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Historical Introduction. 

00O00 

It is quite generally known that arithmetic had its 

beginning in the counting of groups of things, such as 

trees and herds of cattle; but it is not nearly so wide

ly understood why the number ten should have been chosen 

as the basal unit of our initial system of enumeration, 

the decimal system, rather than any other number. When 

one considers that counting would naturally take the form 

of telling off the objects of a group on the fingers of 

both hands, it is easy to understand how the positive 

whole numbers were constructed on the decimal system, 

CJlearly the decimal system of notation is not the only one 

that could be invented. In fact, it is unfortunate that 

man had not chosen a duodecimal system, that is one based 

on twelve as unit of notation. For instance, ten is di

visible by two and five only, whereas twelve is divisible 

by two, three, four and six. Again, 2 x 10 is divisible 

only by 2, 4, 5 and 10, whereas 2 x 12 is divisible by 

2, 3, 4, 6, 8, and 12. In ordinary business, where 1/2, 

l/3 and l/4 are used extensively, the advantage of the 

di-o-decimel notation is very clearly put in evidence. 
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To show that other scales of notation have been in

vented we need but mention the sexagesimal measure of 

angles, and of intervals of time, which though constructed 

many centuries ago remain in common usage at present. 

The extension of the number system to include neg

ative numbers, zero, positive and negative fractions, is 

briefly outlined in the following pages, together with a 

full discussion of irrational numbers. 

The difficulties that presented themselves in a rig

orous discussion of the theory of incommensurable quanti

ties were known to the Greeks of the time of Euclid (330-

275 B. C ) , as is shown by the fifth and tenth books of 

Euclid's "Elements", which deal with the ratios of magni

tudes, the fifth with commensurable, the tenth with incom

mensurable magnitude (incommensurable magnitudes corres

pond to irrational numbers), but they were unable to ar

rive at a satisfactory solution of the difficulties, as 

were all the mathematicians until within the last century. 

The applications of the four fundamental rules--

addition, subtraction, multiplication and division--to ra

tional numbers were quite perfectly understood during 

this long period of time; and as an irrational number 

taken to any required degree by approximation is a ra

tional number, mathematicians achieved results that were, 

in the main, correct. Towards the end of the eighteenth 
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century, mathematicians, wno -ere making a careful study of 

the calculus methods of ilewton (1642-1727) and Leitnitz 

(1646-1716),discovered so many inconsistencies in results 

and points in the theory that were not rigorously demon

strable by them, that they turned their chief attention to 

a revision of the fundamentals of the whofte mathematical 

system. These thinkers and logicians were much perturbed 

that the notion of the approach of a variable to a fixed 

limiting value and such an obvious thing as the theorem 

'that every magnitude which grows continually but not be

yond all limits,must approach a limiting value' , could be 

demonstrated easily by geometrical, but not at all rigor

ously by arithmetical methods. 

The pioneers in this demand for greater accuracy and 

rigor in arithmetic were Gauss, Lagrange, Cauchy and Abel. 

Che contributions of these man had the effect of clearing 

ip many points that had formerly been obscure, and served 

is an inspiration to a long list of investigators. This 

oovement tov.ards absolute rigor in the proofs of theorems 

Decame in the second half of the nineteenth century very 

general, with 7/eierstrass as its greatest exponent. Weier-

strass showed that to place mathematical analysis on a sat

isfactory basis it was necessary to create a theory of ir

rational numbers, with the same rigor as in the theory of 

incommensurable contemplated by Euclid, and with as much 
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care as had been bestowed on the system of rational numbers 

by the early mathematicians. 

In 1872 Cantor and Dedekind, accepting the results of 

Weierstrass1 studies in the general theory of functions, 

constructed two theories that satisfy the rigor demanded by 

investigators in mathematical analysis, and which although 

apparently very different can be readily brought into equiv

alence'' Dedekind, 'Essays on Number', Cantor 'Ueber die 

Ausdehnung eines Satzes aus der Theorie der trigonometris-

chen Reihen'. 

Scope of the Thesis. 

This essay deals ;;ith the development of the system 

of rational numbers, not fully as is to be found in 

Pine's Algebra and Pierpont's 'Theory of Functions of a 

Real Variable' , but as a foundation u^on which to con

struct Dedekind's theory of the irrational number. 

A discussion of limits ''or sequences of rational 

numbers follows in preparation for the deduction of Can

tor's theory from that of Dedekind. 

Cantor's theory is constructed and its equivalence 

with that of Dedekind demonstrated. 

The idea of continuity is developed only in so far 
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as it is necessary to the understanding of the nature and 

explanation of the arithmetic continuum. 

The second part of the thesis deals with sets of 

points. Many of the newer branches of Pure Mathematics, 

such as: The Theory of Functions of a Complex Variable, 

The Calculus of Variations and Differential Equations, 

make use, either directly or indirectly, of an infinite 

number of operations. These investigations are extremely 

complex, and the reasoning is liable to many errors. To 

one entering upon a careful study of such subjects a 

knowledge of the fundamental principles of the theory of 

sets of points is almost indispensable. 

Rational Numbers. 

As a beginning, I will accept that the human mind 

holds the conceptions of unity, aggregate, order, and 

correspondence, as fundamentals. 

By unity we mean the consideration of any object, 

however complex in structure or attributes, as a single 

thing. 

The idea of aggregate is but bearing in mind the two 

conceptions of unity as r group, and the components of the 

group as separate unities. 

Order is the term by which we designate the concep

tion that enables us to select different objects with 

respect to some attribute as size or haraness, so that of 
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two objects we can determine which is the larger or the 

harder. A group of objects of which each two had been 

examined and the larger or harder one selected would be 

ca"1ed an ordered group. Of many ways of arranging the elements 

of a group in order it will suffice to mention the most 

usual one, namely, that in which the objects are chosen 

with respect to time, and are correspondingly labelled 

1, 2, 3, 4, -- to any number however great. 

The idea of correspondence is that of associating 

one unity with another unity, where these unities may be 

aggregates of any degree of complexity. In particular 

one-to-one correspondence,written (1»1),is used to indi

cate that we are pairing off individual elements of one 

group with individual elements of a second group. 

To urity as a distinguishing mark we give the sym

bol 1. To an aggregate (A,B) or (B,A), perceiving that 

here we have unity together with unity in one whole, 

we assign an arbitrary symbol 2. Similarly to an aggre

gate (A, B, C) we assign a new and arbitrary symbol 3; 

and so on indefinitely. In this process we are performing 

but the simplest act in passing from an already formed 

symbol to the consecutive new one to be formed. Thus we 

create successively the series of integral positive, or 

natural numbers, which is characterized by the fact that 

the sequence of numbers has no last number: namely, 1, 2, 

3, 4, 5, 6, --- (I). 
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The Fundamental Rules. 

Addition is but the combination into a single met 

of any arbitrary repetitions of the simplest act men

tioned above. For example, 7 + 4 ^ 7-(-(3-)-l) 
= 7+(2 + 14-l) 
= 7^(1+1 + 1 + 1) 
=r(8 + l)+l+l 
= (9+1)4-1 
= (10+1) 
= 11 

Multiplication arises in a similar way from ad
dition, that is, it is but a combination of any arbitrary 

number of repetitions of the addition process. 

Ex. 5 X 3=3 + 3+3+3+3, o r * 5+54-5. 

The two processes, addition and multiplication, are 

always possible in the sense that each application of 

either process to two numbers of the series results in a 

number of the series, and obviously tho rtetement is true 

for any number of applications of these processes. 

The process of subtraction when applied to numbers 

belonging to tho series of natural numbers is the reverse 

of adoition. 

Sx. 7 - 4-3. 

7 - 4=7 - (3+1) 
~7 - (2+1+1) 
— 7 - (1+ 1+ 1+1) 
**6 - (1+1 + 1) 
-5 - (14-1 ) 
~4 - 1 ^ 3 

However, this process would not be applicable in 

the case where the number to be subtracted is the larger. 
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without an extension of the number system. 

Thus 1-1 introduces a new quantity to which the symbol 

0, zero, is attached; 0-1 introduces a successive new 

quantity to which we assign the symbol -1, minus one; and 

so on indefinitely. The numbers given in order of creation 

are 0, -1, -2, -3, -4, 

The extended number system is represented by 

_3t „gf -if o, 1, 2, 3 - - — (II), the series 

having no last number on either side. 

Division m&y be considered as the reverse process 

to multiplication. Thus 3 x 5=15, and 16+3=5. In 

general if J » x, then b^ax. Elearly a further exten-
a 

sion of the number system is required before division will 

always be possible among the members of the oxtended number 

system(II). To perform this tho rule is applied that if 

b-5-a = x, then a x~b, thus the positive and negative frac

tions become necessary. Prom the conception of multipli

cation as a condensed process of addition it is clear that 

ax(-l)«-ab, in accordance with which, (-a) x (-b) is 

defined to be ab. Hence a negative number divided by a 

positive number or vice versa results in a negative number, 

^hereas a positive number divided by a positive number or 

|a negative number by a negative number results in a posi

tive number. 

The Ordinal Numbers. 

The set of symbols, or corpus III, is now complete in 

the sense that on the application of tho processes of «ddi-
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tion, subtraction, multiplication and division, every re

sult is itself a member of the sequence, with the exception 

of division by z^ro. 

Ex. a + 0»a 
a — Oss a 

ax 0^0 
a-rO has not been defined. Let it be x, then 

xx 0=*a. But any definite number, however great, multi

plied by zero, is still zero, therefore a-s-0 introduces a 

new quantity which is called infinity and is assigned the 

symbol oo . 

We wish now to arrange the corpus III in some definite 

order, that we may have an ordered set of symbols. The 

extended number system II is really a set ordered with res

pect to time, that is, ordered by each successive creative 

act as indicated in the above reasoning. However, to make 

the complete reasoning more intelligible a proof will be 

given based on the fundamental ideas of aggregate and corres

pondence. By pairing off the elements of two aggregates 

we can always determine which is the greater unless they 

should happen to be equal. And if we agree that to indicate 

that b is greater than a,we use the symbolic notation b/ a, 

and write b on the right hand side of a, all the positive 

'integers become ordered when written 1, 2, 3, 4, (A). 

The negative integers -1, -2, -3, -4, (B) 

are evidently in an order, since they correspond exactly to 

[the ordered sequence (A). Further, as -1+1=0, -2+1 — - 1 , 

and so on, the sequence (B) must be reversed before it will 
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be in accordance with our convention of writing the greater 

number to the right of every smaller number. 

The series 4, -3, -2, -1, 0, 1, >°f 3, 

4f is now an ordered Corpus II. It should 

be observed here that every negative number is less than 

zero, or any positive number whatsoever. 

Now, taking the c ê of any two positive fractions, 
a « ad be 
- and * . These can be written — and — . Evidently, 
b d bd bd 
§ is greater than, equal to, or less than 2. Written 
b a 
- = 2 , according as — § £2, that is, according as 
b < a bd ^ bd' ' & 

ad § be. But ad, be are integral positive numbers and 
belong to the ordered set (A), hence the greater number 
may be obtained by inspection. An exactly similar proof 

will apply to any tv:o negative fractions whatsoever, where

as every negative fraction can be shown to be less than 

any positive quantity or zero by the same process of making 

the denominators of the fractions equal. 

The complete set of symbols, arranged in ascending 

order of magnitude, has now become an ordered corpus, with 

no greatest positive number and no least negative number. 

This corpus is called the set of rational numbers. 

When we have at our disposal the set of natural numbers 

arranged in order of magnitude, we are in a position to 

count the elements of any finite group. To determine the 

ordinal number of the group, or in other words count the 

group, we impress an order with respect to time, (i.e.) the 
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succession in which they are chosen, on the elements of the 

group and then place this group in (1,1) correspondence with 

the rational numbers 1, 2, 3, 4 . Evidently the 

natural number paired off with the last selected number of 

the group represents the ordinal number of the group. 

Ordinal number is thus regarded as the concept obtained 

by making abstraction of the nature of the objects, but re

taining the order in whicht hey are given in the aggregate. 

The System of Rational Numbers. 

To the ordered corpus of rational numbers we may apply 

the following laws: 

1. If a:>b, and b ^ c , then a^>c. 

When the elements of a group b are paired off with the 

elements of a group a, and when there are elements of a 

remaining unattached while every element of the group b 

has been paired off against one of the group a, the group 

a is said to be greater than the group b, and is expressed 

symbolically by a;>b. Similarly, the expression b;>c means 
SL 

that when every element of the groupA has been placed in (1,1) 
correspondence with elements of group b , there are elements 

in group b remaining unattached. 

Evidently then if the elements of the group c were 

placed in (1,1) correspondence with the elements of the 

group a, there would remain unattached elements in the group 

a, therefore a> c. 
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By the method employed earlier of reducing two positive 

fractions to a common denominator and then considering their 

numerators which are positive integers, the above proof is 

directly applicable. In the case of negative numbers, one 

can readily generalize the above statement by considering 

that the negative numbers are in but the reversed order to 

that of the positive numbers considered from the number zero. 

A more simple proof can be observed by mere inspection, 

since when we write the ordered set of rational numbers in 

full every positive and negative rational fraction is includ

ed. Hence the expression a^>b means that a lies to the 

right of b, and the expression b^-c, that b lies to the right 

of c, that is, a>c. Another statement of the above law is 

that ID lies between a and £. 

If a and £ are two different rational numbers, there 

are infinitely many different rational numbers lying between 

a and c_. 

First proof. Let a and c be two positive integral val

ues, or decimal numbers that have a finite number of decimals 

only this excludes such numbers as .3 . Suppose a is given 

by a, .a2 a3 a4 a5 an and c is given by c#.c^, c3, ,̂ 

o, , cy om, and let a = cf, a4 = c4 . ^ cn . If 

m>n , then 9m^^Qn , in the sense of appearing in the sequence 

further to the right. 

The number a,, a ̂  a 3 a^ â - a n a^ , 

ro*6^ VfVi' *W * cW—-a-n ^ %
 4s less than °-
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Further it is evident that there are infinitely many numbers 

given by the above sequence, since a , a , a . 
ta-fi tn+i ty+» 

can each be any one of the ten figures. With assigned val

ues of a( a2 a3 a ̂  a^ , the number of rational 

numbers, a, a„ a* a^ a^ a .proceeding as far 
ft 

as the term a.^ = 10 ; this can be ~ade greater than any as-

signable number however great by choosing r properly. 

