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Abstract 

When a radar pulse encounters obstacles in its path, the accuracy of radar 

reflectivity data is adversely affected, which in turn decreases the quality of 

forecasting and nowcasting tools such as rainfall totals and cell-tracking 

algorithms. In this study, we seek an optimal solution for real-time, operational 

gap-filling in radar data contaminated by known areas of ground clutter, and 

explore a variety of algorithms of increasing complexity to that end, making use 

of a geostatistical method known as ordinary kriging. The final result is the 

development of a "smart" ordinary kriging algorithm. This method replaces 

clutter-contaminated pixels in radar data using the weighted average of a nearby 

collection of uncontaminated pixels, which have been specially selected to 

sample independent spatial and temporal information while avoiding bogging 

down calculations with redundant information. These data are obtained not only 

from the same reflectivity scan as the ground clutter to be corrected, but also 

from different heights and from both earlier and near-future times. The 

incorporation of the time dimension in particular adds a great deal of value to 

simplistic algorithms, even when only data from past times are considered. Radar 

scans from earlier times are thus shown to be a major untapped source of 

information that can be used to generate (and regenerate, using near-future 

data) more accurate radar products.  
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Résumé 

Lorsqu'un signal radar rencontre des obstacles, la précision des données de 

réflectivité est endommagée, ce qui réduit la qualité des outils de prévisions 

météorologiques tels les totaux de précipitation et les algorithmes qui surveillent 

l'évolution des orages. Dans cette étude, on recherche une solution optimale 

pour remplir en temps réel et dans un contexte opérationnel les trous 

d'information causés par les échos de sol, en explorant une variété d'algorithmes 

de plus en plus complexe basée sur une méthode géostatistique: le kriging 

ordinaire. Le résultat final est le développement d'un algorithme de kriging 

ordinaire "intélligent". Cette méthode remplace les pixels contaminés en utilisant 

la moyenne pondérée de pixels non-contaminés à proximité, où ces pixels sont 

sélectionnés specialement pour incorporer des données indépendentes et pour 

ne pas surcompliquer les calculs avec trop d'informations redondantes. Ces 

informations proviennent non seulement du même temps et du même niveau que 

la région qui doit être corrigée, mais aussi d'aux autres niveaux ainsi que du 

passé et du proche-futur. L'inclusion de la dimension temporelle en particulier 

offre grand valeur même aux algorithmes les plus simples, et aussi lorsqu'on 

considère seulement les informations du passé et non du futur. Les données du 

radar des temps antérieurs constituent alors une source inexploité d'informations 
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qui pourraient permettre de générer (et de régénérer, en utilisant les données du 

proche-futur) des produits radar plus précis.  
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Chapter 1: Introduction 

1.1 Operational radar meteorology and data contamination 

 Any forecaster, researcher, or member of the public who has spent any 

amount of time watching radar output will likely have noticed some data that do 

not represent the true meteorological state of the atmosphere (e.g., data that are 

affected by ground clutter, attenuation, beam blockage, etc.). If, for instance, a 

small but powerful thunderstorm is completely obscured by these bad pixels, the 

forecast of the storm's track and intensity will be contaminated—as will products 

such as one-hour accumulation totals, which in turn will pass this error along to 

hydrological and climatological applications. This data contamination issue is 

complex, but attempts to resolve it are worthwhile given its implications in a 

variety of important applications.  

 The correction of contaminated radar data presents a two-part problem to 

operational meteorologists and researchers seeking to apply these data 

quantitatively. First, contaminated pixels must be identified as such, which can be 

an extremely difficult proposition in itself, given the rapid evolution and 

complexity of meteorological fields. Second, once identified, these contaminated 

pixels must be either removed from consideration or replaced with data that 

better reflect the true meteorological situation. These two topics have received a 

wealth of attention in the literature, and a brief summary of each part of the 
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problem will be presented in the following sections. After this flyover, the 

remainder of the study will be devoted to the optimization of an algorithm 

designed to tackle the second part of the problem (i.e., correction of radar data 

given a known array of contaminated pixels) in real time. 

 

1.2 Identification of contaminated pixels 

 In order to correct bad pixels, it is first necessary to define what 

constitutes a "contaminated" pixel in the first place. The identification of three 

types of contaminated pixels will be briefly explored in this section in order to 

provide context for the development of the ground clutter correction algorithm 

that follows. 

 One area that has seen a great deal of interest is that of attenuation, the 

process whereby the energy of a radar pulse is reduced during its passage 

through regions of intense precipitation (or even a film of water on the radome 

itself), resulting in anomalously low reflectivity values further from the radar. 

Figure 1.1 shows a dramatic example of such attenuation as measured by the 

OU-PRIME radar (Palmer et al. 2011). The reflectivity imagery (Fig. 1.1a) 

strongly hints at the existence of a region of attenuation beyond the half-circle of 

high reflectivity associated with large hydrometeors advected around a 

mesocyclone. The differential propagation phase ΦDP (Fig. 1.1b) shows this 



 

12 

 

attenuation still more clearly as streaks originating in the same location as the 

half-circle of higher reflectivity. All data obscured by this region of higher 

reflectivity are thus suspect, and some level of correction is necessary before 

using these data in quantitative studies. 

Not all regions of attenuation are as obvious as those shown in Fig. 1.1, 

however. Gorgucci et al. (1998) caution that at C-band wavelengths, typical 

attenuation is often small enough that it is not easily observable, and yet it is 

large enough to affect quantitative analysis of reflectivity data. In addition, 

Scarchilli et al. (1993) note that attempting to correct relatively small C-band 

attenuation (~1 dB) introduces error greater than the effects of the attenuation 

itself. These and similar issues have forced researchers to adopt a variety of 

creative approaches to the problem of C-band attenuation identification and 

correction. 
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Figure 1.1: Examples of radar products contaminated by attenuation. The range 

rings indicate distance in km from the OU-PRIME radar. (a) Radar reflectivity at a 

6.4° elevation scan shows a half-circle of > 50 dBZ reflectivity occurring at a 

distance of approximately 45 km from the radar, with much weaker (< 10 dBZ) 

reflectivity values beyond. (b) Differential propagation phase during the same 

scan shows clear streaks of attenuation originating in the half-circle of large 

hydrometeors observed in the reflectivity imagery. (From Palmer et al. 2011, their 

Fig. 13.) 

 

 A second important source of radar product contamination is more organic 

in nature: large groups of insects and birds can create anomalous reflectivity 

patterns, known as biological scatter or bioscatter (Gauthreaux 2006). In recent 

papers, Zhang et al. (2005) and Liu et al. (2005) have laid the groundwork for an 

automated algorithm aimed at detecting bird migration radar echoes, using a 
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combination of observations and verification via polarimetric radar 

measurements. Martin and Shapiro (2007) build on this work, and also 

discriminate between the clear-air echoes caused by birds and insects, primarily 

by examining radar cross-sections of point targets, thereby determining the target 

density. While these clear-air returns can be used to obtain information about the 

atmosphere that would otherwise be invisible to radar imagery (e.g., information 

about the convective boundary layer (Chandra et al. 2010) or other data in the 

budding field of radar aeroecology (Chilson et al. 2012)), they also contribute to 

the non-meteorological contamination of reflectivity data and subsequent 

quantitative studies. Identification and correction of these returns is thus 

necessary to ensure the quality of any quantitative analysis of reflectivity and/or 

velocity. 

 The focus of this study will be on a third source of error in radar products: 

ground clutter, where fixed objects near the transmitter block the radar pulse. 

Contrary to the problem of attenuation identification, a simple map of these fixed 

ground clutter regions can be created by identifying persistent clear-air echoes in 

the reflectivity imagery, since the location of patches of ground clutter is more 

stable than their intensity (Joss 1981). For more precise mapping of clutter that 

takes into account the temporal characteristics of clutter, the fact that the power 

spectrum for ground clutter is localized around zero velocity means that 
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identification can be made using Doppler signal processing (Evans and Drury 

1983). A scheme to create clutter maps (identifying variable anomalous 

propagation echoes as well as regular ground clutter) is described by Bellon and 

Kilambi (1999), using vertical integration of Doppler velocity, as well as the 

vertical and horizontal gradients of reflectivity. Since the identification of ground 

clutter is relatively well-understood, especially compared with the different 

sources of radar product error described above, this study will focus on the 

correction of data known to be contaminated by stationary ground clutter. 

 

1.3 Ground clutter and the correction of contaminated pixels 

 For the remainder of this study, the assumption will be that regions of 

contaminated pixels have been accurately and thoroughly documented using the 

methods of the previous section. Each pixel contaminated by ground clutter has 

been identified and mapped. The second part of the problem now applies: how 

best to correct these contaminated pixels? Can this be done in near-real time, to 

assist with forecast decision-making, without sacrificing the accuracy necessary 

for quantitative processing of research data? 

 A simple method of ground clutter correction is described by Sánchez-

Diesma et al. (2001), hereafter SD01, taking an approach consistent with 

precipitation type. An algorithm is suggested based on two simple schools of 
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thought when it comes to radar contamination correction. The first, advanced by 

Lee et al. (1995) and Bellon and Kilambi (1999), suggests that a pixel 

contaminated by ground clutter should simply be replaced with the first non-

contaminated pixel directly above it in the vertical. The second, as described by 

Galli (1984), involves a simple distance-weighted horizontal interpolation over 

contaminated pixels. Using aspects of both approaches, SD01 suggests a two-

step method: first, a thresholding approach is used to differentiate between 

stratiform and convective precipitation (in SD01, this threshold is taken to be the 

presence of 45 dBZ reflectivity). Next, the vertical substitution method is applied 

to convective precipitation and the horizontal interpolation method is applied to 

stratiform precipitation. The results, reproduced in Table 1.1 below, show that 

combining horizontal and vertical correction methods provides, on the whole, a 

better estimation of the true precipitation than using each method individually. 

 

Table 1.1: Comparison of three pixel-substitution methods for instantaneous 

rainfall rates (mm/hr) of a 24-hour precipitation event featuring a mix of 

convective and stratiform precipitation. (From Sánchez-Diezma et al. 2001, their 

Fig. 2.) 

 Vertical Horizontal Horizontal+Vertical 

Efficiency 0.68 0.73 0.82 
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r2 0.72 0.75 0.84 

Average Error 0.96 1.02 1.04 

 

 Given that stratiform precipitation has strong horizontal homogeneity and 

that convective precipitation tends to have strong vertical homogeneity, this result 

is intuitively not surprising. It is worth noting, however, that while straightforward 

horizontal interpolation performs fairly well on its own, regardless of precipitation 

type, the addition of the vertical dimension consistently provides an improvement 

in efficiency and correlation (r2). Likewise, the ground clutter correction algorithm 

developed over the following chapters will begin by using a 2D paradigm, 

evaluating several correction methodologies in the horizontal, and then will 

gradually add complexity by considering data in the height dimension—and, 

eventually, in the time dimension as well. 

 The use of the time dimension in the interpolation of reflectivity data is 

quite novel: the ready availability of data from different radar scans is a relatively 

untapped source of information. The reflectivity data from past radar scans alone 

is an instantly available source of information to help overcome data holes in the 

spatial dimension, such as widespread stationary areas of ground clutter. If the 

meteorological situation is not so urgent that immediate, real-time results are 

necessary, data from future radar scans can also be used. By considering data 
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from five or ten minutes before and after a given scan, a clear picture of storm 

evolution can be created to help interpolate over areas of missing data. 

Complementing the spatial information with this fourth dimension suggests, 

intuitively, that a more accurate rendition of the true reflectivity field can be 

reconstructed. 

 

1.4 Outline and objectives 

 This chapter has described the general problem of radar contamination, 

splitting the issue into two parts. First, how do we identify contaminated pixels? 

Second, how do we correct pixels we know to be contaminated? The first 

question is outside the scope of this study, although a brief overview of 

identification methods for various types of radar contamination was provided in 

Section 1.2. The focus here will be on correcting a region already known to be 

contaminated by ground clutter, and will seek to determine how best we can use 

our knowledge of uncontaminated pixels to make a correction in near-real time. 

 Chapter 2 introduces the S-band radar data that will be used in this study, 

describing the ground clutter identification algorithm and additional preprocessing 

of the raw reflectivity scans. More detailed descriptions are given of the six 

convective and stratiform events that will form the basis of this study's datasets. 

Using the data from these events, Chapter 3 describes the single-pixel 
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replacement problem, thus building an understanding of the error structure of the 

convective and stratiform events in the x-, y-, z-, and t-dimensions. An 

exploration of the time dimension's error equivalence establishes quantitative 

evidence of the advantages of blending reflectivity data from multiple times. 

