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Abstract

Stratosphere-troposphere exchange (STE) and its effects on the stratospheric and
tropospheric chemical compositions have been studied for the past two decades, but
details on how mass is transported between the stratosphere and the troposphere are
not well established. The goal of this study is to better describe global properties of
cross tropopause trajectories, and to understand the processes related to transport of
mass between the troposphere and the stratosphere. This understanding led us to build
the simplest model which captures the most important properties of STE.

To do this, nine-day extra-tropical stratosphere-troposphere exchange trajectories
covering a period of 10 years, calculated using the ERA-15 re-analysis data, are inves-
tigated. The present study shows that the fraction of trajectories that reside in the
stratosphere or in the troposphere does not depend on the direction of the exchange
(stratosphere-to-troposphere transport, STT, or troposphere-to-stratosphere transport,
TST). Trajectories are found to reside longer in the troposphere than in the stratosphere
which suggests that they are driven down by asymmetric two-way motion.

A random walk model is used to see whether this asymmetric transport is a result of
a diffusive process. The transport of trajectories along isentropic coordinates is found
to be compatible with a Brownian motion with higher probabilities to go downward.
Since stratosphere-troposphere exchange reflects a differential motion of air masses and
the tropopause, the potential temperature at the tropopause directly above or below
the air mass is also investigated. The tropopause steps distributions are not stationary
and they show some dynamical behaviors like the deformation of the tropopause at
exchange time.

Dispersion of trajectories in the atmosphere was furthermore investigated using
several methods. They gave rise to three different transport mechanisms: diffusion,
sub-diffusion and super-diffusion transports. These transport processes neither depend
on the direction of the exchange STT/TST nor the environment of transport (strato-
sphere/troposphere).



Résumé

Les échanges entre la stratosphère et la troposphère (STE) et leurs effets sur la
composition chimique de la stratosphère et de la troposphère ont été étudiés inten-
sivement, mais les détails sur la manière dont les masses d’air sont transportés entre
la stratosphère et la troposphère ne sont pas bien établis. Le but de cette étude est
de décrire les propriétés globales des trajectoires qui traversent la tropopause, et de
mieux comprendre les processus liés au transport de la matière entre la troposphère et
la stratosphère. Une fois ces détails établis, nous avons essayé de construire un modèle
simple qui capture les propriétés les plus importantes des STE.

Pour ce faire, des trajectoires d’échanges entre la stratosphère et la troposphère
(STE), couvrant les extra-tropiques durant une période de 10 ans ont été calculées
en utilisant les données d’ERA-15. Dans cette étude on montre que la fraction de
trajectoires qui résident dans la stratosphère ou dans la troposphère ne dépend pas de
la direction de l’échange (transport de la stratosphère à la troposphère, STT, ou de la
troposphère à la stratosphère, TST). Les trajectoires résident plus longtemps dans la
troposphère que dans la stratosphère. Ceci suggère que les trajectoires sont entrâınées
vers le bas par un flux asymétrique.

Un modèle de marches aléatoires est utilisé pour voir si ce transport asymétrique est
le résultat d’un processus de diffusion. Le transport de trajectoires à travers les surfaces
de la température potentielle est compatible avec un mouvement Brownien avec une
plus grande probabilité d’aller vers le bas. Puisque l’échange entre la stratosphère et la
troposphère reflète un mouvement différentiel entre les masses d’air et la tropopause,
la température potentielle à la tropopause directement au-dessus ou au-dessous de la
masse d’air est également étudiée. Les distributions de pas de la tropopause ne sont
pas stationnaires et montrent quelques effets dynamiques comme la déformation de la
tropopause au temps d’échange.

De plus, différentes méthodes ont été utilisées pour étudier la dispersion des trajec-
toires dans l’atmosphère. Trois différents mécanismes de transport ont été identifiés: dif-
fusion, sous-diffusion et super-diffusion. Ces processus de transport ne dépendent ni de
la direction d’échange ni de l’environnement de transport (stratosphère/troposphère).
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Résumé vi

Contents vii

List of Tables ix

List of Figures x

Introduction 1

1 Data and Lagrangian trajectory computation 11
1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Lagrangian computation method . . . . . . . . . . . . . . . . . . . . . 12

2 Methodology 15
2.1 Residence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Random walks theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Analogy between random walk and diffusion . . . . . . . . . . . 17
2.2.2 Discrete sampling of a Brownian motion . . . . . . . . . . . . . 20
2.2.3 Auto-correlation function . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Binomial law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Characteristic properties of binomial law . . . . . . . . . . . . . 21

2.3 Form tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Diffusion and dispersion analysis . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Lyapunov analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Analysis of STE trajectories 27
3.1 Residence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Random walk theory and statistical properties of STE trajectories . . . 29

3.2.1 Statistical properties of STE trajectories . . . . . . . . . . . . . 29
3.2.2 Statistical properties of the tropopause . . . . . . . . . . . . . . 32

3.3 Stationarity of step length distributions . . . . . . . . . . . . . . . . . . 35
3.4 Monte-Carlo and STE residence time distributions . . . . . . . . . . . . 37

3.4.1 The tropopause as a random walker . . . . . . . . . . . . . . . . 38



Contents viii

3.4.2 The tropopause as a fixed iso-surface . . . . . . . . . . . . . . . 39
3.5 Form tensor and trajectories . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Diffusion and dispersion analysis . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Relative dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Finite Size Lyapunov Exponent . . . . . . . . . . . . . . . . . . 44

Conclusion 47

Bibliography 49



List of Tables

3.1 Vertical diffusivity coefficients . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures

1 The structure of, and transport within, the stratosphere . . . . . . . . . 2
2 Net mass flux across iso-PV surfaces . . . . . . . . . . . . . . . . . . . 2
3 The gross flux as a function of residence time . . . . . . . . . . . . . . 8

2.1 Residence time calculation . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Coplanarity versus sphericity . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Flow angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Geographical distribution of cross-tropopause exchange mass fluxes . . 24
2.5 Computation of velocity at time step ti+1 − ti for each trajectory . . . . 24

3.1 Fraction of trajectories that reside in the stratosphere/troposphere . . . 28
3.2 Fraction of trajectories that reside in the stratosphere/troposphere . . . 28
3.3 Auto-correlation between steps . . . . . . . . . . . . . . . . . . . . . . 30
3.4 The total auto-correlation between steps . . . . . . . . . . . . . . . . . 30
3.5 Probability distributions of a distance walked at different values of N . 31
3.6 Statistical properties computed for trajectories . . . . . . . . . . . . . . 32
3.7 Auto-correlation between steps of tropopause . . . . . . . . . . . . . . . 33
3.8 The total auto-correlation between steps of tropopause . . . . . . . . . 33
3.9 Probability distributions of a distance walked at different values of N . 34
3.10 Statistical properties computed for tropopause . . . . . . . . . . . . . . 35
3.11 The mean step (∆θ) of trajectories . . . . . . . . . . . . . . . . . . . . 36
3.12 The mean step (∆θ) of a tropopause . . . . . . . . . . . . . . . . . . . 36
3.13 The mean step (∆PV ) of trajectories . . . . . . . . . . . . . . . . . . . 37
3.14 Fraction of trajectories that reside in the stratosphere/troposphere . . . 38
3.15 Fraction of trajectories that reside in the stratosphere/troposphere . . . 38
3.16 Isotropic and anisotropic dispersion . . . . . . . . . . . . . . . . . . . . 40
3.17 Flow angle distributions and coplanarity versus sphericity spectra . . . 42
3.18 Relative dispersion along isentropic axis . . . . . . . . . . . . . . . . . 43
3.19 Relative dispersion along z axis . . . . . . . . . . . . . . . . . . . . . . 43
3.20 Relative dispersion along x axis . . . . . . . . . . . . . . . . . . . . . . 44
3.21 Relative dispersion along y axis . . . . . . . . . . . . . . . . . . . . . . 44
3.22 Finite size Lyapunov coefficient versus the size of the cloud . . . . . . . 45
3.23 Finite size Lyapunov coefficient versus the distance between two trajectories 45



Introduction

Structure of the atmsophere

The atmosphere is usually divided in layers with respect to the vertical structure

of the temperature. The troposphere is the lowest and the most dense layer of the

atmosphere; it contains 80% of the mass of the atmosphere. The atmosphere (here

we focus on the troposphere and the stratosphere) is composed of 78% of N2, 21% of

