i

oy

A PETRI-NET MODEL
FOR LOOP SCHEDULING

by
Yue-Bong Wong

School of Computer Science
McGill University, Montréal

November 1991

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Copyright (© 1991 by Yue-Bung Wong

Abstract

This thesis describes a compile-time loop scheduling scheme and a supplementary
storage reduction scheme to generate code for computer architectures which expioit
fine-grain parallelism, such as superscalar, VLIW, and superpipeline machines.

In the first part we proposc a new loop scheduling technique based upon the
notion of dataflow software pipelining. We use Petri-net theory as the modeling
framework, both for describing program behavior and for proving the feasibility of our
approach. The time complexity of computing a schedule for an ideal machine model
is examined under various program structures; a polynomial bound is established for
the scheduling approach. We then integrate resource limitations into the rmodel and
construct a unified Petri-net model for schedule generation. Simulation results are
conducted on a number of Livermore loops to verify the feasibility of the approach.

In the second part we discuss the application of a program restructuring schene,
known as limited balancing, for storage reduction [GHW90a, GHW90b]. With this
technique, storage is systematically reduced across a loop body according to a balanc-
ing ratio. A guideline is derived to determine an appropriate 1atio for maintaining a

given pipeline utilization.

il

Résumé

Cette these décrit une technique statique d’ordonnancement de bencles et une métho-
de de réduction d'usage de mémoires pour générer du code pour des architectures
p

d’ordinateurs qui utilisent le parallélisme “fine-grain,” telles que les architectures de
type “superscalar,” “VLIW.” et “superpipeline.”

Dans la premieére partie de cette these, nous proposons une nouvelle techmigne

|
pour Pordonnancement d’instructions basée sur la notion de “Software Pipelining.”
Nous utilisons la théorie des Réscaux de Pétri en tant que support du modele, pom
décrire le comportement des programmes, et pour prouver la validité de notie ap-
|

proche. La complexité en temps de calcul d’un ordonnancement est évaluée pour
plusieurs structures de programmes en utilisant un modele de machine idéale; une
limite polynomiale est établie pour la méthode d’ordonnancement Nous ntégrons
alore les limites sur les ressources dans le modele et construisons un modele de réseanx
de Pétri unifié pour la génération d’ordonnancement. Des simulations sont éflectuées
sur plusieurs boucles de Livermore pour vérifier la faisibilité de cette méthode

Dans la seconde partie, nous décrivons 'application d’une méthode de réduction de

]

I’espace mémoire pour supporter la méthode d’ordonnancement proposée précédem-
ment [GHW90a, GHWY0b]. Avec cette amélioration, 'espace mémoire est systémati-
quement réduit partout dans la boucle, en accord avee le rapport de balancement de la
boucle. Nous dérivons alors une technique pour estimer un rapport de balancement
approprié pour le taux d'utilisation du pipeline.

A cknowledgments

I would like to express my gratitude to my thesis advisor, Professor Guang R. Gao,
for his constant support, guidance, and extensive discussion throughout this research.

I am also very grateful to my colleagues and friends for helping me in various
ways. Jean-Marc Monti solved a lot of the technical prablems I encountered on the
system. Russell Olsen spent much time as my proof recder. Russell and his wife
Yoshiko also invited me to so many of their delightful and {un dinners. Jing Wu and
Jean-Marc accompanied me during many long hours in the lab. All of these people
made my stay in Montreal a most enjoyable experience. last but not least, I am
also very grateful to Herbert Hum and Qi Ning for their meny valuable discussions
related to this research. Without their valuable input this woik would not have been
possible.

Finally, | owe my greatest thanks to my parents and brother, for their generous
love, support, and care, especially my brother Dominic who cooked all of our meals
while our parents were on vacation. Without my family’s support, my education

would not have been possible.

Contents

Abstract i
Résumé i
Acknowledgments iv
1 Introduction 1
1.1 Architecture Model Assumption 2
1.2 Software Pipeline Scheduling 2
1.3 Storage Reduction: Limited Balancing)
1.4 Overviewof Results 6
1.5 Thesis Quthine. i i i 7

2 Dataflow Model 9
2.1 Static Dataflow Model o oL 10
2.2 Dataflow Software Pipelining. 12
2.2.1 Dataflow Software Pipelining on Ideal Machines I3

2.3 Loop Representation and Loop Domain [4

3 Petri-net Modeling 16
3.1 The Model and Related Notation 16
3.2 Marking and Firing Rules 17
3.3 Liveness, Boundness, and Persistence 18
3.4 Some Special Structures Lo 18
3.5 Marked Graphs o e 19
36 Timed PetriNets 19
3.7 Optimal Computation Rate 20

4 Software Pipeline Scheduling on an Ideal Machine 23
4.1 Modeling a SDSP withaPetriNet 23

v

4.2 The Behavior graph of SDSP-PN o000

43 Steady State
4.4 Complexity to Reach a CyclicFrustum, '
4.4.1 An SDSP-PN having One Critical Cycle
4.4.2 An SDSP-PN having Multiple Critical Cycles
4.4.3 Tightnessofthe Bound
4.5 Initial Token-Distribution Constraint
4.5.1 A Tighter lnitial Period
4.5.2 A Second Approach for a Tighter Initial Period
46 Remarks e

Software Pipeline Scheduling with Pipeline Constraint

5.1 Model with a Single Clean Pipeline—SDSP-SCP-PN
5.2 Multiple Clean Pipelines—SDSP-MCP-PN
53 Simulation Results L
54 Discussiono L L e e e e

Storage Allocation

6.1 MemoryModel o
6.2 Limited Balancingof an SDSP-PN
6.3 Limited Balancing of an SDSP-SCP-PN
6.4 Limited Balancing of an SDSP-MCP-PN
6.5 Experimental Results

Related Work

7.1 Software Pipelining
7.1.1 Perfect Pipelining
7.1.2 Enhanced Pipelining
7.1.3 The URPR Algorithm
7.1.4 The Systolic Array Optimizing Compiler
715 Remarks o

7.2 Storage Allocation e

Bibliography

8 Conclusion and Future Research

A Example: A-code graph for Loop 3

vi

-

¢

List of Tables

4.1
4.2
5.1
5.2
6.1

Single Source e e
Multiple Sources L o
Results for SDSP-PN Model
Results for SDSP-MCP-PN Model with Eight Stages

Results for Utilization Rate Estimation

.................

vii

List of Figures

1.1
1.2
2.1
2.2
23
24
2.5
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
6.1
6.2
6.3
6.4
6.5
Al

Schedule Computation
The Concept of Balancing Ratio
Dataflow Graph
Sxecution Smapshot L. L
Static Dataflow Graph
Software Pipelining of a Dataflow Program
Example L2 e
SDSP-PNof Lland L2.,
An Example of the Behavior Graph for the SDSP-PN of L1
An Example of Steady-State Equivalent Net
Code Sequence with Single Source, .
Code sequence with Multiple Sources
A Code Sequence with an O(n) Lower Bound
SDSP-SCP-PN and the Behavior Graph
SDSP-MCP-PN and the Behavior Graph
Storage Usage of Argument-flow Model versus Argument-Fetch Model
Minimum Storage Allocation
A-codeforLoop 9.
Loop 9 under Partial Limited Balancing
Loop 9 under Aggressive Limited Balancing
A-code Graphical Viewof Loop 3

viii

38
38
40
48
53
a9
62
63
64
72
84

Chapter 1

Introduction

With today's technology, multiple functional units can be incorporated onto a single
chip, significantly increasing parallel processing power. Superscalar, Very Long In-
struction Word (VLIW), and superpipeline machines are typical architectures created
using VLSI technology [I11583. GO90. KMS89, Lam89. Mel89] To effectively ntilize the
increased machine parallelism of these machines requires fine-grain (instinction-level)
parallelism within the soutce application., Thetefore, the exploitation of hne-gram
parallelism becomes a major 1ssue i effective compiler design - Efficient loop execu-
tion, in particular, has attracted much attention because this 1s where a processing,
unit spends a significant amount of time durig program execution. The fust part
of this thesis explores the use of dataflow software pipclining for compile-time foop
scheduling for the exploitation of fine-grain parallehsm. Dataflow software prpelining
1s a scheme for structuring fine-grain parallehsim i the loop body in a way so that it

canr be exploited by static dataflow computer

The second part of the thesis discusses the application of a graph restiucturing
scheme called fimited balancing (GHWY0(] Limited balanding can be used to reduce
the amount of storage usage in dataflow softwate pipelining Numerous surveys have
shown that the response time of main meinory is a major bhottleneck which prevents
ideal specdup fromn being achieved i high performance computer architectures. The
use of expensive high-speed memory, ot register scts, for temporary storage to e
duce memory accesses plays an important tole i mamtaining processor throughput.
Unfortunately, register sets ate a scarce resource, and their meffective use Jeads to
significant performance degradation. As a result, the study on storage reduction to

reduce the amount of register required is another crucial element 1 compiler design,

rate

.:d‘*‘

1.1 Architecture Model Assumption

For pipelined computer architectures, hazards are a main cause of performance degra-
dation [HP90, Kog8l]. Structuralhazards arise fiom resource conflicts when hardware
cannot support sitnultancous operations by two, possibly independent, instructions.
Structural hazards increase the difficulty of code generation. The standard software
approach to avoid pipchne anomalies caused by hazards is to insert delays, such
as NOOPs (NO OPeration instruction), between the two operations that conflict.
The length of the required delay is called the interlock period. To resolve stiuctural
hazards, the conpiler must find sufficient paiallel instructions to fill the interlock,
thus keeping the pipeline usefully busy. However, it is unhikely that an efficient code
scheduling approach can be found smce scheduling with structural hazards 1s NP-
hard [NPARSS].

Code scheduling has also been examined under conditions i which the pipeline is
free of structural hazards (BG8Y, HG83]. Processor pipelines of this type are called
clean. Much of the scheduling effort focused only on acychic constraint graph. It has
been proven that scheduling a clean pipeline is NP-complete if the maximal delay
on directed edges of the constraint graph is unbounded [HGS83] and is polynomial
time solvable if the delay equals one [BG89). Note that the latter case applies to a
single clean pipeline consisting of two stages. Nonetheless. the notion of building a
clean pipeline has not been widely adopted because no code scheduling technique yet
developed could justify its worthiness.

Recent findings by Nicolau, Pingali, and Aiken on clean pipeline scheduling pre-
sents a new insight into the problem of loop scheduling [AN88, NPAS88]. They propose
a polynomial time loop-scheduling scheme and prove that time-optimal results are al-
ways achievable for a ciass of loop programs that have no loop-carried dependence
while suboptimal results are guaranteed for the same class of loops with loop-carried
dependence Based upon these findings, they conclude that the trend in architectures
will be to avoid structural hazards as much as possible In this thesis we also focus
our loop scheduling on machines which use clean execution pipelines, and all refer-
ences Lo an execution pipeline in subsequent sections will be clean pipelines, unless

otherwise stated.

1.2 Software Pipeline Scheduling

In this thesis we are interested m applying the concept of dataflow software pipelin-

ing to a compile-time loop scheduling scheme for computer architectures other than

07

=~

dataflow, such as tightly-coupled synchronous parallel machines (e g | superscalar and

VLIW machines) and various other pipelined architectures

Dataflow software pipelining is an effective loop structuting scheme for a stati
dataflow architecture by enabling the architecture to exploit fine-grain patallelism
during loop execution [GP90} The strength of the scheme lies i its ability to expose
fine-grain parallelism across loop boundaries Intuitively, it artanges code (a statie
dataflow graph) for loop bodies into a software pipeline so that successive iterations
can be initiated one after the other. In other words, dataflow software pipelining
allows the initiation of a new iteration before the previous iteration ends, achieving
the same effect as a hardware pipeline. In the dataflow model of computation, an
instruction is eligible for execution as soon as all of its requited mputs are available.
As a result, many waves of computation can proceed in a pipehned fashion thiough

one copy of the dataflow programn graph.

Compile-time scheduling involves the generation of a static schedule which pre-
plans virtually all run time behavior. To apply the concept of dataflow software
pipelining into compile-time loop scheduling requites two fundamental schemes. A
code mapping scheme which compiles the given loop body mnto a semantic equivalent
software pipeline, expressed at the mslruction level, and a static schedule computa-
tion scheine which generates code from the software pipehine .\ nigotous study on
pipelined-code mapping for scientific applications can be found i [Gao90]. Tn this
thesis we focus on establishing a static schedule computation scheme. Here we as
sume that a loop body has already been compiled into a software pipehne. To avoid

ambiguity, we refer to the static schedule computation scheme as Software Pipcline
Scheduling, or SPS for short.

In SPS, static schedule generation for loops relies on the existence of a repeli-
tive erecution sequence, also known as the steady state. This repetitive execution
sequence remains the saine regardless of the number of itcrations. Thus, the run-tune
behavior of the loop can always be expressed fimtely with the same schedule, This
finite schedule comprises three segments prelude scquence, steady state, and postlude
sequence. The prelude is the sequence of operations leading 1o the steady state, while
the postlude is the sequence of operations required to complete loop execution fol-
lowing the steady state. From the perspective of a hardware pipeline, prelude and
postlude sequences correspond to the sequence of operations which till and drain the

software pipeline.

Figure 1.1 illustrates the method of generating a static schedule using SPS. Fig-

ure 1.1(a) gives an example loop body, and Figure 1.1(b) lists the dataflow information

doall § from 1 ton
All] :=

X{L] + 92
Bii) = ¥{i] + A[l});
Cli) = AfL) + 2(1):
D{i] = B{i) + Cli);
E(1] := W[4} + D{i);
endall Forward data —
(a)Loop L1 arc
Acknovledgement . ge
arc
X(i} 5

o

(b)Dataflow Graph (c)Static Dataflow Graph (d)Computed Schedule

Figure 1.1: Schedule Computation

required to map the loop body to a software pipeline. The instruction-level repre-
sentation we employ for the loop body is a static dataflow graph (see Figure 1.1(c)).
The first. advantage of using a static dataflow graph is that it operates naturally as
a software pipeline. With its one-token-per-arc policy it also constrains execution
to a bounded amount of storage while exploiting fine-grain parallelism. To derive a
static schedule from the software pipeline, we apply to the static dataflow graph the
execution rule of dataflow computation, the rule being, an instruction is eligible for
execution as soon as all inputs are available. Pictorially, the token on an arc repre-
sents the availability of the particular input. The execution of a node is represented
by the removal of an input token from each input arc and the production of a result
token on each output arc. Figure 1.1(d) shows the resulting execution sequence. Ini-
tially only node A is eligible for execution. Once the execution of node A completes,
nodes B and C start and are followed by nodes A and D. From then on the repeated
firing sequence is formed by alternately activating the two groups of nodes BCE and
AD, the third and fourth rows of the computed schedule. Note that the execution
sequence is a semantic equivalent schedule for loop L1. If L1 is executed n times, the
steady state of the schedule is iterated for n—1 times.

For SPS to be an effective compile-time loop scheduling scheme, several questions
need to be answered: Does there always exist a steady state for loop execution?

What is the time complexity required to generate a schedule? How does the scheme

4

work for a machine with multiple pipelined-units? The methodology used to study
these questions is based upon Petri-net theory [Chr84, CHEPTI, Mw89, Ram74).

The strong resemblance between the Peiri-net model and the dataflow model allows

a direct and natural application of the developed theories in Petri net to dataflow.
Before we move on we need to point out that, while the software pipeline is a mirror
image of a hardware pipeline, the microprogram used to control the hardware pipeline
under a time-stationary microprogramming scheme shows a strong resemblance to the
static schedule derived from the software pipeline [Kog77]. In fact, the carliest idea
of software pipelining was first applied to optimize the microprogramming control
of a pipelined processor. Just as the function of a microprogram is to control the
operation of the hardware pipeline, the computed static schedule can also be viewed
as the microprogram for controlling the software pipeline. The resemblance of the

two structures relates the notion of software pipelining directly to loop scheduling.

1.3 Storage Reduction: Limited Balancing

Limited balancing is a program restructuring scheme for reducing the synchroniza-
tion overhead which is intrinsic in a static dataflow design [GHW90c]. However, its
application has a significant impact on storage reduction, thus presenting a new per-
spective for register allocation in SPS. This storage reduction scheme is performed
before the scheduling phase. By applying a balancing technique, storage can be sys-
tematically reduced across a loop body according to the loop’s particular balancmg
ratio—a computed parameter that charactcrizes the achievable computation rate of
the final schedule. In effect, the computation rate is the frequency of executing a
node over a long period of time. As will be shown, the computation rate of a loop
executing on an ideal machine equals the computation rate of the slowest simple cycle
in the graph. Such a cycle is called a critical cyele. Limited balanding of a graph
thus requires all simple cycles to decrease their computation rates as much as possible
to the same rate imposed by the critical cycles. One important outcome is that the
computation rate of the modified loop does not change.

Shown in Figure 1.2 is an example application of limited balancing using the hal-
ancing ratio. Suppose that the given code sequence is run on machine with adequate
parallelism and the execution time of each node takes { cycles. The tokens used in
the graph can be viewed as the amount of resources used. G represents a com-
putation rate of 1/3/ due to the simple cycle ABC. G2 represents a restructuring
of G1 with respect to the factor 1/3 so that no resources arc unnecessary wasted.

Note that after limited balancing the computation rate is maintained, and yet the

)

Gl is unbalanced. It has 7 simple cycles and the
cycle ABCA has the minimum balancing ratio, l.e.,
B(C)=1/3.

G2 is limitedly balanced with a balancing ratlo
B{G2)=1/3.

Figure 1.2: The Concept of Balancing Ratio

amount of required resources are reduced. One important issue is how to determine
an appropriate balancing ratio such that enough parallelism is exposed to maintain

the maximum throughput of the execution pipeline.

1.4 Overview of Results

The results of this thesis are presented in two parts: compile-time loop scheduling and
register allocation. At the beginning of the first part, the time complexity required
for the formation of the steady state for a class of loops operated on an ideal model
is studied with a class of Petri nets known as marked graphs. Here is a summary of

our findings:

¢ Under an ideal machine model, for a class of loops with only one critical cycle,
the steady state appears after O(n3) iterations, where n denotes the size of the
loop body [GWN91a]. For the case of multiple critical cycles, the length of the
steady state is directly proportional to a common multiple factor of the critical
cycles; we are unaware of any polynomial bound for the length of the prelude

sequence in this case.

¢ Nodes on the critical cycles have one special property—they fire periodically
after O(n?) iterations [GWN91a, GWN9Ic].

e A constraint which leads to a tighte: polynomial bound for the length of the
prelude sequence is established: When the starting condition of the loop body

6

B

meets the constraint, the steady state appears after O(n) iterations, regardless
of the number of critical cycles. Most importantly, this constraint can always
be satisfied in O(n) iterations.

The results based upon the firzt two points indicate that perfedt polynomial time
complexity cannot be established for the SPS scheme for programs with multiple
critical cycles. The third result above indicates, however, that we can bypass this
difficulty and derive ar approach with polynomial time complexity by fixing an initial
condition. Doing so, we were able to achieve a significant improvement in efliciency
in finding a schedule.

At the end of the first part of this document, a multiple-pipeline model mvolving,
hardware pipelines and program graph is composed and applied to explain the influ-
ence and property of clean pipeline on our scheduling approach. Using the multiple-
pipeline model we show how the steady-state schedule can again be obtamed and
serves as a schedule methodology for general pipelined aichitectuies Preliminary
simulation performed on a set of Livermore Loops illustrates the feasibility of com-
puting compile-time schedule by this approach. In the second part of this document,
register allocation is discussed for an ideal model and a multiple-pipehine model. For
the former case, the execution rate of the critical cycle can be used directly as the
balancing ratio in the limited balancing scheme. For the latter case, a mathematical
guideline is derived to estimate the appropriate balancing factor so that a certamn

percent utilization of the machine pipeline can be guaranteed.

1.5 Thesis Outline

This thesis can be boardly divided into four major parts: The first part provides
the necessary background to understand the dataflow execution model and Petri-net
model. It also reviews the concept of dataflow software pipelining and defines the class
of loop upon which we focus. The second part introduces approaches for establishing
a static schedule with SPS for an ideal machine, a single-clean-pipelined machine, and
a multiple-clean-pipelined machine. In addition, the time complexity of generating a
static schedule is studied. The third part discusses limited balancing, its application
on reducing the synchronization cost, particularly for the dataflow model, and its
application to the problem of storage reduction. Then derivations of an appropiiate
balancing ratio for the three models are presented. The last part of the thesis consists
of a discussion of related work, a conclusion and future work. The appendix attached
at the end describes briefly the graphical view of A-code- a prograimn representation

in the form of a signal graph (for the static dataflow argument-fetch model developed

7

P

at McGill University) to facilitate understanding of the code sequences illustrated in

Chapter 6.
Chapters 2 and 3 are especially important to understand this document: Chapter 2

gives an introduction to the general dataflow execution model and the static dataflow
model. It then intreduces the concept of dataflow software pipelining and defines the
class of loops under examination at this stage. Chapter 3 provides the reader with
the necessary background to understand the Petri-net theory we use.

