A Geological and Geochemical Transect of the Volcanic Stratigraphy in the D'Alembert-Cléricy Area, Noranda, Québec

by

Jason J. Pan

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science

Department of Earth and Planetary Sciences McGill University, Montreal, Quebec H3A 2A7 Canada Submitted July, 1993

Copyright[®] Jason J. Pan, 1993

LITHOGEOCHEMICAL TRANSECT, D'ALEMBERT-CLÉ RICY, NORANDA, QUEBEC

ABSTRACT

The Archean rocks in the D'Alembert-Cléricy area of the Noranda district were mapped along a transect across stratigraphy. Located within the youngest part of the Blake River Group, this six km thick volcanic assemblage trends northwest, youngs northeast, and has increasing dip from 45° in the west to subvertical in the east, with some folding within the sequence

Chemostratigraphic units were established using Zr/Y, La_N/Yb_N, and other immobile and incompatible HFSE ratios, and AFM and Miyashiro major element plots. Lithogeochemical technique based on the HFSE and other immobile and incompatible elements have been applied to both fresh and altered rocks, the trace element parameters are more specific than the major element discriminants

The stratigraphy along the D'Alembert-Cléricy transect is subdivided into three major chemostratigraphic units. Lower Transitional Series, Middle Tholeitic Series, and Upper Mixed Tholeitic-Transitional Series Overall, the lithologies comprise ~65% tholeitic and 35% transitional volcanics. The tholeites are mainly represented by basalts and rhyolites, whereas the transitional rocks are mostly andesites and rhyolites.

The geological, stratigraphic, and lithochemical attributes along the transect indicate the potential for massive sulfide deposits is comparable to that of the Central Mine Sequence. Although the thesis area contains a greater proportion of basalts and volcaniclastic material than the Central Mine Sequence, both areas contain major tholeite basalt-rhyolite bimodal sequences, several thick felsic units, and andesite-rhyolite transitional suites

RESUMÉ

Les roches d'âge archéen de la région D'Alembert-Cléricy du district de Noranda ont été cartographiées le long d'une traverse perpendiculaire à la stratigraphie. Cet assemblage volcanique, d'une épaisseur de 6 km et de direction générale nord-ouest, est compris dans la portion supérieure du Groupe de Blake River. La séquence volcanique est d'âge plus récent vers le nord-est et a une pente qui augmente de ~45° à sub-vertical d'ouest en est, et est affectée de plissement vers sa partie centrale.

Les unités chemico-stratigraphiques ont été définies en utilisant les rapports Zr/Y, La_N/Yb_N, ainsi que les rapports d'éléments immobiles à champ de force élevé (HFSE), en plus de profiles de terres rares, et des diagrammes AFM et Miyashiro Les méthodes lithogéochimiques sont utilisables pour les roches fraîches et alterées et elles sont plus spécifiques que les discriminants d'éléments majeurs

Trois unités chemico-stratigraphiques majeures composent la stratigraphique soit. la série transitionnelle inférieure, la série tholéitique moyenne et la série mixte tholéitique-transitionnelle supérieure. Les principales unités lithologiques sont constituées de ~65% de roches volcaniques tholéitiques (surtout des basaltes et rhyolites) et de ~35% de roches volcaniques transitionnelles (surtout des andésites et rhyolites)

Les attributs géologiques et lithogéochimiques indiquent un potentiel pour la presence de gîtes de sulfures massif, comparable à celui de la Séquence de Mine Centrale Malgré le fait que le terrain de thèse contient une plus grande proportion de basaltes et de matériel volcanoclastique, la stratigraphie de celui-ci est comparable avec celle de la Séquence de la Mine Centrale Les deux région contiennent des séquences bimodales de basalte-rhyolite tholéitique majeures, quelques unités felsiques épaisses et des suites d'andésite-rhyolite transitionelles

ACKNOWLEDGEMENTS

Foremostly, I would like to express my sincere gratitude to Professor Wallace H MacLean, my thesis supervisor, for his support of this project Generous with his time and resources despite the busy professional, research, and academic commitments, Dr MacLean was always ready to assist me and provide much needed encouragement, guidance, constructive criticism, and helpful scientific discussion on pertinent subjects. His cheerful nature, the wry Maritimer humour, and a most amicable disposition provided an enlivening and pleasant environment for research and learning.

I would also thank my thesis co-advisor, Dr Timothy Barrett, for his useful suggestions on many aspects of the thesis and instructive recommendations regarding the direction of research. Dr Barrett's affable Oxfordian witticism and his friendly company during scholarly deliberations and other non-academic discussions was appreciated.

Further acknowledgements and thanks go to Eric Mackelburg, for his able assistance during field work; the Geochemical Laboratory in the Department of Earth and Planetary Sciences, McGill University, and Activation Laboratory Ltd of Ancastor, Ontario, for rock sample analyses; the Rock Preparation Laboratory of McGill University and Vancouver Petrographic Ltd of Langley, BC for production of thin-sections, Glenn Poirier, for arrangement of microprobe sessions; Dr. Harold Gibson, for short discussions on Noranda district volcanic stratigraphy; Steeve McCauley, in-house systems manager, for expert computer problem-solving, Louis Bernier, for advice on technical problems and thesis preparation; and Gary Nassif, for the French translation of the abstract

I would also like to acknowledge Falconbridge Ltd. of Toronto for granting me the George Mannard Memorial Award, which provided funding for parts of this research project. Thanks is also due to Falconbridge Ltd. Exploration VMS Division in Sudbury for allowing early leave from my summer job to do the thesis field work.

I am grateful to Pierre-Jean Lafleur, geologist for the Mobrun mine, and to Audrey Ressources Inc. for access to their mine site and claim holdings. The local farmers and landowners in the thesis area kindly granted permission for mapping and field work on their properties.

Many thanks also go to the office staff and faculty at the Department of Earth and Planetary Sciences for their help whenever need arose. Finally, I would like to thank my family, and all my friends at McGill, in Montreal, Toronto, Winnipeg, Vienna, and elsewhere for their support, companionship, and encouragement during my studies.

TABLE OF CONTENTS

ABSTRACT
RESUMÉ i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS
LIST OF FIGURES vii
LIST OF TABLES
Chapter 1 INTRODUCTION OBJECT OF THE RESEARCH THE NORANDA MINING DISTRICT ACCESS TO THE FIELD AREA TOPOGRAPHY RESEARCH METHODS ORE DEPOSITS IN THE DISTRICT HISTORY AND PREVIOUS WORK Edmund Horne Comes to Lake Osisko GSC Mapping Recent Mapping Theses Studies in the District Studies in the Thesis Area 1 STRATIGRAPHIC NOMENCLATURE IN THE DISTRICT
Lithology in the Noranda Area
Chapter 2 REGIONAL GEOLOGICAL FRAMEWORK INTRODUCTION
D'Alembert-Cléricy Area

Massive Sulfide Deposits	24
Chapter 3 GEOLOGY AND LITHOCHEMISTRY	
INTRODUCTION	
Field Work and Sample Collection	
Sample Preparation and Laboratory Work	
GEOLOGICAL DESCRIPTION	
Structural Geology	28
Faulting	30
Folding	30
LITHOLOGIC AND PETROGRAPHIC EXAMINATION	31
Amulet Andesite	35
Newbec Rhyolite	37
Newbec Breccia	39
Newbec Andesite	41
	41
	41
	42
Cléricy Road Basalt	
	44
	46
	48
Cléricy Rapids Rhyolite	
Lac Dufresnoy Andesite	
Lac Dufresnoy Rhyolite	
Cléricy Rapids Andesite	
Mobrun Rhyolite	
	٠,
Chapter 4 GREENSCHIST MINERALOGY	58
INTRODUCTION	
	58
	62
	63
•	65
	66
·	67
Genetic	70
Chapter 5 LITHOSTRATIGRAPHY	72 72

Incompatible Elements	72
Immobile Elements and Single Precursor System	. 73
Multiple Precursors	. 7.1
	. 78
LOWER TRANSITIONAL SERIES	83
MIDDLE THOLEUTIC SERIES	84
Cléticy Road Basalt	84
North and South Jevis Units	87
Cléricy Rhyolite	87
UPPER MIXED TRANSITIONAL AND THOLEUTIC SERIES	88
Cléricy Rapids Rhyolite	. 88
Lac Duftesnoy Andesite	88
Lac Dufresnoy Rhyolite	89
Cléricy Rapids Andesite	89
Mobrun Rhyolite	89
OTHER CHEMOSTRATIGRAPHIC CLASSIFICATIONS	90
COMPARISON OF CHEMICAL DISCRIMINANTS	91
TECTONIC SETTINGS	02
Chapter 5 SUMMARY AND CONCLUSIONS .	97
REFERENCES	100
APPENDIX	110
Sample Location Map	110
List of Theses	111
Non-McGill Theses	111
McGill Theses	113
Table I Chemical Analyses Data for All Samples	115
Table II Microprobe Data for Mineral Analyses	115

LIST OF FIGURES

Figure	1. Noranda District map	3
Figure	2 a) and b) Field photographs of the general topography	5
Figure	3 Thesis Area geology map	. 27
Figure -	4. Lithostratigraphic column of CMS and Transect	. 29
Figure	5 Volcanic composition plot - K ₂ O vs. SiO ₂	. 33
	6 Lithological Map - volcanic units	
Figure	7 Amulet Andesite - field shot and photomicrograph	. 36
_	8 Photomicrographs and field shot of western units	
Figure	9 Cléricy Road Basalt - pillow lava and chlorite alteration	45
Figure	10 North and South Jevis Units - outcrops of volcaniclastics	. 47
Figure	11 Cléricy Rhyolite stratigraphic column	. 49
Figure	12 Cléricy Rhyolite - volcaniclastics and breccias	. 51
Figure	13 Cléricy Rhyolite - photomicrographs of tuffs and rhyolite	. 52
Figure	14 Cléricy and Mobrun Area rocks - field photos and thin section	56
Figure	15 Amphibole compositional and frequency plots	. 59
	16 Epidote - zoisite frequency plot	
	17. Plagioclase frequency plot	
Figure	18 Chlorite compositional diagram (Hey diagram)	. 61
Figure	19 Mineral textures. plagioclase, K-feldspar, and actinolite	. 64
	20 Epidote, zoisite, chlorite, and sericite textures	
Figure	21 a) and b) Fractionation and alteration diagrams	. 75
Figure :	22. Al ₂ O ₃ -Zr and TiO ₂ -Zr plots for thesis area units	. 77
Figure	23 Map of volcanic units and lithological series	. 80
Figure	24. AFM diagram for thesis area rocks	. 81
Figure 2	25. Miyashiro plots (FeO*/MgO)	. 82
Figure :	26. REE plots for mafic units and Cléricy Rhyolite	. 84
_	27. REE plots for other rhyolites and andesites	
	28 Ternary diagrams: Hf-Th-Ta and Nb-Zr-Y	
_	29 Binary plots for tectonic settings: Nb-Y and Rb-(Y+Nb)	
_	30 Fractionation modelling plot Nb/Th-Zr	~ .

LIST OF TABLES

Table 1.	Noranda District rock subdivisions after Gunning (1937) 12
Table 2.	Stratigraphic subdivision, Noranda District, after Gunning and Ambrose (1939)
Table 3.	Average analysis of western volcanic units along the D'Alembert-Cléricy transect
Table 4.	Average analysis of central volcanic units along the D'Alembert-Cléricy transect
Table 5.	Average analysis of eastern volcanic units along the D'Alembert-Cléricy transect 54
Table 6	Volcanic stratigraphy along the D'Alembert-Cléricy transect - units and series

Chapter 1

INTRODUCTION

OBJECT OF THE RESEARCH

The focus of this thesis is the geology of the large terrain of volcanic stratigraphy between the Norbec and Mobrun mines This area of study lies adjacent to the economically important Central Mine Sequence (CMS) in the central part of the Noranda mining district. The geology of the CMS, along with the numerous massive sulfide deposits found therein, has been the subject of many studies (e.g., Gilmour 1965, Spence and de Rosen-Spence 1975, Gélinas et al. 1977, 1982; Dimroth et al. 1982, Gibson and Watkinson 1990, Paradis et al. 1989, Barrett et al. 1991, Shriver and MacLean 1993) However, the geochemical characteristics and lithostratigraphic relationship of the terrain in the thesis area to that of the CMS are still poorly known and not well understood. The question is: does this stratigraphy have the potential for volcanogenic massive sulfide (VMS) deposits in the same abundance as the rest of the district? The objective of this thesis is to determine the stratigraphy and lithogeochemistry of the terrain between the Norbec and Mobrun mines, and to compare these features with those of the Central Mine Sequence.

Successful mineral exploration requires an integrated approach with accurate field-based mapping, structural and stratigraphic interpretive analysis, combined with effective lithogeochemical analysis and geophysical techniques. This study aims to assess the potential for massive sulfide mineralization, using stratigraphic and geochemical data in an area between the very productive Central Mine Sequence and the Mobrun mine.

THE NORANDA MINING DISTRICT

The Rouyn-Noranda mining district is located in the Abitibi-Témiscamingue region in northwestern Quebec, close to the Ontario border (Fig. 1). Situated about 600 km northwest of Montreal, in the south-central part of the Abitibi granite-greenstone belt, this massive sulfide mining camp is within the eastern and central sectors of the volcano-sedimentary. Blake River Group. The first mine found at Noranda, the 65 million tonne copper-gold Horne deposit, is the largest ore deposit thus fat discovered in the district.

The Horne orebody and the more than twenty other nearby massive sulfide deposits have made the Noranda area one of the premier mining districts in Canada Numerous small deposits of base and precious metal have been discovered and worked on in recent years. Most geological studies and reports concur, as these new finds suggest, that there is still potential in this region for continued productive mining

Closer review of compiled data indicates a less than healthy economic situation for the resource industry at the present time, judging by the depletion in ore reserves in the Noranda district. New discoveries brought into production in the last few decades have not kept pace with depletion of reserves in mined-out deposits. Many VMS deposits outside of the Horne are copper-zinc ores and are in the 0.5 to 6 million tonne range. Most of these mine are located in the central part of the district, in the Mine Zone rhyolites (Spence and de Rosen-Spence 1975) of the Central Mine Sequence (extending from the Flavrian Andesite through the Amulet Andesite). It is important to note that only one large (≥10 million tonnes). VMS or base metal deposit, the Mobrun mine, has been discovered in the district in the last 30 years

Geology of the Noranda District

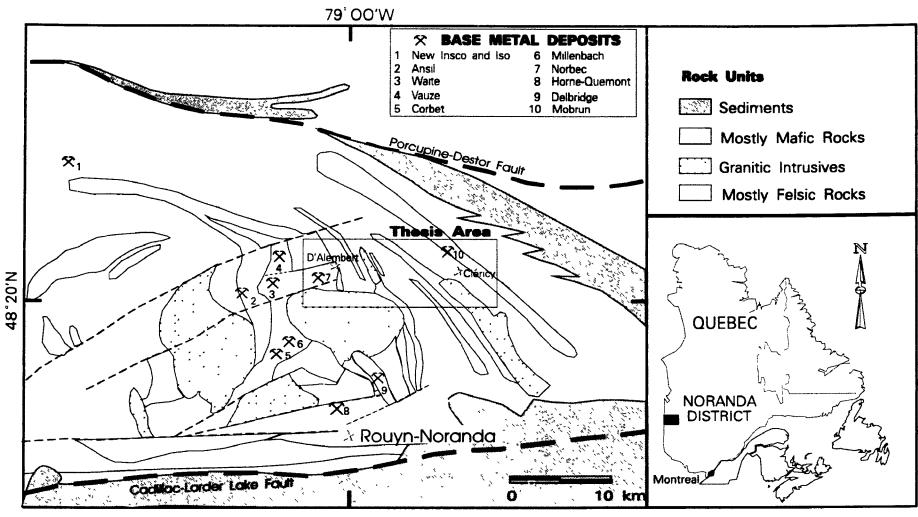


Fig. 1. Generalized geological map of the Noranda District.

Following the time-honoured prospecting axiom "Gold is where you find it", exploration efforts have been concentrated near existing deposits and mostly within the stratigraphy of the Central Mine Sequence—Company mineral exploration and geological studies have been restricted outside this domain

ACCESS TO THE FIELD AREA

The research area for this thesis study is located 10 km to the northeast of Rouyn-Noranda, roughly between Lac Dufault and Lac Dufresnoy. As shown on the district map (Fig. 1), the area lies between the towns of D'Alembert to the west and Cléricy to the east. It is accessible by Highway 101 from Rouyn-Noranda to D'Alembert, and then eastward along the road to Cléricy. The entire thesis area is transversed by the Cléricy road and local side roads, and covers an east-west transect of terrain about eight km in length and three km in width, north-south

TOPOGRAPHY

Outcrop averages about 20 percent in the area, and is easily accessible by foot and vehicle traverse. Relief in the area is less than 100 m, with gentle hills and valleys (Fig. 2a) and flat agricultural land, most of the terrain at around 290 m to 330 m above sea level. In the western part of the thesis area, andesites make up the high ridges of the Waite Hills (highest elevation in the region at 480 m). In the central part, low terrains of eroded basalts and basaltic-andesite are separated by topographic highs and outcrops generally composed of rhyolites, granodiorite intrusives, and diorite dikes. Towards the eastern part near the Mobrun mine area, the resistant rhyolite rocks form

Fig 2 Field Area Landscape and Topography

- a Typical topography of the thesis area, with outcrops of gentle hills and lowlying wooded area and swamps. View from an outcrop of diorite and mafic rocks in Cléricy Road Basalt unit north of the Cléricy Road, looking northeasterly toward ridges in the Mobrun mine area.
- b Landscape of Lac Dufault and surrounding area View from Amulet Andesite ridge at Waite Hills, looking south toward Lac Dufault and Central Mine Sequence area of the Noranda District

a series of high ridges, with andesites underlying the intervening low valleys. Apart from the outcrops, forests, and swamps, the land is largely cultivated fields and pasture

Small streams and wetland occupy the low lying area. The larger lakes in the thesis area are Lac D'Alembert and Lac Dufresnoy to the north, and Lac Dufault to the south (Fig. 2b). The Kinojevis River, a tributary of the Ottawa River system, is the major waterway in the region (lowest elevation in the thesis area at 270 m). Flowing southward, it cuts a winding river valley through the landscape. This vital waterway was the means of access to distant parts of the Noranda district by prospectors and geologists in the early part of the twentieth century.

RESEARCH METHODS

field mapping in this eastern Blake River Group (BRG) along the D'Alembert-Cléricy transect was carried out to delineate the stratigraphic succession. Rock samples were collected for detailed examination of the volcanic stratigraphy

This project establishes a chemostratigraphic framework for the transect using immobile element and trace element lithogeochemistry. This is used because most major element classifications are affected by metamorphism and hydrothermal alteration. The use of immobile-incompatible elements can more effectively monitor alteration and mass changes, and determine precursor rock compositions (MacLean and Kianidiotis 1987, MacLean 1990). Immobile major and trace elements are utilized to establish igneous fractionation trends, and identify chemical variations that result from alteration (MacLean 1990). This lithogeochemical technique allows the recognition of piecursor compositions even in intensely altered rocks.

The combination of detailed field work and lithogeochemical study assists in

establishing the relationship between the eastern Blake River volcanic stratigraphy and the Central Mine Sequence. This study provides insight to the evolution of the Archean volcanic rocks in the eastern Blake River Group of the Noranda district.

ORE DEPOSITS IN THE DISTRICT

The Noranda mining camp has been Canada's leading base metal and gold producer for many decades. Since the start-up of the Horne mine in 1923 to the present time, there have been about 22 massive sulfide and 17 gold deposits discovered in this historically important mining camp (Chartrand and Cattalani 1990). The base metal mines of the district are the subject of a number of economic geology reports and studies. These are referred to and described as the type examples of Archean volcanogenic massive sulfide deposits (Sangster 1972, Franklin et al. 1981).

With the notable exception of the giant Horne copper-gold deposit, most of the VMS mines are located in the Mine Zone (Spence and de Rosen-Spence 1975) which is part of the Central Mine Sequence. This is a bimodal andesite-rhyolite volcanic succession bounded by the Horne Creek fault, the Hunter Creek fault, and the Flaviran and Lac Dufault plutons.

HISTORY AND PREVIOUS WORK

The initial geological and prospecting activities were carried out along water routes in the Rouyn-Noranda region, and are reviewed by Cooke et al. (1931). The earliest of these traverses and a summary report was made by MacQuat (1872). Sporadic geological investigation and mapping was carried out along takes and rivers by J. F. E. Johnston (1901) and W. J. Wilson (1901). During the construction of the

Canadian National railway through the area between 1910 to 1915, geological mapping and field work was undertaken by M E Wilson, J A Bancroft, W J Wilson, and T. L Tanton (see Cooke et al. 1931)

Edmund Horne Comes to Lake Osisko¹

Condensed from Noranda by Leslie Roberts (1956)

The important turning point in the geological exploration and economic development of the Rouyn-Noranda district came during the 1910s. The pioneering prospector Edmund H. Horne began exploring the Rouyn area in 1911. Ed Horne was an experienced miner and prospector before he ventured into the wilderness of Northwestern Quebec, having worked in Nova Scotia, Labrador, northern B.C., Colorado, California, and England. In 1908 he joined the gold rush in Northern Ontario and worked in the booming Cobalt mining camp. Ed Horne then prospected in the Kirkland Lake and Cobalt areas to seek his own fortune, and liked what he saw in the tock formations. He wondered what mineral riches lie across the provincial boundary in Quebec, while others prospected in Northern Ontario. Horne later recalled, "Well, it didn't seem sensible to believe that all the good geology would quit at the Ontario border, just because somebody had drawn an imaginary line there."

Coming from the Ontario side along the Ottawa River, Horne and another prospector, Bob Bryden, canoed through the Kinojevis waterway in 1911. The unexplored country of Northwestern Quebec left favourable impressions in Horne's mind. He believed the area held much promise for mineral wealth. Ed Horne returned in 1914 with two prospector partners, Bert Armstrong and Bert McDonell. This time they found a showing of mineralized and heavily fractured rhyolite along the shore of

Lake Osisko, which later became the Horne mine With more sampling and prospecting in the following years, Ed Horne was convinced that he was onto a major mineral discovery

Lacking the financial resources for a grubstake expedition to stake claims and do the assessment work, Ed Horne had to wait for better financial times after World War I. For a long while, he found few backers for his venture. It was only in 1920 that Ed Horne was able to procure funds to stake the ground. He raised the money through the Trémoy Lake Prospecting Syndicate which Horne founded with a total of twelve partners in the Grand Union Hotel in New Liskeard, Ontario. The syndicate was established to finance Ed Horne's venture in Rouyn Township in Quebec to develop the Horne property, which eventually became Noranda Mines, Limited, Further surface work and trenching led to the discovery by diamond drilling of the grant 'II' orebody in 1923. Edmund Horne, with the Mine now bearing his name, and the Noranda company were on the way to fame and fortune, and a prominent place in the economic geology and mining history of Canada.

Accounts of the prospecting and geological work on the property and in the mine are found in the studies by Price (1933, 1934) and a GSC report on ore deposits in the Noranda district (Wilson 1941). The complete story of Edmund H. Horne's prospecting activities in the area and the development of the Horne mine are narrated in the book "Noranda", a history of the company by Leslie Roberts (1956).

GSC Mapping

Geological mapping was undertaken by the Geological Survey of Canada from the 1920s onward (James 1923, James and Mawdsley 1924, Cooke et al 1931,

Ambrose 1941a,b, Wilson 1941) Their field work and summary reports laid the framework for all subsequent geological studies in the district. This work and interpretation led to the definition and delineation of the major volcanic, sedimentary and intrusive rock groups, and assisted in the discovery and development of many mines in the district.

Recent Mapping

Recent works, up to the 1980s, were carried out on the volcanic rocks in the Rouyn-Noranda district by Baragar (1968), Jolly (1974), Spence and de Rosen-Spence (1975), Gélinas et al (1977), Jolly (1978), and Goldie (1979). In the 1980s to the present, geological studies and regional syntheses have been made by Dimroth et al (1982, 1983a,b), Gélinas et al (1982, 1984), Ludden et al (1982), Paradis et al (1989), Gibson and Watkinson (1990), Péloquin et al (1990), Cattalani et al, (1990, 1991a,b), and Barrett et al (1991a,b, 1992). These studies and new advances of the ore deposit modelling for the Noranda district are discussed in subsequent chapters

Major studies of the mineral deposits in the Noranda district were made by Cooke et al. (1931), Price (1934, 1948), Gilmour (1965), Dugas (1966), Boldy (1968), Simmons (1973), Riverin and Hodgson (1980), Knuckey et al. (1982), MacLean and Hoy (1991), Barrett et al. (1991a,b, 1992), and Shriver and MacLean (1993)

In the last few years, a series of Quebec government reports on the VMS deposits of the Noranda camp have been made by the Mineral Exploration Research Institute (MERI-IRFM). These studies have also been published in scientific journals (the first reference is to the government report and subsequent ones to respective journal papers). Home (Cattalani et al. 1990, Barrett et al. 1991b, MacLean and Hoy 1991),

Aldermac (Cattalani et al. 1991a, Barrett et al., 1991a), Ansil (Cattalani et al. 1991b, Barrett et al. 1991c), Delbridge (Cattalani et al. in press, Bairett et al. 1993), Mobrun (Riopel et al. 1993, Barrett et al. 1992), Norbec (Cattalani et al. 1992, Shriver and MacLean 1993), and Corbet (Barrett et al. in press)

Theses Studies in the District

In addition to the government reports and tournal papers, there are many university research theses on the geology and one deposits of the Noranda district. Those theses known to the author are listed in the Appendix

Studies in the Thesis Area

Early mapping in the thesis area was carried out by the Geological Survey of Canada (GSC) and Quebec government geologists in the 1920s following the discovery of gold and base metals in the Noranda district. The resulting GSC memoris and reports contain only brief descriptions and discussions of the geology in the thesis area, which covers the central part of Dufresnoy Township. The volcanic stratigraphy, however, extends into the adjacent townships of Clericy, Joannes, Rouyn, Duprat, Duparquet, and Destor for which more detailed reports are available.

The western half of Dufresnoy township was mapped by James (1923) as part of his reconnaissance work in the Noranda district. A cursory report and preliminary map by Harvie (1924) is available for the eastern half of the township. Among the early regional mapping and geological assessment projects completed in the Noranda district by the GSC, only these two reports are specific to the thesis area. In addition,

the Ministére de l'Energie et des Ressources compilation maps of the district include revisions of the geology of the thesis area

STRATIGRAPHIC NOMENCLATURE IN THE DISTRICT

The initial mapping by the GSC in the Abitibi region, including the Noranda district, produced a two-fold subdivision of the Archean (Pre-Huronian) rocks encountered in the area. The volcanic sequences were grouped into the Keewatin Series, and sedimentary rocks into the Timiskaming Series (James 1924, Harvie 1924, James and Mawdsley 1924, Cooke et al. 1931). The Keewatin Series included all basalt, andesite, rhyolite, tuff, and basic intrusives, while the 'Timiskaming Series' included mainly of greywacke, conglomerate, arkose, and schist.

Mapping in the Cadillac township, Gunning (1937) proposed a new subdivision of the rocks in the region north of the Cadillac Break, dividing them into four mappable groups of major lithological units. He dropped the Timiskaming and Keewatin

TABLE 1. Geological Subdivision after Gunning (1937).

Cadillac Sediments - greywacke, slate, tuff, conglomerate

Blake River Volcanics - volcanic rocks, minor greywacke

Kewagama Sediments - greywacke, slate, conglomerate, and minor volcanics

Malartic Volcanics - mostly volcanic rocks

subdivisions, and defined the rocks solely on the basis of lithology Local geographical names were used in this classification. From north to south toward the Cadillac Break,

going from oldest to youngest, the rock units are Malartic volcanics, Kewagama sediments, Blake River Group, and Cadillac sediments (Table 1)

Subsequently, in a treatise on the Timiskaming-Keewatin problem in the Proceedings and Transactions of Royal Society of Canada, Gunning and Ambrose (1939) discussed the lithological characters and stratigraphic relationships of the rocks in the area. They formally recommended the abolition of the equivocal general designation of Timiskaming and Keewatin Series for the arbitrary subdivision of volcanic and sedimentary rocks, respectively. The lithological affiliations were dropped, and the rock sequences were given Group status (Gunning and Ambrose 1939). The four well-defined Groups, with geographical names from the area, have since then been adopted and widely used.

