
O(q) + (a* - E) (M(Jl) + M(/I»

(a" - a,) M(C'")

:::::
O(q) + a, (M(p) + M(v»

(0'* - a,) M(C*)

:::::
O(q) + ~)~,) (A/(Il) + M(v»

(°1CO
) _ °1Cd

» M(C") M CO) MC,

:::::
n(q) + ~\~,» (A/(Il) + M(II»)

O(C*) _ O(C,)M{C')
M(C,)

:::::
M(C,) O(q) + O(C,) (M(p) + M(II»

(4.5)
n(c") M(C,) - O(C,) M(C")

Note that G is a live-safe marked graph composed of n transitions. The token

sum for any simple path or any simple cycle is bounded by n. Similarly, the

32

1

....

value sum of any simple path or any simple cycle is boundtcl hy 11. Note also

that by Equation 4.1 M(jt) + M(v) ~ 3n. Equation 4.5 can be furthcl' rcduced

and bounded by

n x n + n X 3n

1
(4.6)

As a result, for m ~ O(n2) the maximum value path in PSrn(l"l)) must pass

through C*, where Sm = M(Jl) + M(ll) + m X 1\4(C*). Or equivalclltly, fol'

h ~ O(n3) the maximum value path in Ph(t"tJ) must pass t.hrough Co.

o

Lemma 4.5 Given J(integers II, ... , h, ther'e is a subset S of 1. sucll litai

(L: 1.) mod k = O.
l.eS

In other U'lJrds, the sum of ail l, E S is a multiple of k.

Lemma 4.6 Let C* be the critical cycle in a, m be a pO!;itive inlegcl', and Ca,' .. ,Cb

be the set of simple cycles in a such that M(Ca) + ... + M(Cb) = rn X M(CO). Then,

Proof of Lemma 4.6

L O(Cd
C,eR

O(C,).

= aa x M(Ca) + .. , + ob X M(Cb)

< a" x M(Ca) + .. , + 0" x M(Cb)

= a*xmxM(C*)

= m x O(C*)

o

Theorem 4.3 For any a with only one critical cycle C" executed unda' the ea1'izest

firing rule and for h ~ O(n3), the lime constraint X;+k - X; = P lS obcycd by ail

tj E G, where k = M(C*) and p = O(C*).

33

t

('

(

Proof of Theorcm 4.3

By Lemma 4.3, this theorem can be proven by showing that for h ~ O(n3):

where ti is a member of the set of initially enabled transitions at time zero. Or

equivalcntly, we show that for h ~ 0(n3):

for ail ti in the set of initially enabled transitions at time zero.

Notice that Pz(t" t)), the set of paths from t l to t) with exactly z tokens, can

he partitioned into three disjoint subsets: P:(tl,t)), P~(t"t)), and P;(t"t)), where

z > O. Suhset PZB(tI' t}) denotes the set of paths that iterate through C" at least

once. Subsct P:(t" t}) den otes the set of paths which only touch C·, that is, C· is

not embedded entirely in the path, and subset P~(t" t}) denotes paths that do not

contain C· at aIl.

We would like to show that the maximum value path in Ph(t" i}) for h ~ 0(n3)

can only be found in subset P;:(t l , il)' By Lemma 4.4 we know that the maximum

value path in Ph (t l , i}) for Il ~ O(n3) ~an never be found in subset Pt(i" t}). For every

path in subset Pk(t" t]) there always exists a corresponding path in subset Ph(t" t))

which has a higher value sum, provided h ~ (n + l)k + n. For h ~ (n + l)k + n, there

exists at least k cycles along any possible path in Ph(t" il)' By Lemma 4.5 there

cxists a subset S of those cycles CI su ch that L:C,ES M(CI) is a multiple of k. Recall

that k = M(C*). Assume L:c,es M(C,) = m x M(C"), mE integer, and m > 0 for

any path Px E Ph(t"t)). Either Sis composed of C" m times, i.e., Px E P;:(tl,t]);

otherwisc, Px could never have the maximum path value. This is so because a path

PlI can be constructed From Px by replacing aIl C, E S wit h exactly m C·. PlI must

also exist in Ph(t" i]), and by Lemma 4.6, it has a higher value sumo Therefore, the

maximumvaluepathof Ph(tl,i)) fork 2: 0(n3
) must beamemberofsubset Ph(t"i)).

In addition, notice that subset PI~+d l" t]) can be constructed by having every

path in subsets Ph(t" i}) and Pk(tl, iJ) iterate through C* one more time. However,

as was shown previously, subset Pk(tlltJ) does not contain the maximum value path.

Consequently,

ah+k(t" t)) = ah+k(t"t))

= ah(l" i}) + O(C*)

= ah(t l1 t)) + p

= ah(t" i]) + P

34

1
o

Theorem 4.3 states that ail nodes in the loop (including bot.h tilt' Hodt>s 011 or Ilot

on the critical cycles) will enter a periodic firing pattern aftpr O(n3
) itcrat.iolls, This

suggests that we can "simuIate" the Ioop execution at compil(·-tinw by rotlst.l'udillg

the behavior graph in O(n3
) iterations to reach this patt.t>rn. Sillet' ('arh it(·rat.ioll has

O(n) firings in the "simulation" process, the actual numb('1' of t.illlP stl'pS 1,0 1'('(\r1l li\('

pattern is O(n4), as shown by the following tlwol'em.

Theorem 4.4 Under' the earliest firing rule, the cychc frusfllm of G Iwmllg Ollf

critical cycle can be found in O(n4) time steps.

Proolol Theorem 4.4

By Theorem 4.3, the time constraint X;+k - X1h = p, VII E G, ~, == M(('*), alJ(l

p = O(C*) is satisfied when h ~ 0(n3). In othe!' words, t.he' ('yelie fl'lIstllI1l apP('ilIS

after O(n3) times of Gare scheduled. Since G consists of n transitions, a t,ot.<ll of

O(n4) firings will be performed. Note that 0(n 4) firings canlw d011<' ill al, 1ll0St. 0(11,1)

time steps.

Since p = O(C*) is the value sum of the crilical cycle, it is bound('d by n. '1'1)('\'(·­

fore, under the earliest firing rule, the cyelie frustllIll of (,' having 011(' cJ'itÎcal cycl('

emerges in O(n4)+n time stcps, or sim ply O(n4). 0

4.4.2 An SDSP-PN havillg Multiple Critical Cycles

As noted previously, the action of each transition is dcscribed hy a glohal till\(, ('011-

straint. It states that every k firings of a transition is p period apart, will'I'(' k ('qllills

the least common multiple of the token sum of t.he critical cycks éllld Tl ('qllilb 0 x ~'.

Since the Lime complexity fol' finding th{' stcady state ill volwt. t II<' d('\,('lllli Ilat.ion of

the length of the steady statc, an upper bound for the lcast COlllfllOIl lIIultipl(' [cteto!' is

th us required. Wc are unaware of any polynomial rcsllit and tH'l!ev(' th,ü tl\(' 1'1"01>1('111

in this case remainR open.

The rest of this section demonstrates that, for tral\"itiOlI~ r(':-.idillg Oll t!H' critiral

cycles, a more concise local time cOllstraint <-an he d(·dllced whi(hal:-,o wifl('Jcks wlth

the hehavior description of the global time con~lraiIlt:1 III addltlO/I, tlw 11IIprowd

constraint is shawn ta he obeyed after O(n2
) iteratiolls under the t'arli('st firiug rlllt·,

This result also applies ta the case of singl(' uitical cyd(', Let (:j, (:.;, , .. dellot(·

the critical cycles. The new lime constraint has the ~arnc fonn a~ t.ht' pl'('VIOllS one

4The time constramt IS local ln the sense that It IS only apphcabh· lu dl'bcrllH' th,. lH'ha.vlOr of
the regarded transitions

35

1

(

cxcept that in this case k = M(Cn and p:= n(Cn for aIl tJ E Ci- This constraint

justifies that transitions from different critical cycles have a different repeating period

p, but they aH keep the same computation rate M(C;)jO(C;). To dpmonstrate these

daims, Lcmmas 4.3 and 4.5 are used again. In the instance of multiple critical

cycles, Lemma 4.6 is revised to Lemma 4.7. Note that the proof of the daim below,

Theorem 4.5, is so similar to the one used for Theorem 4.3, in the last section, with

only a slight difference.

Lemma 4.7 Let C* be a critical cycle in C, m be a positive integer, and Ca, ... , Cb
be the sel ofsimple cycles in G such thal M(C(1) + ... +M(Cb) = m x M(C*). Then,

Proof of Lemma 4. 7

C,eR

m x n(c*) ~

aa x M(Ca) + ... + ab x M(Cb)

< a" x M(Ca) + .. , + a" x M(Cb)

- a· x m x M(C*)

- m x n(C")

o

Theorem 4.5 For any C executed undel' the earliest firing schedule and for h >
O(n2), the tnne constrainl X;+k - XJh = p is obeyed by ail tJ E C·, where C* is a

critical cye/e, k = M(C"), and p = n(c*).

Proof of Theorem 4.5

With Lemma 4.3, this theorem is proven by showing that for h ~ O(n2),

where li is a member of the set of initially enabled transition at time zero. Or

equivalently, we show that for h ~ O(n2),

for an l, in the set of initially enabled transition at time zero.

36

1

'.,

Notice that Pz(t., tJ)' the set of paths from t, to t] \Vith cxactly :: tok<'lls, C,lIl hl'

partitioned iuto two disjoint subset.s P:(t., t)) and P~(t., iJ)' wh('f(' :: > O. SlIbsl't

P:(t" tJ) denotes the set of paths that itcratc through C* al !east 01lce, whilt, slIbscl

P:(l., t l) denotes the set of paths which only touch C., i.c., C'* is Ilot ('I\\!wddt·d

entirely in the path.

We show that for every path in subset Pk(i" iJ) thcrc always exisls a COIT('spondillg

path in subset P;:(t" tJ) which has a greater or cqual valu<, sum, pl'Ovid<'d Il ~ (n +
l)k + n. Consequently, the maximum value path in Ph(t" f J) for Il ~ 0(1/ 1) cali

always be found in subset P;:(t"t)). For h '2: (n + l)k + n thcre <'xisls at !«'as!. A·

cycles along any possible paths in Ph(t., t)). By Lemma 4.5 th('rc t'xists a subs('1, S of

those cycles C. such that LC,ES M(C.) is a multiple of k, whcre k = M(C*}. ASSlIl1\('

Ec,esA'f(C.) = m x M(C*),m E integer, and m > 0 for any path Pl E /)II(1"I J).

Either S is composed of C· m times (i.e., Pl' E P;:(t"I))) or Pl lIlay Ilot have' t!w

maximum path value. This is so because a path Py can be coustI lIcted l'Will P.r by

replacing aH C. E S with exactly rn C-. Py must also ('xist ill Ph(t ll l J)' alld by

Lemma 4.7, it will have a greater or equal value sumo Therdol'<" tht' maximulII valtu'

path of Ph(t"t)) for h ;::: O(n2
) is always a mcmber of sub~ct P;.'(t"f)).

In addition, notice that subset Pt:H.(t" LJ) can be conslrudcd by having <'Vt'ry IMlll

in the subsets p;:(t., tJ) and Pk(t" il) iterate through C· olle l1Ior<> tilll(·. lIowpv('/',

as was shown, the maximum value path can always })(' fOlllld in slIb:-wt j';t(t" t)).
Consequently,

ah+k(t"t)) = ah+k(t" 1))

= ah(tntJ)+O(C'")

= ah(t" i)) + p

= ah(t n i)) + p

o

Illustration of the Effect of Multiple Critical Cycles

To conclude the discussion of multiple critical cycles, we illustrate two sampl(' codp

sequences to demonstrate the least-common-multiple efff'ct of the tok(,11 SII/II of ('fit.ical

cycles on the length of the stcady state (see Figures 4 A and 4.5). Figur(' 4.1 shows il

code sequence made of one initial enablcd node l! (or a single SOIlr< (.) a/ld two <Titi(al

cycles Cl and C2• The computation ratcs of CI and Cz an' :l/9 and 2/(;. 'l'lU' vahl('

of the least common multiple k then equals {) (3 x 2). Figure 4.5 display~ a coc!p

sequence composed of three initial enabled nodes: t ill , t il2 , and t ,\ (rIIllltlpl(' !->OIlfU'l-»

37

t

(

(

Critical Cycle Cl: tltlt3t4tSt6t7t9tSt1
Computation Rate = 3/9 ...

"------------~----------~
Critical Cycle C]: t12t13tHtlSt16t17tl2
Computation Rate = 2/6

Figure 4.4: Code Sequence with Single Source

Crltlcal Cycle Cj: tjt2t)t4t5t,t1tet9tjotlltutl4tlJtj2tj

Computation Rate. 5/15 --

'----------------~
Crltlcdl Cycle Cl: t]5t)6t)1tJlt]9t40t]S

Computation Rate = 2/6

Figure 4.5: Code sequence with Multiple Sounes

38

f
and three critical cycles: Cl, C2, and C3• The computation rates of (\, Cl, and CI
in this case equal 5/15, 3/9, and 2/6 respectively; the valUt' of).. l'quais :JO (~ x :1 x 5).

The corresponding results for the two samplc cod('s undt'r t'ar\i('st firing rul(' art'

depicted on Tables 4.1 and 4.2. Among the results, thf' ut/mb",. of jil'lJl!ls inoica.t(·s li\('

number of firings of a node in a repeated firing s<'qurllce, by which w(' cali dd('rlllil\(,

if the local time constraint is obeyed. The time dclay indicatl's tht' .iday Iwtw('('11

consecutive firings in the corresponding repeated firing sequ<'lln'; t.h<' tot.al slIm of t.ht'

time delays thus equals the repeating period of the parlicular 1I0d('. Tht' ll('l'tLliOIl

indicates the latest iteration instance observcd whcn the steady stiÜ(' is J'('aclu·d. IIN('

are the major observations:

• Nodes tu and in in the single-source code sequence and node' ln iTl tlu' Illldlipl<'­

source code sequence tire respectively six limes and lhirly linws in Uwir st,('iuly

states, confirming the effect of critical cycles undcr the global tillll' (,()Ilstrdiut.

• The number of firings for no de on the critical cycle CJ i/l holh «)(I(· S('<\II<'II('('S

equals j\f(C}), the number of tokens on the critical <'Yc!t'. Th(·s(· ill(id('1I1.!.

verifies the existence of a local lime conslraint daimed hy Th('on'llI ,U').

• The steady state of the off {Titical-cycle Bode!> arc Ilot Il('('('ssary illflllPllC(·d hy

the least common multiple factor. In the single souret' caSt', ollly 1I0d('s l" ,Uld

tn demonstrate the impact of critical cycles while Hodes ts and tlO oh('Y the' local

time constraint.

For more ex amples of the influence of critical cycles, th(' multipl('-sollJ'cc's cast'

presents an extensible platform. For example, wc can rais(' the valll(' of ~. flOIll

2 X 3 X 5 to 2 X 3 X 5 X 7 by attaching a new brallch of nodcs w/lich COTlsist'i of a /U'w

critical eycle C4 with a rat€' of 7/21 and a new source nodp (,,1' Thp ['('sldtillg graplr

t.hen consists of four brancht>s corresponding lo four critical cy(It,s WI' tllI'lI adjust

the other three branches by inserting new Hodes until lll(' thn.'(· old brallch('s ('('gain

the same height, i.e., the distance of each branch from thl' sour«' /lod('s 1,0 'II ('<{uals

the distance from t s4 to ln.

4.4 .. 3 Tightness of the Bound

In this section wc illustratc the tightncss of the derived polynomial upper !.Olllld,

using the example in Figure 4.6. The cxamp/e illustratcs the Ilced for illitic.ting al

least n-l iterations before lhe repclitive firing paltcfIl is rcadH'd. Il contai/ls il chain

of n nodes with only one critical cycle (t'll-2ln-l t n t ll _ 2) located al. tll<' right ('II(!. 'l'lU'

39

f

(

Table 4.1: Single Source

Range of Nodes
t, tl-t9 llO tu

Label Source Node Cl
Number of Firings le 3 3 3 6
Time Delays 2,3,4 2,3,4 2,3,4 2,4,2,4,3,3

t12-t 17

C2
2

2,4
6

2,4,2,4,3,:'

t Code Size: 19, Iteration: 14

Table 4.2: Multiple Sources

Range of N odes

Label
t,1 t,2 l,3 tl-tl5 t16-t19 t2o-t 28 t29-t34 t35-t40 tn
Sourel? Nod"'"e-s -""'C"'"I--'---'----C=-2 ------:(" 3---

Number of Firings le 5 3 2 5 3 3 2 2 30

t Code Size: 44, Iteration. 43

computation rate of th~ critical cycle and the chain, in generaI, is 1/3. AIl other

simple cycles have a computation rate of 1/2. In addition, note that there is a total

of n-2 tokens along the path from tn to t l . Initially at time zero, t l is the only

inîtially enabled node. By Lemma 4.3, the time for t l to commence its h+ 1 flring

can be computed by ah(t1, t.), the maximum path value among the S(~t of possible

paths from t l to l) with exactly h tokcns. However, due to the chain of n-2 tokens

from tn to t), the set of paths from t l to t) with less than n-·2 tokens can never reach

the critical cycle. Thus, it indicates that II is required to initiate at least n-l times

(i.e., n-l iterations, or O(n) iterations) before the effect of the critical cycle can be

propagated back to t 1.