To provide for the case of infinite decimals that appear 

from the division of two integral numbers. °nd are therefore 

1 * 1 l 
rational numbers, such as -=r.3 and - =.16 , we can reduce 

3 6 
the two fractions to a common denominator and then proceed 
with the numerators as above. Illustration: There are in

finitely many rational numbers between - and - ; we have but 
3 6 

to show by the above proof that there are infinitely many 

rational numbers between 2 and 1 , then dividing each of 

these numbers by 6 will give infinitely many rational num

bers between - and - . 
3 6 

a c 
Second proof. Taking - and - as two general rational 

b d 
numbers, where a, b, c, d are positive integers, and given 
D d 
that - < 2 9 it is required to prove 

a ad be . c 

D 2bd d 

Since - < - , we have ad <bc 
b d 

2ad^bc + ed ; 

2adb <Cb(bc + ad) ; 
a , bc + ad 

b 2b d 
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Again , ad < bo ; 

ad + bc«£abc ; 

d (ad + bc)^2bd; 

ad + bc y c 
2bd ^1 # 

That is, between any two positive rationals we can in

sert their arithmetic mean, between this arithmetic mean and 

each of the initial numbers arithmetic means can again be in

serted, and so on indefinitely. If, the given numbers are 

both negative numbers, the demonstration follows at once from 

the above proof. In the case where one number is negative 

and the other positive, by the above proofs we can show that 

between 0 and either of the numbers there are infinitely many 

rational numbers. 

If a is any definite rational number, the system of ra

tional numbers can be considered as making up two classes 

A and A„. which are such that A. contains all the rational 

numbers that are less than a, and A^ contains all the ration

al numbers that are greater than a. The number a can DO as

signed at iwill to either class, becoming either the first 

of the class A2, or the last number o^ thn class Af. The 

classes A, and A2 are such that every memter of the class A, 

is less than every member of the class A 2 and every member 

of the class A 2 is greater than every member of the class A, . 

We can thus dintinguishAthe rational numbers so as to 

define the rational number a: 
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U ) A, , a , kz 

((5) (A, a), A 2 

(y) A, , (a kz) 

The Straight Line. 

It is required to show that the points of a straight 

line obey laws that are similar to those that have been 

applied to the ordered set of rational numbers. 

E r g p Let L be any straight line and 

p, q, r any three different points. 

The following laws apply: 

1. If p lies to the right of q, and q lies to the 

right of r, than p lies to the right of r; and we say that 

q lies between the points p and r. 

From the diagram this statement is seen to be true. 

If p and r are two different points, then there al

ways exist infinitely many points that lie between p and r. 

The general conception of continuity is derived from a 

straight line. We -onceive the straight line to be 

such that between any two points however close there are 

infinitely many other roints. 

If £ in a definite point in L, then all the points of 

L fall into two classes Pf and P^ , which are such that P, 

includes all the points that lie to the left of JD, and P 2 

includes all the points that lie to the right of p. The 

point 2 c a n t e a s s ig n e d at w 1 1 1 t 0 eitiier clsss. Moreover 

every point of the class P( lies to the left of every point 
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of the class P ; and every point of the class P lies to 

the right of every point of the class P, . 

This analogy between the rational numbers and the points 

of a straight line becom ? a real correspondence if we take 

some point of L as origin or zero point, and a definite length 

as unit of the measurement of segments. 

The succeeding discussion will establish a (1, 1) corres

pondence by arithmetical means alone betv̂ een the rational 

numbers and definite points of the straight line in such a way 

that the order is maintained. 

One method of establishing this correspondence is by mak

ing use of the harmonic ratio of special numbers. If a, b, 

c, d are any four numbers, they are said to form a harmonic 

ratio when a-b . c-d is equal to -1. 
b-c d-a 

Clearly there are infinitely many sets of four rational 

numbers which form a harmonic ratio. If a, b, c are given 

rational numbers, they determine a definite number d accord

ing to the equation d __ ab + be —2ac which is obtained 
~~_ a — c + -1-

by simplification of tn above harmonic ratio (a, b, c, d). 

The equation evidently holds for all values of a, b, c except 

Eb-a + c. In this case if we take the ratio (a, a-fc , c,d) 

where d takes successively increasing values, it is found that 

a-c 

2 . c-d approaches hearer and nearer to the 
a+c Q~a 

value of -1 as d is given larger and larger values. That is 

when d is increased indefinitely, the given cross ratio be-
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comes a harmonic ratio. 

The following harmonic ratios will be required in the 

course of the demonstration. If jo is any positive integer, 

we have 

(p-1, p , p+1 , oo ) = -l 

(-P, o , p , 00 )==-! 

o, 1 . 1 
P+T p 

1 )«-l 

Take any straight line LL, unlimited in either direction 

and let any three points be selected and numbered in order 

P, 1, Q. We can then establish the (1,1) correspondence as 

follows: 

Let C be any poi#t outside the line LL. Join PC , 

Ĉ and 1C. In the line PC take any point A. Join QA. We 

shall call the fourth harmonic point of P with respect to 1 

and Q the 

Tig.i. 

Q 
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integral number 2. Similarly we shall call the fourth 

harmonic of 1 with respect to 2 and Q the integral number 

3, and so on indefinitely. 

The geometrical construction of these various harmonic 

points is indicated in Fig. 1. The lines 1C and QA in

tersect at some point which we will call A,. Join PA, and 

produce to meet QC in C, . Join 1C, meeting QA in A^. Join 

CA and produce to meet LL, in the required harmonic point 2. 

Again, join PA^ and produce to meet QC in C2 . Join Ĉ̂ , 

meeting QA in A r Join CA3, meeting LL, in the harmonic 

point 3. 

This construction sets up a (1,1) correspondence between 

all the positive integral numbers and points in the Segment 

PQ of the straight line LL,. 

The above harmonic construction is made more clear by 

a second figure: C 

Figure II. 

AjCQIA, is a quadrilateral. C, P, and A£ are its 

diagonal points. The two sets of points (P, 1, »4,2) and 

(C, C , Q, C2) are in harmonic ratio. 

To construct points that will represent the negative 

integers, we will call the fourth harmonic of the positive 
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integer M with respect to P and Q, the negative integer 

->M. The geometrical construction represents the point -M 

as the intersection of ACm with the straight line LL,, where 

0m is the point in CQ which is used directly in the construc

tion of the positive integer M+l. 

For example, the point -1 is represented by the inter

section of AC, produced with the straight line LL,; the 

point -2 is represented by the intersection of AC2 with the 

straight line LL,; and so on indefinitely. That is, all 

the negative integers are represented on the segment POOQ 

of the straight line LL,. 

-I p | <2? 
Figure III. 

At some period in the construction the line AC^ changes 

its slope from positive to negative, and all succeeding neg

ative numbers will be represented by points on the straight 

line LL,, but to the right of Q. As drawn in figure III 

AC2 produced intercepts the line LL , on the left of P, and 

AC- produced intercepts the line LL,on the right of $. The 

result will be comprehensive if we consider the straight 

line to be a closed curve. The extended definition of a 
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straight line is that of a great circle on a sphere of in

finite radius, which demonstrates that, from our figure, a 

point at an infinite distance to the left of P will coin

cide with a point at an infinite distance to the right of Q. 

A construction for the inverses of the rational pos

itive numbers is readily obtained by a slight modification 

of the previous method. 

Let us represent the positive number 1 as the point 
•z 

which is the fourth harmonic of Q with respect to P and 1. 

Join 1A meeting A. P in Aj, . Join CAj. and produce to meet 
•2. Z 

LLf in the point 1. Similarly 1 will be represented as 
& «5 

the fourth harmonic of 1, P and 1. Join 1 and A meeting 

PAx in Aj. . Join CAj_ to meet the straight line LL, in 

the point 1. Generally, the point 1 is the fourth 
3 m-2 

harmonic of 1 with respect to P and 1 . 
m m-1 

The points 1+1, 2+.l» 3 + l o a n ^e con-
r r r 

structed from P, 1, Q; just as 2, 3, 4, were 
r 

from P, 1, Q. 
Generally, the points l+n , 2 , n, 3^n 

r r r, 
can be constructed from P, n, £. 

r 
The inverse points r , r , r , 

r+T 2r+L 3r+L 
can be constructed from Q, P, 1; just as 1 , 1 , 1 , 

r 2 3 3 
were from Q, P. 1. 
Generally, the points r + n , 2r+ n, 3r-+ n , can 

r r r 
be constructed from ^, P, n. 

r 
When n and r have been given all positive integral values, 
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points to represent all rational positive fractions will have 

been constructed. By a repetition of the previous construc

tion the negative rational fractions _-l can be represented 
m 

by the intersection of the line Cx A with the straight line 
m 

LL, . The point Cju is the point of intersection of Pax m fr\ 

with the line CQ where Ax is the intersection of Caj_ with 

the line AQ. (See Figure IV). In this last paragraph m is 

used to represent any rational fraction, and 1 the inverse 
m 

of the general rational fraction. 

2 Figure IV. Q 

From the general method of construction it is clear 

that as we approach P the numbers decrease in absolute 

value without limit, becoming less than any assignable pos

itive rational quantity,£.Further, the numbers to the left 

of P are negative, while those to the right of P are pos

itive. That is, P cannot be other than the point 0. Sim

ilar reasoning demonstrates that Q is the point 00. 

Supposing that in the infinitely many applications 

of the above projective scale there is one point which 

does not represent any rational number, we can plot ra-

-21-



tional numbers that approach nearer to that point than any 

assignable magnitude. This will be shown to be the defin

ition of an irrational number. It can be shown that there 

are infinitely many points of the straight line that do not 

represent rational numbers. For instance, the diagonal of 

a square whose sides are positive integers in magnitude is 

incommensurable with that unit of magnitude. 

Proof. If possible let the side be to the diagonal in 

a commensurable ratio,namely,that of the two integers a and b. 

Suppose this ratio reduced to its lowest terms so that a and b 

have no common divisor other than unity, that is, they are 

prime to each other. ThSn b = 2a (by Euclid 1.47); there

fore b is an even number; hence, since a is prime to b, a 

must be an odd number. But since b is an even number, it 

can be written as 2n; therefore (2n) s 2a , or a <=- 2n ; 

therefore a is an even number; therefore a is an even num

ber. Thus a is both odd *nd even, which is absurd; therefore 

the side and diagonal are incommensurable. 

Hence, if from the origin 0, a length is laid off along 

the straight line LL9 we obtain a point to which no rational 

number corresponds. It is at once obvious that the number of 

these incommensurable lengths is infinite; therefore the num

ber of points in a straight line that have no corresponding 

rational number is infinite. Thus the straight line is rich

er in points than the system of rational numbers is in sym

bols. 
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The Irrational Number. 

We wish to follow out arithmetically all phenomena in a 

straight line, and the domain of rational numbers is evidently 

insufficient, since we have demonstrated the existence of 

gaps in the system. Furthermore, we attribute continuity to 

a straight line. 

Before developing the theories of the irrational number 

it will be helpful to state clearly what is meant by algebraic, 

rational, and irrational numbers. 

The various quantities that will satisfy an algebraic 

equation of any definite degree, say aox 4-a, x +a^x 

a^ — 0, where the a's are any integers, posi

tive or negative, and where the equation is irreducible, are 

called algebraic numbers. 

It can be shown that there are numbers other than alge

braic, such as the logarithms of the rational numbers and 

the Lio.uville numbers. 

Those algebraic numbers which are solutions of an equa

tion of the first degree are called rational numbers, and in

clude the natural numbers, all terminating decimal fractions, 

as well as some non-terminating decimal fractions that follow 

a simple recurrence law, as .5 or . l£ 

Those algebraic numbers that are solutions of equations 

that are irreducible and of degree higher than the first, 

are irrational numbers. Furthermore, all logarithmie numbers 

and the very special Liouville numbers are irrational numbers. 
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Ledekind asserts that the essence of continuity is em

bodied in the following principle: "If all the points of a 

straight line fall intoi wo classes such t hat every point 

of the first class lies to the left of every point of the 

second class, then there exists one and only one point which 

produces this division of all points into two such classes, 

this severing of the straight line into two portions". 

We wish to prove arithmetically that there are numbers 

other than rational numbers. Let I) be a positive rational 

number but not the square of a rational number. If we place 

in the class A all these positive numbers whose squares are 

greater than L, and assign to the class A, all the negative 

numbers and zero, together with all the positive numbers 

whose squares are less than L. Since there is no rational 

number whose square is equal to L, we have the domain of 

rational numbers divided into two classes by a number YS 

which is not a rational but an irrational number. 

It is required to prove that there can exist a positive 

integer D which is not the square of a.rational number. A 

rational number can always be expressed as a rational frac

tion of which both the numerator and denominator are inte

gers. Suppose D—(r) 9 where r is a fraction reduced to its 

lowest terms, that is u is prime to t. We have, then, chosen 

u as the least positive integer that will satisfy the ex

pression,t —Du =o, which is known as Pell's equation. 

By Archimedes principle, which I have accepted, no 

number will be considered in the theory of numbers that is 
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so small that when multiplied by a sufficiently large number 

it cannot be made to exceed any arbitartily chosen number. 

That is, infinitesimal numbers are not included in the sys

tem of numbers. 

Now as u is not an infinitesimal but is rather a posi

tive integer, we know that there exists a positive integer 

A, which is such that A u<t<( A + l) u. 

Let u'=r t -An. Evidently u is ̂ . u, and is a pos

itive integer. Let t' = Du - A t, t is likewise a positive 

integer. We have 

t' - D u' = ( A - D)(t — D v. ) = o, which is contrary to 

our assumption concerning u. That is, D cannot be expressed 

as the square of a rational number. 

As an example of this type of reasoning, Fine in his 

Algebra gives a proof thatV~2 is irrational. 

There is no integer whose square is 2. Suppose the 

fraction is such that (* ) = 2 , where p and q are positive 
p* * 2 

integers. We have «-- = - . 
<i -1 2 2. 

That is, q must be 1. and p = 2, since p is prime to 
q2 . But p 2 cannot be equal to 2. That is,V2 cannot be 

expressed as a rational number and is called an irrational 

number. 

Proceeding with the discussion of the division of the 

system of rational numbers into two classes A, and A 2 , where 

the class A, includes all the negative numbers, zero, and 

those positive rational numbers whose squares are less than 

D, and where the class A 2 includes all those positive num-
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bers whose squares are greater than D, while there is no 

rational number whose square is egual to B. In this case 

the class A, will have no greatest number and the class Az 

no least number. Proof. 