O2 and 1% of trace gases. In the troposphere the temperature decreases globally with

altitude as a result of the heating of the Earth’s surface by the Sun and the radiative-

convective adjustment aloft (Thuburn and Craig, 1997). The troposphere is therefore

well mixed vertically. The stratosphere is situated between the troposphere and the

mesosphere. Due to its vertically increasing temperature the stratosphere is vertically

stable , therefore there is no formation of convection. Three dimensional turbulence still

occurs at small scales due to the breaking of gravity waves. The stratosphere is heated at

the top by the absorption of ultraviolet radiation coming from the Sun by stratospheric

ozone. About 90% of atmospheric ozone is found in this layer, where concentrations

reach 10 ppm, in comparison to the typical 50 ppb found in the free troposphere. The

distribution of ozone is determined by a balance between photochemical reactions, and

by the transport between source regions and sink regions. The stratosphere was divided

into different regions based on their radiative, dynamical and chemical behavior (WMO ,

2003). The structure and zonal mean circulations of the stratosphere are shown in

Figures 1 and 2. The lowermost stratosphere (LMS) is the region that lies between the

tropopause and the 380 K surface (∼ 15 km). This is the region of the stratosphere

where isentropes reach the troposphere. The lower stratosphere (LS) covers the region

between 380 K and about 25 km. In the LMS and LS, odd-oxygen has a long lifetime,

and hence reacts slowly to chemical changes compared to transport processes. Above

the LS, between 25 km and 50 km, there is the upper stratosphere (US). In the US,

lifetime of odd-oxygen is becoming shorter at higher elevation, compared to transport

time scale, and then photochemistry dominates (WMO , 2003).
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The stratosphere and troposphere are separated by a boundary region called the

tropopause. The WMO definition for the thermal tropopause is the lowest level at

which the lapse rate decreases to 2 oC km−1 or less, provided also that the average

lapse rate between this level and the higher levels within 2 km does not exceed 2 oC

km−1. Its height varies with the weather systems, seasons and latitude. The tropopause

can be defined dynamically by iso-surfaces of potential vorticity (PV). The advantage

of the dynamical definition is that PV is a conserved property for an air mass within

adiabatic and frictionless conditions. This definition gives a clear physical meaning

to stratospheric-tropospheric exchange (STE) processes across a well defined surface.

The tropopause is a surface of reduced transverse mass flux, and is therefore a ”mix-

ing barrier”(Holton et al., 1995), leading to two environments with different properties

and with significant contrasts of chemical compositions. Only in some favorable sit-

uations the stratosphere-troposphere exchange is significant, like a formation of folds,

anticyclones and cut-off cyclones. The flux of chemical species across the tropopause is

important and crucial in order to understand the chemical evolution of the stratosphere

and the troposphere.
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Figure 1: Schematic diagram show-

ing the structure of, and transport

within, the stratosphere. Adapted

from (WMO , 2003).
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Stratosphere-Troposphere Exchange

The exchange of mass between the stratosphere and the troposphere was first

studied using radioactive elements to trace stratospheric air in the troposphere (Staley ,

1962; Danielson, 1968), and then using satellite and aircraft data of chemical trac-

ers (Shapiro, 1980; Browell et al., 1987). Transport in the over-world (LS+US) is real-

ized by large scale Brewer-Dobson circulation (Figures 1 and 2) induced by momentum

deposition by planetary and gravity waves (Brewer , 1949; Dobson, 1956; Holton et al.,

1995); the wave driven pump draws air upward across the tropopause in the tropics, and

pushes it poleward downward into the LMS at extra-tropical latitudes. Troposphere-

to-stratosphere transport (TST) occurs mainly in the tropics, and also at higher lati-

tudes. Conversely, stratosphere-to-troposphere transport (STT) happens everywhere,

but dominates in the mid-latitudes. The exchange of mass between the extra-tropical

stratosphere and the troposphere is thought to be mainly quasi-isentropic (Chen, 1995),

since non conservative upward transport which occurs mostly through deep convection

is less important due to the stable vertical layering of the LMS. STE are dominated by

synoptic scales eddies such as upper-level troughs, cut-off lows, blocking anticyclones

and tropopause folds (Bregman et al., 1997; Lelieveld et al., 1997), that often take place

in baroclinic wave breaking events. We can distinguish different processes: i) The forma-

tion of filaments or folds of stratospheric air entering the troposphere where it mixes, or

vice versa (Appenzeller and Davies, 1992; Thorncroft et al., 1993). Lamarque and Hess

(1994) and Rood et al. (1997) show that diabatic processes in cyclones and associated

tropopause folds are important mechanisms for STE. ii) The formation of a cut-off of

cyclonic vortex of stratospheric air in the troposphere, where it remains for a few days

before returning back while it mixes with tropospheric air (Price and Vaughan, 1993;

Thorncroft et al., 1993). iii) The formation of a cut-off of anti-cyclonic vortex of tro-

pospheric air in the stratosphere, where it remains for a few days before returning back

while it mixes with stratospheric air (Peters and Waugh, 1996; Vaughan and Timmis,

1998).

To study such mixing processes, various methods have been used. In the case of the

Eulerian diagnostic methods (Wei , 1987; Searle et al., 1998), the cross-tropopause flux

has generally been computed with one of the formulas given by Wei (1987); vertical

coordinate can be pressure, potential temperature or potential vorticity (PV). In the

Wei-formulation with the PV coordinates, the air mass per unit area across a PV surface

is approximated to:

F =
−1

g

∂p

∂PV

DPV

Dt
(1)

where p and g are the pressure and the acceleration due to gravity, respectively. The unit

of F is kg m−2 s−1. When using (re-)analysis data it is difficult to extract the material
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derivative of PV needed for this formulation. Wirth and Egger (1999) reported that

when using p or θ as a vertical coordinates, large relative errors in cross-tropopause flux

will be expected. When using numerical models, PV is taken as vertical coordinates,

PV-sources can be calculated with reasonable accuracy.

In the Eulerian description, the motion of a fluid is observed at a given posi-

tion, and the Lagrangian reference frame is the frame that moves with individual

fluid particles as they move through space and time. The position of these indi-

vidual particles versus time gives the trajectory or the pathline of a particle. In

the Lagrangian picture new and different phenomena can be seen and understood

in a rather simpler manner than in the Eulerian framework. For Lagrangian meth-

ods (Wernli and Davies, 1997; Stohl et al., 2003), elementary air volumes are advected

by 3-dimensional winds, and rather than estimating DPV
Dt

, which is very noisy; we count

the number of elementary volumes crossing the tropopause. Wirth and Egger (1999)

found by comparing Lagrangian and Eulerian techniques that realistic results can be

obtained with trajectory method. The contour advection technique was used to study

the isentropic aspect of transport during the formation of small structures (Norton,

1994; Waugh and Plumb, 1994; Appenzeller et al., 1996). Potential vorticity and spe-

cific humidity fields were used as initial tracer fields, which were then advected as

passive tracers. Mesoscale aspects have been also studied using limited area mod-

els (Lamarque and Hess, 1994; Wirth and Egger , 1999). The estimation of the mag-

nitude of the average STE mass (Lamarque and Hess, 1994; Murphy and Fahey, 1994;

Roelofs and Lelieveld , 1995; Beekmann et al., 1997; Tie and Hess, 1997; McLinden et al.,

2000) gives very different results. Some differences are attributed to resolution and pa-

rameterization schemes, but the cause of the other differences remains unknown.

Another approach was used based on the Lagrangian technique (Bourqui , 2001;

Wernli and Bourqui , 2002; Bourqui , 2006) that takes into account the pathways of

exchanged air parcels and their residence time before and after the exchange. In these

studies it is found that the cross-tropopause mass fluxes are sensitive to a residence

time threshold.

Age Spectrum

The flux can be constrained using measurements of atmospheric chemical trac-

ers, but the determination of transport properties from tracers is more difficult due

to ambiguity of the sources and sinks of tracers. Recently, an increasing interest

has been devoted to age spectrum analysis in the stratosphere (Hall and Plumb, 1994;
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Holzer and Hall , 2000; Hall and Holzer , 2003) to improve the interpretation of the pro-

cesses that lead to the distribution of stratospheric tracers. The age spectrum, in other

words distribution of transit times, was identified to a type of Green function that

propagates a boundary condition on tracer mixing ratio from the tropical tropopause

into the stratosphere. The application of this concept to the stratosphere results from

the fact that the boundary region is easily localized, which is the tropical tropopause.

The continuity equation of a passive tracer is

(∂t + Γ)χ = S (2)

with χ is the mass mixing ratio, the transport operator Γ represents advection and

diffusion, and S is the source of tracer.

If we know the solution of the equation where the source S is replaced by the Dirac

function

(∂t + Γ)G(~r, t | ~r′, t′) = δ(~r − ~r′)δ(t − t′), (3)

the solution of the Eq. 2 is

χ(~r, t) =
∫

d3~r′ G(~r, t | ~r′, 0)χ(~r′, 0) +
∫ t

0
dt′
∫

d3~r′ G(~r, t | ~r′, t′)S(~r′, t′) (4)

G is called the Green function, and the first term in Eq. 4 is the time evolved initial

condition. G(~r, t | ~r′, t′) is the response at position ~r and time t to a unit mass source

of tracer, ρ−1δ(~r − ~r′)δ(t − t′), where ρ is the fluid density. Tracer fluid elements were

at position ~r′ at time t′.