•••

Critical Cycle
Computation Rate = 1/3

Figure 4.6: A Cod~ Sequence with an O(n) Lower Bound

40

1

-

4.5 Initial Token-Distribution Constraint

Through our simulations (Table 5.1), wc have found surprisingly short initictl pt'riods

for aIl benchmarks tested. In fact, the observed bound was within 0(11) itel'at.iolls.

It appears that the bound derived above is too pessimist.ic, and a tightt'I' bOUJl(\

is possible. In Section 4.5.1 we give a marking condition, obtained by g<'II<'l'ali:l.ÎlIg

Theorem 4.5, with a tightel' initial pel'iod. ln Section 4.5.2 wc report il sigllifiCélllt.ly

improved bound for the same marking found by using a diffel'('lIt. appl'Oc\ch.

4.5.1 A Tighter Initial Period

The Initial token-distribution depicted by Theorem 4.6 charact<'rizes aIl illllut! l1la,.k­

ing of G such that a repeated pattern can be found after O(n'l) iteratiol1s l'<'gardlt,ss

of the number of critical cycles. The length of steady stat.e and !.Il(' llum\WI' of fil'illgs

of each transition in steady state are respectively n(C') and AI (('.), wh('J'(' ('. i1-> t.h(·

critical cycle initially holding aIl enabled transitions. Formally, tlH' t.illH' cOllstraillt1.

X~+k - X~ = p, Vtt EGare satisfied aCter O(n:l) iteratioll:' of C:, wlwl't, A· ::: M(C*)

and p = O(C*). The validity of Theorem 4.6 is important becausl' tht' n'qt\i«'d initial

condition can always be reached aft er at Illost 0(71) iteratiolls, as di~(IIss(·d in t.h(·

next paragraph. Consequently, the repetitive firing pattern for a gt'/H'ral SDSP-PN (,'

can be round after O(n2) iterations of U, regardl(>ss of th(' 1I1I1ll1)('1 of ('nt\(al ('ycl(·~.

Token Distribution Constraint Satisfaction: A~Sll[ne tltat II cWhllion " !'(':-.i<l(·1->

on a critical cycle. To meet the initial condition, one simply ex('cuU'S (,' usillE!;

the earliest firing ru le but prohibits any firing of transitio/l t. The fin/lg IHO('('8S

soon deadlocks. Since G is strongly connectcd, there alw,tys t'Xlsts a. (y(I('-fn'('

path P from l, to t] for al! lJ in G. If l, is never fired, t) stops firillg soon aftel'

all tokens along P have been consumed. Note alsu that tlll'f(' cali Il(' at lIIo~l

n tokens along a cycle-free path; that is, t J can be fired al llIosl 1l tillH's \)('f()f('

the initial condition is met. Equivalcntly, it requires tilt' sch('duling of a.l iTlOSt.

O(n) iterations of G to reach the requircd statc.

Theorem 4.6 Under the earbesl fi7'mg ru le, lf lhe sel of lmtlUl cnablcd 11'fwsllzon."

at time 0 ail belong to a selected c1'lhcal cycle C· in C, Vi) E C lhe lwu: con.~tramts

X;+k - X; = p zs obeyed for h ~ O(n2), Whel'f k = M(C·) and l' = n(c*).

Proof of Theorem 4.6

Assume that the only enabled transitions al lime zero are those on dll' l.decled

critical cycle C*. With Lemma 4.3, we prove the theorern by showing thilt for ft ~

41

1

(

where t l is a member of the set of initially enabled transitions at time zero. Equiva­

lently, we show that for h ~ O(n2),

for aIl ti in the set of initially enabled transitions at time zero.

Notice that Pz(t"tJ)' the set of paths from tl to tJ with exactly z tokens, can be

partitioned int.o two disjoint subsets P:(t"tj) and P;(t"t)), where z > O. Subset

P;(t" tJ) den otes the set of paths that iterate through C· at least once, while subset

P:(t" t)) denotes the set of paths which only touch C· (Le., C· is not embedded

entirely within the path).

We show that for every path in subset Pk(t" t]) there alway& exists a corresponding

path in subsct PJ:(t" iJ) which has an equal or greater value sum, provided h ~
(n+ l)k+n, where k == M(C*). Consequently, the maximum value path in Ph(t"t])

for h ~ O(n2) can always be found in subset Ph(t" tJ)' For h ~ (n + l)k + n, there

exists at least k cycles along any possible path in Ph(t"t}). By Lemma 4.5 there

exists a subset S'of those cycles C'a such that LC.ES M(C,) is a multiple of k. Assume

LC.ES M(C) = m x M(C*), m E integer, and m > 0 for any path Px E Ph(t" t]).
Either S is composed of C· m times (i.e., Px E Ph(t" iJ» or Px may not have the

maximum path value. This is because a path Py can be constructed from Px by

replacing aIl C, E S with exactly m C*. Py must also exist in Ph(t" iJ), and by

Lcmma 4.7, it has a greater or equal value sumo Therefore, the maximum value path

of Ph(t" t]) for h 2: O(n2
) is always a memher of subset P;:(t" t]).

In addition, notice that subset Ph+k(i" i) can he constructed by havingevery path

in the subsets P;:(t.,iJ) and Pk(t"i) iterate through C· one more time. However,

as was shown, the maximum value path can always he round in subset P;:(t" tJ)'
Consequently,

ah+k(t" t) - ah+k(t" t))

- ah(t"t])+O(C*)

- ah(t"t])+p

= ah(t" tJ + p

o
As c,an he seen, to meet the initial token-distribution constraint, the search for

a. transition on the critical cycle is significant. One possible approach to find such a

42

1 transition is to first determine the computation ratt' restrided by the cntic,t! cycle

using Magott's linear programming forlllulation [Mag84) dlld I.h(,11 apply th(' shorlt'sl

path algorithm with the distance formulation defiued by Ham,u!loorthy <wei 110 10

obtain a critical cycle [RH80}. Using the critical cycle, the requirt'd 1.1',\IIsitioll can lU'

selectcd arbitrary. Since Magott's formulation can 1)(' solV<'d by lill('iu' p\'Ogrclllll\lill~

within a theoretical polynomial bound and the shortest path problem CclII 1)(' solv('d ill

O(n3) steps, the final problem of determining repetitive patt('fIl is POIYIlOlllictl bouilli

also.

An alternative approarh to the problem is lo appoint a tl'dll~itioll !Il(' illit.Î,d (·Ilahl(·

condition and then construct the behavior graph from tlwll 011 fol' nltn 1(,('J',II,ioIlS. If

the repetitive execution pattern cannot be found, an untoudH'd trcUlsitioll I~ ~(·I(·ct(·d

and the procedure is repeated. In the proccss a maximllm of 11 trélllsitlOIlS will 1)('

checked, and at most n itcration:o. are required to satisfy th(' initial lokt'll-dist.1 dHIt.ioll

constraint for a selected transition. The time <-Oll1plcxity of t!w appw,\('h Îs 1>01lIld(·11

by the time required to schedulc n(n+n2+n) iteratious, i.t'., 0(11'1) it('(',ÜIO/lS. Not(·

that this algorithm suggests a totally diff('J'(>llt WCLy of clpproé\chillg t.IH' plobl('111 of

determining the computation rate for G.

Though we have established a theoJ('tlcdl ~()llItioll tu tll(' "lclldy-"I,t!(' pl'uh!('11I

with respect ta the carliest firing rule. the platforlll UpOIl wltidl ,dl tl)(' plO()f~ ,l/('

based (Lemma 4.5), however, scems too gcncl al and faib to \It iliz(' tilt' silf(,J1('~~ 1)101'­

erties of the SDSP-PN. Bence, the thcordlcdl bound IS loos(' (olllpan'd Wlt Il 0111

simulation results. In the next section we report a slgui fiea/l t1y i rll pl'OV('d hOll/ld Olt

the length of the initial period for the saIlle tokcn-dlstributlOll (Ollsl rilllll, IISÎlIg il

different approach.

4.5.2 A Second Approach for a Tighter Initial Period

The results described in this section show that th(· ste'adj "it.atc· l!'l ft'achahl(' artel

k iteration of C, where k is th<, number of tokens of t1l<' (') ItICéll (y(1(' wlllch hold~

the initial enabled transition t". Hat hf'r than /'('Iyi ng 011 tl\(' l'n'v iously i Il t 1 odu(pd

rnaximum-value-path framcwork, the following proof makes use of tl)('ory d('velop('d

for valid-schedule-computatioll seheme (s('(' LC'mmét:U) [HlIHO. }{(')(iH] PH'(i!'l('ly, W('

make use of the relation betwc(,11 the earlicst firing :;dwdul(· X:' (\IId t1w valHI "c\H'dlllp

Sh.
1 •

viL < c.;iL \..Jt E ('
.:\, _ lI' VI'

Our proof consÎsts of two parts: The first part shows that the 1 hrÎ/lg, k + J fillllg, ~kt 1

firing, ... , mk+ 1 firing of a transitIon are p-perimj apart Il'iing tilt' valicl-~(II('<lul('­

computation framework. The second part of li\(' proof gcneralizes tlt(' result in IMrt

1

r

f ,
<6.

l

one to h firing and h+k firing are p-period apart using the safeness property of the

model.

Theorem 4.7 Under the earliest firing ru/e, if the only enabled tr'ansition at time

zero belongs to C* 1 a crztical cycle in G, Vt) E G the hme constraint X;+k - X; = P

is obeyetl for h ~ 0, where k = M(C*) and p = O(C*).

Proof of Theorcm 4.7

Let k = M(C*), p = O(C*), and ta be the enabled transition at time zero residing

on C*. First we show that for m ~ 0 the mk+ 1 +k firing and the mk+ 1 firing of t&

are p-period apart, i.e.,

(4.7)

Observe that with t& being the only enabled transition in G at time zero, the valid

firing time S? for transition t, to commence the first firing also equals the earliest

firing time X~, according to Lemma 3.1, i.e.,

(4.8)

Since t& resides on C., every k-th firing of t& cannot be shorter than p, i.e.,

(4.9)

By Lemma 3.1, the valid firing time for the mk+l firing of t& is comput.ed by:

= mp.

That is, the corresponding valid firing time for ta to commence the l firing, A~+ 1 firing,

2k+ 1 firing, ... , mk+ 1 firing are 0, p, 2p, ... , mp, according to Lemma 3.1. According

to Equations 4.8 and 4.9 it is the earliest firing schedule. Thereby, X,;,k = S,;,k for

m ~ O. Hence, Equation 4.7 is proven.

Next wc show that for m ~ 0 and Vi, E G the mk+ 1 +k firing and the mk+ 1

firing of t, Îs p-period apart, i.e.,

(4.10)

After constraint satisfaction, for each li E G :f:. t& there exists a place p E ·t l with

no tokens on it; otherwise, t l Îs an enabled transition eligible for firing. Accordingly,

there always exists at Icast one loken-free path from t& to i,. Let p. denote the one

44

1
which gives x~ (= Sr) the longest token-free path from (, to i, (Lemma:3.1). Not('

that the amount of time t 6 takes to generate anù deliver the mk+l t.oken to l, alollg

Pa cannot be shorter than a period of X~+mp, i.e.,

x;nk - X~ ? mp, m ~ 0 and Vtt E G. (4.11)

By Lemma 3.1, the valid firing time for the mk+ 1 firing of l. is computecl by:

smk - a.+mp ,
= S~+mp

- X?+mp.

According to Lemma 3.1, the corresponding valid firing time for il to commence th(' 1

firing, k+1 firing, 2k+l firing, ... , mk+l firing arc X~, X~+p, X~+2]J, ... , X:)+1II1I.
Equation 4.11 confirms that it is the earlicst firing sc\wdu\C'. TIH'rchy, X:,lk ;co· -"';111-

for m ;::: 0 and Vtt E G. Equation 4.10 18 validat('d. Note th<tt wl\(,l1 ~. == i\I ((") -= l,

the cyclic frustum is obviously reachcd dfter the first itcrcüioll

Finally, we are ready to show that)(h+k - X~ = p for Il ~ 0 and VI. E (,'. Si nf('

G is safe, for h ~ 1, X~ of transition l, equals

(4.12)

For m ;::: 0, the subsequent earliest firillg schedule of transition l, aft('1" ('(\< h 111 kt 1 fÎl­

ing (i.e., the schedule staring from th~ mk+2 firing) Il1crdy starts 011 tok('lIs prodllc<·d

by the mk+ 1 fi.ring or the mkt2 firing of sorne trallsitioll~ Thus, by ECJlI.tt,ioll ·LI ()

and 4.12, the same earliest firing schcdule of il rep('ats after the IlIkt 1 firillg fOI

m ;::: O. Consequently, X,h+k - X,h = p for h 2: 0 and Vit E G. Thi:-. J'(·~ult. illlpli('!'i tltal.

a repeated patt.ern can be found aftel ~. iteratlOI1S of n. EqllivalC'lltly, O(Il) iU'litl.ioll'>

is required bec au se k is bounded by n in a safe marked graph. o

4.6 Rernarks

Note that the requirement for an acknowlcdgcnwlIl arc for pach data arc aIle! t./H'

resulting safeness property are both characteristics of the stati< dataflow lIlode!. '1'0

keep the concept of an ideal machine, we have assumed il. unit. firillg t.in\(' fOI eacb

transition. In general, howcver, the proofs prescnted in SectIOns 1.1 and 1..1.1 cali Iw

extended to cover a more general class of strongly-connectcd rnarked graphs wlwf(' tlw

one-acknowledgement-arc-pcr-data-arc restriction is elirniIlat(~d, Ul(' illdivlclllai tfélll­

sition is assigned a different firing time, and Uw number of tokC'lls f('siding a.1. ft plaCC'

4fj

are more than one (but hounded). Accordingly, a larger polynomial may he obtained.

The proofs presented in Section 4.5.2 can also be extended to a more general class of

strongly-connected sale marked graphs where the one-acknowledgement-arc-per-data­

arc restriction is eliminatcd, and an individual transition is assigned a different firing

time. Howcvcr, the assumption of having a self-Ioop on each transition (Assump­

tion 3.1) is requircd in aIl cases. Without the self-Ioop control, the relation between

the earlicst firing schedule and the maximum path value (Lemma 4.3) cannot be

established.

46

1

Chapter 5

Software Pipeline Scheduling with

Pipeline Constraint

In this section we study the application of SPS for loop ::;c!U'dulillg 011 I>I'O('(':-,sor iII'­

chitectures having a number of c1ean executioll pipelines. 'l'lU' CUI'I'Put M('!tttl'<'llllt'

under consideration assumes the existence of multiple c1eall pip('lil\t's lhal élit' idt'Il­

tical. It serves to represent a series of high-pcrformallCP ('omputt'r cHchitl'ct IIn's "illch

as pipelined machines and very long instruction wOld (VLlW) élr('hit('rtll((,~

In Section 5.1 we introduce a single c!t>an pipelille (SCP) IlIo<h'l SDSP-S('P-PN.

We then incorporate the ideas of multiple clean pipelines alld (>lOdll(,(, SDSP-MCP­

PN in Sectior. 5.2. Based upon the two rnodels, wc explore thp COll n'pt of tilt' lH'htlViol

graph and the existence of steady statt> 1.0 ensur(' t.he f('asihility of deriviup; .\ ~trlti('

schedule for a machine with multiple c\ean pipdiIlCS. In Sl'rlioll G :~ Wt> t'XtlllliJH' t.lJé'

amount of time required to find the steady state 011 a set of Li V('I'IIlOI'(' IO(Jp~. The

fast detection of steady state shown in the result::; indlcat('~ the f('élslbility of 1>I'étctic(ll

compilers using a behavior graph to generate a ::;tatic sched Ille Fillally, in St·('t.101l !l.ll

we discuss a related work.

5.1 Model with a Single Clean Pipeline-SDSP­

SCP-PN

In this section we describe a unified timed Petri-net Jllodel SDSP-SCP-PN fol' fiue­

grain 100p scheduling having resource cOllstraÎnts. The unified mode! is nHlst.nH tee!

by incorporating a clean hardware pipeline of 1 stages iuto the SDSP-PN JJJode!. 'l'II('

main property of a clean pipeline is that an instruction tllove~ thougb the pÎpf'lill<' ill

1 cycles once it enters, without interfcrencc from other illstruction~. This implif!s t,h,LI,

47

-- ----

Pt

\ la Pt

11 Pr

• ln3~~~~!~!OUS
,t.te macUnq

12 Pr
• terminal

1nstantaneous
at.te mark1nQ' ,~ . ~,

13 Pr ,... 1\

(a) SDSP-PN ot LI (b) SDSP-SCP-PN oC LI (c) Behavior Graph
a{ter Series Expansion atter run place (Pt'

i nt roduct Ion

Figure 5.1: SDSP-SCP-PN and the Behavior Graph

the detailed structure of an SCP neecl not be explicit. The construction of the single

pipeline mode) consists of two steps: serles expansion and run-place introduction.