If we put y _ x (x*+ 3D) 
3xz+ D 

we have y - x_2x (L -x2) 
Sx*4- D 

and yz - D_ (xz - D) 
(3x-hD)2 

Then, if x is a positive number from the class A , we 

have x < D ; hence yj> x and y -=c D; therefore y likewise 

belongs to the class A,. While, if we assume x to be a pos-

itive number from the class A a , we have x > D; hence y<Cx, 

also y>o, and y > L; therefore y likewise belongs to the 

class A 2 . This cut in the system of rational numbers is 

produced by no rational number. We are now in a position to 

define and create the irrational numbers. 

Ledekind's theory of the irrational number. When the 

domain of rational numbers is separated into two classes by a 

point a__, such that the class A, includes all the rational 

numbers that are less than a , and the class A^ includes all 

the rational numbers that are greater than a; further, when 

the class A, has no greatest number and the class A a has no 

least number; when every number of the class A, is less than 

every number of the class kz , and conversely, this division 

of the rational numbers is said to define the irrational num

ber a. 
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Consider now two numbers a, b defined by cuts (A, ,A^) 

and (B, , B2) in the rational numbers. If every number con

tained in the class A, is likewise contained in the class B, , 

and every number contained in the class A is also contained 

in the class B a , then the two cuts are identical, which is 

denoted by a -= b. 

If the cuts are such that there is one number, and only 

one, in the class A t that is not included in the class B , , 

denoting this number by af , since every other .-lumber a, of 

the class A, is also contained in the class Bf , we have a,<a, 

Thus, at is the greatest number in the class A, , or in other 

words, the cut (A,,AC) is produced by the rational number 
i I I I 

a-^a, . By our hypothesis a, = b2 , where b^ is the only 

number that is contained in the class B^ , which is not con-

contained in the class A 2 . Since every number b 2 of the 

class B^ , other than b2 , is also contained in the class A e ; 

we have bx-^ b a , that is, b z is the least number of class 

B 2 , therefore the cut (B, , B2 ) is produced by the rational 

number a = b2 . Thus the rational number a is defined by two 

different cuts. 

If the cuts (Af ,A2) and (B( ,B2) are such that there are 

two numbers in the class A , that are not contained in the 

class B(, that is, are contained in the cl&ss B z , we can 

assert that there are an infinity of numbers in the class A, 

that are contained in the class B, , because, between any two 

rational numbers whatsoever there are infinitely many rational 

numbers. In this case the number a, defined by the cut 
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(A/ , A-), is said to be greater than the number b, defined 

by the cut (B„Ba). In symbolic language a> b and b^Ca. 

It may advantageously be pointed out that the usual 

^)/ definitions of >, = ,4as applied to rational numbers also 
/ 

apply without ambiguity to irrational numbers. 

The extended system of numbers consisting of all the 

rational and irrational numbers is called the domain of 

real numbers. It forms a well-arranged or ordered domain 

of one dimension and is subject to the following laws, which 

will be proved only for irrational numbers, as the rational 

numbers have been shown to obey these laws. 

I. If <x<(3 , and/S-̂ v, then is of^y . 5 is said to 

lie betv/een « and y . 

The statement <x < (5 , asserts that there are infinitely 

many numbers in the class B, that are not included in the 

class A,. Similarly the statement (3 <y , asserts that there 

are infinitely many numbers in the class C. that are not 

included in the class B, . I am considering the irrational 

numbers <x, A , y to be defined by the cuts (A(,A2 ), (Bt ,B2 ) 

and (C,, C2) respectively. It is evident that there are in

finitely many numbers in the class C, that are not included 

in the class A., that is,c<<y . And (i is said to lie be

tween ex and y . 

II. If oi and y are two different irrational numbers, 

there exist infinitely many different numbers & lying be

tween c* and y • 

This is incidentally established in the preceding 
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proof. 

III. If the entire system of real numbers be separated 

into two classes R,, R2 each containing infinitely many element 

and such that every number of the class R, is less than every 

number of the class R 2 , and conversely, further there is ei

ther a last number in the class Rf , or a first number in the 

class H 2 . This separation is said in every case to be pro

duced by the number a. 

In separating the real numbers into two parts R , R , 

we likewise separate the rational numbers into two classes 

Af , A^, because we 'out assign to the class A, all the ra

tional numbers that are contained in the class R , , and as

sign to the class A 2 all the rational numbers that are con

tained in the class Rz . 

Let a be the number defined by the cut(A,,A2). If a 

is rational, it must be either the last number in the class 

A,, or the first in the class A 2 . Also, if a is the last 

number in the class, A , , it must be the last number in the 

class R, as well, because between any two numbers rational 

or irrational there are infinitely many rational numbers. 

Hence if a is not the last number in the class R,, between 

a and <x , there would exist infinitely many rational num

bers, but all the rational numbers that are less than oc 

are contained in the class A, and a is the last number in 

the class Rf . Similarly, if a is the first number in 

the class Az it can be proved to be the first number in the 

class R 2 . 
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If a is an irrational number, it must belong either 

to the class R, or to the class R^ ; further, a must be the 

last number in the class R, or the first number in the class 

R 2 , because if there was any number after a , there would be 

rationals between it and a. But all the rationals of the 

class R, are contained in the class A , ; hence there would 

be rationals of the class A( after a, which is impossible. 

In like manner, it can be proved that if a belongs to the 

class Ra it is the first number in that class. Lastly, there 

cannot be both a last number in the class R , and a first in 

the class R 2 , since there would be infinitely many ration

als between these tv/o rational or irrational numbers, that is, 

numbers belonging either to the class A, or to the class A 2 , 

which is impossible. 

In the previous paragrechs proofs have been given that 

between two rational numbers, and between two irrational num

bers there exist infinitely many rational numbers. To make 

the statement absolutely general, a proof will be inserted of 

the case in which one number is rational and the other irra

tional. 

From the definition of an irrational number, it fol

lows that from the lower class infinitely many sequences of 

numbers can be chosen which will have the irrational number 

as an upper limit of the sequence, and that from the upper 

class infinitely many sequences can be chosen which have 

the irrational number as a lower limit; that is, there are 
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infinitely many sequences that define any irrational number. 

Illustration: The number V2 is given by the sequences: 

' V2 A/3 ' i.M^-ir, .-\/J pJ\ 

Ay 4 V 5 

We can choose one special sequence from the lower class 

that is expressible as a decimal number, for if we write in 

order, the largest integer whose square is less than 2, the 

largest number taken to one decimal place whose square is 

less than 2, the largest number taken to two decimal places 

whose square is less than 2, and so on, indefinitely, we 

obtain the sequence: 

1 , 1.4 , 1.41 , 1.414 , 1.4142 , 1.41421 , -

This sequence is unending, that is, the irrational num

ber 2 can be expressed as an unending decimal 1.41421 

Let the irrational number be a . a # a „ a _ a w 

a^^, and the rational number a . a , a „ a „ 

a a _ . 

If we assign to the n+lth decimal place any of the fig

ures <£. a^^j , to the n+2th decimal place any of the ten fig

ures ^. a n + a , and so on to the a^+1Y1th decimal place, where m 

is indefinitely great, it is clear that every number thus 

formed is greater than the chosen rational number and less than 

the chosen irrational number, and that there are infinitely 
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many such numbers. 

We attribute the property of continuity to the domainof 

real numbers, so that to every cut (R|t R^) in the domain, 

such that every element of the class R, , is less than every 

element of the class R £ , there exists one and only one number 

a by which this separation is produced. 

Any number rational or irrational which we may denote by 

a is such that, if any positive number O, be assigned , it 

matters not how small, we can always find two rational numbers 

a, in the class Af and a2 in the class "A2 , such that a, ̂ c 

a-^a^, and a^ - af-==: o . 

This result follows at once from the statement that be

tween any two numbers whatsoever there are infinitely many 

rational numbers, and that we can determine any irrational 

number to a given degree of approximation. 

The addition of irrational numbers. Let the numbers 

CX and & be defined respectively by the cuts (A,, A2) and 

(B, , B^K £et us arrange in a class C, all those rational 

numbers c for which a,-»-b|»c , where a, is any number con

tained in the class A, and b, is any number contained in the 

class B, • And place all other rational numbers in the 

class C ̂  . Te have now separated all the rational numbers 

into two classes C, and C2 , such that every number in the 

class C( is less than every number in the class C2 , and 

conversely. Therefore the cut ( C, , C2) determines a numbery• 

If both <x and & are rational, then every number c, con-
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tained in C, is ̂  ex4-/3 » because a.^ ci , b, "£y3 t a n d there

fore a( + b( -5=: oc + 8 . Further, every number which is less 

than oC + /3 must lie in C, , for let e2 be a number of C z 

and suppose cz <: ex -h/3 . 

We have ĉ  -j- p = <X + p 

^ - (cX- |p)-M/3- gp) 

Where p is a positive quantity 

0( — -p is a number of the class A . and 
2 • 

p - *p is a number of the class B , that is, 

lei - -p) + (/3- sp) lies in the class C|t by our def-

inition. 

Thus, every member in the class C( is ̂  oC-f-/3. and 

every number in the class C 2 is ̂  <X-hfo J therefore the cut 

(C, ,C2) defines a number y^ck + R. 

If OC and p are irrationals they may appear in 

either of the classes A,or A^, B , or B 2 , respectively, which 

makes no difference to the argument, because for any positive 

number i, however small, we can choose numbers, ag , a4, b, 

and b , in the classes A|f A2, B% and B 2 , respectively, such 

that a - ag <^ c • and b 2 - b, -^ O . 

In a similar way we can define multiplication, subtrac

tion, division, including both powers and roots. 

As an illustration, I will find the product of the two 

irrational numbers Ya •==V&,VTs3p- Let V"a and Vb be defined 

by the cuts (A, ,A2) and (B,,B^) respectively. We form 

two classes, C, and C 2 , such that every member c, in the 

class C, is given by c t ̂  a, b, , where a( is any rational 
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number whose square is less than o(, and b, is any rational 

number whose square is less than/J; and assign to the 

class C2 all those numbers oz given by oz <s ^b^., where â  

and b a are any rational numbers whose squares are respect

ively greater than <x and ft. We have then separated the 

rational numbers into two classes,C, and C2, such that every 

number in the class C, is less than every number in the class 

Ca ; further cf ̂  dp and cz ^ ex p ; therefore the cut 

itself (C,, C z ) defines a number y , such thaty^oc/3; there

fore y = \<*f5 . 

Dedekind in his theory of the irrational number, rep

resents an irrational number as a separation of all the ra

tional numbers into two classes, such that the inferior 

class has no greatest number, and the superior class has no 

least number. 

Cantor's theory of the irrational number essentially 

depends upon the use of convergent simply infinite ascend

ing aggregates, or convergent sequences in which the ele

ments are rational numbers. 

In order to connect the theory of ledekind with that of 

Cantor, it is necessary to discuss the idea of limits. 

We say that a variable magnitude x approaches £ as a 

limiting value when the difference s-x taken in absolute 

value becomes and remains finally less thah any given pos

itive value different from zero. 

Theorem I. If a magnitude grows, but not beyond all 

limits, it approaches a limiting value. 

-34-



If we denote the variable magnitude by x, by our hypoth

esis, there is some number a that is greater than x; hence 

there exist infinitely many numbers that are greater than x. 

Let all these numbers a2 that are greater than x make up the 

class Rc, and put all the other real numbers af, in the class 

R,. Every number a, of the class R t is such that as x takes 

all its allowable values for some of these values x "̂ . &t ; 

hence, every number af is less than every number a&. Con

sequently, there exists a number <x, which is either the great

est in the class R , , or the least in the class R^ . As x 

never ceases to grow, by hypothesis, there cannot be a great

est number in the class R , , so that ex must be the least num

ber in the class R e , That is, whatever value a, we choose 

from the class R, , we will have finally a|«c x <~ CK, or, in 

other words, x approaches the limiting value a. 

Theorem II. If, as x varies, we can assign a positive 

quantity 0 • such that after some given position x changes 

by less than 0, then x approaches a limiting value. 

Retaining the notation from the proceeding proof, let 

a be a fixed number the least in the class R ̂  , and choose 

in the class R, numbers ar< a z ^ a 3 all of which 

are less than a. If x approaches the number a as a limit

ing value, it is evident that x-a becomes less in absolute 

value than 0, where 0 is any positive quantity different 

from zero. As 0 decreases in absolute value since a is a 

fi£ed point the boundaries within which x must lie are 
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given successively by a^ - a, a - a , that is, the 

numbers a(<£ az^L &s approach a to within a distance 

arbitrarily small; therefore a is a limiting value to the 

variable magnitude x. 

Theorem III. If the aggregate (a,, a^ ) is 

such that from and after some fixed element, each element is 

less than the following one, and if all the elements are less 

than some fixed number U, then the aggregate is a convergent 

sequence. 

For suppose it were not convergent. Then, if 0 is any 

definite positive number such that &T\ + I " a>i I • 

IVfrfc" a-^, S & , we would have a ^ ^ ^ l 

a -+- r S where r can be taken as large as we please. There

fore we can make a^+ r $ ^ N which is contrary to the hypoth

esis; that is, the aggregate cannot be other than convergent. 

Theorem IV. If the aggregate (af , a 2 ) is such 

that from and after some fixed element, each element is great

er than the following one, and if all the elements are great

er than some fixed number M, then the aggregate is a comver-

ênt sequence. 

For suppose it is not convergent. Then, using the no

tation from the preceding proof a^ - â 4_j , a - a ^ 

^ A and we have a -^ a„ - r & . But as 

TO ean be made as large as we please by choosing r great 

enough; therefore a^ - r J can be made less than M , which is 

contrary to the hypothesis; therefore the aggregate must be 

convergent. 
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A simply infinite ascending aggregate in which each el
l/3 a Kduiewcd. Tvu/vwWi/ 

ernent.is said to be convergent, if it is such that correspond

ing to any fixed arbitarily chosen positive rational number 

£, as small in the ordinal sense as we please, a number n 

can be found that a^ - a^^.^ *=̂  6 for m«*l, 2, 3, 

A sequence of rational numbers is said to form a set when 

by means of some definite law we can determine whether any 

given number belongs to the sequence or not. If A is a set of 

rational numbers, there is a first number a (, a succeeding 

number a 2 , and in general after a ̂  follows a certain number 

a ^ + ( . The set A is then called an infinite sequence and is 

denoted by A •= a( , a2 , a 3 or by A = [a „J 

Exs. The sequence 1, 2, 3, forms the set JnJ . 

The sequence 1, 1, -» forms the set I- J . 

The sequence 1, 1, 1» >--forms the set [l] . 