Gunning and Ambrose (1939)

TABLE 2. Stratigraphic Subdivisions after Gunning and Ambrose 1939.

Gunning (1937)

EARLY

estando de Salado esta de Caracida de Cara		
Timiskaming Sediments	Cadillac Sediments	Cadillac Group
Section	Blake River Volcanics	Blake River Group
Keewatin Volcanics	Kewagama Sediments	Kewagama Group
	Malartic Volcanics	Malartic Group

Lithology in the Noranda Area

The Blake River Group, along with the Kewagama and Cadillac Groups, occurs as thin east-trending linear belts in the Cadillac area, the Malartic volcanics thicken in the nerth. To the west, the Blake River Group broadens into thick volcanic assemblages in the Noranda district, reaching to about 30 km wide north-south. The Kewagama Group likewise expands towards the northwest into La Pause, Cléricy, Dufresnoy, and Destor townships, where this thick sedimentary package is known as the 'Cléricy Band' (Ambrose 1941a). South of Rouyn-Noranda, the Pontiac and Timiskaming Groups are partial facies equivalent of the Cadillac sediments (Dimroth et al. 1982). Detailed discussion of lithological correlation of the rock groups, formations, and various subunits in the Noranda area can be found in studies by Goodwin (1979) and Dimroth et al. (1982). All rocks in the region have been further grouped into the Abitibi Supergroup of the volcano-sedimentary rocks of the Abitibi Greenstone Belt (Goodwin 1977).

The famous Blake River Group, the volcanic assemblage hosting much massive sulfide and gold deposits in the Noranda district, was described from the exposures in the narrow part of the belt near the Blake River in the Cadillac area (Gunning, 1937). This small liver flows north into Kewagama Lake in the north part of Cadillac Township. The original name for the river is shown only on a few of the early maps. Unaccountably, the name has since been altered, probably erroneously, to Black River at some later date. Subsequently, this precursor toponym has been converted to Rivière. Noire on recent government topographic maps. As well, it should be noted that the Kewagama Gioup is named after Lake Kewagama, which has been renamed Lac. Preissac on current maps. These groupings of rock units based on the original

derivative names of geographic features in the region have been fixed in the geology literature and consistently followed by later workers, notwithstanding their absence on current maps

ORE DEPOSIT MODELS

A major contribution to the understanding of the geology and genesis of ore deposits in the Noranda district was made by Gilmour (1965), who was the first to propose a volcanogenic origin for the massive sulfide deposits in the area. Since then, a majority of geologists working in the district have favoured this interpretation, and have generally discarded the previously held epigenetic-replacement theories. Gilmour recognized the relationship of the ores to the volcanic stratigraphy, particularly to the tops of thickened parts or domes of rhyolite in andesite-rhyolite sequences. It was also one of the earliest reportings of the association of massive sulfide mineralization with the rhyolitic breccias and fragmental rocks, and the pipe-like alteration zones below the ores (Gilmour 1965). Subsequent studies and compilation reports have documented the volcanogenic origin of Archean massive sulfide ores and comparing them to the Kuroko deposits. They are now known as 'Noranda-type VMS deposits', a major type of base metal deposit in Archean greenstone belts (Sangster 1972, Franklin et al. 1981, Lydon 1984a,b)

Chapter 2

REGIONAL GEOLOGICAL FRAMEWORK

INTRODUCTION

This chapter provides a overview of current understanding of the stratigraphic, geochronologic, structural, and economic geology of the Blake River Group in the Noranda district. There have been a number of geological models proposed for the volcanic stratigraphy in the area, and these have been modified and evolved with new mapping and research work carried out by government surveys, industry, and universities. The various interpretations and ideas are presented as they provide the framework for the present research on the volcanic stratigraphy in the D'Alembert-Cléricy area.

BLAKE RIVER GROUP AGE DATES

Studies by Mortensen (1987), Corfu et al. (1989), and others using U-Pb zircon method have indicated an age of approximately 2703-2698 Ma for the entire Blake River Group. The geochronology data have been interpreted to support the tectonic model of the volcanic succession evolving from west to east, with stratigraphic tops younging toward the Cléricy area. In the Noranda district, the youngest age date was obtained from the 'Cycle V' felsic volcanics at the eastern end of the region. This thyolite breccia located. I km east of the town of Cléricy was dated at 26979 Ma (Mortensen 1987). The lowermost, hence the oldest, felsic unit in the district had an age date of 2698 7 Ma. It is a rhyolite flow belonging to "Cycle I" volcanics near the

Four Corner VMS occurrence just west of the Lac Flavrian pluton (Mortensen 1987)
Within the Noranda mining camp, the volcanic assemblage therefore could well been formed within a very short 1 to 2 Ma interval

The oldest date for the whole Blake River Group was from the western section of this volcanic succession, just past the Ontario-Quebec border. This sequence of quartz-feldspar porphyry and associated rhyolite yielded an age date of 2703 ± 2 Ma (Nunes and Jensen 1980). Thick volcanic successions of the Blake River Group would likely have been extruded within a 5 Ma interval, and even less for the sequence in the Noranda area. This is a remarkably short span of geological time for the development of a sizable package of volcanic rocks. These modern age-dating techniques have thus enhanced our historical understandings and added new insight to the continuing evolving ideas on regional and stratigraphic synthesis. The Noranda district is seen to have evolved as a rapid construction of volcanic complexes in a very active tectonomagmatic environment.

Zircon U-Pb analysis yielded an age of intrusion of the Lac Dufault Pluton of 2694 Ma, whereas the Flavrian Pluton has an age date at 2700 Ma (Mortensen 1987). These age dates are in agreement with the model that the Flavrian Pluton is synvolcanic and co-magmatic with the units at the intermediate level of the Noranda volcanic sequence (Goldie 1979, Paradis et al. 1988, Mortensen 1987).

STRATIGRAPHIC AND STRUCTURAL MODELS

Gunning and Ambrose (1939) interpreted the east-west trending succession of the volcano-sedimentary belt of the region as forming an isoclinally-folded syncline, with the Cadillac Group at the axial core. This structural interpretation has been widely adopted in subsequent geological studies and compilation reports (Wilson 1941, Dresser and Denis 1944, Baragar 1968, Goodwin et al 1972, Spence and De Rosen-Spence 1975, Gélinas et al 1977, Dimroth et al 1982)

After the interpretation of Gilmour (1965), the relationship and connection of volcanic stratigraphy to massive sulfide mineralization in the Noranda district have been widely accepted. There have subsequently been, from the mid-1970s to the present, several important examinations and new concepts of genetic models for the volcanism and ore deposits in the area.

Spence (1967) first suggested the occurrence of a series of rhyolite belts in the central area of the district, with thickened volcanic successions forming an anticlinorium structure. Spence and de Rosen-Spence (1975) presented a more detailed review and outline of the volcanic stratigraphy, particularly the **Mine Zone** which hosts many massive sulfide deposits in the central part of Noranda area. An integral part of their work was the establishment of five rhyolite zones, representing successive periods of acidic volcanic activity. These five rhyolite zones are separated by major units of basalt and andesite flows. The Noranda volcanic pile was considered to be a large east-trending anticlinorium containing the west to east succession of Zones I to V rhyolites, Zone III is the Mine Zone. This new regional interpretation formed the framework for most subsequent studies. The present thesis area includes segments of Zones IV and V, which are the later phases of extrusive activity of the evolving and eastward migrating volcanic center (Spence and de Rosen-Spence 1975)

In the 1970s, regional studies of the metamorphic history and characterization of the low grade greenschist to pumpellyite facies volcanic rock of the Noranda area were made by Jolly (1974, 1977, and 1978) He documented the metamorphic

assemblages of the volcanic rocks, and the mineral reactions that took place during stages of regional metamorphism

Using major element geochemistry and discrimination plots, Gelmas et al (1977, 1982) subdivided the volcanics in the Noranda area into nine tholentic and calc-alkaline units. Ludden et al (1982) provided substantiation for this geochemical characterization using rare earth and other trace elements. Gélmas et al (1984) compared the Noranda volcanism to that of large caldera systems. The tholeritic and calc-alkaline successions were assigned to distinct episodes of caldera activity. The Flaviran and Lac Dufault plutons were interpreted as subvolcanic co-magmatic intrusions feeding the extrusive volcanism, as proposed and documented by Goldie (1978, 1979). In the classification system of Gélinas et al (1977, 1982), volcanic rocks in this thesis study fall within the Dufault calc-alkaline, Dufresnoy tholeiitic, and Reneault calc-alkaline units

A major stratigraphic synthesis and new tectonic evolution model was presented by Dimroth et al. (1982, 1983a,b). The regional structure as documented was composed of a large Blake River synclinorium with its two branches of synclinal zones in the Noranda area cored by several domical anticline and various smaller second and third order folds (Dimroth et al. 1982, 1983a). The Noranda volcanic complex was thought to correspond to an analog of Cenozoic oceanic island arc systems. The volcanic succession in the region was considered to have formed by the coalescence and overlapping of several island arc volcanic centers built up on pre-existing oceanic crust of ultramafic and mafic material.

A revised regional model was proposed by Gibson and Watkinson (1990) the volcanic assemblage in the central part of the district constituted a major Cauldron complex. They combined stratigraphic changes, variation in thickness, structural

also revamped some of the stratigraphic correlations in the area. The volcanic stratigraphy is the district formed the Pre Cauldron, Cauldron, and Post Cauldron sequences. Of these, the Cauldron sequence is approximately equivalent to Zone III or Mine Zone of Spence and de Rosen-Spence (1975)

Péloquin et al (1990) also presented a geological synthesis of the region. This study, along with Gibson and Watkinson (1990), subdivided the terrain of the Noranda district into blocks bounded by major faults. The correlation of volcanic sequences between the blocks provides a working stratigraphic framework for the district

REGIONAL GEOCHEMICAL STUDIES

A geochemical study by Baragar (1968) using major elements compared the Blake River mafic volcanics to 'circumoceanic basalts'. He suggested the basaltic magma was generated at depth, and "acidic magmas may be due to eventual melting of parts of the crust". Goodwin (1977) made an extensive study of the geochemistry of volcanic rocks of Superior craton, including the Blake River Group at Noranda, and developed a general framework of volcanic evolution for greenstone belts. The volcanic successions have repeated mafic to felsic cycles, with a predominance of mafic and intermediate rocks, and an increasing proportion of felsic volcanics toward the top. Goodwin (1977) concluded that the volcanic successions changed upward from a base of tholeitic basalts, to calc-alkaline andesites, dacites, and rhyolites at the top. The intermediate and felsic volcanic products were considered to be derived from an evolving magma source, either through fractional crystallization or mixing with crustal components

Along with the geochemical studies by Gélinas et al. (1977, 1982) and Ludden et al. (1982), many papers on the ore deposits have provided data on the geochemical characterization of the volcanic rocks and the effects of hydrothermal alteration. Recent work in the Mobrun mine area by Caumartin and Caillé (1990), Barrett et al. (1992), and Laflèche et al. (1992) has provided geological, hthological, and hthogeochemical data and interpretations. This has resulted in a modified subdivision of the volcanic stratigraphy in parts of the thesis area.

BLAKE RIVER GROUP STRATIGRAPHY

Regional Stratigraphy

The volcanic successions in the study area, in Dufresnoy Township, belong to the Blake River Group (BRG) as defined by Gunning (1937) and Gunning and Ambrose (1939) Rocks of BRG are bordered at the north and south in part by the Kewagama and Cadillac Group sediments, respectively, and also by two major fault zones—the Porcupine-Destor Break to the north, and the Cadillac-Larder Lake Break to the south (Fig. 1)

The BRG is composed of a series of bimodal mafic to felsic volcanic successions, and is intruded by syn- to post-volcanic granitic and granodiorite plutons, and late dioritic to diabase sills and dikes. Faulting is widespread in the region, resulting in some problems for stratigraphic correlation due to uncertainties in amounts of vertical and lateral displacements. The Blake River Group in the Noranda district, as compared to other greenstone belts, contains unusually large proportions of felsic rocks massive rhyolites, rhyolite breccias, and pyroclastic material

Noranda District Volcanic Stratigraphy

The Noranda district is usually ascribed to include the Beauchastel, Dufresnoy, Duprat and Rouyn townships (Wilson 1962). The basaltic flow-dominated lavas south of Rouyn-Noranda change northward into thick conformable basaltic-andesitic to rhyolitic sequences of the Noranda Complex (Dimroth et al. 1982). Massive sulfide deposits are associated with felsic volcanic units in the central part of the district. Ore horizons are commonly found at the top of thickened felsic volcanic successions, especially along the contacts with overlying andesites, and are usually associated with laminated cherty tuff units (Gilmour 1965, Spence 1967).

In a regional stratigraphic context, the rocks in the thesis area (Fig. 3), between D'Alembert and Cléricy, constitute a volcanic assemblage to the east and northeast of the Central Mine Sequence. The stratigraphy extends from the top of the Amulet Andesite near the Norbec mine, east to the thick rhyolite units at the Mobrun mine.

The general lithology, geology, and structure of the Noranda area are documented on the Compilation Map U-265 (Dugas and Hogg 1962), Carte de Compilation Geoscientifiques 32D/6 and 32/D7 series (MERQ 1982), and Lithostratigraphic Map of the Abitibi Subprovince (MERQ-OGS 1984) Other compilation maps in published studies and reports can be found in Spence and De Rosen-Spence (1975), Gélinas et al (1982), Dimroth et al (1982, 1983a), and Péloquin et al (1990)

D'Alembert-Cléricy Area

The rocks of the Blake River Group in the D'Alembert-Cléricy area are included in the Noranda district volcanic sequence in the above mentioned regional

geological studies. The stratigraphy is commonly divided along the D'Alembert Pluton and/or the D'Alembert Fault into two parts, the upper part of the Central Mine Sequence in the Flavrian Block to the west, and younger units of the BRG to the east

The western section of the transect extends from the top of the Central Mine Sequence east of the Waite Hills to the D'Alembert fault on the east side of the D'Alembert pluton. This section of stratigraphy is commonly regarded as being on the periphery of the Noranda volcanic complex (Dimroth et al. 1982). It contains the Zone IV rhyolites of Spence and De Rosen-Spence (1975). The western section is included in the Dufault calc-alkaline unit by Gélinas et al. (1977), and later separated into the Trémoy tholeitic unit (Gélinas et al. 1984). In other regional models, the western section has been assigned to the Post-Caldera sequence by Dimroth et al. (1982), the Post-Cauldron (Cycle 4) sequence of Gibson and Watkinson (1990), and within the Flavrian Block as outlined by Péloquin et al. (1990).

The eastern or Cléricy section extends from the D'Alembert fault eastward to the vicinity of the town of Cléricy, and includes the Mobrun mine. It contains the Cléricy rhyolite (Gélinas et al. 1978) and Mobrun rhyolites, which constitute parts of the Cléricy volcanic complex as described by Dimroth et al. (1982). This eastern section belongs to the Zone V rhyolites of Spence and De Rosen-Spence (1975), and the Cycle 5 volcanic sequence of Gibson and Watkinson (1990). It is placed within the Dufresnoy tholeitic and Reneault cale-alkaline units by Gélinas et al. (1977). They later regrouped this succession into the Cléricy cale-alkaline, Destor tholeitic, Reneault cale-alkaline, and a part of the Trémoy tholeitic unit (Gélinas et al. 1982). This section lies within the eastern sector of the Blake River Group of Péloquin et al. (1990). The volcanic rocks in this section were considered to be derived from a separate volcanic

complex that was contemporaneous with the Noranda caldera, in the regional stratigraphic synthesis by Dimroth et al (1982, 1983a,b). These regional models form an important basis for the correlation of volcanic rocks and the exploration for VMS deposits in the outlying parts of the Noranda district.

Massive Sulfide Deposits

Three massive sulfide deposits occur in the general vicinity of the thesis area. The Newbec VMS orebody is located in the western end of the transect. It was exploited in the late 1920s and had an output of 278 tons grading 6.74% copper (Wilson 1941, MERQ 1982). This small quantity likely represents development ore, and not economic mine production. The Mobrun mine is the large VMS deposit in the thesis area. It contains the only major orebodies discovered east of the Central Mine Sequence, with a total ore reserve of about 11.5 million tons (Barrett et al. 1992). The mine contains several large orebodies in the '1100' and 'C' lenses, hosted mainly by massive and fragmental rhyolites and lesser andesite (Caumartin and Caillé 1990).

The VMS deposit at Mine Gallen (formerly West MacDonald mine) occurs just to the south of the thesis area. It is in a volcanic roof pendant of the Lac Dufault granodiorite (Watkinson et al. 1990), and is assumed to be belong to the southern extension of the volcanic stratigraphy in the D'Alembert-Cléricy area.

Chapter 3

GEOLOGY AND LITHOCHEMISTRY

INTRODUCTION

This chapter presents the results of field work, and petrographic and geochemical studies of rock samples collected along a transect in the thesis area. The results are displayed in a series of maps, stratigraphic sections, tables of analyses, and plots of the geochemical data on selected discrimination diagrams.

Field Work and Sample Collection

Field work for the thesis project was carried out in the summer of 1991 Mapping of the terrain focused on the stratigraphic relationship of the volcanic units, bedding tops and facing directions, as well as documentation of geological features and structures. Detailed field mapping and sampling was carried out at selected localities along the transect where the volcanic rocks were well exposed. A total of 56 rock samples were collected. An additional 10 samples were available for the project area from the collection of Prof. W. H. MacLean, obtained on a reconnaissance survey in the previous year.

Sample Preparation and Laboratory Work

Forty representative rock samples were selected and cut into slabs to make petrographic thin sections. These were prepared by McGill's rock preparation facility and also by Vancouver Petrographic Limited of Langley, B.C.

In the preparation of samples for chemical analysis, each sample was crushed to ~1 cm, and then reduced to -200 mesh in a tungsten carbide puck grinder. The powders were fashioned into fused glass disks using a Li-tetraborate flux for major element analysis (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, Na₂O, K₂O, and P₂O₅), and into pressed powder pellets for the trace elements Zr, Y, Nb, Sr, Rb. Fifty-three rock samples were analyzed by X-ray fluorescence (XRF) methods (Philips PW 1400 X-Ray spectrometer, with 100 kv generator and Rh. X-Ray tube) in the Geochemical Laboratory of the Department of Earth and Planetary Sciences at McGill University. The detection limit for the major elements was 0.01%, and 2 ppm for the trace elements. Rare-earth elements (REE) and additional trace elements were analyzed on 27 samples by instrumental neutron activation analysis (INAA) by Activation Laboratories Ltd of Ancastor, Ontario. Detection limits varied from 1.0 to 0.01 ppm for the different REE.

Mineral compositions were analyzed on eight polished thin-sections by electron microprobe (CAMECA MBX fully-automated microprobe, wavelength dispersive system with the PAP correction procedure) in the Department of Earth and Planetary Sciences, McGill University

GEOLOGICAL DESCRIPTION

The geology of the transect is described from west to east, that is, from one km east of the Norbec mine to the Mobrun mine. The thesis area map (Fig. 3) illustrates the geological features and the rocks types, together with some field data and measurements. The locations of rock samples taken during field work is shown in Appendix Fig. 1. A general stratigraphic column has been constructed for the thesis

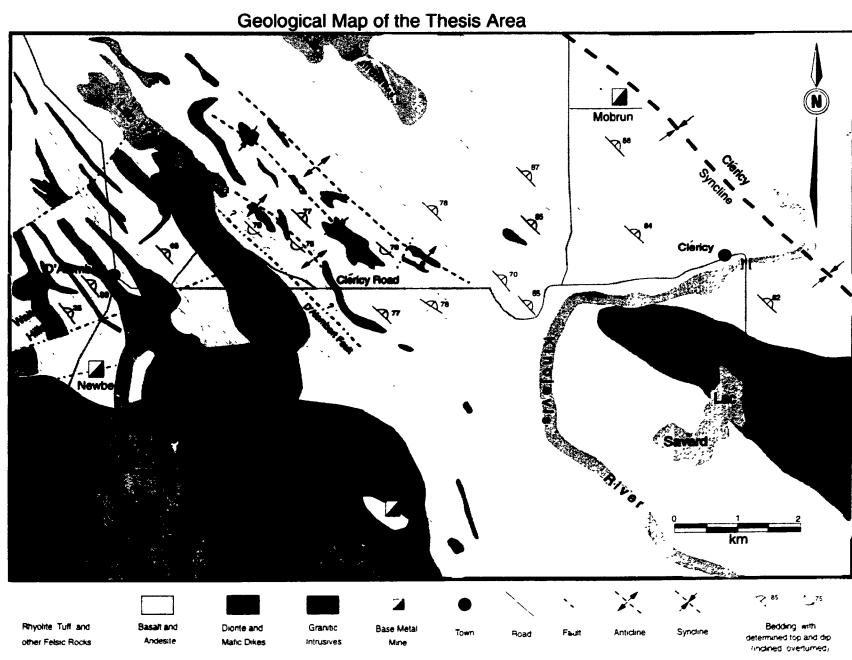


Fig. 3 Geological map of the D'Alembert-Cléricy transect, Noranda District.

area that ties into the stratigraphy of the Central Mine Sequence (Fig. 4)

The Ministere de l'Energie et des Ressources du Québec (MERQ) 1 10,000 scale maps, Cartes de Compilation Géoscientifiques, and 1 15,000 scale air photos provided preliminary guides for the field work. The maps covering this area are 32 D/6-0304, 32 D/6-0204, 32 D/7-0301, and 32 D/6-0201. These maps illustrate the generalized regional geology and lithologic outlines as compiled by MERQ from company reports, government documents, prospecting assessments, and drill and mine records

Field mapping for the thesis project has mostly corroborated the contacts and the extent of the major lithological units in the previous studies. The present thesis work also has added more detail to the existing geological maps, resulted in the clarifications of the extent and composition of some of the units, and has revised the magmatic affinities of the major volcanic sequences. It has also produced some modifications to the geology of this section of the Noranda district

Structural Geology

All rock units in the field area have a northwest-southeast regional trend, varying in strike from 300° to 340°, dips are ~35° easterly near Norbec but are steep to subvertical from D'Alembert to Cléricy. This change in dip is abrupt and occurs in the vicinity of the town of D'Alembert. The whole volcanic succession of this part of the Noranda district is intruded by granodiorite plutons and large medium to coarse grained gabbio-diorite dikes. The dikes are generally aligned with the northwest regional trend. Some of them offset and displace the volcanic units, and are interpreted to have intruded along faults. Dikes are more abundant in the Waite Hills in the uppermost section of Central Mine Sequence, here these late intrusive bodies occupy east-dipping

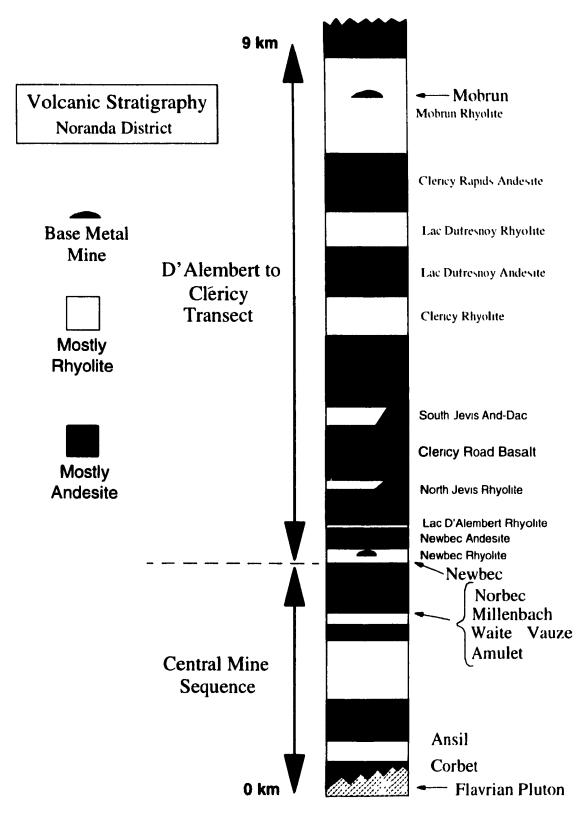


Fig. 4. Generalized stratigraphic column of volcanic lithology in the Central Mine Sequence and Thesis Area

reverse faults that uplift and repeat some of the volcanic stratigraphy (Spence 1967).

Faulting Two fault systems are prominent in the D'Alembert-Cléricy area One system trends northeast-southwest, and the other northwest-southeast, the latter being concordant with regional lithological and foliation trends. The D'Alembert fault (also known as D'Alembert shear) is a regional northwest trending break. It is reported in a number of regional studies (e.g. Dimroth 1982, MERQ 1982, Péloquin 1990, Gibson and Watkinson 1990), but not in others (e.g. Gélinas et al. 1977, 1982). This structure occurs as a lineament on maps and air photographs, and truncates the eastern margin of the D'Alembert pluton. It is considered to extend from north of Lac D'Alembert southeast through the thesis area, and is considered by Péloquin et al. (1990) as the boundary of the Flavrian and East Blake River structural blocks. A zone of strong foliation fabric was observed during field work for this study in the rhyolite-andesite succession along the projected fault zone on the eastern side of the D'Alembert pluton. The displacement vector along this break is unknown.

Folding A number of folds have been reported and proposed in the transect area (Trudel 1978, Gélinas et al 1982, Dimroth et al 1982, 1983a, MERQ 1982) The Baie Fabie and Cléricy synclines are second order isoclinal folds that have been documented in this D'Alembert-Cléricy region by Dimroth et al (1983a). Their southern extensions were traced into parts of the thesis area at some localities during field work for this study

Stratigraphic top determinations from the present work and previous studies (e.g. Trudel 1978) define the second order and some third order folds in the parts of the

thesis area (Fig. 3). The two large second order synclines extend easterly from the Lac Duparquet area, and curve southeasterly through the thesis area to the east of the D'Alembert and Lac Dufault plutons. Between these two large folds are several third order folds of smaller amplitude and strike length. These were documented using facing reversals in the volcanic assemblage.

The presence and the positions of these folds differ in some of the regional maps and interpretations. The small third order folds were difficult to verify in the field. From this study there appear to be fewer third order folds than previously reported, hence there are probably also fewer repetitions of stratigraphy.

The second and third order fold structures become less evident and die out south of the Cléricy road. Gélinas et al. (1982) and Dimioth et al. (1982) indicated a fault along this highway, but little evidence was found in the present study to support this inference. The decrease in intensity of the southeasterly fold structures is likely due to a gradual structural transition, passing from zones of high to lower strain. The second order folds are thought to result from the regional kinematic strain regime during Kenoran deformation (Dimroth et al. 1983a). The rocks in a lower strain zone to the south likely have escaped deformation due to the buttressing effect of the Lac Dufault pluton at the time of regional deformation.

LITHOLOGIC AND PETROGRAPHIC EXAMINATION

In this section, field geology is integrated with data from petrography, mineralogy, and lithogeochemistry. Field data come from pillow top indicators, graded beds, flow top breccias, volcanic facies changes, lava flow thickness, and other primary and secondary features. This forms the basis for the examination, classification, and

interpretation of the volcanic stratigraphy. In addition, major and trace element discrimination plots (such as K_2O vs SiO_2 and REE profiles) and HFSE ratios (such as the Zr/Y values) are used to assist in the identification and classification of the lithologies

On the K₂O vs S₁O₂ diagram (Fig. 5), the K₂O range and geochemical affinities (Low-K to High-K) of the freshest rocks and their fractionation range (basalt-andesite-dacite-rhyolite) are shown. Altered samples showing varying degrees of silicification, sericitization, albitization, and chloritization have been screened and omitted from this plot. As can be seen, the rock units range from basalt to rhyolite, which is typical of the Noranda region (Gélinas et al. 1984, Thurston et al. 1985, Paradis et al. 1988). The majority of rocks belong to a Low-K series, as also has been documented in the Central Mine. Sequence, in the district (MacLean and Hoy. 1991, Barrett et al. 1991b).