The familiar form of the transport operator is

Γχ = ~v.~∇χ − ρ−1~∇(ρκ~∇χ) (5)

with ~v(~r, t) is advecting velocity and κ(~r, t) is eddy-diffusivity.

Transport in the atmosphere

Although STE and its effect on stratospheric and tropospheric chemical composi-

tion have been studied for a long time, details on how mass is transported between the

stratosphere and the troposphere are not well established. Understanding transport of

elements has been a subject of considerable interest for theoretical and practical studies

in many fields of science. The dispersion of transported quantities is usually the result
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of two different contributions: diffusion and advection. Atmospheric models take into

account small scales (the unresolved scales) by representing them by turbulent diffusion.

This turbulent diffusion is much larger than molecular diffusion, of course. It is impor-

tant to reproduce correctly the transport and mixing processes in the stratosphere in

order to provide adequate description of the impact of anthropogenic species on climate.

Transport is related to the motion of a group of fluid elements from an environment to

another one, and it is measured by the mean position of fluid elements. The common

examples of transport phenomenas are diffusion, convection and radiation. Mixing is

related to the spreading of nearly neighbors fluid particles, and it is measured by the

growth of the mean square deviation of particles position with time.

A wide range of diffusive processes were interpreted using a random walk the-

ory; Einstein (1905) showed that the Brownian motion or random motion of passive

tracers in a homogeneous fluid is a result of random walk collisions. In a random walk

theory, we put a walker in a domain to execute a series of random steps. That is re-

peated for several times and for long times to get converging statistics. For a standard

diffusion the mean square displacement of the ensemble of particles grows linearly with

time. When the spreading of particles does not grow linearly with time, the process is

called anomalous diffusion, i.e. non-Brownian. When relative dispersion grows slower

than diffusive process we have sub-diffusion transport. A super-diffusion transport

occurs when relative dispersion grows faster than diffusive transport.

It is known that turbulence transports and mixes species much faster than diffusion

processes. The two major sources of the atmospheric turbulence are wind shear and

gravity wave breaking. Transport and mixing processes in the atmosphere were stud-

ied by using theoretical and numerical experiment studies (Pierrehumbert , 1991a,b;

Weiss, 1991; Bowman, 1993; Bowman and Mangus , 1993; Pierrehumbert and Yang,

1993; Huber et al., 2001). It has been shown that fluid elements can be mixed by a

deterministic flow through chaotic mixing; a pair of initially close trajectories separate

exponentially with time. By studying the mixing on isentropic surfaces in the tro-

posphere, Pierrehumbert and Yang (1993) found that the zonal variance grows super-

diffusively with time due to the systematic shear in the extra-tropical jet, and a diffusive

growth has been found for the meridional variance. Huber et al. (2001) studied merid-

ional turbulent mixing along the isentropic surfaces in the troposphere using the winds

from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical

weather prediction model. Tropical dispersion was found to be characterized by expo-

nential growth with time, and a super-diffusivity growth was found in the extra-tropics.
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Motivation and structure of the research

Over the last few years, Hegglin et al. (2005) studied aircraft observations of sea-

sonal distributions of CO in the LMS. A 2-dimensional advection-diffusion model was

used to simulate transport of tracers which includes diabatic descent of air from the

stratosphere as well as horizontal and vertical eddy diffusion. To simplify the com-

plexity of transport process, equivalent latitude and potential temperature coordinates

were used. The observed tracer time series are fitted with the model to get diffu-

sion coefficients for the LMS region. Simulations without vertical mixing were unable

to reproduce the observed results, which suggests the importance of diabatic mixing

across the isentropes. The extracted values of the vertical diffusivities corresponds to

κθ ∼ 0.45− 1.1 m2s−1 (8.7-21.4 K2day−1). These values depend directly on the chosen

diabatic heating.

Hall and Holzer (2003) computed the flux of an advective-diffusive flow using the

concept of boundary-propagator Green functions. The gross flux was established for

1-dimensional idealized advective-diffusive model. A model schematic is shown in the

small windows of Figure 3. Fluid of constant density advects around a loop at constant

speed u, and diffusion occurs along the flow. The surface S divides the domain into

R1 and R2. The gross flux is plotted in Figure 3 as a function of residence time, for

different Péclet numbers (Pe = uL/κ, where u is advective wind, L is length scale,

κ is diffusion coefficient). Pe = advective time scale
diffusive time scale , with advective time scale=L/u

and diffusive time scale=κ/u2. At low residence times (τ < κ/u2) a τ−1/2 divergence

of the flux occurs. This corresponds to diffusive regime. At large Pe the diffusive time

scale (κ/u2) is smaller than the advective time scale (L/u), κ/u2 = 1/Pe L/u << L/u,

and the two regimes are separated enough to allow the flux distribution to develop a

plateau, while for Pe around 1-10, no plateau was seen since the diffusive time scale

and the advective one are not very separated.

The authors suggest that the high sensitivity of the computed flux to residence

times is a natural feature of advective-diffusive flows; The flux is evaluated in the

regime dominated by diffusion (Hall and Holzer , 2003).

Our current study contributes to the research efforts towards a better understanding

of STE, with an emphasis on the global statistical properties of the transport of mass

between the troposphere and the stratosphere. We use 10-years extra-tropical STE

trajectories calculated using the ERA-15 re-analysis data.

We know from previous studies (Bourqui , 2001; Wernli and Bourqui , 2002; Bourqui ,
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Figure 3: The gross flux at different Pe established for 1-dimensional idealized advective-

diffusive model as a function of residence time. Figure from (Hall and Holzer , 2003)

2006) that the Lagrangian framework provides an adequate perspective to identify

and quantify the relevant STE properties. As an example, the residence time that

is used to distinguish between significant exchange events, i.e. air volumes with a

residence time τ on either side of the tropopause exceeding a certain threshold τ ∗,

which has very important impact on chemistry and exchange events that moves rapidly

between the stratosphere and the troposphere and has a weak chemical impact. We

studied these residence time distributions for different seasons. Starting from the results

of Hegglin et al. (2005) which suggested that overall effect of cross-tropopause exchanges

may be represented by a simple advective-diffusive model and connecting it to the work

of Hall and Holzer (2003) which attributed the differences in the computed values of

STE fluxes to domination of diffusion process, our efforts will be focused on improving

our knowledge about the representation of STE as a diffusive process. We study cross-

tropopause air mass transport problem from a global perspective. We discussed this

using the random walk theory to simulate diffusion, and we will see whether cross-

tropopause trajectories data properties can be reproduced by a simple random walk

theory. To investigate the dynamics of particles moving in the atmosphere, we have

followed trajectories of air masses and calculated the distributions or the ensemble

averages of some statistical variables as a function of the total number of steps executed

by moving air mass.

In the second part of the analysis, we investigate the mean flow characteristics
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by studying the deformation tensor using a group of trajectories. The goal of using 3-

dimensional tensor is to see if there is isotropy in the atmospheric transport, i.e. to look

if the trajectories are dispersed with the same probability horizontally and vertically.

After we investigate in more details the diffusion and dispersion of air volumes in

the atmosphere using the relative dispersion technique of trajectories. In addition,

characteristics of STE trajectories are analyzed with non-linear dynamics technique.

Previous studies (Artale et al., 1997; Boffetta et al., 2001; Lacorata et al., 2001) show

that useful information may be obtained by using the Finite Size Lyapunov Exponent

(FSLE). In the present work both proposed techniques to compute FSLE are used.

The first chapter offers a brief description of the data and the method used to

compute Lagrangian trajectories. The second chapter focused on the description of the

techniques and the relevant variables used for the analysis of the trajectories, and in the

third chapter we apply all these techniques to ERA-15 re-analyses data from ECMWF.

In conclusion we summarize the main achievements of the work.
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Chapter 1

Data and Lagrangian trajectory

computation

This chapter contains a summary of the data that we will analyze and study in

the next chapters. The Lagrangian method used to compute STE trajectories will be

described.

1.1 Data

In this study, I analyze cross-tropopause trajectories, in the extra-tropical region,

calculated using ERA-15 re-analyses data from the European Center for Medium-Range

Weather Forecasts (ECMWF) (Sprenger and Wernli , 2003), over a 10-year period from

January 1983 to December 1993. ERA-15 is the first re-analyses project and applied

the optimal interpolation method to the period 1979-1994.