Let Q be any fixed rational number. Then C is said to 

be the limit of the sequence A =• |ahJ , when for any positive 

rational number € , chosen arbitrarily small, there exists an 

index m, such that C — a ^ <C 6 for every value n^-m. When £ 

is the limit of a set A, we say that A is a convergent se

quence, and that a^ converges to Ci as limiting value. 

Infinite sequences can be arranged to represent any num

ber whatsoever. In fact, many sequences can be arranged to 

represent the same number. A convergent sequence a^ 

of which the elements are rational numbers, is taken to rep

resent a real number, the limit of the convergent sequence. 
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Illustrative example. To find an infinite sequence that 

will represent the real number V^. That is, required to find 

an infinite sequence of rational numbers a,, a2, a3 

such that Lim. L^l = 2. 

Let af be the greatest integer such that a ^ 2; then, 

af= 1. 

1 2 9 
The numbers a.j-— , a. -*- -£- , a, -j- ~ must 

1 10 ' 10 • 1 0 
be such that the squares on some two consecutive numbers are 
respectively less and greater than 2. Let a be the greatest 

number of this set whose square is less than 2; then, (a2) 

Suppose a^ = a,+fj • 
1 2 

Similarly, the numbers a„ H , a_ -+- S-» 
z 10 10 

a«? -4- 2 must be such that the squares on some two consecu-
10* 

tive numbers is respectively less and greater than 2. Let 
a g be the greatest of these numbers whose square is less than 
2; then (a - )< 2 < (a_ .+. 1 ) . 

Suppose a. s a„«_ x2 . 
3 2 TO* 

Proceeding indefinitely in this way we obtain an infinite 
sequence of rational numbers, whose squares are always less than 

2. 

a , 

' T O 

TO* '^ TO + TO1 

a. = a . x» . x* . x 3 . i X»-» 
* ! + TO4" T0*+T03 ̂  """ "^TO"^ 

-38-



Where x, , x^, x , are respectively some one 

of the nine figures, 1, 2, 3, --• • 9, we have 

/. 0^2- (&.J / (a . 1 J - (&Vi )
Z 

" f a J <| a* +T0iH) " ( & n 

.\ 2 - (a > ̂ 4 . 1 
^ TO17-1 ^ 10*l*-O * 

s ince a n^. 2# Obviously we can choose an index m, 

that will make 4 , 1 s z , ?/here 6 is an 
10̂ -1 •*" 10^-) ^ c 

arbitrarily small positive quantity. 

/. 2 - ( a j 2 < £ , f o r n ) m. 

.\ Lim. la^ J = 2. 

When the numerical work has been accomplished, we ob

tain the infinite sequence 1, 1.4, 1.41, 1.414, 1.4142 

as representing the irrational number ~{z. 

As an illustration of the way in which a number may be 

represented by different infinite sequences, consider the 

sets 

(1) 2, 2, 2, 2, 

(2) ll 1§ 1§ l4 

o O *£ «> 

(3) z\ ,2*. 2|, 2| 

(4) 1.9, 1.99, 1.999, 

It is evident that each of these sets has the number 

2 as limiting value. Therefore each sequence is consider

ed as a representation of the number 2. 
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Cantor's Theory of the Irrational Number. 

Let [a.J and jb^j be two convergent sequences of 

rational numbers, that define the real numbers a and b, re

spectively. \a-yj and b H are said to define the same 

number, represented by a = b, provided they satisfy the con

dition that for any arbitrarily chosen positive quantity 6, 

however small, an index n can be found, such that, 

a*n+m * ̂ n -m < ^ » wnere 2 c a n have any 0x> ̂ ne values 

0. 1, 2, 3, — 

Again, if after a definite number of elements n , the sequen

ces [â J , and |b%j , are such that \\+^- \ + mJ > & 

where 0 is an arbitrarily small chosen positive number, for 

all values of m, then a w is said to be greater than H3-*] 

which is denoted by a> b , or b < a. 

If on the other hand 0 be any minus quantity whatso

ever lb ̂ 1 is said to be greater than a^ , denoted by b> a, 

or a < b. 
T,7e have thus defined the application of the ideas of 

equality, greater than and less than, to infinite sequences. 

An aggregate ( x, x, x ) or [x] , since it is 

a convergent sequence, defines the number x . 

The sum of a and b, represented by the infinite se

quences p-vi an<i r M » *s defined to be the number rep

resented by the sequence ja^ + b^ . It is therefore re

quired to prove |a-n+ b^J convergent. 
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Since |a-y\l is convergent, we can choose an index .m such 

that a ^ - & yn + b< •$-• Also since Ib.Jis convergent, we can 

choose an m, , such that b m - b^+u<^-. Substituting the 

larger value of m and m, in both equations, we obtain 

<aTn+ V * f»m+f + b*,+p )< & > M»t is, [a^+b^ ] is 

convergent. 

The difference of any two numbers a and b , denoted by 

a-b, is defined to be the number represented by the sequence 

I a % - b % J, which can be shown to be convergent, by a proof 

similar to the preceding one. 

The product of any two numbers a and b, written ab, is 

defined to be the number represented by the sequence [a^b-J. 

It is required to prove this convergent. Since both I a n| 

and [b^J are convergent, a number m can be found such that, 

< a^-m" ^)+b(am- a^) 

a-m^m- a ^ ^ ^ < (a + *> ) £ 

Writing X _. € 

* 
» » 

a + b 

we have, 

a ̂b.^- a^^ipb ŷ  + u ^ 6 ; therefore the sequence 

aH^>\ I *s convergent* 

The quotient of a and b , written ^ , is defined to be 

the number represented by r* • The sequence r* 

can be shown to be convergent by a method very similar to the 
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above, except in the case where I b-̂  J is zero. 

If ["b̂ J is zero, let j* = x, /. a = bx. This equa

tion has no solution unless a = o, because when b=^o ,bx- o ,for 

all finite values of x. If a —o, the equation a = bx is sat

isfied for all finite values in the real domain. So we can 

state that when the divisor is zero, division is either impos

sible or entirely indeterminate. 

Throughout this discussion we have considered both the 

real and rational systems of numbers to be Archimedean. That 

is, there is no positive number a in the system so small 

but that some multiple of a , say na is greater than any pre

scribed number b in the system. Secondly, however large 

the number c may be, there, is a positive integer m such that 

8 < d, where d is arbitrarily small. 
m • — 

In an absolutely rigorous proof of the laws of addition, 

subtraction, multiplication and divison, it would be neces

sary to prove that these different methods obey the associa

tive, distributive and commutative laws. 

Assuming that these laws have been established for ra

tional numbers, I will prove the associative law for sequences. 

It is required to prove that c*/3 y = <X/3#\/ • T^e have 

(3y-\}y, 0^(1, c, ,\c^, b3c3 ) , and 

0C.^y=: (a, , az, a,, ) ^ , G , • \G-*« ) 

** a,. ^ c, »a2.\c^,fa3 .b3c3i 

Similarly, we have 

CK/^'Y^ a f b|.c| ,a2b2.c2,a3t3#c3^ 

But the associative law holds for rational numbers, and 

-42-



(a,, alf a - - - ) , (b( , bx ,b-- ) . (o, ,cx ,c- ) 

are all rational numbers./. The associative law is established 

for numbers represented by infinite sequences. 

That the communitative law holds in the case of infinite 

sequence is very evident because our proofs are based on dis

cussions in which we use only rational numbers, for which the 

law holds. 

For instance, a + b is given by ^a^-hb-^ J or 

(a, + bf , at+bx , a%+b3 ). 

Since the commutative law holds for rational numbers, 

each term of this sequence can be reversed, and written 

(b, + a( , bt+a4, bs+-a3, - ) or 

1 bx+ a^ j , which is convergent, as can be shown by 

a proof identical with that given for [a^+ b ̂ j . 

Between any two real numbers a and b defined by [a^j 

and [ b , , respectively, there lie infinitely many rational 

numbers. 

Suppose a> b; then we know that |a^+.m- b^.^ \ > 0 

for "V̂ IJl . Also since fa, and [b-n are convergent, we 

have [a^ - a.K+>n|< € , and b^ - D n + mJ<6 , for n > p, 

where € is a rational number, which for simplicity we will 

If we choose x to be such tnat 6<X<0, we have a 

number definied by [a^ - x , which can be proved to lie 

between a and b. 

Since a^ - an+1n<e, for n > jd , we have 

a - (a y. -x) > x, -£, /, a S a^ -x. 
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Also (a^ -x ) - b ^ = (â  - V+< V W -x 

> £-+ € -x 

Therefore, provided x is *C 0 + 6 , the real number which 

corresponds to a^ -x is greater than b, and thus lies be

tween a and b. 

But 6 +£ and € are both rational numbers, hence there 

are infinitely many rational numbers lying between 0+£ and £ 

Whenever x assumes any of these infinitely many values be

tween 0+£ and €, the number a^ -x lies between a and b. 

Therefore there are infinitely many rational numbers jfcying 

between the real numbers represented by the sequences |au] 

and b^ . 

\7e wish now to apply the idea of bounded aggregates 

to the determination of rational and irrational numbers. 

Since a (1,1) correspondence has been established be

tween the real numbers and the points of a straight line, we 

can use the terms "aggregate of numbers11 and "aggregate of 

points" indiscriminately. 

An aggregate is said to be bounded on the right (jr left) 

when there is no point of the aggregate to the right (or left) 

of some fixed point. 

When an aggregate (S) is bounded on the right there ex

ists a number M such that there is no number of (E) greater 

than M, and if any number Mf whatsoever be chosen smaller 

than M, then there exists one number at least of (E) which 

is greater than M.1 

If an aggregate has a greatest number this is called 
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the maximum of the aggreagte and enjoys the properties enum

erated above. 

When an aggregate has no greatest number, separate the 

rational numbers into two classes R, and R 2 , placing in the 

class R, every rational number that belongs to the set, as 

well as all the rational numbers that are less than or equal 

to numbers of the set, and place all the other rational num

bers in the class Rz. The cut (R , ,32) determines a number 

M which may be rational or irrational. Now, the aggregate 

(E) has no greatest term and as all the numbers in the class 

R, are either equal i?o or less than the elements of (E), ev

idently the class R, cannot have a greatest terra. If there is 

a lowest number M in the class R2 , it is the rational num

ber defined by the cut (R, , R 2 ), If there is no lowest 

number in the class R £ , the cut (R,,R2) must define an 

irrational number M. It is evident from the definition of 

M , that there is no number of (E) greater than M. Let M' 

be any number less than M. We have proved that between any 

two real numbers there lie infinitely many rational numbers, 

which in this case, being all less than M, belong to the 

lower class R,. 

Similarly, if (E) is bounded on the left, there exists a 

number M such that there is no number of (E) less than 

M, and if M be any number whatsoever greater than M, there 

exists one number at least of (E) that is smaller than M', 

that is, lies to the left of M ' . 



If (E) and (Ef) be two aggregates such that every number 

of (E) is less than every number of (E1); (E) having no 

maximum, and (Ef) no minimum; and for any chosen positive 

quantity £ , however small, there exists a number a, in (E) 

and a number a2 in (E
1) such that az- a( <^ e , then these 

two aggregates define a definite number, rational or irra

tional. 

Since (E) has no maximum, let A be the upper boundary of 

the aggregate, and since (E1) has no minimum, let B be the 

lower boundary of the aggregate, as in the accompanying figure. 

\J=-J 
A 

To insure that (E) and (EV) define the same number or 

the same point, we must have A and B coincident points. 

That A and B are coincident points is required by the lat

ter condition of the theorem, *ince we can choose €, arbi

trarily small and therefore less than A-B in absolute value, 

however close these two points may be. That is, A and B 

must exactly coincide. 

Illustrative Example. 

Let (E) 1, 1.4, 1.41, 1.414, 1.4142, and let (E» ) 

2, 1.5, 1.42, 1.415, 1.4143, ---. These two aggregates 

fulfill the conditions imposed by the theorem; every num

ber of (S) is less than every number of (Ef); (E) has no 

maximum, as we have chosen successive approximations of the 

irrational number*/2, and (Ef) likewise has no minimum; fur-
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ther we can find two numbers a, in (E) and a2 in (E) which 

differ by less than € , however small £ may be in absolute 

value. Therefore, the aggregate (E) approximates to the val

ue of Y% by defect, the error being in every case less than 

1 where there are p + 1 terms considered in the aggregate; 
TOF" 
and the aggregate (E* ) approximates to the value of T 2 by 

excess, the error being in every case less than 1 where 
TUP 

there are p+1 terms considered in the aggregate. 

Example: 1 is represented by the two aggregates, (S) 

.3,.33, .333, .3333 and (E1) 4, .34, .334, .3334 

The examples just given are illustrations of infinite 

sequences in decimal form of rational or irrational numbers. 

That an irrational number can always be represented by an 

infinite series is clear from the theory of irrationals as 

developed by Dedekind. Further that the idea can be extend

ed to rational numbers is shown by: 

and 

3 ^ 

3 ? 

3 = 

3 = 

0 =r 

«J , «D , O , O' 

2h 2< 
) 

2 .4 

1 ,1 

2J, 25 ) 

<zl Otl 0(1 Oti >Z± \ 

g' ̂ 3' 'V *V^6 } 

2.9, 2.99, 2.999, ) 

. 1 1 1 ) 

-1' 2"-' 3' 4 ' 

l.-l.-Jq-}. — - > 
-1 -i .1 1 

0, 0, 0 , - ) 

Hobson in his 'Theory of Functions of a Heal TTariable' , 
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shows that every real number can be represented by means of a 

non -terminating series of radix-fractions, of which r, the 

radix, is any integer ̂ 2 . 

Let H be any real number. The series o, r, 2r, 3r, 

ultimately becomes:^!!. 

Let rE>Ccr and rH ̂ _(C0+ l)r 

/. N -C 0 4. N, f where N, < r ; 
r 

Similarly I ^ C x I a , where N2^. r ; and I = C x Ns , where 
r z r 

213<r; 

r r* "r'" r* r *+' 

and since IL,<r, we have 

N ' ( < V + £ L + G^ + GH )<1 

r rv rK rn 

and aŝ Tyk. tends to the limit zero when n is indefinitely 

increased, it is evident that the sequence whose nth term 

"*R n'o + Si- 4- £i *s convergent and represents the real 
r r* 

number K. Therefore writing NsCiC,, C* + we have the 
r r 

real number N represented by a non-terminating radix-fraction, 
The case in v/hich N is a ratinnal number a in its lowest 

terms, requires special treatment. 

a*Cflt+Be, where B0 < b 

r£0*C,b+Bf , where B, < b 

rB,a:C b4-Bz, where B^ «<c b 

rB^ |S5 0 D + B ^ 
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Oase 1. If B̂ ax o 

We have , U ~ a _C 0 + Cj ̂  Ot^ o n 

b ~ r r* r* 

We wish to form a non-ending radix-fraction; there

fore writing CL-1 for CL , we have rB =r (fl- 1 )b + b 

/• B^s b . 

r b-(r-1) b+b /. B„ « b , 

Similarly, for all the succeeding numbers B , B , 

we can substitute the value b. That is, C , CH+Z, 

C-K+3 • a r e each equal to r-1. 