 With these preliminary single-pixel explorations complete, Chapter 4 lends 

its focus to a more complex aspect of the ground clutter correction problem: what 

is the optimal combination of pixels that can be used to replace contaminated 

data? For this work, reflectivity will be the quantity interpolated. A "smart ordinary 

kriging" algorithm will be developed, which uses a "bowtie" method to select 

pixels providing an optimal combination of spatial information while minimizing 

unwanted smoothing of reflectivity data. Using the datasets described in Chapter 

2, as well as the error structure established in Chapter 3, the results of this 

algorithm are then compared with simpler approaches for clutter correction, such 

as nearest-neighbour methods and the SD01 approach described in Section 1.3 

above. The results will also be examined in the context of different radar products 

derived from the raw reflectivity values, including instantaneous rainfall rates and 

one-hour rainfall totals. These algorithms will also be evaluated for high-intensity 

pixels alone. Finally, Chapter 5 summarizes this study and suggests future work 

that would allow for the application of this algorithm to other fields, data types 

(such as Doppler velocity), and radar contamination (such as attenuation). 
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 To summarize, the objectives of this study are as follows: 

1 To create an algorithm that can be operated in real time to correct regions of 

ground clutter in the McGill radar.  

2 To build and explore the four-dimensional error structure of reflectivity in 

convective and stratiform events, in order to quantify the value added by the 

temporal dimension in radar reflectivity products. 

3 To establish the value of blending radar data at different times, including the 

potential need for regenerating some radar products to take advantage of 

near-future information.  

4 To discuss the implications and future applications of this work to improve a 

broader set of radar products.   
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Chapter 2: Description of reflectivity data and preprocessing 

2.1 Introduction 

 In order to begin the process of building an algorithm capable of 

automatically correcting known contaminated pixels in near-real time, it is 

necessary to create a comprehensive picture of the error structure of reflectivity. 

In this study, five convective events and one stratiform event were considered, all 

of which resulted in substantial precipitation totals over the McGill radar's 

domain. By splitting some of these events into early and later stages (resulting in 

a total of six convective and three stratiform "cases"), it was possible to examine 

how storm growth and decay processes individually affect the reflectivity error 

structure. The following sections describe these events in some detail, leaving 

aside synoptic arguments of causality in favour of analysis of the storm structure 

and geometry, with the aim of creating an automated system capable of 

replacing contaminated pixels using only knowledge of radar reflectivity data at 

different times, heights, and locations. 

 

2.2 Preprocessing of radar data 

 The reflectivity data to be used in this study consist of five convective 

events and one stratiform event (described in the following section) collected by 

the McGill S-band radar at the J.S. Marshall Radar Observatory in Sainte-Anne-
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de-Bellevue, some thirty km west of downtown Montreal, Quebec, Canada. 

Figure 2.1 displays the location of the radar. Using the reflectivity data collected 

at 24 elevation angles (from 0.5° to 34.4°), CAPPIs (constant altitude plan 

position indicators) are constructed for each five-minute timestep at heights of 

1.5 km, 2 km, 2.5 km, 3 km, 3.5 km , 4 km, 5 km, 6 km, 7 km, and 8 km AGL. 

 

Figure 2.1: Location of the J.S. Marshall Radar Observatory, indicated by the red 

circle. Downtown Montreal is marked by the green circle. 25-km range rings are 

spaced around the radar's location. (From 

http://www.radar.mcgill.ca/imagery/scanning-radar.html.) 

http://www.radar.mcgill.ca/imagery/scanning-radar.html
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 Areas of known stationary ground clutter at the McGill radar are 

established by examining radar returns during days without precipitation. Using 

archival data, this ground clutter is identified, and a binary array is created for 

each of the CAPPI levels indicating pixels with known ground clutter (see Fig. 

2.2). For the purposes of the single-pixel analysis to be performed in Chapter 3, 

all of these contaminated pixels were removed from consideration. 

 

 

Figure 2.2: Depiction of the known stationary ground clutter at the McGill radar 

for the 1.5 km CAPPI height. Locations of pixels contaminated by ground clutter 
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are indicated in green, and each pixel represents a 1 km × 1 km horizontal 

square. The domain is 240 km × 240 km. 

 

2.3 Description of precipitation events 

 Six rainfall events were selected (five convective and one stratiform) 

based on their intensity and variety of meteorological features. It is worth noting 

that, rather than using an explicitly threshold-based distinction between 

convective and stratiform precipitation (as in Bellon and Kilambi, 1999), the 

events here have been classified based on a more general overall observation of 

the precipitation type. This has resulted in a series of events that are very clearly 

either stratiform or convective, with little overlap between the two. Figure 2.3 

depicts simple snapshots of these events as they appear after the preprocessing 

described in the previous section. A detailed, causal description of synoptic and 

mesoscale forcings for each event is not included, as the ground clutter 

correction algorithm built over the following chapters derives its information from 

radar scans alone; knowledge of the geometry of the precipitation echoes is 

sufficient. Table 2.1 provides a summary of the six events. 
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Figure 2.3: Sample reflectivity scans for each of the nine events considered in 

this study. The preprocessing described in Section 2.2 has been performed, as 

evidenced by the regions of blotted-out ground clutter corresponding with those 

in Fig. 2.2. See text for a description of the events. Case numbers (top left of 

each part of the figure) correspond with those used in Table 2.1. 

 

Table 2.1: Summary of events considered during this study. A convective event 

is characterized by organized cumuliform precipitation with strong vertical 

development, while a stratiform event features moderate precipitation with 

substantial horizontal extent. 
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Case 

Convective or 

Stratiform? 

Start Time End Time 

Case 1 C 1905Z 05 Jul 2005 2200Z 05 Jul 2005 

Case 2 C 2005Z 28 Jun 2010 0000Z 29 Jun 2010 

Case 3* C 0005Z 29 Jun 2010 0200Z 29 Jun 2010 

Case 4 C 1700Z 17 Jul 2010 0000Z 18 Jul 2010 

Case 5 C 1700Z 04 Aug 2010 2200Z 04 Aug 2010 

Case 6 C 1700Z 10 Aug 2010 2200Z 10 Aug 2010 

Case 7 S 1905Z 30 Nov 2010 0000Z 1 Dec 2010 

Case 8* S 0005Z 01 Dec 2010 1200Z 01 Dec 2010 

Case 9* S 1200Z 01 Dec 2010 0000Z 02 Dec 2010 

* see text for discussion 

 

 The six rainfall events were split into 9 "cases"—for instance, the rainfall 

event on 28-29 June 2010 was split into two cases, so that the error structures 

described in the following chapter could be computed and compared at both the 

early and late stages of the same event. The same approach was taken for the 

single, long-lasting stratiform event, which was split into three cases. Given the 

computational resources necessary to process such a long-lived event, only one 

stratiform rainfall event was included in this dataset. In addition, to reduce 
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complexity due to the ice phase and the bright band, only liquid rainfall events 

were considered. 

 As mentioned above, the events chosen for this study were selected on 

the basis of the severity of their rainfall (the stratiform event in cases 7-9 resulted 

in 45 mm of precipitation, and the convective events of Case 1 and Case 5 

contributed to 48-hour precipitation totals of 50 mm and over 100 mm, 

respectively), as well as their appearance as "typical" convective or stratiform 

storms for the region. Common features among the six convective cases are 

apparent, looking at the first two rows of Fig. 2.3: in the domain covered by the 

radar imagery, convection frequently organizes into a line oriented either SW-NE 

or W-E, and propagation of these systems has a westerly component, though 

new cell development is nearly always along the western edge of the storm. The 

following chapter will determine how far these common features extend into the 

statistical error structure of each event. 

 These nine cases provide an interesting variety of weather events that 

have had important impacts on the public: by comparing the statistics of these 

events, a better picture of the overall variability and magnitude of reflectivity error 

structure can be constructed. The following chapter approaches this endeavour 

by considering the single-pixel replacement problem, paving the way for more 

complex approaches in Chapter 4.  
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Chapter 3: The single-pixel replacement problem 

3.1 Introduction 

 With radar data that have been preprocessed and organized, it is now 

possible to begin an examination of the spatial and temporal error structure of the 

reflectivity measured in each of the nine cases described above. The next 

section of this chapter, Section 3.2, describes an important correction that must 

be made in the context of the replacement of pixels with height. Section 3.3 

outlines a methodology for displaying and analyzing reflectivity error structure, 

depicting and comparing examples of this output based on the substantial 

precipitation events described in the previous chapter. By establishing these 

quantitative markers based on error structure, we are gaining an understanding 

of the answer to an important question in the ground clutter replacement process: 

when is it better to choose our replacement data from different times or heights 

rather than from the same radar scan? Section 3.4 seeks to answer this question 

by establishing simple metrics of error equivalence between time, height, and 

horizontal distance. These same metrics are used in Chapter 4 to aid the final 

ground clutter replacement algorithm in selecting the best possible combination 

of pixels to replace contaminated ones. 
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3.2 Vertical profile of reflectivity 

 In order to make use of radar data at different heights, one additional 

routine preprocessing correction must be made, involving the vertical profile of 

reflectivity (VPR, see Koistinen 1991). For stratiform events in general, the 

problem of the radar bright band in the melting layer is a substantial one: the 

error structure of single-pixel reflectivity replacement would be skewed by these 

unrealistic returns. To correct for this effect, among others, a simple vertical 

profile of reflectivity is constructed for each radar scan by calculating the mean 

reflectivity at each CAPPI height level over the 20 minutes preceding and 

succeeding the scan in question. This profile is then subtracted from the 

reflectivity data at each height, creating a dataset that allows more accurate 

reflectivity intercomparisons from one height to another. Figure 3.1 shows an 

example of a VPR used in the correction process. While this VPR correction is 

simpler than many correction methods in use today (Bordoy et al. (2010) include 

a cautionary note warning that the VPR's rapid variation in time and space makes 

correction a difficult prospect), it was deemed sufficient for the purposes of this 

study. 
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Figure 3.1: VPR correction used for 0030Z on 01 December, 2010. This 

stratiform precipitation is contained in Case 8 (see discussion in Section 2.3). 

Values (in dBZ) represent the height- and time-averaged reflectivity measured at 

each of the CAPPI heights over a forty-minute period centred on the time in 

question. 

 

3.3 Four-dimensional error structures 

 Before tackling the problem of replacing large areas of ground clutter (Fig. 

2.2) with the best possible combination of surrounding data in time and space, it 

is necessary to consider a more simplified version of the issue at hand. Consider 
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the problem of a single contaminated pixel which we wish to replace with a single 

pixel from elsewhere in the spatio-temporal domain. How much error will result 

for each possible pixel replacement? Since reflectivity is essentially a continuous 

spatial variable, we expect a gradual drop-off in accuracy as the distance 

between our replacement pixel and the contaminated pixel increases. One of the 

key motivations of this study, however, involves quantifying the benefit of 

considering data from different times, as well as in space. In what situations is a 

pixel from five minutes earlier going to be a better match than a pixel from the 

same radar scan? By gaining a detailed knowledge of this four-dimensional error 

structure (hereafter referred to as a variogram), it becomes possible to create 

more complex algorithms that can select replacement pixels based on minimizing 

statistical error as much as possible. 

 In order to examine various types of precipitation, the nine cases listed in 

Table 2.1 are considered separately, and statistics are computed for each. The 

procedure is a simple one, if computationally expensive. For each case: 

1 A reference pixel ),,,( 0000 tzyxZ is selected. 

2 This reference pixel exists on a single radar scan in the x-y plane (such as a 

CAPPI or a PPI), i.e., the plane of pixels having values ),,,( 00 tzyxZ , where 

xxx  0  and yyy  0 . The squared difference between the reference 

pixel and its surroundings is calculated for each pixel contained in this plane, 
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resulting in a 2D matrix containing values 

2

00000000

2 )],,,(),,,([),,,( tzyxZtzyxZtzyx 
. 

3 Similar matrices of squared differences can be built for the scans at the other 

9 CAPPI height levels, i.e., the planes of pixels having values ),,,( 0tzyxZ , 

with x and y defined as above, and zzz  0 . The result is a series of ten 

2D matrices 
2

000000

2 )],,,(),,,([),,,( tzyxZtzyxZtzyx 
. Note that, as 

mentioned in the previous chapter, any pixels contaminated by ground clutter 

have been omitted from these and future computations. 

4 Finally, we consider the scans at earlier and later times (established 

somewhat arbitrarily as ±25 minutes, making for a total of eleven timesteps), 

i.e., the planes of pixels having values ),,,( tzyxZ , with x, y, and z defined as 

above, and ttt  0 . The result is a series of eleven sets of ten 2D matrices 

2

0000

2 )],,,(),,,([),,,( tzyxZtzyxZtzyx 
. 

