THE ELEMENTARY THEORY

OF SETS OF POINTS




DEPOSITED

BY THE COMMITTEE ON

Graduate Studies.

No.

Library of JieGill Universiiy

MONTREAL

Received







THE ELEMENTARY THTORY

of
S ETS OF POINTS
With an Introductory Essay on
IRRATIONAL NUMBERS

Presented in Partial Fulfilment of the Requirements

for the

Degree of Master of Science
of MeGill University

by Iveson Miller



Historical Introduction.

~~<00000--~--

It is quite generally known that arithmetic had its
beginning in the counting of groups of things, such as
trees and herds of cattle; dut it is not nearly so wide-
1y understood why the number ten should have been chosen
as the basal unit of our initial system of enumeration,
the decimal system, rather than any other number. When
one considers that counting would naturally take the form
of telling off the objects of a group on the fingers of
both hands, it is easy to understand how the positive
whole numbers were constructed on the decimal system.
Clearly the decimal system of notation is not the only one
that could be invented. In fact, it is unfortunate that
man had not chosen a duodecimal system, that is one based
on twelve as unit of notation. For instance, ten is di-
visible by two and five only, whereas twelve is divisible
by two, three, four and six. Again, 2 x 10 is divisible
only by 2, 4, 5 and 10, whereas 2 x 12 is divisible by
2, 3, 4, 6. 8, and 12. 1In ordinary business, where 1/2,
1/3 and 1/4 are used extensively, the advantage of the

dvo-decimel notation is very clearly put in evidence.
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To show that other scales of notation have been in-
vented we need but mention the sexagesimal measure of
angles, and of intervals of time, which though constructed
many centuries ago remain in common usage at present.

The extension of the number system to include neg-
ative numbers, zero, positive and negative fractions, is
briefly outlined in the following pages, together with a
full discussion of irrational numbers.

The difficulties that presented themselves in a rig-
orous discussion of the theory of incommensurable quanti-
ties were known to the Greeks of the time of ZTuclid (330-
275 B. C.), a8 is shown by the fifth end tenth books of
BEuclid's "Elements", which deal with the ratios of magni-
tudes, the fifth with commensurable, the tenth with incom-
mensurable magnitude (incommensurable magnitudes corres-
pond to irrational numbers), but they were unable to ar-
rive at a satisfactory solution of the difficulties, as
were 211 the mathematicians until within the last century.

The zpplications of the four fundamental rules--
addition, subtraction, multiplication and division-~to ra-
tional numbers were quite perfectly understood during
this long period of time; and as an irrational number
taken to any required degree by approximation is a ra-
tional number, mathematici=sns achieved results that were,

in the main, correct. Towards the end of the eighteenth
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century, mathematicians, wao vere making a careful study of
the caleulus methods of Hewton (1642-1727) and Leitnitz
(1646-1716),discovered so many inconsistencies in results
and points in the theory that were not rigorously demon-
streble by them, thet they turned their chief attention to
8 revision of the fundamentals of the whode mathematical
system., These thinkers and logicians were much perturbed
that the notion of the approach of a variable to a fixed
limiting value and such an obvious thing as the theorem
'that every magnitude which grows continually but not be-
yond 2ll limits,must approach a limiting value' , could be
demonstrated easily by geometrical, but not at all rigor-
ously by arithmetical methods.

The pioneers in thie¢ demend for greater accuracy and
rigor in arithmetic were Gauss, Lagrange, Cauchy and Abel.
Phe contributions of these man had the effect of clearing
iy many points that had formerly been obscure, and served
1s an inspiration to a long list of investigsators. This
novement tovards absolute rigor in the proofs of theorems
became in the second half of the nineteenth century very
zeneral, with Veierstress as its greatest exponent. Weier-
strass showed that to place mathematical snalysis on a sat-
lsfeectory basis it was necessary to create a theory of ir-
ational numbers, with the seme rigor as in the theory of

incommensurables eontemplated by Euclid, and with as much
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care as had been bestowed on the system of rational numbers
by the early mathematicians.

In 1872 Cantor and Dedekind, accepting the results of
Weierstrass' studies in the general theory of functionms,
constructed two theories that satisfy the rigor demanded by
investigators in mathematical analysis, and which although
arparently very different can be readily brought into eguiv-
elence® Dedekind, 'Essays on Kumber', Cantor 'Ueber die

Ausdehnung eines Satzes aus der Theorie der trigonometris-

chen Reihen'.

Scope of the Thesis.

This essay deals .ith the development of the system
of rational numbers, not fully as is to be found in
Fine's Algebra end Pierpont's 'Theory of #unctions of a
Resl Varisble' , but as a foundetion u~on which to con-
struct Dedekind's theory of the irrational number.

A discussion of limits for sequences of retional
numbers follows in preparation for the dedvuetion of Can-
tor's theory from that of Dedekind.

Cantor's theory is constructed and its equivalence
with that of Dedekind demonstrated.

The idea of continuity is developed only in so far



as it is necessary to the understanding of the nature and
explanation of the arithmetic continuum,

The second part of the thesis deals with sets of
points. Many of the newer branches of Pure Mathematics,
such as: The Theory of Punctions of a Complex Varisable,
The Cslculus of Variations and Differential Fguations,
meke use, either directly or indirectly, of an infinite
number of operations. These investigations are extremely
complex, and the reasoning is liable to many errors. To
one entering upon a careful study of such subjects a
knowledge of the fundamental principles of the theory of

sets of points is almost indispensable.

Rational Numbers.

As a beginning, I will accept thet the human mind

holds the conceptions of unity, aggregate, order, and

correspondence, as fundamentals.

By unity we mesn the consideration of any object,
however comrlex in structure or attributes, as a single
thing.

The idea of aggregate is but bearing in mind the two

conceptions of unity as = group, and the components of the
group as ceparate unities,

Order is the term by which we designate the concep-

tion that enables us to select different objects with

respect to some attribute as size or haruness, so that of
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two objects we can determine which is the larger or the
harder. A group of objects of which each two had been
examined and the larger or harder one selected would be

ce”led an ordered group. 0Of many ways of arranging the elements

of a group in order it will suffice to mention the most
usual one, namely, that in which the objects are chosen
with respect to time, and are correspondingly labelled
1, 2, 3, 4, -- to any number however great.

The idea of correspondence is that of associating

one unity with another unity, where these unities may be
aggregstes of any degree of complexity. In rarticular
one-to-one correspondence,written (1,1),is used to indi-
cate that we are pasirinz off individuval elements of one
group with individuel elements of =2 second group.

To urity as a distinguishing mark we give the sym-
bol 1. To en aggregate (A,B) or (B,i), perceiving that
here we have unity together with unity in one whole,
we gssign an arbitrary symbol 2. Similerly to an aggre-
gate (A, B, C) we assizn & new and arbitrary symbol 3;
and so on indefinitely. In this process we are performing
but the simplest act in pessing from an already formed
symbol to the consecutive new one to be formed. Thus we
create successively the series of intezral positive, or
netural numbers, which is characterized by the fact that

the sequence of numbers has no last number: namely, 1, 2,



The Pundamendal ZRules.

Addition 1s but the combination into a single sat
of any arbitrary ropetitions of the simplest act men-
tioned above, For example, 74+4=7+4(341)

=74+ (24+1+41)
=74 (14+1+1+1)
=(8+41)41+1
=(9+1)+1
=(1041)

=11

nltislication arises in a similar way from ad-
diticn, that is, it ic but a combination of any arbitrary
number of repetitions of the sddition process.

X, 5 X 3=234+34+342342, or= 5+4+5+4+5,

The two procesees, sddition and multiplication, are
always possible in the sense that each‘application of
either process to two numbers of the series results in a
number of the series, and obviously tho cte=tement 1s tiue
for any number of spplications of these processes.

The process of subtrsction when applied to numbers
belonging to the series of naturel numbers is the reverse

of nsdcition.
TXe 1 - 4=23.

" - 4=17 - (341)
=7 - {241+1)
=7 « (1414+41+41)
=6 (14141)
=5 « (141 )
= l = &

Howaver, this process would not be applicable in
the cese where the number to be subsracted is the lurger,
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without an extension of the number system.

Thus 1-1 introduces & new guantity to which the symbol
O, zero, is attached; O-1 introduces a successive new
quentity to which we assirn the symbol -1, minus one; and

80 on indefinitely. The nusnbers given in order of creation

are 0, =1, =2, =3, =4, eccccmcmmecnaanaaoo
The extended number system ic representsd by -----e--- -
----- -3, =2, -1, 0,1, 2, 3 ~eeceweue-ea(1L), the series

having no last number on either aside.

Divieion mey be considered as the reversec process
to multiplication. Thus 3 x 5=15, and 16+ 3=5. 1In
general if g = X, then b=ax. Elearly a further exten-
sioﬁ of the number system 18 reqguired before division will
always be possible among the members of the cxtended number
system(1i}, To perform this the rule is applied that if
b+e=2x, then a X=Db, thus the positive and negative frac-
tions become necessary. From the concertion of multipli-
cation as a condensed process of addition 1t 1s clear that
BX(-b)= -ab, 1in accordsnce with which, (-n) x (-b) is
defined to be ab. Henoe a negative number divided by a
positive number or vice versa results in a negative number,
whereas a positive number divided by a positive number or
B negative number 1y a negative number results in a posi-

tive number.

The Ordinal Numbers.

The set of symbols, or corpus 1II, is now complete in
the sense that on the application of the processes of ~ddi-
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tion, subtraction, multiplicaetion and division, every re-
sult is itself a member of the sequence, with the exception
of division by z-~ro.

Ex. a+0=a

2a—~-0=a

ax0=0

a-+0 has not been defined. Let it be x, then
XX O=a. But any definite number, however great, multi-
plied by zero, is still zero, therefore a+0 introduces a
new quantity which is cslled infinity and is assigned the
symbol 0o,

We wish now to arrange the corpus 1II in some definite
or-der, that we may have an ordered set of symbols. The
extended number system II is really a set ordered with res-
pect to time, that is, ordered by eacn successive creative
act as ﬁndicated in the above reasoning. However, to make
the complete reasoning more intelligible a proof will be
Ziven based on the fundamental ideas of =aggregate and corres-
pondence. By pairing off the elements of two agzregates
we can always determine which is the greater unless they
should happen to be equal. And if we agree that to indicate
that b is greater than a,we use the symbolic notation b> a,
and write b on the right hand side of a, all the positive
integers become ordered when written 1, 2, 3, 4, ==-==-=-- (A).
The negative integers -1, -2, =3, =4, --ccceceean.~- (B)
are evidently in an order, since they correspond exactly to

the ordered sequence (A). Further, as -14+1=0, -24+1=-1,

and so on, the sequence (B) must be reversed before it will
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be in accordance with our convention of writing the greater
number to the right of every smaller number.

The series =-<=-c-w=- -4, -3, =2, -1, 0, 1, ©, 3,
4, —ccccnmccannn is now an ordered Coryus II. It should
be observed here that every negative number is less than
zero, or any positive number whatsoever,

Now, taking the ¢ se of any two positive fractions,

be
2 and ¢ . These can be written ad_ and — . Rvidently,
b d bd bd
% is greater than, equal to, or less than %. Written
a > ¢ . ad = be
s = =2 , according as — = =, that is, according as
b < g s bd < ba’ &
ad,§§ bec. But ad, ©bc are integral positive numbers and

belong to the ordered set (A), hence the greater number

may be obtained by insyection. An exactly similar proof
will apply to any two negative fractions whatsoever, where-
as every negative fraction can be shown to be less than
any positive gquantity or zero by the same process of making
the denominators of the fractions equal.

The complete set of ¢ymbols, arranged in ascending
order of magnitude, has now become an ordered corpus, with
no greatest positive number and no least nezative number.
This corpus is called the set of rational numbers.

When we nave at our disposal the set of natural numbers
arranged in order of magnitude, we are in a position to
count the elements of any finite group. To determine the
ordinal number of the group, or in other words count the

group, we impress an order with respect to time, (i.e.) the
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succession in which they are chosen, on the elements of the
group and then place this group in (1,1) corresrondence with
the rational numbers 1, 2, 3, 4 -----c-uu-=-- . Evidently the
natural number paired off with t he last selected number of
the group represents the ordinal number of the group.
Ordinal number is thus regarded as the concept obtained
by making abstraction of the nature of the objects, but re-

taining the order in which t hey are given in the aggregate,
The System of Rational Numbers.

To the ordered corpus of rational numbers we may apply
the following laws:

1. If a>b, and b —>c¢, then a>c.

When the elements of 2 group b are paired off with the
elements of a group a, and when there are elements of a
remaining unattached while every element of the group b
has been paired off against one of the group &, the group
a is said to be greater than the group b, and is expressed
symbolically by a>b. Similarly, the exrression b>c means
that when every element of the groupfhas been placed in (1,1)
correspondence with elements of group b , there are elements
in group b remaining unattached.

Evidently then if the elements of the group c were
placed in (1,1) corresrondence witn the elements of the

group &, there would remain unattached elements in the group

a, therefore a>c.
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By the method employed earlier of reducing two positive
fractions to a common denominator and then considering their
numerators which are positive integers, the above proof is
directly applicaeble. In the case of negative numbers, one
can readily generalize the above statement by considering
that the negative numbers are in but the reversed order to
that of the positive numbers considered from the number zero.

A more simple proof can be observed by me e insvection,
since when we write the ordered set of rational numbers in
full every positive and negative rational fraction is includ-
ed. Hence the expression a>b meens that a lies to the
right of b, and the expression b>e¢, that b lies to the right
of ¢, that is, a=>c. Another statement of the above law is
that b lies between a and c.

If a and ¢ are two different rational numbers, there
are infinitely many different rational numbers lying between
a and c.

First proof. Let & and ¢ be two positive integral val-
ues, or decimal numbers thaet have = finite number of decimals

only---this excludes such numbers as .3 . Suppose a is given

by a, .ap az a4 ag ----- a, and ¢ is given by C,=C,h, Cg, 3,
Cg, C, ===~ C end let a=c¢, 8, =¢, . --=------ A=1c¢, . If
m>n , then G >C in the sense ol appearing in the sequence
further to the right.

The number &,.8 ,8, 8, 84 -------=--- 8, -------- B s
B Bmag e .aP
Wher: a“_',= c'n-H’ 8o t2 = c‘mz’""a'n < c,h is less than c.