Run-place introduction: We introduce a place Pr, known as the run place\ to

denote the SCP and rnodify ail transitions t, in the SDSP-PN to include Pr as

both the input and output places. Place Pr is initially marked with a token

representing the existence of one SCP. When a transition becomes enabled, it

corn petes for pr to get fired.

Series expansion: To denote the fad that one traversaI through sep takes 1 time

units, a series expansion is performed which introduces a new transition for

each place in the SDSP-PN; this accounts fùr the time delay. We call the

transitions originally appearing in the SDSP-PN the SDSP transitzons and the

ones newIy introduced in series expansion the dummy transitions. Every SDSP

transition is assigned an execution time of 1 while every dummy transition is

assigncd an execution time of 1-1, where 1 denotes the Iength of the execution

pipeline. When 1=1 there are no dummy transitions remaitling. In Figure 5.1

48

1 we distinguish dummy transitions by bars of a differcnt lengt h.

Figure 5.1 (a) illustrates the outcome of LI aft('r s('rÎ('s expansion. Figurt, 5.1 (l,)

shows the result of introducing a run place.

Theorem 5.1 An SDSP-SCP-PN with an lIuttal markwf/ M~ is "Ul'. saff. Cll/d]I('/'­

sistent if the SDSP·PN with an initial markl7lg Mo is Iwl', saff'. and PtTSI • .;/! I/t.

Proo{ of Theorem 5.1

The application of series expansion on a marked graph pn'S('rv('s llU' liv('IU'SS and

safeness properties in the resulting marked graph [MuI'80, MJ\~OI. III additioll, (1)('

introduction of the run place initially rontaining a token still !>l't'SNV('S 1)('l'sist('llcy

since the firing of an enabled transition cloes not disabl{' ot!\('\, ('Ilahl('d t.rall~itiolls.

Although we have introduced a structural conflict, which leads 1.0 tht' possibdity of

choi ces , the resulting Petri net still preserves th(' livcl1ess, ~af('I)('~~ .tIlt! 1H'l'sis!'('II<'Y

properties of the original markcd graph. 0

Using Theorem 5.1 we construct the behavior graph for t!\(' ('omhil\('<! mo(1P1 in

a manner similar to the one constructing for an SDSP-PN Wit.h t1H' (·Xlsl.t'IH'1' of

the run place as a structural conRiet, choices appear wh('llt'v('r 1lI01'(' tltall 011(' SDSP
transition is enabled. To resolve the choices, w(' ll1ak(' li\(' followlIl1!, aSSlIlllptioll:

Assumption 5.1 The finng meclwltlsm ln the sep mac/lln(a/ways dWOMS Ollt

enabled node io fire--ll never id/es as long as thcre 1.'> at If([.<;1 Ollt t'lHlblcf! /101"'. 'l'ht

machine can break hes by gwing prionly 10 the 7l0dcs litai $llflltllanf'{)Il.~/y bf'('()/Iu'

enabled. The priority does nol malter. Wc assume ou/y litai th,. mac/mit l'Ihdn/s

rf'peatable behavior, i.e., li a/ways makes thf samf c!Wlff .fJlI't'/l Il . .; 7Jl'IoT'lly T'lÛt' tl/ul

machine conditwn (instanlaucou8 slalc).

This assumption providcs a mcans for making lIl<' traJll'>itioll prot ('~~ of tilt' illstall­

taneous state unique, and the bchavior graph will 1)(' unique as long as cL péll"tÎndal'

choice scheme is enforced. Wc can achicve uniquelless by l'(,l'>olvillg (ortllicts ill two

ways:

• One way is to use a mathematical functioIl Lü compute the' lH'xl SDSP 1,1 allsitioll

to fire at every time steps based UpOH the CUH('lIt set of ('lIahl('d tlall~iti(}Il~ .

• Another way is to employ an Întcflldi decÎ~ioll lIIecballl~11I d~ a finit(· ~t.dt(' /IIa­

chine. Newly enabled SDSP trall~itioll~ an' then fcd illlo Üw 11\('(ha/ll~1II M'­

quentially as input.

49

1 The major difference in the two approaches regards the involvement of the internai

state in th(' laller case. As for tht> former approach, the instantaneous statc defined

by thC' marking and residual firing time vectol' is sufficient and precise. However,

witb the introduction of a decision rnechallism as a part in the SDSP-SCP-PN model,

the content of the instantaneous state is l'e<.Juired to also incol'porate the state of

the decisioll IIlcchanism. Fur the function approach to conflict resolution, ail SOSP

transitions can be initially assigned a unique priority value, 80 a function whieh always

picks the one with the highest priority can be used. Note that it will Ilot cause starving

because transitions cannot cont.inue firing infinitely without. fiTing others (in a live-sare

Petri net).

Figure 5.1 (c) illustrates a possible behavior graph derived from the example in Fig­

ure 5.1 (b). III this particular case choice resolu/ion i8 done by a decision mcchanism

which employs a PIPO queue and an adjacency lzst repl'csentatzon of the static data­

flow graph. 1 Notice that there can only be one instruction coming out of the execution

pipe at every pipe beat under the single pipeline architecture. Vpon completioll of

executing a node (i.e., a SDSP transition and its associated dummy transitions), aU

adjacent nodes (SDSP transitions) will be signaled. Enabled ones are then ordered

sequentially onto a FIFO queue according to order in the adjacency list. The choice

resolution at any time step is then done by honoring the one at the head of the FIFO

queue. In this case, the instantaneous state is made up of the marking, the residual

firing time vector, and the state of the FIFO queue.

Similar to the behavior graph of an SDSP-PN, the behavior graph of an SDSP­

SCP-PN also cxhibits a repetitive behavior. This behavior ig described by Lcmma 5.1

in conjunctiol1 with Assumption 5.1.

Lemma 5.1 J'here eXlsts an mstantaneous state in the behavzor graph of an SDSP­

SCP-PN which appears repcatedly.

Proof of Lcmma 5.1

The total Humber of distmct !vII must be finite because SDSP-SCP-PN has a safe

marking. Similarly, the total Humber of distinct RI is also finite because each tran­

sition in SDSP-SCP-PN has a known firing time. If the behavior graph is infinitely

extended, some instantaneous state must be repeat\.:d. 0

Once the machine l'eturns to a previous instantaneous state the same firing se­

quence is T<'pcated. As an example, the two sets of highlighted markings shown in

1 Adjacellcy hsts are a cornlllOIl represenlatlOll for dlrected graphs Node j IS sald to be adjacent
to Ilode i in a dlrected graph G If the dlrected arc (l,)) eXlsts ln G The adjacency hst for node i IS
a list, 111 sollle ordt'r, of allnodes adjacent tü 1

50

1

-

Figure 5.1(c) illustrate the marking portion of the initial and tt'rlninal ill~t.alltall(,()lIS

states. Their associated residual firing time v('ctors an' zero v(·ctor~. Tht' linll~ M'­

quence in the steady state is ADBeE. As illustrated. t.ht' \lotIOn of slt'ady sletl<'

can he defincd hy enforcing Assumption 5.1. Similarly, W(' can ddin(' tilt' (onet'pt of

steady-state equivalent net as the SDSP-PN cOllnterpart. Thll1'>, SPS Cétll 1)(' applit'd

equally weil on a machine with pipelined constraiuts by adherillg tü tills a:"slllllpt iOIl.

Note also thG' the assumption degenerates to the earlicst firil'g mit· (lI~wd III tht' i,h'.lI

case) as enough pipelines are available.

With the existence of a resource constraint, imposl·d by the singl(' pip('lil\C', t.lu·

computation rate of an SDSP-SCP-PN is no longer rcHerted dirt'd,ly in th(' (1 il irai cy­

cle. The impact of resource constraints is îllustratcd with Th('m('1II .).~. Il lIlt ill':tt, ly
imposes an upper bouml on the execution rate of carh nodt' iu t.!w SnSp-S('P- PN.
Intuitively, t.here can be at most one enabled t.rall~ition for t~x(>cllt.ioll durillg ('iU It tillll'

step. ThllS, it t.akes at least n cyclt's to complete one ilNatio\l of the loop body (·Vt'\1

though the cycle time of the cri tical cycles is far less. Not(· also that thi:.. hOlllld is t!)('

result of the constraint imposed hy the pipeline and IS illclqH'lldellt of t!\(' ilpproélch

used for confliet resolution. When slIch a bO\llld is reaclH'd, ail pilwliJlC's ;Ut' IOO<){)

utilized.

Theorem 5.2 Let G be ail SDSP-SCP-PN wtfh 12 SJJSP tran . .,dwlIs. TIlt' computa­

tion rate of any SDSP transitzan ln G can never be greatcl' thltn 1 /n, 1 f., , :::; \ /11.

Proof of Theorem ,5.2

To prove this theorem, it is sllfficient to show that there exist.s a simp)(' cycl(' ill t!J('

resulting steady-state equivalent net such that tht' rOllllHll,(üioll rate' for ally SDSP

transition is lin .

• Let M he the first l'epeated instantaneous state marking Ilspd to fOl'1II tlu' sl,('ady­

state equivalent net. Let a be the cyclic firing seqUl'llce f,IICh that M ~ M. By

Lernma 3.5, each SDSP transitioll of G ill (J OCCUl'S ail ('qual 11111111)('1' of till)(,~ .

• Note that none of the SDSP transitions can b(· fir('d lfl para.llcl \)('(iLll:..e· t.!\('r(·

is only one token in the l'un place. III addition, any appectrallrp of t!w SI>SP
transition in the steady state must be chaim'cl togethl'I by dlff('f('llt lIl~tal\(('S of

the fun place sinee the run place forms a self-Ioop with cadi olle of tlu' SDSP

transitions. Consequently, thcre cxists a simple cycle C in the \'('sulting steady­

state equivalent net containing al! of the occurrence~ of ll\(' SDS!' lraw.,itiolls.

1

1

• Note also that each of the n SDSP transitions is assigned a timing of one time

cycle. As a result, n(C) = a x n, where a is the number of times that ea.ch

SDSP transition occurs in C. The wmputation rate of any SDSP transition is

th us _a_ or 1,
axn' n

o

5.2 Multiple Clean Pipelines-SDSP-MCP-PN

In this section we extend the single cIe an pipeline model to the case of multiple

clean pip"lines (MCP), producing a unified Petri-net model SDSP-MCP-PN. The

SDSP-MCP-PN models the execution of the SDSP on machine with multiple clean

execution pipelines each of 1 stages. The previous development of the single pipeline

model provides a.n extensible platform upon which the multiple clean pipelines mode}

can be established. Instead of assigning only one token at the st cp of run place

introduction, as many tokens as the number of pipelines are modeled are assigned 50

that each token denotes a distinct execution pipeline. Figure 5.2(a) shows a model of

two pipelines.

The behavior graph for the combilled model can he constructed in a way similar

to that of the SDSP-SCP-PN described previously. To deal with the problem of

choices resulting from st.ructural confiicts, we again assume a firing mechanism which

always chooses the particular enabled nodes to fire-it never idles as long as there is

at least one enableJ Hode. The machine breaks ties hy giviug priority to nodes that

simultaneously become enabled. The priority does not matter; we assume only that

the machine exhibits repeatable hehavior, i.e., it al ways makes the same choice given

its priority rule and machine condition (the instantaneous state).

Multiple tokens in a run place can be represented in the behavior graph as multiple

instance of the run places, as shown in Figure 5.2(b). In addition, the assumption

above implies that a repeatable instantaneous state is encountered if the behavior

graph is extended for a sufficient period of time. The notion of cyclic frustum is

again uscd to derive a repetitive schedule for Cl. multiple clean pipeline machine.

Similar to the single pipeline case, the constraint of multiple pipelines imposes an

upper bound on the computation rate of each transition in the SDSP-MCP-PN. For

a model of R pipelines. there can he at most R cnabled transitions sent for execution

at each time step. Thus, it takes o.t least ni R cycles to compute one iteration of the

loop body even though the cycle time of the critical cycles is far less.

Theorem 5.3 Gmen an SDSP-MCP-PN G which models R clean pipe/mes and con­

tains n SDSP transztions, the computation rate of any SDSP transztion m G can

52

l

(bISDSP-MCP-PN of LI

Time Pc
St"p

Pc

3 Pc

Pc

8

9 Pc

10

Il

• initial
i nstant.aneOU5
nate markinq

• terminai
instantaneous
state m.uk 1 nq lb) Uohavlor Graph

Figure 5.2: SDSP-MCP-PN and the B('havior Graph

never be greaier than R/n, i.e., 1 :S R/n.

5.3 Simulation Results

A set of Livermore Loops was chosen for the study; ail \Vcrc writtm in SISAL [F('oSS,

Mea85J, and simulations performed on thesr loops using a compil('f /simula(ol' l('stlJ('<!

developed at McGill University [GP90]. The testbed consisls of a pl'Ololyp(' SISAL

compiler capable of producing dataflow code, knowll as A-Codt' [Tio~8a, Tio88b]. Fol'

this study, we modified the simulator to permit analYllis of ("yelie fruslum:, gell<'ral('c1

for both SDSP-PN and SDSP-MCP-PN models. The slllIulator tak(·s A-('odl' as inpul

and simulates the corresponding firing :,cqucncc.

Table 5.1 shows the results of cxecuting an SDS}> on an id('al machill(' with IB­

finitely many single-stage pipelines. Equivalently, th<' SDSP-PN wa.'i ('xecut(~d ullder

the earliest firing rule with the firing time of each transition equal lo one. III lll(' table,

the Slze reflects the number of nodes in a loor body that wen' repeatedly ('x('cuted

53

•

(

(

Size
Iteration
StartT
RepeatT
FrustumLen
TCounl.
CompRate

Loop 1
31
13
33
36
3
1

1/3

Table 5.1: Results for SDSP-PN Model

Loops without LeD Loops wlth LCD
Loop 7 Loop 92 Loop 12 Loop 3 Loop 5 Loop 9

64 84 15 15 18 84
7 14 8 5 6 2
19 26 16 8 9 14
23 30 19 10 13 28
4 4 3 2 4 14
1 1 1 1 1 1

1/4 1/4 1/3 1/2 1/4 1/14

Loop Il
14
7
16
20
4
1

1/4

cxcluding the start-up initiation sequence. Star'tT and RepeatT (Start Time and Re­

peat Time) indicate the times wh en the initial and the t.erminal instantaneous states

arc idclltificd. Iteratwn indicates the number of iterations initiated up to repeat time.

p.,·ustumLen (Frustum Length) is the difference between rcpeat time and start time.

7'Count (Transition Count) records H'c number of occurrences of a transition that

appears in t.he cyclic frustum. Note that aIl transitions are fired an equal number

of times in the cyclic fruslum (Theorem 3.5). CompRate (Computation Rate) is the

average firing rate of each SDSP transition in the loop body and equals

TCount

Repeat T - S tart T

Note that in each example the repeated instantaneous state is found within O(n)

iterations.

Table 5.2 shows the corresponding pattern for the set of benchmarks using one,

two, four, and eight cie an pipeline(s), respectively. For the case of one pipeline, we

includc utJlization, which gives the processor usage as a basis for discussion. The

results of this cxpcriment demonstrate that the steady state in aIl instances can be

round efficiently. It also reveals the following faets:

• The condit.ion raised by Thcorem 5.2 is verified in the case of one clean pipeline

whcre sorne test programs keep the single pipeline fully busy. In Loop l, Loop

7, and Loop 9, the upper bound on the computation rate, lIn, imposed by the

single pipeline is reached. AIl three cases indicated that the respective pipelines

werc fully utilized at ail time except when they were filling and draining. The

various proccssor usage in the three loops also reflects the impact of the prelude

and postlude execution sequence. Though the length of the postlude sequence

2Loop 9 is a potentlnl candIdate for parallehzmg as a. DOALL loop; however, it requlres subscript
analysis to expose Its parallehsm Herc wc exammed the loop both ways, wlth and without LCDs,
to lIlcrease tht' diverslty of our testillg

54

,
;

,
1 i

~
~ 1

~; l' \,

JI
11

t
r
\

~ ,
~ ..
" 'l
t Table 5.2: Results for SDSP-MCP-PN Modcl with Eight Stav,t's

r
~ Loops without LCD Loops wlth L('I)

Loop 1 Loop 7 Loop 9 Loop 12 Loop 3 Loo!, 5 LooJl !l Loo(l Il
2n x 1 ~BD) 480 1024 1344 240 240 21lH 1:14·\ 224

1 Pipeline:
Iteration 13 8 14 9 5 li 2 7
StartT 341 296 749 157 86 8(i 1:12 13~

RepeatT 372 360 833 184 106 121 :W:J ln
FrustumLen 31 64 84 '27 20 :15 1:J 1 :14
TCount 1 1 1 1 1 1 1 1
CompRate 1/31 1/64 1/84 1/27 1/'20 1/:15 1/1:11 l/a4
U tilization 98.9% 99.7% 98.4% 558% 729% 510% MI% 409%

2 Pipelines'
Iterations 13 8 14 9 5 7 '2 7
StartT 282 206 395 147 8'2 78 115 l:i:i

-~" RepeatT 308 244 438 172 100 14f) '2:10 1 ()f)

..:. FrustumLen 26 38 43 25 18 67 115 :13
TCount 1 1 1 1 1 2 1 1
CompRate 1/26 1/38 1/43 1/25 1/18 2/67 1/115 l/a:1

4 Pipelines:
Iteration 13 9 14 10 6 7 '2 ~

StartT 268 207 242 145 81 74 113 154
RepeatT 293 240 277 194 98 139 226 186
FrustumLen 25 33 35 49 17 65 lia :12
TCount 1 1 1 2 1 2 1 1
CompRate 1/25 1/33 1/35 2/49 1/17 2/65 1/ lia 1/:12

8 Pipelines:
Iteration 15 8 16 8 Q 6 '2 7
StartT 265 174 223 128 64 72 11'2 128
RepeatT 338 206 323 152 80 104 221 160
FrustumLen 73 32 100 24 16 3'2 112 :12
TCount 3 1 3 1 1 1 1 1
CompRate 3/73 1/32 3/100 1/24 1/16 1/32 1/112 1/:12

(was not recorded, the shorter prelude sequence in Loop 7, indicated by start

time, was obviously a fador accounting for the higher ut.ilization rate.