5 We have now established a four-dimensional variogram (a description of the 

error structure in ),,,( tzyx  for a single reference pixel). The next step is to 

generalize this across an entire event by performing steps one through four 

for every possible reference pixel at every possible time. For Case 1, which 

consists of 36 timesteps, each containing a 240 × 240 grid of reflectivity 

values for each of the ten CAPPI heights, the final result will be 18,432,000 



 

33 

 

sets of 110 2D squared-difference matrices ),,,(2 tzyx --a substantial store 

of information. 

6 The final step before analysis of the data is possible is to average all of these 

sets of ),,,(2 tzyx , resulting in a representative four-dimensional variogram 

(in the form of 2D matrices of variance for each of the ten height levels at 

each of the eleven timesteps) that describes the error structure for the entire 

event. 

 

3.3.1 Convective events 

 An illustration of the end result of this process is in Fig. 3.2, which shows 

the 2D variogram for Case 1 at a given time and height—in other words, it shows 

the x-y error distribution for single-pixel replacement, not considering variations in 

height or time. 
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Figure 3.2: 2D variogram calculated for Case 1 at time t0 and height z0 = 2.5 km. 

This image can be thought of as a way to estimate how much error would result if 

we were to replace a reference pixel with a pixel from its surroundings. The 

crosshairs are centred on the location of the reference pixel. In terms of distance, 

1 pixel = 1 km. Since the variance involves the sum of a difference in reflectivities 

[dBZ], the units of this figure are dB2. 

 

 Note that the SW-NE oriented axis visible in Fig. 3.2 corresponds with the 

orientation of the axis of the linear convective feature that dominates in this 

particular weather event (recall Fig. 2.3). Essentially, the error structure confirms 
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that pixels located along the SW-NE axis are more likely to be similar (i.e., to 

have lower values of variance) than pixels along the perpendicular NW-SE axis. 

This tendency is, of course, due to the along-line homogeneity of a squall line. 

 Given that all six convective cases featured squall lines oriented in roughly 

the same direction (a common orientation for organized convection in the 

Montreal area), it is expected that the shape of the variogram will be roughly 

similar for all six cases. Figure 3.3 compares 2D variograms for all six convective 

cases, where Fig. 3.3a is identical to Fig. 3.2, and the remaining parts of the 

figure are also taken at time t0 and height 2.5 km. The shapes of the variograms 

are again reflective of the general orientation of the storm structure. For instance, 

when comparing the shapes of Figs. 3.3b and 3.3c, we might expect that the 

latter case will feature a more strongly linear feature, which is indeed true (cf. Fig. 

2.3). Recall also that Cases 2 and 3 are two halves of the same event (cf. Table 

2.1): as the line begins to break down late in the event (Case 3: Fig. 3.3c), we 

see a variogram with an elliptical shape that is less stretched along the 

orientation of the precipitation line. 

 The elliptical shape of the variogram for Fig. 3.3e shows much more of a 

W-E orientation in terms of its longer axis, which reflects the W-E oriented line of 

convection that dominates the period (cf. Fig. 2.3). Likewise, while the dominant 

convective feature in Case 6 was much more W-E oriented than the tilted slant of 
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Fig. 3.3f, it is worth noting that later in the period, a thunderstorm outflow 

boundary forced new convection in the southeastern quadrant of the domain, 

which would account for the slant in the variogram's shape. 

 Another point of interest in Fig. 3.3 is that some events had considerably 

higher values of variance in their 41 × 41 km variogram domain than others—

note the different colour scales used for Figs. 3.3a and 3.3b. For Case 1 in 

particular (Fig. 3.3a), the variance in the across-line direction does not drop off 

nearly as quickly as it does in any of the other cases. Looking at the precipitation 

pattern of this case in comparison with the other convective events, it is apparent 

that while Case 1's reflectivity values are similar to those in the other events, it 

does feature much more widespread precipitation than any of the others. Thus, in 

a squall line, we find that a less sharp precipitation gradient will correspond with 

lower values of variance in the across-line direction. 
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Figure 3.3: 2D variograms calculated for the six convective cases of this study. 

Note the different colour scales for certain cases: Case 1 showed lower 

variances overall than any of the other five events. Each figure depicts the 

variogram at time t0 and at height 2.5 km (as in Fig. 3.2). 
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Figure 3.4: 2D variograms calculated for Case 1 as described above. This image 

can be thought of as a way to estimate how much error would result if we were to 

replace a reference pixel with a pixel from its surroundings in x, y, z, and t. The 

centre row is at height 0zz  (in this case, 2.5 km), the top row is at height 

kmzz 5.00  , the bottom row is at height kmzz 5.00  , the centre column is at 

time 0tt  , the left column is at time min50  tt , and the right column is at time 

min50  tt . 

 

 As discussed in Chapter 1, when correcting for ground clutter in reflectivity 

data, it is limiting to consider only information in the horizontal—an understanding 
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of the variability in height and in time also provides valuable information. Figure 

3.4 shows a subset of the Case 1 variograms centred at 2.5 km height. The 

middle of the three rows represents 2.5 km height (defined as 0zz  ), the upper 

represents 3 km height, and the lower represents 2 km height. The middle 

column shows variance information for time 0tt  (i.e., the time at the radar scan 

containing gaps to be filled), the left column shows variance information for time 

min50  tt , and the right column shows variance information for time 

min50  tt . Thus, the centre image (Fig. 3.4e) is the same variogram as that 

shown in Fig. 3.3. As is expected of a strong convective event, there is a great 

deal of homogeneity in the vertical over the 1-km range under consideration—

given a region of ground clutter, this image clearly shows that there are excellent 

candidates for replacement pixels at nearby heights. Likewise, the variograms at 

earlier and later times contain a great deal of useful data (i.e., low variance)—the 

benefit of using data at different times is visible in the error structure depicted 

there. We can also see the propagation of the storm toward the ENE by following 

any of the individual rows of the figure. 

 

3.3.2 Stratiform events 

 Having examined the relevant variograms for the convective events, we 

turn our attention to the stratiform cases. Figures 3.5a through 3.5c show the 
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variograms at time t0 and height 2.5 km for Cases 7-9, respectively. Recall that 

these three cases represent the early, middle, and final portions of the same 29-

hour stratiform precipitation event (cf. Table 2.1). In the early stages of the event 

(Fig. 3.5a), we see an elliptical shape with its longer axis oriented NW-SE. This 

makes sense—for the first five hours of the event, the precipitation is still 

propagating into the radar's domain in the form of bands oriented NW-SE. Later 

in the event (Figs. 3.5b and 3.5c), we see a much more symmetrical variogram, 

indicating more evenly spread precipitation, which is indeed what was observed 

in Cases 8 and 9. 

 Another feature of interest is that, noting that the same colour scale was 

used for Figs. 3.5a through 3.5c, there are generally higher variances present in 

the later stages of the storm (i.e., Fig. 3.5c). Based on our analysis of the 

convective events, this stronger variability indicates sharper boundaries between 

regions of precipitation and regions without precipitation. Late in the event's 

timeframe, bands of heavier rainfall are propagating through the weaker 

precipitation, providing the sharper gradients in reflectivity necessary to produce 

the higher variances in Fig. 3.5c. 
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Figure 3.5: 2D variograms calculated for Cases 7-9. Since these cases represent 

three stages of the same stratiform precipitation event (the first five hours, the 

next twelve hours, and the final twelve hours, respectively), this image provides 

an opportunity to compare the early, mature, and dissipating stages of a large 

area of substantial stratiform precipitation. Note that, for all three images, the 

same colour scale was used. 

 

 

Figure 3.6: As in Fig. 3.4, but for the stratiform Case 8 rather than the convective 

Case 1. The data for this case come from twelve hours in the midst of a single 

precipitation event. 
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 Similar to Fig. 3.4, Fig. 3.6 shows the variograms for a single case (in this 

example, Case 8, the middle times of the stratiform event) at different heights 

and times. The direction of propagation of the storm is visible across any of the 

three rows: the precipitation echoes are, on average, propagating from southwest 

to northeast during this part of the event. Once again, we see a benefit to using 

data from different times, in the form of the low variances available five minutes 

before and after the radar scan in question if we take storm displacement into 

account. Likewise, there is also important information available at different 

heights, though it appears that this information is less valuable for a stratiform 

event than it is for a convective event. For instance, if we imagine a situation 

where we want to replace a pixel at 2.5 km with the best possible pixel at 3.5 km, 

the variance for a convective event is 15.20 dB2, while the variance for a 

stratiform event is 21.49 dB2. If we instead attempt to replace that pixel with one 

at 5 km, the difference is still more pronounced: for a convective event, the 

variance is 38.36 dB2, while the variance for the stratiform event is 72.54 dB2
. 

 

3.3.3 Comparisons and results 

 Examining this last point more closely, in Fig. 3.7 we see a height profile 

of variograms for a convective event (left column) and a stratiform event (right 
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column). As is expected given the more substantial vertical extent of convective 

precipitation, variance does not drop off as quickly with height as it does for the 

stratiform event: thus, for convective events we would expect that there is more 

valuable information at different heights than there is for stratiform events. 

Conversely, stratiform events show a much slower drop-off in variance with 

horizontal distance (compare Figs. 3.7c and 3.7f, for example), which reflects the 

horizontal homogeneity that characterizes stratiform precipitation. There is thus 

more information to be gained in the x-y plane for a stratiform event than for a 

convective event. Any algorithm meant to replace ground clutter with a 

combination of surrounding pixels must take into account this fundamental 

difference between the variability of these two types of precipitation, as was 

demonstrated by Sánchez-Diezma et al. (2001). 
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Figure 3.7: Display of variance associated with replacing a pixel at 2.5 km height, 

comparing spatial variance for a convective case (a-c) and a stratiform case (d-f). 

Note that the convective case's colour scale is set to double that of the stratiform 

case—this is to remain consistent with the scales used in previous figures. While 

the convective case's pattern of variance remains very similar over the 1.5 km 
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vertical extent of these depictions, the stratiform case's variance drops off rapidly 

with height. These variance characteristics reflect the more substantial vertical 

extent of convection. 

 

 Figure 3.8 again compares the behaviour of convective and stratiform 

events, but over time instead of height. Note that, despite the differences in 

magnitude and horizontal extent of the variance, both the convective and 

stratiform variograms show a marked similarity between the structure at our 

reference time 0tt  and at earlier times. This demonstrates another strength of 

considering data from different times: both stratiform and convective rainfall 

events have the potential to benefit from this information, since both involve the 

propagation of organized systems. The lifetimes of convective and stratiform 

events may be very different (one hour as compared with one day), but we are 

considering data from a relatively short span of time (under half an hour) and a 

relatively small spatial scale (a few tens of km), so this difference is less 

important than it might be otherwise. Thus, while the variability of spatial data 

(horizontal or vertical) depends strongly on precipitation type, the variability of 

temporal data relies only on the direction of propagation of precipitation, as is 

generally determined by the mean echo displacement. 
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Figure 3.8: Display of variance with time, comparing spatial variance for a 

convective case (a-c) and a stratiform case (d-f). Note that the convective case's 

colour scale is set to double that of the stratiform case—this is to remain 

consistent with the scales used in previous figures. Note that both cases have a 

similar relative drop-off of variance at earlier times. 

 

 With an understanding of the four-dimensional error structure for all nine 

cases, as well as the points of commonality and differences between convective 

and stratiform events, we have a solid basis for a system of correction of ground 

clutter: we know where to look, spatially and temporally, to find information that 

will be similar to the data contaminated by the ground clutter. The next section 

takes a more explicitly quantitative approach to the problem through calculations 

to determine distance-time and distance-height equivalents (i.e., how far do we 
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have to travel horizontally to find a similar variance to the variance five minutes 

earlier or the variance 1 km higher?). In Chapter 4, an algorithm for ground 

clutter correction is built using a combination of these equivalence factors and 

the error structure derived in this section. 

 

3.4 Error equivalence in time, height, and space 

 The notion of error equivalence provides an important step towards 

quantifying the benefits of including reflectivity data from different times and 

different heights in our stable of possible replacement pixels. If we have a pixel 

contaminated by ground clutter, and the nearest available non-cluttered pixel in 

the x-y plane is 4 km away, are we better off taking data from 5 minutes earlier? 