Further it is evident that there are infinitely many numbers

iven by the above sequence, since s 8 8 |, =—me=-=-=
g J 4 i m+t”  mez  med

can each be any one of the ten figures. With assigned val-

ues of a a the number of rational

2 83 84 m

numbersf 8, 8, 8, 8, -~---~-~ 8,----- %“%tproceeding as far

n
as the term a, =10 ; this can be ade greater than any as-

signable number however great by choosing r properly.
To provide for the case of infinite decimals that appear

from the division of two integral numbers. =nd are therefore

rational numbers, such as %::.3 and % — .16 , we can reduce

the two fractions to a2 common denominator and then rroceed
with the numerators as above. Illustration: There are in-

1
finitely meny rational numbers between é and - ; we have but
6

to show by the above proof that there are infinitely many
rational numbers between 2 and 1 , then dividing each of

these numbers by 6 will give infinitely many rational num-

1
bers between 5 and } .

6
Second proof. Taking % and % as two general rational

numbers, where a, b, ¢, d4d are positive integers, and given

that %<:9 , it is reouired to prove
d

ad Dbec c

2bd d

<

o't®

Since <=- , we have ad<bec

o'
(=R N e

2ad <bec + ad ;

2adb < b(bec +28d);

a bcﬁ-gg .
b 2bd

«]lP=



Again , ad < be ;
ad + be <abe ;
d (ad+bc)<2bd;

ad+bc4c

That is, between any two positive rationals we can in-
sert their arithmetic mean, betWeen this arithmetic mean and
each of the initial numbers arithmetic means can again be in-
serted, and so on indefinitely. If, the given numbers are
both negative numbers, the demonstration follows at once from
the above proof; In the case where one number is negative
and the other positive, by the above proofs we can show that
between O and either of the numbers there are infinitely many
rational numbers.

If a is any definite rational number, the system of ra-
tional numbers can be considered as making up t wo classes
A, and Az' which are such that A, contains all the rational
numbers that are less than &, and A, contrins 2ll the ration-
al numbers that are greater than a. The number & can pe as-
signed at will to either class, becominz either the first
of the class A,, or the last number o* tr~ class A, . The
classes A, and A, are such that every memiser »f the class &,
is less than every member of the class A, and every member
of the class A, is greater than every member of the class 4, .

We can thus diﬁ%ghgﬁgggiﬂhe rational numbers so as to

define the rational number a:
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(d) A, , a2 ,A

(B) (&, a), 4,
(Y) A, , (a4))

2

The Straight Line.

It is reguired to show that the points of = straight
line obey laws that are similar to those that have been

applied to the ordered set of rational numbers.,

L Y q P Let L be any straight line and

p, g9, r any three different points.

The following laws spply:

1. If p lies to the right of q, and g lies to the
right of r, than p lies to the right of r; and we say that
q lies between the points p and r.

Prom the disgrem this statement is seen to be true.

If p and r are two different points, then there al-
ways exist infinitely many roints that lie between p and r.

The general zonception of continuity is derived from a
gstraight line. We ~onceive the straight line to be
such that between any two points however close there are
infinitely meny other noints.

If p in a definite point in L, then all the roints of
L fall into two clssses P, and P, , which are such that P,
ijncludes all the points that lie to the left of p, and P,
includes all the points that lie to the right of p. The
point p can be assigned at will to either cless. Moreover

every point of the class P, lies to the left of every point
-15-



of the class Pz; and every point of the class P2 lies to
the right of every point of the class P, .

This anslogy between the rationsl numbers and the points
of a straight line becom : a real correspondence if we take
some point of L as origin or zero point, and a definite length
as unit of the measurement of segments.

The succeeding discussion will establish a (1, 1) corres-
pondence by arithmetical means alone between the rational
numbers and definite points of the straight line in such a way
that the order is maintained.

One method of establishing this correspondence is by mak-
ing use of the harmonic ratio of special numbers. If a, D,
¢, d are any four numbers, they are seid t o form & hermonic
retio when a-b . c-d 1is equal to -1l.

b-c d-2
Clearly there are infinitely many sets of four rational

numbers which form & harmonic ratio. 1If a, b, ¢ are given
rational numbers, they determine a definite number 4 accord-
ing to the equation § _ ab+bc—=2ac which is obtained

“_a — ¢ + -0
by simplification of tun above hermonic ratio (a, b, ¢, d).

Phe equation evidently holds for all values of a, b, ¢ except
2b=a+c. In this cese if we take the ratio (a, a§t° , ¢,d)

where d takes successively increasing velues, it is found that

a-C

8 - avemt——

2 . _c=d _ gapproaches hearer and nearer to the

a+cC

-—-——-c

2
value of -1 as d is given larger and larger values. That is

when d is increased indefinitely, the given cross ratio be-
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comes & harmonic ratio.
The following harmonic ratios will be required in the

course of the demonstration. If B'is any positive integer,

we have
(p-1, P , p+1 s 00 )=-1
(-p, o , , 00 )=-1
'}0,, 1, 1 y_ 1 ;-.:.‘1
I 7 r-1

Take any straight line LL, unlimited in either direction
and let any three points be selected and numbered in order
P, 1, Q. We can then establish the (1,1) correspondence as
follows:

Let C be any poigt outside the line LL. Join PC ,
QC and 1C. In the line PC take any point A, Join QA. We

ghall c¢g2l1l the fourth harmonic point of P with respect to 1

and @ the
¢
N €

A ’ Co. T\g.I.

/
/
/ ~ U
y \Q§§

L P | Q L,
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integral number 2. Similarly we shall call the fourth
harmonic of 1 with résPect-to 2 and Q the integral number
3, and so on indefinitely.

The geometrical construction of these various harmonic
points is indicated in Fig. 1. The lines 1C and QA in-
tersect at some point which we will call A, . Join PA, and
produce to meet QC in C, . Join 1Cc, meeting QA in A,. Join
CA, and rroduce to meet LL, in the required harmonic point 2.

Again, join PA, and produce to meet QC in C,. Join 2C,
meeting QA in A;. Join CAg,, meeting LL, in the harmonic
point 3.

This construction sets up a (1,1) correspondence between
all the positive integral numbers and voints in the S8egment
PQ of the straight line LL,.

The above harmonic construction is made more clear by

a second figure:

Pigure 11.

A,CQlA, is a quadrilateral. C, P, and A2 are its
diagonel points. The two sets of pointé (P, 1, ¢,2) and
(c, ¢,, Q, C,) are in harmonic ratio.

Po construct points that will represent the negative

integers, we will call the fourth harmonic of the positive
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integer UM with respect to P and Q, the negative integer
-M. The geometrical construction represents the point -M

as the intersection of AC, with the straight line LL,, where
cw‘is the point in CQ which is used directly in the construc-
tion of the positive integer M+1.

For example, the point -1 is represented by the inter-
section of AC, produced with the straight line LL,; the
point -2 is represented by the intersection of AC, with the
straight line LL,; ana so on indefinitely. That is, all
the negative integers are represented on the segment POOQ

of the straight line LL,.

Figure 111.

At some period in the constructiin the line AC_  changes
its slope from rositive to negative, and all succeedinz neg-
ative numbers will be represented by points on the straight
line LL,, but to the right of Q. As drawn in Tigure III
AC, v»roduced intercepts the line LL, on the left of P, and
Ac5 produced intercepts the line LL on the right of q. The
result will be comprehensive if we consider the straight

line to be a closed curve. The extended definition of a



straight line is that of a great circle on a sphere of in-
finite radius, which demonstrates that, from our figure, a
point at an infinite distance to the left of P will coin-
cide with a point at an infinite distance to the right of Q.

A construction for the inverses of the rational pos-
itive numbers is readily obtained by a slight modification
of the previous method.

Let us represent the positive number % as the point
which is the fourth harmonic of Q with respect to P asnd 1.
Join 1A meeting A,P in Ajz_ - Join CA, and produce to meet
LL, in the point %. Similarly % will be represented =s
the fourth harmonic of 1, P and %. Join 1 and A meeting

2
PA_gz_ in A%.. Join CA%_ to meet the straight line LL, in

the point 1. Generally, the point 1 is the fourth

S m-2
harmonic of 1 with respect to P and _1 .
m m-1

The points 1,1, 2,1, 341 ----=-"---- can be con-

T T r
structed from P, 1, Q; Just as 2, 3, 4, ----=---- were
r

from P, 1, .

Generally, the points 1,.n , 24"3, 3,1
T T T, —~=~===
can be constructed from P, n, «.
r
The inverse points r , r , L , ======-=
T+1 2r+1 Ar+1
can be constructed fromQ, P, 1; Jjust as 1l , 1,1, ---
T 2 3 3
were from Q, P. 1.
Generally, ‘he points r+n , 2r+n, 3r+n ,---can
r r T

be constructed from «, P, n.
: T

When n and r have been given all positive integral values,



points to represent all rational positive fractions will have
been constructed. By a repetition of the previous construc-
tion the negative rational fractions -1 can be represented
by the intersection of the line C# i W?th the straight line
LL,. The point C_#‘ is the point of intersection of Pa#

with the line CQ where_§%; is the intersection of Caﬁ; with
the line AQ. (See Pigure IV), In this last paragraph m is

used to represent any rational fraction, and 1 the inverse

m
of the general rationzl fraction.

’Ah . // _L/ ’_.__.. — T

"z Pz Figure 1V, @

From the general method of construction it is clear
that as we approach P the numbers decirease in absolute
value without 1limit, becoming less than any assignable pos-
itive rational quantity,€.7urther, the numbers to the left
of P are negative, while those to the right of P are pos-
itive. That is, P cannot te other than the point 0., Sim-
ilair reasoning demonstrates that @ is the point 00.

Supposing that in the infinitely many applications
of the above projective scale there is one point which
does not represent any rational number, we can rlot ra-
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tional numbers that approach nearer to that point than any

assignable magnitude. This will be shown to be the defin-

ition of an irrationel number. It can be shown that there

are infinitely many points of the straight line that do not
represent rational numbers. PFor instance, the diagonal of

a square whose sides'are positive integers in magnitude is

incommensurable with that unit of magnitude.

Prbof. If possible let the side be to the diagonal in
a commensursble ratio,nemely,that of the two integers a and b.
Supprose this ratio reduced to its lowest terms so that a and b
have no common divisor other than unity, that is, they are
prime to each other. TL&n bQ== 2a” (by Euclid 1.47); there-
fore b is an even number; hence, since & is prime to b, a
must be an odd number. But since b is an even number, it
can be written as 2n; therefore (2n)¢== 2&2 , or o= 2n° :
therefore & is an even number; therefore & is an even num-
ber. Thus 8 is both odd ~nd even, which is absurd; therefore
the side and diagonal are incommensurable.

Hence, if from the origin O, a length is 1laid off along
the straight line LL, we obt=in & point to which no rational
number corresvonds. It is at once obvious that the number of
these incomnencrable lengths is infinite; therefore the num-
ber of points in a straight line that have no corresponding
rational number is infinite. Thus the straight line is rich-
er in points than the system of rational numbers is in sym-
bols.
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The Irrational Number.

We wish to follow out arithmetically all phenomena in a
straight line, and the domain of rational numbers is evidently
insufficient, since we have demonstrated the existence of
gaps in the system. PFurthermore, we attribute continuity to
a straight line.

Before developing the theories of the irrational number

it will be helpful to state clearly what is meant by algebraic,

rational, and irrational numbers.

The varicus quantities thet will satisfy an algebraie

- . . s ! m me| m-%
equation of any definite degree, say a,x +a, X +2 X

w=0, where the a's are any integers, posi-

tive or negative, snd where the equation is irredueible, are

called algebraic numbers.

It can ve shown that there are numbers other than alge-
braie, such as the logarithms of the rational numbers and
the Liouville numbers,

Those algebraic numbers which are solutions of an equa-
tion of the first degree are called rational numbers, and in-
clude the naturel numbers, all termirating decimal fractions,
as well as some non-terminatinz decimal fractions thsat foilow
s simple recurrence law, as 5 or .18 .

Those algebraic numbers that are solutions of equations
that are irreducible and of degree higher than the first.
are irrational numbers. Furthermore, all logarithmie numbers

and the very special Liouville numbers are irrationsl numbers.,
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Dedekind asserts that the essence of continuity is em-
bodied in the following principle: "If a1l the points of a
straight line fall into~ wo classes sucht hat every point
of the first class lies to the left of every point of the
second elass, then there exists one and only one noint which
produces this;division of all points into two such classes,
this severing of the straight line into two portions”,

We wish to prove arithmeticaelly that there gre numbers
other than rationsl numbers. Let D be a positive rational
number but not the squere of a rational number. If we place
in the class Az all these positive numbers whose squares are
greater than D, and assign to the class A, all the negative
numbers and zero, together with all the positive numbers
whose squares are less than D. Since there is no rational
number whose square is equal to D, we have the domain of
rational numbers divided into two classes by a number VD
which is not a retional but an irrational number.

It is required to prove that there can exist a positive
integer D which is not the square of a rational number. A
rationel number can always be expressed as a rational frac-
tion of which both the numerstor and denominastor are inte-
gers., Suppose D==(¥), where % is a fraction reduced to its
lowest terms, that is u is prime to t. We have, then, chosen
u as the least positive integer that will satisfy the ex-
pression,t%-Du2==o, which is known as Pell's equation.

By Archimedes principle, which 1 have accepted, no
nunber will be considered in the theory of numbers that is
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so small that when multiplied by a sufficiently large number
it cannot be made to exceed any arbitartily chosen number.
That is, infinitesimal numbers are not included in the sys-
tem of numbers.

Now as u is not an infinitesimal but is rather a posi-
tive integer, we know that there exists a positive integer
7\, which is such that ?\ u<t <(7\+1) u.

Let u'= t -?\u. Bvidently v is < u, end is a pos-
itive integer. Let t = Du ‘%1u t’ is likewise a positive
integer. We have

t’z -D u’zz (.XZ - D)(tz — D v )=o0, which is contrary to
our assumption concerning u. That is, D cannot be expressed
as the square of a rationel number.

As an example of this type of reasoning, Fine in his
Algebra gives a proof that V2 is irrstionel.

There is no integer whose square is 2., OSuppose the

2
freetion is such that (£ ) = 2, where p and q are positive

pz 1 2
integers. We have == = = .
¢t 1

That is, q must be 1l. and p%= 2, since p2 is prime to
q2 . But p2 cannot be equal to 2. That is,V2 cannot be
expressed as a rational number and is called an irratijonal
number.,

Proceeding with the discussion of the division of the

system of rational numbers into two classes A, and A where

2 L]
the class A, includes all the negative numbers, zero, and
those positive rations1l numbers whose squares are less than
D, and where the class'Azlincludes all those positive num-
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bers whose squares are greater than D, while there is no
rational number whose square is equal to D. In this case
the class A, will have no greatest number and the class A,
no least number. Proof.