The greenschist mineral assemblage is discussed in a later section along with the lithologic and petrographic descriptions. Plots of mineral chemistry are used to assist in the documentation of the secondary minerals actinolite, epidote-zoisite, chlorite, sericite, K-feldspar and albite. The data are collected from seven rock samples from intervals along the transect, the samples represent the variety of volcanic rocks encountered.

On the basis of Zr/Y ratios, K₂O-SiO₂, and other data, the volcanic sequence has been classified into several lithological subdivisions as shown on the lithological map of the area (Fig 6). These are presented and discussed more fully in the following chapter. Average chemical analyses of individual units for the units are listed in Tables 3, 4, and 5 in the following text. Analyses of all samples are presented in Appendix Table I.

Volcanic Rock Composition in the Thesis Area

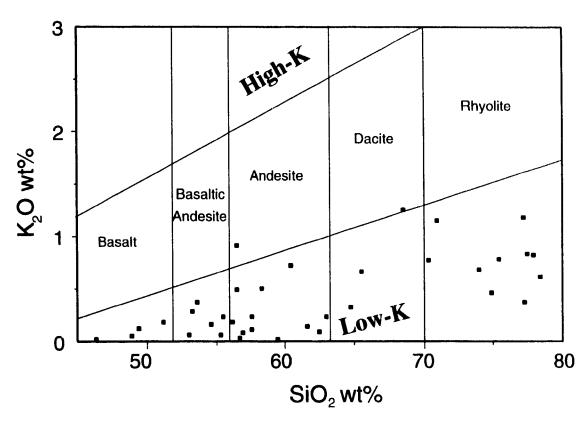


Fig. 5. Plot of K₂O vs. SiO₂ showing the range of volcanic composition in the study area, as given by least latered samples. After Peccerillo and Taylor (1976).

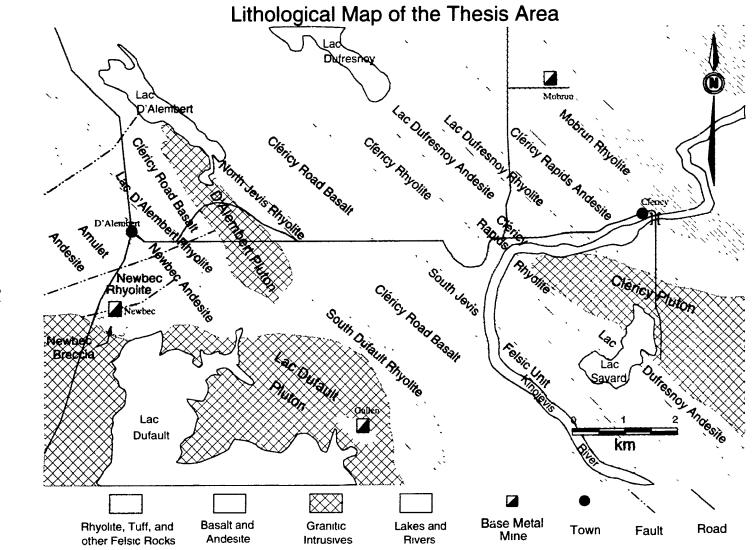
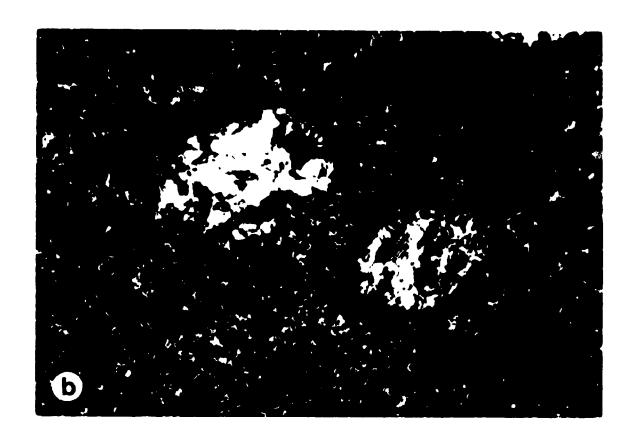


Fig. 6. Map of the volcanic stratigraphy in the D'Alembert-Cléricy transect.

Amulet Andesite

The starting point of the traverse was from the middle of the Amulet Andesite in the Waite Hills. It is commonly shown as the uppermost formation of the Central Mine Sequence. The Norbec Cu-Zn VMS orebody occurs at the contact of this unit and the underlying Waite Rhyolite.


The Amulet Andesite is a succession of pillowed and massive flows, commonly amygduloidal, and aphyric to slightly plagioclase porphyritic. The unit is intruded by gabbro-diorite dikes. Its average composition is in the andesite range and its Zi/Y value of 4.7 suggests a transitional affinity (Table 3). On the K₂O-SiO, diagram, samples of the unit plot in the low-K basaltic-andesite to andesite range.

Individual lava units range from three to about twenty meters thick, striking ~330° and dipping 35° to 40° NE. Pillow tops and flow top bieccias face northeast. At several localities with good outcrop exposure, lava flows have well developed massive units grading upward into pillow lava capped by flow top bieccia. Flow front breccias were also observed containing pillow fragments (Fig. 7a), dipping at 20° to 30° relative to the body of the unit (this produces an apparent dip for the flow unit). The massive to pillow flow succession is commonly repeated in the Amulet Andesite stratigraphy in the Waite Hills.

Fig 7 Amulet Andesite

- a Pillows and pillow breccia, Waite Hills.
- b Photomicrograph of fine grained, spilitized andesite with quartz-epidote amygdules Scale bar = 0.5 mm

Petrographically, the Amulet Andesite has an intersertal texture. Spilitization and low grade metamorphism have produced an assemblage of albite, zoisite, epidote, chlorite, sericite, quartz, and actinolite. Plagioclase grains are albitized, likely after andesine-labradorite. Both zoisite and epidote occur in the matrix, and as large blades and fan-like radiating grains in amygdules and other open space fillings (Fig. 7b). The amphiboles occur as prismatic, fibrous grains, in the range of actinolite with Fe/Fe+Mg ratios of 0.34 to 0.45.

Chlorite generally occurs as a fine grained replacement of mafic matrix components and also as large open-space filling aggregates. Most of the chlorite is khaki-brown, with an Fe/Fe+Mg ratio ranging from 0.35 to 0.45, and plots in the ripidolite field. The khaki-brown birefringent chlorite in the presence of blue zoisite (low Fe) form an equilibrium assemblage. These are distinctive of the low bulk iron contents of these andesites.

Newbec Rhyolite

The occurrence and approximate extent of the Newbec Rhyolite, Newbec Andesite, and Newbec breccia were first outlined by Wilson (1941). The Newbec Rhyolite is usually placed stratigraphically above the Mine Sequence, in the post-caldera volcanic succession. The main body of rhyolite occurs at the Newbec Mine near Highway 101, in the vicinity of the northwest corner of Lac Dufault (Fig. 3), but it extends close to the town of D'Alembert.

Samples of the Newbec Rhyolite are from the old Newbec mine The unit is a massive greyish-white quartz porphyry, with euhedral quartz phenocrysts (1-4 mm)

Table 3. Average chemical analyses of the western volcanic units (least altered samples).

Units	Amulet	Newbec	Newbec	D' Alembert
Rock Type	Andesite	Rhyolite	Andesite	Pluton
n	3	2	1	2
				_
SiO ₂ wto	55 78	79 41	54 99	65 99
TıO,	1 12	0.18	0 64	0.48
Al ₂ O ₁	16 02	11 14	16 48	11 29
FeO	7 15	1 39	. 778	4 24
MnO	0 16	0 01	0.13	0 14
MgO	4 83	0 22	5 61	1.57
CaO	7 12	0 70	5.88	3 27
Na ₂ O	4 53	5 42	5.28	4 3 1
K ₂ O	0.30	0 29	0 04	1.15
P ₂ O ₃	0 17	0.03	0 09	0 12
LOI	1 66	0 60	2 76	4 64
Total	98 84	99 37	99 68	99 18
V ppm	221	18	165	56
Cr	93	58	127	90
Nı	49	14	60	31
Ba	57	66	154	199
Rb	7	6	0	31
Sr	97	41	204	103
Y	19	35	19	23
Zr	90	304	89	141
Nb	8	15	7	9
n'	(1)	(2)	(1)	
Hf	2 1	77	26	
Th	07	3 0	17	
Та	03	2 4	10	
Sc	25	6	26	
La	92	. 22	17	
Се	20	48	38	
Nd	11	27	22	
Sm	26	61	59	
Eu	0 82	1 00	1 60	
Tb	0 50	1 15	1 00	
Yb	1 53	4 92	4 14	
Lu	0 23	0 78	0 66	

n - number of samples

 n^{\prime} - number of samples with REE analyses

One sample has an abnormally high Zr/Y ratio of 13 5 (Appendix Table I) which places it in the calc-alkaline affinity range. However, this high Zr/Y value is likely due to hydrothermal alteration involved in the sulfide mineralization. This rhyolite and the Newbec Breccia are considered to be of transitional affinity.

Petrographically, the rhyolite is fresh-looking, with large euhedral quartz phenocrysts and occasional albite-oligoclase phenocrysts in a fine grained quartzo-feldspathic matrix (Fig. 8a)

Newher breccia The heterolithic Newbec rhyolite breccia intrudes the Newbec Rhyolite, and is exposed on a ridge south of the mine. Unsorted fragments of massive inhyolite, pillow and massive andesites, and quartz diorite occur in a matrix of rhyolite (Fig. 8b). The clasts are angular to subrounded, and display a range of weathered colours from white, grey, green, brown, to orange, reflecting their heterolithic nature.

One analyzed sample from the rhyolite matrix is chemically identical to the Newbec Rhyolite, with a Zr/Y ratio of 6.5. The Newbec Breccia therefore most likely belongs to the Newbec Rhyolite unit. It may be a felsic dike intrusive, related to rhyolites higher in the stratigraphy, such as the North Jevis Rhyolite and the Cléricy Rapids Rhyolite (Tables 4 and 5)

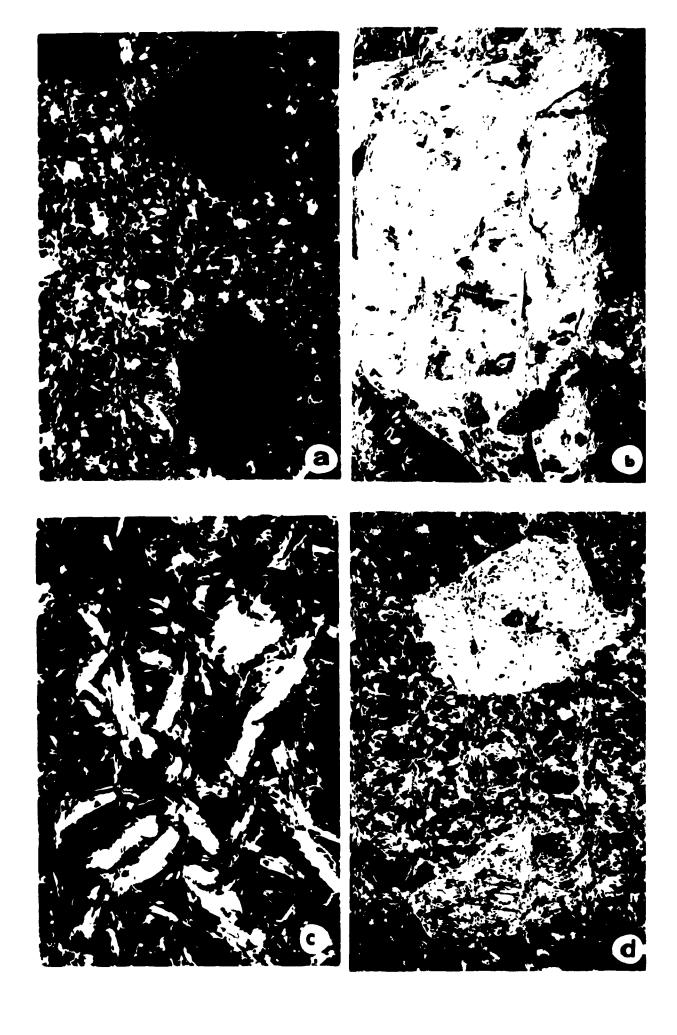

In an earlier report on this unit, Wilson (1941) ascribed an explosive origin to the Newbec Breccia. He also suggested that the breccia was late, and may have formed after the intrusion of granodiorite. In later geological reports, the Newbec Breccia has been classified as an intrusive 'diatreme breccia' (Spence 1967, Gibson and Watkinson 1990)

Fig. 8a Newbec Rhyolite Photomicrograph of quartz-albite porphyritic rhyolite. The albite phenocryst is sericitized, the matrix is quartz, albite, and minor epidote and chlorite. Sample 91-53 Scale bar = 0.5 mm

Fig 8b. Newbec Breccia Field photograph of an outcrop of the heterolithic bieccia, the matrix is rhyolitic, and the clasts are diorite, andesite, and massive and porphyritic rhyolite Sample 91-53

Fig 8c Newbec Andesite Photomicrograph of medium grained andesite with intersertal texture of plagioclase laths and a matrix of epidote, actinolite, quartz, plagioclase, chlorite, and opaque oxides Sample 91-52 Scale bar = 0.5 mm

Fig 8d D'Alembert Rhyolite Photomicrograph of albite porphyry rhyolite. The albite phenocrysts are largely replaced by carbonate and sericite. The felsic matrix is also sericitized and contains minor carbonate and chlorite. Sample 91-55. Scale bar =- 0.5 mm

Newbec Andesite

The Newbec Andesite is a mostly massive, medium grained, plagioclase microporphyritic flow unit that overlies the Newbec Rhyolite. It is an andesite of transitional affinity with a Zr/Y ratio of 4.7 (Table 3), and plots in the low-K andesite field (Fig. 6). The rock has an intersertal texture with a randomly oriented network of plagioclase laths, and altered mafic matrix of chlorite, epidote, actinolite, sericite, and leucoxene (Fig. 8c).

Newbec Deposit The Newbec VMS deposit, located about 500 meters east of Highway 101 (Fig 3), occurs at the contact of Newbec Rhyolite the overlying Newbec Andesite, The deposit is of low tonnage but high grade and was explored in the 1920s Mining records indicated that up to 1930, production was 278 tons of development one assaying 6.74% Cu (Wilson 1941) The massive sulfide ores contain chalcopyrite, sphalerite, pyrrhotite, and pyrite Altered Newbec Andesite immediately overlies the ore and rhyolite, and is exposed on surface outcrops at the old Newbec mine shaft

D'Alembert Rhyolite

In the field area adjoining the Newbec Andesite, the D'Alembert Rhyolite forms a thin (<10 m) porphyritic unit. It contains plagioclase phenocrysts (1 to 3 mm) which are largely replaced by carbonate and to a lesser degree by sericite (Fig. 8d). It is a low-K rhyolite of transitional affinity (Table 4 and Appendix Table I), and is possibly to correlate it with the 'Fish-roe Rhyolite', as described by Péloquin and Verpaelst (1989) and Péloquin et al. (1990). The main body of the 'Fish-roe rhyolite' is north of the thesis area near the Hunter Creek fault, where it forms massive rhyolite with

plagioclase glomerophenocrysts and a spherulitic texture (Péloquin and Verpaelst 1989)

Although it has been mapped as far south as the Cléricy Road, exposures of this rhyolite are scarce in the thesis area

D'Alembert Pluton

This small pluton of albite granite intrudes along the contact of the Newbec Andesite to the west and the Cléricy Road Basalt to the east (Fig. 3). Its eastern margin is taken as the boundary of the Flavrian and East Blake River blocks of Péloquin et al. (1990). The pluton is a coarse grained granitic rock composed of sericitized albite, quartz, chloritized mafic minerals, carbonate, and leucoxene. Although in proximity to the Lac Dufault pluton, its genetic relationship is not clear as few comparative lithochemical studies have been made. The D'Alembert pluton contains about 70 wt % SiO₂, 14 wt % Al₂O₃, 1.2 wt % K₂O (Table 3) and Zr/Y value of 6.2 suggests a transitional affinity. Sericitized albite grains likely account for much of the K₂O in the chemical analysis, which may have been introduced during water-rock interaction. Alteration is also denoted by the high modal carbonate contents and high LOI in the granite

Cléricy Road Basalt

The extensive Cléricy Road Basalt lies between the Newbec Andesite and D'Alembert Pluton to the west and the Cléricy Rhyolite to the east, and includes the previously outlined D'Alembert Andesite as mapped by Wilson (1941) and Paradis et al (1988) This basalt sequence extends over 3.5 km along the Cléricy Road, but its true thickness (perpendicular to strike) is about 2.5 km. Two thin felsic volcanic

Table 4. Average chemical analyses of the central volcanic units (least altered samples).

		North	South	Cléncy	
Units	D'Alembert	Jevis	levis	Road	Cléricy
Rock Type	Rhyolite	And-Dac	Rhy-Dac	Basalt	Rhyolite
n	1	3	6	9	1
SiO ₂ wto	68 48	73 68	65 81	49 20	76 88
T ₁ O ₂	0 50	O 20	1 04	1.54	0.15
Al ₂ O ₃	12 09	1172	14 02	15 07	11 84
FeO	4 19	2 89	5 48	12 57	2 63
MnO	0 09	0 07	0 12	0 26	0.05
MgO	1 32	O 24	1 96	4 93	0.68
CaO	3 53	3 78	4 08	8 10	0.28
Na ₂ O	1 83	3 96	4 30	2 77	5 77
K₂O	2 51	0 49	0.55	0 19	0.83
P,O,	0 10	O 03	0 25	0.15	0 02
LOI	4 37	1 37	1 83	3 78	0 59
Total	99 01	98 44	99 43	98 55	99 72
V ppm	49	16	70	320	12
Cr	10	19	99	174	10
Nı	11	13	54	114	18
Ba	379	130	190	66	133
Rb	40	11	13	5	11
Sr	38	192	139	132	30
Y	68	45	31	25	93
Zr	248	249	136	64	314
Nb	15	15	9	7	20
n'	(1)	(3)	(3)	(4)	(4)
Hſ	4 4	5 2	33	1 2	78
Th	3 8	26	13	03	57
Та	1 4	13	07	03	19
Sc	9	12	21	37	6 2
La	28	14	13	36	39
Ce	64	31	29	10	86
Nd	38	17	16	7	46
Sm	96	42	4 1	2 2	109
Eu	1 44	0 85	1 29	0 75	1 29
Tb	2 10	0 90	0 83	0 55	2 45
Yb	8 21	4 97	3 21	1 93	9 70
Lu	1 25	0 81	0 48	0 30	1.49

n - number of samples

 n^\prime - number of samples with REE analyses

members, the North Jevis Rhyolite and the South Jevis Felsic Units, are interlayered within this thick basalt sequence (Fig. 3). The Cléricy Road Basalt consists of low-K tholeratic basalt and basaltic-andesite, averaging 51.8 wt % SiO₂ with a Zr/Y value of 2.4 (Table 4).

A number of anticlinal and synclinal folds have been mapped in this thick mafic unit (Trudel, 1978). However, the folds do not appear to continue southward beyond the Cléricy Road, thus the stratigraphic thickness of the Cléricy Road Basalt is not definite. Top indicators from pillow lavas (Fig. 9a) observed during field work indicate the presence of fold closures in some localities (Fig. 3).

The Cléricy Road Basalt is made up of massive and pillow mafic flows. These lava flows are locally amygduloidal, and display layering of pillows in some outcrops. The rocks dip 70° to 75° E, much steeper than the 35° to 40° for the volcanics of the Amulet Andesite and other units of the Central Mine Sequence. The lava flows of this tholeratic basaltic unit are much thicker and more extensive than those in the transitional Amulet Andesite.

The basalts of this unit have intersertal textures, and are composed of altered plagioclase and secondary mafic minerals. The matrix and amygdule fillings are mostly chlorite, epidote-zoisite, sericite, and quartz (Fig. 9b)

North Jevis Rhyolite

In the field area, this unit occurs as a sequence of foliated rhyolitic flows with lesser amounts of pyroclastic material and rocks of intermediate composition. Located north of the Cléricy Road adjacent to the D'Alembert Pluton, the North Jevis unit is contained within the large tholeitic Cléricy Road Basalt unit (Fig. 3). It forms hills and

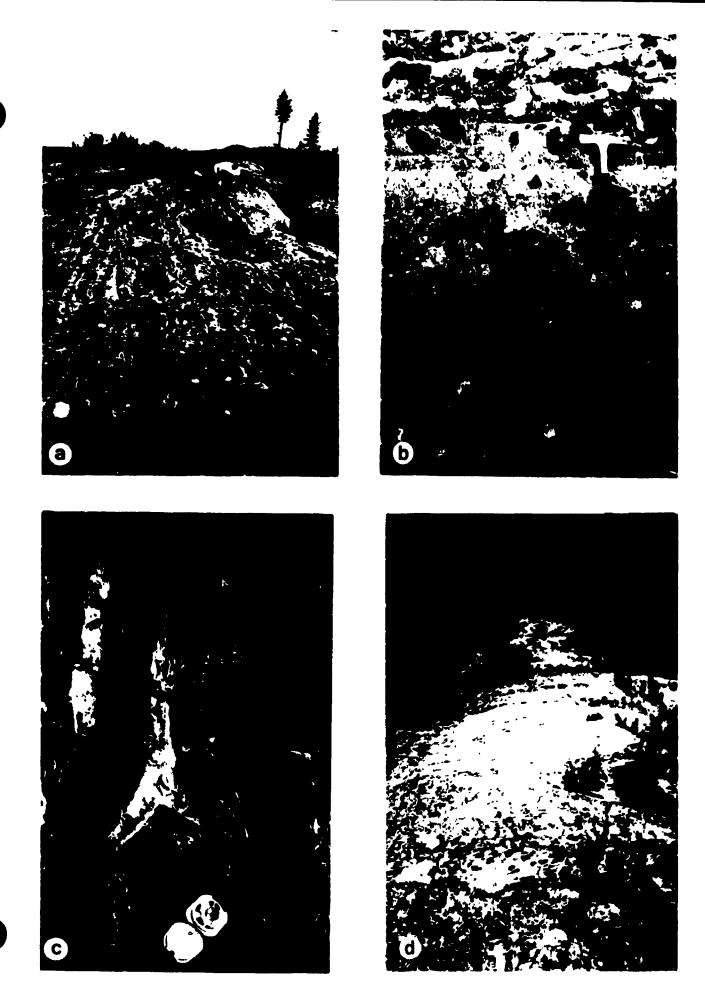
Fig 9 Cléricy Road Basalt

- a. Pillow lava with thin selvages, from a large outcrop 0.5 km north of the
 Cléricy Road Sample 91-34
- b Photomicrograph of spilitized basalt with void-filling blue chlorite in the shape of a bear surrounded by carbonate in vesicle filling Sample 91-9 Scale bar = 0.5 mm

outcrops that rise above the low-lying mafic lava terrain

South of Lac D'Alembert, exposure of layered volcaniclastics containing graded beds and other well-preserved bedding textures (Fig. 10a) is interpreted to belong to the North Jevis Rhyolite. These graded volcanics are interlavered with matic lavas of the Cléricy Road Basalt unit. The layered volcaniclastic beds comprise a series of graded coarse to fine ash tuff deposits (Fig. 10b,c) with tops to the southwest. This top direction indicates a reversal in facing of the volcanic sequence, defining one of the second-order folds as documented by Trudel (1978) and Dimroth et al. (1982)

Further south, near the road, outcrops of this unit show interlayered thyolite and andesite flows. These rocks exhibit a foliation and strain fabric, with angular cleavage faces, and are locally cut by white quartz-carbonate veins. Deformation has also locally formed andesite boudins within the more competent rhyolite. The foliation fabric is parallel to bedding, with an average orientation of 295°/dip 80° E.


The rhyolites are low-K and transitional, with Zr/Y averaging 5.9 (Table 4). The thin interlayered andesite flows within the North Jevis Rhyolite are also of transitional affinity.

South Jevis Andesite-Dacite

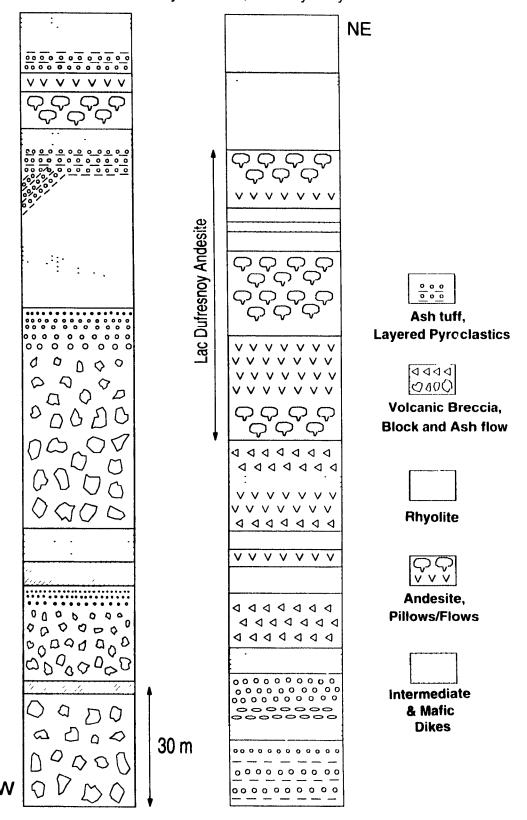
This approximately 100 m thick unit of andesite, dacite, and rhyolite occurs on roadside hill outcrops next to farm buildings towards the eastern margin of the Cléricy Road Basalt (Fig 3) On the south side of the road, the most abundant rock type is andesite. This andesite forms two fragment-rich pyroclastic flows (Fig. 10d), trending northwest-southeast and dipping 76° NE. The pyroclastic units are each about 25 m.

Fig 10a,b,c North Jevis Rhyolite, field photographs, 1 km north of the Cléricy Road.

- a Outcrop of layered volcaniclastic beds, tops to the right.
- b Detail from (a), repeated graded lapilli tuff beds, fining upwards
- c Detail from (a), succession of coarse lapilli tuff, chert, and fine tuff beds, tops to the left
- d South Jevis Unit Several units of intermediate volcaniclastic breccia, on a ridge south of the road cut. The fragments range up to 15 cm, andesite dike in the foreground. Sample 91-32

thick, and contain sorted beds of coarse to fine lapilli clasts, separated by a fine laminated ash tuff bed. They fine upward to the northeast, consistent with the overall regional stratigraphic facing

On the north side of the road, a series of thin dacite flows and clastic beds, totalling 50-60 m thick, occur on the western side of the outcrop. This unit also includes a thin (few meters) rhyolite bed. Some of the interbedded volcaniclastic breccia units contain angular blocks. Petrographically, the dacite flows contain plagioclase laths outlining an igneous flow texture with occasional plagioclase phenocrysts and numerous elongated quartz amygdules.


The andesite on the south side of the road is low-K and transitional to calcalkaline, according to its Zr/Y value of 8.5 (Appendix Table I). Other affinity discriminants, presented in a later chapter, affirm this classification. The rhyolite in this unit is also transitional (Zr/Y = 6.2), but the dacite (three samples) is distinctly tholeritic, according to Zr/Y and other geochemical discriminants (Appendix Table I)

The South Jevis unit has previously been mapped as a rhyolite fragmental volcanic flow. This study indicates that it is of mainly andesitic and dacitic composition, and is distinct from the North Jevis Rhyolite, which is mainly rhyolitic

Cléricy Rhyolite

Rocks of Cléricy Rhyolite occur as a wide band of felsic units extending from the south end of Lac Dufresnoy to Lac Savard (Fig 3). They comprise part of the Clericy Rhyolite complex of Gélinas et al (1978) and Dimroth et al (1982) The type locality is at the southern end of the unit where the Cléricy Road forms a U-shaped loop around the south end of the ridge, near the Kinojevis River (Fig 3)

Fig. 11. Stratigraphic column of volcanic rocks on Rhyolite Hill, Clericy Rhyolite Unit

A succession of rhyolitic volcanics with minor interlayered andesite lava are present on the ridge. The volcanic units are presented in a stratigraphic column from southwest to northeast (Fig. 11). Parts of this ridge exposure are composed of massive thyolite lava flows with local flow banding, rhyolite breccia and agglomerate, pyroclastic block and ash deposits, felsic ignimbrite flows, and some graded lapilli ashtuff beds.