0.5 km higher? Some combination of the two? A simple metric of error 

equivalence (more precisely, variance equivalence) will also be essential for the 

ground clutter correction algorithm outlined in Chapter 4: without knowledge of 

the relative variance drop-off rates in time and in space, it becomes impossible to 

automate selection of pixels in all four dimensions. This section establishes the 

requisite common reference frame that allows comparisons among the four 

dimensions—it will be possible to calculate relative "distances" in time for use in 

the kriging approach of the following chapter. 
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 First, we must establish a common metric for height and horizontal 

distance. As mentioned in Section 2.2, there are ten discrete height levels at 

which CAPPIs are taken in this dataset (1.5 km, 2 km, 2.5 km, 3 km, 3.5 km, 4 

km, 5 km, 6 km, 7 km, and 8 km). For each of these height levels, our goal is to 

establish an equivalent horizontal distance—at what horizontal distance from our 

contaminated pixel will a pixel from a different height be a better replacement 

(i.e., have a lower variance)? In other words, when searching for replacements 

for contaminated pixels, when should we stop looking in the horizontal and start 

looking in the vertical? 

 The process is a simple one. First, we establish a reference height z0—in 

keeping with previous figures and examples, we will choose z0 = 2.5 km as an 

example. Next, we look for the lowest possible variance at a different height (say, 

z = z0 + 1.5 km, i.e., z = 4 km )—this will be the "bullseye" visible in the 

variograms of the previous section. Now that we have this value for the variance, 

we search for it back at our reference height z0. The horizontal distance at which 

we find this variance is thus the equivalent horizontal distance for a 1.5 km rise in 

height. That is, if we travel further than this horizontal distance in search of a 

replacement pixel, we should instead consider looking at a CAPPI level 1.5 km 

higher up. Figure 3.9 illustrates this process for Case 1. 
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Figure 3.9: Demonstration of the calculation of error (i.e., variance) equivalence 

in height. Our reference height is selected to be z0 = 2.5 km, and we are 

attempting to establish the equivalent horizontal distance for z = z0 + Δz, where Δ

z = 1.5 km. Figure 3.9a shows the variance at a vertical distance Δz = 1.5 km 

from our reference height z0 and identifies the minimum value of variance at that 

height: 23.8 dB2. We then search the variogram at our reference height z0 (Fig. 

3.9b) for the pixel with the nearest possible value to 23.8 dB2, which turns out to 

be at a distance Δy = 2 km from our reference pixel. Thus, at a reference height 

of z0 = 2.5 km for this convective event, moving Δz = 1.5 km higher in the vertical 

direction is approximately equivalent to moving Δy = 2 km in the horizontal 

direction. 

 

 This simple process, with a horizontal resolution of 1 km, will evidently not 

provide exact equivalences, but a general trend can be established by repeating 

this procedure for all nine heights relative to the reference height. A simple best-

linear fit is made on a plot of height versus horizontal distance, and so a simple 

weighting equivalence is established—in order to replace a height level with its 

equivalent horizontal distance, we apply the transformation in the form of the 

equation of the best-fit line. This process is illustrated in Fig. 3.10 for Case 1, a 

convective event, and for Case 8, a stratiform event. For the sake of clarity, let us 
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assume that we want to replace a contaminated pixel with a single pixel from 

either a different height or from a different horizontal distance. At what horizontal 

distance does it start becoming beneficial to look for pixels at different heights 

instead? Figure 3.10 shows that, for a convective event, a single-pixel 

replacement form a height of 1 km will only be an improvement if we are looking 

more than 1.4 km away horizontally. For the stratiform event, this number climbs 

to 5.4 km—this is quantitative confirmation of the qualitative aspects of the 

variograms presented earlier in this chapter, which showed that the stratiform 

event would benefit less from the replacement of pixels in the vertical than would 

the convective event. Thus, if we have a stratiform precipitation event and a pixel 

of ground clutter, and our two options for replacing this clutter are at 1 km 

vertically and at 3 km horizontally, the horizontal pixel is a better option. 
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Figure 3.10: Convective (Case 1 only) and stratiform (Case 8 only) equivalent 

variance plot for height, starting from a reference height z0 = 2.5 km. For 

instance, the equivalent horizontal distance corresponding to a true vertical 

distance Δz = 0.5 km is Δx = 1.8 km, and the value approximated by the trendline 

is Δx = 3.7*0.5 km = 1.85 km. The values for equivalent height corresponding to 

each true vertical distance are calculated as demonstrated in Fig. 3.9. The 

intercept is fixed to zero, since the equivalent horizontal distance calculated here 

is the absolute value of the horizontal distance, and so a negative value has no 

meaning. Likewise, the values of true vertical distance along the x-axis have 

been calculated as absolute values (for a vertical distance of 0.5 km, for 



 

54 

 

instance, an average was taken of the lowest variances for z0 + 0.5 km and z0 – 

0.5 km). 

 

 To maximize the accuracy of this simple calculation, this process is 

repeated for each individual reference height. The same methodology is used to 

construct error equivalences in time, i.e., to determine at what horizontal distance 

it is actually preferable to take a replacement pixel from a different time instead. 

Refer to Appendix A for the tables of values and associated discussion. 

 Now that we have a solid understanding of the four-dimensional error 

structure for each of these nine events, as well as knowledge of error 

equivalences, we are capable of replacing a single bad pixel with its best 

possible (statistically speaking) neighbour. This is only a small part of the puzzle, 

however: the remainder of this study will be devoted to the development and 

evaluation of an algorithm that can replace large areas of ground clutter with 

optimal combinations of surrounding pixels. 

  



 

55 

 

Chapter 4: Towards an algorithm for information blending and 

correction of static ground clutter 

4.1 Introduction and mechanics 

 The primary goal of this study is the creation of an automated algorithm 

that can replace known, stationary ground clutter in real-time using a combination 

of pixels that takes advantage of information at different spatial and temporal 

locations. An important requirement for this algorithm is that it should not smooth 

the data to the point where the extrema are no longer visible. In substantial 

rainfall events, these extrema are of paramount interest to forecasters, 

researchers, and the public alike, so it is essential that the final product avoid 

averaging data over too many pixels. 

 Four methods of increasing complexity are introduced in this chapter, 

ranging from the simplest two-dimensional nearest neighbour correction to an 

algorithm making use of ordinary kriging (OK) and the "smart" selection of a very 

limited number of pixels that can maximize sampling of independent spatial and 

temporal information and minimize smoothing. Finally, the methods are 

compared and statistics are calculated in order to evaluate each approach, 

balancing accuracy with the time necessary to regenerate products so as to 

incorporate near-future data. 
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 In order to evaluate a given algorithm's ability to fill gaps due to ground 

clutter, we need a "reality" against which to compare that algorithm's final result. 

The simplest way of doing this is to create a region of false ground clutter based 

on reality, but translated so it does not intersect with the actual ground clutter: 

this way, we have access to the actual reflectivity field that this false ground 

clutter is concealing, and we are assured that the shape and size of this false 

ground clutter is realistic. The importance of doing this testing over a region of 

bad pixels rather than a single bad pixel is clear: in reality, the gaps in radar data 

that need filling are rarely confined to an isolated, 1 km × 1 km space. Figure 4.1 

shows an area of false clutter that is based on the actual ground clutter pattern at 

McGill's radar (recall Fig. 2.2), transposed in such a way that the false clutter 

pixels never intersect with the real clutter pixels, thus assuring that there is 

always a reliable "truth" with which to compare the algorithms' results. The 

remainder of this chapter will demonstrate the results of replacing these false 

clutter pixels with different combinations of uncontaminated pixels. 

 Two specific scans will sometimes be used in the following sections as 

qualitative illustrations of the strengths and weaknesses of each gap-filling 

algorithm. The first of these reflectivity scans showcases an event in which some 

strong but localized convective cells have been obscured by the false clutter 

(Case 1; Fig. 4.2a-b), while the second is from an event in which the false clutter 
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hides pockets of particularly strong stratiform precipitation (Case 8; Fig. 4.2c-d). 

More information on these particular samples will be given in the following 

sections. Note that, in many of the discussions that follow, focus will be given to 

the highly variable and horizontally inhomogeneous convective event as it is the 

more challenging of the two to simulate. Improvements in the algorithms' 

convective results are mirrored by improvements in the stratiform results, albeit 

less dramatically. 

 

Figure 4.1: Depiction of the false ground clutter at the McGill radar for the 1.5 km 

CAPPI height (cf. Fig. 2.2, which is the actual ground clutter). The regions of 

green pixels, each one representing a 1 km × 1 km horizontal square, are 
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hereafter considered to contain "bad" data, and the purpose of the algorithms in 

the following sections will be to fill in these gaps with information that best 

reflects the true meteorological situation. The domain is 240 km × 240 km. 

 

 

Figure 4.2: Sample radar scans to be used in qualitative algorithm evaluation for 

a convective case (a-b) and a stratiform case (c-d). The dark red area highlighted 

in the left column is the false clutter to be replaced by the following algorithms, 

while the right column shows the "truth" in this region, i.e., the actual recorded 

reflectivities. Note that these images are a subset of the 240 km × 240 km 

domain: the replaced pixels—the same as those shown in Fig. 4.1—are primarily 
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located about 80 km west of the radar (the blocked-out dark blue pixels in the 

lower right of each figure are the actual ground clutter centred around the radar).  

 

4.2 Nearest neighbour algorithm 

 The first, and simplest, type of correction algorithm is a nearest-neighbour 

approach limited to two dimensions (hereafter NN2); that is, in seeking to replace 

our pixels of ground clutter, we use only the reflectivity data provided by a single 

reflectivity scan at a single vertical level. NN2 involves single-pixel replacement—

rather than replacing our contaminated pixels with weighted combinations of 

pixels from their surroundings, NN2 will only make one-to-one replacements. 

 The process for NN2 is straightforward: 

1 Identify all ground clutter pixels. In order to have a "truth" to compare with the 

algorithm output, for this exercise, we assign the algorithm the task of 

replacing each of the false ground clutter pixels depicted in Fig. 4.1. In reality, 

the NN2 would have as its input an array of archived pixels representing the 

radar's true ground clutter, as in Fig. 2.2. 

2 For the first ground clutter pixel, ),,,( 00000 tzyxZ , search its surroundings for 

the nearest non-contaminated pixel, ),,,( 001 tzyxZ , where xxx  0  and 

yyy  0 , and "nearest" refers to the lowest available value of 

])()[( 22 yxr  . 
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3 Assign Z0 the reflectivity value of the pixel Z1. 

4 If more than one pixel exists at the same horizontal distance from the pixel to 

be replaced, take the unweighted mean of their reflectivities. 

5 Repeat steps 2-4 for each ground clutter pixel. Note that pixels that have 

already been replaced are not candidates for the replacement of other pixels: 

only true data will be candidates for nearest neighbour pixel replacement. 

 Figure 4.3 gives a graphical illustration of the performance of this two-

dimensional nearest neighbour algorithm in (a) the convective case, and (b) the 

stratiform case. The dark lines passing through each plot show a "perfect" 

algorithm result, in which the reflectivity values suggested by the algorithm 

exactly match the reflectivity values present in reality. For the convective case, 

while there is an apparent grouping of these data points near the 1:1 line, there is 

also considerable spread, including values along the ordinate and abscissa 

where, for example, there is a pixel with a true reflectivity of 50 dBZ that the 

algorithm replaced with a 0 dBZ pixel, likely right at the edge of a convective cell. 

This relatively poor performance is to be expected of such a simple, horizontal-

only approximation of a series of isolated convective storms with strong vertical 

development. This result should easily be beaten with the more complex 

algorithms to be described in the following sections. 
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Figure 4.3: Scatterplots of true reflectivity values versus those generated by the 

NN2 algorithm ("substituted"). (a) Convective event (Case 1), (b) Stratiform event 

(Case 8). The black diagonal represents a 1:1 correlation between true 

reflectivity and substituted reflectivity—i.e., along this line the algorithm perfectly 

reproduces the actual reflectivity. Each point plotted corresponds with a single 

pixel of the false ground clutter depicted in Fig. 4.1.  

 

Note that the scatterplot for Case 8 (Fig. 4.3b) shows a much more regular 

grouping around the "perfect" result, with fewer pixels directly along the x- or y-

axes. The algorithm's improved performance reflects the stratiform event's 

stronger horizontal homogeneity: it is more likely that the nearest pixel in the 

horizontal will be an accurate substitution than it would be in our convective 

example. Note also that both plots show approximately the same number of 

pixels above and below the 1:1 line: there is no strong bias in the results, and so 

the nearest neighbour algorithm neither consistently overestimates nor 
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consistently underestimates these reflectivity data. This is reflected by the fact 

that the mean reflectivity error for the convective event is only -0.0093 dB, and 

the mean error for the stratiform event is only 0.0112 dB. 