• Though ('ach transition was fired an equal Humber of times in the steady state

of a marked graph, the numher of firings was not necessarily one.

• In gcneral, the amounl of time required for the emergence of stcady state de­

creaseù as the number of pipelines increased, except in a few ('ases whcre the

value of the transition count was different from the ideal mode!.

• As the number of pipelines exceeded the amount of parallelism in the loop, the

behavior graph obtained was exactly the same as the one obtained for the ideal

mode!. For instancc, as Loop 12, Loop 3, Loop 5, Loop 9 with LeD, and Loop

Il were run with eight pipelines, their slart time and repeal time were sim ply

eight times the corresponding time derived for the ideal mode!.

• The lIumbcr of the iterations initiated to reach steady state for al! cases were

stillless than n, the size of the loop body. Hence, the steady state WaS reached

efficiently. In addition, the counted number of iteratlons for the ideal model

gave a close approximation of the number of iterations required by ail of the

multiple-pipelines models studied.

5.4 Discussion

To construct a schedule for the multiple pipeline machines, Aiken and Nicolau sug­

gestcd using the same schedule obtained from the ideal case by scheduling the steady

state one row at a time IAN88]. It was also shown when such schedule is adopted for

the multiple pipelines machine, the t.otal run time is al ways bouncled by two times

the optimal run time obtained for t.he same machine [NPA88]. Nevertheless, the re­

sulting schedule is still unsatisfactory be('ause, after ail instructions from row z are

schedulcd for (>x(>cution, a period of / -1 idle cycles (where / is the length of the pipe­

line) is always l'equired to delay the initiation of row z+ 1, in order to avoid possible

data conflict bctwecn the last operat:on of row z and the fil'st operation of row i+l.
Consider the us(> of the steady statc of LI, shown in Figure 4.2, as the schedule fol'

a machine with two clean pipelines and each one having two stages. The part of the

schcdule which invnlves the' steady statc will be

processor\

proccssor2

A noop B E noop

o noop C noop noop

56

------------------------- ~---------------------------

1

-

At each iteration, A and D cannot be sent for ex{'culÏon until ail /J. C, and I~' complpt,{'

firing, even though transition A is fr(:'e for ex('cution right aft pr JJ alld (' compl(,tt'

their firing. Similarly, sinee Hamamoorthy and Ho's Scllt'thJlt' i!'! dt'l'ivI'd 011 a lllcU'kt'd

graph which is equivalent to an ideal machine model, it ill(urs li\(' S.lIlH' illl'flicil'lll')'

when it is applied to the Illultiple cleall pipelint' case.

In the SDSP-MCP-PN Illodel, the problelll of data collflict in il Illullq)lt, pipt'lillt'

was considered in the process of constructing the behavior g,r<lph. Whdt' lI\1pO~,illg

the earliest firing rul{~, the gap rcquirt.>d in the [ormel' ca:;t' is !illt'd wlth l'llahlt·cI

instructions that are safe to he executed. The correspondillg sc}H'dlllt, which illvolVt's

the steady state, derived from the hehavior graph (Figure 5.2(b)), is givI'1I IH'low.

processorl

proeessor2

BEA D

C noop JlOOp HOOp

Thus this seheme will always l't'Ilder belle\' pro('('ssol' \I!'!étg('. In .lddit.iOll, t.ilt' aSSlIl'éUl('('

of a repeatable st ale in the SDSP-MCP-PN. togetht'r with tIlt' sillllliatioll l'('slllts

obtained so far, reveals the feasibility of employing the b{'havior graph to gt'IH'I'it!.t' a

statie schedule in practical compilers.

As a final remark, note that the pipelined models PI'('8('I1I.('d an' g('llpral ('Il(Hlglt !.o

allow the existence of multiple fUll(tion lInits within each individual pip(·ItIH'. No!.t'

that for each SOSP transition the rcgarded dummy transitiolls s('rVt' lo éH'(,Ollllt fl)1'

the time delay f0r a particular pipeline. Helice, t1H' assignllH'lIt of liU' difrl'J'('11l tillw

delay implies the use of a different functioll pipeline.

57

Chapter 6

Storage Allocation

Memory requcsts can slow down a computation eonsiderably. If they occur during

the steady statc of a pipelined schedule the computation cannot proceed efficiently.

The use of registers as temporary storage to redure memory accesses is important

t.o maintain the steady-stat.e computation rate and processor throughput. In this

chapter wc diseuss the application of a program rcstructuring scheme known as limited

balanci~lg to reduce the amount of storage requirement in SPS, making th~ use of fast

memory feasible.

The ohjective behind limited balancing is to expose in a soft.ware pipeline only

the amount of parallelism that is exploitable by the machine. This is accomplished

by restructuring a statie dataflow graph, prior to pipeline scheduling~ aeeording to

a balancing ratzo----a parameter which characterizes the achievable computation rate

of the final schedule. The utilization of execution units is Ilot affected sinee only

excessive parallclism is suppressed. During restructuring, storage requirements are

systematically reduCf'd across the Joop body. The one-token-per-arc policy of the

statie dataflow graph originally needs one unit of storage p€:' data arc; limited bal­

aneing redures the storage requirement below this level.

In Section 6.1 we introduce two nWlIlory models for a statie dataflow graph due to

two different arehitecturt' designs: argument-flowand argument-fetch. The argument­

f('kh model d('scribes how cOllvcIllional data fetehing and storing -::an be implemented

lIsing a statie dataflow graph. ln Section 6.2 we introduce the notion of lirnited bal­

alleing, using the SDSP-PN model, and we disluss its application to the two memory

models. Since the computation rate of a critical cycle in an SDSP-PN determines the

computation rate of ail entire net, it naturally represents the balancing ratio of the

model. In S(·ctions fi.:! and 6.4 we derive a guideline to estimate a balancing ratio

for a machint' with a pipeline eOllstraint. We then validate the guideline through

<'xpcrimcntttl results.

58

1

~
Input Storage Result Storage

(a)Argument Flow (b)Argument Fetch

Figure 6.1: Storage Usage of Argument-flow Model versus Argument-Feteh Mod<'1

6.1 Memory Model

Thus far our discussion of static dataHow graphs haw bccn based Il))on ail ahsl.racl.

notion of data flow, i.e., the notion that tokcns flow from a sourn' no(k 1.0 it.s 1'<'('('iwl s.

In this section two memory models arc prcscntcd: a/'.quIIH'IlI-jlow éllld (U'!/llIl/f'III­

fetch [Oen84, OG88]. The argumcnl.-fetch model descrihes how COIlVf'IIt.iOllttl dat.a

fetching and st.oring can be irnplern<'utcd using a st(üic dataflow grap!!.

Since, in the original dcvclopment of dataflow l1Io<kL dattL is vi('wt'd as flowillg

from a source node to destination lIo<les, the model IS call('d a l'fJIl 111 fflt-jZO w. FIg­

ure 6.1(a) presents an abstract view of storage orgallizat.ioll for cOflvent.Îolltt! st.atic

datafiow. Storage fol' input data is local to cach nodf'. Accordillgly, th(' n'suit is

required to be replicated and dispatched st'parat.ely to ('ach d('!->tirlitt.ioll lIod('. TI\(' ar­

rivaI of an input token serves two purposes: it :,ignals the f('œiv('r of t/H' ,tVail(tbility of

data (a control l'ole), and it transmits the data vetlue (a data l'O\e). III (',Illy d('~igll~ of

the architecture, data packcts composed of a data portioll and (l d(·st,illdt.IO!I-,l.dclres~

portion were used [Den84]. U nfortunately\ duplication of délta. for lIudtipl(' d('Stlll(L­

tions causes unneccssary data traffie. Such indficiency results fro/ll bindi/lg cO/ltrol

information and data information within the saille packet..

The argument-fetch dataHow model ovcrcomcs thC' argulIH'nt-fiow modc'I\ indfi­

ciency. The key differcnce in the t,wo modcls is the sepa.ratlon of data alJ(1 control

information. After each computation only a control pack('1, i!'. SCTJI, 1,0 ackllowledpp

the availability of data. This packet is called a stgnal. The result of each compu­

tation either remains in a rcgister or i!> l'et ullled to mPIllO! y c1ost' to t1lC' ('X('('uliOll

pipeline where it can be easily fetched by SUCceSSOl nod('!' (see Figure (i.l (b)) The

59

1
major improvement of argument-fetch is a significant reduetion of data traffie; the

number of da ta storage is also considerably reduced. For a detai\ discussion of the

argument-fctch dataflow model, see [DG88].

The abstract model of argument-fctch is depicted b,v a directed graph. However,

the illterconnection of szgnal arcs in this model merely represents sequencillg infor­

mation basc>d upou data dependence. The abstract graph is called a slgnal graph,

and each node in the graph represents an operation, as before. Aeknowledgement

arcs still serve to preserve the one-token-per-arc principle. Upon node execution,

signaling pcrforms two fllnctions: Signais along the signal arcs notify successors of

the availability of results, and signaIs along acknowledgement arcs inform predeces­

sors of the conslllllption of thcir output and are rcady for new inputs. Figures 1.1(c)

and 2.\)(c) muId be a signal graph if ail arcs were treated as signal arcs.

The dcvclopment of the argument-fetch dataftow model at McGill has led to the

construction of an abstract machine code known as A-code. A-code is an example

of a signal graph. To take advantage of software pipelining, new control constructs,

sueh as an index generator (IGEN), are introduced in A-code. Appendix A contains

an exarnple of thp. A-code for Loop 3 of the Livermore loops, and it briefty describes

the A-code strudure. For a detailed discussion of A-code and design decisions related

to argulllcnt-fetch, see [GT89, GTHS8, GP90, Par88, Par90].

6.2 Limited Balancing of an SDSP-PN

Wc start our description of lirnited balancing by introdueing the concept using the

SDSP-PN model. 8ased upon this ideal model, wc will establish a connection between

balancing ratio and computation rate, and we will demonstrate a savings of data

storage and synchronization both for the argument-flow and for the argurnent-jetrh

graph models. Our discussion begins, however, with an ideal model in which resource

savings secm unnecessary. In practical situation one often encùunters the situation

in which sufficÎent resources (execution pipelines) are available (cf. the ideal model).

ln thesc cases w(' minimize the data storage required while sustaining maximum

computat.ion.

Limited balancing evolved from the notion that the attainable computation rate

of a statie dat.aflow graph was constrained by critical cycles [GHW90a, GH\V90b].

Rccall for an SDSP-PN PN, the computation rate Î is determined by the cycle time

of the critical cyde in the net:

. {M(C\) 1 }
Î = mlll O(C

k
)' O(t,) , for ail simple cycles Ck in PN

60

1

"'.

This relationship suggests an oppol'tunity to lllodify the st l'li ct IIrt' of ot IIt'I' [lOIH 1 il Il al

simple cycles without sufferi ng ar..y los~ of spt'('d, providt'd t 1)(' ('Olll plll ,\ t 1011 l,lIt' of

aIl altered cycles is larger th&.l1 or cqud to t/w computatioll 1',11t' of 1 lit' Cllt it ,t! l·."e1es

Previous studi('::; on bala71clIIg WN(> only CéU'I'lt·d out 1I~1I\!-', an idl'.d IIlddlllll' Illodd,

where the intention wa::; to exploi t maxi IIIUIll fi Il t'-gl'ai Il Pdfélll('II~llI; fllIL b,t/tlll(Illg 011

an acyclic graph was thpn t.he main foclls [Gao~91. 'l'II<' (OIl:-'ldt'I',t!IUIl of I()op~ \\'11 Ir

loop-carried dependcnce Icads to IimiU'd bala\l('ing [(;HW90,tl. If ,1 ('l'II \(',,1 (y< It' i~

composed cntirely of dat.a arcs (citlwr forward or ba('kward). tilt' <OllIplll<ll iOIl l,lit'

cannot be altcrcd without. modifying input plOgrrllll. In t hi~ CrlSt' 1 ht' t Oillplll cll 1011

rate of a critical cyclc forces a hanl upper bouilli on t.lw adllt·,,·cthl,' (OlIlpllt ,11.1011 l,tI(·

of the graph. One Îmlllcdiatc problern is to dete! mille the lllinllll\llli i\l1l0ll\ll of :-I\)! agI'

necessary to maintain the computatioJll'éttf' illlJ)o~ed hy the (lill/ct! t)'('It' FOI I()()p~

without loop-carried dependence, limited bdlcu,cillg ,t1~() plcly~ <III ('~S('1I1 i,II loi!' III

sorne cases the parallelislll of a progralll ih hig,lll'! 1,11,\1\ that Illt' Ill;\(hlll<' i~ .11>1(' 10

exploit, but maint.aining ex('('ss parallelislI1 wa~t('s machille n'S()III(,(·~.

For our definition of the balanclllg ra.tio we adopt ail IcI('ctl lIlode'l, 011(' which

assumes that ail operations requin'> t.he saIlH' c\1lI0Ullt of !.JIll(' 10 ('x('nlt(" d.·lIo\,«·d hy

1 [Gao891. Note that this time const.raint can 1)(' l'el<lx('d. '1'0 fat ililrll(' our dl (II~~IOII,

we define a balancing ratio hased upon datafiow gl dph)(·pn· ... t·lIl,lIIOIl If (; i~ tlll'

original static dataflow soft wan"' pipelillp, tht' formula loI' t ,IIculrtl ill.!!. tl)(' «Dlllput ,It 1011

rate of Gis:
· {M(Cd} t' Il' 1 1 C' . (' r = mIn N

k
xl' LOr a sanp (' <y(('~ A. III l,

where N k is the number of Ilodes in cycle Ck, and M(Ck) is tht' 111111111("1 of lok(,l1~

within cycle Ck. For each Ck the ratio M~~k) is called the balllltl'lll.t/ mlw. A< (Oldlllgly,

critical cycles always havp the smallest balancillg ratio alld slow('st C'OllIlHllatioll 1,ltl'

We now demonstrate the application of limited halan('illg lI~illg, both 1 Ill' .n)!,ll JI 11'11 t -

flow and the argument-fetch computatioll lIIode\:".

Recall that in the arguITI(>nt-f1ow model each fOl'Wrlrd/fl'('dbrl(k dat ri éll (' ('01'/1'­

sponds ta one unit of storagc; an associaled tlcknow I('dgenll'Ilt dl (' ('OlIt lob 1 b u..,agt·

A token on an acknowledgemellt arc dellot('s t!\(' vacdl\cy of lOféW', will l" ,\ tokl'II

on a forward/feedback arc denote::; accu p l.llcy. 1 For tif(' clrgull WIl t -/low lIlode!. tl 1 t·­

duction of balancing ratio on I1011-criti<al {JLies sllggesth a way 01 d('alrllg with bulh

the storage-usage problcm and the synchl'Ollizatioll-(()~t !>roblt-m (r.tll~('d by tl)(' f10w

of the acknowledgement signaIs). III gelleral the lec\....,::;igtlllll·1I t of rl(know 1('dg"lIlt'lIl

arcs in a graph l'ail be il meanh of dccreasillg tlH' balcuJCIIIg, ratio. The i Il (·11 iOIl of

lThe token and space dualtty ln the SDSP l!> actudlly tlll' 1>allll' a." tht' dllhltl~ III h.lIl1~''''' ,\II~III\'lIlf'd
dataflow graph [KLL86]

61

1
· · !

!

B· +
\

· . ,
\

Forward data ~
arc

Acknowledqement ...
arc.

Feedback datd --(>

arc

Figure 6.2: Minimum Storage Allocation

dumrny nodes as butTer!'. will increase the balanclIlg ratio [Ga089]. For instance, L2

consists of a critical cycle C· (C DEC) consisting entirely of data arcs, a situation

which imposes a hard upper bound on the computation rate of the graph, 1/31 (see

Figure 2.5). On the other hand, simple cycles C\ (ABA) and C2 (BDB) possess a

larger balancillg ratio, 1/2, and allow the opportunity to alter the balanring ratIO by

reassiglling ackllowledgemclll arcs. Figure 6.2 illustrates the consequences of limited

balancing by acknowledgelllcnt-arc rearrangement. Now the new cycle ('3 (ABDA)

has a balancillg ratio of 1/3. The immedlate saving in signal traffIc is obvious. Note

also that acknowledgement arc (D, A) controls the usage of the input storage for

nodes B and D, creating an opporLunity for nodes Band D to reuse the sarne space

as their input storage. l\~ Oie irnportantly, ail of these trcatmellts can be carried out

without sacrificing execution speed.