2

If we put y _ x (x + 3D)
T T3x*+ D

we have y - x_2x (D -x°)
X244 D

3
and y* - D_(x% - D)
(3x+D)%

Then, if x is a positive number from the class A' s We
have x- < D ; hence y > x and y2<: D; therefore y likewise
belongs to the class A,. While, if we assume x to be a pos-
itive number from the class A, , we have x2> D; hence y<x,
also y>o, and y_> D; therefore y likewise belongs to the

class A This cut in the system of rational numbers is

2 L
produced by no rationsl number. We are now in a position to

define and create the irretional numbers.

Dedekind's theory of the irrational number, When the
domain of rational numbers is ceparated into two classes by a
roint a_, such thst the class A, includes all the rational
numbers that are less than a , and the class A, includes all
the rational numbers that are greater than a; further, when
the class A, has no greatest number and the class A, has no
least number; when every number of the class A, 1is less than
every number of the class A, , and conversely, this division
of the rational numbers is said to define the irrational num-

ber a.
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Consider now two numbers a, b defined by cuts (A, ,A,)
and (B,, Bz) in the rational numbers. If every number con-
tained in the class A, is likewise contained in the class B,,
and every nurber contained in the class A2 is 21so contained
in the class B, , then the two cuts are identical, which is
denoted by a = b.

If the cuts are such thgt there is one number, and only
one, in the class A, that is not included in the class B, ,
denoting this number by a: , Since every »o>ther number a, of
the class A, is also contained in the class B, , we have a;<a:

Thus, a' is the greatest number in the class A, ; or in other

words, the cut (A,,Az) is produced by the rational number

!
a==a: . By our hypothesis a: = b, , Where b; is the only

number that is contained in the class B2 , Which is not con-
contained in the class A, . Since every number b, of the
class B, , other than b; , is also contained in the class A, ;
we have b;<< b, , that is, b; is the leasﬁ number of class

B therefore the cut (B,, B,) is produced by the rational

2 ' $ 0

nunmber a==b; . Thus the rational number 8 is defined by two

different cuts,
If the cuts (A, ,A,) and (B, ,B,) are such that there are
two numbers in the class A, that are not contained in the

thet is, are contained in the cl=ess B we can

class B, 2

assert that there are an infinity of numbers in the class A,
that are contained in the clsss B| , because, between any two
rational numbers whatsoever there are infinitely many rationsal
numbers., In this case the number &, defined by the cut
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(A, A,), is said to be greater than the number b, defined

[
by the cut (B,B,). In symbolic languasge a>b and b<La.

It may advantageously be rointed out that the usual
defini?tions of >, =, < as applied to rational numbers also
apply without ambiguity to irrational numbers.

The extended system of numbers consisting of all the
rational and irrationsl numbers is called the domain of
real numbers. It forms a well-arranged or ordered domain
of one dimension and is subjeet to the following laws, which
will be proved only for irrational numbers, as the rational
numbers have been shown to obey these laws,

I. Ifx<f3, andﬁ<Y, then is zx<Y . (5 is said to
li=2 between & and Y .

The statement “4<(3, asserts that there are infinitely
many numbers in the class B, that are not included in the
class A,. Similarly the statement@<(Y, asserts that there
are infinitely many numbers in the class C' that are not
included in the class B, . I am considering the irrational
numnbers «, @,'Y to be defined by the cuts (A ,A, ), (B,,B,)
end (C,, C,) respectively. It is evident that there are in-
finitely many numbers in the class C, that are not included

in the class A,, that is, o(<Y . And (3 is said to lie be-

‘ 9

tween & and Y .
1I. If & and Y are two different irrational numbers,

there exist infinitely many different numbers (3 lying be-

tween andY.

This is incidentally®established in the preceding
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proof,

III. If the entire system of real numbers be separated
into two classes R,, R, each containing infinitely many element
and such that every number of the class R, is less than every
number of the class R, , and conversely, further there is ei-
ther a2 last number in the class R, , or a first number in the

class This separation is said in every case to be pro-

o]
<.L2.
duced by the number a.

In sepsrating the real numbers into two varts R|, R,,
we likewise separate the rational numbers into two classes
A

A because we out assign to the class A, all the ra-

;P ? 2.1

tional numbers that are contained in the class R, , and as-
gign to the class A, all the rational numbers that are con-
tained‘in the clsss R, .

Let a2 be the number defined by the cut(A..Az). if a
is rational, it must be either the last number in the class
A,, or the first in fhe class A, . Also, if a is the last
number in the class A, , it must be the last number in the
class R as'well, because between any two numbers rational
or irrational there are infinitely many rationel numbers.,
Hence if a is not fhe last ﬁumber in the class R,, between
a and &« , there would exist infinitely many rational num-
bers, but a2ll the rational numbers that are less than «.
are contained in the class A, and a is the last number in
the class R, . Similarly, if & 1s the first number in
the class A, it can be rroved to be the first number in the
class R, .
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If a is an irrational number, it must belong either
fo the class R, or to the class R, ; further, a must be the
last number in the class R, or the first number in the class
R, , because if there was any number after a , there would be
rationals between it and a. 3But all the rationals of the
class R, are contained in the class A, ; hence there would
be rationals of the class A, after a, which is impossible.
In like manner, it can be proved thét if a belongs to the
class R, it is the first numbér in that class. Lastly, there
cannot be both a last number in the class R, and a first in
the classs R, , since there would be infinitely many ration-
gls between these two rational or irrational numbers, that is,
numbers belonging either to the class A, or to the class.A2 .
which is impossible,

In the previous paragr=rchs proofs have been given that
between two rational numbers, and between two irrational num-
bers there exist infinitely many rational numbers. To make
the statement absolutely general, a proof will be inserted of
the case in which one number is ration2l and the other irra-
tional,

From the definition of an irrational number, it fol-
lows that from the lower class infinitely many sequences of
numbers can be chosen which will have the irrational number
as an upper limit of the sequence, and that from the upper

elass infinitely meny sequences can be chosen which have

the irrational number as a lower limit; that is, there are



infinitely many sequences that define any irrational number.

Illustration: The number'vg is given by the sequences:

We can choose one special sequence from the lower class
that is expressible as a decimal number, for if we write in
order, theylargest integer whose square is less than 2, the
largest number taken to one decimal place whose square is
less than 2, the l=srgest number taken to two decimal places
wnose square is less thén 2, and so on, indefinitely, we
obtain the sequence:

1, 1.4, 1.41 , 1.414 , 1.4142 , 1.41421 , ------

Ihis sequence is unending, that is, the irrational num-

ber 2 can be expressed a8 an unending decimal 1.,41421------
Let the irrational number be a , a ,2a , 8 5 ----a_
By ~mmmmm=- and the rational number a, a , a‘z & g ==--=-

By B e

If we acsign to the n41th decimel place any of the fig-
ures < 84, , to the n4-2th decimal place any of the ten fig-
ures < 8y .., and so on to the 8phem th decimal place, wiere m
is indefinitely great, it is clear that every number thus
formed is greater than the chosen rational number and less than

the chosen irrational number, and that there are infinitely



many such numbers,

We attribute the property of continuity to the domzinof
real numbers, so that to every cut (R,, R,) in the domain,
such that every element of the cléss R, , is less than every

element of the cl=ass R there exists one and only one number

R,
& by which this separation is produced.

Any number rational or irrational which we may denote by
a is such that, if any positive number 5, be assigned , it
matters nof how small, we can slways find two rational numbers
&, in the class A, sand a, in the class 4, , such that a, <=

a<g and a, - a,‘=:8.

2
This result follows at once from the stdatement that be-

tween any t wo numbers whatsoever there are infinitely msany

rational numhers, and that we can determine any irrational

number to a given degree of arproximation.

The addition of irrational numbers. Let the numbers
fo 4 and’ﬂ be defined respectively by the cuts (A,, A,) =and
(B,, Bz)a Let us arrange in a class C, all those rational
numbers ¢ for which a,+b,=c , where a, is any number con-
tained in the class A, and b, is any number contained in the
class B, . And place all other rational numbers in the
class C, . ‘e have now sgparated all the rational numbers
into two classes C, and C, , such that every number in the

class C, is less than every number in the class C and

2 9
conversely. Therefore the cut (C,, C,) determines a numberYr.
If hoth « and’B are rational, then every number ¢, con-
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tained in C, is = x+(3 , because a < o, b, =3, and there-
fore a, + b, = 0&413. Further, every number which is less
than o(+/5 must lie in C, , for let ¢, be a number of C,
and suppose ¢, < cx+{3 .

We have ¢, p = 0<+ﬁ’

cz=(d-%m+ﬁﬁ-%ﬂ
Where p is a positive quantity
X - %p is 2 number of the class A, and
/3 - %p is a2 number of the classBl , that is,

(K - %p)—i—(ﬁ- %p) lies in the clesss C,, by our def-

inition.

Thus, every member in the class C, is = o<+[5. and
every number in the class C, is EZCX+75; therefore the cut
(C, ,C,) defines a number Y-.: d+ﬁ.

If X and /5 are irrationals they may appear in
either of the clesses Ajor A, B, or B2 , respectively, which
makes no difference to the argument, because for any positive
nunber S, however smell, we can choose numbers, a , a,, b,
and bﬁ, in the classes A,, A, B, and B, , respectively, such
that a, - 8, 48, and b, - b.éé‘.

In a2 similar way we can define multiplication, subtrac-

tion, division, including both powers snd roots.

As an illustration, I will find the product of the two
irrational numbers VE:V&,‘\/TE\B_LetVE and VD be defined
by the cuts (A, ,A,) and (B,,B,) respectively., We form
two classes, C, and C, , such that every member ¢, in the
class C, is given by ¢, < a, b, , where a, is any rational
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number whose square is less than &, and b, is sny rational
number whose square is less thanfs; and assign to the

class C, all those numbers ¢, given by c, Z a,b,, where a,
and b, are any rational numbers whose squares are respect-
ively greater than a,and{S. fe have then s=pesrated the
rational numbers into two classes,C, and C,, such that every
number in the class C, is less than every number in the class

2 2
¢ further c, = 0(/3) and ¢, = o‘(é . therefore the cut

2 4
itself (C,, C, ) defines a numberY , such that Y2= o(/S; there-
fore y = «fd .

Dedekind in his theory of the irrational number, rep-
resents en irrationsl number as a separstion of all the ra-
tional numbers into two classes, such that the inferior
class has no greatest number, =znd the superior class has no
least number.

Cantor's theory of the irrational number essentially
depends upon the use of convergent sSimply infinite ascend-
ing aggregates, or convergent sequences in which the ele-
ments are rational numbers.,

In order to conneet the theory of Tedekind with that of
Cantor, it is necessary to discuss the idea of limits.

We say that a variasble magnitude X approaches 8 as a
limiting value when the difference s-x taken in absoiute
value becomes and remains finally less theh any given pos-
itive value different from zero.

Theorem 1. If a magnitude grows, but not beyond all
limits, it approaches a limiting velus.



If we denote the variable magnitude by x, by our hypoth-
esis, there is some number a that is greater than x; hence
there exist infinitely many numbers that are greater than x.
Let all these numbers a, that are greater than x make up the

class R,, and put all the other real numbers a,, in the class

2"
R,. Every number a, of the class R  is such that as x takes
all its allowable volues for some of these values x Z a, ;
hence, every number a, is less than every number g&,. Con-
sequently, there exists a number «, which is either the greet-
est in the class R, , or the least in the class R, . As X
never ceases to grow, by hyrothesis, there cannot be a great-
est number in the class R, , so that & must be the least num-
ber in the class R, , That is, whatever value a, we choose
from the class X,, we will have finslly a, < x< «&X, or, in
other words, X approaches the limiting value K.

Theorem II. If, as x varies, we can assign a positive
quantity cf, such that after some given position x changes
by less then S, then x approaches a limiting value.

Retaining the notation from the prpceeding proof, 1let
a be a fixed number the least in the class R, , ané choose
in the class X, numbers a8, < 8,< 8 3 ~----==--- 211 of which
are less than a. If x approaches the number a as a limit-
ing velue, it is evident that x-a becomes less in absolute
value than (g, where gis any positive quantity different

from zero. AsSdecreases in absolute value since a is a

fiXed point the boundaries within which x must lie are



given successively by a, - a, 8 -8 , =--=------ that is, the
numbers a < &, <L 84 --=---=---- spproach a to within a distance
arbitrarily small; therefore a is a limiting value to the
varieble magnitude x.

Theorem III. If the aggregate (a,, 8, =--------- ) is
such that from and after some fixed element, each element is
less than the following one, a2nd if 211 the clements are less
than some fixed number N, <then the aggregate is a convergent
sequence.

For suppose it were not convergent. Then, if 5. is any
definite positive number such that I 8.4 - awtl .

T = § ., we woula have &, . p —
a1r+—r<f where r can be taken as large as we please. There-
fore we can mske a,+ r<5j7'N which is contrary to the hypoth-
esis; that is, the aggregate cannot be other than convergent.

Theorem IV, If the aggregate (a,6, 8 ,=---=-~-= ) is suech
that from and after some fixed element, each element is great-
er than the following one, and if all the elements are great-
er than some fixed number M, then the aggregate is a comver-
zent sequence.

Por suppose it is not convergent. Then, using the no-

n - aY\'Hl ’ r ah.H -87\-{‘2

............ = A‘ d av a = 8, =T . But sas
= and we hsave NA+R n 5

1'8 can be made as large as we please by choosing r great

tation from the preceding proof a

enough; therefore a, - T S can be made less then M , which is
contrary to the hypothesis; therefore the aggregate must be

convergent.
«36-



. A simply infinite ascending aggregate in which each el-
1 & ratiomal nwvmbiy

ementAis said to be convergent, if it is such that corre8pond-

ing to any fixed arbitarily chosen positive rational number

€, as small in the ordinsl sense as we please, a number n

can be found that 8, =~ 8pym < € form=1, 2, 3, --------
A sequence of rational numbers is said to form & set when

by means of some definite law we can determine whether any

given number belongs to the sequence or not. If A is a set of

rational numbers, there is a first number a,, a succeeding

number a , , and in general after a, follows a certain number

844y « The set A is then called an infinite sequence and is

denoted by A=a,, a,, 84----------- or by A = [a.,]
Exs. The sequence 1, 2, 3, e=e--c-= forms the set'[ﬂ] .
The sequence 1, l, %, --------- forms the set [%] .
The sequence 1, 1, 1ls---------forms the set [}] .