Writing K=* CT+ C, . C* . GM-I . r-1 r-1 _̂  
° rr"*" r71 x'*4'1 r m-z 

we have represented the rational number H by a non-ending 

radix-fraction. 

Case 2. If none of the numbers B{ , B^, B^ , BK+j , 

sr o, since they are all integers and less than b , 

they cannot be all different. Suppose B =- B^ _ ; then we 

have, 

That is, the sequence of radix-fractions becomes recurring. 

Among the many ways of representing numbers, only one 

more will be treated here Cantor's Sequence of Products. 

Cantor has shown that any number U > 1 can be uniquely rep

resented in the form, 
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(1.1) (14-D (1+1 ) ( 1.1) 

where a, b, c, d are integers such that b ^ a , c ̂  b, 

a £ o* 

The number a is determined as the integral part of U 
IPT; 

writing Ha as B, b is determined as the integral part of 

B ; writing Bb as C , c is the integral part of C ; 
TPT T+T c-1 
and so on indefinitely. 

Examples: 

v2 is uniquely represented by the indefinite product. 

(1.1) (1.1 ) (1. 1 ) ( 1. 1 _ ) 
3 T7 +F77 + 66565? 

Y? is represented by the infinite nroduct (I4-1)(1+1)(1+1) # 

2 7 1GS~~ 

Cantor was able to prove that when all the numbers a, b, c, 

d, which are positive integers, are such that after some 

fixed number m all the numbers m-f-1, m + 2, were each the 

square of the preceding number of the sequence, then the se

quence represents a rational number, otherwise the number rep

resented is an irrational number. 

It is easy to construct sequences of never-ending dec

imals. For instance, let each successive element of the se

quence be constructea by adding to the immediately preceding 

element the next prime in order from those already requisi

tioned. .1,.12, .123, .1235, 12357, .1235711, .123571113, 

Or again, let an infinite fractional sequence be construct

ed, where the numerator of any term becomes the denominator of 

the next, while the sum of the denominators of anytwo consec-
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utive terms forms the numerator of the last term used in 

the computation, 

1 , 3 , 4 , 7 , 11 , 
2 1 3 4 7 

Sequences of this type may be rational or irrational, 

and very often it is very difficult to determine from a 

given sequence whether the number represented is rational or 

irrational. Other sequences as the two numerical ones giv

en above obviously determine irrational numbers. 

Liouville's theorem. If JD, , £* , is a 
qi q* 

sequence of rational fractions in their lowest terms, de

fining an algebraic number b of rank m, then for every el

ement £ from and after an assignable stage, we have 

q Y l**1 

This theorem, the proof of which is given by Young, 

enables one to determine whether any given series can rep

resent an algebraic or a rational number, but does not 

furnish a means of determining the number actually repre

sented by the sequence. 

A distinction between rational and irrational numbers 

is readily drav/n in the theory of irrational numbers as 

developed by Dedekind, but when considered from an alge

braic point of vdew these numbers beoome much more similar. 

All equations containing a variable with rational in

tegral coefficients require but the system of rational num

bers for their solution. VJhile all the general equations 
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of higher orders introduce irrational numbers, and many 

special equations of these high orders involve the use of 

rational numbers as well. 

There is another type of irrational number that must 

be considered, namely, that based on the exponential number 

The exponential number € is determined from a discussion 

of the expression (1 + 2 ) . It has been shown that two ra-
x 

tional numbers A and B can be found, differing from one an-

other by as small a quantity as we please, such that (1+1) 
x 

lies between them. Moreover € , which is defined as the lim-

it of (1+1) , where x — y oo , has been shown to be ir-
x 

rational. £, can also be shown to be non-algebraic. To dis

tinguish £ and TT from algebraic irrationals, they are 

called transcendental irrationals. The Haperian logarithms 

are based on £. as logarithmic base; they are therefore 

likewise transcendental, and are evidently infinitely many 

in number. 

Another group of transcendental irrational numbers, 

infinitely many in number , is represented bp the Liouville 

bumbers, x, - _x* . x? , ,where x , x , x„, 
TU TO77* * 10"*-3 » *- 3 

may be respectively any of the ten figures. 

Example: 

1 , 2 . 3 . 4 , is given by the 

T5 TG^W5* l'O»•••*•* 
the decimal, 

.120003000000000000000004 
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THE THEORY OF SETS OF POINTS 

00O00—-

If in any aggregate there is a point such that in the 

neighborhood of this point there are infinitely many points 

of the aggregate, then that point is called a limiting point. 

Ex. In the aggregate , 1 , 1 , 1, 1 , ---, 
"£ B I 

there are infinitely many elements of this aggregate in any 
interval however small extending to the right of the origin. 

Therefore o, is a limiting point, although it does not be

long to the sequence. 

The domain of rational numbers does not possess the 

property of containing all the limiting points of particu

lar ̂ g^regates chosen from among the rational numbers, for we 

have seen that the irrational number is defined by a sequence 

of rational numbers. 

The domain of real numbers, however, does possess the 

property that all limiting points of particular aggregates 

of real numbers are themselves members of the real domain. 

This idea is expressed by saying that the domain of real 

numbers is perfect. 

The domain of rational numbers and the domain of real 

numbers both possess the property that between any two 

numbers whatsoever of the domain, there lie infinitely 

many rational numbers; this is expressed by saying that 

these aggregates are dense. 

All the real numbers x, such that a ^ x 4s b, in the 

ordinary sense of the symbols <, •=,*,> , are said to form 
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an interval (a,b). Such an interval is frequently describ

ed as a closed interval, whereas all the numbers x, given by 

a-^x-^b, are said to form an open interval. 

The Bedekind-Cantor axiom states that to every number,ration

al or irrational, there corresponds a definite point of the 

straight line; that is, we but assign to a straight line the 

same degree of continuity that we conceive to belong to the 

domain of real numbers. 

If one set of numbers is contained in a second set, the 

first is called a component of the second set; and if the 

latter contains points that do not belong to the former set, 

then the first is called a proper component of the second set. 

We have established a (1,1) correspondence between all 

the rational numbers and the points of a straight line, and 

by the Dedekind-Cantor axiom we attribute to the straight 

line a continuity comparable with that of the real numbers; 

hence, we can use the terms sequence of numbers and aggregate 

of points indiscriminately. 

In order to construct a convergent infinite sequence of 

number or set of joints we have but to select any s egment of 

a straight line, trisect, let us say, this segment AB at C, 

then trisect the segment CB at D, again trisect the segment 

DB at E, and so on to an infinite number of divisional points, 

as indicated in the accompanying figure; 

A C D E6 

These points are infinitely many in number and as they 
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continually approach the fixed point B, we can say, with ref

erence to the theorems already proved, that B is the limit 

of the set (A, C, D, E, F, ). 

Theorem 1. If we take any series of closed segments, 

each lying entirely within the preceding; and if the length 

of the segments decrease without limit, then the end points 

of these segments form an infinite sequence, and the segments 

determine one and only one point L, internal to all the seg

ments. 

It is evident from the accompanying figures that the end-

points of an infinite series of segments, each lying within 

the preceding,form sequences which have boundaries. 

a, 
at 
a* 

as 

b 
b, 
b2 
b3 

bd-
bt, 

a 
a, 
a* 
a3 

a n. 
a* 
a (, 

b 
b2 

t > , 

b«r 

n 
Fig. 2. 

The end-points that are denoted by afs form a series 

of infinitely many elements, such that a ^ a^ ̂  a_^ a 

and farther, every a is less than every b; 

that is, the series of ars has an upper boundary A . Sim

ilarly the end-points that are denoted by b's form a series 

of infinitely many elements, such that, b,^ b z 5 b3 

and eYery b is greater than every a; therefore the series 

by a previous theorem must have a lower boundary B. Since 

there are infinitely many intervals, and as our hypothesis 
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rules out such a case as a ̂  •» au,, , and b « bM., at the 

same time, we know that the interval b^- a^ can be made 

smaller than any assignable positive magnitude e ; therefore 

A and B ,(the upper boundary of the b-series respectively )f 

must coincide exactly. That is, the given series of seg

ments represents one definite number. 

Any point P, of a set which is not a limiting point of 

the set is called an isolated point of that set. The set is 

such that we can find a neighborhood of P, that is a small 

interval having P as an interval point, which does not con

tain any point of the set r*:her than P; therefore P is not 

a limiting point of the set. 

An example will suffice to illustrate this definition * 
Consider the sequence; 1,1, 1. 1 , 1 , ' 

"3 3" 2T am 
eyery point of the set is an isolated point, and 0 is ob
viously a limiting point of the set; for choosing the point 

1 , the point of the sequence which is nearest to the chosen 
27 
point is 1 , and within the interval 1 - 1 there are no 

ST "27 "ST 
points of the set; therefore the noint 1 cannot be a lim-
iting point and must be a isolated point, because if e were 

chosen ^ 1 - 1 , the condition for a limiting point fails. 
£T 8T 

A set of points is said to be an isolated set when no 

point of the set is a limiting point. For instance, omitting 

the point zero from the previous example we obtain an iso

lated set, or more obviously, breaking off the sequence after 

a finite number of terms, since for one limiting point infin

itely many terms are required. 

A set, of whose limiting points all belong to the set 
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itself, is aaid to be closed. 

Ex.1. Any finite set, because such a set has no limiting 

point or points. 

Ex. 2. lg , l" 1*, . £. 

A set which is such that every point of the set is a 

limiting point is said to be dense-in-itself. 

A set which is both closed and dense-in-itself is said 

to be. perfect. 

Ex. All the numbers in any segment including both end-

points, which we have defined as a closed interval and de

noted by (a,b), or (2,3). 

A set of points (E), contained in an interval (a,b) , 

is said to be everywhere -dense, if in every sub-interval 

(a , b ) however small there are points of the set (E). 

The set of points (E) is said to be nowhere-dense , 

if in every subinterval (a , b ) a second subinterval can be 

found which contains no points of the set (E). 

It is evident from the definition of a limiting point, 

that no finite set of points can contain or have a limiting 

point. On the other ihand every infinite set of points has 

a limiting point which may or may not belong to the set. 

The interval (a,b) contains infinitely many points; 

therefore, bisecting the interval at the point c, we obtain 

two intervals (a,c) and (c,b) one at least of which must 

contain infinitely many points, and both intervals may have 

infinitely many points; again bisecting the two intervals 

at cL and £ , we obtain four intervals (a,d), (d,c)(o,€) 
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and (6,b), one of which must and as many as the four inter

vals may contain infinitely many points. For simplicity, sup

pose that the right hand intervals (a,b), (c, b). (e, b) 

contain infinitely many points, since by this construction we 

obtain a series of intervals that conforms to the requirements 

of Theorem 1, the intervals determine a point that is the lim

iting point of either sequence of end-points. Now returning 

to the case where the interval (a,c) contained infinitely many 

points, it likewise has at least one limiting point; and the 

reasoning applies generally, however numerous may be the seg

ments containing an infinity of points. 

If (C) is a set of points that has but one limiting 

point, we can construct a sequence of points of the set which 

have the same limiting point. Let A be the limiting point of 

the set (G), ana suppose it to be an upper boundary. Let a, 

be any point of the set chosen to the left of the point A. 

That some such restriction of the position of the point a, 

is shown by such a set as 

12» 13» 1-4* 1-5 "2» 2» 4. 5* 

The interval (a .b) contains infinitely many points of the 

set from our definition of a limiting point. In (arA) choose 

any point a2 belonging to the set (G) ; clearly the inter

val (â AJ contains infinitely many points of (G). Proceeding 

in this way we construct a sequence of points a,, az, a3 

such that a l<a a<a 3 , and all < A. That is, the 

interval A— a^ can be made smaller than any assignable pos

itive however small; therefore A is the limiting point of 
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the sequence. 

Before discussing further the properties of a closed 

finite interval, it is instructive to notice that by a 

suitable transformation, it is possible to set up a (1,1) 

correspondence between the points of two different inter

vals. 
i x 

For instance, the transformation x-„, „ „- , where the 
Vx*-+-1 * 

positive value of the radical is alv/ays taken, converts all 
the points of the unlimited interval ( - oo f -*. oo ) into 

points of the limited interval (-1, 1). Further, it is ob

vious that the order of the points is conserved during the 

transformation since x1 5 x" according as x, «g x2 . 

In order to transform the finite interval (a, b) into 

the finite interval (0,1) so that any arbitrary point £ in 

the interval (a, b) will coincide with a chosen point in the 

interval (0,1) say-j-rr- , we can use the transformation 

equation: 

9x __ _ x - a c - b 
x' - 1 x - b * c - a 

Closed and Perfect Sets. 

In considering the interval (a, b), since all the real 

numbers are included we have an interval which is dense, 

dense-in-itself, and also closed; therefore any closed seg

ment of a line, representing a closed interval of real num

bers is a perfect set. The interval (a,b) is such that no 

sub-interval (a* , b' ) can be chosen in (a, b), however small, 

that does not contain real numbers. This is expressed by 
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saying that the real numbers in any segment of the real do

main is dense. But if we consider only the rational num

bers of the interval (a,b) they will be closed—-all the 

rational numbers of the closed interval (1,2) for instance, 

form a closed set; and since between any two rational num

bers however near together, there lie infinitely many ration

al numbers, the rational numbers in any closed interval form 

a dense set; but the set is not dense-in-itself, because the 

irrational numbers are limiting points of rational numbers. 

Non-dense perfect sets. 

It is possible to construct a set which is perfect and 

yet nowhere dense. The example to be given in detail is 

Cantor's tertiary set of points. 

A E T C 3) & .H 3 

1 J KL Hilt o V 

Divide any straight line AB into three equal parts and 

darken the middle part. This will be considered as void of 

points of our set. Divide each-of the two remaining seg

ments into three equal parts and darken the middle part in 

each case. Continue this divisional process indefinitely and 

in every case consider the dark interval to le void of point 

of the set (E). This process creates an infinite set of 

noxi - overlapping intervals, because each two consecutive 

intervals belonging to the set are separated by a black 

interval. 