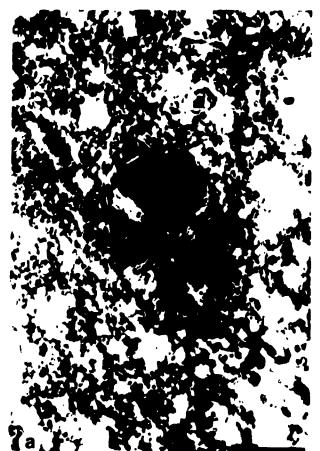
The rhyolite units range from 76 to 80 wt% SiO₂, and most are sericitized with high K₂O in the 3 to 4 wt% range (Table 4) They have an average Zr/Y of 3 7 (fresh and altered samples), and are therefore of tholeitic affinity

Facings in the volcanic sequence on the ridge are to the northeast, and dips are steep from 70° to 85° NE. Top directions were determined from graded volcaniclastic deposits, and pillow tops and flow-top breccia in the interlayered andesite lavas. As illustrated in the stratigraphic column (Fig. 11), the base of the unit is dominated by thick successions of felsic block and ash pyroclastic beds (Fig. 12a) and minor ash-tuff beds, both cut by discordant andesitic dikes. In the upper section, massive rhyolite, felsic breccia containing rhyolite blocks (Fig. 12b), and layered felsic pyroclastic deposits are common. Near the top, there are also some interlayered pillow flows of the South Dufresnoy Andesite. The fragmental rhyolites in this upper section include massive flows, pyroclastic lapilli ash tuffs (Fig. 12c), pyroclastic-phreatic agglomerate breccia, and base-surge ash tuff deposits (Fig. 12d). Beds of felsic fine-grained laminated tuff containing pyrite grains, reminiscent of cherty tuff exhalite, are also found on the ridge.

Petrographic study shows the flow rhyolites contain pristine quartz and partly altered albite phenocrysts, set in a devitrified fine-grained sericitional quartz-feldspar matrix, some flow samples contain spherulites of felsic composition (Fig. 13a). The lapilli-ash tuffs and other pyroclastic beds of the Cléricy Rhyolite unit are made up of

Fig 12. Cléricy Rhyolite, field photographs

- a Outcrop of parts of two block and ash rhyolite flows, the units exhibit well developed coarse to fine grading of volcanic clasts, with tops to the right
- b Angular blocks of massive rhyolite embedded in rhyolite ash flow tuff
- c Massive rhyolite interbedded with pyroclastic lapilli ash tuff units, hammer for scale (near top of outcrop)
- d Finely laminated surge deposits (on right side of the photo) found at the base of a lapilli tuff pyroclastic flow



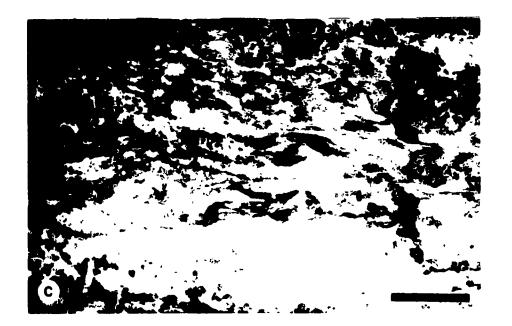


Fig. 13 Cléricy Rhyolite photomicrographs Scale bars = 0.5 mm

- a Spherulitic rhyolite, with fine grained devitrified quartz-feldspar groundmass Sample 91-20
- b Two graded laminated ash tuff beds, with quartz and albite grains, volcanic ash material and shards Sample 91-16
- c Welded texture in block and ash pyroclastic deposit, collapsed shard fragments and ash grains, with large lapilli-pumice material in the lower third of the photo. Sample 91-20

volcanic ash of vitric and crystal components, pumiceous lapilli material, and some vesicular lithic fragments. Bedded successions and graded textures are well preserved in some of the laminated tuff beds (Fig. 13b). The pyroclastic deposits have typical welded textures with collapsed pumice-lapilli material, and flattened shards with compressed and attenuated fluidal fragments (Fig. 13c).

This volcanic succession comprises near-vent to proximal facies felsic deposits. It formed in the vicinity of hydrothermal vent activity, wherein by accumulation of explosive eruption material and associated slump and debris flow. A shallow subaqueous explosive volcanic environment is indicated by the regular intervals of stratified volcaniclastic deposits, and by the low amount of transported and reworked material. There are sections within this thick rhyolite unit that are hydrothermally altered. Many samples have been sericitized, and show variable degrees of silicification and chloritization. Some outcrops of these altered rocks have rusty, bleached, and greyish-yellow colours. The field characteristics of these altered rocks and their anomalous geochemistry have been outlined by Trudel (1978).

Cléricy Rapids Rhyolite

The Cléricy Rapids Rhyolite is a mostly massive sequence, separated from the Cléricy Rhyolite to the east by a thin zone of Lac Dufresnoy Andesite. The former rhyolite extends south to the Cléricy road, over to the Kinojevis River and around the Cléricy pluton (Fig. 3). It differs from the tholentic Cléricy Rhyolite in having a transitional affinity, with average Zr/Y = 4.8 (Table 5)

This felsic flow unit ranges from light-green to grey-green to grey-black (Fig. 14a). The rhyolite has a fine grained quartzo-feldspathic matrix of devitrified material and phenocrysts of euhedral to subhedral quartz and albite.

Table 5. Average chemical analyses of the eastern volcanic units (least altered samples).

	Clericy	1 ac	Lac	Lac	Cléricy	
Units	Rapids	Dufresnoy	Dufresnoy	Dufresnoy	Rapids	Mobrun
Rock Type	Rhyolite	And (TR)	And (TH)	Rhyolite	Andesite	Rhyolite
n	2	3	3	5	2	1
SiO ₂ wt%	76 02	56 81	56 29	74 76	56 07	79 96
LiO ₂	0 23	0 89	1 45	0 27	1 39	0 20
Al_2O_3	11 76	15 88	13 71	12 02	14 04	9 76
FeO	2 04	6 66	10 14	2 94	10 96	2 46
MnO	0 04	0.09	0 21	0 04	0 15	0 03
MgO	0 42	4 42	3 95	0 46	4 05	0 68
CaO	0.31	8 39	6 99	1 02	6 86	0 47
$N_{d_2}O$	4 30	4 12	3 60	5 40	2 63	4 36
K₂O	2 83	0 35	0 16	0 72	0 06	0 64
P_2O_3	0.03	0 11	0 15	0 04	0 13	0 03
LOI	0 57	1 67	2 70	1 44	3 04	1 08
Fotal	98 54	99 39	99 35	99 11	99 36	99 67
V ppm	20	226	340	22	304	28
Cr	91	116	35	11	72	10
Ni	13	60	23	17	12	10
Ba	576	100	94	211	47	166
Rb	41	10	4	14	3	12
Sr	32	170	139	47	129	25
Y	54	17	43	99	32	52
/r	272	84	124	358	138	242
Nb	16	6	10	23	10	12
n'	(1)	(1)	(1)	(2)	(1)	(1)
111	66	1.9	4 1	97	46	5.3
Th	5 8	1.1	14	5 6	16	5 5
Ta	14	0.5	06	2 2	07	1.2
Sc	7	21	40	6	39	6
l a	41	90	13	26	18	29
Ce	82	19	31	59	44	61
Nd	37	10	19	35	25	30
Sm	90	24	60	9 5	6 6	7 1
Fu	1 38	0 67	1 68	1 54	1 41	0 99
Tb	1 80	0 50	1 40	2 40	1 40	1.40
Yb	6 54	1 84	5 22	10 05	5 90	6 26
l u	1 00	0 29	0 84	1 56	0 85	0 94

n - number of samples

n' - number of samples with RFE analyses

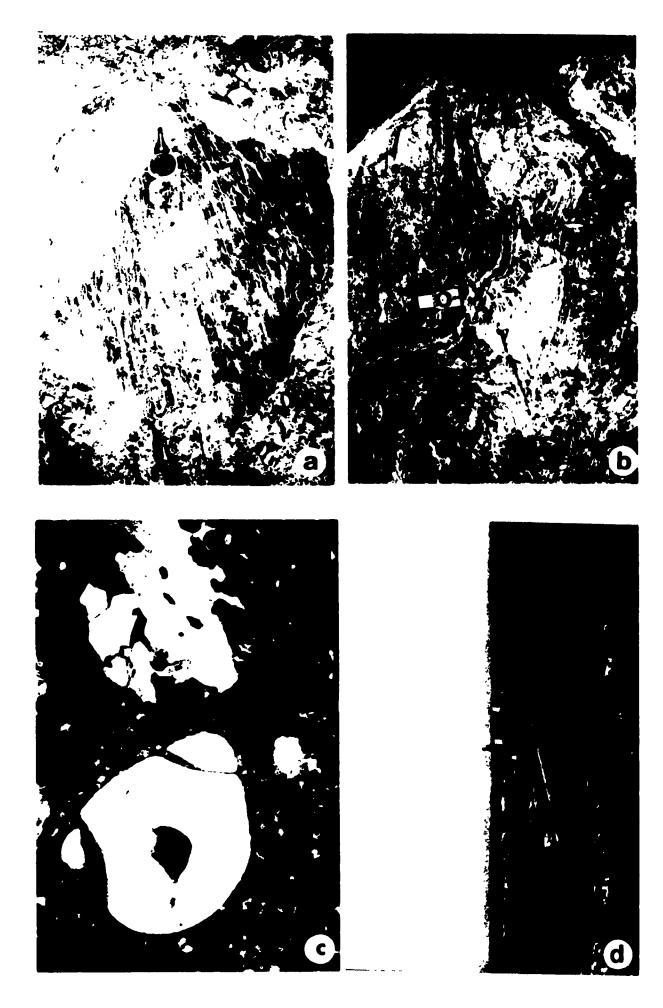
IR - Fransitional subunit

TH - Pholeutic subunit

The Cléricy Rapids Rhyolite represents a new episode of volcanic activity, producing massive rhyolite flows of transitional affinity distinct from the underlying mainly pyroclastic and tholeritic Cléricy Rhyolite complex

Lac Dufresnoy Andesite

The Lac Dufresnoy Andesite is a basaltic-andesite to andesite massive and pillowed flow unit, lying between the Cléricy Rhyolite complex and the Lac Dufresnoy Rhyolite (Fig. 3). Some mafic dikes crosscut the lava. Elsewhere, felsic clasts are incorporated within some pillow breccia. Deformation has produced a weakly developed foliated texture. The pillows have a general elongation trend of 285° and are steeply dipping with tops to the northeast. Epidote and carbonate veinlets are present throughout the flow unit.


The Lac Dufresnoy Andesite is of mixed affinity, with a major transitional subunit having Zr/Y ratios in the 4.4 to 5.4 range, and a smaller tholentic subunit with Zr/Y = 2.7 (Table 5)

Lac Dufresnoy Rhyolite

The Lac Dufresnoy Rhyolite forms a broad ridge bounded by topographically lower andesites. The rocks are of tholentic affinity, with a group average Zi/Y value of 3.6 Most of the samples are somewhat sericitized with relatively high K,O, and range from 74 to 80 SiO₂ wt % (indicating silicification in some samples, Table 5)

The rocks of this unit range from greenish-white massive rhyolite, quartz-feldspar porphyry, quartz amygduloidal rhyolite, spherulitic felsic flows, to complex flow banded rhyolite. A foliation fabric is observed with locally developed cleavage faces. The rocks dip steeply, and also exhibit complex igneous flow folding in some outcrops (Fig. 14b). The rhyolites have a slightly sericitized quartzo-feldspathic matrix,

- Fig 14a Cléricy Rapids Rhyolite. Small roadside outcrop of black massive quartz porphyritic rhyolite, glacial striae trend northerly Sample 91-27
 - 14b Lac Dufresnoy Rhyolite Contorted igneous flow banding in rhyolite
 - 14c Lac Dufresnoy Rhyolite Rounded and embayed quartz phenocryst and a polycrystalline quartz amygdule of the same size in quartz-albite porphyritic rhyolite Sample 91-42 Scale bar = 0.5 mm
 - 14d View looking east of the Mobrun Mine from a ridge of Mobrun Rhyolite.

with rounded and embayed single-crystal quartz phenocrysts and polycrystalline quartzfilled amygdules (Fig. 14c)

Cléricy Rapids Andesite

The Cléricy Rapids Andesite is a massive to pillowed basaltic-andesite. Within the thesis area, this mafic lava unit extends from Lac Dufresnoy to the Cléricy rapids on the Kinojevis River near the bridge at Cléricy. This is a mixed affinity unit, with Zr/Y ratios of about 3 8 and 5 8. It is probably derived from an interlayered sequence of mafic lavas, originating from two separate but coeval sources of differing affinity, each producing bimodal volcanic products.

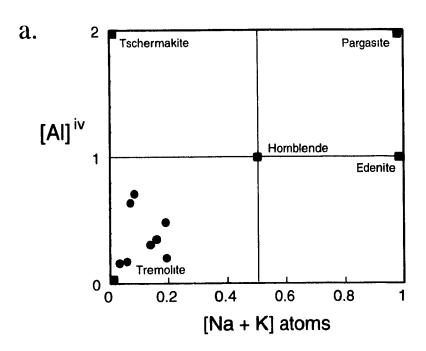
Mobrun Rhyolite

Geological studies of volcanic stratigraphy around the Mobrun mine area have been made by Caumartin and Caillé (1990), Barrett et al. (1992), Laflèche et al. (1993), and Riopel et al. (in press). The Mobrun Rhyolite (Fig. 14d) is composed of two major rhyolitic units, with minor amounts of interlayered andesite lava flows. The rhyolite is host to the Mobrun VMS deposits. The Copper Hill rhyolite member, which is stratigraphically below the ores, occurs southwest of the mine site. The Main and 1100 complexes occur within a sequence of felsic flows and volcaniclastics (Barrett et al. 1992). The Copper Hill member consists of aphyric felsic flows, with variable degrees of sericitization, silicification, and carbonatization. The Copper Hill rhyolite is overlain by thin units of massive, amygduloidal andesite and minor dacitic volcaniclastic rocks, then the 1100 complex follow by massive rhyolite, the Main Lens complex, and rhyolite volcaniclastics. According to Barrett et al. (1992), the Copper Hill rhyolite member is tholentic, whereas the overlying members range from tholeitic to calc-alkaline (Zr/Y tanges from about 2.5 to 8)

Chapter 4

GREENSCHIST MINERALOGY

INTRODUCTION


This section documents the low grade greenschist facies minerals found in the volcanic rocks of the thesis area. Secondary mineral assemblages have replaced much of the original igneous minerals and glass matrix. These greenschist metamorphic assemblages are typical of the rocks in the Noranda district, and of other Archean greenstone belts as well.

Each mineral species was analyzed by the electron microprobe wavelengthdispersive technique. The compositional variations of the mineral, modes of occurrence, and textures are discussed in the following subsection

Although documentation of greenschist mineralogy is useful, it is commonly neglected in most studies of Archean greenstone terrains. Used in conjunction with petrography, lithogeochemistry, and alteration mineral norms, data on mineral chemistry can provide insights into the initial magmatic composition and affinity of the rocks, and assists in the interpretation of lithostratigraphy

Mineral Chemistry Diagrams

Microprobe chemical analyses of a selection of minerals are presented in a series of diagrams in order to document the compositional variations, major cation substitutions, and distributions of the greenschist minerals

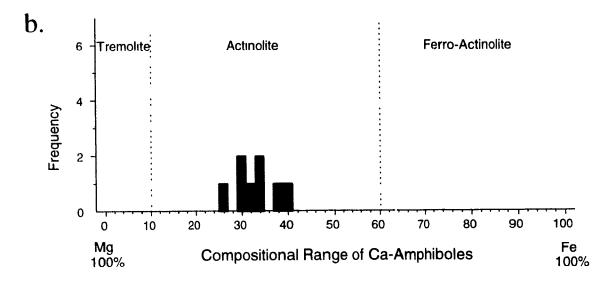


Fig. 15. Amphibole compositional and frequency plots, with bars indicating number of amphibole mineral analyses.

Average microprobe analyses for samples in the thesis area are listed in Appendix Table II.

Diagram (a) is after Deer, Howie, and Zussman (1966), p.168.

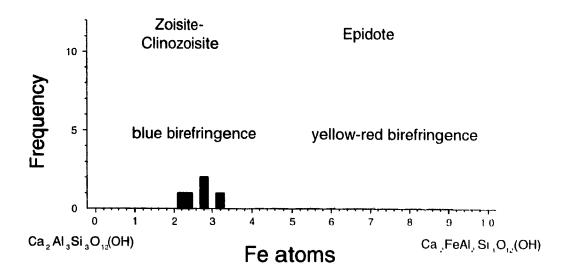


Fig. 16. Epidote-Zoisite frequency diagram with indicated number of analyses for epidote and zoisite-clinozoisite, and distinct relationship between birefringence colours and chemical composition. Average microprobe analyses are listed in Appendix Table II.

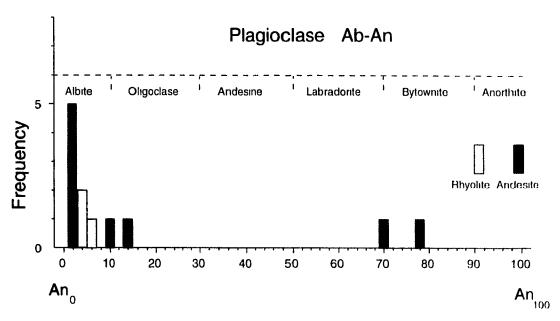


Fig. 17. Plagioclase composition frequency diagram, with bars indicating number of plagioclase analyses.

Average microprobe chemical analyses are listed in Appendix Table II

Chlorite Diagram

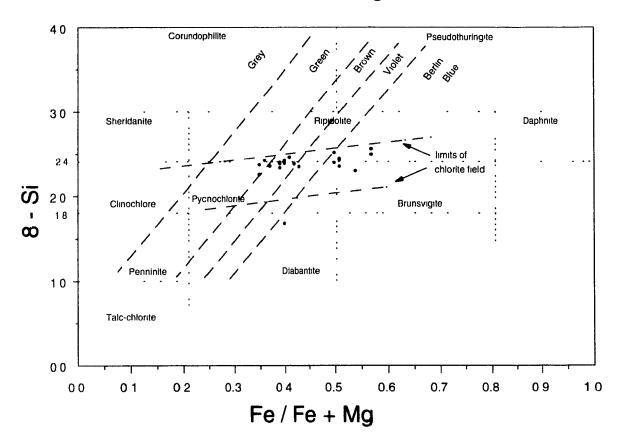


Fig. 18. Chlorite compositional diagram, after Hey (1954), and and Kranidiotis and MacLean (1987), but modified to a rectangular plot for simplification in plotting and interpretation. The limits of chlorite field for samples in the thesis area as shown are approximate. Average chlorite analyses composition of analyzed samples are given in Appendix Table II.

On an Al⁴ vs Na+K diagram (Fig. 15a), the calcium amphiboles plot as Fig. tremolite-actinolite, they outline a narrow range in the actinolite field on an Fe/Fe+Mg frequency diagram (Fig. 15b)

The epidote-zoisite frequency plot (Fig. 16) reveals a group with high I/e content which are epidotes with yellow-red birefringence, and a group with low Fe are zoisite-clinozoisite with blue birefringence. The plagioclase analyses plot as two groups (Fig. 17). Two samples are at An₇₀ and An₇₈ and represent igneous compositions in mafter rocks. An albite-oligoclase group represents both primary compositions in Thyolites, and albitized plagioclases in low grade metamorphic mafter rocks.

The chlorite diagram (Fig. 18) is modified after Hey (1954) by simply plotting 8 - Siⁿ vs Fe/Fe+Mg which makes it orthogonal and more suitable for plotting. The analyzed samples are mainly in the ripidolite and pycnochlore fields, and display a range of birefringence colour from green-brown to Berlin blue. Temperature calculations after Cathelineau and Nieva (1985) and Kranidiotis and MacLean (1987) indicate the chlorites formed in the range of 245° to 270°C, based on the distribution of Al and Si

Plagioclase

The feldspars are the most common minerals in many of the pristine volcanic rocks. In basalts and andesites they form an intersertal texture of plagioclase laths enclosing mafic minerals and volcanic glass. The plagioclase in low grade greenschist rocks has undergone varying degrees of alteration (Fig. 19a), having been converted to or replaced by sericite, epidote-zoisite, albite, and carbonates. Many of the plagioclases

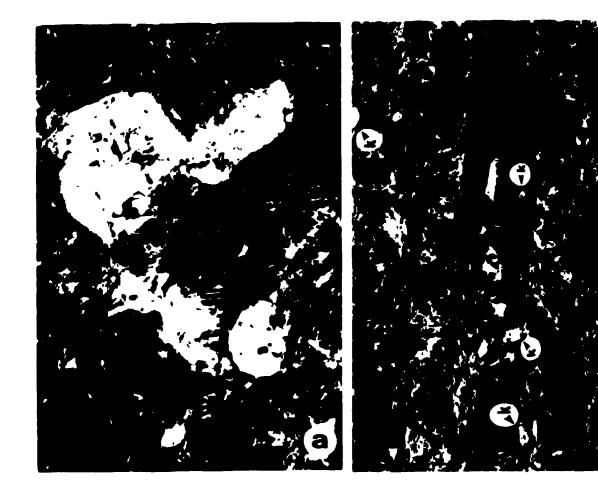
are in the range of An_0 to An_{15} (Fig. 17), and may have formed by the albitization reaction

$$CaAl_2Sl_2O_8 + 4SlO_2 + 2Na^2 \Rightarrow 2NaAlSi_3O_8 + Ca^2$$

anorthite quartz albite

Under low grade metamorphic conditions, the very mobile Ca is leached from plagioclase and glass, and Na is commonly added from the spilitizing fluid to react with immobile Al to form additional albite. The anorthite component of plagioclase is converted to epidote-zoisite, which forms as a replacement phase, and as fine grained saussurite. Few plagioclase grains avoid spilitization and hydrothermal alteration. Remnant Ca-plagioclase in these mafic rocks is rare in the Noranda district.

K-Feldspar


Potassium feldspar has been found in one sample of a mafic pyroclastic tuff lens within the Clericy Rhyolite unit (sample NP-22), as composite grains with sericite in the matrix, and as amygdule fillings (Fig 19b). This crystal and vitric ash tuff is andesite to basaltic-andesite in composition and is surrounded by low-K rhyolite flows and pyroclastic tuffs.

The lock also contains apparently large saussuritized plagioclases that are partly replaced by sericite and lesser K-feldspar, and fragments of devitrified andesitic glass shards (Fig 19b). The amygdules are found in the lithic class. The devitrified glass

- Fig 19 Photomicrographs of mineral textures Scale bar = 0.5 mm
 - a Plagioclase phenocrysts partially replaced by sericite and carbonate Clericy

 Rhyolite, Sample 91-36
 - b K-feldspars (k) in an andesitic tuff unit, occurring as an amygdule filling and composite grains with sericite in the groundmass Lac Duffesnoy Andesite,

 Sample 91-22
 - c Amygdule of coarse grained actinolite Lac Dufresnoy Andesite, Sample 91-29

fragments and the matrix are composed of sericite, chlorite, epidote-zoisite, and k-feldspar. In addition to amygdules that have K-feldspars, many also contain chlorite and epidote, but not sericite

The K-feldspar appears to an alteration product formed during water-tock interaction which introduced large quantities of potassium. The intergrowth of K-feldspars and sericite in the composite grains indicates high pH conditions at the K-feldspar/sericite boundary. This process is equivalent to the heavy sericitization found in some altered greenstone rocks, but K-feldspar was stable here as well as sericite.

The potassic character of this rock is also indicated by the bulk chemistry (Appendix Table I). The rock contains 4.70 wt% K₂O, but only 1.16 wt% N_dO. The andesite lens is transitional with a Zr/Y ratio of 5.1. Other HFS element data were not available for this sample. The K-feldspar is very pure, with greater than 99% Or in all the analyzed grains (Appendix Table II)

Potassic feldspar as an alteration phase in pyroclastic flows is an uncommon occurrence in low-K volcanic terrains. This andesitic lens is interlayered with low-K rhyolites in a mainly felsic formation. In the Noranda district, most volcanic rocks are tholeritic and transitional, and the common feldspar is albite.

Actinolite

Actinolite is a typical greenschist mineral that occurs together with albite, chlorite, sericite, and epidote-zoisite. It is a calcium amphibole with bladed, acicular to fibrous habit that forms as a replacement mineral in the matrix, and in amygdules.

(Fig. 19c) Actinolite replaces pyroxene, hornblend., and other amphiboles under lowgrade greenschist conditions. A clinopyroxene replacement reaction is possible

$$5Ca(Mg,Fe)Si_2O_6 + 6H' \Rightarrow Ca_2(Mg,Fe)_5Sl_8O_{22}(OH)_2 + 3Ca^{+2} + 2SiO_2 + 2H_2O$$

clinopyroxene actinolite quartz

Actinolite analyses from the mafic rock samples plot as a narrow cluster between 25 to 40 cation % Fe on the amphibole compositional diagram (Fig. 15b)

On the Al¹⁴ versus Na+K cation diagram (Fig 15a), the actinolites are in the low Na+K and low Al corner of the diagram, denoting their low metamorphic grade, away from the high-Al hornblende and other amphiboles on the diagram

Epidote

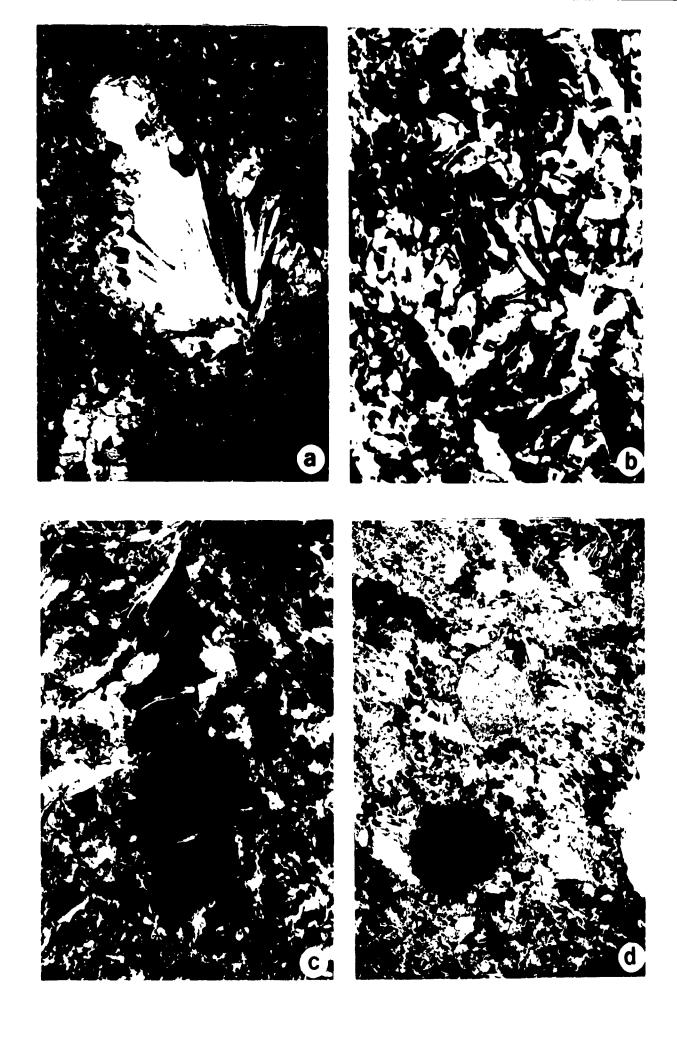
The common epidote group minerals found in low-grade metamorphosed volcanic rocks include epidote, clinozoisite, and zoisite. They appear as high relief grains, and are readily distinguished by their birefringence colours second order vellow-red colour for epidote (Fig. 20a), first order off-grey to light blue for clinozoisite, and first order anomalous blue colour for zoisite (Fig. 20b). Epidote-clinozoisite minerals are monoclinic, whereas zoisite is orthorhombic. These are calcium-aluminum-iion soiosilicates, with epidote as the Fe-rich member, and zoisite and clinozoisite as the Fe-poor members (Fig. 16). Epidote and zoisite from the collected samples form two groups on the frequency diagram, which is based on the

Fe⁺³ for Al⁺³ substitution The epidote minerals form mainly from the breakdown of plagioclase in the mafic rocks, e.g.,

$$3 \text{ CaAl}_2\text{Si}_2\text{O}_8 + \text{Ca}^{+2} + 2 \text{ H}_2\text{O} \implies 2 \text{ Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}(\text{OH}) + 2 \text{ H}^+$$
anorthite
zoisite

where the Ca¹² could be derived from the albite and actinolite forming reactions given above.