The horizontal and vertical wind components needed to compute trajectories are

available every 6 hours. The re-analysis were accomplished with a horizontal spectral

resolution of T106, corresponding to a resolution of 1.125 degrees, with 31 vertical

hybrid levels from the surface up to the 10 hPa. Secondary variables like potential

temperature θ and PV have been calculated on the original hybrid model levels.
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1.2 Lagrangian computation method

The transport and dispersion of air mass volumes are computed with 3D LA-

GRangian ANalysis TOol LAGRANTO (Wernli and Davies, 1997; Wernli and Bourqui ,

2002; Bourqui , 2006). This technique was introduced by Wernli and Davies (1997) to

study the dynamics of extra-tropical cyclogenesis, and after was used to quantify the

exchange of mass between the stratosphere and the troposphere (Wernli and Bourqui ,

2002; Bourqui , 2006). The evaluation of trajectories is undertaken with the Peterssen’s

kinematic method (Petterssen, 1956). For each time step (t → t+∆t), the position of

the trajectory is given by the convergence for i ≥ 2

~ri(t + ∆t) = ~r0 +
∆t

2
(~u(r0, t) + ~u(ri−1, t + ∆t)), (1.1)

where ~r1 = ~r0 ∆t ~u(r0, t).

The wind components ~u at the intergrid locations are linearly interpolated from the

gridded values.

STE is studied using the notion of dynamical tropopause defined by the 2 PVU

iso-surface. Starting on a regular grid the horizontal and vertical positions (longitude,

latitude and pressure), potential temperature and potential vorticity of air parcels are

traced for 9 days with a resolution of 6 hours. To compute the exchange trajectories:

- The time dependent flow is divided in space and time into a series of trajectories.

These trajectories are started every 24 hours on a regular grid space with the grid

that has increments of 80 km in the horizontal and 30 hPa in the vertical, so that

each trajectory represents an air mass of ∆m = g−1∆x x ∆y x ∆p = 157 x 109kg.

- Cross-tropopause events are selected when the trajectory’s PV value intersects 2

PVU within 24 hours.

- The cross- tropopause trajectories are extended for four days both backward and

forward in time.

These data have been used by Sprenger and Wernli (2003) to produce 15-year cli-

matology of the geographical distribution of cross-tropopause transport. In this study

the authors were interested only on exchange events associated with long residence

times. Except for summer, the geographical distributions of STT show strong zonal

variations and pronounced maxima in the northern Atlantic and Pacific storm track

regions and the Mediterranean. During summer, STT is weak over oceans and strong
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over the Eurasian continent. Different processes could be responsible for this STT ac-

tivity during summer over the continents and during the other seasons over the oceans.

TST is important only near the Greenland and the Aleutian Islands. Aspects of the

interannual variability of the geographical exchange distributions were studied. The

authors report that STT varies significantly with the changing storm tracks during the

North Atlantic Oscillation.
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Chapter 2

Methodology

In order to study the transport processes involved during the exchange of mass

between the stratosphere and the troposphere, air mass trajectories are analyzed using

different techniques. In this chapter we describe the techniques and define the variables

used for the analysis.

2.1 Residence time

The residence time of a particle in a domain S (the stratosphere or the troposphere)

is the time duration that the particle will remain in this domain. For a given trajectory

if tf is the time at which a particle leaves the domain S, and ti is the time at which a

particle enters this domain, the residence time of particle in the domain S is τ = tf − ti
(see Figure 2.1).

The fraction of trajectories that spent a time longer than a threshold τ in the

stratosphere or in the troposphere is defined by

F (τ) =
∫ +∞

τ
E (τ̃) dτ̃ , (2.1)

where E (τ̃) is the normalized stratospheric or tropospheric residence time distribution,

such that
∫ +∞
0 E (τ̃) dτ̃ = 1
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Figure 2.1: Schematic illustrating the notion of residence time of a trajectory that

crosses the tropopause.

2.2 Random walks theory

A stochastic or random process is a collection of random variables Xt. Instead

of dealing only with one possibility for the future evolution of the system, in random

processes there are more than one possible realizations of the future evolution.

Different stochastic processes exist, depending on the nature of the state space, the

index parameter T and the dependence on the random variables (Karlin and Taylor ,

1975). The state space S is the space in which the values of each variable Xt lie:

- If S = {0, 1, 2, ..}, Xt is called discrete process.

- If S =] −∞, +∞[, Xt is called real-valued stochastic process.

The index parameter T is the space in which the time values lie:

- If T = {0, 1, 2, ..}, Xt is called discrete time stochastic process.

- If T = [0, +∞[, Xt is called continuous time stochastic process.
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The stochastic processes are classified into different types:

1- Process with stationary independent increments: If the random variables Xti-

Xti−1
are independent for all times {ti, i = 1, .., n}, the {Xt} is called a process

with independent increments. If the distribution of the increments Xti+h
-Xti de-

pends only on the length h of the interval and not on time ti, the process is said to

have stationary increments. Examples: the Brownian and the Poisson processes.

2- Martingales process: It is a stochastic process which has the property that the

expected value of all future instant is zero. The expected value at any future

moment equals the value of the process at the present instant.

3- Markov process: It is a process with the property that the probability of any

particular future realization, when its present state is known exactly, does not

depend on its past realizations. If the present state of the process is not precisely

known, then the probability of some future behavior will be altered by additional

information relating to the past state of the system.

4- Stationary process: A stochastic process Xt is said to be strictly stationary if the

joint distribution functions of the families of random variables {Xt1+h
, Xt2+h

..., Xtn+h
}

and {Xt1 , Xt2 ..., Xtn} are the same for all h > 0 and ti ∈ T .

The man properties of a simple random walk process are:

- discrete ∆t time, discrete ∆x value process.

- independent increments.

- stationary.

- probability distributions are given by Binomial law.

These properties and other ones will be described in more details in next sections.

2.2.1 Analogy between random walk and diffusion

Mathematically, diffusion of the trace χ is described by the diffusion equation:

∂χ

∂t
= D ~∇2χ (2.2)
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Diffusion can also be described by a simple random walk. Consider a symmetric ran-

dom walk, where pk(n) the probability that a particle finds itself k steps to the right of its

starting point at time n. From the Chapaman-Kolmogorov relation (Karlin and Taylor ,

1975)

pk(n + 1) =
1

2
pk+1(n) +

1

2
pk−1(n) (2.3)

This equation can be written as

pk(n + 1) − pk(n) =
1

2
([pk+1(n) − pk(n)] + [pk−1(n) − pk(n)]) (2.4)

Let ∆ and η be the length of time between transitions and the length of each step,

respectively. Eq. 2.4 becomes

pkη((n + 1)∆) − pkη(n∆)

∆
=

1
2
([p(k+1)η(n∆) − pkη(n∆)] − [pkη(n∆) − p(k−1)η(n∆)])

∆
(2.5)

We replace kη by x and n∆ by t, Eq. 2.5 becomes

p(x, t + ∆) − p(x, t)

∆
=

1
2
([p(x + η, t) − p(x, t)] − [p(x, t) − p(x − η, t)])

∆
(2.6)

If ∆ and η shrink to zero preserving the relationship δ = η2. Taylor expanded around

p(x, t):

p(x, t + ∆) = p(x, t) + ∆
∂p(x, t)

∂t
+ ... (2.7)

p(x + η, t) = p(x, t) + η
∂p(x, t)

∂x
+

η2

2

∂2p(x, t)

∂x2
+ ... (2.8)

p(x − η, t) = p(x, t) − η
∂p(x, t)

∂x
+

η2

2

∂2p(x, t)

∂x2
+ ... (2.9)

If we replace Eq. 2.7, 2.8 and 2.9 in Eq. 2.6, we get the diffusion equation

∂p(x, t)

∂t
=

1

2

∂2p(x, t)

∂x2
(2.10)

Diffusion equation with advection term

Einstein (1905) gave another derivation of the diffusion equation, starting from

a continuous Markov process representing a Brownian motion. He considers many

independent Brownian motions that take steps that are independent in time. Each

particle has a transition probability p(δx, τ) for step length δx in the time interval τ .

The concentration of particles at x and time t + τ is

C (x, t + τ) =
∫ +∞

−∞
p (δx, τ) C(x − δx, t) dδx, (2.11)
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If we assume that the step size is very small compared to characteristic length scale for

variations in C(x, t), and we do Taylor expanded of C(x − δx, t) around C(x, t)

C (x − δx, t) = C(x, t) − δx
∂C(x, t)

∂x
+

δx2

2

∂2C(x, t)

∂x2
+

δx3

3!