Part two of the thesis consists of two chapters: Chapter 4 introduces the framework
for generaling a static schedule in SPS for an ideal machine. It shows that the steady
state is always rcachable in polynomial time based upon Petri-net theory. Chapter 5
establishes the framework for the multiple pipelines.

Part three of the thesis consists of a single chapter: Chapter 6 introduces limited
balancing and discusses its application on synchronization cost reduction and stor-
age reduction based upon two models: the static dataflow argument-flow model and
the static dctaflow argument-fetch model. The concept of balancing ratio and its
estimation are also discussed.

Part four of the thesis consists of Chapters 7 and 8: Chapter 7 compares the
set of related works from other groups: Nicolau and Aiken’s perfecting pipelining,
Ebcioglu’s enchancing pipelining, Su, Ding, and Xia’s URPR algorithm, Lam’s soft-
ware pipelining, and the valid schedule computation originally by Reiter. Finally,
Chapter 8 concludes the thesis by summarizing our achievements and pointing out

topics for future research.

Chapter 2

Dataflow Model

The dataflow model of computation offers a natural way of expressing and exploiting
fine-grain parallelism in an application [AC86]. An abstract view of the operational
model is best explained using a directed graph. In the context of dataflow, such
graphs are called dataflow graphs. Each node in the dataflow graph stands for an
operation or an instruction, also known as actor. Ditected arcs drawn between op

erations decide the partial order implied by data dependences. The generation and
consumption of data values in the course of computation are pictonally depicted by
data tokens traveling along the arcs in the graph. A token on a directed arc indicates
the availability of an input for the dependent node produced by the source node. A
node is said to be enabled if all of its input data are available, and it is indicated by
the arrival of tokens on each input arc of the node. An enabled instruction is eligible
for execution (or firing) at any time. This type of synchronous control for computa-
tion is known as dala-driven, as opposed to the technique of using a program counter,
as in conventional computer designs. The result of executing a node is indicated by
removing a token from each input arc and generating a result token on each output
arc. Multiple instructions can be executed simultaneously, depending upon machine

parallelism. Token distribution at an instant reflects the current state of the maodel.

Qo

Figure 2.1: Dataflow Graph

prinshag

E.Ai

a a

b b

c 2 c z
d (a) d (b)

a a

b b

c z c z
d (c) d (d)

Figure 2.2: Execution Snapshot

An example dataflow graph for the computation z = (a + b) x (¢ — d) is shown
in Figure 2.1. Figure 2.2 portrays the execution of the abstract model using three
execution snapshots. Initially, the addition and subtraction nodes are enabled with
one token on each of their input arcs (Figure 2.2(a)). After execution of the addition
node, a result token is generated on the node’s output arc, and the subtraction node
remains enabled (Figure 2.2(b)). As the subtraction node carries out its operation,
the multiplication node becomes enabled (Figure 2.2(c)). Figure 2.2(d) shows a final
snapshot of the cornputation.

2.1 Static Dataflow Model

There are two variations of dataflow: static dataflow [Den84, DG88, Den9l1} and
dynamic dataflow [Aea83, AG82, ADNP88]. The static model enforces a one-token-
per-arc policy in which a node is said to be enabled, thus ready for execution, as
soon as all of its input arcs are filled and all of its output arcs are empty. This
restriction constrains the graph to at most one activated instance per node at any
time. Since each token stands for a data value, this restriction assures the use of finite
space during graph execution. In contrast, dynamic dataflow has no restriction on
the number of tokens per arc; there is no limit on the number of activated instances

per node at any time. Thus, there is no a-priori bound on the amount of storage

10

y required to support concurrent activations. In addition, the arrival of tokens might

| be out of order. To ensure no ambiguity during execution, tohens generated from the
same iteration, or the same invocation, are tagged with the same color. A node is said
to be enabled as soon as there exists a token with the same color on cach input are
The dynamic daraflow model is known to be able to exploit the maximum parallelisim
in an application In this thesis we use static dataflow since storage is under program
control.

To formally enforce the one-token-per-arc constraint requued for static dataflow,
acknowledgement arcs are used. For cach data arc (a, b) in the graph, an acknowledge-
ment arc (b, a) is attached pointing in the opposite direction. As node b completes
execution, it deposits a result token on each data arc and a signal token on cach
acknowledgement arc. The signal token serves to notify the predecessor (node «) that
it can safely begin a new execution without damaging an carlier result. Besides the
acknowledgement arc, the firing rule for the abstract model is refined to preserve the

static quality of the graph:
¢ An node is enabled if there is a token on cach of its input arces.

¢ An enabled node can Le fired by removing a token from cach input are and

depositing a token on each output arc.

Figure 2.3(a) gives an example static dataflow graph for the computation z =
(a + b) x (c — d). Figure 2.3(b) shows a snapshot after executing hoth the addition
and subtraction operations. As illustrated. all input tokens are consumed; output
tokens carring the associated results are sent to their data ares to be used by the
multiplication node, and signal tokens ate sent along then acknowledgement ares to
notify the unseen operations presumably on the left to reload their inputs again.
Suppose that the input arcs of the addition and subtraction nodes are reloaded at
this point as shown in Figure 2.3(c); both operations cannot restart without receiving
a control signal from the multiplication node to confirm the use of the earher 1esult,
As a result, the one-token-per-arc policy is enforced by the acknowledgement ares.
After the multiplication completed, the addition and subtiaction nodes, as well as the
unseen operations presumably waiting for the result of z, are eligible for execution

The above examples exhibit two types of parallelism: spatial parallelism and tom-
poral parallelism. The former one is represented by any two simultancously enabled

nodes which have no dependence, such as the addition and subtraction actors. The

latter parallelism is demonstrated by the pipelining of independent waves of data

through the graph, for example, the re-enabled addition and subtraction nodes.

11

» oy

(a) (b) (c)

Figure 2.3: Static Dataflow Graph

Since the dataflow model has no notion of a single locus of global control, as
does its Von Neumann counterpart, the execution of enabled actors are not restricted
to any particular order. For implementation of loop and conditional constructs in
a dataflow graph, a set of well-behaved graph schemas have been developed to gov-
ern interconnection [DFL72]. Under the schemata restriction, a computation always
yields the same result, unaffected by the execution order of enabled actors. In other
words, the schemas ensure determinate computation. A larger program is merely a

hierarchical composition of elementary sub-schemas.

2.2 Dataflow Software Pipelining

Dataflow software pipelining is a pipelined code mapping strategy performed on units
of program text called code blocks. Code blocks dcfine the major structured values
involved in a computation. Dataflow software pipelining is particularly effective for
implementing array operations on a static dataflow computer. For example, the

following loop body takes as input two arrays A and B and produces another array
X:

for:in l,n
X[i] = ((2 * Al2])* + (2 * B[:])?)?
end for

For this block, the corresponding dataflow graph can be easily software pipelined.
The technique of dataflow software pipelining involves the arrangement of machine
code such that successive computations can follow each other through one copy of

the code. If we present a sequence of values to the inputs of the dataflow graph,

12

af{n}...All)

{ \ \ \

Stage 1 Stage 2 Stage 3 Stage 4

Figure 2.4: Software Pipelining of a Dataflow Programn

these values flow through the program in a pipelined fashion. In the above example,
successive elements of the input array A and B are fetched and fed into the dataflow
graph, e.g., A[l], A[2],...,A[n] and B[1]. B[2],..., B[n]; thus, computation proceeds
in a pipelined fashion. Instructions which belong to the same stage can be executed
in parallel since there are no data dependencies among them. Morcover, during the
pipelined execution of the program, multiple stages can be executed conenrrently

stages 1 and 3 are enabled and can be executed in parallel, and the same apphes
to stage 2 and stage 4. The power of fine-grain parallelism can be derived from
programs which form a large pipeline in which many instructions in multiple stages
execute concurrently. For the static dataflow model, software pipelining is essential for
exploiting the parallelism within a loop body, and thus, it is a necessary optimization

for numerical scientific applications.

2.2.1 Dataflow Software Pipelining on Ideal Machines

Dataflow software pipelining which was proposed as a model for structuring fine-grain
parallelism has been studied mostly under the conditions of an idealized dataflow ar-
chitecture, one having infinite resources (Gao89]. Here we provide a summary of some
of the main results of previous rescarch using this model. A graph is balancedif every
path from an input node to an output node contains exactily the same number of ac-
tors. A graph is maximally pipelined if it is balanced [Gao86]. T'o achieve maximum
pipelining, a basic technique called balancing is used to transform an unbalanced
dataflow graph into a balanced one. This is done by introducing FIFO buffers on
certain arcs. To optimally balance a graph, a minimum amount of buffering is intro-

duced such that execution can be fully pipelined. It is known that optimal balancing

13

e 2

P

g

Forward data [—
arc
Ackhowledgement »»
arc
X(i] [3 F‘eedb:(:: data

doi from 1l to n

Af{i) := X[i] +
B[i] := Y[i] +
C{i] := A[i] +
D[i] := B[i] +
E(i] := W[i] +
end
(a)Loop L2 {b)Dataflow Graph {c)Static Dataflow Graph

Figure 2.5: Example L2

of an acyclic dataflow graph can be formulated into a linear programming problem
which has efficient algorithmic solution. A dataflow compiler uses these algorithms

to perform code optimization.

2.3 Loop Representation and Loop Domain

Static dataflow graphs are used as the instruction-level representation for the loop
body. The advantages of using a static dataflow graph are that it operates naturally
as a software pipeline, and it constrains the execution model to use a bounded amount
of storage, by its one-token-per-arc policy, while exploiting fine-grain parallelism.

The class of loops which we focus on here are called Static Dataflow Software
Pipeline (SDSP) loops. They are non-nested. For the case of nested loops, our code
generation technique is applied directly to the innermost loop where the processor
often spends most its execution time. Conditional constructs are omitted from the
loop body. The existence of conditional branches presents a harder problem for
constructing a static schedule because of unpredictable branching behavior. The
subject of including conditional constructs is currently under research. Loop-carried
dependence is restricted to span across one iteration only, so the size of a loop body
stays within a manageable limit. This class of loops has a simplicity which allows the
corresponding software pipeline to be obtained in a straightforward manner.

Figure 2.5(a) 1s an example of a loop body with a loop-carried dependence, and
Figure 2.5(b) shows the associated dataflow graph. The arc which expresses the

loop-carried dependence is called a feedback data arc. The rest of the arcs are called

14

¢ 9§

Jorward data arcs. Note that this graph only presents datatlow information within the
loop body. To obtain the corresponding static dataflow graph, acknowledgement ares
are introduced (see Iigure 2.5(c)). Note that a complete representation of a loop in
the formal dataflow model involves control actors, such as merge and switch [DFL72].
Control actors are omitted in the discussion for simplicity.

A SDSP G, consistent with above assumptions, can formally be expressed as the
tuple:

(V,E,E' F, I)

V is the set of actors (or vertices) in (. E and E’ are respectively the set of forward
data arcs and the set of feedback data arcs. F' and F' are the set of acknowledgement
arcs for F and E’. Figures 1.1(c) and 2.5(c) illustrate two possible candidates of an
SDSP, one with and the other without loop-carried dependence.

15

PR Y

Chapter 3

Petri-net Modeling

Since the original dissertation of C. A. Petri was published in 1962 [Pet62], Petri-net
theory has emerged as an important tool for system analysis and modeling of a wide
range of applications Petri-net theory allows a system to be modeled by a Petri net,
a mathematical representation. Analyzing the modeled systemn can reveal important
information about the system’s structure and dynamic behavior. This information

can be beneficially used to suggest system improvements

3.1 The Model and Related Notation

A Petrinet PNis a three-tuple (P, T, A), where P is a non-empty set of places denoted
by {p1,p2.---Ps}, T is a non-empty set of transitions denoted by {ti,tz,...,tn},
and A is a non-empty set of directed arcs such that P # 0, T # 0, PN T = 0,
AC PxTUT x P. Pictorially, P, T, and A are represented by circles, bars, and
directed arcs, respectively.

By convention, dot notation has been employed as a means of simplifying the
representation for a set of places and for a set of transitions. Shown below is the list
of possible usages of dot notation, where P, and 7| denote the subset of P and T in
PN. In addition, (¢, p) denotes the directed arc from t to p while (p,t) denotes the

directed arc from p to t.

p={t|(¢p) € A} (the set of input transitions),

p-={t](pt) € A} (the set of output transitions),

'Pl = UVp.EPl Pis

P = UVp.eP, Piy

16

t={p| (p,t) € A} (the set of input places),

t-={p| (t,p) € A} (the set of output places),

b 'Tl = UVt.GT) 'th

e Ty = Uw,er, ts

| -s| and [s- | denote the number of elements in the set -s and s respectively,

where s can be a place/transition or set of places/transitions.

3.2 Marking and Firing Rules

A marking of a net is a function M : P — Z*, where Zt is the set of non-negative
integers. The non-negative integer associated with a place p, denoted by M(p), repre-
sents the number of fokens on the place. A Petri net with a marking is always referred
as a marked Petri net. Marking M, is always referred to as the initial marhing of a

net.

A transition ¢ in Petri net PN is said to be enabled by the marking A, denoted
by M 4, if and only if Vp € -t, M(p) > 0. An enabled transition can he fired. The
firing of an enabled transition ¢ is done by removing one token from ecach of the input
places p € -t and depositing one token on cach of its output places p € £-. Assuming
the marking which enables ¢ be M and the marking which is obtained by firing { be

M, firing can be expressed as M 5 M'.

A marking M’ is said to be reachable from M if M' can be obtained by firing an
enabled transition t, M <+ M’, or by firing a sequence of transitions m = ,0y...(,,
M M, B b MY o the latter case, ™ = lyly... 1, is termed the firing sequence
A firing sequence 7 is called cyche firing sequence if, for any marking M, M 5 M
and 7 is not empty. Let o be a firing sequence. Then f(o) is called the firing vector of
o, where f(o),, denoting the 2-th element in the vector, is the number of occurrences
of transition ¢, in o,

The forward marking class M of a marking M is the set of markings that are
reachable from M. Conceptually, each distinct marking of a Petri net represents a
distinct state in the modeled system. Similarly, the forward marking class M, of the

marking M, represents the set of reachable states of the modeled system

17

3.3 Liveness, Boundness, and Persistence

A marking M is live for a transition ¢ if and only if for every marking M, in the
forward marking class M there exists a firing sequence which fires . A marking M
is live for a Petri net PN if and only if it is live for every transition in the net. If PN
represents a model of a system, the liveness property of PN implies that the modeled
system will never deadlock.

A marking M is bounded for a place p if and only if there exists an integer N such
that for every marking M, € M, M,(p) < N. If N = 1, the marking M is called safe
for p. A marking M is bounded (or safe, for the Petri net PN if and only if M is
bounded (or safe) for every place in the net. Note that if PN is bounded, the set of
reachable states of the modeled system must be finite.

A Petri net is persistent if and only if for all ¢1,t2 € T,{; # t; and any reachable
marking M, M % and M 5 imply M “¥ (the firing of transition ¢, after the firing
of transition £,); i.e., if {; and ¢, are enabled at a reachable marking, the firing of one

cannot disable the other; otherwise, it is said to have choice.

3.4 Some Special Structures

o Self-loop is a transition which has both input and output from the same place.

o A Petri net PN is said to have structural conflict if t.ere exists a place p in PN
such that |p-| > 1. The existence of structural conflicts is a necessary condition
for situations where choice might occur.

o A Petri net model is said to be consistent if and only if there exists a non-zero
integer assignment to each transition in the net (where each arc is assumed to
carry the integer of its attached transition), such that at each place, the sum of
the integers assigned to each of its input arc equals to the sum of the integers
assigned to each of its output arc. The assignment ensures the existence of
repeatable behavior in the model so that it is meaningful to talk about cycle
time. Here are the two known theorems on consistency [Ram74]:

Theorem 3.1 A Petri net PN 1s consistent if and only if there ezists an initial
marking M for which there ezists a cyclic firing sequence.

Theorem 3.2 A Petri net PN which has a live and bounded marking is consistent.

A corollary of the above theorem is that, if a Petri net has a live and bounded

marking, there exists a cyclic firing sequence.

18

e

3.5 Marked Graphs

A class of Petri nets which is important to our work is the class referred to as marked

graphs.

Definition 3.1 A Petri net PN = (P, T, A) is called a marked graph if and only if
VpeP |-pl=Ip-|=1

Marked graph must be persistent because, for each place in the graph, there is
only one associated output transition. Here are some significant results for marked

graphs (for proofs, see [CHEPT71]):

Theorem 3.3 A marking is live if and only if the token count of every simple cycle
is positive.!

Theorem 3.4 A live marking is safe if and only if every edge 1w the graph is in a
simple cycle with token count 1.

Theorem 3.5 Ifr is a cyclic firing sequence such that M 5 M, all transutions have
been fired an equal number of times.

3.6 Timed Petri Nets

Adding the notion of time to the basic Petri-net model enables the characterization of
system performance. In this thesis we consider that a deterministic time, expressed
by a non-negative integer number, can be assigned to each transition in the basic
Petri-net model [Ram74, RH80]. The model described below is made up of the orig-
inal timed Petri-net model introduced by Ramchandani [Ram74], and the concept of
instantaneous state subsequently developed by Chretienne [Chr85].

Formally, a timed Petri net is defined as a pair (PN, Q), where PN is the basic
Petri-net tuple (P, T, A) and § is a function that assigns a non-negative integer 7, to
each transition ¢, in the net (i.e., Q : T — Z* where Z* is the set of non-negative
integers). The value 7, denotes the execution time (or the firing time) of transition t,.

The state of the timed Petri net at time w is no longer described only by the
current marking at time u (M,) because some transitions might still be processing at
time u. A new concept of residual firing time vector, R, is introduced to keep track

of on-going executions at each time step. R,(t,) stores the remaining execution time

1A simple cycle is a directed path p,t,pc .4ipm such that all places and transitions are different
except p, and py,.

19

ﬁiﬂ;‘

of transition ¢, at time u. Accordingly, M, and R, together define the instantaneous

state of a timed Petri net. We also make the following two assumptions regarding the

firing rule of enabled transitions:

Assumption 3.1 Two distinct firings of the same transitions cannot overlup. To
formally enforce this rule, each transition in the net is assigned a distinct seif-loop of
its own with only one token in it. Though we do nol draw them explicitly they are

implicitly assumed.

Assumption 3.2 Transitions are fired as soon as they are enabled; this is termed
the earliest firing rule.

3.7 Optimal Computation Rate

Timed Petri nets have been applied in the study of concurrent systems to determine
the cycle time or equivalently the computation rate. We next review the method for
obtaining the cycle time of a marked graph.

Definition 3.2 The cycle time of transition t, is defined as

n

lim —
n—o n

where X is the time at which transition t, initiates its n+1 ezecution.

Here are some important results for timed marked graph from Ramamoorthy and

Ho [RHS0):

e The number of tokens in a simple cycle remains the same after any firing se-

quence.
e All transitions in a marked graph have the same cycle time.

e Cycle time is computed by

_ Ch)
a= max{M(Ck),Q(t,)}

where k = 1,2,...,9and t, € T}

UC) = Tiec, UL.) is the sum of the execution times of the transition in
simple cycle Cy;

M(Cy) = ¥p.ec, M(p,) is the total number of tokens in simple cycle Cy;

20

o

q is the number of simple cycles in the net, excluding the sell-loop implicitly
assumed for each transition; and

the cycle time of cach self-loop is reflected by €Q(¢,),Vt, € T

e The computation rate v of a transition is the average number of firings of that
transition in unit time and is computed by the reciprocal of the cycle time.
Y= min{ MG) L }
Q(Ck)’ 1)
where k=1,2,...,qand t, €T

o The simple cycle Cj which gives the maximum cycle time, or equivalently the

minimum computation rate, is known as the critical cycle.

In addition, Ramamoorthy and Ho demonstrates that a valid execution schedule
supporting the optimal computation rate can always be computed for a live-bound
marked graph. This result is stated in the following lemma and is used subsequently
to deduce a polynomial bound in Chapter 4. \

Lemma 3.1 A valid execution schedule for each transition t, can be derived with the

following time constraint, once the cycle time o 1s determined:
Sh=a, +ah

where S* is the time at which transition t, commences the h+1 finng, and a, is the

time at which transition t, commences the first firing.

Cycle time a is

max {1%(?%;)5, Q(t,)} , for all simple cycles C in PN.

The starting time a, of transition t, can be assigned as follows:

1. Define the distance from transition ¢, to transition ¢, to be §(t,) — aM(p,),
where p,, is the place in between transitions ¢, and ¢,.