Epidote [Ca₂FeAl₂S1₃O₁₂(OH)] tends to form in Fe-rich tocks, while zoisiteclinozoisite minerals [Ca₂Al₃Si₃O₁₂(OH)] are more commonly found in Fe-poor tocks. The usual modes of occurrence of these minerals are as bladed fans in amygdules and open-space filling (Fig 20a), as granular aggregate replacements of plagioclase and mafic material (Fig 20b), and as a fine grained component of saussuritization


The yellow-red Fe-rich epidotes are usually found in tholentic tocks in association with Fe-rich Berlin blue chlorite. The Al-rich zoisite with its anomalous deep blue colour (and also clinozoisite) is generally found with Mg-rich grey-green to brown chlorite. This latter association is more common in transitional and calc-alkaline rocks, which have lower Fe contents than the tholeites. Clinozoisite is not as common as either zoisite or epidote in the rocks of the thesis area.

Chlorite

Chlorite is a complex Fe-Mg aluminous phyllosilicate, with different mineral names for the various solid solution ranges of Fe-Mg and Al^v-Si composition. The pleochroism and birefringence are due to compositional variations, and are discussed

Fig 20 Photomicrographs of mineral textures

- a Radiating fan of epidote with red-yellow birefringence in amygdule with quartz Amulet Andesite, Sample NP-25 Scale bar = 0.5 mm
- b Blades of zoisite with blue birefringence, occurring with grey-green chlorite and quartz. Lac Dufresnoy Andesite, Sample 91-8 Scale bar = 0.1 mm
- c Patch of chlorite with Berlin blue birefringence, surrounded by epidote (yellowied) and quartz (white) Cléricy Road Basalt, Sample 91-29 Scale bar = 0.1 mm
- d Sencite-rich matrix in quartz porphyry rhyolite, note the quartz overgrowth in optical continuity with the euhedral phenocrysts. Lac Dufresnoy Rhyolite, Sample 91-50. Scale bar = 0.5 mm

on detail by Hey (1954), and Kranidiotis and MacLean (1987) The birefringence colours change between Fe-poor and Fe-rich members (based on Fe/Fe+Mg) from grey, green, brown, violet, to Berlin blue. These effects are shown on the modified Hey diagram (Fig. 18), where the analyzed chlorites from this study are plotted.

Chlorite readily takes up Fe, Mg, and Al during alteration of mafic volcanic rocks. It replaces other Al-bearing minerals, such as plagioclase, epidote-zoisite, and sericite during spilitization and hydrothermal alteration processes.

$$3\text{CaAl}_2\text{Si}_2\text{O}_8 + 9(\text{Fe},\text{Mg})^{-2} + 14\text{H}_2\text{O} \Rightarrow (\text{Mg},\text{Fe})_9\text{Al}_6\text{Si}_5\text{O}_{20}(\text{OH})_{16} + \text{SiO}_2 + 3\text{Ca}^{+2} + 12\text{H}^+$$

anorthite chlorite quartz

Fe and Mg cations leached during these processes react with immobile Al to form chlorite. As a result, chlorite is the characteristic mineral of alteration pipes below VMS lenses, particularly at the cores of these alteration zones.

During spilitization and low-grade metamorphism, replacement of mafic minerals and volcanic glass by chlorite is a common occurrence. Chlorite occurs as large blades, inegular masses, and granular aggregates. It is also found as large chlorite grains in open-space fillings (Fig. 20c) and in amygdules. Chlorite, along with epidote and sericite, forms fine grained aggregates replacing plagioclase during saussuritization.

The Fe-tich Beilin blue birefringent chlorite is associated with Fe-rich redyellow epidote in the tholeittic units. The Fe-poor grey-green-brown birefringent chlorite is commonly associated with the Fe-poor blue zoisite or clinozoisite.

Sericite

Sericite is very common in the tocks of Noranda district. It is usually found as fine grain aggregates replacing feldspar grains and as an alteration product of glass in the groundmass (Fig 20d). Sericite forms from the breakdown of feldspar minerals and other Al-bearing material in volcanic tocks as a result of water-rock interaction, e.g.,

$$3\text{NaAlSi}_3\text{O}_8 + \text{K}' + 2\text{H}' \implies \text{KAl}_3\text{Si}_3\text{O}_{10}(\text{OH})_2 + 6\text{Si}_{\text{O}_2} + 3\text{Na}'$$

albite sericite quartz

This is a hydrothermal alteration reaction, where both Na and Ca are leached from the host rocks. Unaltered tholciitic and transitional rocks have low amounts of K_2O (less than 0.5 wt%), whereas calc-alkaline rocks may contain up to 3 to 5 wt% K_2O . Sericitization in tholeitic and transitional rocks thus requires an external source of potassium and acidic conditions. Seawater and hydrothermal fluids provide the source of K to react with the alum a-silicate phases during the alteration

Microprobe analyses show sericite has end-member compositional ranges from 76 to 86 % muscovite, 11 to 20 % celadonite, 0.7 to 1.6 % paragonite, and 1.0.2 % margarite. The Fe/Fe+Mg ratio for the sericites ranges from 0.33 to 0.53. Sericite is essentially the only K-bearing phyllosificate formed during afteration. The K₂O/Na₂O+K₂O ratio (Sericitization Index, MacLean and Hoy 1991) can be utilized to indicate the degree of alteration of the albite component of plagioclase to sericite in tholentic and transitional rocks. It is an easily calculated index that provide a good means to measure rock alteration.

Sericitization and chloritization are very common and pervasive processes during hydrothermal alteration and other forms of water-rock interaction. The reactions use up all the Al available in the rock except for that in epidote-zoisite. In more advanced alteration, sericite and chlorite replace all other Al-bearing minerals, including epidote-zoisite. As a result, the abundances of these two minerals can be used as general indicators of degrees and intensity of alteration in greenstone volcanic rocks.

Chapter 5

LITHOSTRATIGRAPHY

INTRODUCTION

Hydrothermal water-rock interaction and low-grade metamorphism of volcanic and associated rocks have affected all Archean greenstones. The precursor rock composition and its geochemical make-up are modified by the addition and depletion of mobile components during alteration processes. Lithogeochemical methods using immobile and incompatible elements, as outlined by MacLean and Kranidiotis (1987) and MacLean (1988,1990), can be used to reconstruct original compositions of the altered rocks and to determine the intensity and pattern of alteration. Raw geochemical data can thus be treated to assess alteration conditions, from least to highly altered states. This provides the basis for quantitative evaluation of geochemical changes, leads to better identification of precursor rock types, and assists in lithostratigraphic correlation.

Incompatible Elements

Incompatible elements in magmas are usually defined as having bulk distribution coefficients of Dsolid/melt < 0.1. These elements are concentrated in the melt during igneous fractionation processes as they are not generally incorporated in the rockforming minerals. In most basaltic rocks, it has been shown that Zr, Nb, Y, a few other high field strength elements (HFSE), and the REE are highly incompatible (Pearce and Cann 1973, Pearce and Norry 1979, Wood et al. 1979). This also holds true for rocks

in the andesite-dacite-thyolite range in tholeitte suites, but not in the majority of alkaline and calc-alkaline suites where the HFSE are compatible. These elements are tested on binary plots for incompatibility in a rock suite before proceeding with the lithogeochemical treatment. When they remain incompatible throughout fractionation, these elements plot as a single straight line.

The incompatible HFSE pair, Zr and Y, is especially useful for providing a discriminant ratio that changes with took affinity (Pearce and Norry 1979, Lesher et al. 1986, MacLean 1990, MacLean and Barrett 1993). This pair exhibits different enrichment ratios for rocks of different magmatic affinity. Tholerite tooks range from about 2 to 4.5, and calc-alkaline and alkaline tooks from about 7 to 20. Rocks with the Zr/Y ratios intermediate between tholerite and calc-alkaline are designated transitional. In transitional rocks the HFSE are still incompatible (linear enrichment trends), but with slightly steeper REE profiles than the tholerites.

Major element discriminants, such as AFM, Miyashiro, ALO₃-Zi, and TiO₂-Zi diagrams, have been used to differentiate the rock types. As well, the magmatic affinity can be verified with La_N/Yb_N, Th/Yb, Zr/Yb, and other HFSE ratios. The variable compatibility of Zr, Y, and other HFSE in alkaline and calc-alkaline rock suites produce a range of trends; for example, a higher depletion of Y relative to Zi in these rocks accounts for their higher Zr/Y values than in tholesites

Immobile Elements and Single Precursor System

Some elements are immobile, that is they are not generally leached from or added to the rock material during alteration processes. Testing for immobility is done with pairs of elements from a specific volcanic unit. A highly correlated binary plot

of a pair of elements, with a correlation coefficient of around 0 90 to 0 99, is indicative of high immobility. It is important to note that elements of closely related chemical affinity, such as K-Rb, Ca-Sr, and Zr-Hf, can also produce similarly high correlations and must be excluded from these immobility element tests

During alteration, sample points move along the primary fractionation line defined by an immobile and incompatible element pair. Altered samples shift towards the origin when large amounts of mobile material such as silica, carbonate, and sulfide have been added to the rock unit. At the other end, mass loss from leaching of mobile material, such as silica, Ca. Na, and K, results in concentrated amounts of immobile material. It has been shown that Al, Ti, HFSE, Zr, Nb, Y, and the REE are commonly immobile in altered volcanic rocks around VMS deposits (MacLean and Kranidiotis 1987, MacLean 1988)

Multiple Precursors

In greenstone belts, a range of fractionated volcanic rock compositions can be viewed as a multiple precursor sequence. Fractionation trends are first constructed using binary plots of TiO₂-Zr and Al₂O₃-Zr. Because these elements are also immobile, they are used to assess mass changes during alteration, as in a single precursor system.

Least altered samples from basaltic-andesite to rhyolite form concave fractionation curves for TiO₂-Zr (Fig 21a), FeO-Zr, MnO-Zr, MgO-Zr, and CaO-Zr, whereas Al₂O₃-Zr plots (Fig 21b) as a linear trend with a slightly negative slope Altered samples form a series of divergent alteration lines that result from mass changes of the mobile components. The intersection of an alteration line and the fractionation curve defines the precursor composition of each altered sample (Fig. 21a,b).

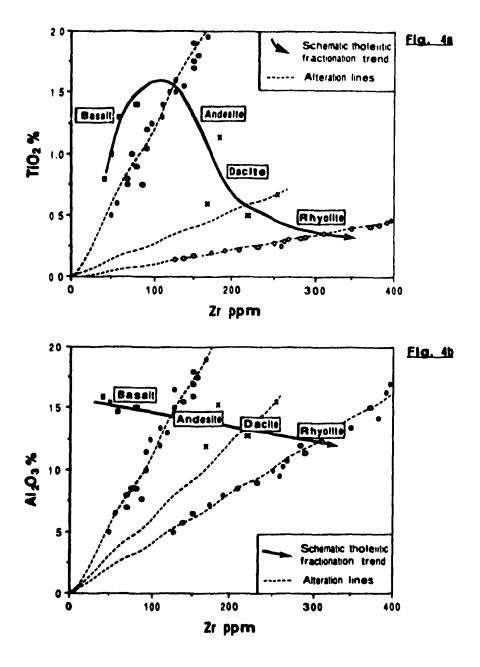


Fig. 21. Demonstration diagram showing idealized fractionation lines for a tholeiitic volcanic suite with superimposed plots of idealized data for altered rocks. The two well defined alteration lines represent initially homogeneous units within the stratigraphy. Their intersection with the fractionation lines identifies the precursors to the altered rocks as an andesite and a rhyolite.

a) TiO2-Zr: The fractionation line exhibits strong Ti enrichment in basalts (paralleling iron-enrichment in tholeiites), followed by strong Ti depletion from andesite to rhyolite.

b) Al2O3-Zr: The fractionation line is near linear Plagioclase accumulation may produce anomalously high Al values (After MacLean and Barrett, 1993).

The multiple-precursor analysis is particularly useful in detailed studies around mineral deposits where the immediate surrounding volcanic rocks consist of a few well-defined units. In these cases, analysis of numerous outcrop and drill-hole samples enables good lithostratigraphic correlation and delineation of host rock types even under extreme alteration.

In a larger regional survey with widely spaced samples, such as this thesis project, a detailed assessment of each unit based on precursor identification and well-defined alteration lines was not possible. Each unit has less than 10 samples, even for the 500 m thick Cléricy Rhyolite.

On the TiO₂-Zr and Al₂O₃-Zr plots of least altered samples from the thesis area (Fig 22a,b), several separate fractionation trends can be inferred in mafic rocks and rhyolites. The least altered samples define the fractionation trends. On this regional scale of stratigraphic interpretation, these trends may represent several batches of magma. These batches are probably derived from various stages of partial melting, magma mixing, or assimilation of wall rock. Each of the magmas formed by these processes would be then affected by fractional crystallization.

The volcanic rocks in this 6 km transect likely represent several different batches of magma and will not plot on one or two specific fractionation trends. Where there are many samples from one or several adjoining stratigraphic units of the same affinity, such as the Clericy Road Basalt and Cléricy Rhyolite, a single igneous fractionation trend could be defined. When many stratigraphic units (as in the thesis area) are plotted together on one diagram, they form, as expected, a continuous series of fractionation trends (Fig. 22a,b)

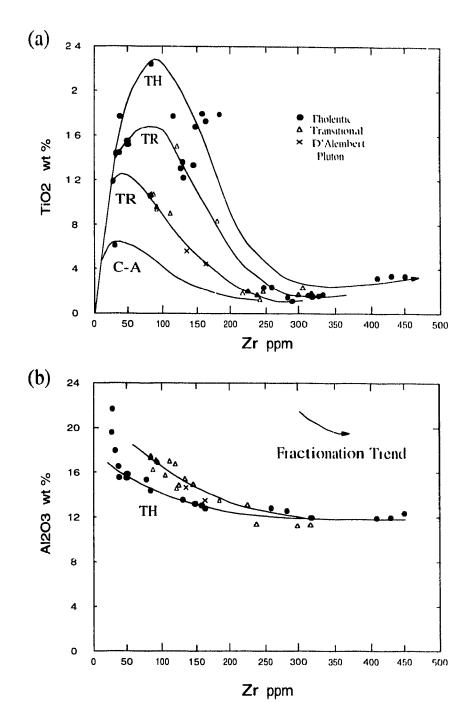


Fig. 22. Harker-type plots for D'Alembert-Cléricy samples with Zr as the fractionation monitor.

In (a) the TH trend follows the high enrichment in TiO₂ typical of tholeitic fractionation. Calc-alkaline rocks have little TiO₂ enrichment. The transitional trends are intermediate.

In (b) only two fractionation trends are discernable in the data

DEFINITION OF LITHOSTRATIGRAPHIC UNITS

In previous studies, the volcanic rocks in the area have been subdivided into broad lithological units based initially on their stratigraphic relationships and subsequently on geochemical characteristics. Some existing regional lithostratigraphic classification schemes cover all or parts of the volcanic succession in the thesis area (Spence and de Rosen-Spence 1975, Gélinas et al. 1977, 1984, Dimroth et al. 1982; Gibson and Watkinson 1990, Laflèche et al. 1992)

For this study, subdivision of the volcanic stratigraphy utilizes lithogeochemical evaluation of the major and HFS trace elements, as well as the REE, to determine the geochemical affinity. The ratios of the immobile and incompatible trace elements and various geochemical plots of the rock units are used for the classification.

Based on individual chemical analyses and group averages of the respective members, the rocks in the study area are divided into lithostratigraphic units and three overall lithological series (Table 6, Fig. 23)

The Lower Transitional Series forms the upper part of the Central Mine Sequence It is overlain by the thick Middle Tholeitic Series to the east. The Upper Series, further to the east, is a mixed group of alternating transitional and tholeitic units

The lithogeochemical subdivision uses Zr/Y ratios of 1 to 45 to distinguish tholeittic rocks, and 7 to 30 for calc-alkaline rocks. Ratios between these two ranges, from 45 to 7, are designated as transitional rocks. On the basis of La_N/Yb_N values, tholeitic rocks have values from 1 to 3, and calc-alkaline rocks from 5 to 40 Transitional rocks are taken as having from La_N/Yb_N from 3 to 5, between the two major groups

TABLE 6. Volcanic Stratigraphy along the D'Alembert-Cléricy Transect

Upper Mixed Transitional-Tholeiitic Series

Mobrun Rhyolites (tholentic and transitional)

Cléricy Rapids andesite (tholeittc)

Lac Dufresnoy Rhyolite (tholeritic)

Lac Dufresnoy Andesite (transitional)

Cléricy Rapids Rhyolite (transitional)

Middle Tholeiitic Series

Cléricy Rhyolite

South Jevis Andesite-Dacite

- contains minor felsic volcanics

Cléricy Road Basalt

Lower Transitional Series

North Jevis Rhvolite

D'Alembert Rhyolite

Newbec Rhyolite

Newbec Andesite

Amulet Andesite

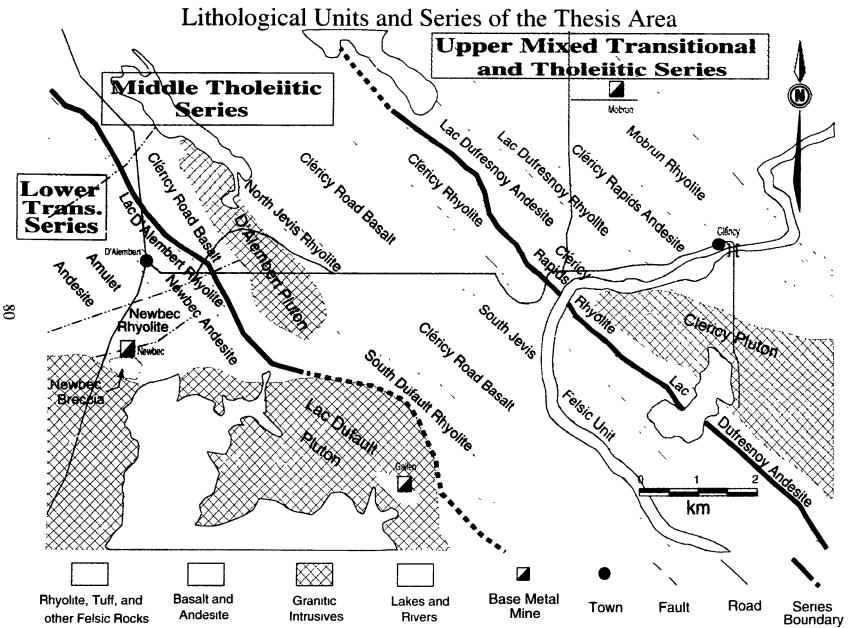


Fig. 23. Map of the volcanic stratigraphy along the D'Alembert-Clericy transect.

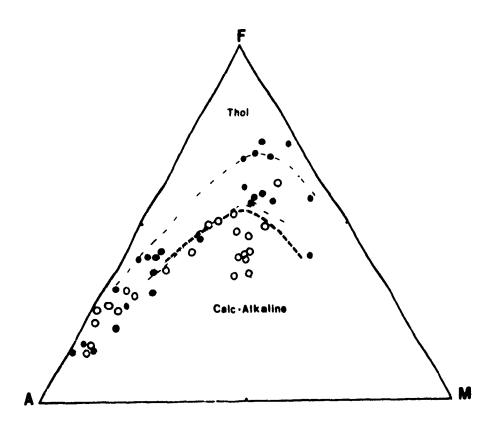
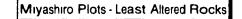
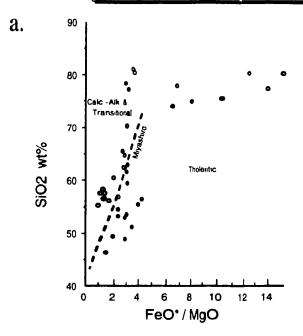




Fig. 24. AFM diagram for D'Alembert-Clericy samples, showing fields of tholeiitic (filled circle and double-dotted boundaries), and transitional (open circle and fine-dotted boundaries) samples. The heavy dashed line is the boundary between the tholeiitic and calc-alkaline fields according to Irvine and Baragar (1971).

The samples were designated as tholeiitic or transitional using Zr/Y, La_N/Yb_N, and other HFSE ratios.

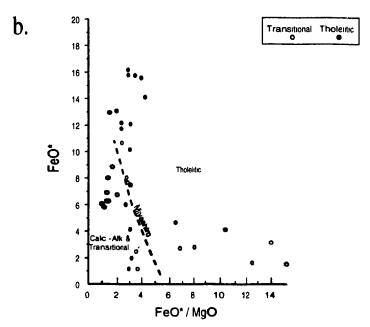


Fig. 25. Miyashiro Diagrams, least altered rocks only, after Miyashiro (1974).

The grey area is the field occupied by the majority of transitional rocks in the transect area.

Felsic rocks change to constant SiO2 and FeO* with extreme fractionation,
and deviate from Miyashiro's boundary lines (see Ichang'i and MacLean 1991).

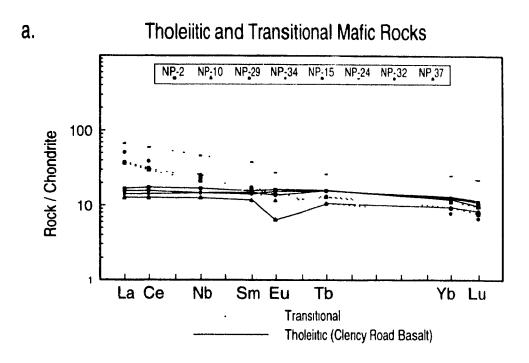
Since major element differences are more reflective of lithological and mineralogical characteristics than are trace elements, the HFSE-based classifications are compared with major element AFM plot (Fig. 24) and the Mivashiro (1974) diagrams (Fig. 25a,b). On the AFM diagram, the rocks designated as tholeritic using the HFSE-classifications plot in the tholeritic field as outlined by living and Baragai (1971). The transitional samples plot in the calc-alkaline field. Thus the transitional and true calc-alkaline rocks are not distinguished the major element AFM plot. For the Miyashiro diagrams, the two major affinity groups are separated, except for a few tholeritic samples which fall in the calc-alkaline/transitional field. The deflection and flattening of the trends for rhyolites of all affinities are caused by fractionation of quartz and feldspars at the granite eutectic, as discussed by Ichang'i and MacLean (1991). The HFS trace elements are preferred because they are incompatible (and also not affected by alteration) and provide an affinity determination on a single sample basis which is very useful in stratigraphic correlation.

LOWER TRANSITIONAL SERIES

This transitional group includes the Amulet and Newbec Andesites, and the Newbec and D'Alembert Rhyolites. The Amulet mafic lavas have an average Zi/Y ratio of 4.7, the Newbec Andesite 4.3, and the Newbec Rhyolite ranges from 6.5 to 13.5. The D'Alembert Rhyolite is of transitional affinity as indicated by La./Yb_{1.5} Th/Hf, Th/Yb, and Zr/Th ratios (Appendix Table I), but has a low Zi/Y value of 3.6.

The REE plots of these rocks have slightly negatively sloping profiles (Fig. 26a, 27a) with La_N/Yb_N ratios of 4.0 for Amulet Andesite, and 2.5 and 3.5 for Newbec Rhyolite

The Zr/Y ratios from the Newbec Rhyolite are high, and one is in the calcalkaline range, however, the REE profiles have moderate slopes in the range of transitional rocks. Other HFSE ratios, Zr/Th and Yb/Th (Appendix Table I), also indicate a transitional affinity. This rhyolite is host to a small VMS deposit at the old Newbec mine. The high Zr/Y value could have been caused by loss of Y during strong hydrothermal alteration.


MIDDLE THOLEITIC SERIES

This middle tholeiltic series is composed of thick mafic and rhyolitic units which occupy the central portion of the study area. It includes the thin D'Alembert Andesite, as described by Wilson (1941) and Paradis et al. (1990), located on the traverse to the west of the D'Alembert pluton at the base of this tholeiltic series.

Cléricy Road Basalt

This unit ranges from mainly basalt to lesser basaltic-andesite. The tholeittic nature of these rocks is indicated by the group average of Zr/Y ratio of 2.6, and the characteristic flat REE profiles (Fig. 26a) with an average La_N/Yb_N of 1.3

This mafic sequence has a distinctly different geochemical affinity from the bordering transitional units, and probably is from a more primitive source. The massive to pillow flows were the products of tholeritic volcanism on an Archean ocean floor. The more evolved transitional and calc-alkaline rocks are composed largely of intermediate and felsic massive to pyroclastic material, and may have formed as a volcanic arc complex on top of this tholeitic ocean floor.

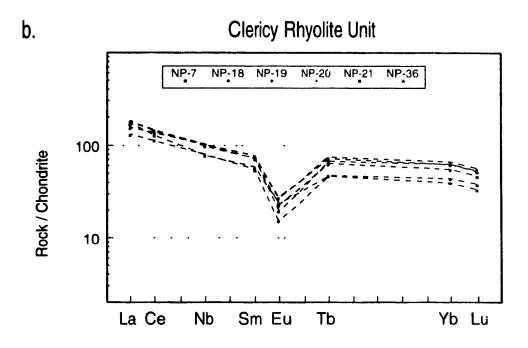
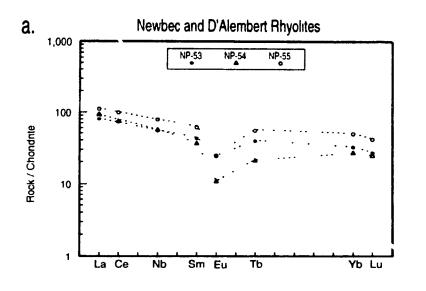
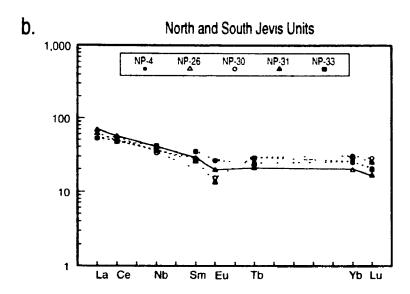
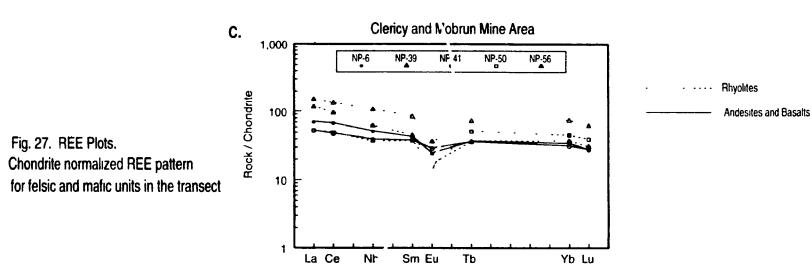





Fig. 26. REE Plots. Normalized to chondrite values of Evensen et al. (1978).