For the argunwut-fetch model, the signal graph IS the target of lirnited balallcing.

Similar methods such as acknowledgement-arc rearrangement and buffer insertion

cali be employed, and similar sa\'ings on signal traffie achieved. '1'0 illustrate how

storage is rcduced in this case, we pres~nt a simple example in which a set of nodes

safcly reuses output spacc. Figure 6.3 shows the A-code for Loop 9 of the Livcrmore

Loops. The loop body of Loop 9 eonsists of one critical cycle (node72, node73, node77

nodeï4, nod(72). The maximum computation rate is 1/4/, and henee the suggested

balancing ratio is 1/4. Figure 6.4 shows a possible limited-balancing of Loo)) 9 (with

a balaneing ratio of 1/4). As can be seen, plenty of simple cycles are found after arc

rearrangenwnt. The unique seriai formation of nodes in a cycle not only assures the

order of activation of each I10de but, also provides a safe situation for the nodes to

f{'USt' tht' saille output space. For instance, Bodes 30, 31, and 32 in the simple eycle

locat('d at the left ('dge of th(' graph cali reuse the same output storage.

62

1

Figure 6.3: A-code for Loop 9

-
63

•

f

(~

Figure 6.4: Loop 9 under Partial Limited Balancing

c
64

1

. ,

--

6.3 Limited Balancing of an SDSP-SCP-PN

For the id{'al mode! the balancing ratio provid('s a lIlt'dll~ of "ddrt'~si\lp" ",it hlll Il

unified framewol'k, hoth the ~cht·duli\lg pl'Oblt'Il\ alld tlU' stol'.t/!,I·-,t11o('atioll plllhklll.

There art· two important charactt'l1stics iIl t }It· pn'\'lOliS dl~(,II~~1011. FII~I. t II(' bal­

ancing ratio Lan be computed precisely by dt't('rmilling t hl' nil ical <,yelt·. Secolld,

limited balancing of a graph with the saille hdlancing ratio ,l~ ih ('\'II it.1I cydt' dnt's

not alter the computdtion rate. U nfortunately t hes(' 1 Wo chari\(lerist \t ~ do Ilot holt!

for the SDSP-SCP-PN mode\. 1'hough a larg('r bdlancillg rat io wililikt'Iy IlIln'clS(' t.llt'
amount of parallelisrn, the computation rate of a si ligie t \('all pipl'llIIt' wil Il 1/ ill:--t 1\11'­

tions can never excced 1/1/. Therefore, the hdldIlcing rat io of d 1!,1 (\.>11 alnlll' I,wllol

determine the' computation rate for U\(' SDSP-SCP-PN rnodd Hdt Ilt'r t h,lII "'('('hinp,

a dcfinite relatIOn betwcell halallcing 10110 and (OlllplltatlOll l,III'. ,\..., III t III' ('rl~(' of

the ideal mod.>I, we estdblish il balallcillg rdtio alld Iltlltzatiotl 1<11,(' r('I(\li()Il~llIp. Ali

approximation is derived to (·!'Itillldt(· dll d<lequ'll,t' b,dc\IICill1!, latlo for II\(' loop htldy

such that a certain utilization rdte of t!w dedit ""wlil\(, IS llIilllll,llIlPd IlIldl'" 1 II(' SPS

applOach. Once the balctncing l'dtio l~ dpt('rlllllll'<1. lilllltt'd hc,Ic\I}('lllp, (rlll \)1' "I>pl\l'd

throughout the graph to {'(·dll("(· storagt' .

1'0 estirnaU' a correct alld appropl inl (' b,t!iUlCi IIg rat iu IIl\dl'" S PS. W(' ,'0111 pli 1 l'

a balanciag ratio hast' cl UpOIl d mort' ('Oll~('ndt iv(' 1..(\Wdlll:llg ~I b('IItt' /J. wlll'II' IJ i~

inferior to SPS ll1 tcrms of longer l'lInnillg tin\('. A('('ordillgly, tilt' (,Olllplllt't1 I"dalll­

ing ratio for scherne B alway!> pIOvide~ a cOII~t'l'vativt' Il H'dSIIl l' of tilt' trllp,t'I l'lUO

required for SPS and l'an be sardy used. TIH' chm'('11 '>(111'111(' Jj I~ (',dl(,d cl /HlII"

scheduling scheme (sec Chdpter 5..1) [AN88]. Bast·d IIpOIl tl\l' ~tt'ady 'il dit' obl,.tilwd

from the ideal case, schemc B schedules ont' row dt d tlll1(, t hl' WP(·tltl\,(, pal t('11I 011

a machine with one executlOlI pipeline. Thi~ ~c1\('n)(' ha!'l dit illtporLlIIt 1 !tellr\(t(·) I:-t.il,

it has predictable scheduling behavior so tltat the total exP(IIlioll liJllt' l,lit IH' (·.I!'Iil,\'

computed. 1'0 estimale t ll(' rcqllired balallcillg) atlo for '>(IWIIH' H. tilt' 1 t'1,1I1()II~hip

between balancing ratio and utilizatiull rate· i!'l ('stabll~h('d 1I~1l1P; Ut(' flllld,lIlWllt,t!

pipeline utilization-rate forlllula shown IH'\ow:

Utilization rate U =
Idle time

1 - TI' . ota ex('cullO[\ tllllt·
({i.l)

where the idle time and the total exccution lime are the (orr('~portdlllg tlll\(, ('xp('cl/'cI

for scheme B. In addition, wc will use the followillg n()tatloll~ ill our all<tly~i..,:

• C, n, and l will denotc rcspectively an SDSP, UH' total 1l111ll1wl' of iw,tl'lJctjoll~

in a, and the length of the cxecutioll pip(~line

65

r

• F will denote the stcady state for thc associated SDSP-PN of C, i.e., thc cyclic

fruslum obtailled from the ideal case. 1 will denote the number of times F is

itcratcd at execution, and J}, J2 , ••• , Jp will denote respectively the p rows in

Fj N(J.) will dcnote the nun.ber of transitions fired at row l of F.

• k will dcnote the total number of occurrences of a transition in F. Rccall that

aIl transitions appear the same number of times in F (by Theorem 3.5). For the

ideal case, !. is thcn the computation rate as weil as B(G), thc current balancing
p

ratio of G.

Listed bclow are two terms used to compute an upper bound for the idle time

expected on scheme B. Equation 6.2 shows the total execution time required to

cxecutc F, 1 times on a single pipeline machine using schernc B, while Equation 6.3

shows the minimal execution time required. The idle time can thus be obtained by

subtracting Equation 6.3 from Equation 6.2.

• Total execution time:

1 x (N(Jd + 1- 1 + N(J2) + 1- 1 + ... + N(Jp) + 1- 1)

- 1 x (kn + pl - p)

• Minimal execution time:

Ikn + 1- 1

(6.2)

(6.3)

We are now ready to establish the relationship between balancing ratio and uti­

lization rate for scheme B, using the pipeline utilization-rate formula. By substitution

of Equations 6.2 and 6.3 into Equation 6.1, we have

l-U
Eqn. 6.2 - Eqn. 6.3

=
Eqn.6.2

l-U =
1 _ Eqn. 6.3

Eqn.6.2

U
Eqn.6.3

=
Eqn.6.2

U
Ikn + 1- 1

(6.4) =
1 x (kn + pl - p)

The resulting Equation 6.4 can be evaluated in various ways:

• By approximating Equation 6.4 for U one can determine the guaranteed utiliza­

tion rate U of the execution pipeline for a givcn loop body G of n instructions

66

1 having a balancing ratio B(G).

U >

=

=

JJm
1 x (kn + pi - p) ,

lm
p x (kn + 1 - 1)

p

nB(C)

nB(G) + 1- 1

l?:. 1

• By solving Equation 6.5 for H(G) one can deteflllilll' for a gi\'I'Jl loop body (; of

n instruction a sufficient balancing ratio H(0) sueh that. a pipdiu(' ut.ilization

rate U is maintained.

B(O) ~ U(l-~
n(l -- (T)

For loops with no loop-carried dependenn" if t.ll(' balallcing ratio CéUlIIot b('

improved due to restricted paralldism in a loop hody, Ol\t' l1li~ht. lw ablt, t.o

unroll the loop body to increase parallC'lism of a softwar<' pipf'lillC' a~ dpscrihed

by the following guideline .

• Finally, by approxirnating Equation 6..1 for n, ont' C(!.II dct('rlllillt' for d giVf'1l

balancing ratio B(C) the required number of instructions Tt in a too!> body n
such that U utilization of the execution pipeline is maintained.

11 =
(Ulp-l)x(/-l)

(1 - li) x / k

<
V/pl

(l-U)x/k
Upl

=
(l-U)xk

For loops with no loop-carried dependence, if the loop body dOf's Ilot match

the size n, a new loop body can be obtaincd hy unrolling U11til the 1I1l1111H'r of

instructions matches t.he requirerncnt.

The establishment of the guidclines ba..,ed upon naiVt' schedulillg provides the

conservative estimations for the corresponding pararneters in SPS. For exampl(', the

estimation of B(G) can be safely used as a COlls(>rvative estimatf' for UH' balaucing

ratio used in limited balancing for SPS. Note that thesc guid('liIl('~ can ouI}' be' applil'd

in cases where the execution time of ail nodes is the saille.

67

(

(

6.4 Limited Balancing of an SDSP-MCP-PN

For rnultiplc-clean pipelines we explore a similar set of relational guidelines. As in the

previous sedion, na.ive scheduling is assumed as the basis for deriving an upper bound

on the exc(:ution timc of multiple pipelines. Naive scheduling schedules one row at

a lime from the repetitive schedule under the ideal case, whilc each row is divided

equal1y among ail a.vailable execution pipelines. With the aid of the utilization-rate

formula, relation between balancing ratio and utilization rate is again established. Wc

use R to d('notc the number of execution pipelines available. Equation 6.6 shows an

upper bound on the execution time required by naive scheduling" and Equation 6.7

shows the expression for the best achievable lime when a hundred percent utilization

of ail pipelines is achieved.

• Total Execution Time

• Lower bound on Execution Time

Ikn
-+1-1
R

(6.7)

Equation 6.8 shows the result of :mbstituting the minimal execution time and the

required cxccution time expressions (Equations 6.6 and 6.7) into t.he utiIization rate

formula (Equation 6.1).

l-U <
Eqn. 6.6 - Eqn. 6.7

Eqn.6.6

l-U <
} _ Eqn. 6.7

Eqn.6.6

U >
Eqn.6.7

Eqn.6.6

=
!ff+l-l

(6.8) Ipl + l~n

68

1 • Equation 6.9 shows the result of reducing Equation 6.S fllrtlH'r. For tl)(' gi\'('1\

program factors, B(G) and n, and the hardwan' factors, 1 and H, Equat.ioll tU)

imposes a lower bound of tilt' utilizatioll rate of ail H ('X('('\ltion pipt'Iilll'S.

u >

>

L1f+l-l
[pl + l~n

lkll

If" 1 ~ 1
lpl + I;t '

Ikll

- pRJ(I + :R)
B(G)n

RI + B(G)ll
((;.9)

• By solving Equation 6.9 for B(Cl), Equdtion 6.10 irnpos('l> an IIpp<'r huul1<1 011

the balancing ratio to keep a utilizatioll ratl> of {! 011 al! Il ('X(>, IIlioll pipt'lin('s

for the loop G consisting of 71 instructiolls.

, PlU
B(G) < 11(1 __ tr) ((i.lO)

• Finally, by solving Equation 6.8 for TI, 011(' t'an <1<'1 ('r1ll i 1 If' fol' il gi \,('11 balallci/lg

ratio 8(G) the f('quired Humher of ill~tl'l1ctiolll> 11 in Cl loup body l>1I(Il th.ü

a uWization rate of U for ail Il exccutioll plpelille~ IS malllla,ÎII('d. FOI loops

without loop-cal'rit'd dependellcc, if tlH' loop body dops Ilot Ill<ttch tilt' sizt' 1/,

a new loop body can be obtained by unrolling Ilntil th(' IIl1l1lbN of ill-;I l'lI<'t iOlls

matches the requirement.

U Ipl + U Ikn
R

U Ipl-I + 1

Ikll , J
> Tl + -

/IwO - (f)
> Il

Il(U 1 pl - 1 + 1)
< 1 k{ 1 - (!)

U(/lpl
< 1 k(l _ U)' 1 ~ 1

HU 8((:)1
=

J -li

6.5 Experimental Results

(UI)

To substantiate the corrcctness of our guideline, wc provHlp simulatio/l r('sults of

pipeline utilization conducted 011 Loop 9 of th,:' Livermore Loops. Figlln~ ().:~ show:. tlw

69

signal graph of Loop 9. The loop body of Loup 9 consists of 8·1 nodes and one critical

cycle (noden, node7:J, Bode77 Ilode74, node72). The maximum computation lte i~

1/4/. In the experiment w<' balanced Loop 9 using 1/4 and cornpan'd t.he observed

utilization ratf~ against the cstimated lower bound. Table 6.1 provides estimations

and rcsults ulldcr various machine cOJlfiguration~. PL and Numbe1' of Stages illdicate

the number of pipelines and their associated lcngth used al, the simulation. Under

each configuration the cstimated utilization rate is computed using Equations 6.5

and 6.9, and is listed unrler the row Estimate. 1'0 appreciatc the impact of Iimited

balancing, wc eXdmine Loop 9 under three levc\s of lirnited balancing, indicated in

the table as Before, Phase1, and Phase2.

Be fort>: Original Loop 9 contains one eritieal cycle, i.e., no limited balancing.

Phase1: Limited balancing is partially applied across Loop 9, as shown in Figure 6.4.

Phase2: Limited balancing is applied more aggressively across Loop 9, as shown in

Figure 6.5.

For cach of the three cases, recorded results includes computation rate for steady

state ('xecution (on the right) and pipeline ul,ilization (on the left). The following

sllmmarizes our observations:

• Ali of the estimated pipeline utilization rates are a correct lower bound for

obser"ed processor usage, confirming our guideline .

• The accuracy of the approximation increases under two extremes; the first ex­

treille is the rcsult of two behavioral factors: The first factor is the increase in

the number of executwn pipelines. ln this case the behavior graphs of the pro­

gram respectivcly uuder SPS aud under naive scheduling both converge towards

Hl(' behavior graph ullder idcal mode\. As the nurnber of execlItion pipelines

ex('eeds the amount of cxploited parallelism, the schedules of SPS and naive

sdl<'duhng are tht> sal1lf' as the one produced for the ideal case. The second

factor 15 the increase in the number of stages in the cxecution pipeline. The

amount of parallelism tf'llds to decrease as pipeline length increases. Thus, a

longer pipelilH' decreases the Iltilization rate over the same program. As both

factors are infllH'ucÎng the result, the utilization rate decreases rapidly towards

the estimated bound. The other extreme is a decrease in the number of pipelines

and pipt'linc lcngth. As both the Humber of pipelines anù the number of stages

drop to a small value, the calculated lower bound approaches 100% utilization.

70

1

,..,.

-.'

Table 6.1: Results for Utilizatioll Ratt' Estilllat iOIl

Number of Stagelo
4 8 W :12

PL Rate L1til Rate Util H,\te II t il. Rah' Lllil

1 Estimate 87.5% 75% !)ô 8% 40 ·1%
Berore 1/84 99.4% 1/84 98.4% 1/8(i 93.8% 1/1·11 M~ 0%
Phasel 1/84 99.8% 1/84 99.3% 1/85 969% 1/1:11 ti:! :\%
Phase2 1/84 99.8% 1/84 99.3% 1/87 947(X· 1/14'l f)7 j(iI,

2 Estimale 72.4% 56.8% 396% 247%
Before 1/42 98.4% 1/43 93.9% 1/70 584% I/I:H :10 2(X,
Phase 1 1/42 993% 1/42 98.0% 1/65 62.8% 1/129 :\16%
Phase2 1/42 993% 1/43 95.7% 1/71 577% 1/1:\[1 :\0 :!%

4 Estimate 568% :\96% 247% H l'X,
Berore 2/43 939% 1/:15 58.4% 1/()7 :JO ()% I/I:U 15 ti%
Phasel 1/21 98.0% 1/32 637% 1/64 :31 !)(X, 1/128 15 !J%
Phase2 2/43 957% 1/35 584% 1/67 :W 1)% 1/1:11 lfi<i%

8 Estimate 39.6% 247% 14 1 (M, 71i%
Berore 3/52 589% 3/100 30.7% :1/196 15 filX, :\/:188 i!)%
Phase 1 1/16 63.6% 1/32 31 !)% 1/ti4 15.!)% 1/128 HO%
Phase2 1/17 600% 1/33 :109% I/H5 15.7% 1/129 i!l%

16 Estimate 247% 14 1% 7 (i% :\ \1%
Berore 3/50 307% 3/9g 15.0% 3/H)4 79% :\/aSti ,10%

Phasel 1/16 318% 1/32 159% 1/64 80% 1/128 40%
Phase2 2/33 309% 2/65 15.1% 2/129 79% 2/21)7 .\ 0%

• For each machine configuration, the three versions of Loop H ail 1'('1\('('1 silllilar

processor usage. From this observation wc can conclude that tht' (,olllputatÎolI

rate of a Ioop is insensitive to the number of criti('al ('ycl('~ ill ils body.