∂3C(x, t)

∂x3
+ ... (2.12)

We replace this equation in Eq. 2.11 and we put C(x, t), ∂C(x,t)
∂x

, ∂2C(x,t)
∂x2 ... out of the

integrals, since they do not depend on δx, and we get

C (x, t + τ) ≈ C(x, t)
∫ +∞

−∞
p (δx, τ) dδx − ∂C(x, t)

∂x

∫ +∞

−∞
δx p (δx, τ) dδx +

∂2C(x, t)

∂x2

∫ +∞

−∞

δx2

2
p (δx, τ) dδx +

∂3C(x, t)

∂x3

∫ +∞

−∞

δx3

3!
p (δx, τ) dδx + ...(2.13)

We note that
∫+∞
−∞ p (δx, τ) dδx = 1 and < δxn >=

∫ +∞
−∞ δxnp (δx, τ) dδx is the nth

moment of the transition probability distribution. We replace in Eq. 2.13 and divide

by τ to have

C (x, t + τ) − C (x, t)

τ
=

∂C(x, t)

∂t
= −< δx >

τ

∂C(x, t)

∂x

+
< δx2 >

2 τ

∂2C(x, t)

∂x2
− < δx3 >

3! τ

∂3C(x, t)

∂x3
+ ... (2.14)

If the second moment of the probability density is finite limτ→0 < δx > /τ and

limτ→0 < δx2 > /2τ are constant and can be defined as

v = lim
τ→0

< δx >

τ
and D = lim

τ→0

< δx2 >

2τ
(2.15)

where v is a net drift (advection) of the distribution of walkers and D is the diffusion

constant.

For smaller times (t ∼ τ), the length scale based on diffusion δx ∼
√

2Dτ = O(τ
1
2 )

is much greater than the characteristic scale based on advection δx ∼ vτ . It follows

that < δxn >∼ τ
n
2 and

∂C(x, t)

∂t
+ v

∂C(x, t)

∂x
= D

∂2C(x, t)

∂x2
+ O(τ

1
2 ) (2.16)

For small times τ
1
2 >> τ , so the O(τ

1
2 ) term is significant and the fluctuations are

dominant. But as t
τ
→ ∞, the fluctuations become insignificant and the O(τ

1
2 ) term

and higher orders become negligible. After neglecting the higher order terms, the

diffusion equation with the drift terms is obtained.



Chapter 2. Methodology 20

2.2.2 Discrete sampling of a Brownian motion

Since the positions of our STE trajectories are known only every 6 h, we need to

give some remarks on the discrete sampling of a stationary Brownian motion:

- increments for discrete time intervals are independent and stationary, since they

are composed of infinitesimally small independent and stationary increments.

- increment distributions are Gaussian, as a direct consequence of the central limit

theorem.

- these two remarks allow to consider a Brownian motion, when sampled on a

discrete time axis, as a discrete time random walk with Gaussian stationary in-

dependent increments.

Furthermore, a discrete time random walk can be looked from the point of view of

the number of steps, i.e. by considering the state of step indices, instead of the physical

space. In that case, it becomes a simple random walk in 1-dimension, i.e. a discrete

time random walk on a discrete space axis with probability to go upward given by p

and to go downward given by q=1-p.

2.2.3 Auto-correlation function

One principal characteristic of random walks is the independence between succes-

sive increments, that is there is no correlation between two successive increments (or

steps) of a walker. The correlation time is the time needed to obtain statistically inde-

pendent steps. This time is obtained by computing the auto-correlation function at lag

k for the ith term in the sequence

C(i, k) =
< xi+kxi > − < xi >2

< x2
i > − < xi >2

, (2.17)

xi is the ith step in the sequence, the mean is over all trajectories. C(i, k) is defined so

that C(i, k = 0) = 1 and C(i, k) → 0 if xi+k and xi are not correlated (< xi+k xi >=

< xi+k >< xi >).

When we sum over i, we get the total auto-correlation function at lag k

C(k) =

∑N−k
i=1 (< xi+kxi > − < xi >2)
∑N−k

i=1 (< x2
i > − < xi >2)

, (2.18)

where N is the total number of steps.
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2.2.4 Binomial law

We consider a walker that executes a series of random steps in a discrete vertical

axis, with a probability p to go upward and q=1-p to go downward. If n1 is the number

of upward steps and n2 is the number of downward steps, the total number of steps (N)

and the distance walked (m) (in units of steps) are given by:

N = n1 + n2 and m = n1 − n2. (2.19)

The probability to get n1 upward steps and n2 downward steps is given by the binomial

distribution law :

PN(n1) =
N !

n1!n2!
pn1qn2

=
N !

[N+m
2

]![N−m
2

]!
p

N+m
2 (1 − p)

N−m
2 (2.20)

For large values of N this distribution law can be writing as a Gaussian Law:

PN(m) = 1√
2πσ2

e
(m−m)2

2σ2 (2.21)

2.2.5 Characteristic properties of binomial law

From the binomial law we can deduce other statistic properties of random walk.

The mean of upward steps is

n1 =
N∑

n1=1

PN (n1)n1

=
N∑

n1=1

(
N

n1

)
n1 pn1qn2

= p
∂

∂p

N∑

n1=1

(
N

n1

)
pn1qn2

= p
∂

∂p
(p + q)N

= pN(p + q)N−1 (2.22)

Since p+q=1, the mean of the total number of upward steps is

n1 = pN. (2.23)
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Also we can derive that the mean of downward steps and the mean distance walked are

n2 = qN and m = (p − q)N. (2.24)

For symmetric random walk p=q=1/2, and then the mean distance walked vanishes.

For asymmetric random walk with higher probability to go downward (q > p), the slope

of m versus the total number of steps is negative.

With the same approach we can show that the variances are also linear with the

total number of steps,

σ2
m

4
= m2 − m2 = σ2

n1
= σ2

n2
= pqN. (2.25)

2.3 Form tensor

To associate a flow pattern with a set of measured momentum, the simplest pro-

cedure is to construct a weighted flow tensor defined as (Cugnon and L’Hote, 1983):

Tij =
M∑

µ=1

γ(p(µ))p
(µ)
i p

(µ)
j (2.26)

with M the total number of trajectories, γ(p(µ)) = 1, 1
mµ

, 1
pµ , 1

pµ2 is a weight factor and

p
(µ)
i are Cartesian components of momentum ( i, j = x, y, z ).

The two variables associated with the shape of the ellipsoid are:

- The sphericity S = 3
2
(1 − λ1).

- The coplanarity C =
√

3
2

(λ2 − λ3).

with λ1 ≥ λ2 ≥ λ3 are the normalized eigenvalues of the flow tensor.

Figure 2.2 gives a schematic of the coplanarity versus the sphericity spectra. The

red line indicates the case where the coplanarity is linear to sphericity (λ3 = 0); In this

case the form is planar. At low C and S we have a very elongated shape, and when C

and S are very big we have a disc shape. For low coplanarities the shape changes from

a very elongated shape to a Segar shape at intermediate S and to a spherical shape for

large S.
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The angle between the major axis of a flow tensor and x,y or z (see Figure 2.3) axis

also can be used to study directed flows.

Figure 2.2: Coplanarity versus spheric-

ity.

Figure 2.3: Schematic diagram showing

a directed flow.

To study the evolution and dispersion of STE trajectories with time, using the form

tensor, we need first to select trajectories that are associated to the initial divided flux.

Figure 2.4 shows a schematic of cross-tropopause exchange fluxes. To select the same

group of trajectories we use only trajectories that are located initially in the same area.

We select trajectories initially localized horizontally in a region defined by λ0 ± ∆λ
2

,

φ0 ± ∆φ
2

(see Figure 2.5). For each time interval ∆t = ti+1 − ti, we compute for each

trajectory (µ) the velocity ~Vi

(µ)
. After we calculate the flow tensor, and we diagnolize it

to get the eigenvalues and the eigenvectors needed to compute the sphericity, coplanarity

and the flow angles.

2.4 Diffusion and dispersion analysis

In this analysis we followed the motion of air trajectories, and we compute the

ensemble average of the relative displacement (ri(t) − ri(t = 0), with i = x, y, z) as a

function of time.

In case of a purely diffusive transport the relative dispersion grows linearly with

time as (Weeks et al., 1996)

σ2
x =< x2 > − < x >2= 2 κ t, (2.27)
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Figure 2.4: Schematic illustrating

some geographical distribution of cross-

tropopause exchange mass fluxes.

Figure 2.5: Schematic illustrating the

calculation of the momentum tensor at

time step ti+1 − ti for individual tra-

jectories localized initially within the

λ0 ± ∆λ
2

, φ0 ± ∆φ
2

zone.

where the mean is the average over all trajectories. If we plot the dispersion versus

time we obtain a direct estimation of the vertical diffusivity κ.