North and South Jevis Felsic Units

The North Jevis and South Jevis units occur within the thick tholentic Clericy Road Basalt. They are massive to pyroclustic thyolite, dacite, and andesite rocks. The felsic rocks of both units have mostly transitional REF profiles (Fig. 27b). The North Jevis unit is transitional, with $Z_1/Y = 5.8$, and $La_x/Yb_x = 2.4$, while the South Jevis unit has both transitional and tholeritic members (Appendix Table 1)

These two felsic-intermediate volcanic units likely represent fractionated members of an arc sequence. The large proportions of volcanic breceias, lapilli tuffs, and ash tuffs indicate they are distal from their volcanic sources. It was not possible to determine the source of the pyroclastic rocks of the North Jevis Rhyolite, but the sorting of the volcanic clasts in the South Jevis Rhyolite indicate it is derived from a volcanic source to the south.

Cléricy Rhyolite

This thick group of rhyolites is defined as tholeritic based on their average Z1/Y value of 3.5 and La₂/Yb₂ of 2.8 (Appendix Table I). The tholeritic magmatic affinity of the rhyolites suggests that they are related to the Clericy Road Basalt, together forming a tholeritic basalt-rhyolite bimodal suite. The Clericy Rhyolite is different from the major rhyolite formations in the Mine Sequence to the west and the Mobrun Rhyolites to the east, which are mostly of transitional affinity. The Clericy Rhyolite complex represents an episode of major felsic magmatic activity, built upon related Cléricy Road ocean floor basalts.

UPPER MIXED TRANSITIONAL AND THOLEUTIC SERIES

The appearance of alternating transitional and tholeitic volcanic sequences defines the Upper Mixed Series, contrasting with the thick Tholeitic Series to the west. This section of volcanic stratigraphy contains several paired and esite-rhyolite units of either tholeitic and transitional affinity. The mafic rocks in the Upper Mixed Series are mostly andesitic, distinct from the basaltic mafic rocks in the Middle Tholeitic Series. The Upper Mixed Series includes the voluminous Mobrun Rhyolite formation on its eastern side, which hosts the VMS deposits at the Mobrun mine.

The advent of volcanic eruptions of alternating lithogeochemical affinities indicate additional sources of transitional magma in the Upper Mixed Series relative to the Tholeitic Series. It is likely that new melt material from assimilation or mixing contributed to the generation of the Upper Mixed Series.

Cléricy Rapids Rhyolite

The transitional Cléricy Rapids Rhyolite, has an average Zr/Y ratio of 5.0 (Appendix Table I) The REE plot of a sample from this unit has a slightly steeper profile (Fig. 27c) than those of the adjacent tholeitic Cléricy Rhyolite. It has an La_N/Yb_N ratio of 4.2, higher than its tholeitic rhyolite counterpart which averages 2.8 (Appendix Table I)

Lac Dufresnoy Andesite

Six out of eight samples of this andesitic unit are transitional (avg Zr/Y = 4.9), whereas two are tholeitic (avg Zr/Y = 2.7) (Appendix Table I) The tholeitic subunit is at the northwest margin, which borders the tholeitic Lac Dufresnoy Rhyolite unit.

The REE plots (Fig 27c) also demonstrate the contrasting lithogeochemical affinities, with the tholeitic sample having a flatter profile ($La_N/Yb_N = 1.7$) than the transitional one ($La_N/Yb_N = 3.3$)

Lac Dufresnoy Rhyolite

This unit of tholentic rhyolite has an average Zr/Y = 3.9 Two samples from this unit have characteristic flat REE patterns of tholentic rocks, with La_N/Yb_N values of 2.1 and 1.2 (Appendix Table I)

Cléricy Rapids Andesite

A sample taken at the bridge at the town of Cléricy with $Z_1/Y \approx 3.8$ and a flat REE profile with $La_N/Yb_N = 2.0$ (Appendix Table I) is of tholeitic affinity. The other sample was to the south near Lac Savard, and had a transitional Z_1/Y value of 5.8. Further field mapping and sampling is required to determine the distribution of magmatic types

Like the Mobrun Rhyolite formation to the east, the mixed affinity indicates that successive eruptions of volcanic material were derived from different magmatic sources

Mobrun Rhyolite

The rhyolite sequence around the Mobrun orebodies includes the Copper Hill rhyolite and the rhyolites hosting the Mobrun orebodies. Some of the rhyolites are tholeitic, and others are transitional with Zr/Y ratios ranging from 2.5 to over 7.0, and La_N/Yb_N values ranging from 1.9 to 6.4 (Barrett et al. 1992). The hangingwall of the Main complex is tholeitic, and the footwall is transitional, for the 1100 complex, the

footwall rhyolite is tholeitic, while the hangingwall rhyolite is transitional (Barrett et al 1992) The contrasting geochemical affinities of the rhyolites indicate that somewhat varied magmatic sources were tapped during successive eruptive phases

OTHER CHEMOSTRATIGRAPHIC CLASSIFICATIONS

This thesis project is part of the continuing scientific study into this section of the Noranda district stratigraphy. This study provides a more detailed geochemical contribution to the classification of the volcanic units in the D'Alembert-Cléricy area. With the application of incompatible HFSE, it is shown that the rocks are mainly of transitional and tholeritic affinity. Using lithogeochemical data to assist in reconstructing the tectono-volcanic setting of the stratigraphy, the successive active volcanic phases and their magmatic products can be improved.

The volcanic rocks in the thesis area have been classified into chemostratigraphic units using major elements and other discrimination criteria by Gélinas et al (1977, 1984) and modified by Trudel (1978, 1979). These authors subdivided the mafic rocks into a succession of tholentic and calc-alkaline members. From west to east in the field area, they are the calc-alkaline Dufault unit, the tholeitic Trémoy unit, the calc-alkaline Cléricy unit, the tholentic Destor unit, and the calc-alkaline Reneault unit

Relative to the subdivision of Gélinas et al (1984), the Lower Transitional Series is mostly equivalent to the Dufault and Trémoy units, while the Middle Tholeitic Series corresponds to the Cléricy and parts of the Trémoy units. The Upper Mixed Transitional and Tholeitic Series generally are the volcanics of Destor and Reneault units. The study of the rocks in the eastern part of the area by Laflèche et al (1992) also established a chemostratigraphic division of the mafic volcanic rocks, similar to the

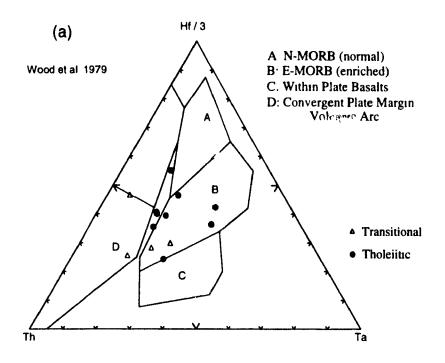
one presented in this thesis. A significant difference is that the present thesis study recognizes the transitional affinity of the Upper Mixed Series, rather than calc-alkaline as designated by Laflèche et al. (1992), and that some of the units are mixed tholentic-transitional in affinity. The present thesis study incorporates the rhyolitic as well as the maffic rocks in this part of the district, and utilizes their geochemical characteristics in the chemostratigraphic classification.

COMPARISON OF CHEMICAL DISCRIMINANTS

The HFSE plots and trace element discrimination diagrams are utilized for distinguishing rock suites and assisting in the definition of the lithostratigraphic units in this project. They are shown to be useful and have good correlation with major element discrimination plots. The Zr/Y ratio, in particular, is an easy and readily applied first-step indicator of the rock affinities. It should be compared with other geochemical discriminants, such as the La_N/Yb_N ratio, which approximates the slope of the REE pattern. In this study, the REE data correlate with the Zr/Y ratios for most samples, but yields a different affinity determination for some samples. The LREE are found to be mobile under some strong alteration conditions (MacLean 1988) and this should be taken into account. Nevertheless, REE plots for transitional rocks in the thesis area generally have steeper profiles than tholeratic rocks.

The Miyashiro and AFM diagrams serve to compare and contrast the chemical affinities deduced from immobile and incompatible lithogeochemical plots. Both the AFM and Miyashiro graphs reasonably discriminate between the tholeitic and transitional fields for most of the least altered samples. However, a few of the samples lie in different fields relative to their affinity as first established using HFSE ratios,

mostly Zr/Y The "wayward" samples may be somewhat altered rocks. The scatter on the Miyashiro and AFM diagrams is due in part to the mobility of FeO, MgO, SiO₂ and alkalies during alteration. The AFM plot is not a positive identifier on a single sample basis, but in general there is good agreement when only fresh rocks are used. The immobile trace elements are more specific, and affected to a much lesser degree during hydrothermal water-rock alteration processes.


TECTONIC SETTINGS

Trace element plots utilizing HFSE can be used to help in discerning their tectonic environments of Archean volcanic rocks. The HFSE ratios vary according to magma source and provide discrimination fields for different volcanic rock types. For this purpose, only the least altered mafic rocks are used.

Ternary discrimination diagrams, (Hf/3-Th-Ta after Wood et al. 1979 and Nb*2-Zr/4-Y after Meschede 1986) indicate that the mafic rocks in the thesis area include enriched MORBs, and within-plate tholeites, and volcanic arc material for the mafic lavas (Fig. 28a,b). On binary plots of Nb-Y and Rb-Y+Nb (after Pearce et al. 1984), the mafic rocks are mainly volcanic arc basalts with some ocean ridge tholeites (Fig. 29a,b). These are in general agreement with the paleotectonic interpretations of the other workers in the area (e.g. Dimroth et al. 1982, Laflèche et al. 1992).

Other trace element diagrams have been applied to petrogenetic studies of magma generation and fractionation modelling of the volcanic rocks. The Nb/Th versus Zr binary plot shows a progressive decrease in Nb/Th with Zr, or in general, with advanced fractionation (Fig. 30). This is mainly a result of the enrichment of Th in transitional and calc-alkaline rocks relative to tholesites, which causes the Nb/Th ratio

to decrease towards the calc-alkaline rocks. The trend may also represent continuous batch melting of magma in the mantle, magma mixing, or contamination by crustal rocks (Pearce and Norry 1979, Laflèche et al. 1992). The presence of both tholentic and transitional rocks along the Nb/Th versus Zr curve shows a continuous range of magmatic affinity for the rock units in this thick section of volcanic stratigraphy along the D'Alembert-Cléricy transect

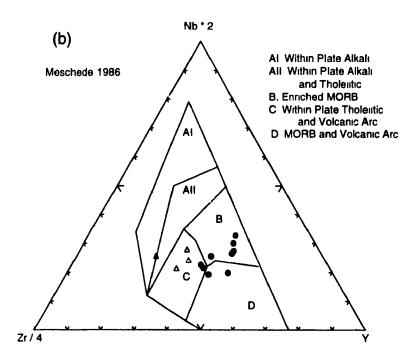


Fig. 28. Discrimination diagrams for tectonic settings (mafic lavas only). Both indicate a mixture of enriched ocean ridge and convergent plate volcanic arc basalts.

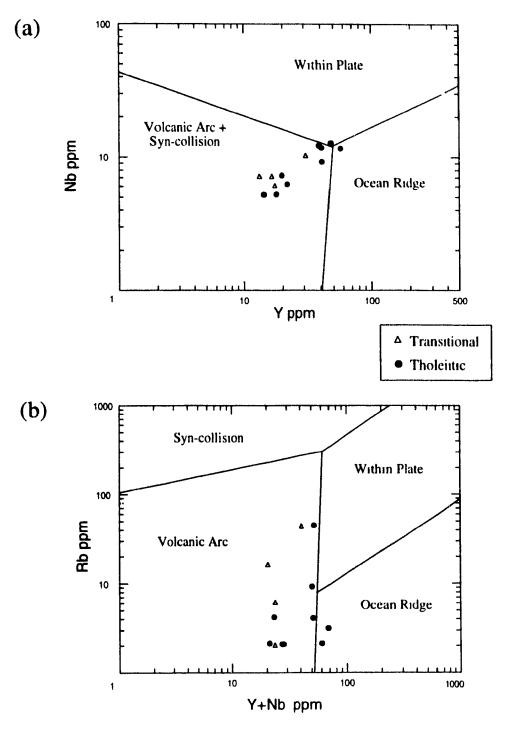


Fig. 29. Discrimination diagrams for tectonic setting (least altered mafic lavas only) after Pearce et al. (1984).

The tectonic setting for the volcanism in the thesis area is limited to a volcanic arc environment by these plots.

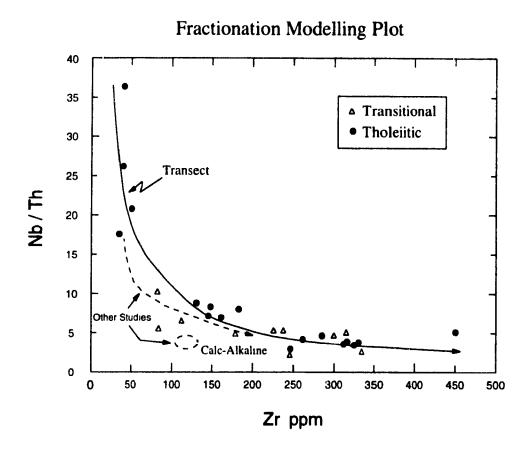


Fig. 30. Nb/Th vs. Zr diagram showing compositional trends for the tholeitic and transitional rocks in the transect (After Laflèche et al. 1992).

Chapter 5

SUMMARY AND CONCLUSIONS

This research project produces a regional geological synthesis of the volcanic stratigraphy along a transect in the D'Alembert-Clericy area. The volcanic succession along the transect consists of low-K basalts, basaltic-andesites, andesites, and thyolites. The rocks belong to two major lithogeochemical affinities tholeutic and transitional, the latter having geochemical characteristics intermediate between tholeutic and calcalkaline suites. The volcanic sequences can be subdivided into three broad lithogeochemical-stratigraphic groups a Lower Transitional Series, a Middle Tholeitic Series, and an Upper Mixed Tholeitic-Transitional Series.

The geochemical characteristics and alteration conditions of the volcanic units provide useful information to help to assess the potential for volcanogenic massive sulfide (VMS) deposits in the area. The approach in this study integrates lithogeochemical techniques with field mapping, volcanic facies interpretation, alteration mineral geochemistry, and petrographic studies

Lithogeochemical techniques provide a means for stratigraphic correlation, and as such, are especially suitable for mineral exploration. The necessary major and trace element data are available from standard analytical packages and are readily adapted to exploration programs. Fractionation and alteration trends can be identified, and the intensity of alteration processes such as silicification, sericitization, and chloritization, can be quantified.

The volcanic stratigraphy in the field area has characteristics similar to that of the Central Mine Sequence (CMS) a thick assemblage of bimodal volcanic stratigraphy, tholentic basalt-rhyolite and transitional andesite-rhyolite suites, substantial amounts of rhyolitic rocks, presence of felsic breccia and pyroclastic rocks, and local successions containing both tholentic and transitional lithologies

There are also distinct differences relative to the Central Mine Sequence volcanic terrain. In most of the thesis area, the rocks are steeply dipping, from 75° to 90° NE, whereas in the central part of the Noranda district, the sequence is shallowly dipping at 30°-35° NE. There are tholeittic as well as transitional rocks in the thesis area, whereas rocks in the CMS are essentially transitional with only the Flavrian Andesite containing tholeittic units. The rocks of transitional affinity in the thesis area and in the CMS are mostly andesite-rhyolite suites. Overall, a greater proportion of the mafic rocks in the thesis area are basalts. There is also a higher proportion of lapilli-ash tuffs and fine grained volcaniclastic rocks in the thesis area than in the CMS.

The analysis and results of this study indicate the D'Alembert-Cléricy area has favourable attributes for the occurrence of massive sulfide mineralization. The bimodal volcanic stratigraphy, high amount of tholeittic to transitional rocks, and significant proportion of rhyolitic units are the key features of this promising terrain. The geological and lithogeochemical characteristics are shared by the historically productive Central Mine Sequence.

This research project indicates some specific localities for targets of massive sulfide exploration. The Cléricy Rhyolite ridge, lying above a tholeiltic mafic-felsic transition, warrants more exploration assessment. Geochemical alteration anomalies in this unit have been outlined in this thesis and by Trudel (1978). These anomalies along with the presence of a laminated pyritic tuff unit are evidence that hydrothermal

systems were active in this terrain. The occurrence of fragmental thyolite material in the Cléricy Rhyolite is also a favourable characteristic for VMS mineralization.

The area around the Newbec Rhyolite, and the associated Newbec VMS deposit, merits more exploration work. At this locality, the geological and geochemical environment is favourable for hosting additional massive sulfide orebodies. The area around the North Jevis Rhyolite just south of Lac D'Alembert also has potential for base metal mineralization. Here the transitional thyolitic tocks are interlayered within a tholeritic maffic volcanic package. As well, the presence of felsic volcaniclastics and alteration along a nearby fault zone indicate potential for mineralization.

New historical perspectives are gained with a review of the evolution and development of the geological concepts of the Noranda district. As such, it is important to recognize the pioneering work and valuable contributions by the early prospectors and geologists. The geochemical and ore deposit models from the early years to the present have influenced industry exploration strategies and research interests, and will continue to do so as new techniques and approaches are developed. This thesis work represents a regional geological synthesis based on stratigraphy and lithogeochemistry, and provides an improved framework for VMS exploration in the eastern Noranda district.

REFERENCES

- Ambrose, J. W. 1941a. Cléricy and La Pause map areas, Quebec. Geological Survey of Canada, Memoir 233
- Ambrose, J. W. 1941b. Lake Dufault, Dufresnoy Townsnip, Abitibi County, Quebec, Geological Survey of Canada, Map 626 A.
- Ayres L. D., and Thurston, P. C. 1985. Archean supracrustal sequences in the Canadian shield. A review. In Evolution of Archean supracrustal Sequences. Edited by L. D. Ayres, P. C. Thurston, K. D. Card, and V. Weber Geological Association of Canada, Special Paper 28, pp. 343-380.
- Baragar, W. R. A. 1968. Major-element geochemistry of the Noranda volcanic belt, Quebec-Ontario. Canadian Journal of Earth Sciences, 5, 773-790.
- Barrett, T. J., Cattalani, S., Chartrand, F., and Jones P. 1991a. Massive sulfide deposits of the Noranda area, Quebec II. The Aldermac mine Canadian Journal of Earth Sciences, 28, 1301-1327.
- Barrett, T. J., Cattalani, S., Hoy, L., Riopel, J., and Lafleur, P.-J. 1992. Massive sulfide of the Noranda area, Quebec IV. The Mobrun mine. Canadian Journal of Earth Sciences, 29, 1349-1374.
- Barrett, T. J., Cattalani, S., and MacLean, W. H. 1991b. Massive sulfide deposits of the Noranda area, Quebec T. The Forne mine. Canadian Journal of Earth Sciences, 28, 465-488.
- Barrett, T. J., MacLean, W. H., Cattalani, S., Hoy, L., and Riverin, G. 1991c. Massive sulfide deposits of the Noranda area, Quebec. III. The Ansil mine Canadian Journal of Earth Sciences. 28, 1699-1730.
- Barrett, F. J., MacLean, W. H., Cattalani, S., and Hoy, L. 1993. Géologie et géochimie du gisement de Corbet, district de Noranda, Quebec. Ministère de l'Energie et des Ressources du Québec, Rapport ET. In press.
- Boldy, J 1968 Geological observations on the Delbridge massive sulfide deposit, Canadian Institute of Mining and Metallurgy Bulletin, 61 1045-1054
- Cathelineau, M and Nieva, D 1985. A chlorite solid solution geothermometer. Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, 91 57-76.

Cattalani, S MacLean, W H, Shriver, N, Barrett, T J, and Hoy, 1 1992 Geologie et géochimie du gisement de Noibec, district de Noranda, Quebec Ministère de l'Energie et des Ressources du Quebec, Rapport FT (Accepted January 1992)

Cattalani, S. MacLean, W. H., and Barrett, T. J. 1992. Geologie et geochimie du gisement de Delbridge, district de Noranda, Quebec. Ministère de l'Energie et des Ressources du Québec, Rapport ET Submitted May 1992.

Cattalani, S Barrett, T J, and Chartrand, F 1991a Géologie et geochimie du gisement d'Aldermac, district de Noranda, Québec Ministère de l'Energie et des Ressources du Québec, Rapport ET 91-00 (in press)

Cattalani, S Barrett, T J, MacLean, W H, and Hoy, L 1991b Geologie et geochimie du gisement d'Ansil, district de Noranda, Québec Ministère de l'Energie et des Ressources du Québec, Rapport ET 91-00 (in press)

Cattalani, S. Barrett, T. J., MacLean, W. H., Hoy, L., Hubert, C., and Fox, J. S. 1990. Géologie et géochimie des gisements de sulfures massifs. Horne et Quemont, district de Noranda, Québec Ministère de l'Energie et des Ressources du Quebec, Rapport ET 91-07.

Caumartin, C, and Caillé, M-F 1990 Volcanic stratigraphy and structure of the Mobrun Mine In The Northwestern Quebec Polymetallic Belt Edited by M Rive, P Verpaelst, Y Gagnon, J M Lulin, G Riverin, and A Simaid Canadian Institute of Mining and Metallurgy, Special Volume 43, pp 133-142

Chartrand, F, and Cattalani, S 1990 Massive sulfide deposits in northwestern Quebec In The Northwestern Quebec Polymetallic Belt Edited by M Rive, P Verpaelst, Y Gagnon, J M Lulin, G Riverin, and A Simard Canadian Institute of Mining and Metallurgy, Special Volume 43, pp 77-91

Cooke, H. C., 1926. On the origin of the copper ores of Rouyn District, Quebec Geological Survey of Canada, Summary Report, part C. 48-55.

Cooke, H. C., James, W. F., and Mawdsley, J. B. 1931. Geology and ore deposits of the Rouyn-Harricanaw region, Quebec. Geological Survey of Canada, Memoii 166.

Corfu, F, Krogh, T E, Kwok, Y Y, and Jensen, L S 1989 U-Pb zircon geochronology in the southwestern Abitibi greenstone belt, Superior Province Canadian Journal of Earth Sciences, 26 1747-1763

Deer, W. A., Howie, R. A., and Zussman, J. 1966. An Introduction to the Rock Forming Minerals Longman Group Ltd., London 528p.

de Rosen-Spence, A F 1976 Stratigraphy, development and petrogenesis of the central Noranda volcanic pile, Noranda, Quebec Ph D thesis, University of Toronto, Toronto, Ontario, 116 p

Dimroth, E, Imreh, L, Goulet, N, and Rocheleau, M 1982 Evolution of the south-central segment of the Archean Abitibi Belt, Quebec Part I Stratigraphy and paleogeographic model Canadian Journal of Earth Sciences, 19 1729-1758

Dimroth, E, Imreh, L, Goulet, N, and Rocheleau, M 1983a Evolution of the south-central segment of the Archean Abitibi Belt, Quebec Part II. Tectonic evolution and geomechanical model Canadian Journal of Earth Sciences, 20 1355-1373

Dimroth, E, Imreh, L, Goulet, N, and Rocheleau, M 1983b Evolution of the south-central segment of the Archean Abitibi Belt, Quebec Part III Plutonic and metamorphic evolution and geotectonic model Canadian Journal of Earth Sciences, 20: 1374-1388

Dresser, J. A., and Denis, T. C. 1944 Geology of Quebec Quebec Dept of Mines, Geological Report, No. 20, volume 2

Dugas, J 1966 Relationship of mineralization to Precambian stratigraphy in the Rouyn-Notanda area, Quebec In Precambrian Symposium Edited by M. K Abel. Geological Association of Canada, Special Paper 3, pp 43-55

Dugas, J, and Hogg, W A 1962 Geological Compilation, Rouyn-Noranda area, Quebec Department of Mines, Preliminary Map U-265

Evensen, N. M., Hamilton, P. J., and O'Nions, R. K. 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochemica Acta, 42: 1199-1212.

Franklin, J. M., Lydon, J. W., and Sangster, D. F. 1981 Volcanic-associated massive sulfide deposits. Economic Geology 75th Anniversary Volume, pp. 485-627.

Gélmas, L, Brooks, C, Perrault, G, Carignan, J., Trudel, P, and Grasso, F 1977. Chemo-stratigraphic divisions within the Abitibi volcanic belt, Rouyn-Noranda district, Quebec In Volcanic Regimes in Canada Edited by WR A Baragar, L C Coleman, and J M Hall Geological Association of Canada, Special Paper 16, pp 265-295

Gelmas, L, Mellinger, M, and Trudel, P 1982 Archean mafic metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec. 1 Mobility of the major elements Canadian Journal of Earth Sciences, 19 2258-2275

Gélinas, L., Trudel, P., and Hubert, C. 1984 Chemostratigraphic division of the Blake River Group, Rouyn-Noranda area, Abitibi, Quebec Canadian Journal of Earth Sciences, 21 220-231

Gibson, H. L., and Watkinson, D. H. 1990. Volcanic massive sulfide deposits of the Noranda cauldron and shield volcano, Quebec In. The Northwestern Quebec Polymetallic Belt Edited by M. Rive, P. Verpaelst, Y. Gagnon, J. M. Lulin, G. Riverin, and A. Simard Canadian Institute of Mining and Metallurgy, Special Volume 43, pp. 119-132.

Gilmour, P. C 1965 The origin of massive sulphide mineralization of the Noranda district, northwestern Quebec Proceedings of the Geological Association of (anada, 16 63-81

Goldie, R. 1978 Magma mixing in the Flaviian Pluton, Noranda area, Quebec Canadian Journal of Earth Sciences, 15 132-144

Goldie, R. 1979 Consanguineous Archean intrusive and extrusive rocks, Noranda, Quebec chemical similarities and differences. Precambrian Research, 9, 275-287

Goodwin, A M 1965 Mineralized volcanic complexes in the Porcupine-Kirkland Lake-Noranda region, Canada Economic Geology, 60 955-971

Goodwin, A M 1977 Archean volcanism in Superior Province, Canadian Shield In Volcanic Regimes in Canada Edited by W R A Baragar, L C Coleman, and J M Hall Geological Association of Canada, Special Paper 16, pp. 205-241

Goodwin, A M 1979 Archean volcanics studies in the Timmins-Kirkland Lake-Noranda Region of Ontario and Quebec Geological Survey of Canada, Bulletin 278

Gunning, H C 1937 Cadillac Area, Quebec, Geological Survey of Canada, Memoir 206

Gunning, H. C., and Ambrose, J.W. 1939 The Timiskaming-Keewatin Problem in the Rouyn-Harricanaw Region, North-Western Quebec Proceedings and Transactions of Royal Society of Canada, 33 section IV, 19-47

Harvie, R 1924 Dufresnoy Map-area, Abitibi County, Quebec Canada Geological Survey, Summary Report, 1923, part Cl, pp 145-150

Hey M H 1954 A new review of the chlorites Mineralogical Magazine, 30 277-292

Ichang'i, D. W., and MacLean, W. H. 1991. The Aichean volcanic facies in the Migori greenstone belt, Kenya stratigraphy, geochemistry and mineralization. Journal of African Earth Sciences, 13, 277-290.

Irvine, T. N., and Baragar, W. R. A. 1971. A guide to the classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-549.

James, W. F. 1924 Rouyn Map-Area Timiskaming County, Quebec Geological Survey of Canada, Summary Report, 1923, part Cl, pp. 126-144

James, W F 1922 Duparquet Map-Area, Quebec Geological Survey of Canada, Summary Report, 1922, part D, pp 75-96

James, W. F., and Mawdsley, J. B. 1924 Clericy and Kinojevis Map-Areas, Témiscamingue and Abitibi Counties, Quebec Geological Survey of Canada, Summary Report, 1924 part C, pp. 99-126

Johnston, J. F. E. 1901, Eastern Part of the Abitibi Region, Geological Survey of Canada, Summary Report, pp. 128-141

Jolly, W. T. 1974 Regional metamorphic zonation as an aid in the study of Archean terrains. Abitibi region, Ontario Canadian Mineralogist, 12 499-508

Jolly, W T 1977 Relations between Archean lavas and intrusive bodies of the Abitibi greenstone belt, Ontario-Quebec In Volcanic Regimes in Canada Edited by W R A Baragar, L C Coleman, and J M Hall. Geological Association of Canada, Special Paper 16, pp 311-340

Jolly, W T 1978 Metamorphic history of the Archean Abitibi belt In Metamorphism in the Canadian Shield Edited by J A Fraser and W W. Heywood, Geological Survey of Canada, Special Paper 78-10, pp 63-78

Jolly, W T 1980 Development and degradation of Archean lavas, Abitibi area, Canada, in light of major element geochemistry Journal of Petrology, 21 323-363

Knuckey, M. J., Comba, C. D. A., and Riverin, G. 1982. Structure, metal zoning and alteration at the Millenbach deposit, Noranda, Quebec In Precambrian Sulphide Deposits Edited by R. W. Hutchinson, C. D. Spence, and J. M. Franklin. Geological Association of Canada, Special Paper 25, pp. 255-295.