Two intervals are said to overlap when they have one 

internil point at least in common. If two intervals have 
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the same common end-point only, they are said to abut. Hence 

two intervals are said to he non-overlapping when they have 

no points whatever in common. 

A 0 _ g J 

ft c' *> fi 3> ** • 4» S 

It is evident from the diagram that the segments between 

any two black intervals are all equal at any stage of the sub

division, and by successive division these segments can be made 

less than any assignable magnitude. That is; every point that is 

external to the black intervals after indefinite subdivision 

is a limiting point of the end-points of these black inter

vals on both sides, since between any two points, however close, 

there are infinitely many points and therefore infinitely many 

intervals constructed according to the above law. Thus we 

can choose a set of intervals, such as AC , d,C , d, C(<z 

that conforms to the conditions of Theorem I,and therefore 

defines a definite limiting point <x , which must be internal 

to all of these infinitely many intervals, that is, must be an 

external point of the black intervals. Further, by Theorem I, 

the point defined by a series of intervals each lying within 

the immediately preceding one, is a limiting point of the end-

points of the intervals on both sides. 

The end-points of all these intervals A, C, cf , d,, c z, 

c„ , dl( -^-are limiting points of end points on one 

side only. For consider the sequence of intervals 

(A,C) , (A,C,) , (A,CW) . ( A,C„, ) , since in the 
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neighborhood or A and on the right a member of this sequence 

can be found which is less than any assignable quantity, how

ever small, therefore the given sequence defines the point A. 

Consider the set made up of the end-points of these in

tervals and the external points of the black intervals, every 

point of the set is a limiting point, therefore the set is 

dense-in-itself. We require to prove it a closed set. None 

of the black intervals include points that belong to the set 

that we are discussing, and if P is any point internal to one 

of these black intervals we can construct an interval with P 

as centre so small as to include none of the points of the 

set. Perhaps a clearer idea will be arrived at if we mention 

that the points A and B the upper and lower boundary of the 

segment may be considered to be rational points, then all the 

other divisional p:ints will likewise be rational points,and 

clearly between any rational point and a rational or irra

tional point there is an interval of definite magnitude. Thus 

the point P cannot be a limiting point of the set (E); there

fore the set (E) is closed; therefore (E) is a perfect set. 

The set (E) however is not dense. In fact, since by 

indefinite subdivision the black intervals can be made to 

approach closer to each other then any assignable magnitude, 

the set of blank intervals satisfies the condition for being 

everywhere-dense; that is, the set (E) is nowhere-dense. 

Thus we may have a perfect set that is everywhere-dense 

or one that is nowhere-dense, and the most general set will 

contain a combination of these two groups of points. For in-
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stance, consider the set of points in the segment (0.2), where 

we include all the points of the interval (o,l), and then add 

the points of the interval (1,2), after it has been sub-divided 

after the manner of Cantor's typical tertiary set just dis

cussed. 

If we take the set (E) and omit all the end-points of 

intervals, we obtain a set dense-in-itself and closed, there

fore perfect. Moreover each point of the set is a limiting 

point on both sides. If we include the end-points that are 

limiting points on the right (or left) only, we obtain a set 

that is perfect and dense-in-itself such that every point is 

a limiting point on the right (or left) side. 

Example of a non-dense perfect set. 

Let x be a number given by 

x ==r £•. £x-t. ^ 3 -4- ^ C** , where the numbers 
3 + 3* + 2? ^ "+" 3»r 

G, » c 2 »
 c3 C ^ are either 0 or 2, and where n has ev

ery integral value any may also be indefinitely great. Clear

ly no number lies betv/een 

5L. _I_ 9JL -L. +. C K H , 0 , 2 2 - -
3 ^ 3 * ^ ^ 3*-» *~ 3* WZ+TT***'*' 

the largest number we can form having 0 in the nth place, and 

Cl_4.C*_4r _L 0 K,, 2 , the smallest number 

we can form with C = 2. But the geometrical series. 2 
3*-<-' 

2 _i- ^ is equivalent to 1 ; therefore, the 

interval between Cj Cz .C* , , l , and 
3 ^3* "*~33 + * g"n~ 

Cf , C^ , Cj_ , - 2 , that is of magnitude 
3 "+• 3* "*• 3« T ^T" 
1 contains no points of the given set. 
3* 
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This complementary interval of magnitude 1 can be made 

as small as we please since n can be indefinitely great. 

The numbers C, , C£ , C^ can be either o or 2, 

by hypothesis, and none other, so that the number of comple-

mentary intervals of length 1_ is 2 . The sum of all the 
3^ 

complementary intervals is given by ^v- 2 , which in 
*— 3^ 

the limit where n becomes indefinitely great , is unity. That 
is, the set of complementary intervals is everywhere-dense, 

therefore the set of points is nowhere dense. 

Derived Sets. 

It is clear that not all sets of points are dense-in-

themselves, for infinitely manysets of rational numbers have 

irrational numbers as their limiting points, and the irra

tional number cannot belong to the set of rational numbers. 

Ex. the sets of rational numbers, 

1, 1.4, 1.41, 1.414, 1.4142, --- and 

2, 1.5, 1.42, 1.415, 1.4143, both 

define the irrational number V^« 

Other sets may contain several or infinitely many lim

iting points. 

Ex. The points of the interval (o,l) contain infinitely 

many limiting points. 

It is convenient to separate the limiting points of a 

set (E) into a class by themselves. This new class is called 

the first derived set of (E) and is denoted by (E,). In case 

(E,) has limiting points, these are placed in a class (E2), 
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which is called the second derived set of (E). Proceeding 

thus we ccnsstruct the third, fourth, • derived 

sets of (E), denoted by (E3), (E^), (En). Any point 

of (En) which does not appear in (EM-W ) is called a lim

iting point of (E) of the nth order. 

Ex. Let (E) __ 1 , 2 , 3 , 4 , . In this 
~ "5 3 ? 5 

case (Ef) contains the single point 1, and 1 is called a 

limiting point of (E) of the first order. 

Ex. Let the points of (E) be given by 1 +1,1 ^1^1 
3*T !?£T*3 TI1* IF** . 

Let us first consider x, as a variable and x2, x3, x , xA-

as constants; by giving successively greater values to xf 

it is evident that 1 becomes 0 in the limit x > oo ; 
"3*; 

therefore the points given by (1) 1 ̂,1 . 1 , 1 where x 4 , 
5** 7X3 TT^ 13^-

xJf x^, and x6- are free to assume any definite rational 
value, are limiting points of the set (E). Likewise by 

considering x2, x3, x^, ana x^, to be the variable success

ively, and (x,, x>f x^, xy,), (x|f xz, x„, x4J and 

(x(, xa, x3, x^) the constants respectively, we obtain five 

groups of numbers of the type (1). 

Next we may consider two numbers x, and xz, say, to be 

variable and to assume any value whatsoever approaching the 

limiting value OO while tho remaining numbers x,, x . x, 

remain constants, we therefore obtain 10 groups of the type 

1 . _ 1 , 1 (9. 
7*» 11** 13**' 

On considering three numbers, say x % x . x as 
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variables, we obtain 10 groups of the type 1 + 1 (3)* 
T3T* T3^7 

On considering four numbers, say x( , x4, x^,x , as 

variables, we obtain 5 groups of numbers, namely: 

1 . 1 , 1 , 1 , 1 . (4). 
3*, F^T 7*7 TT*« 13"**" 

Lastly considering the five numbers, xt , xa, x^ , x , x5, 

as variables, and taking the limit where each becomes indefin

itely great, we obtain a group containing the single element 0. 

Then collecting all the numbersof these several groups 

into one set we form the first derived set of (E), which we 

will call (Ef). The second derived set of (S), (Sz) consists 

of the 10 groups of type (2), the 10 groups of type (3), the 

5 groups of type (4), and the single point zero. All those 

numbers that appear in (E(),but not in (E2) are called limit

ing points of (E) of the 1st order. (33), the third derived 

set of (E), consists of the last 15 groups of the above class

ification, together with the point 0. (E^ Icontains the last 

5 groups of the classification, together with 0, and(E5)con-

tains the single point 0. Thus the set (E)has a limiting 

point of the fifth order, the single point zero. 

It is obvious from the above reasoning that a set (E) 

of which the component points are given by 1 1 1 
a, a % a 3 

, 1 , where a . a_ , a, , a^ are free to take all 
a* 

integral values, is a set of order n. 

Again, a set (E) which contains all the points of the 

interval (0.1), since every point is a limiting point of the 

set, and since the set is closed, therefore the first derived 

set (Ef) is identical with the original set (E), as are the 
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derived sets of higher orders. That is, the set (S)is of 

infinite order. 

An example of derived sets of any order. The zeros of 

the function sin 1_ form a set simply infinite in number. In 
x 

this case (S) is given by 1 _ + T + z n -± ̂ -^ _ 
x 

(Ef) consists of the single point 0. 
The zeros of the function sin ( 1 ), form a set of the 

sinA-
second order. The numbers of the set (E) are given by the 
values of x, where sin_ 1 , 1 , 1 , , that is, 

byl - sin 1 , sin"1 1 , sin',_J; y . 

(E,) consists of the zeros of the function sin J , and 
x 

(E2) consists of the single point 0. 

The zeros of the function sin 1 I form a 

L sln IFF* 
set of the third order. Those of the function sin 1 

sin 
sin 

s m ~ 
a set of the fourth order and so on indefinitely. 

If we choose as initial set (E) any closed interval (a,b), 

that is, the set of points is given by a = X = b, or any open 

interval (a,b), that is the set of points is given by a<X<D, 

in the case of the closed interval obviously every limiting 

point of any set of points chosen from the interval is a point 

of the interval, and in the case of the open interval, the 

points a and. b are limiting points of sets chosen in the in

terval; therefore, in both cases we have (EJ, the first 

derived set, containing all the points of the closed interval 

(a,b), as does every succeeding derived set. 
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Theorem: Every derived set is a closed set; the first 

derived set may introduce new rrembers not contained in the 

original set, but no further numbers can be introduced by 

other derivations; each derived set is contained in all the 

preceding ones. 

It is required to prove that a limiting point of lim

iting points is itself a limiting point of the initial set. 

Let L, , Lt, L 3 be limiting points of (E) and let 

P be a limiting point of the series L( , L2, L3 . 

From our definition of a limiting point there must exist a 

point of (E) between L, and L2 . Call this point P( , This 

applies both to a set with isolated limiting r>oints, and to 

the case of an interval that is dense-in-itself, for in the 

former case the infinite series L, , L^ , L3, would 

of necessity have a limiting point, and in the latter case, 

it being a dense interval, there are infinitely many points 

between any t wo points. Therefore betv/een the pairs of lim

iting points L, and L 2 , L x and L 3 , we can choose 

points P( , P2 , which being infinite in number have some 

limiting point P. That is, P is a limiting point of (S). 

This conclusion that a limiting point of limiting points 

is a limiting point of the initial set, leads us to construct 

a new series of numbers, the transfinite. 

Transfinite Numbers. 
1 3 7 15 

Consider the series l£, lj, lg, ljg , •-. This is 
convergent and its limiting point, 2, is not an element of the 

series. If we represent the points by 2t , P 2 , it is 
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clear that the limiting point can be represented by P̂ ,, where 

cv is the first ordinal number that comes after the series 

1, 2, 3, . The numbers is called the first trans

finite ordinal number. In the (1,1) correspondence that we 

have established between the sequence P( , P2, P3, « P^, 
13 7 
and the series lg, IT , Ig, 2, P^ corresponds 
to the limiting value 2. It is evident that the system of 

transfinites can be extended, thus we create the transfinite 

numbers of the first order, P , P,., , P , which 
' " (At * CO+l * C0+2.' 

may be finite or infinite in number. 

If finite the points are fully represented by 

If the number of points is infinite, assuming that the points 

lie in a finite interval, for we h8ve given a simple trans

formation by which the interval (—oo ^oo) can be changed into 

any required finite interval, in this case, the interval (2,4), 

there will necessarily be a limiting point to the transfinite 

ordinal numbers of the first order, which is called the first 

transfinite number of the second order and is denoted by P ^ 

or P^ . Again we recognize the possibility of the existence 

of points represented by P , P / , P,f _ . ~ . 

If the number of these transfinite ordinal numbers of the sec

ond order, is finite, our extended number system is represented 

by the indices 1, 2, 3, ai,^+l, #-^2, 

CO.2, CO.24-1, CO .2 + 2, M.2-f-?n . 

If infinite, there must be a limiting points which is called 

the first transfinite number of the third order, and is denoted 
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WS can conceive of these transfinite numbers appearing 

in all finite orders, hence the series P, , P, , P„, 

being infinite in number, it must have a limiting point, de

noted by co.co , or co . 

The system, then, lends itself to extension as follows: 

0)*-*-/ , 0)V 2 , w'-f5, o>V co . 

0>*-f- UJ-H , 0J1-^0)-f2 , OV*"-*- 60*2 

0)1'4 ^.2+1 , OJ1+0).2 + 2 U)*-f- U)-3 

U>* -*- 0J. 3 4-1, 

The general type of ordinal numbers is indicated by 

<»*-fa •+• ̂ ""-/v, + - -,- - •*• W. f>, + f>. 
If the set of points io', coZ, &*> is infinite, we 

denote the limiting point of this set by Oo . ifith this new 

number we can build up a greatly extended number system as 

denoted by the notation: 

co "*•!>* + ">*"'h-< + - +<*'-/>, + ?. 

Further, if the series Cu , Co10 » Cu"* » 

is infinite, we denote the limiting point of this set by 
Co 

00 . The system can evidently be very greatly extended. 

Cantor conceives a new number Su which is the limit of all 

these transfinite numbers, and from this a vastly greater 

extension can be imagined. 

The formation of the transfinite numbers is accomplished 

by an application of Cantor's two principles of generation. 

(1) After any number the immediately succeeding number 

is formed by the addition of unity; as 

(70) 



1. 2, 3, 

0)4-1, OH2, 0)4-3, 

^).n+l, &).n-f 2, 

0J>1, U) + 2, 

(2) After any endless sequence of numbers, a new number 

is formed which succeeds all the numbers of the sequence, and 

is distinguished by the fact that it has no number immediate

ly preceding it. 
£ CO rt> * 

Sxs. C0,cV*2t Co, CO, Co", CO 

To indicate more clearly the principle that is involved, 

let us divide up any finite interval by successively bisect

ing each right hand interval. By this method we obtain a set 

of points to which we can assign numerical values if any deff 

inite interval is chosen initially. For instance, the inter

val (0.1) will upon indefinite bisection produce the series 
1 3 7 15 

0, ' * I ' fl • 16 * "*•• L e t us Place tilis series in 
(1,1) correspondence with the sequence P,, P2, P3, , 

which must have a limiting point P that corresponds to 1. 