 To examine the results of this nearest neighbour algorithm in a more 

qualitative sense, two specific scans will be examined, one each from the 

convective and stratiform events (Fig. 4.4). These scans were selected to provide 

clear illustrations of the algorithm's performance in two different settings: the 

convective event (Fig. 4.4a-b) showcases the algorithm's ability to infer the 

presence and extent of relatively isolated convective cells, while the stratiform 

event (Fig. 4.4c-d) demonstrates its capacity for highlighting regions of enhanced 

or suppressed intensity within a relatively homogeneous precipitation field. These 

two scans will be used consistently throughout the more complex algorithms of 

future sections to provide a reference of the applied, physical effects of these 

algorithms on the derived reflectivity field. 

 Note that, in both the convective and stratiform precipitation events, the 

pixels replaced by the NN2 algorithm are readily apparent, especially in the 

region marked by the black circle in Fig. 4.4a, in the form of blocky areas of 

reflectivity. This is an expected result of this relatively limited algorithm for which 

there will often be no other choice but to use the same pixel to fill multiple gaps. 

The relative lack of bias is also apparent here: although the NN2 algorithm 
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frequently misses the edges of precipitation, it can also infer much larger cells 

than occur in reality, if the nearest pixel to a particular gap has a relatively high 

reflectivity value (this is most apparent in Fig. 4.4a, about 50 km W of the radar). 

 

Figure 4.4: Examples of NN2 (2D Nearest Neighbour algorithm) performance for 

a convective event (a-b) and a stratiform event (c-d). Images in the right column 

are the "truth", i.e., the actual recorded reflectivities (see the right column of Fig. 

4.2), while images in the left column show the reflectivity after the holes formed 

by the false ground clutter pixels have been filled by the NN2 method. 
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 While this simple algorithm does provide results that are measurably 

better than not attempting to fill the gaps at all, the standard deviation from reality 

of these algorithm-derived reflectivity values is over 5 dB for the convective event 

and over 3 dB for the stratiform event. It should thus be fairly straightforward to 

formulate an algorithm to outperform this result and provide a clearer quantitative 

picture of the reality obscured by ground clutter. The next step in this attempt to 

create a more accurate algorithm is to bring in the variance data derived in the 

previous chapter. 

 

4.3 Best pixel algorithms 

 The next level of complexity incorporates the variograms created in 

Chapter 3. The best pixel approach (hereafter BP) is again a single-pixel 

replacement algorithm—that is, it replaces a contaminated pixel with a single 

pixel from its surroundings—but this time, it makes that selection based on the 

statistics gathered. The procedure is as follows: 

1 Identify all ground clutter pixels. 

2 For the first ground clutter pixel, Z0, examine its surroundings via the 

variograms created in Chapter 3, looking for the lowest variance that still 

corresponds to an uncontaminated pixel. Call this pixel Z1. 

3 Assign Z0 the reflectivity value of Z1. 
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4 Repeat steps 2-3 for every ground clutter pixel. 

 In its 2D form, we expect this approach to perform similarly to the 2D 

nearest neighbour method, but unlike the NN2 algorithm, we will allow the hunt 

for replacement pixels in the BP algorithm to be expanded to 3D (x,y,z), 3.5D 

(x,y,z, past times only), and 4D (x,y,z, all times). This expansion to higher 

dimensions should provide a substantial improvement over the limited NN2 

algorithm. 

 Figure 4.5 clearly demonstrates the qualitative difference between the 

nearest neighbour and best pixel algorithms, especially in the convective 

example (top row). While the blockiness associated with single-pixel replacement 

is still unavoidably present, note that the results of the best pixel algorithm show 

stretching along the SW-NE axis (Fig. 4.5b), echoing the shape of the variogram 

for this event (recall Fig. 3.2). This effect is less immediately obvious for the more 

uniform stratiform precipitation.  

 Increasing the dimensionality of the best pixel algorithm essentially 

expands the possible pool of pixels from which to select the single replacement 

pixel, which reduces some of the observed blockiness. Incorporating the height 

dimension, for instance, reduces the standard deviation (of replacement pixels 

compared with reality in the convective event) from 5.4 dB to 5.2 dB. 

Incorporating pixels from different times when they happen to be the best 
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available choice brings the standard deviation down considerably further, to 4.1 

dB, although there is little difference between the 3.5D and 4D results: widening 

the search for replacement pixels to include near-future data has limited effect 

once past data have already been included. This simple algorithm can be thought 

of as a proof-of-concept for the value of considering data from different heights, 

and, especially, different times. 

 

Figure 4.5: As in Fig. 4.4, but for a comparison of the NN2 (2D nearest neighbour 

algorithm; left column) and the BP2 (2D best pixel algorithm; right column). The 

top row is the convective event, while the bottom row is the stratiform event.  
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 Both the nearest neighbour and best pixel algorithms use single-pixel 

replacement methods, that is, each pixel contaminated by ground clutter is 

replaced by a single pixel from elsewhere in the domain—the only difference is in 

the method used to select that pixel. As no other simple, single-pixel replacement 

strategies would be likely to make an appreciable difference to the final result, 

any improvements should emerge as a result of using multiple-pixel replacement 

instead, i.e., algorithms in which each pixel contaminated by ground clutter is 

replaced with some sort of weighted average of pixels from its surroundings 

rather than just another single pixel. The following two sections introduce the 

concept of ordinary kriging, and evaluate its use as a means of creating weighted 

averages to fill in the gaps caused by ground clutter. 

 

4.4 Simple ordinary kriging algorithms 

 Ordinary kriging (OK), summarized in Appendix B, requires a number of 

pixels to be selected as possible replacement candidates, assigns each of those 

pixels a weight based on the mean error structure calculated in Chapter 3, and 

finally takes their weighted average. Attempting to average n pixels using 

ordinary kriging requires the inversion of an (n+1) × (n+1) matrix, which can 

easily become a computationally expensive process. Therefore, limiting the 

number of pixels to be kriged is an important challenge in developing a pixel-
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replacement algorithm that uses ordinary kriging. A lower number of pixels will 

also reduce the smoothing of extreme values that occurs with the averaging of 

many pixels (Section 4.6). In this and the following ordinary kriging methods, if N 

is the number of dimensions under consideration, the number of pixels to be 

kriged is selected to be 2N. This number was deemed to be an acceptable 

compromise between the lack of spatial information when there are too few 

pixels, and the over-smoothing and computational costs that arise with too many 

pixels. The problem has then been reduced to determining how best to select 

these 2N pixels, and two methods will be described in this and the following 

section. This section's simple OK approach automatically selects the 2N pixels 

with the lowest variance, while the smart OK approach (Section 4.5) attempts to 

select its 2N pixels in such a way that they provide a more complete sampling of 

the independent spatial and temporal information available. 

 The simplest method of incorporating ordinary kriging into the ground 

clutter correction process is as follows: 

1 Identify all ground clutter pixels. 

2 For the first ground clutter pixel, Z0, use the best pixel algorithm described in 

Section 4.3 to select the 2N pixels with the lowest variance, where N is the 

number of dimensions the particular algorithm considers (2D, 3D, 3.5D, or 

4D). 
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3 Using the variograms created in Chapter 3 as input, use ordinary kriging, as 

described in Appendix B, to build a weighted average Z of the reflectivities of 

our 2N pixels. 

4 Replace Z0 with the value Z. 

5 Repeat for all ground clutter pixels. 

 The result is an algorithm that replaces ground clutter pixels with a 

weighted average of the lowest-variance pixels nearby, so we expect a certain 

amount of smoothing to occur in comparison with the best pixel algorithm 

described in the previous section. Figure 4.6 shows the dramatic qualitative 

improvement that occurs when multiple-pixel replacement is used in lieu of 

single-pixel replacement. Even looking only at the two-dimensional version of the 

simple ordinary kriging algorithm (Fig. 4.6b), when compared with the two-

dimensional best pixel algorithm (Fig. 4.6a), it provides a much less blocky and 

more qualitatively realistic depiction of the true meteorological situation being 

obscured by the regions of ground clutter. The stretching along the SW-NE axis 

of the system is still apparent in the simple kriging algorithm's results, since it is, 

after all, still reliant on the variograms developed in Chapter 3 and will thus reflect 

their shape. 

 The higher-dimensional versions of the simple ordinary kriging algorithm 

provide added value. For the sake of comparison, two convective cells have 



 

70 

 

been highlighted in Fig. 4.6a: the cell to which the white arrow points will 

hereafter be referred to as Cell 1, and the cell to which the red arrow points will 

hereafter be referred to as Cell 2. First, while the two-dimensional simple 

ordinary kriging algorithm's output is less blocky than that from the best pixel 

algorithm, the general shape and magnitude of both Cell 1 and Cell 2 in SiOK2 

(Fig. 4.6b) are rather similar to BP2's result (Fig. 4.6a). Looking at the simple 

ordinary kriging algorithm when the height dimension is brought into play (Fig. 

4.6c), the overdone extent of Cell 2 has been scaled back to something more 

closely approximating the true shape and size of that particular cell (cf. Fig. 4.4b). 

The addition of the time dimension in Fig. 4.6d stretches Cell 1 in the correct 

direction, very closely approximating the true shape of that cell as well. 
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Figure 4.6: Comparison for the convective event to illustrate the benefits of the 

multiple-pixel selection approach. (a) Two-dimensional best pixel algorithm, with 

white arrow indicating cell 1 and red arrow indicating cell 2. (b) Two-dimensional 

simple ordinary kriging algorithm. (c) Three-dimensional simple ordinary kriging 

algorithm. (d) Three-and-a-half-dimensional (past times only) simple ordinary 

kriging algorithm. 

 

  The quantitative differences between these algorithms' results and the true 

reflectivities concealed by the false ground clutter bear out these qualitative 



 

72 

 

improvements: going from a two-dimensional best pixel algorithm to a two-

dimensional simple ordinary kriging algorithm, the standard deviation from the 

true values diminishes from 5.4 dB to 4.4 dB. The advantage of a multiple-pixel 

replacement scheme is apparent: the magnitude of this decrease in standard 

deviation is similar to that obtained when switching from a two-dimensional 

single-pixel replacement scheme to a fully four-dimensional one, at a much lower 

computational cost. The inclusion of pixels from different heights and times into 

the simple ordinary kriging algorithm improves the results still further, down to a 

4.1 dB standard deviation. 

 In spite of these encouraging results, the simple ordinary kriging algorithm 

is by necessity making use of redundant information in its weighted averaging: it 

could well grab the values from two immediately adjacent pixels for kriging, with 

no particular net gain of information. In the following section, the final algorithm of 

this study will be developed: a "smart" ordinary kriging algorithm that prevents 

the selection of redundant information and encourages a sampling of data that 

represents the overall structure of the precipitation system. 

 

4.5 Smart ordinary kriging algorithms 

 As discussed in the previous section, the simple ordinary kriging approach 

replaces pixels based on the mean variance structure derived in Chapter 3. This 
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simple kriging method, however, merely considers candidate pixels as an 

ordered list, sorted from lowest to highest variance, without taking into account 

that the top pixels on that list may all provide redundant data. For example, given 

the continuous nature of radar reflectivity, if the best two available pixels are right 

next to each other, they are very likely to have nearly the same value, and the 

simple ordinary kriging algorithm will select these two pixels rather than taking 

just one and seeking out a different pixel that is more likely to provide 

independent information. The "smart" ordinary kriging approach described here is 

an attempt to mitigate these pixel-selection issues as much as possible by 

disallowing the selection of adjacent or nearby pixels, all without increasing the 

number of pixels selected (and hence the computational cost for kriging). By 

replacing redundant data with more independent information, this smart kriging 

process should fill the ground-clutter gaps with values that better reflect the mean 

pattern. 

 How, then, to define these "adjacent" or "nearby" pixels that are likely to 

contain redundant information, so as to avoid selecting them? Restricting 

ourselves to two dimensions for the sake of clarity (i.e., requiring that all four 

candidate replacement pixels are located on a single CAPPI scan from the same 

height and time), and picturing a set of orthogonal axes centred on the 

contaminated pixel that needs to be replaced, we can imagine selecting one pixel 



 

74 

 

from along the positive x-axis, one from along the negative x-axis, one from 

along the positive y-axis, and one from along the negative y-axis. These four 

pixels are thus the combination that is least likely to sample redundant data, 

since they by definition sample four completely different quadrants of the radar 

scan.  

 In reality, however, this ambitious notion of picking pixels that align 

perfectly along each axis is unrealistic. We are not likely to be dealing with the 

replacement of a single contaminated pixel in isolation; large nearby regions of 

ground clutter dramatically narrow the pool of candidate pixels to choose from. 