2. Find a transition t,, which is enabled initially and assign 0 to «,.

3. Assign a, to each transition ¢, such that a, is the greatest distance from ¢, to
ty, €.,

a, = m’?x{ Z Qty) — a Z M(pus)}

twER Pab€ER
where R is a path from {, to {,. Note that the single-source longest path
algorithm can be applied here.

21

The cyclz time of a timed marked graph can be obtained by enumerating every
simple cycle in the associated graph; however, the time complexity of the enumerating
process can be exponential because there exists a marked graph with an exponential
number of simple cycles [Mag84). A more efficient methnd for finding cycle time is
given in [Mag84] where the problem is formulated as a linear programming problem
having a theoretical polynominal bound.

The above computation rate v is optimal or time-optimal in the sense that it is the
maximum achievable computation rate under any machine model [RH80, Ram74]. It
can be achieved when a model has enough parallelism to execute all enabled transi-
tions as soon as they be:ome enabled. Such an ideal machine model will be used in

the next chapter.

22

Chapter 4

Software Pipeline Scheduling on
an Ideal Machine

In this chapter we use Petri nets to examine the feasibility and complexity of soft-
ware pipeline scheduling. Section 4.1 describes formally the SDSP using a Petri net;
the resulting model is called a SDSP-PN. Once the SDSP-PN is constructed, we are
then able to examine the repetitive behavior, or the steady state, resulting from the
execution of the SDSP, using an ideal machine model and with the eatliest firing 1ule
enforced. Section 4.2 introduces the notion of a behavior graph [Ram74] which, to-
gether with the live-safe properties of an SDSP-PN, provide the means for proving the
existence and uniqueness of the steady state discussed in Section 4.3. In Section 4.4
we determine the time-complexity required to reach steady state. In Section 4.5
we discuss an marking constraint which lowers the time-complexity requiverent for

reaching steady state.

4.1 Modeling a SDSP with a Petri Net

It is straightforward to translate a SDSP into a Petri net called an SDSP-PN. "The

following algorithm performs the translation:

Algorithm I SDSP to SDSP-PN transformation

Input: A SDSP G = (V,E,E',F,F'), where V = {v,...,v,}, EUE'UF U I =
{e1,...,em}, and I is a constant (we assume all nodes have the same execution time).

Output: A SDSP-PN PN = (P, T, A, Q)

e For each vertex v, in V, we introduce a corresponding transition ¢, in T', i.c.,

T=— {tl,...,tn}.

23

Fotiny

(a) SDSP-PN of L1 (b) SDFP-PN of L2

Figure 4.1: SDSP-PN of L1 and L2

o Vi, € T, QL) = L.

o For each directed edge e, = (v,v,) in EU E'U F U F', we introduce (1) a
corresponding place p, in P, ie, P = {p1,...,pm}; and (2) a set of directed
arcs in A denoting the flow relations -p, = t, and p,- = ¢,. A can be expressed

as:

A= U ((t, Pu) U (pu, 1,))-
eu=(vv,) € (EVEUFUF')

In addition, the initial marking M, associated with PN will simply be

My(p,)=1,ife, € E'UF,
Mo(py) =0,if e, € EUF".

Figures 4.1(a) and (b) give the corresponding Petri-net representations for L1 and

L2. The resulting PN is a marked graph due to the fact that |-p| = |p-| = 1.
Accordingly, it is also persistent. Furthermore, the initial marking Mg is live and safe

due to the following two theorems:

Theorem 4.1 SDSP-PN with initiai marking My is live.

24

. initial
instantaneous
state marking

terminal
instant aneous
state marking

Figure 4.2: An Example of the Behavior Graph for the SDSP-PN of Ll

Proof of Theorem 4.1.

Note that each possible cycle found in the resulting SDSP-PN contains at least one
token. This can be seen by noting that every arc in the SDSP-PN pointing in the
backward direction is initialized with one token. The validity of Theorem 4.1 therefore

follows immediately from Theorem 3.3. 0
Theorem 4.2 SDSP-PN with wnilial marking My 1s safe.

Proof of Theorem 4.2.

For each arc (v,,v,) € E U F' (in G), the corresponding arc (v,,n,) € E'U [initially
holds a token and points in the opposite direction. Accordingly, each edge in the
resulting SDSP-PN is within a simple cycle having a token count of 1. Hence, the
validity of this theorem follows directly from Theorem 3.4. O

4.2 The Behavior graph of SDSP-PN

The construction of a behavior graph provides an alternative way to describe the
behavior of a Petri net, besides a reachability tree [Pet8l]. A behavior graph is
particularly useful for describing the concurrency and c clic firing sequences of a Petri
net. From a different standpoint, the behavior graph is actually a trace generated
while executing the SDSP-PN, according to the carliest firing rule. At each time
step, the behavior graph records the set of newly marked places and the set of enabled
transitions to be fired at that step. In addition, directed arcs are introduced among the
places and transitions to denote the token flow relation from place to transition (token

consumption) and from transition to place (token production). The instantancous

25

state of the behavior graph at time 7 can be described by the current residual firing
time vector R, and the current marking M,. The algorithm for constructing the
bebhavior graph is given below:

Algorithm II Behavior Graph Construction

Input: a SDSP-PN PN = (P, T, A, Q) and initial marking My

Output: behavior graph B

Step 1 Initially 7z = 0. Let M’ denote the set of currently marked places in PN.
Duplicate M’ in B. Initialize all entries of the residual firing time vector Rg to
0.

Step 2 Firc all enabled transitions in PN. Let T’ denote the set of transitions just
fired. Duplicate a copy of 7" in B. Update the residual firing time vector and
current marking as follows:

R,(1,) = Q(t,),Vt, € T,
M. (pe) = Mi(ps) — 1, Vpr € T

Step 3 Introduce directed arcs among places M’ and transitions T’ in B to indicate

the token flow relation.

Step 4 i=1+1. M" =, est,,, where S={t, | R..1(t,) — 1 =0,Vt, € T}, ie., M”
is the set of newly marked places. Duplicate M” in B and update the residual
firing time vector and the current marking as follows:

Ri(t)) = R_1(t)) — 1, if R_y(t,) > 0.V, €T,
R(t,) = R,_a(ty), if R_y(t,) =0,Vt, €T,
M.(pi) = M._1(px), VP € P and ¢ M",

M (pe) = M,_y(p) + 1,V € M".

Step 5 Introduce directed arcs among transitions 7" and places M” in B to indicate
token flow.

Step 6 Let M’ denote the set of currently marked places in PN. Repeal from Step
2.

Figurc 4.2 illustrates the behavior graph constructed for the marked graph, SDSP-
PN L1, shown in Figure 4.1(a), where the execution time of all transitions are assumed
to be equal.

26

4.3 Steady State

As can be seen, the construction process of the behavior graph can continue forever,
and the behavior graph can be infinitely extended. A key observation is that the
behavior graph exhibits repetitive behavior after an imtial perod the amount of
time elapsed befere the repetitive hehavior is reached. This is shown by the following

lemmas:
Lemma 4.1 Behawvior graph is unique for SDSP-PN.

Proof of Lemma 4.1.

Obviously the original marking of the marked graph is unique. Since there is no
structural conflict in a marked graph, the firings of all enabled transitions at cach
time step with respect to the earliest firing rule are unique. Therefore, the validity of
the lemma is immediate. 0

Lemma 4.2 There exists an instantancous state in the behavior graph of SDSP-PN

that appears repeatedly.

Proof of Lemma 4.2.

The total number of distinct M, is finite because SDSP-PN has a safe marking. Simi-
larly, the total numnber of distinct R, is also finite because each transition in SDSP-EN
has a known firing time. As a result, the total number of possible instantancous states
are also finite. Hence, if the behavior graph is infinitely extended, some instantancous
states must be repeated. 0

From Lemmas 4.1 and 4.2 we can see that an instantancous state once repeated
will do so forever. As a result, the region of the behavior graph between two repeated
instantaneous states can be used to represent the steady-state behavior of the SDSP-

PN executed under the earliest firing rule. Thus we have the following definition:

Definition 4.1 A Cyclic Frustum (or steady state) of a behavior graph I3 s the por-
tion of B between two conseculive occurrences of some repeated instantancous stalc.
In addition, the two instantaneous states thal surround the frustum are termed the

initial inslantaneous stale and the terminal instantaneous stale.

The marking portion of both the initial and terminal instantancous state found in
the behavior graph for L1 are marked in Figure 4.2, where the two associated residual
firing time vectors are vectors composed of zero entries. Notice that the cyclic frustum

is actually a cyclic firing sequence since it fires each transition at least once and returns

27

Figure 4.3: An Example of Steady-State Equivalent Net

the net to its initial state. Once the behavior graph reaches its frustum, it will keep
repeating. This simply suggests a way of capturing the repetitive behavior of the
studied system. Instead of extending the behavior graph indefinitely, we can extract
the cyclic frustum and coalesce the initial and terminal instantaneous states to form
a strongly-connected Petri net, called a steady-state equivalent net. Figure 4.3 shows
an example of the steady-state equivalent net derived from the behavior graph shown
in Figure 4.2, Note that the steady-state equivalent net is itself a marked graph.
As we initialize it with an initial marking, by assigning one token to each coalesced
place (i.e., the top row of places), the net captures the steady state behavior of the

corresponding SDSP-PN, yielding the same computation rate.

4.4 Complexity to Reach a Cyclic Frustum

As was shown in Lemmas 4.1 and 4.2, a repetitive execution pattern can always be
found for an SDSP-PN executed under the earliest firing rule within a finite number of
steps. The length of the initial period is examined in two sections: In Section 4.4.1 we
impose a theoretical bound on the length of the initial period for an SDSP-PN having
one critical cycle, while in Section 4.4.2, we deal with the case of multiple critical
cycles, noting the barrier confronted and giving some partial results. In Section 4.4.3
we provide an indication of the tightness of the theoretical bound obtained using
sample code which requires O(n) iterations for the initial period. In Section 4.5 we
introduce an initial token-distribution constraint. As the initial marking of an SDSP-
PN meets the constraint, a tighter polynomial bound can be established for the initial
period. More importantly, the result can be generalized to the case of multiple critical
cycles, imposing a polynomial bound on the initial period. The work described in this

section benefited both from Chretienne’s thesis on Petri-net theory [Chr84) and from

28

Aiken and Nicolau’s work [AN88). The notations and assumptions which we will use
are defined below:

o Let G denote a SDSP-PN having n transitions, and let X'* denote the time at
which transition t, commences its h+1 firing. We assume that the execution
time 7, of each transition ¢, is one time unit. In general, however, the following
results can be extended to cases in which transitions have different execution

times.

If Pisa path in G, then M(F), the token sum, denotes the sum of the tokens
on each place in P.! The token in one place is taken i the sum as many times
as the place is embedded in P. Similarly, Q(P), the value sum, denotes the sum
of 7, of each transition ¢, in . The 7, of transition ¢, is taken in the sum as
many times as the transition is embedded in P. Let Py(1,, 1)) denote the set of
possible paths in G from ¢, to ¢, having exactly h tokens along the path, and let
an(t,, t,) denote the value sum of the maximum value path in Pt 1,). We also
use the notation PY(t,,t;) to denote the subscet y of Py(1,.1,) and the notation
al(t,,1;) to denote the maximum path value of subset P/(t,.1,) Since cach
transition has a self-loop with one token on it (Assumption 3.1), Pu(t..1,) # @,

for h > hy where hg is a positive integer.

A simple cycle C* in G is crifical if the ratio of the value sum to the token sum
is maximal, i.e., if

ACY) o N

M(C+) ~ M(C,)’
where C, denotes the other simple cycles in (i, Let a, denote the cycle time of
the simple cycle C,, i.e., a, = Q(C,)/M(C,); likewise, let o (= Q(C'*)/M{('"))
denote the cycle time of C=.

4.4.1 An SDSP-PN having One Critical Cycle

Chretienne shows that a precise description of the action of cach transition ¢, under

the earliest firing rule obeys the global time constraint Xhtk Xt =p h > hy, where

hp is a non-negative integer, k equals the least common multiple of the token sum of

all critical cycles in G, and p equals a x k, where a is the maximum cyde time of

G [Chr84).2 This time constraint means that after the hq firings, every k-th firing of

a transition {, must be p time steps apart; that is, the steady state appears. In other

!Note that a cycle is allowed along a path
2The constraint is global in the sense that 1t is applicable to describe the behavior of all transitions

29

JREP

words, the length of the steady state is p time cycles, and the steady state consists of
k firings of transition ¢,.

Since, in this section, we only consider SDSP-PN having one critical cycle C*, k
and p equals M(C'*)y and (C*). This implies that the length of the steady state of G is
bounded, bypassing the problem of determining an upper bound for the least common
multiple of token sums in the case of multiple critical cycles. Theorem 4.3 states that
in the single critical-cycle case, the global time constraint for each t, € G is satisfied
(i.c., the steady state is rcached) after O(n®) iterations, i.e., hy = O(n®). Before
this claim is proven, we introduce several important lemmas: The first is Lemma 4.3
which relates the time at which transition ¢, starts its h+1 firing to the computation of
an(tiyt,), the value sum of the maximal value path in Py(t,,t,) [CCG84, Chr84, Chr85).
Lemma 4.4 establishes the criterion that the maximum value path must pass through
the critical cycle. Lemma 4.5 states that a subset of a given set of k integers can
always be found such that the total sum is a multiple of ¥ [AN88]. Lemma 4.6 is
an inequality based upon the fact that the value-per-token ratio of a critical cycle is

always larger than that of a non-critical cycle.

Lemma 4.3 For any (G erecuted under the earliest firing rule, the time X]" at which

transition t, starts ils h+1 firing equals

max an(t,,t,), t, € set of enabled transitions at time zero.

Lemma 4.4 For h > O(n%), the mazimum value path in Py(t,,t,) in G must pass
through the critical eycle C*.

Proof of Lemma 4.4

Let ¥ be a path in Py(¢,,t,) which does not touch C*. Let P, be a path in Py(t,,t,)
which passes through C*. For any given h > hq, we choose P, = u(C*)™ v, where ho
is an integer, u and v are respectively the directed path from ¢, to ¢, and the directed
path from t, to t,, t, is a transition on C*, and m is the number of times that C*
is consecutively iterated. The value m and the paths g and v can respectively be

computed and constructed as follows:

_ I M(Pa)-2n
o m= M

o Let my = (M(F,) — 2n) mod M(C*) + n; pu is a path from t, to t, with m,

tokens while v is a path from ¢, to ¢, with n tokens.?

3Such paths must exist because the token sum of any simple p=th (cycle free) is bounded by n,
and by Assumption 3 1 Py(f4,) # 0 provided h > n in a safe marked graph.

30

R4

- &

Notice that under such construction

M(p)+ M(v) £ 3n. (4.1)

Let us assume Sy, = M(p) + M(v) +m x M(C*) for the given h. Thus by definition
both ¥ and P, belong to Ps_ (t,,t,). To prove this lemma, we first construct an upper
bound on the value sum Q(¥). Then we show that Q(F,) is always greater than the
upper bound of Q(¥) for m > O(n?) or h > O(n?).

e Construction of the upper bound for Q(V¥)

This construction was taken from Chretienne’s Ph.D thesis [Chr84]. Let {C,;i =

1,...,a} denote the set of non-critical simple cycles in G, and let ¢ and ¢, be
defined as follows:

& = o —ay, V1,1<1<a
and e = rrlxin {e.}
1=I,..,a
> 0

Recall that o* and a, are respectively the cycle time for the critical cycle ¢
and the simple cycle C,. Then, ¢ is the cycle time differcnce of the critical cycle

and the simple cycle that has the second largest cycle time in (7

Notice that path ¥ can be decomposed into a simple path ¢ (cycle free) running
from ¢, to ¢, and a set of non-critical simple cycles, where for each €, we associate
an integer 7; > 0 to denote the number of times C, is iterated in W. The value
sum of ¥ is computed as follows:

0() = Ag)+ Y nAC)
- ﬂ(q)+i:ma.M(C'x)

= Qq)+ i n(a” —e,)M(C,)

1=1

< 0(g)+ Y mla” —e)M(C)

=1

= Q(0)+ (e - 9) Y nM(C)
Qg) + (" =)M (V)

IA

Since ¥ € Ps, (ti,t,), M(¥) can be expanded and bounded as follows:

Q)

31

Pty

Uq) + (" —¢€) (M(p) + M(v) + m M(C"))
= m(a" —&) M(C*) +b (4.2)

where b= Q(q) + (a* — €) (M(u) + M(v))

Evaluation of k so that Q(F,) > Q(¥)

Note that the path P,=u(C*)™ v also belongs to Ps,(t,,t,), and Q(pu(C*)™ v)
equals Q(u) + Q(v)+m a* M(C*). As we compare Q(pu(C*)™v) and the upper
bound of Q(¥) (Equation 4.2), we see for m > mg, where my is some positive
integer, ¥ can never be the maximum value path in Ps_ (t,,¢,). Moreover, this
is true for all possible ¥ € Ps,,(t;,t,) that do not touch C~.

m(a® —¢) M(C*) + b
< ma" M(C*)+Qu) + Q(v) (4.3)

mg can be estimated by solving Equation 4.3 for m:

b— (Qu) +Q(v))
e M(C)

(4.4)

Next we simplify the right-hand side of Equation 4.4 and construct an upper
bound. Without loss of generality in ¢, assume that ¢, is the smallest value in
{e1,.. . €} 16, e =6, =a” — oy

b— (U n) + R(v))
e M(C*)
b
e M(C~)
Uq) + (o —€) (M(p) + M(v))
(a* — ay) M(C*)
MUg) + o (M(p) + M(v))
(a* —a,) M(C*)

Qq) + ek (M(p) + M(v))
(a5 —) M(C)

q) + ek (M(p) + M(»))

C) - UG
M(C,) SUq) + Q(C)) (M(p) + M(v))
UC*) M(C) - AC,) M(C*)

IN

i

(4.5)

Note that G is a live-safe marked graph composed of n transitions. The token
sum for any simple path or any simple cycle is bounded by n. Similarly, the

32

¢ "

LY

value sum of any simple path or any simple cycle is bounded by n. Note also

that by Equation 4.1 M(u) + M(v) € 3n. Equation 4.5 can be further reduced
and bounded by

nxn+nxin
1
< O(nz) (4.6)

As a result, for m > O(n?) the maximum value path in Ps (¢, t,) must pass
through C*, where S,, = M(u) + M(v) + m x M(C*). Or equivalently, for
h > O(n®) the maximum value path in P,(t,,t;) must pass through C*.

Lemma 4.5 Given K integers Iy, ..., I, there is a subset S of I, such that

(Z I,) mod k£ = 0.

Les

In other words, the sum of all I, € S is a multiple of k.

Lemma 4.6 Let C* be the critical cycle in G, m be a positive inleger, and C, ..., Cy
be the set of simple cycles in G such that M(Co)+- -+ M(Cs) = m x M(C*). Then,

mxCY> 5 Q).

C.E{Ca,...,ob}

Proof of Lemma 4.6

Y. QC)

C\€R

QCa) + - + QUCY)

ag X M(Cy) + -+ ay x M(Cy)
< a*x M(Co)+---+a” x M(Cy)
a®* xmx M(C")

m x Q(C*)

O

Theorem 4.3 For any G with only one critical cycle C* exzeculed under the earhest
firing rule and for h > O(n3), the time constraint XJ"“‘ — X% = p s obeyed by all
t; € G, where k = M(C*) and p = Q(C*).

33

Proof of Theorem 4.3
By Lemma 4.3, this theorem can be proven by showing that for A > O(n?):

rrltaxa;,+k(t,,t,) - mtaxah(t.,t,) =pVt, €G

where t; is a member of the set of initially enabled transitions at time zero. Or

equivalently, we show that for A > O(n?):
ah+k(tn t]) = ah(tu tJ) + p, Vt] €q

for all ¢; in the set of initially enabled transitions at time zero.

Notice that P,(t,,t,), the set of paths from ¢, to t;, with exactly z tokens, can
be partitioned into three disjoint subsets: P2(t,,t,), Pi(t,,t,), and P(t,,t,), where
z > 0. Subset P%(i,,t,) denotes the set of paths that iterate through C™ at least
once. Subset P’(1,,t,) denotes the set of paths which only touch C*, that is, C* is
not embedded entirely in the path, and subset P:(t,,t,) denotes paths that do not
contain C* at all.