No?: if we repeat a similar subdivision with every inter-

7 15 
val of the above sequence, for instance the interval (-, jg) 
or (P3 , P. ), we obtain an infinite sequence of divisional 

7 29 59 
points: g , %% , *g , which has the limiting noint 
15 
r~. Therefore we can represent the points of successive bi-
16 
section of the infinite series of intervals (P(, P4)(PX,P^)--
as follows: 
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The points of (P, , P, ) by the indices 1, 2, 3, CO' 

(P, , P2) 0)4-1,OM-2, CO.2, 

(Pc, P3) 4J.2 4-l,0).24-2 U).Z 

and so on for the infinite number of intervals. By the notation 

a (1,1) correspondence is set up such that the points 

0» 2 ' 4 * Q ' JA • are paired off with the transfinite 

numbers Of&), CO .2, 0).3, 0J.4 , &).5 respectively. Hence the 

point 1 can be represented as the limiting point of the series 
2 

o,0), 00.2, 4J.3, that is, by the transfinite number 0). 

By a similar subdivision of each of the infinitely many 

intervals of each of the intervals (P,,P, ),(P, ,PZ), , 

we obtain a (1,1) correspondence in which the points 0, i, £ , 
2 4 

7 15 
8 ' 16 a r e PGl^re<i °^^ respectively with the sequence 
o, 0)\ Co .2, CO .3 , Co .4 , 0)*.5, Hence 1 is in (1,1) 

correspondence with the transfinite ordinal number CO .v 

By repeated applications of this method of subdivision, 

the number 1 may be represented by a transfinite of any finite 

order, say 00 . If we imagine the subdivision to be per

formed infinitely many times, then the number 1 becomes the 

transfinite number Co**. 

A second example on the representation of transfinite 

numbers by rational numbers is the following; 

A set of numbers that can be placed in (1,1) corres-

pondnnce with the natural numbers is said to be countably 

infinite: It vd 11 be shown in the course of a few pages 

that the prime numbers are countably infinite in number, 

assuming this, it is clear that the series of prime numbers, 
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1, 2, 3, 5, 7, 11 *—, can be placed in (1,1) correspond

ence, with the natural numbers 1, 2, 3, •— -. Then 

taking the squares of all the, prime numbers, omitting 1, 

no number is repeated and these can be placed in (1,1) 

correspondence with the transfinite numbers of the first 

order Co, 00 4-1, OJ-f-2, OJ4-3, • ^e may then set up a 

(1,1) correspondence between the cubes of the prime numbers, 
3 3 3 3 3 

2 , 3 , 5 , 7 f 11 ----and the transfinites of the sec

ond order, Co.2, OT.24-1, OJ.2-t-2, , and in general 

the numbers 2 , 3 , 5 , corresponding to the 

transfinites of the rth order, co .r , a) .r-f- 1, OO.r+ 2 , 

Vie may then take the numbers (a.b) vrtiich consist of the prod

uct 01 two prime factors; these arranged in ascending order 

of magnitude may be rlaced in (1,1) correspondence with the 

transfinites 0), CO 4 1, 00 4- 2 , 0)4- 3, . 

Next, taking the numbers (azl), which are the squares of 

the numbers in the set last considered, these we may place in 

(1,1) correspondence with the numbers, 

6uVo>, a>Va)fl, to 4-0>+2, 

and by taking the successive sets of numbers (a b ), (a*b ), 

«-t we obtain groups of numbers that may be taken to 

correspond with the following transfinite sets respectively. 

(1) U)% + 00-2 , U)a4- U).Z +\ , Li)* + 00- 2 +2 , 

(2) tU^-f-CO.S, 0)% 0).34' , U>* 4- 00- 3 -42 9 

(p-1) U^-fOJb, U>*4- UO. b4 | % uo
1" + U). JO 4-2 , 

All of these numbers are ordinally less than the trans-
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-2. 

finite Co .2. 

Proceeding, we may next place in (1,1) correspondence the 

sets of numbers 

(a*b) , (a*bf , (a*bf , 

(a*b) , (a3bf, (a*b)* 

(a*b) , (a*b)2, (a*b )* 

and so on indefinitely. 

Afterwards we may make use of produce of 3, 4, 5, 

prime factors. 

It is thus proved that the system of transfinites may 

be carried to a degree of magnitude, that seems unlimited. 

An Application of the Conception 

of Transfinite lumbers to Derived Sets. 

If (E) is any set of points, we require to show that 

the derived sets (3,) , (S4), (B3), are closed sets, and 

that each set after (E,) consists only of points belonging to 

the preceding sets. 

Proof. Suppose P is a point in (E^) that is not con

tained in (Er), that is the point P is not a limiting point 

of the set (S), or in other words there is a neighborhood of 

P which contains at most but a finite number of points of the 

set (E ). Hence within this neighborhood there are no points 

of (E,), nor of (E^), since (E2 ) contains only the limiting 

points of ($t ). Likewise this neighborhood cannot contain 

any point of the sets (E, ), (E^), , which is contrary 

to our hypothesis. Therefore every set (E.̂ ., ) must contain 
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only points of the set (E^), where n ^ 1. 

By the definition of a derived set we can form the de

rived set (E^) of any set (E), where n is any finite number. 

But if the number of derived sets is infinite we define that 

set which contains those points comron to all the sets (E,), 

(Ej, (S3), (EJ, (3^),where n can be indefinite

ly great, as the set (Bw). 

It is required to show that (Ew) is a set of at least one 

point and is closed. Let p, be any point in (Ef); p 2 any 

point in (34) and so on. The points pt , p^ , p 3 , form a 

set fc*h of infinitely many elements and therefore must 

have a limiting point which we will call p. Now, p belongs 

to the set (E^) whatever valye n may have, because all but a 

finite number of the joints of "fô  belong to (3^); there

fore p is a point of (E^). 

Choose any sequence of points in (Ew), let the sequence 

be a,, az, -having the limiting point a, since (E^) is 

a closed set, a is a point of (E^) whatever value n may have, 

therefore a is a point of (3W), that is (Ew) is a closed set. 

Then, proceeding in the regular way, we can form the 

successive derived sets, (fiw+| ),(Ew+1).,(2Wlf!) ; these 

may be finite or infinite in number* If infinite in number, 

a similar process of reasoning will prove that (B^^) is a 

set of at least one point and is closed. 

It has been remarked earlier that a set whose points are 
1 1 1 

eriven by - 4 - 4» 4- — where the a's are free to take 
B * a, a* a-n 
every integral value, has n derived sets. The following is 
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an example of a set which has infinitely many derivatives, yet 

(Eft>) does not exist. Suppose we have a set (E) such that (E,,) 

Consists of the joints 1, 1 , 1 , , when n becomes 
n" F T £ T 

indefinitely great,(E^) tends, towards 0. Hence (E^) does not 

exist since oo is the next original number following the series 

1. 2, 3, 4, 5, . 

POTENCY. 

A very helpful conception in the study of sets of points 

is that of potency, with applications to the general idea of 

cardinal number. 

Definition. Any two sets that can be brought into (1,1) 

jorrespondence are said to be equivalent in that they have the 

same potency. 

If we take a single point as unit, we can construct the 

latural numbers as far as any given number however great, and 

by means of these count any finite set of points. Thus every 

finite set is countable and corresponds in potency with that 

3et of the natural numbers used in the process of counting. 

Theorem 1. A sequence or simply infinite group of num

bers can be brought into (1,1) correspondence with the domain of 

latural numbers. 

Let L be the only limiting point of a sequence that ex

tends over the whole straight line or over any part; choose 

any point M and take any interval (A,B)fincluding M, this in

terval contains but a finite number of points n which we may 

may pair off with the integers 1, 2, 3, -n. 
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*~T M B B1 t T1—* 

In the figure, the line represents one unlimited in 

length, therefore closed. 

Bisect the segments (B,L) and (A,L not including the 

point M), at B*and A1 . Then the segments BBr and AAf con

tain each but a finite number of points. 

Suppose the segment BBf contains n,points, these can be 

made to correspond with the integers, n-#-l, n4-2, • 

n+n; and if the segment AA1 contains n 2 points, these can 

be paired off with the integers, n-*-ntH-l, n-+-nf-*-2, a+11,+ 3, 

n-t-n,-*- nz. 

Continuing this subdivision and always choosing those 

segments that have not L as an end-point, we can place every 

point of the simply infinite sequence in (1,1) correspondence 

with one of the natural numbers. If L happens to be a point 

of the sequence we begin by pairing off the point L with the 

number 1, and then proceed as before. 

Therefore since any simply infinite sequence can be 

brought into (1,1) correspondence with the system of natural 

numbers, obviously any two simply infinite sequences can be 

brought in (1,1) correspondence with one another. 

Thus the potency of the system of natural numbers, is 

likewise the potency of all simply infinite sequences and it 

is convenient to givd to it a symbol. The potency of the 

natural numbers will be denoted by a. 

Examples: 
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(1) The even numbers have the potency a. Proof, they can be 

paired off in the following manner to any indefinite number, 

that is a complete (1,1) correspondence ie set up. 

1, 2, 3, 4, 5, 

2, 4, 6, 8,10, 

Similarly it can be shown that 

(2) fhe odd numbers have the potency a. 

(3) The prime numbers have the potency a. 

(4) The numbers that are the squares of the natural numbers 

have the potency a. 

A set which can thusly be brought into (1,1) corres

pondence with the natural numbers is said to be countably 

infinite. 

Theorem 2. If we have a finite number of countably 

infinite sets, their sum is likewise a countably infinite set. 

Let the sets be: 

a» » a i » a 3 » " 

b. » \ . b 3 » " 

We can rearrange the sets in the following way: 

a,. *,. c,» d,. a*. W . 0* . dx, -

aj » b*» °3 » ̂ 3 » » anci tiie composite set thus 

arranged can be placed in (1,1) correspondence with the nat

ural numbers. Conversely, if the composite set consisting of 

all the points of any finite number of sets is countable, then 

each of the compound sets is countable. 

-78-



As every limiting points of a set is determined oy a 

simply infinite sequence, therefore a set which has but a 

finite number of limited points is countable. 

Theorem 5. Any set which can be divided into a 

countable number of countable sets is itself countable. 

Let the sets be 

(l,l)(l,2)(lt3)(l,4)(l,5)(l,6)(l,7) 

(2,1) (2,2) (2,3) (2,4) (2,5^(2,6) (2,7) 

(3,1)(3,2)(3,3)(3,4)(3,5)(3.6) Fig. 

(4,1) (4,2) (4,3) (4,4) (4, 5) (4,6) 

(5,1)(5.2)(5,3)(5.4) 

And rearranging 

fl,l)],[(l,2), (2,1)] . 
And rearranging 

(1,3),(2,2),(3,1) 

where the sum of the indices of each element of any bracket 

[ "1 are ecjial. This rearrangement of the composite sets 

can be placed in (1,1) correspondence with the natural num-

bers since the elements of each group are finite in number. 

From the theorems that we have proved, assuming that 

the associative and commutative " aws hold as for ordinary 

multiplication and addition: 

a4 n » n+a 9 a 

n.a = a.n sr a 
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Theorem 4. Every set of intervals on a straight line 

is countable provided no two overlap. 

Te can assume the intervals to be contained in a finite 

segment since we can readily transform as infinite segment into 

points contained in a given segment. 

Choose et , ez, e3, a series that has zero as 

its limiting point, then arrange in one group all the inter

vals that are ^ the interval e, ea, . Call the number of 

these intervals a t which must be finite since we are deal

ing with Archimedian quantities. Similarly , those intervals 

that are ^ e t e3and ^ e, e 2 , in number a2 , must be finite, 

and so on indefinitely. This arrangement includes all the in

tervals and according to Theorem 3, the intervals are count

able. 

As a corollary to the preceding theorem we can state that every 

set of isolated points is countable. Proof : we can describe 

intervals each containing but one isolated point and such that 

the intervals do not overlap, though they may abut in special 

cases, hence any set of isolated noints is countable. 

Theorem 5. If (E) is a set of points, those points of 

(3) that are not included in the first derived set (S#) are 

countable. 

These points cannot form an interval that is dense, for 

if so, the interval would necessarily contain limiting points 

of (S); therefore the points of (E) other than those included/ 

in (E,) from an isolated set, that is, they are countable. 

Further, if (E) is a countable set, then (E) is likewise a 
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countable set. 

The reasoning is genera^. Those points of (E,) that are 

not countained in (E4) from an isolated and thereforea count

able set, and so on. 

Thus if (E ) is a countable set we can state , at once, 

that (E^( ) (3,) and (E) are likewise countable sets. 
« 

The rational numbers are countable, since every rational 

can be expressed in the form (a,b), where a and b are inte

gral numbers, the numerator and denominator of a proper frac

tion respectively. We can evidently arrange the rational num

bers in a sequence of the form: 

[(1,1)], [(1,2), (2,1)], [(1,3), (2,2),(3,1)], 

which is countable by Theorem 3. 

Any set of intervals whose end-points are rational num

bers, where the raional numbers can be chosen in any order 

whatsoever, may be overlapping in a very complex manner, yet 

they are countable as is shown by the proof in the preceding 

paragraph. 

Theorem 6. Given a set of intervals overlapping in any 

way, we can determine a countable set of intervals from among 

them such that every point internal to any interval of the 

given set is also interval to an interval of the countable set. 

Let the overlapping intervals be contained in the finite 

segment (A,B), this does not impair the generality of the 

proof. In (A,B) take any point P corresponding to a rational 

number; choose rational numbers Q and R in (A, P) and (P,B); 

choose rational numbers a(, az , a,, a^ in the segments 
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(A,Q), (Q,P),(P,R) and (RB) respectively, and so on indefinitely. 

If A and B are rational points, we obtain a set of overlap

ping intervals whose end-points are rational numbers, which 

we have proved to be countable, and the segment (AB) is such 

that every point is internal to some interval of the countable 

set of overlapping intervals. If A and B are irrational points, 

and A*>B, we have but to choose A,< A and B t> B, where A, 

and B, are rational points in order to obtain a set of over

lapping intervals with rational end-points that contain every 

point of the segment (A B), and that is countable. 