The relative dispersion of trajectories can be generalized by the formula (Boffetta et al.,

2001)

< x2 > ∼ t2ν (2.28)

where the brackets indicate the ensemble averaged. The value of the exponent ν defines

the nature of transport involved; we can determine whether the diffusion is normal,

ν = 0.5, or anomalous ν 6= 0.5. If ν > 0.5 the spread grows with time faster than

linearly. This is super-diffusion (limt→∞ κ ≈ ∞). If ν < 0.5, then the spread grows

with time slower than linearly. This is called sub-diffusion. For this regime of transport

the mixing is slow and inefficient (limt→∞ κ ≈ 0).
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2.5 Lyapunov analysis

To compute the finite size lyapunov exponent (FSLE) we select trajectories ini-

tially localized horizontally in a region λ0 ± ∆λ
2

, φ0 ± ∆φ
2

(see Figure 2.5). There

are two methods to calculate the FSLE. The first one use the radius of the cloud of

points (Artale et al., 1997; Boffetta et al., 2001) and the second one uses the distance

between two trajectories (Lacorata et al., 2001).

For the first method, the relative dispersion is given by the mean square of the

radius of the cloud at time t which is defined by

R2(t) =< |~r(t)− < ~r(t) > |2 > (2.29)

where < ~r(t) >= 1
N

∑N
i=1 ~ri(t).

For the second method the relative dispersion is measured by the relative distance

between two trajectories ~r(1) and ~r(2) at time t which is defined by

R2(t) = |~r(1)(t) − ~r(2)(t)|2 (2.30)

To compute FSLE, the initial size of the set of N trajectories is given by:

δ(0) = δ0 = R(0) (2.31)

with R(0) is done by Eq. 2.29 for the first method or by Eq. 2.30 for the second method.

We define a series of scales δ = {δ0, δ1, ..., δn}, where δi = ρδi−1 = ρiδ0 and ρ =
√

2 is

the doubling factor, and we compute the time Tn it takes for the size to grow from δn

to δ ≥ δn+1. The FSLE is defined by

λ(δn) =
1

< Tn >
< ln(

δ

δn

) > (2.32)

the average is performed over each ensemble of trajectories.

The finite size lyapunov exponent at different δ reveals, some properties, the spread-

ing of trajectories. In fact, it can be written as a power law (Lacorata et al., 2001):

λ(δ) ∼ δ−α (2.33)

- For small size limδ→0 λ(δ) = λ, with λ is the maximum Lyapunov exponent.

- α = 2 indicates diffusion regime.

- α < 2 for super-diffusion regime where advection is important.

- α = 0, λ(δ) is constant for chaotic advection.



Chapter 2. Methodology 26



Chapter 3

Analysis of STE trajectories

In the last chapter we described and define the methods that will be used in this

chapter to study STE trajectories characteristics before, during and after the exchange.

Here, we take the problem from a global perspective, with the emphasis on ensemble

statistics.

3.1 Residence time

Figures 3.1 and 3.2 show F (τ) the fraction of trajectories that spent a time longer

than a threshold τ (Eq. 2.1) for different seasons in case of STT and TST.

By convention, we will call F (τ) the residence time distribution in the following. We

can see from these diagrams that F increases rapidly when τ → 0, and at high residence

times F changes only slightly. Figure 3.1 shows that the stratospheric residence time

distribution does not seem to change with seasons, whereas for the troposphere F (τ)

varies slightly between winter and summer.

In Figure 3.2, residence time distributions have been rearranged to highlight dif-

ferences between STT and TST (top panel) and differences between the stratosphere

and the troposphere (bottom panel). From the top panels of Figure 3.2 we conclude

that STT and TST events have the same stratospheric and tropospheric properties,

respectively. Residence time properties in the stratosphere or in the troposphere do

not depend on the direction of exchange. In bottom panels of Figure 3.2 we compare

stratospheric and tropospheric distributions in summer and winter STT. It suggests
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Figure 3.1: Fraction of trajectories that

reside in the stratosphere (left) and the

troposphere (right) a time longer than τ

for both STT (top panels) and TST (bot-
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that the fraction of trajectories that reside in the troposphere a time longer than τ

is bigger than in the stratosphere, or in other words, trajectories reside longer in the

troposphere than in the stratosphere.

To understand the processes involved during the exchange of air masses between

the stratosphere and the troposphere, we need first to know the nature of the transport

that drives trajectories, and allow them to reside longer in the troposphere than in the

stratosphere. Is this behavior a result of a slow diabatic descent superimposed to a

diffusion process, or in other words, the result of a pure asymmetric diffusion?

Hall and Holzer (2003) suggested that the slope of these residence time distributions

was due to the fact that the flux was computed in a regime dominated by diffusion.
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3.2 Random walk theory and statistical properties

of STE trajectories

The question we ask here is: can the behavior of stratospheric versus tropospheric

trajectories observed in the bottom panels of Figure 3.2 be the result of purely asym-

metric diffusive transport? Since we are placed in a Lagrangian perspective, the most

appropriate approach is to use random walk theory.

Diffusive processes can be interpreted as a random walk. An asymmetric diffusive

flow can be represented by a simple asymmetric 1-dimensional random walk, where steps

in one direction occur with higher probability than steps in the opposite direction. In

this section we will investigate the characteristics of trajectories. The random walk

model is used to test if the computed spectra agree or disagree with diffusion process.

For this purpose we will compare STE trajectory results with the formula developed in

Section 2.2 of Chapter 2, or with random walk results simulated using the Monte-Carlo

technique.

As a first step we will test if STE trajectories possess the basic properties of a simple

random walk. Remember that our STE trajectories data set contains horizontal posi-

tion, potential temperature, pressure and potential vorticity of the air parcels, traced

for 9 days with time steps of 6 h. We focus only on the vertical motion of air mass

trajectories in isentropic coordinates.

3.2.1 Statistical properties of STE trajectories

Auto-correlation functions

To study the memory along trajectory steps, in isentropic coordinates, the auto-

correlation functions are used. The auto-correlation function at lag t (t = kx6 h)

for the ith term in the sequence (Eq. 2.17 of Chapter 2) are plotted in Figure 3.3 for

different values of i. The auto-correlation at i=0 represents the auto-correlation between

the instant of the exchange and later times. Also the total auto-correlation functions

(Eq. 2.18 of Chapter 2) are given in 3.4.

These functions take an initial value of 1, and decay rapidly to nearly 0 after 6 h.

Hence, we can consider that the memory is lost for time intervals larger than 6 h. Then

we have a process with independent steps every 6 h.
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Figure 3.3: Auto-correlation between

steps, for the ith term in the sequence at

different i, versus time.
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Figure 3.4: The total auto-correlation

function between steps versus time.

Probability distributions

The method used to compute the relevant variables is as follows. We begin from

the first extremity of the trajectory (first instant). A step is given by the difference

between two successive values of potential temperature of the trajectory. For a given

total number of steps that the trajectory executed we count how many times it goes

upward or downward. A step is considered as upward when θi+1 − θi ≥ 0, and as

downward when θi+1 − θi < 0 during the interval of time ∆t = ti+1 − ti = 6h. Then,

we compute the number of upward steps n1 and the number of downward steps n2 and

the distance walked by the trajectory m = n1 − n2, as a function of the total number

of steps N = n1 + n2. Note that this distance is taken in the space of step numbers,

not the physical space, since step length is not considered.

Distributions of the distance walked for different total number of steps are shown

in Figure 3.5. The dashed red lines indicate the results of the fit with the Gaussian

law (Eq. 2.21). The fit is in good agreement with the data. We note that the spread

of the distributions becomes larger as the total number of steps increases. This agrees

with the fact that the deviation increases with the total number of steps, as shown in

Eq. 2.25. we conclude here that the process is Gaussian.
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Figure 3.5: Probability distributions of a distance walked m at different values of the

total number of steps for data (histograms) and Monte-Carlo simulations (symbols).

The dashed red line is the fit of data with a Gaussian law.

Other statistical properties

Figure 3.6 gives ensemble average values of total upward steps n1, downward steps

n2, and their variances σ2
1 and σ2

2 , the distance walked m and its variance σ2
m versus the

total number of steps N.

The first remark is that all variables are close to linear with the total number of

steps. This suggests that the process is stationary in the space of the step number.

From the slope of the mean of the number of upward and downward steps versus the

total number of steps we can estimate upward and downward probabilities (Eqs. 2.23

and 2.24). We find that upward probability is p=0.469 and downward one is q=0.531,

the sum of the two probabilities being equal to unity. The variances of n1 and n2 and

the mean distance walked and its variance are shown in middle and bottom panels of

Figure 3.6, respectively. The blue values are expected slopes when values of p=0.469

and q=0.531 are used in formulas 2.23, 2.24 and 2.25. The computed and the expected

slopes are in good agreement.

Also we present in Figure 3.5 the distributions of m for Monte-Carlo simulations us-

ing the estimated values of p and q. The agreement between trajectories and simulations
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Figure 3.6: Statistical properties computed for trajectories using potential temperature

as vertical coordinate. Top panels: The mean number of upward steps n1 (left) and

downward steps n2 (right) versus the total number of steps N. Middle panels: variance

of upward steps σ2
1 (left) and downward steps σ2
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versus the total number of steps. The red values give the slope of the fitted lines. The

blue values give the expected slopes in case of asymmetric random walks with p=0.469

and q=1-p=0.531.

is good. Note that all these results reflect that trajectories have some characteristics

of an asymmetric random walk, i.e. with a mean downward motion. This qualitatively

agrees with residence time results of bottom panels of Figure 3.2 which suggested that

trajectories reside longer in the troposphere than in the stratosphere.