We would like to show that the maximum value path in P,(¢,,t,) for A > O(n?)
can only be found in subset Pg(t,,t,). By Lemma 4.4 we know that the maximum
value path in P4(t,,t,) for h > O(n?) can never be found in subset P£(t,,t,). Forevery
path in subset PP(t,,t,) there always exists a corresponding path in subset Pg(t,,t,)
which has a higher value sum, provided h > (n+ 1)k +n. For h > (n+1)k + n, there
exists at least k cycles along any possible path in Py(t,,t;). By Lemma 4.5 there
cxists a subset S of those cycles C, such that Y ¢ s M(C,) is a multiple of k. Recall
that k = M(C*). Assume ¥ ¢,es M(C,) = m x M(C*),m € integer, and m > 0 for
any path P, € Pu(t,,t,). Either S is composed of C* m times, i.e., P, € Pg(t,,t,);
otherwise, P, could never have the maximum path value. This is so because a path
P, can be constructed from P, by replacing all C, € S5 with exactly m C*. P, must
also exist in Py(l,,t;), and by Lemma 4.6, it has a higher value sum. Therefore, the
maximum value path of Py(¢,,t,) for h > O(n®) must be a member of subset P2(t,,t,).

In addition, notice that subset P, (4,¢;) can be constructed by having every
path in subsets P2(t,,t,) and PP(t,,!,) iterate through C* one more time. However,
as was shown previously, subset P(t,,t,) does not contain the maximum value path.
Consequently,

ani(tn b)) = a(llz+k(tnt1)
= ap(t,)+ QC)
= ay(t,t,)+p
= ap(li,t,)+p

34

B

a
Theorem 4.3 states that all nodes in the loop (including both the nodes on or not
on the critical cycles) will enter a periodic firing pattern after O(n?) iterations, This

suggests that we can “simulate” the loop execution at compile-time by constructing

the behavior graph in O(n3) iterations to reach this pattern. Since cach iteration has
O(n) firings in the “simulation” process, the actual number of time steps to reach the
pattern is O(n?), as shown by the following theorem.

Theorem 4.4 Under the earliest firing rule, the cyche frustum of (¢ having one
critical cycle can be found in O(n?) time steps.

Proof of Theorem 4.4

By Theorem 4.3, the time constraint X*** — Xh = p Vi, € i, k = M((""), and
p = Q(C") is satisfied when A > O(n®). In other words, the cyclic frustum appears
after O(n3) times of G are scheduled. Since (' consists of n transitions, a total of
O(n?) firings will be performed. Note that O(n?) firings can be done in at most O(n*)
time steps.

Since p = Q(C*) is the value sum of the critical cycle, it is bounded by n. There-
fore, under the earliest firing rule, the cyclic frustum of ¢ having one critical eycle
emerges in O(n?)+n time steps, or simply O(n?). 0

4.4.2 An SDSP-PN having Multiple Critical Cycles

As noted previously, the action of each transition is described by a global time con-
straint. It states that every k firings of a transition is p period apart, where & equals
the least common multiple of the token sum of the critical cycles and p equals oo x k.
Since the time complexity for finding the steady state involves the detenmination of
the length of the steady state, an upper bound for the least common multiple factor is
thus required. We are unaware of any polynomial result and beheve that the problem
in this case remains open.

The rest of this section demonstrates that, for transitions residing on the critical
cycles, a more concise local time constraint can be deduced which also coineides with
the behavior description of the global time constraint.? In addition, the improved
constraint is shown to be obeyed after O(n?) iterations under the earliest firing rule.
This result also applies to the case of single critical cycle. Let (5,05, . .. denote

the critical cycles. The new time constraint has the same form as the previous one

4The time constraint 1s local 1n the sense that 1t 1s only apphicable to describe the hehavior of
the regarded transitions

35

except that in this case k = M(C}) and p = Q(C7) for all t, € C;. This constraint
justifies that transitions from different critical cycles have a different repeating period
p, but they all keep the same computation rate M(C;)/YC;). To demonstrate these

claims, Lemmas 4.3 and 4.5 are used again. In the instance of multiple critical

cycles, Lemma 4.6 is revised to Lemma 4.7. Note that the proof of the claim below,
Theorem 4.5, is so similar to the one used for Theorem 4.3, in the last section, with
only a slight difference.

Lemma 4.7 Let C* be a critical cycle in G, m be a positive integer, and Cy,...,Cs
be the set of simple cycles in G such that M(Co)+ -+ M(Cs) = m x M(C*). Then,

mxCY > Y Q0.
C.G{Ca,...,C,,}

Proof of Lemma 4.7

PRRL(SY

C\€R

UCq) + -+ + QUCy)

az X M(C,) + -+ ap x M(Cy)
< a" X M(Co)+ -+ +a" x M(Ch)
a* xmx M(C")

m x Q(C*)

O

Theorem 4.5 For any G ezxecuted under the earliest firing schedule and for h >
O(n?), the time constraint X% — X* = p is obeyed by all t, € C*, where C* is a
critical cycle, k = M(C*), and p = Q(C~).

Proof of Theorem 4.5

With Lemma 4.3, this theorem is proven by showing that for A > O(n?),
rrltaxa,,+k(t,,t,) - mtaxah(t,,tj) =p, YV, € C"

where ¢; 1s a member of the set of initially enabled transition at time zero. Or
equivalently, we show that for & > O(n?),

ah+k(tn t)) = ah(tn t]) + P Vt] € c*
for all ¢, in the set of initially enabled transition at time zero.

36

Notice that P,(t,,t,), the set of paths from ¢, to ¢, with exactly = tokens, can be
partitioned into two disjoint subsets P2(1,,t,) and P%(t,,t,), where z > 0. Subsct
P2(t,,t,) denotes the set of paths that iterate through C* at least once, while subset
P5(t,,t,) denotes the set of paths which only touch C*, ie., ("* is not embedded
entirely in the path.

We show that for every path in subset Pf({,,1,) there always exists a corresponding
path in subset P?(t,,t,) which has a greater or equal value sum, provided h > (n +
1)k + n. Consequently, the maximum value path in Py(t,¢t;) for b > O(n?) can
always be found in subset P2(t,,t,). For h > (n + 1)k + n there exists at least &
cycles along any possible paths in Py(t,,¢,). By Lemma 4.5 there exists a subset S of
those cycles C, such that ¥c s M(C,) is a multiple of k, where & = M(('"). Assume
Yces M(C) = m x M(C*),m € integer, and m > 0 for any path P, € Py(l,,1)).
Either S is composed of C* m times (i.e., P, € P2(t,,¢,)) or P, may not have the
maximum path value. This is so because a path P, can be constiucted from P by
replacing all C, € S with exactly m C*. P, must also exist in Fy(t,,1,), and by
Lemma 4.7, it will have a greater or equal value sum. Therefore, the maximum value
path of Py(t,,t,) for h > O(n?) is always a member of subset Pp(¢,,f,).

In addition, notice that subset Pg,, (., ;) can be constructed by having every path
in the subsets P3(t,,t,) and P(t,,(,) iterate through C'* one more time. However,
as was shown, the maximum value path can always be found in subset P(t,t)).
Consequently,

ahek(tinty) = ajpltit;)

Illustration of the Effect of Multiple Critical Cycles

To conclude the discussion of multiple critical cycles, we illustrate two sample code
sequences to demonstrate the least-common-multiple effect of the token sum of critical
cycles on the length of the steady state (see Figures 4.4 and 4.5). Figure 4.4 shows a
code sequence made of one initial enabled node t, (or a single source) and two critical
cycles C; and C;. The computation rates of C and C; are 3/9 and 2/6. 'The value
of the least common multiple k then equals § (3 x 2). Figure 4.5 displays a code

sequence composed of three initial enabled nodes: ¢, ¢y, and t,y (multiple sources)

37

b

Critical CYC].e Cl: t1t2t3t4t5t6t7t9t8tl
Computation Rate = 3/9

/—-—- *\
~— "'n\ ’,,..m.m.. . = 2 r"‘"“‘h.
\\\ r“."“ -—’__'___,-.'—."" /
\‘ e l‘l
Q @ & ¢

’
1
!

..--.--. »-

""" '."‘*~

N—— I

———

Critical Cycle C,: t ,t;3t 4t 5t 6t 9t,
Computation Rate = 2/6

Figure 4.4: Code Sequence with Single Source

Critical Cycle Cy: Tyt Lyl tstetotatotyoly tystyalyatyat)
Computation Rate = 5/195

—_— TS
o - e N NP ENGPEE PNSPEE DN DNy DN I IR RS ey
\ -® . "'.\ l"'““ e e~ - \“
Gl —(ap= .
AN
| \
-B . e W S ARPE DT RN TR JENEITL N - - e - *

Computation Rate = 3/9

/
7
Critlcal Cycle Cpt o0t 1¥ap 23t 24t 25 26t 28t 27 b @ @ !

Critlcal Cycle C3: tjigtietygtaggtagtygtis

Computation Rate = 2/6

g Figure 4.5: Code sequence with Multiple Sources

38

and three critical cycles: Cy, C3, and Cs. The computation rates of 'y, (", and ('3
in this case equal 5/15, 3/9, and 2/6 respectively; the value of k cquals 30 (2 x 3 x 5).

The corresponding results for the two sample codes under earliest firing rule are

depicted on Tables 4.1 and 4.2. Among the results, the numbrr of firings indicates the
number of firings of a node in a repeated firing sequence, by which we can determine
if the local timne constraint is obeyed. The time delay indicates the delay between
consecutive firings in the corresponding repeated firing sequence; the total sum of the
time delays thus equals the repeating period of the particular node. The wteration
indicates the latest iteration instance observed when the steady state is reached. Here

are the major observations:

e Nodes t;; and £, in the single-source code sequence and node ¢, in the multiple-
source code sequence fire respectively six times and thirty times in their steady

states, confirming the effect of critical cycles under the global time constraint.

e The number of firings for node on the critical cycle (7, in both code sequences
equals M(C,), the number of tokens on the critical cycle. These incidents

verifies the existence of a local time constraint claimed by Theorem 4.5,

e The steady state of the off critical-cycle nodes are not necessary influcnced by
the least common multiple factor. In the single source case, only nodes t;; and
t,, demonstrate the impact of critical cycles while nodes ¢, and £,y obey the local
time constraint.

For more examples of the influence of critical cycles, the multiple-sources case
presents an extensible platform. For example, we can raise the value of & fiom
2x 3 x5t02x3x5xT7 by attaching a new branch of nodes which consists of a new
critical cycle Cy with a rate of 7/21 and a new source node tyy. The resulting graph
then consists of four branches corresponding to four critical cydes We then adjust
the other three branches by inserting new nodes until the three old branches regain
the same height, i.e., the distance of each branch from the source nodes to t,, equals
the distance from t,4 to {,.

4.4.3 Tightness of the Bound

In this section we illustrate the tightness of the derived polynomial upper hound,
using the example in Figure 4.6. The example illustrates the need for initizting at
least n—1 iterations before the repetitive firing pattern is reached. It contains a chain

of n nodes with only one critical cycle (t,_ot,_1tat,_2) located at the right end. The

39

Table 4.1: Single Source

Range of Nodes
t, it o ti ti—l17 ln _
Label Source Node C) Ca
Number of Firings k 3 3 3 6 2 6
Time Delays 2,34 2,34 2,34 24,2433 2,4 2,4,2,4,3,5

1 Code Size: 19, Iteration: 14

Table 4.2: Multiple Sources

Range of Nodes
1,1 la2 3 U-lis tie~lis lao—lag l29—l34 l3s—ls0 ln
Label “Source Nodes () C, Cs
Number of Firings & 5 3 2 5 3 3 2 2 30

t Code Size: 44, Iteration. 43

computation rate of the critical cycle and the chain, in general, is 1/3. All other
simple cycles have a computation rate of 1/2. In addition, note that there is a total
of n—2 tokens along the path from ¢, to ¢;. Initially at time zero, t; is the only
initially enabled node. By Lemma 4.3, the time for ¢; to commence its hA+1 firing
can be computed by an(t,,t;), the maximum path value among the set of possible
paths from ¢, to t; with exactly h tokens. However, due to the chain of n~2 tokens
from t, to t,, the set of paths from ¢, to t, with less than n--2 tokens can never reach
the critical cycle. Thus, it indicates that ¢, is required to initiate at least n—1 times
(i.e., n—1 iterations, or O(n) iterations) before the effect of the critical cycle can be
propagated back to ¢,.

Critical Cycle
Computation Rate = 1/3

AT

o S ~ - B S S
; TRt s SV W ey

Figure 4.6: A Code Sequence with an O(n) Lower Bound

40

4.5 Initial Token-Distribution Constraint

Through our simulations (Table 5.1), we have found surprisingly short initial periods
for all benchmarks tested. In fact, the observed bound was within O(n) iterations.
It appears that the bound derived above is too pessimistic, and a tighter bound
is possible. In Section 4.5.1 we give a markirg condition, obtained by generalizing
Theorem 4.5, with a tighter initial period. In Section 4.5.2 we report a significantly

improved bound for the same marking found by using a different approach.

4.5.1 A Tighter Initial Period

The Initial token-distribution depicted by Theorem 4.6 characterizes an imtial mark-
ing of G such that a repeated pattern can be found after O(n?) iterations regardiess
of the number of critical cycles. The length of steady state and the number of firings
of each transition in steady state are respectively Q(C*) and M((™), where ("% is the
critical cycle initially holding all enabled transitions. Formally, the time constraints
XMHE — Xh = p,Vt, € G are satisfied after O(n?) iterations of (7, where k = M(('™*)
and p = Q(C*). The validity of Theorem 4.6 is important because the requited initial
condition can always be reached after at most O(n) iterations, as discussed in the
next paragraph. Consequently, the repetitive firing pattern for a general SDSP-PN

can be found after O(n?) iterations of (4, regardless of the number of entical cyeles.

Token Distribution Constraint Satisfaction: Assume that transition f, resides
on a critical cycle. To meet the initial condition, onc simply executes (4 using
the earliest firing rule but prohibits any firing of transition ¢, The firng process
soon deadlocks. Since G is strongly connected, there always exists a (ydle-free
path P from ¢, to ¢, for all ¢, in G. If £, is never fired, ¢, stops firiug seon after
all tokens along P have been consumed. Note also that there can be at most
n tokens along a cycle-free path; that is, ¢, can be fired at most n times before
the initial condition is met. Equivalently, it requires the scheduling of at imost
O(n) iterations of G to reach the required state.

Theorem 4.6 Under the earhest firing rule, 1f the set of initwal enabled transitions
at time 0 dll belong to a selected critical cycle C= in G, V¢, € G the Lume constraints
X,""‘" - X]" = p 1s obeyed for h > O(n?), where k = M(C*) and p = Q(C*).

Proof of Theorem 4.6

Assume that the only enabled transitions at time zero are those on the selected

critical cycle C*. With Lemma 4.3, we prove the theorern by showing that for A >

41

O(n?),

rnla.xaMk(t,,tJ) - mta,xah(t,,tj) =p Vt,€qG

where t, is a member of the set of initially enabled transitions at time zero. Equiva-
lently, we show that for h > O(n?),

anei{tnt,) = an(tnt,) + p, V4, €G

for all ¢; in the set of initially enabled transitions at time zero.

Notice that P,(t,,t,), the set of paths from ¢, to ¢, with exactly z tokens, can be
partitioned into two disjoint subsets P2(t,,t;) and P%(i,,t,), where z > 0. Subset
P2(t,,t,) denotes the set of paths that iterate through C* at least once, while subset
P%(t,,t,) denotes the set of paths which only touch C* (i.e., C* is not embedded
entirely within the path).

We show that for every path in subset P}(t,,t,) there always exists a corresponding
path in subset P2(t,,{,) which has an equal or greater value sum, provided h >
(n+ 1)k +n, where k = M(C*). Consequently, the maximum value path in Py(t,,t,)
for h > O(n?) can always be found in subset Pi(t,,¢,). For b > (n + 1)k + n, there
exists at least & cycles along any possible path in Py(t,,¢,). By Lemma 4.5 there
exists a subset S of those cycles C, such that ¥ ¢ ¢s M(C,) is a multiple of k. Assume
Yces M(C,) = m x M(C*),m € integer, and m > 0 for any path P, € Py(t,¢,).
Either S is composed of C* m times (i.e., P, € Pg(t,,t,)) or P, may not have the
maximum path value. This is because a path P, can be constructed from P, by
replacing all C, € S with exactly m C=. P, must also exist in Py(t,,t,), and by
Lemma 4.7, it has a greater or equal value sum. Therefore, the maximum value path
of Pu(t,, ;) for h > O(n?) is always a member of subset P2(¢,,¢,).

In addition, notice that subset P, (t,,t,) can be constructed by having every path
in the subsets P2(t,,t,) and PP(t,,t,) iterate through C* one more time. However,
as was shown, the maximum value path can always be found in subset P2({,,t,).
Consequently,

antk(tinty) = az+k(tnt1)
= aj(t,¢,) + Q(C7)
= aj(t,t,)+p
= an(t,t;))+p

O
As can be seen, to meet the initial token-distribution constraint, the search for

a transition on the critical cycle is significant. One possible approach to find such a

42

gy

transition is to first determine the computation rate restricted by the critical cycle
using Magott’s linear programming formulation [Mag84] and then apply the shortest
path algorithm with the distance formulation defined by Ramamoorthy and Ho to
obtain a critical cycle [RH80]. Using the critical cycle, the required transition can be
selected arbitrary. Since Magott’s formulation can be solved by linear programming
within a theoretical polynomial bound and the shortest path probleni can be solved in
O(n®) steps, the final problem of determining repetitive pattern is polynomial bound
also.

An alternative approach to the problem is to appoint a transition the initial enable
condition and then construct the behavior graph from then on for n+4n iterations. If
the repetitive execution pattern cannot be found, an untouched transition is selected
and the procedure is repeated. In the process a maximum of n transitions will be
checked, and at most n iterations are required to satisfy the initial token-distnibution
constraint for a selected transition. The time complexity of the approach is bounded
by the time required to schedule n(n+n®+n) iterations, i.c., O(n?}) iterations. Note
that this algorithm suggests a totally different way of approaching the problem of
determining the computation rate for G.

Though we have established a theoretical solution to the steady-state problem
with respect to the earliest firing rule, the platform upon which all the proofs are
based (Lemma 4.5), however, seems too general and fails to utilize the safeness prop-
erties of the SDSP-PN. Hence, the theoretical bound s loose compared with om
simulation results. In the next section we report a significantly improved bound on
the length of the initial period for the same token-distribution constramnt, using a

different approach.

4.5.2 A Second Approach for a Tighter Initial Period

The results described in this section show that the steady state 1s reachable after
k iteration of G, where k is the number of tokens of the entical cyde which holds
the initial enabled transition ¢,. Rather than relying on the previously introduced
maximum-value-path framework, the following proof makes use of theory developed
for valid-schedule-computation scheme (see Lemma 3.1) [RH80, Re163] Precisely, we
make use of the relation between the earliest firing schedule X and the vahid sehedule
Sh:
Xt<Sh vheG

Our proof consists of two parts: The first part shows that the | firing, & +1 fining, 2441
firing, ..., mk+1 firing of a transition are p-period apart using the valid-schedule-

computation framework. The second part of the proof generalizes the resuly in part

43

prosey

F a.s‘

one to h firing and h+k firing are p-period apart using the safeness property of the

model.

Theorem 4.7 Under the earliest firing rule, if the only enabled transition at time
zero belongs to C*, a cnitical cycle in G, Vi, € G the time constraint XJ"'Hc - XJ" =p
is obeyed for h > 0, where k = M(C*) and p = Q(C*).

Proof of Theorem 4.7

Let k = M(C*), p = Q(C"), and t, be the enabled transition at time zero residing
on C*. First we show that for m > 0 the mk+1+k firing and the mk+1 firing of ¢,
are p-period apart, i.e.,

Xmkth _ xXmk =5 m >0. (4.7)

Observe that with ¢, being the only enabled transition in G at time zero, the valid
firing time S? for transition ¢, to commence the first firing also equals the earliest

firing time X?, according to Lemma 3.1, i.e.,
X0 =80 Vi, edG. (4.8)
Since t, resides on C*, every k-th firing of ¢, cannot be shorter than p, i.e.,
Xmktk _ xmk > pom > 0. (4.9)
By Lemma 3.1, the valid firing time for the mk+1 firing of {, is computed by:

mk
S,

il

a, +mp

= mp.

That is, the corresponding valid firing time for ¢, to commence the 1 firing, k+1 firing,
2k+1 firing, ..., mk+1 firing are 0, p, 2p, ..., mp, according to Lemma 3.1. According
to Equations 4.8 and 4.9 it is the earliest firing schedule. Thereby, X™* = S™ for
m > 0. Hence, Equation 4.7 is proven.