By widening the candidate pixel search parameters from "must be located on the 

axis" to "must be located within 30 degrees of the axis," we can still find four 

uncluttered replacement pixels, and simultaneously ensure that they are likely to 

provide relatively independent information. This strategy lays the foundation for 

the "bowtie" method of pixel selection. 

 We begin, as we did in the simple ordinary kriging algorithm, by selecting 

the best uncontaminated pixel using the variograms constructed in Chapter 3. 

Once this pixel (Z1) has been selected, the axis linking it to the contaminated 

pixel Z0 to be replaced is named as our first axis. We look in the negative 

direction along this axis and select a second pixel on the opposite side of Z0, 

doing a search within a 30-degree arc for the best possible uncontaminated pixel 
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(as determined by the variograms created in Chapter 3). This region is marked 

by the green lines shown in Fig. 4.7. Next, we select a second axis orthogonal to 

the first, and perform a similar check within a 30-degree angle in order to 

determine the next two pixels (see the blue lines in Fig. 4.7). This process is 

repeated until we have 2N pixels selected, where N is the number of dimensions 

under consideration—in this case, the number of orthogonal axes considered. 

The choice of using a 30-degree arc (as opposed to a 45-degree arc or a 15-

degree arc) was somewhat arbitrarily deemed the most acceptable tradeoff 

between over-limiting a search region and opening the search region so wide 

that redundant pixels could still be selected. For instance, two 45-degree pixel 

search arcs intersect along a line, so it would be possible for two pixels to be 

selected along this line, providing redundant information—which is precisely what 

the smart ordinary kriging method hopes to avoid. 
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Figure 4.7: Illustration of the "bowtie" pixel selection method for the 2D case. The 

pixel with the lowest available variance (red point) is the first of the four pixels 

selected, and a system of axes (dashed lines) is built around it, based on the 

position of this best pixel with respect to the reference pixel to be replaced. First, 

a 30-degree arc is measured out in the direction opposite that of the first pixel 

(green lines), and the pixel within that arc with the lowest variance is the next 

pixel to be selected (black point within the green lines). A similar methodology is 

used to select the remaining two pixels within the 30-degree arcs (blue lines) 

measured with respect to the orthogonal axis. This process is trivially 
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generalizable to higher dimensions with the conversion of height and time to 

equivalent horizontal distances using Tables A.1 and A.2 (Appendix A). 

 

 Note that we will have to calculate these 30-degree arcs on unusual 

planes that include time and height as well as horizontal distance. Recalling the 

error equivalences calculated in Tables A.1 and A.2, by using these tables to 

relate the error structures of height, time, and horizontal distance, we are able to 

convert heights and times to horizontal distances, and then use these horizontal 

distances to calculate 30-degree angles as in Fig. 4.7. 

 The general process for the smart ordinary kriging approach is thus as 

follows: 

1 Identify all ground clutter pixels. 

2 For the first ground clutter pixel, Z0, use the variograms created in Chapter 3 

to determine the single uncluttered pixel Z1 with the lowest variance (as in the 

best pixel algorithm described in Section 4.3). 

3 Draw a 30-degree arc extending back from an axis A1 passing through Z1 

and Z0. Using the variograms, find the uncluttered pixel Z2 with the lowest 

variance that lies within this 30-degree arc. 

4 Including the initial axis A1, find N orthogonal axes, where N is the number of 

dimensions under consideration. Again, draw 30-degree arcs in the positive 
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and negative directions along these axes and find the lowest-variance 

uncluttered pixels that lie within those 30-degree arcs. 

5 While calculating 30-degree arcs, where necessary, convert heights and 

times to equivalent horizontal distances using the numbers derived in 

Appendix A. 

6 If no uncluttered pixels are available within a given arc, do not select a pixel 

for that dimension. Thus, the total number of pixels selected will be 

somewhere between 1 and 2N, inclusive. 

7 Using the variograms created in Chapter 3 as input, use ordinary kriging to 

build a weighted average Z of the reflectivities of our selected pixels. 

8 Replace Z0 with the value Z. 

9 Repeat for all pixels contaminated by ground clutter. 

 The final result will be that each contaminated pixel has been replaced 

with a weighted average of surrounding pixels, which have been selected to 

include the most non-redundant spatial information. 

 Does this method provide an improvement over the simple ordinary kriging 

approach of the previous section? Even when the dataset is limited to only two 

dimensions, the answer is yes: the simple version of the 2D ordinary kriging 

algorithm (without the bowtie pixel selection method) has a 4.44 dB standard 

deviation, while the "smart" version has 4.40 dB. In fact, the smart ordinary 
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kriging method has a slightly lower standard deviation than the simple ordinary 

kriging method in 2D, 3D, 3.5D, and 4D. Does that suggest that it is 

unambiguously the best choice of algorithm to use for correcting ground clutter? 

Should this smart pixel-selection method, based on accurately sampling time-

space variability, always supplant the simpler approach of blindly picking the 

lowest-variance pixels? As always, the data user must weigh the potential 

benefits against the added complexity of implementing the smart kriging 

method's more elaborate pixel selection procedure. These benefits are quite 

small: as described above, the smart ordinary kriging algorithm provides only a 

1% lower standard deviation when compared with simple ordinary kriging at 2D 

(4.44 dB versus 4.40 dB), and this improvement is not substantially larger even in 

the fully 4D algorithms.  

If time is short (as in many operational situations) or computational power 

is limited, the added bulk of the more complicated pixel selection process is not 

ideal, given such a paltry reward. A less computationally expensive method of 

overcoming the simple ordinary kriging method's tendency to pick redundant 

pixels is simply to select more pixels: upping the number of pixels kriged in the 

2D simple ordinary kriging method from 4 to 8 reduces its standard deviation 

from 4.44 dB to 4.26 dB, making it a 3% improvement over the 2D smart ordinary 

kriging algorithm while still taking slightly less time to run. The disadvantage of 
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this approach is that averaging over more pixels tends to smooth away extreme 

values, an issue that will be discussed in the following section. Given an ideal 

situation, however, with high processing power and/or few time constraints (e.g., 

regenerating earlier data to use in a research case study), the slight improvement 

of the smart ordinary kriging algorithm is an improvement all the same. For 

example, in the 2D case, as long as those first four pixels are selected using the 

bowtie pixel selection method of Fig. 4.7, the smart kriging algorithm's 

performance will always edge out the simple kriging algorithm's performance. 

 Figure 4.8 shows, in the form of scatterplots, the progress made from the 

two-dimensional nearest neighbour algorithm through to the fully four-

dimensional smart ordinary kriging algorithm. As is reflected by the 1.8-fold 

reduction in standard deviation, there is less spread around the 1:1 line for the 

four-dimensional smart ordinary kriging algorithm than for the two-dimensional 

nearest neighbour algorithm. However, while the nearest neighbour algorithm 

showed no particular bias (see discussion in Section 4.2), in the four-dimensional 

smart ordinary kriging algorithm, a clear majority of the pixels lie under the 1:1 

line (i.e., the substituted reflectivity values are often lower than the true reflectivity 

values), and there are relatively few pixels well above the 1:1 line, unlike with the 

NN2 algorithm. We would expect the more complex multiple-pixel algorithms to 

have a tendency to underestimate reflectivity values: this is the smoothing effect 
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of averaging, blurring out the extrema, and this effect would have been even 

more pronounced if we had used more than 2N pixels in the ordinary kriging 

algorithm.  

 

Figure 4.8: As in Fig. 4.3, but for (a) the two-dimensional nearest neighbour 

algorithm, and (b) the four-dimensional smart ordinary kriging algorithm. Both 

scatterplots are for the convective case. The stratiform case (not pictured) did 

show more bunching around the 1:1 line for the 4D smart ordinary kriging 

algorithm, as well as a slight bias toward the bottom half of the plot, but the 

contrast was less visually striking due to the relatively strong performance of the 

2D nearest neighbour algorithm in the stratiform case. 

 

The following section evaluates the performance of these algorithms when 

it comes to creating more complex products derived from simple reflectivity 

imagery. Special focus will be placed on the top percentile of instantaneous 

rainfall rates alone, to evaluate how much of a detriment the aforementioned 



 

82 

 

"smoothing" effect may be on the algorithms' performance when replacing the 

pixels with extreme values that signal particularly severe weather. 

 

4.6 Algorithm performance in additional radar products 

 We have thus far limited the evaluation of the algorithms' performance to 

raw CAPPI reflectivity replacement, i.e., looking at how well they perform in real-

time with the CAPPI radar scans forecasters would be observing as they are 

generated in an operational center. These raw data can also be used to create a 

variety of radar products related to rainfall rates and accumulations, and by 

evaluating the algorithms' performance with these additional challenges, the full 

range of potential applications for these algorithms can be appreciated. The 

following subsections evaluate the algorithms' performance for instantaneous 

rainfall rates and for one-hour rainfall totals. An additional test evaluates their 

performance for the top percentile of instantaneous rainfall rates only, a "worst-

case" scenario associated with anomalously strong precipitation. 

 

 4.6.1 Rainfall rates and totals 

 The accurate conversion of radar reflectivity to rainfall rate is a topic that 

has engendered a great deal of discussion and debate in the research 

community (e.g., Uijlenhoet 2001, Marshall et al. 1955). For the sake of 
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simplicity, and direct analogy with operational applications, the conversion 

formula used in this brief evaluation is chosen to be the same as that employed 

by the U.S. National Weather Service for their Weather Surveillance Radar 88 

Doppler (WSR-88D) network, i.e., 4.1300RZ   (Fournier 1999), where Z is the 

reflectivity value and R is the rainfall rate in mm/hr. 

 The absolute differences between the algorithms' substituted 

instantaneous rainfall rates and reality show a similar trend to those in reflectivity, 

with slightly lower errors across the board for the stratiform event versus the 

convective event. Table 4.1 compares these results with the results of Sánchez-

Diezma et al. (SD01; 2001) introduced in the first chapter. Recall that SD01's 

methodology involves using a simple thresholding approach to distinguish 

between convective and stratiform events, and then chooses its single-pixel 

replacement method accordingly. While the approaches introduced in this 

chapter outperform the SD01 method by a considerable margin (the smart 

ordinary kriging approach results in a sevenfold reduction in error), they have the 

added advantage of not having to distinguish between stratiform and convective 

events: the same algorithm is applied to both.  

 

Table 4.1: Rainfall rate error comparison for Sánchez-Diezma et al. (SD01; 

2001), the 2D nearest neighbour algorithm (NN2), and the 4D simple ordinary 
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kriging algorithm (SiOK4). See Section 1.3 and text for a more detailed 

description of the SD01 horizontal+vertical algorithm. NN2 and SiOK4 data are 

from the convective event. Stratiform event errors (not shown) are slightly lower 

than those for the convective event. 

Algorithm Type Mean Error in Rainfall Rate (mm/hr) 

SD01 horizontal+vertical 1.04 

NN2 0.71 

SiOK4 0.15 

 

These error values are extremely low—it is important to keep in mind that 

they are strongly skewed by the large regions without reflectivity, or with very low 

reflectivities, where even a 5 dB error in reflectivity corresponds only to a minute 

(<0.1 mm/hr) error in rainfall rate. Contrast this with the higher end of the 

reflectivity scale where, for instance, a 5 dB error could correspond to nearly 5 

mm/hr of error in rainfall rate. The following subsection will address the issue of 

extreme precipitation values and evaluate the algorithms' performances in these 

specific situations. 

 As is the case in the reflectivity imagery of the previous section, the rainfall 

rates show a blockiness in the output of the single-pixel replacement algorithms 

(i.e., nearest neighbour and best pixel), and this blockiness is in turn smoothed 
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out by the multiple-pixel replacement algorithms (i.e., simple and smart ordinary 

kriging). A relatively negative bias is apparent in both types of kriging, where the 

smoothing due to the algorithms' weighted averages results in an 

underestimation of extreme rainfall amounts. This bias is most obvious in the 

versions of the algorithms that take their averages over more pixels, so that the 

2D versions of both the simple and smart ordinary kriging algorithms have mean 

negative errors of about 0.2 mm/hr, while their 4D analogues have mean 

negative errors closer to 0.4 mm/hr. There is thus an additional tradeoff inherent 

in increasing the number of pixels under consideration: while the inclusion of a 

larger number of pixels into the kriging process generally results in a lower 

absolute error, the signed error will show a stronger negative bias overall as 

extrema are smoothed out.  

 One-hour rainfall totals (calculated by determining the mean rainfall rate in 

mm/hr over a given one-hour period) should show a reduced error when 

compared with the instantaneous values. For instance, we would expect errors 

such as those associated with poor algorithm performance along the edge of a 

tight reflectivity gradient to be smoothed out over time as the precipitation moves 

out of the region of ground clutter. Table 4.2 illustrates that this is precisely what 

occurs: the errors for one-hour totals are generally about half of those obtained 

for instantaneous rainfall rates. In addition, the inclusion of data from the height 
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and time dimensions, as well as the shift from single-pixel replacement 

algorithms to multiple-pixel replacement algorithms, both contribute to lower the 

absolute error in the one-hour rainfall total, just as they did for the instantaneous 

rainfall rates. 