71

t

Figure 6.5: l.oop 9 under Aggressive Lirnited Balancing

72

1

Chapter 7

Related Work

7.1 Software Pipelining

Software pipelining is a weil known technique for cxploitillg filw-grain parallc'lislIl ill

loops, by reorganizing statemcnts in succcssiv(' iterations of (\ loop hody SO (IS t.o ('Xl'­

cute in a pipelined fashion. The idea originally emergcd from IJI(' lIIiCl'OplOgrallllllillg

~ommunity as a means for a pipclined processor to exc'cutt' VC(tOI' operat.ions [l\og77].

Since then there have been variations of the techniquc propos(·d for loop :->< Iwdtd­

ing [Aik88, Ebc87, EN90, Ga090, Lam89, RGSi, SDXS6, 'l'ou84]. III this st'ctioll Wt·

survey several typical methods and compare their flllldalllcIlt,d ideas. FOI this dis­

cussion, we closely follow the terminology Ilsed in [J AgU]. We l'dt'! to ('aell 0JwrcLt.ioll

in the origilîdII .. op body as a rmcm-operatlOn (MO) and the (ompaded opl'ratiolls

as a micro-instructlOn (MI). Accordingly, cacl. MI can cOlltaill st'v('rdl MOs aft.(·!'

compaction. !nzfzatzon mterval is equivalent to dw cycle' t.illlt· COI!C(·Pt. wC' dc·fi\l(·d

earlier.

The software pipelining schemes to be disCllssed indude p('rfert pipeliniIlg IAik~8],

enhanced pipelining [EN90], URPR algorithm [SDX86], and software pipC'lilliug fol'

the Warp [Lam89]. Ali of thesc schemes handle loops havillg loop-Cdrri('d dC'JWII<!('!lC'('

and conditional constructs. Tlwil major differen('('s lit' in tlH'ir hctrdware a!->slllllptlollS

and their approaches to construct the stcd.dy statt'. They cali 1)(' divid('d IOllghly ill\'o

two categories: compact llnl'olling and l1'lll/-and-t ''l'O/'.

Compact unrolling unrolls tbe loop body a lIumhc'r of tillw!-> alld t}WIl compacts

the unrolled sequence subject to a glvcn (ompaction ,tlgOllthm. TI\(' l'cp('att'd patlC'f11

spotted in the compacted sequence forrns the t.teady stale'; its lcngt.h l~ tll<' illitlilt.iop

interval. The numberof unrollings and the aggressiverwss of t}w COlllpactloll illgurithrn

correspond to variations of the earliest firing l'ule, and bence, dfft'ct UI(' opti,. itlity of

the schedule. Perfect pipelining and enchanced pipelining an' ('xétrnpl('s of rompact,

73

-1
<4

(

f

Ilnrolling. The trial-and-error rnethods COUf:>truct the steady stat(' based UpOIl a series

of trials on a range of initiation intervals. The smallest achicvable Olle is taken as the

initiation intNval. URPR algorithm and Lam's software pipelinin~ scheme are good

exarn pIes.

7.1.1 Perfect Pipelining

Aikcn and Nicolau's work Oll perfect pipelining [Aik88, AN88J consists of two steps:

infinite unrollillg and code compaction. A data dependence graph ,DDG) expressing

tilt' partial ordcr amollg the' MOs presents the ultimate dependence constraint to be

followed. Assume thal the> loo}> body G is initially expressed in a sequence of MOs,

obtaincd by sorting the DDC topologically and tempordrily ignoring loop-carried

d('(>('lId('lIc(, "dges.

Perfect pip('lining umolls r, infinitely, i.e., th(' sequence of MOs is rcplicated in­

finitdy. '1'11('11 cach MO ill the unrolled loop hody 0' is moved upwards as much as

possible with rcsp('ct ta the compaction algorithm, subject ta aIl data dependences

and resourcc cOllstraints. Throughout the process, the sequence of MIs is searched

for a rcpeated pattern. Once a pattern is detected, the prelude sequence is formed

directly {rom the sequence of MIs beforc the steady state and the postludc sequence

is at tach('d accordingly.

As pcrfect pipclining is applied to a condition-free non-nested loop body with­

out J'csource r('strictions, a time-optimal pipelined schedulc is obtained [AN88J. No

transformation of the loop based upon the given data depl'Ild(~nce can yield a shorter

running time. Silice each MO is moved to the carliest possible starting position during

compactioll, t.he resulting schedule is an earliest firing schedule. Thus, for a machine

withollt l'csourcc r<,,,tl'ictioll~, compact unrolling aclllev('s sllIlllar rcsults as exccutmg

the DDC lInder th(' carliest firing ruie. The rpsults from our study regard:ng how to

rcach steady statt' is also applIc<Lble i Il this case.

Whefl a conditIOIlal ~tat('mCIlt is con~id('red within a loop body, perfect pipeIining

finds a rep('att'd patt('1'I1 on each path rcgardlcss of the flow of control. In this case,

scvcrallJrcdicatc MOs can bc compacted into an MI. To satisfy the rcquirement for

evaluating multiple predicates, the underlying architecture assumes the function of

pcrforming lllulti-way branching. This feature allows several predicates to be evalu­

at<,d togl'tlH'l' within a long instruction word in order to select the subsequent branch

point.

74

1 7.1.2 Enhanced Pipelining

Assume the Ioop body G is expressed using a sequence of M Os obt ai IIl'd hy t opo­

logically sorting the DDC as before. MOs whirh are al t.1\{' htllllt' d('pth in tilt' 1)1)(;

are said to belong to the same level and stay consecutively ill li\(' hl'qllCIICt', Illitidlly

Gis unrolled infinilely to form G'. 1'0 facililal(' l'xplanation, \\'(' l't'l'cr III III(' MO 011

each row of C' as MI. The term wzndow w, dellolcs a f('gioll of COlls('cllti\,t' ~t b in t lU'

unrolled sequence G'. Initially, window w, is !'l('t to co\,('r tlll' 1-1 h 1I11lolll,d loup body

in G'.
Ebcioglu and Nakatani's enhanced Plpelinmg is similar to !>erfect pip<,lIl1illg ill 1 lit'

sense that it also performs unrolling and compaction [EN90j. III ddditioll, tht,y "Iso

assume a similar multi-way branching capabilit.y to handl(' ('onditiolldl (Ollsl III(ts

However, they speed convergellCP of stc'ldy stat(· by ('lIfolcill,!!, t wo IlIlt·~ .

• MI is the basic unit of moving for compa(t iOIl, \.t·" (omp,\(!t'd MI ... (,1111101 1)('

decomposed .

• Cümpaction is only applied to MIs withlll the salllt' wlIldo\\' '1'0 \)(' Jllolt· PIt'(lM'.

MIs tü be filled at compaction lime mll~t he cllrrelltly <li, tilt' top Lt lit 1 01 t 11<'

window. In addition, ('andidates used to ril) the' top-It'\(·) l\lb IIII1!'>t IH' (hu!'>('11

from the same window as well. This ~('colld rult- IIhillléllt'ly «()JI~llélIIIS Ill<'

formation of the stcddy statt' to contain ollly OJl(' <opy of ('a, Il 1\10 flOIll tilt'

original loop hody.

Enhanced pipelining applie~ the salll<' ('01 Il IM(t ion IIlU"C' lu l'<l(Il Il'.. V,. "'lIbJ"(1

to data depcndcnce constraints, resolJJ'(t' COJl~tlrlillb, and tlll' (ump,\(tlOl1 11I1(,~ Ju..,t

described. Artel' compacting the top-lC'v(') MI ... , ail wllldow!'> dit' <ldjtl~tc'd c!owllwald

by one lev el of MIs. This adjustnH'llt has tlll' clr('ct of Illovmg t III' PI('VIOII:-- lop lt'v!'1

MIs to the bot tom of the wiudow. At thi~ poiJlt. (OmpcHtloll i:-. t'nI l'wei Ollt <l1.!,<UII

with the current top-)cvel MIs. If tl)('re i~ no loop-(dll H'd d('(H'lId('!I((', ~1 1 ... !rom tilt'

bottom leveJ of IVI , whicb IwloIlg origindlly 10 tiH' ril~t)('\'(,) of tI)(' l-t) It('{ctl iOI1, 1110\'('

up to the top level of w" which rorre:-,polld~ to li\(' second)('\,(,1 of il"1 clt IOIJ 1 Tbll

software pipclining occur~. Nole that eV('ry willdow JJ1dmtdlll:-' MI Id('lIll(,II (Opy 01

MIs.

Compact ion and window adjustment are repc'dted IIl1til (OIIlpa< lIoII hr!:' 1)('('11 tlwd

on each level. The resultihg formation of MIs III window 1111 ('Olltl ibutt,:-. to t!w .,tt'ady

state. The prelude sequence can he ohtaincd directly [Will the !'l('q l1ell ((' of MI ... !J(·f(jr('

steady state (w.) and the postludc ~cquellce i~ ~lInilarly rlt.tadICd Note, t hcll ('(LeI!

MO from the origmalloop body appC'ars only OllC!' ill !'>t(wly stat('. Th(· aclvalll.ag(· of

this approach lies in the accelcration of stcady-state forma.ti(HI. Even SO, pn·lllat.IIJ'l'ly

75

Ir

1
tying parallelisrn together reduces the flexibiIity of fine-grain scheduling for utilizing

availablc resourccs.

7.1.3 The URPR Algorithm

URPH (UnRolling, Pipelining, and Rerolling) originally applies only to loops which

contain a single basic block [SDX86). More reccntly the technique has becn extcnded

into what i~ now cd.lIed GUHPR (Global URPH). GURPH incorporatf's conditionals,

Il('stf'd loops, ami subroutmf' calls [SDWX87]. For the purpmw of this survey. wc

focus only on lJRPR, which contd.ins the basis for software pipclining. The URPR

algorithm is silI\llar to trial-and-error. First, the initiation illt(>rval is computed; the

Ioop body i~ unrolled and tlH'n pipt>lined with respect to the interviii ail in one trial.

Illitially the loop body G i~ locally cornpaded with respect to illtra-data depen­

dCfl('(' and rf'sourn' constraints, into a sequence' of MIs. Onc(' this i .. accomplished,

MOs becolllf' indivisible and are manipulated aH a single entity. Let (;' deuote the

prewmpad('d loop hody and S tht' schedult' to he built illcrf'IllC'lltally, rllld let MI~

and MI~ d{'nott~ il\(' t-th MI of S' and th(> J-th MI of tilt> l-th unrollcd body of (;'.

'l'II<' algorithm ("oIISlst" of thr('c st agcs:

1. Unrolling: C' i~ unrollcd k = fi/dl tinw~, wlwre 1 i" tll(> kllgth of (;' and (l

is the initiation interval computed using the maximum lUter-body data depen­

dellfe distanC<' that spalls 011(' it(>ration. 1 Intuitivcly wc need only ta unroll the

loop bodies k times to Ullroyer the ~teady states if each initIation is d cyclps

apart.

2. Pipelining: The J.. loop bodips ale pipelined. S' is inlti,tt('d with the first loop

body, a copy of (;' with 1 MIs. The remd.inillg loop bocbcs are added to Sone

by ml(', suhjed to initlrl-tjOll intt>rval and data dependcIlCe. If a tt'source conflirt

Ofcurs betw('('n Ml~ alld MI; while adding the l-tlt loop body, MI~ is dclaycd to

compact wlth MI~+I. If it fails again. a new MI .. containing only ~n: is inserted

hetwe('11 Ml~ and MI~tl. The rea:-,on for this insertion is to keep the distance

bctw('('11 rvU: and 1\'fl:_ 1 dS close to d as possible so the pipelined steady state

is 8hort('1". Compactioll is colltinued with MI;+l until d.1I MIs from the k loop

bodies arc' addcd to 5'.

3. Rerolling: Steady state is formed from a scquellCf' of adjacent MI in S with

shortcst cycle time. '1'0 cnsure the steady state consists of an equal numbcr

of MOs, rt>dundant MOs are removed from S. URPR furthcr simplifies the

1ft was latcr pointed out that thc calculation should be done for ail dependences [JA90J

ï6

1 selection by r('stricting the steady state to contaill ('xdctly Ollt' copy of ('(\cl!

MO. Based upon the sdection, prdud(' and postlllde "'('«tH'Il(t'S <lrt' coltsl fll<"lt·d

The GUHPR schenw of handling collditiollal C()II~tlllcts i~ ~llllil,u' 10 11lt' ~Iob,d

compact ion technique cal\ed trace ~chedulillg [FisSI J. SI'I>c\.l dt t' pdl h~ MI' 1 Olllp,l(!t'd.

pipelined, and rerolled individually. Bookk('('piug Op('felt iOIl~ (li l' t ht'II ,Hldt·t! fOI ... 1'­

man tic adjustmcIlt.

The URPR algorithm hdS the advétllLagpof lo\\' cOlllputal 1011,11 (o/llpl('xl'y 111 Illllld

ing a schedule. On the other haud, Il prellldt \I1(,\Y pll~hl's)lott'Ilt l,Il P,ll ,dlt'[i~1lI tll

gether, losillg the fI('xibility of fint'-grain par(dl('li~lII III ctddit 1011.11· ... 11 <lUIUl/!, 0111' IOpy

of C'in steady statc clIlJllllat{'~ the opportullity for fOlllllllg cl dt'IISI'I plp('llIlI'. 'l'Ill'

GURPR algorithm also slIffers frorn tht, Sdllll' critirislll of t l'cU (' :-.dll'dllliJlg, Th.·1 l' 1:­

no reason why the ~dlll(' pillh wIll be lë'IJ(·atedly 1''(1'1 IIkd III tl\(' loup budy

7.1.4 The Systolic Array Optimizing COlupilcr

Lam 's software pipelining algol'ithm if, tdiJorl'd to codl' gl'llt'l étllOll lOI ,\ V LI \\' f,y..,t IIII(

architecture known ét~ \Varp [Lalll~~, Ldlll~91 FOI t Ill.., IIUt< hlllC'. 1 III' J)J)(; If, ..,llghllv

different. Earh mino-operatlOlI (~'10) ('Ol1lpIN· ... ci f,('(PU'I\(l' 01 illdl\'\'>lhl(' o»(,\,ill 1011'1;

once an MO IS inÎt.i<llt·d thl' l'lItÎI<' ,>('qUI'Il< l' 1l\1l~1 IUII lu (1III1pldll/1l \\'llltotit IUIt'I

ruptioll. Lam's algorithlll If, cl 'ypI(et) tl1<lI-dIHI-l'l101 ',1 hl'lItt' :\ Irlll~l' of IllllletllOll

intcrvals is first obtalllt'd, c\1It! \ hl'Il a ~1'q1\l'lI(,\' lA 1 netl~ 011 tilt' (I!O..,I·1l 1111 ('1 v,L! ,III'

initiated. For l'a(li trIetl. ('dch ~10 i~ fot((·d to f,(IlI'dut" lt')!;ul.\ll\ ,d t 1\1' illtl'I \,d

The startillg point of tilt' tnal 1 dllg<' 1"> < Olllputl·d lI~illp, !1'o,Olllt (' dlld PI('(l·dl·lI(l'

constraints GÎvcn ail dcycllc [OO)> body U alld cl CIII (('lit 11'l,t! illll'I \,d d. f,.lIll1' :\10

from succes~i\'(' it('ratio":,, lt\'(' f,c!lt'duled (Oxd(tl) tl f,t(·p'" dP,lIt will Il' l',t(Il ~1() WIIIIIII

aGis list sdwdulcd.

For ail MO, scheduled dt tilllt' t. J'(''''{)(lrc(' lI~a~l' i~ (}If'('kl'cJ cl).!;ctlll..,t tI1t' Il, Il+tf,

u+2d, ... indivisibk op{>ratiulls of the ~cll('dlll('d ~10) helVIlIg Il,, IL-t.h illdlvi"lbl<·

operation exccutcd al lime t. If d r('sourn' «)uflict O((IIr~, MO, l~ dl'Iaycd <HW cy(1(·

and the resourcc check rcpcated. Ilowpv<'r, if tlj(' 0lwr,tt,loll r(lll~ t,o 1)(' S(IlI'd\lll'<I

within the range [t, l+d-l], tll<' clltirc f,cl)('dul<' i.., ahalldoll('d, ,lIId a IIf'W tll,t! ~t arted

using the ÎntervaJ d+ 1.

If there is loop-carricd dep<,ndence i nside (,', ~l. rOllgly -('ounc'etl'c1 COlllpOlll'lll. ... ail'

scheduled first. Thcn ('ach cornponent Îs l'f'duccd into ail MO) by IlH'lgillg 1('~()III«'

requirements. The set of nodes in the components oecoIllc au indivisible sequeuce of

MO). Again an acyclic graph is obtained which can be ~chcdll[ed u~illg thp éV'YcllC­

graph scheduLlg scheme.