Kranidiotis, P, and MacLean, W H. 1987 Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec Economic Geology, 82. 1898-1911

Laflèche, M. R., Dupuy, C., and Dostal, J. 1992. Tholentic volcanic rocks of the late Archean. Blake River Group, southern Abitibi greenstone belt origin and geodynamic implications. Canadian Journal of Earth Sciences, 29, 1448-1458.

Lesher, C. M., Goodwin, A. M., Campbell, I. H., and Gorton, M. P. 1986. Frace-element geochemistry of ore-associated and barren, felsic metavolcanic tocks in the Superior Province, Canada Canadian Journal of Earth Sciences, 23, 222-237.

L'Esperance, R. L. 1952. Dalembert River-Duftesnoy Lake Area. Quebec Department of Mines, Preliminary Report, No. 275.

Ludden, J, Gélinas, L, and Trudel, P 1982 Archean matte metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec 2 Mobility of the trace elements and petrographic constraints Canadian Journal of Earth Sciences, 19 2276-2287

Lydon, J W 1984a Volcanogenic massive sulfide deposits, Part 1 A descriptive model Geoscience Canada, 11 195-202

Lydon, J W 1984b Volcanogenic massive sulfide deposits, Part 2 Genetic models Geoscience Canada, 15 43-65

MacLean, W H 1988 Rare earth element mobility at constant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulfide deposit, Matagami, Quebec Mineralium Deposita, 23 231-238

MacLean, W H 1990, Mass change calculations in altered rock series Mineralium Deposita, 25 44-49

MacLean, W H, and Barrett, T J, 1993 Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, 48, 109-133

MacLean, W. H., and Hoy, L. H. 1991. Geochemistry of hydrothermally altered tocks at the Horne mine, Noranda, Quebec. Economic Geology, 86, 506-528.

MacLean, W H, and Kranidiotis, P 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration. Phelps Dodge massive sulfide deposit, Matagami, Quebec Economic Geology, 82 951-962

MacOuat, W, 1873 Report of an Examination of the Country between Lakes Timiskaming and Abitibi. Geological Survey of Canada, Report of Progress, pp 112-135

MERQ, 1982 Cartes de compilation géoscientifiques, 32 D/6 204, 304, 32 D/7 201, 301 (1 10,000)

MERQ-OGS 1984 Lithostratigraphic map of the Abitibi Subprovince MERQ Map DV 83-16/OGS Map 2484

Meschede, M 1986 A method of discriminating between different types of mid-ocean ridge basalts and continental tholeites with Nb-Zr-Y diagram Chemical Geology, 56: 207-218

Miyashiro, A 1974 Volcanic rock series in island arcs and active continental margins American Journal of Science, 274 321-355

Mortensen, J. K. 1993. U-Pb geochronology of the eastern Abitibi Subprovince, Part 2. Noranda - Kirkland Lake Area. Canadian Journal of Earth Sciences. 30, 29-41.

Mortensen, J K 1987 Preliminary U-Pb zircon ages for volcanic and plutonic rocks of the Noianda-Lac Abitibi area, Abitibi Subprovince, Quebec In Current Research, Part A, Geological Survey of Canada, Paper 87-1A, pp 581-590

Mueller, W 1991 Volcanism and related slope to shallow-marine volcaniclastic sedimentation an Archean example near Chibougamau, Quebec, Canada Precambrian Research, 49 1-22

Nunes, P D, and Jensen, L S 1980 Geochronology of the Abitibi metavolcanic belt, Kirkland Lake area, progress report Ontario Geological Survey, Miscellaneous Paper 92, pp 40-45

Paradis, S., Watkinson, D. H., and Jonasson, I. R. 1990. Volcanic stratigraphy of the New Vauze-Norbec area, NE sector of the Central Noranda Volcanic Complex, Quebec In Canadian Institute of Mining and Metallurgy. Field Guidebook. The Northwest Quebec Polymetallic Belt, Rouyn-Noranda. Tour, pp. 45-48.

Paradis S, Gaulin, R, and Cousineau, P 1989 Projet Blake River ouest Cantons de Duprat et de Dufresnoy, SNRC 32/D6 Ministère de l'Energie et des Ressources du Quebec, MB 89-02, 147p

Paradis, S., Ludden, J., and Gélinas, L. 1988. Evidence for contrasting compositional spectra in comagnitic intrusive and extrusive rocks of the late Archean Blake River Gioup, Abitibi, Quebec. Canadian Journal of Earth Sciences, 25, 134-144.

Pearce, J A and Cann, J R 1973 Tectonic setting of basic volcanic rocks determined using trace element analyses Earth and Planetary Science Letters, 19 290-300

Pearce, J. A. and Norry, M. J. 1979. Petrogenetic implications of Ti, Zi, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-47.

Pearce, J. A., Harris, N. B. W., and Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.

Peccerillo, A, and Taylor, S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey Contributions to Mineralogy and Petrology, 68 61-81

Péloquin, A. S., Potvin, R., Paradis, S., Laflèche, M. R., Verpaelst, P., and Gibson, H. L. 1990. The Blake River Group, Rouyn-Noranda area, Quebec. A stratigraphic synthesis. In The Northwestern Quebec Polymetallic Belt. Edited by M. Rive, P. Verpaelst, Y. Gagnon, J. M. Lulin, G. Riverin, and A. Simard. Canadian Institute of Mining and Metallurgy, Special Volume 43, pp. 107-118.

Péloquin, A S and Verpaelst, P 1989 Groupe de Blake River, Region de Rouyn-Noranda, Quebec Correlation au nord et au sud de la faille de Hunter-Creek GAC/MAC annual meeting, Montreal, Program Aith Abstracts, v 14, p A37

Price, P 1933 The geology and ore deposits of the Horne Mine, Noranda, Quebec Ph D thesis, McGill University, Montreal, Quebec

Price, P 1934 The geology and ore deposits of the Horne Mine, Noranda, Quebec Transactions of Canadian Institute of Mining and Metallurgy, 37 108-140

Price, P 1948 Horne Mine Structural geology of Canadian ore deposits Canadian Institute of Mining and Metallurgy, pp 763-772

Riopel, J., Hubert, C., Cattalani, S., Barrett, T. J., and Hoy, L. 1993. Geologie, structure et géochimie du gisement de sulfures massifs de Mobrun, Noranda, Québec. Ministère de l'Energie et des Ressources du Québec, Rapport ET. Submitted in July 1992.

Riverin, G, and Hodgson, C J 1980 Wall rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec Economic Geology, 75 424-444

Roberts, L., 1956 Noranda Clarke, Irwin, and Company Ltd., Toronto, 217p.

Sangster, D F 1972 Precambrian volcanogenic massive sulphide deposits in Canada A review Geological Survey of Canada, Paper 72-22

Shriver, N. A, and MacLean, W. H. 1993. Mass, volume and chemical changes in the

alteration zone at the Norbec mine, Noranda, Quebec Mineralium Deposita, 28 157-166

Simmons, B. D., and Geological Staff 1973. Geology of the Millenbach massive sulphide deposit, Noranda, Quebec. Canadian. Institute of Mining and Metallurgy Bulletin, 66-67-78.

Spence, C D 1967 The Noranda Area, Canadian Institute of Mining and Metallurgy Centennial Field Excursion, Northwestern Quebec and Northern Ontario Field Guidebook, pp 36-39

Spence, C D 1975 Volcanogenic features of the Vauze sulfide mineralization in the volcanic sequence at Noranda, Quebec Economic Geology, 70 102-114

Spence, C D, and de Rosen-Spence, A F 1975 The place of sulphide mineralization in the volcanic sequence at Noranda, Quebec Economic Geology, 70 90-101

Tasse, N, Lajoie, J, and Dimroth, E 1978 The anatomy and interpretation of an Archean volcaniclastic sequence, Noranda region, Quebec Canadian Journal of Earth Sciences, 15 874-888

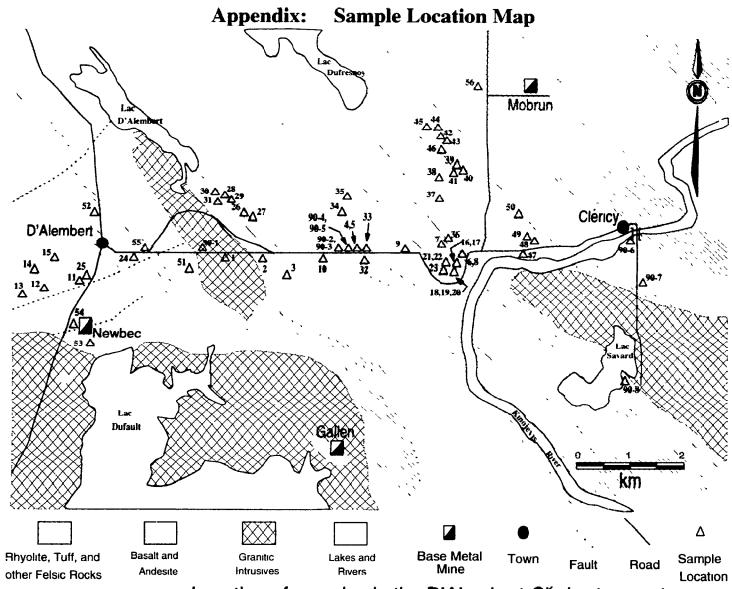
Thurston, P. C., Ayres, L. D., Edwards, G. R., Gélinas, L., Ludden, J. N., and Verpaelst, P. 1985. Archean Bimodal Volcanism. C. 1985. In Evolution of Archean Supracrustal Sequences. Edited by L. D. Ayres, P. C. Thurston, K. D. Card, and W. Weber. Geological Association. of Canada, Special Paper. 28, pp. 7-21.

Trudel, P 1978 Geologie de la Region de Cléricy Ministère de l'Energie et des Ressources du Québec, Rapport Final, DP-598, pp 150

Trudel, P 1979 Le volcanisme archéen et la géologie structurale de la région de Clericy, Abitibi, Québec Thèse D Sc A, Ecole Polytechnique de Montréal, Montréal, Que

Watkinson, D. H., McEwen, J., and Jonasson, I. R. 1990. Mine Gallen, Noranda, Quebec Geology of an Archean massive sulphide mound. In The Northwestern Quebec Polymetallic Belt Edited by M. Rive, P. Verpaelst, Y. Gagnon, J. M. Lulin, G. Riverin, and A. Simard. Canadian. Institute of Mining and Metallurgy, Special Volume 43, pp. 167-174.

Wilson, M. E. 1912 Kewagama Lake Map-Area, Pontiac and Abitibi Counties, Quebec Geological Survey of Canada. Summary Report, 1911, pp. 273-279


Wilson, M E 1939 Dufault Area, Dufresnoy and Rouyn Townships, Abitibi and

Temiscamingue Counties, Quebec Geological Survey of Canada, Map 457A

Wilson, M E 1941 Noranda District, Quebec Geological Survey of Canada, Memori 229

Wilson, M E 1962. Rouyn-Beauchastel Map-Area, Quebec Geological Survey of Canada, Memoir 315

Wood, D A, Joron, J-L, and Treuil, M 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45, 326-336.

Appendix Fig.1 Location of samples in the D'Alembert-Cléricy transect.

^{*} Note: Samples from 1991 thesis field work are from numbered 1 to 56, eight samples available from other work are numbered 90-1 to 90-8.

APPENDIX: List of Theses

The following list of university research theses are relevant to the geology, volcanic stratigraphy, and massive sulfide deposits in the Noranda district. This list is for reference purposes only, and individual entries may not have been cited in this thesis.

A. Non-McGill Theses

Camiré, G. 1989 Volcanic stratigraphy in the Hunter Creek Fault area, east of the Flavrian Pluton, Rouyn-Noranda, Quebec M Sc thesis, Carleton University, Ottawa, Ontario, 213 p

Comba, C D A 1975 Copper-zinc zonation in tuffaceous exhalites, Millenbach Mine, Noranda, Quebec M Sc thesis, Queen's University, Kingston, Ontario, 107 p

De Rosen-Spence, A.F. 1976 Stratigraphy, development and petrogenesis of the central Noranda volcanic pile, Noranda, Quebec Ph.D. thesis, University of Toronto, Toronto, Ontario, 166 p.

Fisher, D F 1970 The origin of the Number Five Zone, Home mine, Noranda, Quebec MSc thesis, University of Western Ontario, London, Ontario

Gibson, H L 1979 Geology of the Amulet Rhyolite formation, Turcotte Lake section, Noranda area, Quebec M Sc thesis, Carleton University, Ottawa, Ontario

Gibson, H L 1989 The Mine Sequence of the Central Noranda Volcanic Complex geology, alteration, massive sulphide deposits and volcanological reconstruction. Ph D thesis, Carleton University, Ottawa, Ontario, 715 p

Goldie, R J 1976 The Flavrian and Powell plutons, Noranda Area, Quebec Ph D thesis, Queen's University, Kingston, Ontario, 356 p

Kennedy, L P 1985 The geology and geochemistry of the Archean Flavian pluton. Noranda, Québec Ph D thesis, University of Western Ontario, London, Ontario

Laflèche, M R 1991 Pétrologie et géochimie des éléments traces du magmatisme Archéen de la partie sud de la ceinture volcano-plutonique de L'Abitibi, Québec Ph D thesis, Université de Montpellier II, Montpellier, France

Larouche, M 1974 Etude stratigraphique, volcanologique et structurale de la région de Destor-Cléricy-Montbrun, Abitibi-ouest M Sc Université Laval, Québec, Québec, 67p

MacRobbie, P A 1986 Stratigraphy, hydrothermal alteration and structure of the Mobrun massive sulfide deposit, Rouyn-Noranda, Québec B Sc thesis, Carleton University, Ottawa, Ontario, 46 p

Price, P 1933 The geology and ore deposits of the Horne Mine, Noranda, Quebec PhD thesis, McGill University, Montreal, Que

Paradis, S 1984 Le pluton de Flavrian, évolution pétrologique et relation avec les roches volcaniques du Groupe de Blake River, Abitibi, PQ M Sc thesis, Université de Montréal, Québec

Paradis, S, 1992 Stratigraphy, volcanology and geochemistry of the New Vauze-Norbec area, Central Noranda Volcanic Complex, Quebec PhD thesis, Carleton University, Ottawa, Ontario

Riverin, G 1977 Wall-rock alteration at the Millenbach Mine, Noranda Area, Quebec Ph D thesis, Queen's University, Kingston, Ontario

Sinclair, W D 1970 Geology of the No 5 Zone, Noranda, Quebec, Canada MSc. thesis, University of Wisconsin, Madison, Wisconsin

Setterfield, T 1984 Nature and significance of the McDougall-Despina fault set, Noranda, Quebec MSc thesis, University of Western Ontario, London, Ontario

Trudel, P 1979 Le volcanisme archéen et la géologie structurale de la région de Cléricy, Abitibi, Québec Thèse D Sc A, Ecole Polytechnique de Montréal, Montréal, Qué 307 p

Watkins, J J 1980 The geology of the Corbet Cu-Zn deposit and the environment of ore deposition in the Central Noranda area M Sc thesis, Queen's University, Kingston, Ontario

B. McGill Theses

Index of Geological Research Thesis of the Noranda District at McGill University, Montreal, Quebec, Canada

In Chronological Order:

Holbrooke, G L 1928 A petrographic study of the Aldermac Mine M Sc thesis

Bray, A C 1929 A petrographic study of certain cordierite-bearing rocks. M Sc thesis

Denis, F. T. 1933. An investigation of the mineral composition of the ores of Noranda Mines Ltd. M Sc. thesis.

Schindler, N R 1933 Geology of the Waite-Ackerman-Monigomery property, Duprat and Dufresnoy Townships, Quebec M Sc thesis

Price, P 1933 The geology and ore deposits of the Home Mine, Noranda, Quebec Ph D thesis

Schindler, N R 1934 Igneous rocks of the Duprat Lake and Rouyn Lake Areas, Quebec Ph D thesis

MacDonald, W V 1938 The Aldermac syenite porphyry stock, Quebec M Sc thesis

Riodan, P. H. 1938. The Geology of a section of Beauchastel Township, Quebec. M. Sc thesis

Robinson, R F 1938 The geology of the Orland Property, Beauchastel Township, Province of Quebec M Sc thesis

Hall, J D 1939 The geology of he lower 'A' ore-body, Waite-Amulet M Sc thesis

Bray, RCE 1940 A comparison of the non-opaque minerals of certain parts of the Waite-Amulet area, Quebec M Sc thesis

Asbury, W N 1941 Faulting and ore deposition in the Rouyn-Bell River Region M Sc thesis

Malouf, S E 1941 The geology of the Francoeur-Arntfield District, Beauchastel Township, Quebec Ph D thesis

Robinson, W G 1941 The Flavrian Lake map area and the structural geology of the surrounding district Ph D thesis

Buck, W. K. 1951. The geology of the Lake Wasa property, Beauchastel Township, Quebec, M.Sc. thesis.

L'Esperance, R. L. 1951. The geology of Duprat Township and some adjacent areas, Northwestern Quebec, and the structure of the Noranda District. Ph.D. thesis

Riddell, J. E. 1953. Wall rock alteration around base metal sulphide deposit of Northwestern Quebec. Ph D. thesis.

Lickus, R J 1965 Geology and geochemistry of the ore deposits at the Vauze Mine, Noranda District, Quebec Ph D thesis

Sakrison, H. C. 1967. Studies of the host rocks of the Lake Dufault Mine, Quebec Ph.D. thesis

Beaton, W D 1970 Trace element partition in sulphides, Noranda, Quebec Ph D thesis

Umar, P 1978 Mineral resource potential Rouyn-Noranda Region, Quebec Ph D thesis

MacGeehan, P 1979 An investigation of the geochemistry of hydrothermally altered volcanic tocks and a proposed new geothermal model for massive sulphide genesis Ph D thesis 414 p

Meyers, R 1980 The geology and origin of New Insco copper deposit, Noranda District, Quebec M Sc thesis 134 p

Liaghat, S. 1990. Use of immobile elements to determine mass changes and origin of hydrothermally altered rocks. Key Tuffite, Matagami, and New Insco Mine, Noranda M Sc. thesis. 112 p.

Shriver, N 1992 A geochemical evaluation of the alteration zone at the Norbec Mine, Noranda, Quebec bulk chemical composition, mass change, flux of elements M Sc thesis 101 p

A PENDIX Table 1

		-	Amulet	Andesite			Newbe	c Rhyolite	Newbec	Andesite	Lac D'Alembert Rhy
Sample # Rock Type SiO ₂ wt% TiO ₃ Al ₂ O ₄ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₄ I Ol Total	91-15 AND-F 56 25 1 04 16 94 6 14 0 12 4 32 7 96 4 45 0 23 0 17 1 90 99 52	91-13 AND-F 56 87 0 96 16 33 6 74 0 11 5 05 6 17 4 55 0 50 0 17 1 90 99 35	91-12 AND-A 53 22 1 39 13 49 6 94 0 16 4 11 10 18 1 93 0 87 0 26 1 49 94 04	91-14 AND-A 55 87 1 18 15 72 6 23 0 15 3 01 14 83 0 38 0 9 0 25 1 69 100 21	91-11 AND-F 54 23 1 37 14 79 8 57 0 25 5 11 7 22 4 59 0 18 0 16 1 19 97 66	91-25 B-A-A 53 53 0 92 16 81 6 42 0 13 3 94 13 35 1 66 1 08 0 15 1 43 99 42	91-54 RHY-F 79 25 0 18 11 15 1 15 0 01 0 31 0 43 5 57 0 4 0 03 0 73 99 21	91-53 RHY-F 79 57 0 17 11 13 1 63 0 01 0 13 0 96 5 27 0 17 0 02 0 47 99 53	91-52 AND-F 54 99 0 64 16 48 7 78 0 13 5 61 5 88 5 28 0 04 0 09 2 76 99 68	91-24 AND-A 56 41 1 33 15 75 7 96 0 12 3 69 2 72 2 57 2 45 0 36 5 96	91-55 RHY-A 68 48 0 50 12 09 4 19 0 09 1 32 3 53 1 83 2 51 0 10 4 37
V ppm Cr Ni Ba Rb Sr Y Zr Nb	211 127 54 65 6 92 16	187 55 58 92 11 123 22 118	240 113 57 262 30 234 24 114 8	192 83 33 409 28 265 21 98	264 98 36 13 4 77 19 73 7	198 138 63 386 26 101 20 89	21 106 17 51 8 17 23 311	14 10 11 81 3 64 46 297	165 127 60 154 0 204 19 89 7	175 21 30 253 42 29 38 151	49 10 11 379 40 38 68 248 15
Ht Th Ta Sc La Ce Nd Sm Eu Th Yb Lu	2 1 0 7 0 3 25 9 2 20 11 2 0 0 82 0 5 1 53 0 23						8 3 2 3 6 3 23 48 27 5 6 0 56 0 8 4 45 0 7	7 3 2 8 1 7 5 5 20 47 26 6 6 1 43 1 5 5 39 0 82		2 6 1 7 1 26 16 5 38 22 5 9 1 6 1 0 4 14 0 66	4 4 3 8 1 4 9 1 27 6 64 38 9 6 1 44 2 1 8 21 1 25
Scrient Index Zr Y La, Yb, Zr Yb Th Ht Th Yb Zr Th AFM Miyashiro	5 TR 4 LTR 4 LTR 54 TR 0 33 TH 0 46 TR LLT TH CA CA	10 5 4 TR	31 4 8 TR	4 TR	4 3 8 TH CA CA	39 4 5 TR	13 5 CA 3 5 TR 71 TR 0 4 TH 0 72 TR 99 TH 7d CA	3 6 5 TR 2 5 TH 56 TR 0 38 TH 9 52 TR 107 TH nd	1 47 TR CA CA	49 4 0 TH 2 7 Th 39 To 0 65 TR 0 41 TR 95 TH	58 3 6 TH 2 3 TH 32 TH 0 86 C A 0 46 TR 69 TR

Minashiro CA CA

** Note CA = calcialkaline TH = tholering TR = transitional ind = not determinable attinity discrimination based on above trace and major element range.

APPENDIX Table 1

	D Alem	ibert Pluton		North Jev	s Rhyolite			Sc	outh Jevis 1	nit		
Sample #	91-1	90-1	91-31	91-30	91-27	91-26	90-4	91-5	90-5	91-4	91-32	91-33
Rock Type	GRAN-F	GRAN-F	RHY-F	RHY-F	RHY-A	AND-A	RHY-F	RHY-F	DAC-F	DAC-F	AND-F	DAC-F
S10, w1%	64 84	67 14	73 63	73 44	73 96	59 3	78 43	68 75	63 08	63 93	59 11	61 58
TiO ₂	0 53	0 42	0 16	0 20	0 23	0 81	0 28	1 19	1 27	1.3	0 88	1 33
Al ₂ O,	13 83	12 75	10 75	13 00	11 42	16 23	10 28	13 21	1- 40	14 43	16 64	15 13
FeO	4 55	3 93	2 59	2 75	3 33	6 96	1 48	4 07	' 49	5 88	6 61	7 34
MnO	0 06	0 22	0 07	0 05	0 09	0 15	0 04	0 09	0 18	0 13	0 11	0 16
MgO	1 48	1 65	0 38	0 34	0 01	3 19	0 05	1 31	2 60	2 19	3 29	2 33
CaO	3 19	3 35	1 51	1 19	8 64	6 72	2 77	3 13	3 46	3 56	7 04	4 49
Na₂O	4 67	3 94	4 52	6 51	0 86	2 5	3 63	4 96	4 17	5 13	3 18	4 70
K₂Ō	1 19	1 10	0 78	0 46	0 23	1 16	0 64	0.76	0 32	0 65	0 71	0 23
P ₂ O,	0 14	0 10	0 02	0 04	0 04	0 14	0 05	0 24	0 38	0 26	0 15	0 44
LOI	4 45	4 83	18	1 41	0 90	2 29	0 95	1 66	1 99	1 99	2 41	1 98
Total	98 94	99 43	96 21	99 39	99 71	99 45	98 60	99 37	99 34	99 45	100 13	99 71
V ppm	72	40	16	10	21	153	10	75	42	59	173	61
Cr	61	120	36	10	10	10	250	10	91	151	80	10
Ni .	51	10	16	10	14	39	31	32	10	190	48	10
Ba	318	480	176	155	61	265	190	297	201	188	149	117
₹b	39	23	21	9	4	43	24	17	6	9	16	4
ir	134	72	47	52	476	182	93	123	122	141	172	184
!	20	26	35	33	67	30	29	33	32	40	13	38
Zr	129	153	224	221	302	174	179	129	125	142	110	128
Νb	8	10	13	13	18	10	10	8	9	9	7	12
4f			5	5 4		28				3 9	26	3 3
Γh			26	2 5		2 1				13	1 1	1.4
a			1.5	1		06				0.7	09	06
c			11	13		17				23	16	24
ā			15 1	12 9		17				13 2	12.5	13
Če .			30	32		36				30	25	31
id			17	16		19				17	12	20
im			4	4 3		4 4				43	27	5 4
žu			0 79	0 91		1 14				1 52	0 82	1.54
ъ			09	09		0.8				1	0 4	1 1
/b			4 88	5 06		3 24				4 07	13	4 25
Ju .			0 75	0 86		0 5				0 64	0 2	0 6
ericit Index	20	22	15	7	21	32	15	13	7	11	18	5
r/Y	6 5 TR	5 9 TR	6 4 TR	67 TR	4 5 TR	5 8 TR	6 2 TR	3 9 TH	3 9 TH	3 6 TH	8 5 CA	3 4 TH
a _N /Yb _N			2 1 TH	1 7 TH		3.5 TR			•	2 2 TH	6 5 CA	2 1 TH
r/Yb			49 TR	45 TR		55 TR				36 TH	87 CA	31 TH
h/Hf			0 52 TR	0 46 TH		0 75 TR				0 33 TH	0 42 TH	0 42 TH
ኩ/Yb			0 53 TR	0 49 TR		0 65 TR				0 32 TH	0 85 CA	0 33 TH
r/Th			91 TH	90 TH		85 TH				112 TH	103 TH	94 TH
FM	CA	CA	nd	nd			nd	TH	TH	CA	CA	TH
Arwi Aiyashiro	CA	CA	TH	TH			nd	CA	CA	CA	CA	TH
			utic, TR = trans								U.A.	ıπ