3.2.2 Statistical properties of the tropopause

In the problem of characterizing STE trajectories, we are interested in the relative

vertical motion between trajectories and the tropopause. We saw in the previous section

that trajectories have basic characteristics of a stochastic process in θ coordinates. The

question we addresses now is: what is the process that can describe the motion of the
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tropopause ? To answer this question for a given time and horizontal position of the

trajectory we compute the vertical position of the tropopause in isentropic coordinates.

We repeat the same analysis, but this time for the tropopause.

Auto-correlation functions

Figure 3.7 and Figure 3.8 show the auto-correlation function at lag t (t = kx6 h)

for the ith term in the sequence (Eq. 2.17 of Chapter 2) and the total auto-correlation

functions (Eq. 2.18 of Chapter 2) , respectively. For the tropopause we see that there

is anti-correlation equals to -0.25 at t=6 h, which becomes small at longer lag times.

Although we will keep in mind this non-zero auto-correlation at t=6h, we will consider

that, like trajectories, for a tropopause we have a process with independent steps every

6 h.
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Figure 3.7: Auto-correlation between

steps of tropopause, for the ith term in

the sequence at different i, versus time.
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Probability distributions

Distributions of the distance walked for different total number of steps are shown

in Figure 3.9. The dashed red lines indicate the results of the fit with the Gaussian law

(Eq. 2.21). The fit is in good agreement with the data, and again, we can consider the

process to be Gaussian.
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Figure 3.9: Probability distributions of a distance walked m at different values of the

total number of steps for data (histograms) and Monte-Carlo simulations (symbols).

The dashed red line is the fit of data with a Gaussian law.

Other statistical properties

Figure 3.10 gives ensemble average values of total upward steps n1, downward steps

n2, and their variances σ2
1 and σ2

2 , the distance walked m and its variance σ2
m versus the

total number of steps N.

This Figure shows that the tropopause has roughly the same characteristics as tra-

jectories. We note however that the mean distance walked is not really linear with the

total number of steps N. For high values of N the absolute value of the slope decreases.

This suggests a saturation of the distance walked by the tropopause. In Figure 3.9 we

plot the distributions of m for Monte-Carlo simulations using the estimated values of p

and q. This illustrates the slight difference in m and σ2
m between STE trajectories and

Monte-Carlo simulations.

All these results suggest that tropopause has some characteristics of an asymmetric

random walk, but also suggest some deviations from random walk model.
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Figure 3.10: Statistical properties computed for tropopause using potential temperature

as vertical coordinate. Panels and lines are same as Figure 3.6.

3.3 Stationarity of step length distributions

In order to link our simple random walk model to the Brownian motion, we need

to cheek the stationarity of the step length distributions. To get information about the

stationarity, the three first moments of the step length distributions ∆θ = θi+1 − θi

will be given at different times, where t = 0 represents the exchange time between the

troposphere and the stratosphere.

The mean, the standard deviation and the skewness (< (x − x)3 > /σ3) of air

mass trajectories and tropopause are given in Figures 3.11 and 3.12, respectively. For

air mass trajectories there is quasi-stationary distributions. The mean and standard

deviation are quasi-constant. The skewness remains very close to zero. These results

confirm the stationarity of the process as well as its Gaussianity. For the tropopause

(Figure 3.12) the step distributions are not stationary with time. At the exchange (t=0)

the tropopause moves upward for STT and downward for TST with larger step. The

skewness values indicate very elongated distributions during the exchange.
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These results show that STE occurs in deformed regions of the tropopause. Similar

results are obtained when using PV as a vertical coordinates (see Figure 3.13). In this

case, since the tropopause is defined by the fixed 2PVU iso-surface, the deformation is

seen in the trajectory distributions.

As a conclusion, the transport of trajectories across the isentropic surfaces is compat-

ible with asymmetric Brownian process. Trajectories show stationarity and Gaussianity

of step length distributions, and independence of steps. For the tropopause, even if it

has some properties of random walk, the step distributions show some dynamical effects

and non-stationarities.
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3.4 Monte-Carlo and STE residence time distribu-

tions

Since we are interested on the relative motion between the tropopause and the

trajectories, we need to know exactly the process that represents best the motion of the

tropopause. Physically, the tropopause is not really free, so it cannot walk randomly

without restrictions on the distance walked. Also the tropopause is not fixed in θ

coordinates, it varies depending on latitude and time. Since we have not acquired a

complete understanding of the process that the tropopause follows, we will investigate

two extreme cases in order to compute the residence time distributions:
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* The tropopause as a random walker.

* The tropopause as a fixed iso-surface.

3.4.1 The tropopause as a random walker

To compute the residence time distribution we use Monte-Carlo simulations. We

need two walkers, the first one represents the trajectory and the second one represents

the tropopause. The two walkers have a probability p=0.469 to go upward and a

probability q=1-p=0.531 to go downward, and they are initially at position x=0. We

compute the time τ (or the total number of steps) it needs for the two walkers to

go to the same position. If the first step of the trajectory is bigger than the first

step of the tropopause, the distribution of τ gives the residence time distribution in

the stratosphere, otherwise it gives the residence time distribution in the troposphere.

From the distribution of τ we get the distribution of the fraction of particles that reside

a time τ or longer in the stratosphere or in the troposphere. The step length is chosen

randomly between -1 and 1.
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The results for both random walk theory and STE trajectories are compared in
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Figure 3.14. In case of symmetric random walk (black symbols) the power of the distri-

bution is 0.5. The simulated tropospheric and stratospheric distributions are identical

to symmetric random walk results and disagree with STE trajectories residence time

distributions. In a Monte-Carlo simulation, the relative motion of these two asymmetric

random walkers (the trajectory and the tropopause) is a symmetric random walk.

When we compute the residence time distribution we suppose that the tropopause

is a random walker which is not true because the tropopause is not free, it is localized in

some altitudes (depending on latitude) and it can not go very far from these altitudes.

Random walk theory assumes that there is stationarity and independence in the steps,

but as seen in this chapter the tropopause fails to comply with these hypotheses.

3.4.2 The tropopause as a fixed iso-surface

In the Monte-Carlo simulations, we take an air mass (walker) initially at position

θ = θ0. We compute the time τ (or the total number of steps) it needs to the walker to

return the first time to position θ = θ0. We use p and q as estimated for STE trajec-

tories. The results for both random walk theory and STE trajectories are compared in

Figure 3.15. The distributions now agree very well.

Residence time distributions of STE are accurately simulated when the tropopause

is assumed a fixed iso-surface in θ coordinates. We note that in case of symmetric

random walk (black symbols in Figure 3.15) the power of the distribution is 0.5 but for

asymmetric random walk the log-log spectra are not really linear, which means that the

τ−1/2 divergence of the flux suggested by Hall and Holzer (2003) for diffusive processes

is only manifested for symmetric transport (p=q=0.5).

Even if the residence time distributions are well simulated when we consider the

tropopause as a fixed iso-surface, in reality its motion will be an intermediate process

between a random walk and a fixed iso-surface. To simulate the tropopause correctly

we need to investigate other processes. For example a martingale process, or just a

fixed iso-surface with noise.
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3.5 Form tensor and trajectories

Diffusion is fully described using two infinitesimal parameters: mean and standard

deviation. However in the presence of anisotropy, dispersion can no longer be character-

ized so simply, but requires a tensor which fully describes mobility along each direction

and correlation between these directions.

We consider a uniform spherical sample of particles (see Figure 3.16). In case where

these particles are transported by a uniform flow (a), we get a same probability for

particle dispersion in any direction. For a case where particles are transported by

asymmetric flow (b), particles have higher probability to be dispersed in the ~e1 direction

and a lower probability to be dispersed in the ~e2 direction. Differential advection can

also affect the isotropy.

Figure 3.16: Redistribution of uniform particles resulting from: (a) Isotropic disper-

sion transport. Probability of particle dispersion is the same in every direction. (b)

Anisotropic dispersion transport. Particles have a larger probability of being dispersed

in the ~e1 (major eigenvector) direction of the ellipsoid.

The form tensor (Section 2.3 of Chapter 2) will be used to study directed flow

signatures. We compute the angle between the major axis of the tensor with the
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center of mass of the system (θflow), and its angle with longitude (θx) and its angle

with latitude (θy). We use only trajectories located initially in the region ∆λ < 10o,

∆φ < 10o. The distributions of these angles are shown in Figure 3.17 for different

times. These distributions are enhanced at low angles for θflow and θx and at high

angles for θy, i.e. the major axis of the tensor is directed towards the longitude axis

and perpendicularly to the latitude axis. The coplanarity versus sphericity is linear

and the tensor has a prolate form; the dispersion happens in a plane. All these results

indicate that air mass volumes are dispersed horizontally with higher probability along

the longitude axis. This can be the fact of the westerly wind that disperses trajectories

more along the longitude axis.