Let C be any fixed rational number. Then C is said to
be the limit of the sequence A = E,J , When for any positive
rational number € , chosen arbitrarily small, there exists an

index m, such that C— a, < € for every value npm. When C

m
is the limit of a set A, we say that A is 2 convergent se-

quence, and that E‘J converges to C as Hmiting value.
Infinite sequences can be arrsnged to represent any num-

ber whatsoever. In fact, many sequences csn be arranged to

represent the same number. A convergent sequence Ea“]

of which the elements are rational numbers, is taken to rep-

resent a real number, the 1limit of the convergent sequence.



Illustrative example. To find an infinite sequence that
will represent the real number Y2. That is, required to find
an infinite sequence of rational numbers a,, 82,, 83==---=-m-

. 2
such that Lim. \:a.“] = 2,

2
Let a, be the greatest integer such that a"<.2; then,

a =1,
The numters 3'4'%6 R P'*'T%" ---------- a, + %% must

be such that the squares on some two consecutive numbers are

respectively less and greater than 2. Let 8, be the greatest
2

number of this set whose square is less than 2; then, (a,)

<2 < (a4 ).

10
= X,
Suppose &, = a'+'T6 . . .
Similarly, the numbers a, 4 ==, , 8, 4 ==, =cccee-=
2 710" 7 %7 10®
2, + 3 must be such that the squeares on some two consecu-
10*

tive numbers is respectively less and greater than 2. Let

a2z be the greatest of these numbers whose square is less than

2 2
2; then (a.; )< 2 < (a 1) .
3 3 4_'TU

2

Suppose 8= 8,4 %.z

Proceeding indefinitely in this way we obtain an infinite

gsequence of rational numbers, whose squares are slweys less than

2.
al
X
a2=a|+m‘
84 = 8 Xz _ g X, X,
T Y et g+ oo
X X X X
8 a ' 2 3 | ew~ecceccee= n—t
W v+ et + 1o



Where x, , x,, X, , --=-=-- --- are respectively some one
of the nine figures, 1, 2, 3, ==-==nem-=-=-= 9, we have
2 2
(a.) < 2 8 1
" < Pt e
. 2 2 (2
o O L2 - (ah) <?an+ 1 ,g - (8.“ )

4

.o 2 - (a 4

1
n L+ o
since a,, & 2, O>viously we can choose an index m,
that will mske 4 + 1 < € o where € is an
TO™T 0761
arbitrarily smell positive quantity.
2
2 -(a,) <€, for n D m.
e . z —
c @ leo [an] — 2.
When the numerical work has been sccomplished, we ob-

tain the infinite sequence 1, 1.4, 1.41, 1.414, 1.4142 ------

as representing the irrational number V2.

As an illustration of the way in which a number may be
represented by different infinite sequences, consider the
sets

(1) 2, 2, 2, 2, accceen---

(2) 11, 1%, 12, 1%, ..

2 L &
1 »1 o1 o1 ________
(4) 1.9, 1.99, 1.999, ------

It is evident that each of these sets has the number
2 as limiting value., Therefore each Sequence is consider-

ed as a representation of the number 2.
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Cantor's Theory of the Irrational Number.

Let [5“1 and [b;] be two convergent sequences of

rational numbers, that define the real numbers a and b, re-

spectively. [a“] and [b,‘] are said to define the same
number, represented by a=Db, provided they satisfy the con-
dition that for any arbitrarily chosen positive guantity €,

however small, an index n can be found, such that,

Byem = Loy

0.1, 2, 3, =eememeean-

< €, where m can have any of the values

Again, if after a definite number of elements n , the sequen-
ces [a“] , end [b,‘} , are such that |a - bn+m) 2 5
where 5 is an arbitrarily small chosen positive number, for
all values of m, then [a “] is said to be greater than [b“]
which is denoted by ad b , or b < =a.

I1f on the other hand 5 be any minus quantity whatso-
ever [b.n] is said to be greater than [a.h], denoted by P> a,
or a < b.

We have thus defined the application of the ideas of
equality, greater than and less than,vto infinite sequences.

An aggregete ( X, X, X ===-== ) or [x] , Since it is
a convergent sequence, defines the number x .

The sum of & and b, represented by the infinite se-
quences Ea..“] and [b,J , is defined to be the number rep-
resented by the sequence [a.“-l- b“] . It is therefore re-

quired to prove [a“-l- b“] convergent.
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Since [am-} is convergent, we can choose an index I such
that a, - a*“*\’<_—§" Also since [b,,Jis convergent, we can
choose an m,, such that b, - bm,-p-fc<-€2—' Substituting the
larger value of m and m, in both equations, we obtain
(a,,+1,) - (a“""t’+ bm+p )< €. That is, \:a“+b“-} is
convergent.

The difference of any two numbers a and b , denoted by
a-b, is defined to be the number represented by the sequence
[a.n - bn] , Wwhich can be shown to be convergent, by a proof
similar to the preceding one.

The product of any two numbers & and b, written ab, is
defined to be the number represented by the sequence [a “b“]‘
It is required to prove this convergent. Since both [a“]

and [b“] are convergent, a& number m can be found such that,

by, - bm+|,<5, and a., - am+r,<5. Now, \am Dy - a.m_,_,,bm.,,f_, )

= e, (b, - bm-s-{o)“"bm (am'am+]=)
< alby,- ‘hm_‘.',)-l- b(a, - 3m+}o)
) ambm‘ am_‘_rbm4.k<(a+b)6

Writing CS' _ €
“ a<4b

we have,
Ban P = B s pDmarp < € ; therefore the seguence

[a“b“-l is convergent.

The quotient of 8 and b , written % , 1s defined to be

the number represented by {%—] . The Sequence{%“-]
n

can be shown to be convergent by a& method very similar to the
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above, except in the case where {1L;1 is gero.

1f [b “] is gero, let §=x, .. a=bx. This equa-
tion has no solution unless a=o0, because when b=0,bX=0,fop
all finite values of x. If a=o0, the equation a=D>bx is sat-
isfied for 2ll finite values in the real domsain. S0 we can
state that when the divisor is gzero, division is either imvos-
sible or entirely indeterminate.

Throughout this discussion we have considered both the
real and rational systems of numbers to be Archimedean. That
is, there is no positive number & in the system so small
but that some multivle of a , say na is greater than any pre-
scribed number b in the system. Secondly, however large
the number ¢ may be, there is 2 positive integer m such that
£ <4, where d is arbitrarily small.

In an absolutely rigorous proof of the laws of addition,
subtraction, multiplication and divison, it would be neces-
sary to prove that these different methods obey the associa-
tive, distributive and commutative laws,

Assuming that these laws have been established for ra-
tionel numbers, I will prove the associative law for sequences.

It is rejuired to prove that O<v(‘3 Y — o(ﬁ.y . We have

ﬁy:: [b“ c?:]z(tl cl ’bch_o b303 ---------- ) > &nd
a.[sY-_- (a,, 8,, 85,--====-==- J(b,c, s b Cam=mm-ommenns )
= a‘c b| c| ’az'bzc—z.’ag obsc39‘ ————————

Similarly, we have
o&ﬁ.Y = 8 , b,.c ,a,b,.c,,8,0 Cor-----~
But the associative law holds for rational numbers, and
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are all rational numbers... The associative law is established
for numbers represented by infinite sequences.

That the communitative law holds in the case of infinite
sequence 1is very evident because our proofs are based on dis-

cussions in which we use only rationel numbers, for which the

law holds.
For instence, a+b is given by {a“+b“‘\ or
(a,+b, , a7_+bz', B, +by=====c--====-- ).

Since the commutstive law holds for rational numbers,
each term of this sequence can be reversed, ana written

(b,+8, , b+8,, b4a,,=-----=----c==- ) or

[b“-\— am‘l , which is convergent, as can be shown by

a proof identical with that given for [a“-;- b .,,-J .

Between any two resl numbers & and b defined by [aM]
and [b.n] , respectively, there lie infinitely many rationel
numbers.

Suppose a » b; then we know that \a.“_._m- b“+m\>(s
for Y\>'J. Also since [a m-} and {b.n-} are convergent, we
have ta“-ah_‘_m,(e, end lb.,‘- b“+m\<é, for n>» p,
where € is 2 rational number, which for simplicity we will
choose to be % 5.

If we choose x to be such tnat €<X<5, we have a
number definied by [?V\' x] , Which can be proved to lie
between a snd b.

Since 84 - 8, m<€, for n >/u , We have

a ,;(ah-x) > x ~€, e a > e, -X.

N



Also (a, -2) - bm_m-:(a11 - b, H(b,-b, ) -
> 84 € -x

Therefore, provided x is <& S+e , the real number which
corresponds to a., -x is greater than b, and thus lies be-
tween a snd b.

But cg+é and € are both rational numbers, hence there
are infinitely many rational numbers lying between 546 and €
Whenever x assumes any of these infinitély many values be-
tween §+ ¢ and €, the number a4 -x lies between a and b.
Therefore there sre infinitely many rational numbers }ying
between the real ﬁumbers reprecented by the sequences [aTJ
and [bm] .

Ve wish now to epply the ides -0of Dbounded aggregates
to the determination of rational and irrationsl numbers.

Since a (1,1) corresporndence has been established be-
tween the real numbers and the points of a straight line, we
can use the terms "aggregate of numbers" and "aggregate of
points" indiscriminately.

An aggsregate is said to be bounded on the right (>r left)
when there is no point of the aggregate to the right (or left)
of some fizxed point.

When an aggregate (E) is bounded on the right there e:-
ists a number M such that there is no number of (E) greater
than M, and if any number M' whatsoever be chosen smaller
than I, then there exists one number at least of (E) which
is greater than M!

If an aggregate has a greatest number this is called
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the maximum of the aggreagte and enjoys the prorerties enum-
erated above.

When an aggregate has no greatest number, separate the
‘rational numbers into two classes R, and R, , placing in the
class R, every rational number that belongs to the set; as
well aé all the rational numbers that are less than or egual
to numbers of the set, and place all the other rational num-
bers in the c¢lass R ,. The cut (R, ,R,) determines a number
M which may be rational or irrstionsl. Now, the aggregate
(E) has no greatest term and as 21l the numbers in the class
R, are either equal to or less than the elements of (E), ev-
idently the class R,cannot have a greatest term. If there is
a lowest number M in the class R, , it is the rational num-
ber defined by the cut (R, , R, ). If there is no lowest

number in the class R

R, , the cut (},,R,) must define an

irrationasl number M. It is evident from the definition »>f
M , that there is no number of (E) greater than M. Let M'
be any number less than M. We have proved tuat between any
two real numbers there lie infinitely many rationsl numbers,
which in this case, being all less than M, belong to the
lower class R, .

Similarly, if (E) is bounded on the left, there exists =
number M such that there is no numbei of (E) less than

M, and if bee any number whgtsoever greater than M, there
exists one number at least of (E) that is smaller than M',
that is, lies to the left of M ' .

—
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If (E) and (E') be two aggregates such that every number
of (E) is less than every number of (E'); (E) having no
maximum, and (E') no minimum; and for any chosen positive
quantity € , however small, there exists a number a, in (E)
and a number a, in (E') such that a,- a, << €, then these
two aggregates define a definite number, rational or irra-
tionsl.

Since (E) has no maximum, let A be the upper boundary of
the aggregete, and since (E') has no minimum, let B be the

lower bourndary of the aggregate, ac in the accompanying figure.

() | =)
Al | A

To insure that (E) and (E') define the same number or
the same point, we must have A and B coincident points.
That A and B are coincident points is réquired by the lat-
ter condition of the theorem, -ince we can choose &€ arbi-
trarily small and therefore less than A-B in absolute vzalue,
however close these two roints mZy be. That is, A and B

must exactly coincide.

Illustretive Example.

Let (E) 1, 1.4, 1.41, 1.414, 1.4142, «=---= and let (&m')
2, 1.5, 1.42, 1.415, 1.4143,c~=cecwe-~ . These two aggregates
fulfill the conditions imrosed by the theorem; every num-

ber of (E) ic less than every number of (E'); (E) has no
meximum, as we havs chosen successive approximations of the
irrational number Y2, and (E') likewise hes no minimum; fur-
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ther we can find two numbers a, in (E) and a, in (E) which
differ by less than € , however small € may be in absolute
value. Therefore, the aggregate (E) approximates to the val-
ue of V2 by defect, the error being in every csse less than

1 where there are p+1 terms considered in the aggregate;
I0F |

and the aggregate (E') approximates to the value of V2 by

excess, the error being in every case less than 1 where

‘ 0P
there are p+1 terms considered in the aggregate.
Example: % is represented by the two aggregates, (Z)
0,433, 4333, 13333~ ~c-ne-= and (Z2') 4, .34, .334, .3334

The examples just given are illustrations of infinite
sequences in decimal form of rationel or irrational numbers.
That an irrationsl number can alweys be represented by an
infinite series is clear from the theory of irrationals as
developed by Dedekind. Further that the idea can be extend-

ed to rational numbers is shown by:

3=(3,3, 3, Bu-memm-on= )
1,2 .3 4
5=(2g, 25, 2§, 25, ------ )
= Sl l ,1 1 tl _______
3= > 33, 37, 33,52 )
2=(2.9, 2,99, 2,999, =--==--- )
1 1 1
and 0 - (1' 2—.0 59 a “““ )
_(1.-1 -1, .1 __._
-—‘1, S z 3’ )
'—':(-1’-‘]'_’..' -l -} __-_)
& 3’ 4¢
=(0, 0, 0, =~=-==-<)

Hobson in his 'Theory of Functions of a Real Variable',
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shows that every real number can be represented by means of a
non -terminating series of radix-fractions, of which r, the
radix, is any integer?; 2.
Let N be any real number. The series o, r, 2r, 3r,~------
ultimately becomes>N.
Let rN>C,r and rN < (C+ 1)r
L N=C, +'§' , Where N,< r .