Next we show that for m > 0 and Vi, € G the mk+1+k firing and the mk+1
firing of ¢, is p-period apart, i.e.,

Xmktk _ xmk = (C"), m > 0 and Vi, € G. (4.10)

After constraint satisfaction, for each {, € G # {, there exists a place p € -t, with
no tokens on it; otherwise, ¢, is an enabled transition eligible for firing. Accordingly,

there always exists at least one token-free path from i, to ,. Let P, denote the one

44

-

which gives X? (= S?) the longest token-free path from ¢, to ¢, (Lemma 3.1). Note
that the amount of time ¢, takes to generate and deliver the m&+1 token to ¢, along
P, cannot be shorter than a period of X2+mp, i.e.,

X™ — X® > mp, m > 0and Vi, € G. (4.11)
By Lemma 3.1, the valid firing time for the mk+1 firing of ¢, is computed by:

S™ = a,4+mp
= S +mp
= X2+ mp.

According to Lemma 3.1, the corresponding valid firing time for ¢, to commence the 1
firing, k+1 firing, 2k+1 firing, ..., mk+1 firing are X2, X°4p, X°+2p, ..., X"+ mp.
Equation 4.11 confirms that it is the carliest firing schedule. Thereby, XMk = qmk
for m > 0 and Vt, € G. Equation 4.10 1s validated. Note that when k = M((™*) = 1,
the cyclic frustum is obviously reached after the first iteration

Finally, we are ready to show that X*** — X* = pfor h > 0 and ¥, € (i. Since
G is safe, for h > 1, X of transition ¢, equals

I { XJLI +Q(¢,), llel =1

1.12
MR XE49A), Il =0 .2)

For m > 0, the subsequent earliest firing schedule of transition {, after each mk+1 fir-
ing (i.e., the schedule staring from the mk+2 firing) merely starts on tokens produced
by the mk+1 firing or the mk+2 firing of some transitions Thus, by Equation 4.10
and 4.12, the same earliest firing schedule of ¢, repeats after the mk+1 firing fo
m > 0. Consequently, X*** — X* = pfor h > 0 and V¢, € G. This result implies that
a repeated pattern can be found after k iterations of (7. Equivalently, O(n) iterations

is required because k is bounded by n in a safe marked graph. 0

4.6 Rerarks

Note that the requirement for an acknowledgement arc for cach data arc and the
resulting safeness property are both characteristics of the static dataflow model. To
keep the concept of an ideal machine, we have assumed a unit firing time for cach
transition. In general, however, the proofs presented in Sections 4.4 and 4.5.1 can be
extended to cover a more general class of strongly-connected marked graphs where the
one-acknowledgement-arc-per-data-arc restriction is eliminated, the individual tran-

sition is assigned a different firing time, and the number of tokens residing at a place

45

Pl

LS,

sy

are more than one (but bounded). Accordingly, a larger polynomial may be obtained.

The proofs presented in Section 4.5.2 can also be extended to a more general class of
strongly-connected safe marked graphs v here the one-acknowledgement-arc-per-data-
arc restriction is eliminated, and an individual transition is assigned a different firing
time. However, the assumption of having a self-loop on each transition (Assump-
tion 3.1) is required in all cases. Without the self-loop control, the relation between
the earliest firing schedule and the maximum path value (Lemma 4.3) cannot be
established.

46

R

Chapter 5

Software Pipeline Scheduling with
Pipeline Constraint

In this section we study the application of SPS for loop scheduling on processor ar-
chitectures having a number of clean execution pipelines. The current architecture
under consideration assumes the existence of multiple clean pipelines that are iden-
tical. It serves to represent a series of high-performance computer architectures such
as pipelined machines and very long instruction word (VLIW) architectures

In Section 5.1 we introduce a single clean pipeline (SCP) model SDSP-SCP-PN.
We then incorporate the ideas of multiple clean pipelines and produce SDSP-MCP-
PN in Sectiown 5.2. Based upon the two models, we explore the concept of the behavion
graph and the existence of steady state to ensure the feasibility of deriving a static
schedule for a machine with multiple clean pipelines. In Section 53 we examine the
amount of time required to find the steady state on a set of Livermore loops. The
fast detection of steady state shown in the results indicates the feasibility of practical
compilers using a behavior graph to generate a static schedule Finally, in Section 5.4

we discuss a related work.

5.1 Model with a Single Clean Pipeline—SDSP-
SCP-PN

In this section we describe a unified timed Petri-net model SDSP-SCP-PN for fine-
grain loop scheduling having resource coustraints. The unified model is constructed
by incorporating a clean hardware pipeline of [stages into the SDSP-PN model. The
main property of a clean pipeline is that an instruction moves through the pipeline in

I cycles once it enters, without interference from other instructions. This implies that

47

gt

FEX

T!
“: Pr P2 13 Pe PsOPio

Py Py

v/_ S0SP transition \Q

A ! 1Py

4 Py P2 Ps
347

A
[Pe
=3 D
7 Pr P P3
PetP Pg
[]
B
9 Pe
(o}
10 P Py Ps
E
‘l LS 7
tnitial i Pr S P4
adjacency instantaneous \
1ist state marking TN
N
12 Py N Pio
terminal .- — \
° instantanecus ' WD
state marking ¢ - [D \)
3P O PN Opa 07
(a) SDSP-PN of L1 {b) SDSP-SCP-PN of L1 (c) Behavior Graph

after Series Expansion after run place (p,)
introduction

Figure 5.1: SDSP-SCP-PN and the Behavior Graph

the detailed structure of an SCP need not be explicit. The construction of the single

pipeline model consists of two steps: series expansion and run-place introduction.

Run-place introduction: We introduce a place p,, known as the run place, to
denote the SCP and modify all transitions ¢, in the SDSP-PN to include p, as
both the input and ocutput places. Place p, is initially marked with a token
representing the existence of one SCP. When a transition becomes enabled, it
competes for p, to get fired.

Series expansion: To denote the fact that one traversal through SCP takes { time
units, a series expansion is performed which introduces a new transition for
each place in the SDSP-PN; this accounts for the time delay. We call the
transitions originally appearing in the SDSP-PN the SDSP transitions and the
ones newly introduced in series expansion the dummy transitions. Every SDSP
transition is assigned an execution time of 1 while every dummy transition is
assigned an execution time of {—1, where [denotes the length of the execution

pipeline. When I=1 there are no dummy transitions remaiaing. In Figure 5.1

438

b

we distinguish dummy transitions by bars of a different length.

Figure 5.1(a) illustrates the outcome of L1 after series expansion. Figure 5.1(b)

shows the result of introducing a run place.

Theorem 5.1 An SDSP-SCP-PN with an wnitial marking M}, is hwe, safe, and per-
sistent if the SDSP-PN with an initial marking My is live, safe, and persistent.

Proof of Theorem 5.1

The application of series expansion on a marked graph preserves the liveness and
safeness properties in the resulting marked graph [Mur80, MK80]. In addition, the
introduction of the run place initially containing a token still preserves persistency
since the firing of an enabled transition does not disable other enabled transitions.
Although we have introduced a structural conflict, which leads to the possibility of
choices, the resulting Petri net still preserves the liveness, safeness and persistency
properties of the original marked graph. 0

Using Theorem 5.1 we construct the behavior graph for the combined model in
a manner similar to the one constructing for an SDSP-PN With the existence of
the run place as a structural conflict, choices appear whenever more than one SDSP

transition is enabled. To resolve the choices, we make the following assumption:

Assumption 5.1 The firing mechanism i the SCP machine always chooses one
enabled node to fire—it never idles as long as there s at least one enabled node. The
machine can break ties by gqiving priority to the nodes that sunultancously become
enabled. The priority does not matter. We assume only thal the machine erhibits
repeatable behavior, i.e., it always makes the same choiwce gwen s prioriy rule and
machine condition (instantancous state).

This assumption provides a mmeans for making the transition process of the instan-
taneous state unique, and the behavior graph will be unique as long as a particular
choice scheme is enforced. We can achieve uniqueness by resolving conflicts in two

ways:

e One way is to use a mathematical function to compute the next SDSP tiansition

to fire at every time steps based upon the current set of enabled transitions.

o Another way is to employ an internal decision mechansim as a finite state ma-
chine. Newly enabled SDSP transitions are then fed into the mechamsm se-

quentially as input.

49

)

[

The major difference in the two approaches regards the involvement of the internal

state in the latter case. As for the former approach, the instantaneous state defined
by the marking and residual firing time vector is sufficient and precise. However,
with the introduction of a decision mechanism as a part in the SDSP-SCP-PN model,
the content of the instantaneous state is required to also incorporate the state of
the decision mechanism. For the function approach to conflict resolution, all SDSP
transitions can be initially assigned a unique priority value, so a function which always
picks the one with the highest priority can be used. Note that it will not cause starving
because transitions cannot continue firing infinitely without firing others (in a live-safe
Petri net).

Figure 5.1(c) illustrates a possible behavior graph derived from the example in Fig-
ure 5.1(b). In this particular case choice resolution is done by a decision mechanism
which employs a FIFO queue and an adjacency hist representation of the static data-
flow graph.! Notice that there can only be one instruction coming out of the execution
pipe at every pipe beat under the single pipeline architecture. Upon completion of
executing a node (i.e., a SDSP transition and its associated dummy transitions), all
adjacent nodes (SDSP transitions) will be signaled. Enabled ones are then ordered
sequentially onto a FIFO queue according to order in the adjacency list. The choice
resolution at any time step is then done by honoring the one at the head of the FIFO
queue. In this case, the instantaneous state is made up of the marking, the residual
firing time vector, and the state of the FIFO queue.

Similar to the behavior graph of an SDSP-PN, the behavior graph of an SDSP-
SCP-PN also exhibits a repetitive behavior. This behavior is described by Lemma 5.1
in conjunction with Assumption 5.1.

Lemma 5.1 There exists an wnstantaneous state in the behavior graph of an SDSP-
SCP-PN which appears repeatedly.

Proof of Lemima 5.1

The total number of distinct M, must be finite because SDSP-SCP-PN has a safe
marking. Similarly, the total number of distinct R, is also finite because each tran-
sition in SDSP-SCP-PN has a known firing time. If the behavior graph is infinitely
extended, some instantaneous state must be repeatud. a

Once the machine returns to a previous instantaneous state the same firing se-

quence is repeated. As an example, the two sets of highlighted markings shown in

'Adjacency hsts are a common representation for directed graphs Node j 1s said to be adjacent
to node ¢ in a directed graph G f the directed arc (1,) exists in G The adjacency hst for node i1s
a list, in some order, of all nodes adjacent to 1

50

Figure 5.1(c) illustrate the marking portion of the initial and terminal instantancous

states. Their associated residual firing time vectors are zero vectors. The firing se-
quence in the steady state is ADBCE. As illustrated, the notion of steady state
can be defined by enforcing Assumption 5.1. Similarly, we can define the concept of
steady-state equivalent net as the SDSP-PN counterpart. Thus, SPS can be applied
equally well on a machine with pipelined constraints by adhering to this assumption.
Note also the* the assumption degenerates to the earliest firirg rule (used m the ideal
case) as enough pipelines are available.

With the existence of a resource constraint, imposed by the single pipeline, the
computation rate of an SDSP-SCP-PN is no longer reflected directly in the aritical cy-
cle. The impact of resource constraints is illustrated with Theorem 5.2, 1t ultimat dy
imposes an upper bound on the execution rate of each node in the SDSP-SCP-PN.
Intuitively, there can be at most one enabled transition for execution during cach time
step. Thus, it takes at least n cycles to complete one iteration of the loop body even
though the cycle time of the critical cycles is far less. Note also that this bound is the
result of the constraint imposed by the pipeline and 1s independent of the approach
used for conflict resolution. When such a bound is reached, all pipelines aie 100%

utilized.

Theorem 5.2 Let G be an SDSP-SCP-PN with n SDSP transitions. The computa-
tion rate of any SDSP transition in G can never be greater than 1/n, 1e., y < 1/n.

Proof of Theorer 5.2

To prove this theorem, it is sufficient to show that there exists a simple cycle in the
resulting steady-state equivalent net such that the computation rate for any SDSP
transition is 1/n.

o Let M be the first repeated instantaneous state marking used to form the steady-
state equivalent net. Let o be the cyclic firing sequence such that M %5 M. By

Lemma 3.5, each SDSP transition of GG in o occurs an equal number of times.

¢ Note that none of the SDSP transitions can be fired in parallel because there
is only one token in the run place. In addition, any appearance of the SDSP
transition in the steady state must be chained together by different mstances of
the run place since the run place forms a self-loop with each one of the SDSP
transitions. Consequently, there exists a simple cycle (' in the resulting steady-

state equivalent net containing all of the occurrences of the SDSP transitions.

51

i o

o Note also that each of the n SDSP transitions is assigned a timing of one time

cycle. As a result, Q(C) = a x n, where a is the number of times that each
SDSP transition occurs in C. The computation rate of any SDSP transition is
1

a
thus 2, or .

5.2 Multiple Clean Pipelines—SDSP-MCP-PN

In this section we extend the single clean pipeline model to the case of multiple
clean pip-lines (MCP), producing a unified Petri-net model SDSP-MCP-PN. The
SDSP-MCP-PN models the execution of the SDSP on machine with multiple clean
execution pipelines each of | stages. The previous development of the single pipeline
model provides an extensible platform upon which the multiple clean pivelines model
can be established. Instead of assigning only one token at the step of run place
introduction, as many tokens as the number of pipelines are modeled are assigned so
that each token denotes a distinct execution pipeline. Figure 5.2(a) shows a model of
two pipelines.

The behavior graph for the combined model can be constructed in a way similar
to that of the SDSP-SCP-PN described previously. To deal with the problem of
choices resulting from structural conflicts, we again assume a firing mechanism which
always chooses the particular enabled nodes to fire—it never idles as long as there is
at least one enabled node. The machine breaks ties by giving priority to nodes that
simultaneously become enabled. The priority does not matter; we assume only that
the machine exhibits repeatable behavior, i.e., it always makes the same choice given
its priority rule and machine condition (the instantaneous state).

Multiple tokens in a run place can be represented in the behavior graph as multiple
instance of the run places, as shown in Figure 5.2(b). In addition, the assumption
above implies that a repeatable instantaneous state is encountered if the behavior
graph is extended for a sufficient period of time. The notion of cyclic frustum is
again used to derive a repetitive schedule for a multiple clean pipeline machine.

Similar to the single pipeline case, the constraint of multiple pipelines imposes an
upper bound on the computation rate of each transition in the SDSP-MCP-PN. For
a model of R pipelines, there can be at most R enabled transitions sent for execution
at each time step. Thus, it takes at least n/R cycles to compute one iteration of the

loop body even though the cycle time of the critical cycles is far less.

Theorem 5.3 Given an SDSP-MCP-PN G which models R clean pipelines and con-
tains n SDSP transitions, the computation rate of any SDSP transition in G can

52

Time O
Step Pr P2

3 Pr

CR

7 Pr

10

11

initial
instantaneous
state marking

terminal

(b) SDSP-MCP-PN of L1 instantaneous {by Behavior Graph
state marking

Figure 5.2: SDSP-MCP-PN and the Behavior Graph

never be greater than R/n, i.e., v < R/n.

5.3 Simulation Results

A set of Livermore Loops was chosen for the study; all were written in SISAL [Feo8S,
Mea85], and simulations performed on these loops using a compiler/simulator testhed
developed at McGill University [GP90]. The testbed consists of a prototype SISAL
compiler capable of producing dataflow code, known as A-Code [Ti088a, Ti088b}. For
this study, we modified the simulator to permit analysis of cyclic frustums generated
for both SDSP-PN and SDSP-MCP-PN models. The sunulator takes A-code as input
and simulates the corresponding firing sequence.

Table 5.1 shows the results of executing an SDSP on an ideal machine with -
finitely many single-stage pipelines. Equivalently, the SDSP-PN was executed under

the earliest firing rule with the firing time of each transition equal to one. In the table,

¢4

the size reflects the number of nodes in a loop body that were repeatedly executed

53

Table 5.1: Results for SDSP-PN Model

Loops without LCD Loops with LCD
Loopl Loop7 Loop9? Loop 12 Loop3 Loop5 Loop9 Loopll
Size 31 64 84 15 15 18 84 14
Iteration 13 7 14 8 5 6 2 7
Start'T 33 19 26 16 8 9 14 16
RepeatT 36 23 30 19 10 13 28 20
FrustumLen 3 4 4 3 2 4 14 4
TCount 1 1 1 1 1 1 1 1
CompRate 1/3 1/4 1/4 1/3 1/2 1/4 1/14 1/4

excluding the start-up initiation sequence. StartT and RepeatT (Start Time and Re-
peat Time) indicate the times when the initial and the terminal instantaneous states
are identified. Iteration indicates the number of iterations initiated up to repeat time.
FrustumLen (Frustum Length) is the difference between repeat time and start time.
TCount (Transition Count) records the number of occurrences of a transition that
appears in the cyclic frustum. Note that all transitions are fired an equal number
of times in the cyclic frustum (Theorem 3.5). CompRate (Computation Rate) is the
average firing rate of each SDSP transition in the loop body and equals

TCount
RepeatT — StartT

Note that in each example the repeated instantaneous state is found within O(n)
iterations.

Table 5.2 shows the corresponding pattern for the set of benchmarks using one,
two, four, and eight clean pipeline(s), respectively. For the case of one pipeline, we
include utilization, which gives the processor usage as a basis for discussion. The
results of this experiment demonstrate that the steady state in all instances can be

found efficiently. 1t also reveals the following facts:

e The condition raised by Theorem 5.2 is verified in the case of one clean pipeline
where some test programs keep the single pipeline fully busy. In Loop 1, Loop
7, and Loop 9, the upper bound on the computation rate, 1/n, imposed by the
single pipeline is reached. All three cases indicated that the respective pipelines
were fully utilized at all time except when they were filling and draining. The
various processor usage in the three loops also reflects the impact of the prelude
and postlude execution sequence. Though the length of the postlude sequence

*Loop 9 is a potential candidate for parallelizing as a DOALL loop; however, it requires subscript
analysis to expose its parallehsm Here we examined the loop both ways, with and without LCDs,
to increase the diversity of our testing

54

P

O, At i) R

s atiaomadetits PSR s E7 Leatne e

it LAt D et I

Table 5.2: Results for SDSP-MCP-PN Model with Eight Stages

g P’ Tt ity A0 NP AR

Loops without LCD Loops with LCD
Loopl Loop7 Loop9 Loop 12 Loop3 Loopd LoopY Loop 1l
21 x | (BD) 480 1024 1344 240 240 288 1344 224
1 Pipeline:
Iteration 13 8 14 9 5 b 2 7
StartT 341 296 749 157 86 86 132 138
RepeatT 372 360 833 184 106 121 263 172
FrustumLen 31 64 84 27 20 35 131 34
TCount 1 1 1 1 1 1 1 1
CompRate 1/31 1/64 1/84 1/27 1/20 1/36 /13 1/34
Utilization 98.9% 99.7% 98.4% 558% 729% 51 0% 641% 40 9%
2 Pipelines:
Iterations 13 8 14 9) 7 2 7
StartT 282 206 395 147 82 78 115 133
A RepeatT 308 244 438 172 100 145 230 166
] FrustumLen 26 38 43 25 18 67 115 33
TCount 1 1 1 1 1 2] 1
CompRate 1/26 1/38 1/43 1/25 1/18 2/67 /115 1/33
4 Pipelines:
Iteration 13 9 14 10 6 7 2 8
StartT 268 207 242 145 81 74 113 154
RepeatT 293 240 277 194 98 139 226 186
FrustumLen 25 33 35 49 17 65 113 32
TCount 1 1 1 2 1 2 1 1
CompRate 1/25 1733 1/35 2/49 1/17 2/65 1/113 1/32
8 Pipelines:
Iteration 15 8 16 8 5 6 2 7
StartT 265 174 223 128 64 72 112 128
RepeatT 338 206 323 152 80 104 224 160
FrustumLen 73 32 100 24 16 32 112 32
TCount 3 1 3 1 1 |] |
CompRate 3/73 1/32 3/100 1/24 1/16 1732 1/112 1/32

&

59

P

was not recorded, the shorter prelude sequence in Loop 7, indicated by start

time, was obviously a factor accounting for the higher utilization rate.

o Though each transition was fired an equal number of times in the steady state

of a marked graph, the number of firings was not necessarily one.

o In general, the amount of time required for the emergence of steady state de-
creased as the number of pipelines increased, except in a few cases where the

value of the transition count was different from the ideal model.

o As the number of pipelines exceeded the amount of parallelism in the loop, the
behavior graph obtained was exactly the same as the one obtained for the ideal
model. For instance, as Loop 12, Loop 3, Loop 5, Loop 9 with LCD, and Loop
11 were run with eight pipelines, their start time and repeat time were simply
eight times the corresponding time derived for the ideal model.

o The number of the iterations initiated to reach steady state for all cases were
still less than n, the size of the loop body. Hence, the steady state was reached
efficiently. In addition, the counted number of iterations for the ideal model
gave a close approximation of the number of iterations required by all of the

multiple-pipelines models studied.