APPENDIX Table 1

				Cléricy	Road Basa	ılt			
91-51 BAS-F 47 1 1 57 11 39 14 38 0 38 4 94 6 9 1 9 0 06 0 12	90-2 BAS-A 45 42 0 59 18 66 8 62 0 16 9 88 10 54 1 94 0 77 0 10	91-2 BAS-F 44 02 1 36 17 03 12 31 0 21 8 23 10 42 1 12 0 03 0 14	91-3 B-A-F 50 69 1 12 20 47 7 09 0 14 2 31 6 68 5 51 0 36 0 09	91-28 BAS-F 49 20 2 15 13 79 15 15 0 26 4 31 8 25 2 47 0 18 0 25	91-29 BAS-F 47 65 1 46 15 24 12 62 0 19 6 44 9 28 3 18 0 13	91-10 B-A-F 52 22 1 38 15 79 11 64 0 26 4 99 5 06 3 89 0 16 0 15	90-3 B-A-F 50 98 1 48 14 81 11 25 0 22 4 82 8 14 3 51 0 28 0 14	91-34 BAS-F 47 14 1 7 14 94 15 22 0 29 5 2 10 96 0 6 0 06 0 16	91-9 B-A-F 53 76 1 64 12 13 13 43 0 35 3 12 7 24 2 79 0 48 0 14
96 10	100 31	99 10	96 99	98 86	99 06	99 25	99 21	99 74	3 53 98 61 404
48 40 9 2 53 40 104 8	262 296 147 20 85 9 32	270 225 9 2 305 15 33 5	160 112 234 11 138 13 29 5	16 30 18 5 144 31 79 8	138 74 19 2 122 21 49 6	339 183 121 4 35 17 38 5	476 222 56 5 71 16 48 6	96 78 74 2 185 19 39 7	27 60 51 11 132 56 154
		1 3 0 3 0 3 41 4 1 11 8 2 3 0 94 0 6 1 97 0 29			1 2 0 3 0 4 34 3 8 10 7 2 3 0 8 0 6 2 1 0 32	1 1 0 2 0 3 33 3 1 8 6 1 8 0 37 0 4 1 54 0 25		1 1 0 2 0 3 41 3 5 9 7 2 2 0 89 0 6 2 12 0 34	
3 2 6 TH	28 3 6 TH	3 2 2 TH 1 4 TH 18 TH 0 23 TH 0 15 TH 11 TH TH	6 2 2 TH C 4	2 5 TH	2 3 TH 1 2 TH 2 4 TH 2 4 TH 0 25 TH 0 14 TH 1 TO TH TH	2 2 TH 1 4 TH 26 TH 0 18 TH 0 13 TH 200 TH TH	7 3 0 TH TH	9 2 ! TH 1 ! TH 1 ! TH 0 !8 TH 0 09 TH 205 TH TH	15 2 8 TH TH
	BAS-F 47 1 1 57 11 39 14 38 0 38 4 94 6 9 1 9 0 06 0 12 7 36 96 10 380 48 40 9 2 53 40 104 8	BAS-F 45 42 1 57 0 59 11 39 18 66 14 38 8 62 0 38 0 16 4 94 9 88 6 9 10 54 1 9 1 94 0 06 0 77 0 12 0 10 0 7 36 3 63 96 10 100 31 380 132 48 262 40 296 9 147 2 2 20 53 85 40 9 104 32 8 4	BAS-F BAS-A 44 02 1 57 0 59 1 36 11 39 18 66 17 03 14 38 8 62 12 31 0 38 0 16 0 21 4 94 9 88 8 23 6 9 10 54 10 42 1 9 1 94 1 12 0 0 6 0 77 0 0 3 0 12 0 10 0 14 7 36 3 63 4 23 96 10 100 31 99 10 380 132 265 48 262 270 40 296 225 9 147 9 2 2 0 2 53 85 305 40 9 15 104 32 33 8 4 5 1 3 0 3 0 3 0 3 0 3 0 3 0 41 1 11 1 11 8 8 2 3 0 94 0 6 1 97 0 29 2 2 57 1 3 6 TH 1 4 TH 1 8 TH 0 23 TH 0 15 TH 1 TTH	BAS-F	91-51 90-2 91-2 91-3 91-28 BAS-F BAS-A BAS-F B-A-F BAS-F 47 1 45 42 44 02 50 69 49 20 1 57 0 59 1 36 1 12 2 15 11 39 18 66 17 03 20 47 13 79 14 38 8 62 12 31 7 09 15 15 0 38 0 16 0 21 0 14 0 26 4 94 988 823 2 31 4 31 6 9 10 54 10 42 668 825 1 9 1 94 1 12 551 2 47 0 06 0 77 0 03 0 36 0 18 0 12 0 10 0 14 0 09 0 25 7 36 3 63 4 23 2 53 2 85 96 10 100 31 99 10 96 99 98 86 380 132 265 272 409 48 262 270 160 16 40 296 225 112 30 9 147 9 234 18 2 20 2 11 5 53 85 305 138 144 40 9 15 13 31 104 32 33 29 79 8 4 5 5 8 2 6 TH 3 6 TH 2 2 TH 2 2 TH 2 5 TH 1 8 TH 0 23 TH 0 15 TH 1 TH	91-51 90-2 91-3 91-28 91-29 BAS-F BAS-A BAS-F BAS-F BAS-F BAS-F 47 1 45 42 44 02 50 69 49 20 47 65 1 57 0 59 1 36 1 12 2 15 1 46 11 39 18 66 17 03 20 47 13 79 15 24 14 38 8 62 12 31 7 09 15 15 12 62 0 38 0 16 0 21 0 14 0 26 0 19 4 94 98 8 823 2 31 4 31 6 44 6 9 10 54 10 42 6 68 825 9 28 1 9 1 94 1 12 5 51 2 47 3 18 0 06 0 77 0 03 0 36 0 18 0 13 0 12 0 10 0 14 0 09 0 25 0 15 7 36 3 63 4 23 2 53 2 85 2 72 96 10 100 31 99 10 96 99 98 86 99 06 380 132 265 272 409 254 48 262 270 160 16 138 40 296 225 112 30 74 9 147 9 234 18 19 2 20 2 11 5 2 53 85 305 138 144 122 40 9 15 13 31 21 104 32 33 29 79 49 8 4 5 5 8 6 1 3 3 12 104 32 33 29 79 49 8 4 5 5 8 6 2 3 3 4 3 4 5 5 8 6 3 6 7 4 4 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 34 4 1 4 32 3 3 3 29 79 49 4 9 8 4 5 5 7 8 6 3 6 7 4 4 1 7 9 23 18 10 10 8 7 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	BAS-F BAS-A BAS-F BA-F BAS-F B	91-51 90-2 91-2 91-3 91-28 91-29 91-10 90-3 BAS-F BAS-A BAS-F B-A-F BAS-F BAS-F B-A-F B-A-F B-A-F A7 1 45 42 44 02 50 69 49 20 47 65 52 22 50 98 136 112 215 146 138 148 1139 1866 17 03 20 47 1379 15 24 1579 1481 1438 862 1231 709 15 15 12 62 11 64 1125 038 016 021 014 026 019 026 022 494 94 99 88 823 231 431 644 499 482 823 231 431 644 499 482 823 231 431 644 499 482 823 006 07 7 003 036 018 013 016 028 012 010 014 009 025 015 015 016 028 012 010 014 009 025 015 015 016 028 012 010 014 009 025 015 015 014 736 363 363 423 253 285 272 371 358 9610 10031 9910 96 99 98 86 99 06 9925 9921 380 132 265 272 409 254 246 270 48 262 270 160 16 138 339 476 40 296 225 112 30 74 183 222 9 147 9 234 18 19 121 56 2 2 20 2 2 11 5 12 30 74 183 222 9 147 9 234 18 19 121 56 2 2 20 2 2 11 5 3 385 305 138 144 122 35 71 40 9 9 15 13 31 21 17 16 104 32 33 29 79 49 38 48 48 4 5 5 5 8 6 6 5 6	91-51 90-2 91-2 91-3 91-28 91-29 91-10 90-3 91-34 BAS-F BAS-

A.F	PENDEX	Table :

				Cléricy	Rhyolite			
Sample # Rock Type SiO ₂ wt% TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₃	91-23 RHY-4 77-96 0 11 11 35 1 47 0 01 0 04 0 33 3 72 4 41 0 01	91-21 RHY-F 76 88 0 15 11 84 2 63 0 05 0 68 0 28 5 77 0 83 0 02	91-18 RHY-A 75 03 0 15 11 82 2 74 0 06 1 08 0 80 0 59 4 52 0 02	91-19 RHY-4 70 79 0 16 11 1 2 93 0 06 0 72 2 96 1 13 3 2 0 01	91-20 RHY-A 75 63 0 16 11 97 2 78 0 06 0 5 4 45 1 65 1 65 0 02	91-16 RHY-4 71 08 0 48 11 81 4 49 0 07 0 79 2 17 3 29 2 37 0 07	91-17 RHY-A 73 55 0 27 11 61 2 74 0 07 0 89 1 57 1 23 3 32 0 05	91-7 RHY-A 79 44 0 23 10 44 1 37 0 02 0 16 0 62 4 56 1 76 0 04
LOI Total	0 23 99 64	0 59 99 72	1 98 98 79	2 12 95 18	1 19 100 06	2 46 99 08	1 89 97 19	0 46 99 10
V ppm Cr Ni Ba Rb Sr Y Zr	20 10 11 391 60 27 94 290 21	12 10 18 133 11 30 93 314 20	24 14 13 936 116 35 83 315 20	27 10 32 745 83 65 91 308 20	30 10 19 344 42 123 97 309 20	46 10 11 493 61 25 39 158 8	29 62 15 495 103 52 76 270	26 10 11 597 21 28 66 243 15
Hf Th Ta Sc La Ce Nd Sm Eu Tb Yb Lu		7 5 5 2 2 1 6 2 2 4 4 7 9 1 1 1 3 2 2 4 9 0 9 1 4 0	8 2 6 1 6 6 4 37 9 87 48 11 1 14 2 5 10 30 1 58	7 3 5 7 2 6 4 42 6 92 48 12 1 58 2 7 10 3 1 56	7 3 5 7 2 2 6 5 41 8 90 49 12 1 56 2 8 10 9 1 69			8 3 5 2 1 6 5 6 32 73 37 8 4 0 89 1 8 7 3 1 14
Sericit Index Zr/Y La _N /Yb _N Zr/Yb Th/Hf Th/Yb Zr/Th AFM Miyashiro	54 3 1 TH	13 3 4 TH 3 3 TR 35 TH 0 69 TR 0 57 TR 61 TR nd CA	88 3 8 TH 2 5 TH 32 TH 0 73 TR 0 58 TR 54 TR	74 3 4 TH 2 8 TH 32 TH 0 78 TR 0 55 TR 58 TR	50 3 2 TH 2 6 TH 29 TH 0 78 TR 0 52 TR 55 TR	42 4 1 TH	73 3 6 TH	28 3 7 TH 3 0 TR 34 TH 0 63 TR 0 71 TR 47 CA

Miyashiro CA

** Note CA = calc-alkaline, TH = tholentic, TR = transitional, nd = not determinable, affinity discrimination based on above trace and major element ratios

APPENDIX Table 1

	Clér	icy Rapids	Rhyolite				Lac Di	ıfresnoy Ar	ndesite		
Sample # Rock Type SiO, wt% TiO, Al_O, FeO MnO MgO CaO Na_O K,O P,O, LOI Total	91-36 RHY-A 75 31 0 28 12 16 2 68 0 04 0 49 0 33 4 57 2 62 0 04 0 65 99 17	91-47 RHY-A 75 93 0 12 10 97 4 98 0 02 0 71 0 01 0 47 2 65 0 02 2 60 98 48	90-8 RHY-A 76 73 0 18 11 36 1 40 0 03 0 35 0 29 4 02 3 04 0 01 0 49 97 90	91-22 AND-A 59 46 0 44 16 36 4 98 0 11 5 25 4 53 1 12 4 55 0 08 2 69 99 57	91-6 AND-F 54 79 0 93 17 50 6 09 0 09 4 55 8 58 3 36 0 89 0 12 2 21 99 11	91-8 B-A-F 54 22 1 05 17 12 5 95 0 07 5 85 8 24 5 28 0 07 0 1 1 68 99 63	91-37 AND-F 61 43 0 68 13 02 7 93 0 12 2 85 8 36 3 71 0 1 0 11 1 13 99 44	91-49 B-A-A 51 14 1 01 15 28 15 85 0 29 8 29 0 76 0 85 0 53 0 1 5 19 99 29	91-48 AND-F 57 09 1 05 16 13 5 79 0 11 4 97 8 07 5 68 0 12 0 1 0 99	91-38 B-A-F 53 3 1 72 12 51 14 96 0 32 3 73 7 5 1 55 0 23 0 15 3 98 97	91-41 AND-F 58 48 1 59 12 49 9 66 0 19 3 15 5 39 3 58 0 14 0 19 4 12 98 98
V ppm Cr Ni Ba Rb Sr Y Zr Nb	25 10 10 582 44 36 60 330	10 10 15 768 42 7 47 231	14 172 15 570 38 27 47 213	100 55 62 747 112 137 18 91	219 94 80 183 27 208 18 88 6	279 179 45 109 2 123 17 81 7	179 76 55 9 2 179 17 82 6	263 34 23 184 9 6 15 81	274 77 28 106 3 198 18 80 7	424 14 24 87 6 117 56 151	323 14 16 90 3 102 54 141
Hf Th Ta Sc La Ce Nd Sm Fu Tb Lu	6 6 5 8 1 4 7 1 41 3 82 37 9 1 38 1 8 6 54 1 00						1 9 1 ! 0 5 21 9 19 10 2 4 0 67 0 5 1 84 0 29				4 1 1 4 0 6 40 13 2 31 19 6 1 68 1 4 5 22 0 84
Sericit Index Zr Y La, Yb, Zr Yb Th Ht Th Yb Zr Th	36 5 5 TR 4 3 TR 51 TR 0 88 CA 0 89 CA 58 TR	85 4 9 TR	43 4 5 TR	80 5 1 TR	21 4 9 TR	4 8 TR	3 4 8 TR 3 3 TR 45 TR 0 58 TR 0 60 TR 75 TR	38 5 4 TR	4 4 TH	13 2 TH	4 2 6 TH 1 7 TH 28 TH 0 34 TH 0 27 TH 106 TH
AFM Miyashiro					CA CA	CA CA	TH CA		CA CA	TH TH	TH TH

Minishiro

** Note: CA = calc-alkaline: TH = tholeritic: TR = transitional ind = not determinable affinity discrimination based on above trace and major element ratios.

APPENDIX Table 1

			Lac D	ufresnoy Ri	ıy olıte				Clericy Rap	ids Rhyolite	Mobrun Rhyolite
Sample # Rock Type SiO ₂ wt% TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	91-46 RHY-A 75 81 0 19 10 14 1 75 0 04 1 02 0 69 3 35 1 43	91-40 RHY-A 74 23 0 3 12 87 3 45 0 02 0 72 0 59 2 71 3 33	91-42 RHY-A 75 90 0 27 10 09 3 33 0 08 0 40 2 18 2 87 1 71	91-39 RHY-F 70 83 0 32 11 80 4 46 0 08 0 69 1 81 4 95 0 66	91-43 RHY-F 73 72 0 33 11 68 4 04 0 09 0 39 1 71 4 88 0 77	91-44 RHY-F 76 32 0 23 12 62 1 96 0 02 0 61 0 20 5 57 1 17	91-45 RHY-F 75-9 0-31 11-68 3-09 0-02 0-22 0-6 5-86 0-37	91-50 RHY-F 77 03 0 14 12 32 1 16 0 01 0 39 0 76 5 76 0 61	90-6 AND-F 55 97 1 68 12 56 11 39 0 20 3 65 4 95 3 46	90-7 AND-F 56 16 1 09 15 52 10 53 0 10 4 44 8 77 1 79	91-56 RHY-F 79 96 0 20 9 76 2 46 0 03 0 68 0 47 4 36
P ₂ O ₃ LOI Total	0 02 1 03 95 47	0 04 1 65 99 91	0 05 2 78 99 66	0 05 2 32 97 97	0 05 2 01 99 67	0 03 0 93 99 66	0 37 0 05 0 72 98 82	0 01 1 22 99 41	0 03 0 14 4 88 98 91	0 09 0 11 1 20 99 80	0 64 0 03 1 08 99 67
V ppm Cr Ni Ba Rb Sr Y Zr Nb	23 10 14 425 32 34 68 163	35 10 22 974 69 23 79 357 17	20 36 13 417 35 54 99 358 18	24 13 25 274 12 51 118 431 22	22 10 22 323 13 59 114 420 21	26 14 11 327 25 35 90 256 20	21 10 17 102 7 50 97 401 21	17 10 10 30 13 38 74 280 30	312 27 10 60 2 46 45 172 12	295 116 14 33 3 212 18 104 8	28 10 10 166 12 25 52 242 12
Hf Th Ta Sc La Ce Nd Sm Eu Tb Yb				11 4 5 1 7 6 4 37 7 86 51 13 2.15 2 8 12 4 1 9				8 3 6 6 2 7 4 8 13 3 32 18 5 9 0 93 2 7 7 1 21	4 6 1 6 0 7 39 17 5 44 25 6 6 1 41 1 4 5 9 0 85		5 3 5 5 5 1 2 6 4 28 9 61 30 7 1 0 99 1 4 6 26 0 94
Sericit Index Zr/Y La _N /Yb _N Zr/Yb Th/Hf Th/Yb Zr/Th AFM Miyashiro	30 2 4 TH	55 4 5 TR	37 3 6 TH	12 3 7 TH 2 1 TH 36 TH 0 41 TH 0 36 TR 100 TH TH TH	14 3 7 TH	17 2 8 TH	6 4 1 TH TH nd	10 3 8 TH 1 2 TH 37 TH 0 80 TR 0 86 CA 43 CA nd CA	1 3 8 TH 2 0 TH 31 TH 0 35 TH 0 27 TH 114 TH TH TH TH	5 5 8 TR TH TH	13 4 7 TR 3 1 TR 39 TH 1 04 CA 0 88 CA 45 CA CA

^{**} Note CA = calc-alkaline, TH = tholeitic, TR = transitional, nd = not determinable, affinity discrimination based on above trace and major element ratios

Appendix Table II

Sample 91-2	<u>(</u>	Clericy Roa	d Basalt	
Mineral	Chlorite	Fremolite	l pidote	Zoisite
	n=5	n=1	n-3	n 1
Wt% Oxide				., .
SiO2	28 10	54 90	38 34	46 69
AlO iv	8 97	0.92	0.00	0.00
AlO vi	10 00	0.00	24 07	23 61
TiO2	0.02	0.00	1 84	0.02
FeO	21 94	10 94	10.34	6 14
MnO	0 39	0 49	0.00	0.00
MgO	1791	17 84	0.27	0.01
CaO	0.17	12 39	22 90	17 96
NaO 5	0.02	0.10	0.02	3 15
KO.5	0.00	0.01	0.12	0.01
OH	11 58	2 10	1 87	195
Total	99 10	99 69	99 76	99 53
MINERAL CO	OMPOSITIO	N		
Sı	5 8131	7 8449	3 0774	3 5881
Al iv	2 1869	0 1551	0 0000	0.0000
ΔL vi	2 4383	0 0000	2 2770	2 1384
Tt	0 0031	0.0000	0 1111	0.0012
Fe	3 7956	1 3071	0 6941	0.3946
Mn	0 0683	0.0593	0 0000	0.0000
Mg	5 5242	3 8001	0 0323	0.0011
Ca	0 0377	1 8966	1 9694	1 4788
Na	0.0080	0 0277	0 0031	0 4695
K	0.0000	0 0018	0 0031	0.0010
OH	16 0000	2.0000	1 0000	1 0000

Sample 91-8		į	Lac Dufres	noy Andesite		
Mineral	Chlorite	I remolite	Lpidote	Zoisite		Albite
	n = 7	n∸4	n-1	n=9		n=3
Wt% Oxide						Wt% Oxide
SiO2	27 64	52 32	41 08	39 23	SiO2	68 96
AIO iv	9 62	2 55	0.00	0.00	Al2O3	20 05
AlO vi	10 07	0.83	23 11	29 39	ΓiO2	0.00
LiO2	0.02	0 25	0.10	0 08	FeO	0.14
I eO	19 53	13 25	6 11	4 20	MnO	0.00
MnO	0.19	0 16	0.22	0 3 1	MgO	0.00
Mg()	19 92	16 17	2 33	0 08	CaO	0 69
CaO	0.08	11 45	22 29	24 28	Na2O	11 07
NaO 5	0.03	0 47	0.03	0 01	K2O	0.04
KO 5	0.01	0.05	0.02	0 01	l Total	100 95
OH	11 68	2 07	1 87	1 92		
Lotal	98 79	99 57	97 17	99 50		
MINERAL CO	OMPOSITIO	N				
Si	5 6736	7 5642	3 2945	3 0594	Sı	2 9822
Al iv	2 3264	0.4358	0.0000	0 0000	Αİ	1 0222
Al vi	2 4351	0 1417	2 1843	2 7008	Tı	0 0001
l i	0.0024	0.0269	0 0063	0 0046	Ге	0 0049
Гe	3 3509	1 6025	0 4099	0 2742	Mn	0 0000
Mn	0.0330	0.0196	0.0150	0 0204	Mg	0.0002
Mg	6 0962	3 4865	0 2785	0 0094	Ca	0 0319
Ca	0.0179	1 7728	1 9153	2 0285	Na	0 9278
Na	0.0114	0 1304	0 0045	0 0007	K	0 0024
К	0.0037	0 0088	0 0019	0 0006		
ОН	16 0000	2 0000	1 0000	1 0000		

Sample 91-22		Lac	e Dufresnoy And	lesite		
Mineral	Sericite	Zoisite	Chlorite		K-Leldspar	Plagioclase
	n=3	n=2	n=5		n 10	n I
Wt% Oxide						
SiO2	48.36	38 37	26 89	SiO2	6199	51 19
AlO iv	10 24	0.00	10.18	Al2O3	18 08	26 19
AlO vi	22 93	24 72	9.45	LiO2	0.00	0.00
TiO2	0.01	0.03	0.02	l'eO	0.01	1 60
FeO	1 58	9 69	21.25	MnO	0.01	0.05
MnO	0.03	0 19	0.51	MgO	0.01	0.09
MgO	1.38	0.07	18 54	CaO	0.01	1176
CaO	0 01	23.17	0.04	Na2O	0.14	1.20
Na2O	0 10	0 01	0.03	K2O	17.28	0.60
K2O	11 43	0.03	0.03	Lotal	100 56	99.28
OH	4.53	1 84	1151			
Γotal	100 59	98 10	98.43			
MINERAL CO	MPOSITION					
Sı	6 4023	3 1210	5 6009	Si	3 0117	2 4006
Al iv	1 5977	0 0000	2 3991	Al	0 9746	1 4556
Al vi	3 5778	2 3693	2 4185	l i	0 0006	0 0000
Tı	0 0010	0.0018	0 0031	l e	0 0010	0.0624
Fe	0 1749	0 6589	3 7005	Mn	0 0002	0 0020
Mn	0 0034	0.0000	0 0896	Mg	0.0022	0.0063
Mg	0 2724	0 0079	5 7560	Ca	0.0010	0.7373
Ca	0 0014	2 0186	0 0094	Na	0.0105	0.3797
Na	0.0257	0 0016	0 0129	K	1 0078	0.0357
K	1.9305	0 0026	0 0070			,, ,, ,, ,
OH	4.0000	1 0000	16 0000			

Average Mineral Microprobe Analyses

Sample 91-25	Δ	mulet And	<u>esite</u>
Mineral	Iremolite	Lpidote	Zoisite
	n - 1	n = 2	n=4
Wt% Oxide			
SiO2	49 44	37 32	38 00
AlO iv	3 99	0.00	0.00
AlO vi	2 94	22 69	25 77
IiO2	0.09	0.18	0 14
l·e()	12 48	1137	8 43
MnO	0.18	0.00	0.00
MgO	11 79	0.07	0.08
CaO	14 90	23 23	23 73
NaO 5	0 22	0.00	0.00
KO 5	0.10	0.00	0.00
OH	2 03	1 79	1 85
l'otal	98 15	96 65	98 00
MINERAL CO	OMPOSITION	Į	
Si	7 3044	3 1185	3.0745
Λl	0.65.5	0.0000	0.0000
ΛI	0.5111	2 2345	2 4573
11	0.0100	0.0113	0 0085
ŀe	1 5419	0 7945	0.5704
Mn	0 0225	0.0000	0 0000
Mg	2 5971	0.0087	0 0097
Ca	2 3586	2 0798	2 0571
Na	0 0630	0.0000	0 0000
K	0.0188	0.0000	0 0000
OH	2 0000	1 0000	1 0000

Sample 91-27	No	rth Jevis Rhyoli	te
Mineral	I pidote		Albite
	n=5		n=3
Wt% Oxide			Wto Oxide
StO2	38 07	SiO2	69 31
AlO iv	0.00	Al2O3	18 95
AlO vi	26.32	I1O2	0.12
IiO2	0.13	FeO	0.08
FeO	7 72	MnO	0.00
MnO	0.00	MgO	0.02
MgO	0.01	CaO	0.52
CaO	23 62	Na2O	10 60
NaO 5	0.03	K2O	0.30
KO 5	0.05	Lotal	99 90
OH	1 86		
Total	97 80		
MINERAL CO	OMPOSITION		
Sı	3.0725	Sı	3 0230
Al iv	0.0000	ΑÌ	0 9741
Al vi	2 5035	lı	0.0039
Γι	0 0079	Ге	0 0029
Fe	0.5210	Mn	0.0000
Mn	0 0000	Mg	0.0013
Mg	0.0012	Ca	0.0243
Ca	2 0425	Na	0 8964
Na	0.0051	K	0.0167
K	0 0060		
OH	1.0000		

Sample 91-2	9		Clericy Road I	Basalt	
Mineral	Chlorite	I remolite	Lpidote		Albite
	n- 7	n-2	n =3		n=2
Wt% Oxide					Wt% Oxide
SiO2	26 44	53 93	50 27	SiO2	69.40
AlO iv	9 39	1 04	0.00	Al2O3	19.56
AlO vi	9 60	0.64	8 00	liO2	0.01
TiO2	0.02	0.02	0.03	FeO	0 25
FeO	26 62	14 78	13 46	MnO	0 00
MnO	0.39	0.27	0.21	MgO	0.01
MgO	14 81	14 17	9 46	CaO	0 16
CaO	0.12	12 68	15 75	Na2O	1171
NaO 5	0.01	0.40	0 27	K2O	0.05
KO 5	0.01	0.06	0.04	Total	101.15
OH	11 24	2 07	1 89		
Lotal	98 63	100 06	99 38		
MINFRAL (COMPOSITIO	N			
Si	5 6398	7 8219	3 9918	Si	2 9983
Al iv	2 3602	0.1781	0 0000	Λi	0.9959
Al vi	2 4142	0.1091	0 7485	Tı	0.0003
Li	0.0024	0.0022	0.0018	Fe	0.0090
Гe	4 7468	1 7924	0 8936	Mn	0 0000
Mn	0.0696	0.0332	0.0141	Mg	0 0006
Mg	4 7084	3 0632	1 1198	Ca	0 0074
Ca	0.0263	1 9701	1 3397	Na	0.9809
Na	0.0031	0 1125	0 0416	K	0.0028
K	0.0027	0.0111	0.0041		***************************************
OH	16 0000	2 0000	1 0000		

Average Mineral Microprobe Analyses

Sample 91-3	3	South Jevis Unit			
Mineral	Chlorite	I pidote	Zoisite		Albite
	n≃3	n-1	n I		n 1
Wt% Oxide					Wto Oxide
SiO2	27 16	37 82	38 38	SiO2	68 15
AlO iv	8 89	0.00	0.00	A12O3	20.11
AlO vi	10 87	22 82	26 58	1102	0.00
ΓιΟ2	0.00	0.06	0.05	ł eO	0.47
FeO	26 92	11.51	8 38	MnO	0.03
MnO	0.72	0.00	0.00	MgO	0.02
MgO	12.25	0.03	0.01	CaO	1 33
CaO	0.07	23 16	23 50	Na2O	10.83
NaO.5	1 02	0.02	0.06	K2O	0.06
KO 5	0.03	0.00	0.04	Lotal	101 33
OH	11 27	181	1 87		
lotal	99 20	97 22	98 87		
MINERAL O	COMPOSITION	V			
Sı	5 7733	3 1373	3 0710	Si	2 9 1 9 5
Al iv	2 2267	0.0000	0.0000	Αl	1 0426
Al vi	2 7237	2 23 10	2 5066	li	0 0000
11	0.0000	0.0037	0.0030	l e	0.0170
Ге	4 7854	0.7985	0.5607	Mn	0.0011
Mn	0.1297	0.0000	0.0000	Mg	0.0013
Mg	3 8824	0.0037	0.0012	Ca	0.0617
Ca	0.0159	2 0584	2 0147	Na	0 9088
Na	0 4205	0.0032	0 0093	K.	0.0033
K	0.0081	0 0000	0 0041	••	,,,,,,,,
OH	16 0000	1 0000	1 0000		