Similarly N = C’ 3+ N , where Ny < 1 and Nz"_' 02 + Nz , where
T T

Ns<r;
e N=C C Ca C3 focmme=- C N /
ot ZL+S + 34 2+
and since NM"< r, we have
N-(Cc’_'_g_,__‘_C_,_,_ """ Cn )<l
T T+ T T

1
and aST® tends to the limit zero when n is indefinitely

increased, it is evident that the sequence whose nth term

ey 4 C1 4 ----- Cn is convergent and represents the real
r rw
number N. Therefore writing N= C4C  Co f ----- we have the
r r*

real number N represented by a non-terminating redix-fraction.
The case in which N is & ratimnal number & in its lowest
terms, requires special treatment.
a=C,b+B,, where B,< b
rE,=C,b+B,, where B, < D
rB=C, b+B,, where B, < b



Case 1. 1If By=o

Ye have , N_oa8_C, G Gz  ~--=-=-~ Cxn
b r r

We wish to form a non-ending radix-fraction; there=-

fore writing C“-1 for C,, we have rB = (C,-1)p+Dd

v By=b .
r b=(r-1) b+b s B=b.

Similarly, for 211 the succeeding numbers Bh+1, Bh+3’
......... we can substitute the value b. That is, C,_ , C,_,,
Copgs —=--==-=-- are each equal to r-1.

WritingN=00+%.+_C§f:—+-—-~+%_%._;_ %‘:-7?14-—/""'%1‘;1"'”_

we have represented the rational number N by & non-ending

radix-fraction.

Case 2. If none of the numbers Bi' BZ' ------- Bn, B“+’
--------- = O, since they are all integers and less than b ,
they camnmnot be all different. Su-pose B = B ; then we

n h+m
have,

' 3h+,= Bn+7n+l

That is, the sequence of radix-fractions becomes recurring.

Among the many ways of representing numbers, only one
more will be treated here----Cantor's Sequence of Products.
Cantor has shown that any number N > 1 can be uniquely rerp-

resented in the form,
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(1,1) (141) (141 ) ( L1) —comnmm-
+§ +5 +3 +3

where a, b, 2, d--=-- are integers such that b £ a , ¢

1

d 2 ¢ --memn=-

The number a8 is determined as the integral part of N

writing Na as B, b is determined as the integral pert of

a4+ 1
B ; writing Bb as C , ¢ is the integral part of C_ ;
: 1 c-1

B-1

and so on indefinitely,
Txamples:
Ve is uniquely represented by the indefinite product.

(1,1) (1,1 ) (1, 1) (1 1 ) mmmmeeea
MRS s AR +sz5E57

V3 is represented by the infinite nroduet (lqﬁl)(lf%)(l+1 J---.
2 106

Cantor wes able to prove that when all the numbers a, b, ¢,
d,~--~----which are positive integers, are such that after some
fixed number m all the numbers m+1, m+2, ----eee were each the
square of the preceding number of the sequence, then the sa-
quence represents a rational number, otherwise the number rep-
resented is an irrational number.

It is easy to construct sequences of never-ending dec-
imels. PFor instance, let easch successive element of the se-
guence be constructea by edding to the immediately preceding
element the next prime in order from those already requisi-
tioned. .1,.12, .123, .,1235, 12357, .1235711, .123571113,-~-

Or again, let an infinite fractionsl sequence be construct-
ed, where the numerator of any term becomes the denominator of

the next, while the sum of the denominators of anytw. counsec-
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utive terms forms the numerator of the last term used in
the computation,

l ? 3 ? 4 ’ 7 ] 11 y TS )

2 1 3 7 77

Sequences of this type may be rational or irrational,
and very often it is very difficult to determine from a
given sequence whether the number represented is rationel or

irrational. Other sequences as the two numerical ones giv-

en above obviously determine irrationsl numbers,

Liouville's theorem. If p, , pz , --- is a
g qz
sequence of rational fractions in their lowest terms, de=-
£ining an algebraic number b of rank m, then for every el-

ement p from and after an assignable stsze, we have

p _b

q

1
) q'm-‘-l ¢

This theorem, the proof of which is given by Young,
enables one to determine whether any given series can rep-
resent 2n slgebraic or & retional number, but does not
furnish a means of determining the number actuslly repre-
sented by the sequence.

A distinction between rational and irrational numbers
is readily drawn in the theory of irrationsl numbers as
developed by Dedekind, but when considered from an alze-
traic point of view these numbers become much more similar,

All equations containing a variable with rational in-
tegral coefficients require but the system of rational num-

bers for their solution. 7hile 2ll the general equations
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of higher orders introduce irrational numbers, and many
special equations of these high orders involve the use of
rational numbers as well.

There is snother type of irrational number that must
be considered, namely, that based on the exponential number
€.

The exponential number € is determined from a discussion
of the expression (141 j*. It has been shown that two ra-
tional numbers A and EX.can be found, differing from one an-
other by as sm=ll a quantity as we please, such that (1+l)x
lies between them. Moreover € , which is defined as thexlim-
it of (1+}_)X , where X —s» ©0 , has been showh to be ir-
rational, 2 cen also be shown to be non-algebraic. To dis-
tinguish € and TI from algebraic irrationals, théy are
called transcendental irrationals. The Naperian logarithms
are based on € as logarithmic base; they are therefore
likewise transcendental, and are evidently infinitely many
in nunber.

Another group of transcendental irrational numbers,

infinitely many in number , is represented by the Liouville

humbers, %L'FT%%‘ + Tﬁﬁ%f5'+ ------- ,Where X, X, Xg4,
St eeeeeeaa may be respectively any of the ten figures.
ZIxample:
%U"'T%V“*T%"—"’* 4'2’ A+ TS is given by the
the decimal,
«120003000000000000000004~~~<~==~~
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THE THEORY OF SETS OF POINTS

«=~=00000~-~

If in any aggregste there is a point such that in the
neighborhood of this point there are infinitely many points
of the aggregate, then that point is called a limiting point.

Ex. In the aggregate , 1 , 1, 1, 1 ,----= --=,

2 3 1
there are infinitely many elements of this aggregate in any
interval however small extending to the right of the orizin.
Therefore o, is a limiting point, elthough it does not te-
long to the sequence.

The domain of rational numtrers does not nossess the
property of containing 811 the limiting noints of particu-
laraz:regates choéen from among the rational numbers, for we
have seen that the irrational number is defined by a sequence
of rational numbers,

The domain of real numbers, howe¥er, does possess the
proverty that all limiting points of particular aggregates
of real numbers are themselves members of the real domain.
This idea is expressed by saying that the domain of real
humbers is perfect.

The domsin of rational numbers and the domain of real
numbers both possess the property that between any two
numbers whatsoever of the domain, there lie infinitely
many rational numbers; this is expressed by saying that
these aggregates are dense.

All the real numbers x, such that a< x £ b, in the

ordinary sense of the symbols <, =,%> , are said to form
«5F=



an interval (a,b). Such an interval is frequently describ-

ed as s closed.interval, whereas all the numbers x, given by

a<x<b, are said to form an open interval.

The Dedekind-Cantor axiom states that to every number,ration-
al or irrational, therevcorreSponds a definite point of the
straight line; that is, we but assign to a straight line the
same degree of continuity that we conceive to belong to the
domain of real numbers,

If one set of numbers is contained in a second set, the

first is called a component of the second set; and if the

latter contains points that do not belong to the former set,

then the first is cslled a proper component of the second set.

We have established a (1,1) correspondence between all
the rational numbers and the points of a straight line, and
by the Dedekind-Cantor axiom we attribute to the straight
line a continuity comparable with that of the real numters;
hence, we can use the terms sequence of numbers and ageregate
of points indiscriminately.

In order to construct a convergent infinite sequence of
number or set of voints we have but to select any s egment of
a straight line, triseet, let us say, this segment AB at C,
then trisect the segment CB at D, again trisect the segment

DB at E, and so on to an infinite number of divisional points,

as indicated in the accompanying figure:

A C DB

These points are infinitely many in number and as they
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continually approach the fixed point B, we can say, with ref-
erence to the theorems slready proved, that B is the limit
of the set (A, C, D, E, P, ==ccc---a ).

Theorem 1. If we take any series of closed segments,
each lying entirely within the preceding; and if the length
of the segments decrease without 1imit, then the end points
of these segments form an infinite sequence, and the segments
determine one and only one proint L, internal to all the seg-
ments., |

It is evident from the accompanying figures that the end-
roints of an infinite series of segments, each lying within

the preceding,form sequences which have boundaries.

Pig. 2.

The end-points that are denoted by a's form a series
of infinitely many elements, such that a, = 8, = a = a
-------------- and frrther, every a is less then every b;
that is, the series of a's has an upper boundary A . Siﬁ-
ilarly the endeoints that are denoted by b's form a series
of infinitely many elements, such that, b,Z bZZ; by ==-=m--
and every_gvis greater than every a; therefore the series
by a previous theorem must have a lower boundary B. Since
there are infinitely many intervals, and as our hypothesis
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rules out such a case as a,=8a and b“-= b“+ at the

Ne=y ? {

same time, we know that the interval b, - a,, can be made
smaller than any assignable positive magnitude € ; therefore
A and B ,(the upper boundary of the b-series resPectively‘h
must coincide exactly. That is, the given series of seg-
ments represents one definite number.

Any point P, of a set which is not a limiting roint of

the set is called an iSolated roint of that set. The set is

such that we can find a neighborhood of P, that is a small
interval having P as an interval point, which does not con-
tain any point of the set ~»>*her than P; thefeforé P is not
a 1imiting point of the set.

An example will suffice to illustrate this definition .

Consider ths sequence; 1, 1, 1. 1 , 1 , ==c-cccacccae-=-

3 9 2% 81 :
every point of the set is an isolated point, end C is ob-
viously a limiting point of the set; for choosing the point
1l , the point of the sequence which is nearest to the chosen
point is 1 , eand within the interval 1 - 1 <there are no

27 BI

points of the set; therefore the noint 1l cannot be a lim-
iting roint and must be a isolated point, because if € were
chosen 1 - 1 , the condition for a limiting point fails,

g7 81
A set of points is said to be an isolzted set when no

roint of the set is a limiting point. For instance, omitting
the point gzero from the p.evious example we obtain an iso-
lated set, or more obviously, breaking off the sequence after
a finite number of terms, sinee for one limiting point infin-
itely many terms are required.

A set, of whose limiting points all belong to the set
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itself, is g8aid to be closed.
Ex.l. Any finite set, because such a set has no limiting
point or points.
1 2 3 -

Bx. 2. 13, 13, 1F, --------- Z.

A set which is such that every point of the set is a

limiting point is said to be dense-in-itself.

A set which is both closed and dense-in-itself is said

to be. perfect.

Ex. All the numbers in any segment including both end-
points, which we nave defined és a closed intervel and de-
noteu by (a,b), or (2,3).

A set of points (E), contained in an interval (a,b) ,

is said to be everywhere -dense, if 1in every sub-interval

(a , b ) however small there are points of the set (E).

The set of points (E) is said to be nowhere-dense ,

if in every subinterval (a , b ) a second subinterval can be
found which contains no voints of the set (E).

It is evident from the definition of 2 limiting point,
that no finite set of points can contain or have a 1imitiﬁg
point. On the other rhand every infinite set of points has
a limiting point which may or mey not belong to the set.

The interval (a,b) contains infinitely many points;
therefore, bisecting the interval at the roint ¢, we obtain
two intervals (é;c) and (c,b) one at least of which must
contain infinitely meny points, and both intervals may have
infinitely many roints; again bisecting the two intervals
at d =a2nd € , we obtain four intervals (a,d), (d,c)(ec,é)

57



and (€,b), one of which must and as many as the four inter-
vals may contain infinitely many points. Por simplicity, sur-
pose that the right hand intervéls (2,v), (e, D). (ey D) ==-=
contain infinitely many points, since by this construction we
obtain a series of intervals that conforms to the requirements
of Theorem 1, the intervals determine a point that is the lim-
iting point of either sequence of end-points. Now returning
to the case where the intervael (a,c) contained infinitely many
points, it likewise has at lesst one limiting point; and the
reasoning applies generally, however numerous may be the seg-
ments containing an infinity of points.

If (G) is a set of points that has but one limiting
roint, we can construct a sequence of points of the set which
have the same limiting point. Let A be the limiting voint of
the set (G), 2ndi suppose it to be an uppér boundery. Let =,
be any point of the set chosen to the left of the voint A.
That same such restriction of thé position of the roint a,
is shown by such a set as

1%, 1%, 12, 1% -------- 2, 3, 4, b.
The interval (a .b) contains infinitely many yoints of the
set from our definition of = limiting point. 1In(a, A ) choose
any point a, belonging to the set (G) ; clearly the inter-
va1<§1A) contains infiniteély many points of (G). Procseding
in this way we construct a sequence of roints a,, a,, a4 ------
such that a<a,<a, , ---=----- and all < A. That is, the
interval A~ a, ca2a be made smaller than any assignable pos-

itive however smnll; therefore A is the limiting point of

-58~



the sequence.

Before discussing further the properties of a closed
finite interval, it is instruetive to notice that by a
suitable trénsformation, it is possible to set up a (1,1)
correspondence between the points of two different inter-
vals,

X
. N . ' )
For instance, the transformation X=V§?FT' , Where the

positive value of the radical is always tsken, converts all
the points of the unlimited interval ( - 00,4 €0 ) into
noints of the limited interval (-1, 1). Purther, it is ob-
vious that the order of the points is conserved during the
transformation since x' Z x" according s X, = X, .

In order to transform the finite interval (a, b) into
the finite interval (0,1) so that any arbitrary point ¢ in
the interval (a, b) will coincide with a chosen point in the

interval (0,1) say I%” , Wwe can use the transformation

equation:

Closed and Perfect Sets.

In considering the interval (a, b), since all the real
numbers are included we have an intervsal which is dense,
dense-in-itself, and also closed; therefore any closed seg-
ment of a line, representing a closed irerval of real num-
bers is a perfect set. The interval (a,b) is such that no
sub-interval (a', ') can be chosen in (a, b), however smell,
that does not contain real numbers. This is expressed by
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seying that the real numbers in any segment of the real do-
majn is dense. But if we consider only the rational num-
bers of the interval (a,b) they will be closed---all the
rational numbers of the closed interval (1,2) for instance,
form a closed set; and since between any two rational num-
bers however near together, there lie infinitely many ration-
al numbers, the rational numbers in &any closed imerval form
a dense set; but the set is not dense-in-itself, becauvse the

irrational numbers sre limiting points of rational numbers.

Non-dense perfect sets.
It is possible to construct & set which is perfect and
yet nowhere dense. The oxamrle to be given in detail is

Ceantor's tertiary set of points.