77

A distinct c:haracteristic of this approach is its Wê"y of scheduling conditionals

using so-callcd hierarchical redudion. Similar to the schedule for strongly-connected

components, the IIlner most sub-branch of a conditional is list scheduled and reduced

iuto an MO by merging resource requirements. This reduction is then repeated for the

outer conditlonal. Hecause the entire eonditional eonstrucl is reduced into a single

/Iode, the acyclic-graph scheduling sehen'''' b u~ed.

The major diff('felln' bdwecn Lam's algorithm and the 'JRPR algorithm is that

once a rcsour((' couflict on'urs, the former seheme abandons the entire schedule and

starts a Il<'W t.ridl over a larger interval whereas URPR does not.

7.1.5 Remarks

Th(· valid-sclH'dule-complItation seheme (Lemma 3.1) introduced in Chapter 3.7 pro­

vides a typical ('xdlllple of ~oftware pipelining [HH80, ReWS]. Thi~ approach mat Iw­
Illat.ically COlllput('S a valid schedllle fOI a Pve-bound Petri net. However, the technique

is only applicable to ideal machines and machines without rcsource cOllstraints. One

very nin' charaderist le of this approach is that the resulting schedule enter~ steady

state a.'i SOOII as ('very transition is fired once, i.e., after tl1(' fir:,t Iteration.

Amol1g the various softwan' Plpelining :,chemes introduced, perfect pipelilllllg pos­

S{'SS('S thl' lIlost slIllilarity to SPS. III fad, SPS was inspired b) perfeet pipdiIliug. FOI

a loop operatt,d in aIl ideal machine, Alken dnd N Icolau gave an O(1/ 3) Lound i:1 time

steps (or e<!ulvalelltly, 0(11 2) Il('ratlOns) tü find a pattern in the single critical cycle

casp, and they Iloted thdt t!\(' least-comlllon-muitiple effect incurred hy the multiple

critical cycl('~ woule! ~eld{)1ll occur III practical situatiolls [Aik88, AN88J. 'vVe could

Ilot justify thelr proofs alld 50 relllvcstigated the problem in tili:, thesis.

Under the assumptioll of an ideal machine lTlodel dnd for a claSH of loops having

only a single· rritical cycle, ~teady stat(· appeals aft<'r O(n3) iteratioIls, whcle 11 de­

Iloh's t}w sizt' of tlH' loop body For the case of multiple critical cycles, the l('ngth of

the stC'ady st.at<' is dlrectly proportional to a COIllIIlon multiple of critical cydes. Wc

arc' unaware of any polynomial boulld for the lcngth of the prelude sequence in this

case; instead, wc ha.ve derived an approach with polynomial time complexity by fixing

an initial condition. Doing SO, we were able to achie-ve a significant improvement in

dliciency in finding a schedule, regardless of the number of crit.icdl cycles.

7.2 Storage Allocation

Two strategies, bascd upon software and hardware support respectively, treat storage

allocation for software pipelining:

78

1
• The software approach solves the registcr allocation problt'Ill by tilt' IISt' of COII­

ventional graph coloring techniqucs [r A ('+81 , C'ha~2, Tou~,ll, SI 11('(' 1 1 If' IIUII tht'r

of registers allocated to cach variable i~ ullkllOWII lInt Il tltt' S(hed\ll(' i:-. \'0111-

puted, the general graph coloring approach can only h(' applit'd 011 tilt' lill,tl

schedule. ft is assunwd that a large dlllOllllt of rt'glstt'rs .m· cl\'clilablt' illlllctll~' M)

the scheduling phase· cali be handled i Il <1<, pell cl (' Il tly of rq~i:-.tt·r WlIst l 'UIII:-., A t'­
ter scheduling, graph coloring is perforll1t'd giobally for 1t'~I:-.1<'1 .lllot .ll 1011. Sptll

codes are inserted in the schedule tu r('use J'('gihteJ's in tht' abs('IlCt, of IIII"l1o(,<lkd

ones.

Once a schedule is fixed, il is difficult to ['(·duC<.· regiskl' U:-.,\!!,(' IU'(',\\ISt' 1 lit' ~o."

is to avoid the insertion of spill code, ln Lam's ('a,:.;1' , tilt' prol>l('1II 1)('('01111'''

harder bccallsc of t1H' llldivisihle opt'raliolls, The major ('l'II i('islII of tilt· I!,I,lph

coloring approach is Il\{' d('gradatiull of tl\(' pt'lforllliUI('(' that I(·sult:-. tr01l1 tilt'

insertion of spill cod(', Spill (od(' \InétvoHlahly !('ngtht'ns t hl' illlt iùl ion 1111 ('1 \'al 01

a pipelille, Sin('(' :-.pill codl' t\('('d~ malll Il\plI\ory .\('(('%, tIlt' i/llp.ld 011 ">(hl·dlll"

throughput Îs mon' M'\'('rt>,

• The hardwarc dppl'Oétch :-'01\'(,:-' tht' H'!!;I..,t(·1 .tl1u('allOll plObl('lIl IHdill!, -.jJ:'(i.1l

hardware. The particuldl' type of cil dllt(·(tUI(' that Il:-(':- t Ill.., COIII cpt 1.., (cdl(·tI .l

polycyclu' aJ'chil('('turt· [HG81], llllllill\'('ly, t'<ll h d.lt,l dl(III tl\(' D\)C 1" IIl1pl(·

mented with a FIFO qU('ll<', AIt('1 ('ad, opt·r.ltioll t'Xt·('IIIIOIl. cl 1'I'~1111 l~ .lpp(·lldl'd

to the oui pu t qlH'\!('S 'l'II<' d('~jgll siglll tieant ly ..,i III "IIIÎ(':-. t Il(' \\'01 k 01 (1 JI \1 pd"1

storage allocation, Il o\\,{'\,('f , tl\(' lllllllh{'r of f(·quÎn·d FIFO qlll'll('~ .-tllt! t I!t'Il

associated length vary for diff{>J'('nt programs. wlld(' t Il<' a1l1011l11 of h.1I dW.II(·

resources are limited.

Limited balancing binds schedulillg and ~t.orag'· a!lo< cttiOIl 11110 cl IIllifit·t! frallH'

work. In limited balanciYlg, sp<'cial (Oll('ern is gIV('1I tü tilt' I"..,IH' of ('xploit..d)!t· pal.d­

lelism ullder resourc(' constIaÎlIb For simple typt' of llladlllH' a."'''' III 11('<1 III tlll'> th(,"I~,

the amount of exploitable pclra\lf'lI:-'1II varH'S accordÎlIg to bot" 1.111' 11111111)(·/ of (H p('llIlI'd

processors and the number of registen" \Vlth resp('ct to tl\(~~(· t,wo ('ntl(,,1 fa,(1.01:-,

limited balancing restructu!'('S the soft ware pilWllllc to clt hJev(' .Ul(·qll.tt,·)hll all('lislIl

in the machine, The amollnt of storag('s requin'cl in SPS is alf('cI(ly bOIlIlr!(·d by tlw

number of llodes in the loop body becausc the constru('tion of t!1(' ~dl<'dl\l(· I~ l)rl~(·d

upon a static dataflow graph, Limitf'd balallcing ofrel~ furtlwr opportullity to rI'

duce storage usagf' based upon exploitable paral1cli~m, The aclvalltages of liIllited

balancing include:

79

(

(

• Whcn cnough rcgisters arc available, limited balancing reduces registcr usage

without affecting the throughput of the software pipeline.

• When lack of registers, unlike conventional graph coloring schemes, no spill code

is required. Instcad, a lower balancing ratio is chosen for limited balancing

to reducc the requirement further, thus avoiding the possible interruption of

memory access.

• For the SPS schcme, limited balancing helps to shorten the time to reach steady

state hy thcorctically placing each node on a critical cycle, satisfying the initial

(;ondition given in Theorem 4.7.

• For statie dataflow architectures, limited balancing also helps to reduce syn­

chronization costs.

80

î
1

1

l
~

l •
j
~
J

J •

1

Chapter 8

Conclusion and Future Research

The application of Petri-Net th('ory 10 compiler cl('~igl1 n'((·iv(·cl (\.1 t.f·nl iOll a~ "arl~' ,1:"

1970 [SS70]. Similar wOl'k, report('d n'("('llt!y, hclS to do wilh llIicrOplOgl',11ll DpI iIlIlZ<I'

tion of Joops on a pipelincd architt'ctun" wl)('('(' n'soul n' const rcullb Sllcll as Iq!,IS!t·I'~

and functionalunits arc modeled withill a llnificd Pd.Iï-II('!. frclJlwwork [lIcIl\S9] 'l'III"

work indicates that the s('arch for an opl IIna! ~r1}('cllll,· !Je\.S ('XpOlH'lIt i,lI (olllpl",{lly ill

gcneral. In this thesi~, we han' introdll('('d a Il<'W Pd ri-llet \lIOdl,1 to ~t IIdy fi 1 lt"/!,I ,1111

100p scheduling. l'lw f(Jllowillg~ art' t II(' f('~ulh uf OUI 1(· ... (·,111·11,

• We have shown tlH' developlllf'lIt of a Petn-llet loop 1II1)(ld (etll('d ,III SDSP·PN

wherein loops are fir~t tram,lat('d illto a cla~s of ~tetll(, datatlow p;1.lph~ kllOWII .l~

a siaiu: dalaflolL' :-.oflwal'(plpdlllf (SDSP) ,\.nd tlwll tlm SDSP I~ 1 1 tllI ... I.\1 l'l' inlll

an SDSP-PN. \Vhe/l ail SDSP-P~ is (·X(·cut.<'d <uc()ldlllP; to tlt(· tarllt .. 1 jil'llll}

ru/e, a btcady stat(' app<'ars i/l tlJ(')wh.wior gl etph wit hlll ,1 IHJllIlt!l·d 11111111)/'1

of stcps. We show thdt (1) ill ail SOSP·PN heL\'Îng il <;1Il1!,11' (rill(,LI cy(k. a

polynomial bouml cali he ('~tdblislwd for tl\<' ..,tcady ~t .tlf' tu O(1 III (fuI ,dl nodl':-'

in the loop) ullder the ('etrliest firlllg 1'111(·. (:!) III etH SDSP-l'N hdVIII/!, 1II1. 1t,lpl(·

critical cycles, a polyllO/llldl bOllne! (etH \)(' (·:.,tahlt ... llt'd lOI tlll' ,,!<'.tdy "l,III' lu

occur oIlly for Bodes rcsidr-d on tl\(' ('l'itital tydp (:q III addillOll, wc' haVI'

shown that the 1 III pact 011 the lellgt h of t II<' pl'<'lud(' ::'('(IlI('I1((' fOI 11\ \lit 1 pk (111 wal

cycles can be cirCUIIlvented by irnpobing ail initial tok('n·distl'lbutioll ('Oll~tt .. int

This constraint ultimately (tne!erat('s l,he en!erg(,lln' of b\l"ldy ~t.,lI.(', 1'('1!;itl'dl<'ss

of the number of cl'itica! cycles III the loo\> body. (-1) Frolll ~t(,etdy ... tat.!·, a

time-optimal schr-dllip for the corn'~p(H1dillg 1001' (,élll 1)(' dCI Îv('d .

• We have presentcd a methodology for integrating rpsource limitations into ollr

model. Through it we have demonstrated how Ci tllned PetrÎ-IH't flIodpl kllown

as an SDSP-MCP-PN can be construded to mode! execution of an snsp on

81

, ,

architectures having any number of clean execution pip<'iines.

• Simulation results on a number of Livermore loops, both with and without.

loop-carried dependences, have dcmollstrated that steady state for both the

SDSP-PN and the SDSP-MCP-PN can be determined al, compilc-time in 0(11)

time, wlH're 11 is the number of instructions in the loop body. This demonstrates

the feasibility of determinillg steady state at compile time.

• For storage allocation, we have justified limited balancing as a solution. With

this lHethod, a schedulcd loop can maintaiJl cxecution specd without using extra

storag('. Simulation r('sults also verified the corrcctness of our mathematical

guidelille for finding a feasible balancing ratio.

ShoWIl Jwlow is <JlIgoillg l'eseal'(h we illtcnd to pursul' to solve the pl'obl<>m of

fill('-grain sch('duling <md storage optimi~ation:

• Incorporation of conditional constructs. Due to the unpredictable fun- lime

behavior of conditional branches, consideration of conditional branches inside

loops is a major oostacl(' in the design of a compile-time loop scheduling !>cheme.

Preliminary ideas on the imple!llentation of conditional ("(Hlstructs are docu­

melltcd in [GWN91bJ.

• Extension of our scheduling method using dataflow modcls other than stati<'

dataflow, tü st,udy time-optimal scheduling. Two such models are the tagged­

token dataflow model [AG7S] and thc FIFO-quelled dataflüw model [Kah74).

Both models have f'liminated the onc-token-per-arc restriction assumed in the

statie mod('1. The tagged-token mode! allows a pool of tokeJ!s on a single arc

and di!>tingUlshes tokells by color. For the FIFO model, cach arc is a FIFO

qllCll(' capable of holdlllg multiple tokens.

• Storag(' optimi~ation. The results from evaluating our mode! suggest that

CfltiCdl cycles in a program determine the achievable performance of a soft­

ware pipelined loop. This opens up new opportunities for storage optimization

through time-optimal scht'duling. For example, storage optimization of various

dataflow graph models might be studied with this insight. For the latest results

in this area, sec [GN91).

• Application to other machine models. The scheduling method in this thesis

descrihed might he applied to other machine models to verify scheduling effec­

tiveness.

82

1

-

Appendix A

Example: A-code graph for Loop

3

Loop3 is a Livermore Loop which computes the dot produrts of t.wo OIH' dill\l'lISiolls

array. !ts corresponrling A-cod(' graplucal rt'presentatioll is giv('n in l''iglll(' A. t

• lnitially, ail dotted arcs ,U(' assigned a tokell whil(· th(' solrd 011<'8 il!'t' t'Illpty.

Ali labeled nodes except node 0 arc !'t'gular acton;; e(l(h of wlllch J'('pn'S('llts .l

single instmction aud is execllted ill liH' executiou pl(>clirlt' wl1t'u ('lIablt·d.

• Node 0 is always recognized by the machill(' Illod('] as tlll' start.ill/!, Iloel(' of él

program. Its adjacency list points to ail starting lIod('~ of t.he pl'Ogr alII. As t.hl'

program started, aIl norles 011 the list art' signal('d direct ly

• Each crossed square in the progralll gràph dellot('s a :"lgnal lIH'rgp :-.tl'llrtuJ'(·.

Note that it is not anode consisting of an operation. It is JII('l'ply dl'awlI 1.0

show the detail of the signal flow. Its output lIod(' fen·ives a sigllal if ('itlH'1' 011('

of its input no de sends a signal.

The operations of most nodes are self-explallatory with the (l<'scriptiol1 011 it. III
particular, ID stands for an identity actor, which copies the valll(' From th(~ illput

register to its resllit registcr. lG EN stands for th(' illdcx g('I\('1 iitor; i t gCIl('rat('s

a sequence of integer index witbin the range of two input vahl(·s. The I('adl'rs éln'

referred to [GP88, Ti088a, Tio88b] for a more dctail C'xplanation of A-code operations.

A deeper insight to each portion of the code is given below:

• First four levels of the graph are the loop mitiation sequence. Ali ICENs arc

loaded with the necessary inp'lt values.

83

,

t

Figure A.l: A-code Graphical View of Loop 3

• Node4 serves the purpose of index generation fol' the loop body while node20

guides the proper loop termination. Node7 and nodclO are used for loop con­

stant propagation.

• Each branell under node5 (i.e., node12 to node14 and node15 to node17) cor­

responds to the address computation sequence and the element load operation

of an input array.

• The actual dot product multiplication and addition are donc at node18 and

node22.

84

1

.'

Bibliography

[AC861 Arvind and D. E. Culler. Dataflow archit('ctul't's. Au/litai Ut'I'1f ws III

Computer ",etel/Cf, l :225-25:3, HH~(i.

[ADNP88] Arvind, M. L. Derlouzos, R. S. Nikhil, and G. rvl. Pdpadopoulos. Projc'rl

dataflow --the MOllsoon archiled \11'(' and t II(' Id p\'ogralllIlling 1.\IIg\lagc'.

Computation Stl'lIctur<'s (;rollp Mellll> 2~.1, Ld)()l'rlt.ol'y fol' ('OI11putl'l' SCI­

ence, 1\11'1', ~lar('h 1988.

[Aea83]

[AG78]

[AG82]

[Aik88]

[ANSS1

[BGS9]

Arvind and et al. 'l'Il<' tagg<,d tok('11 dtit.a now al chill'ct, IIJ'(' (pH'1 illli Jlill'y

version). Tcchnical report, Lahol'alory for Computc'r S(i('I1(,(', MIT, ('am­

bridge, t\lA., August 19ttl,

Arvind and K P. Gostelow. SOUlt' n'latiollship:- \)('I,W('('II asyndllo\lolls

illterpreters of a dâta How lcUlgurlge. IllE. J. N('uhold, ('di tOI', [.'o,."w[nt­
scriplzoll of Prog/ul1lTTllTlg ('OTl('fpl , pages 95- 119. NorLh-lIollarlll, l!)ï~.