 

Table 4.2: Comparisons of absolute error for instantaneous rainfall rates and 

one-hour rainfall totals for the two-dimensional nearest neighbour algorithm. 

Values are provided for the convective event and the stratiform event. 

Precipitation Type 

Instantaneous Rainfall 

Rate Error (mm/hr) 

One-Hour Rainfall Total 

Error (mm) 

Convective 0.71 0.38 

Stratiform 0.62 0.22 

 

 The rainfall rate data and the one-hour rainfall total data closely match the 

results obtained while looking at the raw reflectivity data, and while it is good to 

have confirmation of earlier results, no particularly novel information has been 

gained by shifting focus from reflectivity to rainfall rates, except perhaps to put 

these results into a more familiar physical context. For instance, in an hour's 

rainfall, an error of only 0.38 mm (as was observed for the simplest 2D nearest 

neighbour algorithm) during a convective event is vanishingly small for most 
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practical purposes. However, given that this mean error has been calculated over 

a large region that contains quiescent and easy-to-predict areas that greatly 

outnumber the odd convective cell, it is important to make a closer inspection of 

the most extreme rainfall rates alone. To this end, in the following subsection, the 

algorithms' performance for the top percentile of rainfall rates is evaluated. 

 

 4.6.2 Top percentiles 

While it has been established in previous sections that the multiple-pixel 

replacement algorithms (i.e., the simple and smart ordinary kriging algorithms) 

tend to outperform the single-pixel replacement algorithms (i.e., the nearest 

neighbour and best pixel algorithms) in reflectivity and in rainfall rate/rainfall total 

calculations, it seems likely that the smoothing associated with the multiple-pixel 

averaging may erase the contribution of the most extreme pixels. It is important 

to note that these extreme events are of particular interest to forecasters and 

researchers: after all, any improvement provided by the more complex algorithms 

is nearly meaningless for practical purposes if the pixels being replaced are only 

on the order of less than 10 dBZ in the first place. In order to investigate the 

possibility that these extreme values are being more strongly underestimated by 

the more complex algorithms, only the top percentile of rainfall rates will now be 

included when calculating the mean errors. For the convective case, this 
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translates to evaluating algorithm performance only at rainfall rates greater than 

about 18 mm/hr, whereas for the stratiform case the top percentile begins at 

closer to 12 mm/hr.  

Since we are considering only the top 1% of rainfall rates, we expect all 

algorithms to underestimate the results to at least some degree. We also expect 

that any algorithms that involve averaging over larger numbers of pixels will tend 

to smooth out these extreme values to a greater degree than the single-pixel 

replacement algorithms; that is, the negative bias will be most pronounced in 

multiple-pixel replacement algorithms such as the simple and smart ordinary 

kriging algorithms. Since modifying these kriging algorithms to incorporate data 

from different height levels and times also increases the number of pixels being 

averaged, the higher-dimensional versions of these algorithms should show a 

stronger negative bias than the 2D versions.  

Table 4.3 displays an illustrative sample of the algorithms' performance for 

these extreme values of instantaneous rainfall rate. The "mean error" column 

refers to the mean signed difference between the algorithm's predicted value and 

the true value; in this column, a negative value indicates that the algorithm is 

consistently underestimating the true rainfall rate. The "standard deviation" 

column can be thought of as a measure of the absolute difference between a 

typical algorithm-generated value and the true value, so that lower values in this 
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column correspond with more accurate predictions overall. Note that the negative 

bias is stronger for the smart ordinary kriging (multiple-pixel replacement) 

algorithms than for the best pixel (single-pixel replacement) algorithms; that is, 

the more complex algorithms actually have a harder time capturing the more 

extreme rainfall rates. Note, too, that the standard deviation for the smart 

ordinary kriging algorithm is higher than that for the best pixel algorithm, for the 

first time in this study: when considering these extreme reflectivity rates in 

isolation, there is no apparent advantage to choosing a more complex algorithm. 

The stratiform event (not shown) displays similar results, albeit at a lower 

magnitude due to its less extreme values of rainfall rate. 

 

Table 4.3: Error comparisons for the convective case's top percentile of 

instantaneous rainfall rates. Results compared are for the two-dimensional best 

pixel algorithm (BP2), the two-dimensional smart ordinary kriging algorithm 

(SmOK2), the three-dimensional best pixel algorithm (BP3), and the three-

dimensional smart ordinary kriging algorithm (SmOK3). 

Algorithm Mean Error (mm/hr) Standard Deviation (mm/hr) 

BP2 -11.61 34.99 

SmOK2 -25.05 37.22 

BP3 -13.18 35.96 
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SmOK3 -31.60 43.40 

 

Does this result then suggest that, during extreme precipitation events, it 

would be preferable to set aside the more complex multi-dimensional ordinary 

kriging algorithms and return to basic 2D best pixel or nearest neighbour 

approaches? First, it is important to note from Table 4.3 that, while the best pixel 

algorithms have a much less substantial bias overall, their standard deviation is 

still extremely high, i.e., nearly at the same level as the smart ordinary kriging 

algorithms. This small minority of extreme rainfall rates may see a small relative 

drop in standard deviation (from 43 mm/hr to 36 mm/hr) when using the best 

pixel or nearest neighbour algorithms instead of the kriging algorithms, but that 

dubious improvement is not exactly a ringing endorsement for throwing aside the 

stronger overall performance of the more complex algorithms, as has been 

demonstrated throughout this chapter. 

In addition, when the range of values to be evaluated is increased from 

the top 1% of rainfall rates to the top 5% of rainfall rates, a slight improvement is 

apparent: the standard deviations of the more complex kriging algorithms 

become marginally lower than those for the best pixel algorithms. That is, despite 

the persistent negative bias, the kriging methods still produce a better overall 
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result than the simpler single-pixel methods, even for these extreme rainfall 

rates. 

Earlier sections have shown that there are powerful quantitative benefits 

to making use of data from different times and heights, as well as using multiple-

pixel combinations rather than focusing on single-pixel replacement. Looking at 

the specific problem of filling gaps that happen to contain extremely high rainfall 

rates, however, the added complexity of the higher-dimensional kriging 

algorithms tends to smooth away the highest values. In spite of this caveat, the 

fact remains that just because the simpler algorithms perform better than the 

kriging algorithms for extreme values does not mean they perform well. For 

practical applications, the slight improvement offered for these extreme values 

would not be likely to outweigh the better overall performance offered by the 

more complex kriging algorithms. 

 

4.7 Summary 

With information from reflectivity data, instantaneous rainfall rates, one-

hour rainfall totals, and the top percentile of rainfall rates now available for each 

of these algorithms, the advantages and disadvantages of each algorithm can be 

summarized. Table 4.4 collects the points discussed over the course of this 

chapter for each type of algorithm, and also generalizes the effects of 
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incorporating past data, near-future data, and data from different heights into 

these algorithms.  

 

Table 4.4: Summary of algorithm advantages and disadvantages as discussed 

throughout Chapter 4. The final three rows generalize the effects of increasing 

the dimensionality of any of these algorithms. For the purposes of this table, 

"high" and "low" are relative terms referring to the other algorithm types or, for the 

last three rows, lower-dimensional algorithms. "Standard deviation" here refers to 

the typical difference between an algorithm-generated value of reflectivity or 

rainfall rate and the true value it is replacing; i.e., a low value indicates more 

accurate performance overall. "Typical error structure" refers to the variograms 

created in Chapter 3. 

Algorithm Advantages Disadvantages 

Nearest 

Neighbour 

 low computational 

cost 

 low bias in extreme 

rainfall events 

 highest standard 

deviations overall 

Best Pixel  low computational 

cost 

 low bias in extreme 

 high standard deviations 

overall 

 requires knowledge of 
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rainfall events typical error structure 

Simple 

Ordinary 

Kriging 

 low computational 

cost 

 low standard 

deviations overall 

 high bias in extreme 

rainfall events 

 requires knowledge of 

typical error structure 

Smart 

Ordinary 

Kriging 

 lowest standard 

deviations overall 

(marginally) 

 high computational cost 

 high bias in extreme 

rainfall events 

 requires knowledge of 

typical error structure 

Incorporation 

of Height 

Data (3D) 

 reduces standard 

deviations overall 

(marginally) 

compared with 2D  

 high computational cost 

 

Incorporation 

of Past Data 

(3.5D) 

 reduces standard 

deviations overall 

(dramatically) 

compared with 3D  

 high computational cost 

Incorporation 

of Near-

 reduces standard 

deviations overall 

 high computational cost 

 requires wait-time and 
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Future Data 

(4D) 

(marginally) 

compared with 3.5D  

regeneration of product 

 

Determining which algorithm is the most appropriate for use in gap-filling 

relies at least in part on the nature of the application in question: is there time 

enough to wait for near-future data to arrive in order to take advantage of the 

slight improvement a 4D algorithm provides over a 3.5D one? Are computational 

resources limited to the point where the smart ordinary kriging algorithm's 

minimal improvement over the simple ordinary kriging algorithm cannot justify its 

higher computational cost? Recall that in Section 4.5 it was shown that 

increasing the number of pixels selected in the simple ordinary kriging algorithm 

would result in a net improvement over the smart ordinary kriging algorithm 

without a dramatic increase in computation time. Is this modified version of the 

simple ordinary kriging algorithm a better option, given that averaging over more 

pixels will tend to smooth out extreme values still further? 

Although the 4D smart ordinary kriging algorithm fills gaps most accurately 

overall, it is plagued by problems of diminishing return, i.e., past a certain point, 

costly changes to the algorithm are reflected by only very slight improvements in 

the results. For many applications with more limited resources in terms of both 

time and computing, the 3.5D simple ordinary kriging algorithm may represent 
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the best of both worlds: it has the substantial advantage of incorporating data 

from different times without having to wait for new information to come in, it 

performs nearly as well as the smart version (see discussion in Section 4.5), and 

its computational cost is low.  
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Chapter 5: Summary and conclusions 

 Gaps in radar data are commonplace, whether they are caused by beam 

blockage due to obstacles, by attenuation due to areas of particularly heavy 

precipitation, or by persistent ground clutter. These holes present a two-part 

problem: first, contaminated data must be identified as such, which is an issue 

left to the sizeable sum of pre-existing research on the topic. Second, once an 

area of contaminated data has been identified, these gaps in the reliable data 

record must be filled in some way; the process of gap-filling of previously 

identified areas of ground clutter has been the driving topic of this study. 

 Using Montreal's J.S. Marshall Radar Observatory as a testing ground, a 

clutter mask was constructed to identify and blot out regions of ground clutter, 

using the long record of radar data for that facility. The data uncontaminated by 

ground clutter were then used to create variograms, which are statistical 

visualizations of the typical error that would result if any given pixel were 

replaced by a single pixel from its surroundings. These variograms provided vital 

information about the error structure of a variety of precipitation events, both 

convective and stratiform, at various stages of development. One major 

convective event (05 July 2005) and one major stratiform event (01 December 

2010) were selected to showcase various steps along the way toward developing 

a real-time, operational algorithm that would be able to fill in the holes due to 
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ground clutter (or, for that matter, any other known gap in the data). A region of 

realistic-looking false clutter was created and overlaid on the radar data, so that 

the algorithms' results could be compared with reality. 

 The gap-filling algorithm selected as a starting point was a two-

dimensional setup that simply replaced any pixel contaminated by ground clutter 

with the nearest uncontaminated pixel. From there, two parallel (and 

complimentary) lines of improvement were pursued. The first focused on 

improving the fundamental methodology of the algorithm, first by selecting the 

replacement pixel using a variance criterion rather than mere proximity (the "best 

pixel" algorithm), then by incorporating a geostatistical averaging method, 

ordinary kriging, to combine either a small number of lowest-variance pixels (the 

"simple ordinary kriging" algorithm), or a selection of low-variance pixels chosen 

so as to minimize redundant information (the "smart ordinary kriging" algorithm). 