A E T d D‘G.H B

— . -
17 K L MmN oP

Divide any straight line AB into three equal parts and

derken the middle part. This will be considered as void of
points of our cet. Divide each 0f the two remsinins seg-
ments into three egusl parts and darken the middle part in
each case. Continue this divisional process indefinitely and
in every case consider the dark interval to ie void of point
of the set (E). This process creates an infinite set of

non - overlapping 1intervels, because each two consecutive

intervals belonging to the set are seperated by a black
intervel.

Two intervesls are said to overlap when they have one
internil point at least in common. If two intervels have
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the same common end-point only, they are said to asbut. Hence

two intervals are said to he non-overlapping when they have

no points whatever in common.

A . e D k-]
A c; d| e 2 Cr - 4a B
_"Ld“‘ c.-;_d.: cy__é‘g e_;_,,d.,,,

e ————t

It is evident from the disgrem that the segments between
any two black intervels are all equal at eny 8tage of the sub-
division, and by successive division these segments can be made
less than any assignable magnitude. ©[hat is, every point that is
external to the black intervels after indefinite subdivisicn
is & 1limiting point of the end-points of these black inter-
vals on both sides, since between any two roints, however close,
there are infinitely many points and therefore infinitely many
intervels construeted according to the above law. Thus we
cau choose a set of intervals, such as AC , 4, , 4,C,,-----~
that conforms to the conditions of Theorem I,and therefore
defines a definite limiting point &« , which must be internal
to all of these infinitely many intervals, that is, must be &n
extgrnal point of the bléck intervals. PFurther, by Theorem I,
the point defined by 2 series of intervels each lying within
the immediately preceding one, is & limiting point of the end-
points of the intervals on both sides.

The end-points of =11 these intervals A, C, ¢,, d,, ¢c,,

c, » 4, ------- ~--are limiting points of end points on one

gside only. For consider the sequence of intervals

(aA,c) , (a,c) , (A,C) « ( AC, ) =--eamens , Since in the
«b6l-



neighborhood or A and on the right a member of this sequence
can be found which is less than any ascignable quantify, how-
ever small, therefore the given sequence defines the point A.
Consider the set made up of the end-points of these in-
tervals and the external points of the black intervsls, every
point of the set is a limiting point, thereforeifhe set is
dense-in-itself. We require to prove it a closed set. None
of the black intervals include points thet belong to the set ()
that we are discussing, and if P is any point internal to one
of these black intervals we can construct an interval with P
as centre so small as to include none of the noints of the
set. Perhaps a clearer idea will be arrived at if we mention
that the points A and B the upper and lower boundary of the
segment mey be concidered to be rational points, then all the
other divisional p:ints will likewise be rational points,and
clearly between any rational roint and a rational or irra-
tional point there is an intervel of definite magnitude. Thus
the point P cannot be a limiting poirt of the set (E); there-
fore the set (E) is closed; therefore (E) is a perfect set.
The set (E) however is not dense. In fact, since by
indefinite subdivision the black intervals can be made to
arproach closer to esch other thsn any ascignable magnitude,

the set of blark intervals satisfies the condition for being

everywhere-dense; that is; the set (E) is nowhere-dense,
Thus we may have a perfect set that is everywhere-dense

or one that is nowhere-dense, end the most general set will

contain a combination of these two zsroups of points. For in-
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stance, consider the set of points in the segment (0.2), where
Wwe include all the points of the interval (o0,1), and then =dd
the points of the intervel (1,2), after it has been sub-divided
after the manner of Cantor's typical tertiary set just dis-
cussed.

If we take the set (E) and omit all the end-points of
intervals, we obtain a set dense-in-itself and closed, there-
fore perfect. Moreover each point of the set is a limiting
roint on both sides. If we include the end-points that are
limiting points on the right (ﬁr.left) only, we obtain a set
that is perfect and dense-in-itself such that every point is
s limiting point on the right (or left) side.

Example of a non-dense perfeet set.

Let x be a number given by

X _ %“kggz-k %% 4 " 4'%%. , Where the numbers
C', C,» Cp ====--- Ch_are either O or 2, and where n has ev-

ery integral value any way also be indefinitely'great. Clear-
ly no number lies between

C C
B'—"“"z‘%"' ""5"{.‘.4' 3™ meF TRez T

the largest number we can form heving O in the nth place, sand

C, o Cpoi 2 , the smallest number
3 tEet F e B
we can form with C_ = 2. But the geometrical series, 2
h BRET
2 2 ------- is equivalent to 1 ; therefore, the
zRnea- t gwe .
v between C Cz ,Cz 6 ====a , angd
interval betwe ’Z)' +3: +g; -+ v_,_g]?;n
C C Cg | ===meme-u- ———--- £ . that is of magnitude
5+ 3E <t oEr T +3
1 contains no points of the given set,
zH



This complementary interval of magnitude %_ can be made
n

as small as we please since n can be indefinitely great.,

The nuvmbers C,, C, ,-------- C can be either o or 2,

2
by hypothesis, and none other, so that the number of comple-

Nn-f
mentary intervels of length 1 _ is 2 . The sum of all the

AN
z'n-l

complementary intervals is given by ii: , which in

ZMN
n=1\
the 1limit where n becomes indefinitely great , is unity. That

is, the set of complementary intervals is everywhere-dense,

therefore the set of points is nowhere dense.

Derived Sets.

It is eclear that not 211 sets of points ere dense-in-
tnemselves, for infinitely manysets of rational numbers have
irrational numbers as their limiting points, and the irra-
tionsl number cannot telong to the set of rationsl numbers.

Ex. the sets of rational numbers,

1, 1.4, 1.41, 1.414, 1.4142,--=-nun- and
2, 1.5, 1.42, 1.415, 1.4143, --=-==~-- both
define the irrational number +2.

Other sets may contain several or infinitely many lim-
iting points.

Ex. The points of the interval (o0,1) contain infinitely
meny limiting points.

It is convenient to separate the limiting points of a
set (E) into a class by themselves, This new class is called
the first derived set of (E) and is denoted by (E). In case
(E) has limiting points, these are placed in a class (B,),
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which is called the second derived set of (E). Proceeding
thus we ccnsstruct the third, fourth,----------= derived

.......... (E_.). Any point

sets of (E), denoted by (E,), (E,), n

of (E,) which does not appear in (E_ ) is cslled a lim-

N |

iting point of (E) of the nth order.

"Ex, Let (E) _ 1,2 ,3 ,4 , -=ccceun- . In this
2 3 7 5

case (EJ conteins the single point 1, and 1 is called a

limiting point of (E) of the first order.

Ex. Let the points of (E) be given by 1 .1 ,1 1 1
; N VR e IR T

X -

Let us first consider x, as a varisble and x,, > S S

as constznts; by giving successively greater values to x,

it is evident that 1 becomes 0 in the limit x —s oo ;

therefore the points given by (1) 1,1 .1 _.1 where x,,
BY 7% 115 13%s :

X,, X, and X, are free to assume any definite rational

value, are limiting points of the set (E). Likewise by
considering x,, X,, X,, and x,, to be the variable success-

X X _) and

X o o

ively, Qnd (X', Xa, X“o 6")’ (X|! Xz9

(1‘, X,, X, x“) the constants respectively, we obtain five

2
groups of numbers of the type (1).

Next we may consider two numbers x, and x,, say, to be
variable and to assume any value whatsoever approaching the
limiting velue 6O, while thc remeining numbers Xy, X

‘.‘,9 Xé”

remain constants, we therefore obtain 10 groups of the type

1 1 1 (3.
7wt Tt 130w
On considering three numbers, say X, X, , X,, as
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variables, we obtain 10 grours of the type 1 1 (3).
117

On considering four numbers, say x,, X

variables, we obtain 5 groups of numbers, namely:

1, 1, 1, 1, 1 . (4).
31, 5T T¥s TI« T3 *«

Lastly considering the five nvmbers, X, X, X,, X, X,
as variables, and taking the 1limit where esach becomes indefin-
itely great, we obtain a group containing the single elerent O,

Then collecting all the numbersof these several groups
into one set we form the first derived set of (E), which we
will call (E,). The second derived set of (E), (E,) consists
of the 10 groups of type (2), the 10 groups of type (3), the
5 groups of type (4), and the single point zero. All those
numbers that appear in (Z),but not in (E,) are called limit-
ing points of (E) of the lst order. (Z;), the third derived
set of (E), consists of the last 15 groups of the sbove class-
ification, together witht he point O. (E,)contains the last
5 groups of +the classification, together with O, and(E,)con-
tains the single point O. Thus the set (E)has a limiting

point of the fifth order, the single point zero.

It is obvious from the above reasoning that a set (R)

of which the component points are given by 1_4_3_4_2__* .......
a, s as
4,%? , Where a , &,, 8,, ---------= a, are free to take all

integral values, is a set of order n.

Again, a set (E) which contains g1l the points of the
interval (0.1), since every point 1is = limitinz point of the
set, and since the set is closed, therefore the first derived
set (E) is identical with the original set (%), as are the
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derived sets of higher orders. That is, the set (E) is of
infinite order.

An example of derived sets of any order. The zeros of
the function sin 1 form a set simply infinite in number. In
this case (Z) is jg{iven Wl — +94 +2mwm, *37, - — ——
(E,) consists of the singli point O.

The zeros of the fuﬁction sin ( 1 ), form a set of the

sing
second order. The numbers of the set ?%) are given by the

values of x, where sini 1, 1, 1 [emeeeneaaa , that is,
q X ‘l" + F25 *37F
by 1 _ sin 1, sinm 1 , sin"? 1 --e-e---- .
x Tt *27 *+35

(E,) consists of the zeros of the function sin % , and

(E,) consists of the single point 0.

The zeros of the funcection sin [. 1 ] form a
Sin 44 '
T A
set of the third order. Tnose of the func?ion sin 1
sin ]
sin 1

. [
31n;7
a set of the fourth order and so on indefinitely.

If we choose as initi=l set (E) any closed interval (a,b),
that is, the set of points is given by a = X = b, or any open
intervel (a,b), that is the set of points is given by a< X< b,
in the case of the closed interval obviously every limiting
roint of any set of voints chosen from the interval is a point
of the interval, and in the case of the open interval, the
points a and b are limiting points of sets chosen in the in-
terval; therefore, in both cases we have (5,), the first
derived set, containing all the points of the closed interval

(a,b), as does every succeedinz derived set.
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Theorem: Every derived set is a closed set; the first
derived set may introduce new members not contained in the
original set, but no fﬁrther numbers can be introduced by
other derivations; each dérived set is contained in all the
preceding ones.

It is required to prove that a limiting point of lim-
iting points is itself a limiting point of the initial set.

et L,, L,, Ly ---==-==--=- be limiting points of (E) and let

2

P be 2 limiting point of the series L, L,,

Prom our definition of a limiting point there must exist a

point of (E) between L, and L Call this point P,, This

2 L]
applies both to a set with isolated limiting noints, and to

the case of an interval that is dense-in-itself, for in the

former case the infinite series L L

1 z

of necessity have a limiting point, and in the latter case,
it being & dense interval, there are infinitely many points
between any t wo roints. Therefore between the pairs of lim-

iting points L, and L, , L and L, ,-~----- we can choose

2

points P', P,, =-=--- -which being infinite in number have some
limitins point P. That is, P is e limiting point of (%),

This conclusion that a limiting point of limiting points
is a limiting point of the initial set, leads us to construct

a new series of numbers, the transfinite.

Transfinite ‘umbers.

' 7
Consider the series ll, 12, lé, l%g gy —m———- « This is

convergent end its limiting point, 2, is not an element of the
series. If we represent the points by P, , P, ,-------- it is

2
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clear that the limiting point can be represented by P,, where
w is the first ordinal number that comes after the series
1, 2, 3,ecccacennaa . The number «w is called the first trans-

finite ordinal number. In the (1,1) correspondence that we

have established between the sequence P, , P,, Pg, -=------- Py
l 43 7 3
and the series 12, 14 . 18' -------------- 2, P, corresponds

to the limiting value 2. It is evident that the system of
transfinites can be extended, thus we create the transfinite
numbers of the first order, B, Pw+1, Pw+z, --------- which
may be finite or infinite in number,

If finite the voints =sre fully represented by

P, P,, Py ===emmeen- P, P

2 W' Ty Pw+z’ """"" Pysem o

If the number of points is infinite, assuming that the points
lie in a finite interval, for we hsve given a simple trans-
formation by which the interval (=00 400) can be changed into
any required finite interval, in this case, the interval (2,4),
there will necessarily be & limiting point to the transfinite
ordinal numbers of the first order, which is called the first
transfinite number of the second order and is denoted by PamJu
or Pa»z . Again we recognize the possibility of the existence

of points represented by %4* , P , P, o . eme—ee--a

. w.24+2
If the number of these transfinite ordinal numbers of the sec-
ond order, is finite, our extended number system is represented
by the indices 1, 2, 3, =<======-= - W, WH), WAL, =emmme-

----- Wol, W1, W. 242 —-n-ll.24+M .
If infinite, there must be 2 limitins points which is called

the first trensfinite number of the third order, and is denoted



by P y OT P 3.

W w+w
W€ can conceive of these transfinite numbers appearing
in =21l finite orders, hence the series P, , P, P 5 -=-==---
being infinite in number, it must hsve a 1limiting point, de-
noted by w.w, or w”.

The system, then, lends itself to extension as follows:

Wi+, w42z, WEF, - - - - e W W,
w1+w+’ Y wz+w+2 ’ - e Ew G e e S S o e - w"+ w’z
W=+ W2 + | , WP Wi2 A+ 2 coime——m W+ w.3

W+ w.3 41, - - -

The general type of ordinal numbers is indicated by

Whop, + Wlp, A+ - s whp o+ b
If the set of points &' % w? <=-=--- is infinite, we
denote the limiting point of this set ty af? With this new
number we can build up a greatly extended number system as

denoted by the notation:

] . _
W w .)b,, -+ w” i,b,,_,-;--- cr e eie - +cu'.,b, +/b,

2 3
Further, if the series G ) w®, w®, -------

is infinite, we denote the limitin~ noint of this set by

w
CU“’.The system can evidently be very greatly extended.

Cantor conceives = new number SL which is the limit of all
these transfinite numters, and from this a vastly greater
extension can be imagined.
The forﬁation of the transfinite numbers is accomplisned
by an application of Cantor's two principles of generation.
(1) After any number the immediately succeeding number

is formed by the sddition of unity; as
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1, 2, B, ==c--cc---x
W+1, W2, W+B, -=-cu-nn

(2) After any endless sequence of numbers, a new number
is formed which succeeds all the numbers of the sequence, and
is distinguished by the fact that it has no number immediate-

ly preceding it.

w
n w

Bxs. &, .2, G, W, @ w” .