5.4 Discussion

To construct a schedule for the multiple pipeline machines, Aiken and Nicolau sug-
gested using the same schedule obtained from the ideal case by scheduling the steady
state one row at a time [AN88]. It was also shown when such schedule is adopted for
the multiple pipelines machine, the total run time is always bounded by two times
the optimal run time obtained for the same machine [NPA8S]. Nevertheless, the re-
sulting schedule is still unsatisfactory because, after all instructions from row 1 are
scheduled for execution, a period of I-1 idle cycles (where | is the length of the pipe-
line) is always required to delay the initiation of row :+1, in order to avoid possible
data conflict between the last operation of row ¢ and the first operation of row i+1.
Consider the use of the steady state of L1, shown in Figure 4.2, as the schedule for
a machine with two clean pipelines and each one having two stages. The part of the

schedule which involves the steady state will be

processor A noop B E noop
processor2 D noop C noop noop

96

g

At each iteration, A and D cannot be sent for execution untilall /3, (", and L complete
firing, even though transition A is free for execution right after B and ' complete
their firing. Similarly, since Ramamoorthy and Ho’s schedule is derived on a marked
graph which is equivalent to an ideal machine model, it incurs the same inefliciency
when it is applied to the multiple clean pipeline case.

In the SDSP-MCP-PN model, the problem of data conflict in a multiple pipeline
was considered in the process of constructing the behavior graph. While unposing
the earliest firing rule, the gap required in the former case is filled with enabled
instructions that are safe to be executed. The corresponding schedule which involves

the steady state, derived from the behavior graph (Figure 5.2(b)), is given below.

processorl B E A D
processor2 C noop noop noop

Thus this scheme will always render better processor usage. In addition, the assurance
of a repeatable state in the SDSP-MCP-PN, together with the simulation results
obtained so far, reveals the feasibility of employing the behavior graph to generate a
static schedule in practical compilers.

As a final remark, note that the pipelined models presented are general enough to
allow the existence of multiple function units within each individual pipeline. Note
that for each SDSP transition the regarded dummy transitions serve to account for
the time delay for a particular pipeline. Hence, the assignment of the different time
delay implies the use of a different function pipeline.

37

iy

Chapter 6

Storage Allocation

Memory requests can slow down a computation considerably. If they occur during
the steady state of a pipelined schedule the computation cannot proceed efficiently.
The use of registers as temporary storage to reduce memory accesses is important
to maintain the steady-state computation rate and processor throughput. In this
chapter we discuss the application of a program restructuring scheme known as limited
balancing to reduce the amount of storage requirement in SPS, making the use of fast
memory feasible.

The objective behind limited balancing is to expose in a software pipeline only
the amount of parallelism that is exploitable by the machine. This is accomplished
by restructuring a static dataflow graph, prior to pipeline scheduling, according to
a balancing ratio—a parameter which characterizes the achievable computation rate
of the final schedule. The utilization of execution units is not affected since only
excessive parallelism is suppressed. During restructuring, storage requirements are
systematically reduced across the loop body. The one-token-per-arc policy of the
static dataflow graph originally needs one unit of storage per data arc; limited bal-
ancing reduces the storage requirement below this level.

In Section 6.1 we introduce two memory models for a static dataflow graph due to
two different architecture designs: argument-flow and argument-fetch. The argument-
fetch model describes how conventional data fetching and storing can be implemented
using a static dataflow graph. In Section 6.2 we introduce the notion of limited bal-
ancing, using the SDSP-PN model, and we discuss its application to the two memory
models. Since the computation rate of a critical cycle in an SDSP-PN determines the
computation rate of an entire net, it naturally represents the balancing ratio of the
model. In Sections 6.3 and 6.4 we derive a guideline to estimate a balancing ratio
for a machine with a pipeline constraint. We then validate the guideline through

experimental results.

58

()
o/

Input Storage Result Storage

(a)Argument Flow (b)Argument Fetch

Figure 6.1: Storage Usage of Argument-flow Model versus Argument-Fetch Model

6.1 Memory Model

Thus far our discussion of static dataflow graphs have been based upon an abstract
notion of data flow, i.e., the notion that tokens flow from a source node to its receivers.
In this section two memory models are presented: argument-flow and arguinent-
fetch [Den84, DG88]. The argument-fetch model describes how conventional data

fetching and storing can be implemeuted using a static dataflow graph.

Since, in the original development of dataflow model, data is viewed as flowing
from a source node to destination nodes, the model 1s called argument-flow. Fig-
ure 6.1(a) presents an abstract view of storage organization for conventional static
dataflow. Storage for input data is local to cach node. Accordingly, the result is
required to be replicated and dispatched separately to each destination node. The ar-
rival of an input token serves two purposes: it signals the receiver of the availability of
data (a control role), and it transmits the data value (a data role). In catly designs of
the architecture, data packets composed of a data portion and a destination-address
portion were used [Den84]. Unfortunately, duplication of data for multiple destina-
tions causes unnecessary data traflic. Such inefliciency results from binding control

information and data information within the same packet.

The argument-fetch dataflow model overcomes the argument-flow model’s inefli-
ciency. The key difference in the two models is the separation of data and control
information. After each computation only a control packet is sent to acknowledge
the availability of data. This packet is called a signal. The result of cach compu-
tation either remains in a register or is retuined to memory close to the execution

pipeline where it can be easily fetched by successot nodes (see IMigure 6.1(b)) The

"

59

major improvement of argument-fetch is a significant reduction of data traffic; the
number of data storage is also considerably reduced. For a detail discussion of the
argument-fetch dataflow model, see [DG88J.

The abstract model of argument-fetch is depicted by a directed graph. However,
the interconnection of signal arcs in this model merely represents sequencing infor-
mation based upon data dependence. The abstract graph is called a signal graph,
and each node in the graph represents an operation, as before. Acknowledgement
arcs still serve to preserve the one-token-per-arc principle. Upon node execution,
signaling performs two functions: Signals along the signal arcs notify successors of
the availability of results, and signals along acknowledgement arcs inform predeces-
sors of the consumption of their output and are ready for new inputs. Figures 1.1(c)
and 2.5(c) could be a signal graph if all arcs were treated as signal arcs.

The development of the argument-fetch dataflow model at McGill has led to the
construction of an abstract machine code known as A-code. A-code is an example
of a signal graph. To take advantage of software pipelining, new control constructs,
such as an index generator (IGEN), are introduced in A-code. Appendix A contains
an example of the A-code for Loop 3 of the Livermore loops, and it briefly describes
the A-code structure. For a detailed discussion of A-code and design decisions related
to argument-fetch, see [GT89, GTHS8, GP90, Par88, Par90).

6.2 Limited Balancing of an SDSP-PN

We start our description of limited balancing by introducing the concept using the
SDSP-PN model. Based upon this ideal model, we will establish a connection between
balancing ratio and computation rate, and we will demonstrate a savings of data
storage and synchronization both for the argument-flow and for the argument-fetch
graph models. Our discussion begins, however, with an ideal model in which resource
savings seem unnecessary. In practical situation one often encounters the situation
in which sufficient resources (execution pipelines) are available (cf. the ideal model).
In these cases we minimize the data storage required while sustaining maximum
computation.

Limited balancing evolved from the notion that the attainable computation rate
of a static dataflow graph was constrained by critical cycles [GHW90a, GHW90b).
Recall for an SDSP-PN PN, the computation rate v is determined by the cycle time
of the critical cycle in the net:

M(C
v = min {—51(—%—,:)—) -6(1—[‘—)-} , for all simple cycles Cy in PN

60

This relationship suggests an opportunity to modify the structure of other non-critical
simple cycles without suffering ary loss of speed, provided the computation rate of

all altered cycles is larger than or equsl to the computation rate of the cnitical eyveles

Previous studies on balancing were only carried out using an ideal machine model,
where the intention was to exploit maximum fine-grain parallelism; full balancng, on
an acyclic graph was then the main focus [Gao89]. The consideration of loops with
loop-carried dependence leads to limited balancing [GHWY04). If @ enitical cydle is
composed entirely of data arcs (cither forward or backward), the computation rate
cannot be altered without modifying input prograni. In this case the computation
rate of a critical cycle forces a hard upper bound on the achievable computation rate
of the graph. One immediate problem is to determine the minimun amount of storage
necessary to maintain the computation rate imnosed by the critical cyele For loops
without loop-carried dependence, limited balancing also plays an essential 1ole 1n
some cases the parallelism of a program is higher than that the machine is able to
exploit, but maintaining excess parallelism wastes machine resources,

For our definition of the balancing ratio we adopt an 1deal model, one which
assumes that all operations require the same amount of time to execute, denoted by
1 [Gao89]. Note that this time constraint can be relaxed. To facilitate our discussion,
we define a balancing ratio based upon dataflow graph representation If (7 is the
original static dataflow software pipeline, the forinula for calculating the computation
rate of GG is:

~ = min {—%{%}i) , for all simple cydles Cy in (4,

where Ny is the number of nodes in cycle Ci, and M(C) s the number of tokens
within cycle Cy. For each Cy the ratio “—'}\gﬁ is called the balancing ratio. Accordingly,
critical cycles always have the smallest balancing ratio and slowest computation rate
We now demcnstrate the application of limited balancing using both the argument-
flow and the argument-fetch computation models.

Recall that in the argument-flow model cach forward/feedback data are corre-
sponds to one unit of storage; an associated acknowledgement ate controls its usage
A token on an acknowledgement arc denotes the vacancy of iorage, while a token
on a forward/feedback arc denotes occupancy.! For the argument-flow model, a 1e-
duction of balancing ratio on non-critical (,<ies suggests a way ol dealing with both
the storage-usage problem and the synchronization-cost problem (caused by the low
of the acknowledgement signals). In general the reassignment of acknowledgement

arcs in a graph can be a means of decreasing the balancing ratio. The insettion of

1The token and space duality in the SDSP 15 actually the same as the duality m hung’s augmented
dataflow graph [KLL86]

61

Forward data —_—
arc

Acknowledgement P
arc

Feedback data —_p»
arc

Figure 6.2: Minimum Storage Allocation

dummy nodes as buffers will increase the balancing ratio [Gao89]. For instance, L2
consists of a critical cycle (" (CDEC) consisting entirely of data arcs, a situation
which imposes a hard upper bound on the computation rate of the graph, 1/3! (see
Figure 2.5). On the other hand, simple cycles C, (ABA) and C'; (BDB) possess a
larger balancing ratio, 1/2, and allow the opportunity to alter the balancing ratio by
reassigning acknowledgement arcs. Figure 6.2 illustrates the consequences of limited
balancing by acknowledgement-arc rearrangement. Now the new cycle ("3 (ABDA)
has a balancing ratio of 1/3. The immediate saving in signal trafhic is obvious. Note
also that acknowledgement arc (D, A) controls the usage of the input storage for
nodes B and D, creating an opportunity for nodes B and D to reuse the same space
as their input storage. More importantly, all of these treatments can be carried out

without sacrificing execution speed.

For the argument-fetch model, the signal graph is the target of limited balancing.
Similar methods such as acknowledgement-arc rearrangement and buffer insertion
can be employed, and similar savings on signal traffic achieved. To illustrate how
storage is reduced in this case, we present a simple example in which a set of nodes
safely reuses output space. Figure 6.3 shows the A-code for Loop 9 of the Livermore
Loops. The loop body of Loop 9 consists of one critical cycle (ncde72, node73, node77
node74, node72). The maximum computation rate is 1/4l, and hence the suggested
balancing ratio is 1/4. Figure 6.4 shows a possible limited-balancing of Loop 9 (with
a balancing ratio of 1/4). As can be seen, plenty of simple cycles are found after arc
rearrangement. The unique serial formation of nodes in a cycle not only assures the
order of activation of each node but, also provides a safe situation for the nodes to
reuse the same output space. For instance, nodes 30, 31, and 32 in the simple cycle

located at the left edge of the graph can reuse the same output storage.

62

L

- A

gor- st
nodedd nodesd
LT] S8
T s
Lo noded § nodeSt todedt nodeh) nods9 node10) noseltl nocet2t node 13§
sue sue wWs sun 508 U SuB LY] - 1) sue
l 4 7& / £ { 7 j K] [{ T4 ¥ e
L] zt node’2 nodeé2 nodes2 node node 102 rode 12 node) 22 node 132
MuLTY T MAT MULT MAT MAT MULT LT -t MLt
A S A S T S S A
rhl uded) L nodedd nocwsd L] node 103 node 113 aodet D, odetld
ADD ADD ADO ADO ADD ADO ADD ADD ADC ADD
AT A A A S AR A A AR A
/
ol nadedd nodebe rodeéd nodeld nodede node 104 node 114 node ! 24 Hode 14
ADC ADD ADD ADD ADD ADD ADD ADD ADD ADD
& & & & 3] k] &
’ < N
nodeds L L] odeld nodedl nodeds node 108 nPxXd nade125) noce 136
LOAD LOAD LOAD LOAD LOAD LOAD LOAD
L A AT A
noM2 M3 nDMD nOMS nCOL oo
MATF MULTF MULTF MATF MUXTF MATF
T 3 ~F
noded? oode? node V77
ADDF ADDF ADOF
[%
node5s
ADDF
»

Figure 6.3: A-code for Loop 9

63

nadet node2 nade?0 node7t

o]
ind
L]
]
: lﬂ
e p—
noded0 radedO nackdd rusdin®0 L roded0 00 node 10 node77?
“e we W s e LY S T) ae .8 8
N P AR AR A S /*
nodie) noaded racieb! noded! neded) L e 101 nodet il rdeidt
uJ ws we sus "e e ne un e e
L anint2 el nodel2 nedet nodeie octe 102 node)12 node122 rode 132
WMAY MY MAT MY MULY MAY [V LT MY MULT
s .
’ .
VRIS VR R ar SR Y PR |
L] nodedd L L] nadesy L 00, node 113 node! 2 ode 133
ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD
~ N w = A7 % w kY
N ~ N ~ N A
e nodedd aodedd L) L L nods ! 24 node 134
ADD ADD ADD ADD ADO ADO ADD ADD
L] nodeté codell rodeet nodesd nocdets node) 28 node 138
LOAD LOAD LOAD LOAD LaAD LOAD LOAD LOAD
-
AR I IR B '} P4
a0 D3 aDMA i niN nDOE7 nCON cae
MATF MALTF MULTF MLTF MATF MATF MULTF MULTF
$ & & &
‘noded? nodeS? nodes? mode 127
ALOF ADOF ADOF ADDF

SE

Figure 6.4: Loop 9 under Partial Limited Balancing

64

6.3 Limited Balancing of an SDSP-SCP-PN

For the idcal model the balancing ratio provides a means of addressing, within a
unified framework, both the scheduling problem and the storage-allocation problem.
There are two mmportant characteristics in the previous discussion. Fust, the bal-
ancing ratio can be computed precisely by determining the critical eyele. Second,
limited balancing of a graph with the same balancing ratio as its eritical eyele does
not alter the computation rate. Unfortunately these two characteristics do not hold
for the SDSP-SCP-PN model. Though a larger balancing ratio will likely imcrease the
amount of parallelism, the computation rate of a single clean pipeline with n instiue-
tions can never exceed 1/n. Therefore, the balancing ratio of a graph alone cannot
determine the computation rate for the SDSP-SCP-PN model Rather than seeking
a definite relation between balancing 1atio and computation rate, as i the case of
the ideal model, we establish a balancing ratio and utilization rate relationship. An
approximation is derived to estimate an adequate halancing ratio for the loop body
such that a certain utilization rate of the clean pipeline 1s mamtamed under the SPS
apptoach. Once the balancing ratio 1s deternuned, innted balancing can be apphed
throughout the graph to reduce storage.

To estimate a correct and appropriate balancing ratio under SPS, we compute
a balancing ratio based upon a more conservative «cheduling scheme B where Bos
inferior to SPS 1n terms of longer running time. Accordingly, the computed halanc-
ing ratio for scheme B always provides a conservative medasute of the target ratio
required for SPS and can be safely used. The chosen scheme 13 1s called o naiee
scheduling scheme (see Chapter 5.4) [AN88]. Based upon the steady state obtained
from the ideal case, scheme B schedules one row at a time the tepetitive pattern on
a machine with one execution pipeline. This scheme has an important characteristic,
it has predictable scheduling behavior so that the total execution time can be easily
computed. To estimate the required balancing ratio for scheme I3, the relationship
between balancing ratio and utilization rate is established using the fundamiental

pipeline utilization-rate formula shown helow:

Idle time

Utilization rate /' = | — — - -
Total execution time

(6.1)

where the idle time and the total execution time are the corresponding time expected

for scheme B. In addition, we will use the following notations in our analysis:

e (G, n, and [will denote respectively an SDSP, the total number of instructions
in G, and the length of the execution pipeline

65

o F will denote the steady state for the associated SDSP-PN of G, i.e., the cyclic
frustum obtained from the ideal case. I will denote the number of times F is
iterated at execution, and Jy, J,,...,J, will denote respectively the p rows in

F; N(.J,) will denote the nuniber of transitions fired at row 2 of F'.

e k will denote the total number of occurrences of a transition in F. Recall that
all transitions appear the same number of times in F' (by Theorem 3.5). For the
ideal case, :‘-; is then the computation rate as well as B((), the current balancing
ratio of G.

Listed below are two terms used to compute an upper bound for the idle time
expected on scheme B. Equation 6.2 shows the total execution time required to
execute F, I times on a single pipeline machine using scheme B, while Equation 6.3
shows the minimal execution time required. The idle time can thus be obtained by
subtracting Equation 6.3 from Equation 6.2.

e Total execution time:

Ix (N(W)+1-1+ Ny +l=14---+N(Jp) +1-1)

: = [x(kn+pl-p) (6.2)
e Minimal execution time:
Tkn+1-1 (6.3)
We are now ready to establish the relationship between balancing ratio and uti-
lization rate for scheme B, using the pipeline utilization-rate formula. By substitution
of Equations 6.2 and 6.3 into Equation 6.1, we have
LU = Eqn. 6.2 — Eqn. 6.3
B Eqn. 6.2
U = 1 Fan63
Eqn. 6.2
U = Eqn. 6.3
Eqn. 6.2
Tkn+1-1
U = .
I x (kn + pl - p) (6.4)
The resulting Equation 6.4 can be evaluated in various ways:
r ¢ By approximating Equation 6.4 for U one can determine the guaranteed utiliza-

tion rate U/ of the execution pipeline for a given loop body G of n instructions

66

E ¥

having a balancing ratio B(G).

Tkn
v 2 I x (kn+pl - p)’ 21
kn
px (& 4i-1)
nB(CY)
nB(G)+1-1

16.5)

e By solving Equation 6.5 for B(G) one can determine for a given loop body ¢ of
n instruction a sufficient balancing ratio B(G') such that a pipeline utilization

rate U is maintained.

B(G) <

For loops with no loop-carried dependence, if the balancing ratio cannot be
improved due to restricted parallelism in a loop body, one might be able to
unroll the loop body to increase parallelism of a software pipeline as described
by the following guideline.

e Finally, by approximating Equation 6.4 for n, one can determine for a given
balancing ratio B(G) the required number of instructions n in a loop body 7
such that U utilization of the execution pipeline is maintained.

(Ulp-1)x (I -1)

" A=) x Ik
Ulpl
(1 =U)x Ik
_ Upl
T (1=-U)xk

For loops with no loop-carried dependence, if the loop body does not match
the size n, a new loop body can be obtained by unrolling until the number of

instructions matches the requirement.

The establishment of the guidelines based upon naive scheduling provides the
conservative estimations for the corresponding parameters in SPS. For example, the
estimation of B(() can be safely used as a conservative estimate for the balancing
ratio used in limited balancing for SPS. Note that these guidelines can only be applied

in cases where the execution time of all nodes is the same.

67

1 6.4 Limited Balancing of an SDSP-MCP-PN

For multiple-clean pipelines we explore a similar set of relational guidelines. As in the
previous section, naive scheduling is assumed as the basis for deriving an upper bound
on the execution time of multiple pipelines. Naive scheduling schedules one row at
a time from the repetitive schedule under the ideal case, while each row is divided
equally among all available execution pipelines. With the aid of the utilization-rate
formula, relation between balancing ratio and utilization rate is again established. We
use R to denote the number of execution pipelines available. Equation 6.6 shows an
upper bound on the execution time required by naive scheduling, and Equation 6.7
shows the expression for the best achievable time when a hundred percent utilization
of all pipelines is achieved.

e Total Execution Time

A Y U £ UG 1) PO

R R R
N(Jy) N(J;) N(Jp)
M) g 2W2) YY)y
q < Ix(f it = At =)
Ikn
= !+ — .
Ipl + R (6.6)
o Lower bound on Execution Time
Ikn
R +1-1 (6.7)

Equation 6.8 shows the result of substituting the minimal execution time and the
required execution time expressions (Equations 6.6 and 6.7) into the utilization rate
formula (Equation 6.1).