Since there is large differences in length scales between the longitude and the lat-

itude in one side, and between horizontal and vertical in other side, to get significant

information about the transport process we need to investigate each direction sepa-

rately.

3.6 Diffusion and dispersion analysis

The Lagrangian trajectories approach is used to characterize transport and mixing

for passive tracers in the atmospheric flows. This approach has been proved to be a

useful diagnostic tool to study transport and mixing processes. There is several statis-

tical techniques to measure the separation of particles; correlation functions, relative

dispersion and finite size Lyapunov exponent.

3.6.1 Relative dispersion

We investigate the ensemble average of the relative displacement (ri(t)− ri(t = 0),

with i = x, y, z) of trajectories as a function of time. Our goal is to characterize

stratosphere-troposphere transport as a function of zonal, meridional and vertical co-

ordinates.

Vertical dispersion

From the analysis of Section 3.2 it is clear that the cross-tropopause trajectories

are driven down by purely asymmetric diffusion in isentropic coordinates. In this case
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Figure 3.17: Left panel: The distributions of θflow (top), θx (middle) and θy (bottom)

at different times. right panel: coplanarity versus sphericity spectra for different times.

the relative dispersion will grow linearly with time.

The relative dispersion curves in θ coordinates for STT and TST trajectories are

shown in Figure 3.18. Using hydrostatic approximation we compute the dispersion

spectra and the diffusivity coefficients along the z axis (Figure 3.19). The green lines

are computed by fitting data using Eq. 2.27 of Chapter 2. As expected for standard

diffusion, isentropic dispersion is typically well fitted by a linear growth law.

Estimated diffusivity coefficients for STT and TST are displayed in Table 3.1; these

vertical diffusivities are in the same order of magnitude for the stratosphere and the

troposphere and equal to 4-5 K2day−1. This dispersion technique to evaluate the ver-

tical diffusivity gives approximately the same values when using balloon ozone sound-
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Figure 3.18: The variance of cross-

isentropic displacement of trajectories in

K2 versus time for STT (left panel) and

TST (right panel). Green lines give the fit

results using Eq. 2.27.
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Figure 3.19: The variance of latitude dis-

placement of trajectories in km2 versus

time for STT (left panel) and TST (right

panel). Green lines give the fit results us-

ing Eq. 2.27.

Table 3.1: Vertical diffusivity coefficients

Stratosphere Troposphere

κθ STT 4.5 3.9

(K2day−1) TST 4.6 5.3

κz STT 3.3 4.2

(m2s−1) TST 2.6 4.7

ings in the lower stratosphere (Legras et al., 2003). The values of vertical diffusivi-

ties found by Hegglin et al. (2005), from seasonal distributions of CO in the LMS, are

κθ ∼ 0.45 − 1.1 m2s−1 (8.7-21.4 K2day−1).

Zonal dispersion

The results of calculating the relative dispersion along the longitudinal axis for

STT and TST are shown in Figure 3.20. The Green lines are computed by fitting data

using Eq. 2.28 of Chapter 2. Zonal dispersions are well fitted by the super-diffusion

growth law since < x2 >∼ t2ν and ν = 0.935 > 0.5.
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We note that the dispersion in the stratosphere is the same as in the troposphere,

and STT gives the same results as TST.

Meridional dispersion

The meridional relative dispersion for STT and TST are shown in Figure 3.21. The

Green lines are computed by fitting data using Eq. 2.28 of Chapter 2. The meridional

dispersion of trajectories in the stratosphere is the same as in the troposphere, and

STT gives the same results as TST. The dispersion behavior can be summarized as a

combination of the super-diffusive growth regime at low times t < 24h (ν = 0.825 >

0.5), and the sub-diffusive growth regime at high times t > 24h (ν = 0.28 < 0.5).
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Figure 3.20: Longitudinal relative dis-

placement of trajectories versus time for

STT (left panel) and TST (right panel).

Green lines give the fit results using

Eq. 2.28.
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Figure 3.21: Meridional relative displace-

ment of trajectories versus time for STT

(left panel) and TST (right panel). Lines

give the fit results using Eq. 2.28.

3.6.2 Finite Size Lyapunov Exponent

In this part we calculate the FSLE from STE trajectories in order to study their

separation growth. For all the results presented in the following we use only trajectories

located initially in the region ∆λ < 10o, ∆φ < 10o.
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We report the results for two initial radiuses: δ0 = 200 km and δ0 = 500 km. The

FSLE analysis has been done as follows. We fixed a series of thresholds δn = ρnδ0

(ρ =
√

2 and n = 0, ...N). For the first technique we used (second technique), for each

time t = 0 a new cloud of points (a new couple of trajectories) was considered with

δ(t = 0) ≤ δ0. The separation growth is then followed for times t > 0 and the doubling

times Tn at scales δn are evaluated by measuring the time it takes for the size δ to grow

from δn to δ ≥ δn+1.

In Figure 3.22 we show FSLE λ(δ) for two values of δ0 and using the technique

of a cloud of points. Figure 3.23 shows FSLE λ(δ) using the separation between two

trajectories. We can see that the dispersion of trajectories in the stratosphere is the

same as in the troposphere, and STT gives the same results as TST. These results agree

with the results of the relative dispersion. The exponent does not change a lot when we

change δ0 from 200 km to 500 km, and remain all times bigger than -2 which indicates

a super-diffusive regime.
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Figure 3.22: Finite size Lyapunov coeffi-

cient versus the size of the cloud for STT

(left panel) and TST (right panel). The

color of symbols refers to the initial cloud

radius: δ0 = 200 km (red symbols), and

δ0 = 500 km (blue symbols). Lines give

the fit results. The blue symbols are mul-

tiplied by a factor 3.
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Figure 3.23: Finite size Lyapunov coeffi-

cient versus the distance between two tra-

jectories. Panels and lines are same as Fig-

ure 3.22.

These results agree with the results of tensor form and relative dispersion; We expect

that longitudinal component of the separation between trajectories δ is the dominant

and relative dispersion analysis show a super-diffusive process in this axis.
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Conclusion

In this work, we studied extra-tropical stratosphere-troposphere exchange (STE)

trajectories over a 10-year period. The aim of this study is to better describe global

statistical properties of cross-tropopause trajectories, as well as the processes related to

transport of mass between the troposphere and the stratosphere. Once these processes

and statistical properties were established, we built the simplest model that captures

the most important properties of STE.

Air parcel residence time distributions indicate that residence time properties in ei-

ther the stratosphere or the troposphere do not depend on the direction of the exchange

(stratosphere-to-troposphere transport, STT, or troposphere-to-stratosphere transport,

TST). In addition, by comparing residence time properties we conclude that trajecto-

ries reside longer in the troposphere than in the stratosphere. This suggests that STT

and TST trajectories are both driven by the same asymmetric flow, which in average

drives down the air mass from the stratosphere to the troposphere.

By investigating the properties of trajectory motion in isentropic coordinates, we

found that they agree with those of a random walker having probability p=0.469 to go

upward and probability q=1-p=0.531 to go downward. In spite of the fact that some

statistical properties of the tropopause agree with those of a random walker, we are not

able to reproduce the residence time spectra using a simple random walk theory. This

is because the tropopause step distributions are not stationary and they show some

dynamical behavior like the deformation of the tropopause at exchange time. Further

analysis will be needed in order to clarify the processes related to the motion of the

tropopause.

Dispersion of trajectories in the atmosphere was investigated using different meth-

ods. Form tensor analysis indicates that trajectories are dispersed more horizontally

with higher probabilities along the longitude axis. The technique of relative dispersion

gave rise to different transport mechanisms in which the mean square displacement of

air mass volumes grows linearly or non-linearly with time. The vertical dispersion along
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isentropic surfaces is well fitted with a linear growth law. This agrees with statistical

analysis of trajectories that are compatible with diffusion processes. The extracted

vertical diffusivities are equal to 4-5 K2day−1. Zonal dispersion analysis shows unusual

transport in which the mean square displacement grows faster than a diffusion process:

this is super-diffusion. Meridional relative dispersion behavior is a combination of two

regimes. On short timescales (t < 24 h), dispersion is faster than diffusive processes

(super-diffusion), while on long timescales (t > 24 h), relative dispersion grows more

slowly than diffusion processes (sub-diffusion).

Dispersion properties are also investigated by means of the finite size Lyapunov

exponent analysis. Both techniques show that dispersion grows faster than linearly

with time.
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