To indicate more clearly the principle that is involved,
let us divide up any finite interval by successively bisect-
ing each riznt hand intervel. By this method we obtain a set
of points to which we can assign numerical values if any defs
inite intervsal is chosen initially. ror instance, the inter-
val (0.1) will wupon indefinite bisection produce the series
0, % . g , g . %g g ~meme-ec-a- 1. Let us place this series in

o~

(1,1) correspondence with the sequence P,, P,, P5, --=-~---~ ,
which must have a limiting point P that corresponds to 1.
Now iT we repeat a similar subdivision with every inter-

val of the above sequence, for instance the interval (Z, %g)

or (P, , P, ), we obtain an infinite sequence of divisional
. 7 29 9 e . ..

points: 8 32 Sz y =—cmeeo=- which has the limitins voint

15

16° Tnere fore we caen represent the points of successive bi-

section of the infinite series of intervals (P,, Pz)(P¢!P3)°"'

as follows:
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The points of (P,, P,) by the indices 1, 2, 5, -------- Wy
(2, 2,) WAL, W2, == =m .2,
(P,, Py) W.241,W.242----- Ww.3

and so on for the infinite number of intervals. By the notation
a (1,1) correspondence is set ur such that the points
0, 3727 g8 > 16 » ~~=------ are paired off with the transfinite
numbers 0,0, W.2, W.3, W.4 , Web-~----~ respectively. Hence the
point 1 can be represented as the limiting point of the series
Oy W, W.2, W.B, ~-=mmm-m that is, by the transfinite number .

By & similar subdivision of each of the infinitely many
intervals of each of the intervals (B,P, ),(P, P,), ~~--n=-- ,

we obtain a (1,1) correspondence in which the points O, %, S

7, 1

8 16
PR 2 2 z | A

O, W, W2, W.3 , (Wed , W.H, ==cee==x . Hence 1 is in (1,1)

......... are paired off respectively with the sequence

corresprondence with the transfinite ordinal number co{‘

By repeated applications of this method of subdivision,
the number 1 may be represented by a transfinite of sny finite,
order, say aJn. If we imagine the subdivision to be per-
formed infinitely many times, then the number 1 becomes the
trensfinite number w®.

A second example on the representation of transfinite
numbers by rational numbers is the following:

A set of numbers that can be placed in (1,1) corres-
pondence with the natursl numbers is said to be countably
infinite: It will be shown in the course of a few pages
that the prime numbers =re countably infinite in number,

assuming this, it is clear that the series of rrime numbers,
-T2~



1, 2, 3, 5, 7, 11--=~---, can be placed in (1,1) correspond-
ence with the natural numbers 1, 2, 3, -cccceecea- . Then
taking the squares of 2ll the. prime numbers, omitting 1,

no number is repeated and these can be plzced in (1,1)
correspondence with the transfinite numbers'of the first
order w, wW+1, W+2, W+3, =-=—=-=-===-=-= . e may then set up a

(1,1) éorrespondence between the cubes of the prime numbers,
3 3 3 3 3

y 3, 5, 7,11 <---<----and the transfinites of the sec-
ond order, wW.2, W.24+1,W. 24+ 2, --cece-a- , and in general
the numbers 2*', zh+ M ______ corresronding to the

transfinites of the rth order, w.r ,wW.r+1,W.c+ 2, -=v-=-
We may then take the numbers (a.b) which consist of ths prod-
uct oi two prime factors; these arranged in ascending order
of magnitude may be rleced in (1,1) correspondence with the
trensfinites W, WAL, W2, W+ 3, =--emm.

Next, taking the numbers (e®¥), which sre the squsres of
the numbers in the set last considered, these we may plsce in
(1,1) correspondence with the numbers,

WAHw, WHWFl, WHW+2, —meeeee
and by taking the successive sets of numbers (aabs), (s*v%),
--------- , We obtein groups of numbers that may re taken to
correspond with the following transfinite sets respectively.
(1) w'+ w2, w+wz+1 , Wt w.2+2,---

(2) w*+ w.3, W'+ w3+ , W +w3+2,6---

(p-1) w"+w[o, w”+ w.’o+l , W+ w.)o-e-z,---
All of these numbers are ordinally less than the trans-
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finite (0 .2.

Proceeding, we may next place in (1,1) correspondence the
sets of nunbers

(22b) , (£b), (82b), -cmmemmee- -

(a%b) , (&3b) ,(aab), ............

(a*b) , (D)%, (2%b )5 --mo-monnau-
and so- on indefinitely.

Afterwards we may meke use of vroduce of 3, 4, 5, -~-----
prime factors.

It is thus proved that the system of transfinites may

be carried to a degree of magnitude, that seems unlimited,

An Application of the Conception

of Transfinite Numbers to Derived Sets,

1f (E) is any set of rvints, we require to show that

the derived sets (8) , (E,), (E,),==-=-- are closed sets, and
that each set after (E) consists only of roints telonging to
the preceding sets.

Proof. Suppose P is a point in (E,) that is not con-
tained in (E,), that is the point P is not a limiting point
of the set (E), or in other words there is a neighborhood of
P which contains at most but a finite number of points of the
set (E ). Hence within this neighborhood there are no points
of (E,), nor of (E,), since (E,) contains oniy the limiting
points of (B, ). Likewise this neighborhood cannot contain
any point of the sets (E,), (E,),-------= , Which is contrary

to our hypothesis. Therefore every set (E_. ) must contain

o
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only points of the set (E. ), where n 1.

By the definition of a derived set we can form the de-
rived set (E,) of any set (E), where n is any finite number.
But if the numbervof derived sets is infinite we define that
set which contains those points comcon to all the sets (E),
(Ep), (Eg), (B,), =-cmmmmeena- (E”),wheré n can be indefinite-
ly great, as the set (E,).

It is required to show that (E,) is a set of at least one
point and is closed.. Let p, be any point in (E,); p, any
point in (E,) and so on. The points p,, P, , P, ,;----form a
set [P“] of infinitely many elements and therefore must
have a limiting point which we will cel1l p. Now, p belongs
to the set (E“) whatever valye n may have, because all but a
finite number of the noints of [F“‘] belong to (%,); there-
fore p is a point of (E,). .

Choose any sequence of points in (Ew)' let the sequence
bea,, 8,, ----- having the limiting point a, since (E)) is
a closed set, a is s point of (E,) whetever value n may have,
therefore a is a point of (E,), thet is (E,) is & closed set.

Then, proceeding in the regular way, we can form the
successive derived sets, (Eu,, ), (E ,, ), (Byes)------~ . these
may be finite or infinite in number- If infinite in nurter,
a similar process of reasoning will prove that (E,,) is a

sat of at lesst one point and is closed.

It has b=en remarked earlier that a set whose points are

given by i:ﬁig#—----'+ %; where the a's sre free to take

every integral value, has n derived sets. The following is
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an example of a set which has infinitely many derivatives, yet

(E,) does not exist. Suppose we have a set (E) such that (E,)

consists of the —moints 1, 1 , 1 , -=--=----- , When n becomes
h 7T ¢

indefinitely great,(E,) tends towards O. Hence (E,) does not

exist since w is the next orizinsl number following the series

POTENCY.

A very helpful concertion in the study of sets of roints
is that of potency, with applications to the general idea of
rardinal number.

Definition. Any two sets that can be brought into (1,1)
3orreépondence are said to be equivalent in that they have the
same potency.

if we take & single point =& unit, we can construct the
natural numbers as far as gany given humber however great, and
by means of these count any finite set of points, Thus every
finite set is countable and corresponds in protency with that
36t of the natural numbers used in the process of counting.

Theorem 1. A sequence or simply infinite group of num-
bers can be brought into (1,1) corresrondence with the domain of
1aturel humbers. |

Let L be the only limiting vroint of a sequence that ex-
tends over the whole straight line or over any part; choose
eny point M 2nd take any interval (A,B)tincluding M, this in-
terval contains but & finite number of points n which we may

may peir off with the integers 1, 2, 3, -<==-c=-- -n,
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In the figure, the line represents one unlimited in
length, therefore closed.

Biseet the segments (B,L) and (A,L not including the
roint 1), at B'and A'. Then the segments BB' and AA' con-
tain each but a finite number of points.

Suppose the segment BB' contains n,points, these can be
made to correspond with the integers, n+1, n+2, ~------=
n+n; and if the segment AA' contains n, points, these can

be paired off with the integers, n+n,+1, n+n,+ 2, n+n,+ 3,

Continuing this subaivision and alwsys choosing those
segments that have not L as sn end-point, we c&n plsce every
roint of the simply infinite sequence in (1,1) corresrondence
with one of the natural numbers. If L heppens to be a point
of the cequence we begin by rairing off the voint L with the
number 1, and then proceed as kefore.

Therefore since any simply infinite sequence can be
brought into (1,1) corresyondence with the system of natural
numbers, obviously any two simrly infinite sequences can be
brought in (1,1) correspondence with one another.

Thus the potency of the system of natural numbers, is
likewise the potency of all simply infinite sequences end it
is convenient to givé to it & symbol. The potency of the
natursl numbers will be denoted by a.

Examples:
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(1) The even numbers have the potency a. Proof, they can be
paired off in the following manner to any indefinite number,

that is a complete (1,1) correspondence ie set up.

Similarly it can be shown thst
(2) %he cdd numbers have the potency a.
(3) The prime numbers have the potency a.
(4) The numbers that are the squares of tue natural numbers

have the potency a.

A set which can thucly be brought into (1,1) corres-

rondence with the natural numbers is said to be countably

infinite.

Theorem 2. If we heve & finite number of countably

infinite sets, their sum is likewise 2 countably infinite set.

Let the sets be:

a' " az’ 8.3, -------
b, ’ b"’ bs, ““““““
C,, C,, Cg,===--===

a’i blv c ) d " memcem—e=~=q ' h,_, (o]

8 b,, c d,, =-====-=--= , and the composite set thus

J
arranged can‘be prlaced in (1,1) correspondence with the nat-
ural numbers. Conversely, if the composite set consisting of
all the points of any finite number of sets is countable, then
eech of the compound sets is countable.
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As every limiting points of & set is determined by &
simply infinite sequence, therefore a set which has but a
finite number of limited points is countable.

Theorem 3. Any set which can be divided into a

countable number of countable sets is itself countable.

Let the sets be
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(1,7) ----
(2,1)(2,8)(2,3)(2,4)(2,5:(2,6)(2,1 ----
(3,1)(3,2)(3,3)(2,4)(3,5)(3,6)-~--~ Fig.
(4,1)(4,2)(4,3)(4,4)(4,5)(4p6) ----
(5,1)(5.2)(5,3)(5,4)-=-=~

And rearresnging
ﬁl.lﬂ,[(l,z).(Z,l)] . [(1,5),(2.2),(3.1)X ymm—————
where the sum of the indices of éadh element of =2ny bracket
[ ] are ecual. This rearrangement of the composite sets
can be placed in (1,1) correspondence with the natural num-

ters since tne clements of each grour are finite in number,

Prom the theorems that we have rroved, assuming that
the associative anud c¢ommutative “2ws hold as for ordinary
multiplication and addition:

a4n=n+a = 8

n.s =

o

1N - 2

o,

= 8
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Theorem 4. Every set of intervals on a straight line

is countable provided no two overlap.

e can assume the intervals to be contained in a finite
segment since we can readily transform as infinite segment into
vroints contained in a given segment.

€,, =cmecce== a series that has zero as

Choose e, , e,, ey,

its limiting point, then arrange in one group 211l the inter-
vals that are = the interval e, e,, . Call the number of

these intervals a which must be finite since we are desal-

’

ing with Archimedian quantities. Similmrly , those intervals

>

that are = e must be finite,

in number a

e;and < e, e, , 2

2
and so on indefinitely. This srrangement includes all the in-
tervals}and according to Theorem 3, the intervals are count-
able.

As a corollary to the preceding theorem we can state thnat every
set of isolated points is courtable. FProof: we can describe
intervals each containing but one isolated point snd such that
the intervals do not ove-lap, though they may abut in special

cases, hence 2ny set of isolsted voints is countable,

Theorem 5. If (E) is a set of vpoints, those points of

(2) thst are not included in the first derived set (E,) are
countatle.

These points cannot form an interval that is dense, for
if so, the intervel would necessarily contain limiting points
of (); therefore the points of (E) other than those included,
in (E) from an isolated set, thet is, they are countatle,
Further, if (E) is a courtable set, then (E) is likewise =
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countable set.

The reasoning is generay. Those points of (E,) that are
not counteined in (E,) from an isolated and thereforea count-
eble set, and so on.

Thus, if (E ) is & countable set we can state , at once,
that (B, )--=---- (2,) end (E) are likewise countable sets.

The rational numbers are countablé, since every rational
can be expressed in the form (a,b), where a and b are inte-
grel numbers, the numerstor and denominator of 2 proper frec-
tion respectively. We can evidently arrange the rational num-
bers in a sequence of the form:

[(1.1)], [(1,2),(2,1)], [(1,3),(2,2),(3,1)], ........
which is countable by Theorem 3.

Any set of intervals whose end-points are rational num-
bers, where the raional numbers can be chosen in any order
whatsoever, may be overlspping in a very complex menner, yet

they are countable as is shown by the proof in the preceding

paragreph.

Theorem 6. Given a set of intervels overlapping in any
way, we can determine a countable set of intervals from among
them such that every point internal to any interval of the
given set is also interval to an interval of the countable set.

Let the overlspping interv-1ls be contained in.the finite
segment (A,B), this does not impair the generality of the
proof. In (A,B) take any point P corresronding to a rational
number; choose rational humbers Q end R in (A, P) and (P,B);
choose rational numbers a , a,, a,, 8, in the segments
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(4,Q), (§,P),(P,R) and (RB) respectively, and so on indefinitely.
If A and B are rational points, we obtain 2 set of overlap-

ping intervels whose end-points are rational numbers, which

we have pro#ed to be countable, and the segment (AB) is such

that every pointmis internal to some interval of the countable

set of overlappiné intervals, If A and B are irrational points,

and A > B, we have but to choose A, <A and B,> B, where A,

end B, are rational points in order to obtain a set of over-

lapping intervals with rational end-points that contain every

point of the segment (A B), and that is countable.