Eqn. 6.6 — Eqn. 6.7
Eqn. 6.6
Eqn. 6.7

"~ Eqn. 6.6
oqn. 6.7
Eqn. 6.6
{ b+
T Ipl+ kn

(6.8)

68

<

e Equation 6.9 shows the result of reducing Equation 6.8 further. For the given
program factors, B((G) and n, and the hardware factors, | and R, Equation 6.9
imposes a lower bound of the utilization rate of all B execution pipelines.

U s eyl
Ip1+-—]R;E"

1kn
— R

Ipl+ 527 fz1
lkn
pRI(I + &)
B(G)n

e R AN '
BRIt B(Chn (6.9)

v

e By solving Equation 6.9 for B((7), Equation 6.10 imposes an upper bound on

the balancing ratio to keep a utilization rate of I/ on all R execution pipelines
for the loop G consisting of n instructions.

, URI .
B(G) < m (6.10)

Finally, by solving Equation 6.8 for n, one can determine for a given balancing
ratio B(() the required number of instructions n in a loop body such that
a utilization rate of U for all R execution pipelines 1s mamntained. For loops
without loop-carried dependence, if the loop body does not match the size n,
a new loop body can be obtained by unrolling until the number of instructions

matches the requirement.

Ulkn lkn

Ulpl —_— =]
pl+ R > 7 +
: - {/
Ulpl —=1+1 > I_A_'_‘%i_(_.)
n < RUIpl -1+ 1)
TR(1 =)
< RU Ipl >
- k(1 -U)y T
_ RU B(G)H i
= - (6.11)

6.5 Experimental Results

To substantiate the correctness of our guideline, we provide simnlation results of

pipeline utilization conducted on Loop 9 of the Livermore Loops. Figure 6.3 shows the

69

F

B,

ey

signal graph of Loop 9. The loop body of Loop 9 consists of 81 nodes and one critical
cycle (nodeT2, node?3, node?7 node?d, node72). The maximum computation 1te is
1/41. In the experiment we balanced Loop 9 using 1/4 and compared the observed
utilization rate against the estimated lower bound. Table 6.1 provides estimations
and results under various machine configurations. PL and Number of Stages indicate
the number of pipelines and their associated length used at the simulation. Under
cach configuration the estimated utilization rate is computed using Equations 6.5
and 6.9, and is listed under the row Estimate. To appreciate the impact of limited
balancing, we examine Loop 9 under three levels of limited balancing, indicated in
the table as Before, Phasel, and Phase2.

Before: Original Loop 9 contains one critical cycle, i.e., no limited balancing.
Phasel: Limited balancing is partially applied across Loop 9, as shown in Figure 6.4.

Phase2: Limited balancing is applied more aggressively across Loop 9, as shown in

Figure 6.5.

For each of the three cases, recorded results includes computation rate for steady
state execution (on the right) and pipeline utilization (on the left). The following

summarizes our observations:

o All of the estimated pipeline utilization rates are a correct lower bound for

observed processor usage, confirming our guideline.

o The accuracy of the approximation increases under two extremes; the first ex-
treme is the result of two behavioral factors: The first factor is the increase in
the number of execution pipelines. In this case the behavior graphs of the pro-
gram respectively under SPS and under naive scheduling both converge towards
the behavior graph under ideal model. As the number of execution pipelines
exceeds the amount of exploited parallelism, the schedules of SPS and naive
scheduhing are the same as the one produced for the ideal case. The second
factor 1s the increase in the number of stages in the execution pipeline. The
amount of parallelism tends to decrease as pipeline length increases. Thus, a
longer pipeline decreases the utilization rate over the same program. As both
factors are influencing the result, the utilization rate decreases rapidly towards
the estimated bound. The other extreme is a decrease in the number of pipelines
and pipeline length. As both the number of pipelines and the number of stages

drop to a small value, the calculated lower bound approaches 100% utilization.

70

o

-

PL

1 Estimate
Before
Phasel
Phase2

2 Estimate
Before
Phasel
Phase?2

4 Estimate
Before
Phasel
Phase2

8 Estimate
Before
Phasel
Phase2

16 Estimate
Before
Phasel
Phase2

e For each machine configuration, the three versions of Loop 4 all reflect similar

processor usage. From this observation we can conclude that the computation

Table 6.1: Results for Utilization Rate Estimation

Number of Stages

4 8 e 32
Rate Util Rate Util Rate Util. Rate Util
87.5% 75% 56 8% 40 4%
1/84 99.4% 1/84 98.4% /86 93.8% 1/141 58 0%
1/84 99.8% 1/84 99.3% 1/85 969% 1/131 62 3%
1/84 99.8% 1/84 99.3% /8T 947% 1142 5T T%
72.4% 56.8% 39 6% 24 7%
1/42 98.4% 1/43 93.9% /70 584% 17134 30 2%
1/42 99 3% 1742 98.0% 1/65 62.8% 17129 316%
1/42 99 3% /43 95.7% 171 57T7% 17135 30 3%
56 8% 39 6% 24 7% 14 1%
2/43 93 9% 1/35 58.4% 1/67 306% 1/131 156%
1/21 98.0% 1/32 63 7% /64 319% 1/128 159%
2/43 95 7% 1/35 58 4% 1/67 305% /131 15 6%
39.6% 24 1% 14 1% 7 6%
3/52 589% 3/100 30.7% 3/196 156% 3/388 T 9%
1/16 63.6% 1/32 319% 1/64 159% 17128 80%
1/17 60 0% 1/33 30 9% 1/65 15.7% 17129 T 9%
24 7% 14 1% 7 6% 3 9%
3/50 307% 3/9% 15.0% 3/194 7 9% 3/386 4 0%
1/16 31 8% 1/32 159% 1/64 80% /128 40%
2/33 309% 2/65 15.1% 2/129 7Y% 2/957 40%

rate of a loop is insensitive to the number of critical cycles in its body.

71

Figure 6.5: Loop 9 under Aggressive Limited Balancing

72

node) nodeX node?0 node?7t
] L] [+ [
noded node??
L 10EN
node?d (2114
ADD NOOP
&
p = >, r————
L nodedl L nodedd noxedd noded0 nocle 100 node 110 node 130 noudeT?
“s «we «we “we L] we “ws (V] e ! aus
AN AR A AR AN AR A A A /*
N N .
naiad| noded | nodeb nodeh ! noded | noced! {node 101 nadet!l {nodet2) node 13t
“e ’|e we e L L4 s us s we
nodeX? naded? nodeb2 nodef2 noded2 node e nodk 102 node 112, 1 node 132
My ey WY MULY AT MAAT MY MY MLT MAT
R R PR AL E AR S Y Y
L] nodwld nodesd nodedd nogedd node it node 103 node 113 nadel2)) node {33
ADD ADD ADD ADOD ADO ADD ADO ADD ADD ADD
1 e j K7 j A / X [W lw 3 k3 / o [3
~
N ~
odedd nodeld nodebs nodebé nodeld node(d node 114 ncxie | {modu 134
ADD ADD ADO ADD ADD ADOD
nodedg noded§ Mj oociebl nodesS fodest
LOAD LOAD LOAD LoD LOAD LOAD
AN AT Y
nOMZ oMY nOMS nOMGS aDMS
MULTF MALTF MUTF MATF MATF
g § —<g
noded? nodes?
ADOF ADDF

Chapter 7

Related Work

7.1 Software Pipelining

Software pipelining is a well known technique for exploiting fine-grain parallelism in
loops, by reorganizing statements in successive iterations of a loop body 50 as to exe-
cute in a pipelined fashion. The idea originally emerged from the microprogranuming
community as a means for a pipelined processor to execute vector operations [KogT7)].
Since then there have been variations of the technique proposed for loop schedul-
ing [Aik88, Ebc87, EN90, Gao90, Lam39, RG81, SDX86, Tousd]. In this section we
survey several typical methods and compare their fundamental ideas. For this dis-
cussion, we closely follow the terminology used in [JA90]. We refer to each operation
in the original L.op body as a micre-operation (MQ) and the compacted operations
as a micro-instruction (MI). Accordingly, each MI can contain several MQOs after
compaction. Imitiation wnterval is equivalent to the cycle time concept we defined
earlier.

The software pipelining schemes to be discussed include perfect pipelining [Aik88],
enhanced pipelining [EN90], URPR algorithm [SDX86], and software pipelining for
the Warp [Lam89]. All of these schemes handle loops having loop-carried dependence
and conditional constructs. Their major differences lie in their hardware assumptions
and their approaches to construct the steady state. They can be divided roughly into
two categories: compact unrolling and trial-and-crror.

Compact unrolling unrolls the loop body a number of times and then compacts
the unrolled sequence subject to a given compaction algonithm. The repeated pattern
spotted in the compacted sequence forms the steady state; its length 1s the initiation
interval. The number of unrollings and the aggressiveness of the compaction algorithm
correspond to variations of the carliest firing rule, and hence, affect the optin ality of

the schedule. Perfect pipelining and enchanced pipelining are examples of compact

73

b

unrolling. The trial-and-error methods construct the steady state based upon a series

of trials on a range of initiation intervals. The smallest achievable one is taken as the
initiation interval. URPR algorithm and Lam’s software pipelining scheme are good

examples.

7.1.1 Perfect Pipelining

Aiken and Nicolau's work on perfect pipelining [Aik88, AN88] consists of two steps:
infinite unrolling and code compaction. A data dependence graph \DDG) expressing
the partial order among the MOs presents the ultimate dependence constraint to be
followed. Assumne that the loop body G is initially expressed in a sequence of MOs,
obtained by sorting the DDG topologically and temporarily ignoring loop-carried

dependence edges.

Perfect pipelining unrolls (7 infinitely, i.e., the sequence of MOs is replicated in-
finitely. Then each MO in the unrolled loop body G’ is moved upwards as much as
possible with respect to the compaction algorithm, subject to all data dependences
and resource constraints. Throughout the process, the sequence of Mls is searched
for a repeated pattern. Once a pattern is detected, the prelude sequence is formed
directly from the sequence of Mls before the steady state and the postlude sequence

is attached accordingly.

As perfect pipelining is applied to a condition-free non-nested loop body with-
out resource restrictions, a time-optimal pipelined schedule is obtained [AN88]. No
transformation of the loop based upon the given data dependence can yield a shorter
running time. Since each MO is moved to the earliest possible starting position during
compaction, the resulting schedule is an earliest firing schedule. Thus, for a machine
without resource restrictions, compact unrolling achieves sunilar results as executing
the DDG under the earliest firing rule. The results from our study regard:ng how to

reach steady state is also apphicable in this case.

When a conditional statement is considered within a loop body, perfect pipelining
finds a repeated pattern on cach path regardless of the flow of control. In this case,
several predicate MOs can be compacted into an MI. To satisfy the requirement for
evaluating multiple predicates, the underlying architecture assumes the function of
performing multi-way branching. This feature allows several predicates to be evalu-
ated together within a long instruction word in order to select the subsequent branch

point.

T4

(¥

7.1.2 Enhanced Pipelining

Assume the loop body G is expressed using a sequence of MOs obtained by topo-
logically sorting the DDG as before. MOs which are at the same depth in the DDG
are said to belong to the same level and stay consecutively in the sequence. Initially
G is unrolled infinitely to form G'. To facilitate explanation, we refer to the MO on
each row of G’ as MI. The term window w, denotes a region of consecutive Mls in the
unrolled sequence G'. Initially, window w, is set to cover the -th untolled loop body
in G'.

Ebcioglu and Nakatani’s enhanced pipelining is similar to perfect pipehining in the
sense that it also performs unrolling and compaction {lEN90]. In addition, they also
assume a similar multi-way branching capability to handle conditional constiucts
However, they speed convergence of steady state by enforcing two rules.

e MI is the basic unit of moving for compaction, e, compacted Mls cannot be
decomposed.

e Compaction is only applied to MIs within the same window F'o be more prease,
MIs to be filled at compaction time must be currently at the top level of the
window. In addition, candidates used to fill the top-level Mls must be chosen
from the same window as well. This second rule nltimately constrams the
formation of the steady state to contain ouly one copy of cach MO fiom the

original loop body.

Enhanced pipelining applies the same compaction move to cach w, Vi, subject
to data dependence constraints, resource constraints, and the compaction tules just
described. After compacting the top-level Mls, all windows are adjusted downward
by one level of Mls. This adjustment has the effect of moving the previous top level
MIs to the bottom of the window. At this point, compaction is catried out again
with the current top-level Mls. If there is no loop-carnied dependence, Mls trom the
bottom level of w,, which belong originally to the first level of the (4 I iteration, move
up to the top level of w,, which corresponds to the second level of iteration « Thus,
software pipelining occurs. Note that every window maintains an sdentical copy of
Mis.

Compaction and window adjustment are repeated until compaction has been tned
on each level. The resulting formation of Mls i window w,; contiibutes to the steady
state. The prelude sequence can be obtained directly from the sequence of MIs before
steady state (w;) and the postlude sequence is sumilarly attached Note that cach
MO from the original loop body appears only once in steady state. The advantage of

this approach lies in the acceleration of steady-state formation. Even so, prematurely

tying parallelism together reduces the flexibility of fine-grain scheduling for utilizing

available resources.

7.1.3 The URPR Algorithm

URPR (UnRolling, Pipelining, and Rerolling) originally applies only to loops which
contain a single basic block [SDX86]. More recently the technique has been extended
into what is now called GURPR (Global URPR). GURPR incorporates conditionals,
nested loops, and subroutine calls [SDWX87]. For the purpose of this survey, we
focus only on URPR, which contains the basis for software pipelining. The URPR
algorithm is simular to trial-and-error. First, the initiation interval is computed; the
loop body is unrolled and then pipelined with respect to the interval all in one trial.

Initially the loop body (' is locally compacted with respect to intra-data depen-
dence and resource constraints, into a sequence of MIs. Once this is accomplished,
MQOs become indivisible and are manipulated as a single entity. Let (' denote the
precompacted loop body and S the schedule to be built incrementally, and let MI¢
and MI/ denote the t-th Ml of § and the j-th MI of the :-th uurolled body of G’.

The algorithm consists of three stages:

I. Unrolling: G’ is unrolled & = [l/d] times, where 1 is the leugth of G’ and d
is the initiation interval computed using the maximum inter-body data depen-
dence distance that spans one iteration.! Intuitively we need only to unroll the
loop bodies k times to uncover the steady states if cach initiation is d cycles

apart.

e

Pipelining: The & loop bodies are pipelined. S is initiated with the first loop
body, a copy of (¢ with { MlIs. The remaining loop bodies are added to S one
by one, subject to initiation interval and data dependence. If a 1esource conflict
occurs between M14 and MI] while adding the :-th loop body, MU is delayed to
compact with MI*! If it fails again. a new MI, containing only MI is inserted
between MI{ and M. The reason for this insertion is to keep the distance
between MY} and MI)_, as close to d as possible so the pipelined steady state
is shorter. Compaction is continued with MI/*' until all MIs from the k loop
bodies are added to S.

3. Rerolling: Steady state is formed from a sequence of adjacent MI in S with
shortest cycle time. To ensure the steady state consists of an equal number
of MOs, redundant MOs are removed from S. URPR further simplifies the

It was later pointed out that the calculation should be done for all dependences [JA90)

76

selection by restricting the steady state to contain exactly one copy of ecach

MO. Based upon the selection, prelude and postlude sequences are constructed

The GURPR scheme of handling conditional constiucts is sumilar to the global
compaction technique called trace scheduling [FFis81]. Separate paths are compacted,
pipelined, and rerolled individually. Bookkeeping operations ate then added for se-
mantic adjustment.

The URPR algorithm has the advantage of low computational complexity i huild
ing a schedule. On the other haud, 1t prematurely pushes potential paratlelism to
gether, losing the flexibility of fine-grain parallelisin In addition, restranung, one copy
of G' in steady state eliminates the opportunity for forming a denser pipehne. The
GURPR algorithm also suffers from the same criticism of trace scheduling. There s

no reason why the same path will be repeatedly executed 1 the loop bady

7.1.4 The Systolic Array Optimizing Compiler

Lam’s software pipelining algorithm is tailored to code generation for a VLIW systolic
architecture known as Warp [Lam33, Lam39] For thhe machine, the DDG s shghtly
different. Each micro-operation (MQO) composes a sequence of indivisible operations;
once an MO 1s initiated the entite sequence must 1un to completion without mtet
ruption. Lam’s algorithm 1s a typrcal tiral-and-ertor scheme A range of nitiation
intervals is first obtamed, and then a sequence of tnals on the chosen mterval are
initiated. For each tnal, each MO is forced to schedule regulatly ot the interval

The starting point of the trial range 15 computed using resoutce and precedence
constraints Given an acyclhic loop body ' and a curtent trial interval d, same MO
from successive iterations are scheduled exactly d steps apart while each MO withim
a (G is list scheduled.

For an MO, scheduled at time {, resource usage is checked against the w, u+d,
u+42d, ... indivisible operations of the scheduled MO, having its u-th indivisible
operation executed at time ¢. I a resource conflict occurs, MO, s delayed one cyde
and the resource check repeated. However, if the operation fals to be scheduled
within the range [¢, t-+d—1], the entire schedule is abandoned, and a new tnal started
using the interval d+1.

If there is loop-carried dependence inside (7] strongly-connected components are
scheduled first. Then each compenent, is reduced into an MO, by meiging resource
requirements. The set of nodes in the compenents become an indivisible sequence of
MO,. Again an acyclic graph is obtained which can be scheduled using the acyclic-

graph schedul ag scheme.

20

A distinct characteristic of this approach is its way of scheduling conditionals
using so-called hierarchical reduction. Similar to the schedule for strongly-connected
components, the inner most sub-branch of a conditional is list scheduled and reduced
into an MO by merging resource requirements. This reduction is then repeated for the
outer conditional. Because the entire conditional construct is reduced into a single
node, the acyclic-graph scheduling schen= is used.

The major difference between Lam’s algorithm and the URPR algorithm is that
once a resource conflict occurs, the former scheme abandons the entire schedule and

starts a new trial over a larger interval whereas URPR does not.

7.1.5 Remarks

The valid-schedule-computation scheme (Lemma 3.1) introduced in Chapter 3.7 pro-
vides a typical example of software pipelining [RH80, Rei68]. This approach mathe-
matically computes a valid schedule for a I've-bound Petri net. However, the technique
is only applicable to ideal machines and machines without resource constraints. One
very nice characteristic of this approach is that the resulting schedule enters steady
state as soon as every trausition is fired once, i.c., after the first iteration.

Among the various software pipelining schemes introduced, perfect pipelining pos-
sesses the most similarity to SPS. In fact, SPS was inspired by perfect pipelining. For
a loop operated in an ideal machine, Aiken and Nicolau gave an O(n3) bound in time
steps (or equivalently, O(n?) 1iterations) to find a pattern in the single critical cycle
case, and they noted that the least-common-multiple effect incurred by the multiple
critical cycles would seldom occur 1n practical situations [Aik88, AN88]. We could
not justify their proofs and so remnvestigated the problem in this thesis.

Under the assumption of an ideal machine model and for a class of loops having
only a single critical cycle, steady state appears after O(n®) iterations, whete n de-
notes the size of the loop body For the case of multiple critical cycles, the length of
the steady state is directly proportional to a cotnmon multiple of critical cycles. We
are unaware of any polynomial bound for the length of the prelude sequence in this
case; instead, we have derived an approach with polynomial time complexity by fixing
an initial condition. Doing so, we were able to achieve a significant improvement in

efficiency in finding a schedule, regardless of the number of critical cycles.

7.2 Storage Allocation

Two strategics, based upon software and hardware support respectively, treat storage

allocation for software pipelining:

78

e The software approach solves the register allocation problem by the use of con-
ventional graph coloring techniques [CAC*81, Cha¥2, TouS4]. Since the number

of registers allocated to each variable is unknown until the schedule is com-

puted, the general graph coloring approach can only be applied on the final
schedule. It is assumed that a large amount of registers are available initially so
the scheduling phase can be handled independently of register constratuts, Af-
ter scheduling, graph coloring is performed globally for tegister allocation. Spill
codes are inserted in the schedule to reuse registers in the absence of unallocated

ones.

Once a schedule is fixed, it is difficult to reduce register usage becanse the goal
is to avoid the insertion of spill code. In Lam’s case, the problem becomes
harder because of the indivisible operations. The major eriticism of the graph
coloring approach is the degradation of the petformance that tesults from the
insertion of spill code. Spill code unavoidably lengthens the imtiation interval of
a pipeline. Since spill code needs maimm memory access, the impact on schedule

throughput is more severe.