In test-runs of reflectivity data, for both the convective and the stratiform events, 

the more complex multiple-pixel replacement algorithms consistently 

outperformed the simpler single-pixel replacement algorithms. While the smart 

kriging was an improvement over the simple kriging, the difference between their 

performance was less than the major leap from the best-pixel approach to the 

simple kriging approach. 
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 The second line of improvement focused on increasing the pool of data 

from which the replacement pixels for these algorithms could be drawn, by 

incorporating first the data from different CAPPI height levels (3D), then data 

from past radar scans (3.5D), and finally data from both past radar scans and 

future scans up to 25 minutes later (4D). The obvious disadvantage of the fully 

four-dimensional algorithms is that they require the user to wait the half-hour 

necessary for those near-future scans to come through: while regeneration of 

radar products is not a problem in some contexts, in real-time nowcasting 

applications it is less than ideal. However, there was shown to be little difference 

in skill between 3.5D and 4D algorithms, so that applications that must forego 

regeneration of their radar products would not see a major decrease in 

performance. A small jump in skill occurred between the 2D and the 3D algorithm 

(particularly for the convective test event, with its strong vertical homogeneity), 

but a much larger leap in skill occurred in both the convective and stratiform 

events when the time dimension was incorporated, to the point where reflectivity 

errors were nearly halved when compared with the 2D versions of the algorithm. 

Even when only past radar data is available, it is thus an extremely valuable 

source of information, and many radar products would be well-served by looking 

to earlier data for clutter correction. 
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  The problem of seeking the best gap-filling strategy for CAPPIs seems to 

indicate either the 3.5D or (if near-real time regeneration of products is possible) 

the fully 4D smart ordinary kriging algorithm, with the caveat that the algorithm's 

kriging has a tendency to smooth out extreme values. This smoothing was found 

to most strongly affect only the top ~5% of rainfall rates, although it should be 

noted that all events examined in this study were substantial rainfall events; on 

more quiescent days, the strong negative bias of the top-percentile data will have 

less dramatic results. For instance, on a quieter day the maximum rainfall rate 

observed may be only 1 mm/hr, in which case an underestimation will make far 

less of a difference to most applications than if that maximum rainfall rate were, 

say, 20 mm/hr during a more substantial event. 

The choice of the best algorithm to use for gap-filling depends in part on 

the limitations of the application in question. With limited time and computational 

resources, the 3.5D simple ordinary kriging algorithm will produce accurate 

results for nearly all purposes. If time is not pressing, radar products can be 

regenerated, enabling the use of near-future data as well as past data, which 

provides a slight improvement over the results with the use of past data alone. 

Finally, with more computational resources available, switching to the smart 

ordinary kriging algorithm will provide a slight (~2%) reduction in error. 
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 The takeaway messages here are threefold: first, the ordinary kriging 

technique is a simple and versatile method that has seen very little use in radar 

meteorology thus far, and has mainly been limited to interpolation using broadly 

spaced datasets, such as rain gauge networks (Atkinson and Lloyd 1998). This is 

not particularly surprising, since denser datasets such as radar require far more 

computational power for ordinary kriging: essentially, users of radar data have 

too much information to effectively use this powerful method. Through the use of 

the bowtie pixel-selection method, however, this problem is rendered moot, by 

selecting a small number of representative pixels that can then be kriged for 

relatively little computational cost, broadening the range of applications for this 

method still further. 

 Second, the applications of these radar data gap-filling algorithms need 

not be limited to ground clutter. While ground clutter was the focus of this study, 

being particularly easy to identify and map out ahead of time, there are also 

complex algorithms in place to identify, say, regions of radar attenuation in real-

time (Gorgucci et al. 1998). There is no reason why, once attenuated pixels have 

been identified, the user's choice of ordinary kriging algorithm could not then be 

used to immediately fill in these newly identified gaps. Gap-filling in other fields, 

so long as those fields behave at least somewhat similarly to radar reflectivity 

(i.e., they are continuous), could also benefit from this approach. This smart 
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ordinary kriging algorithm could also be used to, for instance, fill gaps in Doppler 

velocity imagery. 

 Finally, and perhaps most importantly, in a field that frequently treats 

individual radar scans as though they have just sprung into being in perfect 

isolation from all that has preceded them, this study has provided a proof-of-

concept for the importance and value of considering data from different times. 

Data from earlier radar scans is a relatively untapped well of information, and 

given the substantial improvements in even these simple gap-filling approaches, 

it is well past time that radar products should be generated and applied with full 

knowledge and appreciation of the data that came before. 
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Appendix A: Height and time error equivalence tables 

The equivalences for each reference height, along with their R-squared 

values (nearer to 0 represents a poor correlation, while nearer to 1 represents a 

strong correlation), are shown in Table A.1. Calculations are done for each 

reference height to increase the accuracy of the final weighting equivalences. 

 

Table A.1: Error equivalence coefficients for height, where Δz (in km) is the 

vertical distance of a given pixel from the reference pixel we wish to replace. 

These values can be used to calculate the horizontal distances Δx that are 

approximately equivalent to the vertical distances Δz in terms of variance. Values 

are calculated separately for each of the ten possible reference heights. The 

convective numbers are averaged over all six convective cases, and the 

stratiform numbers are averaged over the three stratiform cases. Correlation is 

the Pearson correlation r. 

Convective Events Stratiform Events 

Reference 

Height z0 

(km) 

Equivalent 

Horizontal 

Distance Δx 

(km) 

Correlation 

Reference 

Height z0 

(km) 

Equivalent 

Horizontal 

Distance Δx 

(km) 

Correlation 

1.5 2.6* Δz 0.94 1.5 5.5* Δz 0.93 
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2.0 2.3* Δz 0.95 2.0 6.0* Δz 0.93 

2.5 2.7* Δz 0.97 2.5 6.5* Δz 0.91 

3.0 2.6* Δz 0.98 3.0 7.2* Δz 0.90 

3.5 2.5* Δz 0.96 3.5 7.3* Δz 0.94 

4.0 2.9* Δz 0.92 4.0 8.3* Δz 0.96 

5.0 2.5* Δz 0.99 5.0 9.6* Δz 0.91 

6.0 3.9* Δz 0.95 6.0 7.9* Δz 0.91 

7.0 7.3* Δz 0.95 7.0 10.5* Δz 0.99 

8.0 5.9* Δz 0.96 8.0 11.7* Δz 0.98 

 

 The high correlation values (at least 0.90 for convective and stratiform 

events) indicate that these simple linear relationships between horizontal and 

vertical distances are a good approximation. As we would expect based on the 

example in Fig. 3.10, the multiplicative factors are lower for convective events 

than for stratiform ones. For example, if we were to replace a pixel at a reference 

height of 3.0 km with one at 4.0 km (i.e., with Δh = 1.0 km), we would get the 

same error as we would with a pixel at a horizontal distance of 2.6 km for a 

convective event, and 7.2 km for a stratiform event—this tendency reflects the 

stronger horizontal homogeneity of stratiform precipitation. Note also that at the 

highest reference heights (e.g., greater than 5 km), the multiplicative factors for 
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both convective and stratiform events are higher than those for lower reference 

heights. This is a reflection of the fact that, at these heights, the vertical gradients 

near storm top vary so dramatically that any kind of vertical extrapolation is 

extremely difficult. 

 The same process has been used in Table A.2 to obtain time 

equivalences: rather than seeking the lowest variance at a different height level, 

we determine the lowest variance at a different time. That is, at what horizontal 

distance is replacement with a pixel at a different time a better option than 

replacement with a pixel at a different horizontal location? The result is a series 

of plots similar to Fig. 3.10, and the weighting factors used for calculating 

equivalent horizontal distances are plotted in Table A.2. 

 

Table A.2: Error equivalence coefficients for time, where Δt (in minutes) is the 

difference between the time at the reference pixel we wish to replace (t0) and the 

time at any potential replacement pixel (t = t0 + Δt). These values can be used to 

calculate the horizontal distances Δx that are approximately equivalent to the 

time differences Δt in terms of variance. Values are calculated separately for 

each of the ten possible reference heights. The convective numbers are 

averaged over all six convective cases, and the stratiform numbers are averaged 
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over the three stratiform cases. Correlation is the Pearson correlation r. Note that 

the multiplicative factors now have units of (km/min). 

Convective Events Stratiform Events 

Reference 

Height z0 

(km) 

Equivalent 

Horizontal 

Distance Δx 

(km) 

Correlation 

Reference 

Height z0 

(km) 

Equivalent 

Horizontal 

Distance Δx 

(km) 

Correlation 

1.5 0.37*Δt 0.99 1.5 0.72*Δt 0.99 

2.0 0.35*Δt 0.97 2.0 0.74*Δt 0.99 

2.5 0.37*Δt 0.99 2.5 0.76*Δt 0.99 

3.0 0.34*Δt 0.99 3.0 0.74*Δt 0.99 

3.5 0.35*Δt 0.98 3.5 0.77*Δt 0.98 

4.0 0.39*Δt 0.98 4.0 0.77*Δt 0.98 

5.0 0.45*Δt 0.98 5.0 0.83*Δt 0.98 

6.0 0.57*Δt 0.98 6.0 0.81*Δt 0.98 

7.0 0.61*Δt 0.98 7.0 0.93*Δt 0.98 

8.0 0.70*Δt 0.97 8.0 1.07*Δt 0.98 

 

 As with the vertical pixel replacement in Table A.1, the use of a simple 

linear relationship between the error for horizontal displacement and the error for 
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temporal displacement is an excellent approximation, with correlation values 

greater than 0.96 for both convective and stratiform events. Once again, 

multiplicative factors are lower for convective events than for stratiform ones. As 

an example, consider a pixel at reference height z0 = 3.0 km that needs to be 

replaced. At what point is it better to use a pixel from a different time scan (say, 5 

minutes after the reference time) instead of a pixel from the same time scan at a 

different horizontal distance? Using the numbers in Table A.2, for a convective 

event, the error for Δt = 5 minutes will be equivalent to the error at a horizontal 

distance Δx = 0.34*5 = 1.7 km. For a stratiform event, the error Δt = 5 minutes 

out will be equivalent to that of a horizontal distance Δx = 3.7 km—higher than 

the convective event, since stratiform events tend to be more horizontally 

homogeneous. 
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Appendix B: A brief introduction to ordinary kriging 

 This appendix will provide a brief introduction to the interpolation method 

used in the simple and smart ordinary kriging (OK) algorithms of this study. OK 

has become a staple of the geostatistical toolbox since its origins in the Master's 

thesis of Danie G. Krige (1951), who applied this method of interpolation and 

extrapolation as a geostatistical means of ore valuation. Its versatility extends to 

a wide range of applications, ranging from precipitation mapping (Atkinson and 

Lloyd 1998), prediction of soil properties (Odeh et al. 1995), mapping 

contaminated groundwater (Chowdhury et al. 2010), and even non-geophysical 

applications such as minimizing the torque ripple of a switched reluctance motor 

(Zhang et al. 2011). 

 The broad applicability of the OK method is largely due to its simplicity: 

using a combination of representative pixels weighted using variogram data, 

missing data can be interpolated or extrapolated. The simple assumptions 

underlying the method (Wackernagel 1995) are: 

 the mean is unknown but constant in the local neighbourhood (in our 

case, the mean is the actual reflectivity value of a pixel at a specific 

location and time contaminated by ground clutter); and 

 the variogram is known (see Chapter 3 for derivation of reflectivity 

variograms). 
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 The first step in ordinary kriging, given that the variogram is known, is to 

determine the weights that will be assigned to each of the pixels involved in the 

kriging process, so that the value of reflectivity at the pixel in question is given by 

 


n

i iiZwZ
1

, where Zi are the reflectivity values at a selection i of surrounding 

pixels. The sum of all weights must be unity for the unbiasedness condition to 

hold, i.e.,  


n

i iw1
1 . The system of equations to determine the weights in 

ordinary kriging is simply RS 1W , with: 
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S , where, for example, )( 1ndv  is the variance at 

the relative distance between pixel 1 and pixel n (provided by the 

variograms generated in Chapter 3); and 
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, where )( 1pdv  is the variance at the relative distance between 

pixel 1 and the reference pixel, i.e., the pixel that is to be replaced. 
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 The preceding equations are for the 2D case where the pixel to be 

replaced, as well as all its surrounding pixels, are located in the same x-y plane, 

and where the distance is simply 2

12

2

1212 )()( yyxxd  . In Chapter 3, 

however, we derived variograms in all four dimensions, and we seek pixels that 

may be offset from the reference pixel in the z- or t-directions. The conversion of 

the ordinary kriging equation sets from two to four dimensions is trivial: the 

"distance" between any two pixels is now a distance calculated in four 

dimensions, using the equivalences between heights, time, and horizontal 

distance shown in Tables A.1 and A.2 (Appendix A). That is, in order to calculate 

the equivalent distance between two pixels in four dimensions, we must first 

convert the height and time differences between them into differences in 

horizontal distance before proceeding as we normally would to calculate the 

distance between two pixels in 4D space. 
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