Arvind and K. P. Gost('low. The U-Int('\'!>n'lc'I'. IHHH ('(JIII/Jlllt r,

15(2):42-,19, February 1982.

A. Aiken. Compclction-bas<,d parallelil',atioll. (pltI> tlH'sis), T('chniC'ëll

Report 88 -922. Cornell Uni versi ty, 1988.

A. Aikf'l1 and A. Nicolau. Optimalloop parall('lhmtioll. In Pl'OClfflw!J8 of

the 1988 AC'M 8lGPLAN Confernl(,(, on Pl'ogmmmw!/ l,angua!J('s !ho"'!//I

and Implementation, June 1988.

D. Bernstein and 1. Gcrtncr. Schcduling c'xpressions on il. pipc'lilwd pro­

cessor with a maximal dclay of one cycle. A CM '/'mllsarlw//,.<; on P1'O­

gramming Languages and Systems, ll(l):57--66, January 198H.

[CAC+Sl] G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and

P. Markstein. Register allocation via coloring. Computer Languages 6,

pages 47-57, January 1981.

85

(

(

(
'"

[CCG84] .1. Carlier, P. Chretienne, and C. Girault. Modding scheduling problerns

with tillwd Pptri lH'tS. ln G. Goos aIld J. lIartmanis, editors, Advanccs zn

Pf:17'! Nd ... , LNCS .')40, pages 62- 82. Springer- Yerlag, Berlil1, IIeidelberg,

NY, 1984.

[Cha82) G .. J. Chaitin. Register allocation and spilling via graph colOflllg. In
Pt'occN/mgs of the SIGPLAN '82 Symposwrrt on Comptlcr Construclzon,

pages 98- 10.5, .Julie 1982.

[CHEP71] F. CommolH'r, A. W. lIolt, S. Eveil, and A. Pnueli. Markcd directed

graphs. Journal of Computer and System SClellCe~, 5:511-523, 1971.

[Chr81]

[Chr85]

[Den84]

[DennI]

[DFL72]

[DGSS)

[Ebc87]

P. Chretienne. Lfs Heseau;r de Pe/n Tempol'lsés (The8c d'état) PhO

thcsis, Institut de programmation, Université P. et M. CURIE, C.N .R.S.­

E-R.A. 592, Septcmber 1984.

P. Chretienne. Tin)('d ('vent gre\,ph~: A complete study of thcir controlled

executions. ln hiel'nalional Workshop on Timed Pctn Nets, pages 47--54,

'J'orino, Italy. J lIly 198.5. IEEE Compllter Society Pre~s.

J. B. Denllis. Date\, flow model:; of computatioll. In .volts jl'OT/lll'cllLl'eS al

the In/ema/zoT/al Summel' Schoo/ on Control Flow and Data flow: Con­

cepts of J)l.'dl'ibul(':! Pl·ogramming. Springer- Verlag, Marktoberdorf, Ger­

many, 198,1.

,J. B. Dcnnis. Evolution of th<, statie dataflow architccture. In Aflvanced

J'opu','; 11I DataJlo w Computmg. Prenl!cc- Hall, 1991.

.J. B. DClllllS,.J B. Fossecn, and,J P. Linderman. Data flow schemas.

ln InlernatlOual Sympo:jzuTn on Theoretical Programming, LNCS 5, pages

187-215. Springer-YerIag, Berlin, 1972.

J. B. Dennis alld G. H. Gao. An efficient pipelined dataf\ow processor

architect.ure. In P1'Oceedzngs of the Supercomputing '88 Conference, pages

:WS 373, Florida, Novcmbel' 1988. IEEE Computer Society and ACM

SIGAHCII.

K. Ebcioglu. A compilation technique fol' software pipelining of loops

with conditional jumps. In Proceedings of the 20th Annual Workshop on

Mic7'op1'Ogramming, Oecember 1987.

86

..
[EN90]

[Fe088]

[Fis81]

[Fis83]

[Gao86]

[Gao89]

[Gao90}

K. Ebcioglu and T. Nakatani. A ncw compilatiotl t('chnique fOl' parallt'liz­

ing loops with unpredictable branches on a vIi", archif,('durt'. III () G('I­

ernter, A. Nicolau, and D. Padua, editors, Lllnglla!lf8 al/d Complit'/'."i fol'

Parallel Computing, pages :U:J-22S. MIT (ln'sR, 19HO.

J. T. Fco. An analysis of the cOIll(>utational and pMalkl cOlllpl('Xlty of

the Livermore loops. ParaUd Compute/', 8(7):16:1 Isr), .July 19~5.

J. A. Fisher. Trace scheduling: A tt'chniqu{' fol' glob,tl micl'Orodt' COIII­

paction. IEEE TmTlsactzons on Compu/cl'.'>, 7(C-:JO):·178 ·1HO, ,Ju1y 1981.

J. A. Fisher. Very long instruction word architectures and tht' ELI-!)I~.

In Procccdings of the 10th A nnual IntcJ'1wtional 8ymposlIlm on ('omputt'/'

Al'chdectllT'c, 19S:l

G. R. Gao. A maxirnally pipe1iIlcd tridiagollai lill('cl! ('(l'liItioll :mlvp[.

Journal of Paralle! and Disl1'llmled Complllmg, :1('2):'215 '2:15, .11111<' l!l8(i.

G. R. Gao. Aspects of balancing t<,chniqucs for pip<'iilwd data flow cod('

generatjon. JOllrnal of Parallel and Dislrlblllni COll/pu/lit!}, (i::m 61, 1989.

G. R. Gao. A Code Mappwg Schemf fol' DataJlo/IJ Softw(lT'/, PlptÜlIl1Ig.

Kluwcr Academic Publi~hel s, Boston, Dl'cemlwI' 1990.

[GHW90a] G. R. Gao, H. II .. 1. Hum, dnd Y. n. Wong. Ali (·fficient sdl<'lll<' for {ir\('­

grain software pipelining. In J>1'OCCedmg8 of the CONPAR '90- i~;tPP IV

Conference, pages 709-720, Zurich, Switzerland, Septplllb('r 1990.

[GHW90b] G. R. Gao, H. IL J. Hum, and Y. B. Wong. Limilf'c! baJaJlcillg .tll dli­

cient method for datdflow softwan' pip(·linillg. III P1'OCf'((ll7lg." of lIu: luit 1-

national Symposium on Parallel and Distribuled C:ompullllg, and 8y ... If1I1.~,

New York, NY, Octobcr 1990.

[GHW90c] G. R. Gao, H. H . .1. Hum, and Y. B. WOl\g. Paralkl functioll invocatloll

in a dynamic argumcnt-fetching dataflow architectul'p. In P7'O('(;((ll1l!l'" of

PA RBASE '90- Internatzonal Conference on f)(ltaba8(;~, p(lralld A 1'(·Jul ('('­

tures, and Th el l' Appllcatwns, pages 112 116, Miami Ikach, FL, Mareil

7-9 1990. IEEE Computer Society.

[GN91] G. R. Gao and Qi Ning. Loop storagc optimization for dataflow machilles.

In Proceedmgs of the FOllTth Workshop on Languages arul Compzlers for'

Paralle! Computing, San Jose, California, August IU!H.

87

l

-

[G090]

[GP88]

[GP90]

R. D. Groves and R. Oehler. HISe system/6000 proc('ssor arrhitt\(,t.ul't\.

In IBM RISC System/6000 Terhnology. ln!.el'llcltiollcl\ BlISill(\sl-o t\lclchillt\S

Corp., 1990.

G. R. Gao and Z. Paraskevas. Efficient softwart> pipt'11lJing in ail arglllllt\I\!­

fetching dataflow architecture. ACAPS T(\('hnicctl M(\lllo 02, S(hool or
Computer Scit>llcc, McGill Universlt.y, Montreal, Marcl! l!lSS. }ln'si'llft·d

at the Canadian COllferell(,(\ ()IJ El<,drical rlnd ('OIll\lU!.("· Englll<'t'i illp"

Montreal, Scptembcr 89.

G. R. Gao and Z. Paraskevas. COlllpiling for datallow soft.W<lJ'(\ plJH'lillillg.

In David GeIernter, AIcxandru Nicolau, and David Padllél, t'ditors, I,a/l­

guages and CompzlcT's for ParaUd C01Tlplltwg, PéI!!.('S 27!i :W6. The M 1'1'

Press, 1990.

[GT89] G. R. Gao and R Tio. Instruction ~ct d<'sign of éUI (·1fi('J('1I\. pil)('lill<'<I clal"L­

ftow architecture. In Proceedmg8 of the 22"d In/fI'"allOlw[('ol/ff /'f'lIf'f' of

System Sctence, pag<'s 383-39:3, Hawaii, January 1989. IEEE COlllpul,('r

Society.

[GTH881 G. R. Gao, R. Tio, and H. H. J. Hum. Desigll of ail efficient. datctflow

architecture withoul dataflow. In Pl'ocecdings oJ Ihe In/rl'lUlt/OTlfll ('0/1-

ference on Fifth-Generation Computers, pages S(i! 8(iR, Tokyo, .J(tpall,

December 1988.

[GWN91a] G. R. Gao, Y. B. Wong, and Qi Ning. A Petri-Net. /lIod(,1 1'01 fill<'-grail1

Ioop scheduling. In P1'Oceedwgs of the '.91 A CM-Sf(,'i)i,A N (.'oufcTI'IIN'

on Programming Lallgua,qe Design and Imp/em('flial iOIt, pctgC's :W~ ~18\

Toronto, Canada, June 1991.

[GWN91b] G. R. Gao, Y. B. Wong, and Qi Ning. A Petri-Net. mode! for fine-grain

Ioop scheduling. ACAPS Technical Memo 18, School of Cornp\lt,(\r Sciell<'<',

McGill University, Montreal, .January 1991.

[GWN91c] G. R. Gao, Y. B. Wong, and Qi Ning. A Pctri-N<'llllodei for loup ~ch\~dlll­
ing. In Proceedmgs of the 12lh IntenwllOnal Confcl'cllct ou AppllcatuJ/t

and Theory of Petrz Nets, Gjern, Denmark, JUIl(' 1991.

[Han891 C. Ranen. Optimizing microprograms for rccùnent loops on pipelilled

architectures using timed petri nets. ln G. ROi~ellberg, editor, Adva7l('(;.'i

in Petri Nets, LNeS 424, pages 236--261. Springer-VerIag, 1!)89.

88

[IIG83]

[I1P90]

[.1 A90]

[Kah74]

[KLL86]

[KM89]

[Kog77]

[Kog81]

[Lam8S]

[Lam89]

[Mag84]

[Mea85]

J. I1cnncssy and T. Gross. Postpass code optimization of pipelined con­

straints. ACM Tmnsactwns on Programming Languages and Systems,

.5(3):422-448, July 1983.

J. L. Hcnncssy ald D. A. Pattcrson. Computer A rchzleclure: A Quantz­

tattuE Approach. Morgan Kaufmann Publishers, lue., 1990.

R. B. Jones and II. A. Allan. Software pipelining: A comparison and

improvemcnt. In Proce('Jings of the 2.'Jth ;innual Workshop on Mic1'Opro­

grammzng and Mzcroarchzteclure, pages 46 -56, Orlando, Florida, Novem­

ber 1990.

G. Kahn. The semantics of a simple language for parallei processing. In

Informalzan P1'Ocesswg 74, pages 471-475, 1974.

S. Y. Kung, S. C. Lü, and P. S. Lewis. Timing analysis and optimiza­

tion of VLSI data flow arrays. In Proceedings of the 1986 lnternatzonal

Conference on Pamllel Processing, 1986.

L. Kohn and N. Margulis. Introducing the Intel i860 64-bit. mieroproces­

sor. IEEE Mzcro, pages 15-30, August 1989.

P. Kogge. Thr 'Ilicr')programming of pipelined plOcessors. In The 4th

A11n'ual Sz'mposium on Computer Architecture, pages 63-69, Mareh 1977.

P. M. Kogge. The Archzteclurc of Pipe/med Compufers. McGraw-HiIl

Book Company, New York, 1981.

Monica Lam. Software pipelining: An effective scheduling technique for

VLlW machines. In Proceedings of the 1988 ACM 51GPLAN Conference

on Pl'ogramming Languages Design and Implementatwn, pages 318-328,

Atlanta, GA, June 1988.

M. S. Lam. A Systo/ic ,~.TlI.y Optimizing Compiler. Kluwer Academie

Publishers, 1989.

J. Magott. Performanceevaluation of concurrent systems using Pet.ri nets.

Inf01'mation Processmg Letlers, North-Hol/and, 18:7-13, Jrmuary 1984.

J. R. McGraw and et al. SISAL: Streams and itcration in a single assign­

ment language-language reference manual version 1.2. Technical Report

M-146, Lawrence Livermore National Laboratory, 1985.

89

1 [MeI89]

[MK80]

[Mur80]

C. Melear. The design of the 88000 RISe family. n'I~'/~' MIITo, pap,l'S

26-38, April 1989.

T. Murata and J. Y. Koh. Reduction a' d ('xpallsioll of live and saft'

marked graphs. IEEE Transactions on ('lI'CIl/t • ., (11/(1 .)y . .,1 t' TIl 8. 27(l).()~

71, January 1980.

T. M urata. Synthesis (jf decision-free concurrent. syst.Pllls for pn'scri 1)('(\

resources and performance. IEEE 'l'mu.'Ial'f wn ... 01/ Sofl Il'(l/'t' li'n.lJ/lU't'l'III!/,

6(6):525-530, Novembcr 1980.

[Mur89] T. Murata. Petri nets: Propertics, analysis and cl.pplications. PI'O('t'f'(ltl/!'S

of the IEEE, 77(4):541-580, April 1989

[NPA88) A. Nicolau, K. Pingali, and A. Aik('I1. Fin('-grain cOlllpilat.ioll for pip<'I1I)(·d

machines. Techniccl.1 Report TH-88-9:H, Ikpartlllt'IIL of COlllpUt.(·1 Sci­

ence, Cornell University, Ithaca, NY, 1988,

[Par88]

[Par90]

[Pet62]

[Pet81]

[Ram74]

[Rei68]

[ROSI]

Z. Paraskevaf>. Summary of the diSCUSSIon fol' t.Ij{' expansion of III st. l'II ct. 1011

set of the argument-fetching architcct.uft'. ACAPS D<'sigll Not.(· O!), School

of Computer Science, McGilI University, MOlltu'aL Nov('IIlI)('1 1988.

Z. Paraskeva8. Code gcneratioll for dcl.taflow softw;'}l"<· plpdining. ')'('chni­

cal Report TR -SOCS-89.9, School of Com pu ter Sciell('(', Mc{; ill li !li v('r­

sity, Montreal, Jananuary 1990.

C. Petri. Kommumkalzon mzt Automaten. Ph)) thesis, Univ<'I'sity of

Bonn, Bonn, West Germany, 1962.

J. L. Peterson. Petri Net Theory and the Modelzn!J of Systt'1lts. P!(,lItÎC<'­

Hall, Illc., Englewood Cliffs, NJ, 1981.

C. Rarnchandani. Andlysis of as} nchronous COIl('UIT('nL sySt,(·llIh. '1'('(hllical

Report TR-120, Labol'atory for Computer Scicllce, MIT, 1974.

R. Reiter. Scheduling parallcl computation. JOUntlll of A (.'M, 1f)(1):f)!)O

599, October 1968.

B. R. Rau and C. D. Glaeser. Sorne scheduling t('chniqlles and an <,asily

schedulable horizontal architecture for high performance scientific COIII­

puting. In Pl'oceedmgs of the 14 th A nnual WOl'kshop on MU:1'01'1'O!ll'am­

ming, pages 183-198, 1981.

90

(

[RH80] C. V. Ramamoorthy and G. S. Ho. Performance evah;ation of asyn­

chronous concurrent systems using Petri Nets. IEEE Tmnsactions on

COm1Jule1's, pages 140-448, September 1980.

[SDWX87] B. Su, S. Ding, J. Wang, and J. Xia. GURPR-a method for global

software pipclining. ln Proceedings of the 20th Annual Workshop on Mi­

C1"Op r0.9 ra mm ing, p<1ges 88-96, Colorado, December 1987.

[SDX86j il. Su, S. Ding, and .J. Xia. URPR-a extension of URCR for software

pipelining. In Proceedings of the 19th A nnual Workshop on Micropro­

gramming, pages 94-103, New York, October 1986.

[SS70]

[Tio88a]

R. Shapior and H. Saint. A new approach to optimization of sequencing

dccisions. Annllal Review in Aulomatic PïOgrammzng, 6:257-288, 1970.

IL Tio. The A-code assembly language reference manual. ACAPS Design

Note 02, School of Computer Science, McGill University, Montreal, July

1988.

[Tio88b] R. Tio. DASM: The A-code data-driven assembler program reference

manual. AC!. ne Design Note 03, School of Computer Science, McGill

University, Montreal, July 1988.

[Tou84] R. F. Touzeau. A FORTRAN compiler for the FPS-164 scientific com­

puter. In Proceedings of the ACM SI.:JPLAN '84 Symposium on Compiler

Constl'uction, pages 48-57, June 1984.

91