The hardware approach solves the register allocation problem using wpedial
hardware. The particular type of architecture that uses this concept s called a
polycyclic architecture [RG81]. Intuitively, cach data arc e the DDG s aple
mented with a FIFO queue. After each operation execution, a resultis appended
to the output queues The design sigmficantly shuplifies the work of compler
storage allocation. However, the number of required FIFQ queues and then
associated length vary for different programs, while the amount of hardware

resources are limited.

Limited balancing binds scheduling and storage allocation into a unified frame

work. In limited balancing, special concern is given to the issue of exploitable paral-

lelism under resource constiaints For simple type of machine assumed i this thess,

the amount of exploitable parallelisin varies according to both the number of pipeled

processors and the number of registers. With respect to these two enitical factors,

limited balancing restructures the software pipehne to adhieve adequate parallelism

in the machine. The amount of storages required in SPS is already bounded by the

number of nodes in the loop body because the construction of the schedule 1s based

upon a static dataflow graph. Limited balancing offers further opportunity to re

duce storage usage based upon exploitable parallelism. The advantages of limited

balancing include:

79

When cnough registers are available, limited balancing reduces register usage
without affecting the throughput of the software pipeline.

When lack of registers, unlike conventional graph coloring schemes, no spill code
is required. Instead, a lower balancing ratio is chosen for limited balancing
to reduce the requirement further, thus avoiding the possible interruption of

memory access.

For the SPS scheme, limited balancing helps to shorten the time to reach steady

state by theoretically placing each node on a critical cycle, satisfying the initial

condition given in Theorem 4.7. ;

For static dataflow architectures, limited balancing also helps to reduce syn-

chronization costs.

e T Lot ot 3 1 ok

N o L WU T T PP W UL W ot A

I o W L . 7 DT JHpr

et REEENSED ..

80

Chapter 8

Conclusion and Future Research

The application of Petri-Net theory to compiler design received attention as early as
1970 [SS70]. Similar work, reported recently, has to do with microprogram optinza-
tion of loops on a pipelined architecture, where resource constramts such as registers
and functional units are modeled within a unified Petri-net framework [Han89] This
work indicates that the search for an optimal schedule has exponential complexity in
general. In this thesis, we have introduced a new Petri-net model to study fine-grain

loop scheduling. T'he followings are the results of our tesearch,

o We have shown the development of a Petri-net loop model called an SDSP-PN
wherein loops are first translated into a class of static datallow graphs known as
a static dataflow softwarc pipeline (SDSP) and then this SDSP s translated into
an SDSP-PN. When an SDSP-PN is executed according to the carlie:t firing
rule, a steady state appears in the behavior graph withim a bounded nuniber
of steps. We show that (1) in an SDSP-PN having a single critical eyde, a
polynomial bound can be established for the steady state to ocour (for all nodes
in the loop) under the earliest firng rule. (2) In an SDSP-PN having untaple
critical cycles, a polynomial bound can be established for the steady state to
occur only for nodes resided on the critical cycles. (3) In addition, we have
shown that the impact on the length of the prelude sequence for multiple citical
cycles can be circumvented by imposing an initial token-distribution constraint
This constraint ultimately accelerates vhe emergence of steady state, regardless
of the number of critical cycles i the loop body. (4) Irom steady state; a

time-optimal schedule for the corresponding loop can be detived.

e We have presented a methodology for integrating resource limitations into onr
model. Through it we have demonstrated how a timed Petri-net model known
as an SDSP-MCP-PN can be constructed to model execution of an SDSP on

81

architectures having any number of clean execution pipelines.

Simulation results on a number of Livermore loops, both with and without
loop-carried dependences, have demonstrated that steady state for both the
SDSP-PN and the SDSP-MCP-PN can be determined at compile-time in O(n)
time, where n is the number of instructions in the loop body. This demonstrates

the feasibility of determining steady state at compile time.

For storage allocation, we have justified limited balancing as a solution. With
this method, a scheduled loop can maintain execution speed without using extra
storage. Simulation results also verified the correctness of our mathematical

guideline for finding a feasible balancing ratio.

Shown below is ongoing research we intend to pursue to solve the problem of

fine-grain scheduling and storage optimization:

o Incorporation of conditional constructs. Due to the unpredictable run-time
behavior of conditional branches, consideration of conditional branches inside
loops is a major obstacle in the design of a compile-time loop scheduling scheme.
Preliminary ideas on the implementation of conditional constructs are docu-
mented in [GWN91b].

Extension of our scheduling method using dataflow models other than static
dataflow, to study time-optimal scheduling. Two such models are the tagged-
token dataflow model [AGT8] and the FIFO-queued dataflow model [Kah74)}.
Both models have eliminated the one-token-per-arc restriction assumed in the
static model. The tagged-token model allows a pool of tokens on a single arc
and distinguishes tokens by color. For the FIFO model, each arc is a FIFO

queuce capable of holding multiple tokens.

Storage optimization. The results from evaluating our model suggest that
critical cycles in a program determine the achievable performance of a soft-
ware pipelined loop. This opens up new opportunities for storage optimization
through time-optimal scheduling. For example, storage optimization of various
dataflow graph models might be studied with this insight. For the latest results
in this area, see [GN91].

Application to other machine models. The scheduling method in this thesis
described might be applied to other machine models to verify scheduling effec-
tiveness.

82

Lp

Appendix A

Example: A-code graph for Loop
3

Loop3 is a Livermore Loop which computes the dot products of two one dimensions

array. Its corresponding A-code graphical representation is given in Figure ALl

o Initially, all dotted arcs are assigned a token while the solid ones are empty.
All labeled nodes except node 0 are regular actors; cach of which represeats a

single instruction and is executed in the execution pipeline when enabled.

o Node 0 is always recognized by the machine model as the starting node of a
program. Its adjacency list points to all starting nodes of the program. As the

program started, all nodes on the list are signaled directly

o Each crossed square in the program graph denotes a smignal merge structure,
Note that it is not a node consisting of an operation. It is merely drawn to
show the detail of the signal flow. Its output node receives a signal if cither one

of its input node sends a signal.

The operations of most nodes are self-explanatory with the description on it. In
particular, ID stands for an identity actor, which copies the value from the input
register to its result register. IGEN stands for the index generator; it generates
a sequence of integer index within the range of two input values. The 1ecaders are
referred to [GP88, Ti088a, Tio88b] for a more detail explanation of A-code operations.

A deeper insight to each portion of the code is given below:

¢ First four levels of the graph are the loop initiation sequence. All IGENs are

loaded with the necessary input values.

83

nede! nodel node2!
U (1] 1DF
. L]
"I
* s
nodes noded nodetd
(] 0 0
s
' ey
nede? neds 10 nesafo
OEN 08N 0N
N
o psa——— ol
noded node 1! node23
0 L] IDF
3 Y / 3
exm
NOOP
Pecie $2 node 16
ADD ADD
{? / #
node 14 xte t7
LOAD LOAD
3
nade 18
MULTF
'/4 ~
nodeZ2
ADOF

Figure A.1: A-code Graphical View of Loop 3

o Noded serves the purpose of index generation for the loop body while node20
guides the proper loop termination. Node7 and nodel0 are used for loop con-

stant propagation.

e Each branch under node5 (i.e., nodel2 to nodel4 and nodel5 to nodel7) cor-
responds to the address computation sequence and the element load operation

of an input array.

o The actual dot product multiplication and addition are done at nodel8 and
node22.

84

Bibliography

[ACS6]

[ADNPSS)]

[Aea83)

[AGTS)

[AGS2)

[Aik88]

[AN8S]

[BGS9]

[CAC*81]

Arvind and D. E. Culler. Dataflow architectures. Annual Revecws i
Computer Science, 1:225-233, 1986.

Arvind, M. L. Dertouzos, R. S. Nikhil, and GG. M. Papadopoulos. Project
dataflow —the Monsoon architecture and the Id programming language.
Compnutation Structures Group Memo 285, Laboratory for Computer Sci-
ence, MIT, March 1933.

Arvind and et al. The tagged token dataflow architecture (preliminary
version). Technical report, Laboratory for Computer Science, MI'T, Cam-
bridge, MA., August 1983.

Arvind and K P. Gostelow. Some relationships between asynchionous
interpreters of a data flow language. In K. J. Neuhold, editor, Formal De-

scription of Progiammung Concepts, pages 95- 119. North-Holland, 1978.

Arvind and K. P. Gostelow. The U-Interpreter. HEEE Compulcr,
15(2):42-49, February 1982,

A. Aiken. Compaction-based parallelization. (Phl) thesis), Techuical
Report 88-922, Cornell University, 1988.

A. Aiken and A. Nicolau. Optimal loop parallelization. In Proccedings of
the 1988 ACM SIGPLAN Conference on Programmang Languages Design

and Implementation, June 1988.

D. Bernstein and 1. Gertner. Scheduling expressions on a pipelined pro-
cessor with a maximal delay of one cycle. ACM Transactions on Pro-

gramming Languages and Systems, 11(1):57-66, January 1989.

G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and
P. Markstein. Register allocation via coloring. Computer Languages 6,
pages 47-57, January 1981.

85

_%

[CCG84] J. Carlier, P. Chretienne, and C. Girault. Modeling scheduling problems
{ with tiimed Petri nets. In G. Goos and J. Hartmanis, editors, Advances in
Pelr: Nets, LNCS 340, pages 62- 82. Springer-Verlag, Berlin, Heidelberg,

NY, 1984.

[Cha82) G. J. Chaitin. Register allocation and spilling via graph colormg. In
Proceedings of the SIGPLAN 82 Sympostum on Compiler Construction,
pages 98- 105, June 1982.

[CHEPT71] F. Comunoner, A. W. lHolt, S. Even, and A. Pnueli. Marked directed

|
! graphs. Journal of Computer and System Sciences, 5:511-523, 1971,

(Chr84] P. Chretienne. Les Reseaur de Petri Temporisés (These d’état, PhD
thesis, Institut de programmation, Université P. et M. CURIE, C.N.R.S.-
E.R.A. 592, September 1984.

[Chrg5s) P. Chretienne. Timed event graphs: A complete study of their controlled
executions. In Ilernational Workshop on Timed Petri Nets, pages 47-54,

| Torino, Italy, July 1985. IEEE Computer Society Press.

|

| { [Den84] J. B. Dennis. Data flow models of computation. In Notes from lectures at

| the International Summer School on Control Flow and Data flow: Con-
cepts of Distributed Programming. Springer-Verlag, Marktoberdorf, Ger-
many, 1984,

[Den9l] J. B. Dennis. Evolution of the static dataflow architecture. In Advanced

Topics in Dataflow Computing. Prentice-Hall, 1991.

[DFL72] J. B. Denms, J B. Fosseen, and J P. Linderman. Data flow schemas.
In Internationel Symposium on Theoretical Programming, LNCS 5, pages
187-215. Springer-Verlag, Berlin, 1972.

[DG8S| J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor
architecture. In Proceedings of the Supercomputing '88 Conference, pages
368- 373, Florida, November 1988. IEEE Computer Society and ACM
SIGARCH.

(Ebc87] K. Ebcioglu. A compilation technique for software pipelining of loops
g with conditional jumps. In Proceedings of the 20th Annual Workshop on
Microprogramming, December 1987,

86

[EN90]

[Feo8s]

(Fis81]

[Fis83]

[Gao36]

[Gao89]

[Gao90]

[GHWY0a]

[GHW90b)]

[GHW90(]

[GN91]

K. Ebcioglu and T. Nakatani. A new compilation technique for paralleliz-
ing loops with unpredictable branches on a vliw architecture. In D Gel-
ernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, pages 213-228. MIT Press, 1990.

J. T. Feo. An analysis of the computational and parallel complexity of

the Livermore loops. Parallel Computer, 8(7):163 185, July 1088,

J. A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Compulers, 7(C-30):478 190, July 1981,

J. A. Fisher. Very long instruction word architectures and the ELI-512.
In Proceedings of the 10th Annual International Symposium on Computer
Architecture, 1983

G. R. Gao. A maximally pipelined tridiagonal lincar equation solver.
Journal of Parallel and Distributed Computing, 3(2):215 235, June 1086,

G. R. Gao. Aspects of balancing techniques {or pipelined data flow code
generation. Journal of Parallel and Distributed Computing, 6:39 61, 1989,

G. R. Gao. A Code Mapping Scheme for Dataflow Software Pipelining.

Kluwer Academic Publishers, Boston, December 1990.

G. R. Gao, H. IlI. J. Hum, and Y. B. Wong. An efficient scheme for fine-
grain software pipelining. In Proccedings of the CONPAR "90- VAPP 1V
Conference, pages 709-720, Zurich, Switzerland, September 1990.

G. R. Gao, H. H. J. Hum, and Y. B. Wong. Limited balancing an effi-
cient method for dataflow software pipelining. In Proceedings of the Inte:-

national Symposium on Parallel and Distribuled Computing, and Systems,
New York, NY, October 1990.

G. R. Gao, H. H. J. Hum, and Y. B. Woung. Parallel function invocation
in a dynamic argument-fetching dataflow architecture. In Procecdings of
PARBASE ’90-International Confercnee on Databases, Parallel Archalec-
tures, and Thewr Applications, pages 112 116, Miami Beach, FFI., March
7-9 1990. IEEE Computer Society.

G. R. Gao and Qi Ning. Loop storage optimization for dataflow machines.
In Proceedings of the Fourth Workshop on Languages and Compilers for
Parallel Computing, San Jose, California, August 1991.

87

[GOY90]

[GPS8g]

[GPY0]

[GT89)

[GTHSS]

[GWNO91aj

[GWN91b]

[GWN91c]

[Han89]

R. D. Groves and R. Oehler. RISC system /6000 processor architecture.
In IBM RISC System /6000 Technology. International Business Machines
Corp., 1990.

G. R. Gao and Z. Paraskevas. Efficient software pipehining in an argument-
fetching dataflow architecture. ACAPS Technical Memo 02, School of
Computer Science, McGill University, Montreal, March 1988, Presented
at the Canadian Conference on Electrical and Computer Engineering,
Montreal, September 89.

G. R. Gao and Z. Paraskevas. Compiling for dataflow software pipelining,.
In David Gelernter, Alexandru Nicolau, and David Padua, editors, Lan-
guages and Complers for Parallel Computing, pages 275 306. The MI'T
Press, 1990.

G. R. Gao and R Tio. Instruction set design of an eflicient pipelined data-
flow architecture. In Proceedings of the 22ud International Conforenece of
System Science, pages 383-393, Hawaii, January 1939. IEEE Computer
Society.

G. R. Gao, R. Tio, and H. H. J. Hum. Design of an efficient dataflow
architecture without dataflow. In Proceedings of the International on-
ference on Fifth-Generation Computers, pages 861 868, Tokyo, Japan,
December 1988.

G. R. Gao, Y. B. Wong, and Qi Ning. A Petri-Net niodel for fine-grain
loop scheduling. In Proceedings of the 91 ACM-SIGPLAN Conference
on Programming Language Design and Implemenlation, pages 204 218,
Toronto, Canada, June 1991.

G. R. Gao, Y. B. Wong, and Qi Ning. A Petri-Net model for fine-grain
loop scheduling. ACAPS Technical Memo 18, School of Computer Science,
McGill University, Montreal, January 1991.

G. R. Gao, Y. B. Wong, and Qi Ning. A Petri-Net model for loop schedul-
ing. In Proceedings of the 12th International Conference on Application
and Theory of Petri Nets, Gjern, Denmark, June 1991.

C. Hanen. Optimizing microprograms for recurient loops on pipelined
architectures using timed petri nets. In G. Rozenberg, editor, Advances

in Petri Nets, LNCS 424, pages 236-261. Springer-Verlag, 1989.

88

e -l:':c"

(HG83)

[H1P90]

[JA90]

[Kah74]

(KLL86]

[KM89]

[Kog77]

[Kog81]

[Lam88]

[Lam89)

[Mag84]

[Mea85]

J. Hennessy and T. Gross. Postpass code optimization of pipelined con-
straints. ACM Transactions on Programming Languages and Systems,

5(3):422-448, July 1983,

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-

tatwe Approach. Morgan Kaufmann Publishers, Inc., 1990.

R. B. Jones and H. A. Allan. Software pipelining: A comparison and
improvement. In Proceedings of the 23th Annual Workshop on Micropro-
grammang and Maicroarchitecture, pages 46-56, Orlando, Florida, Novem-

ber 1990.

G. Kahn. The semantics of a simple language for parallel processing. In
Information Processing 74, pages 471-475, 1974.

5. Y. Kung, S. C. Lo, and P. S. Lewis. Timing analysis and optimiza-
tion of VLSI data flow arrays. In Proceedings of the 1986 International
Conference on Parallel Processing, 1986.

I.. Kohn and N. Margulis. Introducing the Intel i860 64-bit microproces-
sor. IEEF Micro, pages 15-30, August 1989.

P. Kogge. The .nicroprogramming of pipelined pirocessors. In The 4th
Annual Symposium on Computer Architecture, pages 63-69, March 1977.

P. M. Kogge. The Architecture of Pipehined Computers. McGraw-Hill
Book Company, New York, 1981.

Monica Lam. Software pipelining: An effective scheduling technique for
VLIW machines. In Proceedings of the 1988 ACM SIGPLAN Conference
on Programming Languages Design and Implementation, pages 318-328,
Atlanta, GA, June 1988.

M. S. Lam. A Systolic ...ray Optimizing Compiler. Kluwer Academic
Publishers, 1989.

J. Magott. Performance evaluation of concurrent systems using Petri nets.
Information Processing Letters, North-Holland, 18:7-13, January 1984.

J. R. McGraw and et al. SISAL: Streams and iteration in a single assign-
ment language—language reference manual version 1.2. Technical Report,
M-146, Lawrence Livermore National Laboratory, 1985.

89

L

[Mel89]

[MK80]

{Mur80]

[Murg9)

[NPASS]

[Par88]

[Par90]

[Pet62)

[Pet8l]

[Ram74]

[Rei68]

[RGS1]

C. Melear. The design of the 83000 RISC family. [EEE Micro, pages
26-38, April 1989.

T. Murata and J. Y. Koh. Reduction ar d expansion of live and safe
marked graphs. [EEE Transactions on Circuils and Systems, 27(1).68
71, January 1980.

T. Murata. Synthesis of decision-free concurrent systems for prescribed
resources and performance. IEEE Transactions on Software Enginecring,
6(6):525-530, November 1980.

T. Murata. Petri nets: Properties, analysis and applications. Procecdings

of the 1EEE, 77(4):541-580, April 1989

A. Nicolau, K. Pingali, and A. Aiken. Fine-grain compilation for pipelined
machines. Technical Report TR-88-934, Department of Computer Sci-

ence, Cornell University, Ithaca, NY, 1988,

Z. Paraskevas. Summary of the discussion for the expansion of mstruction
set of the argument-fetching architecture. ACAPS Design Note 05, School
of Computer Science, McGill University, Montreal. November 1988.

Z. Paraskevas. Code generation for dataflow software pipelining. Techni-
cal Report TR-SOCS-89.9, School of Computer Science, McGill Univer-
sity, Montreal, Jananuary 1990.

C. Petri. Kommunikalion mit Automaten. PhD thesis, University of
Bonn, Bonn, West Germany, 1962.

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1981.

C. Ramchandani. Analysis of asy nchronous concurrent systems. Technical
Report TR-120, Laboratory for Computer Science, MIT, 1974,

R. Reiter. Scheduling parallel computation. Journal of ACM, 15(4):590
599, October 1968.

B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific com-
puting. In Proceedings of the 14th Annual Workshop on Microprogram-
ming, pages 183-198, 1981.

90

Py

Frs

[RHI80]

[SDWX87]

[SDX86;

[5570]

[Tio88a)

[Tio88b)

[Tou84)

C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asyn-
chronous concurrent systems using Petri Nets. [EEE Transactions on
Compulers, pages 440-448, September 1980.

B. Su, S. Ding, J. Wang, and J. Xia. GURPR—a method for global
software pipelining. In Proceedings of the 20th Annual Workshop on Mi-
croprogramming, pages 88-96, Colorado, December 1987.

B. Su, S. Ding, and J. Xia. URPR—a extension of URCR for software
pipelining. In Proceedings of the 19th Annual Workshop on Micropro-
gramming, pages 94-103, New York, October 1986.

R. Shapior and H. Saint. A new approach to optinization of sequencing

decisions. Annual Review in Automatic Programming, 6:257-288, 1970.

R. Tio. The A-code assembly language reference manual. ACAPS Design
Note 02, School of Computer Science, McGill University, Montreal, July
1988.

R. Tio. DASM: The A-code data-driven assembler program reference
manual. ACA € Design Note 03, School of Computer Science, McGill

University, Montreal, July 1988.

R. F. Touzeau. A FORTRAN compiler for the FPS-164 scientific com-
puter. In Proceedings of the ACM SIGPLAN 84 Symposium on Compiler
Construction, pages 48-57, June 1984.

91