The Heine-Borel Theorem. 

Given any closed sets of joints on a straight line and a 

set of intervals so that each point of the closed set of 

points is an inte nal point of at least one of the intervals, 

there exists a finite number of intervals which have the prop

erty of including as an intern-1 point every point of the 

closed set of points. 

In Theorem 6 it was rroved that any set of overlapping 

intervals could be replaced by a countable set which likewise 

included every point as an internal point. 

Let us call these intervals d,, dt, d^ , . 

Three cases may arise: 

(1) d2 may not overlap d,; if so, call the two in

tervals St and 0 , respectively. 

(2) d may overlap d, on one side only; in this case, 

denote the interval d, by St , and by St , the non-overlapping 

part of d, . 
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(3) dt may overlap d, on both sides; if so, denote the 

interval d, by <f, , and by Sx and 6-$ the non-overlapping 

parts of dt . 

Proceeding with the interval d 3, denote its v/hole, part, 

or parts by &^, o\ or ( o + , eft ) respectively; and so on 

indefinitely. 

We get a set of non-overlapping intervals. It is required 

to prove them finite in number. There cannot be any points of 

the closed set of points that are external to the set of 6 -

-intervals, because the intervals abut, nor can there be any 

semi-external points. 

A semi-external point is one which is a limiting point 

of a sequence of intervals on one side and an end point of 

one or more intervals on the other. 

Ex. The sequence of intervals (O,^) (§• ' ̂ 4*p' 

together with the interval (1,2) determine the semi-external 

point 1. 

If any end-point were a semi-external point, necessarily 

it would be a limiting point of points of the closed set and 

therefore a point of the set. But by our definition, the 

limiting point of a set of intervals is a point such that any 

interval whatsoever having this point as an internal point 

contains intervals of the set, Therefore limiting points and 

semi-external points cannot exist in this set of non-overlanping 

intervals. Further, it has been shown that a set of infinitely 

many points must have at least one limiting point. Hence con

sidering the right-hand end-poin£s as forming a set, the two 
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sets obviously determine a limiting point or a limiting inter

val. But a set of non-overlapping intervals cannot have a 

limiting interval. And as we have shown that in this case 

the 6— intervals cannot have a limiting point, therefore the 

d— intervals are finite in number. Likewise the d—inter

vals are finite in number since they can be chosen so as to 

be less than the 0- intervals. 

It is required to prove that the system of algebraic num

bers is countable. Algebraic numbers are those that arise in 

the complete solutions of algebraic equation of any finite de

gree, whereas rational numbers arise from the solution of 

equations of the first degree. 

Let the general equation be written as 

a 0x
TVa | x^'V a/ix

m'1 + + a ^ 0 (1). 
* 

Since at faa, a^ are necessarily rational integral num

bers, therefore 

a o a + - -+ a I s n (2) 
>y\\ 

The number of solutions of equation (2) is finite, be

cause the symbols a0 , af , a ^ are free to take only in

tegral values, both positive and negative, and when we add 

their absolute values, evidently there are but a finite num

ber of permutations that satisfy equation (2) for any given 

value of n. Further, an equation of degree m has but m roots, 

that is, the number of roots is always finite. If we now 

arrange the different solutions or values for a given m and n 

in some definite order, and denote by £ the position in this 

ordered sequence of any number, we can fully represent every 
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algebraic number by a triply infinite system of indices, as 

indicated in the diagram : 

\̂  

(»,«,0 , (»,!,*) , («,»,3) 

(1,3,1), (1,3,2), (1.3.1) 

v* v*» 

We thus obtain a solid formation of elements, which we 

may separate off into sections whose aggregate of indices are 

the same for any section and change b y unity from any section 

to the succeeding one. Arranging the above sequence of num

bers in this manner [(1,1,1)], [(1,1,2) ,(1,2,1) ,(2,1,1 )j , 

we can place the sequence in (1,1) correspondence with the nat

ural numbers, therefore the system of algebraic numbers is 

countable. 

The algebraic numbers comprise both rational and irrational 

numbers. We have shown that the whole system of algebraic num

bers is countable, and likewise the rational numbers are count

ably infinite, therefore the irrational elgebraic numbers are 

countable. 

It has been proved that a set of isolated points it a 

closed set and is Countable infinite. We can prove that a set 

of points that is dense-in-itself and nowhere-dense is count

able. For consider the right-hand end-points of the black 

intervals of Cantor's tertiary set, which is such that any giv-

-6 5 -



en interval is divided into three equal parts, and the mid

dle one is darkened, then the remaining two parts are 

similarly divided and their middle parts blackened, the 

process being carried on indefinitely; it has been shown 

that the end-points of all of these infinitely many black 

intervals are limiting points of end-points, but on one side 

only. Therefore the set of end-points is dense-in-itself; 

further between any two end points there lies either a 

black interval or an inteival containing external points of 

black intervals, so that the set is nowhere-dense. Again 

it has been shown that any set of non-overlapping intervals 

is countable, the black intervals form a non*overlapping 

set, therefore the set comprising their end-points is 

countable. 

A countable set is never perfect. Let the countable set 

be P| , P 2 , P 3 , arranged in countable order, and we 

will suppose it to be a perfect set. 

P™ 

—i r^i§ 
With Pf as centre point take an interval S.% and let 

P,_ be the first point in the countable order following P., 

therefore m^l . Then, with P^ as centre point take an 

interval 8^ not containing P, and lying wholly within 8%, 

and in 6^ let P-̂  be the first point in the countable order 

following P ^ . Continuing this orocess indefinitely we 

obtain a set of intervals 6%t Srt each contained with

in all the preceding ones, and the limit of the set of in-
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tervals St, 6^,8-$ is zero. Hence the set of intervals 

determine a limiting point Px. We have U m < n ^ x , 

and since we have chosen a countable set and but a finite in

terval of that set, therefore x is finite, that is, the num

ber of intervals is finite. But by hypothesis P# is a limit

ing point of the set, therefore within the successive intervals 

(Pf B),(P, P^) (P.P^) which we have denoted by the series 

6%, <54, <f3 , • there must be infinitely many points of 

the set. This is a direct contradiction of tho result of the 

preceding reasoning, hence we may state that no countable set 

is perfect. 

It follows from the last result that a closed countable 

set of points cannot contain any part that is dense-in-itself, 

and as every segment of the domain of real number, as the 

interval (0,1) say, is both closed and dense-in-itself, we 

may conclude that the aggregate of real points is not count

able. 

The Linear Continuum. 

The linear continuum is not countable. Ve assign to it 

a newpotency c. 

Direct proof: All the rational numbers in the interval 

(0,1) can be expressed as decimals of the type: 

°- a„ ai2
 fii* a/* " 

0. a,, a na„a, f 

and we have proved that they are countable in number. If we 
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can define a number lying in the segment (0,1) different 

from every member of the above group, since every real 

number that is conceivable belongs to the linear continuum, 

we will have proved that the linear continuum is not count

able. 

Let the number b be defined by 

o, b, b4 b 3 bH , where b ̂  is never the same as 

a-*m * which we can assure by choosing b*=a-4-l if a ̂ 9 , 

and b^=o if a = 9. The number b evidently lies in the 

segment (0,1) and can be seen to be different from every 

rational number by at least one place in the decimal. 

Therefore we have proved that the linear continuum is not 

countable. 

It is required to show that any closed or open segment 

can be brought into (1,1) correspondence with the whole 

straight line, or with any segment of that line. 

Consider the open interval (1,2) and the same inter-

1 ^ 4 
val closed; choose out two sets, 1± ljf, 1R 

2 " r> 
having 2 QS its limit, and lj , lg, lj6, -- having 
1 as its limit; and let every number not included in these 

sets be placed in correspondence with itself. Then if we 

pair off consecutively the numbers 1 and 1^, 1- and lg , 

1- and lrr , and also the numbers 2 and 1^, l| and 

1^, evidently every point of the closed segment is 

placed in (1,1) correspondence with a point of the open seg

ment. 

Let us place tne segment (-5,5) in (1,1) correspondence 
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with the whole straight line, making use of the equation 

xx1 = 4, every number ̂ 1 and-^-1 is placed in correspond

ence with the points of the segment (-4,4). The points of 

the closed interval (0,1) are placed in correspondence with 

the segment (4,5) by means of the equation 

x' - 4 —1 - x; and the points lying between -1 and 

0 , -1 included only is placed in correspondence with the 

interval (-4 ,-5) by means of the transformation. 

xf-f-4=-l - x , which completes the correspondence. 

Tnerefore every segment of the linear continuum has the 

potency c_. 

Every set of non-overlapping intervals is countable 

in number, and the points of each interval whether open or 

closed has the potency c. Therefore the points of any set 

of non-overlapping intervals can be brought into (a,l) 

correspondence v/itn the whole straight line, that is, the 

set of points has the potency c_. In order to prove gener

ally that every perfect set has the potency c, we must dis

cuss the case of a perfect set dense-nowhere. 

Suppose the perfect set to be inclosed in a segment 

(A,B) 7/hich is the smallest possible, then A and B must be 

roints of the set and hence limiting points of points of 

the set. In Cantor's tertiary set, perfect and dense-nowhere, 

the black intervals are dense-everywhere, but as A and B are 

limiting points tney are not internal points of black inter

vals, but must be external points. Returning to Cantor's 

typical perfect set dense-nowhere, divide the segment into 
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two equal parts at C and D, and denote the black, interval CD 

by d,, where .1 is the binary number corresponding to its 

middle point. Proceed in the same manner with the segments 

AC and IB , numbering their middle blaek intervals d0| and d,, 

respectively. We have now four intervals AP,RC, DQ and SB, 

whose middle blackened intervals would be numbered d , d_, 

d.̂ , , and dlir , where the suffixes are the binary numbers cor-
0 I O I M i l 

responding to the middlo points of each black interval. 

4o*i d-.eii viol -IM 

A " T -R " C J> m Q S m 3 

This method of subdivision can be carried out indef

initely. We have proved that the resulting set of black 

intervals are countable infinite, and that the end-points 

and external points of black intervals form a perfect set 

dense-nowhere. 

Every number of the continuum (0,1) is expressible in the 

dyad scale by means of a sequence .p .pq , .pqr, 

where p, q, r, are either 0 or 1. And we have proved 

that it is possible to place any segment (a,b) in (1,1) cor

respondence with any other segment, say (0, 1). further, 

every number determined by the above sequence of numbers is 

unique, except those in which after some certain decimal digit 

all the digits are 1, for those can be expressed by a second 

sequence, in which after some certain decimal digit all the 

digits are zero. 

Now, let us put the white intervals into a notation 

similar to that of the black intervals, for instance, let 

-90-



the interval (AB) be denoted by 1, the two intervals formed 

by the first subdivision by l0l and 1„ , then the four in

tervals arising from the next subdivision by l,„cl , l.o\\ 

l.(ol and l.,„ , the eight intervals from the next subdivision 

by the indices: .0001, .0011, .0101, .0111, .1001, .1011, 

.1101, .1111 , and so on indefinitely. If we denote the 

perfect set of points by (S) evidently we can represent every 

point of (E) by a dyad sequence. For let a be any roint of 

the set (E), a must lie in the interval; then in either 

of the intervals l,e| , or 1,„ ; then in one of the four 

1..0I • 1 - O H • 1H0\ 0 r 1 - I H » t h e n l n ° n e ° f t h 6 G i g h t l n" 

tervals, and so on; that is, we obtain a dyad sequence, 

• P, «P<1» • FQr, which represents the point a; as the 

intervals from an infinite set each enclosed within the pre

ceding, therefore they determine a definite limiting point. 

In the case where after some fixed number, all the 

decimals of the suffix are either all 0 or all 1, the point 

represented by the sequence is a common ena-point of all the 

intervals after a certain fixed one. Therefore the sequence 

1 , 1, , 1L/Ii( determines in every case a point of 

the set (E) and determines each point uniquely except in the 

case of end-points of black intervals which are countably 

infinite in number. We have thus shown that the joints of 

•a.perfect set e n be placed in (1,1) correspondence with the 

dyad scale which represents all the numbers of the contin

uum (0,1), because if from any set of potency c a countable 

infinite set be removed the remaining points of the set will 
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still have the potency c_. 

That this proof will app&y to the general perfect set 

dense-nowhere, is seen from the following consideration. 

Divide the segment (AB) into three equal parts by the points 

C and D. If D is enclosed in a black interval call it d; 

as in our previous notation. If CD is not enclosed in a 

black interval then it must either from a part of a black 

interval or it must include black intervals; if the former 

is the case, denote by d, the interval of which CD forms 

a part, and if the latter is the case, choose out the largest 

black interval enclosed and denote it by d,. In every case 

we have two white intervals terminated by A and B respectively 

and to these we apply a similar subdivison, where A end B 

being points of the set cannot be other than external points 

of the black intervals that are dense-everywhere. Clearly 

the notation can be made to conform exactly to that of the 

regular case. The statement about infinitely many sets of 

intervals each enclosed within the preceding, and therefore 

determining a definite limiting point, follows directly as 

does the remainder of the proof. 

We have just shown that every perfect set has the po

tency c. Now, by an example we will illustrate that a count

ably infinite set can be taken away and the remaining points 

will still have the potency c. 

Let us take the set of points 1, o ' 4 ' 8 ' 1'* ~ 

together with the points of the interval (0,-2). The whole 
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set has obviously the potency c_, while the set 1,£ . 4 » 3 , 

has the potency a, and the set remaining after subtracting 

the set of potency a is the set (0,-2) which has the potency 

o. 

It has been proved that the linear continuum has the po

tency c_, and that the rational numbers of the continuum has the 

potency a. Therefore the irrational numbers in the whole con

tinuum or in any segment has the potency e. It has been shown 

that the set of algebraic irrationals has the potency c_. 

It is required to show that the Liouville numbers in the 

continuum has the potency c. Vfe may place the liouville num

bers a« .aa. _i_a3 -*. in (1,1) correspondence with 
10 TU*~ 10"*-' 

the numbers a, . at , a3 ^ where a,, a_, a_, 
may have for values any of the ten figures. But the set of 

numbers given by a, a% £3 . makes up the rational 
10 10* 10*^ 

and irrational numbers of the real continuum, that is has 

the potency c. 

The reader is referred to Sets of. Points by Young for a 

discussion on the content and measure of a set of points, 

also for the extension of these elementary ideas to include 

the properties of plane sets of points, points in three di

mensions and generally points in n dimensions. 
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