The Heine-Borel Theorem.

Given any closed sets of roints on a straight line and a
set of intervals so that esch point of the closed set of
points is an inte nil point of at least one of the intervals,
there exists a finite number of intervals which have the prop-
erty of including as =n intern-1 voint every point of the
closed set of points.

In Theorem 6 it was rroved that any set of overlapring
intervals could be replaced by a countable set which likewise
inzluded every point as an internal point.

Let us call these intervels d4,, d,, 4, ,------ .

Three case8 may arise:

(1) d, mey not overlsp d4,; if so, call the two in-
tervals &’and SI , respectively.

(2) d, may overlzp d, on one side only; in this case,

denote the intervel d, by 5} , and by 5;, the non-overlapping

part of 4, .
b (82)



(3) d, may overlap d, on both sides; if so, denote the
interval d, by &, , and by J, and J3 the non-overlapping
parts of d, .

Proceeding with the interval 4 5, denote its whole, pa.-t,
or parts by J;, 54, or ( 54 ,J%’ ) respectively; and so on
indefinitely.

We get a set of non-overlapping intervzls, It is required
to prove them finite in number. There cannot be any points of
the closed set of points that are external to the set of cf-

-intervals, because the intervals abut, nor can there be any
semi-external points.

A semi-external point is one which is 2 limiting point
of a sequence of intervals on one side and an end vnoint of
one or more intervzls on the other.
®x. The sequence of intervsls (0,%) (%,2) (g'g) .....
together with the interval (1,2) determine the semi-external
point 1.

If any end-point were a semi-external point, necessarily
it woula be a limiting point of points of the closed set and
therefore 2 point of the set. But by our definition, the
limiting point of a set of intervals is = point such that any
interval whatsoever having this point as an internal point
contains intervals of the set, Therefore limiting points and

semi-external points cannot exist in this set of non-overlavnping

intervals. Further, it hars been shown that a set of infinitely
many points must have at least one limiting point. Hence con-

sidering the rignt-hand end-points as forming a set, the two
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sets obviously determine a limiting point or a limiting inter-
vél. But a set of non-overlapping intervals cannot have a
limiting interval. And as we have shown that in this case
the 5-intervals cannot have a limiting point, therefore the

§ - intervals are fihite in number. Likewise the d— inter-
vals are finite in number since they can be chosen so as to

be less than the éz-intervsls.

It is required to prove that the system of algebraic num-
bers is countable. Algebraic numbers are those that arise in
the complete solutions of algebraic equation of any finite de-
gree, whereas rational numbers arise from the solution of
equations of the first degree.

Let the general equation be written as

m m~t L Me?
8,X +28 X" 48X -+ +a8,0 (1).
Since a ,a,,--~---- 2.,, &are necessarily rational integzral num-
bers, therefore
8, ...’a']-J- ------- +‘ah|=n (2)

The number of solutions of equation (2) is finite, be-

---=8 are free to take only in-

cause the symbols a,, a, .,

™
tegral values, both positive and negative, and when we add
their absolute velues, evidently there are but a finite num-
ber of permutations that satisfy equation (2) for any given
value of n., Further, an equation of degree m has but m roots,
that is, the number of roots is always finite. If we now
arrange the different solutions or values for a given m and n
in some definite order, and denote by p the position in this

ordered sequence of any number, we can fully renresent every
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algebraic number by a triply infinite system of indices, as

indicated in the diagram :

sy, (1,2) , (108 - - -

\p ("2") » ('1242) . <|,2’3) — -~ -
sy
D\ Py 03,032, (3.9 - - -

N N

We thus obtain a solid formation of elements,.which we

may separate off into sections whose aggregate of indices are
the same for any eection and change by unity from any section
to the succeeding one. Arranging the sbove sequence of num-
bers in this manner[(1,1,1ﬂ,[(1,1,2),(1,2,1),(2,1,1ﬂ -
we can place the sequence in (1,1) correspondence with the nat-
ural numbers, therefore the system of algebraic numbers is
countable.

The algebraic numbers comprisé both rational and irrational
numbers. 7e have shown thet the whole system of algebrasic num-
bers is countable, =nd likewise the reational numbers are count-

ably infinite, therefore the irrational slgebraic numbers are

countable,

It has been proved that a set of isoleted points it s
closed set end is @ountable infinite. Ve can prove thst a set
of points that is dense-in-itself and nownere-dense is count-
able. For consider the rizit-hend end-points of the black
intervzls of Cantor's tertiery set, which is such that any giv-
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en interval is divided into three equal parts, and the mid-
dle one is darkened, then the remaining two parts are
similarly divided and their middle parts blackened, the
process being carried on indefinitely;----it has been shown
that the end-points of 211 of these infinitely many black
intervals are limiting points of end-points, but on one side
only. Therefore the set 0f end-points is dense-in-itself;
further between any two end points there lies either a
black interval or an interval contsining external points of
black intervals, so that the set is nowhere-dense., Again
it has been shown that any set of non-overlapping intervals
is eountable, the black intervals form a nonwoverlapping
set, therefore the set comprising their end-points is
countable.

A countable set is never perfect. Let the countable set
be P, P, , Py ,--=---- srranged in countsble order, snd we
will suppose it to be & perfect set.

. Pwm
A )23 ]

With P, es centre point take an interval &, =nd let
P, be the first point in the countsble order following P,,
therefore m>1 . Then, with P,,as centre point tske an
interval 5,2 not containinz P, and lying wholly within 5,,
and irlé;let Py, be the first point in the countable order
following P4, . Continuing this crocess indef:initely we

obtain a set of intervels 5; 6; ------ each contained with-

in al1l the rreceding ones, and the limit of the set of in-



tervals 4&, 51,5; ------ is zero. Hence the set of intervals
determine a2 limiting point Py - We have l<m<n ------ <x,
and since we have chosen a countable set and but a finite in-
terval of that set, therefore x is finite, that is, the num-
ber of intervals is finite. But by hypothesis P, is a limit-
ing point of the set, therefore within the successive intervals
(R B),(R P,) (P, P,)-~~~---- which we have denoted by the series
8, 8,, &5, =------- there must be infinitely many points of
the set. This is a direet contradiction of the result of the
preceding reasSning, hence we may state that no countable set
is perfect.

It follows from the last result that a closed countable
set of points cannot contain =2ny part that is dense-in-itself,
and as every segment of the domain of real number, as the
interval (0,1) say, is both closed and dense-in-itself, we
may conclude that the aggregate of real points is not count-
able.

The Linear Continuum.
The linear continuum is not countable. ‘'e assign to it
a newpotency c.

Direct proof: All the rationel numbers in the interval

(0,1) can be expressed as decimsls of the type:

0.8, 8,;, B35 8 ~=-====

- - s O Do - -

and we have proved thst they are countable in number. If we
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can define a number lying in the segment (0,1) different
from every member of the above group, since every real
number that is conceivable belongs to the linear continuum,
we will have proved that the linear continuum is not count-
able.

Let the number b be defined by

0, b, b, by by-evcee=u= » Where b, 1is never the same as
8,y » Which we can =ssure by choosing b=a+1 if a <9,
and b=o if 8 = 9. The number b evidently lies in the
segment (0,1) and can be seen to be uifferent from every
rational number by at least one prlace in the decimal.
Therefore we have proved that the linear continuum is not
countable.

It is required to show that any zlosed or oren segment
can be brought into (1,1) correspondence with the whole
strgight 1line, or with any segment of that line.

Consider the open interval (1,2) and the same inter-
val closed; choose out two sets, 1:-L 12, 15 ----------
having 2 gs its limit, end 1% . 1%, 1%6' ---------- having
1 as its limit; and let every number not included in these
sets be placed in correspondence with itself. Then if we

pair off consecutively the pnumbers 1 and lé, 1% and 1% ,

1
1- and ll‘ ym————- and also the numbers 2 and 11, 1% and

8 16 2 2
lg, -------- evidently every point of the closed segment is

placed in (1,1) correspondence with =2 point of the open seg-
ment .
Let us rlace tne segment (-5,5) in (1,1) correspondence
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with the whole straight lins, meking use of the equation
xx'==4,‘every number —»1 and < -1 is placed in correspond-
ence with the points of the segment (-4,4). The points of
the closed interval (0,1) are placed in correspondence with
the segment (4,5) by means of the equation

x' - 4 =1 - x; and the points lying between -1 and
0O , <1 included only is placed in correspondence with the
interval (-4 ,-5) by means of the transformation.

x'+4=-1 - x , which completes the correspondence.
Therefore every segment of the linear continuum has the

potency c.

Every set of non-overlsyping interv=le is countable
in number, and the points of each intervasl whether open or
closed has the potency c. Therefore tne points of any set
of non-overlapping intervsls can be brouziat into (s,1)
correspondence witn the whole straight line, that is, the
set of points has the potency ¢. 1In order to prove gener-
ally that every perfect set has thne potency c, we must dis-
cuss the case of .a perfect set dense-nowhere.

Suvpose the rerfect set to te inclosed in a segment
(A,B) which is the smsllest possible, then A ani B must be
roints of th= cet and hence limiting points of points of
the set. 1In Cantor's tertiary set, perfect and dense-nowhere,
the black intervals are dense-everywhere, but as A and B are
limiting roints tuey are not internsl points of black inter-

vals, but must be external points. 2eturning to Csntor's

typical perfect set dense-nowhere, divide the segment into
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two equal parts at C and D, and denote the black interval CD
by d, where .1 is the ©binary number corresponding to its
middle point. ©Proceed in the same manner with the segments
AC and IB, numbering their middle black intervals d_,, and d,

respectively. We have now four intervals AP,RC, DQ and SB,

whose middle blackened intervals would be numbered Qoo,' Qouy’
d o, » and d,, , wnere the suffixes are the binary numbers cor-

responding to the middls points of each black interval.,

A.oo; d:au ‘.im dﬂm

A

- . o e
P =R J D Q S B

This method of subdivision can be carried out indef-
inttely. We have yroved that the resultinz set of black
intervals are countable infinite, end that the end-points
and external points of bleck intervals form a perfect set
dense-nowhere,

Zvery number of the continuum (0,1) is expressible in the
dyad scel~s by means of & sequence .p . .pq , .pQr, -------
where p, ¢, r, ==-=--= gre eitier O or 1. And we have proved
that it is rossible to plesce any sezment (a,b) in (1,1) cor-
respondence with any other segment, say (0O, 1). Turtner,
every number determined by the above se, uence of numbers is
unique, except those in which after some certain decimsal digit
all the digits are 1, for these can be expressed by a second
sequence, in which after some certaindecimal dizit all the
digits are zero.

Now, let us put the white intervals into a notation

similar to that of the black intervals, for instance, let
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the interval (AB) be denoted by 1, the two intervals formed
by the first subdivision by 1, and 1,, , then the four in-
tervals arising from the next subdivision by 1,,o,, 1,00
1,00 &nd 1,,,, , the eight intervals from the next subdivision
by the indices: .0001, .00"1, .0101, .0111, .1001, .1011,
.1101, .1111 , and so on indefinitely. If we denote the
perfect set of points by (E) evidently we can represent every
point of (E) by 2 dyad sequence. For let a be e¢ny roint of
the set (E), a must lie in the interval; then in either
of the intervals 1,, , or 1,,; tﬁen in one of the four
1,01 » Lo » 1yg OF 1,4,y ; then in one of the eight in-
tervals, and so on; that is, we obtain a dyad sequence,
+P, .pé, DAY, ~--=---= which represents the point a; as the
intervals from an infinite set each enclosed within the pre-
ceding, therefore they determine a definite limiting point.
In the ce=ce where after some fixed number, all the
decimals of the suffix sre either 211 O or all 1, the point
represented by the sequence is a common ena-point of all the
intervsels after a certein fixed one. Therefore the sequence
e L Lo

the set (%) and determines esch point uniquely except in the

------ determines in every case & point of

case of end-points of black interv:ls which are countadbly
irfinite in numter. We have thus shown thst the roints of
-a perfect set c.n be placed in (1,1) correspondence with the
dyad scale which rerresents adl the numbers of the contin-
uum (0,1), becsuse if from any set of potency ¢ a countable

infinite set be removed the remaining points ot the set will
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still nave the potency c.

That this proof will appdy to the general perfect set
dense-nowhere, is seen from the following consideration.
Divide thé segment (AB) into three equal parts by the points
C ahd D. If D iswgpclos?d in a blsck intervel call it 4,
as in our previous notation. If CD is not enclosed in a
black interval then it must either from a part of a black
interval or it must include blsck intervals; if the former
is the case, denote by d; the interval of which CD forms
a part, and if the latter is the case, choose out the largest
black intervai enclosed and denote it by d,. In every case
we have two white intervals terminated by A and B respectively
and to these we apply & similar subdivison, where A and B
being points of the set cannot be other than external points
of the black intervals that are dense-everywhere. Clearly
the notation can be made to conform exactly to that of the
regular case. The statement about infinitely many sets of
intervals each enclosed within the preceding, and tnerefore
determining a definite limiting point, follows directly as
does the remainder of the proof;

We have just shown that every perfect set has the vo-
tency c. Now, by an example we will illustrate that a count-

ably infinite set can be taken away and the remeining points

will still have the potency c.

e . 1,1,1,1 ...
Let us take the set of roints 1, 5'2°8"'3:".

together with the points of the interval (0,-2). The whole
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set has obviously the potency ¢, while the set 1,5, 4-g ,-=-=--
has the potency a, and the set remaining after subtracting
the set of potency a is the set (0,-2) which has the potency
C.

It has been proved that the linear continuum has the po-
tency c, and that the rational numbers of the continuum has the
potency a. Therefore the irrational numbers in the whole con-
tinuvum or in any segment has the potency c. It has been shown
that the set of algebraic irrationals has the pétency c.

It is required‘to show that the Liouville numbers in the

continuum has the potency c. ‘e may rlace the Liouville num-

bers s, 82 Ny o =—e-== in (1,1) corresporndence with
10+ 107 1o T
the numbers a, a., 83  ~=====~ where a,, a_, 8,, =--=-=---~=
To Y10zt 103+ o o
may have for values any of the ten figures. But the set of
numbers given by &, .82 _,83 , ----- makes up the rational
IorIct 1ot

and irrational numbers of the real continuum, that is has
the potency c.

The reader is referred to ‘Sets of.Points'by Young for a
discussion on the content and measure of a set of points,
also for the extension of these elementary ideas to include
the properties of plane sets of noints, points in three di-

mensions and generally points in n dimensions,
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